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Abstract. It is shown how the fermions and forces of Nature fit ele-
gantly into the Supergeometric Algebra in 11+1 spacetime dimensions.
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1 Introduction

The author’s interest in spinors is sparked by the fact that spinors seem to be
the fundamental objects from which physics is built. All known forms of matter
(leptons and quarks) are made from spinors. And all known interactions, namely
the three forces of the standard model, plus gravity, emerge from symmetries of
spinors. The present paper, which is based on [1], shows how this works.

The present paper is a companion to [2], which presents a pedagogical intro-
duction to the Supergeometric Algebra (SGA), the square root of the Geometric
Algebra (GA). A central message of [2] is that a spinor, the fundamental rep-
resentation of the group Spin(N) of rotations in N spacetime dimensions, is
indexed by a bitcode with [N/2] bits.

2 The Electron as a Dirac Spinor

A Dirac spinor is a spinor in 3+1 spacetime dimensions. It has 4/2 = 2 bits, a
boost bit (⇑ or ⇓), and a spin bit (↑ or ↓). A Dirac spinor is said to be right-
handed if its boost and spin bits align, left-handed if they anti-align. Altogether,
a Dirac spinor has 22 = 4 complex components, or 8 real components. The 4
complex components of a Dirac electron, grouped into right- and left-handed (R
and L) are:

eR : e⇑↑ , e⇓↓ , eL : e⇓↑ , e⇑↓ . (1)

The right- and left-handed components eR and eL are called the Weyl compo-
nents of the electron, and they are massless. The massive electrons and positrons
observed in Nature are linear combinations of right- and left-handed components.
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Electrons e and positrons ē in their rest frames are complex conjugates of each
other:

e↑ = 1√
2
(e⇑↑ − ie⇓↑) , e↓ = 1√

2
(e⇓↓ − ie⇑↓) , (2a)

iē↑ = 1√
2
(e⇑↑ + ie⇓↑) , iē↓ = 1√

2
(e⇓↓ + ie⇑↓) . (2b)

3 The Electron as a Spin(10) Spinor

That the chiral nature, right- or left-handed, of the electron should be taken
seriously follows from the fact that only left-handed electrons feel the weak
SUL(2) force: right-handed electrons feel no weak force.

The standard model of physics is based on UY (1)×SUL(2)×SU(3), the prod-
uct of the hypercharge, left-handed weak, and color groups. At energies less the
electroweak scale ∼ 100GeV, the symmetry of the hypercharge and weak groups
breaks to the electromagnetic symmetry, UY (1)×SUL(2) → Uem(1). The method
of electroweak symmetry breaking proposed by Weinberg (1967) [3], based on
the so-called Higgs mechanism [4,5], has received spectacular experimental con-
firmation, culminating with the detection of the electroweak Higgs boson, with
a mass 125GeV, at the Large Hadron Collider in 2012 [6,7].

The success of the electroweak symmetry-breaking model prompted proposals
in the mid-1970s that the three groups of the standard model would themselves
become unified in a so-called Grand Unified Theory (GUT) group, at an energy
that was estimated from the running of the three coupling parameters to be at
∼ 1014–1016 GeV. Three possible GUT groups fit the observed pattern of charges
of fermions, of which the most unifying was Spin(10) (the covering group of
SO(10)), first pointed out by [8,9]. The other two possible GUT groups, SU(5)
proposed by [10], and the Pati-Salam group Spin(4) × Spin(6) proposed by [11],
are subgroups of Spin(10).

