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Abstract. Explainability is a key requirement for computer-aided diag-
nosis systems in clinical decision-making. Multiple instance learning
with attention pooling provides instance-level explainability, however for
many clinical applications a deeper, pixel-level explanation is desirable,
but missing so far. In this work, we investigate the use of four attribu-
tion methods to explain a multiple instance learning models: GradCAM,
Layer-Wise Relevance Propagation (LRP), Information Bottleneck Attri-
bution (IBA), and InputIBA. With this collection of methods, we can
derive pixel-level explanations on for the task of diagnosing blood can-
cer from patients’ blood smears. We study two datasets of acute myeloid
leukemia with over 100 000 single cell images and observe how each attri-
bution method performs on the multiple instance learning architecture
focusing on different properties of the white blood single cells. Addition-
ally, we compare attribution maps with the annotations of a medical
expert to see how the model’s decision-making differs from the human
standard. Our study addresses the challenge of implementing pixel-level
explainability in multiple instance learning models and provides insights
for clinicians to better understand and trust decisions from computer-
aided diagnosis systems.
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1 Introduction

Healthcare systems are challenged by an increasing number of diagnostic requests
and a shortage of medical experts. AI can alleviate this problem by providing
powerful decision support systems that free medical experts from repetitive,
tiring tasks [17]. However, explainability on all levels is required to ensure the
proper working of deep learning ’black box’ models, and to build trust for the
widespread application of health AI.

For decision making that relies on the analysis of hundreds of single instances
(e.g. histological patches [4] or single cells [18]), attention-based multiple instance
learning (MIL) provides explainability on the instance level [5]. This allows algo-
rithms to highlight suspicious structures in cancer tissue and retrieve prototypi-
cal, diagnostic cells in blood or bone marrow smears. In particular in cases where
morphological features are unknown, it is of the highest importance to be able to
inspect not only high attention instances, but also high attention pixels therein.

A number of different approaches for pixel-level explainability have been pro-
posed and evaluated in the past. Backpropagation based methods such as layer-
wise relevance propagation (LRP) [15] and guided backpropagation [24] leverage
the gradient as attribution. Other methods work with latent features, including
GradCAM [21], which utilizes the activations on the final convolution layers, or
IBA [20], which measures the predictive information of latent features. These
methods are widely used in the medical field to provide some level of explain-
ability: Böhle et at. [3] use LRP to explain the decisions of the neural network on
brain MRIs of Alzheimer disease patients; Arnaout et al. [2] propose an ensem-
ble neural network to detect prenatal complex congenital heart disease and use
GradCAM to explain the decisions of their expert-level model. Another attri-
bution method, InputIBA [27], has proven to be useful for generating saliency
maps for dermatology lesions [11].

Unfortunately, most of these approaches cannot be applied to MIL out of the
box. Complex gradient flows and the additional dimension introduced by the
bag structure in the MIL model architecture requires adapting explainability
algorithms accordingly. Here, we introduce MILPLE, the first multiple instance
learning algorithm with pixel-level explainability. We showcase MILPLE (Fig. 1)
on two clinical single cell datasets with high relevance for the automatic classifi-
cation of leukaemia subtypes from patient samples. We adapt GradCAM, LRP,
IBA, and InputIBA to a MIL architecture and study the effectiveness of these
methods in providing pixel-level explainability for instances. Although the qual-
ity of some of the methods seems visually plausible, quantitative analysis shows
that there is no silver bullet addressing all challenges. With widespread applica-
tions of attention based MIL in different medical tasks, MILPLE helps provide
pixel-level explanation using the mentioned algorithms. To foster reproducible
research, our code is available on Github https://github.com/marrlab/MILPLE.

https://github.com/marrlab/MILPLE
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Fig. 1. MILPLE brings pixel-level explainability to multiple instance learning models.
We apply MILPLE to two clinical single-cell datasets and showcase its explanatory
power for revealing morpho-genetic correlations in blood cancer. In our example, blood
smears from over 300 patients suffering from an aggressive leukemic subtype called
acute myeloid leukemia (AML) have been digitized and microscopic images of white
blood cells have been extracted. AML subtypes are predicted based on the pool of cells,
and most important cells are identified based on the MIL attention mechanism, while
the most important pixels in each of those are indicated with MILPLE.

