
Daniela Genova
Jarkko Kari (Eds.)

LN
CS

 1
40

03

Unconventional Computation
and Natural Computation
20th International Conference, UCNC 2023
Jacksonville, FL, USA, March 13–17, 2023
Proceedings

Lecture Notes in Computer Science 14003
Founding Editors
Gerhard Goos
Juris Hartmanis

Editorial Board Members
Elisa Bertino, Purdue University, West Lafayette, IN, USA
Wen Gao, Peking University, Beijing, China
Bernhard Steffen , TU Dortmund University, Dortmund, Germany
Moti Yung , Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

The series Lecture Notes in Computer Science (LNCS), including its subseries Lecture
Notes in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics (LNBI),
has established itself as a medium for the publication of new developments in computer
science and information technology research, teaching, and education.

LNCS enjoys close cooperation with the computer science R & D community, the
series countsmany renowned academics among its volume editors and paper authors, and
collaborates with prestigious societies. Its mission is to serve this international commu-
nity by providing an invaluable service, mainly focused on the publication of conference
andworkshop proceedings and postproceedings. LNCScommenced publication in 1973.

Daniela Genova · Jarkko Kari
Editors

Unconventional Computation
and Natural Computation
20th International Conference, UCNC 2023
Jacksonville, FL, USA, March 13–17, 2023
Proceedings

Editors
Daniela Genova
University of North Florida
Jacksonville, FL, USA

Jarkko Kari
University of Turku
Turku, Finland

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-34033-8 ISBN 978-3-031-34034-5 (eBook)
https://doi.org/10.1007/978-3-031-34034-5

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-0029-5238
https://orcid.org/0000-0003-0670-6138
https://doi.org/10.1007/978-3-031-34034-5

Preface

The 20th International Conference on Unconventional Computation and Natural Com-
putation (UCNC2023)was held at theUniversity ofNorth Florida, Jacksonville, Florida,
USA onMarch 13–17, 2023. This was the secondUCNC conference since the beginning
of the global covid-19 pandemic. The conference was organized as a hybrid event with
some scientists taking part virtually online. (See http://ucnc2023.domains.unf.edu/)

This 20th edition of the conference series is dedicated to Professor Cristian Calude
in recognition of his founding and further developing of this conference series. The
first conference took place in Auckland, New Zealand in 1998, where he is currently
Chair Professor of Computer Science at the University of Auckland. He was also UCNC
SteeringCommitteeChair andCo-chair for a long time, duringwhich time he contributed
enormously to shaping and developing the conference series. The UCNC community is
deeply grateful to Professor Calude for his guidance and influence through the years.

The UCNC series of international conferences is a forum bringing together scientists
frommany different backgrounds who are united in their interest in novel forms of com-
putation, human-designed computation inspired by nature, and computational aspects of
natural processes. The 20th conference of the series continued the tradition of focusing
on current important theoretical and experimental results. Typical, but not exclusive,
UCNC topics of interest include amorphous computing, cellular automata, chaos and
dynamical systems-based computing, cellular, chemical, evolutionary, bacterial, molec-
ular, neural and optical computing, collision-based computing, quantum computing,
DNA computing, membrane computing, material computing and programmable matter,
super-Turing computation, swarm intelligence, and other nature-inspired algorithms.

The G. Rozenberg Natural Computing Award was established in 2023 to recognize
outstanding achievements in the field of natural computing. The award is named after
Professor Grzegorz Rozenberg to acknowledge his distinguished scientific achievements
in many areas of science, including natural computing, as well as his crucial role in
developing the UCNC conference series. Professor Rozenberg also invented the name
and defined the scope of the natural computing area and continues to serve as Chair
Emeritus of the UCNC Steering Committee.

This annual award will be presented at the Unconventional Computation and Natural
Computation conference. The recipient of the award will be invited to give the award
lecture in the given year. The UCNC Awards Committee selected Professor Jarkko Kari
from the Department of Mathematics and Statistics, the University of Turku, Finland,
to be the recipient of the inaugural award in 2023 (UCNC 20). He was recognized for
his contributions to cellular automata and dynamical systems.

The programcommittee ofUCNC2023 reviewed24 full paper submissions, ofwhich
13were selected for presentation at the conference and apublication in these proceedings.
In addition, the conference program included a poster session, an invited tutorial by Ion
Petre (University of Turku, Finland) and five invited plenary talks by Thomas Bäck
(Leiden University, The Netherlands), Eric Goles (University of Chile, Chile), Christine

http://ucnc2023.domains.unf.edu/

vi Preface

E. Heitsch (Georgia Institute of Technology, USA), Lila Kari (University of Waterloo,
Canada), and Yukiko Yamauchi (Kyushu University, Japan).

Co-located workshops are essential elements of UCNC conferences. This time there
were three such workshops: The Fourth International Workshop on Theoretical and
Experimental Material Computing (TEMC 2023), organized by Susan Stepney (Univer-
sity of York, UK), The Third International Workshop on Reaction Systems (WRS 2023),
organized by Daniela Genova (University of North Florida, USA), and The Workshop
on Quantum Computing, organized by Mika Hirvensalo (University of Turku, Finland).

Wewarmly thank the invited speakers and theworkshop organizers, all the authors of
the contributed papers and posters, as well as the speakers of the workshops. We are also
grateful to the members of the program committee and the external reviewers for their
invaluable help in reviewing the submissions and selecting the papers to be presented at
the conference.We thank the organizing committee of UCNC 2023 for their tireless help
in taking care of all the numerous details in organizing the event. The conference would
not have happened without the active support of the University of North Florida and
Provost and Vice President for Academic and Student Affairs Karen B. Patterson; The
College of Computing, Engineering, and Construction Management and Dean William
Klostermeyer; The College of Arts and Sciences and Dean Kaveri Sabrahmanyam; The
Department of Mathematics and Statistics and Chair Richard F. Patterson; the School of
Computing and Director Sherif Elfayoumy, and IEEE. Finally, we thank the EasyChair
conference system, and the LNCS team at Springer for helping in the process of making
these proceedings.

March 2023 Daniela Genova
Jarkko Kari

Organization

Steering Committee

Thomas Bäck Leiden University, The Netherlands
Cristian S. Calude (Founding

Chair)
University of Auckland, New Zealand

Enrico Formenti (Co-chair) Université Côte d’Azur, France
Lov K. Grover Bell Labs, USA
Mika Hirvensalo (Co-chair) University of Turku, Finland
Natasha Jonoska University of South Florida, USA
Jarkko Kari University of Turku, Finland
Lila Kari University of Waterloo, Canada
Seth Lloyd Massachusetts Institute of Technology, USA
Giancarlo Mauri Università degli Studi di Milano-Bicocca, Italy
Gheorghe Păun Institute of Mathematics of the Romanian

Academy, Romania
Grzegorz Rozenberg (Emeritus

Chair)
Leiden University, The Netherlands

Arto Salomaa University of Turku, Finland
Shinnosuke Seki (Co-chair) University of Electro-Communications, Japan
Tommaso Toffoli Boston University, USA
Carme Torras Institute of Robotics and Industrial Informatics,

Spain
Jan van Leeuwen Utrecht University, The Netherlands

Program Committee

Selim Akl Queens University, Canada
Cristian S. Calude The University of Auckland, New Zealand
Matteo Cavaliere Manchester Metropolitan University, UK
Ho-Lin Chen National Taiwan University, Taiwan
Jérôme Durand-Lose Université d’Orléans, France
Enrico Formenti Université Côte d’Azur, France
Giuditta Franco University of Verona, Italy
Daniela Genova (Co-chair) University of North Florida, USA
Yo-Sub Han Yonsei University, South Korea
Mika Hirvensalo University of Turku, Finland

viii Organization

Hendrik Jan Hoogeboom Leiden University, The Netherlands
Jarkko Kari (Co-chair) University of Turku, Finland
Jongmin Kim Harvard University, USA
Jetty Kleijn Leiden University, The Netherlands
Kalpana Mahalingam Indian Institute of Technology Madras, India
Ian McQuillan University of Saskatchewan, Canada
Pekka Orponen Aalto University, Finland
Matthew Patitz University of Arkansas, USA
Zornitza Prodanoff University of North Florida, USA
Christian Scheideler University of Paderborn, Germany
Shinnosuke Seki University of Electro-Communications, Japan
Susan Stepney University of York, UK
Gunnart Tufte Norwegian University of Science and Technology,

Norway
Giovanni Viglietta Japan Advanced Institute of Science and

Technology, Japan

Organizing Committee

Brendan Chamberlain
Donn Christy
Ryan Farrell
Daniela Genova (Co-chair)
Furio Gerwitz
Hemani Kaushal

Nazmul Kazi

Rhys Jones

Troy Kidd

Zornitza Prodanoff (Co-chair)

Dylan Strickley

Additional Reviewers

Alastair Abbott
Olivier Bournez
Douglas Cenzer
Hyunjoon Cheon
Penn Faulkner Rainford
David Griffin
Daniel Hader

Adam Kohan

David Liedtke

Luca Manzoni

Andreas Padalkin

Sara Riva

Daniel Warner

Abstracts of Invited Talks

On the Automatic Optimization of Problem-Specific
Optimization Heuristics Gleaned from Nature

Thomas Bäck

Leiden Institute of Advanced Computer Science (LIACS),
Leiden University, The Netherlands

Abstract. For decades, researchers have been looking at paradigms
gleaned from nature as inspiration for problem solving approaches,
for example in the domain of optimization. There are many classes of
such algorithms, including for example evolutionary algorithms, particle
swarms, differential evolution, ant colony optimization, and the number
of proposed variants of them is quite large. This makes it hard to keep
track of the variants and their respective strengths, and even more so it
creates a difficult situation for non-experts who are interested in selecting
the best algorithm for their real-world application problem.

In this presentation, I propose the idea to automatically optimize the
optimization heuristic. This task can be approached as an algorithm con-
figuration problem, for which I will present some examples illustrating
that this task can be handled by direct global optimization algorithms – in
other words, by “automatically optimizing the optimization algorithm”. I
will give an example how a combinatorial design space of 4608 configu-
ration variants of evolution strategies can be searched, and how the results
can be analyzed using data mining. This approach provides an opportu-
nity for discovering the unexplored areas of the optimization algorithm
design space. Extensions towards other algorithm design spaces such as
particle swarm optimization and differential evolution are then outlined,
too.

In the second part of the presentation, I will discuss a range of real-
world engineering design applications, for which such an approach could
truly provide a competitive advantage. In such cases, optimizing the opti-
mization algorithm requires a proper definition of the problem class,
for which the optimization is executed. For the example of automotive
crash optimization problems, Iwill present first results demonstrating that
these problems differ a lot from the classical benchmark test function sets
used by the academic community, and present an automated approach to
find test functions that properly represent the real-world problem. First
results on the performance gain that can be achieved by optimizing the
optimization algorithm on such real-world problems are also presented.

Unconventional Cellular Automata Models

Eric Goles

Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Chile
eric.chacc@uai.cl

Abstract.Wewill present twounconventionalmodels related to automata
networks. The fungal automaton (inspired by the exchange of information
in a species of fungi) and a majority consensus algorithm (MCA) based
on the majority function over bidimensional lattices. A fungal automaton
consists of a d-dimensional cellular automaton such that, according to
a certain protocol, at each update the state information of some neigh-
bors may or not be considered. As an example of the complexity of
these dynamics, we will study the computational complexity of the clas-
sical chip firing game (if the number of tokens in a site is bigger than
the neighborhood cardinality, one token is given to each neighbor) on a
two-dimensional lattice. We prove that there exists a vicinity such that
by opening or closing the connection with some neighbors it is possi-
ble to simulate any Boolean circuit (P-completeness) and therefore, this
model is capable of simulating a computer (Turing universality). Regard-
ing the consensus search algorithm, we will consider the procedure on a
two-dimensional network with Moore’s neighborhood (the eight nearest
neighbors) and binary opinions {0, 1} over each node. The MCA algo-
rithm is as follows: consider an arbitrary node and k neighbors, 2 ≤ k ≤ 8,
inside theMoore neighborhood.Over those sites, apply themajority oper-
ator (the new state will be the most represented in the neighborhood and
in the case of a tie, leave it unchanged). A consensus opinion is one in
which a fixed point with all the vertices in the same state is reached. We
will characterizeMoore sub-neighborhoods such that theMCAalgorithm
over its associated grid converges to the fixed points 0* or 1*.

Keywords: Cellular automata · Chip firing game · Majority networks

References

Goles, E., Tsompanas, M.-A., Adamatzky, A., Tegelaar, M., Wosten, H.A.B., Martínez,
G.J.: Computational universality of fungal sandpile automata, Phys. Lett. A 384,
126541 (2020)

Modanese, A., Worsch, T.: Embedding arbitrary Boolean Circuits into fungal
automata, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany (2022).
arXiv:2208.08779

xiv E. Goles

Sepúlveda, C., Goles, E., Ríos-Wilson, M., Adamatzky, A.: Exploring the dynamics of
fungal cellular Automata, Int. J. Unconventional Comput. 18(2–3), 15–144 (2023)

Goles, E., Medina, P., Montealegre, P., Santivañez, J.: Majority networks and consensus
dynamics, Chaos, Solitons and Fractals, 112697

Distributed Computation by Mobile Robots

Yukiko Yamauchi

Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
yamauchi@inf.kyushu-u.ac.jp

Abstract. As mobile computing entities, such as wheeled robots, legged
robots, and modular robots become easily programmable and widely
available, distributed computation by mobile computing entities attracts
much attention. Its applications include drones, molecular robots, swarm
behaviors, and so on. In this talk, we will briefly survey distributed com-
putation models for mobile computing entities. We then present existing
results on the computational power of several models.

Distributed computing theory considers how to integrate small com-
putations that collectively form the entire distributed system. Conven-
tional computation models consider a network of computers, where each
computing entity is equipped with its local memory and exchanges mes-
sages with other computing entities. In the past two decades, a variety
of new computation models for mobile computing entities have been
proposed; autonomous mobile robots [8], metamorphic robotic systems
[4], population protocols [1], and programmable particles [2]. New dis-
tributed computing problems are introduced for these new models; gath-
ering, shape formation, scattering, exploration, evacuation, and so on.
To reveal the relation between the computational power of each com-
puting entity and that of the entire distributed system, most existing
results consider very weak mobile computing entities, that is, they are
anonymous (indistinguishable), oblivious (memory-less), asynchronous,
uniform (common computation rule), silent (communication-less), and
deterministic. See the book [5] as a survey of results by 2019.

In this talk, we will first present results on the computational power of
autonomous mobile robots, each of which can freely move in 2D (or 3D)
continuous space. We will show the effect of obliviousness, synchrony,
and symmetry of the robots on the shapes that the mobile robot system
can form [6, 8, 10, 11].

Next, we will present computational power of a metamorphic robotic
system (MRS) that consists of a set of autonomous modules. An MRS
moves in the 2D square grid (or the 3D cubic grid) and each module
autonomously performs sliding and rotation with keeping the connectiv-
ity of the entire MRS. These local moves generate global movement of
the MRS. Each module is oblivious (i.e., state-less), but the shape of an
MRS can be used as its memory. We will show that an MRS can use its
shape as its memory by a necessary and sufficient number of modules for

xvi Y. Yamauchi

an MRS to solve the exploration problem and evacuation problem [3, 7,
9].

Keywords:Distributed computing ·Mobile robots ·Metamorphic robotic
system

References

1. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in
networks of passively mobile finite-state sensors. In: Proceedings of the 23rd Annual
ACMSymposiumon Principles ofDistributedComputing (PODC2004), pp. 290–299
(2004). https://doi.org/10.1145/1011767.1011810

2. Derakhshandeh, Z., Dolev, S., Gmyr, R., Richa, A.W., Scheideler, C., Strothmann, T.:
Brief announcement: amoebot – a new model for programmable matter. In: Proceed-
ings of the 26th ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA 2014), pp. 220–222 (2014). https://doi.org/10.1145/2612669.2612712

3. Doi, K., Yamauchi, Y., Kijima, S., Yamashita, M.: Exploration of finite 2D square
grid by a metamorphic robotic system. In: Proceedings of the 20th International Sym-
posium on Stabilization, Safety, and Security of Distributed Systems (SSS 2018),
pp. 96–110 (2018). https://doi.org/10.1007/978-3-030-03232-6_7

4. Dumitrescu, A., Suzuki, I., Yamashita, M.: Formations for fast locomotion of meta-
morphic robotic systems. Int. J. Robot. Res. 23(6), 583–593 (2004). https://doi.org/
10.1177/0278364904039652

5. Flocchini, P., Prencipe, G., Santoro, N. (eds.): Distributed computing by mobile enti-
ties: current research in moving and computing. LNCS, Springer (2019). https://doi.
org/10.1007/978-3-030-11072-7

6. Fujinaga, N., Yamauchi, Y., Ono, H., Kijima, S., Yamashita, M.: Pattern formation by
oblivious asynchronous mobile robots. SIAM J. Comput. 44, 740–785 (2015). https://
doi.org/10.1137/140958682

7. Nakamura, J., Kamei, S., Yamauchi, Y.: Evacuation from a finite 2D square grid field
by ametamorphic robotic system. In: Proceedings of the 8th International Symposium
on Computing and Networking (CANDAR 2020), pp. 69–78 (2020). https://doi.org/
10.1109/CANDAR51075.2020.00016

8. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: formation of geo-
metric patterns. SIAM J. Comput. 28(4), 1347–1363 (1999). https://doi.org/10.1137/
S009753979628292X

9. Yamada, R., Yamauchi, Y.: Search by a metamorphic robotic system in a finite 3D
cubic grid. In: Proceedings of the 1st Symposium on Algorithmic Foundations of
Dynamic Networks, (SAND 2022), pp. 20:1–20:16 (2022). https://doi.org/10.4230/
LIPIcs.SAND.2022.20

10. Yamashita, M., Suzuki, I.: Characterizing geometric patterns formable by oblivious
anonymous mobile robots. Theor. Comput. Sci. 411, 2433–2453 (2010). https://doi.
org/10.1016/j.tcs.2010.01.037

11.Yamauchi,Y.,Uehara, T.,Kijima, S.,Yamashita,M.: Plane formation by synchronous
mobile robots in the three-dimensional Euclidean space. J. ACM 64(3), 16:1–16:43
(2017). https://doi.org/10.1145/3060272

https://doi.org/10.1145/1011767.1011810
https://doi.org/10.1145/2612669.2612712
https://doi.org/10.1007/978-3-030-03232-6_7
https://doi.org/10.1177/0278364904039652
https://doi.org/10.1007/978-3-030-11072-7
https://doi.org/10.1137/140958682
https://doi.org/10.1109/CANDAR51075.2020.00016
https://doi.org/10.1137/S009753979628292X
https://doi.org/10.4230/LIPIcs.SAND.2022.20
https://doi.org/10.1016/j.tcs.2010.01.037
https://doi.org/10.1145/3060272

Tutorial for UCNC 2023

Reaction Systems: A Model of Computation Inspired
by the Functioning of the Living Cell

Ion Petre1,2

1 Department of Mathematics, University of Turku, Finland
ion.petre@utu.fi

2 National Institute for R&D in Biological Sciences, Romania

Abstract. Reaction systems (RS) is a model of computation inspired
by the functioning of the living cell. Its main focus is on reactions and
facilitation/inhibition dynamical inter-play between reactions. A reac-
tion is described through its reactants, its inhibitors, and its products.
The products of a reaction may introduce inhibitors to another reaction,
temporarily blocking its triggering. This leads to a novel way of describ-
ing dynamical systems that allows an explicit trace of WHY a certain
property emerges in the system. It is a flexible model of computation that
allows both a qualitative, as well as a quantitative view on a system, a
set theoretical framework for computation, and the flexibility to model
intricate biological behavior.

This tutorial offers a basic introduction to reaction systems, with
no prerequisites needed except computational maturity. It introduces the
basic notions of reaction systems and reviews a number of research direc-
tions motivated by biological considerations. We discuss some of the
unique features of reaction systems: its explicit description of inhibition,
its approach to competition for resources, its non-permanency philoso-
phy, and the continuous interplay with the environment. We demonstrate
the descriptive power of reaction systems through a number of exam-
ples, culminating in an RS-based model of the receptor tyrosine kinase
signaling network in breast cancer.

Contents

An Investigation to Test Spectral Segments as Bacterial Biomarkers 1
Silvia Astorino, Vincenzo Bonnici, and Giuditta Franco

Uniform Robot Relocation Is Hard in only Two Directions Even Without
Obstacles . 17

David Caballero, Angel A. Cantu, Timothy Gomez, Austin Luchsinger,
Robert Schweller, and Tim Wylie

Generically Computable Abelian Groups . 32
Wesley Calvert, Douglas Cenzer, and Valentina Harizanov

Extraction Rates of Random Continuous Functionals . 46
Douglas Cenzer, Cameron Fraize, and Christopher Porter

Reservoir Computing with Nanowire Exchange-Coupled Spin Torque
Oscillator Arrays . 64

Matt Dale, Richard F. L. Evans, Angelika Sebald, and Susan Stepney

Tight Bounds on the Directed Tile Complexity of a Just-Barely 3D 2 × N
Rectangle at Temperature 1 . 79

David Furcy, Scott M. Summers, and Hailey Vadnais

Exploring the Robustness of Magnetic Ring Arrays Reservoir Computing
with Linear Field Calibration . 94

David Griffin, Susan Stepney, and Ian Vidamour

Undecidability of the Topological Entropy of Reversible Cellular
Automata and Related Problems . 108

Toni Hotanen

Fault Pruning: Robust Training of Neural Networks with Memristive
Weights . 124

Ceca Kraišniković, Spyros Stathopoulos, Themis Prodromakis,
and Robert Legenstein

Spatial Correlations in the Qubit Properties of D-Wave 2000Q Measured
and Simulated Qubit Networks . 140

Jessica Park, Susan Stepney, and Irene D’Amico

xxii Contents

Simulation of Multiple Stages in Single Bin Active Tile Self-assembly 155
Sonya C. Cirlos, Timothy Gomez, Elise Grizzell, Andrew Rodriguez,
Robert Schweller, and Tim Wylie

Single-Shuffle Card-Based Protocol with Eight Cards per Gate 171
Kazunari Tozawa, Hiraku Morita, and Takaaki Mizuki

Modelling and Evaluating Restricted ESNs . 186
Chester Wringe, Susan Stepney, and Martin A. Trefzer

Author Index . 203

An Investigation to Test Spectral
Segments as Bacterial Biomarkers

Silvia Astorino1, Vincenzo Bonnici2, and Giuditta Franco1(B)

1 University of Verona, Strada le Grazie 15, 37134 Verona, Italy
silvia.astorino@studenti.univr.it, giuditta.franco@univr.it

2 University of Parma, Parco Area delle Scienze, 7/A, 43124 Parma, Italy
vincenzo.bonnici@unipr.it

https://www.univr.it/, https://www.unipr.it/

Abstract. A dictionary-based bacterial genome analysis is performed,
through specific k-long factors (called res) and their maximal right elon-
gation along the genome (called spectral segment), in order to find dis-
criminating biomarkers at the genus and species level. The aim is pursued
through a k-mer-based approach previously introduced, here applied on
genomes of different bacterial taxa. Intervals for values of k are identified
to obtain meaningful genomic fragments, whose collection is a suitable
representation to compare genomes according to informational indexes
and Jaccard’s similarity matrices. Corresponding dictionaries of k-mers
are identified to discriminate bacterial genomes at genus and species
level. This approach appears competitive in terms of performance (e.g.,
species discrimination) and size with respect to traditional barcoding
methods.

Keywords: Barcoding · k-mers · right special factors · spectral
segments

1 Introduction

Computational methodologies avoiding alignment of biological sequences consti-
tute a relevant field of bioinformatics, including alignment-free methods [13,26],
which show a considerable reduced computational cost with respect to alignment-
based approaches. Alignment-free analysis is often based on dictionaries com-
posed by relatively small words of the same length k, called k-mers, which
are extracted from biological sequences [6,23,30]. Those methods find appli-
cability in multiple contexts, such as genome assembly [7,8], genetic reconstruc-
tion [15,27,29] and DNA barcoding [10,12]. In particular, they allow handling
large quantities of sequences in metagenomic studies [24], which characterize
unknown taxa present in an environmental sample (or in a microbiome [28]).

In this paper we continue the investigation initiated in [4], where some infor-
mational concepts derived by the notion of k-spectrum applied to genomic k-mers
were analyzed. Starting from the dictionary of the k-mers having the property
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Genova and J. Kari (Eds.): UCNC 2023, LNCS 14003, pp. 1–16, 2023.
https://doi.org/10.1007/978-3-031-34034-5_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-34034-5_1&domain=pdf
https://doi.org/10.1007/978-3-031-34034-5_1

2 S. Astorino et al.

to be followed by the same nucleotide in all their occurrences on the genome
(we call RESk these Right-Extendable Sequences, or simply RES when the role
of k is obvious), spectral segments have been defined as the iterated (k − 1)-
long overlap concatenations of RES along the genome, maximally and uniquely
right-elongated.

In this work we have extracted dictionaries of RESk, called Uk, and cor-
responding dictionaries of spectral segments, called Spk, from several bacterial
genomes downloaded from NCBI (details on the data set are reported in Sect. 2)
in order to identify, if existing, a range of the values of k for which this dictionary-
based genome representation is valid to classify biological sequences, according
to their species or genus membership. We found out some ranges for values of k
such that the knowledge of Uk and/or Spk would allow us to discriminate the
presence or absence of one species or one genus in an unknown bacterial pop-
ulation of an environmental sample. Experimental results are reported in the
following, together with interesting notes both on the overlapping of genes (or
coding regions) with spectral segments and on the efficiency of the algorithm
employed to extract such segments.

The state of the art for this work ranges in a wide variety of contexts. In
combinatorics on words the notion of right special factors of a fixed length k
has been investigated [1,9,16], where a substring u of a word w is special if
there exist at least two occurrences of u in w followed on the right by two
distinct letters (i.e., there exist at least two distinct letters a and b such that
the strings va and vb are both factors of w). Such k-mers are exactly the non-
RES words, because by definition RES words are followed on the right by
one same character, in all their occurrences. In the literature of computational
genomics, there are several examples of methods that extract genomic substrings,
as unitigs [15,27] and omnitigs [25] already defined as discriminant for taxa,
carriers of biological significance, and reliable fragments in the reconstruction
of a genome. In this work, Uk and Spk dictionaries are tested and proposed to
classify bacterial genomes, as an alternative to segments in the literature, and
potentially to markers commonly used in the laboratory.

Our method could be a competitive solution for supervised machine learning
methods, where the values of k use to range from 1 to 6. In [19,20] for exam-
ple, authors implemented a machine learning approach for the recognition of
specific classes of genomic sequences (mainly retrotransposons) based on 6-mers
multiplicity. Our results indicate good performance in terms of the ability to
discriminate between species (by not necessarily identifying them) in compari-
son to the use of short DNA sequences, for the purpose of species discrimination
(previously coined as DNA barcoding).

A possible application of our approach is indeed DNA barcoding, where usu-
ally a single marker gene located on RNA (the 16S rRNA, that is, the coding gene
for 16S ribosomal RNA) is employed to characterize bacteria, particularly in the
human microbiota. However, traditional barcoding studies usually fail to reach
the discrimination at the species level [28]. Metabarcoding is then a point of
application of any technique for characterizing a species inside a sample, namely
the representation of genomes by their Uk or Spk dictionaries.

An Investigation to Test Spectral Segments as Bacterial Biomarkers 3

This paper seeks for an interval of factor lengths that provides us with a
distinctive information in terms of corresponding dictionaries (of spectral seg-
ments and of RES) of bacterial genomes. Moreover, spectral segments which
discriminate species and genera turn out to overlap coding regions of bacterial
genomes. We briefly describe the bacterial data set used in our experiments in
Sect. 2. The methodology is illustrated in Fig. 1 and reported in Sect. 3 together
with the software IGtools [3] employed for the analysis. Section 4 is focused on
the discussion of achieved outcomes, while Sect. 5 concludes the paper with final
remarks.

Fig. 1. A sketch of the computational analysis workflow. Dictionaries Uk and
Spk (in this figure briefly Sk) have been computed by IGtools in the range 9 ≤ k ≤
40 for all the genomes. These are compared by similarity matrices (reported at the
bottom), computed on couples of genomes either from two different genera (green
square) or representing two different species within the same genus (red square). (Color
figure online)

4 S. Astorino et al.

2 Dataset

As we may see in Fig. 1, genera of Escherichia, Moraxella, Mycoplasma,
Salmonella and Xanthomonas have been chosen for the work, initially devel-
oped in the master thesis of the first author. Each genus collects a number of
species, having in turn a few different organisms: in the figure we may distinguish
15 genomes of Escherichia (e.g., with 23 genomes of Escherichia Coli species), 14
genomes of Moraxella, 13 genomes of Mycoplasma and of Salmonella enterica, 9
genomes of Xanthomonas.

In the comparative analysis (by similarity matrices) here reported our dataset
has been extended by the additional genus Shigella, with 6 species, in order to
work on all genomes employed by the benchmarking AFproject [30] and by other
alignment-free methods for genetic reconstruction, such as co-phylog [29] and
Skmer [23]. Furthermore, in order to work on reference datasets present in the
AFproject, to determine a significant k-range for our RES strings and spectral
segments, we have extended the dataset with the following genera (having from
1 to 4 species): Citrobacter, Cronobacter, Dickerya, Edwardsiella, Enterobacter,
Erwinia, Klebsiella, Pantoea, Pasteurella, Pectobacterium, Photorhabdus, Rah-
nella, Wigglesworthia, Xenophilus and Yersinia. All downloaded from NCBI.

3 Methods

In order to investigate bacterial genomes, by IGtools software [3,6] we com-
puted statistical indices and specific genomic dictionaries, containing spectral
segments and RES [4], and we visualize genome similarity by matrices report-
ing the normalized Jaccard index. These concepts are detailed in the following
of this section.

3.1 Theoretical Background

Genomes are formalized by long strings over the alphabet Γ = {a, c, g, t}. In
this framework, words, dictionaries and distributions are key instruments to
represent genomes. Dictionary Dk collects all distinct k-mers of a string, and it
may be split into two disjoint dictionaries: Hk the set of words appearing exactly
once (hapaxes [6]) and Rk the set of words appearing more than once (repeats).
Dictionary Fk collects forbidden k-mers, all those k-long words generated from
the same alphabet that do not appear in the genome. Of course, by definition,
Dk = Hk ∪ Rk and Γ k = Dk ∪ Fk.

A genome G is often represented by the distribution of k-mers within it.
Among the others [11,17], here we recall the k-spectrum distribution, where each
k-mer α of Dk is associated to its multiplicity multG(α) (i.e., the number of
times it occurs in the genome). The k-spectrum of a genome G is defined as

Speck(G) = {(α,multG(α))|α ∈ Dk}.

An Investigation to Test Spectral Segments as Bacterial Biomarkers 5

Two k-mers of a couple (α, β) from Dk×Dk are k-concatenated if the (k−1)-
length suffix of α equals the (k−1)-length prefix of β. Given α = xγ and β = γy,
where x and y belong to Γ , there is a right elongation of α by the symbol y,
resulting in αy. If only one k-mer β elongates α along the genome, just one
possible symbol y follows α and then the k-mer α is a RES (uniquely right-
extendable string).

To assemble spectral segments, RES are iteratively concatenated, until more
than one distinct k-mer of the spectrum competes for concatenation. In [4] some
procedures were proposed to construct spectral segments, as words whose factors
of length k are all RES, each occurring at most as many times as it does on the
genome G. This constrain naturally reduces the number of different resulting
spectral segments. However, it does not guarantee that they occur in the original
genome.

A spectral segment is constructed by k-concatenation (that is, along with an
overlap long k − 1) of RESk (which are collected in the dictionary Uk). It is
elongated to the right until there are no more distinct RESk capable of doing
so or the multiplicity of them runs out. Hence, spectral segments are defined as
maximally uniquely elongated strings from RESk. All these spectral segments of
variable length are collected in Spk.

As final remarks, we may point out that RES is a stronger concept than
hapax, and that the concept of k-spectrum is behind the construction of spec-
tral segments. Indeed, an hapax is univocally elongated over the genome since it
occurs once, while RES is elongated by the same symbol in its multiple occur-
rences, and spectral segments are constructed consistently to the multiplicity of
each k-mer in the spectrum, by means of k-concatenation.

3.2 IGtool Software

The whole procedure of extraction of spectral segments and RES from a genome
G has been executed by IGtools software [3]. Bacterial genomic strings are input
to the software in the form of FASTA files. It outputs three different sources
of information: statistical indices, RES dictionaries (Uk) and spectral segments
dictionaries (Spk) for a value of k in the interval defined at the beginning.
Namely, it calculates for each sequence eight indices: |Dk|, |Hk|, |Uk|, |Uk|/|Dk|,
coverage(Uk, G), the number of spectral segments, the maximum length, and
the mean length among spectral segments.

It implements the procedure of k-segmentation explained in [4], which com-
putes the Uk and Spk dictionaries through an array that represents the positions
of each k-mer in the genome. Formally, a k-mer α from Dk(G) is univocally
elongated in G if |{β ∈ Dk(G) : α[2...k] = β[1...k − 1]}| = 1. The algorithm
initializes all positions in the array A of the genome size as false. A position is
set as true when the k-mer starting at the position is uniquely elongated to the
right in G. As last step, the algorithm searches for consecutive true values in A
to construct spectral segments.

Moreover, charts are provided on the coverage, that is, the percentage of
true positions in the array after the k-segmentation, and the ratio |Uk|/|Dk|.

6 S. Astorino et al.

The cardinality of dictionaries Spk with the average and maximum length of their
spectral segments are computed as well (see Table 1). IGtools in comparison with
other algorithms for extracting substrings performs the analysis in competitive
times. In particular, this observation holds by modifying the software to extract
unitigs, being the segments on which most procedures are set. IGtools is here
compared with the well-established tool Bifrost [15]. IGtools uses suffix array SA
and longest common prefix LCP data structures, both constructed in linear time,
and for this reason it can be set for unitigs extraction without an increase of
computational cost. On the other hand, Bifrost constructs a de Bruijn graph to
extract segments and relies on Bloom filter (BF) [2]. Figure 2 shows an example
of unitigs computation by Bifrost and IGtools. Especially for k < 20, IGtools
is particularly efficient. Considering the range 9 ≤ k ≤ 40 on different bacterial
genomes, IGtools takes between one-third and one-tenth of the time of Bifrost.
Those times suggest that IGtools provides unitigs, and dictionaries in general, in
the timeframe proposed for spectral segment extraction without being affected
by the output dictionary size. Therefore, it allows to be used on a large number
of sequences and for a wide range of k in reduced time and space.

Fig. 2. Computation time on genomes from Escherichia genus. (Color figure online)

The indices computed by IGtools are displayed graphically, while the genome
Uk-based and Spk-based similarity are retrieved by means of similarity matrices.

3.3 Graphical Tools

A similarity matrix is calculated for each value of k from 9 to 40, thus between
specific dictionaries of k-mers. For each couple of genera, 31 similarity matrices
exist (one for each value of k), and each matrix represents the Uk-based similarity
for a defined k and any genomes pair (see green box in Fig. 1). Each matrix mxn
is composed of n rows and m columns, where n and m are the number of species
among different genera. If the intersection is computed to compare species inside
one genus we have that m = n. For example, in Fig 1, matrices on the left side
have dimensions 15 × 14 while matrices on the rigth side are 13 × 13 squares.

An Investigation to Test Spectral Segments as Bacterial Biomarkers 7

In each cell (i.e., matrix component) the Jaccard index is reported, as a
measure of the similarity between two sets. It is defined as the intersection size
divided by the union size of the dictionaries A and B: J(A,B) = |A∩B|/|A∪B|.
It is a percentage, that is a value between 0 and 1. As it may be deduced from
the colour legend, in the matrices red color represents an higher value, while a
lower one is identified by the green.

For Spk-based similarity within a genus, there are still 31 matrices for each
genus (one for each k). Moreover, Uk and Spk similarities are calculated for
genomes between genera, still through the construction of similarity matrices
(see Fig. 1). The similarity matrices have different numbers of rows and columns,
as they represent the sequences of two different genera. Since each species has
in turn different genomes, for each value of k and any couple of species we have
computed 10 matrices, each representing a possible combination of species, either
of two genera or within a genus, among the different bacteria.

The purpose has been to demonstrate that RES sequences are significantly
present within different genomes in the same species or genus, so that shared
segments can identify and characterize sequences of the groups. The analysis
starts by searching the similarity between genomes through Uk dictionaries.

Species discriminants identify subtrees of a phylogenetic tree. The phyloge-
netic trees, constructed by CVtree software [21], employ the distance D(A,B) =
1−C(A,B)

2 , where C(A,B) is the correlation between two species A and B, and
often identify genomes from the same family as being the closest. However, these
may be not the closest according to the Jaccard coefficient, which is a more
demanding string similarity measure.

4 Results

Through a graphical representation of the eight indices calculated by IGtools
for k ranging in the interval 9 ≤ k ≤ 40, the appropriate k range is defined to
extract meaningful spectral segments and specific information on Spk and Uk.

4.1 Significant Intervals for Values of k

We studied statistical indices for Uk and Spk dictionaries to find a meaningful word
length interval, if any, to obtain taxa classification. Indeed, index values and charts
have shown likeness over the different bacterial genomes for the k-range equal to
10 ≤ k ≤ 18. This information is valid only for bacteria domain. In fact, the study
of indices on genomes of eukaryotes, such as Saccharomyces, Ostreococcus and
Drosophila, showed that there are no domain-specific k-ranges. Possibly there is a
relation of this interval with the genome size, since bacteria in the dataset report
common domain genome length (200 000 bp–10 000 000 bp).

In Table 1 we may collect some observed regularities. Even if coverage varies
among the organisms in the dataset, for k = 13 it reaches its maximum in all cases.
The ratio Uk/Dk has been computed to see how different the two dictionaries are.

8 S. Astorino et al.

Only for k = 17 the ratio is over 0.90, while for the other values of k the two dictio-
naries carry different information, according to the (negative) correlation between
Dk-based similarity and Uk-based similarity trends. Specifically, Pearson’s corre-
lation index has been calculated by a vector containing the Uk-based similarity of
a pair of genomes and a vector containing the Dk-based similarity, for the same
pair, with respect to the k variation. The two dictionaries lead to negatively cor-
related similarities for the genomes under investigation, hinting that the sets of
RESk carry more specific information than the sets Dk(G).

We observed that |Spk| has a fast increase for 9 ≤ k ≤ 13 and an equally
rapid decrease for 14 ≤ k ≤ 20. It reaches the minimum values for k > 20. Mean
and Max represent the k from which the values of mean and maximum length
of spectral segments begin to increase. Indeed, maximum and average lengths
remain low and constant in the interval 9 ≤ k ≤ 13/15 (numerous relatively
short segments). After k = 13 or k = 15, both indices increase until k = 40.
Correspondingly, the cardinality of the Sp dictionary decreases generally under
3000 items, and the mean length of the segments does not grow fast. As a
consequence, for k > 20, Spk dictionaries contain few and long segments, which
are less remarkable for analysis.

Table 1. Mean log is the average (on sequences inside the genus) logarithmical genome
size. For k = 13 a coverage close to 95% reaches its maximum. At k = 17 the ratio
|Uk|/|Dk| is over 0.90. Peak is the value of k at which the number of spectral segments
is maximum, while Mean/Max are the values of k at which the mean/maximum length
of spectral segments begin to increase.

Relevant values of k length for the informational indexes

Genera Mean log Coverage (> 95%) Ratio (>0.90) Peak Mean/Max

Escherichia 11 13 17 13 13/15

Moraxella 10.50 13 17 12 13/15

Mycoplasma 10 13 17 13 13/15

Salmonella 11 13 17 13 13/15

Shigella 11.10 13 17 13 13/15

Xanthomonas 11 14 17/18 13 13/15

Other bact. genera 10–12 13 17/18 12/13 13/15

4.2 Uk-Based and Sp-Based Analysis

The main quest is to determine whether spectral segments and RES are biomark-
ers at species and genus levels and for what range of k. We search for biomarkers
by means of computing Uk similarity and Spk similarity between genomes of the
same genus and between genomes of distinct genera. These values were displayed
through similarity matrices, within each genus or by pairing two different genera,
along with different dictionaries, and k-values.

An Investigation to Test Spectral Segments as Bacterial Biomarkers 9

Fig. 3. The U20-based similarity within the genus Moraxella is shown. Section (a):
example of comparison between one species from the genus Moraxella with each of all
the others. The legend on the right represents the species inside the genus, and each
line shows the values of similarity between one species and another one along with
the value of k. No pair of genomes has zero similarity and there are clusters according
to Jaccard coefficients. Section (b): of the figure highlights the clustering of genomes
according to similarity. Cells that are identified by pairs of genomes of the same species
are those that are not dark green and have similarity values greater than 10%, often
30%, upwards to 99%. (Color figure online)

Uk-Based Similarity. Computational experiments are reported where the sim-
ilarity is calculated as the Jaccard index (a value between 0 and 1) on the sets Uk,
for 9 ≤ k ≤ 40, taken from a couple of genomes either within one single genus or
from different genera. By calculating similarity within one genus, matrices have
different configurations depending on the value of k.

10 S. Astorino et al.

For k = 9, the matrices are predominantly green, with no significant peaks in
the values and no cells with values close to zero. Notice that green cells contain a
value ranging from zero (when the color is darker) to about 30%. As k increases,
the pattern of the matrices changes. At k = 15, peaks of values, in colours ranging
from orange to red, emerge and the green cells assume values close to zero.
Here, good similarity values reach a maximum and then slowly decrease (while
k increasing). Likewise, as in the case of Escherichia Coli, similarity occurs at
the strand level within the same species. Specifically, there are both orange/red
and green cells, with no one color predominating over the other.

From the above observations we may hypothesize that RES dictionaries
potentially function as sets of identifiers at the genus level for k < 15. On
the other hand, for k > 15, some similarities have values close to zero and only
similarities within specific clusters are evident. Consequently, RES dictionaries
are possible identifiers at the species level.

Fig. 4. U15-based similarity between the genera Moraxella and Escherichia is shown.
(Color figure online)

We tested if RES can act as genomic markers as well, by computing the Uk-
based similarity between the genomes of 10 combinations of pairs of different
genera. The coefficient never exceeds 6% (for no value of k), for no pair of
genomes and for no combination of genera, as namely seen in Fig. 4. Notice
the reference scale: colours vary in a range of 0%–6%. The maximum values
are reached for k ≥ 15. After k = 15, all matrix values tend to 0%, without
distinction. Genomes of different genera do not have Uk similarities and the
heatmaps are basically all homogeneous matrices of zeros.

Spk-Based Similarity. Computational experiments are reported where the
similarity is calculated as the Jaccard index (a value between 0 and 1) on the

An Investigation to Test Spectral Segments as Bacterial Biomarkers 11

sets Spk, for 9 ≤ k ≤ 40, taken from a couple of genomes either within one
single genus or from different genera. The optimal k-range for spectral segments
is 15 ≤ k ≤ 25, since the values have a significant decrease beyond that threshold.

Concerning Spk-based similarity within a genus (see Fig. 5 (a) for all values
of k), although its values are lower, it shows a division of genomes into clusters
corresponding to the same species.

Fig. 5. The Sp20-based similarity within the genus Moraxella is shown. Description of
details is analogous to the text in caption of Fig. 3. (Color figure online)

As far as Spk similarity is concerned, the values are generally lower than
those observed with Uk dictionaries, because segments are longer and dictionaries
smaller. The similarity matrices have generally low values (lower than those seen

12 S. Astorino et al.

for the Uk based similarity). Orange peaks are rare and the green cells are zero
from k = 9. The heatmaps are homogeneous and clean, and just show a difference
between pairs of genomes of the same species from small k. Genomes belonging
to the same species have variable coefficients which depend on the species. The
range is 10–90%, and values reach a maximum before k = 20.

Fig. 6. The Sp15-based similarity between couples of genomes taken from the genera
Moraxella and Escherichia is shown. (Color figure online)

The similarity matrices with respect to spectral segments and between genera
show values never exceeding 0.5%. In all bacteria organisms, for k = 9, there
are values less than 1%, decreasing to exactly zero after a few k. For any k, or
any combination of genera, the intersection of genomes has size almost zero, as
shown in Fig. 6.

The observations above indicate that spectral segments are identifiers within
a genus for one species. However, although between genera there is no sharing
(of them), all coefficients values within a single genus matrix are not high enough
to consider them identifiers of one strain (inside a species).

In the Sp similarity matrices, the cells rarely approach orange, i.e. values
above 70%, but they are also surrounded by particularly low values and border
on zero. The analysis through Spk may remove ambiguity from the intersection
study, while emphasising that there is a connection with Uk. The reduced size of
the Spk, the variability in the length of the segments, and having to deal with
segments of increasing size, less prone to repetition, makes the intersection values
of greater importance, and means that these results carry new information.

An Investigation to Test Spectral Segments as Bacterial Biomarkers 13

Comparison with the Literature of Barcodes. Barcode of life data system
(BOLD) [22] is proposed as a reference for potential barcoding sequences. This
database provides identifying sequences for species of the bacterial genera of
our dataset. In Table 2, the sequences offered by BOLD are 666 bp long and are
single strings. For each species, we average between one and four identification
sequences. The only highly represented species is Escherichia Coli. Otherwise,
the sequence used for barcoding is 16s RNA, which has range 300–470 bp. On
the other hand, dictionaries allow a classification into taxa not related to a single
sequence, but to a set of words, having length which range from an average of
2000 bp up to a maximum equal to 200000 bp.

Table 2. Characteristics of possible sets of barcode sequences.

Sequence barcodes comparison

Source Segment-length Set-cardinality

BOLD 666 bp (1000 bp for Escherichia) 1–4

16S RNA 300–470 bp 1

IGTools Max = 200000 bp (Avg 2000) 3000–100000

4.3 Spk-Based Coverage of Genes

It may be relevant to consider the relation between the values of k and the
overlapping (or covering) of the spectral segments with the coding portions of
genomes.

We say that a spectral segment covers a gene if the two genome portions
coincide by at least 95%. We have checked (by means of the Boolean array used
by IGtools) the overlap of Spk with the genes of each genome, for the interval
10 ≤ k ≤ 15. We set k ≤ 15, to avoid that Uk and Dk dictionaries overlap
significantly. Figure 7 shows that in this k-range the spectral segments pass from
not covering genes, for k = 10 and k = 11, to covering them all, for k = 15.

Therefore, gene coverage by spectral segments has a very fast growth in the
k-range 11 ≤ k ≤ 13. Spectral segments cover all coding regions of most genomes
already for k = 13 or k = 14. Either way, for every genome, at k = 15 genes
are all covered (by keeping in mind that for k = 13 the maximum coverage is
usually reached, and the dictionaries Uk and Dk are not equal (see Table 1).

14 S. Astorino et al.

Fig. 7. The picture shows how many genes in a bacterial genome are covered by Spk
per k-range 10 ≤ k ≤ 15. The pattern observed for this specific genome is the same
observed for the others.

5 Conclusion

In this paper a k-mer-based method shows to be helpful for determining bacte-
rial species membership, and an accurate set of biomarkers was provided as an
alternative to traditional singletons (sets composed by one gene). Main results
of this paper may be reported as the identification of two k-parametrized dictio-
naries, Uk and Spk for 15 ≤ k ≤ 25, as identifiers of bacterial species. Namely,
dictionary Uk for k < 15 contains biomarkers at the genus level, while dictionary
Spk for 15 ≤ k ≤ 25, whose spectral segments overlap all the coding regions,
discriminates one species within a genus.

The dictionary of a genome traces it back to its taxonomy and characteristics
without the sequence itself being known. In fact, comparing dictionaries while
following the order of the genetic tree, from leaves to parent, yields a percentage
of RES and spectral segments common to the root that is almost zero. Rele-
vantly, there is no set of RES or spectral segments common to all the genomes of
a genus. This finding is particularly intriguing and may warrant by itself further
investigation thorough a study on other data sets.

The above relationship between a dictionary based similarity and the mem-
bership to a phylogenetic tree suggests that spectral segments may be exploited
in the phylogenetic domain [14,27,29]. In our experiments, a main difference in
the two approaches is emerged with genomes of different species that are located
in the same phylogenetic subtree. This observation suggests that dictionaries Uk

and Spk are more subtle than phylogenetic trees to determine species member-
ship, and that spectral segments distinguish even leaves of a specific subtree.

Future research could focus on a dictionary based method for phylogenetic
reconstruction, as a valid alternative to unitigs employed in genome assembly [5,
18]. Indeed, spectral segments are similar but longer than unitigs, so they could
be safe and complete solutions for genome assembly. Also potential barcodes
could be useful for future applications, such as in the study of the metabiome,
overcoming the limitation of distinguishing species in such a large sample.

An Investigation to Test Spectral Segments as Bacterial Biomarkers 15

Biomarker dictionaries are extracted from large amounts of genomes. The
method fits with metagenomics, which was developed to handle large quantities
of organisms in a less costly and less resource-intensive manner. To generate
initial partial tests, we have applied IGtools to the concatenation of 9, 10 and
up to 15 sequences. The concatenated sequences representative of a genus show
values and peaks that are similar to the individual genomes of that genus, for
10 ≤ k ≤ 18. Such a k-range is then pointed out for genomes of the bacterial
kingdom, that provides specific information on spectral segments (passing from
being many and short to be few and long, and covering all the genes) and RES,
which discriminate at the species and genus level, respectively.

References

1. Berstel, J., Karhumäki, J.: Combinatorics on words-a tutorial. current trends in
theoretical computer science. Challenge New Century 2, 415–475 (2004)

2. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun.
ACM 13(7), 422–426 (1970)

3. Bonnici, V., Manca, V.: Infogenomics tools: A computational suite for informa-
tional analysis of genomes. J. Bioinforma Proteomics Rev. 1, 8–14 (2015)

4. Bonnici, V., Franco, G., Manca, V.: Spectral concepts in genome informational
analysis. Theoret. Comput. Sci. 894, 23–30 (2021)

5. Cairo, M., Rizzi, R., Tomescu, A.I., Zirondelli, E.C.: Genome assembly, from prac-
tice to theory: safe, complete and linear-time. arXiv preprint arXiv:2002.10498
(2020)

6. Castellini, A., Franco, G., Manca, V.: A dictionary based informational genome
analysis. BMC Genomics 13(1), 1–14 (2012)

7. Compeau, P.E.C., Pevzner, P.A., Tesler, G.: How to apply de bruijn graphs to
genome assembly. Nat. Biotechnol. 29(11), 987–991 (2011)

8. Compeau, P.E.C., Pevzner, P.A., Tesler, G.: Why are de bruijn graphs useful for
genome assembly? Nat. Biotechnol. 29(11), 987 (2011)

9. De Luca, A.: On the combinatorics of finite words. Theoret. Comput. Sci. 218(1),
13–39 (1999)

10. DeSalle, R., Goldstein, P.: Review and interpretation of trends in DNA barcoding.
Front. Ecol. Evol. 7, 302 (2019)

11. Franco, G.: Perspectives in computational genome analysis. In: Jonoska, N., Saito,
M. (eds.) Discrete and Topological Models in Molecular Biology. NCS, pp. 3–22.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-40193-0 1

12. Goldstein, P.Z., DeSalle, R.: Integrating DNA barcode data and taxonomic prac-
tice: determination, discovery, and description. Bioessays 33(2), 135–147 (2011)

13. Hao, B., Qi, J.: Prokaryote phylogeny without sequence alignment: from avoidance
signature to composition distance. J. Bioinform. Comput. Biol. 2(01), 1–19 (2004)

14. Haubold, B., Klötzl, F., Pfaffelhuber, P.: andi: fast and accurate estimation of evo-
lutionary distances between closely related genomes. Bioinformatics 31(8), 1169–
1175 (2015)

15. Holley, G., Melsted, P.: Bifrost: highly parallel construction and indexing of colored
and compacted de bruijn graphs. Genome Biol. 21(1), 1–20 (2020)

16. Lothaire, M.: Combinatorics on Words, vol. 17. Cambridge University Press, Cam-
bridge (1997)

http://arxiv.org/abs/2002.10498
https://doi.org/10.1007/978-3-642-40193-0_1

16 S. Astorino et al.

17. Manca, V.: The principles of informational genomics. Theoret. Comput. Sci. 701,
190–202 (2017)

18. Acosta, N.O., Mäkinen, V., Tomescu, A.I.: A safe and complete algorithm for
metagenomic assembly. Algorithms Mol. Biol. 13(1), 1–12 (2018)

19. Orozco-Arias, S., et al.: K-mer-based machine learning method to classify ltr-
retrotransposons in plant genomes. PeerJ, 9, e11456 (2021)

20. Orozco-Arias, S., S Piña, J., Tabares-Soto, R., Castillo-Ossa, L.F., Guyot, R., Isaza,
G.: Measuring performance metrics of machine learning algorithms for detecting
and classifying transposable elements. Processes 8(6), 638 (2020)

21. Qi, J., Luo, H., Hao, B.: Cvtree: a phylogenetic tree reconstruction tool based on
whole genomes. Nucleic Acids Res. 32(suppl-2), W45–W47 (2004)

22. Ratnasingham, S., Hebert, P.D.N.: Bold: the barcode of life data system (http://
www.barcodinglife.org). Mol. Ecol. Notes 7(3), 355–364 (2007)

23. Sarmashghi, S., Bohmann, K., Gilbert, M.T.P., Bafna, V., Mirarab, S.: SKMER:
assembly-free and alignment-free sample identification using genome skims.
Genome Biol. 20(1), 1–20 (2019)

24. Thomas, T., Gilbert, J., Meyer, F.: Metagenomics-a guide from sampling to data
analysis. Microb. Inf. Exp. 2(1), 1–12 (2012)

25. Tomescu, A.I., Medvedev, P.: Safe and complete contig assembly through OMNIT-
IGS. J. Comput. Biol. 24(6), 590–602 (2017)

26. Vinga, S., Almeida, J.: Alignment-free sequence comparison-a review. Bioinformat-
ics 19(4), 513–523 (2003)

27. Wittler, R.: Alignment and reference-free phylogenomics with colored de bruijn
graphs. Algorithms Mol. Biol. 15(1), 1–12 (2020)

28. Yen, S., Johnson, J.S.: Metagenomics: a path to understanding the gut micro-
biome. Mamm. Genome 32(4), 282–296 (2021). https://doi.org/10.1007/s00335-
021-09889-x

29. Yi, H., Jin, L.: Co-phylog: an assembly-free phylogenomic approach for closely
related organisms. Nucleic Acids Res. 41(7), e75–e75 (2013)

30. Zielezinski, A., et al.: Benchmarking of alignment-free sequence comparison meth-
ods. Genome Biol. 20(1), 1–18 (2019)

http://www.barcodinglife.org
http://www.barcodinglife.org
https://doi.org/10.1007/s00335-021-09889-x
https://doi.org/10.1007/s00335-021-09889-x

Uniform Robot Relocation Is Hard
in only Two Directions Even Without

Obstacles

David Caballero1, Angel A. Cantu2, Timothy Gomez3, Austin Luchsinger4,
Robert Schweller1, and Tim Wylie1(B)

1 University of Texas Rio Grande Valley, Edinburg, TX, USA
{david.caballero01,robert.schweller,timothy.wylie}@utrgv.edu

2 Southwest Research Institute, San Antonio, TX, USA
acantu@d16.swri.us

3 Massachusetts Institute of Technology, Cambridge, MA, USA
tagomez7@mit.edu

4 University of Texas Austin, Austin, TX, USA
amluchsinger@utexas.edu

Abstract. Given n robots contained within a square grid surrounded
by four walls, we ask the question of whether it is possible to move a par-
ticular robot a to a particular grid location b by performing a sequence
of global step operations in which all robots move one grid step in the
same cardinal direction (if not blocked by a wall or other blocked robots).
We show this problem is NP-complete when restricted to just two direc-
tions (south and west). This answers the simplest fundamental problem
in uniform global unit tilt swarm robotics.

1 Introduction

The advanced development of microbots and nanobots has quickly become a
significant frontier. However, power and computation limitations at these scales
often make autonomous robots infeasible and individually-controlled robots
impractical. Thus, recent attention has focused on controlling large numbers of
relatively simple robots. Many examples of large population robot swarms exist,
ranging from naturally occurring magnetotactic bacteria [14–16] to manufac-
tured light-driven nanocars [13,17]. These microrobot swarms are manipulated
uniformly through the use of external inputs such as light, a magnetic field, or
gravity. That is, all of the agents in the system react identically to the same
global signal. This type of global manipulation also reflects the mechanics of
many types of systems dating back centuries to marble mazes and other games.

First proposed in 2013 [7], the tilt model consists of movable polyominoes (as
an abstraction of these nanorobots) that exist on a 2D grid board with “open”
and “blocked” spaces. These polyominoes can be manipulated by a global signal,

This research was supported in part by National Science Foundation Grant CCF-
1817602.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Genova and J. Kari (Eds.): UCNC 2023, LNCS 14003, pp. 17–31, 2023.
https://doi.org/10.1007/978-3-031-34034-5_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-34034-5_2&domain=pdf
https://doi.org/10.1007/978-3-031-34034-5_2

18 D. Caballero et al.

causing all polyominoes to step a unit distance in the specified direction unless
stopped by a blocked space or another polyomino.

Within this model, the complexity of different problems related to the manip-
ulation of the set of polyominoes is studied. The reconfiguration problem asks
whether one specified configuration is reachable from another by way of these
uniform signals. The relocation problem asks whether a specific polyomino or
tile can be relocated to a given location (Fig. 1).

Restricted variants of the model are also considered. One of these restrictions
is where the polyominoes are limited to single tiles, greatly limiting the com-
plexity of interactions between polyominoes. The other notable restrictions are
limiting the global signals to only 2 or 3 directions, and limiting the complexity
of the board geometry, i.e., the arrangement of the blocked spaces.

One of the simplest variants of the model is square board geometry, in which
the blocked spaces are limited to a square border with no internal geometry,
global inputs limited to two directions, and only single tiles. In this simple model,
we study the relocation problem, showing that the problem of whether a tile can
be relocated to a given position is still NP-complete.

1.1 Related Work

Previous research has investigated the manipulation of robot swarms with pre-
cise uniform movements in a 2D environment containing obstacles [7]. In the
“Full Tilt” variant of this model where tiles slide maximally in each specified
direction, the complexity of determining the minimum move sequence for recon-
figuration [6], as well as the complexity for Relocation and Reconfiguration [3,4],
have been shown to be PSPACE-complete. Reconfiguration and Relocation have
further been shown to be NP-complete when the number of possible directions
is limited to 2 or 3 [5]. The single step model, in which robots move a single unit
step during each move, was later defined formally, with work studying the com-
plexity of relocating a specified tile to a specific location on the board, showing
that the problem is PSPACE-complete even when limited to single tiles [11]. The
problem of building shapes (adjusting the positions of the robots in the system
to collectively form a specified shape) and the problem of building specified pat-
terns out of labelled tiles (i.e. moving the robots into locations such that their
labels adhere to a specified shape and pattern) has also been studied, showing
that there are board configurations which allow construction of general shapes
in optimal time [8] and patterned shapes in near-optimal time [9].

Previous work has also studied restrictions on this model. The two main
restrictions studied are limiting the number of directions the robots can move
in, and limiting the complexity of the board’s geometry. A hierarchy of board
geometries is described in [3]. It was shown that when limiting the number of
available directions to 2 and with “monotone” board geometry the problem of
relocation is NP-complete [10].

The simplest variant of the model, in which there are single tiles in a square
board with no internal obstacles, has not been studied extensively. When all four
directions are allowed, work has shown that the problem of arranging the robots

Uniform Robot Relocation in Two Directions 19

Table 1. An overview of the complexity results related to the relocation and shape
reconfiguration problems in the single step model. The open problems are row relo-
cation in 2 directions in the square and general relocation in the square with four
directions. Membership in 4 directions is open for both problems.

Problem Directions Tile Size Geometry Result Ref.

1st Row Relocation 2/3 1×1 Square P [12]

Row Relocation 2/3 1×1 Square open -

Relocation 2 1×1 Square NP-complete Thm.1

2/3 1×1 Monotone NP-complete [10]

4 1×1 General PSPACE-complete [11]

4 1×1,1×2 Square PSPACE-complete [11]

Shape 2/3/4 1×1 Square NP-hard [1]

Reconfiguration 4 1×1 General PSPACE-complete [11]

into a specific shape is NP-hard [1]. Depending on the starting configuration,
the tiles can be compacted in an exponential number of ways. When the tiles
get compacted, they form a permutation group that was studied in detail in [2].
However, the complexity for relocation and reconfiguration with four directions
is still an open question.

1.2 Contributions

We investigate the relocation problem in the single step model. Table 1 shows
what was previously known and how our results relate. We answer an open
question about the simplest version of the problem. We show that relocation
when limited to single tiles, only two directions, and no blocking geometry is
still NP-complete. With this in mind, we have also shown that knowing whether
a tile can be relocated to the bottom row is in P [12], however, whether a tile
can reach an arbitrary row is still an open problem.

We first overview the unit movement (or single step) tilt model in Sect. 2. In
Sect. 3 we show that with two directions in the square, relocation is NP-complete.
Finally, several important open problems are outlined in the conclusion (Sect. 4).

2 Preliminaries

We give the model and problem definitions related to single step tilt in an open
board.

