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Abstract. We present a new approach to the problem of recognizing
an Euclidean distance matrix, based on Conformal Geometric Algebra.
Such matrices are symmetric and hollow with non negative entries that
are equal to the squared distances among the set of points. In addition
to find these points, the method presented here also provides the mini-
mal dimension of the related space. A comparison with a linear algebra
approach is also provided.
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1 Introduction

In Distance Geometry (DG) the fundamental object of study is the concept
of distance [9], being established as a field in mathematics after the works of
Blumenthal [2]. In recent years, DG has been applied to model problems in
several areas of computer science, engineering and mathematics, such as sensor
network localization, molecular geometry, GPS modelling among others [10].

An n×n matrix with real entries is called a distance matrix if there exists an
ordered set {x1, . . . , xn} of points in R

m such that each entry aij is the squared
distance between xi and xj . When the Euclidean metric is used, we refer to a
matrix of this type as an Euclidean Distance Matrix (EDM). In this case, the
set {x1, . . . , xn} is called a realization of the EDM. It is clear that an EDM is
symmetric, has zeros in its main diagonal and all other entries are non-negative
real numbers.

We present a geometric algebra (GA) based method to recognize an EDM,
which provides also a realization in a space with the minimum possible dimen-
sion. The motivation for the use of GA was the geometric description based on
sphere intersections of the approach presented in [1].

In the next section, we provide some important theoretical results on EDM’s.
In Sect. 3, we describe a linear algebra approach for recognizing an EDM, based
on the method presented in [1]. Finally, in the Sect. 4, we present the main
contribution of this work, which is a Conformal GA (CGA) approach developed
to simplify the notation and the understanding of the problem.
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2 EDM Recognition Problem

We start giving a formal definition of an EDM to make it clear that this does
not depend on a specific set of points.

Definition 1. Let D be an n × n matrix with real entries given by D(i, j). If
there exists a sequence {xi}n

i=1 ⊂ R
K , for some positive integer K, such that

D(i, j) = ‖xi − xj‖2, i, j ∈ {1, . . . , n}, (1)

we call D an EDM.

The EDM recognition problem consists in finding a sequence of points that
satisfies (1), called a realization. If there is a solution, there are infinitely many
realizations for a given EDM, since any isometric transformation preserves the
distances among the points of the realization. Also, if we add null coordinates at
the right of each point, we obtain realizations in spaces with dimensions greater
than K. We synthesize these results in the next proposition, given in [1].

Proposition 1. Let an n × n matrix D be an EDM. If D has a realization
{xi}n

i=1, xi ∈ R
K , then there are infinitely many realizations of D in R

p, for
any p ≥ K.

The idea of the method we discuss here is to find the minimum K such
that there is a realization for an EDM. This number is called the embedding
dimension of the EDM [1].

Definition 2. Let an n × n matrix D be an EDM and let us suppose that there
is a realization for D in R

K . If for any other realization of D in R
m, m ≥ K,

then K is called the embedding dimension of D, denoted by dim(D).

There is an upper bound for the embedding dimension related to the dimen-
sion of the matrix. In [1], the authors prove that

dim(D) ≤ n − 1,

for an n × n EDM D with n ≥ 2.

3 A Linear Algebra Approach for the EDM Recognition
Problem

The method presented in [1] is based on the proof of Theorem 1, given below,
which depends on the two following lemmas.

Lemma 1. Let an (n + 1) × (n + 1) matrix D be an EDM and let Dn be the
submatrix of D given by its first n rows and columns. If dim(Dn) = K, then
dim(D) is either K or K + 1.
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Lemma 2. Let D as in Lemma 1 and let m be such that dim(D) ≤ m. If {xi}n
i=1

in R
m is a set of points that realizes Dn, then there exists a point xn+1 ∈ R

m

such that {xi}n+1
i=1 realizes D.

The proof of the next result, given in [1], yields an algorithm to recognize an
EDM, which also finds a realization for that.

Theorem 1. Let K be a positive integer and D a symmetric matrix n × n,
n ≥ 2, with null diagonal and no negative entries. D is an EDM with embedding
dimension K if, and only if, there exists a set of points {xi}n

i=1 in R
K and an

index set I = {i1, . . . , iK+1} ⊂ {1, 2, . . . , n}, such that
⎧
⎨

⎩

xi1 = 0
xij (j − 1) �= 0, j ∈ I2,K+1

xij (i) = 0, j ∈ I2,K , i ∈ Ij,K

where {xi}n
i=1 realizes D and Ia,b = {a, a+1, . . . , b} (xh(p) is the p-th component

of the h-th vector).