2 Methodology

2.1 Multiple Instance Learning

The objective of a multiple instance learning (MIL) model f is analyzing a bag of
input instances B = {I1, ..., IN} and classifying it into one of the classes ci ∈ C
[12]. In attention-based MIL [7], an attention score αk ∈ A, k ∈ {1, ..., N} for
every instance quantifies the importance of that instance for bag classification:

ci, αk = f(B). (1)

There are two approaches to implement MIL: Instance level and embedding level
MIL [25]. We focus on the embedding level MIL, where every input instance is
mapped into a low dimensional space via hk = femb(Ik, σ) with σ being learned
model parameter. By pooling information distributed between the instances, one
bag is aggregated into a representative bag feature vector and used for the final
classification. Attention pooling [7] provides bag level of explainability and best
accuracy in many problems. MIL training can be formulated as

LMIL(θ, σ) = CE(c, ĉ) (2)

with ĉ = fMIL(H,A; θ), where c is the ground truth label for the whole bag,
H = {h1, ..., hN} are the embedding feature vectors of all instances and CE is
the cross entropy loss. θ and σ represent learnable model parameters. Based on
the attention scores αk ∈ A, the bag embedding z is calculated as a weighted
average over all of the embedding feature vectors:

z =
N∑

k=1

αkhk, where αk =
exp{wT tanh(V hT

k )}
∑N

j=1 exp{wT tanh(V hT
j )}

. (3)

The parameters V and w are learned in a semi-supervised way during training.
With only bag level annotation, instances with the most probable contribution
to the classification are given a higher attention score.
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2.2 GradCAM

Gradient-weighted Class Activation Mapping (GradCAM) is an explanation
technique leveraging the gradient information to localize the most discriminative
regions of an input image for a given model prediction. It computes the gradient
of the predicted class score with respect to the feature maps of the last convo-
lutional layer and weights each feature map by the corresponding gradient to
obtain the class activation map. The class activation map highlights the regions
of the input image that are most relevant for the prediction. Blue parts of the
map indicate no contribution and red parts indicate high contribution.

2.3 Layer-Wise Relevance Propagation

Layer-wise relevance propagation (LRP) is an explanation technique for deep
neural networks which produces pixel-level decomposition of the input by redis-
tributing relevance in the backward pass [14]. Using local redistribution rules a
relevance score Ri is assigned to the input variable according to the classifier
output f(x):

∑

i

R0
i = ... =

∑

j

RL−2
j =

∑

k

RL−1
i = ... = f(x) (4)

This backward distribution is lossless, meaning that no relevance is lost in
the process while also no additional relevance is introduced at every layer L. A
relevance score for every input variable Ri shows the contribution of that variable
to the final outcome, which is positive or negative, depending on whether that
variable supported the outcome or went against the prediction. The basic rule
[14] for LRP is defined as RL−1

j =
∑

k
ajwjk∑
j ajwjk

RL
k , where wjk is the weight

between the j and k layers and aj is the activation of neuron j. Eplison rule
[14] is an improvement to the basic rule by introducing a positive small ε value
in the denominator. The ε will consume some of the relevance making sparser
explanations with less noise. Gamma rule [14] tries to favor positive contributions
more by introducing a γ coefficient on positive weights such that the impact on
positive weights is controlled with it. As it increases, the effect of positive weights
becomes more pronounced. ZBox rule [15] is designed for the input pixel space
which is constraint to boxes.

