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Preface

As General Chair of the International Conference of Advanced Computational Applica-
tions of Geometric Algebra, I am extremely proud of all the outstanding contributions
in this proceedings. It has been a long and arduous process to bring this conference to
life, and I am honored to have been part of it.

It is my utmost conviction that all manuscripts in this publication are of great rele-
vance and importance, as they genuinely contribute to advancing the field of Geometric
Algebra and related fields. I want to thank all the authors, editors, and reviewers who
contributed their time and effort to make this conference a success. I would also like
to recognize all sponsors, volunteers, and other supporters who directly and indirectly
contributed to the conference and its proceedings.

I have great expectations for the contributions presented in this work, and I believe
they will have a lasting impact on the field of Geometric Algebra. I am confident that
the ideas and perspectives presented here will significantly interest anyone who reads it.

Thank you all for your hard work and dedication to making this conference a reality.
I am honored to have been part of this incredible journey.

Part I on geometric applications begins with Yao, Mann and Li, using the double
conformal GA (DCGA) model for ray tracing. In particular, the intersection of a line
with a cyclide is explored, and how four points can be extracted from the resulting col-
inear point quadruple. Conversely, a colinear point quadruple can be constructed from
four points, and the line containing these points can be found. Next, Derevianko and
Vašík construct an algorithm for similarity search between 2D images using Geomet-
ric Algebra for Conics (GAC) with intrinsic transformations of rotation, translations,
dilations and isotropic scaling. Image objects are represented by ellipses fitted into the
contour points and the is search for transformations between GAC objects. The result
is a low-cost similarity test applied to real object images. Then, Havel reviews in CGA
the representation of line-bound vectors, plane-bound bivectors, tetrahedra and of some
elementary geometric concepts, and discusses their connections to a recently discovered
extension of Heron’s triangle area formula to the volume of a tetrahedron. Furthermore,
Sobczyk defines universal geometric algebras of compatible null vectors following rules
of addition and multiplication of real and complex square matrices. Then he defines
the concepts of Grassmann algebra, dual Grassmann algebra, associated real and com-
plex geometric algebras, and isomorphic real or complex coordinate matrix algebras.
Finally, he discusses the horosphere, as well as affine and conformal transformations.
Part I concludes with Hitzer’s study of the inner product of oriented points in conformal
geometric algebra and its geometric meaning. The inner product of two general oriented
points is computed, and analyzed (including symmetry) in terms of distance, and angles
between the distance vector and the local point orientations. Examples illustrate the
result, followed by a generalization to n dimensions.

Part II is about Computer Science applications based on GA. Pepe et al. demonstrate
GA as a powerful tool to model and predict the structure of proteins which is important
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for their properties. This avoids expensive and time-consuming experiments. Neto et al.
show that Clifford Convolutional Neural Networks are able to outperform real valued
networks of equivalent size in their application: the diagnosis of acute lymphoblastic
leukemia (ALL) which is a type of cancer identified by malformed lymphocytes, known
as lymphoblasts in the bloodstream. Riter et al. present a new approach to the prob-
lem of recognizing a Euclidean distance matrix based on GA. This can be used to model
problems for instance in sensor network localization, molecular geometry andGPSmod-
elling.Neumann et al. present their algorithm calledGAAlign for point cloud registration
using GA. They are able to show that their sampling-based algorithm outperforms the
conventional methods in terms of robustness. Hrdina et al. present a new mathematical
system for quantum computing based on GA. This Quantum Register Algebra QRA is
able to directly use the Dirac notation and its computations can be executed by the GA
algorithms optimizer GAALOP.

Part III deals with technological applications based on GA.Montoya and Eid present
a geometric procedure for computing differential characteristics ofmulti-phase electrical
signals using GA. It is shown how the concept of instantaneous frequency in electrical
networks can be intimately linked to the so-called Darboux bivector. Byrtus and Frolik
use conformal transformations in the kinematic chain of a specific planar mechanism
in order to describe the forward kinematics of generalized robotic snakes. They present
two possible ways to describe the configuration of a three-link generalised snake robot
using Compass Ruler Algebra, which allows us to point out the nature of the generalized
snake as an extension of the classic snake robot. Zamora et al. use the IMU sensor of
their camera for hand-eye calibration based on QGA. In the proposed method, the linear
acceleration and angular velocity of the sensor attached to the camera is employed with
the kinematic model of the robot articulation to find the relative camera position and
orientation.

InPart IV, on applications to physics andmathematics,Hamilton showshow fermions
and all forces of nature fit elegantly into a supergeometric algebra in 11+1 spacetime
dimensions, proposed as a new language of physics. Next, Xambó-Descamps reanalyzes
the fundamental Stern-Gerlach (SG) experiment by elucidating the Hermitian structure
of the algebra of geometric quaternions (the even algebra of the Geometric Algebra of
the Euclidean 3D space) which allows us to regard it as the Hilbert space of a q-bit, and
checks that the computed probabilities obey the statistics of the SG experiments. Then,
Filimoshina and Shirokov study Lie groups in degenerate geometric algebras. These
Lie groups preserve the even and odd subspaces under the adjoint and twisted adjoint
representations. The results are important for the study of generalized spin groups in
degenerate cases. Furthermore, Wieser and Lasenby apply computing with the universal
properties of Clifford algebras and even subalgebras. They observe that for operations
defined in terms of coordinates on amultivector basis it can be difficult to rigorously show
coordinate-independence. They apply the “universal property” to ensure “coordinate-
free” operations by construction. Parallels are seen to the process of writing recursive
programs. They derive a universal property of the even subalgebra, and apply it to explic-
itly construct equivalences between Clifford algebras. These ideas can be formalized in a
theorem prover. Finally in Part IV, Mcleod Price and Staples explore binary linear codes
via Zeon and sym-Clifford algebras. Zeon (“nil-Clifford”) and “sym-Clifford” methods
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are used to reformulate essential concepts of binary linear coding theory, i.e., to generate
linear codes and to illustrate Clifford-algebraic formulations of encoding, decoding and
error-correction.

A unique feature of ICACGA was a round table on Geometric Algebra applied to
Power System Engineering by Prado (Spain), Eid (Egypt), Arsenovic (USA), Montoya
(Spain), and Mira (Spain). Understanding power systems and power theory or circuit
analysis is crucial for reliable and effective operation. Generation, transmission and dis-
tribution power systems have a multidimensional nature, and GA excellently tackles
such problems, better than matrix algebra and complex numbers in traditional electrical
engineering, which has difficulties in the proper interpretation of the physical phenom-
ena involved. GA unifies the tools of tensors, quaternions or differential forms and
interprets power flows in power systems from an intuitive, physical point of view. Major
applications developed to date were presented and discussed by experts.

A total of 24 papers were sent for review in a double-blind process, of these 18 were
selected for presentation at the conference, and inclusion in these proceedings.

October 2022 Dietmar Hildenbrand
Eckhard Hitzer
David W. Silva
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Modeling and Computing with Geometric Algebra (GA)

David Hestenes

Abstract. Concepts of “Circle” and “Sphere” have been central to geo-
metric thinking since ancient times. Today we proclaim that their con-
ceptual power can be vastly enhanced by formulation with Geometric
Algebra and implementation with computers.

The Block sphere is basic to Quantum Computing while the Poincaré
sphere is basic to optics. But it is not commonly understood that these
spheres are more than mere analogues, they are expressions of basic
structure in the electron itself. Geometric Algebra makes that manifest
as we aim to explain today.

The primacy of GA in understanding the electron is ample reason
for advocating it as the lingua franca across the entire physics and engi-
neering curriculum. Moreover, GA curriculummaterials are already well
developed for (a) Rigid body dynamics, (b) Electrodynamics, (c) Quan-
tum mechanics, (d) Gauge gravity, (e) physics pedagogy, and even (f)
neuroscience.

The task remains to develop GA software that cultivates geometric
and algebraic intuition for students at all grade levels. Tools are available
at: bivector.net.

A discussion of how to use and improve them will be a prime subject
for this conference.



Toward the Open Metaverse

Michael Kass

Abstract. In 1992 science fiction writer Neal Stephenson coined the
term “metaverse” for a large-scale shared virtual world where people
can interact with one another in a simulation of reality. The notion is
certainly compelling. Why connect to each other in the 2D world of the
current internet when we have the technology to interact in 3D? Today,
as virtual worlds pervade the world of entertainment and as a variety of
businesses start to deploy “Digital Twins” to simulate and control real
buildings, factories and infrastructure, it’s clear that the metaverse no
longer belongs in the realm of science fiction. It has entered the realm
of the possible. But how will the metaverse come into existence, and
how can it end up being based on open standards? Can our current web
evolve into the metaverse, or will it need to be something fundamentally
different? At the core of any true 3D web or the openMetaverse, we need
an open, powerful, flexible and efficient way to describe a shared virtual
world. In this talk we will explore how NVIDIA Omniverse makes use
of such a description to take some key steps toward turning the notion of
the open metaverse into a genuinely useful reality.



Interpolation and Design: Lessons and Opportunities
from CAGD for Geometric Algebra

Alyn Rockwood

Abstract. Computer-aided geometric design (CAGD) is primarily con-
cerned with the design of curves and surfaces in CAD/CAM/CAE, ani-
mation, analysis, styling, simulation, etc. In the last half-century it has
developed into a mature, widely used, and indispensable technology. Ini-
tially, it was thought that CAGDwas a simple application of interpolation
and approximation theory. Although CAGD relies heavily on such con-
cepts, many surprising subtleties, questions, and ramifications arose that
had not been anticipated, nor easily handled within the traditional theory.
As GA develops its own version of interpolation theory it may be well
to understand the lessons from CAGD, as well as the opportunities it
provides. We give a review of some of those issues, which have direct
implications for GA.



Illustrating Geometric Algebra and Differential Geometry
in 5D Color Space

Werner Benger

Abstract. Geometric Algebra is popular for its immediate geometric
interpretations of its algebraic objects and operations based on Clifford
Algebra on vector spaces. For instance, in Euclidean 3D space quater-
nions are known to be numerically superior to rotation matrices. Geo-
metric Algebra allows for an intuitive interpretation in terms of planes of
rotations and extends this concept to arbitrary dimensions. The space of
colors forms a vector space, too, though one of non-geometrical nature,
and spun by the primary colors red, green, blue. The formalism of Geo-
metric Algebra can be applied here as well, amalgamating surprisingly
with the notion of vectors and co-vectors known from differential geom-
etry: tangential vectors on a manifold correspond to additive colors red,
green, blue, whereas co-vectors from the co-tangential space correspond
to subtractive primary colors magenta, yellow, cyan.

Geometric Algebra in turn considers vectors, bi-vectors and anti-
vectors as part of its general multi-vector scheme. In 3D space vectors,
anti-vectors, bi-vectors and co-vectors are all three-dimensional objects
that can be identified with each other, so their distinction is not obvi-
ous. Higher dimensional spaces exhibit the differences more clearly, but
our intuition of higher dimensional geometry limits our understanding.
However, using color spaces we can intuitively go further by considering
“transparency” as an independent, four-dimensional property of a color
vector. We can thereby explore four-dimensional Geometric (Clifford)
algebra independent of spacetime or special/general relativity which is
usually used for 4D GA. Though even in 4D space, ambiguities remain
between vectors, co-vectors, bi-vectors and bi-co-vectors. Bi-vectors and
bi-co-vectors – both six-dimensional objects – are visually equivalent.
They become uniquely different only in five or higher dimensions.

Envisioning five-dimensional geometry is challenging to the human
mind, but in color space we can add another property, “texture,” to con-
stitute a five-dimensional vector space. The properties of a bi-vector and
a bi-co-vector become evident visually by inspecting the possible combi-
nations of colors/transparency/texture. This higher-dimensional yet intu-
itive approach demonstrates the need to distinguish among different
kinds of vectors before identifying them in special situations, such as
3D Euclidean space.



Closing the GA2P: Making Geometric Algebra a Regular
Expression of Aerospace Engineering

Todd Ell

Abstract. Herein is a discussion of aerospace industries’ key initiatives
and the subsequent use of digital engineering throughmodel-based design
and analysis. This points to the ‘goodness of fit’ of Geometric Algebra
models and techniques to describe various cyber-physical systems preva-
lent in upcoming aerospace systems. A Geometric Algebra Adaptation
Program (G[A]2P) is being stood up within Collins Aerospace to address
these evolving needs. This requires giving attention to the set of tools and
trainingmaterial needed to enable that adaption. The talk with will briefly
touch on the several early applicationswithinCollinsAerospace andGeo-
metric Algebra tools being crafted to meet those application needs. Early
observations about the adaptation program will be shared to inform the
strengths & weaknesses in regard to in academic/technical material cur-
rently available. Finally, future technical challenges, the solutions that
would be of benefit to aerospace in general, will be described.



The Initial NIST Post-Quantum Cryptography Standards,
and What’s Next?

Daniel Apon

Abstract. In recent years, there has been a substantial amount of research
on quantum computers – machines that exploit quantummechanical phe-
nomena to solve mathematical problems that are difficult or intractable
for conventional computers. If large-scale quantum computers are ever
built, they will be able to break many of the public-key cryptosystems
currently in use. This would seriously compromise the confidentiality
and integrity of digital communications on the Internet and elsewhere.
The goal of post-quantum cryptography (also called quantum-resistant
cryptography) is to develop cryptographic systems that are secure against
both quantum and classical computers, and can interoperate with existing
communications protocols and networks.

The question of when a large-scale quantum computer will be built is
a complicated one. While in the past it was less clear that large quantum
computers are a physical possibility, many scientists now believe it to be
merely a significant engineering challenge. Some engineers even predict
that within the next twenty or so years, sufficiently large quantum com-
puters will be built to break essentially all public key schemes currently
in use. Historically, it has taken almost two decades to deploy our modern
public key cryptography infrastructure. Therefore, regardless of whether
we can estimate the exact time of the arrival of the quantum computing
era, we must begin now to prepare our information security systems to
be able to resist quantum computing.

In this talk, we briefly survey the state-of-the-art in post-quantum
cryptography, at the point that the survivors of this half-decade, interna-
tional process have just recently emerged from theNISTPQCcompetition
to become the initial post-quantum cryptographic standards. We discuss
the new standards, their design, their security, as well as what else may
be coming in post-quantum cryptography in the near future.



Introduction to Quantum Computing

Tristan Müller

Abstract. Quantum computing is a rapidly growing field that has drawn
considerable interest in the recent years. While development of quantum
computers was mostly driven by fundamental and academic research
not too long ago, quantum computing is now on the edge of widespread
industry adoption – as shown by an increasing number of vendors offering
access to quantum computers as well as an ever-increasing number of
users from different industry areas.

In my talk I will present why quantum computing is fundamen-
tally different to classical computing and how this could provide drastic
speedups for specific problems. To that end, I will first review some fun-
damental concepts from quantum mechanics. Afterwards, I will provide
a brief overview of quantum computing hardware and common qubit
architectures, as well as projected future developments. In addition, I
will present IBM’s software stack, including the IBM Quantum Tools.



Computational Image Processing Workflows Using
Quaternions

Nek Valous

Abstract. Image pixels can be encoded by a linear combination of the
three basis vectors in a hypercomplex algebra framework; this encoding
provides the opportunity to process color images in a geometric way.
The proposed approach is based on a rapid and versatile method, using
quaternions, that can enhance computational image processing work-
flows applied to natural and biomedical images. This pixel-based app-
roach is computationally efficient, thus taking advantage of parallel archi-
tectures in modern computing systems, and has applications either as a
standalone tool or integrated in image processing pipelines. Essentially,
the method demonstrates that feature-rich mathematical frameworks can
provide efficient solutions for computational image processing.



Geometric Algebra Computing for Computer Graphics
Using GAALOP

Dietmar Hildenbrand

Abstract. Two courses at the SIGGRAPH conferences in 2019 and 2022
demonstrate the increasing interest of the computer graphics commu-
nity in Geometric Algebra and especially in Projective Geometric Alge-
bra PGA. GAALOP (Geometric Algebra Algorithms Optimizer) is a
tool used to visualize Geometric Algebra as well as to generate opti-
mized code for many programming languages such as C/C++, OpenCL,
CUDA, Python, Matlab, Mathematica, and Rust. Based on GAALOP
and its online version GAALOPWeb, we present howGeometric Algebra
can advantageously be used for geometric operations such as intersec-
tions, reflections, and projections, and for transformationswith geometric
objects such as lines, planes, circles, spheres, conics, and quadrics. Leo
Dorst in his presentations shows how PGA unifies the rotational and
translational aspects of Euclidean motions resulting in easily integrable
equations of motion. We present GAALOP examples dealing with these
results.



Quantum Register Algebra: Quantum Circuits

Jaroslav Hrdina, Rafael Alves, Ales Navrat, Petr Vasik, Dietmar Hildenbrand,
Ivan Eryganov, Carlile Lavor, and Christian Steinmetz

Abstract. We introduce serial and parallel quantum gates in the Quan-
tum Register Algebra (QRA) framework, which is an efficient tool for
quantum computing. We present a GAALOP (Geometric Algebra Algo-
rithms Optimizer) implementation of our approach. We illustrate these
principles by presenting one example of serial gates and two examples
of parallel gates.



Complementary Orientations in Geometric Algebras

Leo Dorst

Abstract. Oriented elements are part of geometry, and they come in two
complementary types: intrinsic and extrinsic. Those different orienta-
tion types manifest themselves by behaving differently under reflection.
Dualization in geometric algebras can be used to encode them; or, alter-
natively, orientation types inform the interpretation of dualization. We
employ the Hodge dual, to include important algebras with null elements
like PGA. Oriented elements can be combined using the meet operation,
and the dual join (which is here introduced for that purpose). We sug-
gest a visualization of all oriented elements of 3D DGA (the algebra of
normal directions) and 3D PGA (the plane-based algebra of Euclidean
motions). Using the proposed framework, software written to process
one orientation type can be employed to process the complementary type
consistently.



A Lightweight Implementation of GA in Julia

Chris Doran

Abstract. Julia is a modern programming language that is rapidly gain-
ing popularity in the scientific community. It offers the ability to code
in a high-level functional style while still achieving the performance of
C/C++. There is a strong ecosystem in place, and tight integration with
VSCode. With care, Julia is even capable of compiling the same code
for both CPU and GPU implementation. In this talk I discuss a simple,
lightweight implementation of various geometric algebras in Julia. Some
of the ideas are drawn from earlier experience with Haskell, and the dif-
ficulties encountered with achieving high performance in that language.
The talk concludes with a discussion of what hardware changes could
yield even greater performance for low-dimensional geometric algebras.
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Abstract. In this paper, we look at using the double conformal model
for ray tracing. In particular, we explore the intersection of a line with
a cyclide in the double conformal model, and how to extract the four
points from the resulting colinear point quadruple. Further, we show
how to directly construct a colinear point quadruple from four points,
and we show how to find the line containing the points of a colinear point
quadruple. We also briefly touch on barycentric coordinates in DCGA.

Keywords: Cyclides · double conformal model · colinear point
quadruples

1 Introduction

The double conformal geometric algebra [3] (DCGA) allows for the representa-
tion of tori as well as planes, quadrics, and cyclides. Further, we can intersect
these cyclides with lines, giving a form of a point quadruple. This suggests that
the model can be used for ray tracing tori and more general cyclides. However,
to be of use in ray tracing, we need to extract the points of intersection for the
point quadruples, and perform a lighting calculation at the point closest to the
origin of the ray.

In this paper, we explore how to extract these points of intersection, extract-
ing a quartic equation from the point quadruple. Additionally, we look more
closely at point quadruples, showing how to construct a point quadruple directly
from four points. Further, we investigate barycentric coordinates in DCGA, for
which we perform the computations by converting to the conformal geometric
algebra and perform the computation there; we briefly present this conversion
in this paper as barycentric coordinates are required in ray tracing. We verify
the correctness of our ideas using a simple ray tracer.

Our focus in this paper is on the ideas required to implement this DCGA ray
tracer, and we defer many of the proofs to a future publication.
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2 Background

The Double Conformal Geometric Algebra (DCGA) contains two subspaces of
the Conformal Geometric Algebra (CGA) [2]. Using the notation of Easter and
Hitzer [3], the first CGA subspace (CGA1) is generated by the vectors

ei · ej =

⎧
⎨

⎩

1 i = j, 1 ≤ i ≤ 4
−1 i = j = 5
0 i �= j

(1)

while the second subspace (CGA2) is generated by the vectors

ei · ej =

⎧
⎨

⎩

1 i = j, 6 ≤ i ≤ 9
−1 i = j = 10
0 i �= j

. (2)

In both subspaces, there is a point at the origin,

eo1 = (−e4 + e5)/2, eo2 = (−e9 + e10)/2,

and a point at infinity

e∞1 = (e4 + e5), e∞2 = (e9 + e10),

all four of which are null vectors,

eo1 · eo1 = eo2 · eo2 = e∞1 · e∞1 = e∞2 · e∞2 = 0.

Further, eo1 · e∞1 = eo2 · e∞2 = −1.
A point in CGA1 with an embedding vector pc1 = xe1 + ye2 + ze3 is repre-

sented as
PC1 = pc1 + 1

2p
2
c1e∞1 + eo1,

with a point in CGA2 defined analogously for a vector pc2 = xe6 + ye7 + ze8:

PC2 = pc2 + 1
2p

2
c1e∞2 + eo2.

A sphere in CGA1 with center Cε1 and radius r is defined as

SC1 = Cc1 − 1
2r2e∞1.

Similarly, a sphere in CGA2 with center Cc2 and radius r is defined as

SC2 = Cc2 − 1
2r2e∞2.

In DCGA, the point at the origin is defined as

eo = eo1 ∧ eo2

and the point at infinity is defined as

e∞ = e∞1 ∧ e∞2.
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Easter and Hitzer showed that

eo · eo = 0, e∞ · e∞ = 0, and eo · e∞ = −1.

Given tc1 = xe1+ye2+ ze3 and tc2 = xe6+ye7+ ze8 (with the same x, y, z
values for both), Easter and Hitzer define a point PD = D(tc) = D(x, y, z) in
DCGA as

D(x, y, x) = PD = PC1 ∧ PC2 . (3)

Expanding the DCGA point PD gives

PD = (tε1 + 1
2t

2e∞1 + eo1) ∧ (tε2 + 1
2t

2e∞2 + eo2)

= tε1 ∧ tε2 + tε1 ∧ eo2 + eo1 ∧ tε2 + 1
2t

2e∞1 ∧ (tε2 + eo2)

+ 1
2t

2(tε1 + eo1) ∧ e∞2 +
1
4
e∞ + eo

=
x

2
(t2 − 1)e19 +

x

2
(t2 + 1)e1,10 +

x

2
(t2 − 1)e46

+
x

2
(t2 + 1)e56 +

y

2
(t2 − 1)e29 +

y

2
(t2 + 1)e2,10

+
y

2
(t2 + 1)e47 +

y

2
(t2 + 1)e57 +

z

2
(t2 − 1)e39

+
z

2
(t2 + 1)e3,10 +

z

2
(t2 − 1)e48 +

z

2
(t2 + 1)e58

+xye17 + xye26 + yze28 + yze37 + xze18 + xze36

+x2e16 + y2e27 + z2e38 +
1
4
(t4 − 1)e4,10

+
1
4
(t4 − 1)e59 +

1
4
(t4 − 2t2 + 1)e49 +

z

2
(t4 + t2 + 1)e5,10

where

t = tε1 = xe1 + ye2 + ze3,

tε2 = xe6 + ye7 + ze8, t
2 = x2 + y2 + z2,

t4 = x4 + y4 + z4 + 2x2y2 + 2y2z2 + 2z2x2.

Using the extraction operator Ta in Table 1, the scalar component a can be
extracted from a point PD as a = Ta · PD.

Table 1. The DCGA bivector extraction operators

Tx = 1
2
(e1e∞2 + e∞1e6) Ty = 1

2
(e2e∞2 + e∞1e7) Tz = 1

2
(e3e∞2 + e∞1e8)

Tx2 = e6e1 Ty2 = e7e2 Tz2 = e8e3

Txy = 1
2
(e7e1 + e6e2) Tyz = 1

2
(e7e3 + e8e2) Tzx = 1

2
(e8e1 + e6e3)

Txt2 = e1eo2 + eo1e6 Tyt2 = e2eo2 + eo1e7 Tzt2 = e3eo2 + eo1e8

T1 = −e∞ Tt2 = eo2e∞1 + e∞2eo1 Tt4 = −4eo
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2.1 Objects in DCGA

In this paper, our primary interest is in lines, tori, and cyclides in general. Tori
and cyclides will be objects that we ray trace (as well as quadrics and poly-
gons), while lines will be used to represent rays when performing intersections
with the objects in our scene. The following is a review of Easter and Hitzer’s
constructions for these objects.