Board. A board (or workspace) is a rectangular region of the 2D square lattice
in which specific locations are marked as blocked. Formally, an m × n board is
a partition B = (O,X) of {(x, y)|x ∈ {1, 2, . . . ,m}, y ∈ {1, 2, . . . , n}} where O
denotes a set of open locations, and X denotes a set of blocked locations- referred
to as “concrete.” Here, we use the most restrictive geometry in the hierarchy

20 D. Caballero et al.

Fig. 1. An example step sequence. The initial board configuration followed by the
resulting configurations after an 〈S〉 step, 〈W 〉 step, and then final 〈W 〉 step. The red
tile is the one to relocate and the red outline square is the target location. (Color figure
online)

where O is a square and the only blocked locations are the edges around the
board.

Tiles. A tile is a unit square centered on a non-blocked point on a given board.
Formally a tile t stores a coordinate on the board c and is said to occupy c.

Configurations. A configuration is an arrangement of tiles on a board such
that there are no overlaps among tiles, or with blocked board spaces. Formally,
a configuration C = (B,T = {t1, . . . , tk}) consists of a board B and a set of
non-overlapping tiles T. We say two configurations C = (B,T = {t1, . . . , tk})
and C ′ = (B,T′ = {t′1, . . . , t′k}) have the same shape if T and T

′ are translations
of each other. The shape of a configuration C is the shape of T.

Step. A step is a way to turn one configuration into another by way of a
global signal that moves all tiles in a configuration one unit in a direction
d ∈ {N,E, S,W} when possible without causing an overlap with a blocked
position, or another tile. Formally, for a configuration C = (B,T), let T

′ be the
maximal subset of T such that translation of all tiles in T

′ by 1 unit in the direc-
tion d induces no overlap with blocked squares or other tiles. A step in direction
d is performed by executing the translation of all tiles in T

′ by 1 unit in that
direction.

We say that a configuration C can be directly reconfigured into configuration
C ′ (denoted C →1 C ′) if applying one step in some direction d ∈ {N,E, S,W}
to C results in C ′. We define the relation →∗ to be the transitive closure of →1

and say that C can be reconfigured into C ′ if and only if C →∗ C ′, i.e., C may
be reconfigured into C ′ by way of a sequence of step transformations.

Step Sequence. A step sequence is a series of steps which can be inferred from a
series of directions D = 〈d1, d2, . . . , dk〉; each di ∈ D implies a step in that direc-
tion. For simplicity, when discussing a step sequence, we just refer to the series
of directions from which that sequence was derived. Given a starting configura-
tion, a step sequence corresponds to a sequence of configurations based on the
step transformation. An example step sequence 〈S,W,W 〉 and the corresponding
sequence of configurations can be seen in Fig. 1.

Uniform Robot Relocation in Two Directions 21

Fig. 2. A high-level view of the layout of the gadgets on the board.

Relocation. Given a tilt system with an n × n board B, a set of tiles T =
{t1, . . . , tm} where each tl = (x, y) s.t. 1 ≤ l ≤ m, 1 ≤ x ≤ n, and 1 ≤ y ≤ n.
Given ti, tj ∈ T, ti �= tj if i �= j. For shorthand, we use ti,j for tl = (i, j). For the
row or column, we use tlr and tlc .

Given a specific tile to relocate tR at location (r, c) = (tRr
, tRc

), and a target
location T = (Tr, Tc), the relocation problem asks whether a series of steps can
translate tR s.t. (tRr

, tRc
) = T .

Definition 1 (Knitting). The knitting row and knitting column are the row
and column of tR. Knitting is the act of performing 〈W 〉 movements (or 〈S〉)
when every position of the knitting area (row or column) is occupied by a tile.
Thus, tR maintains its position.

3 2-Direction NP-Hard Relocation

We design gadgets that encode truth values of literals for a given 3SAT instance
equation. We provide two step-sequences for ‘assigning’ truth values to variables,
which reconfigure the gadgets into two distinct configurations. A ‘true’ value for
a literal is interpreted as the presence of an ‘output’ tile within a target location
in a gadget, whereas a ‘false’ value is simply the absence of that tile. We group
three gadgets together to create a clause and check for 3SAT satisfiability by
counting the number of output tiles in the gadgets after assigning truth values
to all variables. We show that relocation becomes impossible if step-sequences
are used beside the ones provided, giving us strict control over the outcome of
the system. The move directions considered henceforth are 〈S,W 〉.

Layout. Given a 3SAT instance, we construct a board divided into three regions
called the equation section, relocation section, and helper section (Fig. 2). The
equation section is composed of multiple subregions called clause spaces each
containing three gadgets assigned to the three literals for that particular clause.
The helper section is the region next to the equation section that contains floating

22 D. Caballero et al.

Fig. 3. Dashed lines represent tiles that extend to the edges of the board. The figures
show how different combinations of helper tile’s position (green tile) and tR’s position
can generate any forced movement sequence. Each example represents possible posi-
tionings of the helper tile and tR such that the listed move sequence is forced, given
that the helper tile must be placed at the bottom of the board and tR remain adjacent
to the row of tiles. (Color figure online)

tiles used to generate forced step-sequences. As detailed in Lemma 1, each helper
tile must reside at the bottom of the board in order to geometrically assist the
target tile for relocation. The relocator section consists of a row of tiles extending
from the left edge of the board along with multiple columns of tiles underneath
it that extend from the bottom edge of the board. The target tile tR = (tRr

, tRc
)

is defined as the last tile of the row in the relocator section with target location
T = (Tr, Tc) such that Tc = tRc

− 1 and Tr = |C| + 2 for a set of clauses C.

Force Moves. Forcing a step-sequence is achieved by purposely preventing relo-
cation if that sequence is not used. This is done by either trapping the target tile
via geometric blocking or preventing the target tile from interacting with other
tiles needed for relocation. The columns in the relocator section and helper tiles
in the helper section are used together to generate any forced step-sequence
(Fig. 3). A 〈W 〉 move is forced when the target tile resides just above a column
in the relocator section since a 〈S〉 move pushes the row of tiles next to the tar-
get tile downwards, making the target tile stuck above the column. A 〈S〉 move
is forced when a 〈W 〉 move places a helper tile in the same column as another
helper tile, therefore making it impossible to place all helper tiles at the bottom
of the board.

Lemma 1. Every helper tile in the helper section must be placed at the bottom
edge of the board in order to make relocation of the target tile possible.

Proof. The row of tiles adjacent to the target tile prevents it from stepping into
the column before it (moving the tile west), blocking the target tile from entering
the column of the target location. The target tile must eventually break away
from the row by moving on a column of tiles, pushing the row downwards, and
moving west into the column before it. We make this scenario available only once
when we check if every clause of the 3SAT equation is satisfied and stack as many
tiles as there are satisfied clauses beneath the target tile. Similarly, placing every

Uniform Robot Relocation in Two Directions 23

Fig. 4. The gadgets are in the ready state at the beginning of each sequence. Both
gadgets are depicted along with how each ‘assign’ step-sequences affect them. We can
track a gadget’s truth value by observing the length of the horizontal pillar such that
it is assigned true if the pillar is lengthened by a single tile after a step-sequence.

helper tile at the bottom of the board creates a row of tiles just long enough
to occupy a position in the same column as the target tile. By positioning the
target location |C| + 2 above the bottom of the board, every clause must be
satisfied along with every single helper tile in the helper section placed at the
bottom of the board. The additional tile in the equation comes from a tile we
initialize on the board for the purpose of functionality. If a single helper tile is
not placed at the bottom of the board, the row of helper tiles can not be long
enough to occupy a position in the column of the target tile in the disengage
part of the reduction, therefore relocation becomes impossible.

Gadgets. Gadgets are composed of ‘pillars’ of tiles that extend from blocked
tiles adjacent to the bottom and left edges of the equation section. We provide
two versions of a gadget for normal and negated literals shown in Fig. 4. We
define two ‘assign’ step-sequences: ‘assign true’ as 〈s,w,w,w〉 and ‘assign false’
as 〈w, s,w,w〉 such that the last three moves are forced. In the reduction, we
execute one of the two ‘assign’ step-sequences for every variable of a given 3SAT
equation so that each gadget assigned to a literal encodes the truth value of that
literal in the length of the horizontal pillar. That is, a gadget (literal) evaluates
to true if the horizontal pillar lengthens by one after a ‘assign’ step-sequence
is used or false if the pillar remains the same length. The output position of a
gadget is defined as the position on the horizontal pillar that contains, or does
not contain, the additional tile after the ‘assign’ step-sequence. For the gadgets
assigned to literals xi and xj where i < j, we space out the pillars of xj so that
when xi is in the ready state (see Fig. 4), the pillars of xj are 〈s1×j , w3×j〉 spaces
away from the ready state. This allows us to assign truth values to each variable
in order independently of each other.

24 D. Caballero et al.

Fig. 5. (a) Depiction of clause c = (x0∨¬x1∨x2) with N = 3 distinct variables. Gadgets
and clauses are nested inside each other in order to prevent unwanted intervention of
their components.

Clause Spaces. For the set of clauses C of a given 3SAT instance, we define the
clause space for clause ci ∈ C as the region on the board with three gadgets
assigned to each literal in ci = (xi, xj , xk). The gadgets are allocated consecu-
tively such that the ‘next’ gadget encompasses the ‘previous’ gadget by length-
ening its pillars with dimensions detailed in Fig. 5. We similarly build each clause
space such that the ‘next’ clause space encompasses the ‘previous’ clause space
as shown in Fig. 6. With this design, each clause space functions independently
and in parallel with the other clause spaces.

System Output. Given a sequence of truth assignments for the variables, deter-
mining if a clause was satisfied involves placing as many tiles on a single row
in the clause space, called the clause output, as there are satisfied literals in
the clause. To do this, we position floating columns of tiles called readers that
wrap around each gadget output position after the last variable truth assign-
ment based on the dimensions given in Fig. 5. As shown in Fig. 6, this allows us
to step south and lengthen the reader by a single tile if the literal evaluates to
true. If at least one reader is lengthened by one, then the clause is said to be
satisfied given that the reader occupies a position in the clause output.

To determine satisfiability of the 3SAT equation, we position horizontal read-
ers that extend from the relocator section which wrap around each clause output
after using the first readers, seen in Fig. 6d. By repeatedly moving west, these
readers are compressed and push out a tile in the relocator section for every sat-
isfied literal in the clause as shown seen Fig. 7d. This way, when the target tile
reaches the last column of the relocator section, the amount of tiles underneath

Uniform Robot Relocation in Two Directions 25

Fig. 6. Given clause c = (x0 ∨ ¬x1 ∨ x2) with distinct variables N = 3. (a) We first
assign ‘false’ to x0, which makes literal gadget x1 move to the ready state. (c-d) We
then assign false and true to x1 and x2, respectively, followed by pushing the output
tiles of the gadget to the clause output row.

the target tile is at least the number of satisfied clauses. Similarly, we utilize a
reader for the helper tiles in order to join the two rows and occupy a position
underneath the target tile given that every helper tile is present in the row. If
every clause is satisfied, and every helper tile is placed at the bottom edge of
the board, then the target tile can ‘disengage’ with the row of tiles next to it by
stepping downwards until compressing with the tiles beneath it and then relo-
cate to the target location. Similarly, if at least one clause is unsatisfied, or at
least one helper tile was not placed at the bottom edge of the board, then the
target tile can not ‘disengage’ with the row of tiles in the same row as the target
location, and therefore can not relocate. With this, we define the get system
output sequence as 〈s, w,w,w,w〉.
Lemma 2. Single Step Relocation in a square board with only two directions is
NP-hard.

Proof. We prove this by a reduction from 3SAT. Given a 3SAT instance, we
construct a board divided into three sections called the equation section, helper
section, and relocator section. From Lemma 1, we can generated any ‘forced’
step-sequence by utilizing helper tiles in the helper section and columns in the
relocator section to create scenarios in which an incorrect step-sequence results in
the impossibility of relocation. With this capability, we design two step-sequences

26 D. Caballero et al.

Fig. 7. The sections are not to size and for demonstrative purposes only. (a) Example
of the right side of the board with clauses (x0 ∨ ¬x1 ∨ ¬x0) and (¬x0 ∨ x1 ∨ ¬x1) and
variables N = 2. The first six columns of tiles in the relocation section, together with
the first two helper tiles, generates two assign step-sequences for the variables. (b-c)
Assigning true to both variables makes the 3SAT equation evaluate to true. The last
helper tile and four columns of tiles in the relocator section forces the user to compress
the readers and push out a tile underneath the target tile per satisfied literal.

for assigning truth values to each distinct variable in the 3SAT equation. We force
N of any of these two step-sequences at the beginning of the reduction so that
each step-sequence reconfigures the appropriate gadgets, where N is the number
of distinct variables of the 3SAT instance. Next, we execute the get system output
step-sequence, which involves moving readers around gadget outputs in order to
push out as many tiles as there are satisfied literals to a single row within a
clause region. This is followed by a second group of readers that wrap around
clause region outputs and push out a tile in the relocation section, underneath
the target tile, if a particular clause is satisfied. Afterwards, the satisfiability of
the 3SAT equation is evaluated to true if the number of tiles underneath the
target tile equals to |C| + 2. We get |C| tiles if each clause was satisfied and
1 tile from the helper tiles. The last tile is automatically given since it is pre-
initialized on the board. We can see that if any of these conditions are not met,
then relocation is impossible. That is, relocation of the target tile is possible if
and only if every clause is satisfied and each helper tile is placed at the bottom
of the board.

Uniform Robot Relocation in Two Directions 27

Fig. 8. Initial board example for 3SAT equation (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ x3).
Section details are shown in Figs. 9 and 10.

Relocation Membership. Membership in NP for the particular instance we are
considering subtly depends on the problem definition and encoding. The single
step tilt model, as defined, is a set of open and blocked spaces. Thus, the set
of tiles is a subset of those locations, and membership in NP is straightforward.
This was shown in [10]. However, given the nature of the square board with all
spaces open, an alternate formulation of this specific variant of the problem could
take in the dimension of the board, n, encoded in binary, which would imply the
board size is exponential in the input size. Each tile can be encoded as only
its starting location, which can also be encoded in binary. Such an input would
mean the obvious certificate for relocate-ability would no longer be polynomial
sized. Membership in NP is still an open question for this version of the problem.

Lemma 3. Single Step Relocation in a square board with only two directions is
in NP [10].

Theorem 1. Single Step Relocation in a square board with only two directions
is NP-complete.

Proof. Follows from Lemmas 2 and 3.

28 D. Caballero et al.

Fig. 9. Sections (a) and (b) of Fig. 8. In (a), we depict how many spaces the horizontal
pillar of each literal gadget is from the ready state. The horizontal reader is spaced out
by 3N in order to account for each variable assignment. (b) The dimensions for each
gadget in the lowest clause space is depicted.

Fig. 10. Sections (c) and (d) of Fig. 8. (c) Similarly, each vertical pillar is spaced out
given the dimensions depicted. The lower literal gadget in the clause space is provided
with enough horizontal space to allow for all variable assignment step-sequences to
occur without interference from other tiles on the board. (d) The vertical readers’
dimensions for the upper clause space is depicted.

Uniform Robot Relocation in Two Directions 29

4 Conclusion

In this work we answered an open question by showing that relocation in the
single step tilt model, even in the most restrictive case with no fixed geometry
except the borders of the space and with only two movement directions, is still
NP-complete. As shown in Table 1, there is now a fairly complete characterization
of this problem in relation to movement direction, tile size, and board geometry.
A few important questions remain, which we overview here.

– Is the relocation problem in the square in NP if the input is specified as
the tile locations and a binary encoded integer for the board size? As men-
tioned, membership is not obvious since the number of steps needed may be
exponential in the size of the input.

– In the square with four directions, is single step relocation or shape config-
uration in NP? Recent work by [2] outlined the basic permutation groups
that occur in a polyomino under the single step model, but there is no work
addressing the compaction of tiles into different permutation groups. It may
be that relocation is not in NP because an exponential number of moves is
necessary to move a tile into the correct permutation group, move it to the
correct spot in a shape, and then move the shape in the square.

– Following from the previous question, the same reasoning is why membership
is still open for reconfiguration (and why all results in Table 1 are only NP-
hard). Is shape reconfiguration in the square in NP?

– For the single step tilt model in the square, is general row relocation in P or
is it still NP-hard? In [12], they show that knowing whether a tile can relocate
to the bottom row (1st Row Relocation) is in P . It is fairly straightforward to
modify the 1st Row Relocation algorithm to work for the 2nd row, but every
additional row seems to add a higher polynomial. It is clearly bounded by
the number of alternations needed between W and S. If only k alternations
are needed, then row relocation is possible in O(nk), giving a poor FPT
algorithm.

– Following from the previous question, is there a configuration requiring O(n)
alternations between W and S?

References

1. Akitaya, H., Aloupis, G., Löffler, M., Rounds, A.: Trash compaction. In: Proceed-
ings of 32nd European Workshop on Computational Geometry, pp. 107–110 (2016)

2. Akitaya, H.A., Löffler, M., Viglietta, G.: Pushing blocks by sweeping lines. In:
Proceedings of the 11th International Conference on Fun with Algorithms, FUN
2022 (2022)

3. Balanza-Martinez, J., et al.: Hierarchical shape construction and complexity for
slidable polyominoes under uniform external forces. In: Proceedings of the 2020
ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, pp. 2625–2641
(2020). https://doi.org/10.1137/1.9781611975994.160

https://doi.org/10.1137/1.9781611975994.160

30 D. Caballero et al.

4. Balanza-Martinez, J., et al.: Full tilt: universal constructors for general shapes with
uniform external forces. In: Proceedings of the 2019 ACM-SIAM Symposium on
Discrete Algorithms, SODA 2019, pp. 2689–2708 (2019). https://doi.org/10.1137/
1.9781611975482.167

5. Becker, A., Demaine, E.D., Fekete, S.P., Habibi, G., McLurkin, J.: Reconfiguring
massive particle swarms with limited, global control. In: Flocchini, P., Gao, J.,
Kranakis, E., Meyer auf der Heide, F. (eds.) ALGOSENSORS 2013. LNCS, vol.
8243, pp. 51–66. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-
45346-5 5

6. Becker, A.T., Demaine, E.D., Fekete, S.P., McLurkin, J.: Particle computation:
designing worlds to control robot swarms with only global signals. In: sIEEE Inter-
national Conference on Robotics and Automation, ICRA 2014, pp. 6751–6756 (May
2014). https://doi.org/10.1109/ICRA.2014.6907856

7. Becker, A.T., Habibi, G., Werfel, J., Rubenstein, M., McLurkin, J.: Massive uni-
form manipulation: controlling large populations of simple robots with a com-
mon input signal. In: 2013 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp. 520–527 (Nov 2013). https://doi.org/10.1109/IROS.2013.
6696401

8. Caballero, D., Cantu, A.A., Gomez, T., Luchsinger, A., Schweller, R., Wylie, T.:
Fast reconfiguration of robot swarms with uniform control signals. Nat. Comput.
20(4), 659–669 (2021). https://doi.org/10.1007/s11047-021-09864-0

9. Caballero, D., Cantu, A.A., Gomez, T., Luchsinger, A., Schweller, R., Wylie, T.:
Building patterned shapes in robot swarms with uniform control signals. In: Pro-
ceedings of the 32nd Canadian Conference on Computational Geometry, CCCG
2020, pp. 59–62 (2020)

10. Caballero, D., Cantu, A.A., Gomez, T., Luchsinger, A., Schweller, R., Wylie, T.:
Hardness of reconfiguring robot swarms with uniform external control in limited
directions. J. Inf. Process. 28, 782–790 (2020)

11. Caballero, D., Cantu, A.A., Gomez, T., Luchsinger, A., Schweller, R., Wylie, T.:
Relocating units in robot swarms with uniform control signals is pspace-complete.
In: Proceedings of the 32nd Canadian Conference on Computational Geometry,
CCCG 2020, pp. 49–55 (2020)

12. Caballero, D., Cantu, A.A., Gomez, T., Luchsinger, A., Schweller, R., Wylie, T.:
Unit tilt row relocation in a square (short abstract). In: Proceedings of the 23rd
Thailand-Japan Conference on Discrete and Computational Geometry, Graphs,
and Games, TJCDCG3’2020+1, pp. 122–123 (2021)

13. Chiang, P.T., et al.: Toward a light-driven motorized nanocar: Synthesis and initial
imaging of single molecules. ACS Nano 6(1), 592–597 (2012). https://doi.org/10.
1021/nn203969b, pMID: 22129498

14. Felfoul, O., Mohammadi, M., Gaboury, L., Martel, S.: Tumor targeting by com-
puter controlled guidance of magnetotactic bacteria acting like autonomous micro-
robots. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and
Systems, pp. 1304–1308 (Sep 2011). https://doi.org/10.1109/IROS.2011.6094991

15. Martel, S.: Bacterial microsystems and microrobots. In: Biomedical Microdevices,
vol. 14, pp. 1033–1045 (2012). https://doi.org/10.1007/s10544-012-9696-x

https://doi.org/10.1137/1.9781611975482.167
https://doi.org/10.1137/1.9781611975482.167
https://doi.org/10.1007/978-3-642-45346-5_5
https://doi.org/10.1007/978-3-642-45346-5_5
https://doi.org/10.1109/ICRA.2014.6907856
https://doi.org/10.1109/IROS.2013.6696401
https://doi.org/10.1109/IROS.2013.6696401
https://doi.org/10.1007/s11047-021-09864-0
https://doi.org/10.1021/nn203969b
https://doi.org/10.1021/nn203969b
https://doi.org/10.1109/IROS.2011.6094991
https://doi.org/10.1007/s10544-012-9696-x

Uniform Robot Relocation in Two Directions 31

16. Martel, S., Taherkhani, S., Tabrizian, M., Mohammadi, M., de Lanauze, D., Felfoul,
O.: Computer 3D controlled bacterial transports and aggregations of microbial
adhered nano-components. J. Micro-Bio Robot. (4), 23–28 (2014). https://doi.
org/10.1007/s12213-014-0076-x

17. Shirai, Y., Osgood, A.J., Zhao, Y., Kelly, K.F., Tour, J.M.: Directional control in
thermally driven single-molecule nanocars. Nano Lett. 5(11), 2330–2334 (2005).
https://doi.org/10.1021/nl051915k, pMID: 16277478

https://doi.org/10.1007/s12213-014-0076-x
https://doi.org/10.1007/s12213-014-0076-x
https://doi.org/10.1021/nl051915k

Generically Computable Abelian Groups

Wesley Calvert1, Douglas Cenzer2(B), and Valentina Harizanov3

1 Southern Illinois University, Carbondale, IL 62091, USA
wcalvert@siu.edu

2 University of Florida, Gainesville, FL 32611, USA
cenzer@ufl.edu

3 George Washington University, Washington, DC 20052, USA

harizanv@gwu.edu

Abstract. Generically computable sets, as introduced by Jockusch and
Schupp, have been of great interest in recent years. This idea of approxi-
mate computability was motivated by asymptotic density problems stud-
ied by Gromov in combinatorial group theory. More recently, we have
defined notions of generically computable structures, and studied in par-
ticular equivalence structures and injection structures. A structure is
said to be generically computable if there is a computable substructure
defined on an asymptotically dense set, where the functions are com-
putable and the relations are computably enumerable. It turned out that
every equivalence structure has a generically computable copy, whereas
there is a non-trivial characterization of the injection structures with
generically computable copies.

In this paper, we return to group theory, as we explore the generic
computablity of Abelian groups. We show that any Abelian p-group has
a generically computable copy and that such a group has a Σ2-generically
computably enumerable copy if and only it has a computable copy. We
also give a partial characterization of the Σ1-generically computably enu-
merable Abelian p-groups. We also give a non-trivial characterization of
the generically computable Abelian groups that are not p-groups.

Keywords: computability · generically computable · Abelian
p-group · Σn elementary substructure

1 Introduction

Experts in mathematical logic and computability theory show that many inter-
esting problems are undecidable, that is, there is no algorithm for computing a

This research was partially supported by the National Science Foundation SEALS
grant DMS-1362273. The work was done partially while the latter two authors were
visiting the Institute for Mathematical Sciences, National University of Singapore, in
2017. The visits were supported by the Institute. This material is partially based upon
work supported by the National Science Foundation under grant DMS-1928930 while all
three authors participated in a program hosted by the Mathematical Sciences Research
Institute in Berkeley, California during the Fall 2020 semester. Harizanov was partially
supported by the Simons Foundation grant 853762 and NSF grant DMS-2152095.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Genova and J. Kari (Eds.): UCNC 2023, LNCS 14003, pp. 32–45, 2023.
https://doi.org/10.1007/978-3-031-34034-5_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-34034-5_3&domain=pdf
https://doi.org/10.1007/978-3-031-34034-5_3

Generically Computable Abelian Groups 33

solution to a given problem. Thus it is very important to find unconventional
ways in which a solution to the problem may be approximated. The notion
of dense computability for sets of natural numbers is that there is an algo-
rithm which computes the solution on an asymptotically dense set. The study
of densely computable, generically computable, and coarsely computable sets is
now well-established.

The classic motivating example which comes from structure theory is the
word problem for finitely generated groups. For many groups with undecidable
word problems, including a standard example from [11], the particular words
on which it is difficult to decide equality to the identity are very special words
(and are even called by this term in some expositions). Thus the problem can
be solved on a dense set.

In two recent papers [1,2], the authors have developed the notions of densely
computable structures and isomorphisms. This builds on the concepts of gener-
ically and coarsely computable sets, as studied by Jockusch and Schupp [5,6]
and many others, which have been a focus of research in computability. For
structures, the question is whether some “large” substructure is computable.

There are, roughly, two extremal possibilities (say, in the case of generic
computability):

1. Every countable structure has a generically computable copy, or
2. Any countable structure with a generically computable copy has a computable

copy.

It was shown in [1] that each of these can be achieved in certain classes, and
that they do not exhaust all possibilities.

The authors also explored these conditions under the added hypothesis that
the “large” substructures in question be, in some weak sense, elementary (that
is, elements of the substructure satisfy certain formulas which they satisfy in the
full structure). Again, we find that there are natural extremal possibilities, and
that both they and non-extremal cases are achieved.

Finally, we found that as the elementarity hypotheses are strengthened, all
known cases eventually (for Σn elementarity at sufficiently large n) trivialize.
This demonstrates that these notions of dense computability are structural
— they depend fundamentally on the semantics of the structure and not only
on the density or algorithmic features of the presentation.

1.1 The Model of Computation

It would be worthwhile to distinguish which results in computable structure the-
ory depend on a “special” (and potentially extremely rare) input, and which
are less sensitive. To achieve this goal in the context of word problems on
groups, Kapovich, Myasnikov, Schupp, and Shpilrain [8] proposed using notions
of asymptotic density to state whether a partial recursive function could solve
“almost all” instances of a problem.

Jockusch and Schupp [5] generalized this approach to the broader context of
computability theory in the following way. Fix a subset S of N.

34 W. Calvert et al.

1. The density of S up to n, denoted by ρn(S), is given by

|S ∩ {0, 1, 2, . . . , n − 1}|
n

.

2. The asymptotic density of S, denoted by ρ(S), is given by lim
n→∞ ρn(S).

A set A is said to be generically computable if and only if there is a partial
computable function φ such that φ agrees with the characteristic function χA

throughout the domain of φ, and such that the domain of φ has asymptotic
density 1. A set A is said to be coarsely computable if and only if there is a total
computable function φ that agrees with χA on a set of asymptotic density 1.

The study of generically and coarsely computable sets and some related
notions has led to an interesting program of research in recent years; see [6]
for a partial survey.

1.2 Densely Computable Structures

A structure A consists of a set A (the universe or domain of A), together with
finitely many functions {fi : i ∈ I}, each fi of arity pi, and relations {Rj : j ∈ J},
each Ri of arity rj . The structure A is said to be computable if the set A and the
functions and relations are all computable. A structure B which is isomorphic
to A is said to be a copy of A. Given a structure A, we want to consider what
it means to say that A is generically computable, or “nearly computable” in
some other notion related to density. We now present informal versions of the
definitions, which will be made precise in Sect. 2. The idea is that A is generically
computable if there is a substructure D with universe a computably enumerable
set D of asymptotic density one which is computable in the following sense:
There exist partial computable functions {φi : i ∈ I} and {ψj : j ∈ J} such
that φi agrees with fi on the Cartesian product Dpi and ψj agrees with the
characteristic function of Rj on Drj . Similarly, A is coarsely computable if there
is a computable structure E and a dense set D such that the structure D with
universe D is a substructure of both A and of E and all relations and functions
agree on D. A more interesting variation requires that D is a Σ1 elementary
submodel of A, more generally a Σn elementary submodel. That is, if we are
saying that A is “nearly computable” when it has a dense substructure D which
is computable (computably enumerable), then the substructure should be similar
to A by some standard.

To be precise, recall that D is an Σn elementary substructure of A provided
that, for any Σn formula ϕ(x1, . . . , xn) and any elements a1, . . . , an ∈ D,

A |= ϕ(a1, . . . , an) ⇐⇒ D |= ϕ(a1, . . . , an).

We will say that the structure A is Σn-generically computably enumerable if
there is an asymptotically dense set D such that

(a) D is a Σn elementary substructure of A;

Generically Computable Abelian Groups 35

(b) there exist partial computable functions {φi : i ∈ I} such that φi agrees
with fi on Dpi ;

(c) each Rj restricted to Drj is a computably enumerable relation.

We remark that generically computable is the same as generically Σ0, for
structures with functions only such as groups since B is a submodel of A if and
only if it preserves all quantifier-free formulas.

The outline of this paper is as follows. Section 2 contains background on
asymptotic density, and gives the generalization of generic computability to
structures and isomorphisms. Section 3 presents results on generically com-
putable and Σn-generically computably enumerable Abelian groups. We show
that every countable Abelian p-group has a generically computable copy. We
characterize the class of countable Abelian groups which have generically com-
putable copies. We also characterize Abelian p-groups which have Σ1-generically
computably enumerable copies and those which have generically Σ2-generically
computably enumerable copies.

2 Background

In this section, we provide some background on the notions of asymptotic density
and generically computable sets. We define the more general notions of Σn-
generically computably enumerable structures.

The asymptotic density of a set A ⊆ ω (ω = N) is defined as follows.

Definition 1. The asymptotic density of A is limn
|A∩{0,1...,n−1}|

n , if this exists.

In [5], Jockusch and Schupp give the following definition, along with the
notion of coarsely computable sets, which we will not discuss here.

Definition 2. Let S ⊆ ω. We say that S is generically computable if there is
a partial computable function Φ : ω → 2 such that Φ = χS on the domain of Φ,
and such that the domain of Φ has asymptotic density 1.

The most natural notion for a structure seems to be the requirement that
the substructure with domain D resembles the given structure A by agreeing on
certain first-order formulas, existential formulas in particular. Throughout this
paper, Σn represents the n’th level of the arithmetical hierarchy, as described in
Soare [12]. Other background on computability may also be found in [12].

We recall the notion of an elementary substructure.

Definition 3. A substructure B of the structure A is said to be a (fully) ele-
mentary substructure (B ≺ A) if for any b1, . . . , bk ∈ B, and any formula
φ(x1, . . . , xk),

A |= φ(b1, . . . , bk) ⇐⇒ B |= φ(b1, . . . , bk).

The substructure B is said to be a Σn elementary substructure (B ≺n A) if
for any b1, . . . , bk ∈ B, and any Σn formula φ(x1, . . . , xk),

A |= φ(b1, . . . , bk) ⇐⇒ B |= φ(b1, . . . , bk).

36 W. Calvert et al.

Definition 4. For any structure A:

1. A substructure B of A, with universe B, is a computable substructure if the
set B is c.e and each function and relation is computable on B, that is, for
any k-ary function f and any k-ary relation R, both f � Bk and χR � Bk are
the restrictions to Bk of partial computable functions.

2. A substructure B of A, with universe B, is a computably enumerable (com-
putably enumerable) structure if the set B is computably enumerable, each
relation is computably enumerable and the graph of each function is com-
putably enumerable (so that the function is partial computable but also total
on B).

3. A is generically computable if there is a substructure D with universe a com-
putably enumerable set D of asymptotic density one such that the substructure
D with universe D is a computable substructure.

4. A is Σn-generically computably enumerable if there is a dense computably
enumerable set D such that the substructure D with universe D is a com-
putably enumerable substructure and also a Σn-elementary substructure of
A.

For n > 0, any Σn+1-generically computably enumerable structure Σn-
generically computably enumerable. For structures with functions but no rela-
tions, this also holds for n = 0. However, a computably enumerable substructure
might not be computable, so a structure A with relations which is Σ1-generically
computably enumerable is not necessarily generically computable.

Countable Abelian groups have been thoroughly studied by Kaplansky [7],
Fuchs [4] and many others. Here is some background from Fuchs [4].

Definition 5. Let A be an Abelian group and let p be a prime number.

1. A is a p-group if every element has order a power of p.
2. A[p] is the subgroup of elements with order a power of p.
3. The p-height htAp (x) of an element x ∈ A is the largest n such that pn|x, that

is, there exists y such that pny = x.
4. A subgroup B of A is pure if, for every prime q and every b ∈ B, htBq (b) =

htAq (b). The subscript q will be omitted if it is clear from the context.
5. A is divisible if every element of A has infinite height, that is, for every

x ∈ A and every n ∈ N, there exists y ∈ A such that x = n · y.
6. A group is reduced if it has no divisible subgroup.

For any prime p, the group Z(p∞) may be realized as the rational numbers
with denominators a power of p, with addition modulo one. These groups are
said to be quasicyclic.

We need the following results from [4].

Theorem 1 (Baer). Every Abelian group is a direct sum of a divisible group
and a reduced group.

Theorem 2 (Prüfer). A countable Abelian p-group is a direct sum of cyclic
groups if and only if it contains no elements of infinite height.

Generically Computable Abelian Groups 37

Theorem 3 (Szele). Let B be a subgroup of the Abelian p-group A such that
B is the direct sum of cyclic subgroups of the same order pk, for some finite k.
Then B is a direct summand of A if and only if B is a pure subgroup of A.

The following standard result is Theorem 1 of Kaplansky [7].

Theorem 4. Any torsion group A is the direct sum of p-groups A[p].

Definition 6. For an Abelian group A, the Ulm subgroup U(A) is the set of
elements of infinite height. This operation may be iterated to obtain the Ulm
sequence A0 = A,A1 = U(A),A2 = U(A1), . . . and extended to the transfinite
ordinals by Aλ = ∩α<λAα and Aα+1 = U(Aα). The length of a group is the
least α such that Aα+1 = Aα.

Corollary 1. Let A be a countable Abelian p-group and let A = C ⊕ D, where
C has no elements of infinite height and D is divisible. Then A has the form⊕

i<ω Z(pni) ⊕ ⊕
i≤k Z(p∞), where k ≤ ω.

In computability theory, the character χ(A) of an Abelian p-group A is
defined to be the set

{(n, k) ∈ (ω \ {0})2 : A has at least n factors of the form Z(pk)}.

We say that K ⊆ (ω \ {0})2 is a character if whenever (n + 1, k) ∈ K, then
(n, k) ∈ K. As for injection structures and equivalence structures, it is easy to
see that K is a character if and only if K = χ(A) for some Abelian p-group A.

Computable Abelian p-groups were studied by A. Morozov and the authors
in [3]. See Khisamiev [9] for more background.

Proposition 1 (Kulikov). For any countable Abelian p-group A and any
n, k ≥ 1, (n, k) ∈ χ(A) if and only if A has a pure subgroup isomorphic to⊕

i<n Z(pk).

Proposition 2. Let A be an Abelian p-group and let n and k be positive integers.
Then

1. There is a quantifier-free formula φn,k such that, for any Abelian group A and
any a1, . . . , an ∈ A, φn,k(a1, . . . , an) if and only if a1, . . . , an are independent
elements each of order pk, that is, if and only if 〈a1〉 ⊕ 〈a2〉 ⊕ · · · ⊕ 〈an〉 is
isomorphic to

⊕
i<n Z(pk).

2. There is a Σ1 formula θn,k such that A |= θn,k if and only if A has a subgroup
of the form

⊕
i<n Z(pki), with each ki ≥ k.

3. There is a Σ2 formula ψn,k such that A |= ψn,k if and only if (n, k) ∈ χ(A),
that is, if and only if A has a pure subgroup of the form

⊕
i<n Z(pk).

This was used by Khisamiev [9] to obtain the following.

Theorem 5 (Khisamiev). For any computable p-group A, χ(A) is a Σ0
2 set.

The following was shown in [3].

38 W. Calvert et al.

Proposition 3. Let K be a Σ0
2 character and let p be a prime number. Then

there is a computable Abelian p-group A with character K and with infinitely
many divisible components.

Definition 7. A function f : ω2 → ω is said to be an s1-function if the following
hold:

1. For every i and s, f(i, s) ≤ f(i, s + 1).
2. For every i, the limit mi = lim

s→∞ f(i, s) exists.
3. For every i, mi < mi+1.

The character K is said to possess the s1-function f if (1,mi) ∈ K for each i.
The next lemma is based on Corollary 2.11 and Corollary 2.14 of [3].

Lemma 1. For any Σ0
2 character K which is either bounded or possesses a

computable s1-function, there is a computable Abelian p-group A with character
K and no divisible factors.

3 Σn-Generically Computably Enumerable Abelian
Groups

This section contains the new results about generically computably enumerable
Abelian groups. The following result is immediate from the definition of gener-
ically computable structures, and begins to suggest the ubiquity of generically
computable copies.

Lemma 2. Let A be an Abelian group, and B an infinite subgroup of A. If B
has a generically computable copy, then A has a generically computable copy.

The following phenomenon was unexpected when we first observed the anal-
ogous result for equivalence structures.

Proposition 4. Every countable Abelian p-group A has a generically com-
putable copy.

Proof. If the group A is finite, then of course it is computable. The proof for
countably infinite structures is in two steps. First, we show that A = (ω,+A)
always has a subgroup B which is isomorphic to a computable group. Second,
we obtain a computable group D = (D,+D) isomorphic to B with universe D a
dense co-infinite set, and then extend D to generically computable C = (ω,+C)
isomorphic to A.

The first step is in three cases.

Case 1: A has a divisible subgroup B. Then it is known that B has a com-
putable copy.

Case 2: Every element of A has finite height. Then, by Theorem 2, A has
the form

⊕
i<ω Z(pni). Let {ai : i < ω} be a set of generators for A, so that

Generically Computable Abelian Groups 39

A = ⊕i〈ai〉 and ai has order pni . For each i, pni−1ai has order p. Let B =
⊕i〈pni−1ai〉. Then B is a subgroup of A isomorphic to ⊕i<ωZ(p), which is known
to have a computable copy.

Case 3: A has an element a of infinite height, but no divisible subgroup.
Without loss of generaility, we may assume that a has order p. Let a = a0, and
for each n > 0, choose an so that pnan = a. For any m ∈ ω, let Am = {pn−man :
n < ω}. In particular, A1 = {pn−1an : n > 0}, so that every element of A1 has
order p2. Every element of Am has order pm+1.

Claim: A has an element b such that {x : px = b} is infinite.

Proof of Claim: Suppose not. Then in particular A1 is finite. We will con-
struct a divisible subgroup of A, contradicting our assumption. This will be
done by finding a sequence (bi)i<ω ⊆ {an : n < ω} of elements of infinite height,
beginning with b0 = a, such that pbn+1 = bn for each n. It will then follow
that {b0, b1, . . . } generates a divisible group. For each element b of A1, there is
some n so that b = pn−1an. Given that A1 is finite, there must be some b1 such
that b1 = pn−1an for infinitely many n. It follows that b has infinite height. Let
b1 = b and consider B2 = {pn−2an : pn−1an = b1}. If B2 is infinite, then the
claim is established. If B2 is finite, then, as above, there is some b2 ∈ B2 such
that b2 = pn−2an for infinitely many n. Continuing in this way we reach one of
two outcomes.

(1) There will be some n such that {x : px = bn} is infinite.
or
(2) For each n, pbn+1 = bn. In this case, {bn : n = 1, 2, . . . } will generate a

divisible subgroup.
This completes the proof of the Claim.

Thus we have found b such that C = {x : px = b} is infinite.
Let b have order pr. Then each element of C has order pr+1. It follows that

C generates an infinite subgroup B of A with all elements of order ≤ pr. The
group B is therefore isomorphic to a computable group, as desired.

Now let D = (D,+D) be computable and isomorphic to B, where D is asymp-
totically dense and co-infinite. Let H be a permutation of ω which maps D to
B.

Define the extension C = (ω,+C) of D by

x +C y = H−1(H(x) +A H(y)).

Then H is an isomorphism from C to A since H(x +C y) = H(x) +A H(y).
In particular, for x, y ∈ D,

x +C y = H−1(H(x) +A H(y)) = H−1(H(x) +B H(y)) = x +D y,

since H is a group isomorphism from D to B.
It follows that D is a computable subgroup of C. Since D is a dense set, C is

generically computable. So A is isomorphic to a generically computable group,
as desired. ��

40 W. Calvert et al.

Next, we consider countable Abelian groups in general. For each such group
A, let A[p] = {x ∈ A : pnx = 0 for some n}.

Theorem 6. A countable Abelian group has a generically computable copy if
and only if either

1. A[p] is infinite for some prime p, or
2. {p : A[p] �= 0} has an infinite computably enumerable subset.

Proof. Suppose first that A has a generically computable copy C and let D =
(D,+D) be a subgroup of C, where D is a computably enumerable dense set
and +D is computable on D. Suppose that D[p] is finite for all primes p. Then
D[p] must be nonempty for infinitely many p. Now {p : D[p] �= 0} is an infinite
computably enumerable subset of {p : C[p] �= 0} = {p : A[p] �= 0}.

Next let p be a prime such that A[p] is infinite. Then A[p] has a generically
computable copy B. Let C = A[p] ⊕ ⊕

q �=p A[q]. Then C is isomorphic to A and
C[p] is generically computable since C[p] = B is generically computable.

Finally, suppose that there is an infinite computably enumerable set P of
primes p such that A[p] �= 0. Then A will have a subgroup isomorphic to⊕

p∈P Z(p), and we proceed as usual. ��
Note that Theorem 6 implies that there are countable Abelian groups with

no generically computable copy, in contrast to Proposition 4 on primary groups.
We now turn to the topic of Σn elementary substructures and Σn-generically

computably enumerable structures.

Proposition 5. Let A be an Abelian group and let B be a subgroup of A. B is
a Σ1 elementary subgroup of A if and only if it satisfies condition

(*): For any finite subgroup C of A, there is a subgroup D of B isomorphic
to C, such that B ∩ C = D ∩ C and the isomorphism is the identity on B ∩ C.

Proof. Suppose first that B is a Σ1 elementary subgroup of A.
Let C = {a1, . . . , am, b1, . . . , bn} be the domain of a finite subgroup of A

with B ∩ C = {b1, . . . , bn} and let φ(a1, . . . , am, b1, . . . , bn) be a sentence which
captures the atomic diagram of C. Then

A |= (∃x1)(∃x2) . . . (∃xm)φ(x1, . . . , xm, b1, . . . , bn).

Since B is a Σ1 elementary submodel, it follows that there are c1, . . . , cm ∈ B
such that

φ(c1, . . . , cm, b1, . . . , bn).

Then the subgroup D with domain D = {c1, . . . , cm, b1, . . . , bn) is isomorphic to
C under the isomorphism mapping each ci to ai and mapping each bj to itself.
Furthermore, B ∩ C = D ∩ C = {b1, . . . , bn}.

Generically Computable Abelian Groups 41

For the other direction, suppose that B satisfies condition (*). Let b1, . . . , bn ∈
B and consider an arbitrary Σ1 formula

ϕ(b1, . . . , bn) : (∃x1, . . . ,∃xm)θ(x1, . . . , xm, b1, . . . , bn),

where θ is quantifier-free. By distributing disjunctions in the usual way,
we may assume without loss of generality that θ gives a full descrip-
tion of the subgroup generated by x1, . . . , xm, b1, . . . , bn. Suppose now that
A |= θ(a1, . . . , am, b1, . . . , bn) and consider the subgroup C generated by
{a1, . . . , am, b1, . . . , bn}. Then, by assumption, there is a subgroup D of B with
B∩C = D∩C and an isomorphism F : C → D with F (b) = b for all b ∈ B. It fol-
lows that B |= θ(F (a1), . . . , F (am), b1, . . . , bn) and therefore B |= ϕ(b1, . . . , bn).

��
Proposition 6. Let A be an Abelian p-group such that A = B ⊕ E for some
subgroups B and E, where B has unbounded character. Then B is a Σ1 elementary
subgroup of A.

Proof. We prove this assertion using Proposition 5. Let C be any finite subgroup
of A. Let B0 be the projection of C onto B and let E0 be the projection onto E .
Since B has unbounded character, there is a subgroup B1 of B independent of
B0 and isomorphism ψ from E0 to B1. Now let D = {x + y : x ∈ B0, y ∈ B1}
and define the isomorphism from C to D by φ(b + c) = b + ψ(c). Then φ is an
isomorphism from C to D which preserves elements of B. We note that B ∩ C =
D ∩ C = B0. Thus, condition (*) is satisfied, and the result follows. ��
Proposition 7. Suppose that A is a countable Abelian p-group which is a prod-
uct of cyclic subgroups and let K be a subcharacter of χ(A). That is, K is a
subset of χ(A) such that, for any n and k, (n + 1, k) ∈ K implies (n, k) ∈ K.
Then A has a pure subgroup B which is a factor of A.

Proof. We have A =
⊕

i∈ω〈ai〉, where each 〈ai〉 is a pure cyclic subgroup of
order pni . We can select a subset I of ω so that B =

⊕
i∈I〈ai〉 has character K

and then C =
⊕

i/∈I〈ai〉 is a factor of A, that is, A = B ⊕ C. ��
Proposition 8. Let A be a countable Abelian p-group and let B be a Σ1 ele-
mentary subgroup of A. Then the following conditions hold:

1. B is a pure subgroup of A.
2. χ(B) ⊆ χ(A).
3. B |= θn,k for any (n, k) ∈ χ(A), that is, whenever A has a pure subgroup of

the form
⊕

i<n Z(pk), then B has a subgroup of the form
⊕

i<n Z(pki), with
each ki ≥ k.

4. If A has a divisible component, then either B has a divisible component or
χ(B) is unbounded.

Proof. Suppose first that B is a Σ1 elementary subgroup of the Abelian p-group
A.

42 W. Calvert et al.

(1) Let b ∈ B and suppose htA(b) ≥ n. Then b = pna for some a ∈ A. Thus
A |= (∃x)pnx = b. Since B is a Σ1 elementary subgroup of B, B |= (∃x)pnx = b,
so that htB(b) ≥ n as well. It follows that B is a pure subgroup of A.

(2) Suppose that (n, k) ∈ χ(B). Then B has a pure subgroup C isomorphic
to

⊕
i<n Z(pk). Since B is pure in A, it follows that C is a pure subgroup of A.

Thus (n, k) ∈ χ(A).

For part (3), suppose that (n, k) ∈ χ(A). Then A |= θn,k. Since B is a Σ1

elementary submodel of A and θn,k is a Σ1 sentence, it follows that B |= θn,k,
and therefore B has a subgroup of the form

⊕
i<n Z(pki), with each ki ≥ k.

For part (4), suppose that A has a divisible component. Then A |= θ1,k for
each k. It follows as above that B |= θ1,k for all k and therefore either B has a
divisible component or χ(B) is unbounded. ��

We conjecture that the converse of Proposition 8 also holds.

Proposition 9. Let A be a countable Abelian p-group and let B be a Σ2 ele-
mentary subgroup of A. Then

1. B is a pure subgroup of A.
2. χ(A) = χ(B).
3. If A has a divisible component, then either B has a divisible component or

χ(B) is unbounded.

Proof. First suppose that B is a Σ2 elementary subgroup of A.
Parts (1) and (3) follow as in the proof of Proposition 8.

(2) Suppose that (n, k) ∈ A. Then by Proposition 1, A has a pure subgroup C
isomorphic to ⊕i<nZ(pk). Thus A |= ψn,k. Since B is a Σ2 elementary submodel
of A and ψn,k is a Σ2 sentence, it follows that B |= ψn,k, and therefore (n, k) ∈
χ(B). ��

We conjecture that the converse of Proposition 9 also holds.

Theorem 7. Let A be an Abelian p-group with no elements of infinite height in
the reduced part. That is, A is a product of cyclic and quasi-cyclic components.
Then A has a Σ1-generically computably enumerable copy if and only if at least
one of the following holds:

(a) χ(A) is bounded;
(b) χ(A) has a Σ0

2 subset K with a computable s1-function.
(c) A has a divisible component.

Proof. First suppose that A has a Σ1-generically computably enumerable copy.
Then A has a Σ1 elementary substructure B which is isomorphic to a computably
enumerable structure C. If A has no divisible component, then C has no divisible
component. If χ(A) is unbounded, then χ(C) is unbounded, by Proposition 8.
Thus C has a Σ0

2 character K with a computable s1-function, and it follows from
Proposition 8 that χ(C) ⊆ χ(A).

Generically Computable Abelian Groups 43

The other direction is in three cases.
(a) If χ(A) is bounded, then A has a computable copy.
In cases (b) and (c), we will assume that χ(A) is unbounded and show that

there is a structure B ⊆ A which is isomorphic to a computable p-group D. Then
we will build a copy C of A with a dense computable subgroup D and fill out
the rest of C to make it isomorphic to A, as explained in (b).

(b) In this case, A has no divisible component, and is a product of cyclic
subgroups. Thus by Proposition 7, A has a pure subgroup B with character K
and B is a factor of A. It follows from Proposition 6 that B is a Σ1 elementary
subgroup of A.

By Lemma 1, there is a computable p-group D with character K isomorphic
to B. We may assume that the universe D of D is a computable asymptotically
dense set. Let φ be an isomorphism from D to B and extend this to a bijection
from ω to ω. Then we extend D to a group C with universe ω by letting x+C y =
φ−1(φ(x) +A φ(y)). For x, y ∈ D, we have

x +C y = φ−1(φ(x) +A φ(y)) = φ−1(φ(x +D y)) = x +D y,

since φ is an isomorphism from D to B ⊆ A. For arbitrary x, y ∈ ω,

φ(x +C y) = φ(φ−1(φ(x) +A φ(y))) = φ(x) +A φ(y),

so φ is an isomorphism from C to A. Since B is a Σ1 elementary subgroup of A,
and φ is an isomorphism mapping B to D, it follows that D is a Σ1 elementary
subgroup of C. Thus C is Σ1-generically computably enumerable.

(c) In this case, the divisible component B will be a Σ1 elementary substruc-
ture and we proceed as in (b) to define a computable group D with infinitely
many divisible components, and extend this to a Σ1-generically computably
enumerable structure which is isomorphic to A. ��

We observe that the argument above also proves that A is Σ1-generically
computably enumerable if and only if it has a subgroup B which is isomorphic
to a computable group.

Theorem 8. The group A is Σ2-generically computably enumerable if and only
if it has a computable copy.

Proof. Suppose that A = (ω,+A) is Σ2-generically computably enumerable and
let D be a dense computably enumerable set such that D = (D,+A) is a com-
putably enumerable group and also a Σ2 elementary subgroup of A. Then χ(D)
is a Σ0

2 set since D is computably enumerable and χ(D) = χ(A) since D is a
Σ2 elementary submodel of A. If χ(A) is bounded, then A has a computable
copy. So suppose that χ(A) is unbounded. If D has no divisible component, then
χ(D) has a computable s1-function, so that A has a computable copy. If D has
a divisible component, then A also has a divisible component and therefore has
a computable copy. ��

44 W. Calvert et al.

4 Conclusion and Future Research

We have shown that any Abelian p-group has a generically computable copy
and that such a group has a Σ2-generically computably enumerable copy if
and only it has a computable copy. We also gave a partial characterization of
the Σ1-generically computably enumerable Abelian p-groups, and a non-trivial
characterization of the generically computable Abelian groups. It remains to
consider more general Abelian p-groups with transfinite length.

We obtained necessary conditions for a subgroup of a countable Abelian p-
group to be a Σ1 or a Σ2 elementary substructure. The conjecture is that these
conditions are also necessary. We conjecture that a subgroup of an Abelian p-
group is Σ3 elementary if and only if it is (fully) elementary. This might even
hold for Σ2 elementary substructures.

It is interesting to consider whether any appropriate class of structures (per-
haps with bounded Scott rank or some similar condition) would trivialize at some
level, and we propose that a general result may be possible. Perhaps a general
connection can be made in terms of the level at which Σn elementarity implies
full elementarity. To our thinking, this recalls the feature of computable cate-
goricity by which every structure with a Πα+1 Scott sentence is Δ0

α-categorical
[10]. So there might be results in the general hyperarithmetic hierarchy.

Previous papers also examined coarsely computable structures, so future
work should examine Σn-coarsely computably enumerable Abelian groups.

Generically computable and coarsely computable isomorphisms were also
studied in [2]. Future plans involve the study of densely computable isomor-
phisms for Abelian groups. We have the following preliminary result.

Theorem 9. Let A and B be computable Abelian p-groups each isomorphic to⊕
i<ω Z(p) ⊕ ⊕

i<ω Z(p2) such that the elements of order p2 are asymptotically
dense.

Then A and B are generically computably isomorphic.

References

1. Calvert, W., Cenzer, D., Harizanov, V.: Densely computable structures. J. Logic
Comput. 32, 581–607 (2022)

2. Calvert, W., Cenzer, D., Harizanov, V.: Generically and coarsely computable
isomorphisms. Computability 11, 223–239 (2022). https://doi.org/10.3233/COM-
210382

3. Calvert, W., Cenzer, D., Harizanov, V., Morozov, A.: Effective categoricity of
Abelian p-groups. Ann. Pure Appl. Logic 159, 187–197 (2009)

4. Fuchs, L.: Infinite Abelian groups, volume I, Academic Press (1970)
5. Jockusch, C.G., Schupp, P.E.: Generic computability, Turing degrees, and asymp-

totic density. J. London Math. Soc. 85, 472–490 (2012)
6. Jockusch, C.G. Schupp, P.E.: Asymptotic density and the theory of computability:

a partial survey. In: Computability and Complexity, Lecture Notes in Computer
Science, vol. 10010, pp. 501–520 (2017)

https://doi.org/10.3233/COM-210382
https://doi.org/10.3233/COM-210382

Generically Computable Abelian Groups 45

7. Kaplansky, I.: Infinite Abelian groups, University of Michigan Press (1954)
8. Kapovich, I., Myasnikov, A., Schupp, P., Shpilrain, V.: Generic-case complexity,

decision problems in group theory, and random walks. J. Algebra 264, 665–694
(2003)

9. Khisamiev, N.G.: Constructive Abelian groups, Handbook of Recursive Mathemat-
ics, Vol. 2, Stud. Logic Found. Math., vol. 139, Elsevier, pp. 1177–1231 (1998)

10. Montalbán, A.: A robuster Scott rank. Proc. Am. Math. Soc. 143, 5427–5436
(2015)

11. Rotman, J.J.: The theory of groups, Allyn and Bacon (1965)
12. Soare, R.I.: Recursively Enumerable Sets and Degrees. Springer-Verlag (1987)

Extraction Rates of Random Continuous
Functionals

Douglas Cenzer1(B), Cameron Fraize2, and Christopher Porter3

1 University of Florida, Gainesville, FL 32611, USA
cenzer@ufl.edu

2 University of Florida, Gainesville, FL 32611, USA
cameron.fraize@ufl.edu

3 Drake University, Des Moines, IA 50311, USA

christopher.porter@drake.edu

Abstract. In this article, we study the extraction rate, or output/input
rate, of algorithmically random continuous functionals on the Cantor
space 2ω. It is shown that random functionals have an average extraction
rate over all inputs corresponding to the rate of producing a single bit of
output, and that this average rate is attained for any (relatively) random
input.

Keywords: Algorithmic randomness · random extraction · continuous
functionals

1 Introduction

This paper continues the work of the authors in [CP22] on the analysis of the
extraction rate, or output/input ratio, of various effective procedures. The previ-
ous paper focused on randomness extraction, starting with the classic problem,
posed by von Neumann in [vN51], of extracting unbiased randomness from the
tosses of a biased coin. As shown in this work, one can formalize certain random-
ness extraction procedures as Turing functionals and study the behavior of these
functionals when applied to algorithmically random sequences. For a number of
such functionals, it is known that almost every sequence attains the extraction
rate. In the previous paper, we provided a sufficient level of algorithmic random-
ness that guaranteed this result for three classes of functionals:

1. functionals defined in terms of maps on 2<ω that we call block maps, which
generalize von Neumann’s procedure,

2. functionals derived from certain trees called discrete distribution generating
trees (or DDG trees, for short), introduced by Knuth and Yao [KY76] in the
study of non-uniform random number generation, and

3. a procedure independently developed by Levin [LZ70] and Kautz [Kau91] for
converting biased random sequences into unbiased random sequences.

This research was partially supported by the National Science Foundation SEALS grant
DMS-1362273.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Genova and J. Kari (Eds.): UCNC 2023, LNCS 14003, pp. 46–63, 2023.
https://doi.org/10.1007/978-3-031-34034-5_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-34034-5_4&domain=pdf
https://doi.org/10.1007/978-3-031-34034-5_4

Extraction Rates 47

In the present paper, we apply a similar methodology to the study of the
extraction rates of algorithmically random continuous functionals on 2ω, a class
of functionals first introduced by Barmpalias, Brodhead, Cenzer, Remmel, and
Weber in [BBC+08]. We will focus on the extraction rates of functionals that are
coded by sequences that are random with respect to a Bernoulli measure. In par-
ticular, we explore the extent to which the extraction rate of a random functional
depends on a certain type of representation of the functional (where a represen-
tation of a functional is given in terms of a finite map on 2<ω that determines the
behavior of the functional on initial segments of an input sequence). Our main
result shows that along sufficiently random inputs, the choice of representation
of a functional does not effect the resulting extraction rate.

The remainder of the paper is as follows. In Sect. 2, we lay out the requisite
background, define the extraction rate of a continuous functional, present several
preliminary results, and give some basic examples. The main results on the
extraction rate of random continuous functions are in Sect. 3. Conclusions and
some open questions are given in the final Sect. 4.

2 Background

The set of finite binary strings will be written as 2<ω. For a finite string σ ∈ 2<ω,
let |σ| denote the length of σ. For two strings σ, τ , say that τ extends σ and write
σ � τ if |σ| ≤ |τ | and σ(i) = τ(i) for i < |σ|. For X ∈ 2ω, σ ≺ X means that
σ(i) = X(i) for i < |σ|. Let σ�τ denote the concatenation of σ, τ ∈ 2<ω; Let
X � n denote the string σ ≺ X with |σ| = n. The empty string will be written
as ε.

Two sequences X,Y ∈ 2ω may be coded together into Z = X ⊕ Y , where
Z(2n) = X(n) and Z(2n + 1) = Y (n) for all n. For a finite string σ, let [[σ]]
denote {X ∈ 2ω : σ ≺ X}. We shall refer to [[σ]] as the cylinder determined by
σ. The cylinder sets form a clopen basis for the standard topology on 2ω, and
the clopen sets are just finite unions of cylinders.

Next we consider the notion of a (partial) continuous function Φ : 2ω → 2ω.
Such a function Φ may be defined from a function φ : 2<ω → 2<ω, which we
refer to as a representation of Φ, satisfying the condition

(i) σ � τ , then φ(σ) � φ(τ).

The function Φ will be total provided that

(ii) for all X ∈ 2ω, limn→∞ |φ(X � n)| = ∞.

Furthermore, a representation φ for a total continuous function Φ must satisfy:

(iii) For all m, there exists n such that for every σ ∈ {0, 1}n, |φ(σ)| ≥ m

by compactness of 2ω. We then have Φ(X) =
⋃

n φ(X � n). The (partial) Turing
functionals Φ : 2ω → 2ω are those which may be defined in this manner from

48 D. Cenzer et al.

a computable representation φ : 2<ω → 2<ω. (We will sometimes refer to total
Turing functionals as tt-functionals.) The partial Turing functionals Φ :⊆ 2ω →
2ω are given by those φ : 2<ω → 2<ω which only satisfy condition (i). In this
case, we may regard Φ : 2ω → 2ω ∪ 2<ω, so that Φ(X) =

⋃
n φ(X � n) may only

be a finite string.
We set dom(Φ) = {X : Φ(X) ∈ 2ω}.

Definition 1. A continuous functional Φ is said to be online continuous if it
has a representation φ with |φ(σ)| = |σ| for all strings σ; then, Φ is called online
computable if the representation φ is computable.

The online computable functions are an interesting class, and were studied
by Cenzer and Porter [CP15] and by Cenzer and Rojas [CR18].

Next, we review some notions from algorithmic randomness. Let Q2 denote
the dyadic rationals in [0, 1]. Recall that a measure μ on 2ω is computable if there
is a computable function f : 2<ω × ω → Q2 such that |μ([[σ]]) − f(σ, i)| ≤ 2−i.
For a prefix-free V ⊆ 2<ω (i.e., for σ ∈ V , if σ ≺ τ , then τ /∈ V), we set
μ([[V]]) =

∑
σ∈V μ([[σ]]). Hereafter, we will write μ([[σ]]) as μ(σ) for strings σ

and μ([[V]]) as μ(V) for V ⊆ 2<ω. We also denote the Lebesgue measure on 2ω

by λ, where λ(σ) = 2−|σ| for σ ∈ 2<ω.
We assume that the reader is familiar with the basics of algorithmic random-

ness; see, for instance [Nie09,DH10,SUV17], or the more recent [FP20]. Let μ
be a computable measure on 2ω. Recall that a μ-Martin-Löf test is a sequence
(Ui)i∈ω of uniformly effectively open subsets of 2ω such that for each i,

μ(Ui) ≤ 2−i.