As first pointed out by Wilczek in 1998 [12], and reviewed by Baez & Huerta
[13], a spinor of Spin(10) is described by a bitcode with 10/2 = 5 bits, consisting
of 2 weak bits and 3 color bits. Wilczek and Baez & Huerta proposed different
conventions for naming the bits. My own preference is to label the color bits
r, g, b, following [13], and the weak bits y and z, inspired by the fact that y and
z are infrared bands to be used by the Vera Rubin Observatory (the LSST) [14],
for which first light is expected in 2025. The sequence yzrgb is, in (inverse) order
of wavelength,

y ∼ 1000 nm , z ∼ 900 nm , r ∼ 600 nm , g ∼ 500 nm , b ∼ 400 nm . (3)

This is an electron in Spin(10), labeled according to its yzrgb bits (colored
silver, bronze, red, green, blue):

(4)

Flipping all 5 yzrgb bits flips between electron and positron. Flipping the y-
bit flips between right- and left-handed. In the Spin(10) picture, each of the
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Fig. 1. The electron generation of 32 fermions arranged according to their Spin(10)
yzrgb charges. A Spin(11, 1) version of this figure is Fig. 2

right- and left-handed components is itself a Weyl spinor, with two complex
components.

In the standard model, fundamental fermions come in 3 generations, the
electron, muon, and tauon generations. The three generations of fermions differ
only in their masses: the standard model charges of each generation replicate each
other. Only fermions come in three generations. The gauge bosons that mediate
the forces, the interactions between fermions, are the same for all generations:
there is only one “boson generation.” This suggests that the 3 generations are
not just another symmetry to be adjoined to the standard model. What causes
the 3 generations remains a deep mystery of physics.

The lightest fermion generation is the electron generation. The fermions of
the electron generation comprise 8 species, consisting of electrons and neutrinos,
and 3 colors each of down and up quarks. Each of the 8 species comes in right-
and left-handed varieties, and in particle and antiparticle versions, for a total
of 32 fermion types. Each of those fermion types can be either spin-up or spin-
down, for a total of 64 degrees of freedom. The pattern repeats for each of the
3 generations. Although no right-handed neutrino has been observed in Nature,
the fact that the left-handed neutrino carries a non-zero mass strongly suggests
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that a right-handed neutrino should exist, since a purely left-handed neutrino
would be massless.

Figure 1 shows the 32 fermions of the electron generation, arranged according
to their yzrgb charges. The same information illustrated in Fig. 1 is tabulated in
the following Spin(10) chart, which arrays the fermions in columns according to
the number of up-bits (compare Table 4 of [13]; see also [12]). The left element
of each entry (before the colon) signifies which bits are up, from – (no bits
up, or ) in the leftmost (0) column, to yzrgb (all bits up, or ) in
the rightmost (5) column; the right element of each entry is the corresponding
fermion, which comprise (electron) neutrinos ν, electrons e, and up and down
quarks u and d, each in right- and left-handed Dirac chiralities R and L, and
each in (unbarred) particle and (barred) antiparticle species, a total of 25 = 32
fermions:

Fermions and their Spin(10) bitcodes, arranged by the number of up-bits
0 1 2 3 4 5

– : ν̄L y : ν̄R c̄ : ūc̄
L yc̄ : ūc̄

R zrgb : νL yzrgb : νR

z : ēR yz : ēL rgb : eR yrgb : eL

c : dcR yc : dcL zc̄ : d̄c̄R yzc̄ : d̄c̄L
zc : uc

L yzc : uc
R

(5)

Here c denotes any of the three colors r, g, or b (one color bit up), while c̄
denotes any of the three anticolors gb, br, or rg (two color bits up, the bit flip
of a one-color-bit-up spinor).

The Spin(10) chart (5) of fundamental fermions is a Christmas puzzle of
striking features. The most striking feature is that Dirac chirality (subscripted
L or R in the chart) coincides with Spin(10) chirality. Spin(10) chirality counts
whether the number of Spin(10) yzrgb up-bits is even or odd: the even and odd
columns of the chart (5) have respectively left- and right-handed Spin(10) chiral-
ity. In any GA, chirality is the eigenvalue, ±1, of the pseudoscalar (normalized
by a phase so the eigenvalues are real). The coincidence of Dirac and Spin(10)
chiralities suggests that the pseudoscalars of the Dirac and Spin(10) geometric
algebras are somehow the same, in contrast to the usual assumption that the
Dirac and GUT algebras are distinct.

