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Abstract. Automated medical image segmentation is valuable for dis-
ease diagnosis and prognosis, and it has achieved promising performance
with deep neural networks. However, a segmentation model trained on a
source dataset may not perform well on a different target dataset when
the distribution shift or even modality alteration exists between them.
To address this problem, domain adaptation techniques can be applied to
train the model with the help of the unannotated target dataset. Often
when the target data is available, only a segmentation model trained
on the source dataset is provided without the source data, and in this
case, source-free domain adaptation (SFDA) is needed. In this work, we
focus on the development of SFDA techniques for medical image seg-
mentation, where the given source model is updated based on the target
data. Since no annotations are available for the target dataset, we pro-
pose to leverage the consistency of predictions on the target data when
different perturbations are made, and adopt the mean teacher frame-
work that can effectively exploit the consistency. Moreover, we assume
that the update of the entire model in vanilla mean teacher is subopti-
mal because when no annotated data is available the knowledge learned
for segmentation in the source model can be easily forgotten. Therefore,
we propose selectively updated mean teacher (SUMT), which seeks to
adapt the source model parameters that are sensitive to domain vari-
ance and retain the parameters that are invariant to domains. In SUMT,
we develop a progressive layer update strategy with channel-wise weight
restoration that alleviates forgetting. To evaluate the proposed method,
experiments were performed on three datasets, where the source and tar-
get data used different modalities for segmentation, or their images were
acquired at different sites. The results show that our method improves
the segmentation accuracy compared with other SFDA approaches.
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1 Introduction

Automated segmentation of medical images can provide a valuable tool for the
diagnosis and prognosis of disease and enhance our understanding of disease
and treatment planning [13,15]. The use of deep neural networks (DNNs) has
allowed remarkable improvement of the segmentation accuracy [9]. However, the
segmentation model trained on a source dataset may not generalize well to a
target dataset that is acquired at a different site on a different scanner due to
the domain shift caused by inter-scanner variability [1]. Moreover, the target
dataset may even use a different modality for segmenting the same anatomical
structure or lesions [2,13], which further increases the difficulty of generalizing
the trained model to the target data. In these cases, the segmentation quality
for the target dataset can be severely degraded, and it is desirable to develop
segmentation approaches that adapt well to different target datasets.

To address the generalization problem, domain adaptation techniques are
developed, which exploit both the annotated source training data and unan-
notated target data [1,2,6,7]. For example, in [6] and [7] adversarial learning is
applied to align the features of the source and target domains. In [2], a synergistic
fusion of adaptations from both image and feature perspectives is proposed when
the source and target domains use different image modalities. AdaEnt [1] uses
an additional class ratio predictor for domain adaptation by assuming that the
class ratio is invariant between the source and target domains. These methods
are shown to allow better adaptation of a DNN-based model to target datasets.

The domain adaptation methods described above assume access to both the
annotated source dataset and the unannotated target dataset during model
training. However, in real-world scenarios, when the segmentation model is
trained with the source data the target data may not be available due to privacy
concerns or even not be acquired yet; and it is also not guaranteed that the
source dataset can be shared with the target dataset for model retraining. In
these cases, source-free domain adaptation (SFDA) should be considered, where
only the model trained on the source data is provided without the source data,
and this given source model is updated based on the unannotated target data.
For example, for classification problems, SHOT [12] is developed to align the
hypothesis of the source model to the target domain with entropy minimiza-
tion and diversity regularization, but this method cannot be directly adapted
to segmentation; TENT [24] updates the batch statistics and affine parameters
in the batch normalization layers of the source model via entropy minimization
on the unlabeled target data. More specifically for medical image segmentation,
OSUDA is proposed in [13] based on batch normalization statistics under the
assumption that scaling and shifting operations in batches are domain share-
able. OSUDA explicitly enforces a channel-wise optimization objective, where
the domain-specific batch mean and variance are updated incrementally. How-
ever, only adapting the batch normalization layers of the source model is gener-
ally insufficient for optimal performance. Therefore, the development of SFDA
methods for medical image segmentation is still an open problem.
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Ideally, SFDA should adapt the domain-specific parameters in the source
model according to the target data and retain the domain-invariant parameters.
Since no annotations are available for the target dataset, to update the source
model, we propose to leverage the consistency of predictions on the target data
when different perturbations are made. This idea is common in semi-supervised
learning (SSL) [5,14,23], where the mean teacher (MT) framework [23] has been
mostly used for the purpose. However, unlike SSL, in SFDA the source model
is updated purely based on the consistency information without any annotated
data. This can easily lead to knowledge forgetting, which impairs the domain-
invariant knowledge in the source model that is necessary for accurate segmen-
tation.