For any implicit quadric surface

ax2x2 + ay2y2 + az2z2 + axyxy + ayzyz + azxzx + axx + ayy + azz + a1 = 0

where ai are scalar coefficients, Easter and Hitzer define the quadric surface as
a bivector in DCGA:

Qd = ax2Tx2 + ay2Ty2 + az2Tz2 + axyTxy + ayzTyz + axzTxz

+axTx + ayTy + azTz + a1T1, (4)

Easter and Hitzer also define quartic surfaces like torus and cyclides in DCGA.
The implicit equation for a quartic surface is

at4t
4 + at2t

2 + axt2xt
2 + ayt2yt

2 + azt2zt
2 + ax2x2 + ay2y2 + az2z2

+axyxy + ayzyz + azxzx + axx + ayy + azz + a1 = 0

where t = xe1 + ye2 + ze3 is a test point and the ai are scalar coefficients.
Easter and Hitzer define the 2-vector quartic surface entity (more specifically, a
Darboux cyclide quartic surface) Qt as

Qt = at4Tt4 + at2Tt2 + axt2Txt2 + ayt2Tyt2 + azt2Tzt2

+ax2Tx2 + ay2Ty2 + az2Tz2 + axyTxy

+ayzTyz + azxTzx + axTx + ayTy + azTz + a1T1.
(5)

The implicit quartic equation for a circular torus positioned at the origin
that surrounds the z-axis is

t4 + 2t2(R2 − r2) + (R2 − r2)2 − 4R2(x2 + y2) = 0 (6)

where t = xe1 + ye2 + ze3, R is the major radius, and r is the minor radius.
Easter and Hitzer defined a corresponding the DCGA GIPNS 2-vector torus
surface entity O as

O = Tt4 + 2(R2 − r2)Tt2 + (R2 − r2)2T1 − 4R2(Tx2 + Ty2). (7)

An arbitrary torus can be obtained by rotating and translating O.
A point PD is on a surface Q if and only if

PD · Q = 0.

The DCGA GIPNS 4-vector line 1D surface entity L is defined as

L = Lc1 ∧ Lc2 (8)
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where
Lc1 = Dε1 − (pε1 · Dε1)e∞1 (9)
Lc2 = Dε2 − (pε2 · Dε2)e∞2. (10)

Thus, the DCGA line L is the wedge of the line as represented in CGA1 with the
same line as represented in CGA2. L is also called a bi-CGA GIPNS line entity.
The D are unit bivectors perpendicular to the line, and p is any point on the
line. The dual unit vector d = D/I3, or dε1 = Dε1/Iε1 = dxe1 + dye2 + dze3
and dε2 = Dε2/Iε2 = dxe6 + dye7 + dze8, is in the direction of the line, where
Iε1 = e1 ∧ e2 ∧ e3, Iε2 = e6 ∧ e7 ∧ e8 are the Euclidean 3D unit pseudoscalars.

The DCGA dual of an object T is defined as T ∗:

T ∗ = T /ID = TI−1
D = T · I−1

D = −T · ID (11)

where ID = IC1 ∧IC2 , IC1 = e1 ∧e2 ∧e3 ∧e4 ∧e5, IC2 = e6 ∧e7 ∧e8 ∧e9 ∧e10.
In our derivations, we will use the following properties of the inner product

and of the outer product [7]:

(a1 ∧ · · · ∧ ar) · (b1 ∧ · · · ∧ bs) =
{

((a1 ∧ · · · ∧ ar) · b1) · (b2 ∧ · · · ∧ bs) r ≥ s
(a1 ∧ · · · ∧ ar−1) · (ar · (b1 ∧ · · · ∧ bs)) r < s

(12)
and

(a1 ∧ · · · ∧ ar) · b =
N∑

n=1
(−1)r−ia1 ∧ · · ·ai−1 ∧ (ai · b) ∧ ai+1 ∧ · · · ∧ ar (13)

a · (b1 ∧ · · · ∧ bs) =
N∑

n=1
(−1)i−1b1 ∧ · · · bi−1 ∧ (a · bi) ∧ bi+1 ∧ · · · ∧ bs (14)

2.2 Transformations

While our ray tracer uses transformations of canonical representations of spheres
and tori to model our scene, we otherwise do not use transformations in this
paper. We refer the reader to Easter and Hitzer’s paper for the relevant details
of transformations in DCGA [3].

2.3 Surface Normals

For the lighting calculation in ray tracing, we need the surface normal at the
point of intersection. We use the differential operators and normal formula of
Breuils et al. [1] (see also [3] for an earlier form),

Dx = (e1 ∧ e∞1 + e6 ∧ eo2)
Dy = (e2 ∧ e∞1 + e7 ∧ eo2)
Dz = (e3 ∧ e∞1 + e8 ∧ eo2),

with Breuils et al.’s CGA1 normal formula to the DCGA surface T at the DCGA
point PD being

n = ((Dx × T ) · PD)e1 + ((Dy × T ) · PD)e2 + ((Dz × T ) · PD)e3,

where × is the commutator product.
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3 Line–Cyclide Intersection

In ray tracing, we need to compute the intersection of rays from the eye with
all the objects in our scene, and in the case of multiple intersections, we need to
determine the closest point of intersection to the eye. At times, we can use the
DCGA line containing the ray to compute the intersections, but at other times,
we need a parametric representation of the ray, r(t) = P + tv, t > 0, where P
is a point and v is a Euclidean vector. DCGA does not have a strong concept
of a Euclidean vector, so in our ray tracer, we construct our ray r(t) in CGA,
requiring us at times to map back and forth from DCGA and CGA1.

To compute the intersection of the ray with the torus (or cyclide in general),
we use the method of the Easter and Hitzer [3] to compute the intersection of the
DCGA line containing r(t) with the cyclide. However, while Easter and Hitzer
show that the outer product of a line with a cyclide gives the intersection between
the two objects, they do not show how to extract the points of intersection of
the resulting object. In this section, we show how to extract these points of
intersection.

The intersection of an arbitrary cyclide O and a line L is

OL = O ∧ L. (15)

Let v = (vx, vy, vz) be the CGA1 direction of L (where v = L · (e∞ ∧ eo ∧
(e6 + e7 + e8)), and let D(x0, y0, z0) be a point on L. A point on a line through
D(x0, y0, z0) in direction v is (expanding (3))

D(x0 + tvx, y0 + tvy, z0 + tvz) =
(
((x0 + tvx)e1 + (y0 + tvy)e2 + (z0 + tvz)e3) +

1
2 ((x0 + tvx)e1 + (y0 + tvy)e2 + (z0 + tvz)e3)2e∞1 + eo1

)
∧

(
((x0 + tvx)e6 + (y0 + tvy)e7 + (z0 + tvz)e8) +

1
2 ((x0 + tvx)e6 + (y0 + tvy)e7 + (z0 + tvz)e8)2e∞2 + eo2

)

=
(
[x0e1 + y0e2 + z0e3 + 1

2 (x
2
0 + y2

0 + z20)e∞1 + eo1] +

[vxe1 + vye2 + vze3 + (x0vx + y0vy + z0vz)e∞1]t +

[12 (v
2
x + v2

y + v2
z)e∞1]t2

)
∧

(
[x0e6 + y0e7 + z0e8 + 1

2 (x
2
0 + y2

0 + z20)e∞2 + eo2] +

[vxe6 + vye7 + vze8 + (x0vx + y0vy + z0vz)e∞2]t +

[12 (v
2
x + v2

y + v2
z)e∞2]t2

)
(16)

The point D(x0 + tvx, y0 + tvy, z0 + tvz) is on OL = O ∧ L if

D(x0 + tvx, y0 + tvy, z0 + tvz) · OL = 0. (17)
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Expanding Eq. 17 gives 100 terms. While merging duplicate terms reduces
this to 89 terms, this number of terms would make implementation challeng-
ing. We can ease the implementation computing the intersection by assigning
K,M ,N ,G,H,R to each row of (16); i.e., let

K = x0e1 + y0e2 + z0e3 + 1
2 (x

2
0 + y2

0 + z20)e∞1 + eo1

M = vxe1 + vye2 + vze3 + (x0vx + y0vy + z0vz)e∞1

N = 1
2 (v

2
x + v2

y + v2
z)e∞1

G = x0e6 + y0e7 + z0e8 + 1
2 (x

2
0 + y2

0 + z20)e∞2 + eo2

H = vxe6 + vye7 + vze8 + (x0vx + y0vy + z0vz)e∞2

R = 1
2 (v

2
x + v2

y + v2
z)e∞2 (18)

so that

D(x0 + tvx, y0 + tvy, z0 + tvz) = (K +M t +N t2) ∧ (G+Ht +Rt2).

Then expanding D(x, y, z) · OL gives

D(x, y, z) · OL = ((K +M t +N t2) ∧ (G+Ht +Rt2)) · OL

= t0(K ∧ G) · OL+
t1(K ∧ H +M ∧ G) · OL+
t2(K ∧ R+M ∧ H +N ∧ G) · OL+
t3(M ∧ R+N ∧ H) · OL+
t4(N ∧ R) · OL. (19)

Solving for the roots of Eq. 19 and substituting these roots into D(x0+ tv0, yy +
ty0, z0 + tz0) gives us the four points of intersection between the line and the
cyclide. In a ray tracer, we are interested in the first intersection along the ray,
which is given by the smallest, positive real root. If none of the roots are real
numbers (or if all the real roots are negative), then our ray did not intersect the
surface.

Remark 31. Note that (16) is the parametric equation for a line in DCGA.
Further note that (16) is a fourth degree equation. While it may seem odd that
the parametric equation for a line in DCGA is a fourth degree equation, the high
degree results from the line being constructed as the outer product of two CGA
lines, each of which are degree two equations. If we apply the extraction operators
Tx,Ty,Tz to (16), we find the linear equations we expect for a line.

Remark 32. While the solutions of (19) will likely work for the intersection
of a line with an arbitrary quartic, in ray tracing we are primarily interested in
finite volumes having a well-defined inside and outside; thus, in our ray tracer
(Sect. 6), we only tested our method on cyclides.



10 H. Yao et al.

3.1 DCGA and Quadrics

In this section, we study the polynomial equation resulting from the intersection
of a line with a quadratic in DCGA. While the resulting polynomial appears to
be quartic, we note that the degree three and four terms of the latter are zero,
and that the polynomial is only quadratic as expected.

The intersection of a quadric Q and a line L is

QL = Q ∧ L. (20)

Let D(x0, y0, z0) be a point on L and let v = (vx, vy, vz) be the direction of
L. Then an arbitrary point D(x, y, z) on L is

D(x, y, z) = D(x0 + tvx, y0 + tvy, z0 + tvz) =
(K +M t +N t2) ∧ (G+Ht +Rt2)

with K,M ,N ,G,H,R from (18). Then expanding D(x, y, z) · QL gives

D(x, y, z) · QL = ((K +M t +N t2) ∧ (G+Ht +Rt2)) · QL

= t0(K ∧ G) · QL+
t1(K ∧ H +M ∧ G) · QL+
t2(K ∧ R+M ∧ H +N ∧ G) · QL+
t3(M ∧ R+N ∧ H) · QL+
t4(N ∧ R) · QL. (21)

Expanding the t3 and t4 terms of Equation (21), we find that both are identical
0. Thus, Equation (21) is a quadratic polynomial. Since the degree three and
degree four terms of (21) will be zero for a quadratic, if it is known that QL is a
quadric (as is typically the case in a ray tracer), we can reduce the computational
costs by not evaluating the inner product coefficients for these two terms.

4 Colinear Point Quadruples (CPQ)

The intersection of a line with a torus gives an object whose inner product
with a point is zero at the four points of intersection between the torus and
the line, and non-zero at any other point. We refer to this object as a collinear
point quadruple (CPQ). In this section, we show how to create a collinear point
quadruple directly from four points.

Theorem 1. Given four collinear but distinct DCGA points, PD1 = PC1
1

∧
PC2

1
= D(x1, y1, z1),PD2 = PC1

2
∧ PC2

2
= D(x2, y2, z2),PD3 = PC1

3
∧ PC2

3
=

D(x3, y3, z3),PD4 = PC1
4

∧ PC2
4
= D(x4, y4, z4), where

x2
1 + y2

1 + z21 �= x2
2 + y2

2 + z22 (22)
x2
3 + y2

3 + z23 �= x2
4 + y2

4 + z24 . (23)
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Let

CPQ =
(
(Pp1 · (eo1 ∧ e∞1)) ∧ (Pp2 · (eo2 ∧ e∞2))

)

+
(
(Pp1 · (eo2 ∧ e∞2)) ∧ (Pp2 · (eo1 ∧ e∞1))

)
(24)

where Pp1 = PD1 ∧ PD2 and Pp2 = PD3 ∧ PD4. Then for an arbitrary DCGA
point PD,

PD ∧ (CPQ/ID) = PD · CPQ∗ =
{
0 if PD ∈ {PD1,PD2,PD3,PD4}
non-0 otherwise

(25)
and

CPQ = (k1
2 − k1

1)(k
2
4 − k2

3)(PC2
1

∧PC2
2

∧PC1
3

∧PC1
4
+PC1

1
∧PC1

2
∧PC2

3
∧PC2

4
).

where kj
i = eoj · PCj

i
= − 1

2 (x
2
i + y2

i + z2i ), e∞j · PCj
i
= −1 (i = 1 · · · 4, j = 1, 2).

Remark 41. We note that the representation of a collinear point quadruple
is not unique. In particular, the CPQ constructed using point pairs Pp12 =
PD1∧PD2 and Pp34 = PD3∧PD4 in Eq. 24 is not equal to the CPQ constructed
using point pairs Pp13 = PD1 ∧PD3 and Pp24 = PD2 ∧PD4 in Eq. 24, although
both CPQ’s have the same zero set.

Remark 42. While the representation of a CPQ in Theorem 1 gives a fairly
concise representation for a CPQ, a CPQ created in this manner is coordinate
system dependent. In particular, conditions (22) and (23) result in a CPQ
that is identically zero in one coordinate system but valid in another coordinate
system. This coordinate system dependence complicated the proof of Theorem 1.

Remark 43. If the set of four points fails the condition in Eq. 22 or Eq. 23, then
reordering the points by swapping either of PD1,PD2 with either of PD3,PD4 will
yield of set of four points that meets these conditions and can be used to construct
a non-zero CPQ.

The method in Sect. 3 allows us to compute the four points of a CPQ given
the line L containing the four points, a point on L, and the direction of L.
However, we might want to find the four points on a CPQ without knowing
the line L containing the CPQ. While we do not have general results for an
arbitrary CPQ, we can show that for CPQ’s constructed either as in Theorem 1
or as the intersection of a line with a quartic, the CGA1 direction d1 of the line
containing P1,P2,P3,P4 is

d1 + αe∞1 = CPQ · (e∞ ∧ eo2) (26)

and
S = CPQ · (eo ∧ e∞2)/CPQ · (eo ∧ e∞) (27)

is a CGA1 sphere through the origin whose center is a point on the line containing
P1,P2,P3,P4.
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5 Barycentric Coordinates in DCGA

In the homogeneous model (e2i = 1,e2o = 0) a 3D point with coordinates (x, y, z)
is represented as P = xe1+ye2+ze3+eo. If a point P lies in a plane ΔP0P1P2,
then P can be represented as a linear combination P = a0P0 + a1P1 + a2P2.
a0, a1, a2 are called barycentric coordinates. Barycentric coordinates are used for
a variety of purposes in computer graphics; in particular, they are used when
performing lighting calculations on triangles.

We can find the barycentric coordinates of a point P relative to a triangle
ΔP0P1P2 by computing [2]:

a0 =
(P − P2) ∧ (P1 − P2)
(P0 − P2) ∧ (P1 − P2)

,

a1 =
(P − P2) ∧ (P0 − P2)
(P1 − P2) ∧ (P0 − P2)

,

a2 = 1 − a0 − a1.

We note that the homogeneous model is a subspace of CGA, and we can map
a point P in CGA to a point P ′ in homogeneous by

P ′ = −(P ∧ e∞) · eo = P − 1
2 (x

2 + y2 + z2)e∞.

Note that if P = e∞ or P = e0, then (P ∧ e∞) · eo = 0. For ray tracing, we are
only interested in finite closed surfaces, so the case of P = e∞ is of no concern;
when P = e0, note that P ′ = P , and no computation needs to be done, but
if an expression that works for all P is desired, see [3]. Regardless, we can find
barycentric coordinates of a point P in CGA relative to a triangle ΔP0P1P2

in CGA by mapping all points to the homogeneous model and using the above
method.

Likewise, in DCGA, we can map a point PD in DCGA to a point P ′ in
homogeneous1 by (PD ∧ e∞1) · eo, and again find the barycentric coordinates of
a point PD in DCGA relative to a triangle ΔP0P1P2 in DCGA by applying the
above method.

6 Ray Tracer Verification

We implemented the methods described in this paper, and integrated them in a
simple ray tracer [5] in gaigen [4]. Our focus in the ray tracer was on ray tracing
tori (and cyclides in general), although we also ray traced quadratic surfaces and
planes.

In ray tracing, an image is created by casting rays starting at a view point,
through each pixel of the desired image, and intersecting the ray with all the
objects in the scene. Using the closest intersection, a lighting calculation is per-
formed to determine the colour of the pixel. The ray tracer we implemented
performs a diffuse lighting calculation, shadows, and constructive solid geome-
try operations.
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Hierarchical modeling techniques are typically used in creating scenes for
a ray tracer. The resulting data structure is a tree of transformations, with
primitives (such as spheres and tori) as leaf nodes. These primitives are defined in
canonical positions (such as a sphere at the origin). When ray tracing, we traverse
this tree structure, and when traversing down the hierarchy, at a node with
transformation T , we apply T−1 to the point and vector of the ray. At the leaf
nodes, this transformed ray is intersected with the canonical primitives. We used
such a hierarchical approach in our ray tracer, and thus the ray-intersect-tori
computations we computed using the special torus defined as in Eq. 6. However,
we also ray traced other cyclides as seen in the picture, intersecting rays with
arbitrary cyclides.

Figure 1 shows a scene ray traced with our software.

Fig. 1. Ray traced image.

We note that while ray tracing can be performed in DCGA, the constructions
are at times a bit awkward. In particular, there is no concept of a DCGA vector.
As such, to construct a ray, one needs to map from DCGA into one of CGA1
or CGA2, and perform various computations in one of these subalgebras. Other
than that, implementing the DCGA ray tracer was straightforward.

7 Conclusions

In studying how to use the representation of cyclides in DCGA for ray tracing, we
investigated the colinear-point-quadruple resulting from a line-intersect-cyclide,
finding how to extract the points from a CPQ, as well as how to construct a
CPQ directly from four points. We further investigated some other constructions
needed in a ray tracer.
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Engineering Research Council of Canada and National Natural Science Foundation of
China (NSFC) under Grant 51525504.
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Abstract. We introduce a novel way of searching for the similarity
transformation of pictures using Geometric Algebra for Conics (GAC).
In our approach, we do not represent the image objects by their contour
but, instead, by the ellipse fitted into the contour points. Such represen-
tation makes the consequent similarity search fast and memory-saving
and makes the search for the needed transformation easier. Examples of
application on the real object images are also included.

Keywords: geometric algebra · Clifford algebra · transformation ·
picture comparison · image processing

1 Introduction

The problem of image comparison and recognition is still popular. There are
many different methods such as Blob detection technique, template matching,
SURF feature extraction etc. [1].

The paper considers the search for a transformation, consisting of translation,
rotation and scaling, which allows one object to be as close as possible to another
in order to simplify their further comparison. However, existing methods are com-
putationally demanding: neural networks or iterative closest point search require
plenty of time and memory [8]. Therefore, we have presented a relatively fast
method. As a fundamental contour of our object, we consider ellipses inscribed
into the extracted contour points in a specific way, namely, using GAC-based
Iterative Conic Fitting Algorithm. This will simplify the search for the required
transformation.

2 Perceptual Hashing

Perceptual hashing is widely used for the tasks that require matching of similar
images. Generally, perceptual hashing algorithms generate a fingerprint for each
image so that similar images will be mapped to the same or similar hash code.

Five of the most used hashing techniques are well known: A-Hash, D-Hash,
P-Hash, W-Hash, SVD-Hash. Let us describe the main idea of each of the types.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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– A-Hash
The average hashing technique (A-Hash) produces the hash value of the image
based on its low frequencies, representing the image structure, and points out
the higher frequencies, which correspond to the image details. The goal of the
A-Hash is to find the average color of the image by calculating the mean of
the image matrix values.

– D-Hash
The difference hash technique (D-Hash), is similar to the A-Hash. They both
focus on the image structure, which is achieved by eliminating the higher
frequencies from the image. The main difference lays in generating hashes by
computing the difference based on the change of color gradient between the
adjacent pixels in the image matrix.

– P-Hash
The perceptive hash (P-Hash) is a technique extending the A-Hash by adding
the Discrete Cosine Transform (DCT) to obtain the most sensitive informa-
tion of the human vision system (HVS). Instead of using image intensities for
the hash generation process, it uses a range of low frequencies obtained after
applying the DCT technique.

– W-Hash
The wavelet hash technique (W-Hash) is using the Discrete Wavelet Trans-
form (DWT) for generating perceptual hashes.

– SVD-Hash
The Singular Value Decomposition hash(SVD-Hash) was first introduced by
Kozat et al. [10]. The general idea of the technique is to derive a secondary
image from the original one using a pseudo-randomly (PR) extracting features
that approximately demonstrate geometric characteristics. [4]

Perceptual hashing algorithms use perceptual features of images (see [12]) to gen-
erate their hashes. The primary goal is to generate hashes that remain unchanged
or change slightly when content preserving modifications are made to the image.
Given two images I and I ′,hI = H(I) and hI ′ = H(I ′) their corresponding
perceptual hashes, and D(hI, hI ′) is a similarity metric, and τ is an empiri-
cally determined threshold, D(hI, hI ′) < τ indicates that I and I ′ are copies of
the same image with minor content preserving modifications. The main three
steps involved in perceptual hashing algorithms are image pre-processing, per-
ceptual feature extraction, and quantization or compression to generate the final
hash string. One of the problems with this approach is that even the same, but
rotated images have different hash due to the intrinsic limitation of perceptual
hash algorithms.

For the experiment we use the module OpenCV in Python, that brings imple-
mentations of different image hashing algorithms, slowing to extract the hash of
images and find similar images in huge data set.
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3 Geometric Algebra for Conics

Let us briefly describe the basic concepts of GAC.
By geometric algebra we mean a Clifford algebra with a specific embedding

of a Euclidean space in such a way that the intrinsic geometric primitives as well
as their transformations are viewed as its elements, precisely multivectors. For
more details see [3,5,7].

For our goals we will use the algebra for conics, proposed by C. Perwass to
generalize the concept of (two–dimensional) conformal geometric algebra G3,1,
[14] with the notation of [6]. In the usual basis n̄, e1, e2, n, embedding of a plane
in G3,1 is given by

(x, y) �→ n̄ + xe1 + ye2 +
1
2
(x2 + y2)n,

where e1, e2 form Euclidean basis and n̄ and n, defined by specific linear com-
bination of additional basis vectors e3, e4 with e23 = 1 and e24 = −1, are the
coordinate origin and infinity, respectively, [14]. Hence the objects representable
by vectors in G3,1 are linear combinations of 1, x, y, x2+y2, i.e. circles, lines, point
pairs and points. For the general conics, we need to add two terms: 1

2 (x2 − y2)
and xy. It turns out that we need two new infinities for that and also their two
corresponding counterparts (Witt pairs), [11]. Thus the resulting dimension of
the space generating the appropriate geometric algebra is eight.

Let R
5,3 denote the eight–dimensional real coordinate space R

8 equipped
with a non–degenerate symmetric bilinear form of signature (5, 3). The form
defines Clifford algebra G5,3 and this is the Geometric Algebra for Conics in the
algebraic sense. To add the geometric meaning we have to describe an embedding
of the plane into R

5,3. To do so, let us choose a basis of R
5,3 such that the

corresponding bilinear form is

B =

⎛
⎝

0 0 −13×3

0 12×2 0
−13×3 0 0

⎞
⎠ , (1)

where 12×2 and 13×3 denote the unit matrices. Analogously to CGA and to the
notation in [14], the corresponding basis elements are denoted as follows

n̄+, n̄−, n̄×, e1, e2, n+, n−, n×.