The second striking feature of the Spin(10) chart (5) is that standard-model
transformations connect fermions vertically, while Lorentz transformations con-
nect fermions (for the most part) horizontally. For example, electrons e and
positrons ē are arrayed along one row of the chart. Every Spin(N) group has
a subgroup SU([N/2]) that preserves the number of up-bits [15]. The columns
of the chart (5) are SU(5) multiplets within Spin(10), with dimensions respec-
tively 1, 5, 10, 10, 5, 1. The standard-model group is a subgroup of SU(5).
All standard-model interactions preserve the number of Spin(10) up-bits. With
standard-model transformations arrayed vertically and spacetime transforma-
tions arrayed horizontally, the chart (5) seems to be signalling that the two are
somehow connected.
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The third striking feature of the Spin(10) chart (5) is that right- and left-
handed versions of the same species (for example electrons eR and eL) differ
by a flip of the y-bit. In the Spin(10) picture, electroweak symmetry breaking
is a loss of y-symmetry. The electroweak Higgs field carries y-charge, and it
gives mass to fermions by flipping their y-bit. This is prettier than the some-
what abstruse traditional description UY (1) × SUL(2) → Uem(1) of electroweak
symmetry breaking.

4 The Electron as a Spin(11,1) Spinor

The two guises of each generation of fermions, on the one hand as spinors of the
Spin(3, 1) Dirac algebra under Lorentz transformations, and on the other hand
as spinors of the Spin(10) algebra under standard model transformations, cry
out for unification in a common algebra. Each of the 25 entries in the Spin(10)
chart (5) is a Weyl fermion with 2 components, so the unified algebra, if it
exists, must have 6 bits and 12 dimensions. And since the Dirac algebra has a
time dimension while Spin(10) has none, one of the extra dimensions must be
a time dimension, and the extra bit must be a boost bit. The algebra must be
that of Spin(11, 1) in 11+1 spacetime dimensions. The extra bit can be labeled
the t-bit, or time bit.

The conclusion that the unified algebra should have 11+1 spacetime dimen-
sions conflicts with the usual assumption that the Dirac and Spin(10) algebras
combine as a direct product, in which case the 3+1 dimensions of the Dirac alge-
bra and the 10 dimensions of the Spin(10) algebra would yield 13+1 spacetime
dimensions.

The standard assumption that Dirac and GUT algebras combine as a direct
product is motivated by the Coleman-Mandula no-go theorem [16,17], which
says, roughly, that any gauge group that contains the Poincaré group of space-
time symmetries and admits non-trivial analytic elastic scattering is necessarily
a direct product of the Poincaré group and a commuting group of internal sym-
metries. The Coleman-Mandula theorem generalizes to higher dimensions [18].

However, if the grand unified group is Spin(11, 1), then all grand symmetries
are spacetime symmetries, and there are no additional internal symmetries, so
the higher-dimensional Coleman-Mandula theorem [18] is satisfied trivially. After
grand symmetry breaking, the Coleman-Mandula theorem requires only that
spacetime and unbroken internal symmetries combine as a direct product. In
the present context, the Coleman-Mandula theorem requires that the Dirac and
standard-model algebras combine as commuting subalgebras of the Spin(11, 1)
algebra.

Encouragement that 11+1 dimensions is the right number comes from the
period-8 Cartan-Bott periodicity [19–21] of geometric algebras. which guarantees
that the discrete symmetries of the Spin(11, 1) algebra are the same as those
of the Dirac Spin(3, 1) algebra: the spinor metric is antisymmetric, while the
conjugation operator is symmetric.