To avoid this issue, we propose a selectively updated mean teacher (SUMT)
framework for SFDA-based medical image segmentation. In SUMT, a student
model and a teacher model are both initialized by the source model. Since
state-of-the-art DNNs for medical image segmentation generally use an encoder-
decoder architecture [3,18,21], we also assume that the segmentation model has
both an encoder and decoder. First, as earlier layers are more likely to be domain-
specific [12], instead of updating all layers in the teacher model, only its encoding
layers are updated with exponential moving average (EMA) [23] based on the
student model. Then, a channel-wise weight restoration (CWR) strategy is devel-
oped to preserve the domain-invariant knowledge, where the network weights of
the encoder of the teacher model that are likely to be domain-invariant are iden-
tified, and the identified weights are restored to their initial values. Next, the
whole teacher model is updated based on the student model, and CWR is applied
to the decoding layers to further alleviate forgetting. Finally, the teacher model
is updated again and used for segmentation. To evaluate the proposed method,
experiments were performed on three datasets, where the source and target data
used different modalities for segmentation or used images acquired at different
sites. The results show that our method improves the segmentation accuracy
compared with other SFDA approaches.

2 Method

2.1 Problem Formulation and Method Overview

Suppose we are given a DNN-based segmentation model M with an encoder-
decoder architecture trained on a source dataset, but the source training data is
not accessible. We seek to perform segmentation on a set X of N images from a
different target dataset, where the i-th target image is denoted by xi. The tar-
get images are acquired differently from the source images, e.g., with different
intensity distributions or even different modalities. Due to domain shift, direct
application of M to X leads to suboptimal performance [12,13,24]. Therefore,
the aim of this work is to adapt M based on X so that the segmentation per-
formance is improved, which is an SFDA problem.

Since no annotated data is available for the target dataset, we choose to
adapt the source model based on the prediction consistency when the target
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Fig. 1. Method overview: (a) the complete SUMT framework, (b) the CWR strategy
in SUMT, and (c) the standard MT for comparison.

data is perturbed, so that the model can accommodate the target domain. The
MT framework [23] has been shown to effectively exploit the prediction con-
sistency in the SSL setting. However, in SFDA the knowledge necessary for
image segmentation can be easily forgotten if the model is updated solely based
on the prediction consistency. For example, the model can simply resort to a
degenerate solution that produces the same result for all inputs. Therefore, we
propose SUMT that improves upon the MT framework for the SFDA setting.
An overview of SUMT is shown in Fig. 1, where the CWR strategy in SUMT is
also illustrated and the standard MT is described for comparison. The detailed
design of SUMT is presented below.

2.2 Selectively Updated Mean Teacher

To effectively leverage the data from the target domain, SUMT seeks to adapt
the source model parameters that are sensitive to domain variance and retain the
parameters that are invariant to domains. Like standard MT, in SUMT a teacher
model Mt and a student model Ms are constructed. Mt and Ms share the same
network structure, and they are both initialized by the source model M.

In standard MT, Mt makes predictions on perturbed target images, which
are considered pseudo-labels, and Ms learns from the pseudo-labels based on
differently perturbed target images to update the model parameters. Then, all
model weights of Mt are in turn updated based on Ms with EMA. However,
the joint update of all weights can be problematic for SFDA as it may cause
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forgetting of domain-invariant knowledge for segmentation due to the lack of
annotated data. To address this problem, in SUMT we propose to selectively
update the model weights of Mt, where the following steps are applied.

