
Optimal Controller Selection Scheme Using
Artificial Bee Colony and Apriori Algorithms

in SDN

Kyung Tae Kim(B)

College of Computing and Informatics, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu,
Suwon, Korea

kyungtaekim76@gmail.com

Abstract. Software Defined Networking (SDN) is one of the most recent Inter-
net technology that manages the large scale network. SDN decouples the control
plane from data plane, which simplifies the logic of network devices and reduces
the cost of the network infrastructure. The control plane is the key component
of a network which ensures smooth management and operation of the entire net-
work. Distributed SDN controllers have been proposed to solve the scalability
and a single point of failure problem. It is a critical issue for the switch to find the
optimal controller among the distributed controllers. In this paper we propose a
novel scheme for controller selection in distributed SDN environments. The pro-
posed scheme decides optimal controller from distributed controllers by applying
the Artificial Bee Colony (ABC) algorithm for meta-heuristic search and Apri-
ori algorithm for effective association rule mining between switch and controller.
Computer simulation reveals that the proposed scheme consistently outperforms
the scheme employing only ABC and Apriori algorithms separately in terms of
response time, arrival rate, number of messages, and accuracy.

Keywords: Software Defined Network · Distributed controllers · Artificial Bee
Colony algorithm · Apriori algorithm · Selection of controller · Edge computing

1 Introduction

The explosive growth of the Internet of Things (IoT) and mobile devices leads to an
explosion of new applications and services, increasing the burden of what today’s Inter-
net could carry [1]. Especially, since the data collected from a lot of devices can generate
excessive traffic, several researchers have tried to solve this issue using Edge Computing
[2, 3]. To cope with the numerous and diverse IoT devices, the edge computing infras-
tructure has to support a lot of connected devices and the processing of the massive
data collected and complex applications. However, the edge server in edge comput-
ing has limited computational and processing resources compared to high-end servers
in the cloud server [4]. Therefore, to support high scalability, ultra- low latency, high
throughput, and reliable transmission of data, the SDN paradigm is regarded as one of
the suitable solutions [5–7].

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Uden and I-H. Ting (Eds.): KMO 2023, CCIS 1825, pp. 347–359, 2023.
https://doi.org/10.1007/978-3-031-34045-1_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-34045-1_28&domain=pdf
https://doi.org/10.1007/978-3-031-34045-1_28


348 K. T. Kim

SDN is an innovative technology in the field of computer network that separates
data transmission function and control function from each other, allowing the users
the flexibility of using the functions of the network in their own devices [8, 9]. SDN
has numerous advantages including direct programming, centralized management, fast
delivery, andflexibility. InSDNa single controllermaybeused as a centralized controller.
If excessive packets need to be processed, however, its performance is significantly
degraded because of limited processing capacity and distance to the switching devices
[2]. Meanwhile, the failure of a single controller may lead to the collapse or congestion
of entire network. In order to effectively resolve these issues, the distributed controller
architecture was proposed [10–12]. Distributed controller architectures with more than
one controller could be used to address some of the challenges of a single SDN controller
such as availability [13]. Furthermore, distributed controllers can reduce the latency
or increase the scalability and fault tolerance of the SDN deployment. However, this
architecture increases the lookup overhead of communication between switches and
distributed controllers. Moreover, this approach is difficult to maintain the consistent
state in the overall distributed system [14, 15].

In this paper we propose a novel scheme which allows a switch to select an opti-
mal controller from distributed controllers in SDN for edge computing environments.
The proposed scheme decides optimal controller based on the data and weight of the
controllers using the improved ABC algorithm based on Apriori algorithm for effec-
tive association rule mining between switch and controller. It can achieve controller
optimization while keeping the excellent performance of the improved ABC algorithm.
In the proposed scheme, the priority of each controller was determined by consider-
ing the computing and communication capacity of the controllers using an improved
ABC algorithm, which includes Apriori algorithm and FCFS (First-Come-First-Served)
policy. The proposed scheme significantly reduces the communication latency between
the switch to the controller by selecting an optimal controller compared to the existing
schemes.Also, the proposed scheme can solve the consistency problemby employing the
meta-heuristic association rule mining algorithm. Furthermore, through the uniformly
distributed controller, the proposed scheme increase scalability, connectivity, and flex-
ibility of the network, which increases the communication efficiency and reduces the
propagation delay of the link.Computer simulation reveals that the proposed schemecon-
sistently outperforms the scheme employing only ABC andApriori algorithm separately
in terms of response time, arrival rate, number of messages, and accuracy.