If indeed the unified algebra is that of Spin(11, 1), then the Spin(10) chart (5)
cannot be quite right as it stands. Diagnosing the problem, and then solving it,
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Fig. 2. The electron generation of 26 = 64 fermions arranged according to their
Spin(11, 1) tyzrgb charges. This is similar to Fig. 1, but with the addition of the t-
bit

is tricky. It’s a Christmas puzzle. The loophole in the chart is that it assigns
a definite charge to each fermion based on its Spin(10) charges, whereas the
example of Eq. (2) shows that fermions and antifermions, which have opposite
charges, are linear combinations of the same chiral components. Fermions and
antifermions are distinguished by the fact that they are complex conjugates
of each other; more precisely, the antiparticle of a spinor ψ is the anti-spinor
ψ̄ ≡ Cψ∗, where C is the conjugation operator. The conjugation operator in
Spin(11, 1) proves to be the same as the conjugation operator in Spin(10): the
conjugation operator in Spin(11, 1) flips all bits except the time bit, so flips all
5 yzrgb Spin(10) bits, as does the conjugation operator in Spin(10).

The solution to the unification problem is to replace each 2-component Weyl
fermion in the Spin(10) chart (5) with a 2-component fermion with t-bit respec-
tively up and down, with opposite Dirac boost but the same Dirac spin, a fermion
and an antifermion. The Weyl companion of each fermion is identified as the
fermion with all 6 tyzrgb bits flipped. This is similar to the Dirac algebra, where
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the Weyl companion of for example the right-handed electron e⇑↑ is its all-bit-flip
partner e⇓↓.

This is a Dirac electron in Spin(11, 1), labeled according to its tyzrgb bits
(colored gold, silver, bronze, red, green, blue):

(6)

Flipping the time bit t flips between electrons e and positrons ē. Flipping the
y bit flips Dirac chirality. Flipping all 6 bits spatially rotates the spin of the
electron (or positron) between up and down, preserving chirality.

Figure 2 illustrates one generation (the electron generation) of fermions of
the standard model arranged according to their Spin(11, 1) tyzrgb charges. The
same information illustrated in Fig. 2 is tabulated in the following Spin(11, 1)
chart of spinors, arranged in columns by the number of Spin(10) up-bits as in
the earlier Spin(10) chart (5):

0 1 2 3 4 5

– : ν̄⇑↓
ν⇓↓ y : ν̄⇓↓

ν⇑↓ c̄ :
ū c̄

⇑↓
u c

⇓↓
yc̄ :

ū c̄
⇓↓

u c
⇑↓

zrgb :
ν⇓↑
ν̄⇑↑ yzrgb :

ν⇑↑
ν̄⇓↑

z : ē⇓↓
e⇑↓ yz : ē⇑↓

e⇓↓ rgb :
e⇑↑
ē⇓↑ yrgb :

e⇓↑
ē⇑↑

c :
d c

⇑↑
d̄ c̄

⇓↑
yc :

d c
⇓↑

d̄ c̄
⇑↑

zc̄ :
d̄ c̄

⇓↓
d c

⇑↓
yzc̄ :

d̄ c̄
⇑↓

d c
⇓↓

zc :
u c

⇓↑
ū c̄

⇑↑
yzc :

u c
⇑↑

ū c̄
⇓↑

(7)

whereas in the original Spin(10) chart (5) each entry was a 2-component Weyl
spinor, in the Spin(11, 1) chart (7) the 2 components of each Weyl spinor appear
in bit-flipped entries. For example, the right-handed electron eR of the original
chart is replaced by e⇑↑, and its spatially rotated partner e⇓↓ of the same chirality
appears in the all-bit-flipped entry. Each entry still has two components, but
in the Spin(11, 1) chart those two components differ by their t-bit; the upper
component has t-bit up, the lower t-bit down. The net number of degrees of
freedom remains the same, 26 = 64.