The idea of the algorithm is to build the given matrix from its submatrices
checking whether each one is an EDM and finding a solution for them. In the
positive case, the results above are used to ensure that the initial matrix is an
EDM and to construct a solution.

Given a hollow n × n symmetric matrix A = (aij) with non-negative entries,
let Ak, k = 1, . . . , n, be the principal submatrices of A. Let us consider the
submatrix A2, which is an EDM with a realization in R given by x1 = 0 and
x2 =

√
a12, where dim(A2) = 1. From Lemma 1, if A3 is an EDM, then dim(A3)

is 1 or 2. From Lemma 2, there is x3 ∈ R
2 such that the set of points x1 = (0, 0),

x2 = (
√

a12, 0), and x3 realize A3. Therefore, if we find a solution for x3, we
guarantee that A3 is an EDM, we give a realization for it, and also determine its
embedding dimension. To find x3, it is necessary to solve the following nonlinear
system: {‖x1 − x3‖2 = a13

‖x2 − x3‖2 = a23.

Geometrically, it means that x3 lies on the intersection of spheres centered at
x1 and x2, with radius

√
a13 and

√
a23, respectively. Since x1 = (0, 0), the first

equation is simply ‖x3‖2 = a13, and subtracting it from the second one, we have

x�
2 x3 =

1
2
(‖x2‖2 − a23 + a13).

This equation returns a unique solution for the first coordinate of x3, say x31,
but not the second since x2 = (

√
a12, 0). To find x32, we use the first equation

to get
x2
32 = a13 − x2

31.

If x2
32 is non-negative, we ensure that A3 is an EDM, otherwise it is not. If x32 >

0, we have two solutions for x3, say x+
3 and x−

3 , and we increase the embedding
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dimension to 2, i.e., A3 is an EDM with dim(A3) = 2 and {x1, x2, x
+
3 } is a

realization for A3 (x−
3 could be used instead of x+

3 ). However, if x32 = 0, we have
only one solution for x3 and we can get rid of the second coordinate of the three
points to have a realization for A3, which means that the embedding dimension
was kept in 1, and the realization would be simply given by {0,

√
a12, x31}. For

both cases, the realizations satisfy the conditions of Theorem 1. The procedure
above is repeated until we reach the whole matrix A, increasing the size of the
system to be solved if all submatrices are indeed EDM’s. As the realizations
satisfy the conditions of Theorem 1, supposing that dim(An−1) = K, we have
at the end the following configuration for a realization {xi}n−1

i=1 ∈ R
K of An−1:

x1 = (0, . . . , 0)
x2 = (x21, 0, . . . , 0)

...
xn−1 = (xn−1,1, . . . , xn−1,K).

We do the same we did before and insert zeros in the last coordinate of each
point. Again, from Lemmas 1 and 2, if A is an EDM, dim(A) is either K or
K + 1 and there exists xn ∈ R

K+1 such that {x1, . . . , xn} is a realization for A.
The system to be solved is given by

⎧
⎪⎨

⎪⎩

‖x1 − xn‖2 = a1n

...
‖xn−1 − xn‖2 = an−1,n

,

and the procedure is a generalization of what was made for A3. That is, we
subtract the first equation from all the others, recalling that x1 = (0, . . . , 0), to
obtain: ⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

‖xn‖2 = a1n

x�
2 xn = b2

...
x�

n−1xn = bn−1

,

where bj =
‖xj‖2 − aj,n + a1,n

2
, for 2 ≤ j ≤ n − 1. Now, from the structure of

the points xi, i = 2, . . . , n− 1, there is a triangular linear system that has either
a unique solution or no solution for the first K coordinates of xn. If no solution
is found, A is not an EDM. Otherwise, we use the solution found, say x∗

n, to find
the last coordinate xn,K+1. As we did before, we get

x2
n,K+1 = a1n − ‖x∗

n‖2.
If x2

n,K+1 is negative, A is not an EDM. Otherwise, if x2
n,K+1 > 0 and dim(A) =

K + 1, we have two solutions for xn, say x+
n and x−

n , and choose one to give a
realization for A. If x2

n,K+1 = 0, there will be only one solution for xn, we get
rid of the last 0 coordinate of each point, and the embedding dimension remains
unchanged, implying that dim(A) = K.
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4 A Conformal Geometric Algebra Approach

Now, using CGA, we present a new formulation for the problem taking advantage
of the geometric interpretation of the approach described in the previous section.

