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Abstract. A dictionary-based bacterial genome analysis is performed,
through specific k-long factors (called res) and their maximal right elon-
gation along the genome (called spectral segment), in order to find dis-
criminating biomarkers at the genus and species level. The aim is pursued
through a k-mer-based approach previously introduced, here applied on
genomes of different bacterial taxa. Intervals for values of k are identified
to obtain meaningful genomic fragments, whose collection is a suitable
representation to compare genomes according to informational indexes
and Jaccard’s similarity matrices. Corresponding dictionaries of k-mers
are identified to discriminate bacterial genomes at genus and species
level. This approach appears competitive in terms of performance (e.g.,
species discrimination) and size with respect to traditional barcoding
methods.

Keywords: Barcoding - k-mers - right special factors - spectral
segments

1 Introduction

Computational methodologies avoiding alignment of biological sequences consti-
tute a relevant field of bioinformatics, including alignment-free methods [13,26],
which show a considerable reduced computational cost with respect to alignment-
based approaches. Alignment-free analysis is often based on dictionaries com-
posed by relatively small words of the same length k, called k-mers, which
are extracted from biological sequences [6,23,30]. Those methods find appli-
cability in multiple contexts, such as genome assembly [7,8], genetic reconstruc-
tion [15,27,29] and DNA barcoding [10,12]. In particular, they allow handling
large quantities of sequences in metagenomic studies [24], which characterize
unknown taxa present in an environmental sample (or in a microbiome [28]).
In this paper we continue the investigation initiated in [4], where some infor-
mational concepts derived by the notion of k-spectrum applied to genomic k-mers
were analyzed. Starting from the dictionary of the k-mers having the property

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Genova and J. Kari (Eds.): UCNC 2023, LNCS 14003, pp. 1-16, 2023.
https://doi.org/10.1007/978-3-031-34034-5_1


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-34034-5_1&domain=pdf
https://doi.org/10.1007/978-3-031-34034-5_1

2 S. Astorino et al.

to be followed by the same nucleotide in all their occurrences on the genome
(we call RES) these Right-FExtendable Sequences, or simply RES when the role
of k is obvious), spectral segments have been defined as the iterated (k — 1)-
long overlap concatenations of RES along the genome, maximally and uniquely
right-elongated.

In this work we have extracted dictionaries of RESy, called U, and cor-
responding dictionaries of spectral segments, called Spg, from several bacterial
genomes downloaded from NCBI (details on the data set are reported in Sect. 2)
in order to identify, if existing, a range of the values of k for which this dictionary-
based genome representation is valid to classify biological sequences, according
to their species or genus membership. We found out some ranges for values of k
such that the knowledge of Uy and/or Spx would allow us to discriminate the
presence or absence of one species or one genus in an unknown bacterial pop-
ulation of an environmental sample. Experimental results are reported in the
following, together with interesting notes both on the overlapping of genes (or
coding regions) with spectral segments and on the efficiency of the algorithm
employed to extract such segments.

The state of the art for this work ranges in a wide variety of contexts. In
combinatorics on words the notion of right special factors of a fixed length &
has been investigated [1,9,16], where a substring u of a word w is special if
there exist at least two occurrences of u in w followed on the right by two
distinct letters (i.e., there exist at least two distinct letters a and b such that
the strings va and vb are both factors of w). Such k-mers are exactly the non-
RES words, because by definition RES words are followed on the right by
one same character, in all their occurrences. In the literature of computational
genomics, there are several examples of methods that extract genomic substrings,
as unitigs [15,27] and omnitigs [25] already defined as discriminant for taxa,
carriers of biological significance, and reliable fragments in the reconstruction
of a genome. In this work, Uy and Spy dictionaries are tested and proposed to
classify bacterial genomes, as an alternative to segments in the literature, and
potentially to markers commonly used in the laboratory.