Note that there are three orthogonal ‘origins’ n̄ and three corresponding orthog-
onal ‘infinities’ n. In terms of this basis, a point of the plane x ∈ R

2 defined by
x = xe1 + ye2 is embedded using the operator C : R2 → Cone ⊂ R

5,3, which is
defined by

C(x, y) = n̄+ + xe1 + ye2 +
1
2
(x2 + y2)n+ +

1
2
(x2 − y2)n− + xyn×. (2)

The image Cone of the plane in R
5,3 is an analogue of the conformal cone. In fact,

it is a two–dimensional real projective variety determined by five homogeneous
polynomials of degree one and two.
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Definition 1. Geometric Algebra for Conics (GAC) is the Clifford algebra G5,3

together with the embedding R
2 → R

5,3 given by (2) in the basis determined by
matrix (1).

Note that, up to the last two terms, the embedding (2) is the embedding of the
plane into the two–dimensional conformal geometric algebra G3,1. In particular,
it is evident that the scalar product of two embedded points is the same as in
G3,1, i.e. for two points x,y ∈ R

2 we have

C(x) · C(y) = −1
2
‖x − y‖2, (3)

where the standard Euclidean norm is considered on the right hand side. This
demonstrates linearisation of distance problems. In particular, each point is rep-
resented by a null vector. Let us recall that the invertible algebra elements are
called versors and they form a group, the Clifford group, and that conjugations
with versors give transformations intrinsic to the algebra. Namely, if the conju-
gation with a G5,3 versor R preserves the set Cone, i.e. for each x ∈ R

2 there
exists such a point x̄ ∈ R

2 that

RC(x)R̃ = C(x̄), (4)

where R̃ is the reverse of R, then x → x̄ induces a transformation R
2 → R

2

which is intrinsic to GAC. See [6] to find that the conformal transformations are
intrinsic to GAC.

Let us also recall the outer (wedge) product, inner product and the duality

A∗ = AI−1. (5)

However we use the definitions as in [14]. Note that in GAC the pseudoscalar
is given by I = n̄+n̄−n̄×e1e2n+n−n×. For our purposes, we stress that these
operations correspond to sums and products only. Indeed, the wedge product
is calculated as the outer product of vectors on each vector space of the same
grade blades, while the inner product acts on these spaces as the scalar product.
The extension of both operations to general multivectors adds no computational
complexity due to linearity of both operations. Let us also recall that if a conic
C is seen as a wedge of five different points (which determines a conic uniquely),
we call the appropriate 5–vector E∗ an outer product null space representation
(OPNS) and its dual E, indeed a 1–vector, the inner product null space (IPNS)
representation.

Let us recall the definition of inner product representation. An element AI ∈
G5,3 is the inner product representation of a geometric entity A in the plane
if and only if A = {x ∈ R

2 : C(x) · AI = 0}. Hence, given a fixed geometric
algebra, the representable objects can be found by examining the inner product
of a vector and an embedded point. A general vector in the conic space R

5,3 in
terms of our basis is of the form

v = v̄+n̄+ + v̄−n̄− + v̄×n̄× + v1e1 + v2e2 + v+n+ + v−n− + v×n×
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Hence a conic is uniquely represented (in a homogeneous sense) by a vector in
R

5,3 modulo this subspace. This gives the desired dimension six. In other words,
the inner representation of a conic in GAC can be defined as a vector

QI = v̄+n̄+ + v̄−n̄− + v̄×n̄× + v1e1 + v2e2 + v+n+. (6)

The classification of conics is well known. Among the non–degenerate conics
there are three types, the ellipse, hyperbola, and parabola. Now, we present the
vector form (6) appropriate to the simplest case, i.e. an axes–aligned ellipse EI

with its centre in the origin and semi–axes a, b. Correctness may be verified easily
by multiplying its vector by an embedded point which means the application of
(1) and (2). The corresponding GAC vector is of the form

EI = (a2 + b2)n̄+ + (a2 − b2)n̄− − a2b2n+. (7)

More generally, an ellipse E with the semi–axes a, b centred in (u, v) ∈ R
2 rotated

by angle θ is in the GAC inner product null space (IPNS) representation given
by

E = n̄+ − (α cos 2θ)n̄− − (α sin 2θ)n̄×
+ (u + uα cos 2θ − vα sin 2θ)e1 + (v + vα cos 2θ − uα sin 2θ)e2 (8)

+ 1
2

(
u2 + v2 − β − (u2 − v2)α cos 2θ − 2uvα sin 2θ

)
n+.

For proofs and further details about other conics see [6].

3.1 Parameter Extraction

It is well known that the type of a given unknown conic can be read off its matrix
representation, which in our case for a conic given by

Q =

⎛
⎝

− 1
2 (v̄+ + v̄−) − 1

2 v̄× 1
2v1

− 1
2 v̄× − 1

2 (v̄+ − v̄−) 1
2v2

1
2v1 1

2v2 −v+

⎞
⎠ . (9)

The entries of (9) can be easily computed by means of the inner product:

q11 = QI · 1
2 (n+ + n−),

q22 = QI · 1
2 (n+ − n−),

q33 = QI · n̄+,

q12 = q21 = QI · 1
2n×,

q13 = q31 = QI · 1
2e1,

q23 = q32 = QI · 1
2e2.

It is also well known how to determine the internal parameters of an unknown
conic and its position and the orientation in the plane from the matrix (9).
Hence all this can be determined from the GAC vector QI by means of the inner
product.
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The parameters of a conic can be obtained from the matrix (9) of its IPNS
representation, for example:

– center of an ellipse or hyperbola:

xc =
q12q23 − 2q22q13
4q11q22 − q212

, yc =
q13q12 − 2q11q23
4q11q22 − q212

(10)

– semiaxis of an ellipse:

a, b =

√
(2A(q11 + q22 ±

√
(q11 − q22)2 + q212)

(4q11q22 − q212))
, (11)

where A = q11q
2
23 + q22q

2
13 − q12q13q23 + (q212 − 4q11q22)q33

– angle of rotation

θ =

⎧⎪⎪⎨
⎪⎪⎩

− arctan q22−q11−
√

(q11−q22)2+q2
12

q12
, q12 �= 0

0, q12 = 0, q11 < q22
π
2 , q12 = 0, q11 > q22

(12)

Other parameters can be derived with the help of eigenvalues of the quadratic
form matrix. For more details see [9].

3.2 Transformations

The main advantage of GAC compared to other models (for instance, G6) is that
it is fully operational in the sense that it allows all Euclidean transformations,
i.e. rotations and translations. But not just that, it also allows scaling in the
sense of (4). Hence, like in the case of CGA (or G3,1), one obtains all conformal
transformations. The exact form of GAC versor for rotation (rotor), translation
(translator), and scaling (scalor) is given as follows.

The rotor for a rotation around the origin by the angle ϕ is given by R =
R+(R1 ∧ R2), where

R+ = cos(ϕ
2 ) + sin(ϕ

2 )e1 ∧ e2, (13)
R1 = cos(ϕ) + sin(ϕ)n̄× ∧ n−, (14)
R2 = cos(ϕ) − sin(ϕ)n̄− ∧ n×. (15)

The translator is given by T = T+T−T×, where

T+ = 1 − 1
2ue1 ∧ n+ (16)

T− = 1 − 1
2ue1 ∧ n− + 1

4u2n+ ∧ n− (17)

T× = 1 − 1
2ue2 ∧ n× (18)

for a translation in the direction e1 around u. Similarly, for a translation in the
direction e2 around v one has

T+ = 1 − 1
2ve2 ∧ n+ (19)

T− = 1 + 1
2ve2 ∧ n− 1

4v2n+ ∧ n− (20)

T× = 1 − 1
2ve1 ∧ n× (21)
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The scalor for a scaling by α ∈ R
+ is given by S = S+S−S×, where

S+ = α+1
2
√

α
+ α−1

2
√

α
n̄+ ∧ n+, (22)

S− = α+1
2
√

α
+ α−1

2
√

α
n̄− ∧ n−, (23)

S× = α+1
2
√

α
+ α−1

2
√

α
n̄× ∧ n×. (24)

For proof see [6]. All transformations apply on a vector in GAC by conjugation
(4) of the appropriate versor formal exponential. This holds also for translations
and rotations, for their precise form see [6]. Consider python implementation
of transformations. Now let us demonstrate transformations by visualization on
example.

Example 1. Consider axis-aligned ellipse with the semi-axes a = 2, b = 4 centred
in (u, v) = (0, 2).

The result of applying the rotation by angle φ = π
6 , scaling by 2 and trans-

lations by vectors (0, 2), (2, 0), (−3, 2) respectively is shown in Fig. 1 [2] (Fig. 2).

Fig. 1. Transformations

4 Algorithm for Finding the Transformation

Scaling parameter for our transformation can be found by Algorithm 1.

Algorithm 1
Inputs:two co–centric ellipses, where one is the scaled copy of another
Output: scaling parameter SP

1: Construct a line l passing through the points n̄+ and e2:

l = e2 ∧ n+ ∧ n̄+ ∧ n− ∧ n×.

2: Find the intersection points C = E1 ∩ l, B = E2 ∩ l of the line and both ellipses,
i.e. solve a quadratic equation in a Euclidean space.

3: The scale parameter between ellipses is

SP =
|n̄+ · C(B)|
|n̄+ · C(C)| .
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Fig. 2. Comparison of conic fitting algorithms applied on a differently translated sam-
ple point set. Precision prescribed for the iterative algorithm was ε = 10−6 and, in all
cases, 3 or 4 iterations sufficed to achieve the precision.

For more details, see [2]. Therefore, we may find the desired transformation,
using the following algorithm.

Algorithm 2
Inputs: Image1, Image2
Output: Transformation Tr

1: for i = 1, 2 do
2: Upload Imagei and create a binary thresholded ImageTi

3: Find the contours in the thresholded ImageTi

4: Find the contour (Contouri) enclosing the biggest area
5: Apply Algorithm 1 to Contouri
6: Extract parameters xi

c, y
i
c, ai, bi, θi from the fitted conic Ci

7: Apply translation T of conic Ci by vector (−xi
c, −yi

c)

8: Find the transformation Tr = SR for the conic C2, where
R is rotation of a conic around the origin by the angle θ1 − θ2;
S is scaling of a conic by factor s; which is found in Algorithm 1

By applying transformation Tr to the conic C2 in a way TrC2T̃ r we get the
conic, aligned with the C1. By applying that transformation to the all points in
set it is possible to get aligned pictures. To apply the transformation, we need
to crop images as circles, co-centered with ellipses and bigger ellipse’s semiaxis
as circle radius and then to rotate images on the angle difference.

Perceptual hash algorithms describe a class of functions for generating com-
parable hashes. Image characteristics are used to generate an individual (but not
unique) fingerprint, and these fingerprints can be compared with each other. For
our research we use perceptual hashes. In cryptography, every hash is random.
The data used to generate the hash acts as a source of random numbers, so that
the same data will give the same result, but different data will give a different
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result. If the hashes are different, then the data is different. If the hashes match,
then the data is most likely the same (since there is a possibility of collisions,
the same hashes do not guarantee that the data will match). In contrast, per-
ceptual hashes can be compared with each other and inferred about the degree
of difference between the two datasets [13].

5 Simulation

As a demonstration, let us compare two photos of the same object taken by a
drone. The images are shown in the picture Fig. 3a,3b.

Fig. 3. xx

First let us compare two images using perceptual hashes. The parameter shows
the degree of similarity of the images. For similar images the output parameter
is up to 15, for different images it is more than 15. Comparing the pictures gives
us the result:

hash1 1111100111110000111100110011001100011001000110110110111101111111

hash2 0000001111100011111001111111111111100000011100000011111000111111

result: 30

So the hash comparison shows that pictures are very different. Now we will
find the transformation and apply it to the image (rotate and translate). Con-
sider the image in Fig. 5. After highlighting the contours, the maximal one was
selected, it is shown in Fig. 4b. After fitting the ellipse into the given contour,
an ellipse was obtained with the following parameters:

S = [285.1305490824287 , 325.1182024501176]
a = 156.15972309402093
b = 89.45721142437789
theta = 139.62977432632437
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Fig. 4. Simulation

We carry out a similar procedure with another image and, as a result, we obtain
an ellipse with the following parameters:

S = [348.97305779468377 , 275.565547053376]
a = 152.99108015608545
b = 93.58490358200152
theta = 47.82948709748718

Therefore, the necessary translation for moving the ellipse center to the origin
is T = T (−209.28270157371304,−219.21051222645468).

Note that transferring conics to the origin was necessary for the scaling pro-
cedure to work correctly. After cropping images as circles we get the following
photos. Now we can rotate images on the angle difference, i.e. 91.80028722883719
degrees.

Now the parameter is already equal to 0, so objects on the pictures are found
to be same (Fig. 6).

hash1 1111101111111001111110000011010000110100100111001101100111001111

hash2 1111101111111001111110000011010000110100100111001101100111001111

result: 0

Therefore objects on the pictures are found to be the same object.
Perceptual hashes method works well in the case when the pictures have

different sizes, and it also works when there is a little noise in the image (the
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Fig. 5. Simulation

Fig. 6. xxx

noise disappears when the picture is scaled). Using our transformation (rotation,
translation and scaling) we solve the problem of rotated images, that are usually
found to be different by this method.

6 Conclusion

The algorithm, searching for transformation, consisting of translation, rotation
and scaling, allowing one object to be aligned to another, was presented. It



26 A. Derevianko and P. Vaš́ık

was proposed to consider ellipses inscribed into the contour of an image object
in a specific way, namely, using GAC-based Iterative Conic Fitting Algorithm.
The example of applying the transformation search algorithm on the real image
taken from a drone was demonstrated and the corresponding transformation was
found. In future it is planned to use more complex images and extend the list of
used transformations.
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colour spaces. Math. Meth. Appl. Sci. (2017). https://doi.org/10.1002/mma.4489
8. Khazari, A.E., Que, Y., Sung, T.L., Lee, H.J.: Deep global features for point cloud

alignment. Sensors 20(14) (2020). https://doi.org/10.3390/s20144032. https://
www.mdpi.com/1424-8220/20/14/4032

9. Korn, G., Korn, T.: Mathematical Handbook for Scientists and Engineers: Defini-
tions, Theorems, and Formulas for Reference and Review. Dover Civil and Mechan-
ical Engineering Series, Dover Publications (2000). https://books.google.cz/books?
id=xHNd5zCXt-EC

10. Kozat, S., Venkatesan, R., Mihcak, M.: Robust perceptual image hashing via
matrix invariants. In: 2004 International Conference on Image Processing, 2004.
ICIP 2004, vol. 5, pp. 3443–3446 (2004). https://doi.org/10.1109/ICIP.2004.
1421855

11. Lounesto, P.: Clifford Algebra and Spinors. CUP, 2nd edn., Cambridge (2006)
12. Mojsilovi, R., Gomes, J., Rogowitz, B.: Isee: Perceptual features for image library

navigation. Proceedings of SPIE - The International Society for Optical Engineer-
ing 4662 (05 2002). DOI: https://doi.org/10.1117/12.469523

13. Niu, X.M., Jiao, Y.H.: Overview of perceptual hashing 36, 1405–1411 (07 2008)
14. Perwass, C.: Geometric Algebra with Applications in Engineering. Springer Verlag

(2009)

http://arxiv.org/abs/2103.13803
https://doi.org/10.1007/s00006-018-0879-2
https://doi.org/10.1002/mma.4489
https://doi.org/10.3390/s20144032
https://www.mdpi.com/1424-8220/20/14/4032
https://www.mdpi.com/1424-8220/20/14/4032
https://books.google.cz/books?id=xHNd5zCXt-EC
https://books.google.cz/books?id=xHNd5zCXt-EC
https://doi.org/10.1109/ICIP.2004.1421855
https://doi.org/10.1109/ICIP.2004.1421855
https://doi.org/10.1117/12.469523


Line-Bound Vectors, Plane-Bound
Bivectors and Tetrahedra in the Conformal

Model of Three-Dimensional Space

Timothy F. Havel(B)

MIT, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
tfhavel@gmail.com

Abstract. The representation of some elementary geometric concepts
in the conformal geometric algebra of three dimensions are reviewed, and
their connections to a recently discovered extension of Heron’s formula
for the area of a triangle to the volume of a tetrahedron are discussed.
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1 Background and Introduction

The intuitions which inspired Hermann Günther Grassmann to invent the inner
and outer products of vectors and points are seldom emphasized in modern
presentations of geometric algebra [7]. This is unfortunate because they still
have something to offer, both pedagogically and as a source of inspiration for its
applications and further developments. I have recently had the rare pleasure of
experiencing some of Grassmann’s spirit in the course of discovering a natural
extension of Heron’s formula to the tetrahedron, and envisioning how those same
geometric principles can be applied in higher dimensions [6]. The algebra was
tough going, but the payoff was in the geometric insights it led to.

In order to emphasize the elementary nature of those results and render them
accessible to the widest possible audience, I eschewed the use of modern geomet-
ric algebra in that work and confined myself to the better-known vector algebra
of Gibbs and Heaviside. Nevertheless, the conformal model would seem to be
the ideal framework within which to build upon the geometric insights obtained
in three dimensions in order to extend Heron’s formula to yet higher dimen-
sions. Doing so, however, will require some combinatorial analysis in addition to
algebraic and geometric, and as such is outside the scope of the present paper.
Instead, some of the techniques utilized in Ref. [6] will here be reformulated
within the conformal model [2,9], with emphasis on their intuitive aspects.

2 Barycentric and Affine Sums in the Conformal Model

One curious feature of the 5D conformal model is that, although it contains the
4D homogeneous model as a subspace, barycentric sums in that subspace do
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not correspond to weighted sums of the corresponding conformal points.1 This
is because a naive barycentric sum of conformal points a = n0 + a + n∞ a2/2,
b = n0 + b + n∞ b2/2 (n2

0 = n2
∞ = 0, n0 · n∞ = −1) is not itself null vector:

(βa a + βb b)2 = 2βa βb a · b = − βaβb ‖a − b‖2
(
βa + βb = 1

)
(1)

Instead a non-linear correction term has to be added on, specifically:

βa a + βb b + βaβb a · b n∞ = n0 + βa a + βb b + 1
2 ‖βa a + βb b‖2 n∞ (2)

For a general indexed sum
∑N

i=1 βi ai of points with
∑N

i=1 βi = 1, the corre-
sponding formula is:

N∑

i=1

βi ai + n∞
N∑

j>i=1

βiβj ai · aj = n0 +
N∑

i=1

βi ai +
1
2

∥
∥
∥
∥

N∑

i=1

βi ai

∥
∥
∥
∥

2

n∞ (3)

Far from being an encumbrance, this correction contains valuable metrical
information. For example, if b is such a corrected barycentric sum of the ai we
can easily derive Lagrange’s first identity [4] for the radius of gyration of {ai}
about the barycenter b thereof as follows:

0 = b2 = b ·
( ∑

i βi ai + n∞
∑

j>i βiβj ai · aj

)

=
∑

i βi ai · b −
∑

j>i βiβj ai · aj (4)

=⇒
∑

i βi ‖ai − b‖2 =
∑

j>i βiβj ‖ai − aj‖2

We can also derive Lagrange’s second identity, which connects these distances
with those to an arbitrary third point c, namely:

c · b =
∑

i βi c · ai + c · n∞
∑

j>i βiβj ai · aj

=⇒
∑

i

βi ‖ai − c‖2 = ‖b − c‖2 +
∑

j>i βiβj ‖ai − aj‖2 (5)

Finally, from Lagrange’s first and second identities together we get the Huygens-
Leibniz identity:

∑
i βi ‖ai − c‖2 = ‖b − c‖2 +

∑
i βi ‖ai − b‖2 (6)

If we are given a second barycentric sum b′ =
∑

i β′
i ai, the squared distance

between the two is

‖b − b′‖2 = −2 b · b′ = −2 b · ∑j β′
j aj − 2 b · n∞

∑
j>i β

′
iβ

′
j ai · aj , (7)

but since n∞ · ak = −1 for all k and
∑

k β′
k = 1, we have b · ∑j β′

j aj =

∑
i,j βiβ

′
j ai · aj +

(∑
j>i βiβj ai · aj

)( ∑
k β′

k n∞ · ak

)

=
∑

i,j (βiβ
′
j − 1

2 βiβj)ai · aj . (8)

1 Such sums can nonetheless be interpreted as a “pencil of coaxial spheres”
(cf. e.g. §15.2.4 of Ref. [2]).
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Together with Eq. (7), this yields: ‖b − b′‖2 =
∑

i,j (−2βiβ
′
j + βiβj + β′

iβ
′
j )ai · aj =

∑
i,j(βi − βj)(β′

i − β′
j)ai · aj

= −1
2

∑
i,j(βi − β′

i)(βj − β′
j) ‖ai − aj‖2

(9)

This last expression is known as Schönberg’s quadratic form [1]. It is well known
that it is non-negative for all values of the variables δi = βi − β′

i with
∑

i δi = 0
if and only if the coefficients ‖ai − aj‖2 are indeed the squared distances among
a system of points in Euclidean space. The geometric interpretation of this form
as being itself a squared distance shows very clearly why this is so.

In the homogeneous model the difference between two points n0+a and n0+b
yields a “free” vector v = b − a. It acts as a translation by addition, producing
in particular n0 +b = n0 + a+v. The difference between two conformal points
a and b, however, contains another term proportional to n∞, namely

v := b − a = v + 1
2 (b2 − a2)n∞ . (10)

Even though b = a + v and v2 = ‖b − a‖2, the addition of v to an conformal
point does not yield the translated point in general. Instead, multiplying it
from the right by n∞ yields the bivector vn∞, which in turn generates a rotor
exp(vn∞) = 1+vn∞ that translates a point c = n0 +c+n∞c2/2 via the usual
multiplicative two-sided action:

(1 + vn∞) c (1 + n∞v) = n0 + c + v + 1
2 n∞ (c + v)2 . (11)

The difference between two “flat” points n∞ ∧ b − n∞ ∧ a = n∞v generates
this same rotor exp(−n∞v), and more generally any affine sum of flat points∑

i δi(n∞∧ai) = n∞
∑

i δiai = n∞v with
∑

i δi = 0 also generates a translation.

3 Line-Bound Vectors and Tetrahedra

The next step up from flat points are line-bound vectors, which have the form

n∞ ∧ a ∧ b = n∞ ∧ (n0 + a + a2n∞/2) ∧ (n0 + b + a2n∞/2)

= n∞ ∧ (n0 + a) ∧ (n0 + b) = n∞ ∧
(
n0 ∧ (b − a) + a ∧ b

)

= N ∧ (b − a) + n∞ ∧ a ∧ b = N(b − a) + n∞ a ∧ b

(12)

with N := n∞∧n0 . The inner product of this with n0 is a bivector (b−a)n∞−
a ∧ b which generates a Euclidean “screw” motion (translation and rotation
about an axis thereof). This line-bound vector itself is determined by an oriented
segment [a,b] of a line in space, where the line’s direction is (b−a)/‖b−a‖ and
its (minimum) distance from the origin is ‖a∧b‖/(‖b−a‖). The position of this
oriented line segment on the line is however indeterminate, or alternatively, the
line-bound vector only determines the equivalence class of all collinear oriented
line segments with length ‖b − a‖.
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The length of the oriented line segment may be obtained by squaring the
line-bound vector, which yields a simple example of what is widely known as a
Cayley-Menger determinant [1,3,5]:

(n∞ ∧ a ∧ b)2 = −(b ∧ a ∧ n∞) · (n∞ ∧ a ∧ b) = (13)

− det

⎡

⎣
n∞ · n∞ n∞ · a n∞ · b
n∞ · a a · a a · b
n∞ · b a · b b · b

⎤

⎦ = det

⎡

⎣
0 1 1
1 0 1

2‖a − b‖2

1 1
2‖a − b‖2 0

⎤

⎦

= 1
2 ‖a − b‖2 + 1

2 ‖a − b‖2 = ‖a − b‖2

A little more generally, the inner product of two line-bound vectors is the inner
product of the corresponding free vectors:

−(b ∧ a ∧ n∞) · (n∞ ∧ c ∧ d) =

− 1
2

(‖a − c‖2 − ‖a − d‖2 − ‖b − c‖2 + ‖b − d‖2) = (b − a) · (d − c) (14)

In order to obtain the higher-grade parts the geometric product of two such
line-bound vectors, we expand it via Eq. (12) to get:

(n∞ ∧ a ∧ b)(n∞ ∧ c ∧ d)

=
(
N(b − a) + n∞(a ∧ b)

)(
N(d − c) + n∞(c ∧ d)

)

= (b − a)(d − c) + (n∞ · N)(a ∧ b)(d − c) − (N · n∞)(b − a)(c ∧ d)
= (b − a)(d − c) + n∞(a ∧ b)(d − c) + n∞(b − a)(c ∧ d)

(15)

The two-vector part of this, which is easily seen to be the same as the commutator
product of the line-bound vectors, is:

〈
(n∞ ∧ a ∧ b)(n∞ ∧ c ∧ d)

〉
2

= (16)

(b − a) ∧ (d − c) + n∞
(
(a ∧ b) · (d − c) + (b − a) · (c ∧ d)

)

Finally, the four-vector part of this product of line-bound vectors is:
〈
(n∞ ∧ a ∧ b)(n∞ ∧ c ∧ d)

〉
4

= n∞
(
(a ∧ b) ∧ (d − c) + (b − a) ∧ (c ∧ d)

)

= n∞
(
a ∧ b ∧ d − a ∧ b ∧ c + b ∧ c ∧ d − a ∧ c ∧ d

)

= n∞
(
(b − a) ∧ (c − a) ∧ (d − a)

)
(17)

This may be interpreted as 3!n∞ times the volume of the oriented tetrahedron
[a,b, c,d]. Since the line-bound vectors do not change when [a,b] and [c,d] are
translated along their respective lines, we see that the volume of the tetrahedron
is also unchanged by such translations, as well as translations of its other edges
along the lines they span.