Since the earlier layers are more likely to be domain-specific [12], we pro-
pose to first update the encoding layers of Mt while fixing its decoding lay-
ers when Mt is updated based on Ms with EMA. Formally, we denote the
encoders/decoders of M, Mt, and Ms by E/D, Et/Dt, and Es/Ds, respec-
tively. At the t-th iteration of the update, the student model Ms is updated by
minimizing a consistency loss based on the target data. Specifically, suppose the
prediction given by Ms for xi is ci, and the corresponding pseudo-label given by
Mt is di.1 The consistency loss Lc for updating Ms with fixed Mt is defined as

Lc =
N∑

i=1

(Lce(ci, di) + LDice(ci, di)) , (1)

where Lce and LDice are the cross-entropy loss and Dice loss [20], respectively.
Then, the teacher model is updated as

Et ← Et · σ + Es · (1 − σ) and Dt ← D, (2)

where σ is the EMA decay rate to be specified. This partial update of Mt reduces
the risk of forgetting high-level semantic knowledge in the decoding layers while
adapting the extraction of low-level features in the encoding layers.

In the partial teacher update above, it is still possible that domain-invariant
model parameters in the encoder are inappropriately updated. To address this
problem, we further propose the CWR strategy which explicitly restores the
knowledge from the source model that may need to be retained. Specifically,
suppose the model weights of Mt at the l-th layer associated with the k-th
channel are represented as a set Wt

l,k = {wt
l,k,p}Pl,k

p=1, where Pl,k is the number of
these weights and wt

l,k,p is the p-th weight. The amount of the update of Wt
l,k

can indicate whether the weights are associated with domain-specific or domain-
invariant features. A greater update amount indicates that the channel is likely
to focus on the domain-specific feature and contribute to domain adaptation,
whereas a smaller amount indicates that the channel tends to extract domain-
invariant features and probably should not be forgotten. To measure the amount
of the weight update, we compute the difference dl,k between Wt

l,k and the

corresponding weights Wl,k = {wl,k,p}Pl,k

p=1 in the source model M as

dl,k =
Pl,k∑

p=1

∣∣wt
l,k,p − wl,k,p

∣∣ . (3)

Based on dl,k, we restore the bottom ql (percentage) of the weights for the l-th
layer of Mt as

Wt
l,k ←

{Wl,k, dl,k ≤ H(Dl, ql)
Wt

l,k, dl,k > H(Dl, ql)
, (4)

1 Noise perturbation and random flips are applied before the teacher or student pre-
diction as in [16].
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where Dl represents the set of all dl,k’s at the l-th layer, and H(Dl, ql) sorts these
dl,k’s in ascending order and returns the value that is ranked ql. Note that here
since Dt is the same as D, no restoration is needed for the decoding layers.

With the restored encoder, we assume that the earlier layers are better
adapted to the target data, and the complete teacher model Mt including its
decoder can now be updated with standard MT, where Ms is reinitialized by
Mt. Note that to avoid incorrectly restored weights, a warmup stage that again
only updates Et is inserted before updating the complete teacher model. Dur-
ing the update of the complete teacher model, at the t-th iteration, after Ms is
updated based on Lc, the teacher model is updated with EMA as

Et ← Et · σ + Es · (1 − σ) and Dt ← Dt · σ + Ds · (1 − σ). (5)

Finally, to further avoid knowledge forgetting in the decoder, CWR is applied
to the decoding layers of Mt based on Eq. (4), and the teacher model is then
updated again with standard MT using Eq. (5). After convergence, the teacher
model is used as the final segmentation model.

2.3 Implementation Details

We focus on 3D segmentation and use the 3D U-Net [3] implemented in SS4L [16]
as the backbone segmentation network, which is a popular choice for semi-
supervised medical image segmentation [17,18]. Note that variants of U-Net may
also be used and integrated with the proposed method, but it is observed that
the performance of these variants is usually on par with the original U-Net [8].