In the unified Spin(11, 1) algebra, the Dirac boost and spin of a fermion are
woven into the algebra, no longer dissociated from Spin(10). The Dirac boost ⇑
or ⇓ is the eigenvalue of the weak chiral operator κtyz, which counts whether
the number of tyz up-bits is odd or even. The Dirac spin ↑ or ↓ is the eigenvalue
of the color chiral operator κrgb, which counts whether the number of color rgb
up-bits is odd or even. The weak and color chiral operators κtyz and κrgb are
equal to weak and color pseudoscalars Ityz and Irgb modified by a phase factor
to make their eigenvalues real:

Ityz ≡ −iγ+
t γ−

t γ+
y γ−

y γ+
z γ−

z = −κtyz ≡ −γt ∧γt̄ ∧γy ∧γȳ ∧ γz ∧ γz̄ , (8a)

Irgb ≡ γ+
r γ−

r γ+
g γ−

g γ+
b γ−

b = −iκrgb ≡ −iγr ∧γr̄ ∧γg ∧ γḡ ∧ γb ∧γb̄ . (8b)
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The 12-dimensional pseudoscalar J is the product of the boost operator Ityz and
the spin operator Irgb,

J ≡ ItyzIrgb = −iγ+
t γ−

t γ+
y γ−

y γ+
z γ−

z γ+
r γ−

r γ+
g γ−

g γ+
b γ−

b

= iκ12 ≡ iγt ∧ γt̄ ∧ γy ∧ γȳ ∧ γz ∧γz̄ ∧γr ∧γr̄ ∧ γg ∧ γḡ ∧ γb ∧ γb̄ . (9)

In the Dirac algebra, the charge of a chiral fermion is ambiguous: a fermion
and its antifermion partner, which have opposite charges, are linear combina-
tions of the same chiral components, Eq. (2). The t-bit removes the ambiguity,
specifying whether a fermion is going forwards or backwards in time. The charge
of a fermion is determined unambiguously by its 6 tyzrgb bits. In Spin(10), the
standard-model charges of a fermion can be read off from its 5 yzrgb bits. In
Spin(11, 1), the standard-model charges are equal to Spin(10) charges multiplied
by the color chiral operator κrgb, as is evident from the fact that the spinors in
the Spin(10) chart (5) are fermions (unbarred) or antifermions (barred) depend-
ing on whether their color chirality is odd or even.

In Spin(10), the 5 standard-model charges are eigenvalues of the 5 diagonal
bivector generators of Spin(10),

1
2 γ+

i ∧γ−
i = i

2 γi ∧γı̄ , i = y, z, r, g, b . (10)

In Spin(11, 1), standard-model charges are eigenvalues of the 5 diagonal bivec-
tors (10) multiplied by the color chiral operator κrgb. A consistent way to imple-
ment this modification, that leaves the bivector algebra of the standard model
unchanged, is to multiply all imaginary bivectors γ+

i γ−
j in the Spin(10) geomet-

ric algebra by κrgb, while leaving all real bivectors γ+
i γ+

j and γ−
i γ−

j unchanged,

γ+
i γ−

j → γ+
i γ−

j κrgb i, j = y, z, r, g, b . (11)

Equivalently, replace the imaginary i in all Spin(10) bivectors by the color pseu-
doscalar −Irgb = iκrgb, Eq. (8b). A key point that allows this adjustment to
be made consistently is that κrgb commutes with all standard-model bivectors.
Note that κrgb does not commute with SU(5) bivectors that transform between
leptons and quarks; but that is fine, because SU(5) is not an unbroken symmetry
of the standard model.

The definitive proof that unification in Spin(11, 1) is consistent comes from
expressing the 4 orthonormal vectors γm, m = 0, 1, 2, 3, of the Dirac algebra
in terms of the 12 orthonormal vectors γ±

i , i = t, y, z, r, g, b of the Spin(11, 1)
algebra:

γ0 = iγ−
t , (12a)

γ1 = γ−
y γ−

z γ+
r γ+

g γ+
b , (12b)

γ2 = γ−
y γ−

z γ−
r γ−

g γ−
b , (12c)

γ3 = γ+
t γ+

y γ−
y γ+

z γ−
z . (12d)

The Dirac vectors (12) all have grade 1 mod 4 in the Spin(11, 1) algebra. The
multiplication rules for the Dirac vectors γm given by Eq. (12) agree with the
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usual multiplication rules for Dirac γ-matrices: the vectors γm anticommute,
and their scalar products form the Minkowski metric. All the spacetime vectors
γm commute with all standard-model generators modified per (11). The Dirac
pseudoscalar I coincides with the Spin(11, 1) pseudoscalar J , Eq. (9),

I ≡ γ0γ1γ2γ3 = J . (13)

Thus the Dirac and standard-model algebras are subalgebras of the
Spin(11, 1) geometric algebra, such that all Dirac generators commute with
all standard-model generators modified per (11), consistent with the Coleman-
Mandula theorem.