Application to MIL. MIL architectures are a complex combination of differ-
ent layer types. Fully connected layers are more often used in earlier stages in
comparison with normal convolutional neural networks. We tested different com-
binations of rules. Based on the results and suggestions introduced by Montavon
et al. [14], we decided to apply ZBox rule on the first layer for every instance,
gamma rule for the feature extractor femb and epsilon rule on the attention
mechanism and final classifier.
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2.4 Information Bottleneck Attribution

In contrast to LRP as a back-propagation method, Information bottleneck attri-
bution (IBA) [20] is based on information theory. IBA works by placing a bot-
tleneck on the network to restrict the flow of information by adding noise to
the features. A bottleneck on the features F at a given layer can be represented
by Z = λF + (1 − λ)ε where ε is the noise controlled by λ, a mask with the
same dimensions as F and elements with values between 0 and 1. The idea is to
minimize the mutual information between the input X and Z while maximizing
the information between Z and target Y :

max
λ

I(Y,Z) − βI(X,Z) (5)

Here, β is the Lagrange multiplier controlling the amount of information that
passes through the bottleneck. LI is an approximation of intractable term
I(X,Z):

I(X,Z) ≈ LI = EF [DKL(P (Z|F ) ‖ Q(Z)], (6)

where Q(Z) is a normal distribution with estimated mean and variance of F
from a batch of samples. Intuitively, I(Y, T ) is equivalent to accurate predictions.
Thus instead of maximizing it, we can minimize the loss function, cross entropy
loss in our case, and therefore information bottleneck can be obtained by using
L = βLI + CE as the objective.

2.5 Input Information Bottleneck Attribution

The motivation behind InputIBA [27] is to make the information bottleneck
optimization in Eq. 5 possible on the input space. IBA as proposed in Eq. 5 and 6
results in an overestimation of mutual information as the bottleneck is applied on
earlier layers. The formulation is the most valid when the bottleneck is applied to
a deep layer where the Gaussian distribution approximation of activation values
is valid [20]. Thus InputIBA proposes a trick where the optimal bottleneck is
first computed using Eq. 5. Let us refer to it as Z∗. Then we look for an input
bottleneck ZG that induces the same optimal bottleneck on the deep layer. In
order to make the input bottleneck ZG induce Z∗ in deep layers, the following
distribution matching is done:

min
λG

D[P (f(ZG))||P (Z∗)] (7)

By optimizing Eq. 7 we find the optimal input bottleneck Z∗
G that induces Z∗ in

the selected deep layer. InputIBA proceeds to use Z∗
G as a prior for solving the

information bottleneck optimization (Eq. 5). The input bottleneck ZI is condi-
tioned on ZG as follows: ZI = ΛZG + (1 − Λ)ε, where Λ is the input mask. The
final mask Z∗

I is computed by optimizing Eq. 5 on ZI , and it restricts the flow
in the deep layers within limits defined by Z∗

G.
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Application to MIL. We had to overcome an obstacle of additional dimension
introduced by the bag instances compared to conventional neural networks to
apply InputIBA to the MIL structure. In comparison to standard neural networks
working with single images, in MIL it is not straightforward to form a batch of
bags as convolutions won’t handle five dimensions. It is suggested to apply IBA
on the deepest layer of the network, however in MIL architectures it seemed that
applying IBA on earlier layers yields a better result. After conducting experi-
ments and testing every convolution layers of the resnet backbone, we decided
to place the bottleneck at the third convolutional layer where we obtained the
best signal compared to other layers. The distance in Eq. 7 is minimized based
on an adversarial optimization scheme [27]. The generative adversarial network
is trained for each instance in the bag individually. We used β = 40 to control
the amount of information passing through the input bottleneck.

2.6 Quantitative Evaluation of Pixel-Wise Explainability Methods

There is extensive literature studying the quality of the explanations [1,6,8,9,
16,23], but only few quantitative approaches exist. The intuition behind these
methods is perturbation of features found to be important and measuring their
impact on output to evaluate the quality of the feature attributions.

Insertion/Deletion [19]. Insertion method gradually inserts pixels into the
baseline input (zeros) while deletion method removes pixels from input data
by replacing them with the baseline value (zero) according to their attribution
scores from high to low. While computing the output of the network over different
percentage of insertion or deletion a curve is obtained. The area under the curve
(AUC) is calculated for every input and averaged over the whole dataset. A
higher AUC in insertion means important pixels were inserted first while a lower
AUC in deletion means important pixels were removed first.

Remove-and-Retrain [6]. (ROAR) is an empirical measure to approximate
the quality of feature attributions by verifying the degradation of the accuracy
of a retrained model when the features identified as important are removed
from the dataset. The processes is repeated with various percentages of removal.
A sharper degradation of the accuracy demonstrates a better identification of
important features. Random assignment of importance is defined as a baseline.