Our method could be a competitive solution for supervised machine learning
methods, where the values of k use to range from 1 to 6. In [19,20] for exam-
ple, authors implemented a machine learning approach for the recognition of
specific classes of genomic sequences (mainly retrotransposons) based on 6-mers
multiplicity. Our results indicate good performance in terms of the ability to
discriminate between species (by not necessarily identifying them) in compari-
son to the use of short DNA sequences, for the purpose of species discrimination
(previously coined as DNA barcoding).

A possible application of our approach is indeed DNA barcoding, where usu-
ally a single marker gene located on RNA (the 16S rRNA, that is, the coding gene
for 16S ribosomal RNA) is employed to characterize bacteria, particularly in the
human microbiota. However, traditional barcoding studies usually fail to reach
the discrimination at the species level [28]. Metabarcoding is then a point of
application of any technique for characterizing a species inside a sample, namely
the representation of genomes by their Uy or Spy, dictionaries.
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This paper seeks for an interval of factor lengths that provides us with a
distinctive information in terms of corresponding dictionaries (of spectral seg-
ments and of RES) of bacterial genomes. Moreover, spectral segments which
discriminate species and genera turn out to overlap coding regions of bacterial
genomes. We briefly describe the bacterial data set used in our experiments in
Sect. 2. The methodology is illustrated in Fig. 1 and reported in Sect. 3 together
with the software IGtools [3] employed for the analysis. Section4 is focused on
the discussion of achieved outcomes, while Sect. 5 concludes the paper with final
remarks.
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Fig. 1. A sketch of the computational analysis workflow. Dictionaries Uj and
Spr (in this figure briefly Sk) have been computed by IGtools in the range 9 < k <
40 for all the genomes. These are compared by similarity matrices (reported at the
bottom), computed on couples of genomes either from two different genera (green
square) or representing two different species within the same genus (red square). (Color
figure online)
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2 Dataset

As we may see in Fig.1, genera of Escherichia, Moraxella, Mycoplasma,
Salmonella and Xanthomonas have been chosen for the work, initially devel-
oped in the master thesis of the first author. Each genus collects a number of
species, having in turn a few different organisms: in the figure we may distinguish
15 genomes of Escherichia (e.g., with 23 genomes of Escherichia Coli species), 14
genomes of Moraxella, 13 genomes of Mycoplasma and of Salmonella enterica, 9
genomes of Xanthomonas.

In the comparative analysis (by similarity matrices) here reported our dataset
has been extended by the additional genus Shigella, with 6 species, in order to
work on all genomes employed by the benchmarking A Fproject [30] and by other
alignment-free methods for genetic reconstruction, such as co-phylog [29] and
Skmer [23]. Furthermore, in order to work on reference datasets present in the
AFproject, to determine a significant k-range for our RES strings and spectral
segments, we have extended the dataset with the following genera (having from
1 to 4 species): Citrobacter, Cronobacter, Dickerya, Edwardsiella, Enterobacter,
Erwinia, Klebsiella, Pantoea, Pasteurella, Pectobacterium, Photorhabdus, Rah-
nella, Wigglesworthia, Xenophilus and Yersinia. All downloaded from NCBI.

3 Methods

In order to investigate bacterial genomes, by IGtools software [3,6] we com-
puted statistical indices and specific genomic dictionaries, containing spectral
segments and RES [4], and we visualize genome similarity by matrices report-
ing the normalized Jaccard index. These concepts are detailed in the following
of this section.

3.1 Theoretical Background

Genomes are formalized by long strings over the alphabet I' = {a,c,g,t}. In
this framework, words, dictionaries and distributions are key instruments to
represent genomes. Dictionary D; collects all distinct k-mers of a string, and it
may be split into two disjoint dictionaries: Hy the set of words appearing exactly
once (hapazes [6]) and Ry, the set of words appearing more than once (repeats).
Dictionary Fj collects forbidden k-mers, all those k-long words generated from
the same alphabet that do not appear in the genome. Of course, by definition,
Dy = H,URy and Fk:DkUFk.