The major hyperparameters in the proposed method are the restoration per-
centages {ql}Ll=1, where L is the total number of layers and it is equal to ten
for the selected 3D U-Net. We set ql = 0.1 ∗ l because earlier layers tend to
be domain-specific and their restoration is less needed. We set the EMA decay
rate σ = 0.999 according to [16]. The other training configurations, such as the
optimizer, learning rate, etc., are set to the default specification in [16].

3 Results

3.1 Data Description and Experimental Settings

To evaluate the proposed method, we performed experiments on three datasets.
Their details and experimental settings are given below.

BraTS 2018. The first dataset is the publicly available BraTS 2018 dataset [19],
and it was used in this work for whole brain tumor segmentation. The BraTS
2018 dataset contains 285 subjects with four modalities of magnetic resonance
imaging, including T1w, T2w, T1ce, and FLAIR images. These images are
aligned and have the same voxel size of 1 mm isotropic. For each subject, voxel-
wise labels for the enhancing tumor, peritumoral edema, and necrotic and non-
enhancing tumor core are given, and they were combined to provide the anno-
tation of the whole tumor. We randomly split the dataset into a training set
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of 200 subjects and a test set of 85 subjects. To investigate the performance of
cross-domain segmentation where the training and test sets use different image
modalities for segmentation, we considered the following settings: 1) FLAIR for
training and T2w for testing, 2) T2w for training and FLAIR for testing, 3) T1w
for training and T1ce for testing, and 4) T1ce for training and T1w for testing.

INBT. The second dataset is an in-house dataset for whole brain tumor seg-
mentation, which is referred to as INBT for convenience. The dataset includes
67 annotated FLAIR images acquired on multiple scanners, and they have
been skull-stripped with BET [22]. The voxel size of these images ranges from
0.875mm × 0.875mm × 2mm to 2mm × 2mm × 5mm. We used INBT to inves-
tigate the segmentation performance when the same modality was used for seg-
mentation but the training and test images were acquired on different scanners.
Specifically, the FLAIR images of the training subjects in the BraTS 2018 dataset
were used for model training, and all subjects in INBT were used as the test set.

MSSEG. The last dataset is the MSSEG dataset [4] for segmenting multiple
sclerosis lesions. The dataset contains multimodal images of 15 subjects acquired
on three scanners (five subjects for each scanner), including Philips Ingenia
3T (PI3T), Siemens Aera 1.5T (SA1.5T), and Siemens Verio 3T (SV3T). These
images have been preprocessed with skull-stripping and co-registration [4]. The
resolution of the preprocessed images ranges from 0.5 mm to 1.25 mm in each
dimension for different subjects. The annotation of multiple sclerosis lesions was
performed for each subject by seven independent clinical experts, and their con-
sensus was used as the final annotation. For demonstration, we used the FLAIR
modality for segmentation. The MSSEG dataset was used to investigate the
segmentation performance when the training and test images were of the same
modality but acquired on different scanners. We considered two experimental
settings for MSSEG. First, the training images and test images were acquired
on scanners of different vendors, where the images acquired on SA1.5T and
SV3T were used for training, and the images acquired on PI3T were used for
testing. Second, the training images and test images were acquired with differ-
ent magnetic fields, where the images acquired on PI3T and SV3T were used for
training, and the images acquired on SA1.5T were used for testing.