3 Experiments

3.1 Dataset

We study the effectiveness of pixel attribution methods on acute meyleod
leukimia (AML) subtype recognition tasks using two different datasets: Deep-
APL and an in-house AML dataset.
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Fig. 2. The confusion matrix and area under the precision recall curve is reported
for the two datasets MIL model was trained on. Mean and standard deviation are
calculated over 5 independent runs.

DeepAPL [22] is a single cell blood smear dataset consisting of 72 AML and
34 acute promyelocytic leukemia (APL) patients collected at the Johns Hopkins
Hospital.

AML dataset is a cohort of 242 patient blood smears from four different preva-
lent AML genetic subtypes [10]: i) APL with PML::RARA mutation, ii) AML
with NPM1 mutation, iii) AML with RUNX1::RUNX1T1 mutation, and iv)
AML with CBFB::MYH11 mutation. A fifth group of stem cell donors (SCD)
comprises only healthy individuals and is thus used as the control group. Each
blood smear contains at least 150 single white blood cell images resulting in a
total of 81,214 cells. This dataset is available via TCIA1.

3.2 Implementation Details

For the backbone of our approach and feature extraction from single cell images,
we use the ResNeXt [26] architecture suggested by Matek et al. [13], which is
pretrained on the relevant task of single white blood cell classification. Features
are extracted from the last convolutional layer of the ResNeXt and passed into
the MIL architecture with a second feature extraction step consisting of two
convolutional layers with adaptive max-pooling and a fully connected layer. The
attention mechanism consists of two fully connected layers and finally, the clas-
sifier consists of two fully connected layers. Adam Optimizer with a learning
rate of 5 × 104 for DeepAPL and 5 × 105 for the AML dataset with a Nesterov
momentum of 0.9 was used. The datasets are split into stratified subsets for
train, validation and test in a 60-20-20 percent regime.

3.3 Model Training

The training of the MIL model on the two datasets continues for 40 and 150
epoches, respectively, while the validation loss is monitored. If the validation loss
does not decrease for 5 consecutive epochs the training is stopped. We conducted
5 independent runs to train the model. Table 1 shows the mean and standard
deviation of accuracy, macro F1 score and area under ROC curve.
1 https://doi.org/10.7937/6ppe-4020.

https://doi.org/10.7937/6ppe-4020
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Fig. 3. Pixel-level explanation methods applied to exemplary images from the Deep-
APL dataset. For GradCAM blue parts of the map indicate no contribution and red
parts indicate high contribution, and similarly, for LRP blue parts indicate negative
contribution and red parts indicate positive contribution. In many cases GradCAM
and LRP focus on the white blood cells in the center of the image, while IBA focuses
also on the red blood cell surrounding it. InputIBA shows a relatively scattered focus.
(Color figure online)

3.4 Evaluation of Explanations

Qualitative Evaluation includes inspection of single cell images and compar-
ison with medical expert annotation. Figure 3 and 4 show selected cells from
both datasets and pixel-level explanations provided by the four different meth-
ods. In Fig. 4, we compare pixel attributions with expert annotations as a medical
expert has annotated a small subset of single cells in the AML dataset. Most of
the methods detect morphological features defined by the expert as important.

Quantitative Evaluation of the explanations is an essential step for correct
understanding of what model focuses on. In order to evaluate the quality of
different methods, we performed Insertion/Deletion and ROAR experiments on
each of the GradCAM, LRP, IBA, and InputIBA methods as shown in Fig. 5.
The performance of the method is highly dependent on the dataset and each
time different methods end up to be the most suitable.

3.5 Discussion and Results

Model Performance: We compare our training on DeepAPL with the state-of-
the-art method proposed by Sidhom et al. [22] on the dataset. Since the datasets
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Fig. 4. Pixel-level explanation methods applied on exemplary images from AML
dataset. In the first two images, all methods agree on the morphology found rele-
vant by the expert (last row). In the following images, the methods highlight different
regions and are only sometimes in concordance with the expert.

are imbalanced, we are reporting the area under precision recall curve for each
class as well as the confusion matrix for both datasets to get a better view
over the class-wise performance. Figure 2 shows that classification results are
robust across the two datasets. On DeepAPL, with no special tailoring of the
method to the dataset, we could outperform the state-of-the-art method based
on sample analysis cell by cell. MIL takes all cells into consideration and can
thus achieve a higher accuracy in the task. On the AML dataset some ambiguity
exists between different malignant classes, which is to be expected since AML
subtype classification based on cell morphology only is a challenging task even
for the medical experts. Model identifies the majority of benign stem cell donors
correctly.