A genome G is often represented by the distribution of k-mers within it.
Among the others [11,17], here we recall the k-spectrum distribution, where each
k-mer « of Dy is associated to its multiplicity multG(«) (i.e., the number of
times it occurs in the genome). The k-spectrum of a genome G is defined as

Speck(G) = {(a, multG(a))|o € Dy }.
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Two k-mers of a couple («, 3) from Dy, x Dy, are k-concatenated if the (k—1)-
length suffix of « equals the (k—1)-length prefix of 8. Given a = zy and 8 = 7y,
where x and y belong to I', there is a right elongation of o by the symbol v,
resulting in ay. If only one k-mer (3 elongates a along the genome, just one
possible symbol y follows « and then the k-mer « is a RES (uniquely right-
extendable string).

To assemble spectral segments, RES are iteratively concatenated, until more
than one distinct k-mer of the spectrum competes for concatenation. In [4] some
procedures were proposed to construct spectral segments, as words whose factors
of length k are all RES, each occurring at most as many times as it does on the
genome G. This constrain naturally reduces the number of different resulting
spectral segments. However, it does not guarantee that they occur in the original
genome.

A spectral segment is constructed by k-concatenation (that is, along with an
overlap long k — 1) of RES) (which are collected in the dictionary Uy). It is
elongated to the right until there are no more distinct RESy capable of doing
so or the multiplicity of them runs out. Hence, spectral segments are defined as
mazximally uniquely elongated strings from RESy. All these spectral segments of
variable length are collected in Spy.

As final remarks, we may point out that RES is a stronger concept than
hapax, and that the concept of k-spectrum is behind the construction of spec-
tral segments. Indeed, an hapax is univocally elongated over the genome since it
occurs once, while RES is elongated by the same symbol in its multiple occur-
rences, and spectral segments are constructed consistently to the multiplicity of
each k-mer in the spectrum, by means of k-concatenation.

3.2 1IGtool Software

The whole procedure of extraction of spectral segments and RE'S from a genome
G has been executed by IGtools software [3]. Bacterial genomic strings are input
to the software in the form of FASTA files. It outputs three different sources
of information: statistical indices, RES dictionaries (Uy) and spectral segments
dictionaries (Spyx) for a value of k in the interval defined at the beginning.
Namely, it calculates for each sequence eight indices: |Dy|, |Hgl|, |Ul|, |[Uk|/| Dk,
coverage(Uy, G), the number of spectral segments, the mazimum length, and
the mean length among spectral segments.

It implements the procedure of k-segmentation explained in [4], which com-
putes the Uy and Spy, dictionaries through an array that represents the positions
of each k-mer in the genome. Formally, a k-mer « from Dy (G) is univocally
elongated in G if {f € Di(G) : a[2..k] = B[l...k — 1]}| = 1. The algorithm
initializes all positions in the array A of the genome size as false. A position is
set as true when the k-mer starting at the position is uniquely elongated to the
right in G. As last step, the algorithm searches for consecutive true values in A
to construct spectral segments.

Moreover, charts are provided on the coverage, that is, the percentage of
true positions in the array after the k-segmentation, and the ratio |Uk|/|Dk|.
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The cardinality of dictionaries Spy with the average and maximum length of their
spectral segments are computed as well (see Table 1). IGtools in comparison with
other algorithms for extracting substrings performs the analysis in competitive
times. In particular, this observation holds by modifying the software to extract
unitigs, being the segments on which most procedures are set. IGtools is here
compared with the well-established tool Bifrost [15]. IGtools uses suffiz array S A
and longest common prefix LCP data structures, both constructed in linear time,
and for this reason it can be set for unitigs extraction without an increase of
computational cost. On the other hand, Bifrost constructs a de Bruijn graph to
extract segments and relies on Bloom filter (BF) [2]. Figure 2 shows an example
of unitigs computation by Bifrost and IGtools. Especially for £ < 20, IGtools
is particularly efficient. Considering the range 9 < k < 40 on different bacterial
genomes, IGtools takes between one-third and one-tenth of the time of Bifrost.
Those times suggest that IGtools provides unitigs, and dictionaries in general, in
the timeframe proposed for spectral segment extraction without being affected
by the output dictionary size. Therefore, it allows to be used on a large number
of sequences and for a wide range of k£ in reduced time and space.