We recall that in CGA over R
n we use two extra basis vectors {e∞, e0}

together with the canonical Euclidean basis to work in a space with dimension
n + 2. In this space, we can easily represent geometric objects such as points,
planes, and spheres by vectors. A powerful tool of CGA is that operators and
operands are entities of the same algebra, which means that transformations like
reflections, rotations or translations are performed by elements of the algebra. It
is important to notice that the increase in the dimension of the space along with
the metric used make these transformations to be orthogonal. Another highlight
of CGA is the intuitiveness of intersecting objects. A circle, for instance, can
be constructed by the intersection of two spheres, the same for a line in the
intersection of two planes. These intersections are achieved with the exterior
product. The geometric objects we mentioned have also another representation,
given by points that lie on them, and there is also another way to intersect these
objects, using the inner product. Here, we mainly focus on the first representation
and in the intersections with the exterior product. For more details about CGA,
we recommend [4,5,11].

It can be proved (see, for instance, [11]) that a sphere in R
n, with center

c ∈ R
n and radius r ∈ R, can be represented in CGA by the vector

S = C − 1
2
r2e∞, (2)

where C is the representation of c in the conformal space R
n+1,1. This result

can be achieved developing the inner product S · C, regarding S as the con-
formal representation of s ∈ R

n and using one of the most important relations
between vectors in R

n and its conformal representations, which says that the
inner product S · C is proportional to the square distance between s and c:

S · C = −1
2
‖s − c‖2. (3)

The next key definition is the intersection of spheres through the exterior
product. Given two spheres S1 and S2 as in (2), the bivector S1 ∧ S2 represents
their intersection. This result can be directly extended to any number of spheres
and we also check a prior if, in fact, there is any intersection. For more details,
see [7]. The next result, given in [7,8], will be important for the new approach.

Proposition 2. The intersection of k spheres with affine independent centers
in R

n is either an empty set, a single point or a (n − k + 1)-sphere1.

Also from [7,8], it is possible to check the nature of the intersection, com-
puting the parameter

t = σ · σ̃,

1 An i-sphere is the intersection of a sphere with an affine subspace of dimension i.
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where σ =
∧k

i=1 Si is the intersection of spheres Si, i = 1, . . . , k, and σ̃ is the
reverse2 of σ. If t < 0, there is no intersection; if t = 0, it occurs in a single
point; and if t > 0, the intersection is a (n − k + 1)-sphere. The parameter t can
be computed as a determinant of a matrix with ij-th entries given by Si ·Sj . It is
also possible to compute explicitly the radius and the center of the intersection
by the following formulas. If σ is the intersection of k spheres, then

Cσ = −1
2

σe∞σ

(e∞ · σ)2
(4)

r2σ =
(−1)(k+1)σ2

(e∞ · σ)2
(5)

are respectively the conformal center and squared radius of σ. Note that rσ also
returns the nature of the intersection analogously to what we did for t.

The idea of the method we are developing is to have always at most two
points in the intersection. So, from Proposition 2, to satisfy this requirement
in R

n it is necessary to have n spheres. Another important remark is that in
the case the intersection is exactly a point pair, these points cannot be in the
hyperplane generated by all centers. In fact, they must be symmetric (relatively
to this hyperplane) in order to satisfy all distance restraints. Note also that the
center of this point pair3 lies on this hyperplane.

Let n+1 spheres in R
n+1 with different centers in R

n, i.e., with the n+1-th
entry equal to zero. The space generated by these n + 1 points is normal to the
vector en+1. In fact, if ci is the center of each sphere and Ci is its conformal
representation, i = 1, . . . n + 1, then

Ci = α1e1 + αnen + α∞e∞ + e0,

for i = 1, . . . , n + 1, and αj ∈ R, j = 1, . . . , n. Since the n + 1-th coordinate of
each point is null, we have that C1∧· · ·∧Cn+1 is a linear combination of (n+1)-
blades that does not contain en+1. Moreover, there is only one (n + 1)-blade in
this combination that does not have the vector e∞, given by e1 ∧ · · · ∧ en ∧ e0.
We are interested in this one because the plane given by all of those centers is

Π = C1 ∧ · · · ∧ Cn+1 ∧ e∞,

and since e∞ ∧e∞ = 0, the plane Π is a scalar multiple of e1 ∧· · ·∧en ∧e∞ ∧e0,
which means that the vector en+1 is normal to the plane Π.