The rest of the paper is organized as follows. Section 2 introduces the related work
for proposed scheme. Section 3 describes the proposed scheme in a detailed manner. The
experimental results of the proposed scheme are explained in Sect. 4. Finally, Sect. 5
concludes the paper and describes future research directions.

2 Related Work

2.1 Software Defined Networking

SDN is an effective networking paradigmwhichmakes it easier for the networkmanager
to control the network [16, 18]. SDN is a conceptual architecture that decouples the
control plane and data plane of the network and enables network partitioning [5]. SDN



Optimal Controller Selection Scheme 349

architecture is divided into three categories as shown in Fig. 1: the physical infrastructure
layer, the controllable control layer, and the application layer. This lets SDN not only
create complex paths that cannot be configured in existing networks but also effectively
cope with changing traffic patterns and quickly configure the virtual networks required
in cloud environments. The control plane in SDN is decoupled from the data plane by
drawing the networking functions from the forwarding devices as shown in Fig. 1. The
separation of the control plane and the data plane of the network has the advantage of
being able to respondmore quickly to amalfunction caused by a problemand increase the
flexibility and availability of the network. The control functions are deployed to logically
centralized controllers so that they canbe implementedon a centralized software platform
[17]. Using a single, centralized controller might be efficient since the overloaded switch
can migrate to a new controller from the previously connected one.

Fig. 1. The three-layer structure of SDN

2.2 OpenDaylight

OpenDaylight (ODL) is a modular open SDN platform for the networks of any size and
scale [19, 20]. By sharing YANG data structure in the common data store and messaging
infrastructure, ODL allows for fine-grained services to be created and combined together
to solve more complex problems. In the ODL Model Driven Service Abstraction Layer
(MD-SAL), any app or function can be bundled into a service that is loaded into the
controller. The model-driven approach is being increasingly used in the networking
domain to describe the functionality of network devices [21], services [22], policies [23,
24], andnetworkAPIs [25]. The protocols of choice areNETCONFandRESTCONF; the
modeling language of choice isYANG.NETCONF [26] is an IETFnetworkmanagement
protocol that defines configuration and operational conceptual data stores and a set of
Create, Retrieve, Update, Delete (CRUD) operations that can be used to access these data



350 K. T. Kim

stores. RESTCONF is a model that describes the mapping of YANG data to a REST-ful
API [27, 28]. It is a REST-based protocol that runs over HTTP and is used to access
YANG defined data, using Network Configuration Protocol (NETCONF) defined data
stores. TheYANGdatamodeling language is used to define the data sent overNETCONF
[29]. It can model both the configuration data as well as the manipulated state data.

OpenDaylight SDN controller has several layers. The top layer consists of business
and network logic applications. The middle layer is the framework layer, and the bot-
tom layer consists of physical and virtual devices. The middle layer is the framework in
which the SDN abstractions canmanifest. This layer hosts north-bound and south-bound
APIs. The controller exposes open north-bound APIs which are used by applications.
OpenDaylight supports the OSGi framework and bidirectional REST for the northbound
API. The business logic resides in the applications above the middle layer. The appli-
cations use the controller to gather network intelligence, run algorithms to perform the
analytics, and then use the controller to orchestrate new rules, if any, throughout the
network. ODL supports multi-controllers composing a cluster. If there is only a single
ODL controller, it works individually. The multi-controller structure could avoid the
consequence of single controller crash, and controllers directly communicate with each
other rather than via data plane.

2.3 Artificial Bee Colony Algorithm

ABC algorithm is one of the more recent swarm intelligence based optimization algo-
rithms for solvingmultidimensional optimization problems [30]. Figure 2 is theflowchart
of ABC algorithm.

The intelligent behavior of honey bee colony which search new food sources around
their hive was considered to compose the algorithm. In the algorithm, the colony of
artificial bees consists of three groups of bees called employed bees, onlookers and
scouts. While a half of the colony consists of the employed artificial bees, the other half
includes the onlookers. There is only one employed bee for every food source. That is,
the number of employed bees is equal to the number of food sources around the hive.
The main steps of the algorithm are given below.