Escherichia genome
@ Bifrost @ IGtools
600

400

200

Computational time

0
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

k-range [9,40]

Fig. 2. Computation time on genomes from Escherichia genus. (Color figure online)

The indices computed by IGtools are displayed graphically, while the genome
Uk-based and Spg-based similarity are retrieved by means of similarity matrices.

3.3 Graphical Tools

A similarity matrix is calculated for each value of k from 9 to 40, thus between
specific dictionaries of k-mers. For each couple of genera, 31 similarity matrices
exist (one for each value of k), and each matrix represents the Ug-based similarity
for a defined k and any genomes pair (see green box in Fig. 1). Each matrix maxn
is composed of n rows and m columns, where n and m are the number of species
among different genera. If the intersection is computed to compare species inside
one genus we have that m = n. For example, in Fig 1, matrices on the left side
have dimensions 15 x 14 while matrices on the rigth side are 13 x 13 squares.
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In each cell (i.e., matrix component) the Jaccard index is reported, as a
measure of the similarity between two sets. It is defined as the intersection size
divided by the union size of the dictionaries A and B: J(A4, B) = |ANB|/|AUB.
It is a percentage, that is a value between 0 and 1. As it may be deduced from
the colour legend, in the matrices red color represents an higher value, while a
lower one is identified by the green.

For Spy-based similarity within a genus, there are still 31 matrices for each
genus (one for each k). Moreover, Uy and Spj similarities are calculated for
genomes between genera, still through the construction of similarity matrices
(see Fig. 1). The similarity matrices have different numbers of rows and columns,
as they represent the sequences of two different genera. Since each species has
in turn different genomes, for each value of k£ and any couple of species we have
computed 10 matrices, each representing a possible combination of species, either
of two genera or within a genus, among the different bacteria.

The purpose has been to demonstrate that RES sequences are significantly
present within different genomes in the same species or genus, so that shared
segments can identify and characterize sequences of the groups. The analysis
starts by searching the similarity between genomes through Uy dictionaries.

Species discriminants identify subtrees of a phylogenetic tree. The phyloge-
netic trees, constructed by CVtree software [21], employ the distance D(A, B) =
%, where C(A, B) is the correlation between two species A and B, and
often identify genomes from the same family as being the closest. However, these
may be not the closest according to the Jaccard coefficient, which is a more
demanding string similarity measure.

4 Results

Through a graphical representation of the eight indices calculated by IGtools
for k ranging in the interval 9 < k < 40, the appropriate k range is defined to
extract meaningful spectral segments and specific information on Spy and Uy.

4.1 Significant Intervals for Values of k

We studied statistical indices for Uy, and Spy, dictionaries to find a meaningful word
length interval, if any, to obtain taxa classification. Indeed, index values and charts
have shown likeness over the different bacterial genomes for the k-range equal to
10 < k < 18. This information is valid only for bacteria domain. In fact, the study
of indices on genomes of eukaryotes, such as Saccharomyces, Ostreococcus and
Drosophila, showed that there are no domain-specific k-ranges. Possibly there is a
relation of this interval with the genome size, since bacteria in the dataset report
common domain genome length (200 000 bp—10 000 000 bp).