Letting L := n∞ ∧ a ∧ b and M := n∞ ∧ c ∧ d, the product of LM with its
reverse is easily seen to be just

LMM̃L̃ = M̃L̃LM = ‖b − a‖2 ‖d − c‖2 . (18)
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This product, however, can also be written as

LMM̃L̃ = 〈LM〉0〈LM〉∼
0 + 〈LM〉2〈LM〉∼

2 + 〈LM〉4〈LM〉∼
4 (19)

+ 2 〈LM〉0〈LM〉∼
2 + 2 〈LM〉0〈LM〉∼

4 + 2 〈LM〉2〈LM〉∼
4

Because 〈LM〉4 contains a factor of n∞ by Eq. (17), 〈LM〉4〈LM〉∼
4 = 0. In

addition, by Eq. (14), 〈LM〉0 = (b − a) · (d − c), while the last three terms
on the right-hand side of Eq. (19) contain no scalar part. It follows that the
magnitude of 〈LM〉2 is:

∥
∥〈LM〉2

∥
∥2 = 〈LM〉2 ∗ 〈LM〉∼

2 :=
〈
〈LM〉2 〈LM〉∼

2

〉
0

= (20)

‖b − a‖2 ‖d − c‖2 −
(
(b − a) · (d − c)

)2 = ‖(b − a) ∧ (d − c)‖2

Geometrically, this quantity is the square of 4 times the area of the medial
parallelogram [(a + c)/2, (c + b)/2, (b + d)/2, (d + a)/2] of the tetrahedraon
[a,b, c,d]. To see that this is indeed a parallelogram, note first that

(a + c) ∧ (c + b) ∧ (b + d) ∧ (d + a) = (21)
a ∧ c ∧ b ∧ d + c ∧ b ∧ d ∧ a = 0

since the other 14 of the 16 blades obtained on expanding the left-hand side
contain a repeated factor. Thus the midpoints of the four edges [a, c], [c,b],
[b,d], [d,a] are coplanar. Furthermore, the outer product of the vectors from
the midpoint of any edge, say (a + c)/2, to the midpoints of its adjacent edges
(c + b)/2 and (d + a)/2, is simply

1
4

(
(c + b) − (a + c)

)
∧

(
(d + a) − (a + c)

)
= 1

4 (b − a) ∧ (d − c) , (22)

whence this paragraph’s first assertion follows.
In general, the sum of line-bound vectors is not itself a line-bound vector,

but a composite entity which can be interpreted in various ways. Classical inter-
pretations include the result of a system of forces acting at various points on a
rigid body, and the result of a system of infinitesimal motions applied to a rigid
body. We will not develop these theories here, but refer to interested reader to
the extensive literature on the subject [8]. Instead we shall seek to interpret the
graded components of the product of such an entity with itself in the context of
the conformal model, as above.

Hence consider an arbitrary composite line-bound vector of the form:

L + M = n∞ ∧ a ∧ b + n∞ ∧ c ∧ d = n∞ ∧ (a ∧ b + c ∧ d) (23)

By Eq. (14), the inner square of this expands to:
(
n∞ ∧ (a ∧ b + c ∧ d)

) · (
n∞ ∧ (a ∧ b + c ∧ d)

)
=

(b − a)2 + 2 (b − a) · (d − c) + (d − c)2 = 4 ‖(b+ d)/2 − (a+ c)/2‖2 (24)

Thus we see that the length of this diagonal of the medial parallelogram (which
is also a bimedian of the tetrahedron) remains unchanged as [a,b] and [c,d]
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are translated along their respective lines. The lengths of its sides ‖b − a‖/2
and ‖d − c‖/2 are of course also invariant under such translations. Finally,
Eq. (16) shows that the bivector of the medial parallelogram is likewise invari-
ant. Together, these observations prove that translations of [a,b] and [c,d] along
their respective lines merely translate the corresponding medial parallelogram
in space without changing its shape or aspect.

The anti-symmetry of Eq. (16) under the (a,b) ↔ (c,d) swap shows that
the 2-vector part of the square of a composite line-bound vector vanishes. The
4-vector part, however, is:
〈(

n∞ ∧ (a∧b+c∧d)
)2

〉

4
= 2n∞

(
(b−a)∧ (c∧d) + (a∧b)∧ (d−c)

)
(25)

This clearly does vanish if b − a = d − c or a ∧ b = c ∧ d, i.e. the line-bound
vector in question is simple (non-composite). On taking its dual with respect to
the pseudo-scalar ι = e1e2e3 of the free-vector subspace, we obtain:

ι
〈(

n∞ ∧ (a ∧ b + c ∧ d)
)2

〉

4
=

2n∞
(
(b − a) · (ι̃ c ∧ d) + (ι̃a ∧ b) · (d − c)

)
=

2n∞
(
(b − a) · (c × d) + (a × b) · (d − c)

)
(26)

The vanishing of the coefficient of 2n∞ on the right is a well-known condition
for the lines spanned by [a,b] and [c,d] to either intersect or be parallel [8]. It
is in fact just a way of writing the famous Plücker identity for the six Plücker
coordinates of a line in projective three-space.

It is seldom noted, nevertheless, that this same expression is equal to ±3!
times the volume

∣
∣[a,b, c,d]

∣
∣ of the tetrahedron. This follows from the fact that

the 4 vector parts of 2LM and (L+M)2 are obviously the same (cf. Eq. (17)).
Given this observation, it is perhaps no surprise that the real algebraic variety
of all degenerate (volume = 0) tetrahedra should be intimately related to the
Klein quadric K := {x ∈ R

6 |x1x6 − x2x5 + x3x4 = 0} [6]. A thorough study of
the representation of the more general Grassmann-Plücker relations in geometric
algebra was recently given by Sobczyk [10].

4 Plane-Bound Bivectors and Tetrahedra

We now consider the relations between two plane-bound bivectors, along with
the space-bound trivector (oriented volume) which a flat point and plane-bound
bivector mutually define. In the conformal model, a plane-bound bivector has
the form:

n∞ ∧ b ∧ c ∧ d = n∞ ∧ (n0 + b) ∧ (n0 + c) ∧ (n0 + d)
= N (c ∧ d − b ∧ d + b ∧ c) + n∞ b ∧ c ∧ d

= N (c − b) ∧ (d − b) + n∞ b ∧ c ∧ d (27)
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The free bivector (c − b) ∧ (d − b) has a squared magnitude (area) of

‖(c − b) ∧ (d − b)‖2 = ‖c − b‖2‖d − b‖2 −
(
(c − b) · (d − b)

)2 (28)

Its normal vector parallel to (c−b)× (d−b) = −ι (c−b)∧ (d−b) determines
the direction of the plane containing [b, c,d], while the distance of the plane
from the origin is ‖b ∧ c ∧ d‖/(‖(c − b) ∧ (d − b)‖). The same plane-bound
bivector, however, is obtained for any other triple of points b′, c′, d′ that lie in
the same plane and span a triangle [b′, c′,d′] with the same area.

The three-point Cayley-Menger determinant obtained by multiplying the
plane-bound bivector with its reverse is:

(d ∧ c ∧ b ∧ n∞)(n∞ ∧ b ∧ c ∧ d)
= 2

(
(b · c)(b · d) + (b · c)(c · d) + (b · d)(c · d)

)

−
(
(b · c)2 + (b · d)2 + (c · d)2

)

= 1
4

(
‖b − c‖ + ‖b − d‖ + ‖c − d‖

)(
‖b − c‖ + ‖b − d‖ − ‖c − d‖

)

(
‖b − c‖ − ‖b − d‖ + ‖c − d‖

)(
−‖b − c‖ + ‖b − d‖ + ‖c − d‖

)
(29)

The factorized formula on the right-hand side of this equation is of course Heron’s
formula for the squared area of a triangle [b, c,d] (times 4). It can be written
rather more compactly as

∣
∣[b, c,d]

∣
∣2 = suvw, where s is half the triangle’s

perimeter (i.e. the first factor above), and u, v, w are half the deviations of
the three triangle inequalities from saturation (i.e. the last three factors). By
expanding the squared dot product in Eq. (28) via the law of cosines x · y =
(‖x‖2 + ‖y‖2 − ‖x − y‖2)/2, it is readily shown that this three-point Cayley-
Menger determinant also equals the free bivector’s squared magnitude.

The inner product of different plane-bound bivectors gives a non-symmetric
Cayley-Menger determinant. Providing the planes are not parallel, we may
assume the point triples a, b, c and a, b,d have a pair a, b in common, so that:

(n∞ ∧ a ∧ b ∧ c) · (n∞ ∧ a ∧ b ∧ d) =
(
N (b − a) ∧ (c − a) + n∞ a ∧ b ∧ c)

) · (
N (b − a) ∧ (d − a) + n∞ a ∧ b ∧ d)

)

=
(
(b − a) ∧ (c − a)

) · (
(b − a) ∧ (d − a)

)
(30)

We also have the trivial identity among free bivectors,

(b − a) ∧ (d − c) = (b − a) ∧ (d − a) − (b − a) ∧ (c − a) , (31)

which in turn implies

‖(b − a) ∧ (d − c)‖2 = ‖(b − a) ∧ (d − a)‖2 + ‖(b − a) ∧ (c − a)‖2

− 2
(
(b − a) ∧ (d − a)

) · ((b − a) ∧ (c − a)
)

.
(32)
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The symmetry of the inner product of bivectors together with Eqs. (20), (30)
and (32) thus gives us the areal law of cosines,

(n∞ ∧ a ∧ b ∧ c ) · (n∞ ∧ a ∧ b ∧ d )
= ‖(b − a) ∧ (c − a)‖ ‖(b − a) ∧ (d − a)‖ cos(ϕab)

= 1
2

(
‖(b − a) ∧ (c − a)‖2 + ‖(b − a) ∧ (d − a)‖2 − ‖(b − a) ∧ (d − c)‖2

)

= 1
2

(∥
∥n∞ ∧ a ∧ b ∧ c

∥
∥2 +

∥
∥n∞ ∧ a ∧ b ∧ d

∥
∥2 −

∥
∥〈

LM
〉
2

∥
∥2

)
, (33)

where L and M are the line-bound vectors from Eq. (18) and ϕab is the dihedral
angle between the planes spanned by [a,b, c] and [a,b,d].

There is also a corresponding areal law of sines, which is obtained from a
simple case of the dual (Grassmann’s regressive) outer product “∨” which cor-
responds to the meet of the associated subspaces. Letting X be an arbitrary
non-null blade and y, z be vectors with X∧y,X∧ z �= 0, this may be written as

(X ∧ y) ∨ (X ∧ z) = X (X ∧ y ∧ z)∗ = X ‖X ∧ y ∧ z‖ , (34)

where (X ∧ y ∧ z)∗ is the dual w.r.t. the unit pseudo-scalar of the subspaces’
join. Upon taking norms and recalling [2] that the norm of such a dual outer
product is ‖X∧y‖‖X∧ z‖ sin(ϕ) where ϕ is the angle between the subspaces of
X ∧ y and X ∧ z, this implies:

∥
∥(n∞ ∧ a ∧ b ∧ c) ∨ (n∞ ∧ a ∧ b ∧ d )

∥
∥

= ‖(b − a) ∧ (c − a)‖ ‖(b − a) ∧ (d − a)‖ sin(ϕab)

= ‖b − a‖
∥
∥(b − a) ∧ (c − a) ∧ (d − a)

∥
∥

= ‖n∞ ∧ a ∧ b ‖ ‖n∞ ∧ a ∧ b ∧ c ∧ d ‖

(35)

where ϕab is the dihedral angle as above.
Now consider the product of a flat point with the plane-bound bivector:

(n∞ ∧ a) (n∞ ∧ b ∧ c ∧ d) =

(N + n∞ a)
(
N (c − b) ∧ (d − b) + n∞ b ∧ c ∧ d

)

= (1 + n∞ a) (c − b) ∧ (d − b) − n∞ b ∧ c ∧ d

= (c − b) ∧ (d − b) + n∞ a · (
(c − b) ∧ (d − b)

)

+ n∞ (a − b) ∧ (c − b) ∧ (d − b) (36)

The n∞ a · (
(c − b) ∧ (d − b)

)
term is unfortunately not translation invariant,

but the rest of its 2-vector part (c − b) ∧ (d − b) is, as is its 4-vector part
n∞ (a − b) ∧ (c − b) ∧ (d − b). The latter shows that the volume

∣
∣[a,b′, c′,d′]

∣
∣

of the tetrahedron is the same for all b′, c′, d′ in the same plane as [b, c,d]
and spanning a triangle of the same area. It is also the same, of course, for any
translate of a in the plane through a parallel to [b, c,d]. We can put a at the
origin by translating all the points with the rotor T̃ a := 1 − an∞, obtaining:

T̃ a (n∞ ∧ a)T a T̃ a (n∞ ∧ b ∧ c ∧ d)T a (37)
= (c − b) ∧ (d − b) − n∞ b ∧ c ∧ d
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Thus our remarks following Eq. (28) show that the height of n∞ ∧ a above the
plane of n∞ ∧ b ∧ c ∧ d is

ha =
‖(b − a) ∧ (c − a) ∧ (d − a)‖

‖(c − b) ∧ (d − b)‖ =
‖n∞ ∧ a ∧ b ∧ c ∧ d ‖

‖n∞ ∧ b ∧ c ∧ d ‖ (38)

which is the same as the ratio of the norms of the corresponding translation-
independent terms in Eq. (36).

Finally, we have the following discrete corollary of Stoke’s theorem amongst
the plane-bound bivectors of the four faces of the tetrahedron:

n∞ ∧ (b ∧ c ∧ d − a ∧ c ∧ d + a ∧ b ∧ d − a ∧ b ∧ c) = (39)
n∞ ∧ (b − a) ∧ (c − a) ∧ (d − a) = n∞ (b − a) ∧ (c − a) ∧ (d − a)

This implies, in particular, that the sum of the free bivector parts of these plane-
bound bivectors vanishes, a result usually attributed to Hermann Minkowski
although it must have been known to Grassmann. The bivectors of the four faces
determine that of the medial parallelogram (b−a)∧ (d−c) via Eq. (31) and its
analogues for the other two medial parallelogram bivectors (c−a)∧ (d−b) and
(c−b)∧ (d−a). This system of linear relations among these areal bivectors can
be inverted to express the areal bivectors of each face as a signed sum of those of
the three medial parallelograms. These analoges of Minkowski’s identity justify
the heterodox point-of-view that the tetrahedron actually has seven faces, where
its three medial parallelograms qualify as interior faces. Further justification
derives from the fact that the areas of these seven faces mutually determine a
non-degenerate tetrahedron up to isometry [6].

5 Heron’s Formula for Tetrahedra, and Their In-Spheres

The author’s extension of Heron’s formula to the tetrahedron is based on the
above linear relations amongst the bivectors of its seven faces, along with their
connections to the in-sphere thereof. This section summarizes these results using
the language of conformal geometric algebra, and discusses how they might be
extended to yet-higher dimensions within that framework.

The in-radius ρ of a tetrahedron is ρ = τ/σ, where τ := ‖n∞ ∧a∧b∧c∧d ‖
is 3! times its volume and σ is twice its surface area:

σ := αd + αc + αb + αa := ‖n∞ ∧ a ∧ b ∧ c ‖ (40)
+ ‖n∞ ∧ a ∧ b ∧ d ‖ + ‖n∞ ∧ a ∧ c ∧ d ‖ + ‖n∞ ∧ b ∧ c ∧ d ‖

As is likewise well known, the barycentric coordinates of the in-center i are just
the ratios of these four areas to their sum σ, whence it follows from Eq. (3) that
the dual representation of the in-sphere itself is:

s := (αaa + · · · + αdd)/σ + n∞
(
αaαb a · b + · · · + αcαd c · d − τ2/2

)
/σ2 (41)

The in-sphere touches the (exterior) faces of the tetrahedron at four points known
as its in-touch points j, k, �, m, where their free vectors relative to n0 satisfy
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j ∈ [b, c,d], k ∈ [a, c,d], l ∈ [a,b,d], m ∈ [a,b, c]. These divide the exterior
faces into three triangles each, and the six pairs of triangles each sharing a
common edge of the tetrahedron can easily be shown to be congruent. The
areas (times 2) of these triangles also determine the areas of its seven faces
(vide infra) and hence the tetrahedron itself (up to isometry if non-degenerate).
Accordingly, these six areas have been named the natural parameters of the
tetrahedron. Any assumed non-negative values for the areas of the seven faces,
in turn, determine the natural parameters of a tetrahedron, providing they satisfy
certain consistency relations.

To formulate these consistency relations, suppose the areas of the interior
faces (times 4) are αab = αcd = ‖(b − a) ∧ (d − c)‖, and similarly for αac = αbd

and αad = αbc . Then the triangle inequality for vectors v1 = v2 + v3 =⇒
‖v1‖ ≤ ‖v2‖ + ‖v3‖, applied to the three bivectors in Eq. (31), implies:2

αcd ≤ αc + αd , αd ≤ αc + αcd , αc ≤ αd + αcd (42)

The deviations of these inequalities from saturation will be denoted by T 1
cd :=

αc+αd−αcd, T 2
cd := αcd+αc−αd and T 3

cd := αcd+αd−αc, while T 0
cd := αc+αd+

αcd is a non-degeneracy factor that vanishes if and only if αc = αd = αcd = 0.
More generally, T k

xy will be the corresponding quantities for the other edges of the
tetrahedron with k = 0, 1, 2, 3 and x, y ∈ {a, b, c, d} (x �= y). There are 18 such
inequalities in all (6 triples), which will be called the tetrahedron inequalities.
Finally, the linear dependencies among the seven areal bivectors can be used to
show that they also satisfy a quadratic relation known as Yetter’s identity [12]:

α2
a + α2

b + α2
c + α2

d = α2
ab + α2

ac + α2
ad (= α2

cd + α2
bd + α2

bc) (43)

Using the areal laws of sines and cosines plus a little trigonometry, one can
show that the natural parameters of the tetrahedron [a,b, c,d] are given by the
following simple rational functions of the seven areas:

u := ‖n∞ ∧ a ∧ b ∧ � ‖ = ‖n∞ ∧ a ∧ b ∧ m ‖ = T 0
cd T 1

cd/(2σ)

v := ‖n∞ ∧ a ∧ c ∧ k ‖ = ‖n∞ ∧ a ∧ c ∧ m ‖ = T 0
bd T 1

bd/(2σ)

w := ‖n∞ ∧ a ∧ d ∧ k ‖ = ‖n∞ ∧ a ∧ d ∧ � ‖ = T 0
bc T 1

bc/(2σ)

x := ‖n∞ ∧ b ∧ c ∧ j ‖ = ‖n∞ ∧ b ∧ c ∧ m ‖ = T 0
ad T 1

ad/(2σ)

y := ‖n∞ ∧ b ∧ d ∧ j ‖ = ‖n∞ ∧ b ∧ d ∧ � ‖ = T 0
ac T 1

ac /(2σ)

z := ‖n∞ ∧ c ∧ d ∧ j ‖ = ‖n∞ ∧ c ∧ d ∧ k ‖ = T 0
ab T 1

ab/(2σ)

(44)

The fact that each exterior face is divided into three subfaces by its in-touch
point allows their areas to be expressed in terms of the natural parameters as:

αd = u+v+x , αc = u+w+y , αb = v+w+z , αa = x+y+z (45)

2 The notation here is a bit confusing in that αd signifies the face [a,b, c] opposite the
vertex d, etc., but it is standard and the alternative αabc is cumbersome.
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These relations in turn imply σ = 2(u+v+w+x+y+z). The squared interior
areas, however, are quadratic in the natural parameters:

α2
cd = (v+w+x+y)2 − 4uz = α2

ab , α2
bd = (u+w+x+z)2 − 4 vy = α2

ac ,

α2
bc = (u+v+y+z)2 − 4wx = α2

ad (46)

Since the natural parameters determine the areas, they likewise determine a
non-degenerate tetrahedron up to isometry.

With these definitions, the extension of Heron’s formula to tetrahedra is:

τ4 = σ2
(
2 vwxy + 2uwxz + 2uvyz − u2z2 − v2y2 − w2x2

)
(47)

=: σ2 Ω(u, v, w, x, y, z) = −4 (u+v+w+x+y+z)2 det

⎡

⎢
⎢
⎣

0 u v w
u 0 x y
v x 0 z
w y z 0

⎤

⎥
⎥
⎦

Thus Ω > 0 is a necessary (and, it turns out, sufficient [6]) condition for any
u, . . . , z > 0 to determine a non-degenerate tetrahedron. Note also that the
parameters u, v, w in the compact version of Heron’s formula suvw (given after
Eq. (29)) equal the lengths of the line segments into which the triangle’s sides
are divided by their in-touch points, and that their product uvw likewise equals
the analogous 3 × 3 determinant. Together with Eq. (47), this leads to a rather
obvious conjecture as to how the formula should extend to higher dimensions
(see Conjecture 4.9 in Ref. [6]).

The observations made in this paper should inform efforts to prove that
conjecture. Nevertheless, it is not so obvious how the expression ‖〈LM〉2‖ for the
area αab = αcd of that interior face should be extended to the “medial sections”
(as they are known) of general n-simplicies, and this expression is already a bit
unwieldy even for n = 3. A clue as to what might be a better approach may be
found in a generalization of Cayley-Menger determinants to the “hyper-areas” of
general medial sections discovered by Istiván Talata [11]. In particular, Talata’s
determinant expresses the squared area of an interior face as e.g.

α2
ab = α2

cd =
1
4

det

⎡

⎣

0 0 1 1 0 0
0 0 0 0 1 1
1 0 0 Δab Δac Δad
1 0 Δab 0 Δbc Δbd
0 1 Δac Δbc 0 Δcd
0 1 Δad Δbd Δcd 0

⎤

⎦ , (48)

where Δab := ‖a − b‖2 etc. Having a double border of 0’s and 1’s, however, it
seems unlikely that this determinant admits a geometric interpretation within
the conformal model. Therefore an extension of the conformal model will be
proposed that allows this to be done.

This extension posits two pairs of null vectors, n0,n∞ and n′
0,n

′
∞ such that

n0 ·n∞ = n′
0 ·n′

∞ = −1 and n0 ·n′
0 = n0 ·n′

∞ = n∞ ·n′
0 = n∞ ·n′

∞ = 0. The
vertices of the tetrahedron are then represented by null vectors of the form:

a = n0 + n′
0 + a + n∞ a2/2 , b = n0 + n′

0 + b + n∞ b2/2

c = n0 + n′
0 + c + n′

∞ c2/2 , d = n0 + n′
0 + d + n′

∞ d2/2
(49)
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It is readily verified that the inner products among n0,n∞,n′
0,n

′
∞ reproduce

the double border in the above Talata determinant, while the inner products
among a, b, c,d are still equal to half the negative squared distances. It will, of
course, be necessary to use four such pairs of null vectors, and four copies of
each vertex each with its own point at infinity, in order to represent the Talata
determinants of all three (2, 2)-medial sections (parallelograms).

Although this algebraic trick clearly works, its geometric implications are
not entirely clear. It would be particularly interesting if those led to a simple
geometric interpretation of the zeros of the polynomial Ω in Eq. (47), which
were studied in depth in the original reference [6] but remain rather mysterious.
Almost all these zeros, in fact, are the limits of sequences of non-degenerate
tetrahedra the vertices of which go off to plus or minus infinity along a line while
the ratios of the distances amongst them remain finite. This “areal” boundary of
the set of non-degenerate tetrahedra is wildly different from the usual boundary,
which consists of all quadruples of points in the (finite) Euclidean plane.