Moreover, X ∈ 2ω passes the μ-Martin-Löf test (Ui)i∈ω if X /∈ ⋂
i∈ω Ui. Lastly,

X ∈ 2ω is μ-Martin-Löf random, denoted X ∈ MLRμ, if X passes every μ-
Martin-Löf test. When μ is the uniform (or Lebesgue) measure λ, we often
abbreviate MLRμ by MLR.

We are particularly interested in the interaction between Turing functionals
and computable measures on 2ω. For computable measure μ on 2ω, a Turing
functional Φ : 2ω → 2ω is μ-almost total if μ(dom(Φ)) = 1. The following
Lemma was proved in [CP22].

Lemma 1. A Turing functional Φ is μ-almost total if and only if MLRμ ⊆
dom(Φ).

Next we give some definitions and results on the extraction rate of (partial)
continuous functionals. This is closely related to the use function, an important
notion in computability theory. We are interested in a version of the use function
of a Turing functional Φ which arises from a given representation φ. Let uφ(X,n)
be the least m such that |φ(X � m)| ≥ n. Then the extraction rate of the
computation of Y = Φ(X) from X is given by the ratio

n

uφ(X,n)
,

Extraction Rates 49

that is, the relative amount of input from X needed to compute the first n values
of Y .

There is an alternative definition which is more straightforward. The φ-
output/input ratio of σ, OIφ(σ), is defined to be

OIφ(σ) =
|φ(σ)|

|σ| .

The next lemma was also proved in [CP22].

Lemma 2. ([CP22]). For any Turing functional Φ with representation φ and
any X ∈ 2ω such that Φ(X) ∈ 2ω,

lim
n→∞

|φ(X � n)|
n

= lim
m→∞

m

uφ(X,m)
,

provided that both limits exist.

Let us write OIφ(X) for lim supn→∞ OIφ(X � n); we refer to this as the φ-
extraction rate along X. This extraction rate certainly depends on the particular
representation φ for a (partial) continuous function Φ. We would like to say
that the extraction rate for a constant function should be very low and should
approach 0 in the limit. However, consider the following example:

Example 1. Let Φ(X) = 0ω for all X ∈ 2ω and let φ(σ) = 0|σ| for all σ ∈ 2<ω.
Then uφ(X,n) = n for all n and thus limn→∞ n

uφ(X,n) = 1 for all X.

To avoid this problem, we can work with a maximally efficient representation
φ which may be defined as follows:

Definition 2. For any partial continuous function Φ, the canonical representa-
tion φ for Φ is defined by letting φ(σ) be the longest common initial segment of
all members of {Φ(X) : σ ≺ X}. Let uΦ = uφ denote the use function associated
with the canonical representation φ.

For example, the identity function on strings is the canonical representa-
tion of the identity function on 2ω and thus the use uΦ(X,n) = n for all n,
so that limn→∞ n

uΦ(X,n) = 1. As a second example, if Φ(X) = X ⊕ X, then
limn→∞ n

uΦ(X,n) = 1
2 .

Note that if φ is the canonical representation for a constant function Φ(X) =
C, then we have φ(σ) = C, an infinite sequence, for every σ. To avoid this
unpleasantness, we can restrict our functions to the non-constant functions.

Definition 3. A partial continuous function Φ is nowhere constant if for any
string σ, either Φ(X) is undefined (that is, it is a finite string) for some X ∈ [[σ]],
or there exist X1 �= X2 both in [[σ]] such that Φ(X1) �= Φ(X2).

It is easy to see that if Φ is nowhere constant, then the canonical function
is a well-defined map taking strings to strings and satisfies condition (i) in the
definition of a representative of a functional.

50 D. Cenzer et al.

Definition 4. Let Φ be a partial Turing functional with canonical generator φ.
The Φ-output/input ratio given by σ, OIΦ(σ), is defined to be

OIΦ(σ) =
|φ(σ)|

|σ| .

Similarly, for X ∈ 2ω we define OIΦ(X) to be

lim sup
n→∞

|φ(X � n)|
n

.

We refer to OIΦ(X) as the Φ-extraction rate along X.

The canonical representation of a functional has the following nice property,
which is immediate from the definition.

Lemma 3. Let Φ be a partial continuous functional on 2ω with canonical rep-
resentation φ : 2<ω → 2<ω. Then

(∗) for all σ such that σ�0, σ�1 ∈ dom(φ), if φ(σ0) � τ and φ(σ1) � τ , then
φ(σ) � τ .

It was shown in [CP22] that, if Φ is a total, nowhere constant Turing func-
tional, then the canonical representation φ of Φ is computable. On the other
hand, if Φ is only a partial computable, nowhere constant function, then the
canonical representation of Φ is not necessarily computable, but it will be com-
putable in the complete Σ0

1 set ∅′. See [DH10] for more background on com-
putability theory and randomness.

We will consider the extraction rate of a continuous functional both in terms
of an arbitrary representation and in terms of the canonical representation.

We would also like to define the average Φ-output/input ratio for a given Tur-
ing functional. However, such an average depends on an underlying probability
measure on 2ω. Since we are interested, at least in part, in Turing functionals that
extract unbiased randomness from biased random inputs, we need to consider
average Φ-output/input ratios parameterized by an underlying measure.

Definition 5. The average Φ-output/input ratio for strings of length n with
respect to μ, denoted Avg(Φ, μ, n), is defined to be

Avg(Φ, μ, n) =
∑

σ∈2n

μ(σ)OIΦ(σ).

Equivalently, we have

Avg(Φ, μ, n) =
1
n

∑

σ∈2n

μ(σ)|φ(σ)|,

where φ is the canonical representation of Φ. Note that this is the μ-average
value of OIΦ(X � n) over the space 2ω, since this function is constant on each

Extraction Rates 51

interval [[σ]]. That is, if we fix n and let Fn(X) = OIΦ(X � n), then Fn is a
computable map from 2ω to R and the average value of Fn on 2ω is given by

∫

2ω

Fn(X) dμ(X).

We consider the behavior of this average in the limit, which leads to the
following definition (which is adapted from one provided by Peres in [Per92]).

Definition 6. The μ-extraction rate of Φ, denoted Rate(Φ, μ), is defined to be

Rate(Φ, μ) = lim sup
n→∞

Avg(Φ, μ, n).

For example, it is easy to see that the extraction rate of the functional Φ(X) =
X ⊕ X is exactly 2.

An interesting problem is to determine for which Turing functionals the
lim sup in the definition of extraction rate actually equal to a lim. An example
of a functional Φ is given in [CP22] where lim supn→∞ Avg(Φ, μ, n) = 2 whereas
lim infn→∞ Avg(Φ, μ, n) = 1.5, so that the limit does not exist.

For the limn→∞ Avg(Φ, μ, n) to exist, the functional Φ must be regular in
the relative amount of input needed for a given amount of output. The authors
have studied some families of functions for which this seems to be the case.
First, there are the online continuous (or computable) functions. On the other
hand, there are the random continuous functions which produce regularity in a
probabilistic sense. For example, the random continuous functions as originally
defined by Barmpalias et al. [BBC+08] produce outputs which are roughly 2

3
as long, on average, as the inputs. We will consider such functions in greater
generality below in Sect. 3.

3 The Extraction Rate of Random Functions

In this section, we study the extraction rate of random continuous functions on
2ω. This collection of random continuous functions was introduced by Barm-
palias, Brodhead, Cenzer, Remmel, and Weber [BBC+08] and further studied
by the authors in [CP15].

An arbitrary partial continuous function F :⊆ 2ω → 2ω may be given by a
labeled binary tree, that is, by a function 	 : 2<ω \ {ε} → {0, 1, B}, where we
use B = 2 to denote a blank. The function 	 produces a map f� : 2<ω → 2<ω

where f�(ε) = ε and, for non-empty σ, f�(σ) = τ is the result of deleting the
B’s from the sequence ((σ � i))i≤|σ|. Then f� is a monotone function on non-
empty strings and induces a partial function F just as Turing functionals were
defined above. That is, F (X)(m) = n if there exists k, τ such that f�(X � k) = τ
and τ(m) = n. It is not hard to see that every continuous function has such a
representation, and in fact, infinitely many such representations.

We shall denote the space of such representations by L = {0, 1, B}2<ω

(=
32<ω

), and consider it to have its usual product topology and Borel σ-algebra.

52 D. Cenzer et al.

We will first calculate the extraction rate with respect to the representation
f� defined above and later show that, on average, this does not change for the
canonical representation of F�.

We code these labelings as follows: enumerate 2<ω \ {ε} length-
lexicographically by σ0, σ1, . . . and, for x ∈ 3ω, we let 	x(σn) = x(n). Similarly,
for strings ρ ∈ 3<ω, we define a partial labeling 	ρ(σn) = ρ(n) for n < |ρ|;
the resulting partial function on strings fρ is defined, as before, by deleting all
of the B’s from the sequence ((σ � i))i≤|σ|. It is clear that for any x ∈ 3ω,
	x = limn 	x�n and f�x

= limn f�x�n
. For notational simplicity, we let fx = f�x

and Fx = F�x
. In particular, this map is a homeomorphism between 3ω and L,

and hence is also a bimeasurable map between these two spaces, equipped with
their respective Borel σ-algebras.

Definition 7. Given q, r, s ∈ [0, 1] such that q+r+s = 1, consider the Bernoulli
measure μ on 3ω with Bernoulli parameters p0 = q, p1 = r, and p2 = s. This is
defined so that, for each n ∈ ω, μ({x : x(n) = 0) = q, μ({x : x(n) = 1}) = q,
and μ({x : x(n) = 2}) = s. With respect to our coding, q is the probability that
	x(σ) = 0, r is the probability that 	x(σ) = 1, and s = 1− q − r is the probability
that 	x(σ) = B. A partial continuous function F is said to be μ-Martin-Löf
random if it has a μ-Martin-Löf random coding x.

It was shown in [CP15] that as long as s ≤ 1/2, the probability that the
induced function on 2ω is total will be one, and otherwise it will be zero. Thus
in the case of s ≤ 1/2, we may consider μ to be a measure on the space of
(codes for) labels of total continuous functions. A continuous function is said to
be μ-random if it is coded by a μ-Martin-Löf random sequence in 3ω.

Where we may reason about labels without respect to their codes, we consider
the pushforward measure μ	 on L induced by the bijective map x �→ 	x. Note
that the pushforwards of these measures μ are precisely the Bernoulli measures
ν on L, for which we have, ν({	 ∈ L : 	(σ) = i}) = pi for i = 0, 1, 2.

Now, for our purposes, fix q, r, s ∈ [0, 1] and let p = q+r, i.e., the probability
that 	x(σ) ∈ {0, 1}. (In the standard example from [BBC+08], we have q = r =
s = 1

3 , so that p = 2
3 .) We will show that if F is μ-random, then the extraction

rate of F with respect to the Lebesgue measure on 2ω is exactly p. We do this
whether the function F is partial or total. Given a label 	 ∈ L and i ≥ 1, define

Si() = |{σ ∈ {0, 1}i : 	(σ) ∈ {0, 1}}|.

Then the expected value of Si is 2ip. Using Chernoff’s Lemma [Che52], we get
the following, which will prove to be useful shortly.

Lemma 4. For any ε > 0, we have μ	{|Si() − p2i| > εp2i} ≤ 2−ε2p2i/3.

Towards calculating the rate of a random function, we first calculate the
average output-input ratio for an arbitrary continuous function on 2ω using the
following lemma.

Extraction Rates 53

Lemma 5. Let F :⊆ 2ω → 2ω be a continuous functional and let 	 : 2<ω →
{0, 1, B} label F . Then for any n ∈ ω,

Avg(F, λ, n) =
1
n

n∑

i=1

2−iSi().

Proof. For each σ ∈ {0, 1}n, |f�(σ)| = |{i : 	(σ � i) ∈ {0, 1}}|. Thus whenever
	(τ) ∈ {0, 1} for τ of length i, there are 2n−i extensions σ of τ of length n for
which we count an additional bit towards the value f�(σ) . In particular, this
implies that

∑
σ∈2n |f�(σ)| =

∑n
i=1 2n−iSi(). Thus, it follows that

Avg(F, λ, n) =
1
n

∑

σ∈2n

2−n|f�(σ)| =
1
n

n∑

i=1

2−iSi().

��
Note that if for each i ≥ 1 we have Si() = p2i, the expected value of Si,

then it follows from Lemma 5 that Avg(F, λ, n) = p. Similarly, for a fixed ε > 0,
if |Si()− p2i| ≤ εp2i for each i, then |Avg(F, λ, n)− p| ≤ pε. To ensure that this
average approaches p for a sufficiently random function, we consider a precise
sequence of the values to plug in for ε, which will allow us to establish the next
result.

Theorem 1. Let μ be a Bernoulli measure on 3ω with each pi > 0 and let
p = p0 + p1, that is, p is the probability that 	x(σ) ∈ {0, 1} for x ∈ 3ω. Let
F :⊆ 2ω → 2ω be a μ-random continuous function. Then

Rate(F, λ) = p.

Proof. For i ≥ 1, let εi = εn/2i2. Then εip2i = εnp2i/2i2, and by Lemma 4 we
have

μ	({|Si() − p2i| > εnp2i/2i2}) ≤ 2−ε2n2p2i/12i4 .

It follows that the probability that |Si() − p2i| > εip2i holds for any i ≤ n is at
most

∑n
i=1 2−ε2n2p2i/12i4 .

On the other hand, if |Si() − p2i| ≤ εip2i holds for each i ≤ n, then by
Lemma 5, Avg(F, λ, n) differs from p by at most

1
n

n∑

i=1

2−iεip2i =
1
n

n∑

i=1

εnp/2i2 = pε

n∑

i=1

1/2i2.

Since
∑∞

i=1 1/2i2 < 1, it follows in this case that |Avg(F, λ, n) − p| ≤ pε.
Now we are ready to define our μ-Martin-Löf test for any function F for

which Avg(F, λ, n) stays too far from p. For n ≥ 1, let ε = δn = n−1/2. Let Un

be the set of codes x ∈ 3ω such that |Si(x) − p2i| > n1/2p2i/2i2 for some i ≤ n.
Then if x /∈ Un, we have |Avg(F�, λ, n) − p| ≤ pn−1/2. Thus, for ε = n−1/2, the
calculations above show that

54 D. Cenzer et al.

μ(Un) = μ	

⎛

⎝
⋃

1≤i≤n

{	 ∈ 32<ω

: |Si() − p2i| > (δn)ip2i}
⎞

⎠ ≤
n∑

i=1

2−np2i/12i4 .

Next we observe that the function g(i) = 2i/12i4 for i ≥ 1 has an absolute
minimum at i = 6; denote the rational number g(6) = 26/12 · 64 by q. Then we
have 2−npg(i) ≤ 2−npq for all n, i ≥ 1.

Let t < pq also be a positive rational, so that pq − t > 0, and so that
2−n(pq−t) < 1. As limn→∞ n/2n(pq−t) = 0, let N ≥ 1 be such that for all n ≥ N ,
n ≤ 2n(pq−t). Given n ≥ N , slight rearrangement of this inequality gives us that
n2−npq ≤ 2−nt < 1.

Now, observe that for n ≥ N , we have

n∑

i=1

2−np2i/12i4 =
n∑

i=1

2−npg(i) ≤
n∑

i=1

2−npq = n2−npq ≤ 2−nt.

Thus μ(Un) ≤ 2−nt for every n ≥ N .
Now, given n ≥ N , let kn be the index of the lexicographically-greatest

σ ∈ 2<ω of length n, so that if m ∈ ω and σm has length ≤ n, then m ≤ kn.
Since Si only counts labels attached to strings of length i, x �→ Si(x) only
requires the first ki bits of x. Thus x �→ 〈S1(x), . . . , Sn(x)〉 ∈ ω requires the
first kn bits of x, and so

Un =
⋃

1≤i≤n

{Si(x�kn
) − p2i| > (δn)ip2i}

is clopen. In particular, the sequence (Un)n≥N = (UN+n)n∈ω is uniformly clopen.
Now, if we let Vm =

⋃
n>m+N Un, then (Vm)m∈ω is uniformly c.e., and for m ∈ ω

we also have μ(Vm) ≤ ∑
n>m+N 2−nt ≤ 2−(m+N)t. The sequence (Vm)m∈ω is our

desired test.
If F is a Martin-Löf random function, then F must pass this test, and there-

fore there is some x ∈ 3ω such that F = Fx and x /∈ Vm for some m. It follows
that x /∈ Un for all n > m + N , and thus for all such n,

|Avg(F, λ, n) − p| ≤ pn−1/2.

We then have
Rate(F, λ) = lim sup

n→∞
Avg(F, λ, n) = p.

��
Corollary 1. For any online random continuous function F , Rate(F, λ) = 1.

We can also show that for any random function F , this rate is attained by
each sufficiently random input.

Extraction Rates 55

Theorem 2. Let F :⊆ 2ω → 2ω be a μ-random continuous functional for a
Bernoulli measure μ on 3ω, where μ gives probability p = p0 + p1 that 	x(σ) ∈
{0, 1} for a code x ∈ 3ω. If x is any μ-Martin-Löf random code for F and A ∈ 2ω

is Martin-Löf random relative to x, then

lim
n→∞ OIfx

(A � n) = Rate(F, λ) = p.

Proof. Let x ∈ 3ω be a μ-Martin-Löf random code such that F = Fx. Given
a sequence A ∈ 2ω that is Martin-Löf random relative to x, it follows from
the computability of the measure μ and van Lambalgen’s theorem that x is μ-
Martin-Löf random relative to A (see [VL90] or [DH10, Corollary 6.9.3]). Since
the sequence (A � n)n∈ω is A-computable, we can view the values 	x(A � n)n∈ω

as being randomly chosen from {0, 1, B} with the probability that 	x(A � n) ∈
{0, 1} equal to p.

Now, we have |fx(A � n)| = |{i < n : 	x(A � i) ∈ {0, 1}|. By Chernoff’s
Lemma (Lemma 4), we see that for any n ∈ ω, the probability that

∣
∣|fx(A �

n)| − pn
∣
∣ < pnε, or equivalently that

∣
∣
∣
∣
|fx(A � n)|

n
− p

∣
∣
∣
∣ < pε,

is at most 2−ε2pn/3. Thus we may take Un to be the set of A such that
∣
∣
∣
∣
|fx(A � n)|

n
− p

∣
∣
∣
∣ < pn− 1

3 ,

and observe that μ(Un) ≤ 2−pn1/3/3.
Now we observe that for any c > 0, cn

1
3 > 2 log n for sufficiently large n and

that 2−2 log n = n−2. Let Vm =
⋃

n>m Un. Then μ(Vm) ≤ ∑
n>m n−2 < m−1, for

sufficiently large m. Fix M ∈ ω be such that μ(Vm) < m−1 for all m ≥ M , and
consider the sequence (VM + m)m∈ω. Again we see that the Un are uniformly
clopen and so the Vm are uniformly c.e., and hence (VM+m)m∈ω is a Martin-Löf
test relative to x. If A passes the test (VM+m)m∈ω, then for some m, we have
A /∈ VM+m and hence A /∈ Un for all n > M + m. It follows that

∣
∣
∣
∣
|fx(A � n)|

n
− p

∣
∣
∣
∣ < pn− 1

3 ,

for sufficiently large n and therefore limn→∞ OIF (A � n) = p = Rate(F, λ). ��
Observe that in this result, we have not proven that limn→∞ OIF (A�n) =

Rate(F, λ) = p. Indeed, we have only proven that the output-input rate of a
μ-random representation along a relatively random sequence agrees with the
average rate of the induced random functional. As it is not necessarily the case
that a random representation will be the canonical one, we will need to relate
the behavior of the canonical representation and a random representation in the
limit. These are the main results of the paper.

56 D. Cenzer et al.

We first consider the case of online functionals. Recalling that our Bernoulli
parameters are p0 = q, p1 = r and p2 = s, we first consider the case when s =
0. These corresponding μ-random functionals are the so-called online random
functionals from [CP15,CR18]. We will assume without loss of generality that
q ≤ r < 1.

Recall that an online functional F is one that yields one bit of output for
every bit of input, that is, F has a representation f with |f(σ)| = |σ|, for all
σ. Thus each such functional F has a unique labeling 	 : 2<ω \ ε → {0, 1}, and
hence a unique code x ∈ 2ω. Further, when s = 0, 2ω is a Π0

1 class of μ-measure
one in 3ω; that is, the set of (codes for) online functionals form a Π0

1 class of
measure one. Thus no μ-Martin-Löf randoms have a 2, and thus all are codes
for online functionals.

We now prove for every μ-random online continuous functional F and every
Martin-Löf random sequence A relative to a μ-random code for F , A has F -
output-input ratio that attains Rate(F, λ) = 1.

Theorem 3. Let μ be a computable Bernoulli measure on 2ω with p0, p1 > 0
and let F be a μ-random continuous online functional with μ-Martin-Löf random
code x. Let φ = φF be the canonical representation of F . Then for any A ∈ 2ω

Martin-Löf random relative to x,

OIF (A) = lim
n→∞

|φF (A � n)|
n

= 1.

Proof. Let p0 = q and p1 = r. We first note that |f(σ)| = |σ| ≤ |φ(σ)| for all σ
by the definition of an online function and of the canonical representation. The
following lemma is needed.

Lemma 6. For all sufficiently large k and all strings σ,

μ({y ∈ 2ω : |φFy
(σ)| ≥ |σ| + k}) ≤ 2−k.

Proof. Given k ∈ ω and a string σ, let pk,σ = μ({y ∈ 2ω : |φFy
(σ)| ≥ |σ| + k}).

For any y, |φFy
(σ)| ≥ k if and only if there is a string ρ of length k such that,

for all τ of length k, f(σ�τ) = f(σ)�ρ. This means that for any i < k, and all
τ of length i, the outputs f(σ�τ) are all the same. Now there are 2i strings τ

of length i and either the ouputs are all 0, which happens with probability q2i

,
or they are all 1, which happens with probability r2i

. Therefore

pk,σ ≤ (q2 + r2)(q4 + r4) · · · · · (q2k

+ r2k

).

It follows that pk ≤ 2r2(2r4) · · · · · (2r2k

) ≤ 2kr2k

. Since r < 1, r = 2−t for
some t > 0. If k is large enough so that t · 2k > 2k, then 2kr2k

= 2k2−t2k

=
2k−t2k

< 2−k.
This concludes the proof of the lemma. ��

Extraction Rates 57

Now, by the lemma, we can take K ≥ 0 be such that for all k ≥ K and all
m ∈ ω,

μ({y ∈ 2ω : |φFy
(A � m)| ≥ m + k}) ≤ 2−k.

In addition to K, we require one more modulus to define the A-Martin-Löf test
we wish to use. Fix δ ∈ Q

+. Since δ ∈ Q, 2−δ is a computable real, as is 1− 2−δ.
In particular, η = 1−2−δ is lower semicomputable; let (xn)n∈ω be an increasing
computable sequence of rationals such that limn xn = η. Find the least N such
that 0 < xN < η, and find the least k such that 2−k ≤ η; denote this least k by
Kδ ∈ ω. By construction, the function δ �→ Kδ is a computable map Q

+ → ω.
Now, given δ ∈ Q

+, we have that for all k ≥ Kδ,

2−k < 1 − 2−δ

so that for all such k,

2−k

1 − 2−δ
< 1.

With this in mind, let K ′
δ = max{K,Kδ}. Note that δ �→ K ′

δ is a computable
map.

For every δ ∈ Q
+ and n,m ∈ ω, define the set

Uδ,n,m = {y ∈ 3ω : |φFy
(A � m)| ≥ m + mδ + K ′

δ + n}.

Finally, for every δ ∈ Q
+ and n, define

Vδ,n =
⋃

m>n

Uδ,n,m.

It can be shown that, for every δ ∈ Q
+, the sequence (Vδ,n)n∈ω is an A-

Martin-Löf test, by our choice of K ′
δ.

We now return to our fixed online functional F with A-Martin-Löf random
code x. Given δ ∈ Q

+, x passes the A-Martin-Löf test (Vδ,n)n∈ω, so there is an
index, say n, such that x �∈ Vδ,n. Thus, given m > n, we have

|φ(A � m)| < m + mδ + K ′
δ + n.

Recall that because φF represents an online functional, we have |σ| = |fx(σ)| ≤
|φF (σ)| for every string σ. It follows that m ≤ |φ(A � m)|. Dividing by m (non-
zero since m > n ≥ 0), we find that

1 ≤ |φ(A � m)|
m

< 1 + δ +
K ′

δ + n

m
.

58 D. Cenzer et al.

Since m > n was arbitrary, it follows that

1 ≤ lim sup
m→∞

|φ(A � m)|
m

≤ lim sup
m→∞

(

1 + δ +
K ′

δ + n

m

)

= lim
m→∞

(

1 + δ +
K ′

δ + n

m

)

= 1 + δ.

Because δ ∈ Q
+ was arbitrary, it follows that

lim sup
m→∞

|φ(A � m)|
m

≤ 1 + δ

for every such δ. But then we get that lim supm→∞ |φ(A � m)|/m = 1. Finally,

lim sup
m→∞

|φ(A � m)|
m

≤ 1 ≤ lim inf
m→∞

|φ(A � m)|
m

,

and so limm→∞ |φ(A � m)|/m = 1, as desired.
Part (b) follows from Theorem 1 and the fact that the set of inputs A which

are Martin-Löf random with respect to F has Lebesgue measure one. ��
Note that this result is a special case of the following theorem; we will reduce

a more general case to this special case in the next proof.
We now generalize Theorem 3 to the case of a general Bernoulli measure.

Theorem 4. Let μ be a Bernoulli measure on 3ω with p2 < 1 and p0, p1 > 0,
and let F be a μ-random continuous functional with μ-Martin-Löf random code
x and corresponding representation fx, and let φ be the canonical representation
of F . Then for any A ∈ 2ω Martin-Löf random relative to x,

lim
n→∞

|φF (A � n)|
|fx(n)| = 1.

Moreover, limn→∞ OIF (A � n) = Rate(F, λ) = p.

Proof. As before, let q = p0, r = p1, and s = p2. We have two cases.

Case I: We first consider the case where 1/2 ≤ s < 1, so that the set of codes
for total functionals does not have μ-measure 1; in this case, some μ-random
functionals will be partial.

For any string τ , let p(τ) be the probability that for any X ∈ 2ω, τ ≺
F (X). Certainly p(ε) = 1. We calculate p(τ) by induction on string-length. This
recursive calculation of p requires us to find p(0�τ) and p(1�τ); we will give the
details for p(0�τ), and the formula for p(1�τ) will be similar, mutatis mutandis.
Recall that q is the probability, for any given σ, that 	x(σ) = 0. Let p = p(0�τ)
and let u = p(τ).

First, observe that, for x ∈ 3ω and X ∈ 2ω, if i ≺ Fx(X), then 	x(0), 	x(1) �=
(1 − i). Thus p(0) ≤ (1 − r)2 and p ≤ (1 − q)2. Per our convention, we have
assumed that q ≤ r < s, so 1 − r ≤ 1 − q, and so p(0), p(1) ≤ (1 − q)2.

Extraction Rates 59

Now, assume that p(τ) = u is given. We compute p(0�τ) = p. We have three
subcases:

Subcase 1: f(0) = 0 = f(1) – this occurs with probability q2 · u2.

Subcase 2: f(0) = B and f(1) = 0 or f(0) = 0 and f(1) = B – this has
probability 2qsp · u.

Subcase 3: f(0) = f(1) = B – this occurs with probability s2 · p.
Thus we obtain the quadratic equation

p = s2p2 + 2rsup + r2u2q2,

which has solution

p =
1 − 2rsu ± √

(1 − 2rsu)2 − 4s2r2u2

2s2
=

1 − 2rsu ± √
1 − 4rsu

2s2
.

Using the fact that u ≤ 1 and r < 1 − s, it is not hard to show that p+ =
(1 − 2rsu +

√
1 − 4rsu)/2s2 > 1, which would contradict that μ is a probability

measure, so that

p =
1 − 2rsu − √

1 − 4rsu

2s2
. (1)

Here are the details. Since u ≤ 1 and r < 1−s, we have 1−2rsu+
√

1 − 4rsu >
1 − 2(1 − s)s +

√
1 − 4(1 − s)s. Simplifying, we get that

1 − 2(1 − s)s +
√

1 − 4(1 − s)s = 1 − 2s + 2s2 +
√

1 − 4s + 4s2

= 1 − 2s + 2s2 +
√

(2s − 1)2

= 1 − 2s + 2s2 + 2s − 1 since s ≥ 1/2

= 2s2,

and so
1 − 2(1 − s)s +

√
1 − 4(1 − s)s

2s2
= 1.

We now see that p+ > 1, as claimed, so that

p = (1 − 2rsu − √
1 − 4rsu)/2s2

To obtain an upper bound for p, we first show that 1−2rsu+
√

1 − 4rsu ≥ 1/2.
Indeed, since p is defined, we have 1 − 4rsu ≥ 0. But then rsu ≤ 1/4, and so
−2rsu ≥ −1/2, and so 1 − 2rsu ≥ 1/2. Thus 1 − 2rsu +

√
1 − 4rsu ≥ 1/2.

60 D. Cenzer et al.

Multiplying top and bottom of the RHS of (1) by the rational conjugate of the
numerator and then simplifying, we find that

p =
2r2u2

1 − 2rsu +
√

1 − 4rsu
.

Because 1 − 2rsu +
√

1 − 4rsu ≤ 1/2, we get that p ≤ 4r2u2. Because r < 1/2,
we find that p < u2. That is,

p(1�τ) < p(τ)2. (2)

Notice that we only used that u ≤ 1 and r < 1/2 to derive (2). Because
q < 1/2, a similar argument gives that p(0�τ) ≤ p(τ)2.

Thus we have that for all τ , p(0�τ), p(1�τ) < p(τ)2. Since p(0), p(1) < (1− q)2,
it follows by a straightforward induction that for any τ of length k,

p(τ) < (1 − q)2
k

,

Because 1− q < 1, there is a positive rational t < 1 such that 1− q < 2−t. Thus,
a straightforward induction shows that p(τ) < 2−t2k

for any string τ of length k.
As there are 2k strings of length k, the probability pk = μ{x ∈ 3ω : |φFx

(σ)| ≥
|fx(σ)| + k} is less than 2k · 2−t2k

= 2−(t2k−k). Given k such that 21−kk ≤ t, we
have 2−(t2k−k) ≤ 2−k, so that pk < 2−k for all such k. Let K be the least such
k such that 21−kk ≤ t.

The remainder of the proof, including the construction of the μ-Martin-Löf
tests, is similar to the end of the proof of Theorem 3. That is, we fix A ∈ 2ω and
may show that if F has a μ-Martin-Löf random code x which is random relative
to A, then limm→∞ |φF (A � m)|/|f(A � m| = 1. For q ∈ Q

+, we let Kδ and
K ′

δ be defined similarly as in the proof of Theorem 3. We also define the classes
Uδ,n,m and Vδ,n similarly as in that proof, with

Uδ,n,m = {y ∈ 3ω : |φFy
(A�m)| ≥ |f(A�m)| + mδ + K ′

δ + n},

and Vδ,n =
⋃

m>n Uδ,n,m. Letting the family of (Vδ,n)n∈ω for δ ∈ Q
+ be our

desired μ-Martin-Löf tests, we will have that limn→∞ |φF (A�n)|/|fx(A�n)| = 1.

Case II: Next, we suppose that s < 1
2 , so that the set of codes for total func-

tionals is a Σ0
1 class of μ-measure one, and so that all μ-random functions are

total. Given a code x ∈ 3ω inducing a total functional F = Fx with label 	 = 	x,
we will first use totality of F to define an online labeling function 		 with corre-
sponding representation function g = gx and online functional G = Gx. We will
then show that, for any string σ and any k ∈ ω,

{y ∈ 3ω : |φFy
(σ)| ≥ |fy(σ)| + k} ⊆ {y ∈ 3ω : |φGy

(σ)| ≥ |σ| + k}, (3)

Extraction Rates 61

so that the measure of the left-hand set is at most the measure of the right-hand
set. Lemma 6 then gives us that there is a natural, say K, such that for any
string σ and for all k ≥ K,

μ({Fy is online and φFy
(σ) ≥ |σ| + k}) ≤ 2−k,

and so μ({|φFy
(σ)| ≥ |fy(σ)| + k}) ≤ 2−k for all σ and all k ≥ K. Given A ∈ 2ω

that is Martin-Löf random relative to our code x and a δ ∈ Q
+, we may yet

again define the μ-Martin-Löf test (Vδ,n)n∈ω, as in the proof of Theorem 3.
That limn→∞ |φF (A�n)|/|f(n)| = 1 will follow as it did in that proof, mutatis
mutandis.

The online functional G is defined via a function θ : 2<ω → 2<ω. Let
θ(ε) = ε. For any σ, let θ(σ�0) = θ(σ)�0m+1, where m is the least such that
	(σ�0m+1) �= B. Similarly, let θ(σ�1) = θ(σ)�1n+1, where n is the least such
that 	(σ�1n+1) �= B. Define the online labeling 	∗ by setting 	∗(σ) = 	(θ(σ)),
for any string σ. Then, for X ∈ 2ω, let Θ(X) =

⋃
n θ(X � n); it is easy to see

that the online labeling 		 induces F ◦ Θ, and so this composition is an online
functional. Note that the map x �→ Gx is well-defined on the set of total func-
tionals, since if x ∈ 3ω and Fx is total, then for any σ and i ∈ {0, 1}, there is an
m ∈ ω such that 	x(σ�im+1) �= B–otherwise, there would be some σ such that
Fx(σ�iω) is undefined. Thus θx(σ) is defined for every σ, and so the composition
Gx = Fx ◦ Θx is defined. (In particular, x �→ Gx is almost total with respect
to μ.)

To establish the inclusion (3), let x ∈ 3ω. Observe that for all σ, we have
φFx

(θx(σ)) � φFx◦Θx
(σ), and so |φF (θ(σ))| ≤ |φFx◦Θx

(σ)| for all σ. Given a
string σ and k ∈ ω, suppose that |φFx

(θx(σ))| ≥ |θx(σ)| + k. Then, as |θx(σ)| >
|σ|, we have |φFx

(θx(σ))| ≥ |σ| + k. Because |φF (θx(σ))| ≤ |φFx◦Θx
(σ)|, we have

|φFx◦Θx
(σ)| ≥ |σ|+ k. The inclusion in (3) now follows, as claimed, finishing the

case.
To conclude the argument for Case II, recall from Theorem 2 that

lim
n→∞

|fx(A�n)|
n

= lim
n→∞ OIfx

(A�n) = OIfx
(A) = Rate(F, λ) = p.

It follows that

lim
n→∞

|φF (A�n)|
n

= lim
n→∞

|φF (A�n)|
fx(A�n)

· |fx(A�n)|
n

= lim
n→∞

|φF (A�n)|
fx(A�n)

· lim
n→∞ OIfx

(A�n)

= 1 · OIfx
(A) = Rate(F, λ)

concluding the proof. ��
We also have the following corollary.

62 D. Cenzer et al.

Corollary 2. Every μ-random continuous functional F is almost total.

Proof. Let F be a μ-random continuous functional, let x be a μ-Martin-Löf
random code for F , and let A ∈ 2ω be Martin-Löf random relative to x. It follows
from Theorem 4 that limn→∞ |φF (A � n)|/n = ∞ and therefore limn→∞ |φF (A �
n)| = ∞. Thus F (A) ∈ 2ω and A ∈ dom(F). It is well-known that for any Z, the
set of reals which are Martin-Löf random relative to Z has Lebesgue measure 1.
Thus F is almost total. ��

4 Conclusions and Open Questions

We showed that a random continuous functional F with representation φ has an
average output/input rate of p, where p is the probability that |φ(σ�i)| > |φ(σ)|
for a string σ. Furthermore, if A is Martin-Löf random with respect to F , then
the output/input rate of F on input A is p. This result was shown to be robust
in that it holds with respect to the canonical representation of F .

We conclude with some open questions. The most interesting problem would
be to prove (partial) converses to the main results. For example, can we show
that A is Martin-Löf random if and only if, for all online functions F such
that A is Martin-Löf random relative to F and - for which Rate(F, λ) exists,
OIF (A � n) = Rate(F, λ).

It is easy to see that there are computable functions for which Rate(F, λ)
exists, but is not realized by any input. That is, F can have an output/input
rate of 0 on inputs starting with 0 and a rate of 1 on inputs starting with 1, so that
Rate(F, λ) = 1

2 . Can we show that a continuous online functional F , for which
Rate(F, λ) exists, is random continuous if and only if, for all inputs A which are
Martin-Löf relatively random to a code for F , OIF (A � n) = Rate(F, λ)?

Here is another topic to consider: one might define a variation of online
computability where, say, exactly two bits of input are used to compute one bit
of output. Presumably, the output/input rate would be 1

2 .

References

[BBC+08] Barmpalias, G., Brodhead, P., Cenzer, D., Remmel, J.B., Weber, R.: Algo-
rithmic randomness of continuous functions. Arch. Math. Logic 46(7–8),
533–546 (2008)

[Che52] Chernoff, H.: A measure of asymptotic efficiency for tests of a hypothesis
based on the sum of observations. Annals Math. Stat. 23(4), 493–507 (1952)

[CP15] Cenzer, D., Porter, C.P.: Algorithmically Random Functions and Effective
Capacities. In: Jain, R., Jain, S., Stephan, F. (eds.) TAMC 2015. LNCS,
vol. 9076, pp. 23–37. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-17142-5 4

[CP22] Cenzer, D., Porter, C.P.: Randomness extraction in computability theory.
Computability (2022). https://doi.org/10.3233/COM-210343

https://doi.org/10.1007/978-3-319-17142-5_4
https://doi.org/10.1007/978-3-319-17142-5_4
https://doi.org/10.3233/COM-210343

Extraction Rates 63

[CR18] Cenzer, D., Rojas, D.A.: Online Computability and Differentiation in the
Cantor Space. In: Manea, F., Miller, R.G., Nowotka, D. (eds.) CiE 2018.
LNCS, vol. 10936, pp. 136–145. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-94418-0 14

[DH10] Downey, R.G., Hirschfeldt, D.R.: Algorithmic randomness and complexity.
Springer (2010). https://doi.org/10.1007/978-0-387-68441-3

[FP20] Franklin, J.N.Y., Porter, C.P.: Key developments in algorithmic random-
ness. In Johanna N.Y. Franklin and Christopher P. Porter, editors, Algo-
rithmic Randomness: Progress and Prospects, volume 50 of Lecture Notes
in Logic. Cambridge University Press (2020)

[Kau91] Steven M. Kautz. Degrees of random sets. ProQuest LLC, Ann Arbor, MI,
1991. Thesis (Ph.D.)-Cornell University

[KY76] Knuth, D.E., Yao, A.C.: The complexity of nonuniform random num-
ber generation. In: Algorithms and complexity (Proc. Sympos., Carnegie-
Mellon Univ., Pittsburgh, Pa., 1976), pp. 357–428 (1976)

[LZ70] Levin, L., Zvonkin, A.K.: The complexity of finite objects and the develop-
ment of the concepts of information and randomness of means of the theory
of algorithms. Uspekhi Mat. Nauk 25, 85–127 (1970)

[Nie09] Nies, A.: Computability and randomness, volume 51 of Oxford Logic
Guides. Oxford University Press (200

[Per92] Peres, Y.: Iterating von Neumann’s procedure for extracting random bits.
Ann. Statist. 20, 590–597 (1992)

[SUV17] Shen, A., Uspensky, V.A., Vereshchagin., N.: Kolmogorov complexity and
algorithmic randomness, vol. 220. American Mathematical Soc (2017)

[VL90] Van Lambalgen, M.: The axiomatization of randomness. J. Symbolic Logic
55(3), 1143–1167 (1990)

[vN51] Neumann, J.v.: Various techniques used in connection with random digits.
Appl. Math Series 12, 36–38 (1951)

https://doi.org/10.1007/978-3-319-94418-0_14
https://doi.org/10.1007/978-3-319-94418-0_14
https://doi.org/10.1007/978-0-387-68441-3

Reservoir Computing with Nanowire
Exchange-Coupled Spin Torque Oscillator

Arrays

Matt Dale1,3, Richard F. L. Evans2, Angelika Sebald3,
and Susan Stepney1,3(B)

1 Department of Computer Science, University of York, York, UK
{richard.evans,angelika.sebald,susan.stepney}@york.ac.uk

2 School of Physics, Engineering and Technology, University of York, York, UK
3 York Cross-disciplinary Centre for Systems Analysis, University of York, York, UK

Abstract. Spin torque oscillators (STOs) feature transient non-linear
behaviour that can be exploited for computation. When combined in
arrays, they can be networked to produce more complex collective
behaviours than single devices alone. We simulate a physical reservoir
computer comprising an array of STOs, using a macro spin approximation.
We demonstrate that STOs can be networked together in arrays using
nanowires, and that by altering the properties of these nanowires we can
optimise the magnetic exchange coupling between the oscillators for com-
putational purposes. We train a simulated array of coupled oscillators to
compute various time-independent and time-dependent benchmark tasks.
We explore the effects of array size, heterogeneous coupling, and connec-
tion topologies. We demonstrate the computational potential of program-
ming the exchange coupling in arrays of oscillators through nanowires.

1 Introduction

Spintronics uses the spin degree of freedom of the electron to reduce power con-
sumption and increase the data processing in electronics [38]. A spin torque
oscillator (STO), a specific type of magnetic tunnel junction, is a magnetic
multi-layer device, whose magnetisation oscillates when a spin polarised cur-
rent is injected. STOs are CMOS (complementary metal-oxide-semiconductor)
compatible [39] and have a low power draw, so they can be connected to exist-
ing devices with relative ease. Their state of dynamic equilibrium makes STOs
an interesting candidate for unconventional computing models as their coupled
oscillations exhibit highly nonlinear behaviour when excited by an input field.

The computational capabilities of STOs have been explored both in simulation
and experimentally for various applications including neuromorphic computing [4,
12,15,18]. Various properties and modes of individual STOs have been exploited,
such as frequency, phase, and amplitude to perform computation [24]. Other work
has explored multiple oscillator architectures including a network of four coupled
spin-torque nano-oscillators to perform vowel recognition [29], and arrays (some
with different geometries) of STOs connected via dipolar fields [4,18].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Genova and J. Kari (Eds.): UCNC 2023, LNCS 14003, pp. 64–78, 2023.
https://doi.org/10.1007/978-3-031-34034-5_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-34034-5_5&domain=pdf
http://orcid.org/0000-0003-3146-5401
https://doi.org/10.1007/978-3-031-34034-5_5

Reservoir Computing with Nanowire Exchange-Coupled STO Arrays 65

Here we explore arrays of oscillators directly exchange coupled via connect-
ing nanowires. Exchange coupling using nanowires enables additional degrees of
freedom in array design, such as network topology, as well as the potential to
reconfigure or tune coupling strengths for device training. To explore the com-
putational power provided by direct coupling, we simulate a macro spin approxi-
mation [5] of an insulating nanowire exchange-coupled STO array. We apply the
reservoir computing framework, providing the theoretical model of computation
used to exploit the device. We explore different configurations of STO arrays
including material properties, types of connectivity, and possible STO network
topologies. The results in this work show competitive performance across four
different computational tasks, highlighting the potential of these new magnetic
network devices for multiple applications.

2 Spin Torque Oscillators for Reservoir Computing

2.1 Individual Oscillators

STOs are multi-layered magnetic nanostructures. These are typically three layer
systems of two nanomagnets sandwiching a non-magnetic layer. The first ferro-
magnetic layer has a fixed magnetisation whilst the second layer’s magnetisation
is allowed to move freely.

When a current is injected through the device, it is spin polarised to align
with the direction of the magnetisation of the fixed layer. When the polarised
current passes into the non-fixed magnetic layer, there is a transfer of spin angu-
lar momentum between the conduction electrons and the magnetic layer due to
the conservation of spin angular momentum [23]. This transfer of spin angular
momentum, or spin torque, is called the spin transfer torque (STT) effect. It
causes the magnetisation of the free layer to tilt towards or away from the fixed
magnetisation depending on the direction of the current [21]. The non-magnetic
layer prevents direct exchange between the two magnetic layers.

This spin torque has two normally conservative components, the in-plane
and out-of-plane torque. The in-plane torque, or damping-like torque, lies anti-
parallel to the Gilbert damping [25]; as such it acts to reduce the process of
the free magnetisation tending towards the effective magnetic field Heff (see
Fig. 1a). Beyond a certain critical current density through the layers there is
a spontaneous precession of the magnetisation due to the in-plane torque [3].
Similarly, the out-of-plane torque, or field-like torque, is anti-parallel to the field
precession. These two material dependent terms provide handles on the spin
precession that allows for the design of spin torque devices [21].

The spin transfer effect can be used for many novel applications, including
the next generation of random access memory [20], random number generation
[11], new logic components [27], and high-data-transfer readers [30].

2.2 Coupled Oscillators

It is possible to build a delay-line reservoir computer [1] using a single STO.
This method creates a network of virtual nodes through time multiplexing [28].

66 M. Dale et al.

Fig. 1. (a) A vector diagram showing the competing spin torque and field terms. (b)
Two spin torque oscillators (blue, red) with a connecting nanowire (white). (Color
figure online)

High performance has been reported on several tasks, including speech recogni-
tion [36]. Building a more standard multi-node reservoir computer, as presented
here, requires coupling a network of STOs, to allow information to propagate
and interact.

The coupling of STOs is typically governed by spin-wave or dipolar coupling.
To exploit these effects, STOs must be placed in close proximity, within microm-
eter distances. They can also be connected electrically through synchronisation
using self-emitted radio frequency (rf) currents [31]. Forced synchronisation can
be used to suppress the thermal fluctuation of the oscillation trajectory of the
STO [37].

Here we consider STOs coupled by an insulating nanowire of parameterisable
width and length, giving a ‘dog bone’ shape (Fig. 1b). Preliminary simulation
experiments (not reported here) show that the exchange coupling scales lin-
early with the number of atoms in the system. A wide range of exchange values
are possible by changing the nanowire’s width and length, demonstrating that
nanowire geometry allows for controllable coupling of oscillators.

A 2D array of electrically isolated STOs can be interconnected by these non-
conducting magnetic nanowires mediating the exchange coupling. Using mod-
ern deposition techniques, it is entirely plausible to fabricate such devices and
nanowires in a single layer, by successive patterning and backfill. (See Fig. 2 for
a schematic illustration of two connection topologies.)

Typical sizes for the applications here are nanoscale, roughly 20–50 nm in
diameter so that the STOs remain a single magnetic domain. Nanowire diameters
of 10 nm are possible with current deposition technology. Nanowire lengths of
5–1000 nm would give very different levels of coupling.

We assume that patterned leads can be used to allow individual excitation
and measurement of each node. Although this would be challenging to fabricate,
is not impossible. The focus of this work is on the computational capacity of
such a device.

Reservoir Computing with Nanowire Exchange-Coupled STO Arrays 67

Fig. 2. Schematic STO array connectivity and topology. STOs are connected via
nanowires, which control exchange coupling strength. Exchange coupling strength may
be uniform across the array or varied individually by varying nanowire parameters.
(left) A grid topology, with a maximum of four connection wires per STO. (right)
A ring topology, with two connection wires per STO. Input signals are injected into
individual STOs; here in simulation these are chosen via an evolutionary optimisation
process.

Fig. 3. (a) The Echo State Network computational model of a recurrent neural network
(RNN) with random input and internal weights, and trained output weights. (b) A
physical realisation of the computational model, replacing the internal RNN with a
physical dynamical system. Only the outputs are trained. Figure from [33].

2.3 Physical Reservoir Computing

Reservoir Computing in general, and the Echo State Network model in particular
[17], is a form of computational model that combines a random recurrent neural
network (RNN) with a training algorithm that trains only the output weights
(Fig. 3a). It is well-suited to tasks requiring classification of time-dependent
inputs.

The internals of the RNN can be treated as a black box; this allows the RNN
model to be replaced with another suitable non-linear dynamical system, and in
particular, a suitable physical material (Fig. 3b); see, for example, [8].

The use of a physical material exploits the natural dynamics of the material,
proving a potentially low power intrinsic computational device. This natural
dynamics will have its own natural timescales, and so the input will need to be
matched to these timescales.

68 M. Dale et al.

3 Simulation Approach

3.1 Simulation Method

Before fabricating physical devices, it is helpful to simulate them, in order to
determine if they have suitable dynamics for use as a reservoir computer. The
VAMPIRE simulator [10] has previously been used to investigate the computa-
tional properties of magnetic films [7]. Here we apply it to STO arrays.

The simulation of magnetic systems is complex and a variety of methods can
be employed. Here, we use VAMPIRE to apply both atomistic and micromag-
netic simulations. In the micromagnetic simulation the Heun integration of the
Landau Lifshitz Gilbert equation is used [14], which performs the time evolution
of the macrospin for a magnetic material.

∂M
∂t

= − γ

(1 + α2)
(M × Heff) − γα

(1 + α2)
[M × (M × Heff)] (1)

where M is the normalised magnetisation vector, γ = 1.76 × 1011 J/T/s is the
absolute value of gyromagnetic ratio, α is the intrinsic Gilbert damping constant
and Heff denotes the effective field acting on each STNO including contributions
from exchange, anisotropy, external fields and spin-transfer torques [25].

3.2 Macro Spin Approximation

To explore reservoir computing, multiple oscillators and connections are needed.
We approximate the nanowire structure using a macro-spin model to reduce
computational time. A single oscillator is treated as a single macro spin; this
is a reasonable approximation since these STOs are below the Stoner radius
for a single domain particle [34,35]. The presented spin torque devices are not
vortex type so there is minimal variance in the spin across a single node. The
macro spin model reduces simulation run time by approximating hundreds or
thousands of electrons per oscillator with a single spin represented by a unit cell.
The underlying physics is identical. The devices act as two macro spins with an
effective exchange.

In the preliminary nanowire model (§2.2), the exchange energy between STOs
is defined by the nanowire width. Here, in the macro spin model, we generalise
the effects of nanowire exchange coupling, and allow other means of exchange
coupling as well. In a physical system, it is plausible to alter exchange coupling
by exploiting the temperature dependence of exchange coupling [10] rather than
nanowire widths. This would allow reconfiguration of the exchange coupling
post-fabrication.

Using VAMPIRE’s custom unit cell files describing atomic positions and
interaction lists, we also investigate custom array topologies, types of STO con-
nectivity, and individual exchange coupling strengths.

The STO reservoir array features a range of material and simulation param-
eters. We select appropriate parameters by using a basic optimisation algorithm

Reservoir Computing with Nanowire Exchange-Coupled STO Arrays 69

(§4.1). These parameters include the Gilbert damping of the material with a
range of [0.01, 1] (dimensionless), the spin transfer relaxation torque [−1, 1] Tesla,
precession torque [0, 1] Tesla, torque asymmetry [0, 1] (dimensionless), global
applied field strength [0.15, 0.25] Tesla, input signal scaling to each STO [−1, 1],
and the exchange field 0.01 − 1 Tesla. Some parameters are fixed during sim-
ulation including the uniaxial anisotropy (−9 × 104 J m−3), material magnetic
moment (1.44× 106 J T−1 m−3), and temperature at zero Kelvin. This range of
parameters allows us to explore a wide variety of STOs.

The arrays are initially connected in a basic Cartesian grid of STOs. Each
STO is connected via bidirectional nanowires to their nearest neighbours, with
each node having four connections, unless at the grid edge. Other connection
topologies are explored later.

3.3 Inputs and Outputs

Input to the simulated reservoir is encoded in the magnitude of the applied field.
Outputs are decoded from the z components of the spin states.

3.4 Transients and Timescales

The internal timescale of a physical system determines factors such as processing
speed, transient behaviour, and memory. Matching the timescale of the task
input and physical system is crucial to using such devices to solve computational
problems.

Physical systems typically have a fixed internal timescale. By varying the
system input and output sample frequency it is possible to exploit their rate
response in different ways. For example, sampling the output faster can simulate
longer transient behaviour, relative to the slower input data rate.

Here, we demonstrate how a fixed timescale system and sample-and-hold
input rates can be used to tackle time-dependent and time-independent tasks.
In the case of the time-dependent task, we exploit the inherent transient dynam-
ics of continuous physical system where the influence of the previous inputs /
system state affects the next state, i.e., some memory persists. With our system,
we find a simulated input and readout frequency of 133 GHz (7.5 ps) produces
and records desirable transient behaviour. In the time-independent case, we con-
tinuously drive the system with the same input sample, forcing the system to
washout previous transient behaviour and settle to a consistent state. After an
optimised number of samples, the state is then collected and used for further
processing.

70 M. Dale et al.

4 Simulation Experiments

4.1 Experimental Procedure

Here, optimisation is carried out on simulation parameters related to material
properties of the oscillators, their array connectivity, and input signals.

A simple steady-state genetic algorithm (GA) [16] is used to search for opti-
mal configurations of the STO array. Parameters under optimisation include the
globally applied field strength; exchange coupling; input signal strength to indi-
vidual STOs; the spin transfer relaxation, precession, and asymmetry torque;
Gilbert damping; and, input sample-and-hold duration.

The GA has a population of 10 individuals and evolves for 1000 generations,
where each generation consists of: selection – a tournament of two random indi-
viduals from the population; cross-over – winning individual inherits a percent-
age of genes from the genotype; point-mutation on a percentage of genes from
the genotype; and, evaluation of new phenotype representing STO arrays – this
consists of configuring the array, applying reservoir training, and evaluation of
separate test data.

Results are presented for the best individual of the evolved population, for
each of 10 different evolutionary runs.

We evaluate performance using two classification tasks (spiral and diabetes),
system modelling (NARMA-10), and speech recognition (Japanese vowels). The
classification tasks are time-independent and the others are time-dependent. A
description and list of parameters relating to each task is given in the Appendix.

4.2 Effect of Array Size

We investigate the effect of array size on task performance. Two array sizes are
investigated: 36 STOs in a 6×6 grid, and 64 STOs in an 8×8 grid. All nanowires
are constrained to be the same size.

The results are given in Fig. 4. Typically, task performance improves signifi-
cantly for the larger array size. Only the vowel recognition task shows no signifi-
cant improvement, maintaining a statistically similar performance and averaging
an accuracy of roughly 96.5%. The larger array (64) manages to correctly classify
all classes on the spiral task, resulting in a 100% accuracy. On average, both do
well miss-classifying only a few instances. Performance on the diabetes database
is competitive to a range of methods in the literature [26, table 3]; the larger
64 node array can reach approximately 94% accuracy. On the NARMA-10 task,
the larger array has a significantly smaller (better) normalised root mean square
error (NRMSE) [22, p.661] value; performance is comparable with 50 node RNN
reservoirs [32, fig 9].

Reservoir Computing with Nanowire Exchange-Coupled STO Arrays 71

Fig. 4. Task performance against array size, for tasks (a) Spiral, (b) Diabetes, (c)
NARMA-10, (d) Vowels. All four tasks are evaluated across two array sizes: 36 and 64
STOs. A large array tends to result in better performance across all tasks, although
no significant improvement for vowels task is seen.

4.3 Effect of Nanowire Size

In the array size experiments above (§4.2), each nanowire is set to the same width
(which is found through optimisation) resulting in a homogeneous network, i.e.,
all connections having the same strength. Here, we explore arrays with individual
connection strengths which are now optimised.

Having more connections and free parameters in a network results in greater
control, and typically improves the fit of the model to the task data. Exploring
individual connection strengths provides a larger parameter space to optimise
the array. However, it is unclear whether this can improve the performance of
the proposed system.

Figure 5 compares homogeneous and heterogeneous networks on the spiral
and NARMA-10 task. For both tasks, we see a significant difference in their
performances when optimised. For the spiral task, on average, heterogeneous
networks result in a lower accuracy. For the NARMA-10 task, heterogeneous
networks lead to a smaller (better) normalised mean squared error. The former
case is counter to what we might expect, of improved performance with more
free parameters. However, the latter agrees with our expectations.

On the other tasks, we see on average an improved performance, however,
these are not statistically significant. Examples of the best performing arrays
are given in Fig. 6.

72 M. Dale et al.

Fig. 5. Task performance with homogeneous (Hm) and heterogeneous (Ht) connections
(64 node STO array), for tasks (a) Spiral, (b) NARMA-10.

Having more free parameters to optimise also presents a challenge, in
this case, the random initialisation of the individual exchange couplings could
increase the difficulty of the optimisation process. Giving the search process
more time to explore the increased search space would likely lead to improved
performances.

4.4 Effect of Connectivity Topology

Network topology has been shown to have a significant affect on the information
processing of a reservoir [6,13,19]. The topologies of physical reservoirs are in
many circumstances constrained by the complexity of physical wiring. Simple
topologies such as rings and grids are easy to implement compared to other
networks featuring nodes with many-to-many connections or long distance con-
nections.

Here, we demonstrate the effects of topology on task performance for an
STO array. The basic grid topology comprises nodes with a maximum of four
connections; the ring topology has two connections for each node (Fig. 2). We
consider homogeneous networks with 64 STO nodes formed into rings and grids.
We assume the distance between the STOs is large enough that we can neglect
any interference from dipolar interactions between unconnected nodes.

The optimised performance of each topology on the diabetes classification
and vowels recognition tasks are given in Fig. 7. There is no statistically signifi-
cant difference between the ring and the grid. Despite having fewer connections,
the ring topology does not typically result in poorer performance. The optimi-
sation process still manages to find comparable performances, suggesting good
solutions are as abundant as grid networks.

Reservoir Computing with Nanowire Exchange-Coupled STO Arrays 73

Fig. 6. Example of best performing STO arrays on different tasks: (a) Confusion matrix
and accuracy on vowels task. (b) Trained output on the nonlinear two-class spiral
dataset. Class is determined by location within the spiral pattern. Decision boundary
of classes is highlighted in purple. (c) Target sequence (black) and trained output (red)
of the reservoir array. (Color figure online)

Fig. 7. Task performance versus topology, for tasks (a) Diabetes, (b) Vowels. Results
are for 64 node homogeneous arrays. Two topologies are compared: grid and ring. The
ring topology typically has similar performance to the grid.

74 M. Dale et al.

5 Discussion

Connectivity and topology play critical role in the dynamical properties of net-
works. In [6], it is found that simpler topologies, such as the ring, possess more
limited degrees of freedom in terms of dynamical behaviour compared to topolo-
gies with nodes with greater in-degree connections, e.g., a lattice or a torus.
However, in terms of task complexity, greater dynamical freedom is not always
necessary or even desirable. For example, a reservoir system that can possess
some degree of non-linearity and a memory capacity of roughly 10 time-steps in
the past typically performs well on the NARMA-10 task. Anything more than
this can even begin to hinder task performance.

What we find here is that, at these array sizes, and for most tasks, there is
no significant difference between topologies. The chosen tasks are simple enough
to fit neatly within the dynamical range of our system.

6 Conclusions

We have investigated the effect of connecting multiple STOs using nanowires,
and find a reasonable degree of control of the exchange coupling. This con-
trol of the coupling allows fine tuning of the reservoir dynamics. By optimising
the array parameters we can perform different computational tasks, including
time-dependent and time-independent tasks. Despite relatively small numbers
of nodes (36 and 64), the STO arrays perform well across each task.

A Cartesian grid and ring are used here; more work is needed to determine
the effect of array configuration on the information processing of a reservoir.
For example, hexagonal grid configurations have more neighbours, which affects
how an input perturbation travels across the grid. Local scaling of the exchange
coupling between nodes might provide a similar effect.

The simulations performed here do not include thermal noise, which has a
significant effect on the magnetisation. The effect of noise might be overcome
by using multiple oscillators and averaging the output of the nodes. Along with
thermal noise, a physical implementation of the proposed device would need to
address the effect of defects in the fabrication.

Further investigation could look into the effects of shape anisotropy intro-
duced by the wire on the spins of the devices, as well as the effect of temperature.
The effect of non-zero temperature on the connecting nanowire should lower the
exchange value between oscillators; this could also have an effect on the mag-
netisation being used as the reservoir output.

Our simulation results, and the possibilities of these additional parameters,
suggest that the nanowire-coupled STO arrays can form a fruitful medium for
physical reservoir computing.

Acknowledgements. MD, SS, and AS acknowledge funding from the SpInspired
project, EPSRC grant EP/R032823/1. We thank Jed Bye for performing the pre-
liminary coupling simulations of Sect. 2.2. All experiments were carried out using the
University of York’s Super Advanced Research Computing Cluster (Viking).

Reservoir Computing with Nanowire Exchange-Coupled STO Arrays 75

A Benchmark Tasks

A.1 Spiral Classification

This task involves the nonlinear classification of two spirals in Cartesian space.
The dataset consists of 400 data points describing samples taken from two spirals
with random noise added. The task is to classify which spiral each sample belongs
to using only the (x, y) Cartesian coordinates. The spiral classes are encoded as
two outputs and the predicted class is chosen as the output with highest value
via a softmax function.

A.2 PIMA Indians Diabetes Classification

This dataset1 contains real-world data related to medical diagnosis. The objec-
tive of the dataset is to diagnostically predict whether or not a patient has dia-
betes, based on certain diagnostic measurements. The dataset consists of several
independent medical predictors including the BMI, blood pressure, and age of
females at least 21 years old of Pima Indian heritage.

The database consists of 768 records. There are 268 positive and 500 nega-
tive classes. Each class is one-hot encoded into separate reservoir outputs. All
input features (e.g., age) are normalised within [0, 1] before use. The training set
consists of 75% of samples, and test set 25%. Each sample is randomly chosen
from the database and each set maintains the same percentage of each class,
respectively.