First, source initialization is the initial source to a random value.

Xij = Xminj + rand(0, 1)(Xmaxj − Xminj) (1)

Second, the employed bee searches the neighbor source and estimates the amount
of nectar of the source, and informs the onlooker bee of the source of higher fitness.

Vik = Xik + rand(−1, 1)(Xik − Xjk) (2)

Third, here a source is selected probabilistically by onlooker bee based on the source
discovered by employed bee and the estimated amount of nectar. Onlooker bee selects
the source by

Pi = f (Xi)
∑

f (Xn)
(3)



Optimal Controller Selection Scheme 351

Initialize sources

Employed bees search for new neighbor source 
around the allocated source

Onlooker bees probabilistically choose one 
source to search for new neighbor source

Find the abandoned sources

Scout bees search new sources

Are termination criteria satisfied?

Initialize soures

No

Fig. 2. The Flowchart of ABC Algorithm

2.4 Apriori Algorithm

Data Mining is a way of obtaining undetected patterns or facts from massive amount of
data in a database.Association rulemining is amajor technique in the area of datamining.
Association rule mining finds frequent itemsets from a set of transactional databases.
Apriori algorithm is one of the earliest algorithms of association rule mining [31, 32].
Apriori employs an iterative approach known as level-wise search. In Apriori, (k +
1) itemsets are generated from k-itemsets. First, scan the database for count of each
candidate and compare candidate support count withminimum support count to generate
set of frequent 1-itemsets. The set is denoted as L1. Then, L1 is used to find L2, set of
frequent 2-itemsets, which is further used to find L3 and so on, until no more frequent k-
itemsets can be found [33]. After finding set of frequent k-itemsets, it is easy to generate
strong association rules. The process of finding each Lk requires the database to be
scanned completely once. To improve the efficiency of the level-wise generation of
frequent itemsets, an important property called the Apriori property, presented is used to
reduce the search space. In Apriori property, all nonempty subsets of a frequent itemset
must also be frequent. A two-step process is used to find the frequent itemsets: join and
prune actions.

1) The join step: To find Lk a set of candidate k-itemsets is generated by joining Lk–1
with itself. This set of candidates is denoted Ck .

2) The prune step: The members of Ck may or may not be frequent, but all of the
frequent k -itemsets are included inCk . A scan of the database to determine the count



352 K. T. Kim

of each candidate in Ck would result in the determination of Lk (i.e., all candidates
having a count no less than the minimum support count are frequent by definition,
and therefore belong to Lk). To reduce the size of Ck , the Apriori property is used
as follows. Any (k–1)-itemset that is not frequent cannot be a subset of a frequent
k-itemset. Hence, if any (k–1)-subset of a candidate k-itemset is not in Lk–1, then the
candidate cannot be frequent either and so can be removed from Ck .

3 The Proposed Scheme

3.1 Basic Operation

The proposed scheme gathers data from all the controllers to measure how often each
controller is used, and then finds the association rules based on the items run frequently
by the controllers. In the SDN distributed controller environment, the controllers are
selected by Apriori algorithm according to the frequency of use. For this, the data of all
the controllers are initialized to random values, and then the neighbor controllers of each
controller are searched regarding the amount of nectar. Using the transaction support of
Apriori algorithm, the controller’s goodness of fit is estimated. In order to minimize the
time for searching the association rules, the FCFS (First-Come-First-Served) policy is
applied. If there exists a priority rule, the rule is selected first. Then the remaining rules
are found.

In searching the source only the one of the highest value is selected, while the others
are discarded. This is for minimizing the communication cost. Figure 3 is the flowchart
of the proposed scheme for selecting an optimal controller based on the data and weight
of the controllers.