Note Added in Proof: A greatly expanded version of this paper is currently
in press at “Advances in Applied Clifford Algebras.”
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Abstract. A (Clifford) geometric algebra is usually defined in terms of a
quadratic form. A null vector v is an algebraic quantity with the property
that v2 = 0. The universal algebra generated by taking the sums and
products of null vectors over the real or complex numbers is denoted by
N . The rules of addition and multiplication are taken to be the familiar
rules of addition and multiplication of real or complex square matrices. In
a series of ten definitions, the concepts of a Grassmann algebra, its dual
Grassmann algebra, the associated real and complex geometric algebras,
and their isomorphic real or complex coordinate matrix algebras are
set down. This is followed by a discussion of affine transformations, the
horosphere and conformal transformations on pseudoeuclidean spaces.

Keywords: affine plane · geometric algebra · Grassmann algebra ·
horosphere

1 Introduction

The development of the concept of duality in mathematics has a robust history
dating back more than 100 years, and involving 20th Century mathematicians of
the first rank such as F. Reisz and S. Banach, but also encompassing first rank
19th Century mathematicians such as Gauss, Lobachevsky and Bolyai. A fasci-
nating history of the seminal Hahn-Banach Theorem, and all its ramifications
regarding the issue of duality in finite and infinite dimensional Hilbert spaces is
given in [1].

Considering infinite dimensional vector spaces broadens and immensely deep-
ens the mathematical issues involved in the concept of duality [2,3]. In this paper
we consider duality only in regard to a finite dimensional vector space, where it
is well known that duality is equivalent to defining a Euclidean inner product
[4]. The purpose of this paper is to show how a new concept of compatibility of
a pair of null vectors, over the real or complex numbers, not only captures the
notion of duality but nails down the corresponding isomorphic real or complex
coordinate matrix algebra of a Clifford geometric algebra.

A series of 10 definitions, given in Sect. 2, is used to define a Grassmann
algebra, its compatible dual Grassmann algebra, and their associated geometric
algebra. A pair of compatible null vectors is used to define the affine plane and the
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horosphere of a general pseudoeuclidean geometric algebra. In Sect. 3, conformal
transformations in pseudoeuclidean space is defined in terms of Ahlfors-Vahlen
matrices, and their corresponding linear fractional transformations in geometric
algebra.

2 Ten Definitions

1. Null vectors are algebraic quantities v �= 0 with the property that v2 = 0.
They are to be added and multiplied together using the same rules as the
addition and multiplication of real or complex square matrices. The trivial
null vector is denoted by 0, and the universal algebra generated by taking
the sums and products of null vectors is denoted by N .

2. Two null vectors a1, a2 ∈ N are said to be anticommutative if

a1a2 + a2a1 = 0.

3. A set of mutually anticommuting null vectors {a1, . . . , an}IF is said to be
linearly independent over IF = IR or C, if a1 · · · an �= 0.1 In this case they
generate over IF the 2n-dimensional Grassmann algebra

Gn(IF) := genIF{a1, . . . , an},

[6].

4. Let Ai :=
(
1
ai

)
for i = 1, . . . , n. The right directed Kronecker product,

G2(IF) := A1
−→⊗A2 =

⎛
⎜⎜⎝

(
1
a1

)
⊗ 1(

1
a1

)
⊗ a2

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1
a1

a2

a12

⎞
⎟⎟⎠ ,

gives the ordered basis elements defining the Grassmann algebra G2(IF),
written in a column matrix. More generally, the right directed Kronecker
product

Gn(IF) := A1
−→⊗ · · · −→⊗An

gives the ordered 2n-column matrix of the basis elements

{1; a1, . . . , an; . . . ; aλ1 · · · aλk
; . . . ; a1 · · · an}T

IF

of the 2n-dimensional Grassmann algebra Gn(IF) ⊂ N . The
(

n
k

)
elements

aλ1···λk
:= aλ1 · · · aλk

1 More general fields IF can be considered as long as characteristic IF �= 2. For an
interesting discussion of this issue see [5].
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for 1 ≤ λ1 < · · · < λk ≤ n are called k-vectors. Similarly, the left directed
Kronecker product

G2(IF) := AT
2
←−⊗AT

1 =
(
1←−⊗ (

1 a1

)
a2

←−⊗ (
1 a1

))
=

(
1 a1 a2 a21

)
,

gives the ordered basis elements defining the Grassmann algebra G2(IF),
written in a row matrix. More generally,

Gn(IF) := (AT
n
←−⊗ · · · ←−⊗AT

1 ),

gives the ordered 2n-dimensional row matrix of the basis elements of the
Grassmann algebra Gn(IR) ⊂ N , [7, p.82].

5. A pair of null vectors a, b ∈ N are said to be algebraically dual, or compatible
if

ab + ba = 1. (1)
The dual null vectors a and b satisfy the easy to remember, and easily
verified, Multiplication Table 1:

Table 1. Multiplication Table.

· a b ab ba

a 0 ab 0 a

b ba 0 b 0

ab a 0 ab 0
ba 0 b 0 ba

In this case, we define a∗ := b and b∗ := a, from which it follows that

(a∗)∗ = b∗ = a.

Particularly noteworthy is the fact that ab and ba are idempotents.

The corresponding anticommuting pseudoeuclidean vectors e := a+ b and
f := a − b, satisfy e2 = 1 = −f2, and define the bivector u := ef in the
geometric algebra G1,1 := IR(e, f) ⊂ N , with the matrix of basis elements

G1,1 := AbaBT =
(
1
a

)
ba

(
1 b

)
=

(
ba b
a ab

)
. (2)

Note, we have slightly abused notation by defining the geometric algebra G1,1

both as an extension of the real number system to include the pseudoeuclidean
vectors e and f , and in terms of its basis elements given in (2).

A geometric number g ∈ G1,1 is determined by its coordinate matrix
[g] := [gij ], for gij ∈ IR, by

g = AT ba[g]B =
(
1 a

)
ba

(
g11 g12
g21 g22

)(
1
b

)
= g11ba + g12b + g21a + g22ab,

see [7, p.67].
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6. More generally, let

Gn(IR) := A1
−→⊗ · · · −→⊗An ⊂ N and G#

n (IR) = BT
n

←−⊗ · · · ←−⊗BT
1 ⊂ N

be two 2n-dimensional real Grassmann algebras. The Grassmann algebras
Gn(IR) and G#

n (IR) are said to be compatible Grassmann algebras if there
exists generating bases

Gn(IR) := genIR{a1, . . . , an} and G#
n (IR) := genIR{b1, . . . , bn}

such that
2ai · bj := aibj + bjai = δij . (3)

In this case, G∗
n(IR) := G#

n (IR). Of course, nothing is surprising because it is
well known that any standard vector space V , and it dual space V ∗ can be
represented in terms of an equivalent inner product, [4].

7. For the compatible Grassmann algebras, defined in Definition 6, the real
geometric algebra Gn,n(IR) is defined by

Gn,n(IR) := Gn(IR) ⊗ G∗
n(IR) = genIR{a1, . . . , an, b1, . . . , bn},

where for i, j = 1, . . . , n, the null vectors ai and bj satisfy (3).
8. Defining the idempotents ui := biai, the quantity

u1···n := u1 · · · un =
n∏

i=1

biai = b1a1 · · · bnan

is a primitive idempotent in the geometric algebra Gn,n. The spectral basis
of null vectors of the geometric algebra Gn,n is specified by

Gn,n := A1
−→⊗ · · · −→⊗Anu1···nBT

n
←−⊗ · · · ←−⊗BT

1 =
(−→⊗n

i=1Ai

)
u1···n

(−→⊗n
i=1Ai

)∗
,

where A∗
i := BT

i for i = 1, . . . , n. In the spectral basis, any g ∈ Gn,n is
explicitly expressed in terms of its coordinate matrix [g] := [gij ] for gij ∈ IR,
by

g =
(−→⊗n

i=1A
T
i

)
u1···n[g]

(←−⊗1
i=nBi

)
,

[7, Chapter 5].

In Definition 5, we derived the geometric algebra G1,1, see equation (2).
Referring back to Definition 4, for the geometric algebra G2,2, define u1 =
b1a1 and u2 = b2a2. The spectral basis for G2,2 is

⎛
⎜⎜⎝

1
a1

a2

a12

⎞
⎟⎟⎠ u1u2

(
1 b1 b2 b21

)
=

⎛
⎜⎜⎝

u1u2 b1u2 b2u1 b21
a1u2 u†

1u2 a1b2 −b2u
†
1

a2u1 a2b1 u1u
†
2 b1u

†
2

a12 −a2u
†
1 a1u

†
2 u†

1u
†
2

⎞
⎟⎟⎠ , (4)



44 G. Sobczyk

where the reverses of u1 and u2 are defined by u†
1 := a1b1 and u†

2 := a2b2.
The geometric number g ∈ G2,2 is defined by its coordinate matrix [gij ] ∈
M4(IR) by

g =
(
1 a1 a2 a12

)
u1u2[gij ]

⎛
⎜⎜⎝

1
b1
b2
b21

⎞
⎟⎟⎠ ,

[7, p. 84].
9. The standard basis of Gp,q := G(IRp,q) is specified by

Gp,q := IR(e1, . . . , ep, f1, . . . , fq) = genIR{e1, . . . , ep, f1, . . . , fq}

where ei := ai + bi and fj := aj − bj for i = 1, . . . , p and j = 1, . . . , q. The
basis vectors are mutually anticommutative and satisfy the basic property

e2i = 1, and f2
j = −1,

as can be easily verified. For p, q > 0, let n = p + q. The position vector
x ∈ IRp,q is defined by

x = (x1, x2, . . . , xp+q) :=
p∑

i=1

xiei +
q∑

j=1

xp+jfj .

More details in the construction of the standard basis can be found in [7, p.
71].

10. The real geometric algebra

Gn,n+1 := IR(e1, . . . , en, f1, . . . , fn+1) = Gn(C),

where the imaginary i has the geometric interpretation of the oriented unit
pseudoscalar in Gn,n+1:

i =
√−1 := (e1f1) · · · (enfn)fn+1 ⇐⇒ fn+1 := i(e1f1) · · · (enfn).

How geometric matrices arise as algebraically isomorphic coordinate matri-
ces, and a practical application to the classical Plücker relations, is explored in
[8]. A general introduction to geometric algebras and their coordinate matrices
is given in [7]. A periodic table of all of the classical Clifford geometric algebras
is derived from three Fundamental Structure Theorems in [9].

3 Affine Plane and Horosphere

Many ideas of projective geometry have been efficiently formulated in geometric
algebra [5,10,11]. Following the approach given in [12, p.321-326], the basic ideas
of the affine plane and horosphere are presented in terms of null vectors.
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Fig. 1. The affine plane Ap,q
a and horosphere Hp,q.

The affine plane Ap,q
a ⊂ IRp+1,q+1 is defined by

Ap,q
a := {xa = x + a| x ∈ IRp,q ⊂ IRp+1,q+1},

and the (p, q)-horosphere

Hp,q := {xc = xabxa| x ∈ IRp,q ⊂ IRp+1,q+1},

where a, b ∈ G1,1 are compatible null vectors (see Definition 5.) in IRp+1,q+1,
orthogonal to the subspace IRp,q. A drawing of the affine plane Ap,q and horo-
sphere Hp,q is given in Fig. 1. We now easily establish basic relationships between
these fundamental constructions [12, pp.321-325].

For the point xa = x + a ∈ Ap,q, x2
a = x2, and for xc = xabxa ∈ Hp,q,

xc = (xa · b + xa ∧ b)xa =
1
2
xa + (xa ∧ b)xa = xa − x2b

= (a + xba + xab − x2b) = (1 + xb)a(1 − xb) = exbae−xb.

We also calculate

xc · yc = (xa − x2b) · (ya − y2b) = x · y − 1
2
(x2 + y2) = −1

2
(x − y)2,

giving the relationship between the inner product of the points xc, yc ∈ Hp,q

and the pseudoeuclidean distance between x and y. The point xa ∈ Ap,q can be
recovered from xc ∈ Hp,q,

xa = 2(xc ∧ b) · a,

and the point x ∈ IRp,q can be recovered from xc, by

x = 2(x ∧ b) · a = 4(xc ∧ b ∧ a) · (b ∧ a).
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The importance of these formulas follow from the expression of conformal
transformations in terms of the Ahlfors-Vahlen matrices [12, p.287], [13], and
their linear fractional equivalences. Let c1, c2, c3, c4 ∈ Gp,q, and define the lin-
ear fractional transformation L(x), and its corresponding Ahlfors-Vahlen matrix
transformation [L(x)], by

L(x) := (c1x + c2)(c3x + c4)−1 ←→ [L[x]] :=
(

c1 c2
c3 c4

)(
x
1

)
.

A conformal transformation is defined by its Ahlfors-Vahlen matrix provided
that its pseudodeterminant

pdet

(
c1 c2
c3 c4

)
:= c1c

†
4 − c2c

†
3 �= 0,

where the † denotes the operation of reverse, [13, p.271]. When restricted to the
values given in the table below, the mapping L(x) defines a conformal transfor-
mation L : IRp,q → IRp,q, mapping the horosphere Hp,q onto itself [12, p.325],
[13].

G [G] (c1x+ c2)(c3x+ c4)
−1

Translation eyb

(
1 y

0 1

)
x+ y

Inversion a+ b

(
0 1

1 0

)
1
x

Dilation e
1
2 φu

(
e

1
2 φ 0

0 e−
1
2 φ

)
eφx

Reflection y

(
y 0

0 −y

)
−yxy−1

Transversion eca

(
1 0

−c 1

)
x(1 − cx)−1
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Abstract. We study the inner product of oriented points in conformal
geometric algebra and its geometric meaning. The notion of oriented
point is introduced and the inner product of two general oriented points
is computed, and analyzed (including symmetry) in terms of point to
point distance, and angles between the distance vector and the local ori-
entation planes of the two points. Seven examples illustrate the results
obtained. Finally, the results are extended from dimension three to arbi-
trary dimensions n.

Keywords: Conformal geometric algebra · oriented points · point
geometry

1 Introduction

In this work we apply conformal geometric algebra (CGA) to the description of
points, including a planar orientation. An excellent general reference on Clifford’s
geometric algebras is [13], a short engineering oriented tutorial is [10], and [14]
describes a free software extension for a standard industrial computer algebra
system (MATLAB). Alternatively, all computations could be done in the opti-
mized geometric algebra algorithm software GAALOP [6]. Introductions to CGA
are given in [2,4] and efficient computational implementations are described in
[6]. CGA has found wide ranging applications in physics, quantum computing,
molecular geometry, engineering, signal and image processing, neural networks,
computer graphics and vision, encryption, robotics, electronic and power engi-
neering, etc. Up to date surveys are [1,8,12]. An introduction to the notion of
oriented point can be found in [5]. A prominent application could be to LIDAR
terrain strip adjustment [11].

In the current work, we begin with the CGA expression for oriented points
in three Euclidean dimensions and compute their inner products (Sect. 2). We
study the geometric information included in this inner product with the help of
a wide range of representative examples (Sect. 3), analyze the most important
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License [9].
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D. W. Silva et al. (Eds.): ICACGA 2022, LNCS 13771, pp. 48–59, 2024.
https://doi.org/10.1007/978-3-031-34031-4_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-34031-4_5&domain=pdf
http://orcid.org/0000-0002-5587-6750
https://doi.org/10.1007/978-3-031-34031-4_5


Inner Product of Two Oriented Points in Conformal Geometric Algebra 49

term that includes the direction of the line segment connecting the two points
and their two point orientations in detail (Sect. 4), and study the symmetries of
the inner product of oriented points (Sect. 5). Finally, we extend our framework
from three to n Euclidean dimensions (Sect. 6).

2 Computation of Inner Product of Oriented Points

We consider the inner product of two oriented points in conformal geometric
algebra [5], as reference for practical CGA computations in this section we rec-
ommend [7]. Note that inner product and wedge product have priority over the
geometric product, e.g., iq · qE = (iq · q)E, etc. An oriented point is given by
the multivector expression of a circle with radius zero (r = 0) in CGA,

Q = iq ∧ q + [
1
2
q2iq − q(q · iq)]e∞ + iqe0 + iq · qE, (1)

where the three-dimensional position vector of Q is the vector q ∈ R
3, the unit

oriented bivector of the plane (orthogonal to the normal vector nq of the plane)
is iq ∈ Cl2(3, 0), e0 is the vector for the origin dimension, e∞ is the vector for
the infinity dimension, and the origin-infinity bivector is E = e∞ ∧ e0, with

e20 = e2∞ = 0, e0 · e∞ = −1, (2)

and e0 and e∞ are both orthogonal to R
3. For comparison we also state the

expression of a conformal point (without orientation: no) and circle1 in CGA:

Qno = q +
1
2
q2e∞ + e0, C = Q +

1
2
r2iqe∞, (3)

where Qno is simply given by the three-dimensional position vector q ∈ R
3 plus

two terms in e∞ and e0, while the conformal expression for the circle is the same
as the oriented point (1), albeit with finite radius r > 0.

The Euclidean bivector iq specifying the Euclidean carrier of the circle,
respectively the orientation (local plane information) of the oriented point, can
be obtained as (right contraction: �)

iq = −(C ∧ e∞)�E = −(Q ∧ e∞)�E. (4)

The point Qno, geometrically at the center of the circle C, can be directly
obtained from2

Qno = ̂Ce∞C = ̂Qe∞Q, (5)

1 Two ways to obtain a circle in CGA are: (1) by the outer product of any three
conformal points on the circle, (2) by combining center vector q, carrier bivector iq
and radius r as specified by (1) and (3).

2 For comparison one can norm the result, such that the e0-component becomes one:
Qno/(−Qno · e∞).



50 E. Hitzer

the three-dimensional position vector q ∈ R
3 from

q =
(Qno ∧ E)�E
−Qno · e∞

, (6)

and the radius of the circle as

r2 =
C ̂C

i2q
. (7)

We take a second oriented point P positioned at the origin p = 0 with plane
orientation bivector ip,

P = ipe0. (8)

Now we compute the inner product of P and Q by taking the scalar part of their
geometric product

P · Q = 〈PQ〉 =
〈

(ipe0)
{

iq ∧ q +
[1
2
q2iq − q(q · iq)

]

e∞ + iqe0 + iq · qE
}

〉

=
〈

ipe0
[1
2
q2iq − q(q · iq)

]

e∞
〉

= −
{1

2
q2

〈

ipiq
〉 − 〈

ipq (q · iq)
〉

}

= −1
2
q2ip · iq +

〈

(

ip · q + ip ∧ q
)

(q · iq)
〉

= −1
2
q2ip · iq +

〈

(ip · q)(q · iq)
〉

= −1
2
q2ip · iq −

〈

(q · ip)(q · iq)
〉

. (9)

Note that in this situation q becomes the Euclidean distance vector from P to
Q.

We now use the fact that the unit oriented bivector iq of the plane is dual
to the unit normal vector nq via multiplication with the three-dimensional
Euclidean volume pseudoscalar i3 = e1e2e3,

iq = nqi3, ip = npi3. (10)

This gives by (70) and (67) in [10], where × is the standard cross product of
three-dimensional vector algebra,

q · ip = q · (npi3) = (q ∧ np)i3 = −q × np, q · iq = −q × nq. (11)

Therefore

− 〈(q · ip)(q · iq)〉 = −〈(q × np)(q × nq)〉 = −(q × np) · (q × nq). (12)

Note: The resulting quadruple product appears in the proof of the spherical law
of cosines [15]. The quadruple product can be expanded to

−(q × np) · (q × nq) = −[q2np · nq − (q · nq)(q · np)]

= −q2[np · nq − (q̂ · nq)(q̂ · np)], (13)

with unit distance direction vector q̂, such that q = |q|q̂. Note also that from
(10)

ip · iq = −np · nq. (14)
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Then we can write the full inner product of two oriented points as

P · Q =
1
2
q2np · nq − [q2np · nq − (q · nq)(q · np)]

= −1
2
q2np · nq + (q · nq)(q · np)

= q2[−1
2
np · nq + (q̂ · nq)(q̂ · np)]

= q2[−1
2

cos αpq + cos Θq cos Θp], (15)

if we define cos αpq = np · nq, cos Θq = q̂ · nq, and cosΘp = q̂ · np, where αpq

is the dihedral angle between the two planes, and Θq is the angle between the
distance vector q and nq, while Θp is the angle between q and np, respectively.
See Fig. 1 for illustration, with P at the origin, and q replaced by d.

Remark 1. Note that the above relation is fully general, even if P is a point
in general position. Because our special situation, with P at the origin, is only
different from the general situation by a global translation, which will not change
the inner product P ·Q = 〈PQ〉. In the general case, the vector q will simply be
replaced by the Euclidean distance vector between the two positions d = q − p,
see Fig. 1.

Fig. 1. Illustration of inner product of two oriented points P and Q, with Euclidean
distance vector d = q − p, αpq dihedral angle between the two orientation planes ip
and iq, Θq angle between d and nq, and Θp angle between d and np, respectively.

For the special case that the two planes are parallel3, i.e. np = nq, np·nq = 1,
we have with the consequence Θ = Θq = Θp that

P · Q = q2(−1
2

+ cos2 Θ) = −1
2
q2(1 − 2 cos2 Θ) =

1
2
q2 cos 2Θ, (16)

using the trigonometric identity 1 − 2 cos2 Θ = − cos 2Θ.

3 This will also approximately be the case, if two matching oriented points are com-
pared.
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For the special case that additionally Θ = 0, i.e. both planes are parallel and
the distance q perpendicular to the planes we have

P · Q =
1
2
q2. (17)

3 Examples

To gain some intuition of what the inner product of two oriented points in CGA
(15) means, we compute several examples, always assuming for simplicity that
the first point P is positioned at the origin: p = 0.

Example 1. First we look at two parallel planes at orthogonal distance three.

ip = iq = e12, np = nq = e3, q = 3e3, q2 = 9, q̂ = e3. (18)

Then we can compute directly

P · Q =
〈

e12 e0
[1
2

9e12 − 3e3 (3e3 · e12)
]

e∞
〉

= −1
2

9e12 e12 =
9
2
, (19)

because e0[129e12 − 3e3(3e3 · e12)] = [129e12 − 3e3(3e3 · e12)]e0, e0 · e∞ = −1,
e3 · e12 = 0, and e212 = −1. The result also confirms (17).

We obtain the same result, if we apply (15) instead. Toward this we compute

cos αpq = e3 · e3 = 1, cos Θq = e3 · e3 = 1, cos Θp = e3 · e3 = 1. (20)

Hence, as expected

P · Q
(15)
= 9(−1

2
+ 1) =

9
2
. (21)

Example 2. Next we look at two parallel planes, and the points are separated
by a vector in the plane, i.e. the P glides along its own plan by q to become Q.
Assuming

ip = iq = e12, np = nq = e3,

q = e1 + e2, q2 = 2, q̂ =
1√
2
(e1 + e2), (22)

we obtain

cos αpq = e3 · e3 = 1, cos Θq =
1√
2
(e1 + e2) · e3 = 0,

cos Θp =
1√
2
(e1 + e2) · e3 = 0. (23)

Applying (15) the inner product becomes

P · Q = 2(−1
2

+ 0) = −1. (24)

In this case only the first term in (15) proportional to np · np contributes.
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Example 3. We now look again at two parallel planes, but the Euclidean distance
vector q is at angle π/4 with the planes. We assume

ip = iq = e12, np = nq = e3,

q = e1 + e3, q2 = 2, q̂ =
1√
2
(e1 + e3), (25)

and obtain

cos αpq = e3 · e3 = 1, cos Θq =
1√
2
(e1 + e3) · e3 =

1√
2
,

cos Θp =
1√
2
(e1 + e3) · e3 =

1√
2
. (26)

Applying (15) the inner product becomes

P · Q = 2(−1
2
1 +

1√
2

1√
2
) = 0. (27)

This is a special case, where both terms in (15) are non-zero, but happen to
cancel each other.

Example 4. Now we take two planes vertical to each other, and the distance
vector is perpendicular to the first and parallel to the second. We assume

ip = e12, iq = e23, np = e3, nq = e1,

q = 3e3, q2 = 9, q̂ = e3, (28)

and obtain

cos αpq = e3 · e1 = 0, cos Θq = e3 · e1 = 0, cos Θp = e3 · e3 = 1. (29)

Applying (15) the inner product becomes

P · Q = 9(−1
2
0 + 0) = 0. (30)

Obviously, if the two planes are vertical to each other, and the Euclidean distance
vector is parallel to one of the planes, the result is always zero.