A.3 NARMA-10

The NARMA (nonlinear autoregressive moving average) task [2] evaluates a
reservoir’s ability to model a 10-th order non-linear dynamical system. The task
contains both non-linearity and a long-term dependency created by the 10-th
order time-lag. The task is to predict the output y(n + 1) given by eq.(2) when
supplied with u(n) from a uniform distribution of interval [0, 0.5]. For the 10-th
order systems α = 0.3, β = 0.05, δ = 10 and γ = 0.1.

y(n + 1) = αy(n) + βy(n)

(
δ∑

i=0

y(n − i)

)
+ 1.5u(n − δ)u(n) + γ (2)

A total of 5,000 values are generated and split into: 3,000 training, 1,000
validation, and 1,000 test. The first 50 values of each sub-set are discarded as
an initial washout period.

1 available from https://data.world/data-society/pima-indians-diabetes-database.

https://data.world/data-society/pima-indians-diabetes-database

76 M. Dale et al.

A.4 Japanese Vowels

The Japanese vowels dataset [9] consists of time-series data for multi-speaker
classification. The data contains utterances of two Japanese vowels ‘ae’ by nine
different male speakers. The dataset consists of 270 training utterances (30 utter-
ances by 9 speakers) and 370 different utterances for testing (24–88 utterances
by the same 9 speakers). Each utterance is pre-processed using linear prediction
analysis into a discrete-time series of between 7–29 frames in length with twelve
LPC cepstral coefficients.

Both the training and test data are randomly shuffled, because the original
dataset groups each speaker into consecutive blocks. After every utterance is ran
through the reservoir, the states of all nodes are concatenated for training. To
decide on the final predicted speaker, a softmax function is used. This assigns
a probability to each speaker, with the highest probability used to assign the
predicted speaker.

References

1. Appeltant, L., et al.: Information processing using a single dynamical node as com-
plex system. Nature Commun. 2, 468 (2011). https://doi.org/10.1038/ncomms1476

2. Atiya, A.F., Parlos, A.G.: New results on recurrent network training: unifying the
algorithms and accelerating convergence. IEEE Trans. Neural Netw. 11(3), 697–
709 (2000). https://doi.org/10.1109/72.846741

3. Berger, L.: Emission of spin waves by a magnetic multilayer traversed by a current.
Phys. Rev. B 54, 9353–9358 (1996)

4. Checinski, J.: Synchronization properties and reservoir computing capability of
hexagonal spintronic oscillator arrays. J. Magn. Magn. Mater. 513, 167251 (2020)

5. Chen, T., et al.: Comprehensive and macrospin-based magnetic tunnel junction
spin torque oscillator model- part I: analytical model of the MTJ STO. IEEE
Trans. Electron Devices 62(3), 1037–1044 (2015). https://doi.org/10.1109/ted.
2015.2390411

6. Dale, M., O’Keefe, S., Sebald, A., Stepney, S., Trefzer, M.A.: Reservoir comput-
ing quality: connectivity and topology. Natural Comput. 20(2), 205–216 (2020).
https://doi.org/10.1007/s11047-020-09823-1

7. Dale, M., et al.: Reservoir computing with thin-film ferromagnetic devices (2021),
arXiv:2101.12700 [cs.ET]

8. Dale, M., Miller, J.F., Stepney, S., Trefzer, M.A.: Reservoir computing in material
substrates. In: Nakajima, K., Fischer, I. (eds.) Reservoir Computing. NCS, pp. 141–
166. Springer, Singapore (2021). https://doi.org/10.1007/978-981-13-1687-6 7

9. Dua, D., Graff, C.: UCI machine learning repository (2019), http://archive.ics.uci.
edu/ml

10. Evans, R., Coopman, Q., Devos, S., Fan, W., Hovorka, O., Chantrell, R.: Atomistic
calculation of the thickness and temperature dependence of exchange coupling
through a dilute magnetic oxide. J. Phys. D Appl. Phys. 47(50), 502001 (2014)

11. Fukushima, A., Seki, T., Yakushiji, K., Kubota, H., Yuasa, S., Ando, K.: Spin
dice: random number generator using current-induced magnetization switching in
mgo-mtjs. SSDM2010 Extend. Abstract pp. 1128–1129 (2010)

12. Furuta, T., et al.: Macromagnetic simulation for reservoir computing utilizing spin
dynamics in magnetic tunnel junctions. Phys. Rev. Appl. 10(3), 034063 (2018)

https://doi.org/10.1038/ncomms1476
https://doi.org/10.1109/72.846741
https://doi.org/10.1109/ted.2015.2390411
https://doi.org/10.1109/ted.2015.2390411
https://doi.org/10.1007/s11047-020-09823-1
http://arxiv.org/abs/2101.12700
https://doi.org/10.1007/978-981-13-1687-6_7
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

Reservoir Computing with Nanowire Exchange-Coupled STO Arrays 77

13. Tetko, I.V., Kůrková, V., Karpov, P., Theis, F. (eds.): ICANN 2019. LNCS, vol.
11731. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30493-5

14. Gilbert, T.: Classics in magnetics a phenomenological theory of damping in ferro-
magnetic materials. IEEE Trans. Magn. 40(6), 3443–3449 (2004). https://doi.org/
10.1109/tmag.2004.836740

15. Grollier, J., Querlioz, D., Camsari, K., Everschor-Sitte, K., Fukami, S., Stiles, M.D.:
Neuromorphic spintronics. nature. Electronics 3(7), 360–370 (2020)

16. Harvey, I.: The microbial genetic algorithm. In: Kampis, G., Karsai, I., Szathmáry,
E. (eds.) ECAL 2009. LNCS (LNAI), vol. 5778, pp. 126–133. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-21314-4 16

17. Jaeger, H.: The echo state approach to analysing and training recurrent neural
networks – with an erratum note. Bonn, Germany: German National Research
Center for Information Technology GMD Technical Report 148(34), 13 (2001)

18. Kanao, T., Suto, H., Mizushima, K., Goto, H., Tanamoto, T., Nagasawa, T.: Reser-
voir computing on spin-torque oscillator array. Phys. Rev. Appl. 12(2), 024052
(2019)

19. Kawai, Y., Park, J., Asada, M.: A small-world topology enhances the echo state
property and signal propagation in reservoir computing. Neural Netw. 112, 15–23
(2019)

20. Khvalkovskiy, A., et al.: Basic principles of STT-MRAM cell operation in memory
arrays. J. Phys. D Appl. Phys. 46, 074001 (2013)

21. Locatelli, N., Cros, V., Grollier, J.: Spin-torque building blocks. Nature Mater
13(1), 11–20 (2014)

22. Lukoševičius, M.: A practical guide to applying echo state networks. In: Montavon,
G., Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade. LNCS,
vol. 7700, pp. 659–686. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-35289-8 36

23. Maekawa, S., Valenzuela, S.O., Kimura, T., Saitoh, E.: Spin Current. Oxford Uni-
versity Press (2017)

24. Marković, D.: Reservoir computing with the frequency, phase, and amplitude of
spin-torque nano-oscillators. Appl. Phys. Lett. 114(1), 012409 (2019)

25. Meo, A., Cronshaw, C.E., Jenkins, S., Winterburn, A., Evans, R.F.L.: Spin-
transfer and spin-orbit torques in the Landau-Lifshitz-Gilbert equation (2022).
10.48550/arXiv.2207.12071

26. Naz, H., Ahuja, S.: Deep learning approach for diabetes prediction using PIMA
Indian dataset. J. Diabete Metab. Disord. 19(1), 391–403 (2020). https://doi.org/
10.1007/s40200-020-00520-5

27. Prenat, G., Dieny, B., Guo, W., El Baraji, M., Javerliac, V., Nozieres, J.:
Beyond MRAM, CMOS/MTJ integration for logic components. IEEE Trans.
Magn. 45(10), 3400–3405 (2009)

28. Riou, M., et al.: Neuromorphic computing through time-multiplexing with a spin-
torque nano-oscillator. In: 2017 IEEE International Electron Devices Meeting
(IEDM). pp. 36.3.1–36.3.4 (2017)

29. Romera, M., et al.: Vowel recognition with four coupled spin-torque nano-
oscillators. Nature 563(7730), 230–234 (2018)

30. Sato, R., Kudo, K., Nagasawa, T., Suto, H., Mizushima, K.: Simulations and exper-
iments toward high-data-transfer-rate readers composed of a spin-torque oscillator.
IEEE Trans. Magn. 48(5), 1758–1764 (2012)

31. Sharma, R., et al.: Electrically connected spin-torque oscillators array for 2.4 GHz
wifi band transmission and energy harvesting. Nature Commun. 12(1), 1–10 (2021)

https://doi.org/10.1007/978-3-030-30493-5
https://doi.org/10.1109/tmag.2004.836740
https://doi.org/10.1109/tmag.2004.836740
https://doi.org/10.1007/978-3-642-21314-4_16
https://doi.org/10.1007/978-3-642-35289-8_36
https://doi.org/10.1007/978-3-642-35289-8_36
https://arxiv.org/abs/2207.12071
https://doi.org/10.1007/s40200-020-00520-5
https://doi.org/10.1007/s40200-020-00520-5

78 M. Dale et al.

32. Stepney, S.: Non-instantaneous information transfer in physical reservoir comput-
ing. In: Kostitsyna, I., Orponen, P. (eds.) UCNC 2021. LNCS, vol. 12984, pp.
164–176. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87993-8 11

33. Tanaka, G., et al.: Recent advances in physical reservoir computing: a review.
Neural Netw. 115, 100–123 (2019)

34. Tannous, C., Gieraltowski, J.: The Stoner-Wohlfarth model of ferromagnetism:
Static properties. arXiv preprint physics/0607117 (2006)

35. Terris, B.: Bit patterned magnetic recording media. In: Buschow, K.H.J., et al.
(eds.) Encyclopedia of Materials: Science and Technology, pp. 1–6. Elsevier (2011)

36. Torrejon, J., et al.: Neuromorphic computing with nanoscale spintronic oscillators.
Nature 547(7664), 428–431 (2017)

37. Tsunegi, S., et al.: Physical reservoir computing based on spin torque oscillator
with forced synchronization. Appl. Phys. Lett. 114(16), 164101 (2019)

38. Wolf, S.A., et al.: Spintronics: a spin-based electronics vision for the future. Science
294(5546), 1488–1495 (2001)

39. Zahedinejad, M., et al.: CMOS compatible W/CoFeB/MgO spin Hall nano-
oscillators with wide frequency tunability. Appl. Phys. Lett. 112(13), 132404 (2018)

https://doi.org/10.1007/978-3-030-87993-8_11

Tight Bounds on the Directed Tile
Complexity of a Just-Barely 3D 2 × N

Rectangle at Temperature 1

David Furcy(B), Scott M. Summers, and Hailey Vadnais

Computer Science Department, University of Wisconsin Oshkosh, Oshkosh,
WI 54901, USA

{furcyd,summerss,vadnah08}@uwosh.edu

Abstract. We study the problem of determining the size of the smallest
tile set in which a given target shape uniquely self-assembles in Winfree’s
abstract Tile assembly Model (aTAM), an elegant combinatorial model
of DNA tile self-assembly. This problem is also known as the directed
tile complexity problem. We work in a variant of the aTAM, restricted
to having the minimum binding strength threshold (temperature) set to
1 but mildly generalized to allow self-assembly to take place in a just-
barely 3D setting, where unit cubes are allowed to be placed in the z = 0
and z = 1 planes. Furcy, Summers and Withers recently proved lower
and upper bounds on the directed tile complexity of a just-barely 3D
k × N rectangle at temperature-1 of Ω

(
N

1
k

)
and O

(
N

1
k−1

+ logN
)
,

respectively. However, their upper bound does not hold for k = 2. We
close this gap for k = 2 by proving an asymptotically tight bound of
Θ(N) on the directed tile complexity of a just-barely 3D 2×N rectangle
at temperature-1. The proof of our lower bound is based on an algorithm
that uses a novel projection of a given just-barely 3D assembly onto an
equivalent, 2D assembly.

1 Introduction

Self-assembly, a ubiquitous occurrence in nature, generally involves numerous
seemingly simple, fundamental components, evolving through instances of local
interaction, eventually resulting in a final structure whose complexity is greater
than the sum of the complexities of its parts. In this paper, we study the theoret-
ical power of self-assembly in Winfree’s abstract Tile Assembly Model (aTAM)
[11], which is a discrete mathematical model of DNA tile self-assembly [9] and
simple enough to intuitively describe in one paragraph, which we do next.

Winfree’s aTAM is a combinatorial model of tile-based self-assembly, where
the fundamental self-assembling components are unit square tile types, to each
side of which there corresponds a glue comprised of a string label and a positive
integer strength. The aTAM restricts the number of tile types in the tile set
to be finite but infinitely many tiles of each type are assumed to exist. If two
tiles are placed next to each other at integer coordinates and the opposing glues
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Genova and J. Kari (Eds.): UCNC 2023, LNCS 14003, pp. 79–93, 2023.
https://doi.org/10.1007/978-3-031-34034-5_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-34034-5_6&domain=pdf
https://doi.org/10.1007/978-3-031-34034-5_6

80 D. Furcy et al.

match, then the tiles bind with the strength of the glue, thus creating a tile
assembly, or a mapping of integer coordinates to tile types, of size 2. Before the
process of self-assembly begins, a positive integer temperature value is specified,
which is usually 1 or 2, and a fixed seed tile is placed at a designated location
defining the initial seed-containing assembly. Self-assembly then proceeds via an
assembly sequence, where the seed-containing assembly may be grown by one
tile during each step if there exists a tile (of some type) that can be placed
at an unoccupied integer coordinate and bind to an existing tile belonging to
seed-containing assembly with strength at least the temperature and perhaps via
more than one glue. The steps of an assembly sequence continue until a terminal
assembly is reached to which no further tiles can bind. Note that the domain of
the terminal assembly technically defines a shape, or a set of connected integer
coordinates, which we say uniquely self-assembles in the given tile set if every
assembly sequence over the tile set results in the same terminal assembly.

One of the most widely studied optimization problems in the aTAM concerns
finding the smallest tile set in which a given target shape uniquely self-assembles
at some temperature, also known as the problem of determining the directed tile
complexity of a given target shape X ⊆ Z2, at some temperature. This problem
has been studied with respect to several classes of shapes, e.g., squares [1,5,8],
rectangles [2] and algorithmically-specified finite shapes [10]. In this paper, we
are particularly interested in studying the directed tile complexity of rectangles
and in Winfree’s aTAM model restricted to temperature 1 and mildly generalized
to a just-barely 3D setting (see also [3], where 3D unit cubes are allowed to be
placed in both the z = 0 and z = 1 planes).

In fact, this is the setting in which Furcy, Summers and Withers recently
proved lower and upper bounds on the directed tile complexity of a just-barely 3D
k×N rectangle at temperature 1, of Ω

(
N

1
k

)
and O

(
N

1
k−1 + logN

)
, respectively

[4]. Note that their upper bound does not hold for k =2 but it is easy to see that
the directed tile complexity of a just-barely 3D 2 ×N rectangle at temperature
1 is O(N) at temperature 1.

To that end, note that that a straightforward construction testifying to the
fact that the directed tile complexity of a just-barely 3D 2×N rectangle is based
on the simple idea of having N unique tile types self-assemble along the x-axis
in a linear fashion, starting from the seed tile, where the east and west glues of
each tile type effectively encodes the position of each tile type along the path.
Assuming each tile type along the path has a glue pointing to the north and
above (to the z = 1 plane), then two additional tile types can be used to place a
tile at every other location in a just-barely 3D 2 ×N rectangle.

During the self-assembly of the previously described tile set, every tile that
binds initially does so via a glue that points either west, south or down (to the
z=0 plane). It is natural to ask whether it is possible to asymptotically reduce the
directed tile complexity of a just-barely 3D 2×N rectangle via a tile set, the self-
assembly of which follows a more convoluted pattern. One example is a zig-zag
pattern, where some tiles initially bind via a glue that points either east, or up (to
the z = 1 plane) while other tiles initially bind via a glue that points either west,

Tile Complexity of a Just-Barely 3D 2 × N Rectangle at Temperature 1 81

or down. In our main result, we answer this question negatively: the directed
tile complexity of a just-barely 3D 2 × N rectangle is Ω(N), regardless of how
convoluted the self-assembly pattern might be. Our main result effectively closes
the previous gap from Furcy, Summers and Withers, giving an asymptotically
tight bound of Θ(N) on the directed tile complexity of a just-barely 3D 2 × N
rectangle at temperature 1.

While our main result of an asymptotically tight bound of Θ(N) for the
directed tile complexity of a just-barely 3D 2 ×N rectangle at temperature 1 is
perhaps unsurprising to the expert reader and seemingly incremental, our proof
technique uses a novel projection of a just-barely 3D assembly sequence onto an
equivalent 2D assembly sequence. Our projection technique essentially allows us
to reason about a 3D assembly sequence as though it is self-assembling in 2D.

2 Preliminaries

In this section, we define the aTAM, as well as some specific notation needed for
the proof of our main result.

2.1 The Abstract Tile Assembly Model

In this subsection, we briefly define Winfree’s aTAM (see also [7,8]).
A grid graph is an undirected graph G = (V,E), where V ⊂Z3, such that, for

all
{
�a,�b

}
∈E, �a−�b is a 3-dimensional unit vector. The full grid graph of V is the

undirected graph Gf
V =(V,E), such that, for all �x, �y∈V , {�x, �y}∈E ⇐⇒ ‖�x−�y‖=1,

i.e., if and only if �x and �y are adjacent in the 3-dimensional integer Cartesian
space.

A 3-dimensional tile type is a tuple t ∈ (Σ∗ × N)6, e.g., a unit cube, with six
sides, listed in some standardized order, and each side having a glue g ∈Σ∗ × N
consisting of a finite string label and a nonnegative integer strength. We assume
a finite set of tile types, but an infinite number of copies of each tile type, each
copy referred to as a tile. A tile set is a set of tile types and is usually denoted
as T .

A configuration is a (possibly empty) arrangement of tiles on the integer
lattice Z3, i.e., a partial function α : Z3

⇢T . Two adjacent tiles in a configuration
bind, interact, or are attached, if the glues on their abutting sides are equal
(in both label and strength) and have positive strength. Each configuration α
induces a binding graph Gb

α, a grid graph whose vertices are positions occupied
by tiles, according to α, with an edge between two vertices if the tiles at those
vertices bind. An assembly is a connected, non-empty configuration, i.e., a partial
function α : Z3

⇢ T such that Gf
dom α is connected and dom α ≠∅. Given τ ∈Z+,

α is τ -stable if every cut-set of Gb
α has weight at least τ , where the weight of an

edge is the strength of the glue it represents. When τ is clear from context, we
say α is stable. Given two assemblies α, β, we say α is a subassembly of β, and
we write α ⊑ β, if dom α ⊆ dom β and, for all points �p ∈ dom α, α(�p) = β(�p).

82 D. Furcy et al.

A 3-dimensional tile assembly system (TAS) is a triple T = (T, σ, τ), where
T is a tile set, σ : Z3

⇢ T satisfying |dom σ| = 1 is the seed assembly (trivially
τ -stable), and τ ∈ Z+ is the temperature. Given two τ -stable assemblies α, β, we
write α→T

1 β if α⊑β and |dom β\dom α|=1. In this case we say α T -produces β
in one step. If α→T

1 β, dom β\dom α={�p}, and t=β(�p), we write β =α+ (�p �→ t).
The T -frontier of α is the set ∂T α=

⋃
α→T

1 β(dom β\dom α), i.e., the set of empty
locations at which a tile could stably attach to α. The t-frontier of α, denoted
∂T

t α, is the subset of ∂T α defined as
{

�p ∈ ∂T α
∣∣ α→T

1 β and β(�p) = t
}

.
Let AT denote the set of all assemblies of tiles from T , and let AT

<∞ denote
the set of finite assemblies of tiles from T . A sequence of k ∈Z+∪{∞} assemblies
�α = (α0, α1, . . .) over AT is a T -assembly sequence if, for all 1 ≤ i < k, αi−1→

T
1 αi.

The result of an assembly sequence �α, denoted as res(�α), is the unique limiting
assembly (for a finite sequence, this is the final assembly in the sequence). We
write α→T β, and we say α T -produces β (in 0 or more steps), if there is a T -
assembly sequence α0, α1, . . . of length k=|dom β\dom α|+1 such that (1) α=α0,
(2) dom β=

⋃
0≤i<k dom αi, and (3) for all 0≤i<k, αi⊑β. We say α is T -producible

if σ →T α, and we write A[T] to denote the set of T -producible assemblies. An
assembly α is T -terminal if α is τ -stable and ∂T α = ∅. We write A

◻
[T] ⊆A[T]

to denote the set of T -producible, T -terminal assemblies. If |A
◻
[T]| = 1 then T

is said to be directed.
In general, a 3-dimensional shape is a set X ⊆ Z3, such that Gf

X is con-
nected. For a finite shape X ⊆ Z

3, define x− = min {x | (x, y, z) ∈X} and
x+ =max {x | (x, y, z) ∈X}. The quantities y−, y+, z− and z+ can be defined sim-
ilarly. Then, we say that the horizontal extent of X is x+ − x−. The vertical and
stacked (vertical with respect to the z-axis) extents are defined similarly. We
say X is just-barely 3D if it has stacked extent 1. We say the furthest extreme
column of a shape X ⊆Z3 from a location (x, y, z) ∈X to be ({x−} × Z × Z)∩X,
if |x− − x| ≥ |x+ − x| and ({x+} × Z × Z) ∩ X otherwise.

We say that a TAS T self-assembles X if, for all α ∈ A
◻
[T], dom α = X,

i.e., if every terminal assembly produced by T places a tile on every point
in X and does not place any tiles on points in Z

3\X. We define the tile
complexity of a shape X at temperature τ , denoted by Kτ

SA(X), as the min-
imum number of distinct tile types of any TAS that self-assembles it, i.e.,
Kτ

SA(X)=min {n | T = (T, σ, τ) , |T | = n and T self-assembles X }. We say that a
TAS T uniquely self-assembles a shape X⊆Z3 if A

◻
[T]={α} and dom α=X. The

directed tile complexity of a shape X at temperature τ is the minimum number
of distinct tile types of any TAS that uniquely self-assembles (USA) X, denoted
by Kτ

USA(X)=min {n | T = (T, σ, τ) , |T | = n and T uniquely self-assembles X }.

2.2 Window Movies

The next two paragraphs contain definitions and notation that were taken
directly from [6]. We include them verbatim for the sake of consistency.

A window w is a set of edges forming a cut-set of the full grid graph of Z3.
Given a window w and an assembly α, a window that intersects α is a partitioning

Tile Complexity of a Just-Barely 3D 2 × N Rectangle at Temperature 1 83

of α into two configurations (i.e., after being split into two parts, each part may
or may not be disconnected). In this case we say that the window w cuts the
assembly α into two non-overlapping configurations αL and αR, satisfying, for all
�x ∈dom αL, α(�x)=αL(�x), for all �x ∈dom αR, α(�x)=αR(�x), and α(�x) is undefined
at any point �x ∈ Z3\ (dom αL ∪ dom αR). Given a window w, its translation by
a vector �Δ, written w + �Δ is simply the translation of each one of w’s elements
(edges) by �Δ. All windows in this paper are assumed to be induced by some
translation of the yz-plane. Each window is thus uniquely identified by its x
coordinate. For a window w and an assembly sequence �α, we define a glue window
movie M to be the order of placement, position and glue type for each glue that
appears along the window w in �α, regardless of whether the glue (eventually)
forms a bond. Given an assembly sequence �α and a window w, the associated
glue window movie is the maximal sequence M�α,w = (�v1, g1) , (�v2, g2) , . . . of pairs
of grid graph vertices �vi and glues gi, given by the order of appearance of the
glues along window w in the assembly sequence �α. We write M�α,w +

�Δ to denote
the translation by �Δ of M�α,w, yielding

(
�v1 + �Δ, g1

)
,
(
�v2 + �Δ, g2

)
,

If �α follows s, then the notation M�α,w ↾ s denotes the restricted glue window
submovie (restricted to s), which consists of only those steps of M�α,w that place
glues that form positive-strength bonds that cross w at locations belonging to
the simple path s. Let �v denote the location of the starting point of s (i.e., the
location of σ). Let �vi and �vi+1 denote two consecutive locations in M�α,w ↾ s that
are located across w from each other. We say that these two locations define
a crossing of w, where a crossing has exactly one direction. We say that this
crossing is away from �v (or away from σ) if the x coordinates of �v and �vi are
equal or the x coordinate of �vi is between the x coordinates of �v and �vi+1.

2.3 Sufficiently Similar Restricted Glue Window Submovie
Definition and a Corresponding Lemma

To prove our main result, we use a technique that relies on the following submovie
similarity introduced by Furcy, Summers and Withers (Definition 3 of [4]):

Definition 1. Assume: T = (T, σ, 1) is a 3D TAS, α ∈A[T], s is a simple path
in Gb

α starting from the location of σ, �α is a sequence of T -producible assemblies
that follows s, w and w′ are windows, σ is not located between w and w′, �Δ ≠�0
is a vector satisfying w′

=w + �Δ, e and e′ are two odd numbers, and M =M�α,w ↾

s = (�v1, g1) , . . . , (�v2e, g2e) and M ′
=M�α,w′ ↾ s = (�v′

1, g
′
1) , . . . , (�v′

2e′ , g′
2e′) are both

non-empty restricted glue window submovies.
We say that M and M ′ are sufficiently similar if the following constraints

are satisfied:

1. same number of crossings: e = e′,
2. same set of crossing locations (up to translation):{

�vi +
�Δ

∣∣∣ 1 ≤ i ≤ 2e
}
=

{
�v′

j

∣∣ 1 ≤ j ≤ 2e
}
,

3. same crossing directions at corresponding crossing locations:{
�v4i−2 +

�Δ
∣∣∣ 1 ≤ i ≤ e+1

2

}
=

{
�v′
4j−2

∣∣ 1 ≤ j ≤ e+1
2

}
, and

84 D. Furcy et al.

4. same glues in corresponding “away crossing” locations:
for all 1 ≤ i, j ≤ e+1

2 , if �v′
4j−2 = �v4i−2 +

�Δ, then g′
4j−2 = g4i−3.

We will invoke the following Window Movie Lemma for directed, temperature-
1 self-assembly, introduced by Furcy, Summers and Withers (Lemma 5 of [4]):

Lemma 1. Assume: T = (T, σ, 1) is a directed, 3D TAS, k ∈ Z+, Xk ⊆ Z
3 is any

finite just-barely 3D shape with vertical extent k and finite horizontal extent,
s ⊆Xk is a simple path in the full grid graph of Xk from the location of the seed
of T to some location in the furthest extreme column of Xk such that there exists
a T -assembly sequence �α that follows s, w and w′ are windows, such that, �Δ ≠�0
is a vector satisfying w′

=w + �Δ, and e is an odd number satisfying 1 ≤ e < 2k. If
M =M�α,w ↾ s = (�v1, g1) , . . . , (�v2e, g2e) and M ′

=M�α,w′ ↾ s = (�v′
1, g

′
1) , . . . , (�v′

2e, g
′
2e)

are sufficiently similar non-empty restricted glue window submovies, then T does
not self-assemble Xk.

3 Main Result

In this section, we prove that the directed tile complexity of a just-barely 3D
2 × N rectangle at temperature 1 is Θ(N). This proof uses a new definition
of submovie similarity (with an associated, simplified counting argument) and
a new pumping argument. Before we define our simplified notion of submovie
similarity, we make the following observation:

Observation 1. When k = 2, each window cuts the just-barely 3D k × N rect-
angle in at most 4 locations. Therefore, the length of any restricted glue window
submovie is either 1 or 3. This observation extends to any shape with a vertical
extent equal to 2.

The following notion of “almost sufficient similarity” is a relaxed form of the
more general sufficient similarity (Definition 1), where only the first glues of the
two movies have to match.

Definition 2. Assume: T = (T, σ, 1) is a 3D TAS, α ∈A[T], s is a simple path
in Gb

α starting from the location of σ, �α is a sequence of T -producible assemblies
that follows s, w and w′ are windows, σ is not located between w and w′, �Δ≠�0 is
a vector satisfying w′

=w+ �Δ, e, e′
∈{1, 3}, and M=M�α,w↾s=(�v1, g1) , . . . , (�v2e, g2e)

and M ′
=M�α,w′ ↾ s = (�v′

1, g
′
1) , . . . , (�v′

2e′ , g′
2e′) are both non-empty restricted glue

window submovies.
We say that M and M ′ are almost sufficiently similar if the following con-

straints are satisfied:

1. same number of crossings: e = e′,
2. same ordered crossing locations (up to translation): for each 1≤i≤2e, �vi+

�Δ=�v′
i,

and
3. same glue at the first crossing: g1 = g′

1

Tile Complexity of a Just-Barely 3D 2 × N Rectangle at Temperature 1 85

Note that the definition of “almost sufficiently similar submovies” is both: (1)
stronger than that of “sufficiently similar submovies” since the former assumes
that all ordered crossing locations match pairwise after translation by �Δ and
that there are exactly either one or three crossings and (2) weaker since the
former assumes that only the glues at the first crossings match.

We now show that we need only examine a “very small” number of restricted
glue window submovies in order to find two almost sufficiently dissimilar ones.

Lemma 2. Assume: T =(T, σ, 1) is a 3D TAS, G is the set of all glues in T , X is
a just-barely 3D shape with a vertical extent equal to 2, s is a simple path starting
from the location of σ such that s ⊆X, �α is a T -assembly sequence that follows
s, m ∈Z+, for all 1 ≤ l ≤m, wl is a window, for all 1 ≤ l < l′ ≤m, �Δl,l′ ≠�0 satisfies
wl′ = wl +

�Δl,l′ , and for all 1 ≤ l ≤m, there exists el ∈ {1, 3} such that M�α,wl
↾ s

is a non-empty restricted glue window submovie of length 2el. If m > 28|G|, then
there exist 1 ≤ l < l′ ≤m such that el = el′ = e and M�α,wl

↾ s = (�v1, g1) , . . . , (�v2e, g2e)
and M�α,wl′ ↾ s = (�v

′
1, g

′
1) , . . . , (�v′

2e, g
′
2e) are almost sufficiently similar non-empty

restricted glue window submovies.

Note that the “almost sufficiently similar” relation is an equivalence relation.
The proof of Lemma 2 counts the number of distinct equivalence classes this
relation defines using a simplified version of the counting argument in the proof
of Lemma 1 [4]:

Proof. Let e be an element of {1, 3} and w be any window such that M =

M�α,w ↾ s = (�v1, g1) , . . . , (�v2e, g2e) is a non-empty restricted glue window sub-
movie. e represents the number of times that �α crosses w (going either away
from or toward the seed) as it follows s. We now consider two disjoint cases:

– If e = 1, there are four ways to choose the crossing location and, for each
one of them, there are |G| ways to choose the two glues that are placed at
this crossing. Hence, the number of distinct equivalence classes of almost
sufficiently similar submovies with one crossing is 4|G|.

– If e = 3, there are (as above) 4|G| ways to choose the location and glue of the
first crossing and, for each one of them, there are 3× 2 = 6 ways to choose the
locations of the two other crossings. Hence, the number of distinct equivalence
classes of almost sufficiently similar submovies with three crossings is 24|G|.

Therefore, the almost sufficiently similar relation partitions the set of all
possible restricted glue window submovies into 28|G| distinct equivalence classes.
Thus, if m>28|G|, then there are two numbers 1≤l<l′≤m, such that, for e=el=el′ ,
M =M�α,wl

↾ s= (�v1, g1) , . . . , (�v2e, g2e) and M ′
=M�α,wl′ ↾ s= (�v

′
1, g

′
1) , . . . , (�v′

2e, g
′
2e)

are two different, non-empty, almost sufficiently similar restricted glue window
submovies.

We now prove that the existence of two almost sufficiently similar restricted
glue window submovies is enough to prevent the unique self-assembly of any
finite shape with a vertical extent equal to 2.

86 D. Furcy et al.

Lemma 3. Assume: T = (T, σ, 1) is a directed, 3D TAS, X ⊆ Z3 is any finite
just-barely 3D shape with finite horizontal extent and a vertical extent equal to 2,
s ⊆X is a simple path in the full grid graph of X from the location of the seed of
T to some location in the furthest extreme column of X such that there exists a
T -assembly sequence �α that follows s, w and w′ are windows, such that, �Δ≠�0 is
a vector satisfying w′

=w+ �Δ, and e∈{1, 3}. If M =M�α,w↾s=(�v1, g1) , . . . , (�v2e, g2e)
and M ′

=M�α,w′ ↾ s = (�v′
1, g

′
1) , . . . , (�v′

2e, g
′
2e) are almost sufficiently similar non-

empty restricted glue window submovies, then T does not self-assemble X.

The proof of this lemma is split into two cases, namely e = 1 or e = 3. In each
case, we show that the two almost sufficiently similar submovies must actually
be sufficiently similar, thereby reducing each case to an application of Lemma 5
of [4].

To facilitate the proof of the non-trivial second case, we use the projection of
an assembly whose shape is a just-barely 3D rectangle (or, more generally, any
finite shape with a vertical extent equal to 2) onto the 2D xy-plane, as defined
visually in Fig. 1.

Fig. 1. a) Actual cross-section of the 2 × N rectangle b) After splitting the two halves
of the rectangle and performing a small rotation of its top half c) After the complete
180◦ rotation of the top half d) Sample assembly viewed from the top (as in the rest
of the paper) e) Same sample assembly shown (again, viewed from the top) in our 2D
projection. Note that, the assembly is the result of an assembly sequence placing tiles
along a simple path, and when the path exits through the south (resp., north) side of
the rectangle, it must re-enter the rectangle from the north (resp., south) side and at
the same x coordinate, which corresponds to a move up from the z = 0 plane to the
z = 1 plane (resp., down from the z = 1 plane to the z = 0 plane) in the actual rectangle
f) The path of the same projected assembly, shown as a polyline with arrow(s), when
individual tiles need not be differentiated.

Tile Complexity of a Just-Barely 3D 2 × N Rectangle at Temperature 1 87

Fig. 2. Taxonomy of crossing patterns for 3-crossing submovies in a just-barely 3D
shape with a vertical extent equal to 2. All twenty-four possible crossing patterns are
equivalent (up to rotation) to one of the representative patterns shown on the left. The
figure on the right depicts the 8 crossing patterns that are equivalent to the topmost
representative pattern shown on the left.

Proof. If e = 1, then each submovie contains only one pair of attached glues.
In this case, almost sufficient similarity implies sufficient similarity, since both
definitions assume that the first glues match.

The rest of the proof deals with the case e = 3, for which we now prove that,
if the glues at the first crossing are the same in both submovies, then the glues
at the third crossing of both submovies must also match, thereby making the
two submovies sufficiently similar.

Note that there exist 4 × 3 × 2 = 24 different ways of choosing the locations
and ordering of the crossings in a 3-crossing submovie. Figure 2 shows how each
one of these 24 crossing patterns is identical (up to rotation) to one of three
distinct “representative” crossing patterns. The rest of this proof deals explicitly
with the representative pattern shown at the bottom of Fig. 2a but can easily be
adapted to apply to either one of the other two representatives.

The top of Fig. 4 depicts a simple path s from the seed tile on the left side of
the shape (in this case, a projected just-barely 3D 2 ×N rectangle) to the black
tile on the right side of the rectangle. It also assumes the existence of two almost
sufficiently similar submovies called M (resp., M ′) with six positions labeled �v1
through �v6 (resp., �v′

1 through �v′
6) along the window labeled w (resp., w′). Since

M and M ′ are almost sufficiently similar, the glues on the east side of the tiles
at positions �v1 and �v′

1 are identical.
The main algorithm in Fig. 3 builds a new assembly sequence �β that starts

when the sub-assembly sequence of �α that ends in position �v′
1 has just finished

88 D. Furcy et al.

Fig. 3. The algorithm that proves that the glues between positions �v′
5 and �v′

6 in �α are
identical to the glues between positions �v5 and �v6 in �α. Pos2 (�α[i]) is the location in the
2D xy plane of the projection of Pos (�α[i]) according to the projection defined in Fig. 1.
The reader must be aware that the algorithm is embedded in the proof of Lemma 3
and thus has direct access to terms defined therein. This is why we do not explicitly
pass �α, and �v1, . . . , �v6 in as input to the algorithm.

Tile Complexity of a Just-Barely 3D 2 × N Rectangle at Temperature 1 89

assembling. This is represented, on Line 11 of the algorithm, by the initialization
of �β to the tile placement step at position �v′

1 in �α and of the index of the next
tile placement step (on Line 12) to the (to-be-translated) tile placement step at
position �v2 in �α. We now show that the glues on the east side of the tiles at
positions �v5 and �v′

5 must also be identical by tracing this algorithm, which will
end up placing at position �v′

5 the same tile that was placed at position �v5 in �α.
First, since �v′

1 is part of the first crossing of w′, no tiles have been placed on
the east side of w′ yet. Since the glue that sticks out on its east side is identical
to the east-side glue of the tile at position �v1, Loop 1 of the algorithm (Lines 13
through 15) makes a translated copy of the sub-assembly sequence from �v2 to �v3
and adds it to �β. Since T is directed, the type of tile that it places at location
�v′
3 is unique. Therefore, the type of tile that �α places at position �v′

3 must be the
same type of tile that �β just placed at that location. As a result, the west-facing
glue that sticks out at the second crossing of w′ in �β is identical to the glue
between the tiles at locations �v3 and �v4 in �α. �β can now be extended using the
tile type that �α placed at �v′

4, which must be the same tile type that �α placed at
�v4, since T is directed and could have (and therefore must have) placed that tile
after crossing w for the second time.

The second loop in our algorithm (see Lines 16 through 34 in Fig. 3) builds a
sub-assembly sequence from �v′

4 to �v′
5 that is appended to �β and guarantees that

the type of tile placed at �v′
5 is the same as the type of tile that was placed by �α at

�v5. To explain how this sub-assembly sequence is built, we call P (resp., P ′) the
projected sub-path from �v4 to �v5 (resp., from �v′

4 to �v′
5) in �α. Since our projection

maintains the adjacency of positions (modulo an invisible link between the north
and south sides of the shape), and P (resp., P ′) is a simple path, the union of
the positions in P (resp., P ′) and the positions on the west side of w (resp.,
w′) between �v5 and �v4 (resp., �v′

5 and �v′
4) together define a closed curve in the

binding graph of the shape. By the Jordan curve theorem, each one of these
paths divides the projection plane between an interior region and an exterior
region. Both of these interior regions are free of tiles, by construction of �α along
the simple path s.

In the example of Fig. 4a, each interior region of P and P ′ appears shaded as
two disconnected components labeled Pa and Pb (resp., P ′

a and P ′
b) due to the

fact that our projection splits and rotates the top half of the 3D shape.
Nevertheless, P is a continuous path whose interior region always lies to

its left. The same holds for P ′. As a result, any one-tile left turn made when
following one of these paths is guaranteed to belong to its interior region. This is
the crux of the proof of correctness of the second loop in our algorithm. Loop 2
in Fig. 3 builds and adds to �β a sub-assembly sequence whose path defines a new
closed region that remains entirely inside the intersection of the interior regions
defined by P ′ and the translation of P + �Δ, which guarantees that this path
cannot be blocked.

Each iteration of Loop 2 in our algorithm adds one tile placement step to
�β (on Line 19, 30, or 33). All of the other lines in Loop 2 are used to compute
the location of the next tile placement step in �β. The position of each placement

90 D. Furcy et al.

step lies either on P ′ (marked by a ● in Fig. 4), or P + �Δ (marked by a ▲ in
Fig. 4), or on both (marked by a in Fig. 4). In the latter case, the tile being
placed was the same at the corresponding locations in P and P ′, which is how
we end up getting the correct tile in position �v′

5, since both the first and last
positions in �β must be shared by P + �Δ and P ′ (since the two movies M and M ′

are almost sufficiently similar and thus always cross the windows in the same
row of the projected rectangle).

In the first iteration of Loop 2, �β is on both P + �Δ and P ′ and places at �v′
4

the tile shared by these two paths, indicated by a in Fig. 4b. At this point,
P ′ turns right to the north, whereas P keeps going straight towards the west,
as shown by the two arrows anchored at the . Lines 20 through 25 of the
algorithm detect that P is making a left turn away from P ′. In order for �β to
remain within the interior regions of both paths, it decides, on line 28, to follow
P only, as indicated by the second in Fig. 4c1.

In the second iteration, β finds itself back on both P + �Δ and P ′, with only
one direction it could move along, as indicated by the arrow in Fig. 4c. So, β
makes this move, as indicated by the middle in Fig. 4d. In fact, �β remains
on both paths for two additional iterations. When in the position marked by
the westernmost in Fig. 4d, there is a split between P + �Δ (which moves to
the south) and P ′ (which keeps moving to the west). The correctness of the
algorithm requires that β make a left turn and follow P + �Δ, as shown in Fig. 4e,
which also depicts the three following iterations. Note that the easternmost ●
corresponds to the sixth iteration where, for the first time, β is only following
P + �Δ (see Line 33). This remains the case for the seventh iteration whereas, on
the eighth iteration, �β is back on both paths with only one direction to move
in (see Line 28). However, in the following iteration, �β will have to make a left
turn again (Line 26).

Skipping ahead, Fig. 4f shows the changes in β after seven more iterations,
the last one of which shows the first time β follows P ′ exclusively (see Line 30
in the algorithm and the ▲ in Fig. 4f).

Figure 4g shows the last three iterations of the algorithm, ending at position
�v′
5.

Since each and every path segment making up �β has to be unblocked (because
each segment is either on P ′ or inside the (empty) interior region defined by P ′),
�β can always be assembled. In addition, since each and every subsequence of �β
was (or could have been) placed on P , it follows that this is the case as well for
the last tile placement in �β. In conclusion, the tile placed at �v′

5 must be identical
to the tile placed by �α at �v5 and M ′ is thus sufficiently similar.

The following result chains Lemmas 2 and 3 in this order. We will use the
contrapositive of the following lemma to prove our lower bound for K1

USA

(
R3

2,N

)
.

Lemma 4. Assume: T = (T, σ, 1) is a 3D TAS, G is the set of all glues in T , X
is a just-barely 3D shape with finite horizontal extent and a vertical extent equal

1 This is a because, at this location, both paths come together again.

Tile Complexity of a Just-Barely 3D 2 × N Rectangle at Temperature 1 91

Fig. 4. Tracing the algorithm in Fig. 3 on a sample �α with two almost sufficiently
similar glue window submovies whose crossing pattern is the bottommost representative
in Fig. 2a.

to 2, s ⊆X is a simple path in the full grid graph of X from the location of σ to
some location in the furthest extreme column of X in either z plane such that
there exists a T -assembly sequence �α that follows s, m ∈Z+, for all 1 ≤ l ≤m, wl

is a window, for all 1 ≤ l < l′ ≤m, �Δl,l′ ≠ �0 satisfies wl′ = wl +
�Δl,l′ , and for all

1 ≤ l ≤m, there is el ∈ {1, 3} such that M�α,wl
↾ s is a non-empty restricted glue

window submovie of length 2el. If m > 28|G|, then T does not self-assemble X.

92 D. Furcy et al.

Proof. The hypothesis of Lemma 2 is satisfied. So there exist 1≤l<l′≤m such that
e=el=el′ and M�α,wl

↾s=(�v1, g1) , . . . , (�v2e, g2e) and M�α,wl′ ↾s=(�v
′
1, g

′
1) , . . . , (�v′

2e, g
′
2e)

are almost sufficiently similar non-empty restricted glue window submovies.
Thus, the hypothesis of Lemma 3 is satisfied. It follows that T does not self-
assemble X.

Here is our main lower bound:

Theorem 1. Let N ∈ Z+. If XN is any finite just-barely 3D shape with vertical
and horizontal extents equal to 2 and N , respectively, then K1

USA (XN) =Ω(N).

Proof. Assume T = (T, σ, τ = 1) is a directed, 3D TAS that self-assembles XN .
Assume α ∈A

◻
[T] with dom α =XN . Let s = (�x0, �x1, . . . , �xn) be a simple path in

Gb
α, such that, {�x0}=dom σ and �xn is in the furthest extreme column of XN from

�x0. Since τ = 1, there is a T -assembly sequence �α that follows s. Assume N ≥ 3.
Since s is a simple path from �x0 to some location in the furthest extreme column
of XN , there is some positive integer m ≥

⌊
N
2

⌋
≥

N
3 such that, for all 1 ≤ l ≤m,

wl is a window that cuts XN , for all 1 ≤ l < l′ ≤m, there exists �Δl,l′ ≠�0 satisfying
wl′ = wl +

�Δl,l′ , and for each 1 ≤ l ≤ m, there exists a corresponding el ∈ {1, 3}
such that M�α,wl

↾ s is a non-empty restricted glue window submovie of length
2el. Moreover, wl cuts XN between the column in which �x0 is located and the
column in which �xn is located. Since T self-assembles XN , (the contrapositive
of) Lemma 4 says that m ≤ 28|G|. We also know that N

3 ≤m, which means that
N
3 ≤28|G|. Thus, we have N≤3·28|G| and it follows that |T |≥ |G|

6 ≥
1
6

N
3·28=

N
504=Ω(N).

We get the following new, lower bound for K1
USA

(
R3

2,N

)
.

Corollary 1. K1
USA

(
R3

2,N

)
=Ω(N).

The following is a corresponding upper bound, which can be proven using a
general construction based on the tile assembly example shown in Fig. 2(b) of
[8].

Lemma 5. K1
USA

(
R3

2,N

)
=O(N).

Fig. 5. An N + 1-tile construction for R3
2,N with the 1-tile as the seed tile

Proof. A 2×N rectangle can easily be constructed using N + 1 tiles (see Fig. 5),
thereby establishing a linear upper-bound on the temperature-1 tile complexity
of a just-barely 3D 2 ×N rectangle.

Tile Complexity of a Just-Barely 3D 2 × N Rectangle at Temperature 1 93

Combining this lemma and the preceding corollary yields the following new
tight bound on the directed tile complexity of a just-barely 3D 2 ×N rectangle
at temperature 1.

Corollary 2. K1
USA

(
R3

2,N

)
=Θ(N).

4 Conclusion

In this paper, we proved a tight bound of Θ(N) on the directed tile complexity
of a just-barely 3D 2 × N rectangle at temperature 1. The proof of our lower
bound is based on an algorithm that uses a novel projection of a given just-barely
3D assembly onto an equivalent, 2D cylindrical assembly. While the projection
technique that we use in this paper is limited to a just-barely 3D 2 ×N setting,
future research endeavors could uncover more general projections and study the
extent to which they could be applied to tile self-assembly.

References

1. Adleman, L.M., Cheng, Q., Goel, A., Huang, M.D.A.: Running time and program
size for self-assembled squares. In: Proceedings of the Thirty-Third Annual ACM
Symposium on Theory of Computing (STOC), pp. 740–748 (2001)

2. Aggarwal, G., Cheng, Q., Goldwasser, M.H., Kao, M.Y., de Espanés, P.M.,
Schweller, R.T.: Complexities for generalized models of self-assembly. SIAM J.
Comput. (SICOMP) 34, 1493–1515 (2005)

3. Cook, M., Fu, Y., Schweller, R.T.: Temperature 1 self-assembly: deterministic
assembly in 3D and probabilistic assembly in 2D. In: Proceedings of the Twenty-
Second Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 570–
589 (2011)

4. Furcy, D., Summers, S.M., Withers, L.: Improved lower and upper bounds on the
tile complexity of uniquely self-assembling a thin rectangle non-cooperatively in
3d. In: 27th International Conference on DNA Computing and Molecular Program-
ming, DNA 27, 13–16 September 2021, Oxford, UK (Virtual Conference). LIPIcs,
vol. 205, pp. 1–18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)

5. Manuch, J., Stacho, L., Stoll, C.: Two lower bounds for self-assemblies at temper-
ature 1. J. Comput. Biol. 17(6), 841–852 (2010)

6. Meunier, P.E., Patitz, M.J., Summers, S.M., Theyssier, G., Winslow, A., Woods,
D.: Intrinsic universality in tile self-assembly requires cooperation. In: Proceed-
ings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 752–771 (2014)

7. Rothemund, P.W.K.: Theory and experiments in algorithmic self-assembly, Ph. D.
thesis, University of Southern California (2001)

8. Rothemund, P.W.K., Winfree, E.: The program-size complexity of self-assembled
squares (extended abstract). In: The Thirty-Second Annual ACM Symposium on
Theory of Computing (STOC), pp. 459–468 (2000)

9. Seeman, N.C.: Nucleic-acid junctions and lattices. J. Theor. Biol. 99, 237–247
(1982)

10. Soloveichik, D., Winfree, E.: Complexity of self-assembled shapes. SIAM J. Com-
put. (SICOMP) 36(6), 1544–1569 (2007)

11. Winfree, E.: Algorithmic self-assembly of DNA, Ph. D. thesis, California Institute
of Technology (1998)

Exploring the Robustness of Magnetic
Ring Arrays Reservoir Computing

with Linear Field Calibration

David Griffin1(B) , Susan Stepney1 , and Ian Vidamour2

1 University of York, York, UK
{david.griffin,susan.stepney}@york.ac.uk

2 University of Sheffield, Sheffield, UK
i.vidamour@sheffield.ac.uk

Abstract. One of the challenges for reservoir computing is the robust-
ness of the implementation in the face of fabrication error. If a sys-
tem is too sensitive to fabrication error, then each manufactured reser-
voir becomes a unique artefact with unique computational properties.
Under most circumstances, this is undesirable as it makes reproduction
of results, or useful systems, complicated. This paper uses simulation to
examine the properties of nano-scale magnetic ring arrays as reservoir
computers under parameters corresponding to a wide variety of physi-
cally derived parameters, and investigates the effectiveness of linear field
calibration to minimise the difference in unexpected behaviour of the
systems.

1 Introduction

Reservoir computing seeks to exploit the complex dynamic behaviour of systems
to accomplish useful computation. By providing a dynamical system with an
appropriate time series input, the system will progress and can be measured to
extract useful information, such as categorising the input or predicting the next
value of a time series. In materio Reservoir Computing places an additional
constraint in that the dynamical system is expected to be a physical system
grounded in the real world. However, a physical dynamical system is subject to
error. Error can take many forms:

– Error inherent in the limitations of the equipment used to measure the system
or provide input

– Error dependent on the operating environment of the system, such as tem-
perature

– Error due to unpredictable behaviour of the system
– Error due to limitations when fabricating the system

This paper focuses on the last of these types of error. A physical system
must be fabricated in some fashion, and there will always be limitations on how
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Genova and J. Kari (Eds.): UCNC 2023, LNCS 14003, pp. 94–107, 2023.
https://doi.org/10.1007/978-3-031-34034-5_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-34034-5_7&domain=pdf
http://orcid.org/0000-0002-4077-0005
http://orcid.org/0000-0003-3146-5401
http://orcid.org/0000-0002-6909-2711
https://doi.org/10.1007/978-3-031-34034-5_7

Exploring the Robustness of MRA RC with LFC 95

accurately the system can be fabricated. Examples of such limitations include
purity of substances used in fabrication, and the precision of equipment used in
fabrication. As fabrication error is incorporated into the system when it is made,
it must be accounted for in the analysis of the system. If fabrication error is not
accounted for, then the behaviour of the system may depend on the specific error
introduced through fabrication, which would make results difficult to reproduce.
Further, if intending to deploy multiple instances of a system to perform the
same task, it is necessary for multiple physical instances of the system to be
capable of the same behaviour; unmitigated fabrication error may make this
difficult or impossible.

While one approach to fabrication error might be to improve the fabrication
process until it is negligible, this is not necessarily practical. For example, the
physical device on which the work in this paper is based [17] uses systems fab-
ricated via electron beam lithography. This process involves multiple analogue
steps that are challenging to reproduce perfectly and thus can lead to fabrica-
tion errors. The first of these error prone steps is applying the layers of magnetic
material and polymer to the substrate; slight variations in thickness are unavoid-
able, and result in variations in thickness on the finished product. The focus of
the electron beam can introduce further variation; incorrect focusing results in
the electron beam having a slightly warped shape depending on position, which
in turn impacts how accurately it can cut shapes. The next step is removing the
material that is no longer protected by the polymer, which involves wet chem-
icals and is therefore difficult to reproduce exactly. Finally, even removing the
remaining polymer can cause errors as small particles of magnetic material can
be lifted from the substrate with the polymer, producing further irregularities.

Where it is not practical to reduce the effects of fabrication error to the
point where they are negligible, effects of fabrication error can be mitigated by
calibration. If calibration is sufficient, each device can be individually calibrated
to have uniform logical behaviour. This paper examines nano-scale magnetic ring
arrays, which can be calibrated by adjusting the strength of the magnetic field
they are subjected to. By applying a simple linear search it is possible to find
the optimal strength of magnetic field for a given ring array that maximises its
performance. This technique has been demonstrated on a physical system [17],
but it has not been explored in depth to see how calibration can compensate for
a wide variety of fabrication errors.

This paper investigates the effectiveness of calibration to compensate for
fabrication error by simulating a wide variety of physically derived parameters.
These parameters are simulated through the phenomenological level simulator of
RingSim [17]. The search is carried out by PyCHARC/SpatialGA [9], a novelty
search method that seeks novel behaviours of the system. By characterising the
space of possible behaviours under a wide variety of parameters, it is possible
to infer the size of this space and therefore how many different uncontrolled
behaviours the Ring Array can exhibit within reasonable fabrication error1.

1 This differs from controlled behaviours, which under normal circumstances it is desir-
able to have as many different types of behaviour as possible.

96 D. Griffin et al.

The main purpose of the search of behaviours under calibration is to show
under which circumstances the same behaviours can be achieved. The sensitivity
of the ring array to fabrication errors is not directly explored by this search.
This is in part due to the current method of utilising the ring array requiring
calibration [17], which makes it difficult to extract the effects of fabrication
errors in isolation as the correct input values for a given use are dependent on
the effects of fabrication error. However, the search also yields some information
on the sensitivity of the ring array by identifying areas where calibration is
insufficient to provide useful behaviours.

1.1 Organisation

Section 2 gives an overview of relevant concepts as well as the current state of
the art of the magnetic ring array system evaluated in this paper. Section 3
outlines the details of the design of the experiment, with a particular focus on
the measures used. The experiment itself is presented in Sect. 4, and the results
follow in Sect. 5. An evaluation of the results in presented in Sect. 6, with a
detailed discussion of how the results can be interpreted. Finally, conclusions
are given in Sect. 7.

2 Background

Error in a system can be attributable to a number of factors that increase the
uncertainty in using a system. Uncertainty [13] can be characterised as one of
two types: aleatory uncertainty, which represents the inherent randomness of
processes, and epistemic uncertainty, which represents the effect of incomplete
knowledge of a system. While aleatory uncertainty is normally unavoidable, epis-
temic uncertainty can be reduced by a better understanding of the system under
consideration [13].

Fabrication error of a physical system falls under the category of epistemic
uncertainty. While it may not be practical, a system can be modelled at a higher
fidelity that encompasses the effect of fabrication error; for example, using a
microscope to detect physical defects and compensate for them. However, iden-
tifying and compensating for defects in this manner is a time consuming and
difficult process and relies upon understanding physical phenomena that may be
difficult to model [17]. An alternative to this approach is to calibrate the system
[8], by applying some modification to the input or output such that a known
or optimal result can be reached. This allows the epistemic uncertainty of the
system to be reduced without having to identify the precise nature of defects in
the system.

Reservoir computing [15] takes the behaviour of a dynamical system and
attempts to extract useful computation from it. The Echo State Network (ESN)
[12] is one of the archetypal artificial reservoirs, consisting of a neural network
where the hidden layer consists of sparse, random connections.

Exploring the Robustness of MRA RC with LFC 97

Fig. 1. Simulated segment of Nano-scale Magnetic Ring Array Reservoir under con-
sideration

In materio Reservoir Computing takes the basic idea of reservoir computing
and applies it to physical dynamical systems. These can be any physical system
that exhibits dynamical behaviours, with examples as diverse as origami-based
robotic feedback systems [1] or magnetic thin film arrays [5].

This paper investigates the Nano-scale Magnetic Ring Array reservoir, as
defined by Dawidek et al. [7]. The mano-scale magnetic ring array utilises the phe-
nomena of constrained domain walls to obtain reservoir properties. In the presence
of a sufficiently strong magnetic field, domain walls nucleate in pairs on the rings.
These domain walls can then be driven around the rings by a rotating magnetic
field, exhibiting stochastic pinning behaviour at the junctions between rings. If a
domain wall is pinned and comes into contact with its counterpart, it annihilates.
By modulating the strength of the rotating magnetic field it is possible to provide
an input to the system, and by measuring the electrical resistance of the ring array
it is possible to measure some of the properties of the Domain Wall population
using techniques such as anisotropic magnetoresistance [2].

While it is possible to model magnetic rings using general purpose micro-
magnetic simulators [16], such an approach is computationally too expensive for
systems with a large number of rings. To address this, RingSim [17] was devel-
oped, which is a phenomological model of the behaviour of Domain Walls in the
magnetic ring array. RingSim uses a number of physically derived parameters to
characterise the behaviour of the Domain Walls, and by varying these parame-
ters it is possible to model the behaviour of a wide variety of physical systems.
As such, RingSim is a useful model for exploring fabrication error.

Both the hardware implementation of the magnetic ring array and RingSim
are designed with calibration in mind [17], and in both cases a search is con-
ducted on the magnetic field strength to maximise the response of the physical
or simulated ring array. The only constraints on this search are the strength of
magnetic field that can be produced by the equipment.

98 D. Griffin et al.

CHARC [6] is a novelty search algorithm that seeks to explore a behaviour
space. Novelty search [14] algorithms seek to find new or novel behaviours, in
contrast to optimising search algorithms that seek to optimise for a given prob-
lem. The goal of exploration as opposed to optimisation is useful for character-
ising a behaviour space, i.e. the set of behaviours that can be expressed by the
various configurations of a system considered by CHARC. CHARC, by default,
characterises the behaviour of reservoirs by three measures:

– Kernel rank (KR): the degree to which different inputs produce different
outputs [4].

– Generalisation rank (GR): the degree to which similar inputs produce similar
outputs [4].

– Linear Memory Capacity (LMC): the ability of a system to reproduce
inputs [11].

3 Design

3.1 Search Method

To explore the behaviour of the Ring Array as characterised by RingSim,
PyCHARC was used. PyCHARC is an evolution of the CHARC novelty search
with an emphasis on extensibility. PyCHARC was used to conduct a novelty
search over the characterisation of RingSim as given by KR, GR and LMC. As
the Ring Array provides only a single output in its native configuration, the Ring
Array was set up with time multiplexed outputs where multiple measurements
of the ring array over the rotation of the magnetic field were used as input to
the readout layer of the reservoir.

One of the differences between PyCHARC and CHARC is the ability to use
different types of search algorithms to explore the behaviour space. The original
search algorithm used by CHARC is based on the Microbial Genetic Algorithm
[10], which, although elegantly simple, suffers from poor parallelisability. This
lack of parallelisability limits how many input parameters CHARC can explore.

To counter this, these experiments used a new approach called SpatialGA.
SpatialGA explores by first partitioning the behaviour space and identifying
partitions that have high levels of diversity from the initial population, as char-
acterised by the density of individuals in the partition. Once the most diverse
partition is identified, multiple individuals are generated by applying crossover
and mutation operators to the individuals in that partition, with the hope of
finding more individuals within the partition. Once the number of individuals
within the partition exceeds a threshold, it is divided into sub-partitions and the
process starts over2.

2 For brevity some details, such as penalty terms on selecting the partition to explore
that ensure that all areas of the behaviour space are explored rather than focusing
on a infinitesimally small but interesting area, are omitted.

Exploring the Robustness of MRA RC with LFC 99

Algorithm 1. Pseudocode for Kernel Rank (KR)
1: input length := system.washout + kr input size
2: input signal := [uniform(0.0, 1.0) for each input to system, for input length]
3: output := system.run(input signal)
4: remove first system.washout elements from output
5: KR := matrix rank(output)
6: return KR

Algorithm 2. Pseudocode for Generalisation Rank (GR)
1: input length := system.washout + gr input size
2: input signal := [uniform(0.4, 0.6) for each input to system, for input length]
3: output := system.run(input signal)
4: remove first system.washout elements from output
5: GR := matrix rank(output)
6: return GR

3.2 Measures

While KR, GR, and LMC are “standard” measures of the behaviour of reser-
voirs, we are aware that there are multiple divergent implementations of these
measures. The specific versions of the measures used in this work are defined
here.

Kernel Rank (KR) is a measure of the ability of a reservoir to produce differ-
ent outputs for different inputs. It is calculated by supplying the system under
consideration with a uniform random input stream between 0 and 1, and cal-
culating the rank of the matrix of outputs (with a threshold on SVD values of
0.01). A pseudocode implementation is given in Algorithm 1.

Generalisation Rank (GR) is a measure of the ability of a reservoir to gen-
eralise similar inputs to similar outputs. It is calculated in a similar manner to
Kernel Rank, only the random input stream is over the much smaller range of
0.4 to 0.6. A pseudocode implementation is given in Algorithm 2.

Linear Memory Capacity (LMC) is a measure of how much linear memory
can be stored within the reservoir. This is calculated by attempting to construct
a readout layer for the reservoir that can reproduce the last n inputs. The LMC
is defined as a measure of how well the outputs of the reservoir correspond to the
inputs that it is supposed to represent. A pseudocode implementation is given
in Algorithm 3.