The time dimension (12a) is just a simple vector in the Spin(11, 1) alge-
bra, but the 3 spatial dimensions (12b)–(12d) are all 5-dimensional. The spatial
dimensions share a common 2-dimensional factor γ−

y γ−
z . Aside from that com-

mon factor, each of the 3 spatial dimensions is itself 3-dimensional: γ+
r γ+

g γ+
b ,

γ−
r γ−

g γ−
b , and γ+

t γ+
y γ+

z .

5 Predictions of the Spin(11,1) Theory

A first response to any new theory is, Does it make any predictions? Much of [1] is
devoted to answering this question. The specific question is, what predictions can
be made if the Grand Unified group is Spin(11, 1) and no additional ingredients
are admitted? The condition of no additional ingredients is highly restrictive.

The end result is that the theory predicts the following sequence of symmetry
breakings, at energies determined by the running of coupling parameters:

Spin(11, 1) −−→
??

Spin(10, 1) −−−−−−→
1015 GeV

Spin(4) × Spin(6) −−−−−−→
1012 GeV

UY (1) × SUL(2) × SU(3) −−−−−−→
100GeV

Uem(1) × SU(3) . (14)

The top line of the sequence (14) is the prediction, while the bottom line is the
standard model.

The addition of the 6th bit, the time bit t, to the 5 yzrgb bits of Spin(10)
adjoins to the bivectors of Spin(10) additional bivectors involving either or both
of the two extra dimensions γ±

t . Of those bivectors, four commute with all the
Dirac vectors γm defined by Eq. (12), and could therefore potentially play a role
in the standard model. The four happen to have precisely the properties of the
4-component electroweak Higgs multiplet required by the Weinberg [3] model of
electroweak symmetry breaking, motivating the identification of the electroweak
Higgs field H as (with the bivectors being understood to be modified per (11)
as usual)

H ≡ Hi±γ+
t γ±

i , i = y, z . (15)

Electroweak symmetry breaking occurs when the Higgs field acquires a vacuum
expectation value 〈H〉 proportional to γ+

t γ−
y ,

〈H〉 = 〈H〉γ+
t γ−

y κrgb (16)
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(the factor of κrgb from the modification (11), omitted from (15), is included
here to avoid possible confusion). The electroweak Higgs field (16) carries y-
charge, breaks y-symmetry, and generates masses for fermions by flipping their
y-bit. The three remaining components of the Higgs multiplet are absorbed into
the longitudinal components of the electroweak W± and Z bosons, giving them
mass, while leaving the photon massless.

As long as spacetime is 4-dimensional, as in today’s world, any intermedi-
ate gauge group on the path to grand unification must commute with all the
Dirac vectors (12). The largest subgroup of Spin(11, 1) whose bivector genera-
tors, modified per (11), all commute with the Dirac vectors (12) is a product
of weak and color groups Spin(5) × Spin(6) generated by, respectively, the ten
bivectors formed from γ+

t and γ±
i , i = y, z, and the fifteen bivectors formed

from γ±
i , i = r, g, b. However, the subset of four Spin(5) bivectors γ+

t γ±
i fail to

commute with the field (18) that mediates grand symmetry breaking, so those
bivectors are already eliminated as gauge fields (but not as scalar fields) at grand
symmetry breaking. Thus the largest possible group on the path to grand uni-
fication is the product of extended weak and color groups, the Pati-Salam [11]
group

Spin(4) × Spin(6) . (17)

The running of the three coupling parameters of the standard model indicates
that unification to Spin(4) × Spin(6) should happen at 1012 GeV, so that unifi-
cation does in fact happen. The energy 1012 GeV is comparable to that of the
most energetic cosmic rays observed [22,23].