Example 5. This example is simply a variation of the previous one, with a dif-
ferent orientation of iq. We assume

ip = e12, iq =
1√
2
(e13 + e23), np = e3, nq =

1√
2
(−e2 + e1),

q = 3e3, q2 = 9, q̂ = e3. (31)

and obtain

cos αpq = e3 · 1√
2
(−e2 + e1) = 0, cos Θq = e3 · 1√

2
(−e2 + e1) = 0,

cos Θp = e3 · e3 = 1. (32)
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Applying (15) the inner product becomes zero again

P · Q = 9(−1
2
0 + 0) = 0. (33)

Example 6. In this example the second plane is tilted with respect to the first by
a dihedral angle of π/4. The distance vector is perpendicular to the first plane
and at angle π/4 with the second:

ip = e12, iq =
1√
2
(e12 + e23), np = e3, nq =

1√
2
(e3 + e1),

q = 3e3, q2 = 9, q̂ = e3. (34)

We obtain

cos αpq = e3 · 1√
2
(e3 + e1) =

1√
2
, cos Θq = e3 · 1√

2
(e3 + e1) =

1√
2
,

cos Θp = e3 · e3 = 1. (35)

Applying (15) the inner product becomes

P · Q = 9(−1
2

1√
2

+
1√
2
) =

9
2
√

2
. (36)

Here both terms in (15) contribute and the second term cos Θq cos Θp dominates.

Example 7. Here we take the two planes to be parallel, and a more general
Euclidean distance vector:

ip = e12, iq = e12, np = e3, nq = e3,

q = 2e2 + 3e3, q2 = 13, q̂ =
1√
13

(2e2 + 3e3). (37)

We obtain

cos αpq = e3 · e3 = 1, cos Θq = e3 · 1√
13

(2e2 + 3e3) =
3√
13

,

cos Θp = e3 · 1√
13

(2e2 + 3e3) =
3√
13

. (38)

Applying (15) the inner product becomes

P · Q = 13(−1
2

+
9
13

) =
5
2
. (39)

4 About the Term (q̂ · nq)(q̂ · np) in P · Q
– For nq ∦ nq the two plane normal vectors together define a plane that can be

specified by the bivector nq ∧nq. This allows to split the Euclidean distance
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vector q into parts parallel q‖ and perpendicular q⊥ to the nq ∧nq-plane. In
the inner products of (q̂ · nq)(q̂ · np) of (15), the perpendicular q⊥ part will
not contribute, because it is perpendicular to both nq and nq. So we get

(q̂ · nq)(q̂ · np) = (q̂‖ · nq)(q̂‖ · np). (40)

– For nq = np, the part q⊥ perpendicular to nq drops out, and only the part
q̂‖ parallel to nq contributes.

(q̂ · nq)(q̂ · np) = (q̂‖ · np)2. (41)

– If q̂ ⊥ nq or q̂ ⊥ np, then

(q̂ · nq)(q̂ · np) = 0. (42)

– For q̂ = nq = np or q̂ = −nq = −np we the get a maximal contribution of
(q̂ · nq)(q̂ · np) to the inner product. Then

P · Q =
1
2
q2. (43)

– For q̂ = nq = −np or q̂ = −nq = np we the get a minimal contribution of
(q̂ · nq)(q̂ · np) to the inner product. Then

P · Q = −1
2
q2. (44)

5 Symmetries of P · Q
The inner product of two oriented points in CGA of (15) is a function of the
three unit vectors q̂, nq, and np, i.e. the unit direction of the Euclidean distance,
and the two unit normal vectors of the two planes.

P · Q = q2[−1
2
np · nq + (q̂ · nq)(q̂ · np)] = f(np,nq, q̂). (45)

The function f(np,nq, q̂) has the following symmetries

f(−np,nq, q̂) = f(np,−nq, q̂) = −f(np,nq, q̂),
f(np,nq,−q̂) = f(np,nq, q̂). (46)

That is changing the sign of any one of the two plane normal vectors changes
the sign of P ·Q, while changing the sign of the Euclidean distance vector leaves
P · Q invariant.
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6 Inner Product of Oriented Points for n-Dimensional
Euclidean Space

In this section we aim to show that the inner product relationship (15) of oriented
points in CGA, applies in any dimension n ≥ 2, up to an overall sign.

We are now working with CGA Cl(n+1, 1) of n-dimensional Euclidean space
R

n. Its pseudoscalar is

I = In+1,1 = InE, In = e1e2 · · · en, E = e∞ ∧ e0, (47)

with squares

E2 = 1, I2 = (InE)2 = I2nE2 = I2n =
{

+1, n mod 4 = 1, 0
−1, n mod 4 = 2, 3.

(48)

Depending on the dimension n we therefore have the inverse of the pseudoscalar
to be

I−1 =
{

+I, n mod 4 = 1, 0
−I, n mod 4 = 2, 3.

(49)

The dual of a multivector M ∈ Cl(n + 1, 1) is given by

M∗ = MI−1, M = M∗I. (50)

Especially for two bivectors Mb and Nb we have the inner product relationship
with the duals of the bivectors to be

〈M∗
b N∗

b 〉 = 〈Mb(±I)Nb(±I)〉 = 〈MbNbI
2〉

= 〈MbNb〉
{

+1, n mod 4 = 1, 0
−1, n mod 4 = 2, 3

}

, (51)

where we used the commutation of INb = NbI for bivectors Nb. For example in
the case of n = 3 we have

〈M∗
b N∗

b 〉 = −〈MbNb〉. (52)

We now construct an oriented point in Cl(n + 1, n) by taking a dual sphere
vector centered at the Euclidean position of the point p ∈ R

n intersected with
a dual equator plane4 orthogonal to normal unit vector np ∈ R

n, n2
p = 1, and

take the limit of the sphere radius r → 0. The dual sphere is

σ = S∗ = Cp − 1
2
r2e∞, (53)

with conformal center point

Cp = p +
1
2
p2e∞ + e0. (54)

4 Strictly speaking this is a hyper-plane of dimension n − 1.
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The dual equator plane that has to include the center Cp and be normal to np

is
μ = Plane∗ = np + de∞ = np + (p · np)e∞, (55)

using oriented distance d ∈ R from the origin

d = Cp · np = (p +
1
2
p2e∞ + e0) · np = p · np. (56)

The dual of the equator circle5 is given by the outer product of dual equator
plane and dual sphere

Circle∗ = μ ∧ σ = [np + (p · np)e∞] ∧ (Cp − 1
2
r2e∞). (57)

Taking the limit of sphere radius r → 0, and inserting the expression for Cp, we
get the dual of an oriented point in CGA Cl(n + 1, 1) located at p ∈ R

n and
oriented normal to np

P ∗ = (np + p · np e∞) ∧ (p +
1
2
p2e∞ + e0)

= np ∧ p +
1
2
p2npe∞ + (p · np)e∞p + npe0 + (p · np)(e∞ ∧ e0)

= np ∧ p + [
1
2
p2np − p(p · np)]e∞ + npe0 + (p · np)E, (58)

where we used the anti-commutation e∞p = −pe∞. A second dual oriented
point located at q ∈ R

n and oriented normal to nq is then given by

Q∗ = nq ∧ q + [
1
2
q2nq − q(q · nq)]e∞ + nqe0 + (q · nq)E. (59)

Locating the first dual oriented point at the origin, i.e. p = 0, it becomes

P ∗ = npe0. (60)

The inner product with the second dual oriented point in general position q, q
therefore marking the oriented distance vector of the two points, becomes

〈P ∗Q∗〉 = 〈npe0{nq ∧ q + [
1
2
q2 − q(q · nq)]e∞ + nqe0 + (q · nq)E}〉

= 〈npe0[
1
2
q2nq − q(q · nq)]e∞〉 = 〈np[

1
2
q2nq − q(q · nq)]〉

=
1
2
q2(np · nq) − (q · np)(q · nq), (61)

5 Note that in general dimensions this is a hyper-circle in the sense that for n = 2 it is a
point pair, for n = 3 a normal circle, for n = 4 the circle is itself a three-dimensional
sphere embedded in four dimensions, etc.
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using e0v = −ve0 for any vector v ∈ R
n, especially for v = [12q

2nq − q(q ·nq)],
and −〈e0e∞〉 = 1. Because P ∗ and Q∗ are bivectors, the inner product of P and
Q becomes by (51)

〈PQ〉 = 〈P ∗Q∗〉
{

+1, n mod 4 = 1, 0
−1, n mod 4 = 2, 3

}

=
{

+1, n mod 4 = 1, 0
−1, n mod 4 = 2, 3

}

[
1
2
q2(np · nq) − (q · np)(q · nq)], (62)

and obviously agrees by (52) in three dimensions (n = 3) with (15).
The analysis of the preceding Sects. 2, 4 and 5 therefore fully applies in

general dimensions n ≥ 2, up to an overall sign6 due to the value of I2, which is
easy to take into account. And examples analogous to Sect. 3 are obviously easy
to construct.

7 Conclusion

In this work we have reviewed the formulation of oriented points in conformal
geometric algebra (CGA), and computed the inner product of two oriented points
in terms of their distance vector (its direction and length) and their two point
orientations. The geometric meaning of this inner product is elucidated based
on a set of representative examples, analysis of the key term in the inner prod-
uct, and symmetry analysis. Finally, the approach is extended from three to n
Euclidean dimensions. Our new results may find application in LIDAR terrain
strip adjustment computations, where points on overlapping strips need to be
compared together with the local plane orientation of the respective strip, see
e.g. [11].
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Abstract. A protein can be regarded as a chain of amino acids with
unique folding in the three-dimensional (3D) space. Knowing the folding
of a protein is desirable since the folding controls the protein properties.
However, determining it experimentally is expensive and time consum-
ing: estimating the 3D structure of a protein computationally - known
as protein structure prediction (PSP) - can overcome these issues. In
this paper, we explore the advantage of using Geometric Algebra (GA)
to model proteins for PSP applications. In particular, we employ GA to
define a metric of the orientation of the amino acids in the chain. We
then encode this metric in matrix form and show how patterns in these
images mirror folding patterns of proteins. Lastly, we prove that this
metric is predictable through a standard deep learning (DL) architec-
ture for the inference of pairwise amino acids distances. We demonstrate
that GA is a powerful tool to obtain a compact representation of the
protein geometry with potential to improve the prediction accuracy of
standard PSP pipelines.

Keywords: Protein Structure Prediction · Deep Learning · Geometric
Algebra

1 Introduction

The 3D structure of a protein - known as tertiary structure - is the arrangement
in space of its amino acid chain - the primary structure - and it determines the
protein behaviour and cellular function. Determining the structure experimen-
tally, however, is expensive and time consuming.

For this reason, there has been a great deal of recent interest in deep learning
(DL) algorithms to predict the protein structure starting from the amino acid
sequence [1,2]. By cutting time and cost and achieving unprecedented accuracies,
protein structure prediction (PSP) has a huge potential impact on medicine and
biotechnologies. The state of the art in PSP is represented by [3]: the AlphaFold2
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pipeline can directly predict the 3D coordinates of heavy atoms and reach a
median backbone accuracy of 0.96 Å (as the interresidue distance is of the order
of Å) on the CASP14 dataset [4]. From a geometrical point of view, proteins are
represented as a residue gas: each amino acid - also called a residue - is associated
with a rigid body (triangles) for the backbone and an angle for the sidechain.
Similar processing strategies are found in [5], where 1D, 2D and 3D data are
combined in a pipeline of several neural networks producing mutual predictions.

Most PSP pipelines based on DL have contact and distance maps as their
end goal, which are then used to predict the protein structure. However, in [6],
it has been demonstrated that adding orientational information improves the
accuracy of the structure prediction: adding angle maps (three in total, one for
each dihedral angle associated with a residue) can improve the precision of the
top L long-range contacts of up to 2.2% on the CASP13 dataset.

In this paper, we propose a single map based on a Geometric Algebra (GA)
description of the protein geometry. This has two main advantages compared to
common angle maps: (1) it has a clear correspondence to the protein’s secondary
structure and (2) can be represented as a single, symmetric map instead of three
asymmetric ones.

The rest of the paper is structured as follows: in Sect. 2, the fundamentals
of Conformal GA are introduced. In Sect. 3, the proposed protein model is pre-
sented and the GA cost and cost maps are introduced. In Sect. 4, the prediction
algorithm and strategy are presented, while in Sect. 5 the prediction results are
shown. Lastly, in Sect. 6, conclusions are drawn.

2 Conformal Geometric Algebra

Conformal Geometric Algebra (CGA) maps GA Gp,q,r of dimension n = p+q+r
to Gp+1,q+1,r by introducing two basis vectors, e and ē, with e2 = +1 and
ē2 = −1. Having introduced e and ē, we can compose the vectors

n∞ = e + ē

n0 =
1
2
(ē − e)

(1)

which help define a mapping of the kind

x ∈ Gp,q,r −→ F (x) ∈ Gp+1,q+1,r (2)

in which F (x) is defined as

F (x) = −1
2
(x − e)n∞(x − e)

F (x) =
1
2
(x2n∞ + 2x − n0)

(3)

In the case in which we are dealing with a 3D space (i.e. G3,0,0), the equivalent
CGA will be G4,1,0. When working in CGA, point pairs, lines, planes, circles and
spheres are all conveniently represented by blades in the 5D CGA. A summary
is provided in Table 1.
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Table 1. Objects in CGA

Grade Symbol Object

1 A point

2 A ∧ B point pair

3 A ∧ B ∧ C circle (C)

3 A ∧ B ∧ n∞ line (L)

4 A ∧ B ∧ C ∧ D sphere (Σ)

4 A ∧ B ∧ C ∧ n∞ plane (Π)

3 CGA in Protein Geometry

3.1 Cost Function

A protein can be simplified into a backbone chain and several side chains. The
backbone is responsible for the 3D shape of the protein, and it is composed of
a series of carbon, nitrogen, and oxygen atoms. The α-carbons are the main
feature of the backbone, to which the side chains that differentiate each amino
acid are bonded. Each α-carbon is preceded by a nitrogen atom and followed by
a carbon atom. Hence, to each amino acid i we can associate a triplet of atoms
{N,Cα, C}i.

Each {N,Cα, C} triplet lies on a plane, constraining the protein folding (see
Fig. 1). We can hence conveniently model a protein backbone in CGA so any
three {N,Cα, C} atoms will lie on a plane (not too dissimilar to the residue gas
of [3]): let Ai, Bi and Ci be the Euclidean coordinates expressed in Conformal
space of the atoms {N,Cα, C}i, respectively. The plane associated with residue
i can be expressed as the 4-blade:

Πi = Ai ∧ Bi ∧ Ci ∧ n∞ (4)

Given two planes Πi,Πj corresponding to the amino acids i, j, we can compute
the rotor that brings one to the other as described in [7]:

Rij =
1

√〈K〉0
(1 − ΠiΠj) (5)

where K = 2 − (ΠiΠj + ΠjΠi) and 〈·〉 is the grade projector operator. We now
use the cost function Cλ(R) that measures how much the rotor R varies from
the identity, as defined in [8]. Cλ(R) is a weighted sum of a translational and a
rotational term:

Cλ1λ2(R) = λ1〈R‖R̃‖〉0 + λ2〈(R⊥ − 1)(R̃⊥ − 1)〉0 (6)

in which the translational error is represented by R‖ = R · e, and the rotational
error by 〈(R⊥ − 1)(R̃⊥ − 1)〉0 = 〈(R − 1)(R̃ − 1)〉0. As we are interested in
an orientational feature, we will focus exclusively on the rotational part (case
λ1 = 0, λ2 = 1).
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Fig. 1. First 70 {N, Cα, C} planar triplets of the haemoglobin backbone.

3.2 Cost Maps

Inter-residue interactions are commonly represented as matrices - also called
maps. A contact map C of a protein consisting of M residues, for example, is a
binary M × M matrix of the type:

Cij =

{
1 if dij < 15 Å
0 otherwise

(7)

where dij is the distance between residues i, j expressed in Å measured as the
Euclidean distance between the Cα coordinates of residues i and j. A cost map
can be interpreted as: two residues are in contact if they are within a certain
distance from each other. A more informative metric, usually real valued, is given
by distance maps, which are similarly defined as:

Dij = dij (8)

From either or both contact and distance maps it is possible to obtain accu-
rate 3D shape estimation. However, when contact or distance maps are predicted
and not exact, errors are introduced into the 3D reconstruction step. Having an
additional map grasping the orientation between residues can help to further
constrain the search space for the protein folding. We can hence employ our
cost function to produce a cost map which contains orientational information as
follows:

Mij =

{
Cλ1λ2(Rij) if dij < 15 Å
0 otherwise

(9)

3.3 Examples

A comparison between contact map C, distance map D and cost map M is given
in Fig. 2 for an example protein. We label protein according to their 4-character
alphanumeric PDB identifier [10]

It is possible to establish a relation between patterns in cost maps and the
protein secondary structure. By secondary structure we refer to the local folding
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Fig. 2. From left to right: contact, distance and cost map for protein 2hc5a.

of a segment of a protein, e.g. α-helices, β-sheets or turns. Secondary structure
information is a common feature in PSP pipelines and one of the most important
in predicting distance and contact maps, as shown in [5,9].

By assigning a colour to each secondary structure, it is possible visualize
the secondary structure of each amino acid pair. We arbitrarily assigned red
to α-helices, green to β-sheets, blue to turns and white to all the others. Any
combination of these four colours gives the possible secondary structures of the
pair, for a total of 10 different colour combinations. As shown in Sect. 3.3, it is
possible to find a clear correspondence between secondary structures and pat-
terns in the cost maps. To the best of our knowledge, this is the first example of
an orientational map that also encodes the secondary structure of the protein.



68 A. Pepe et al.

4 Predicting Cost Maps

We verified the predictability of our cost maps by employing a deep residual
network as presented in [9]. We will refer to both the network and the associated
dataset as PDNET.

4.1 PDNET

PDNET is residual neural network composed of 128 blocks. Each residual block
consists of a batch normalization layer, a ReLU activation function, a 2D convo-
lutional layer with 3×3 kernel, a dropout layer with α = 0.3, a ReLU activation
function, and a 2D convolutional layer, for a total of ∼ 9.5M tunable parameters.

PDNET was originally designed to predict either: (i) contact maps, (ii)
binned distance maps or (iii) real-valued distance maps. We demonstrate that
from the same features and with the same architecture originally presented in
[11], cost maps can also be estimated. The task of distance map prediction is
comparable to the problem of depth estimation: the three RGB channels of a
colour image are replaced by tens of feature matrices derived from the amino
acid sequence, and the depth map is replaced by the distance map.

Specifically, the total number of channels is N = 57, corresponding to 7 fea-
tures: position specific scoring matrix (PSSM), secondary structure, entropy,
FreeCon, CCMPred, surface area and potential energy. Of these CCMpred,
FreeCon and potential energy are pairwise features, the rest are 1D features
relative to a single amino acid. The 1D features are encoded twice as identical
columns and rows for each amino acid in the sequence. The features are identical
to those of the PDNET dataset of [9], which includes a more detailed description
of their biochemical meaning. They are either derived from previous DL based
prediction or multiple sequence alignment queries.

When PDNET is employed to predict real valued distances, it employs the
reciprocal logcosh as a loss function:

L
(i)
D = log

(

cosh

(
K

D(i)
P + ε

− K

D(i)
T + ε

))

(10)

where D(i)
P is the predicted distance matrix, D(i)

T the true distance matrix, ε a
small positive number and K is a scalar set equal to 100. The inverse of the maps
is taken in order to prioritize short-range interaction, for which higher accuracy
is desirable, over long-range interaction, which is less relevant in terms of the
overall 3D structure. The loss is evaluated pixel by pixel and summed over the
total number of pixels.
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4.2 Training Details

The GA-based cost maps are also real valued and bounded in the range [0, 2],
as we verified empirically by evaluating Cλ1,λ2(R). However, since the cost does
not increase for residues further away as it is a purely orientational measure, we
changed the loss to be:

LM(i) = log
(
cosh

(
M(i)

P − M(i)
T

))
(11)

where M(i)
P ,M(i)

T are the predicted and true cost maps for protein (i) in the
training set, respectively.

For training the network, we kept the features unchanged from those of
PDNET, namely a stack of images of the type {X(i)}N

i=1, with N = 57 and
X(i) ∈ R

M×M , in which M is the length of the protein sequence. The change
comes in substituting the target DT ∈ R

M×M - the true, real-valued distance
maps, with MT ∈ R

M×M - the true, real-valued cost maps, obtained from the
protein coordinates in the protein database [10]. Again, the loss is evaluated per
pixel.

The training set has been kept to 1000 proteins from the DEEPCOV dataset,
and the testing set to 150 proteins from the PSICOV dataset, as in the original
PDNET pipeline. The code has been implemented using the Keras API of Ten-
sorflow for the Machine Learning modules, the Clifford library for operations in
Geometric Algebra and the PDB Module of the Biopython library for handling
protein data. The code was written in the form of Jupyter Notebooks on Google
Colaboratory and all the experiments have been run on an NVIDIA Tesla K80
GPU. All the scripts and data are available upon request to the authors.

We considered scenarios (see Fig. 3): (a) predicting cost maps with 57 feature
channels (standard PDNET), (b) predicting cost maps with 57 feature channels
+ 1 (real) distance channel (ideal case, as distance maps would not be available),
(c) predicting cost maps with 57 feature channels + 1 (predicted) distance chan-
nel also via PDNET (realistic case, as distance maps also need to be predicted
in PSP).

5 Results

We evaluated two metrics, namely: (i) mean absolute error (MAE), as in com-
mon regression problems, and (ii) structural similarity index (SSIM) between
MP ,MT , since a low MAE does not necessarily mean that the patterns in the
cost maps are captured successfully. The MAE is measured in Å, while the SSIM
ranges between [0, 1], with SSIM = 1 meaning fully similar matrices and SSIM = 0
fully dissimilar matrices. They are defined as follows:

MAE(MP ,MT ) :
1

M2

M∑

i=1

M∑

j=1

|MPij − MTij | (12)
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Fig. 3. The three processing schemes: (a) predicting costs from PDNET; (b) predicting
costs from PDNET + true distance maps; (c) predicting costs from PDNET + predicted
distances, themselves predicted from PDNET.

SSIM(MP ,MT ) :
(2μMP

μMT
+ c1)(2σMPMT

+ c2)
(μ2

MP
+ μ2

MT
+ c1)(σ2

MP
+ σ2

MT
+ c2)

(13)

with μMT
being the mean of MT , μMP

the mean of MP , σMPMT
the covariance

of MP and MT , σ2
MP

the variance of MP , σ2
MT

the variance of MT , c1 =
(k1L)2, c2 = (k2L)2 with k1 = 0.01, k2 = 0.03 and L being the dynamic range,
set to L = 255.

Results are summarized in Tables 2 and 3.



GA Models of Proteins for 3D Structure Prediction 71

Table 2. MAE between original and predicted cost maps (Å)

no distance with distance with pred. distance

Max Mean Min Max Mean Min Max Mean Min

DEEPCOV (val) 0.1080 0.0218 0.0009 0.0418 0.0108 0.0005 0.0607 0.01825 0.0005

PSICOV (test) 0.0342 0.0158 0.0029 0.0275 0.0125 0.0028 0.0327 0.01490 0.0029

Table 3. SSIM between original and predicted cost maps.

no distance with distance with pred. distance

Max Mean Min Max Mean Min Max Mean Min

DEEPCOV (val) 0.9946 0.9041 0.4990 0.9986 0.9652 0.8387 0.9991 0.9360 0.7442

PSICOV (test) 0.9937 0.9431 0.8592 0.9941 0.9632 0.9130 0.9936 0.9519 0.8851

It can be noticed that cost maps are indeed predictable based on features
commonly used to predict distances. However, when predicting cost maps with-
out distance information, only close range contacts (i.e. the pixels close to the
diagonal) are predicted accurately. Adding predicted distance information, on
the other hand, allows us to significantly improve the prediction of the patterns
in cost maps, with a mean MAE decrease by 16.3% for the training set and by
5.7% for the testing set. The average SSIM increased by 3.5% and by 1% for the
training and testing sets, respectively. The better the prediction of the distance
information (i.e., the closer the predicted distance maps are to the original ones),
the higher the improvement on cost prediction.

Examples of the predicted cost maps in comparison with the original cost
maps over the testing set are given in Fig. 4.

Lastly, we evaluated the which is intuitive feature importance (PFI) to rank
the most relevant features in the prediction of cost maps. We did so by training
the network by permuting one feature at a time and then taking the ratio of our
metric with and without permutation of that feature. By permutation we refer
to the shuffling of a single feature across the training set, meaning that when we
evaluate the PFI for feature n, each protein will have associated an erroneous
feature n belonging to a different protein during training, while leaving the
testing set unchanged. We then measured the PFI of feature n as:

PFI
(n)
MAE =

MAE(MP ,MT )
MAE(n)(MP ,MT )

(14)

PFI
(n)
SSIM =

SSIM (n)(MP ,MT )
SSIM(MP ,MT )

(15)

In which f(MP ,MT ) is the metric f measured with standard training procedure,
and f(MP ,MT )(n) is the metric f measured when permuting feature n during
training.