3.3 Ring Array Calibration

As in prior work [17], the Ring Array requires calibration to maximise its ability
to conduct useful work. In physical systems, this is in part due to the fabrication
error causing intra-device variation.

The Ring Array takes a single input in the form of a global rotating magnetic
field. The magnetic field drives the domain walls in the system, causing them to
rotate with it unless they become pinned at a junction.

100 D. Griffin et al.

Algorithm 3. Pseudocode for Linear Memory Capacity (LMC)
1: def output signal(input signal, system):
2: return [[input signal shifted back by x + 1] for x in range(system.outputs)]

3: input length := system.washout + lmc input length + system.outputs
4: train input signal = [uniform(0.0, 1.0) for input length]
5: system.train(train input signal broadcast to all inputs of system, out-

put signal(train input signal))
6: test input := [uniform(0.0, 1.0) for input length]
7: test output := output signal(test input)
8: predictions := system.run(test input signal broadcast to all inputs of system)
9: remove first system.washout values from test input, predictions, test output

10: LMC := 0
11: inpvar = variance(test input)
12: for each output of system do
13: covar := covariance(predictions, test output)
14: pvar := variance(predictions)
15: mc := (covar ** 2) / (inpvar * pvar)
16: if mc ¿= min memory capacity then
17: LMC += mc
18: end if
19: end for
20: return LMC

Calibration is accomplished by using a simple linear search over the available
ranges of magnetic field strengths, retraining the output layer for each new field
strength, and picking the magnetic field with the best response. If necessary,
the process can be adapted into a depth-first search to refine the calibration
further. The physical implementation used in the work of Vidamour et al. [18]
was constrained to a maximum magnetic field strength of approximately 60 Oe.

Simulation differs from physical systems in that any magnetic field can be
simulated, even if it is not something that is practical to realise in a physical
system. This allows us to explore across a wider range of magnetic fields and
conduct analysis on both realistic magnetic fields and unrealistic magnetic fields.

An additional effect of simulation is that parameters can also be consoli-
dated: in a physical system, multiple physical parameters affect the probability
of events. For example, the probability of pinning at a junction is influenced by
edge roughness, any imperfections, temperature, material, and potentially other
parameters. RingSim simplifies these parameters to a description of the required
energy barriers [17], which are still represented by a large number of “physically
derived” parameters. This paper explores a further simplification that directly
exposes the probabilities of pinning to PyCHARC for exploration.

Exploring the Robustness of MRA RC with LFC 101

Table 1. Parameters used in RingSim for Experiment 1

Parameter Range Explanation

E0 [1.0 × 10−19, 3.0 × 10−19] Characterises properties of the geometry of
the ringsE0D [0.5 × 10−21, 1.5 × 10−21]

H0 [80, 90]

H0D [10, 20]

ER [20, 30] Characterisation of the minimum
propagation field of the systemERD [0.5, 3.0]

PCE [0.5, 1.0] Characterisation of behaviour of two
domain walls occupy one junctionPCH [0.5, 1.0]

alpha [1.0, 2.0] Value characterising how energy barrier
varies with magnetic field

4 Experiments

Two primary experiments were conducted for this work. Both experiments used
PyCHARC/SpatialGA to search over input parameters for RingSim. These con-
figurations of RingSim were then calibrated using a linear search, and the cali-
brated system was measured to determine its KR, GR and LMC. These measure-
ments were then fed back into PyCHARC/SpatialGA to inform the algorithm
on where to explore next.

The two experiments differed in the parameters that were used as follows:

– Experiment 1: The default set of 9 parameters that characterises the energy
barriers required, which control the probabilities of pinning at junctions.
Parameters for this experiment are given in Table 1. The ranges of these
parameters were initially selected to cover the full range of parameters that
have been observed in fitting RingSim parameters to various physical devices,
such as the device used in [17]. These ranges were then expanded to those
shown in Table 1 to cover a range of values that are plausible given the cur-
rently fabricated devices, to allow PyCHARC/SpatialGA to search over a
wider area.

– Experiment 2: An alternate set of 3 parameters that exposes the probabilities
derived from the energy barriers. Parameters for this experiment are given in
Table 2. Parameters for this experiment were selected to roughly correspond
to the parameters of Experiment 1.

For each experiment, PyCHARC/SpatialGA was run for 250 generations with
a target population of 25 individuals per region, to find configurations spanning
as much of the behaviour space as possible. For each of the measures KR, GR
and LMC, an optimisation pass was run to optimise the transformation function
between the logical inputs of the system, which are specified between 0 and 1

102 D. Griffin et al.

Table 2. Parameters used in the simplified form of RingSim for Experiment 2

Parameter Range Explanation

BP [0, 1] Distribution of the probability of pinning at
junction.PD [0, 0.5]

DE [1, 3] Modifier for when two domain walls occupy
a junction.

and the simulated magnetic field, f(x) = ax+b. This optimisation was restricted
so that the image of the function was between 15 Oe and 65 Oe.3

The purpose of the second experiment is to determine if reducing the number
of dimensions is possible. This is desirable for a number of reasons; Firstly,
reducing the parameter set results in a more robust search as there are fewer
dimensions of the input space of PyCHARC.

The second reason for why a reduction in dimensionality is desirable is more
subtle: if the number of input dimensions can be reduced, then this implies
that there is a many-to-one relationship between the default set of parameters
and the reduced set. Given that the differences in behaviour are the result of
fabrication error, in the absence of correlation between parameters one would
assume that their relative independence. This in turn implies that the principles
of the Central Limit Theorem [3] can be applied to some extent, and therefore
that extreme behaviour due to fabrication error is less likely.

5 Results

5.1 Presentation of Results

The results of the experiment are presented as a graph matrix. Each graph in
the matrix is a plot of one parameter against one measure. For each parameter,
the individuals found by PyCHARC were placed in bins by the value of the
parameter. The plots show a line representing the median measure score for
individuals in each of these parameter bins against the value of the measure
after calibration, and a region showing the 90% range of the individuals found.
This allows the reader to judge the spread of values for the given parameter,
which shows how other parameters can affect the plotted parameter.

5.2 Results of Experiment 1

Figure 2 shows the results of the exploration, broken down by the effects of each
input dimension. There are two broad categories of effect seen.

In the case of H0, E0, PCE, PCH and alpha, calibration results in the fol-
lowing outcomes:
3 These limits are somewhat arbitrary, but approximately reflect the limitations of the

current physical implementation with regard to sustained magnetic fields.

Exploring the Robustness of MRA RC with LFC 103

Fig. 2. Results Matrix for Experiment 1. Each graph plots one of the RingSim model
parameters against one of the three metrics used by PyCHARC, showing the median
and 90% range of individuals found by PyCHARC.

Fig. 3. Results Matrix for Experiment 2. Each graph plots one of the simplified
RingSim model parameters against one of the three metrics used by PyCHARC, show-
ing the median and 90% range of individuals found by PyCHARC.

1. Calibration cannot find a sufficiently weak magnetic field, resulting in domain
walls not ever pinning at junctions, and therefore no interesting response.

2. Calibration cannot find a sufficiently strong magnetic field, resulting in domain
walls always pinning at junctions, and therefore no interesting response.

3. Calibration succeeds, resulting in the reservoir exhibiting interesting
behaviour.

4. Another parameter causes calibration to fail.

For these parameters, the transitions between the three outcomes are rela-
tively abrupt.

In the case of the distribution parameters, H0D, E0D, and ERD calibration
results in the following outcomes:

104 D. Griffin et al.

1. Calibration cannot find a magnetic field strength that is sufficient for the
majority of the Ring Array due to variation within the Ring array being too
high. This results in the output being degraded significantly.

2. Calibration finds a magnetic field strength that is sufficient for the majority
of the Ring Array, resulting in the reservoir exhibiting interesting behaviour.

3. Another parameter causes calibration to fail.

In contrast to the first set of parameters, the distribution parameters result
in a more gradual decline as the effectiveness of calibration decreases.

5.3 Results of Experiment 2

Figure 3 shows the results of the second experiment, using the further simpli-
fied model. The results are broadly the same as the first experiment, albeit
with a lower number of dimensions. The most notable difference is that as
there are fewer parameters, the chance of another parameter interfering with
the calibration are substantially lower, resulting in a tighter distribution.
However, other than this the behaviours exhibited are broadly the same, as
PyCHARC/SpatialGA attempts to explore with respect to the evaluated mea-
sures rather than the input parameters.

6 Evaluation

There are multiple conclusions that can be drawn from these results. The most
important one is that it is not necessary to explore a large number of parameters
in simulations, if these parameters are later combined. While there is a potential
difference in the distribution of the parameters, novelty search is capable of
identifying unique behaviours regardless of the number of parameters.

One downside to simplifying the model in this way is that as the abstraction of
the parameters increases, it may become difficult to determine what is physically
realisable. However, provided there is some understanding of the relation between
the abstract parameters and the physical system it should be possible to derive
bounds for the abstract parameters that keep the exploration within realistic
bounds.

Calibration on the magnetic ring array reservoir was in general very effective
at finding a consistent optimal magnetic field strength, assuming such a magnetic
field was possible within the bounds of the exploration. However, it was less
effective when the distribution of parameters increased. This is likely due to the
properties of individual junctions within the ring array becoming so divergent
that a single global magnetic field was unable to compensate for their differences,
resulting in some junctions always pinning or never pinning domain walls.

Given the results of calibration, it can be stated that the magnetic ring array
reservoir is somewhat robust to fabrication error. This is especially true in the
case that the fabrication error is uniform across the ring array; for example, a
small amount of contamination of the material or an imperfection in the design.

Exploring the Robustness of MRA RC with LFC 105

Calibration is less effective when individual junctions with the ring array have
substantially different properties. However, given that for previous experiments
with real devices, the distribution parameters are between 1 and 4 orders of
magnitude smaller that the base values [17], the results here suggest that for
any realistic manufacturing process calibration should perform well.

The consistency of results with calibration may seem surprising; however,
Experiment 2 does shed some light on why it was so successful. Assuming that
the distribution of probability values within the system is relatively tight, and
therefore that there exists a magnetic field that has similar effects over the
entire ring array, there are only two remaining parameters. Therefore, the system
only has two degrees of freedom with respect to its characterisation. As the
system is a reservoir, it contains a trained linear output layer, and the calibration
process effectively provides a trained linear input layer. These two linear layers
allow calibration plus training to counteract the two degrees of freedom the
parameters expose, leading to consistent results providing the optimal magnetic
field is within the range of fields searched.

Experiment 2 also lends some credence to the idea that as in the real system
multiple parameters are combined to single probability values, there is a lower
chance of experiencing extreme behaviours. This can be seen to an extent with
the spread of values shown in the Fig. 2 graphs; if multiple values contribute to
a behaviour, then it is possible for one anomalous value to be compensated for
by another. The nature of this experiment did not allow us to verify the degree
to which the physical parameters are independent within the actual fabrication
process, and so it is not possible to make a definitive claim that this is the case.
However, if the parameters have a degree of independence then this allows a
further degree of robustness for physical systems by virtue of multiple things
having to go wrong for extreme behaviour to manifest.

These results also show that multiple sets of parameters can yield useful
results, which suggests that it will be possible in future to use heterogeneous ring
arrays, where different rings in the array have different properties. By allowing
substantially different ring properties within an array, these results show that not
all rings will be driven with their optimum magnetic field. There are a number
of implications of this:

– Rings with relatively high energy barriers could be used as memory when the
magnetic field drops too low, causing the domain walls in the rings to enter
a pinned state.

– Rings with relatively low energy barriers could be used to restore portions of
the ring array to a known state using a stronger than required magnetic field
to cause domain walls to move with high probability, causing nucleation of
domain walls in adjacent empty rings.

Hence, even though these behaviours are not useful for a global uniform ring
array, it may be possible to exploit them in a heterogeneous ring array. This also
highlights the usefulness of novelty search based approaches, as they can identify
behaviours that would not be found with optimisation based techniques.

106 D. Griffin et al.

7 Conclusion

This paper explored the robustness of magnetic ring array reservoir computing
with a calibration step by applying a novelty search approach to ring array
parameters. The paper found that the behaviour of the ring array was relatively
robust after calibration provided that the ring parameters resulted in a desired
magnetic field that lay within the range of values obtainable. In the case that
this was not possible, then the ring array would either abruptly fail or gradually
degrade, depending on whether the failing was due to a global effect across
the ring array or due to too much variance within the ring array. However, for
the latter to cause a substantial problem would require an order of magnitude
increase in variance over currently used manufacturing techniques.

The paper also demonstrated that simplifying a model to the minimum
required still produces useful results with novelty search. While this may not
be true with other types of search, due to the simplification having the poten-
tial to change the distribution of parameters, as novelty search seeks different
behaviours it is able to largely overcome this difference.

Finally, this paper also exhibited one of the features of novelty search, in
being able to capture non-optimal behaviours. In particular, the non-optimal
behaviours found, while not useful for the homogeneous ring arrays considered in
this paper, may have use in future work exploring the properties of heterogeneous
ring arrays.

Acknowledgments. The authors wish to thank Chalres Vidamour for sharing insight
into challenges of the fabrication process of the magnetic ring arrays used in prior work
[17]. DG and SS acknowledge funding from the MARCH project, EPSRC grant numbers
EP/V006029/1 and EP/V006339/1. IV acknowledges a DTA-funded PhD studentship
from EPSRC.

References

1. Bhovad, P., Li, S.: Physical reservoir computing with origami and its application
to robotic crawling. Sci. Rep. 11(1), 1–18 (2021)

2. Bordignon, G., et al.: Analysis of magnetoresistance in arrays of connected Nano-
rings. IEEE Trans. Magn. 43(6), 2881–2883 (2007)

3. Brosamler, G.A.: An almost everywhere central limit theorem. Math. Proc. Cam-
bridge Philos. Soc. 104, 561–574 (1988)

4. Büsing, L., Schrauwen, B., Legenstein, R.: Connectivity, dynamics, and memory
in reservoir computing with binary and analog neurons. Neural Comput. 22(5),
1272–1311 (2010)

5. Dale, M., et al.: Reservoir computing with thin-film ferromagnetic devices. arXiv
preprint arXiv:2101.12700 (2021)

6. Dale, M., Miller, J.F., Stepney, S., Trefzer, M.: A substrate-independent frame-
work to characterise reservoir computers. Proceed. Royal Soc. A 475, 2226 (2019).
https://doi.org/10.1098/rspa.2018.0723

7. Dawidek, R.W., et al.: Dynamically driven emergence in a nanomagnetic system.
Adv. Func. Mater. 31(15), 2008389 (2021)

http://arxiv.org/abs/2101.12700
https://doi.org/10.1098/rspa.2018.0723

Exploring the Robustness of MRA RC with LFC 107

8. Franklin, A.: Calibration. Perspect. Sci. 5(1), 31–80 (1997)
9. Griffin, D.: PyCHARC. https://github.com/dgdguk/pycharc/

10. Harvey, I.: The microbial genetic algorithm. In: Kampis, G., Karsai, I., Szathmáry,
E. (eds.) ECAL 2009. LNCS (LNAI), vol. 5778, pp. 126–133. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-21314-4 16

11. Jaeger, H.: Short term memory in echo state networks. GMD-report 152. In: GMD-
German National Research Institute for Computer Science (2002). http://www.
faculty.jacobs-university.de/hjaeger/pubs/STMEchoStatesTechRep pdf (2002)

12. Jaeger, H., Haas, H.: Harnessing nonlinearity: predicting chaotic systems and sav-
ing energy in wireless communication. Science 304(5667), 78–80 (2004)

13. Kendall, A., Badrinarayanan, V., Cipolla, R.: Bayesian segNet: model uncertainty
in deep convolutional encoder-decoder architectures for scene understanding. In:
Kim, T.-K., Stefanos Zafeiriou, G.B., Mikolajczyk, K. (eds.) Proceedings of the
British Machine Vision Conference (BMVC), pp. 1-512. BMVA Press (2017).
https://doi.org/10.5244/C.31.57

14. Lehman, J., Stanley, K.O.: Exploiting open-endedness to solve problems through
the search for novelty. In: ALife XI, Boston, MA, USA, pp. 329–336. MIT Press
(2008)

15. Schrauwen, B., Verstraeten, D., Van Campenhout, J.: An overview of reservoir
computing: theory, applications and implementations. In: Proceedings of the 15th
European Symposium on Artificial Neural Networks, pp. 471–482 (2007)

16. Vansteenkiste, A., Leliaert, J., Dvornik, M., Garcia-Sanchez, F., Van Waeyenberge,
B.: The design and verification of mumax3. AIP Adv. 4, 107133 (2014)

17. Vidamour, I.T., et al.: Quantifying the computational capability of a nanomagnetic
reservoir computing platform with emergent magnetisation dynamics. Nanotech-
nology 33(48), 485203 (2022). https://doi.org/10.1088/1361-6528/ac87b5

18. Vidamour, I., et al.: Reservoir computing with emergent dynamics in a magnetic
metamaterial (2022). https://doi.org/10.48550/ARXIV.2206.04446

https://github.com/dgdguk/pycharc/
https://doi.org/10.1007/978-3-642-21314-4_16
http://www.faculty.jacobs-university.de/hjaeger/pubs/STMEchoStatesTechRep
http://www.faculty.jacobs-university.de/hjaeger/pubs/STMEchoStatesTechRep
https://doi.org/10.5244/C.31.57
https://doi.org/10.1088/1361-6528/ac87b5
https://doi.org/10.48550/ARXIV.2206.04446

Undecidability of the Topological Entropy
of Reversible Cellular Automata

and Related Problems

Toni Hotanen(B)

University of Turku, Turku, Finland

tonhot@utu.fi

Abstract. Topological entropy is an important invariant of topological
dynamical systems. It is often regarded as the measure of complexity
of the system and can be used to tell non-conjugate systems apart from
each other. We will show that the decision problem that asks whether the
topological entropy is zero or not is undedicable in the class of reversible
one-dimensional cellular automata. We will also show that some related
decision problems are also undecidable in the setting of reversible cellular
automata and reversible and complete Turing machines.

Keywords: cellular automata · Turing machines · decision problem ·
undecidable · computable · entropy · Lyapunov exponents

1 Introduction

Topological entropy is an important invariant of topological dynamical systems.
Invariant meaning it is preserved under taking conjugacies of the system. There-
fore if two systems have different entropy, one can immediately say that they
are non-conjugate. It would therefore be interesting and useful to have an algo-
rithm that calculates the entropy for a given system. Interestingly it was recently
proven that the conjugacy problem is undecidable among reversible cellular
automata in [10].

In this paper we will prove some open decision problems concerning reversible
Turing machines and cellular automata.

It was shown in [2], that it is undecidable whether the topological entropy
is zero or not for a given reversible and complete Turing machine. We will show
that it is also undecidable whether the speed of a given machine is non-zero
and whether a given machine has a strictly weakly periodic configuration or not.
Fascinatingly in [6] the author constructs algorithms that estimate the values of
topological entropy and speed for a given Turing machine and a precision.

The situation is entirely different when considering cellular automata. In [5]
it was shown that there does not exist an algorithm that estimates the topolog-
ical entropy of a given cellular automata and a precision. In [1] the analogous
problem was suspected to be open in the case of reversible cellular automata and
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Genova and J. Kari (Eds.): UCNC 2023, LNCS 14003, pp. 108–123, 2023.
https://doi.org/10.1007/978-3-031-34034-5_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-34034-5_8&domain=pdf
https://doi.org/10.1007/978-3-031-34034-5_8

Undecidability of the Topological Entropy of RCA and Related Problems 109

a more general. In Question 1 of [10] it also asked if the topological entropy of
reversible cellular automata is computable. We will answer both of these ques-
tions in Theorem11. In [8] it was further shown that one can not estimate the
values of global Lyapunov exponents of a given reversible cellular automaton
and a precision.

In [5] it was shown that the decision problem, that asks whether the topo-
logical entropy is zero for a given cellular automaton, is undecidable. We show
the problem undecidable in Theorem10. In Theorem 8 we answer negatively to
Problem 2 of [8], which asks whether the decision problem, that asks whether the
value of both left and right Lyapunov exponents of a given cellular automaton is
zero, is decidable or not. As a somewhat related matter we will also show that it
is undecidable if a given cellular automaton has a configuration that is a glider.

2 Preliminaries

A relation is a subset R ⊆ X × X, where X is a set. We will use the standard
notation aRb if (a, b) ∈ R. We will denote the complement of R as Rc, i.e.
Rc = (X × X) \ R.

An alphabet Σ is a finite set of symbols. A word of length n over an alphabet Σ
is any element w = (w0, w1, . . . , wn−1) = w0w1 · · · wn−1 from the set Σ[0,n) = Σn

and |w| = n is the length of a word w. The empty word is denoted as ε and it is the
unique word of length zero. A set of all finite words i.e.

⋃
n∈N

Σn is denoted as Σ∗

and a set of all finite non-empty words Σ∗\{ε} is denoted as Σ+. A concatenation
· : (Σ∗)2 → Σ∗ is a mapping such that u · v = u0u1 . . . unv0v1 . . . vm, where
u = u0u1 . . . un and v = v0v1 . . . vm. We will adapt the shorthand notation
uv for the concatenation of any two words. Elements from the sets ΣN, ΣZ−

and ΣZ are called right-infinite, left-infinite and bi-infinite words, respectively.
Furthermore we define a set ΣΩ = Σ+ ∪ ΣN ∪ ΣZ− ∪ ΣZ. A concatenation of
elements u ∈ ΣΩ and v ∈ ΣΩ is defined when u is finite or left-infinite and v
is finite or right-infinite. Let u ∈ ΣΩ and w ∈ ΣΩ , we will denote u � w if
there exists such j ∈ Z, that ui+j = wi for each i in the domain of u, and say
that u is a subword of w. If Σ and Γ are two alphabets, we will denote the set
{uv | u ∈ Σα, v ∈ Γ β} as ΣαΓ β . where α ∈ {Z−, ∗,+} and β ∈ {N, ∗,+}. In
this notation, if Σ = {a}, we will omit the brackets. If w ∈ Σ∗, we will use the
notation w∞ for the right-infinite word ww · · · and ∞w for the left-infinite word
· · · ww. If A ⊆ Σ and w ∈ ΣΩ , then wA = |{i | wi ∈ A}|. If A = {a} then we
denote this as wa.

A topological dynamical system is a pair (X, f), where X is a compact metric
space and f is a continuous function f : X → X. A cover is a collection C of
open subsets of X, such that X ⊆ ⋃

U∈C
U . For a given cover C, let |C| denote its

cardinality. A cover is a finite cover if its cardinality is finite. A subcover of a
cover is any subset that is also a cover. A join of n finite covers C0, C1, . . . , Cn−1

is defined as
n−1∨

i=0

Ci = {
n−1⋂

i=0

Ui | Ui ∈ Ci ∀ i ∈ {0, 1, . . . , n − 1}}. For a given finite

cover, let H(C) = log(min{|C′| | C′ is a subcover of C}). A topological entropy

110 T. Hotanen

of a finite cover C is defined as Hf,C = lim
n→∞

H(
n−1∨

i=0
f−i(C))
n , where f−i(C) =

{f−i(U) | U ∈ C}. A topological entropy of a dynamical system (X, f) is defined
as hf = supC Hf,C . A point x ∈ X is called periodic if there exists such n ∈ Z+

that fn(x) = x.
A shift dynamical system is a dynamical system (ΣZ, σ), where Σ is a finite

set of symbols, ΣZ is the space called the full shift and σ, called the shift, is
defined in a way that σ(x)i = xi+1. The metric d of the space ΣZ is defined as
dσ(x, y) = 2− inf{|i|∈N|xi �=yi}. It is not difficult to see that the space ΣZ is compact
and that the function σ is continuous. An endomorphism is a continuous function
f : ΣZ → ΣZ, such that f ◦ σ = σ ◦ f .

A one-dimensional cellular automaton is a 3-tuple A = (Σ,N, h), where Σ is
a finite set of symbols called states, N is a neighbourhood (i0, i1, . . . , in−1) ∈ Z

n

and h : Σn → Σ is a local rule. If N = [−r, r], we call N a radius-r neighbour-
hood. In the context of cellular automata, we call the full shift ΣZ a configu-
ration space and refer to its elements as configurations. The local rule together
with the neighbourhood induces a global rule f : ΣZ → ΣZ, which is defined
in such a way that f(c)i = h(ci+i0 , ci+i1 , · · · , ci+in−1). We make no distinction
between a cellular automaton and its global rule. A quiescent state is a state
satisfying h(q, q, . . . q) = q. A configuration c such that |{ci 	= q}| < ∞ is called
q-finite or just finite if q is clear from the context. We will call a configuration c
weakly periodic if there exists such m ∈ N and n ∈ Z+, that fn(c) = σm(c). A
weakly periodic configuration is called strictly weakly periodic if it is not peri-
odic. A finite strictly weakly periodic configuration is called a glider. By the
Curtis-Hedlund-Lyndon theorem, the cellular automata, abbreviated as CA, are
exactly the endomorphisms of the shift dynamical systems.

A Turing machine is a 3-tuple M = (Q,Γ, δ), where Q = Qw ∪ Qm is a finite
set of states, Γ is a finite set of symbols and δ = δw ∪ δm is a set of instructions,
where δw ⊆ Qw ×Γ ×Γ ×Q is a set of write instructions and δm ⊆ Qm ×Δ×Q is
a set of move instructions, where Δ = {−1, 0, 1}. Furthermore the following two
implications must hold: (1) If (q, d, r) ∈ δ and (q, d′, r′) ∈ δ then d = d′ and r = r′.
(2) If (q, a, b, r) ∈ δ and (q, a, b′, r′) ∈ δ then b = b′ and r = r′. A Turing machine
is reversible if M−1 = (Q,Γ, δ−1) is a Turing machine, where (r,−d, q) ∈ δ−1 if
(q, d, r) ∈ δ and (r, b, a, q) ∈ δ−1 if (q, a, b, r) ∈ δ. We will call M−1 the inverse
machine of M. A configuration is a 3-tuple (w, i, q), where w ∈ ΓZ is the tape,
i ∈ Z is the location of theTuring machine head and q ∈ Q. If a write instruction is
applied to the configuration we will write (w, i, q) � (w′, i, r) if (q, wi, w

′
i, r) ∈ δw,

where w′ ∈ ΓZ is such that w′
k = wk for each k 	= i. If a move instruction is

applied to the configuration we will write (w, i, q) � (w, i + d, r) if (q, d, r) ∈ δm.
Inductively we define �n, where � is applied n times. Furthermore we will write
(w, i, q) �+ (w′, j, r) if there exists such n ∈ Z+, that (w, i, q) �n (w′, j, r)
holds. A Turing machine is complete if for each configuration (w, i, q), there exists
(w′, j, r), such that (w, i, q) � (w′, j, r). We will call a configuration (w, i, q) peri-
odic if (w, i, q) �+ (w, i, q) and weakly periodic if there exists such j ∈ Z, that
(w, i, q) �+ (σj(w), i−j, q). Furthermore we will call a configuration strictly weakly

Undecidability of the Topological Entropy of RCA and Related Problems 111

periodic if it is weakly periodic, but not periodic.Wewill call aTuringmachine peri-
odic if all its configurations are periodic, and aperiodic if none of its configurations
are weakly periodic.

2.1 Construction Techniques for Turing Machines

In this subsection we will recall some useful methods for constructing new Turing
machines from existing ones.

Let M = (Q,Γ, δ) be a Turing machine. We will call a TM M′ = (Q′, Γ, δ′) a
copy of M if there exists a bijection ϕ : Q → Q′, such that (ϕ(q), d, ϕ(r)) ∈ δ′

m if
and only if (q, d, r) ∈ δm and (ϕ(q), a, b, ϕ(r)) ∈ δ′

w if and only if (q, a, b, r) ∈ δw.
We call Q′ the copied state set and ϕ(q) the copied state of q. It is of course
a trivial process to make copies of existing Turing machines. To simplify the
notation and if it is clear from context, we might denote the states sets of multiple
TMs by the same set despite the state sets being disjoint.

A TM M = (Q,Γ, δ) is an union of n Turing machines Mi = (Qi, Γ, δi),

where i ∈ {0, 1, ..., n − 1}, if Q =
n−1⋃

i=0

Qi and δ =
n−1⋃

i=0

δi. When constructing

larger Turing machines by taking unions of them, one might want to be able
to move between the sets of states of the different machines. Next we introduce
special set of states and state-symbol pairs where such transitions can naturally
take place.

Definition 1. If q ∈ Qw and a ∈ Γ are such that (q, a, b, r) 	∈ δ for each pair
b ∈ Γ and r ∈ Q, then we call (q, a) an error pair. If q ∈ Qm and (q, d, r) 	∈ δ
for each d ∈ {−1, 0, 1} and r ∈ Q, we call q an error state.

Definition 2. If r ∈ Q and b ∈ Γ are such that (q, a, b, r) 	∈ δ for each pair
a ∈ Γ and q ∈ Q, then we call (r, b) a defective pair. Furthermore we call a state
r ∈ Q a defective state if (q, d, r) 	∈ δ for each q ∈ Q and d ∈ {−1, 0, 1}.

Now when taking unions of Turing machines one can add transitions from
error pairs of one machine to defective pairs of another one and similarly with
error states and defective states. We will see an especially useful example of
this construction method in Definition 3. The technique was developed in [7] to
prove the undecidability of the periodicity problem for reversible and complete
Turing machines. It is also applied extensively in [3], and [2] in the proofs of
undecidability of the transitivity problem, the minimality problem and the zero
entropy problem, for example. We will also apply it to prove undecidability of a
problem considering strictly weakly periodic points in Theorem5.

Definition 3. Let M = (Q,Γ, δ) be a reversible Turing machine. Let M+ =
(Q+, Γ, δ+) and M− = (Q−, Γ, δ−) be the copies of M and its inverse machine
respectively. For each q ∈ Q we denote as qx ∈ Qx the copied states of q, where
x ∈ {+,−}. Let δ′ = {(qx, a, a, qy) | (qx, a) is an error pair of Qx

w and x 	= y} and
δ′′ = {(qx, 0, qy) | qx is an error state of Qx

m and x 	= y}. Let M0 = (Q0, Γ, δ0) be
the union ofM+ andM−. Define a TMM′′ = (Q0, Γ, δ1), where δ1 = δ0∪δ′ ∪δ′′.
The TMM′′ is referred as a TM constructed fromM by reversing the computation.

112 T. Hotanen

Notice that in previous definition the error pairs (qx, a) of Mx are the defec-
tive pairs (qy, a) of My, when x 	= y and analogously a similar statement is true
for the error and defective pairs. It is easy to see that machine constructed via
reversing the computation is a reversible and complete Turing machine.

2.2 Turing Machines as Dynamical Systems

Kůrka introduced two ways of defining complete Turing machines as dynamical
systems in [9]. Both of them are straightforward constructions from the standard
definition. We simply adjust the configuration space slightly to achieve a compact
metric space and then we define a continuous function that remains faithful to
the transition rule.

The first system is called Turing machine with moving tape or TMT for short.
In TMT, the location of the Turing machine head is fixed to the origin and the
tape moves instead of the Turing machine head. For example if the machine reads
a right move, the tape moves left, i.e. the content at each cell gets shifted left by
one cell. More specifically, the space is defined as X = ΓZ × Q and the function
f : X → X works as follows: If (q, d, r) ∈ δm then f(w, q) = (σd(w), r) for each
(w, q) ∈ ΓZ × Qm. The write instruction reads the tape content at origin and
rewrites it according to the instructions, i.e. for each (q, a, a′, r) ∈ δw we have
that f(w, q) = (w′, r), where w0 = a, w′

0 = a′, and wi = w′
i for each i 	= 0. The

distance d : X → R is defined as d((w, q), (w′, q′)) = 2 if q 	= q′ and dσ(w,w′) if
q = q′.

The second system is called Turing machine with moving head or TMH for
short. The function of this system works more like a computation of a traditional
Turing machine. The space is defined as X = {w ∈ ((Q × Γ) ∪ Γ)Z | ∃! i ∈ Z :
wi ∈ Q × Γ} ∪ ΓZ equipped with the distance dσ. The function f : X → X
is defined as follows: If w ∈ ΓZ, then f(w) = w. Otherwise if wj = (q, a) and
(q, a, a′, r) ∈ δw, then f(w) = w′, where w′

j = (r, a′) and wi = w′
i for each i 	= j.

Finally if wj = (q, a) and (q, d, r) ∈ δm, then f(w) = w′, where w′
j+d = (r, wj+d),

wj = (q, w′
j) and wi = w′

i for each i 	∈ {j, j + d}.
One can check that the spaces are indeed compact metric spaces and the

functions are continuous in their respective spaces.

2.3 Simulating Turing Machines Inside Cellular Automata

We can simulate the computations of Turing machines inside cellular automata
by using the construction of TMH. The only issue that needs to be dealt with is
the question of what should the CA do when a configuration has multiple states
depicting Turing machine heads. This is typically dealt with the introduction of
arrows, which subdivide each configuration into independent simulation areas.
Then we just have to decide what should happen when the simulations run out of
space. Furthermore we do not require the TMs to be complete to be able to use

Undecidability of the Topological Entropy of RCA and Related Problems 113

this kind of construction as we can add rules that deal with the cases when the
TM transition is undefined. We will describe a way how a given Turing machine
can be simulated in sets of simulation words.

Definition 4. Let M = (Q,Γ, δ) be a Turing machine and denote A = {→,←}.
Let ΣM = Q1 ∪ T1, where Q1 = Γ × Q and T1 = Γ × A. We call elements in
Q1 the head symbols and elements in T1 the tape symbols. The alphabet ΣM is
called the TM alphabet.

We define a relation R1 in a following way: Let a ∈ ΣM and b ∈ ΣM then

aR1b if

⎧
⎪⎨

⎪⎩

a ∈ Γ × {→} ∧ b ∈ (Γ × {→}) ∪ Q1

∨ a ∈ Q1 ∧ b ∈ Γ × {←}
∨ a ∈ Γ × {←} ∧ b ∈ Γ × {←}.

Define Sα
M = {w ∈ Σα

M | wjR1wj+1∀ j and wQ1 = 1}, where α ∈
{Z,Z−,N, ∗}. Elements in any of these sets will be called simulation words. Next
we will define a semi-function on these sets, which simulates the computations
of a given Turing machine.

Let w ∈ SΩ
M. If j is such an index that wj ∈ Q1, then we define fL(w) = j.

If furthermore wj = (a, q), then fQ(w) = q.
Let # 	∈ Σ. We define a padding function p : SΩ

M → (Σ ∪ {#})Z, such that
p(w)i = wi,1, when w ∈ Sα

M, i ∈ α, where α ∈ {Z,Z−,N, ∗} and p(w)i = #
otherwise.

Using these notations we can define an injective mapping from the simulation
words to Turing machine configurations.

Definition 5. Let M be a TM. Define τ : SΩ
M → ΓZ × Z × Q in such a way

that τ(w) = (p(w), fL(w), fQ(w)).

Finally we can define a function that simulates the computation of a Turing
machine in the simulation words:

Definition 6. Let M be a TM. Define fSM : SΩ
M → SΩ

M in such a way that
fSM(w) = τ−1◦ � ◦τ(w) if � is defined for τ(w) and � ◦τ(w) = (w′, j, q) and
w′

j 	= #.

The function of the above definition behaves on the simulation words just as
the Turing machine does on configurations as long as the Turing machine head
stays inside the domains of the simulation words.

If the set of states of a given CA contains a TM alphabet as a subset, we can
recognize simulation areas in the configurations of such CA and use this function
to simulate Turing machine computations in those areas. We will describe this
process next.

Let M = (Q,Γ, δ) be a Turing machine. Let Σ1 be such a set of symbols
that ΣM ⊆ Σ1.

114 T. Hotanen

For each configuration c ∈ ΣZ
1 , we define a set of locations for the Turing

machine heads as
Hc = {j ∈ Z | cj ∈ Q1}.

Next we define the simulation bounds as functions lc : Hc → Z ∪ {−∞} and
rc : Hc → Z ∪ {∞} in the following way:

lc(j) = sup{k ∈ Z | k ≤ j and ck−1R
c
1ck}

and
rc(j) = inf{k ∈ Z | j ≤ k and ckRc

1ck+1}.

From these bounds we can define the set of cells that are not part of any simu-
lation area as

Uc = Z \ (
⋃

j∈Hc

[lc(j), rc(j)]).

Using the simulation bounds, we can define a function, which simulates the
computations of the given Turing machine in their designated simulation areas
as fM : ΣZ

1 → ΣZ
1 , where

fM(c)[lc(j),rc(j)] = fSM(c[lc(j),rc(j)]) ∀j ∈ Hc and
fM(c)k = ck ∀k ∈ Uc.

Clearly fM is a cellular automaton since we can extract a radius-1 local rule
from its definition.

2.4 Speed of Turing Machines

We first define a function that tracks the location of the Turing machine head
given some initial configuration and a time step.

Definition 7. Let M = (Q,Γ, δ) be a Turing machine. Let X be the config-
uration space of the TM. Define fT : X × N → N as fT ((w, i, q), n) = j if
(w, i, q) �n (w′, j, r).

Using the tracking function we define a set of visited locations given some
initial configuration and a time step.

Definition 8. Let M = (Q,Γ, δ) be a Turing machine. Let X be the configura-
tion space of the TM. Define fV : X × N → N as fV (x, n) = {fT (x, j) | j ≤ n}.

Finally we can calculate the maximum amount of visited locations by any
computation by a given time and define the notion of speed.

Definition 9. Let M = (Q,Γ, δ) be a Turing machine. Let X be the configura-
tion space of the TM. Define the movement bound fM : N → N as fM (n) =
maxx∈X |fV (x, n)|. The speed of the TM M is defined as fS(M) = limn→∞

fM (n)
n .

Theorem 1. [6] Let M be a Turing machine, and fM be its movement bound.
If M is aperiodic, then fM is sublinear.

Undecidability of the Topological Entropy of RCA and Related Problems 115

The above Theorem implies that any aperiodic Turing machine M have zero
speed, i.e. fS(M) = 0.

Theorem 2. [4] Let M be a Turing machine, then fS(M) > 0 if and only if
there exists a strictly weakly periodic configuration.

2.5 Lyapunov Exponents of Cellular Automata

Definition 10. Let (Σ,N, h) be a one-dimensional cellular automaton, with a
global rule f : ΣZ → ΣZ. For every c ∈ ΣZ, we define

W+
m(c) = {c′ ∈ ΣZ | ∀i ≥ m, c′

i = ci}
and

W−
m(c) = {c′ ∈ ΣZ | ∀i ≤ m, c′

i = ci}.

Furthermore we define

I+n (c) = min{m ∈ N | f i(W+
−m(c)) ⊆ W+

0 (f i(c)),∀i ≤ n}
and

I−
n (c) = min{m ∈ N | f i(W−

m(c)) ⊆ W−
0 (f i(c)),∀i ≤ n}

Finally we define the pointwise Lyapunov exponents as

λ+(c) = lim inf
n→∞

I+n (c)
n

and

λ−(c) = lim inf
n→∞

I−
n (c)
n

and the global Lyapunov exponents as

λ+ = lim
n→∞ max

c∈ΣZ

I+n (c)
n

and

λ− = lim
n→∞ max

c∈ΣZ

I−
n (c)
n

.

2.6 Topological Entropy of Cellular Automata

Definition 11. Let f : ΣZ → ΣZ be a CA. Define τk : ΣZ → (Σk)N such that
τk(c)i = f i(c)[0,k−1]. The mapping τk is called the k−trace shift

Definition 12. Let f : X → X be a CA. Define Lτk(X)(j) = {u � w | w ∈
τk(X) and |u| = j} and Pk(j) = |Lτk(X)(j)|.
Theorem 3. Let f : X → X be a CA. Then hf = lim

k→∞
hτk

, where hτk
=

lim
j→∞

ln(Pk(j))
j .

It is easy to see that P ′
k(j) ≥ Pk(j) for any k′ ≥ k and hence for any k we

have that hτk
≤ hf .

116 T. Hotanen

3 Decision Problems

3.1 Decision Problems for Turing Machines

Decision problems that we are interested in:

ARTM reachability: Given an aperiodic and reversible Turing machine and
two states qα and qω, decide whether qω is reachable from qα.

RCTM strictly weakly periodic configuration: Given a reversible and com-
pleteTuringmachine, decide if there exists a strictlyweakly periodic configuration.

RCTM zero speed: Given a reversible and complete Turing machine, decide
if its speed is zero.

RCTM zero entropy: Given a reversible and complete Turing machine, decide
if its entropy is zero.

The first and fourth have already been proven in [7] and [2] respectively. We
use the reduction from the first decision problem to the second and third and
show that they are undecidable. The fourth follows easily from the third one,
although this result is not new in itself.

Theorem 4. [7] ARTM reachability is undecidable.

Theorem 5. RCTM strictly weakly periodic configuration is undecidable.

Proof. Let M = (Q,Γ, δ) be an aperiodic and reversible Turing machine. We
will prove the theorem via reduction to the ARTM reachability problem, which
is known to be undecidable by Theorem4. To this end, for a given two states qα

and qω of Q, we will construct a Turing machine Mwp, such that qω is reachable
from qα in M if and only if Mwp has a strictly weakly periodic configuration.

Without loss of generality, we can assume that qα is a defective state and
qω is an error state. The reason for that is that if we can reach qω from qα

during finitely many steps, then there exists a last time that the computation
sees the state qα and hence we can just begin the computation from that point.
Furthermore we can assume that when starting from qα, the first two instructions
are move to the right (qα,+, q′

α) and a move to the left (q′
α,−, q′′

α). If that is not
the case, we add these moves to δ and the states q′

α and q′′
α to Q. After that if

qα ∈ δm, we replace (qα, d, r0) with (q′′
α, d, r0) and if qα ∈ δw, we replace each

(qα, a, b, ra) ∈ δ with (q′′
α, a, b, ra). We will also assume that there exists a special

symbol #, such that (q,#) is both an error and a defective pair for each q ∈ Q.
We will construct three copies of M and three copies of its inverse machine

M− to achieve six new TMs Mx
y = (Qx

y , Γ, δx
y), for given pairs of subscripts and

superscripts that we will introduce in the following paragraphs. The superscript
x is either + or − depending on whether the machine is a copy of the original
machine or its inverse, respectively. If we need to specify from which machine
the state is, we will add the name of the Turing machine as a subscript. We
will describe how to modify each copy to suit our needs. We will say that we
will replace an instruction (q, d, r) ∈ δx

y with a sub-routine as described by a

Undecidability of the Topological Entropy of RCA and Related Problems 117

transition graph depicted in a given figure. What we will mean by this is that
we will add all such states to the new machine’s state set Qx

y , which are depicted
in the same color in the transition graph as the states q and r. Additionally
we will then remove (q, d, r) from δx

y and add to it all the instructions that are
between nodes of the same color.

We will first construct three copies of the machine M as follows. First we will
construct a TM M+

R = (Q+
R, Γ, δ+R) by replacing each instruction (q, +, r) ∈ δ+R ,

where q 	= qα with the sub-routine in Fig. 1. We will also replace the instruction
(qα,+, q′

α) ∈ δ+R with the sub-routine in Fig. 2. We then construct a TM M+
L =

(Q+
L , Γ, δ+L) by replacing each instruction (q,−, r) ∈ δ+L with the sub-routine in

Fig. 3. The third TM M+
F = (Q+

F , Γ, δ+F) is just the exact copy of the original
machine M.

q

r

qa q a rq

+ +

a | a
−

|
− a | # + # | a − # | #

Fig. 1.A transition graph that represents a sub-routine, which replaces each instruction
(q,+, r) of M+

R, where q �= qα. The states qa and q′a are unique for each a ∈ Γ . The
last pair of nodes on the top-right corner represents a transition from M+

R to M−
R.

qα

qα

qa q a qα

+

a | a

|
− a | # + # | a − # | #

Fig. 2. A transition graph that represents a sub-routine, which replaces the instruction
(qα,+, q′

α) of M+
R. The states qa and q′a are unique for each a ∈ Γ . The last pair of

nodes on the top-right corner represents the transition from M+
R to M−

L .

We will then construct three copies of the inverse machine M− as follows.
The first TM M−

R = (Q−
R, Γ, δ−

R) is constructed by replacing each instruction
(r,−, q) ∈ δ−

R with the sub-routine in the left side of Fig. 4. The second TM
M−

L = (Q−
L , Γ, δ−

L) is constructed by replacing each instruction (r,+, q) ∈ δ−
L

with the sub-routine in the top-left corner of Fig. 5 and additionally (q′
α,−, qα) ∈

δ−
L is replaced with the sub-routine in the bottom of Fig. 5. Finally the third TM

M−
F = (Q−

F , Γ, δ−
F) is constructed by replacing each instruction (r,+, q) ∈ δ−

F

with the sub-routine in Fig. 6.

118 T. Hotanen

q

r

rq

qa q a rq
− −

a | a
+

|
−

|
+ # | #

a | a
a | # + # | a − # | #

Fig. 3. A transition graph that represents the sub-routine, which replaces the instruc-
tion (q, −, r) of M+

L . The states qa and q′a are unique for each a ∈ Γ . The last pair
of nodes on the top-right corner represents a transition from M+

L to M−
F and the last

pair of nodes on the middle represents a transition from M+
L to M−

L .

r rq q
a | a −

qα qα

a | a

Fig. 4. A transition graph on the left side represents a sub-routine, which replaces
each instruction (r, −, q) of M−

R, where r �= q′. The transition graph on the right side
represents the transition from M−

R to M+
R at the state qα.

r rq q
− − a | a + + +

qα qα

a | a

qα qα
qα

− − a | a +

Fig. 5. The transition graph on the bottom represents the sub-routine, which replaces
the instruction (q′

α, −, qα) of M−
L . The transition graph on the top-left corner represents

the sub-routine, which replaces the instruction (r,+, q) of M−
L . The transition graph

on the top-right corner represents the transition from M−
L to M+

L at the state qα.

Let M′ be the union of our six Turing machines constructed in the previ-
ous two paragraphs. We will add transitions between the different state sets by
adding such instructions from Figs. 1, 2, 3, 4, 5, 6 and 7, where the pairs of
nodes are depicted by two different colors. Our final construction is the Turing
machine Mwp, which is constructed from M′ and the inverse machine M′− by
the method of reversing the computation. Notice that the constructed machine
Mwp is complete and reversible.

r rq q
− a | a + +

qα qα

a | a

Fig. 6. The transition graph on the left side represents a sub-routine, which replaces
each instruction (r,+, q) of M−

F . The transition graph on the right side represents the
transition from M−

F to M+
F at the state qα.

Undecidability of the Topological Entropy of RCA and Related Problems 119

qω qω

a | a

Fig. 7. A transition graph that represents the only transition from M+
F to M−

R.

We will first assume that qω is reachable from qα. Since the computation is
finite, there exists such n ∈ N, that exactly n indices of the tape is visited during
the computation. By shifting, if necessary, we can assume that the visited indices
are in the interval [1, n]. Let w ∈ ΓZ, w′ ∈ ΓZ, iα ∈ [1, n] and iω ∈ [1, n] be such
that (w, iα, qα) �+ (w′, iω, qω) in M.

Following the instructions of the machine it is fairly straightforward now to
show (x#w#y, iα, qα,M+

R
) �+ (x##wy, iα + 1, qα,M+

R
) and thus −∞#w[1,n]#∞

is a strictly weakly periodic configuration.
Suppose then that there exists a strictly weakly periodic configuration. It is

fairly easy to show that the computations needs to pass through all the machines
Mx

X for X ∈ {L,R, F} and x ∈ {−,+}. Therefore we have that qω is reachable
from qα. ��

Immediately we get the two following corollaries:

Theorem 6. RCTM zero speed is undecidable.

Proof. From Theorem 2 we know that a Turing machine has non-zero speed
if and only if there exists a weakly periodic configuration. From Theorem 5 we
have that RCTM strictly weakly periodic configuration is undecidable and hence
RCTM zero speed is also undecidable. ��
Theorem 7. RCTM zero entropy is undecidable.

Proof. By the methods in [6], for a given TM M, we can build another TM MA,
such that hMA

log |A| ≥ s(M) = s(MA) ≥ hMA

log |Γ×A| , where Γ is the alphabet of M
and A is a finite set of symbols such that |A| > 1. Then if we would have an
algorithm, which tells if a given ARCTM has an entropy of value zero or not, we
would also have an algorithm that tells whether a given TM has a speed zero or
not. Therefore the claim follows by Theorem 6. ��

3.2 Decision Problems for Cellular Automata

RCA glider: Given a reversible cellular automaton, decide if there exists a
glider.

RCA zero global Lyapunov exponents: Given a reversible cellular automa-
ton, decide if λ+ = λ− = 0.

RCA zero entropy: Given a reversible cellular automaton, decide if the entropy
is zero.

120 T. Hotanen

Theorem 8. RCA zero global Lyapunov exponents is undecidable.

Proof. Let M be a TM and let us consider the CA f = fM. Let c ∈ ΣZ
1 . If there

exists such j ∈ Hc, that lc(j) ∈ Z− or rc(j) ∈ Z−, then for any c′ ∈ W+
m(c),

where m = max{lc(j), rc(j)}, it holds that f i(c′) ∈ W+
m(f i(c)) ⊆ W+

0 (f i(c)) for
each i ∈ N. Suppose then that there exists j ∈ Hc such that lc(j) = −∞ and
rc(j) ≥ 0. Let n ∈ N and c′ ∈ W+

m(c), where m = min{j, 0} − fM (n) − 1. Then
by definition of fM we have that f i(c′) ∈ W+

min{j,0}(f
i(c)) ⊆ W+

0 (f i(c)) for
each i ≤ n. This is clear because any change can not propagate faster than the
movement bound of the Turing machine inside a single simulation area. Similar
argument can be used if the origin of c is not part of a simulation area. Therefore
for each configuration c and time step n, I+n (c) is bounded above by fM (n) + a
for some constant a. Analogous statement holds for I−

n (c).
On the other hand it is easy to show that max{I+n (c), I−

n (c)} is bounded
below by fM (n)

2 . This is because there exists a configuration, such that the Turing
machine head will visit origin within n steps starting from either index − fM (n)

2

or fM (n)
2 . Then we take as a simulation word c over Z any such configuration.

Then let j be the unique index such that j ∈ Hc and let c′ be such that ci = c′
i for

each i 	= j and c′
j ∈ T1. In other words we keep the configuration same otherwise

except we removed the only head symbol. Now f i(c) ∈ Q1 and f i(c′) ∈ T1 for
some i ≤ n.

We have that λ+ = λ− = 0 if and only if fS(M) = 0. Therefore by Theorem 6
we have that RCA zero global Lyapunov exponents is undecidable. ��
Theorem 9. RCA glider is undecidable.

Proof. Let Mwp = (Q,Γ, δ) be a Turing machine as constructed in Theorem5.
Let A = (Σ,N, h) be a cellular automaton, where Σ = ΣM and (#,→) is the
quiescent state. Let S = {(a, q) ∈ Q1 | (q,+, r) ∈ δM+

R
}. We define a global rule

g : ΣZ → ΣZ in such a way that

g(c)i =

⎧
⎪⎨

⎪⎩

(#,←) if c[i−1,i] ∈ S(#,→)(#,→),
(#,→) if c[i−1,i] ∈ S(#,←)(#,→) and
ci otherwise.

It is easy to see that g is reversible. Let f = fM ◦ g.
Assume first that qω is reachable from qα. Let w ∈ ΓZ be as in Theorem 5.

Let c =−∞ (#,→)(w1,→)(w2,→) · · · (wiα−1,→)(wiα
, qα)(wiα+1,←) · · · (wn,←

)(#,→)∞. Now −∞#w[1,n]#∞ is a strictly weakly periodic configuration. We
saw in the proof of Theorem5, that during the computation (c, iα, qα) �k

(σ−1(c), iα + 1, qα), there is a unique time k′ ∈ [0, k), such that (c, iα, qα) �k′

(c, n, q), where q ∈ Q, such that (q,+, r) ∈ δM+
R

for some r ∈ Q. Hence dur-
ing the k iterations of f , the time-step k′ is the only time, when g affects the
computation by extending the simulation area from the right side by one cell.
Hence the computation works as if each cell belonged into a single simulation

Undecidability of the Topological Entropy of RCA and Related Problems 121

area. Therefore c is a strictly weakly periodic configuration and since it is also
finite, it is a glider.

If qω is not reachable from qα, then there are no strictly weakly periodic con-
figuration in Mwp. On the other hand, it is easy to see a glider would require an
existence of a strictly weakly periodic configuration of Mwp. Hence by Theorem 5
we have that RCA glider is undecidable. ��
Theorem 10. RCA zero entropy is undecidable.

Proof. Let M = (Q,Γ, δ), we construct Mwp almost the same way, except we
add two new symbols #0 and #1 instead of #, such that both behave as they
would if they were just #. Furthermore we add four more copies of M and
four more copies of its inverse machine. We denote the new machines as Mx

y ,
where x ∈ {+,−} describing whether the copy is of the original or the inverse
machine and y ∈ {F2, F3, S, S2}. We remove the transitions of Fig. 7. Then we
add transitions (qω, a, a, qω) from M+

F to M−
S , M+

S to M−
F2

, M+
F2

to M−
S2

, M+
S2

to M−
F3

and M+
F3

to M−
R for each a ∈ Γ . We also add transitions (qα, a, a, qα)

from M−
F2

to M+
F2

and M−
F3

to M+
F3

. Finally we finish the construction by
reversing the computation and denote the machine as ME .

Let Σ1 be the TM alphabet of ME . And let Σ = Σ1 ∪ {(#0, ·), (#1, ·)}. Let
∈ {#1,#2} and define g as:

g(c)[i,i+1] =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(#, ·)(qS+
1
, a) if c[i−1,i+1] = (#, ·)(#,→)(qS−

1
, a),

(#,→)(qS−
1

, a) if c[i−1,i+1] = (#, ·)(#, ·)(qS+
1
, a),

(qS+
2
, a)(#,←) if c[i,i+2] = (qS−

2
, a)(#, ·)(#, ·),

(qS−
2

, a)(#, ·) if c[i,i+2] = (qS+
2
, a)(#,←)(#, ·) and

c[i,i+1] otherwise.

It is easy to see that g is reversible. Let f = fM ◦ g.
We will now prove the claim by a reduction to Theorem6. Suppose qω is not

reachable from qα. We will show that then λ+ = λ− = 0. It then follows from
Theorem x that hf = 0.

Let c be a configuration such that j ∈ Hc and j′ = max{k ∈ Hc | k < j}.
We will show that any change in the simulation bounds of j does not affect the
left simulation bound of j′.

Suppose t > 0 is such that fk(c)[lc(j)−k1,rc(j)+k2] is the largest simulation
word in the interval [lc(j)−k1, rc(j)+k2] for each k < t if and only if k1 = k2 = 0
and at time step t this no longer holds.

Suppose first that f t(c)[lc(j)−k1,rc(j)+k2] is the largest simulation word in the
interval [lc(j) − k1, rc(j) + k2] if k1 = 0 and k2 ∈ {−1, 1}. By definition of g
this mean that f t−1(c)n = (qSx

2
, a) for x ∈ {−,+} some q in the set of states

of ME and where a = rc(j) if k2 = 1 and a = rc(j) − 1 if k2 = −1. Now by
the definition of g to have any affect in the left border the head symbol should
transition into rSx

1
, b). By how ME was constructed this is possible only if the

computation goes through machines M+
F2

or M+
F3

. But only way it can do this,
is if qω is reachable from qα.

122 T. Hotanen

Suppose then that f t(c)[lc(j)−k1,rc(j)+k2] is the largest simulation word in the
interval [lc(j) − k1, rc(j) + k2] if k1 ∈ {−1, 1} and k2 = 0. By definition of g this
mean that f t−1(c)n = (qSx

1
, a) for x ∈ {−,+} some q in the set of states of ME

and where a = lc(j) if k1 = 1 and a = lc(j) − 1 if k1 = −1. Now by definition
of g the only way this affects the computation in the simulation bounds of j′ is
if there is a time step t′ > t, such that the head symbol inside the simulation
bounds of j′ at time stept′ is (q′

Sx
1
, a′). This then reduces to the earlier case and

we that the left border of the simulation area of j′ does not change as qω is not
reachable from qα.

Similarly we can see that any change in the simulation bounds of j′ does not
affect the right bound of j.

Now if c is a configuration such that the origin is contained in one simula-
tion area and there are more than one simulation areas on the left side of it,
then information can not propagate to the simulation area that contains origin.
Same is true for the right side, hence one only needs to analyze the cases when
there is only one additional simulation area on the left or right side. This is
straightforward and can be done as in Theorem8.

Hence if qω is not reachable from qα then λ+ = λ− = 0 and so hf = 0.
Suppose then that qω is reachable from qα.
It is easy to see that there exists t > 0 such that f t(c)[1,|w|] = w′, where

w = (#k1 , ·)u(#k2 , ·)(#k3 , ·), w′ = (#k1 , ·)(#k2 , ·)u(#k3 , ·) and u is a simulation
word where qω is reached from qα. This is because the machine ME works as
the one in the proof of Theorem5 except the CA will modify the states (#, ·) as
needed.

Now let wi = u(#ki1
, ·)(#ki2

, ·)(#ki3
, ·)(#ki4

, ·). Let c = . . . w−2w−1w0w1

w2 . . . , where c[0, |w0| − 1] = w0. Let t′ = t ∗ |w0|. Then f t′∗k(c)[0,|w0|−1] = wk.

Then P|w0|(t′ ∗ k) ≥ 24∗k. Then hf ≥ lim
k→∞

ln(P|w0|(t
′∗k))

t′k ≥ 4 ln(2)
t′ . ��

Theorem 11. The topological entropy hf of a given f can not be approximated
to a given precision, especially it is not computable.

Proof. We saw in the proof of Theorem 10 that it was undecidable whether the
entropy of the constructed cellular automaton was 0 or m ≥ 4 ln(2)

t′ for some
constant t′. Hence if 0 < ε < ln(2)

t′ one cannot decide if hf ∈ (3 ln(2)
t′ , 5 ln(2)

t′) for
example. ��

Acknowledgements. The author acknowledges the emmy.network foundation under
the aegis of the Fondation de Luxembourg for its financial support.

Undecidability of the Topological Entropy of RCA and Related Problems 123

References

1. Boyle, M.: Open problems in symbolic dynamics. Contemp. Math. 469 (2008).
https://doi.org/10.1090/conm/469/09161

2. Gajardo, A., Ollinger, N., Torres-Avilés, R.: Some undecidable problems about the
trace-subshift associated to a Turing machine. Discrete Math. Theor. Comput. Sci.
17(2), 267–284 (2015). https://doi.org/10.46298/dmtcs.2137, https://hal.inria.fr/
hal-01349052

3. Gajardo, A., Ollinger, N., Torres-Avilés, R.: The Transitivity Problem of Turing
Machines (2015)

4. Guillon, P., Salo, V.: Distortion in one-head machines and cellular automata. In:
Dennunzio, A., Formenti, E., Manzoni, L., Porreca, A.E. (eds.) AUTOMATA 2017.
LNCS, vol. 10248, pp. 120–138. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-58631-1 10

5. Hurd, L.P., Kari, J., Culik, K.: The topological entropy of cellular automata is
uncomputable. Ergodic Theory Dynam. Systems 12(2), 255–265 (1992). https://
doi.org/10.1017/S0143385700006738

6. Jeandel, E.: Computability of the entropy of one-tape Turing machines. In: Leibniz
International Proceedings in Informatics, vol. 25. LIPIcs, February 2013. https://
doi.org/10.4230/LIPIcs.STACS.2014.421

7. Kari, J., Ollinger, N.: Periodicity and Immortality in Reversible Computing. In:
Ochmański, E., Tyszkiewicz, J. (eds.) MFCS 2008. LNCS, vol. 5162, pp. 419–430.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85238-4 34

8. Kopra, J.: The Lyapunov exponents of reversible cellular automata are uncom-
putable. In: McQuillan, I., Seki, S. (eds.) UCNC 2019. LNCS, vol. 11493, pp.
178–190. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19311-9 15

9. Kůrka, P.: On topological dynamics of Turing machines. Theor. Comput. Sci.
174(1), 203–216 (1997). https://doi.org/10.1016/S0304-3975(96)00025-4, http://
www.sciencedirect.com/science/article/pii/S0304397596000254

10. Salo, V.: Conjugacy of reversible cellular automata and one-head machines (2020).
https://doi.org/10.48550/ARXIV.2011.07827, https://arxiv.org/abs/2011.07827

https://doi.org/10.1090/conm/469/09161
https://doi.org/10.46298/dmtcs.2137
https://hal.inria.fr/hal-01349052
https://hal.inria.fr/hal-01349052
https://doi.org/10.1007/978-3-319-58631-1_10
https://doi.org/10.1007/978-3-319-58631-1_10
https://doi.org/10.1017/S0143385700006738
https://doi.org/10.1017/S0143385700006738
https://doi.org/10.4230/LIPIcs.STACS.2014.421
https://doi.org/10.4230/LIPIcs.STACS.2014.421
https://doi.org/10.1007/978-3-540-85238-4_34
https://doi.org/10.1007/978-3-030-19311-9_15
https://doi.org/10.1016/S0304-3975(96)00025-4
http://www.sciencedirect.com/science/article/pii/S0304397596000254
http://www.sciencedirect.com/science/article/pii/S0304397596000254
https://doi.org/10.48550/ARXIV.2011.07827
https://arxiv.org/abs/2011.07827

Fault Pruning: Robust Training of Neural
Networks with Memristive Weights

Ceca Kraǐsniković1 , Spyros Stathopoulos2 , Themis Prodromakis2 ,
and Robert Legenstein1(B)

1 Institute of Theoretical Computer Science, Graz University of Technology,
Graz, Austria

{ceca.kraisnikovic,robert.legenstein}@igi.tugraz.at
2 School of Engineering, University of Edinburgh, Edinburgh, UK

{s.stathopoulos,t.prodromakis}@ed.ac.uk

Abstract. Neural networks with memristive memory for weights have
been proposed as an energy-efficient solution for scaling up of neural
network implementations. However, training such memristive neural net-
works is still challenging due to various memristor imperfections and
faulty memristive elements. Such imperfections and faults are becoming
increasingly severe as the density of memristor arrays increases in order
to scale up weight memory. We propose fault pruning, a robust train-
ing scheme for memristive neural networks based on the idea to identify
faulty memristive behavior on the fly during training and prune corre-
sponding connections. We test this algorithm in simulations of memris-
tive neural networks using both feed-forward and convolutional architec-
tures on standard object recognition data sets. We show its ability to
mitigate the detrimental effect of memristor faults on network training.