The general principles underlying symmetry breaking by the Higgs mecha-
nism are: the Higgs field before symmetry breaking must be a scalar (spin 0)
multiplet of the unbroken symmetry; one component of the Higgs multiplet must
acquire a non-zero vacuum expectation value; components of the Higgs multi-
plet whose symmetry is broken are absorbed into longitudinal components of
the broken gauge (spin 1) fields, giving those gauge fields mass; and unbroken
components of the Higgs field persist as scalar fields, potentially available to
mediate the next level of symmetry breaking.

In the sequence (14) of symmetry breakings, the primordial Higgs field is a
scalar 66-component bivector multiplet of Spin(11, 1). The primordial Higgs field
is the parent of all the other Higgs fields.

The field that breaks grand symmetry proves to be the Majorana-Higgs field
〈T 〉 proportional to the bivector γ+

t γ−
t ,

〈T 〉 = −i〈T 〉γ+
t γ−

t κrgb , (18)

the imaginary i coming from the time vector being timelike, γ0 = iγ−
t , and the

factor κrgb from the modification (11). The Majorana-Higgs field (18) has the
property that it commutes with all Spin(4)×Spin(6) fields, and fails to commute
with all Spin(10) fields not in Spin(4) × Spin(6).

The Majorana-Higgs field 〈T 〉 carries t-charge, and is able to flip the t-bit of
the right-handed neutrino, flipping the neutrino between itself and its left-handed
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antineutrino partner of opposite boost, giving the right-handed neutrino a so-
called Majorana mass. Only the right-handed neutrino can acquire a Majorana
mass, because only the right-handed neutrino possesses no conserved standard-
model charge. A large Majorana mass for the right-handed neutrino can generate
a small mass for the left-handed neutrino by the well-known see-saw mechanism
proposed by [24].

The Majorana-Higgs field 〈T 〉 is available to drive cosmological inflation at
the GUT scale. The running of weak and color coupling parameters implies
that grand unification occurs at an energy of 3 × 1014 GeV. This unification
energy is well within the upper limit on the energy scale μinflation of cosmological
inflation inferred from the upper limit to B-mode polarization power in the
cosmic microwave background measured by the Planck satellite [25, eq. (26)],

μinflation ≤ 2 × 1016 GeV . (19)

The first step in the symmetry-breaking sequence (14) is Spin(11, 1) →
Spin(10, 1). The problem is that the Spin(11, 1) bivectors γ+

t γ±
i cannot be gen-

erators of a gauge (spin 1) field after grand symmetry breaking, because if
they were, then their Higgs scalar (spin 0) counterparts would be absorbed into
the gauge field after grand symmetry breaking, whereas the scalar counterparts
apparently persist in the form of the electroweak Higgs multiplet (15).

The vector γ+
t , the spatial vector companion to the time vector γ0 = iγ−

t ,
stands out as the only spatial vector missing from the Spin(10) algebra. The
solution to γ+

t not generating any gauge symmetry is to assert that it behaves
as a scalar dimension prior to grand symmetry breaking, so that the grand
unified group is Spin(10, 1), not Spin(11, 1). Why this should be so is unclear.
Possibly a non-trivial quantum field theory in higher dimensions requires 10+1
dimensions, as in M theory. Spin algebras live naturally in even dimensions, and
one way to accommodate a spin algebra in 10+1 dimensions is to embed it in
one extra dimension, 11+1 dimensions, and to treat the extra dimension, here
γ+
t , as a scalar. The scalar dimension γ+

t , which anticommutes with the other 11
dimensions, plays the role of a time-reversal operator, essential to a consistent
quantum field theory. It remains to be seen whether the Spin(11, 1) model can
in fact be accommodated in M theory.
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