Start Initailize all data 
radom values

Transction 
supprot

Collection data 
from the controller

Controller 
frequency 

measurement

Association rule 
setting

Calcuate the 
weight

Controller weight 
measurement

Nectar amount 
using transaction

Controller 
frequency 

measurement

Header : 
highest priority 

node

Yes

No

Fig. 3. The Flowchart of the proposed scheme

3.2 Priority and Weight of Controller

The priority of the controllers is decided using the ABC algorithm as follows. First, the
data of the controllers are initialized to random value, and then the distance between



Optimal Controller Selection Scheme 353

a controller and its neighbor one is measured. The fitness of the controllers is then
calculated using the transaction support of the Apriori algorithm and weight of them.
The weight of each controller is defined to represent the throughput. The performance of
a controller is affected by various factors such as distance to communicating controller,
bandwidth, transmission delay, load, and packet loss probability, etc. Only the most
frequently used controller identified by the proposed approach is selected, while the
remaining controllers are excluded. By selecting the most frequently used controller,
collision between the controllers and communication load can be reduced. Also, the
detailed selection algorithm of controller is shown in Algorithm 1.

The following is to calculate the weight of controller_v, w(v).

w(v) = ω1P(v) + ω2S(v) (4)

where ω1 and ω2 are weight coefficients. P(v) is the operational performance and S(v)
is amount nectar of controller_v, respectively.

W (v, s) =α · dis(v, s) + β · ban(v, s)
+ γ · del(v, s) + δ · load(v, s) (5)

In Eq. (5) 0 ≤ α, β, γ , λ ≤ 1, α + β + γ + λ = 1. The parameter of distance,
bandwidth, delay, and load should be normalized:

dis(wv,ws) = dis(wv,ws)
∑

i,j∈l(v,s)&i �=j dis(wi,wj)

ban(wv,ws) = ban(wv,ws)
∑

i,j∈l(v,s)&i �=jban
(
wi,wj

)

del(wv,ws) = del(wv,ws)
∑

i,j∈l(v,s)&i �=jdel
(
wi,wj

)

load(wv,ws) = load(wv,ws)
∑

i,j∈l(v,s)&i �=jload
(
wi,wj

)

Then the weight of wv to all other (n − 1) controllers in the network is:

All − Weight(wv) =
∑n

s=1&s�=v
weight(wv,ws) (6)

The weight of wv is calculated by

W (wv) = μ · weight(wv) + σ · All − Weight(wv) (7)

ALGORITHM 1 Selection of Controller

1. Assume that the path of P1 is (x1, y1, z1) and that of P2 is (x2, y2, z2). The controller 
synchronization occurs with y1 and y2, and one of the new paths obtained is P3: (x1, y2, y1, z1). 
2. Deleting the duplicated switch, the new path P3 is decided.
3. By the same way, another new path P4 is obtained.
4. Applying the fitness function to P1, P2, P3, P4, an optimal path is selected.



354 K. T. Kim

3.3 Transaction

The neighbor source of an assigned source is checked, and the source of more amount
of nectar is notified to the onlooker bee. They are also weighted, and the one of low
nectar amount is discarded. Next, based on the source searched by employed bee and
the estimated nectar amount, the onlooker bee selects the source to search. In this way,
the onlooker bee selects the source of the largest amount of nectar among the ones the
employed bee found.

Let S and C denote a switch and controller, respectively. Each food source, XS
C , in

the population is represented as

X S
C =

{
X S
C ,X S

C , . . . ,X S
C

}
,∀s ∈ N∀c ∈ Ps (8)

wherePs the set of controllers andN is the number of switches. It estimates the amount of
nectar a switch can have from the controllers of identical schedule number. Equation (9)
is used for deciding the fitness of a switch connected to a controller, Fcs:

Fcs = Ccs + θcs,∀cs ∈ Ps (9)

where Ccs indicates the sum of coverages for all schedule numbers with complete cov-
erage, θcs shows the maximum incomplete coverage and Fcs represents the fitness value
for the cs in the controller.

Next, each new cs in the controller for each switch is generated by only updating.

V s
c =

{
s, pri > 0.5 ∀c ∈ Ps,∀c ∈ Nnc

X s
c , otherwise s ∈ ϕ

(10)

Each switch will select a certain number s in the incomplete schedule vector ϕ as a
priority.

3.4 Selection Manager

The controller of a higher weight is needed to have more networking operation. In the
proposed scheme, the controller appropriate for leading the update process is elected
according to the weight. The network manager has the privilege of commanding the
entire network since it keeps the network view. The network manager has the privilege
of commanding the entire network since it keeps the network view. The priority of
controller_i, Pi, is defined as

Pi =
{ �S ∗ W (ci)� without manager

∞ with manager

where S is the scale of the network. The controllers broadcast their priority and receive
the priority of other controller in a present time. They regard the controller with the
highest priority as their header.