Keywords: Neural networks · Memristors · Robust training ·
Memristor faults · Network pruning

1 Introduction

Nano-scale electronic elements have recently gained increased attention for
machine learning applications and neuromorphic devices [8,9,27]. In particular,
memristive crossbar arrays have been proposed as a replacement for conventional
memory technology in hardware implementations of neural networks [1,4,26]. A
memristor is a resistor with memory in the sense that the charge that flows
through a memristor changes its resistance. Resistive Random Access Memories
(RRAM) are a common expression of devices that exhibit memristive behav-
ior and can be realized using different architectures ranging from metal-oxides
[7] and perovskites [10] to fully organic solutions [22]. Memristors possess sev-
eral advantages over conventional memory elements when their resistive state
is utilized to store weights of a neural network: First, their resistive state is
non-volatile and therefore, only memory changes but not retention consumes
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Genova and J. Kari (Eds.): UCNC 2023, LNCS 14003, pp. 124–139, 2023.
https://doi.org/10.1007/978-3-031-34034-5_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-34034-5_9&domain=pdf
http://orcid.org/0000-0003-0906-920X
http://orcid.org/0000-0002-0833-6209
http://orcid.org/0000-0002-6267-6909
http://orcid.org/0000-0002-8724-5507
https://doi.org/10.1007/978-3-031-34034-5_9

Robust Training of Memristive Neural Networks 125

energy. Second, memristors can be integrated with ultra-high density, allowing
to scale up neural networks. Third, several implementations of memristors have
been demonstrated to present many densely packed resistive states [20] allowing
them to operate in an analog fashion. This allows for greater flexibility in storing
weight values with high resolution. Finally, memristors arranged in a crossbar
array architecture are ideally suited to implement the fundamental mathemati-
cal operation in neural networks in O(1) time: vector-matrix multiplication. This
can significantly speed up computations. These advantages render them the ideal
candidate for the realization of synaptic memory in neural networks. However,
memristive neural networks still face substantial challenges. The programming
of their resistances is noisy and their behavior is faulty. Faults exhibited by the
memristor are primarily associated with issues related to the fabrication and sec-
ondarily because of operational constraints. For the former case, these include
non-uniformity of the active layer, interface defects, or thermal effects during
processing. As a consequence, devices might become inoperable or operate out-
side expected specifications. However, devices can also fail during operation as,
depending on the technology, the endurance of the devices is limited. Yield and
repeatability issues also affect the reliability of large crossbars when compared
to established memory technologies. In order to scale up such memristive com-
puting systems, it is necessary to increase the integration density of memristive
arrays and thus scale down memristor elements. Unfortunately, the aforemen-
tioned problems become particularly pronounced in this case.

In this article, we consider the question of memristive neural network train-
ing. Such training in particular suffers from faulty memristor behaviors. Typi-
cal faulty behavior includes stuck memristors (i.e., devices that do not change
their resistance), memristors with an unexpected change rate (i.e., the memris-
tance change is stronger or weaker than expected), or even memristors with an
inverted plasticity behavior (i.e., memristors that change their resistance in the
wrong direction). We first analyze the impact of such faulty behavior on neu-
ral network training. We find that faulty behavior can significantly impact the
resulting network performance. Based on recent findings which show that neural
network connectivity can be significantly sparsified with minor loss in perfor-
mance [2,6,16,19], we then propose a novel training strategy (fault pruning)
where faulty memristor behavior is detected during training and correspond-
ing devices are pruned on the fly. We evaluate fault pruning on the MNIST and
CIFAR-10 data sets and show that this simple strategy is able to recover effective
network optimization for both feed-forward and convolutional memristive neu-
ral networks. Further analysis reveals that the algorithm can adaptively adjust
network sparsity to make use of the functional memristive resources.

2 Results

When memristive elements are used to store weight parameters of artificial neural
networks, each weight wi of the network is maintained in the resistance Ri of

126 C. Kraǐsniković et al.

a corresponding memristor. More precisely, the weight is in the simplest case
given by a linear mapping from the conductance Gi = 1

Ri

wi = α
(1

Ri
− 1

RC

)
, (1)

where α represents the scaling parameter of memristive weight, and RC rep-
resents the bias resistance value. In this simplest case, a single memristor
is used to represent both positive and negative weight values in some range
[−wmin, wmax]. More elaborated designs utilize separate memristors for posi-
tive and negative weight values, but we adopted here this scheme for simplic-
ity. We assumed that wmin = −wmax, and let the weight wi = 0 map to 1

RC
.

Hence, for a given range [Rmin, Rmax] of resistance values, the bias resistance
was given by RC = 2RminRmax/(Rmin + Rmax) and the scaling parameter was
α = wmax

1/Rmin−1/RC
. Consequently, the inverse mapping from the weight to resis-

tance was given by

Ri =
1

1
RC

+ wi

α

, (2)

see Sect. 3.1 for details. We simulated training of memristive neural networks
using an in-the-loop training setup [5,18,24], see Fig. 1. Here, the memristive
network was simulated using non-ideal noisy memristive updates (see below). In
addition, a copy of the network architecture was simulated using high-precision
weights (high-precision network). Gradients were computed using backpropaga-
tion in the high-precision network and weight updates were accumulated. When
significant weight changes were accumulated, memristors in the memristive net-
work were updated [24,25]. More precisely, a resistance Ri was updated when
a weight change Δwideal

i resulting in a resistance change of 2% was reached. In
addition, an update of all resistances was forced every 100 training batches (see
Sect. 3.2 for details). Since such updates were non-ideal due to switching noise
and faulty memristors, resulting resistances were read out, mapped to weight
values according to Eq. (1), and the high-precision network was updated. This
procedure was iterated until the number of target epochs was reached.

Non-ideal memristor updates of the memristive network were modeled as fol-
lows. Let Δw

ideal,(k)
i denote the proposed update for weight i at update step k,

entailing a resistance update ΔR
ideal,(k)
i . Due to a number of nonidealities, mem-

ristors, when programmed, often show deviations from the intended behavior.
Stuck memristors do not change their resistance regardless of the magnitude of
the desired resistance change, and we refer to these faults as stuck faults. Other
memristors underestimate or overestimate the magnitude of resistance change,
or even produce updates in the opposite direction of the one predicted by the
underlying model of the memristor. We refer to faults where the magnitude of the
resistance change is under-/over-estimated as concordant switching faults and to
faults of memristors that produce resistance change in the opposite direction of
the desired one as discordant switching faults. In addition, when programming
the devices, i.e., switching the devices to different resistive states, the achieved
resistance states are noisy due to switching noise.

Robust Training of Memristive Neural Networks 127

Fig. 1. In-the-loop training setup. In this setup, training is performed on two networks
in parallel. In the memristive network (right), weights are implemented by unreliable
and faulty memristors (simulated in our case). The high-precision network (left) has
identical architecture, but weights are stored in high precision. The high-precision
network is trained until significant weight changes are available. At the kth update step,
such weight changes Δw

ideal,(k)
i are then used to update resistances in the memristive

network by the desired amount ΔR
ideal,(k)
i . The resulting resistances R

(k)
i are read out

and used to synchronize the high-precision network. These steps are repeated until
training ends.

We modeled faulty memristors by introducing fault factors fi that modulated
the desired (expected) resistance change ΔR

ideal,(k)
i and added a switching noise

term
ΔR

(k)
i = fi · ΔR

ideal,(k)
i + η

(k)
i . (3)

Fault factors were chosen according to the corresponding memristor fault type:
a fault factor fi = 0 for a stuck fault, fi < 0 for a discordant switching fault,
and fi > 0 for a concordant switching fault. The switching noise η

(k)
i was drawn

independently for each memristor i and each update step k from a normal dis-
tribution with zero mean and a magnitude up to 1% of the current resistance.

128 C. Kraǐsniković et al.

Fig. 2. Feed-forward neural network trained on the MNIST data set. (A) Example
images representing 10 digits. (B) Schematic of the feed-forward architecture used to
learn the task. (C) Examples of discordant switching fault (left), stuck fault (middle),
and concordant switching fault (right). The noisy achieved resistance change (y-axis)
is plotted against the desired change (x-axis). Line indicates linear fit for f̂ estimate.

2.1 Training of Memristive Neural Networks with Faulty
Memristors

We first investigated how faulty memristors impact the training of neural net-
works. We started with a simple feed-forward architecture trained on the MNIST
data set [14]. The MNIST data set consists of 70 thousand 28×28 gray-scale
images of handwritten digits. The goal is to classify these images into 10 classes
according to the written digit, see Fig. 2A for one example image per class. The
neural network architecture is shown in Fig. 2B. It consisted of one hidden layer
with 128 neurons with a rectified linear (ReLU) activation function and one
softmax output layer for classification. We first trained this network in the in-
the-loop training setup with switching noise but without faulty memristors. In
this case, the network achieved a test classification accuracy of 96.28 ± 0.32%
(percentage of correctly classified test examples; mean and STD over 10 training

Robust Training of Memristive Neural Networks 129

runs with random initial conditions). We next performed training with switch-
ing noise and faulty memristors. The behavior of three example simulated faulty
memristors is shown in Fig. 2C, one with a discordant switching fault (left), one
with a stuck fault (middle), and one with a concordant switching fault (right).
To test the effect of fault type on the network performance, we varied the pro-
portion of fault types, see Fig. 3A (left). The figure shows test performance for a
relative number of pstuck stuck faults (x-axis) and a relative number of pdiscordant
discordant switching faults (y-axis). The remaining simulated memristors had
concordant switching faults, that is a proportion of 1 − (pstuck + pdiscordant). We
observe that even with 80% concordant switching faults (e.g., cell (0.1, 0.1)),
the network shows good performance. This is not surprising as the parameter
change is still in the correct direction although somewhat distorted. Also, stuck
memristors can be tolerated up to some point. Only after 50% stuck faults in
the bottom row does the performance fall below 95%. The effect of discordant
memristors is more severe. At 30% discordant faults and 10% stuck faults, the
performance drops below 94% and then declines rapidly.

The same trend but more strongly pronounced can be observed for the more
challenging CIFAR-10 data set [13] using a convolutional network. This data set
consists of color images of size (32 × 32) from ten different classes representing:
airplanes, automobiles, birds, cats, deers, dogs, frogs, horses, ships, and trucks
[13], see Fig. 4A for example images. The schematic of the architecture used
to learn the task is shown in Fig. 4B. It consisted of two convolutional-pooling
layers, a convolutional layer that after flattening connected to a dense layer, and
finally, a softmax output layer with 10 neurons, one per class. Training without
memristor faults, we achieved a test classification accuracy of 60.61 ± 3.15%
(mean and STD over 10 training runs). Again, we varied the proportion of fault
types as above for the MNIST data set, see Fig. 4C (left). When compared to the
MNIST results, we can observe a clear performance decrease already for small
proportions of stuck- and discordant switching faults (cell (0.1, 0.1)), and a more
rapid decline of performance for increasing discordant switching faults.

2.2 Fault Pruning for Memristive Neural Networks

As the integration density of memristive arrays increases, one can expect more
and more unreliable and faulty memristive elements in the array. In principle,
one could characterize memristors before training and adapt the training process
accordingly. However, memristors can change their characteristics after charac-
terization and in particular memristor faults can appear during training due to
limited endurance [25]. Therefore, we propose a robust training scheme (fault
pruning) for memristive neural networks that detects unreliable memristors on-
line during training using information available in the in-the-loop training setup.
We will consider two alternatives to deal with faulty memristors: first, to discard
them and set the connection to 0, and second, to continue using the connection
but requesting from them no change in resistive states.

In fault pruning, fault factors are estimated for each memristor i during train-
ing using the ideal and achieved resistance changes — ΔR

ideal,(k)
i and ΔR

(k)
i —

130 C. Kraǐsniković et al.

of the N most recent updates of the memristor. A zero-intercept linear regression
model is then fitted to these data points to obtain the estimated fault factor

f̂i =
∑

l ΔR
ideal,(l)
i ΔR

(l)
i

∑
l

(
ΔR

ideal,(l)
i

)2 . (4)

A derivation of this estimator is given in Sect. 3.3. Upon the estimation of the
fault factor f̂i, the algorithm decides whether or not to prune the weight in the
following way: Assuming that memristors with estimated f̂i < 0.1 have stuck or
discordant switching faults, the weight wi is pruned (i.e., set to zero) in both the
full-precision and memristive network. Otherwise, f̂i ≥ 0.1 indicates a memristor
with a concordant switching fault. Such memristors are still useful for training
as their weight change goes in the desired direction, thus, further used. The
estimated fault factor f̂i is easily interpretable – it represents the slope of the
linear fit, and in principle, any value greater than 0 means that requested and
achieved resistance updates have the same trend. For the threshold, we chose
the value of 0.1 since for the estimation of f̂i we used only a few points data
points (N = 10) that included the switching noise.

As an alternative, we also considered freezing faulty memristors instead of
pruning them. In this case, the algorithm keeps the achieved weight in the high-
precision network and does not update the faulty memristor anymore.

Fault Pruning for Feed-Forward Memristive Neural Networks. We next
tested fault pruning in the feed-forward neural network setup on the MNIST data
set as described above. During the in-the-loop training, the pruning algorithm
estimated fault factor f̂i for each memristor based on the history of the N =
10 most recent requested and achieved resistance updates in the memristive
network. Figure 2C shows a linear fit to the data points (ΔR

ideal,(k)
i ,ΔR

(k)
i)

for three example memristors. Figure 2C (left) illustrates a memristor with a
discordant switching fault assigned at the beginning of the training, f = −1.6,
that the pruning algorithm discarded (f̂ = −1.54 < 0.1). Similarly, the example
memristor in Fig. 2C (middle) with a stuck fault (f = 0) was discarded. The
memristor illustrated in the right panel of Fig. 2C, although overestimating the
resistance change (f = 1.43) was kept for further training.

The pruning algorithm detects faulty memristors and prunes the network
connections in an online fashion (during training). This makes it possible to
adaptively adjust the network connectivity and avoid the detrimental effects
that faulty memristors have on training. We trained feed-forward networks with
different proportions of memristor fault types and measured the test accuracy at
the end of the training. The fault pruning algorithm preserved the test accuracy
even in cases when the proportion of the stuck and discordant switching faults
was very significant (see Fig. 3A, middle), whereas the test accuracy degraded
drastically when there was no pruning (see Fig. 3A, left). Note that the mem-
ristors that did not have stuck or discordant switching faults had concordant
switching faults. The pruning algorithm performed marginally better when the

Robust Training of Memristive Neural Networks 131

Fig. 3. Performances of feed-forward memristive neural networks trained on the
MNIST data set. (A) Test accuracies for different proportions of memristor faults
without fault pruning (left), with fault pruning (middle), and the difference in the accu-
racies of these scenarios (right). (B) Validation accuracy during training with (blue)
and without (red) fault pruning (shading indicates STD over 10 training runs) for the
cases indicated by colored boxes in A. (C) Final test accuracy for these training runs
(means ± STD over 10 training runs). (Color figure online)

number of memristors with stuck and discordant switching faults was small. As
the number of memristors with these fault types increased, the use of fault prun-
ing became essential. This is illustrated in Fig. 3A (right), where the differences
in test accuracies achieved in both scenarios are shown.

The validation accuracy over memristor updates for the simulations indicated
by the blue and red rectangular boxes in Fig. 3A are shown in Fig. 3B (shaded
area indicates STD over 10 simulations with different initial weights). Note that
training without pruning was rather unstable, showing repeated performance
decreases due to faulty memristor behavior. The regular negative peaks in the
non-pruned case appear since the in-the-loop training setup forces resistance
updates for all weights every 100 training batches. Training with pruning on the
other hand was stable and reached a much better final accuracy. The final test
accuracies for these cases are plotted in Fig. 3C. The low standard deviations
show that the achieved accuracy (both on validation during training and on the
test set) over multiple runs was very consistent.

132 C. Kraǐsniković et al.

After the training, connectivity in the network was sparser than initially,
and the percentage of weights that remained unpruned is shown in Fig. 5A. The
zoom-in shows the histogram of fault factors for a single simulation. Here, not all
memristors with stuck and discordant switching faults were pruned. The reason
for this was the weights that had not changed at all during training (due to low
accumulated gradients), hence the fault factors for these memristors were never
estimated by the pruning algorithm. Since these memristors did not influence
the training, it was not necessary to prune them, which is a positive side effect
of the proposed fault pruning algorithm. Note that the connectivity has been
adapted by the algorithm in a fault-dependent way, such that networks with
more severe faults were pruned more strongly.

Fault Pruning for Convolutional Memristive Neural Networks. Finally,
we applied fault pruning on the convolutional architecture, trained on the
CIFAR-10 data set (see above). Here, we considered both freezing the weights
after the detection of faulty memristors, and discarding them from further use.

When freezing weight values of faulty memristors, fault pruning recovered
excellent accuracies even in cases with a significant number of stuck memristors.
Also for the cases of larger numbers of discordant switching faults, the algorithm
was able to mitigate their detrimental effect on training up to a certain number of
faults, see Fig. 4C (middle). In each but one of the considered fault distributions,
fault pruning was able to improve network performance over plain training, see
Fig. 4C (right). We examined the single instance (cell (0.2, 0.1)) where the fault
pruning performed slightly worse. There, some connections for which memris-
tors had concordant switching faults f slightly above the threshold value were
pruned. When running ten simulations with different initial conditions for this
case, pruning performed better on average (pruning (60.87±2.48)%, no pruning
(58.71±2.53)% test accuracy). The percentage of unpruned weights/memristors
after training (connectivity percentage) is illustrated in Fig. 5B. The zoom-in
shows a histogram of fault factors assigned to memristors at the beginning of
training, with pruned connections shown in yellow and unpruned ones shown in
gray.

We also tested performance when faulty memristors were discarded as in
the previous section, see Fig. 4D. In this case, fault pruning achieved better
accuracies for intermediate values of pdiscordant. Simulation details are given in
Sect. 3.4.

3 Methods

3.1 Memristor Model

In our simulations, we used the following memristor model for all memristive
weights. The memristor model defined the resistance range [Rmin, Rmax] that the
state variable R could take. We used Rmin = 6843.97Ω, and Rmax = 14109.06Ω –
the values calculated for a single device-under-test whose more detailed version of

Robust Training of Memristive Neural Networks 133

Fig. 4. Performances of memristive CNNs on CIFAR-10. (A) Example CIFAR-10
images. (B) Convolutional neural network architecture. (C, D) Test accuracies for dif-
ferent proportions of memristor faults without fault pruning (left), with fault pruning
(middle), and the difference in the accuracies of these scenarios (right). In (C), pruning
was done by freezing weights, in (D), by setting them to zero.

a memristor model is described in [17]. Given the maximum value for the weights,
wmax, for a symmetric range of weights [−wmax, wmax], the bias resistance RC and
the scaling parameter α were calculated as RC = 2RminRmax/(Rmin +Rmax), and
α = wmax

1/Rmin−1/RC
, respectively. We used wmax = 0.5 in all our simulations.

134 C. Kraǐsniković et al.

Fig. 5. Connectivity in the network after pruning (in %). (A) MNIST task. (B) CIFAR-
10 task (pruning by freezing weights). Fault pruning adapts network sparsity according
to the number of reliable memristive resources. Insets show histograms of fault factors
for pruned weights (yellow) and non-pruned weights (gray). (Color figure online)

To model different fault types, fault factors were assigned to memristors as
follows: (a) a fault factor fi = 0 for a stuck fault, (b) a fault factor fi drawn
from the normal distribution N (−1, 0.5) capped within [−2,−0.1] for a discor-
dant switching fault, and (c) a fault factor fi drawn from N (1, 0.5) capped within
[0.1, 2] for a concordant switching fault. The fault factors were drawn before the
training began, assigned randomly to the memristors, and kept constant through-
out the training. The switching noise η

(k)
i in Eq. (3) was drawn independently

for each memristor i and each update step k from a normal distribution [21].

The distribution had zero mean and a standard deviation of 0.01R
(k)
i

3 . Resulting
resistance changes were then capped at ±1% of the current resistance R

(k)
i .

3.2 Training Schedule

The memristive neural network and its corresponding high-precision network
were initially fully connected, and its starting weights were drawn from the Glo-
rot uniform distribution. Fault factors drawn from the distributions described
in the previous section were assigned randomly to memristors in the memris-
tive network, simulating in that way the faulty behaviors of memristors. In each
training iteration t, weight updates were computed in the high-precision net-
work using the Adam optimizer [12] on one batch of input data (batch size b
depended on the task, see below), and the weights in the high-precision network
were updated. Since memristance updates are noisy, one usually does not pro-
gram each individual update in the memristive array, but rather accumulates
weight changes until significant updates are available [24]. Hence, memristors
were updated typically only when a significant resistance change was available.
Therefore, we have to distinguish between training iteration t and update k. To
formalize this, denote the achieved resistance for connection i after the most

Robust Training of Memristive Neural Networks 135

recent update as Rprev
i and the proposed resistance after the current training

iteration t as Rcur
i . Memristor i was updated if Rcur

i − Rprev
i was at least 2% of

the current resistance Rprev
i . After the update, the achieved resistance value was

used to synchronize the corresponding weight wi in the high-precision network.
In addition to these asynchronous updates, all memristors were updated

every 100 training iterations and in the last training iteration. The updates
for which the magnitude of the requested change was below the noise level (in
our simulations, 1% of Rprev

i) were enlarged to ±1% of Rprev
i , depending on

the sign of the originally requested ΔR
ideal,(k)
i . Note that for the memristors

with ΔR
ideal,(k)
i = 0, the updates were not enforced since the programming of

the memristive device was not required. Also here, weights in the high-precision
network were synchronized according to the achieved memristance values.

Estimation of the fault factors was implemented as follows: Let ΔR
ideal,(k)
i

and ΔR
(k)
i denote the proposed and the achieved resistance change of connection

i at the k-th memristor update respectively. The most recent N = 10 update
pairs (ΔR

ideal,(k)
i ,ΔR

(k)
i) for memristor i were used to estimate the fault factor

f̂i. The connections for which f̂ was below the threshold of 0.1 were pruned.
We implemented two versions of pruning – setting weights to 0 (being equiva-
lent to removing the weight in the high-precision network, and not using at all
memristors in the memristive networks), and keeping the weights/memristors
in the network, but without further training. The minimum allowed connectiv-
ity was 10%, i.e., at least 10% of the weights had to be used between any two
layers. After estimating fault factors, it was possible to prune up to 20% con-
nections for the MNIST task, and up to 50% of connections for the CIFAR-10
task. Hence the candidate weights for pruning, i.e., the weights for which the
estimated fault factor f̂i was smaller than the threshold value 0.1, were first
sorted in the ascending order according to their fault factors, and pruned. This
prevented removing many connections at once, and also prioritized removing
memristors with discordant switching fault type over stuck faults.

3.3 Estimation of the Fault Factors f̂i

For the estimation of the fault factor f̂i, we used a zero-intercept linear regression
model

ΔRi = f̂i · ΔRideal
i + ε (5)

that models the linear relation between requested (ΔRideal
i) and achieved (ΔRi)

resistance updates under Gaussian noise. It was estimated from N = 10 data
points (ΔR

ideal,(l)
i ,ΔR

(l)
i), l ∈ {k − N + 1, k − N + 2, ..., k − 1, k} representing

the N most recent updates of memristor Ri. The least-squares estimator of f̂i

minimizes the squared error L(f̂i),

L(f̂i) :=
∑

l

(
ΔR

(l)
i − f̂i · ΔR

ideal,(l)
i

)2

, (6)

136 C. Kraǐsniković et al.

and a closed-form analytical solution can be found as

∂L
∂f̂i

= 2
∑

l

(
ΔR

(l)
i − f̂i · ΔR

ideal,(l)
i

)(
− ΔR

ideal,(l)
i

)
!= 0

f̂i

∑
l

(
ΔR

ideal,(l)
i

)2

=
∑

l

ΔR
(l)
i ΔR

ideal,(l)
i

(7)

Hence, f̂i =
∑

l ΔR
(l)
i ΔR

ideal,(l)
i

∑
l

(
ΔR

ideal,(l)
i

)2 follows. The condition
∑

l

(
ΔR

ideal,(l)
i

)2

�= 0 was

ensured because the pruning algorithm always enforced updates with magnitudes
different than zero.

3.4 Details to Computer Simulations

Details to Feed-forward Networks Trained on the MNIST Task. We
trained memristive feed-forward networks on the MNIST task consisting of
50000, 10000, and 10000 training, validation, and test images, respectively. The
architecture used was 784−128−10 neurons per layer. Over training, the connec-
tions both in high-precision and memristive networks were pruned. For pruned
connections, memristors were discarded from the memristive network, while the
weights in the high-precision network were set to zero. In the high-precision net-
work, all neurons in the hidden and output layer had a trainable bias term. For
the optimization of the weights and biases of the (high-precision) feed-forward
network, the Adam optimizer with an initial learning rate of 0.01 was used. The
learning rate was decayed exponentially every 1000 iteration by a factor of 0.99.
The optimizer used batches of b = 128 training images to minimize the cross-
entropy error function. The network was trained for 10 epochs (forward and
backward propagations of the whole dataset), resulting in a total of 3910 train-
ing iterations. The performance numbers reported in Fig. 3A represent the test
accuracies achieved for a single training run with pdiscordant discordant switch-
ing and pstuck stuck faults, except for the highlighted ones (the blue and red
rectangular boxes) where they are the mean over 10 runs.

Details to Convolutional Networks Trained on the CIFAR-10 Task.
We trained memristive convolutional neural networks on the CIFAR-10 task,
consisting of 50000 training and 10000 test images.

The architecture that we trained consisted of: (1) an input layer, (2) a 2D-
convolutional layer with 32 output filters, kernels of size (3 × 3), valid padding,
stride (1, 1), with ReLU activation function, (3) a max-pooling layer with a pool
size (2 × 2), (4) a 2D-convolutional layer with 64 output filters, kernels of size
(3 × 3), valid padding, stride (1, 1), with ReLU activation function, (5) a max-
pooling layer with a pool size (2×2), (6) a 2D-convolutional layer with 64 output
filters, kernels of size (3 × 3), valid padding, stride (1, 1), with ReLU activation
function, then flattened which resulted in a layer of 1024 neurons, (7) a densely

Robust Training of Memristive Neural Networks 137

connected layer (64 neurons), with ReLU activation function, and (8) an output
layer of 10 neurons (one per class), with softmax activation function.

Initially fully connected, the connections in the high-precision and memris-
tive networks were pruned during training. Here we used two approaches for
pruning. For pruned connections, either both resistance in the memristive net-
work and weight in the high-precision network were frozen, or the weight was
set to 0, and the corresponding memristor discarded. In the high-precision net-
work, all neurons had biases that were optimized along the weights using the
Adam optimizer. The learning rate was set to 0.005, batch size to b = 256 train-
ing images, and the cross-entropy error function was minimized for 30 epochs.
This resulted in a total of 5880 training iterations. The performance numbers in
Fig. 4C, D report the test accuracies representing a single training run.

4 Conclusions

We have proposed fault pruning, a novel training algorithm for robust train-
ing of neural networks with memristive weights. We applied this algorithm to
both feed-forward and convolutional neural networks. The approach is general,
independent of the network structure and the trained task.

Most previously proposed robust-training schemes (e.g., [3,11,23]) are agnos-
tic to the exact location of memristor faults. The objective is to alleviate the
impact of faults when memristors are programmed only once at the end of train-
ing. In [15], a re-training scheme, as well as a re-mapping of weights to memris-
tors, was proposed. Xia et al. [25] proposed an on-line fault detection method
combined with a re-mapping method, but not in the in-the-loop training setup
considered here. In contrast to these works, we do not propose re-mapping but
assume that arbitrary memristive connections can be pruned.

Our proposed fault pruning algorithm takes advantage of the communica-
tion exchange between the two networks in the in-the-loop training scheme.
Requested and achieved resistance changes are used to estimate the type of a
memristor’s fault f̂i, and act accordingly. For the estimation of the faulty behav-
ior, we used a simple linear regression. This can, however, be substituted by more
advanced approaches if necessary. In our simulations, the fault type assigned to
a memristor was kept constant during training; in practice, the memristor’s fault
type could change over time. Such a case would not be a problem for fault prun-
ing, because, for the estimation of the fault factor and the fault type, it uses a
certain number of most recent memristor updates from which the change could
be detected. Our simulations showed that even with a very large percentage of
faulty memristors, and in particular with memristors with discordant switch-
ing faults, fault pruning managed to preserve very good performance. Another
option for handling memristors with discordant fault types not considered in
this article could be to adapt the requested update, e.g., by inverting its sign.
Advantages of this approach could be investigated in future work.

138 C. Kraǐsniković et al.

In summary, we showed in simulations that pruning faulty memristive connec-
tions provides a viable strategy for robust training of memristive neural networks.
The fault type can be estimated on-line during in-the-loop training, allowing for
efficient robust training of performant networks.

Acknowledgements. This research was partially supported by SYNCH project
funded by the European Commission under the H2020 FET Proactive programme
(Grant agreement ID: 824162) and by the CHIST-ERA grant CHIST-ERA-18-ACAI-
004, by the Austrian Science Fund (FWF) project number I 4670-N (project SMALL).

References

1. Bayat, F.M., Prezioso, M., Chakrabarti, B., Nili, H., Kataeva, I., Strukov, D.:
Implementation of multilayer perceptron network with highly uniform passive
memristive crossbar circuits. Nat. Commun. 9(1), 1–7 (2018)

2. Bellec, G., Kappel, D., Maass, W., Legenstein, R.: Deep rewiring: training very
sparse deep networks. In: International Conference on Learning Representations
(2018)

3. Chen, C.Y., Chakrabarty, K.: Pruning of deep neural networks for fault-tolerant
memristor-based accelerators. In: 2021 58th ACM/IEEE Design Automation Con-
ference (DAC), pp. 889–894. IEEE (2021)

4. Chen, S., et al.: Wafer-scale integration of two-dimensional materials in high-
density memristive crossbar arrays for artificial neural networks. Nat. Electron.
3(10), 638–645 (2020)

5. Esser, S.K., et al.: Convolutional networks for fast, energy-efficient neuromorphic
computing. Proc. Natl. Acad. Sci. 113(41), 11441–11446 (2016)

6. Han, S., Pool, J., Tran, J., Dally, W.: Learning both weights and connections
for efficient neural network. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M.,
Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 28.
Curran Associates, Inc. (2015)

7. Ielmini, D.: Resistive switching memories based on metal oxides: mechanisms, reli-
ability and scaling. Semicond. Sci. Technol. 31(6), 063002 (2016)

8. Indiveri, G., Linares-Barranco, B., Legenstein, R., Deligeorgis, G., Prodromakis,
T.: Integration of nanoscale memristor synapses in neuromorphic computing archi-
tectures. Nanotechnology 24(38), 384010 (2013)

9. Jeong, H., Shi, L.: Memristor devices for neural networks. J. Phys. D Appl. Phys.
52(2), 023003 (2018)

10. John, R.A., et al.: Halide perovskite memristors as flexible and reconfigurable phys-
ical unclonable functions. Nat. Commun. 12(1) (2021)

11. Joksas, D., et al.: Committee machines - a universal method to deal with non-
idealities in memristor-based neural networks. Nat. Commun. 11(1), 1–10 (2020)

12. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

13. Krizhevsky, A.: Learning multiple layers of features from tiny images. Technical
report (2009)

14. LeCun, Y., Cortes, C., Burges, C.: MNIST handwritten digit database. ATT Labs.
2 (2010). http://yann.lecun.com/exdb/mnist

15. Liu, C., Hu, M., Strachan, J.P., Li, H.: Rescuing memristor-based neuromorphic
design with high defects. In: 2017 54th ACM/EDAC/IEEE Design Automation
Conference (DAC), pp. 1–6. IEEE (2017)

http://arxiv.org/abs/1412.6980
http://yann.lecun.com/exdb/mnist

Robust Training of Memristive Neural Networks 139

16. Liu, Z., Sun, M., Zhou, T., Huang, G., Darrell, T.: Rethinking the value of network
pruning. In: International Conference on Learning Representations (2019)

17. Messaris, I., Serb, A., Stathopoulos, S., Khiat, A., Nikolaidis, S., Prodromakis, T.:
A data-driven Verilog-A ReRAM model. IEEE Trans. Comput. Aided Des. Integr.
Circuits Syst. 37(12), 3151–3162 (2018)

18. Schmitt, S., et al.: Neuromorphic hardware in the loop: training a deep spiking net-
work on the brainscales wafer-scale system. In: 2017 International Joint Conference
on Neural Networks, pp. 2227–2234. IEEE (2017)

19. Srinivas, S., Babu, R.V.: Data-free parameter pruning for deep neural networks.
In: Proceedings of the British Machine Vision Conference, pp. 31.1-31.12. BMVA
Press (2015)

20. Stathopoulos, S., et al.: Multibit memory operation of metal-oxide bi-layer mem-
ristors. Sci. Rep. 7(1) (2017)

21. Stathopoulos, S., Serb, A., Khiat, A., Ogorza�lek, M., Prodromakis, T.: A memris-
tive switching uncertainty model. IEEE Trans. Electron. Devices 66(7), 2946–2953
(2019)

22. Valov, I., Kozicki, M.: Organic memristors come of age. Nat. Mater. 16(12), 1170–
1172 (2017)

23. Wang, J., Xu, Q., Yuan, B., Chen, S., Yu, B., Wu, F.: Reliability-driven neural
network training for memristive crossbar-based neuromorphic computing systems.
In: 2020 IEEE International Symposium on Circuits and Systems (ISCAS), pp.
1–4. IEEE (2020)

24. Woźniak, S., Pantazi, A., Bohnstingl, T., Eleftheriou, E.: Deep learning incorporat-
ing biologically inspired neural dynamics and in-memory computing. Nat. Mach.
Intell. 2(6), 325–336 (2020)

25. Xia, L., Liu, M., Ning, X., Chakrabarty, K., Wang, Y.: Fault-tolerant training with
on-line fault detection for RRAM-based neural computing systems. In: Proceedings
of the 54th Annual Design Automation Conference 2017, pp. 1–6 (2017)

26. Xia, Q., Yang, J.J.: Memristive crossbar arrays for brain-inspired computing. Nat.
Mater. 18(4), 309–323 (2019)

27. Yao, P., et al.: Fully hardware-implemented memristor convolutional neural net-
work. Nature 577(7792), 641–646 (2020)

Spatial Correlations in the Qubit
Properties of D-Wave 2000Q Measured

and Simulated Qubit Networks

Jessica Park1,2(B), Susan Stepney1 , and Irene D’Amico2

1 Department of Computer Science, University of York, York, UK
{jlp567,susan.stepney}@york.ac.uk

2 Department of Physics, University of York, York, UK
irene.damico@york.ac.uk

Abstract. We show strong positive spatial correlations in the qubits of a
D-Wave 2000Q quantum annealing chip that are connected to qubits out-
side their own unit cell. By simulating the dynamics of spin networks, we
then show that correlation between nodes is affected by a number of fac-
tors. The different connectivity of qubits within the network means that
information transfer is not straightforward even when all the qubit-qubit
couplings have equal weighting. The similarity between connected nodes
is further changed when the couplings’ strength is scaled according to the
physical length of the connections (here to simulate dipole-dipole inter-
actions). This highlights the importance of understanding the architec-
tural features and potentially unprogrammed interactions/connections
that can divert the performance of a quantum system away from the
idealised model of identical qubits and couplings across the chip.

Keywords: Quantum computing · D-Wave · correlations · spin
networks

1 Introduction

Quantum computation is currently being advanced on multiple fronts, including:
algorithm development, qubit realisation, device manufacturing, and error correc-
tion [1,5,9,15]. Due to the relative infancy and challenging scalability of the tech-
nology, the hardware is often hard to control precisely, and the individual qubits
can be subject to significant heterogeneity. Algorithms will need to be optimised
based on the constraints and properties of the hardware, and the hardware will
need to be chosen, modified or built based on requirements of the software task.
These processes need to be done in parallel such that one the software is not being
optimised based on non-optimal hardware and vice versa [3].

Different physical realisations of qubits have different levels of robustness
to different errors, and so different realisations may be optimal for different
functions [13,14]. It seems likely that fabrication inhomogeneities will result in a

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Genova and J. Kari (Eds.): UCNC 2023, LNCS 14003, pp. 140–154, 2023.
https://doi.org/10.1007/978-3-031-34034-5_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-34034-5_10&domain=pdf
http://orcid.org/0000-0003-3146-5401
https://doi.org/10.1007/978-3-031-34034-5_10

Spatial Correlations in Qubit Networks 141

device where different individual qubits may be optimal for different functions,
potentially allowing improved performance by careful allocation of qubits. Before
considering how to exploit heterogeneity in the system, it is crucial to understand
its sources and effects. Here we examine how heterogeneity presents itself on
a quantum chip, and how this affects the performance when running certain
problems.

Section 2 gives an overview of quantum annealing and some specifics about
the particular architecture that is considered in the remainder of the paper.
Section 3 presents an investigation in the analysis of spatial correlation that we
performed on a dataset provided by Los Alamos National Laboratory [11]. The
results from this investigation led us to develop and perform tests on a spin
network simulator with realistic architectures and dynamics (Sect. 4). Finally,
Sect. 5 considers the implications of this work and proposes potentially valuable
areas of further study.

2 Quantum Annealing and D-Wave Chimera Architecture

Quantum annealing is a non-universal type of quantum computing most com-
monly used to find the optimal solution to a problem. It can do this by finding
the global minimum of an energy landscape that encodes the problem. Quantum
fluctuation and quantum tunnelling allow the annealer to escape certain local
minimal in energy landscapes.

In order to solve such optimisation problems, the cost function (to be min-
imised) and any associated constraints are formulated into an Ising Hamiltonian
(modelling the energy of coupled qubits). This is an equation that describes the
energy landscape of the system. The desired result of the annealing process is
that the system reaches the ground state of this Hamiltonian, which corresponds
to the optimal solution of the problem.

The Hamiltonian that describes quantum annealing is

H(x, s) =
A(s)

2

(∑
i

σ̂
(i)
X

)
+

B(s)
2

⎛
⎝∑

i

hiσ̂
(i)
Z +

∑
i>j

Jij σ̂
(i)
Z σ̂

(j)
Z

⎞
⎠ , (1)

where x = {x0, x1, xi...xN} is the state of the N -qubit system; s is normalised
time; σ̂

(i)
X , σ̂

(i)
Z are the Pauli matrices acting on qubit xi; hi and Jij encode the

problem as qubit biases and coupling weights, and, in practice, are limited by the
physical hardware graph (qubit-coupling connectivity) of the annealing device.

Annealing occurs between physical times t = 0 and t = tf , normalised into an
annealing fraction: s = t/tf , so 0 ≤ s ≤ 1. A and B are functions of s and their
relative magnitudes describe the state of the system as it moves from a general
superposition state (the first term) to the solution state (the second term, the
Ising Hamiltonian).

At t = 0 (s = 0), the system has A(0) � B(0): the state starts as a gen-
eral superposition of states. The system is slowly annealed by increasing B and
decreasing A, until at t = tf (s = 1) we have A(1) � B(1). This is often referred

142 J. Park et al.

to as freezing out the quantum fluctuations. At this point the qubits, in an ideal
system, are in the ground state of the second term, that is, they are in the state
representing the solution to the optimisation problem. The annealing process
needs to happen slowly enough such that the system does finish in the ground
state and not in an excited state of the Ising Hamiltonian [19]. The point at
which A(s) = B(s) is known as the quantum critical point (QCP), by analogy
to the theory of phase transitions.

Equation 1 describes an ideal system of perfect qubits and perfect coupling.
Physical devices have limitations, imperfections and inhomogenities, however.
One major limitation of quantum annealers is qubit connectivity: not all qubit
couplings can be realised; indeed most of the Jij are zero (uncoupled). Another
relevant limitation is that even potential couplings can be realised only within a
certain range of values and only up to a certain precision. The first restricts the
coupling range, and the second is a source of unwanted noise and decoherence.
Similar issues affect the qubit biases hi.

Consider the D-Wave 2000Q, which is the annealer we consider here. It is
designed with 2048 qubits in the ‘Chimera’ architecture, which has 256 unit cells
of 8 qubits, arranged in a 16 × 16 grid. There are connections between qubits
inside unit cells and between qubits belonging to different unit cells. Figure 1
shows qubit connections in a 2×2 grid of unit cells. The yellow dots in the figure
represent the qubits; in reality each qubit is an elongated superconducting loop
oriented either horizontally or vertically. This and the differences highlighted
before may be a source of inhomogeneity in the qubit performances. The full
2000Q chip creates the 16 × 16 unit cells by repeating the pattern shown in
Fig. 1 eight times in either dimension and connecting them in the obvious way.

How a given problem is embedded into this (and other) fixed topologies
is the subject of much research. There is often a requirement to use techniques
such as chaining (achieving connections via intermediate qubits) to overcome the
limitations [4,6,16,20]. This is typically done with an awareness of the overall
chip error rate and how that affects the probability of success in practice [2].
Better characterisation of the individual qubits on the chip would allow for more
intelligent and potentially real-time re-configuring embedding algorithms.

3 Exploring Spatial Correlations in the Los Alamos Data

In order to exploit maximum performance from a given quantum device, it is
necessary to measure the performance of individual qubits and couplings in that
device. Nelson et al. [12] perform repeated sampling of each qubit in their D-
Wave 2000Q device through a range of input fields, in a process they refer to
as QASA (Quantum Annealing Single-qubit Assessment). They extract values
for four parameters: inverse temperature β, bias b, transverse field gain λ, and
noise η.

When this QASA protocol is performed for all the qubits within a chip in
parallel, the variations and correlations across the chip (a 16× 16 grid of unit
cells) can be analysed. The authors found that the orientation of the qubits

Spatial Correlations in Qubit Networks 143

Fig. 1. A graph representation of the D-Wave Chimera architecture as present on the
2000Q quantum annealer. The red box shows the 8 qubits that make up a unit cell.
(Diagram created using D-Wave NetworkX Python language package [7] (Color figure
online).)

(horizontally or vertically aligned superconducting loops) is correlated with both
the inverse temperature and transverse field gain parameters. They hypothesise
that this could be due to “asymmetry in the chip’s hardware layout or to the
details of how global annealing control signals are delivered to the qubits” [12].

The Los Alamos National Laboratory (LANL) research group that performed
this experiment have made the raw data available, which we use to perform fur-
ther investigation into the presence of spatial correlations in the four parameters
measured for each qubit in the chip, as described in this section.

To measure spatial correlations we use Geary’s C, a number which determines
whether adjacent measurements are correlated [8]. By adjacent here, we mean
qubits that have connections between them, either internal and external to unit
cells. C is defined as:

C =
(n − 1)

∑
i

∑
j wij(xi − xj)2

2
∑

i(xi − x̄)2
∑

i

∑
j wij

, (2)

where n is the number of qubits, xi is the parameter value of qubit i, x̄ is the
mean value of parameter x, and wij is the connection weight between qubits i
and j. We take wij = 1 for connected qubits, zero otherwise [21].

C = 1 represents no correlation, C = 0 a perfect positive correlation, and
C > 1 an increasingly negative correlation (there is no fixed maximum values
for negative correlation). Positive correlation refers to two variables that tend
to move in the same direction. For example, in this case, it would mean that a
node with a low bias value tends to be connected to other nodes with low bias

144 J. Park et al.

Table 1. Geary’s C spatial auto-correlation of four parameters on the Los Alamos
D-Wave 2000Q chip, for all connections, for internal only connections, and for external
only connections.

all internal external

inverse temperature, β 1.08 1.30 0.58

bias, b 0.93 0.93 0.92

transverse field gain, λ 1.06 1.40 0.32

noise, η 0.91 0.91 0.89

values. Negative correlations mean that the value of one node tends to oppose
the value of its connected nodes.

The PySAL package includes a Python script that calculates Geary’s C, but
this could not be used in this case as it requires consecutively numbered nodes
[17]. This data has a number of ‘dead’ qubits in the chip which are not included
in the dictionaries of nodes and edges, so their indices are missing.

We calculate Geary’s C for the entire dataset (Table 1, column titled “all”).
The values are very close to 1, indicating little correlation between connected
qubits in any of the parameters. This is maybe to be expected if the qubits are
well isolated from one another.

We also calculate C for two subsets of the data: involving either just the
connections internal to unit cells, or just between unit cells (external). The “all”
column represents a weighted average of the “internal” and “external” columns;
it was calculated using all the connections on the chip, of which there are more
internal than external.

Table 1 shows that qubits that are connected between unit cells show a strong
positive correlation in the inverse temperature and transverse field gain param-
eters, and still rather strong but negative correlations for internal connections
within unit cells. Here we label correlations as ‘strong’ when there is more than
10% difference from the global value found in the “all” column.

We might expect that internal connections would correspond to physically
closer qubits, and therefore more positively correlated properties, but this does
not seem to be the case for these parameters. We do not actually know the
physical distances between qubits in the D-Wave system: the graphical repre-
sentation in Fig. 1 is just a schematic, and does not show the real lengths of the
different connections. When more details on the physical hardware realisation
become available, it will be important to confirm if physical separation distance
is responsible for the observed correlation between qubits.

4 Investigating Different Connection Strengths
on Dynamics

In the LANL QASA experiment, all the connection weights are set to zero, in
order to isolate the qubits from any coupling effects. Nevertheless, differences are

Spatial Correlations in Qubit Networks 145

seen in correlations between internal (to the unit cell) and externally coupled
qubits, implying some holdover effect.

Here we investigate correlations explicitly due to coupling strengths that vary
due to different coupling lengths. Due to the planar architecture of the chip,
links must be of different physical lengths in order to connect qubits both within
and between unit cells. Such physical differences could contribute to differing
behaviours of qubits.

The spins in a spin network can represent any type of qubit, including the
superconducting qubits used in the D-Wave chip. A spin network is a math-
ematically general model for this purpose. We have developed a spin network
simulator in Python that takes as input a network (based on the Chimera qubit
layout shown in Fig. 1) and emulates the natural state dynamics of this is network
when one qubit is set to |1〉 and all other to state |0〉 at t = 0. The connection
weights can be scaled based on relative ratios of their representative lengths in
the diagram. We test a small simulated network with and without the spin-spin
coupling weights having been scaled to their respective lengths.

4.1 Methodology

The qubits in the D-Wave chip are physically implemented by rf-SQUIDs (radio
frequency Superconducting Quantum-Interference Devices) and the couplings
are implemented by Compound Josephson-junction rf-SQUIDs [9]. The way the
physical length of a coupling affects its performance is based on the underlying
physical processes. We chose to investigate repulsive dipole-dipole interactions,
which scale with distance as

J ∝ 1
r3

(3)

to represent the physical interactions taking place within the system. Equa-
tion (3) describes well the dominant qubit-qubit interaction for various qubits’
physical realisations. Other types of interaction are possible, including interac-
tions beyond nearest neighbours, and will be subject of future investigations.
We compare against a control case where all coupling weights are equal (corre-
sponding to an N -d hypercube layout).

All the coupling strengths are scaled based on the shortest connection hav-
ing a weight of 1. This value is chosen because when the D-Wave chip is oper-
ated under normal conditions, all the given coupling weights are rescaled to lie
between −1 and 1. We expect the same behaviour for both attractive and repul-
sive connections so we restrict the experiment to coupling weights between 0
and 1.

The procedure for defining the Hamiltonian matrix of the simulation is given
in Algorithm 1. The required inputs define the spin network model as a list of
nodes and edges numbered according to Fig. 1. The positions (relative coordi-
nates) of the nodes are hard coded into the simulator based on the graphical
representation of the chip shown in Fig. 1. This section of the code produces an
N × N matrix (the Hamiltonian) where the diagonal terms represent the qubit
biases (the hi values in Eq. 1) and the other terms are the coupling weights (Jij).

146 J. Park et al.

Algorithm 1. Create Hamiltonian Matrix(NodeList, EdgeList, ScalingType)
1: ds := EucLengths(EdgeList) � Distances; Edge lengths are Euclidean distance

between the nodes
2: NodeList, EdgeList := Remap(NodeList, EdgeList) � Remap from native qubit

indices to ordered range (0,N)
3: M := 2D array of size (N, N) � Initialise the Hamiltonian matrix
4: for idx, item in EdgeList do
5: if ScalingFactor = Constant then
6: J := J0
7: else if ScalingFactor = Dipole then
8: J := J0 · (min(ds)/ds[idx])3

9: end if
10: M[item[0], item[1]] := J
11: M[item[1], item[0]] := J
12: end for
13: return M

If there is an edge connecting nodes i and j, then 0 < Jij ≤ 1 otherwise Jij = 0.
The resulting matrix is symmetric: Jij = Jji. In this simulation, we assume all
the qubit biases to have the same value, and hence, as the total energy is defined
up to a constant, they can be set to zero: hi = 0.

The Hamiltonian matrix is used to simulate the time evolution dynamics
using a method described e.g. in Mortimer et al. [10]. This involves solving
Schrödinger’s equation by expanding |Ψ(t)〉, the state of the system at any time,
in terms of the eigenvectors of the Hamiltonian. This is the preferred method
over time step iterations as it doesn’t accumulate errors due to the state at
each time being calculated directly from the initial state. From the result of
this algorithm, the probability of the excitation being measured at each node at
each time step can be derived as |〈i|Ψ(t)〉|2, with |i〉 a shorthand for the state
describing the excitation being localised at node i. This is referred to as the
fidelity of measuring an excitation at a particular node at a particular time.

A small network with 8 qubits spread over 4 units cells was used for the
investigation, this is shown in Fig. 2.

4.2 Results and Discussion

In order to consider how the node coupling affects the system dynamics and
therefore the spatial correlations in the system, we define a time window within
which to consider the information (excitation) transfer through the network.
The time window goes from t = 0 to t = 1/Jmin, where Jmin refers to the
smallest coupling weight in the system. This time window was chosen because
in real quantum devices, the relevant time scales over which operations can be
performed is dependent on the strength of the couplings between the qubits.
The gating time between nearby qubits can be estimated as the inverse of their
coupling strength ∼ 1/J , so t = 1/Jmin corresponds roughly to the longest
gating time in the system, and we can expect the excitation to have propagated

Spatial Correlations in Qubit Networks 147

Fig. 2. Model coded for simulations. The blue connections and the yellow nodes are
those used in the simulation. The remaining nodes and connections are shown in black
and have been included for completeness. (Color figure online)

through the network by that time. Also, within this time, it is reasonable to
expect that, in hardware designed for quantum computation, decoherence effects
are still extremely low and hence the probability of errors due to additional (and
unwanted) interactions remains negligible. Effects of fabrication errors can be
taken into consideration within the proposed model, e.g. following Ronke et. al
[18], however before doing this more information on the hardware details would
be desirable. Within this time window, we consider the excitation fidelity at two
specific times: The time at which the first peak in the time window occurs; and
the time at which the maximum peak (excluding the initial node) occurs. At
these times, the excitation fidelity of all nodes in the system can be measured
and compared to infer the correlation between connected nodes.

In the 8 node network (Fig. 2), each node has one internal and one external
connection. All the internal connections are the same length and the external
connections are either vertical or horizontal with different lengths. The excitation
begins on node 3 at time t = 0. This node is connected to nodes 7 and 19 with the
couplings either weighted equally, or with a dipole-dipole interaction according
to their length.

With constant (length independent) couplings we expect the fidelities of
nodes 7 and 19 to have the same dynamics; this is shown in Fig. 3(a) with
the behaviour for node 7 being exactly overlaid by that of node 19.

With dipole-dipole couplings, we expect nodes 7 and 19 to behave differently:
the longer external connection here has a coupling strength of only 11% of that
of the shorter internal connection. So the shorter connection (to node 7) gives
rise to larger fidelity peak, and the longer (to node 19) gives a smaller peak
within the considered time-window. This is a weak enough connection to prevent

148 J. Park et al.

(a) coupling weights equal

(b) coupling weights scaled like dipole-dipole interactions

Fig. 3. System dynamics of the 8 node network.

Spatial Correlations in Qubit Networks 149

noticeable peaks in node 19 until approximately t = 0.2tmax allowing for a near
perfect state transfer between nodes 3 and 7.

The networks have a high degree of symmetry and a cyclic nature which
means any excitation transfer to a node could have come via a number of dif-
ferent routes. The 8-node case is topologically equivalent to a single loop. The
excitation could travel around the network both clockwise and anticlockwise
passing through each connection once, as well as in any combination of “back-
wards” and “forwards” steps. More exactly, since this is a quantum system, the
fidelities correspond to the probability of the excitation being measured at the
node in question at each time step. The fidelity for each node at each time
step includes all the possible routes that the excitation could have taken to be
measured at that node.

To investigate potential spatial correlations, we show the results for the 8N
node network, at t = maxPeak and t = firstPeak in Fig. 4. The red node indi-
cates the location of the initial excitation. In the first peak dynamics, it is clear
that when the nodes have constant coupling, the edges (3,7) and (3,19) behave
identically. When there are dipole-dipole interactions, there is large difference in
excitation transfer across these connections with the short connection producing
the highest excitation transfer within the observed time window.

In the constant coupling case, the maximum peak in the time window is also
the first peak seen but in the dipole-dipole coupling case the first peak occurs
at node 19 whilst the maximum peak is in node 7. At the time of the first peak,
node 7 has higher fidelity than node 19 but is still building up and has not
yet peaked. This implies that at both peaks, the probability of measuring the
excitation at node 7 is higher than at node 19.

As well as considering the overall dynamics, to better compare this simula-
tion to the LANL experiments, we also compared the fidelities of all connected
nodes. These results are shown in Fig. 5, where each square represents the edge
connecting the nodes labelled at its x and y positions. These squares are then
coloured by the similarity in the fidelities of the nodes at either end of this
edge and are labelled with the normalised connection lengths for reference. The
similarity is defined here as,

sim = 1 − |fi − fj | (4)

where fi and fj represent the fidelities of the ith and jth node respectively.
Therefore if two nodes have similar fidelities, the similarity value is maximum.

At t = firstPeak it is only relevant to consider the top left of the charts as
the fidelity of all but the closest 5 nodes from node 3 are all still very close to 0
which means that the similarity between connected nodes is very close to 1.

In the constant case, we expect the length of the connection to have no effect
on the similarity between the connect nodes. Although this is the case in the
first row of Fig. 5, in the other rows, this is not the case. We suggest that this
is an effect of the fidelity being comprised of the probability of all the different
paths that the excitation could have taken from one node to the other. This is
a direct effect of the connectivity of the network.

150 J. Park et al.

(a) Constant coupling at t = firstPeak (b) Constant coupling at t = maxPeak

(c) Dipole-dipole coupling at t =
firstPeak

(d) Dipole-dipole coupling at t =
maxPeak

Fig. 4. Node fidelities at two different times with two different coupling.

In the dipole-dipole case, the results are further complicated by the changing
connection strengths between the nodes. Intuitively we would expect that a
shorter connection length would cause a higher degree of similarity between the
nodes. This is not seen at either of the time steps chosen for evaluation here.
The charts from the dipole-dipole simulation are noticeably different from the
constant case showing that couplings that are affected by physical length will
affect the spatial correlations in the system. Because the connectivity is the same
in both simulations, the differences must be due to the couplings.

The difference between the constant and dipole-dipole couplings at t =
maxPeak is that in the dipole-dipole case, the excitation fidelity is much more
concentrated at a small number of nodes meaning that the similarity of these
nodes with the others is particularly low. In the constant coupling case, the
excitation fidelity is more evenly spread (as seen in Fig. 4) which means that
neighbouring nodes have higher spatial correlation.

Spatial Correlations in Qubit Networks 151

(a) Constant coupling at t = firstPeak (b) Constant coupling at t = maxPeak

(c) Dipole-dipole coupling at t =
firstPeak

(d) Dipole-dipole coupling at t =
maxPeak

Fig. 5. The similarity in the fidelity of connected nodes in the 8 node Chimera archi-
tecture. A square at (i,j) is labelled with the relative length of the connection between
the nodes i and j and is colourised by the similarity as defined by Eq. 4.

The similarity between connected nodes is affected both by the connectivity
of the network as well as the coupling between nodes. This combination gives rise
to complex phenomena. This complexity might explain why in the Los Alamos
data the longer connections give rise to strong positive correlation. This simu-
lated network only contains 8 nodes, the full D-Wave 2000Q chip contains 2048
qubits (including some ‘dead’ ones). The connectivity in the full chip means
that the effects seen in the constant coupling case here would be even more
pronounced.

5 Conclusions and Future Work

We have shown that there are strong positive spatial correlations in the qubits
measured as part of the LANL study on single qubit fidelity beyond the horizon-
tal/vertical delineation shown in the original paper [12]. These correlations are

152 J. Park et al.

only present in the connections between unit cells and not in those internal to
unit cells. We hypothesise that this is due to the physical distances between the
qubits affecting the connection strengths between them. More data, including
both from the same device and from other D-Wave 2000Q chips, would be useful
in determining whether these correlations seen here are a feature of the particu-
lar construction of this kind of chip or even if it is a repeatable phenomenon on
exactly same chip.

To provide evidence for this hypothesis, we created a simulated architecture
of spins with connection weights that depend on a variable scaling with the con-
nection length, which we compared with the corresponding one having constant
coupling strength. Our results show that even when the couplings between the
nodes are independent of length, the dynamics of the system do not behave
simply. We suggest that this is due to the connectivity of the network and the
multiple paths an excitation could make to transfer from one node to another.
Furthermore, when the connection strength is related to the physical distance
between qubits, this has significant effects on the dynamics of the system beyond
that due to the connectivity. The similarity between nodes that are connected by
an edge in the network behaves in a complex (and sometimes counter-intuitive)
way that is a combination of the effects due to connectivity and due to physical
separation distance (when this is related to coupling strength).

The differences between the effects of constant and dipole-dipole interaction,
combined with the consequences of the connectivity of the network, highlight
the need to understand the effects of specific architectural features over those of
the idealised model within the progress of quantum computation.

The results from our simulations may contribute to explaining the counter-
intuitive spatial correlations we found in the Los Alamos data, with longer con-
nections seeming to induce higher correlation. Further investigations into the
data presented here would be required to fully understand the causes for the
spatial correlation seen in the D-Wave 2000Q chip. It would also be beneficial to
see how the effects seen here scale up with larger simulated networks, different
coupling interactions and longer time periods. These results are to be presented
in an upcoming paper.

Further analysis of a real quantum annealing chip would be able to confirm
how closely the effects displayed here affect the dynamics during a quantum
annealing cycle.

Acknowledgements. The authors wish to acknowledge Defence Science Technical
Laboratory (Dstl) who are funding this research. We thank Carleton Coffrin and his
colleagues at the Los Alamos National Laboratory for sharing the data from their
Single Qubit Fidelity Assessment.