Now, let us suppose that those spheres intersect at a point pair given by
{p+, p−}, implying that p+ and p− are symmetric relatively to the plane given
by the centers. Let m be the center of this point pair, which lies in the plane
Π as we commented earlier. It is easy to see that the segment connecting each

2 We recall that the reverse of a blade is another blade with the reverted order of the
factors in the exterior product.

3 The center of a point pair is regarded as the midpoint of the segment connecting the
two points.
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center ci to m is perpendicular to the line given by the point pair. Indeed, for
each ci this is the height of an isosceles triangle whose equal sides meet at ci

and are the radius of the sphere Si (the base is exactly the segment connecting
the point pair). So, given m, it is possible to obtain p+ and p− walking from m
through the directions ±en+1 :

p+ = m + ren+1, p− = m − ren+1, (6)

where r ∈ R is the radius of the point pair. This is an alternative manner to
extract the points of a point pair that takes advantage of the knowledge of the
direction of the point pair.

We can now state the main result of this section, which suggests a CGA
method to solve the EDM recognition problem. Let us first define the application
P that maps a conformal point into its corresponding point in the Euclidean
space:

P : Rn+1,1 → R
n

X �→ x.

Theorem 2. Let K be a positive integer and A an n × n hollow and symmetric
matrix with non-negative entries, for n ≥ 2. A is an EDM with dim(A) = K if,
and only if, there exists a realization {xi}n

i=1 ⊂ R
K for A and a set of indexes

I = {i1, . . . , iK+1} ⊂ {1, . . . , n}, such that
{

xi1 = 0,

xij = P(
∧j−1

p=1 Sjp)
+, j ∈ I2,K+1,

(7)

where Sjp = C(xip) − 1
2aip,ije∞, for each jp, are the conformal representations

of the spheres in R
j−1.

Remark 1. Note that P(
∧j−1

p=1 Sjp)
+ refers to the corresponding point in R

n of
one of the conformal points in the point pair computed by the exterior product.

Proof. The proof is by induction on the dimension of the matrix A. Beginning
with n = 2, the matrix A is given by

A =
[

0 a12

a12 0

]

.

Supposing that all the entries outside the diagonal are strictly positive, we have
that a12 > 0, A is an EDM with dim(A) = 1, and the points x1 = 0 and
x2 =

√
a12 define a realization for A.

Let us suppose, by induction, that for any EDM with order n ≥ 2 and
embedding dimension K, the theorem is valid, i.e. there exists a realization
{xi}n

i=1 ⊂ R
K for this EDM, with an index set I = {i1, . . . , iK+1} ⊂ {1, . . . , n},

satisfying (7). Let us consider A as an EDM with order (n+1) and dim(A) = K,
and An be the n-th principal submatrix of A. By Lemma 1, An is an EDM with
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dim(An) = k, where k is either K or K − 1. Using the induction hypothesis,
we have that An has a realization {xi}n

i=1 ⊂ R
k and that there is an index set

I = {i1, . . . , ik+1} ⊂ {1, . . . , n}, such that
{

xi1 = 0,

xij = P(
∧j−1

p=1 Sjp)
+, j ∈ I2,k+1.

Define y = P(P ), where

P =
k+1∧

j=1

S(n+1)j

is the intersection of the k + 1 spheres S(n+1)j = C(xij ) − 1
2aij ,n+1e∞ in R

k+1.
The points xij , which are the centers of the spheres, lie in R

k. Then, by (6) and
the discussion that led to it, if the intersection P is a point pair, its direction
is given by ek+1. Moreover, once we know the center of each sphere and their
(squared) radius given by the entries of A, the solution set for y cannot be empty,
otherwise A would not be an EDM.

Using formula (5), we check the nature of the intersection looking to the sign
of r2. If r2 = 0, we take

xn+1 = c,

where c is the unique point in the intersection, obtained by (4). On the other
hand, if r2 > 0, then the intersection y results in a point pair, where we can still
compute c and choose

xn+1 = p+, (or p− equivalently),

obtained by (6). For both cases, the sequence {xi}n+1
i=1 realizes the matrix A and

satisfies the theorem conditions for n + 1. Therefore, the theorem is proved for
every n ≥ 2. �
This proof induces an algorithm (see Algorithm 1) to check if a given matrix is
an EDM, to find a realization for it, in the positive case, and also to provide its
embedding dimension.