3.2 Evaluation of Segmentation Accuracy

SUMT was applied to the three datasets separately, and it was compared with
four other SFDA methods. The first one is pseudo-labeling (PL) [10] that gener-
ates pseudo-labels on the target data based on the source model and optimizes
the segmentation model with the pseudo-labels. The second one is AdaBN [11]
that only updates batch normalization statistics based on the target test data
during inference. The third one is TENT [24] that updates both batch statistics
and affine parameters in the batch normalization layers via entropy minimization
on the target data. The fourth one is OSUDA [13] that is designed for medical
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image segmentation with an adaptive update of batch-wise normalization statis-
tics. Also, the standard MT framework was included for comparison. In addition,
direct application of the source model to the target data without SFDA was con-
sidered for comparison, and it is referred to as the baseline. For reference, for
the BraTS 2018 dataset that has a large number of training subjects, the upper
bound (UB) performance that was obtained by training the segmentation model
with the target modality of the training subjects was also given (e.g., the model
was trained with the FLAIR images of the training subjects when segmentation
was to be performed on the FLAIR images of the test subjects). The results on
the three datasets are presented next individually.

BraTS 2018 for Cross-modality Segmentation. For qualitative evaluation,
axial views of representative segmentation results on test scans from the BraTS
2018 dataset are shown in Fig. 2(a) for SUMT and each competing method,
together with the image for segmentation and the expert annotation. The results
are shown for the different settings of test image modalities. We can see that
in these different cases SUMT produced segmentation results that better agree
with the annotation than the competing methods.

Next, SUMT was quantitatively evaluated by computing the Dice coeffi-
cient between the segmentation results on the test set and expert annotation.
The means and standard deviations of the Dice coefficients are summarized in
Table 1. In all cases, SUMT outperforms the competing methods with higher
Dice coefficients. In addition, with paired Student’s t-tests we show that the dif-
ference between SUMT and the competing methods is statistically significant,
and this is also indicated in Table 1.

Moreover, we investigated the individual benefit of the proposed CWR strat-
egy and progressive layer update. To demonstrate the benefit of CWR, we inte-
grated CWR with the standard MT, where all weights were jointly updated,
restored according to Eq. (4), and then updated again. This procedure is referred
to as MT-CWR. In addition, to show the necessity of our weight restoration
design in Eq. (4), we modified MT-CWR by replacing Eq. (4) with stochastic
restoration with the same ratio, and this procedure is referred to as MT-SR. To
demonstrate the benefit of the proposed progressive layer update, we integrated
it with the standard MT, which is equivalent to the application of the proposed
method without CWR, and this procedure is referred to as MT-PLU. The means
and standard deviations of the Dice coefficients for these cases are summarized
in Table 1 as well. We can see that both MT-CWR and MT-PLU are better than
MT but worse than SUMT, which confirms that these two individual contribu-
tions and their integration are all beneficial. Besides, MT-CWR is better than
MT-SR, which shows the benefit of the proposed restoration design.

INBT for Cross-scanner Segmentation. Qualitative evaluation and quan-
titative evaluation of the results on INBT for cross-scanner segmentation are
given in Fig. 2(b) and Table 2 (the part associated with INBT), respectively.
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Fig. 2. Axial views of representative segmentation results (red) on test scans for (a) the
BraTS 2018 dataset, (b) the INBT dataset, and (c) the MSSEG dataset. The images
for segmentation and the expert annotation are also shown for reference. (Color figure
online)

From Fig. 2(b), we can see that the segmentation result of SUMT better resem-
bles the expert annotation than the competing methods. Table 2 indicates that
SUMT has a higher Dice coefficient than the competing methods and its dif-
ference with the competing methods is significant with paired Student’s t-tests
in four out of six cases. Also, the results of MT-SR, MT-CWR, and MT-PLU
are shown in Table 2. The observation for them is consistent with the results of
BraTS 2018, where MT-CWR and MT-PLU are better than MT and worse than
SUMT, and MT-CWR is better than MT-SR.

MSSEG for Cross-scanner Segmentation. Qualitative evaluation and
quantitative evaluation of the segmentation results on the MSSEG dataset are
given in Fig. 2(c) and Table 2 (the part associated with MSSEG), respectively,
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Table 1. Means and standard deviations of the Dice coefficients (%) of the segmen-
tation results on the test set for the BraTS 2018 dataset. Asterisks indicate that the
difference between SUMT and the competing method is statistically significant (*:
p ≤ 0.05, **: p ≤ 0.01, ***: p ≤ 0.001) using a paired Student’s t-test. The best results
are highlighted in bold.