Content includes material subject to c©Crown copyright (2022), Dstl. This mate-
rial is licensed under the terms of the Open Government Licence except where other-
wise stated. To view this licence, visit http://www.nationalarchives.gov.uk/doc/open-
government-licence/version/3 or write to the Information Policy Team, The National
Archives, Kew, London TW9 4DU, or email: psi@nationalarchives.gov.uk.

http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3
http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3

Spatial Correlations in Qubit Networks 153

References

1. Ahn, C., Doherty, A.C., Landahl, A.J.: Continuous quantum error correction via
quantum feedback control. Phys. Rev. A 65(4), 042301 (2002)

2. Albash, T., Martin-Mayor, V., Hen, I.: Analog errors in Ising machines. Quant.
Sci. Technol. 4(2), 02LT03 (2019)

3. Bandic, M., Feld, S., Almudever, C.G.: Full-stack quantum computing systems in
the NISQ era: algorithm-driven and hardware-aware compilation techniques. In:
2022 Design, Automation and Test in Europe Conference and Exhibition (DATE),
pp. 1–6. IEEE (2022)

4. Barbosa, A., Pelofske, E., Hahn, G., Djidjev, H.N.: Optimizing embedding-related
quantum annealing parameters for reducing hardware bias. In: Ning, L., Chau,
V., Lau, F. (eds.) PAAP 2020. CCIS, vol. 1362, pp. 162–173. Springer, Singapore
(2021). https://doi.org/10.1007/978-981-16-0010-4 15

5. Bharti, K., Cervera-Lierta, A., Kyaw, T.H., Haug, T., Alperin-Lea, S., Anand,
A., Degroote, M., Heimonen, H., Kottmann, J.S., Menke, T., Mok, W.K., Sim,
S., Kwek, L.C., Aspuru-Guzik, A.: Noisy intermediate-scale quantum algorithms.
Rev. Mod. Phys. 94(1), 015004 (2022)

6. Chancellor, N., Zohren, S., Warburton, P.A.: Circuit design for multi-body inter-
actions in superconducting quantum annealing systems with applications to a scal-
able architecture. NPJ Quant. Inf. 3(1), 1–7 (2017)

7. D-Wave Systems: D-Wave NetworkX (2021)
8. Geary, R.C.: The contiguity ratio and statistical mapping. Incorp. Stat. 5(3), 115–

146 (1954)
9. Harris, R., et al.: Compound Josephson-junction coupler for flux qubits with min-

imal crosstalk. Phys. Rev. B: Condens. Matter 80(5), 052506 (2009)
10. Mortimer, L., Estarellas, M.P., Spiller, T.P., D’Amico, I.: Evolutionary computa-

tion for adaptive quantum device design. Adv. Quantum Technol. 4(8) (2021)
11. Nelson, J., Vuffray, M., Lokhov, A.Y., Albash, T., Coffrin, C.: High-quality thermal

Gibbs sampling with quantum annealing hardware. Phys. Rev. Appl. 17(4), 044046
(2022)

12. Nelson, J., Vuffray, M., Lokhov, A.Y., Coffrin, C.: Single-qubit fidelity assessment
of quantum annealing hardware. IEEE Trans. Quantum Eng. 2, 1–10 (2021)

13. Noiri, A., et al.: A fast quantum interface between different spin qubit encodings.
Nat. Commun. 9(1), 5066 (2018)

14. Osada, A., Taniguchi, K., Shigefuji, M., Noguchi, A.: Feasibility study on ground-
state cooling and single-phonon readout of trapped electrons using hybrid quantum
systems. Phys. Rev. Res. 4(3), 033245 (2022)

15. Pudenz, K.L., Albash, T., Lidar, D.A.: Error-corrected quantum annealing with
hundreds of qubits. Nat. Commun. 5, 3243 (2014)

16. Raymond, J., Ndiaye, N., Rayaprolu, G., King, A.D.: Improving performance of
logical qubits by parameter tuning and topology compensation. In: 2020 IEEE
International Conference on Quantum Computing and Engineering (QCE), pp.
295–305 (2020)

17. Rey, S.J., Anselin, L.: PySAL: a Python library of spatial analytical methods.
In: Fischer, M.M., Getis, A. (eds.) Handbook of Applied Spatial Analysis: Soft-
ware Tools, Methods and Applications, pp. 175–193. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-03647-7 11

18. Ronke, R., Spiller, T.P., D’Amico, I.: Effect of perturbations on information trans-
fer in spin chains. Phys. Rev. A 83(1), 012325 (2011)

https://doi.org/10.1007/978-981-16-0010-4_15
https://doi.org/10.1007/978-3-642-03647-7_11

154 J. Park et al.

19. Venegas-Andraca, S.E., Cruz-Santos, W., McGeoch, C., Lanzagorta, M.: A cross-
disciplinary introduction to quantum annealing-based algorithms. Contemp. Phys.
59(02), 174–196 (2018)

20. Zbinden, S., Bärtschi, A., Djidjev, H., Eidenbenz, S.: Embedding algorithms for
quantum annealers with Chimera and Pegasus connection topologies. In: Sadayap-
pan, P., Chamberlain, B., Juckeland, G., Ltaief, H. (eds.) ISC High Performance
2020, vol. 12151, pp. 187–206. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-50743-5 10

21. Zhou, X., Lin, H.: Geary’s C. In: Shekhar, S., Xiong, H. (eds.) Encyclopedia of GIS,
pp. 329–330. Springer, Boston (2008). https://doi.org/10.1007/978-0-387-35973-
1 446

https://doi.org/10.1007/978-3-030-50743-5_10
https://doi.org/10.1007/978-3-030-50743-5_10
https://doi.org/10.1007/978-0-387-35973-1_446
https://doi.org/10.1007/978-0-387-35973-1_446

Simulation of Multiple Stages in Single
Bin Active Tile Self-assembly

Sonya C. Cirlos1, Timothy Gomez2(B), Elise Grizzell1, Andrew Rodriguez1,
Robert Schweller1, and Tim Wylie1

1 University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
{sonya.cirlos01,elise.grizzell01,andrew.rodriguez09,robert.schweller,

timothy.wylie}@utrgv.edu
2 Massachusetts Institute of Technology, Cambridge, MA 02139, USA

tagomez7@mit.edu

Abstract. Two significant and often competing goals within the field of
self-assembly are minimizing tile types and minimizing human-mediated
experimental operations. The introduction of the Staged Assembly and
Single Staged Assembly models, while successful in the former aim, neces-
sitate an increase in mixing operations later. In this paper, we investi-
gate building optimal lines as a standard benchmark shape and building
primitive. We show that a restricted version of the 1D Staged Assembly
Model can be simulated by the 1D Freezing Tile Automata model with
the added benefits of the complete automation of stages and comple-
tion in a single bin while maintaining bin parallelism and a competitive
number of states for lines, patterned lines, and context-free grammars.

1 Introduction

Many molecular programmers dream of designing single-pot reactions in which
system molecules do the entirety of the computational work without any nec-
essary intervention by the experimenter. This is arguably true self-assembly.
Yet the power of experimenter intervention, in the form of mixing and splitting
pots over a sequence of stages, yields power and efficiency in both theory and
practice [16] that is currently unmatched even with some of the most powerful
models of active self-assembly. This paper aims to address this gap in the case
of 1-dimensional (1D) assembly by showing how an abstract modeling of opera-
tions of experimental stages, termed the Staged Assembly Model (SAM) [12], can
be efficiently simulated by an abstract model of single-pot active self-assembly,
termed Tile Automata (TA) [9].

Tile Automata generalizes passive tile assembly models (such as the two-
handed tile assembly model [7]) by giving tiles dynamic states that update based
on local pair-wise rules, thus making it a model of active self-assembly. The
Staged Assembly Model (SAM) generalizes tile assembly models by the model-
ing of experimenter-mediated operations, including the ability to store different

This research was supported in part by National Science Foundation Grant CCF-
1817602.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Genova and J. Kari (Eds.): UCNC 2023, LNCS 14003, pp. 155–170, 2023.
https://doi.org/10.1007/978-3-031-34034-5_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-34034-5_11&domain=pdf
https://doi.org/10.1007/978-3-031-34034-5_11

156 S. C. Cirlos et al.

portions of the system particles in separate containers or bins, and the ability
to combine separate bins, or split the contents of a bin among multiple bins,
over a sequence of distinct stages. Previous results show that both models have
substantially increased power over the basic tile self-assembly models they gener-
alize. In particular, by offloading some of the computation onto an experimenter
responsible for performing the required mixing operations of the system between
stages, SAM can build complex shapes and patterns in near-optimal complexity
with respect to tile types, bin counts, and stage counts [10–13,18].

In answer to the long-standing open question of whether the substantial
power of the SAM could be efficiently encoded into the reaction rules of an active
single-pot system, this paper shows that in the case of 1-dimensional systems,
any staged system can be encoded into a single-pot TA system with a comparable
state and rule space to the tiles, bins, and stages of the SAM system it simulates.
This result provides a corresponding corollary in TA for any results in 1D staged
self-assembly. Further, this provides a new approach for programming 1D TA
systems since designing staged systems is relatively simple with strong timing
guarantees based on separate bins and stages, whereas programming complex
TA systems from scratch can be daunting as the single-pot nature of the system
requires careful attention to race conditions. As evidence of the power of this
new result, we show how several previous results in TA now become simple
corollaries of this new result. Further, we show how a general linear pattern can
be constructed in TA using a number of states linear in the size of the smallest
context-free grammar that produces the target pattern.

1.1 Staged Self-assembly and Tile Automata

Algorithmic self-assembly emerged from a formalization of Wang Tiles to explore
self-assembling structures. Defined by Winfree in [17], this was partially moti-
vated by new DNA techniques that allow for the creation of DNA-based ‘tiles’
that can assemble into lattice structures at the nanoscale [19]. Further experi-
mental work has investigated active DNA-based components capable of complex
tasks such as sorting molecules attached to a DNA origami surface [15].

The Staged Tile Assembly Model [12] generalizes the 2-Handed Assembly
Model to allow growth to occur in multiple bins, mixing in a sequence described
as stages, creating the capability to model experimental techniques, such as in
[16] where 2D patterns are built with DNA origami tiles in multiple stages.

Tile Automata was introduced in [9] as a combination of hierarchical passive
self-assembly systems and the active self-assembly of Cellular Automata systems
where all tiles have a transitionable state. Affinity rules define which tiles can
bond with each other based on their states and with how much strength. Starting
from singleton tiles with states, any two producibles in the system may combine
if there is enough affinity between adjacent tiles. Transition rules define state
changes that may occur between two tiles once they are neighbors in an assembly.

Simulation of Multiple Stages in Single Bin Active Tile Self-assembly 157

Ameo
-bots

Freezing
Affinity

Strengthening

TA

Tile
Automata

(TA)

Freezing
Tile

Automata

RCFG

1D
Staged 1D SSAS

Signal
Tile

Model
(STAM)

Fig. 1. Informal map of relations between models. Dotted line arrows indicate model
is a special case of the previous. Solid lines indicate simulation results.

1.2 Related Work

Shape building was the first problem explored when the staged model was intro-
duced [12]. In the staged model, a constant-sized set of glue types is sufficient
to build any shape by encoding the description in the mix graph. The trade-off
between the number of glues, bins, and stages was further investigated in later
work with 1 × n, O(1) × n [11], and general assemblies [10]. The complexity of
verifying whether an assembly is uniquely produced is PSPACE-complete [6,14].

A restricted class of systems in SAM, called Single Staged Assembly Systems
(SSAS) in [13], requires each bin to only contain one terminal assembly built
from two input assemblies. This restriction eliminates having multiple assemblies
built in the same bin (bin parallelism). The size of the smallest SSAS that
builds a 1D pattern P is equivalent (up to constant factors) to the size of the
smallest Context-Free Grammar (CFG) that defines only P. However, when bin
parallelism is allowed, staged is more efficient than CFGs for a specific family of
strings.

In [18], they built on previous results and define Polyomino Context-Free
Grammars (PCFG), which generalize CFGs to 2D. The size of the smallest staged
system that uniquely produces a patterned assembly is within a log factor of the
smallest PCFG. In some cases, staged is much better.

One strength of Tile Automata is the possibility of being a “unifying” model,
where multiple models can be connected through simulation results. The work
that introduced the model [9] showed that the freezing model, where a tile
may never repeat a state, simulates the non-freezing version of the model. Tile
Automata was shown to simulate a model of programmable matter called Amoe-
bots [2]. The chain of simulation was further extended in [8] where the Signal-
Passing Tile Assembly Model (STAM) was shown to simulate Tile Automata.
Work done in [3] shows how the 1D STAM can simulate a s stage 1D SSAS
system using a single tile with O(s4) glues types (Fig. 1).

1.3 Our Contributions

We show that the 1D version of Freezing Affinity Strengthening Tile Automata
can simulate the 1D staged assembly model, even with flexible glues (Sect. 3).

158 S. C. Cirlos et al.

The Tile Automata system uses O(sbt) states for a system with s stages, b bins,
and t tile types.

We utilize this result to prove bounds on constructing 1D patterns in Freezing
Affinity Strengthening Tile Automata (Sect. 4) as well as provide alternate proofs
of upper bounds for linear assemblies in Tile Automata and STAM (Corollary
1). We inherit the ability to simulate Context-Free Grammars from the staged
model in [13] showing the same upper bound. For the line building results we
inherit them from [12] Additionally using results from [8], these results carry
over to the STAM as well.

2 Model and Definitions

We provide simplified definitions for 1D Tile Automata, then define 1D Staged
Assembly as a generalization. Refer to previous work [1,12] for full definitions
of the models.

2.1 The 1D Tile Automata Model (TA)

In this dimensionally restricted version of the model, a Tile Automata system1

is a triple (Σ,Π,Δ) where Σ is an alphabet of state types, Π is an affinity
function, and Δ is a set of transition rules for states in Σ. An example 1D Tile
Automata system is shown in Fig. 2.

Tile. Let Σ be a set of states or symbols. A tile t = (σ, p) is a non-rotatable
unit square placed at point p ∈ Z

1 and has a state of σ ∈ Σ.

Assembly. An assembly A is a sequence of tiles {t1, t2, t3, . . . , t|A|}. Let A(i)
and AΣ(i) represent the ith tile and its state in assembly A, respectively. For a
tile t in assembly A let ρA(t) be the position of t in A.

Affinity Function. An affinity function Π takes an ordered pair in Σ2 as input
and outputs either 0 or 1. The affinity strength between two states for the ordered
orientation is the binary output of the corresponding function. An assembly A
is stable if, for every pair of tiles, Π(AΣ(i), AΣ(i + 1)) = 1. Informally, if all
adjacent tiles in assembly A have an affinity, A is stable. Two assembles, A and
B are combinable if the concatenation of the two assemblies AB = C is also a
stable assembly.

Transition Rules. Transition rules allow states to change based on their neigh-
bors. A transition rule is denoted (σ1a, σ2a) → (σ1b, σ2b) with σ1a, σ2a, σ1b, σ2b ∈
Σ. If states σ1a and σ2a are adjacent to each other, they can transition to
states σ1b and σ2b, respectively. An assembly A is transitionable to an assem-
bly B if there exists two adjacent tiles A(i), A(i + 1) ∈ A, two adjacent tiles

1 Typical TA models are defined with a temperature parameter τ however, with con-
sideration of solely 1D, eliminating the possibility of cooperative binding, we assume
τ = 1.

Simulation of Multiple Stages in Single Bin Active Tile Self-assembly 159

Fig. 2. (a) An example of a Tile Automata system Γ . Recursively applying the tran-
sition rules and affinity functions to the initial assemblies of a system yields a set of
producible assemblies. Any producibles that cannot combine with, break into, or tran-
sition to another assembly are considered terminal. Note that none of the transition
rules allow states to change color. (b) A simple staged self-assembly example. The sys-
tem has 3 bins, 3 stages, and 3 tile types, assigned to bins, as shown in the mix graph.
Only terminal assemblies can pass to a successive stage. The result of this system is
the assembly shown in the bin in stage 3.

B(i), B(i+1) ∈ B, a transition rule (AΣ(i), AΣ(i+1)) → (BΣ(i), BΣ(i+1)) ∈ Δ,
and A(j) = B(j) for all j �= i, i + 1.

Affinity Strengthening. Affinity Strengthening requires that any transition
preserves affinities between tiles within assemblies. For each transition rule
(σa, σb) → (σc, σd), Π(σc, σd) = 1. By limiting our focus to affinity strength-
ening systems, we do not need to consider the scenario where a stable assembly
becomes unstable (and would fall apart).

Freezing. In a freezing system, a tile may not transition to any state more than
once. Thus, if a tile with state σa transitions into another state σb, it is not
allowed to transition back to σa.

Producibility. We define the set of producible assemblies starting from a set of
initial assemblies Λ. For a given 1D Tile Automata system Γ = (Σ,Π,Δ) and
initial assembly set Λ, the set of producible assemblies of Γ , denoted PRODΓ (Λ),
is defined recursively:

– (Base) Λ ⊆ PRODΓ (Λ)
– (Combinations) For any A,B ∈ PRODΓ (Λ) s.t. A and B are combinable into

C, then C ∈ PRODΓ (Λ).
– (Transitions) For any A ∈ PRODΓ (Λ) s.t. A is transitionable into B using

δ ∈ Δ, then B ∈ PRODΓ (Λ).

For a system Γ , we say A →Γ
1 B for assemblies A and B if A is combinable

with some producible assembly to form B, if A is transitionable into B, or if
A = B. Intuitively, this means that A may grow into assembly B through one
or fewer combinations or transitions.

160 S. C. Cirlos et al.

We define the relation →Γ to be the transitive closure of →Γ
1 , i.e., A →Γ B means

that A may grow into B through a sequence of combinations and transitions.

Terminal Assemblies. A producible assembly A of a Tile Automata system
Γ is terminal provided A is not combinable with any producible assembly of Γ ,
and A is not transitionable to any producible assembly of Γ . Let TERMΓ (Λ) ⊆
PRODΓ (Λ) denote the set of producible assemblies of Γ that are terminal.

Unique Assembly. A 1D TA system Γ , starting from initial assemblies Λ,
uniquely produces a set of assemblies A if

– A = TERMΓ (Λ),
– for all B ∈ PRODΓ (Λ), B →Γ A for some A ∈ A

2.2 Staged Assembly Model

Here, we define the Staged Assembly model using the definitions from above.

Tile Types and Glues. In the staged assembly model, tiles are defined by their
glues. Let G be a set of glues. A tile type is an ordered pair of glues (w, e) ∈ G2

where tile t = (w, e) has west glue w and east glue e. The affinity function Π for
the staged assembly model takes as input two tile types t1 = (a, b), t2 = (c, d)
and outputs 1 if b = c and 0 otherwise.

When allowing Flexible Glues we remove the restriction that Π outputs 0
when b �= c allowing for a general glue function. Note this is equivalent to the
affinity function of Tile Automata.

Assembly. An assembly A in a staged assembly system is a sequence of tile
types {t1, t2, t3, . . . , t|A|}. Let A(i) be the ith tile type in assembly A.

Staged Assembly Systems. An r-stage, b-bin mix-graph Mr,b, is an acyclic
r-partite digraph consisting of rb vertices mi,j for 1 ≤ i ≤ r and 1 ≤ j ≤ b, and
edges of the form (mi,j ,mi+1,j′) for some i, j, j′. A staged assembly system is a
duple Υ = (Mr,b, T) where Mr,b is an r-stage, b-bin mix-graph, T ⊂ G2 is a set
of tiles types labeled from the set of pairs of glues G.

Two-Handed Assembly and Bins. We define the assembly process in terms
of bins2. Each bin can be considered an instance of a Tile Automata system
without transition rules where Δ = ∅. However, each bin has a different set of
initial assemblies denoted as Λi,j where i is the stage and j is the bin. Let Tj be
the set of initial tile types in bin j.

1. Λ1,j = {Tj} (this is a bin in the first stage);

2. For i ≥ 2, Λi,j =
(⋃

k: (mi−1,k,mi,j)∈Mr,b

TERMΥ (Λi−1,k)
)
.

Thus, the jth bin in stage 1 is provided with the initial tile set Tj . Each bin
in any later stage receives an initial set of assemblies consisting of the terminally

2 Each bin may be seen as an instance of the 2-Handed Assembly Model.

Simulation of Multiple Stages in Single Bin Active Tile Self-assembly 161

Fig. 3. Examples of assembly trees for the same assembly. (a) A balanced tree. (b) A
left-handed assembly tree. (c) A right-handed assembly tree.

produced assemblies’ bins in the previous stage indicated by the edges of the mix-
graph. The output of the staged system is the union of all terminal assemblies
from each bin in the final stage. We say this set of output assemblies is uniquely
produced if each bin in the staged system uniquely produces its respective set of
terminal assemblies.

2.3 Assembly Trees

We may represent the assembly process in a single bin as an assembly tree in
the staged model. An example tree can be seen in Fig. 3a.

Definition 1 (Assembly Tree). An assembly tree T b
A, for a producible assem-

bly A in a bin b, is a binary tree where each node represents a subassembly of
A. The root represents assembly A, and each leaf represents an initial assembly
of b. Each node can be formed by combining the assemblies represented by the
children.

An assembly tree is a Left-Handed Assembly Tree if every assembly that
attaches on the right side is an initial assembly. A Right-Handed Assembly Tree
is the inverse where every left assembly is an initial assembly. Examples of these
two types of trees are in Figs. 3b and 3c.

3 Simulation of General 1D Staged

In this section, we show how to simulate all 1D staged systems with TA systems.
First, we define what simulate means for these systems, followed by a high-level
overview of our simulation, and then the details.

3.1 Simulation

Here, we utilize a simplified definition of simulation in which the set of final
terminal assemblies, from the target staged system to be simulated, is exactly
the same, under a mapping function, as the final terminal assemblies of the
source TA system that is simulating it. This is a standard type of simulation

162 S. C. Cirlos et al.

Fig. 4. (a) Each of our Tile Automata states conceptually represents two glue labels
that say which tile type they map to (a glue may be null, as in the leftmost state).
They may also contain features such as the left/right cap or the active state token. (b)
Assemblies map based on the glue labels on the Tile Automata states. Multiple Tile
Automata assemblies represent the same Staged assembly, but sometimes in different
stages.

used, and we omit technical definitions in this version. A stronger definition of
simulation incorporates dynamics, in which assemblies may attach in the target
system if and only if they attach in the source system. However, our approach
focuses on simulating a restricted set of dynamics that are sufficient to ensure
the production of all final (and partial) assemblies. We leave the problem of fully
simulating the dynamics of a staged system as future work (Fig. 4).

3.2 Overview

We create a Tile Automata system with initial tiles representing the initial tile
types of the staged system. Each assembly in our Tile Automata system repre-
sents an assembly in a specific stage and bin. Each state is a pair consisting of
a tile type t and a stage-bin label representing t in that specific stage and bin.
Some states will have an active state token(*) used to track the progress of the
Tile Automata assembly in the assembly tree. We simulate only left- or right-
handed assembly trees based on the parity of the stage number. The logic for the
transition rules is described in Algorithm 1 using a Glue-Terminal Table. Each
Tile Automata assembly builds according to the assembly trees of the staged
system by having the token “read” the glues to decide if an assembly is terminal
in a bin and needs to transition to the next stage.

3.3 Glue-Terminal Table

For the simulation to work, we need to know the glues used in each bin of
the target system because we cannot “read” the absence of a glue/assembly in
self-assembly. However, we can use the Glue-Terminal Table to construct the
transition rules. This table stores which glues correspond with each bin.

Definition 2 (Glue-Terminal Table). For a staged system Υ = (Mr,b, T), the
Glue-Terminal table GT ((s, b), g) is a binary |Mr,b| × G table with rows labeled
with stage-bin pairs and columns labeled with glues. The entry GT ((s, b), g) is

Simulation of Multiple Stages in Single Bin Active Tile Self-assembly 163

Algorithm 1: Algorithm to create transition rules for each pair of states
in a Tile Automata system.
Data: Left state a and right state b, and glue-terminal table GT .
Result: Transition rule (a, b) → (a′, b′) if such a rule exists.

1 Let L(σ)/R(σ) be the left/right glue label of the tile type σ maps to.
2 Let STAGE(σ) be the stage σ is in. Let BIN(σ) be the bin σ is in.
3 Let NEXT BIN(σ) be the bin σ will be in the next stage.
4 Let HAS TOKEN(σ) be true if σ contains a token, false otherwise.
5 if R(a) �= L(b) then
6 Return null;
7 if HAS TOKEN(a) ∧ STAGE(a) is odd then
8 if b has a right cap then
9 if GT ((STAGE(b), BIN(b)), R(b)) = Used then

10 a′ ← a − ∗; b′ ← b + ∗; b′ ← b′ − |;
11 else if GT ((STAGE(b) + 1, NEXT BIN(b)), R(b)) = Used then
12 a′ ← a − ∗; b′ ← b − |;
13 STAGE(b′) ← STAGE(b′) + 1; BIN(b′) ← NEXT BIN(b′);
14 else
15 a′ ← a; b′ ← b;
16 STAGE(a′) ← STAGE(a′) + 1; BIN(a′) ← NEXT BIN(a′);
17 STAGE(b′) ← STAGE(b′) + 1; BIN(b′) ← NEXT BIN(b′);
18 else
19 a′ ← a − ∗; b′ ← b + ∗;
20 STAGE(b′) ← STAGE(b′) + 1; BIN(b′) ← NEXT BIN(b′);
21 Return (a, b) → (a′, b′);
22 if HAS TOKEN(b) ∧ STAGE(b) is even then
23 if a has a left cap then
24 if GT ((STAGE(a), BIN(a)), L(a)) = Used then
25 b′ ← b − ∗; a′ ← a + ∗; a′ ← a′ − |;
26 else if GT ((STAGE(a) + 1, NEXT BIN(a)), L(a)) = Used then
27 b′ ← b − ∗; a′ ← a − |;
28 STAGE(a′) ← STAGE(a′) + 1; BIN(a′) ← NEXT BIN(a′);
29 else
30 b′ ← b; a′ ← a;
31 STAGE(b′) ← STAGE(b′) + 1; BIN(b′) ← NEXT BIN(b′);
32 STAGE(a′) ← STAGE(a′) + 1; BIN(a′) ← NEXT BIN(a′);
33 else
34 b′ ← b − ∗; a′ ← a + ∗;
35 STAGE(a′) ← STAGE(a′) + 1; BIN(a′) ← NEXT BIN(a′);
36 Return (a, b) → (a′, b′);

164 S. C. Cirlos et al.

Fig. 5. (a) Example Staged system to be simulated. (b) Glue-Terminal Table for shown
staged system. In the table, s is the stage and b is the bin.

true (Used) if there exists at least two producible assemblies in bin b that attach
using glue g in stage s. If it is false (Term.), the glue is never used in bin b for
stage s.

This table can be computed recursively by checking the glues of the that
are assemblies in the previous bin. Computing terminal assemblies can be done
much easier since it’s 1D (Fig. 5).

3.4 States and Initial Tiles

A state in our Tile Automata system has the following properties: each state
has the first two properties and the second two properties are optional. The first
label has sb possible options, the second has t, and the rest only increase the
state space by a constant factor. This results in an upper bound on the states
used of O(sbt).

– Stage-Bin Label. Each state (s, i)t is labeled with a pair of integers (s, i)
saying the state represents the ith bin in stage s.

– Glue Labels. Each state (s, i)t represents a tile t from the staged system.
We say this state has the glue labels of t when defining our affinity rules in
Tile Automata. This label also defines our mapping from TA states to staged
tiles in both directions.

– Active State Token. A state (s, i)∗
t may have an Active State Token ∗.

The token is used to enforce the left/right handed assembly trees by starting
on one side of an assembly, and allowing attachment to other states with
matching glue and stage-bin labels.

– Caps. A state may have a cap on one side, denoted |s, i)t or (s, i|t. This
means that on the side of the cap |, there are no affinity rules for that state.
Until an assembly is ready to attach, it will have caps on its left and right
most tiles.

We create an initial state for each pair b1,i, t where b1,i is the ith bin of the
first stage and t is a tile input to that bin. If the left glue of the t is used in the

Simulation of Multiple Stages in Single Bin Active Tile Self-assembly 165

b1,i, then we include the state (1, it|, i.e., the right cap state. If the left glue is
open, but the right glue is used, the tile is the first in a left-handed assembly
tree. In this case, we include the token left cap state |1, i∗t).

If a tile is terminal in the first bin, we instead include an initial state repre-
senting the first bin where the state is consumed. For example, if a tile t is input
to bin (1, i) and is terminal, but its right glue is used in an attachment in bin
(2, j) (where there’s an edge between (1, i) and (2, j)), then we instead include
an initial state |2, jt).

3.5 Bin Simulation

In any odd stage, we construct every terminal using a sequence of attachments
representing a left-handed assembly tree. For even stages, we use a right-handed
assembly tree. We control this with the token by defining our affinity rules such
that every attachment occurs between one state with the token and one without
a cap. We switch between the left and right handed trees to reduce the amount
of times the token must walk back and forth on the assembly since the token
ends on the opposite side each time.

We walk through an example of a bin in the first stage in Fig. 6a. The token
left cap state |1, 1∗

t) attaches to the right cap state (1, 1t′ | if t′ attaches to the
right of t. These two states then transition. If the right glue of t′ is used in
the bin, the token moves to that state and removes the cap. This process can
then repeat in the bin. Looking at the next tile t′′, the right glue is unused, and
thus, the assembly is terminal, and the transition should move it to the next
stage, now changing directions as outlined in Fig. 6b. The process for defining
transitions is described in Algorithm 1; when given two states and the Glue-
Transition table, a transition rule is returned if one would exist in the system.
Note that this algorithm is non-deterministic as one bin may output to multiple
bins in the next stage, so a pair of states may have multiple transition rules.

Theorem 1. For any 1D staged system Υ with flexible glues, s stages, b bins,
and t tile types, there exists a 1D Freezing Affinity-Strengthening Tile Automata
system Γ with O(sbt) states that simulates Υ .

Proof. Consider a staged system Υ = (Mr,b, T) with s stages, b bins and t tiles
types. Tile Automata system Γ = (Σ,Π,Δ) which simulates Υ is defined and
discussed below.

State Complexity O(sbt). Each tile type in Υ requires a unique state in Γ for
every bin in every stage, resulting in s · b · t states. The additional state increase
for the token and caps of each state is constant for a total of O(sbt) states.

Flexible Glues, Freezing and Affinity Strengthening. A state σt ∈ Σ with tile
type t ∈ T has affinity with a state σ′

t ∈ Σ with tile type t′ ∈ T if t attaches to t′

in Υ . With the affinity function we can encode general glues so we can simulate
flexible glues. For every transition rule δ ∈ Δ, δ does not alter the tile type a
state represents since only the stage, bin, token, or cap are affected.

Every transition rule is freezing and either removes a cap, moves the token
forward, or advances to the next stage. Once a state with a tile type t has lost

166 S. C. Cirlos et al.

Fig. 6. (a) Example simulation of an assembly in stage 1. Notice the token moves
leftward through the assembly as it builds to enforce a left handed assembly tree. (b)
Transition for terminal assembly in bin (1, 3). Since the rightmost glue is terminal in
bin (1, 3) the token changes the stage to 2 and starts moving left to remove the cap.

its cap it can never regain it. In a single stage, the token may walk over each
tile a maximum of 2 times as both sides of the assembly must be checked to
decide if the assembly is terminal. Note that this token walk involves adding an
additional distinct state so the tiles do not visit the same state twice.

Simulation. We prove this is a correct simulation by induction on the size
of the assemblies. The initial assemblies cover our base case for single tiles in
Λ. The tile input in the first stage in Υ ensures each included assembly is in
Λ. For the recursive case, assume every assembly A ∈ PRODΥ with |A| < x is
simulated. Let b be the bin in which A is produced. A must be produced using
two assemblies B and C, each of size < x, which are also in bin b. From our
assumption, B and C have assemblies representing them- B′, C ′ ∈ PRODΓ (Λ).
Since B and C are produced in the same bin and have matching assemblies B′

and C ′ with matching tokens, they may combine into an assembly A′. A will
represent A since it has the same labels.
�

3.6 Lines

Using Theorem 1, we provide an alternate proof from [5] of length-n lines with
O(log n) states.

Corollary 1. For all n ∈ N, there exists a freezing Tile Automata system that
uniquely assembles a 1 × n line in O(log n) states.

Proof. In [12], it is shown that there exists a staged assembly system that
uniquely produces a 1 × n line with 6 tile types, 7 bins, and O(log n) stages.
From Theorem 1, there exists a Freezing Affinity-Strengthening Tile Automata
system Γ with O(sbt) states that simulates any staged system Υ with s stages,

Simulation of Multiple Stages in Single Bin Active Tile Self-assembly 167

b bins and t tile types. Therefore, simulating the staged assembly system from
[12] can be done with O(log n) states.
�

4 Patterns

4.1 Colors and Patterns

In this section, we augment the Tile Automata model with the concept of a
tile’s color being based on the current state. For a set of color labels C, this is
a partition of the states into |C| sets. We only consider constant-sized C. Thus,
the color of a tile t is the partition of the tile’s state, denoted as c(t).

Definition 3 (Pattern). A pattern P over a set of colors C is a partial map-
ping of Z to elements in C. Let P (z) be the color at z ∈ Z. A scaled pattern Phw

is a pattern replacing each pixel within a 1 × w line of pixels.

Definition 4 (Patterned Assemblies). We say a positioned assembly A′ rep-
resents a pattern P if for each tile t ∈ A′, c(t) = P (ρA′(t)) and dom(A′) =
dom(P). We say a positioned assembly B′ represents a pattern P at scale h × w
if it represents the scaled pattern Phw.

A system Γ uniquely assembles a pattern P if it uniquely assembles an assem-
bly A, such that A contains a positioned assembly that represents P .

Definition 5 (Color-Locked). A Tile Automata system is Color-Locked if
for every transition rule δ = (S1a, S2a, S1b, S2b, d) ∈ Δ, c(S1a) = c(S1b) and
c(S2a) = c(S2b), i.e., tiles are not allowed to change their color.

4.2 Context-Free Grammars

A context-free grammar (CFG) is a set of recursive rules used to generate
patterns of strings that define a given language. A CFG is a quadruple G =
(V, Υ,R, S) where V is a finite set of nonterminal symbols (variables), Υ is a finite
set of terminal symbols, R is the set of production rules, and S ∈ V is the start
symbol. Assuming the CFG is in Chomsky Normal Form (CNF), the production
rules of the CFGs are in the form A → BC or A → a, where A,B,C ∈ V and
a ∈ Υ . A CFG derives a string by recursively replacing nonterminal symbols
with terminal and nonterminal symbols based on its production rules.

Definition 6 (Minimum Context Free Grammars). We define the size
of a grammar G as the total number of symbols in the right-hand side of the
rules. Let CFP be the size of the smallest CNF CFG that produces the singleton
language {P}.
Restricted Context-Free Grammars (RCFG). In this work, we focus on
the CFG class used in [13], which they name Restricted CFGs. These restricted
grammars produce a singleton language, |L(G)| = 1, and thus are deterministic.
This is the same concept of Context-Free Straight Line grammars from [4]. Note

168 S. C. Cirlos et al.

Fig. 7. A restricted context-free grammar (RCFG) G and its corresponding parse tree
that produces a pattern P , ξξδδδψ. This is a deterministic grammar, producing only
pattern P .

a Restricted CFG is not necessarily in CNF but any RCFG can be transformed
into CNF with only a constant factor increase in rule size. Figure 7 presents an
example RCFG G and its parse tree that derives a pattern of symbols P , ξξδδδψ.
The parse tree shows how internal nodes are nonterminal symbols, and leaf nodes
contain a terminal symbol whose in-order traversal derives the output string.
Notice that since RCFG G is deterministic, each nonterminal symbol N ∈ V
has a unique subpattern g(N) that is defined by taking N as the start symbol
S and applying the production rules. Here, the language or output pattern P of
G can be denoted by L(G) = g(S).

4.3 Tile Automata Upper Bounds

In [13], the authors define the size of a staged assembly system Υ (denoted |Υ |)
to be the number of edges in its mix graph.

Corollary 2. For any pattern P , there exists a Freezing Tile Automata system
Γ that uniquely assembles P with O(CFP) states and 1 × 1 scale. This system
is cycle-free, and transition rules do not change the color of tiles.

Proof. In [13], the authors show that, given a RCFG G deriving a pattern P ,
there exists a 1D SSAS Υ that assembles pattern P with B total bins, t tile types,
and at 1 × 1 scale with |Υ | = O(CFP). Theorem 1 gives an upper bound based
on the number of stages times the number of bins. However, the construction
also gives an upper bound of O(Bt) as each state stores the bin and tile it maps
to. It follows that there exists a Freezing TA system Γ that uniquely assembles
P with O(CFP) states and 1 × 1 scale if Γ simulates Υ .
�

5 Conclusion

In this paper we show how to convert any 1D staged assembly system to an
equivalent 1D freezing Tile Automata system. We then show how this generalizes
some previous results. We then show the immediate connection to context-free
grammars and patterns. There are many interesting directions for future work.

– What is the most efficient method to compute the glue-terminal table?

Simulation of Multiple Stages in Single Bin Active Tile Self-assembly 169

– Can we improve the number of states needed in the TA simulation? Could it
be reduced to O(st + bt) or even O(sg + bg) where g is the number of glues
in the system? What is the lower bound?

– Does allowing for 1D scaling help achieve better bounds?
– Can 1D staged simulate 1D freezing Affinity-Strengthening Tile Automata?

I.e., are they equivalent? If so, how many tiles, bins, and stages are needed?
– What challenges arise when attempting to generalize this to 2D? The glue-

terminal table must not only store whether or not an assembly is terminal
based on its glues, but also its geometry.

– What is the lower bound for building patterns in 1D freezing Affinity-
Strengthening Tile Automata? Are there languages that Tile Automata can
assemble more efficiently than staged?

References

1. Alaniz, R.M., et al.: Building squares with optimal state complexity in restricted
active self-assembly. In: Proceedings of the Symposium on Algorithmic Foundations
of Dynamic Networks, SAND 2022, vol. 221, pp. 6:1–6:18 (2022)

2. Alumbaugh, J.C., Daymude, J.J., Demaine, E.D., Patitz, M.J., Richa, A.W.: Sim-
ulation of programmable matter systems using active tile-based self-assembly. In:
Thachuk, C., Liu, Y. (eds.) DNA 2019. LNCS, vol. 11648, pp. 140–158. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-26807-7 8

3. Barad, G., et al.: Simulation of one dimensional staged dna tile assembly by the
signal-passing hierarchical tam. Procedia Comput. Sci. 159, 1918–1927 (2019)

4. Benz, F., Kötzing, T.: An effective heuristic for the smallest grammar problem. In:
Proceedings of the 15th Annual Conference on Genetic and Evolutionary Compu-
tation, pp. 487–494 (2013)

5. Caballero, D., Gomez, T., Schweller, R., Wylie, T.: Verification and computation
in restricted tile automata. In: 26th International Conference on DNA Computing
and Molecular Programming, DNA 2020, vol. 174, pp. 10:1–10:18 (2020)

6. Caballero, D., Gomez, T., Schweller, R., Wylie, T.: Covert computation in staged
self-assembly: verification is pspace-complete. In: 29th Annual European Sympo-
sium on Algorithms, ESA 2021, pp. 23:1–23:18 (2021)

7. Cannon, S., et al.: Two hands are better than one (up to constant factors): self-
assembly in the 2HAM vs. aTAM. In: 30th Inter. Sym. on Theoretical Aspects of
Computer Science, STACS 2013, vol. 20, pp. 172–184 (2013)

8. Cantu, A.A., Luchsinger, A., Schweller, R., Wylie, T.: Signal passing self-assembly
simulates tile automata. In: 31st International Symposium on Algorithms and
Computation, ISAAC 2020, pp. 53:1–53:17 (2020)

9. Chalk, C., Luchsinger, A., Martinez, E., Schweller, R., Winslow, A., Wylie, T.:
Freezing simulates non-freezing tile automata. In: Doty, D., Dietz, H. (eds.) DNA
2018. LNCS, vol. 11145, pp. 155–172. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-00030-1 10

10. Chalk, C., Martinez, E., Schweller, R., Vega, L., Winslow, A., Wylie, T.: Optimal
staged self-assembly of general shapes. Algorithmica 80(4), 1383–1409 (2018)

11. Chalk, C., Martinez, E., Schweller, R., Vega, L., Winslow, A., Wylie, T.: Optimal
staged self-assembly of linear assemblies. Nat. Comput. 18(3), 527–548 (2019).
https://doi.org/10.1007/s11047-019-09740-y

https://doi.org/10.1007/978-3-030-26807-7_8
https://doi.org/10.1007/978-3-030-00030-1_10
https://doi.org/10.1007/978-3-030-00030-1_10
https://doi.org/10.1007/s11047-019-09740-y

170 S. C. Cirlos et al.

12. Demaine, E.D., et al.: Staged self-assembly: nanomanufacture of arbitrary shapes
with o (1) glues. Nat. Comput. 7(3), 347–370 (2008)

13. Demaine, E.D., Eisenstat, S., Ishaque, M., Winslow, A.: One-dimensional staged
self-assembly. In: Proceedings of the 17th International Conference on DNA Com-
puting and Molecular Programming, DNA 2011, pp. 100–114 (2011)

14. Schweller, R., Winslow, A., Wylie, T.: Verification in staged tile self-assembly. Nat.
Comput. 18(1), 107–117 (2019)

15. Thubagere, A.J., et al.: A cargo-sorting DNA robot. Science 357(6356), eaan6558
(2017)

16. Tikhomirov, G., Petersen, P., Qian, L.: Fractal assembly of micrometre-scale dna
origami arrays with arbitrary patterns. Nature 552(7683), 67–71 (2017)

17. Winfree, E.: Algorithmic Self-Assembly of DNA. Ph.D. thesis, California Institute
of Technology (June 1998)

18. Winslow, A.: Staged self-assembly and polyomino context-free grammars. Nat.
Comput. 14(2), 293–302 (2015)

19. Woods, D., Doty, D., Myhrvold, C., Hui, J., Zhou, F., Yin, P., Winfree, E.: Diverse
and robust molecular algorithms using reprogrammable dna self-assembly. Nature
567(7748), 366–372 (2019)

Single-Shuffle Card-Based Protocol
with Eight Cards per Gate

Kazunari Tozawa1(B), Hiraku Morita2, and Takaaki Mizuki3

1 The University of Tokyo, Tokyo, Japan
tozawaka@g.ecc.u-tokyo.ac.jp

2 University of St. Gallen, St. Gallen, Switzerland
3 Tohoku University, Miyagi, Japan

Abstract. Card-based cryptography allows us to securely compute arbi-
trary functions using a deck of physical cards. Its performance is mainly
measured by the number of used cards and shuffles, and there is a line of
work that aims to reduce either of them. One of the seminal work is by
Shinagawa and Nuida (Discrete Applied Mathematics 2021) that shows
any Boolean function can be constructed by shuffling only once based on
the garbling scheme. Their construction requires 2n + 24g cards for an
n-input Boolean function that is represented by g logical gates. In this
paper, we reduce the number of cards to 2n+ 8g for arbitrary functions
while keeping it working with only one shuffle.

Keywords: Card-based cryptography · Garbled circuit · XOR shuffle

1 Introduction

Card-based cryptography is unconventional computing which performs crypto-
graphic tasks such as secure computations, which exploits a deck of physical
cards [8,14,15,20]. A card-based cryptographic protocol typically uses a two-
color deck consisting of ♥ and ♣ whose backs are all identical ? , and the
following encoding rule is usually used to represent Boolean values:

♣ ♥ = 0, ♥ ♣ = 1.

The complexity of a card-based protocol is measured in terms of the number of
cards and shuffles, which correspond to the space and time complexities of the
protocol, respectively.

As for minimizing the number of required cards, the currently known best
result is that 2n+6 cards are sufficient to construct any n-variable Boolean func-
tion [19]. However, it needs an exponential number of shuffles. As for minimizing
the number of shuffles, Shinagawa and Nuida [24] proved that only one shuffle is
enough to design a protocol securely computing any Boolean function (although
it needs a relatively large number of cards as mentioned below). This paper
mainly focuses on the latter, i.e., improving the Shinagawa–Nuida single-shuffle
construction.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Genova and J. Kari (Eds.): UCNC 2023, LNCS 14003, pp. 171–185, 2023.
https://doi.org/10.1007/978-3-031-34034-5_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-34034-5_12&domain=pdf
https://doi.org/10.1007/978-3-031-34034-5_12

172 K. Tozawa et al.

More specifically, Shinagawa and Nuida [24] have investigated the relation
between card-based cryptography and garbled circuit techniques. They have pro-
posed a card-based variant of a garbled circuit, called Card-based Garbled Cir-
cuit. The protocol enables us to compute any Boolean function with the optimal
number of shuffles, namely exactly one shuffle. Regarding the number of cards,
the protocol for an n-input Boolean function requires 2n+24g cards, where g is
the number of gates (when describing the function as a circuit).

Technical Overview of Our Scheme. Our goal is to minimize the number
of cards required to represent a card-based garbled circuit. To address this, we
propose a new method to represent garbled gates with a small number of cards,
that is, 8 cards per gate. Our method helps to reduce the primitive cost of card-
based garbled circuits which can be seen as reducing the size of the garbled
tables, allowing the number of cards to be reduced proportionally to the number
of gates.

The basic idea of garbled circuit techniques is to consider each gate as an
encryption of the corresponding truth table. A truth table of a logic gate con-
sists of 12 cells, so the most straightforward way to represent it in card-based
cryptography is to use 24 cards with standard encoding, as shown in Fig. 1a.
The Shinagawa-Nuida single-shuffle construction shows that this representation
allows privacy-preserving computations of any binary gate. The garbling stage
of their scheme aims to encrypt the truth table of each gate by turning down the
cards and randomly permuting the rows of the table. The resulting truth table
looks as shown in Fig. 1b. Since the positions of the result values are uniformly
random, the evaluation stage of the gate can make all values in the operand cells
public.

On the other hand, our scheme uses only 8 cards to represent a truth table
as shown in Fig. 1c. This reduction comes from the observation that the operand
cell values are only positional information for each result cell. In other words,
we can omit the cards required for the operand cells, as long as the positional
information is recoverable. A similar optimization has already been proposed in
the context of garbled circuits, called the point-and-permute technique [2]. We
propose a variant of the point-and-permute technique in card-based cryptogra-
phy.

Our Contributions. We propose a protocol for any Boolean circuit with a
single shuffle. Compared to the existing protocol [24], we reduce the number of
cards from 2n + 24g to 2n + 8g, where g is the number of gates.

Related Work. As mentioned above, the goal of this paper is to provide a
generic construction for securely computing any Boolean functions using only one
shuffle. The Shinagawa-Nuida’s single-shuffle construction [24] has been the only
one that achieves the goal. There are several single-shuffle protocols for specific
elementary functions such as the AND [4,16,18], XOR [18], 3-input equality [6,
23], 3-input majority [25], n-input AND [13], and n-input XOR [13] functions.
Another aspect of previous work is to reduce the number of cards; especially,
designing card-minimal protocols has attracted attention [5,9–12,21,25].

Single-Shuffle Card-Based Protocol with Eight Cards per Gate 173

Fig. 1. Card-based representations of the truth table for gate f

Bellare et al. [3] proposed garbling schemes, an abstraction of garbled cir-
cuit methods, and formalized security properties of garbled circuits: privacy and
obliviousness.

2 Preliminaries

2.1 Notation

We use a bold symbol to represent a vector (or an ordered set). Let vi denote
the i-th (starting from 1) element of v. We write v ‖w for the concatenation of
v and w.

Let Sn denote the symmetric group on n elements. For a vector v of degree
n, we define a place-permutation action of Sn as (v · π)i = vπ(i), where π ∈ Sn.
For two permutations π, ρ, we use the notation πρ to represent the product of
permutations such that v · (πρ) = (v ·π) ·ρ for any vector v. We use the notation
(a, b) ∈ Sn to denote the transposition (i.e., a cycle with two elements) that
swaps a and b.

For b, c ∈ Z2, we will write b, b ⊕ c, b ∨ c and b ∧ c for the negation of b, the
XOR, OR and AND of b and c, respectively.

2.2 Card-Based Cryptographic Protocol

In this paper, we follow the computation model proposed in [17]. There are two
kinds of cards: The face side of a card is either ♣ or ♥ , and the back side
is indistinguishable from the other cards, denoted by ? . Each card during the
protocol execution can be in one of the two states: face-top or face-down. A deck
is a finite vector on {♥,♣} × {face-top, face-down}.

As mentioned before, a bit x ∈ Z2 is represented by a single pair of cards as
follows:

0 = ♣ ♥ 1 = ♥ ♣

174 K. Tozawa et al.

A commitment of x ∈ Z2, denoted by Com(x), is a pair of face-down cards
representing x.

For a current deck D of n cards, a protocol can perform the following oper-
ations:

– (Perm, π), where π ∈ Sn. The operation converts D into D · π.
– (Shuffle, G), where G is a permutation group on n points. The operation

converts D into D · π, where π is a random permutation chosen uniformly on
G.

– (Open, S), where S ⊆ {1, . . . , n}. The operation makes the state of the i-th
card in D face-top for all i ∈ S.

In particular, when G is isomorphic to some symmetric group Sk for k ≤
n, (Shuffle, G) is called a pile-scramble shuffle [7]. Let I(1), . . . , I(k) be the
disjoint ordered subsets of {1, . . . , n} of the same size s. We define G as
the permutation group generated by the products of parallel transpositions
(I(i)

1 , I
(j)
1)(I(i)

2 , I
(j)
2) · · · (I(i)

s , I
(j)
s) for all i < j. In this case, we use the syn-

tactic sugar (PileShuffle, I(1), . . . , I(k)) for (Shuffle, G).
The protocol is in a committed format if the output is also encoded in the

same manner as input; 0 = ♣ ♥ , 1 = ♥ ♣ . Our construction in this paper
focuses on a committed format so that it will be easy to use the committed
output of our protocol as an input of some other protocols.

2.3 Garbled Circuit

Let f = (n,m, g,Wires, A,B,G) be a Boolean circuit. Here, n, m and g denote
the numbers of inputs, outputs and gates, respectively. All input wires and gates
in f are assigned unique numbers belonging to Inputs = {1, . . . , n} and Gates =
{n+1, . . . , n+ g}, respectively. The wire coming out of gate i is also assigned i,
so the wires correspond to Wires = {1, . . . , n+ g}. The functions A,B : Gates →
Wires \ Outputs respectively specify the first and second input wires of a gate,
and G : Gates × {0, 1} × {0, 1} → {0, 1} specifies the functionality of each gate.
We simply write Ai, Bi and Gi for A(i), B(i) and G(i, ·, ·), and write A−1

i and
B−1

i for A−1(i) and B−1(i), respectively. We assume that Ai < Bi < i holds for
all i. Then all output wires in f belong to Outputs = {n+ g − m+1, . . . , n+ g}.

Garbling scheme [3] consists of the following algorithms:

– (F, e, d) ← Gb(1k, f): Given a security parameter k ∈ N and a function f :
{0, 1}n → {0, 1}m, it outputs a garbled circuit F , encoding information e,
and decoding information d

– X ← Enc(e, x): Given encoding information e and an input x ∈ {0, 1}n, it
outputs a garbled input X

– Y ← Eval(F,X): Given a garbled function F and a garbled input X, it outputs
a garbled output Y

– y ← Dec(d, Y): Given decoding information d and a garbled output Y , it
outputs a plain output y

Single-Shuffle Card-Based Protocol with Eight Cards per Gate 175

The security properties we focus on are described as follows:

– Privacy: The tuple (F,X, d) should not reveal any information on the input x
except the output f(x). Here, there must exist a simulator S that takes input
(1k, f, f(x)) and outputs (F ′,X ′, d′) that is indistinguishable from (F,X, d)
that would be generated by the protocol.

– Obliviousness: The tuple (F,X) should not reveal any information on x. Here,
there must exist a simulator S that takes input (1k, f) and outputs (F ′,X ′)
that is indistinguishable from (F,X) that would be generated by the protocol.

Note that in this paper we do not use the security parameter k and only
consider the security properties in the information-theoretical sense.

2.4 Card-Based Garbling Scheme

Our card-based garbling protocol (Protocol 2) realizes the standard garbling and
encoding algorithms at once, as in Shinagawa and Nuida [24]. In addition, when
considering a protocol in a committed form, the decoding phase is omitted. In
summary, the functionalities of a card-based garbling scheme are described as
follows:

– I ← Init(x, f): Given an input x and a function f : {0, 1}n → {0, 1}m, it
outputs a committed initial state I

– (F,X) ← CardGb(I): Given a security parameter k ∈ N and an initial state
regarding an input x and a function f , it outputs a garbled circuit F , decoding
information d, and a garbled input X

– Y ← CardEval(F,X): Given a garbled function F and a garbled input X, it
outputs a garbled output Y

3 Main Protocol

In this section, we propose an efficient protocol for card-based garbled circuits.
The main idea of our scheme is to use an elaborate shuffling technique for ran-
domization. We show that the XOR shuffle technique for the secret-sharing-based
scheme of [1] is also applicable to card-based cryptography. As a result, the XOR
shuffle provides an analog of the point-and-permute technique in the field of gar-
bled circuits, reducing the number of cards required to represent the circuit.

3.1 Example: For a Circuit with One Gate

To grasp the intuition of our idea, let us consider the simplest case with
a single binary logic gate. In this case, the Boolean circuit is described as
(2, 1, 1, {1, 2, 3}, {3
→ 1}, {3
→ 2}, f), where f is the functionality of the logic
gate. The procedure has three phases: initialization, garbling, and evaluation.

176 K. Tozawa et al.

Initialization. Let x1 and x2 be distinct inputs, and f be the binary Boolean
function we want to evaluate at the gate. Given the commitments of x1 and x2,
the initial state is set as follows:

1

?
2

?
︸ ︷︷ ︸

x1

3

?
4

?
︸ ︷︷ ︸

x2

5

?
6

?
︸ ︷︷ ︸

f(0,0)

7

?
8

?
︸ ︷︷ ︸

f(0,1)

9

?
10

?
︸ ︷︷ ︸

f(1,0)

11

?
12

?
︸ ︷︷ ︸

f(1,1)

Here, the first four cards are the commitments of x1 and x2, and the latter eight
cards are the commitments of the values of f(0, 0), f(0, 1), f(1, 0), and f(1, 1),
i.e., an encryption of the truth table for f . See Sect. 3.2 for the detail.

Garbling. In order to obliviously select the desired output from the encrypted
truth table while keeping the input values secret, we apply an XOR shuffle to the
initial state1. An XOR Shuffle consists of two consecutive pile-scramble shuffles
as follows:

1. (PileShuffle, {1, 5, 6, 7, 8}, {2, 9, 10, 11, 12})

1

?
◦

2

?
•

3

?
4

?
5

?
◦

6

?
◦

7

?
◦

8

?
◦

9

?
•

10

?
•

11

?
•

12

?
•

2. (PileShuffle, {3, 5, 6, 9, 10}, {4, 7, 8, 11, 12})

1

?
2

?
3

?
◦

4

?
•

5

?
◦

6

?
◦

7

?
•

8

?
•

9

?
◦

10

?
◦

11

?
•

12

?
•

A pile scramble shuffle allows us to swap the positions of the white- and black-
marked cards with equal probability while maintaining the order of the cards
marked each color. After the XOR shuffle, the final state can be one of the
following four cases:

1

?
2

?
︸ ︷︷ ︸

x1

3

?
4

?
︸ ︷︷ ︸

x2

5

?
6

?
︸ ︷︷ ︸

f(0,0)

7

?
8

?
︸ ︷︷ ︸

f(0,1)

9

?
10

?
︸ ︷︷ ︸

f(1,0)

11

?
12

?
︸ ︷︷ ︸

f(1,1)

2

?
1

?
︸ ︷︷ ︸

x1

3

?
4

?
︸ ︷︷ ︸

x2

9

?
10

?
︸ ︷︷ ︸

f(1,0)

11

?
12

?
︸ ︷︷ ︸

f(1,1)

5

?
6

?
︸ ︷︷ ︸

f(0,0)

7

?
8

?
︸ ︷︷ ︸

f(0,1)

1

?
2

?
︸ ︷︷ ︸

x1

4

?
3

?
︸ ︷︷ ︸

x2

7

?
8

?
︸ ︷︷ ︸

f(0,1)

5

?
6

?
︸ ︷︷ ︸

f(0,0)

11

?
12

?
︸ ︷︷ ︸

f(1,1)

9

?
10

?
︸ ︷︷ ︸

f(1,0)

2

?
1

?
︸ ︷︷ ︸

x1

4

?
3

?
︸ ︷︷ ︸

x2

11

?
12

?
︸ ︷︷ ︸

f(1,1)

9

?
10

?
︸ ︷︷ ︸

f(1,0)

7

?
8

?
︸ ︷︷ ︸

f(0,1)

5

?
6

?
︸ ︷︷ ︸

f(0,0)

where x denotes the negation of x. The key property of the XOR shuffle is
that each case has an equal probability thanks to the randomness given by pile-
scramble shuffles. Accordingly, the distribution of the two values committed on
the first four cards is uniform on {0, 1}2 regardless of the input values x1 and
x2. See Sect. 3.3 for the details.

1 Note that a similar procedure was used for changing an integer encoding into two
commitments [22].

Single-Shuffle Card-Based Protocol with Eight Cards per Gate 177

Evaluation. The evaluation phase of our protocol proceeds as follows. The
players first reveal the first four cards to obtain the two randomized values,
denoted by b1 and b2. Then, depending on the values of b1 and b2, the players
choose two of the latter eight cards according to the following rule:

– If b1 = 0 and b2 = 0, take 5 and 6
– If b1 = 0 and b2 = 1, take 7 and 8
– If b1 = 1 and b2 = 0, take 9 and 10
– If b1 = 1 and b2 = 1, take 11 and 12

The correctness of the protocol comes from the definition of XOR shuffle. When
b1 = x1 ⊕ r1 and b2 = x2 ⊕ r2 for some r1, r2 ∈ Z2, the latter part are the
commitments of the values of f(r1, r2), f(r1, r2), f(r1, r2) and f(r1, r2). There-
fore, the two chosen cards are the commitment of the desired output value. See
Sect. 3.4 for the details.

3.2 Initialization Phase

We first define the initial state of the protocol. Let f = (n,m, g,Wires, A,B,G)
be a Boolean circuit. For i ∈ Gates, we define an eight-card representation of the
truth table of gate i as follows:

Com(f, i) := Com(Gi(0, 0)) ‖ Com(Gi(0, 1)) ‖ Com(Gi(1, 0)) ‖ Com(Gi(1, 1)).

We now describe a protocol for Init below. The protocol requires 2n+8g cards.

Protocol 1. Init

Input: (x, f), where x is a vector of input values, and f is a Boolean circuit.
Output: I, where I is an initial state consisting of 2n + 8g face-down cards.

1. Set I = (Com(x1) ‖ · · · ‖ Com(xn) ‖ Com(f, n + 1) ‖ · · · ‖ Com(f, n + g)).
2. Output I.

For simplicity, we define the offset a : Wires → {1, . . . , 2n+8g}, which assigns
the first position in the deck to the wire number of the circuit, as follows:

a(i) =

{

2i − 1 i ∈ Inputs
8i − 6n − 7 i ∈ Gates

Example. As an example, we consider the Boolean circuit in Fig. 2. Note that
this example is the same as the Appendix example in [24]. Formally, the cir-
cuit is defined as f = (3, 1, 3, A,B,G) where A(4) = 1, A(5) = 3, A(6) = 4,
B(4) = 2, B(5) = 4, B(6) = 5, G4, G5 and G6 are AND, XOR, and OR gates,
respectively. In this case, the initial state of the protocol is set as 30 face-down
cards arranged as follows:

1

?
2

?
︸ ︷︷ ︸

x1

3

?
4

?
︸ ︷︷ ︸

x2

5

?
6

?
︸ ︷︷ ︸

x3

7

?
8

?
︸ ︷︷ ︸

0

9

?
10

?
︸ ︷︷ ︸

0

11

?
12

?
︸ ︷︷ ︸

0

13

?
14

?
︸ ︷︷ ︸

1

15

?
16

?
︸ ︷︷ ︸

0

17

?
18

?
︸ ︷︷ ︸

1

19

?
20

?
︸ ︷︷ ︸

1

21

?
22

?
︸ ︷︷ ︸

0

23

?
24

?
︸ ︷︷ ︸

0

25

?
26

?
︸ ︷︷ ︸

1

27

?
28

?
︸ ︷︷ ︸

1

29

?
30

?
︸ ︷︷ ︸

1

178 K. Tozawa et al.

4
1

2

5
3

6
4

5

Fig. 2. Boolean Circuit f

3.3 Garbling Phase

Next, the protocol proceeds to the garbling phase. The players perform a series of
pile-scramble shuffles according to the circuit. This ensures that the input values
are uniformly random after the garbling phase without changing the semantics
of the circuit.

Our scheme requires a total of n + g − m pile-scramble shuffles. Each pile-
scramble shuffle is defined for each i ∈ Wires \ Outputs, and runs consecutively
in this index order. Unlike the single-gate circuit, a pile-scramble shuffle requires
many different positions to be shuffled simultaneously according to the circuit
topology. To specify the positions to be exchanged in each pile-scramble shuffle,
we define the ordered subsets P (i,1),P (i,2) ⊆ {1, . . . , 2n + 8g} for i ∈ Wires \
Outputs as follows:

P (i,1) = I(i,1) ‖ (‖j∈A−1
i
L(j,1)) ‖ (‖j∈B−1

i
R(j,1))

P (i,2) = I(i,2) ‖ (‖j∈A−1
i
L(j,2)) ‖ (‖j∈B−1

i
R(j,2))

where I(i,1), I(i,2), L(j,1),L(j,2),R(j,1),R(j,2) are given as:

I(i,1) =

{

{a(i) + 0} i ∈ Inputs
{a(i) + 0, a(i) + 2, a(i) + 4, a(i) + 6} i ∈ Gates

I(i,2) =

{

{a(i) + 1} i ∈ Inputs
{a(i) + 1, a(i) + 3, a(i) + 5, a(i) + 7} i ∈ Gates

L(j,1) = {a(j) + 0, a(j) + 1, a(j) + 2, a(j) + 3}
L(j,2) = {a(j) + 4, a(j) + 5, a(j) + 6, a(j) + 7}
R(j,1) = {a(j) + 0, a(j) + 1, a(j) + 4, a(j) + 5}
R(j,2) = {a(j) + 2, a(j) + 3, a(j) + 6, a(j) + 7}

The pile-scramble shuffle determined by P (i,1) and P (i,2) results in an XOR
shuffling, as discussed in Sect. 3.1. Here we point out the difference between this
definition and the single gate case. In a general circuit, there can be non-input
wires and branching wires. When j /∈ Inputs, the players must randomize all 4
possible commitments for input to j, defined as I(i,1) and I(i,2). When j is a
branching wire, i.e., when A−1

j ∪ B−1
j contains two or more wires, the players

Single-Shuffle Card-Based Protocol with Eight Cards per Gate 179

must randomize all the truth tables on the output side of wire j, defined as
L(j,1), L(j,2), R(j,1) and R(j,2).

Protocol 2. CardGb

Input: I, where I is an initial state.
Output: (F , X), where F and X are decks with 8g and 2n face-down cards,

respectively.