The algorithm starts with the submatrix A2. From A3, it computes the exte-
rior product among the spheres to obtain P (step 5) and the value r2 to find
the nature of P (step 6). In the next steps, the algorithm proceeds accordingly.
It is very important to note that the increment on the embedding dimension
only happens when r2 > 0 (steps 11 to 14). In fact, when r2 = 0, the point to
be included in the solution lies on the plane generated by the centers, i.e. the
dimension of the space containing the realization does not change. The embed-
ding dimension is incremented by one when the new point is out of this plane,
which implies that the realization will be in R

K+1, with xi (in step 12) and all
the previous points in R

K gaining a new null K + 1-th coordinate.
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Algorithm 1
Input: A = (aij), with aii = 0 and aij = aji ≥ 0, i, j = 1, . . . , n

1: I = {1, 2}
2: K = 1
3: (x1, x2) = (0,

√
a12)

4: for i ∈ {3, . . . , n} do
5: P =

∧
j∈I(C(xj) − 1

2
aije∞)

6: r2 = (−1)n+1P2

(e∞·P )2

7: If r2 < 0 then
8: return “failure”
9: else if r2 = 0 then

10: xi = P
(
− 1

2
Pe∞P

(e∞·P )2

)

11: else r2 > 0 then
12: xi = P

(
− 1

2
Pe∞P

(e∞·P )2

)
+ reK+1

13: I ← I ∪ {i}
14: K ← K + 1
15: end if
16: end for
17: return K,x

5 An Illustrative Example

In this section, we illustrate the proposed approach with an example. Let us
consider

A =

⎡

⎢
⎢
⎣

0 1 1 2
1 0 2 1
1 2 0 1
2 1 1 0

⎤

⎥
⎥
⎦ .

The first submatrix to be used is

A2 =
[

0 1
1 0

]

,

where a realization is given by x1 = 0 and x2 =
√

a12 = 1. Following the
procedure, we insert zeros in a second coordinate of x1 and x2. The conformal
representation of these points are respectively X1 = e0 and X2 = e1+0.5e∞+e0,
and the related spheres we need to intersect are given by

S1 = X1 − 0.5a31e∞ = e0 − 0.5e∞,

S2 = X2 − 0.5a32e∞ = (e1 + 0.5e∞ + e0) − e∞ = e1 − 0.5e∞ + e0.
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We can use several tools to compute r2 and the center C of P = S1 ∧ S2 (for
example, [3,12]). Using Gaalop [6], we obtain:

P = S1 ∧ S2 = 0.5e1 ∧ e∞ − e1 ∧ e0,

r2 =
(−1)2+1P 2

(e∞ · P )2
= 1,

C = −1
2

Pe∞P

(e∞ · P )2
= e0.

Since r2 > 0, we have that x3 = C + e2 = e2. Now, we have I = {1, 2, 3} and
K = 2. As we need the conformal points, let us see the current solution given by

X1 = e0, X2 = e1 + 0.5e∞ + e0, X3 = e2 + 0.5e∞ + e0.

To find X4, we insert a null coordinate in the previous solution and compute
S = S1 ∧ S2 ∧ S3. From

S1 = X1 − 0.5a41e∞ = e0 − e∞,

S2 = X2 − 0.5a42e∞ = (e1 + 0.5e∞ + e0) − 0.5e∞ = e1 + e0,

S3 = X3 − 0.5a43e∞ = (e2 + 0.5e∞ + e0) − 0.5e∞ = e2 + e0,

we obtain

P =
3∧

i=1

Si = −e1 ∧ e2 ∧ e∞ + e1 ∧ e2 ∧ e0 + e1 ∧ e∞ ∧ e0 − e2 ∧ e∞ ∧ e0,

r2 =
(−1)3+1P 2

(e∞ · P )2
= 0,

C = −1
2

Pe∞P

(e∞ · P )2
= e1 + e2 + e∞ + e0.

Since r2 = 0, X4 = C, dim(A) = 2, and the solution is kept in R
2, given by

{(0, 0), (1, 0), (0, 1), (1, 1)}.

6 Conclusion

The application of CGA to the EDM recognition problem provided a much
simpler description of the linear algebra approach used to solve this problem. In
fact, the result given by Theorem 2 makes clear how the sequence of points in
the realization is constructed and gives a geometric meaning for each of those
points as intersections of spheres, which cannot be seen in Theorem 1. Another
important remark is that, in Algorithm 1, one does not need to actually change
the dimension of the space. The description and the computation are similar for
each dimension, implying that it is possible to set the maximum dimension since
the beginning of the algorithm and update the embedding dimension according
to the value of r2. The geometric intuition given by the CGA approach will be
useful for instances of the problem involving uncertainties in the matrix entries,
since the idea of sphere intersections is preserved.
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