Explanations: A close inspection of the pixel explanations from the four dif-
ferent methods reveals fundamental differences (see Fig. 3, 4): For the Deep-
APL dataset (Fig. 3) we observe that GradCAM focuses on the white blood cell
nucleus in most cases. In some cells however it fails to recognise the cell and
instead puts high relevance on background pixels at the image border. Though
according to our ROAR results (Fig. 5), removing the white blood cell affects
the accuracy significantly, pointing to the fact that the network is using features
relevant to them. InputIBA puts most focus on the centre of the image, and
thus correctly on the white blood cell. However, pixel attention is spread out
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Fig. 5. Remove-and-Retrain (ROAR) experiment (left) and insertion/deletion experi-
ment (right) for both datasets. GradCAM has the best pixel attribution in DeepAPL
ROAR experiments, while on the AML dataset, LRP and IBA perform best. Inser-
tion/deletion experiments for DeepAPL support GradCAM. For the AML dataset
InputIBA and LRP have the best performance in insertion/deletion experiment.

Table 1. Mean and standard deviation of accuracy, macro F1 score and area under
ROC curve is reported for the two blood cancer datasets. Our attention based MIL
method outperforms the original DeepAPL method [22].

Data Method Accuracy F1 score AU ROC

DeepAPL ours 0.65 ± 0.07 0.63 ± 0.08 0.750 ± 0.078

DeepAPL Sidhom et al. [22] – – 0.739

AML ours 0.68 ± 0.03 0.65 ± 0.04 0.855 ± 0.037

over the whole image at times (Fig. 3). The ROAR results for InputIBA (Fig. 5)
also show that the accuracy drops if corresponding image regions are removed.

On the AML dataset we observe that IBA highlights image regions that
correspond to either abnormal cytoplasm (4th, 6th and 7th cell from left, Fig. 4)
or to structures in the nucleus (first two cells in Fig. 4). These are particularly
interesting since they show that the method is able to retrieve morphological
details that escape the human eye (3rd cell: the cell appears to be dark violet
in the original images, but IBA is able to focus on morphology therein) and
to segment granules, whose structure is relevant for cell type classification (4th
cell). The ROAR results from the AML dataset (Fig. 5) show that removing
morphological features identified by IBA significantly disrupts accuracy. This
signifies that the model relies on these pixel during training. LRP focuses on the
white blood cell in the image center and the nucleus therein. We observe that
the ROAR results for LRP are not very informative (Fig. 5), and the method
performs similarly to random. This might be due to the LRP structure and
a problem with the ROAR metric. However, LRP achieves a good score on
the Deletion/Insertion metric (Fig. 5). This means that LRP features have an
immediate effect on the output of the network.
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4 Conclusion

Incorporating pixel-level explainability in multiple instance learning allows us to
inspect instances, evaluate the focus of our model, and find morphological details
that might be missed by the human eye. All four pixel-level explainability meth-
ods we used revealed interesting insights and highlighting morphological details
that fit prior expert knowledge. However, more work has to be done on systemat-
ically comparing and quantifying clinical expert annotations with explainability
predictions, to eventually select appropriate methods for the application at hand,
and potentially reveal novel morpho-genetic correlations.

We believe that our study will be instrumental for multiple instance learning
applications in health AI. Single-cell data is ideal for method development, since
it allows a direct comparison of model prediction and human intuition. However,
applied to computational histopathology, where a large amount of digitized data
exists, the pixel-level insight into tissue structure at multiple scales might reveal
morphological properties previously unrecognized. With novel spatial single-cell
RNA sequencing technologies being on the brink of becoming available widely,
we expect a high demand for methods like MILPLE.
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