The header selection is done following three steps.

Step 1. Pi (i = 1,2,3,…,n) are calculated.



Optimal Controller Selection Scheme 355

Step 2. Pi is broadcast during Tb which is broadcast period. It also receives the priority
of other controller.
Step 3. The controller saves the address and priority of the controller which priority is
bigger than itself. And it considers the controller with the highest priority as its header.
Once a controller receives the priority which is same with itself, its priority will be
subtracted one to avoid the same priority.

4 Performance Evaluation

In this section, the performance of the proposed scheme is evaluated via computer sim-
ulation. The simulation is performed on a PC consisting of Intel i5-7500 CPU, Window
OS, and 8GB memory, and the scheme was implemented with Python and MATLAB.
Also, the performance of the proposed scheme is compared with two other schemes
to verify its relative effectiveness, the ABC and Apriori algorithm. The test data set is
from Stanford Network Analysis Project (SNAP), which is a general purpose network
analysis and graph mining library. The controller appropriate to lead the update pro-
cess is elected to handle massive network of hundreds of millions of nodes and billions
of edges. It is efficient for manipulating large graphs, calculates structural properties,
generates regular and random graphs, and supports the attributes of nodes and edges.

To investigate the effectiveness of the proposed scheme,wefirst evaluate the response
time with various sizes of data. The comparison results with ABC, Apriori algorithm,
and the proposed scheme is shown in Fig. 4. Figure 4 shows that the proposed scheme
displays the smallest response time among the three schemes, while the ABC algorithm
is the largest. As a result, the proposed scheme effectively reduces the communication
overhead in searching the controllers than existing schemes.

Fig. 4. The comparison of response time between proposed scheme and existing schemes

Arrival rates of the proposed scheme and existing schemes are compared in Fig. 5,
which demonstrates that the proposed scheme consistently shows the lowest arrival rate
with different sizes of controller data.



356 K. T. Kim

Fig. 5. The comparison of arrival rate between proposed scheme and existing schemes

Figure 6 shows the total amount of messages in ABC, Apriori algorithm, and the
proposed scheme. Observe from the Fig. 6 that the proposed scheme always requires
the smallest number of messages than ABC and Apriori algorithm. When the size of
controller data is between 10 and 30, the ABC algorithm generates more messages than
Apriori algorithm. However, Apriori algorithm needs slightly more messages than ABC
algorithm after 40. This indicates that Apriori algorithm becomes overloaded when the
data size grows beyond a certain level.

Fig. 6. The total amount of messages between proposed scheme and existing schemes

Figure 7 shows the comparison results of the accuracy in ABC algorithm, Apriori
algorithm, and the proposed scheme. In Fig. 7, it demonstrates that the accuracy of
the proposed scheme is about 90%, and it is the highest accuracy compared with the



Optimal Controller Selection Scheme 357

accuracies of the existing schemes. The accuracy of the ABC algorithm is the lowest,
however, it continues getting higher accuracy as the controller data gets bigger, and it
has the same accuracy as the Apriori scheme while the update data is 50 eventually.

Fig. 7. The comparison of accuracy with the proposed scheme and existing schemes

5 Conclusion

The SDN paradigm shifts control to a centralized omniscient controller. The controller,
however, creates a bottleneck due to the enormous amount of message exchanges
between the switches and the controller in SDN for edge computing. As a result, inap-
propriate switch assignment to the controller reduces performance. In this paper, we
have proposed a novel scheme which allows a switch to select an optimal controller
from distributed controllers in order to reduce communication and propagation latency
and improve throughput and reliability in SDN. The optimal controller is selected using
the ABC and Apriori algorithms. Also, the priority of each controller in the proposed
scheme was determined by considering the computing and communication capacity of
the controllers. Moreover, the proposed scheme can solve the consistency problem by
employing the meta-heuristic association rule mining algorithm. Computer simulation
reveals that the proposed scheme consistently outperforms the ABC and Apriori algo-
rithms in terms of response time, arrival rate, and number of messages exchanged. In
the future, we will expand the proposed controller selection scheme by employing more
sophisticated scheme such as Gaussian mixture model and artificial intelligence tech-
nique. Also, the proposed scheme will also be tested and expanded considering various
environments and applicationswhere the requirements on the energy and communication
latency are diverse.