Results for the validation set (DEEPCOV) and for two testing set (PSICOV
and CAMEO HARD) are shown in Fig. 5. The PSSM and secondary structures
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Fig. 4. Examples of the GA cost map for four protein chains predicted with the three
approaches (a,b,c) of Fig. 3. Note how adding distances significantly improves the qual-
ity of the prediction.

appear to be the two most relevant features, a result which mirrors that found
for distance maps in [9]. This is in agreement with the findings of Sect. 3, where
we saw the close relationship between cost patterns and secondary structures.
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Fig. 5. Permutation Feature Importance over MAE and SSIM for each of the 7 features
across validation and test sets.

6 Conclusions

In this paper, we have introduced a new feature based on GA describing the
relative amino acid orientation for PSP. We firstly presented the criterion behind
the modeling of a protein backbone as a collection of planes. We then evaluated
the rotor between each pair of planes and associated a cost to it. The pairwise
costs were then arranged in matrix form to produce cost maps. We proceeded
to show how patterns in cost maps can be directly associated to the protein
secondary structure and verified how features and algorithms employed in PSP
to predict distance maps can also be used to predict our proposed GA cost maps.
Adding distance information - even if only predicted - can further improve the
predicted cost maps in terms of MAE and SSIM.

Our cost maps therefore constitute a useful tool for protein modelling and
may provide new orientation-based features that could improve the 3D structure
prediction. We believe that GA could hence constitute a successful tool to model
proteins and provide new orientational features that can improve the precision
of the 3D structure prediction and reduce the number of required features.

Future work might include employing predicted costs, along with feature
and distance maps, to predict the 3D coordinates of Cα atoms in the protein
backbone on the basis of [5,12] and verify whether the cost maps can further
constrain the search space and improve the accuracy of the 3D coordinates, or
employing different GA modeling choices.
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Abstract. This paper features convolutional neural network (CNN)
models on Clifford algebras applied to a medical image classification
task, namely the diagnosis of acute lymphoblastic leukemia (ALL). ALL
is a type of cancer identified by malformed lymphocytes, known as lym-
phoblasts, in the bloodstream. The image classification task aims to dis-
criminate healthy cells from lymphoblasts. This work shows that CNNs
featuring parameters in Clifford algebras significantly outperform real-
valued networks of equivalent size in this application. Indeed, the real-
valued and a Clifford CNN achieved an average accuracy of 94.60% and
97.02%, respectively, in the ALL-IDB dataset with a 50% train-test split.
Moreover, we present smaller versions of Clifford CNNs with roughly 75%
fewer parameters that yielded a 96.50% average accuracy. The results
reported in this work are comparable to high-end models in the litera-
ture despite having several orders of magnitude fewer parameters.

Keywords: Clifford algebra · convolutional neural network · deep
learning · acute lymphoblastic leukemia · computer assisted diagnosis

1 Introduction

Neural networks (NNs) are artificial intelligence models inspired by the human
nervous systems [12]. NNs seek to mimic the synapse process, responsible for
carrying information between neurons in the brain. Learning is achieved by
strengthening synaptic connections that are frequently activated. Likewise, NNs
learn by processing examples and adjusting their synaptic weights to match the
expected output. Apart from biological motivation, an NN can be interpreted as
a non-linear parametric function in mathematical terms. The parameters corre-
spond to the synaptic weights and are adjusted by minimizing a loss function
built on a set of examples called the training set.

A branch of NNs that flourished in the recent decades is the so-called deep
learning (DL) [12]. DL uses networks with numerous layers and a high number
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of free parameters to learn alternate representations of data. These deep neural
networks (DNNs) rose in popularity due to an exponential increase in compu-
tational power in the last decades. One such type of DNN is the convolutional
neural network (CNN). CNNs feature a particular type of operation based on the
convolution of filters with the inputs, and are incredibly well-suited at learning
and representing local patterns. Consequently, CNNs are often regarded as the
basis of state-of-the-art models in image processing and pattern recognition.

Traditional NNs are based on real-valued inputs, outputs, and synaptic
weights. In contrast, hypercomplex-valued NNs (HvNNs) such as Clifford neural
networks use hypercomplex values instead of real numbers [1,15]. Because hyper-
complex values can be interpreted as vector space elements, HvNNs are ade-
quate to process multidimensional data. Furthermore, they can benefit from the
geometric properties of the hypercomplex algebras. Several works showcase the
advantage of hypercomplex networks over their real-valued counterparts, espe-
cially on tasks involving multi-channel data such as image processing [5,17,21].
Recent works also show that CNNs in hypercomplex algebras excel at reducing
computational complexity while delivering similar or higher performance when
compared to real-valued models [8,13,17].

This paper addresses an application of HvNN for acute lymphoblast leukemia
(ALL) diagnosis. ALL is a type of blood cancer that appears and multiplies
rapidly. It is characterized by the presence of many lymphoblasts in the blood
and also in the bone marrow. A common diagnosis technique is the peripheral
blood smear, in which a hematologist counts the number of lymphoblasts in a
blood sample with a microscope. However, manually counting lymphoblasts is
a rather monotonous task that is prone to error and takes the time of a pro-
fessional who could be more productive in other matters. For this and several
other reasons, computer models to perform automatic lymphoblast counts have
been proposed in the literature [4,7,18,19,23]. In particular, successful auto-
mated ALL diagnosis has also been achieved by combining deep learning mod-
els with transfer learning and unsharpening techniques [10,11,23]. Besides the
results using real-valued models, a quaternion-valued CNN exhibited robust per-
formance for computer-aided ALL diagnosis with only 34% of the total number of
parameters of the corresponding real-valued NN [13]. In fact, CNNs on multiple
hypercomplex algebras were applied for ALL detection in [22], noticeably out-
performing an equivalent real network. In this paper, we investigate further the
performance of HvNN models for ALL diagnoses by considering Clifford algebras
besides quaternions. On top of extending the quaternion-valued CNN to other
Clifford algebras, this paper improves the HvNN proposed in [13] by reducing
the number of parameters without compromising the network performance.

This work is organized as follows: Sect. 2 provides an overview of basic con-
cepts on Clifford algebras; the core concepts of Clifford neural networks are
discussed in Sect. 3; Sect. 4 introduces the application of the proposed Clifford
networks in a lymphoblast classification task; lastly, Sect. 5 provides concluding
remarks regarding the attained results.
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2 A Brief on Clifford Algebras

In a very simplified manner, this section presents the basic concepts of Clifford
algebras. The readers interested in further details are invited to read [14,20].

Let V be a finite-dimensional vector space over the real numbers, that is,
V = R

n. A Clifford algebra is obtained by enriching the vector space V with
scalars and multivectors. Multivectors generalize the concept of vectors. From
a geometric point of view, while vectors have length, multivectors are associ-
ated with properties like area and volumes. Besides their geometric properties,
multivectors are derived algebraically by the product of vectors as follows.

Consider an orthonormal basis {γ1, . . . , γd} of V. We define a multivector γij

as the product of two distinct basis vectors γi and γj , that is, γij ≡ γiγj , for
i, j ∈ {1, . . . , d} with i �= j. Moreover, the square of vectors and multivectors are
scalars, and we denote the scalar unit by γ0 ≡ 1.

Let us denote by Γ the set of products of all combinations of up to d vectors
as well as the scalar unit 1 and the d vector basis. Note that Γ has the same
number of elements as the power set of {1, . . . , d}, that is, Card(Γ ) = 2d. For
example, if {γ1, γ2, γ3} is an orthonormal basis for a vector space V, we have

Γ = {1, γ1, γ2, γ3, γ12, γ13, γ23, γ123}. (1)

Alternatively, we can write Γ = {γλ : λ ∈ Λ}, where Λ denotes the set of all 2d

ordered indexes defined by

Λ = {i1i2 · · · ik : 1 ≤ i1 < i2 < · · · < ik ≤ d, 1 ≤ k ≤ d} ∪ {0}. (2)

A Clifford algebra is defined on the set G(V) of all linear combinations of
scalars, vectors, and multivectors derived from V. Formally, G(V) denotes the
vector space spanned by the set Γ given by (1), that is,

G(V) =

{∑
λ∈Λ

αλγλ : αλ ∈ R,∀λ ∈ Λ

}
. (3)

Note that, because Card(Γ ) = Card(Λ) = 2d, we also have dim
(G(V)

)
= 2d.

Finally, a Clifford algebra is obtained by endowing G(V) with an associative
binary operation called Clifford or geometric product. The geometric product is
defined as follows on the basis elements γ1, . . . , γd of V:

γiγj =

⎧⎪⎨
⎪⎩

−γjγi, i �= j,

+1, i = j and i = 0, . . . , p,

−1, i = j and i = p + 1, . . . , d,

(4)

where p ∈ {0, . . . , d}. We note that (4) can be computed on multivectors by using
the associativity and anti-commutativity properties. For example, assuming γ2

1 ≡
γ1γ1 = −1, the product of γ12 and γ1 yields

γ12γ1 = (γ1γ2)γ1 = −(γ2γ1)γ1 = −γ2(γ1γ1) = −γ2(−1) = γ2.
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Table 1. Product of vectors and multivectors in four-dimensional Clifford algebras.

C�(2, 0) γ1 γ2 γ12

γ1 1 γ12 γ2

γ2 −γ12 1 −γ1

γ12 −γ2 γ1 −1

C�(1, 1) γ1 γ2 γ12

γ1 1 γ12 γ2

γ2 −γ12 −1 γ1

γ12 −γ2 −γ1 1

C�(0, 2) γ1 γ2 γ12

γ1 −1 γ12 −γ2

γ2 −γ12 −1 γ1

γ12 γ2 −γ1 −1

The pair (p, q), with p+ q = d, identifies the Clifford algebra C�(p, q). In this
paper, we focus on four-dimensional Clifford algebras. This choice is motivated by
the successfull applications of four-dimensional hypercomplex algebras, mostly
quaternions, for image processing tasks [9,17,21]. Table 1 shows the product
of vectors and multivectors in all four-dimensional Clifford algebras, i.e., the
algebras derived from a two dimensional vector space V whose orthonormal basis
is {γ1, γ2}. Note that the Clifford algebra C�(0, 2) corresponds to the quaternions.
The algebras C�(1, 1) and C�(2, 0) are isomorphic and can be identified with the
coquaternions, also called split-quaternions.

3 Clifford Neural Networks

Neural networks (NNs) are powerful machine learning techniques inspired by
the human brain processing capabilities. Convolutional neural networks refer
to the broad class of neural networks that combine convolutional and pooling
layers sequentially, followed by one or more dense layers. This section offers a
brief overview of dense (fully-connected), convolutional, and pooling layers for
real-valued and Clifford algebras.

3.1 Dense Layers

Dense layers are the building block of several NN architectures, such as the
famous multi-layer perceptron (MLP) network. Dense layers are composed of
several neurons in parallel, in which each neuron receives all inputs through
synaptic connections. They are also commonly known as fully-connected layers.

Dense layers process data by means of a linear combination of its inputs
by the synaptic weights (trainable parameters), to which a scalar bias term is
added. A non-linear activation function can be applied to yield the neuron’s
output. Formally, let x1, . . . , xN denote the inputs, the output of the ith neuron
in a dense layer is given by

yi = ϕ (sj) , with si =

⎛
⎝ N∑

j=1

wijxj

⎞
⎠ + bi (5)

where wij denotes the weight associated with the jth input variable, bi is the
bias term of the ith neuron, and ϕ represents the activation function.

Despite being computationally expensive due to the numerous parameters,
dense layers are widely used since they support the universal approximation
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theorem. In a few words, the universal approximation theorem asserts that the
family of neural networks with at least two dense layers is dense in the set of
continuous functions on a compact subset. The universal approximation theorem
ensures that simple dense feedforward networks can approximate any continuous
function within any desired precision. We would like to remark that, although
Cybenko proved the universal approximation theorem in the late 1980s for real-
valued dense neural networks, the universal approximation theorem also holds for
several hypercomplex-valued neural networks. Indeed, the universal approxima-
tion property was proven for complex- and quaternion-valued dense networks by
Arena and collaborators [2,3]. The universal approximation theorem has been
further extended for Clifford-valued dense neural networks by Buchholz and
Sommer in the early 2000s [6].

Clifford dense layers are analogous to the real-valued case but the trainable
parameters as well as the inputs and the outputs are all Clifford numbers. They
are given by (5) but the products and sums are carried out in a Clifford algebra.
Additionally, in hypercomplex-valued networks it is common to use split activa-
tion functions. A split activation function ϕ : G(V) → G(V) in a Clifford algebra
G(V) is defined using a real-valued function ϕR : R → R as follows

ϕ

(∑
λ∈Λ

αλγλ

)
=

∑
λ∈Λ

ϕR(αλ)γλ, (6)

where Λ is the index set given by (2). In other words, the split-activation func-
tion is merely the application of the associated real-valued function to each
component’s scalar part individually. It is important to remark that the univer-
sal approximation theorem holds for hypercomplex-valued neural networks with
split activation functions [2,6]. This paper only considers this kind of activation
functions.

3.2 Convolutional Layers

Convolutional layers are particular types of layers in which the trainable param-
eters are arranged in spatial structures called filters [12]. The filter structures
allow the network to process data in a locally cohesive manner, learning local
patterns. Convolutional neural networks are named so because the filters act as
the kernels in convolutions, and the image being processed acts as the input.
These networks have been widely applied to image processing tasks, taking full
advantage of the spatial nature of its learning mechanism and the translation
invariance of filters.

Let G(V) be a Clifford algebra and let us take an image I with C channels,
where I(p, c) ∈ G(V) denotes the Clifford number of the cth channel at the
pth pixel. A filter in a convolutional layer that receives I as input is a spatial
structure, in general a rectangular grid G, with the same number C of channels.
We express the synaptic weight associated with the qth pixel in the grid G of the
cth channel of the kth filter as F(q, c, k) ∈ G(V), with k ∈ {1, 2, . . . ,K}, where K
is the number of filters in the layer. In other words, a Clifford convolutional layer
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is represented by a three-dimensional array F with entries in G(V). The output
of a convolutional layer with K filters is an image J with K channels, each of
which is produced by applying the convolution operation of one of the K filters
to the image I. Formally, the convolution of the image by the filter k at pixel
p is denoted by (I ∗ F)(p, k) and defined as the linear combination of the filter
weights by the pixel values in a window defined by the filter domain. Intuitively
this can be seen as superposing the filter grid over the image centered at the
pixel p and multiplying the corresponding weights by the underlying intensities.
In mathematical terms, let S(q) denote the translation relative to a pixel p, for
every q ∈ G. Then, we can represent the convolution by the equation

(I ∗ F)(p, k) =
C∑

c=1

∑
q∈G

I(p + S(q), c)F(q, c, k) (7)

where c = 1, . . . , C are the channels of I. Finally, the intensity of the kth channel
at pixel p of the output is given by

J(p, k) = ϕ
(
(I ∗ F)(p, k) + b(k)

)
, (8)

where ϕ : G(V) → G(V) is the activation function and b(k) is the bias term.

Remark 1. We note that the sum and product operations in equations (7) and
(8) are carried out in the underlying Clifford algebra. In fact, the definitions
above are the same for real-valued convolutional layers, except in that case the
sum and product operations are simpler since they are real sums and products.

3.3 Pooling Layer

A pooling layer operates a downsampling effect in the input. Moreover, this
layer structure contains no trainable parameters. The most common pooling
layers are the max and average pooling layers. In this work in particular we use
the max pooling layer, exclusively. Roughly speaking, a max pooling layer has
a kernel shape, usually a rectangular grid G, and it operates by collapsing each
set of pixels contained in the grid into the single maximum value present. This
operation reduces the dimensionality of the input while also highlighting the
“stronger” signal in each window. The max pooling operation is conducted on
each filter separately, i.e., it acts as a split maximum function for elements of a
Clifford algebra.

4 Lymphoblast Image Classification Task

In this section we describe the experiment conducted to showcase the proposed
convolutional Clifford neural network. It consists in a classification task in a
medical-image dataset containing blood smear images.

Acute Lymphoblastic Leukemia (ALL) is a rare type of blood cancer that
occurs more frequently in children of ages 2–5 and can be lethal in under a
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Fig. 1. Example of images from the ALL-IDB dataset used for the classification task.

few weeks if left undiagnosed. The main indicator of ALL is the presence of
lymphoblasts, a type of malformed lymphocyte, in the blood. The most common
diagnosis method is the inspection of microscopic blood smear images. The ALL-
IDB [16] is a public benchmark aimed at computer assisted ALL diagnosis and
consists of 2 datasets: one directed at a segmentation and classification, and the
other directly aimed at the classification task itself. In this work we use the latter
dataset which contains 260 images, each containing a single blood element, and
perform a binary classification task in which the model decides whether or not
the presented image is a lymphoblast. Figure 1 shows examples of a probable
lymphoblast and a healthy cell, respectively.

The baseline Clifford CNN model (C�CNN) used in this work is composed
by a convolutional layer with 4 filters, followed by two consecutive convolutional
layers with 8 filters each and a convolutional layer with 16 filters. All layers
use the split-rectified linear unit (split-ReLU) activation, i.e., the real ReLU
applied separately to each channel of a Clifford number, and filters of size 3× 3.
Each of these layers is followed immediately by a max pooling layer with 2 × 2
kernels. The output of the final max pooling layer is then flattened and fed to a
real-valued dense layer containing a single unit whose output is the label, 1 for
lymphoblast, 0 otherwise. This defines a total of 3 C�CNNs, one based on each
algebra with multiplication table presented in Table 1.

For comparison, we propose a real-valued network with similar number of free
trainable parameters and, hence, we shall refer to the C�CNNs defined above as
“equivalent”. Since each hypercomplex-valued channel is roughly equivalent to
four real-valued channels, we take the real-valued architecture with a larger num-
ber of filters per layer. Precisely, the real-valued CNN (RvCNN) is composed of
the same four convolutional layers with 3 × 3 filters, each followed by a max pool-
ing operator with 2 × 2 kernel. The number of filters per layer is 8, 16, 16 and
32, respectively, i.e., twice the number of filters in the corresponding equivalent
hypercomplex-valued layer. The activation function used is the ReLU. The output
of the fourth max pooling operation is then fed to a real-valued dense layer with
a single neuron which outputs the calculated label. Lastly, to illustrate the vast
learning capabilities of the C�CNNs we take much smaller versions of the equiv-
alent C�CNNs and use these to perform the same task. These henceforth called
“small” models use the same architecture of four convolutional layers followed
by max pooling layers and a dense layer with a single neuron for labeling, yet
each convolutional layer is taken with half the number of filters in the equivalent
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Table 2. Sequential architecture outline and the number of trainable parameters.

RvCNN C�CNN (equivalent) C�CNN (small)

Conv Layer 1 (3,3) filters 8 4 2

Parameters 224 160 80

Max Pooling 2 × 2 – – –

Conv Layer 2 (3,3) filters 16 8 4

Parameters 1,168 1,184 304

Max Pooling 2 × 2 – – –

Conv Layer 3 (3,3) filters 16 8 4

Parameters 2,320 2,336 592

Max Pooling 2 × 2 – – –

Conv Layer 4 (3,3) filters 32 16 8

Parameters 4,640 4,672 1,184

Max Pooling 2 × 2 – – –

Dense Layer Neurons 1 1 1

Parameters 1,153 2,305 1,153

Total 9,505 10,657 3,313

model. This leads to 3 small models with considerably less parameters than the
real-valued and equivalent Clifford models. Thus, we end up with a total of 7 net-
works, namely, a real-valued model, 3 equivalentClifford models with similar size
to that of the real-valued model, and 3 small Clifford networks. All the architec-
tures include a dropout layer before the dense layer with rate 0.5. This layer acts
on a random behavior of setting inputs of the layer to the value 0 with a 0.5 rate.
This layer helps avoiding overfitting the network to the training examples. Table 2
outlines the architectures and shows a comparison of the total number of param-
eters. Despite the architectural similarity, the equivalent and small networks pro-
posed in this paper have respectively 29% and 9% of the trainable parameters of
the hypercomplex-valued CNNs considered in [22].

The dataset contains 260 images evenly divided between the two classes. We
resize images to 126×126 upon loading. Next, we perform 100 experiments with
each of the 7 networks, a total of 700 experiments. We adopted the same 50%
train-test split used in [10] and performed vertical/horizontal flips to augment
the training set. To showcase the proposed model’s ability to learn on scarce
datasets, we prioritized the use of compact (i.e. lower total number of parame-
ters) networks, which help reduce the risk of overfitting on small training sets,
a frequent issue with deep-learning applications in the medical field due to the
inherent data scarcity. The proposed neural networks were implemented using
Tensorflow v2.9 and Keras. We trained for 300 epochs, using the Adam opti-
mizer, with learning rate of 0.001, batch size of 32, and binary cross-entropy
loss function. Performance is gauged using the accuracy in the test set.1

1 The complete code is available at https://github.com/mevalle/Hypercomplex-
valued-Convolutional-Neural-Networks.

https://github.com/mevalle/Hypercomplex-valued-Convolutional-Neural-Networks.
https://github.com/mevalle/Hypercomplex-valued-Convolutional-Neural-Networks.
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Fig. 2. Boxplot of test set accuracy performance by model.

Remark 2. The original images are encoded in RGB channels. This means each
pixel contains 3 values representing the red, green and blue values respectively.
An alternate encoding for images is the HSV, which stands for hue, saturation,
and value. This color scheme displays colors in a radial slice, and better rep-
resents the human eye perception of color elements. In mathematical terms, a
HSV encoded color pixel is represented as follows in a four-dimensional Clifford
algebra derived from an orthonormal basis {γ1, γ2}:

I(p) =
(
S(p) + V (p)γ1

)(
cos(H(p)

)
+ sin

(
H(p)

)
γ2), (9)

where H(p) ∈ [0, 2π) and S(p), V (p) ∈ [0, 1] denote respectively the hue, sat-
uration, and value, of pixel p. We tested the 7 networks on both RGB- and
HSV-encoded images and the results reported here are the best for each net-
work. Namely, the RvCNN uses RGB-encoded images while all C�CNNs use the
HSV-encoded images.

Results for the 100 experiments of each model are depicted in Fig. 2. The real-
valued model shows a larger range and a wider interquartile range (IQR) when
compared to the Clifford models. Furthermore, the maximum and minimum
values attained by the RvCNN are lower than the maximum and minimum for
the remaining models respectively. This clearly indicates that the Clifford models
outperformed the RvCNN.

When comparing the 6 C�CNNs we observe that the equivalent models show
smaller IQRs and ranges than the small models. Also, the equivalent models
achieve a superior mean accuracy in the test set than their respective small
counterparts. Thus, the equivalent networks perform better and are statistically
more reliably than the respective small models. Nonetheless, the accuracy show-
cased by the small models is impressive in the light of their reduced number



84 G. Vieira et al.

Table 3. Average accuracy (%) in train and test sets per model. Bold numbers are
used to indicate the best performing small and equivalent models.

Model Train Set Test Set

Real-valued 99.71 ± 0.89 94.60 ± 2.76

C�(0, 2)-small 99.72 ± 1.45 95.55 ± 2.30

C�(1, 1)-small 99.81 ± 0.75 96.05 ± 1.88

C�(2, 0)-small 99.91 ± 0.35 96.40± 1.92

C�(0, 2)-equiv 99.97 ± 0.24 96.96 ± 1.69

C�(1, 1)-equiv 99.92 ± 0.52 97.02± 2.22

C�(2, 0)-equiv 99.96 ± 0.25 96.94 ± 1.54

State of the art model [11]:

Model Test Set

ResNet18 97.92 ± 1.62

of parameters. Table 3 shows the detailed metrics for all models, including the
accuracy achieved by the ResNet18 combined with histopathological transfer
learning [11].

Finally, Fig. 3 presents a Hasse diagram of the 7 models used. This diagram
represents a hypothesis test with 95% significance level. Models higher up in
the hierarchy perform better than the ones to which they are linked and also
better than the ones below those models. As expected, at the top are located
the equivalent C�CNN models. The RvCNN model is the poorest performer,
being at the bottom of the diagram. The small C�CNNs lie in the middle, with a

Fig. 3. Hasse diagram of the seven models present. A solid line linking two models
indicates that the one on top performs better than the one below on a hypothesis test
of 95% significance.
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special mention to the C�(0, 2) (quaternion-valued) model showcasing the worst
performance of the three small C�CNNs. Notably, the small C�CNNs outperform
the RvCNN despite having significantly less parameters.