1. For i ∈ Wires \ Outputs do:
(a) Compute (PileShuffle, P (i,1), P (i,2)).

2. Parse the resulting deck as X ‖ F and output it.

The garbling phase randomizes the circuit semantics as follows. In X and F ,
the Boolean value assigned to each non-output wire is randomized by a single
pile-scramble shuffle. Note that each pile-scramble shuffle can be viewed as a
group action by a random element in S2

∼= Z2. Let ri denote a random element
in Z2 resulting from the i-th pile-scramble shuffle, except that we set ri = 0 if
i ∈ Outputs. For each i ∈ Inputs, the input value xi is randomized to xi ⊕ ri

and stored in X. For each j ∈ Gates, the four outcome values are randomized
and rearranged to be Gj(rAj

, rBj
)⊕ rj , Gj(rAj

, rBj
)⊕ rj , Gj(rAj

, rBj
)⊕ rj , and

Gj(rAj
, rBj

) ⊕ rj in order.
Furthermore, we can make a more critical observation that the resulting

circuit semantics is determined independently of the order of the n+ g −m pile-
scramble shuffles. Due to the successive pile-scramble shuffles, the truth table
of each gate j is randomized by three kinds of group actions, defined as I, L,
and R, by the distinct random elements rj , rAj

, and rBj
. The key fact here is

that, by definition, these group actions are all commutative. This is because they
form the group S2 ×S2 ×S2 and its natural action on 8 points. Accordingly, the
players can apply the pile-scramble shuffles in any order.

From the above observation, we can define a variant of the CardGb protocol
that only requires a single shuffle. Let Gi be the permutation group determined
by P (i,1) and P (i,2), and let Gf := {g1g2 · · · gn+g−m ∈ S2n+8g | gj ∈ Gj}. Note
that Gf is also a permutation group, since any two of Gj are commutative. Thus,
we can combine the n+ g − m pile-scramble shuffles into one shuffle as follows.

Protocol 3. CardGb (with a single shuffle)

Input: I, where I is an initial state.
Output: (F , X), where F and X are decks with 8g and 2n face-down cards,

respectively.

1. Compute (Shuffle, Gf).
2. Parse the resulting deck as X ‖ F and output it.

180 K. Tozawa et al.

Example. Consider the garbling phase of the example given by Fig. 2. In this
case, n + g − m = 5, so the garbling phase contains 5 consecutive pile-scramble
shuffles. Since wire 1 is the first input of gate 4, the first pile-scramble shuffle is
described as (PileShuffle, {1, 7, 8, 9, 10}, {2, 11, 12, 13, 14}):

1

?
◦

2

?
•

3

?
4

?
5

?
6

?
7

?
◦

8

?
◦

9

?
◦

10

?
◦

11

?
•

12

?
•

13

?
•

14

?
•

15

?
16

?
17

?
18

?
19

?
20

?
21

?
22

?
23

?
24

?
25

?
26

?
27

?
28

?
29

?
30

?

Similarly, wires 2 and 3 respectively determine the second pile-scramble shuffle
(PileShuffle, {3, 7, 8, 11, 12}, {4, 9, 10, 13, 14}) and the third pile-scramble shuffle
(PileShuffle, {5, 15, 16, 17, 18}, {6, 19, 20, 21, 22}):

1

?
2

?
3

?
◦

4

?
•

5

?
6

?
7

?
◦

8

?
◦

9

?
•

10

?
•

11

?
◦

12

?
◦

13

?
•

14

?
•

15

?
16

?
17

?
18

?
19

?
20

?
21

?
22

?
23

?
24

?
25

?
26

?
27

?
28

?
29

?
30

?

1

?
2

?
3

?
4

?
5

?
◦

6

?
•

7

?
8

?
9

?
10

?
11

?
12

?
13

?
14

?
15

?
◦

16

?
◦

17

?
◦

18

?
◦

19

?
•

20

?
•

21

?
•

22

?
•

23

?
24

?
25

?
26

?
27

?
28

?
29

?
30

?

Next, consider the pile-scramble shuffle given by wire 4. This wire comes out
of gate 4 and goes into the second input of gate 5 and the first input of gate
6. Accordingly, all the cards corresponding to gates 4, 5, and 6 are shuffled in
a way that preserves the circuit semantics. Such a shuffle is given as the pile-
scramble shuffle (PileShuffle,P (4,1),P (4,2)), where P (4,1) = I(4,1) ‖R(5,1) ‖L(6,1)

and P (4,2) = I(4,2) ‖ R(5,2) ‖ L(6,2):

1

?
2

?
3

?
4

?
5

?
6

?
7

?
◦

8

?
•

9

?
◦

10

?
•

11

?
◦

12

?
•

13

?
◦

14

?
•

15

?
◦

16

?
◦

17

?
•

18

?
•

19

?
◦

20

?
◦

21

?
•

22

?
•

23

?
◦

24

?
◦

25

?
◦

26

?
◦

27

?
•

28

?
•

29

?
•

30

?
•

Likewise, the fifth pile-scramble shuffle is defined as (PileShuffle,P (5,1),P (5,2)),
where P (5,1) = I(5,1) ‖ R(6,1) and P (5,2) = I(5,2) ‖ R(6,2).

1

?
2

?
3

?
4

?
5

?
6

?
7

?
8

?
9

?
10

?
11

?
12

?
13

?
14

?
15

?
◦

16

?
•

17

?
◦

18

?
•

19

?
◦

20

?
•

21

?
◦

22

?
•

23

?
◦

24

?
◦

25

?
•

26

?
•

27

?
◦

28

?
◦

29

?
•

30

?
•

Finally, let us review the circuit semantics after successive pile-scramble shuffles.
Let ri denote the bit corresponding to the i-th pile-scramble shuffle. Then the
following holds:

1

?
2

?
︸ ︷︷ ︸

x1⊕r1

3

?
4

?
︸ ︷︷ ︸

x2⊕r2

5

?
6

?
︸ ︷︷ ︸

x3⊕r3

7

?
8

?
︸ ︷︷ ︸

g40⊕r4

9

?
10

?
︸ ︷︷ ︸

g41⊕r4

11

?
12

?
︸ ︷︷ ︸

g42⊕r4

13

?
14

?
︸ ︷︷ ︸

g43⊕r4

15

?
16

?
︸ ︷︷ ︸

g50⊕r5

17

?
18

?
︸ ︷︷ ︸

g51⊕r5

19

?
20

?
︸ ︷︷ ︸

g52⊕r5

21

?
22

?
︸ ︷︷ ︸

g53⊕r5

23

?
24

?
︸ ︷︷ ︸

r4∨r5

25

?
26

?
︸ ︷︷ ︸

r4∨r5

27

?
28

?
︸ ︷︷ ︸

r4∨r5

29

?
30

?
︸ ︷︷ ︸

r4∨r5

where

g40 = r1 ∧ r2, g41 = r1 ∧ r2, g42 = r1 ∧ r2, g43 = r1 ∧ r2,

g50 = r3 ⊕ r4, g51 = r3 ⊕ r4, g52 = r3 ⊕ r4, g53 = r3 ⊕ r4.

Single-Shuffle Card-Based Protocol with Eight Cards per Gate 181

Protocol 4. CardEval

Input: (F,X), where F and X are decks consisting of 8g and 2n face-down cards,
respectively.

Output: Y , where Y is a deck consisting of 2m face-down cards.

1. Set D = X ‖ F .
2. Compute (Open, {1, . . . , 2n}).
3. Set Out(i) to the Boolean value represented by (2i − 1)-th and 2i-th cards for all

i ∈ Inputs.
4. For i ∈ Gates \ Outputs do:

– If Out(Ai) = 0 and Out(Bi) = 0, compute (Open, {a(i), a(i) + 1}) and set
Out(i) to the value.

– If Out(Ai) = 0 and Out(Bi) = 1, compute (Open, {a(i) + 2, a(i) + 3}) and set
Out(i) to the value.

– If Out(Ai) = 1 and Out(Bi) = 0, compute (Open, {a(i) + 4, a(i) + 5}) and set
Out(i) to the value.

– If Out(Ai) = 1 and Out(Bi) = 1, compute (Open, {a(i) + 6, a(i) + 7}) and set
Out(i) to the value.

5. Set Y to an empty deck.
6. For i ∈ Outputs do:

– If Out(Ai) = 0 and Out(Bi) = 0, append the face-down cards at {a(i), a(i)+1}
to Y .

– If Out(Ai) = 0 and Out(Bi) = 1, append the face-down cards at {a(i)+2, a(i)+
3} to Y .

– If Out(Ai) = 1 and Out(Bi) = 0, append the face-down cards at {a(i)+4, a(i)+
5} to Y .

– If Out(Ai) = 1 and Out(Bi) = 1, append the face-down cards at {a(i)+6, a(i)+
7} to Y .

7. Output Y .

3.4 Evaluation Phase

The evaluation phase is an iterative process to obtain a commitment of the
desired Boolean value as output. At each step, the players open two designated
cards. The first step starts with opening the cards corresponding to the input
wires. Then, if a gate takes the values at the two input wires, the players refer
to the values to determine the following card positions and open only two out of
the eight cards corresponding to the gate.

Let us consider the correctness of our scheme. To prove this, we show that
the circuit randomized by the garbling phase provides the same output as the
plain-text circuit evaluation when computed through the evaluation phase of our
scheme. Let vj be the output value of gate j in the circuit f when x is input.
Then, it suffices to show that the evaluation phase of our scheme gives the output
value of gate j as vj ⊕ rj , where rj is the same as introduced in Sect. 3.3.

182 K. Tozawa et al.

The proof is shown by induction on the circuit structure. The base case
follows from the fact that each i ∈ Inputs is assigned xi⊕ri in X. Assume that the
statement holds up to j−1. Then Out(Aj) = vAj

⊕rAj
and Out(Bj) = vBj

⊕rBj
.

On the other hand, by the definition of CardGb, the four secret values represented
by the eight cards starting from a(j) in F is Gj(rAj

, rBj
)⊕ rj , Gj(rAj

, rBj
)⊕ rj ,

Gj(rAj
, rBj

)⊕rj , and Gj(rAj
, rBj

)⊕rj . Hence, according to the definition of the
evaluation phase, the players specify the two cards representing Gj(vAi

, vBj
)⊕rj ,

which is the desired conclusion.
Remark that the evaluation phase leaks no information about the initial state

I. During the evaluation phase, 2(n+ g − m) cards become open in total, so the
players know n+g −m Boolean values. However, due to n+g −m pile-scramble
shuffles in the garbling phase, there is enough randomness in F and X to hide the
secret values. This property can be viewed as the counterpart of the obliviousness
property in garbled schemes.

Example. Here we demonstrate the evaluation phase for the example given by
the circuit in Fig. 2. First, the players open all cards in X. Suppose the result is:

1

♥
2

♣
︸ ︷︷ ︸

1

3

♣
4

♥
︸ ︷︷ ︸

0

5

♣
6

♥
7

?
8

?
9

?
10

?
11

?
12

?
13

?
14

?
15

?
16

?
17

?
18

?
19

?
20

?
21

?
22

?
23

?
24

?
25

?
26

?
27

?
28

?
29

?
30

?

The next step is evaluating gate 4 with inputs 1 and 0. The evaluation pro-
tocol picks the third committed value from a(4) and opens it.

1

♥
2

♣
3

♣
4

♥
5

♣
6

♥
︸ ︷︷ ︸

0

7

?
8

?
9

?
10

?
11

♣
12

♥
︸ ︷︷ ︸

0

13

?
14

?
15

?
16

?
17

?
18

?
19

?
20

?
21

?
22

?
23

?
24

?
25

?
26

?
27

?
28

?
29

?
30

?

Similarly, gate 5 is evaluated with inputs 0 and 0, opening the first committed
value from a(5).

1

♥
2

♣
3

♣
4

♥
5

♣
6

♥
7

?
8

?
9

?
10

?
11

♣
12

♥
︸ ︷︷ ︸

0

13

?
14

?
15

♥
16

♣
︸ ︷︷ ︸

1

17

?
18

?
19

?
20

?
21

?
22

?
23

?
24

?
25

?
26

?
27

?
28

?
29

?
30

?

In the final step of evaluating gate 6 with inputs 0 and 1, the players choose the
second committed value from a(6) and output it as Y := ?

25
?

26
.

Let us check the correctness of this case. As discussed in Sect. 3.3, the garbling
phase randomizes the circuit semantics using five random Boolean values ri. The
values revealed during the evaluation phase satisfy the following:

x1 ⊕ r1 = 1, x2 ⊕ r2 = 0, x3 ⊕ r3 = 0, (r1 ∧ r2) ⊕ r4 = 0, (r3 ⊕ r4) ⊕ r5 = 1.

In addition, Y is a commitment of r4 ∨ r5. Accordingly, we have the following:

r4 ∨ r5 = r4 ∨ (r3 ⊕ r4) = (r1 ∧ r2)∨ (r3 ⊕ (r1 ∧ r2)) = (x1 ∧x2)∨ (x3 ⊕ (x1 ∧x2)),

which is the desired output.

Single-Shuffle Card-Based Protocol with Eight Cards per Gate 183

3.5 Card-Based Protocols for Standard Garbling Scheme

This section introduces card-based protocols for computing the functionalities in
Sect. 2.3 to investigate the relation to the standard garbling schemes. By making
some modifications to the protocols in the previous sections, we can define a card-
based garbled circuit scheme suitable for the original garbling scheme definition.
In this case, our scheme requires 4n + 8g + 2m cards in total and one shuffle
each in Gb, Enc and Dec, respectively. On the other hand, this scheme allows
us to split the computational procedure into two parts that depend only on f
or x, respectively. Hereafter, let XOR denote the functionality for computing
the element-wise XOR of two decks in a committed form. Using the protocol
proposed in [18], XOR can be computed with only one shuffle.

First, we define a protocol for the garbling phase Gb. The initial state consists
of 4n+8g+2m face-down cards and is defined as the output of Init(0, f) followed
by m commitments of 0, where 0 denotes the 2n cards consisting of n commit-
ments of 0. The protocol computes CardGb on the first 2n + 8g cards. Then,
executes additional m pile-scramble shuffles for each i ∈ Outputs as follows.

(PileShuffle, I(i,1) ‖ {6g + 2m + 2i − 1}, I(i,2) ‖ {6g + 2m + 2i})
Finally, the protocol outputs the first 2n cards as e, the next 8g cards as F , and
the last 2m cards as f . Note that the additional m pile-scramble shuffles are
commutative with each other and also with the other n + g − m shuffles, so all
the required pile-scramble shuffles can be combined into one shuffle.

The rest part is straightforward. We can define a protocol for the encoding
phase Enc(e, x) as simply computing XOR of e and the commitment of x. Simi-
larly, our protocol for the decoding phase Dec(d, Y) simply computes XOR of d
and Y , opens the results and outputs the Boolean values. The evaluation phase
Eval is the same as CardEval.

It is easy to verify the correctness and obliviousness of this scheme. The proof
is similar to the case of the CardGb and CardEval protocols. In addition, this pro-
tocol provides the counterpart of the privacy property in garbling schemes. This
follows from the fact that the obliviousness proof in Sect. 3.4 leaks no information
on x in an information-theoretic sense.

4 Conclusion

Shinagawa and Nuida [24] showed a surprising result that any Boolean function
can be securely computed using only one shuffle by combining card-based cryp-
tography with Yao’s garbled circuit technique. Their protocol requires 2n+ 24g
cards, where g is the number of gates and n is the number of function inputs.
This paper improved upon this existing approach by introducing an XOR shuffle
technique that helps to reduce the number of required cards. Consequently, we
showed that, instead of having 2n + 24g cards, only 2n + 8g cards are sufficient
for constructing a single-shuffle protocol.

Acknowledgements. This work was supported by JSPS KAKENHI Grant Numbers
JP21H05052, JP21K11881, and JST, CREST Grant Number JPMJCR22M1, Japan.

184 K. Tozawa et al.

References

1. Attrapadung, N., et al.: Oblivious linear group actions and applications. In: Vigna,
G., Shi, E. (eds.) ACM CCS 2021, pp. 630–650. ACM Press (2021). https://doi.
org/10.1145/3460120.3484584

2. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols
(extended abstract). In: 22nd ACM STOC, pp. 503–513. ACM Press (1990).
https://doi.org/10.1145/100216.100287

3. Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In: Yu, T.,
Danezis, G., Gligor, V.D. (eds.) ACM CCS 2012, pp. 784–796. ACM Press (2012).
https://doi.org/10.1145/2382196.2382279

4. Boer, B.: More efficient match-making and satisfiability The Five Card Trick. In:
Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp.
208–217. Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-46885-4_23

5. Haga, R., Hayashi, Y., Miyahara, D., Mizuki, T.: Card-minimal protocols for three-
input functions with standard playing cards. In: AFRICACRYPT 2022. LNCS, vol.
13503, pp. 448–468. Springer, Cham (2022)

6. Heather, J., Schneider, S., Teague, V.: Cryptographic protocols with everyday
objects. Formal Aspects Comput. 26(1), 37–62 (2014). https://doi.org/10.1007/
s00165-013-0274-7

7. Ishikawa, R., Chida, E., Mizuki, T.: Efficient card-based protocols for generating a
hidden random permutation without fixed points. In: Calude, C.S., Dinneen, M.J.
(eds.) UCNC 2015. LNCS, vol. 9252, pp. 215–226. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-21819-9_16

8. Isuzugawa, R., Miyahara, D., Mizuki, T.: Zero-knowledge proof protocol for
Cryptarithmetic using dihedral cards. In: Kostitsyna, I., Orponen, P. (eds.) UCNC
2021. LNCS, vol. 12984, pp. 51–67. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-87993-8_4

9. Kastner, J., Koch, A., Walzer, S., Miyahara, D., Hayashi, Y., Mizuki, T., Sone,
H.: The minimum number of cards in practical card-based protocols. In: Takagi,
T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10626, pp. 126–155. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-70700-6_5

10. Koch, A., Schrempp, M., Kirsten, M.: Card-based cryptography meets formal ver-
ification. New Gener. Comput. 39(1), 115–158 (2021). https://doi.org/10.1007/
s00354-020-00120-0

11. Koch, A., Walzer, S., Härtel, K.: Card-based cryptographic protocols using a min-
imal number of cards. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS,
vol. 9452, pp. 783–807. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-48797-6_32

12. Koyama, H., Miyahara, D., Mizuki, T., Sone, H.: A secure three-input AND proto-
col with a standard deck of minimal cards. In: Santhanam, R., Musatov, D. (eds.)
CSR 2021. LNCS, vol. 12730, pp. 242–256. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-79416-3_14

13. Kuzuma, T., Toyoda, K., Miyahara, D., Mizuki, T.: Card-based single-shuffle pro-
tocols for secure multiple-input AND and XOR computations. In: ASIA Public-
Key Cryptography, pp. 51–58. ACM, NY (2022). https://doi.org/10.1145/3494105.
3526236

14. Miyahara, D., Ueda, I., Hayashi, Y., Mizuki, T., Sone, H.: Analyzing execution
time of card-based protocols. In: Stepney, S., Verlan, S. (eds.) UCNC 2018. LNCS,
vol. 10867, pp. 145–158. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-92435-9_11

https://doi.org/10.1145/3460120.3484584
https://doi.org/10.1145/3460120.3484584
https://doi.org/10.1145/100216.100287
https://doi.org/10.1145/2382196.2382279
https://doi.org/10.1007/3-540-46885-4_23
https://doi.org/10.1007/s00165-013-0274-7
https://doi.org/10.1007/s00165-013-0274-7
https://doi.org/10.1007/978-3-319-21819-9_16
https://doi.org/10.1007/978-3-319-21819-9_16
https://doi.org/10.1007/978-3-030-87993-8_4
https://doi.org/10.1007/978-3-030-87993-8_4
https://doi.org/10.1007/978-3-319-70700-6_5
https://doi.org/10.1007/s00354-020-00120-0
https://doi.org/10.1007/s00354-020-00120-0
https://doi.org/10.1007/978-3-662-48797-6_32
https://doi.org/10.1007/978-3-662-48797-6_32
https://doi.org/10.1007/978-3-030-79416-3_14
https://doi.org/10.1007/978-3-030-79416-3_14
https://doi.org/10.1145/3494105.3526236
https://doi.org/10.1145/3494105.3526236
https://doi.org/10.1007/978-3-319-92435-9_11
https://doi.org/10.1007/978-3-319-92435-9_11

Single-Shuffle Card-Based Protocol with Eight Cards per Gate 185

15. Mizuki, T., Asiedu, I.K., Sone, H.: Voting with a logarithmic number of cards. In:
Mauri, G., Dennunzio, A., Manzoni, L., Porreca, A.E. (eds.) UCNC 2013. LNCS,
vol. 7956, pp. 162–173. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-39074-6_16

16. Mizuki, T., Kumamoto, M., Sone, H.: The five-card trick can be done with four
cards. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 598–
606. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-4_36

17. Mizuki, T., Shizuya, H.: A formalization of card-based cryptographic protocols via
abstract machine. Int. J. Inf. Secur. 13(1), 15–23 (2013). https://doi.org/10.1007/
s10207-013-0219-4

18. Mizuki, T., Sone, H.: Six-card secure AND and four-card secure XOR. In: Deng, X.,
Hopcroft, J.E., Xue, J. (eds.) FAW 2009. LNCS, vol. 5598, pp. 358–369. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-02270-8_36

19. Nishida, T., Hayashi, Y., Mizuki, T., Sone, H.: Card-based protocols for any
boolean function. In: Jain, R., Jain, S., Stephan, F. (eds.) TAMC 2015. LNCS,
vol. 9076, pp. 110–121. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
17142-5_11

20. Ruangwises, S., Itoh, T.: Physical ZKP for connected spanning subgraph: applica-
tions to bridges puzzle and other problems. In: Kostitsyna, I., Orponen, P. (eds.)
UCNC 2021. LNCS, vol. 12984, pp. 149–163. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-87993-8_10

21. Ruangwises, S., Itoh, T.: Securely computing the n-variable equality function with
2n cards. Theor. Comput. Sci. 887, 99–110 (2021). https://doi.org/10.1016/j.tcs.
2021.07.007

22. Shikata, H., Toyoda, K., Miyahara, D., Mizuki, T.: Card-minimal protocols for
symmetric boolean functions of more than seven inputs. In: ICTAC 2022. LNCS,
vol. 13572, pp. 388–406. Springer, Cham (2022). https://doi.org/10.1007/978-3-
031-17715-6_25

23. Shinagawa, K., Mizuki, T.: The six-card trick: secure computation of three-input
equality. In: Lee, K. (ed.) ICISC 2018. LNCS, vol. 11396, pp. 123–131. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-12146-4_8

24. Shinagawa, K., Nuida, K.: A single shuffle is enough for secure card-based compu-
tation of any boolean circuit. Discret. Appl. Math. 289, 248–261 (2021). https://
doi.org/10.1016/j.dam.2020.10.013

25. Toyoda, K., Miyahara, D., Mizuki, T.: Another use of the five-card trick: card-
minimal secure three-input majority function evaluation. In: Adhikari, A., Küsters,
R., Preneel, B. (eds.) INDOCRYPT 2021. LNCS, vol. 13143, pp. 536–555. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-92518-5_24

https://doi.org/10.1007/978-3-642-39074-6_16
https://doi.org/10.1007/978-3-642-39074-6_16
https://doi.org/10.1007/978-3-642-34961-4_36
https://doi.org/10.1007/s10207-013-0219-4
https://doi.org/10.1007/s10207-013-0219-4
https://doi.org/10.1007/978-3-642-02270-8_36
https://doi.org/10.1007/978-3-319-17142-5_11
https://doi.org/10.1007/978-3-319-17142-5_11
https://doi.org/10.1007/978-3-030-87993-8_10
https://doi.org/10.1007/978-3-030-87993-8_10
https://doi.org/10.1016/j.tcs.2021.07.007
https://doi.org/10.1016/j.tcs.2021.07.007
https://doi.org/10.1007/978-3-031-17715-6_25
https://doi.org/10.1007/978-3-031-17715-6_25
https://doi.org/10.1007/978-3-030-12146-4_8
https://doi.org/10.1016/j.dam.2020.10.013
https://doi.org/10.1016/j.dam.2020.10.013
https://doi.org/10.1007/978-3-030-92518-5_24

Modelling and Evaluating Restricted ESNs

Chester Wringe1 , Susan Stepney1(B) , and Martin A. Trefzer2

1 Department of Computer Science, University of York, York, UK
{chester.wringe,susan.stepney}@york.ac.uk

2 School of Physics, Engineering and Technology, University of York, York, UK
martin.trefzer@york.ac.uk

Abstract. We investigate various methods of combining Echo State
Networks (ESNs), including a method that we dub Restricted ESNs.
We provide a notation for describing Restricted ESNs, and use it to
benchmark a standard ESN against restricted ones. We investigate two
methods to keep the weight matrix density consistent when comparing
a Restricted ESN to a standard one, which we call “overall consistency”
and “patch consistency”. We benchmark restricted ESNs on NARMA10
and the sunspot prediction benchmark, and find that restricted ESNs
perform similarly to standard ones. We present some application scenar-
ios in which restricted ESNs may offer advantages over standard ESNs.

Keywords: Reservoir Computing · Hierarchical ESNs · Reservoir of
Reservoirs

1 Introduction

Artificial Neural Networks (ANNs) are an unconventional computational model
inspired by the brain. ANNs have non-linear summing nodes connected by
weighted edges, where the edge weights are trained to give the desired out-
puts. While training methods such as backpropagation are used in feed-forward
Neural Networks, they are costly to use in recurrent NNs (RNNs).

Reservoir Computing in general [13,15,21], and the Echo State Network
(ESN) random RNN model in particular, provides a solution to the RNN train-
ing problem: instead of training the recurrent, inner weights, these are randomly
initialised, and only the weights of the edges to the output nodes are trained.
This provides an efficient training method, and also allows the inner network (or
“reservoir”) to be treated as a black box. One may use any material or substrate
as an in materio reservoir, provided it has sufficiently complex dynamics [3,6,9].

Our long term aim is to scale up the capacity of in materio reservoirs, by
combining several reservoirs together. Combining reservoirs has some potential
advantages: it allows us to more fully exploit substrates whose computational
capacity does not scale well as the size of the device increases [7], and to exploit
heterogeneous substrates with different properties for more complex tasks, par-
ticularly using multiple timescales.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Genova and J. Kari (Eds.): UCNC 2023, LNCS 14003, pp. 186–201, 2023.
https://doi.org/10.1007/978-3-031-34034-5_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-34034-5_13&domain=pdf
http://orcid.org/0000-0002-5764-2181
http://orcid.org/0000-0003-3146-5401
http://orcid.org/0000-0002-6196-6832
https://doi.org/10.1007/978-3-031-34034-5_13

Modelling and Evaluating Restricted ESNs 187

Here, we introduce a notation for describing a form of reservoir combination.
We perform some experiments using the ESN model, to compare performances
of multiple connected small reservoirs against a single large one. We hope that
this will form a basis to experiment on heterogeneous reservoirs in future work.

2 Background

Two ways of combining multiple reservoir computers emerge in the literature.
The first, which we call restricted ESNs (Sect. 2.1) is the subject of our experi-
ments here. The second, which we call modular reservoirs (Sect. 2.2), are models
of larger systems that contain within them multiple reservoir computers, each
with their own set of inputs and individually trained output weights.

2.1 Restricted ESNs

A restricted ESN has the same overall structure as a single ESN, with one input
layer and one output layer. Its internal reservoir (a random RNN in the ESN
model) has its overall state partitioned into “subreservoirs” with typical RNN
connections within a subreservoir, and restricted connections between the sub-
reservoirs. There are several models in the literature that follow this structure.

The dual-reservoir network (DRN) [20] connects two subreservoirs in the
network with an “unsupervised encoder”, for which the weights are chosen using
Principal Component Analysis (PCA). Triefenbach et al. have a bidirectional
dual-reservoir model [28], which consists of two subreservoirs running in parallel,
with one of the subreservoirs receiving the inputs in chronological order, and the
other receiving its inputs in reverse chronological order.

The Reservoir of Reservoirs (RoR) [5] is a model with dense connections
within each subreservoir, and sparse random connections between subreservoirs.
Two models are investigated: RoR, where the inputs are sent to only one sub-
reservoir, and RoR-IA, where the inputs are sent to all of the subreservoirs.
The multilayered echo state machine (ML-ESM) [22] arranges the subreservoirs
sequentially, with each subreservoir fully connected to its neighbouring subreser-
voirs with fixed weights.

The Reservoir with Random Static Projections (R2SP) [2] and the φESN [10]
are both models that combine ESNs with an Extreme Learning Machine. There
are several deep-ESN models [4,11,12,19], based on deep learning networks. In
these, the subreservoirs are arranged sequentially, and the inputs are sent only
to the first subreservoir. They are compared to the grouped-ESN, where the
subreservoirs are arranged in parallel, and deep-ESN Input-to-All (deep-ESN
IA), a deep-ESN with inputs sent to every subreservoir.

The scale-free highly clustered ESN (SHESN) [8] has each subreservoir con-
nected to every other subreservoir by “backbone nodes”, of which there is one
in every subreservoir. The hierarchically clustered ESN (HESN) [16] builds on
the SHESN by allowing several backbone nodes per subreservoir, and by mak-
ing them randomly connected as opposed to fully connected. the HESN and the
modular ESN [24] are the closest models to the ones we study here.

188 C. Wringe et al.

The Decoupled ESN (DESN) [29] is a restricted ESN that tackles multi-
timescale tasks by decoupling certain sections of the inner state from each other
using a lateral inhibition unit.

2.2 Modular ESNs

A modular ESN typically comprises multiple individual reservoirs, each with its
own input layer and trained output weights, connected in a variety of ways.

The Dynamic Feature Discoverer (DFD) [14] is a Modular Reservoir based
on Deep Belief Networks, with the ESNs being components of a larger system.
The ESNs may be replaced by other components, such as Extreme Learning
Machines. The ESNs are arranged hierarchically, with each ESN being fed the
standard input as well as the outputs of all the ESNs lower in the hierarchy.
This hierarchy also allows the DFD to contain separate timescales, such that
each ESN in the hierarchy runs more slowly than the one previous.

Modular ESNs are also used in acoustic modelling [27,28]. This model is
based on the Hidden Markov Model, with the different ESNs with different
timescales arranged linearly and hierarchically, with each reservoir processing
dynamics that are slower than the previous ones.

The ConvESN [18] is a modular reservoir model based on Convolutional
Neural Networks. The reservoirs are arranged in parallel and analyse dynamics
at different timescales. The trained outputs of the ESN are then joined together
in a convolutional layer.

3 A Restricted ESN Model

Here we investigate restricted ESNs. This provides a model that should allow for
the simulation of in materio subreservoirs implemented with different materials,
with some physical interconnect between subreservoirs. We introduce a notation
that can be used to describe a variety of possible restrictions that may occur in
practice. This section is not intended to introduce a new model, but instead to
describe all of the models reviewed in Sect. 2.1.

3.1 The Standard ESN Model

The classic ESN model [13,15] is a Random Recurrent Neural Network where
only the output weights are trained. A standard ESN can be described by a
set of state update equations, three state vectors, and three weight matrices
(corresponding to input, internal, and output states and weights).

At time t, the state of the ESN is described by the input vector u(t), the
internal state vector x(t), and the output vector v(t). The connections between
the nodes represented by the vectors are described by the weight matrices Wu

for the random input weights, W for the random internal weights, and Wv for
the trained output weights (Fig. 1).

Modelling and Evaluating Restricted ESNs 189

Fig. 1. (a) an example of a standard ESN with 7 nodes; (b) an abstraction of its
different elements. The ESN takes one or more inputs u, which are sent to the inner
state x through weighted input edges Wu. The weights within the inner state, W,
allow recurrent edges and are randomly initialised. The output state v receives the
inner state through edges with trained weights Wv.

The update equations for the ESN are [26]:

x(t + 1) = f(Wuu(t) +Wx(t)) (1)
v(t + 1) = Wvx(t)

where f is a nonlinear function, typically the hyperbolic tangent tanh(.).

3.2 Restricting the Standard Model

The restricted ESN is a variant of the standard ESN model that partitions the
internal reservoir state into several smaller subreservoirs. This division may be
interpreted as restrictions on the connections of the internal state, and thus on
the internal weight matrix W. The state vector x of a restricted ESN with n
subreservoirs is the concatenation of the subreservoir state vectors:

x =

⎛
⎜⎜⎝
x1

x2

...
xn

⎞
⎟⎟⎠ (2)

where xi is the state of the subreservoir i. The weight matrix is the concatena-
tion of internal subreservoir weight matrices, and weight matrices describing the
connections between subreservoirs:

W =

⎡
⎢⎢⎣
W1 B1,2 ... B1,n

B2,1 W2 ... B2,n

...
Bn,1 Bn,2 ... Wn

⎤
⎥⎥⎦ (3)

190 C. Wringe et al.

Fig. 2. Elements of a restricted ESN with 2 subreservoirs, 1 and 2, showing the parti-
tioned state and components of the internal weight matrix.

where Wi is the weight matrix that represents the connections within subreser-
voir i, and Bi,j represents the connections from subreservoir i to subreservoir
j. The output and input weight matrices are unchanged. These elements are
illustrated in Fig. 2. Equation 1 still defines the transfer from the overall state at
time t to time t + 1.

These submatrices may each have their own, independent properties such
as connection density D, the proportion of non-zero values. Here we consider
uniform subreservoirs and connectivities, and denote the average density of the
subreservoirs as DW , and the average density between subreservoirs as DB . Ni

is the number of nodes in subreservoir i; N =
∑n

i=1 Ni is the number of nodes
in the entire state.

4 Benchmarking

We are developing this model in order to provide a means to join in mate-
rio reservoirs with different properties and timescales. Before investigating such
heterogeneous systems, however, we need to investigate homogeneous restricted
reservoirs, to determine the effect of restriction alone. Does a restricted ESN
(with its N nodes partitioned into subreservoirs) perform significantly differently
from a standard ESN of the same dimension (a single reservoir of N nodes)?

In order to test this question, we must determine what constitutes a fair
comparison between a restricted and a standard ESN with the same number
of nodes. We perform a comparison of the two models over a range of different
sizes, on two common benchmark tasks.

Modelling and Evaluating Restricted ESNs 191

Fig. 3. Illustration of the patch-consistent argument made in the experiments. In this
argument, we give each ESN an analogous reservoir made out of a physical substrate.
To restrict the reservoir is to split the substrate up into smaller pieces, and connecting
them loosely. Therefore, assuming a uniform density D across the standard reservoir,
each subreservoir should have that same density DW = D within the subreservoir, and
a lower density DB between subreservoirs.

4.1 Experimental Setup

We wish to discover whether any difference in performance found is due merely
to the architecture, or to some other parameter affected by the restriction.

We further wish to ensure that the standard and restricted ESN can each
exhibit their best performance on the given task; however, what this entails is
not obvious. In the case of the standard ESN, we may perform a simple search
to find some “optimal” weight matrix density for the task. Given this optimised
density, two possibilities present themselves for the Restricted ESN:

Patch-consistent Density. To describe this case, we take a physical anal-
ogy to describe the structure of the restricted ESN. If we see this restriction
as combining multiple physical (material) reservoirs together, then restricting
a standard reservoir may be analogous to splitting a material up into different
sections, and joining those sections together, in order to use smaller quantities to
emulate a larger reservoir. As such, we should keep the density within the sub-
reservoirs consistent with the overall density of the standard ESN, with sparser
connections between subreservoirs. This reasoning is illustrated in Fig. 3.

Overall-consistent Density. While the patch-consistent approach follows
from a physical material argument, it is not the only way to approach the issue

192 C. Wringe et al.

of ensuring fair comparison, as such an approach leads to a lower overall density
of the restricted ESN. If we choose an ESN with optimal density for the task,
this could be interpreted as giving the restricted ESN a disadvantage.

Hence, the overall-consistent approach offers a different solution: Having
found the optimal connection density for a standard ESN, we redistribute the
edges so that there are more connections within subreservoirs than outside them,
while maintaining a constant number of edges. Thus, the overall density of the
restricted ESN remains the same as the density of the standard ESN, while
keeping the constraints on topology that makes it a restricted ESN.

4.2 Benchmarks

In order to evaluate the reservoir models, we use two benchmarks, NARMA10
(an open system, or driven system, task) and Sunspots (a closed system task).

NRMSE. The results are reported as the Normalised Root Mean Square Error
[17] evaluated over 50 runs.

NRMSE(v̂,v) =

√
〈(v̂ − v)2〉

〈(v̂ − 〈v̂〉)2〉 (4)

where v̂ is the desired output; v is the observed output; 〈x〉 is the mean
1
N

∑N
i=1 xi.

NARMA10. The Normalised Auto-Regressive Moving Average (NARMA)
tasks are a family of benchmark tasks [1] frequently used as a reservoir com-
puting benchmark. Here, we use NARMA10, the system with a memory of 10
timesteps:

x(t + 1) = 0.3x(t) + 0.05x(t)
9∑

i=0

x(t − i) + 1.5u(t − 9) + 0.1 (5)

The input at time t, u(t), is uniformly sampled between 0 and 0.5. We use a
training length of 3000 data points and washout and testing lengths of 1000
data points each.

Sunspots. The Sunspots benchmark is a dynamical systems benchmark task
that involves predicting the next output of the dataset based on the previous
outputs. This task has a long history of being used in machine learning generally
[30], as well as reservoir computing specifically [23,25,26].

For this experiment, we use the monthly readings from the Zurich dataset1,
from January 1749 to December 1983. As the existing data limits our input
lengths, the training length for this experiment is 1500 data points, with a
washout length of 500 data points, and a testing length of 820 data points.
1 https://machinelearningmastery.com/time-series-datasets-for-machine-learning/.

https://machinelearningmastery.com/time-series-datasets-for-machine-learning/

Modelling and Evaluating Restricted ESNs 193

Algorithm 1 Optimal density for standard ESN
1: procedure gridsearch(start, end, step, N)
2: d := start � search over densities
3: for d in (start, end, step) do
4: create ESN with density d
5: testsum := 0
6: for j in range N do
7: observed output := test ESN on benchmark
8: testsum += NRMSE(desired output, observed output)
9: means[d] := testsum / N

10: return means

11: coarse := gridsearch(0, 1, 0.1, 50)
12: d1 := density of the smallest value in coarse
13: d2 := density of the smaller of d1’s neighbours
14: fine := gridsearch(d1, d2, 0.01, 50)
15: return min(fine)

Density. To find the optimal density DO of the standard ESN, we use a two-
level grid search (Algorithm 1).

For the patch-consistent rESN, the density within each subreservoir, DW , is
set equal to DO, while a further two-level grid search is used to find the optimal
density between subreservoirs, DB . In this case, the algorithm is modified to use
a step of 0.025 for the first level, and 0.0025 for the second. A further constraint
is placed on DB that it should be less than DW /4. (If no such constraint is set,
then the optimal value for DB is simply DW .)

For the overall-consistent rESN, we introduce a parameter f > 1, where
DB = DW /f . From this, we can derive DB and DW in terms of f , overall
density DO, and number of subreservoirs n (Appendix A). We then bound f
using the inequality derived in Appendix B. Given an upper bound for possible
f values, we then use a similar two-level grid search2 to find the best f value for
a reservoir of size N , density DB , for the given benchmark.

Having found the optimal densities and distributions, we then evaluate the
standard and restricted reservoirs against the task over 50 runs. The experiments
are performed for ESNs of size N ∈ [16, 64, 128, 256], and with 2 and 4 equal-
sized subreservoir restricted ESNs respectively.

The densities used for each size for each task can be found in Tables 1, 2,
2 and 4. In the patch-consistent case, we can have a connection density DB

of 0.00. In this case there are no connections between subreservoirs, and the
subreservoirs run unconnected in parallel.

2 The grid search is modified to split the range of f into 10 and use that as the initial
step, and then split the range between the optimal value and its neighbour into 10
for the secondary step.

194 C. Wringe et al.

Table 1. Densities used in the NARMA overall-consistent experiment

N DO f (2 subreservoirs) f (4 subreservoirs)

16 0.30 10.10 2.95

64 0.10 102.40 29.50

128 0.10 188.90 284.90

256 0.10 1310.92 981.60

Table 2. Densities used in the NARMA patch-consistent experiment

N DW DB (2 subreservoirs) DB (4 subreservoirs)

16 0.30 0.00 0.025

64 0.10 0.00 0.00

128 0.10 0.00 0.00

256 0.10 0.00 0.00

Table 3. Densities used in the Sunspots overall-consistent experiment

N DO f (2 subreservoirs) f (4 subreservoirs)

16 0.20 7.70 5.70

64 0.30 308.70 4.90

128 0.40 265.70 4.38

256 0.40a 986.70 4.90
a The ideal density, 0.89, is too high to distribute. The
best density given these constraints is used instead,
which leads to a worse performance of the standard
reservoir.

Table 4. Densities used in the Sunspots patch-consistent experiment

DW DB (2 subreservoirs) DB (4 subreservoirs)

16 0.20 0.00 0.05

64 0.30 0.00 0.10

128 0.40 0.025 0.00

256 0.89 0.125 0.00

5 Results

5.1 NARMA10

In this task, the “optimal” density becomes consistent from 64 nodes onward at
0.1 (Tables 1, 2). We note quite a variation in the results across different sizes,
as this task is performed better with a larger ESN.

Modelling and Evaluating Restricted ESNs 195

Fig. 4. The results for the NARMA overall–consistent experiments.

Overall Consistency. The results as summarised in the boxplots (Fig. 4) show
noticeably better behaviour for the 4–subreservoir ESN in the 16 and 64 node
case. There are no significant differences in results between the standard and
2–subreservoir ESNs of these sizes, however.

For 128 and 256 nodes, the results are similar across the standard and
restricted ESNs.

The significantly better behaviour for the 4-subreservoir ESNs in the smaller
cases might be explained through the search for an optimal structure while
keeping the optimal density.

This may also explain why this behaviour is not as obvious in larger-sized
ESNs. When searching for the optimal configuration of the restricted ESN, we
find a maximal f -value, and then perform a two-level grid search between 1 and
this maximum. The maximal f -value is smaller with smaller ESNs and with
more subreservoirs, meaning that the search in these cases would be finer, and
hence more likely to find a good result.

We hypothesise that there is therefore a greater chance of finding a good
configuration in these experiments. It may also follow that we could replicate
these better results for larger ESNs by performing a more thorough search.

Patch Consistency. In these experiments (Fig. 5) we can observe that, for 16
and 64 nodes, the 4–subreservoir case leads to a worse performance, although
the 2–subreservoir case is similar to the standard one. In the 128 and 256 node
cases, we observe similar results across standard and restricted ESNs.

196 C. Wringe et al.

Fig. 5. The results for the NARMA patch–consistent experiments.

Our hypothesis is that the poor results for the 16 and 64 nodes 4–subreservoir
cases are due to the low density of these ESNs. In the patch-consistent case, the
density goes down as the number of subreservoirs increases. As the density is a
probability, the lower the density, the higher chance there is of not having an edge
between any two nodes. This means that, for very low numbers of nodes, we may
generate nearly (or completely) empty weight matrices. Future work may com-
pare these very-low-connectivity ESNs to Extreme Learning Machines (ELMs).

5.2 Sunspots

Unlike in the NARMA experiments, we observe no consistent optimal density
across reservoir sizes; instead the optimal density increases with reservoir size
(Tables 3, 4). We also observe that there is much less variation in performance
across different ESN sizes (the task is relatively easy). It follows that any effect
that restricting the ESN has will also, for the most part, be much smaller.

Both of these facts are likely due to the fact that sunspot prediction is an
easier task than NARMA10. Despite less variation, however, the trends appear
to be similar to the ones observed in the NARMA experiments.

Modelling and Evaluating Restricted ESNs 197

Fig. 6. The results for the sunspots overall–consistent experiments.

Overall Consistency. We observe (Fig. 6) little variation between the results
from the standard and restricted ESNs, with the 4-subreservoir case being
slightly better in the smaller sizes. However, as noted in Table 3, the ideal den-
sity in the 256-node case cannot be redistributed in an overall-consistent manner.
Thus, while the restricted reservoirs in this case perform the same as their stan-
dard counterpart, this is not the optimal performance of a 256-node reservoir in
this task, as observed in Fig. 6d.

Patch Consistency. We observe (Fig. 7) similar results across configura-
tions from 64 nodes onward. We observe poor performance in the 16 node,
4–subreservoir case. This is, once again, likely due to the small size and low
density leading to empty weight matrices.

198 C. Wringe et al.

Fig. 7. The results for the Sunspots patch–consistent experiments.

6 Discussion and Conclusions

In smaller-sized ESNs, there seems to be significant variation of results incurred
from restricting ESNs with overall or patch consistency. However, this differ-
ence disappears once each subreservoir is reasonably large (for the NARMA and
sunspots tasks, this being 32 nodes.)

The more physically realistic of these models is the patch-consistent density.
This model also has the advantage of not placing any constraints on the initial
standard reservoir’s density. However, it is also the one with the more significant
differences in performance in smaller sizes. When modelling these reservoirs,
work may be needed to determine what makes a given subreservoir “reasonably
large”. We will therefore focus on these larger reservoirs in our future work.

Nevertheless, these results indicate that the restricted ESN model, using
either overall or patch consistency, does not have a detrimental impact on per-
formance when compared to a single large ESN. Hence restricted ESNs can form
a suitable basis for building models of scaled-up reservoirs, heterogeneous reser-
voirs comprising subreservoirs of different materials, and for working on multiple
timescale models.

Acknowledgement. This work was made possible by PhD studentship funding from
the Computer Science Department of the University of York.

Modelling and Evaluating Restricted ESNs 199

A Calculating DW for the Overall-Consistent Case

Given an ESN with N nodes and an average density 0 ≤ D ≤ 1, we wish to
restrict that ESN to have n subreservoirs of equal size; we assume n divides N .
We set the density within the subreservoirs, DW , to be greater than the density
outside the subreservoirs by a factor of f , that is, DW = fDB .

In a restricted ESN with n subreservoirs, each of size N/n, there are n regions
in the edge matrix W of size (N/n)2 with density DW , and a further n2 − n
regions also of size (N/n)2 with density DB .

Hence the average density D of such a restricted ESN is:

D =
nDW + (n2 − n)DB

n2
(6)

Substituting DW = fDB , and rearranging to get an expression for DB in terms
of D, we get:

DB =
Dn

f + n − 1
(7)

Once DB is known, we also have DW from DW = fDB .

B Optimising f

In order to find the best possible restricted ESN within our constraints, we opti-
mise over the parameter f . However, we must somehow limit our search space.

In the restricted ESN, we want DB to be strictly less than DW (less dense
connections than subreservoirs); therefore, f > 1.

To find an upper bound, we assume that every subreservoir is connected to
every other subreservoir, that is, every connection weight matrix Bi,j has at least
one entry. This requires DB ≥ (n/N)2. (In the experiments, the weight matrices
are generated probabilistically, so when close to this density limit, it may be the
case that there is not an edge between all subreservoirs.)

Rearranging Eq. 7 gives:

f =
Dn

DB
− n + 1 (8)

The lower limit on DB gives an upper limit on f :

f ≤ N2D

n
− n + 1 (9)

We also have an upper limit on the derived density, DW ≤ 1 (equality implies
there are no zero elements in the relevant weight matrix). Substituting for DW

in Eq. 7 gives:
fDn

f + n − 1
= DW ≤ 1 (10)

200 C. Wringe et al.

Rearranging gives another upper limit on f :

f ≤ n − 1
Dn − 1

(11)

Hence we have the upper and lower bounds on f :

1 < f ≤ min
(

N2D

n
− n + 1,

n − 1
Dn − 1

)
(12)

References

1. Atiya, A.F., Parlos, A.G.: New results on recurrent network training: unifying the
algorithms and accelerating convergence. IEEE TNN 11(3), 697–709 (2000)

2. Butcher, J.B., Verstraeten, D., Schrauwen, B., Haycock, P.W.: Extending reservoir
computing with random static projections. In: ESANN 2010, pp. 303–308 (2010)

3. Caluwaerts, K., D’Haene, M., Verstraeten, D., Schrauwen, B.: Locomotion without
a brain: physical reservoir computing in tensegrity structures. Artif. Life 19(1), 35–
66 (2013)

4. Canaday, D., Pomerance, A., Gauthier, D.J.: Model-free control of dynamical sys-
tems with deep reservoir computing. J. Phys. Complex. 2(3), 035025 (2021)

5. Dale, M.: Neuroevolution of hierarchical reservoir computers. In: GECCO 2018,
pp. 410–417. ACM (2018)

6. Dale, M., Miller, J.F., Stepney, S., Trefzer, M.A.: Evolving carbon nanotube reser-
voir computers. In: Amos, M., Condon, A. (eds.) UCNC 2016. LNCS, vol. 9726,
pp. 49–61. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41312-9_5

7. Dale, M., O’Keefe, S., Sebald, A., Stepney, S., Trefzer, M.A.: Computing with
magnetic thin films: using film geometry to improve dynamics. In: Kostitsyna, I.,
Orponen, P. (eds.) UCNC 2021. LNCS, vol. 12984, pp. 19–34. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-87993-8_2

8. Deng, Z., Zhang, Y.: Collective behavior of a small-world recurrent neural system
with scale-free distribution. IEEE TNN 18(5), 1364–1375 (2007)

9. Fernando, C., Sojakka, S.: Pattern recognition in a bucket. In: Banzhaf, W., Ziegler,
J., Christaller, T., Dittrich, P., Kim, J.T. (eds.) ECAL 2003. LNCS (LNAI), vol.
2801, pp. 588–597. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-
540-39432-7_63

10. Gallicchio, C., Micheli, A.: Architectural and Markovian factors of echo state net-
works. Neural Netw. 24(5), 440–456 (2011)

11. Gallicchio, C., Micheli, A.: Echo state property of deep reservoir computing net-
works. Cognit. Comput. 9(3), 337–350 (2017)

12. Gallicchio, C., Micheli, A., Pedrelli, L.: Deep reservoir computing: a critical exper-
imental analysis. Neurocomputing 268, 87–99 (2017)

13. Jaeger, H.: The “echo state” approach to analysing and training recurrent neural
networks - with an erratum note. Bonn, Germany: German National Research
Center for Information Technology GMD Technical Report 148(34), 13 (2001)

14. Jaeger, H.: Discovering multiscale dynamical features with hierarchical echo state
networks. Technical report TR-10, Jacobs University Bremen (2007)

15. Jaeger, H., Maass, W., Principe, J.: Special issue on echo state networks and liquid
state machines. Neural Netw. 20(3), 287–289 (2007)

https://doi.org/10.1007/978-3-319-41312-9_5
https://doi.org/10.1007/978-3-030-87993-8_2
https://doi.org/10.1007/978-3-540-39432-7_63
https://doi.org/10.1007/978-3-540-39432-7_63

Modelling and Evaluating Restricted ESNs 201

16. Jarvis, S., Rotter, S., Egert, U.: Extending stability through hierarchical clusters
in echo state networks. Front. Neuroinform. 4 (2010)

17. Lukoševičius, M.: A practical guide to applying echo state networks. In: Montavon,
G., Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade. LNCS,
vol. 7700, pp. 659–686. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-35289-8_36

18. Ma, Q., Chen, E., Lin, Z., Yan, J., Yu, Z., Ng, W.W.Y.: Convolutional multi-
timescale echo state network. IEEE Trans. Cybern. 51(3), 1613–1625 (2021)

19. Ma, Q., Shen, L., Cottrell, G.W.: Deep-ESN: a multiple projection-encoding hier-
archical reservoir computing framework. arXiv:1711.05255 [cs.LG] (2017)

20. Ma, Q., Shen, L., Zhuang, W., Chen, J.: Decouple adversarial capacities with dual-
reservoir network. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, E.-S.M. (eds.)
ICONIP 2017. LNCS, vol. 10638, pp. 475–483. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-70139-4_48

21. Maass, W., Natschläger, T., Markram, H.: Real-time computing without stable
states. Neural Comput. 14(11), 2531–2560 (2002)

22. Malik, Z.K., Hussain, A., Wu, Q.J.: Multilayered echo state machine: a novel archi-
tecture and algorithm. IEEE Trans. Cybern. 47(4), 946–959 (2017)

23. Rodan, A., Tino, P.: Minimum complexity echo state network. IEEE TNN 22(1),
131–144 (2011)

24. Rodriguez, N., Izquierdo, E., Ahn, Y.Y.: Optimal modularity and memory capacity
of neural reservoirs. Netw. Neurosci. 3(2), 551–566 (2019)

25. Schwenker, F., Labib, A.: Echo state networks and neural network ensembles to
predict sunspots activity. In: ESANN 2009 (2009)

26. Stepney, S.: Non-instantaneous information transfer in physical reservoir comput-
ing. In: Kostitsyna, I., Orponen, P. (eds.) UCNC 2021. LNCS, vol. 12984, pp.
164–176. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87993-8_11

27. Triefenbach, F., Jalal, A., Schrauwen, B., Martens, J.P.: Phoneme recognition with
large hierarchical reservoirs. Adv. Neural. Inf. Process. Syst. 23, 2307–2315 (2010)

28. Triefenbach, F., Jalalvand, A., Demuynck, K., Martens, J.P.: Acoustic modeling
with hierarchical reservoirs. IEEE TASLP 21(11), 2439–2450 (2013)

29. Xue, Y., Yang, L., Haykin, S.: Decoupled echo state networks with lateral inhibi-
tion. Neural Netw. 20(3), 365–376 (2007)

30. Yule, G.U.: On a method of investigating periodicities in disturbed series, with
special reference to Wolfer’s sunspot numbers. Phil. Trans. Roy. Soc. A 226(636–
646), 267–298 (1927)

https://doi.org/10.1007/978-3-642-35289-8_36
https://doi.org/10.1007/978-3-642-35289-8_36
http://arxiv.org/abs/1711.05255
https://doi.org/10.1007/978-3-319-70139-4_48
https://doi.org/10.1007/978-3-319-70139-4_48
https://doi.org/10.1007/978-3-030-87993-8_11

Author Index

A
Astorino, Silvia 1

B
Bonnici, Vincenzo 1

C
Caballero, David 17
Calvert, Wesley 32
Cantu, Angel A. 17
Cenzer, Douglas 32, 46
Cirlos, Sonya C. 155

D
D’Amico, Irene 140
Dale, Matt 64

E
Evans, Richard F. L. 64

F
Fraize, Cameron 46
Franco, Giuditta 1
Furcy, David 79

G
Gomez, Timothy 17, 155
Griffin, David 94
Grizzell, Elise 155

H
Harizanov, Valentina 32
Hotanen, Toni 108

K
Kraišniković, Ceca 124

L
Legenstein, Robert 124
Luchsinger, Austin 17

M
Mizuki, Takaaki 171
Morita, Hiraku 171

P
Park, Jessica 140
Porter, Christopher 46
Prodromakis, Themis 124

R
Rodriguez, Andrew 155

S
Schweller, Robert 17, 155
Sebald, Angelika 64
Stathopoulos, Spyros 124
Stepney, Susan 64, 94, 140, 186
Summers, Scott M. 79

T
Tozawa, Kazunari 171
Trefzer, Martin A. 186

V
Vadnais, Hailey 79
Vidamour, Ian 94

W
Wringe, Chester 186
Wylie, Tim 17, 155

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023
D. Genova and J. Kari (Eds.): UCNC 2023, LNCS 14003, p. 203, 2023.
https://doi.org/10.1007/978-3-031-34034-5

https://doi.org/10.1007/978-3-031-34034-5

	 Preface
	 Organization
	Abstracts of Invited Talks
	 On the Automatic Optimization of Problem-Specific Optimization Heuristics Gleaned from Nature
	 Unconventional Cellular Automata Models
	 Distributed Computation by Mobile Robots

	Tutorial for UCNC 2023
	 Reaction Systems: A Model of Computation Inspired by the Functioning of the Living Cell
	 Contents

	An Investigation to Test Spectral Segments as Bacterial Biomarkers
	1 Introduction
	2 Dataset
	3 Methods
	3.1 Theoretical Background
	3.2 IGtool Software
	3.3 Graphical Tools

	4 Results
	4.1 Significant Intervals for Values of k
	4.2 Uk-Based and Sp-Based Analysis
	4.3 Spk-Based Coverage of Genes

	5 Conclusion
	References

	Uniform Robot Relocation Is Hard in only Two Directions Even Without Obstacles
	1 Introduction
	1.1 Related Work
	1.2 Contributions

	2 Preliminaries
	3 2-Direction NP-Hard Relocation
	4 Conclusion
	References

	Generically Computable Abelian Groups
	1 Introduction
	1.1 The Model of Computation
	1.2 Densely Computable Structures

	2 Background
	3 n-Generically Computably Enumerable Abelian Groups
	4 Conclusion and Future Research
	References

	Extraction Rates of Random Continuous Functionals
	1 Introduction
	2 Background
	3 The Extraction Rate of Random Functions
	4 Conclusions and Open Questions
	References

	Reservoir Computing with Nanowire Exchange-Coupled Spin Torque Oscillator Arrays
	1 Introduction
	2 Spin Torque Oscillators for Reservoir Computing
	2.1 Individual Oscillators
	2.2 Coupled Oscillators
	2.3 Physical Reservoir Computing

	3 Simulation Approach
	3.1 Simulation Method
	3.2 Macro Spin Approximation
	3.3 Inputs and Outputs
	3.4 Transients and Timescales

	4 Simulation Experiments
	4.1 Experimental Procedure
	4.2 Effect of Array Size
	4.3 Effect of Nanowire Size
	4.4 Effect of Connectivity Topology

	5 Discussion
	6 Conclusions
	A Benchmark Tasks
	A.1 Spiral Classification
	A.2 PIMA Indians Diabetes Classification
	A.3 NARMA-10
	A.4 Japanese Vowels

	References

	Tight Bounds on the Directed Tile Complexity of a Just-Barely 3D 2 N Rectangle at Temperature 1
	1 Introduction
	2 Preliminaries
	2.1 The Abstract Tile Assembly Model
	2.2 Window Movies
	2.3 Sufficiently Similar Restricted Glue Window Submovie Definition and a Corresponding Lemma

	3 Main Result
	4 Conclusion
	References

	Exploring the Robustness of Magnetic Ring Arrays Reservoir Computing with Linear Field Calibration
	1 Introduction
	1.1 Organisation

	2 Background
	3 Design
	3.1 Search Method
	3.2 Measures
	3.3 Ring Array Calibration

	4 Experiments
	5 Results
	5.1 Presentation of Results
	5.2 Results of Experiment 1
	5.3 Results of Experiment 2

	6 Evaluation
	7 Conclusion
	References

	Undecidability of the Topological Entropy of Reversible Cellular Automata and Related Problems
	1 Introduction
	2 Preliminaries
	2.1 Construction Techniques for Turing Machines
	2.2 Turing Machines as Dynamical Systems
	2.3 Simulating Turing Machines Inside Cellular Automata
	2.4 Speed of Turing Machines
	2.5 Lyapunov Exponents of Cellular Automata
	2.6 Topological Entropy of Cellular Automata

	3 Decision Problems
	3.1 Decision Problems for Turing Machines
	3.2 Decision Problems for Cellular Automata

	References

	Fault Pruning: Robust Training of Neural Networks with Memristive Weights
	1 Introduction
	2 Results
	2.1 Training of Memristive Neural Networks with Faulty Memristors
	2.2 Fault Pruning for Memristive Neural Networks

	3 Methods
	3.1 Memristor Model
	3.2 Training Schedule
	3.3 Estimation of the Fault Factors
	3.4 Details to Computer Simulations

	4 Conclusions
	References

	Spatial Correlations in the Qubit Properties of D-Wave 2000Q Measured and Simulated Qubit Networks
	1 Introduction
	2 Quantum Annealing and D-Wave Chimera Architecture
	3 Exploring Spatial Correlations in the Los Alamos Data
	4 Investigating Different Connection Strengths on Dynamics
	4.1 Methodology
	4.2 Results and Discussion

	5 Conclusions and Future Work
	References

	Simulation of Multiple Stages in Single Bin Active Tile Self-assembly
	1 Introduction
	1.1 Staged Self-assembly and Tile Automata
	1.2 Related Work
	1.3 Our Contributions

	2 Model and Definitions
	2.1 The 1D Tile Automata Model (TA)
	2.2 Staged Assembly Model
	2.3 Assembly Trees

	3 Simulation of General 1D Staged
	3.1 Simulation
	3.2 Overview
	3.3 Glue-Terminal Table
	3.4 States and Initial Tiles
	3.5 Bin Simulation
	3.6 Lines

	4 Patterns
	4.1 Colors and Patterns
	4.2 Context-Free Grammars
	4.3 Tile Automata Upper Bounds

	5 Conclusion
	References

	Single-Shuffle Card-Based Protocol with Eight Cards per Gate
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Card-Based Cryptographic Protocol
	2.3 Garbled Circuit
	2.4 Card-Based Garbling Scheme

	3 Main Protocol
	3.1 Example: For a Circuit with One Gate
	3.2 Initialization Phase
	3.3 Garbling Phase
	3.4 Evaluation Phase
	3.5 Card-Based Protocols for Standard Garbling Scheme

	4 Conclusion
	References

	Modelling and Evaluating Restricted ESNs
	1 Introduction
	2 Background
	2.1 Restricted ESNs
	2.2 Modular ESNs

	3 A Restricted ESN Model
	3.1 The Standard ESN Model
	3.2 Restricting the Standard Model

	4 Benchmarking
	4.1 Experimental Setup
	4.2 Benchmarks

	5 Results
	5.1 NARMA10
	5.2 Sunspots

	6 Discussion and Conclusions
	A Calculating DW for the Overall-Consistent Case
	B Optimising f
	References

	Author Index