Acknowledgments. This research was supported by Basic Science Research Program through
the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-
2022R1I1A1A01053800).



358 K. T. Kim

References

1. Wang, A., Zha, Z., Guo, Y., Chen, S.: Software defined networking (SDN) enhanced edge
computing: a network centric survey. Proc. IEEE 107(8), 1500–1519 (2019)

2. European Telecommunication Standards Institute, Mobile Edge Computing (MEC), Techni-
cal Requirements (ETSI GS MEC 002 V.1.1.1) (2016). https://www.etsi.org/deliver/etsi_gs/
MEC/001_099/002/01.01.01_60/gs_MEC002v010101p.pdf. Accessed 10 Jan 2023

3. Mao, Y., You, C., Zhang, J., Huang, K., Letaief, K.B.: A survey on mobile edge computing:
the communication perspective. IEEE Commun. Surv. Tutor. 19(4), 2322–2358 (2017)

4. Lee, C.H., Park, J.S.: An SDN-based packet scheduling scheme for transmitting emergency
data in mobile edge computing environments. Hum.-Cent. Comput. Inf. Sci. 11(28), 2–15
(2021)

5. Open Networking Foundation, Software-Defined Networking (SDN) definition (2021).
https://www.opennetworking.org/sdn-definition/. Accessed 10 Jan 2023

6. Shamsan, A.H., Faridi, A.R.: SDN-assisted IoT architecture: a review. In: Proceeding of
the 4th International Conference on Computing Communication and Automation (ICCCA),
pp. 1–7 (2018)

7. Lv, Z., Xiu, W.: Interaction of edge-cloud computing based on SDN and NFV for next
generation IoT. IEEE Internet Things J. 7(7), 5706–5712 (2019)

8. Kirkpatrick, K.: Software-defined networking. Commun. ACM 56(9), 16–19 (2013)
9. Khan, S., et al.: Software-defined network forensics: motivation, potential locations, require-

ments, and challenges. IEEE Netw. 30(6), 6–13 (2016)
10. Balakiruthiga, B., Deepalakshmi, P.A.: Distributed energy aware controller placement model

for software-defined data centre network. Iran. J. Sci. Technol. Trans. Electr. Eng. 45, 1083–
1101 (2021)

11. Radam, N.S., Faraj, S.T., Jasim, K.S.: Multi-controllers placement optimization in SDN by
the hybrid HSA-PSO algorithm. Computers 11(7), 1–26 (2022)

12. Blial, O., Mamoun, M.B., Benaini, R.: An overview on SDN architectures with multiple
controllers. J. Comput. Netw. Commun. 2016(2), 1–8 (2016)

13. Hakiri, A., Gokhale, A., Berthou, P., Schmidt, D.C., Gayraud, T.: Software-defined network-
ing: challenges and research opportunities for future internet. Comput. Netw. 75(24), 453–471
(2014)

14. Xiao, L., Zhu, H., Xiang, S., Vinh, P.C.: Modeling and verifying SDN under Multi-controller
architectures using CSP. Concurr. Comput. Pract. Exp. 1–17 (2019)

15. Sahoo, K.S., et al.: ESMLB: efficient switch migration-based load balancing for multicon-
troller SDN in IoT. IEEE Internet Things J. 7(7), 5852–5860 (2020)

16. Xue, H., Kim, K.T., Youn, H.: Dynamic load balancing of software-defined networking based
on genetic-ant colony optimization. Sensors 19(2), 1–17 (2019)

17. Ahmad, S., Mir, A.H.: SDN Interfaces: protocols, taxonomy and challenges. Int. J. Wirel.
Microwave Technol. 2, 11–32 (2022)

18. Farhady, H., Lee, H., Nakao, A.: Software-defined networking: a survey. Comput. Netw. 81,
79–95 (2015)

19. OpenDaylight Association, Opendaylight. https://www.opendaylight.org/. Accessed 12 Jan
2023

20. Eftimie, A., Borcoci, E.: SDN controller implementation using OpenDaylight: experiments.
In: Proceedings of the 13th International Conference on communications, Bucharest, pp. 1–5
(2020)