In Table 1 we may collect some observed regularities. Even if coverage varies
among the organisms in the dataset, for ¥ = 13 it reaches its maximum in all cases.
The ratio Uy /Dy, has been computed to see how different the two dictionaries are.
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Only for k = 17 the ratio is over 0.90, while for the other values of k the two dictio-
naries carry different information, according to the (negative) correlation between
Dy-based similarity and Ug-based similarity trends. Specifically, Pearson’s corre-
lation index has been calculated by a vector containing the Uy-based similarity of
a pair of genomes and a vector containing the Dy-based similarity, for the same
pair, with respect to the k variation. The two dictionaries lead to negatively cor-
related similarities for the genomes under investigation, hinting that the sets of
RES]), carry more specific information than the sets Dy (G).

We observed that |Spy| has a fast increase for 9 < k < 13 and an equally
rapid decrease for 14 < k < 20. It reaches the minimum values for k£ > 20. Mean
and Max represent the k£ from which the values of mean and maximum length
of spectral segments begin to increase. Indeed, maximum and average lengths
remain low and constant in the interval 9 < k < 13/15 (numerous relatively
short segments). After k¥ = 13 or k£ = 15, both indices increase until k£ = 40.
Correspondingly, the cardinality of the Sp dictionary decreases generally under
3000 items, and the mean length of the segments does not grow fast. As a
consequence, for k > 20, Spj dictionaries contain few and long segments, which
are less remarkable for analysis.

Table 1. Mean log is the average (on sequences inside the genus) logarithmical genome
size. For k = 13 a coverage close to 95% reaches its maximum. At k = 17 the ratio
|Uk|/| D] is over 0.90. Peak is the value of k at which the number of spectral segments
is maximum, while Mean/Max are the values of k at which the mean/maximum length
of spectral segments begin to increase.

Relevant values of k£ length for the informational indexes

Genera Mean log | Coverage (> 95%) | Ratio (>0.90) | Peak | Mean/Max
Escherichia 11 13 17 13 13/15
Moraxella 10.50 13 17 12 13/15
Mycoplasma 10 13 17 13 13/15
Salmonella 11 13 17 13 13/15
Shigella 11.10 13 17 13 |13/15
Xanthomonas 11 14 17/18 13 13/15
Other bact. genera | 10-12 13 17/18 12/13 | 13/15

4.2 Upg-Based and Sp-Based Analysis

The main quest is to determine whether spectral segments and RES are biomark-
ers at species and genus levels and for what range of k. We search for biomarkers
by means of computing Uy similarity and Spj similarity between genomes of the
same genus and between genomes of distinct genera. These values were displayed
through similarity matrices, within each genus or by pairing two different genera,
along with different dictionaries, and k-values.
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Fig. 3. The Usp-based similarity within the genus Moraxella is shown. Section (a):
example of comparison between one species from the genus Moraxella with each of all
the others. The legend on the right represents the species inside the genus, and each
line shows the values of similarity between one species and another one along with
the value of k. No pair of genomes has zero similarity and there are clusters according
to Jaccard coefficients. Section (b): of the figure highlights the clustering of genomes
according to similarity. Cells that are identified by pairs of genomes of the same species
are those that are not dark green and have similarity values greater than 10%, often
30%, upwards to 99%. (Color figure online)

Uj-Based Similarity. Computational experiments are reported where the sim-
ilarity is calculated as the Jaccard index (a value between 0 and 1) on the sets Uy,
for 9 < k < 40, taken from a couple of genomes either within one single genus or
from different genera. By calculating similarity within one genus, matrices have
different configurations depending on the value of k.
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For k =9, the matrices are predominantly green, with no significant peaks in
the values and no cells with values close to zero. Notice that green cells contain a
value ranging from zero (when the color is darker) to about 30%. As k increases,
the pattern of the matrices changes. At k = 15, peaks of values, in colours ranging
from orange to red, emerge and the green cells assume values close to zero.
Here, good similarity values reach a maximum and then slowly decrease (while
k increasing). Likewise, as in the case of Escherichia Coli, similarity occurs at
the strand level within the same species. Specifically, there are both orange/red
and green cells, with no one color predominating over the other.