Method BraTS 2018

FLAIR→T2w T2w→FLAIR T1w→T1ce T1ce→T1w

UB 85.0 ± 13.1 81.2 ± 14.8 74.0 ± 19.7 74.6 ± 18.7

Baseline 50.0 ± 30.1*** 63.0 ± 26.2*** 64.0 ± 20.0*** 60.7 ± 28.5***

PL 43.7 ± 33.2*** 63.3 ± 25.6*** 58.2 ± 25.5*** 46.5 ± 28.4***

AdaBN 48.1 ± 30.0*** 69.1 ± 24.3*** 56.0 ± 25.5*** 65.9 ± 24.7**

TENT 48.5 ± 30.4*** 72.8 ± 23.4** 56.6 ± 25.0*** 64.2 ± 26.0***

OSUDA 47.8 ± 30.5*** 72.0 ± 23.7*** 55.8 ± 25.9*** 64.3 ± 26.1***

MT 53.5 ± 28.6*** 74.3 ± 22.7*** 65.9 ± 19.8*** 67.6 ± 24.8*

MT-SR 54.0 ± 28.1 74.0 ± 24.5 65.4 ± 22.2 66.5 ± 25.4

MT-CWR 54.9 ± 27.7 74.6 ± 23.2 66.4 ± 19.7 68.2 ± 23.1

MT-PLU 55.4 ± 27.0 74.8 ± 21.8 69.0 ± 20.6 70.3 ± 21.3

SUMT 56.3 ± 26.7 76.4 ± 20.4 69.7 ± 20.0 70.5 ± 21.5

Table 2. Means and standard deviations of the Dice coefficients (%) of the segmenta-
tion results on the test set for the INBT and MSSEG datasets. Asterisks indicate that
the difference between SUMT and the competing method is statistically significant (*:
p ≤ 0.05, **: p ≤ 0.01, ***: p ≤ 0.001) using a paired Student’s t-test. The best results
are highlighted in bold.

Method INBT MSSEG

PI3T SA1.5T

Baseline 63.5 ± 30.5*** 60.4 ± 9.6** 38.1 ± 6.5**

PL 70.1 ± 23.2*** 57.5 ± 13.2* 46.2 ± 10.0

AdaBN 74.0 ± 22.5* 60.0 ± 9.4* 40.7 ± 9.6**

TENT 74.2 ± 22.2 61.3 ± 9.9** 40.3 ± 8.9**

OSUDA 74.3 ± 22.1 61.6 ± 10.7** 40.4 ± 8.8**

MT 73.3 ± 20.9*** 66.3 ± 9.0* 45.6 ± 7.3*

MT-SR 72.7 ± 21.6 65.1 ± 8.7 44.6 ± 7.3

MT-CWR 74.0 ± 19.5 66.3 ± 9.2 45.7 ± 7.6

MT-PLU 75.9 ± 19.6 67.7 ± 8.5 48.0 ± 7.2

SUMT 76.2 ± 18.3 68.1 ± 8.2 48.7 ± 7.7

and the results of MT-SR, MT-CWR, and MT-PLU are shown in Table 2 as well.
Like the results of BraTS 2018 and INBT, these results show that SUMT out-
performs the competing methods and its difference with the competing methods
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is significant with paired Student’s t-tests in most cases; also, the results of MT-
SR, MT-CWR, and MT-PLU in Table 2 confirm the benefit of the integration
of CWR and progressive layer update, as well as the weight restoration design.

4 Conclusion

We have proposed SUMT for SFDA-based medical image segmentation. In
SUMT, we adapt the mean teacher framework by selectively updating the model
parameters to better preserve domain-invariant knowledge. The model update
is performed progressively with channel-wise weight restoration. Experimental
results on cross-modality and cross-scanner segmentation tasks demonstrate that
SUMT outperforms other SFDA methods.
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