21. Clemm, A.: Navigating device management and control interfaces in the age of
SDN (2014). http://blogs.cisco.com/getyourbuildon/navigating-device-managementand-con
trol-interfaces-in-the-age-of-sdn. Accessed 13 Jan 2023

https://www.etsi.org/deliver/etsi_gs/MEC/001_099/002/01.01.01_60/gs_MEC002v010101p.pdf
https://www.opennetworking.org/sdn-definition/
https://www.opendaylight.org/
http://blogs.cisco.com/getyourbuildon/navigating-device-managementand-control-interfaces-in-the-age-of-sdn


Optimal Controller Selection Scheme 359

22. Wallin, S., Wikstrom, C.: Automating network and service configuration using NETCONF
and YANG. In: Proceedings of the 25th Large Installation System Administration (LISA),
pp. 1–13 (2011)

23. Application centric infrastructure object-oriented data model: gain advanced network
control and programmability. http://docplayer.net/15876333-Application-centric-infrastru
cture-object-oriented-data-model-gain-advanced-network-control-and-programmability.
html. Accessed 13 Jan 2023

24. Cisco Systems, The Cisco Application Policy Infrastructure Controller. https://www.cisco.
com/c/en/us/products/collateral/cloud-systems-management/aci-fabric-controller/at-a-gla
nce-c45-730001.html. Accessed 12 Jan 2023

25. Alghamdi, A., Paul, D., Sadgrove, E.: Designing a RESTful northbound interface for
incompatible software defined network controllers. SN Comput. Sci. 3, 1–7 (2022)

26. Enns, R., Bjorklund, M., Schoenwaelder, J., Bierman, A.: Network configuration protocol
(NETCONF) (2011). https://www.rfc-editor.org/rfc/rfc6241. Accessed 12 Jan 2023

27. Bierman, A., Bjorklund, M., Watsen, K., Fernando, R.: RESTCONF protocol, draft-bierman-
netconf-restconf-04 (2014). https://datatracker.ietf.org/doc/draft-bierman-netconf-restconf/.
Accessed 12 Jan 2023

28. Jethanandani, M.: YANG, NETCONF, RESTCONF: what is this all about and how is it
used for multi-layer networks. In: Proceedings of the 2017 Optical Fiber Communications
Conference and Exhibition (OFC), Los Angeles, CA, USA, pp. 1–65 (2017)

29. Bjorklund, M.: YANG - a data modeling language for the network configuration protocol
(NETCONF), RFC 6020. https://www.rfc-editor.org/rfc/rfc6020. Accessed 12 Jan 2023

30. Karaboga, D.: Artificial bee colony algorithm. Scholarpedia (2010)
31. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In:

Proceedings of the 20th International Conference on Very Large Data Bases, pp. 487–499
(1994)

32. Zareian, M.M., Mesbahb, M., Moradic, S., Ghateec, M.I.: A combined Apriori algorithm and
fuzzy controller for simultaneous ramp metering and variable speed limit determination in a
freeway. AUT J. Math. Comput. 3(2), 237–251 (2022)

33. Hu,X.G.,Wang,D.X., Liu, X.P., Guo, J.,Wang,H.: The analysis onmodel of association rules
mining based on concept lattice and Apriori algorithm. In: Proceedings of 2004 International
Conference on Machine Learning and Cybernetics, Shanghai, China, pp. 1620–1624 (2004)

http://docplayer.net/15876333-Application-centric-infrastructure-object-oriented-data-model-gain-advanced-network-control-and-programmability.html
https://www.cisco.com/c/en/us/products/collateral/cloud-systems-management/aci-fabric-controller/at-a-glance-c45-730001.html
https://www.rfc-editor.org/rfc/rfc6241
https://datatracker.ietf.org/doc/draft-bierman-netconf-restconf/
https://www.rfc-editor.org/rfc/rfc6020

	Optimal Controller Selection Scheme Using Artificial Bee Colony and Apriori Algorithms in SDN
	1 Introduction
	2 Related Work
	2.1 Software Defined Networking
	2.2 OpenDaylight
	2.3 Artificial Bee Colony Algorithm
	2.4 Apriori Algorithm

	3 The Proposed Scheme
	3.1 Basic Operation
	3.2 Priority and Weight of Controller
	3.3 Transaction
	3.4 Selection Manager

	4 Performance Evaluation
	5 Conclusion
	References