From the above observations we may hypothesize that RES dictionaries
potentially function as sets of identifiers at the genus level for £k < 15. On
the other hand, for £ > 15, some similarities have values close to zero and only
similarities within specific clusters are evident. Consequently, RES dictionaries
are possible identifiers at the species level.
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Fig. 4. Uis-based similarity between the genera Moraxella and Escherichia is shown.
(Color figure online)

We tested if RES can act as genomic markers as well, by computing the Uy-
based similarity between the genomes of 10 combinations of pairs of different
genera. The coefficient never exceeds 6% (for no value of k), for no pair of
genomes and for no combination of genera, as namely seen in Fig.4. Notice
the reference scale: colours vary in a range of 0%-6%. The maximum values
are reached for k > 15. After k = 15, all matrix values tend to 0%, without
distinction. Genomes of different genera do not have Uy similarities and the
heatmaps are basically all homogeneous matrices of zeros.

Spr-Based Similarity. Computational experiments are reported where the
similarity is calculated as the Jaccard index (a value between 0 and 1) on the
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sets Spy, for 9 < k < 40, taken from a couple of genomes either within one
single genus or from different genera. The optimal k-range for spectral segments
is 15 < k < 25, since the values have a significant decrease beyond that threshold.

Concerning Spy-based similarity within a genus (see Fig.5 (a) for all values
of k), although its values are lower, it shows a division of genomes into clusters
corresponding to the same species.
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Fig. 5. The Spao-based similarity within the genus Moraxella is shown. Description of
details is analogous to the text in caption of Fig. 3. (Color figure online)

As far as Spj similarity is concerned, the values are generally lower than
those observed with Uy, dictionaries, because segments are longer and dictionaries
smaller. The similarity matrices have generally low values (lower than those seen
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for the Uy based similarity). Orange peaks are rare and the green cells are zero
from k = 9. The heatmaps are homogeneous and clean, and just show a difference
between pairs of genomes of the same species from small k. Genomes belonging
to the same species have variable coefficients which depend on the species. The
range is 10-90%, and values reach a maximum before k& = 20.
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Fig. 6. The Spis-based similarity between couples of genomes taken from the genera
Moraxella and Escherichia is shown. (Color figure online)

The similarity matrices with respect to spectral segments and between genera
show values never exceeding 0.5%. In all bacteria organisms, for k¥ = 9, there
are values less than 1%, decreasing to exactly zero after a few k. For any k, or
any combination of genera, the intersection of genomes has size almost zero, as
shown in Fig. 6.

The observations above indicate that spectral segments are identifiers within
a genus for one species. However, although between genera there is no sharing
(of them), all coefficients values within a single genus matrix are not high enough
to consider them identifiers of one strain (inside a species).

In the S, similarity matrices, the cells rarely approach orange, i.e. values
above 70%, but they are also surrounded by particularly low values and border
on zero. The analysis through Sp; may remove ambiguity from the intersection
study, while emphasising that there is a connection with Uy. The reduced size of
the Spg, the variability in the length of the segments, and having to deal with
segments of increasing size, less prone to repetition, makes the intersection values
of greater importance, and means that these results carry new information.
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Comparison with the Literature of Barcodes. Barcode of life data system
(BOLD) [22] is proposed as a reference for potential barcoding sequences. This
database provides identifying sequences for species of the bacterial genera of
our dataset. In Table 2, the sequences offered by BOLD are 666 bp long and are
single strings. For each species, we average between one and four identification
sequences. The only highly represented species is Escherichia Coli. Otherwise,
the sequence used for barcoding is 16s RNA, which has range 300-470 bp. On
the other hand, dictionaries allow a classification into taxa not related to a single
sequence, but to a set of words, having length which range from an average of
2000 bp up to a maximum equal to 200000 bp.

Table 2. Characteristics of possible sets of barcode sequences.

Sequence barcodes comparison

Source |Segment-length Set-cardinality
BOLD 666 bp (1000 bp for Escherichia) | 1-4

16S RNA | 300-470 bp 1

IGTools | Max = 200000 bp (Avg 2000) 3000-100000

4.3 Spi-Based Coverage of Genes

It may be relevant to consider the relation between the values of k and the
overlapping (or covering) of the spectral segments with the coding portions of
genomes.

We say that a spectral segment covers a gene if the two genome portions
coincide by at least 95%. We have checked (by means of the Boolean array used
by IGtools) the overlap of Spy with the genes of each genome, for the interval
10 < k < 15. We set k < 15, to avoid that Uy and Dj dictionaries overlap
significantly. Figure 7 shows that in this k-range the spectral segments pass from
not covering genes, for £ = 10 and k& = 11, to covering them all, for k = 15.

Therefore, gene coverage by spectral segments has a very fast growth in the
k-range 11 < k < 13. Spectral segments cover all coding regions of most genomes
already for k = 13 or k = 14. Either way, for every genome, at k = 15 genes
are all covered (by keeping in mind that for ¥ = 13 the maximum coverage is
usually reached, and the dictionaries Uy, and Dy, are not equal (see Table1).
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Genes of genomes ATCC8739 involved w.r.t. k, Tot #genes = 4409
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Fig. 7. The picture shows how many genes in a bacterial genome are covered by Spy
per k-range 10 < k£ < 15. The pattern observed for this specific genome is the same
observed for the others.

5 Conclusion

In this paper a k-mer-based method shows to be helpful for determining bacte-
rial species membership, and an accurate set of biomarkers was provided as an
alternative to traditional singletons (sets composed by one gene). Main results
of this paper may be reported as the identification of two k-parametrized dictio-
naries, U and Spy for 15 < k < 25, as identifiers of bacterial species. Namely,
dictionary Uy, for k < 15 contains biomarkers at the genus level, while dictionary
Spy for 15 < k < 25, whose spectral segments overlap all the coding regions,
discriminates one species within a genus.

The dictionary of a genome traces it back to its taxonomy and characteristics
without the sequence itself being known. In fact, comparing dictionaries while
following the order of the genetic tree, from leaves to parent, yields a percentage
of RES and spectral segments common to the root that is almost zero. Rele-
vantly, there is no set of RES or spectral segments common to all the genomes of
a genus. This finding is particularly intriguing and may warrant by itself further
investigation thorough a study on other data sets.

The above relationship between a dictionary based similarity and the mem-
bership to a phylogenetic tree suggests that spectral segments may be exploited
in the phylogenetic domain [14,27,29]. In our experiments, a main difference in
the two approaches is emerged with genomes of different species that are located
in the same phylogenetic subtree. This observation suggests that dictionaries Uy
and Spjy are more subtle than phylogenetic trees to determine species member-
ship, and that spectral segments distinguish even leaves of a specific subtree.

Future research could focus on a dictionary based method for phylogenetic
reconstruction, as a valid alternative to unitigs employed in genome assembly [5,
18]. Indeed, spectral segments are similar but longer than unitigs, so they could
be safe and complete solutions for genome assembly. Also potential barcodes
could be useful for future applications, such as in the study of the metabiome,
overcoming the limitation of distinguishing species in such a large sample.



An Investigation to Test Spectral Segments as Bacterial Biomarkers 15

Biomarker dictionaries are extracted from large amounts of genomes. The

method fits with metagenomics, which was developed to handle large quantities
of organisms in a less costly and less resource-intensive manner. To generate
initial partial tests, we have applied IGtools to the concatenation of 9, 10 and
up to 15 sequences. The concatenated sequences representative of a genus show
values and peaks that are similar to the individual genomes of that genus, for
10 < k < 18. Such a k-range is then pointed out for genomes of the bacterial
kingdom, that provides specific information on spectral segments (passing from
being many and short to be few and long, and covering all the genes) and RES,
which discriminate at the species and genus level, respectively.
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