5 Concluding Remarks

In this work we propose an implementation of a convolutional neural network
on Clifford algebras, C�CNN, and outline the operations involved in the model.
We present an application of the proposed model to a medical image classifi-
cation task used in a computer-aided diagnosis task. We compare the results
attained by the C�CNNs to a real-valued CNN of equivalent size to find that
the proposed model outperformed the real counterpart by a significant margin.
Then, we introduce a more compact version of the C�CNN which features signif-
icantly less trainable parameters, and show that this model’s performance sits
between the initial C�CNN’s and the real-valued CNN’s performance. On the one
hand, this shows that despite having around 34.8% of the trainable parameters
of the real model the small C�CNN model performs noticeably better. On the
other hand, the C�CNN with a number of trainable parameters similar to the
real-valued one performs vastly better, and close to state-of-the-art models in
the literature. Indeed, the best result attained, namely the CNN based on the
algebra C�(1, 1), corresponds to 99.08% of the average accuracy reported in [11]
but uses only 0.0093% of the approximately 11.4 million trainable parameters of
the ResNet18.

In sum, we implement the proposed C�CNN architecture and apply it to a real
world dataset of a medical image classification task. The results attained show
that C�CNNs are extremely more compact than real-valued networks, all while
presenting a gain in generalization capability. Moreover, the proposed models
show performance levels close to state-of-the-art models up to 6 orders of mag-
nitude larger in terms of parameters, hence posing C�CNNs as more adequate
solutions for small portable devices.
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Abstract. We present a new approach to the problem of recognizing
an Euclidean distance matrix, based on Conformal Geometric Algebra.
Such matrices are symmetric and hollow with non negative entries that
are equal to the squared distances among the set of points. In addition
to find these points, the method presented here also provides the mini-
mal dimension of the related space. A comparison with a linear algebra
approach is also provided.

Keywords: Geometric Algebra · Euclidean Distance Matrices ·
Sphere Intersection

1 Introduction

In Distance Geometry (DG) the fundamental object of study is the concept
of distance [9], being established as a field in mathematics after the works of
Blumenthal [2]. In recent years, DG has been applied to model problems in
several areas of computer science, engineering and mathematics, such as sensor
network localization, molecular geometry, GPS modelling among others [10].

An n×n matrix with real entries is called a distance matrix if there exists an
ordered set {x1, . . . , xn} of points in R

m such that each entry aij is the squared
distance between xi and xj . When the Euclidean metric is used, we refer to a
matrix of this type as an Euclidean Distance Matrix (EDM). In this case, the
set {x1, . . . , xn} is called a realization of the EDM. It is clear that an EDM is
symmetric, has zeros in its main diagonal and all other entries are non-negative
real numbers.

We present a geometric algebra (GA) based method to recognize an EDM,
which provides also a realization in a space with the minimum possible dimen-
sion. The motivation for the use of GA was the geometric description based on
sphere intersections of the approach presented in [1].

In the next section, we provide some important theoretical results on EDM’s.
In Sect. 3, we describe a linear algebra approach for recognizing an EDM, based
on the method presented in [1]. Finally, in the Sect. 4, we present the main
contribution of this work, which is a Conformal GA (CGA) approach developed
to simplify the notation and the understanding of the problem.
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2 EDM Recognition Problem

We start giving a formal definition of an EDM to make it clear that this does
not depend on a specific set of points.

Definition 1. Let D be an n × n matrix with real entries given by D(i, j). If
there exists a sequence {xi}n

i=1 ⊂ R
K , for some positive integer K, such that

D(i, j) = ‖xi − xj‖2, i, j ∈ {1, . . . , n}, (1)

we call D an EDM.

The EDM recognition problem consists in finding a sequence of points that
satisfies (1), called a realization. If there is a solution, there are infinitely many
realizations for a given EDM, since any isometric transformation preserves the
distances among the points of the realization. Also, if we add null coordinates at
the right of each point, we obtain realizations in spaces with dimensions greater
than K. We synthesize these results in the next proposition, given in [1].

Proposition 1. Let an n × n matrix D be an EDM. If D has a realization
{xi}n

i=1, xi ∈ R
K , then there are infinitely many realizations of D in R

p, for
any p ≥ K.

The idea of the method we discuss here is to find the minimum K such
that there is a realization for an EDM. This number is called the embedding
dimension of the EDM [1].

Definition 2. Let an n × n matrix D be an EDM and let us suppose that there
is a realization for D in R

K . If for any other realization of D in R
m, m ≥ K,

then K is called the embedding dimension of D, denoted by dim(D).

There is an upper bound for the embedding dimension related to the dimen-
sion of the matrix. In [1], the authors prove that

dim(D) ≤ n − 1,

for an n × n EDM D with n ≥ 2.

3 A Linear Algebra Approach for the EDM Recognition
Problem

The method presented in [1] is based on the proof of Theorem 1, given below,
which depends on the two following lemmas.

Lemma 1. Let an (n + 1) × (n + 1) matrix D be an EDM and let Dn be the
submatrix of D given by its first n rows and columns. If dim(Dn) = K, then
dim(D) is either K or K + 1.
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Lemma 2. Let D as in Lemma 1 and let m be such that dim(D) ≤ m. If {xi}n
i=1

in R
m is a set of points that realizes Dn, then there exists a point xn+1 ∈ R

m

such that {xi}n+1
i=1 realizes D.

The proof of the next result, given in [1], yields an algorithm to recognize an
EDM, which also finds a realization for that.

Theorem 1. Let K be a positive integer and D a symmetric matrix n × n,
n ≥ 2, with null diagonal and no negative entries. D is an EDM with embedding
dimension K if, and only if, there exists a set of points {xi}n

i=1 in R
K and an

index set I = {i1, . . . , iK+1} ⊂ {1, 2, . . . , n}, such that
⎧
⎨

⎩

xi1 = 0
xij (j − 1) �= 0, j ∈ I2,K+1

xij (i) = 0, j ∈ I2,K , i ∈ Ij,K

where {xi}n
i=1 realizes D and Ia,b = {a, a+1, . . . , b} (xh(p) is the p-th component

of the h-th vector).

The idea of the algorithm is to build the given matrix from its submatrices
checking whether each one is an EDM and finding a solution for them. In the
positive case, the results above are used to ensure that the initial matrix is an
EDM and to construct a solution.

Given a hollow n × n symmetric matrix A = (aij) with non-negative entries,
let Ak, k = 1, . . . , n, be the principal submatrices of A. Let us consider the
submatrix A2, which is an EDM with a realization in R given by x1 = 0 and
x2 =

√
a12, where dim(A2) = 1. From Lemma 1, if A3 is an EDM, then dim(A3)

is 1 or 2. From Lemma 2, there is x3 ∈ R
2 such that the set of points x1 = (0, 0),

x2 = (
√

a12, 0), and x3 realize A3. Therefore, if we find a solution for x3, we
guarantee that A3 is an EDM, we give a realization for it, and also determine its
embedding dimension. To find x3, it is necessary to solve the following nonlinear
system: {‖x1 − x3‖2 = a13

‖x2 − x3‖2 = a23.

Geometrically, it means that x3 lies on the intersection of spheres centered at
x1 and x2, with radius

√
a13 and

√
a23, respectively. Since x1 = (0, 0), the first

equation is simply ‖x3‖2 = a13, and subtracting it from the second one, we have

x�
2 x3 =

1
2
(‖x2‖2 − a23 + a13).

This equation returns a unique solution for the first coordinate of x3, say x31,
but not the second since x2 = (

√
a12, 0). To find x32, we use the first equation

to get
x2
32 = a13 − x2

31.

If x2
32 is non-negative, we ensure that A3 is an EDM, otherwise it is not. If x32 >

0, we have two solutions for x3, say x+
3 and x−

3 , and we increase the embedding
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dimension to 2, i.e., A3 is an EDM with dim(A3) = 2 and {x1, x2, x
+
3 } is a

realization for A3 (x−
3 could be used instead of x+

3 ). However, if x32 = 0, we have
only one solution for x3 and we can get rid of the second coordinate of the three
points to have a realization for A3, which means that the embedding dimension
was kept in 1, and the realization would be simply given by {0,

√
a12, x31}. For

both cases, the realizations satisfy the conditions of Theorem 1. The procedure
above is repeated until we reach the whole matrix A, increasing the size of the
system to be solved if all submatrices are indeed EDM’s. As the realizations
satisfy the conditions of Theorem 1, supposing that dim(An−1) = K, we have
at the end the following configuration for a realization {xi}n−1

i=1 ∈ R
K of An−1:

x1 = (0, . . . , 0)
x2 = (x21, 0, . . . , 0)

...
xn−1 = (xn−1,1, . . . , xn−1,K).

We do the same we did before and insert zeros in the last coordinate of each
point. Again, from Lemmas 1 and 2, if A is an EDM, dim(A) is either K or
K + 1 and there exists xn ∈ R

K+1 such that {x1, . . . , xn} is a realization for A.
The system to be solved is given by

⎧
⎪⎨

⎪⎩

‖x1 − xn‖2 = a1n

...
‖xn−1 − xn‖2 = an−1,n

,

and the procedure is a generalization of what was made for A3. That is, we
subtract the first equation from all the others, recalling that x1 = (0, . . . , 0), to
obtain: ⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

‖xn‖2 = a1n

x�
2 xn = b2

...
x�

n−1xn = bn−1

,

where bj =
‖xj‖2 − aj,n + a1,n

2
, for 2 ≤ j ≤ n − 1. Now, from the structure of

the points xi, i = 2, . . . , n− 1, there is a triangular linear system that has either
a unique solution or no solution for the first K coordinates of xn. If no solution
is found, A is not an EDM. Otherwise, we use the solution found, say x∗

n, to find
the last coordinate xn,K+1. As we did before, we get

x2
n,K+1 = a1n − ‖x∗

n‖2.
If x2

n,K+1 is negative, A is not an EDM. Otherwise, if x2
n,K+1 > 0 and dim(A) =

K + 1, we have two solutions for xn, say x+
n and x−

n , and choose one to give a
realization for A. If x2

n,K+1 = 0, there will be only one solution for xn, we get
rid of the last 0 coordinate of each point, and the embedding dimension remains
unchanged, implying that dim(A) = K.
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4 A Conformal Geometric Algebra Approach

Now, using CGA, we present a new formulation for the problem taking advantage
of the geometric interpretation of the approach described in the previous section.

We recall that in CGA over R
n we use two extra basis vectors {e∞, e0}

together with the canonical Euclidean basis to work in a space with dimension
n + 2. In this space, we can easily represent geometric objects such as points,
planes, and spheres by vectors. A powerful tool of CGA is that operators and
operands are entities of the same algebra, which means that transformations like
reflections, rotations or translations are performed by elements of the algebra. It
is important to notice that the increase in the dimension of the space along with
the metric used make these transformations to be orthogonal. Another highlight
of CGA is the intuitiveness of intersecting objects. A circle, for instance, can
be constructed by the intersection of two spheres, the same for a line in the
intersection of two planes. These intersections are achieved with the exterior
product. The geometric objects we mentioned have also another representation,
given by points that lie on them, and there is also another way to intersect these
objects, using the inner product. Here, we mainly focus on the first representation
and in the intersections with the exterior product. For more details about CGA,
we recommend [4,5,11].

It can be proved (see, for instance, [11]) that a sphere in R
n, with center

c ∈ R
n and radius r ∈ R, can be represented in CGA by the vector

S = C − 1
2
r2e∞, (2)

where C is the representation of c in the conformal space R
n+1,1. This result

can be achieved developing the inner product S · C, regarding S as the con-
formal representation of s ∈ R

n and using one of the most important relations
between vectors in R

n and its conformal representations, which says that the
inner product S · C is proportional to the square distance between s and c:

S · C = −1
2
‖s − c‖2. (3)

The next key definition is the intersection of spheres through the exterior
product. Given two spheres S1 and S2 as in (2), the bivector S1 ∧ S2 represents
their intersection. This result can be directly extended to any number of spheres
and we also check a prior if, in fact, there is any intersection. For more details,
see [7]. The next result, given in [7,8], will be important for the new approach.

Proposition 2. The intersection of k spheres with affine independent centers
in R

n is either an empty set, a single point or a (n − k + 1)-sphere1.

Also from [7,8], it is possible to check the nature of the intersection, com-
puting the parameter

t = σ · σ̃,

1 An i-sphere is the intersection of a sphere with an affine subspace of dimension i.
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where σ =
∧k

i=1 Si is the intersection of spheres Si, i = 1, . . . , k, and σ̃ is the
reverse2 of σ. If t < 0, there is no intersection; if t = 0, it occurs in a single
point; and if t > 0, the intersection is a (n − k + 1)-sphere. The parameter t can
be computed as a determinant of a matrix with ij-th entries given by Si ·Sj . It is
also possible to compute explicitly the radius and the center of the intersection
by the following formulas. If σ is the intersection of k spheres, then

Cσ = −1
2

σe∞σ

(e∞ · σ)2
(4)

r2σ =
(−1)(k+1)σ2

(e∞ · σ)2
(5)

are respectively the conformal center and squared radius of σ. Note that rσ also
returns the nature of the intersection analogously to what we did for t.

The idea of the method we are developing is to have always at most two
points in the intersection. So, from Proposition 2, to satisfy this requirement
in R

n it is necessary to have n spheres. Another important remark is that in
the case the intersection is exactly a point pair, these points cannot be in the
hyperplane generated by all centers. In fact, they must be symmetric (relatively
to this hyperplane) in order to satisfy all distance restraints. Note also that the
center of this point pair3 lies on this hyperplane.

Let n+1 spheres in R
n+1 with different centers in R

n, i.e., with the n+1-th
entry equal to zero. The space generated by these n + 1 points is normal to the
vector en+1. In fact, if ci is the center of each sphere and Ci is its conformal
representation, i = 1, . . . n + 1, then

Ci = α1e1 + αnen + α∞e∞ + e0,

for i = 1, . . . , n + 1, and αj ∈ R, j = 1, . . . , n. Since the n + 1-th coordinate of
each point is null, we have that C1∧· · ·∧Cn+1 is a linear combination of (n+1)-
blades that does not contain en+1. Moreover, there is only one (n + 1)-blade in
this combination that does not have the vector e∞, given by e1 ∧ · · · ∧ en ∧ e0.
We are interested in this one because the plane given by all of those centers is

Π = C1 ∧ · · · ∧ Cn+1 ∧ e∞,

and since e∞ ∧e∞ = 0, the plane Π is a scalar multiple of e1 ∧· · ·∧en ∧e∞ ∧e0,
which means that the vector en+1 is normal to the plane Π.

Now, let us suppose that those spheres intersect at a point pair given by
{p+, p−}, implying that p+ and p− are symmetric relatively to the plane given
by the centers. Let m be the center of this point pair, which lies in the plane
Π as we commented earlier. It is easy to see that the segment connecting each

2 We recall that the reverse of a blade is another blade with the reverted order of the
factors in the exterior product.

3 The center of a point pair is regarded as the midpoint of the segment connecting the
two points.
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center ci to m is perpendicular to the line given by the point pair. Indeed, for
each ci this is the height of an isosceles triangle whose equal sides meet at ci

and are the radius of the sphere Si (the base is exactly the segment connecting
the point pair). So, given m, it is possible to obtain p+ and p− walking from m
through the directions ±en+1 :

p+ = m + ren+1, p− = m − ren+1, (6)

where r ∈ R is the radius of the point pair. This is an alternative manner to
extract the points of a point pair that takes advantage of the knowledge of the
direction of the point pair.

We can now state the main result of this section, which suggests a CGA
method to solve the EDM recognition problem. Let us first define the application
P that maps a conformal point into its corresponding point in the Euclidean
space:

P : Rn+1,1 → R
n

X �→ x.

Theorem 2. Let K be a positive integer and A an n × n hollow and symmetric
matrix with non-negative entries, for n ≥ 2. A is an EDM with dim(A) = K if,
and only if, there exists a realization {xi}n

i=1 ⊂ R
K for A and a set of indexes

I = {i1, . . . , iK+1} ⊂ {1, . . . , n}, such that
{

xi1 = 0,

xij = P(
∧j−1

p=1 Sjp)
+, j ∈ I2,K+1,

(7)

where Sjp = C(xip) − 1
2aip,ije∞, for each jp, are the conformal representations

of the spheres in R
j−1.

Remark 1. Note that P(
∧j−1

p=1 Sjp)
+ refers to the corresponding point in R

n of
one of the conformal points in the point pair computed by the exterior product.

Proof. The proof is by induction on the dimension of the matrix A. Beginning
with n = 2, the matrix A is given by

A =
[

0 a12

a12 0

]

.

Supposing that all the entries outside the diagonal are strictly positive, we have
that a12 > 0, A is an EDM with dim(A) = 1, and the points x1 = 0 and
x2 =

√
a12 define a realization for A.

Let us suppose, by induction, that for any EDM with order n ≥ 2 and
embedding dimension K, the theorem is valid, i.e. there exists a realization
{xi}n

i=1 ⊂ R
K for this EDM, with an index set I = {i1, . . . , iK+1} ⊂ {1, . . . , n},

satisfying (7). Let us consider A as an EDM with order (n+1) and dim(A) = K,
and An be the n-th principal submatrix of A. By Lemma 1, An is an EDM with
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dim(An) = k, where k is either K or K − 1. Using the induction hypothesis,
we have that An has a realization {xi}n

i=1 ⊂ R
k and that there is an index set

I = {i1, . . . , ik+1} ⊂ {1, . . . , n}, such that
{

xi1 = 0,

xij = P(
∧j−1

p=1 Sjp)
+, j ∈ I2,k+1.

Define y = P(P ), where

P =
k+1∧

j=1

S(n+1)j

is the intersection of the k + 1 spheres S(n+1)j = C(xij ) − 1
2aij ,n+1e∞ in R

k+1.
The points xij , which are the centers of the spheres, lie in R

k. Then, by (6) and
the discussion that led to it, if the intersection P is a point pair, its direction
is given by ek+1. Moreover, once we know the center of each sphere and their
(squared) radius given by the entries of A, the solution set for y cannot be empty,
otherwise A would not be an EDM.

Using formula (5), we check the nature of the intersection looking to the sign
of r2. If r2 = 0, we take

xn+1 = c,

where c is the unique point in the intersection, obtained by (4). On the other
hand, if r2 > 0, then the intersection y results in a point pair, where we can still
compute c and choose

xn+1 = p+, (or p− equivalently),

obtained by (6). For both cases, the sequence {xi}n+1
i=1 realizes the matrix A and

satisfies the theorem conditions for n + 1. Therefore, the theorem is proved for
every n ≥ 2. �

This proof induces an algorithm (see Algorithm 1) to check if a given matrix is
an EDM, to find a realization for it, in the positive case, and also to provide its
embedding dimension.

The algorithm starts with the submatrix A2. From A3, it computes the exte-
rior product among the spheres to obtain P (step 5) and the value r2 to find
the nature of P (step 6). In the next steps, the algorithm proceeds accordingly.
It is very important to note that the increment on the embedding dimension
only happens when r2 > 0 (steps 11 to 14). In fact, when r2 = 0, the point to
be included in the solution lies on the plane generated by the centers, i.e. the
dimension of the space containing the realization does not change. The embed-
ding dimension is incremented by one when the new point is out of this plane,
which implies that the realization will be in R

K+1, with xi (in step 12) and all
the previous points in R

K gaining a new null K + 1-th coordinate.
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Algorithm 1
Input: A = (aij), with aii = 0 and aij = aji ≥ 0, i, j = 1, . . . , n

1: I = {1, 2}
2: K = 1
3: (x1, x2) = (0,

√
a12)

4: for i ∈ {3, . . . , n} do
5: P =

∧
j∈I(C(xj) − 1

2
aije∞)

6: r2 = (−1)n+1P2

(e∞·P )2

7: If r2 < 0 then
8: return “failure”
9: else if r2 = 0 then

10: xi = P
(
− 1

2
Pe∞P

(e∞·P )2

)

11: else r2 > 0 then
12: xi = P

(
− 1

2
Pe∞P

(e∞·P )2

)
+ reK+1

13: I ← I ∪ {i}
14: K ← K + 1
15: end if
16: end for
17: return K,x

5 An Illustrative Example

In this section, we illustrate the proposed approach with an example. Let us
consider

A =

⎡

⎢
⎢
⎣

0 1 1 2
1 0 2 1
1 2 0 1
2 1 1 0

⎤

⎥
⎥
⎦ .

The first submatrix to be used is

A2 =
[

0 1
1 0

]

,

where a realization is given by x1 = 0 and x2 =
√

a12 = 1. Following the
procedure, we insert zeros in a second coordinate of x1 and x2. The conformal
representation of these points are respectively X1 = e0 and X2 = e1+0.5e∞+e0,
and the related spheres we need to intersect are given by

S1 = X1 − 0.5a31e∞ = e0 − 0.5e∞,

S2 = X2 − 0.5a32e∞ = (e1 + 0.5e∞ + e0) − e∞ = e1 − 0.5e∞ + e0.
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We can use several tools to compute r2 and the center C of P = S1 ∧ S2 (for
example, [3,12]). Using Gaalop [6], we obtain:

P = S1 ∧ S2 = 0.5e1 ∧ e∞ − e1 ∧ e0,

r2 =
(−1)2+1P 2

(e∞ · P )2
= 1,

C = −1
2

Pe∞P

(e∞ · P )2
= e0.

Since r2 > 0, we have that x3 = C + e2 = e2. Now, we have I = {1, 2, 3} and
K = 2. As we need the conformal points, let us see the current solution given by

X1 = e0, X2 = e1 + 0.5e∞ + e0, X3 = e2 + 0.5e∞ + e0.

To find X4, we insert a null coordinate in the previous solution and compute
S = S1 ∧ S2 ∧ S3. From

S1 = X1 − 0.5a41e∞ = e0 − e∞,

S2 = X2 − 0.5a42e∞ = (e1 + 0.5e∞ + e0) − 0.5e∞ = e1 + e0,

S3 = X3 − 0.5a43e∞ = (e2 + 0.5e∞ + e0) − 0.5e∞ = e2 + e0,

we obtain

P =
3∧

i=1

Si = −e1 ∧ e2 ∧ e∞ + e1 ∧ e2 ∧ e0 + e1 ∧ e∞ ∧ e0 − e2 ∧ e∞ ∧ e0,

r2 =
(−1)3+1P 2

(e∞ · P )2
= 0,

C = −1
2

Pe∞P

(e∞ · P )2
= e1 + e2 + e∞ + e0.

Since r2 = 0, X4 = C, dim(A) = 2, and the solution is kept in R
2, given by

{(0, 0), (1, 0), (0, 1), (1, 1)}.

6 Conclusion

The application of CGA to the EDM recognition problem provided a much
simpler description of the linear algebra approach used to solve this problem. In
fact, the result given by Theorem 2 makes clear how the sequence of points in
the realization is constructed and gives a geometric meaning for each of those
points as intersections of spheres, which cannot be seen in Theorem 1. Another
important remark is that, in Algorithm 1, one does not need to actually change
the dimension of the space. The description and the computation are similar for
each dimension, implying that it is possible to set the maximum dimension since
the beginning of the algorithm and update the embedding dimension according
to the value of r2. The geometric intuition given by the CGA approach will be
useful for instances of the problem involving uncertainties in the matrix entries,
since the idea of sphere intersections is preserved.
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Abstract. Geometrical 3D data is often represented in form of point
clouds. A common problem is the registration of point clouds with shared
underlying geometry, for example to align two 3D scans. This work
presents GAAlign, a new formulation of a geometric algebra (GA) based
algorithm that aims to solve this problem. While the algorithm itself is a
gradient descent based approach, the implementation takes advantage of
GAALOP, which had to be extended with a specific, so far unsupported
GA, namely projective GA.

The proposed new robust registration algorithm uses a geometric alge-
bra based motor estimation algorithm in the context of a stochastic gra-
dient descent inspired algorithmic structure and achieves state-of-the-art
results. When using synthetically disturbed input data the results show,
that GAAlign either outperforms other used algorithms (outliers) or is
comparable to the best (Gaussian noise) while having a significantly bet-
ter runtime as soon as the number of correspondences increases. When
used in a real world pipeline, GAAlign also performs on the same level
or above compared to state-of-the-art algorithms.

Keywords: 3D registration · Geometric algebra · Point cloud
alignment

1 Introduction

Point clouds are a popular way of representing 3D objects and scenes used in
many applications ranging from 3D reconstruction to interactive visualization.
A central problem in computer vision is the registration of point clouds with
(partially) shared underlying geometry. This can for example be used to tightly
align two different 3D scans of the same object.

One of the earliest and most commonly used methods for point cloud regis-
tration is called Iterative Closest Point (ICP) presented by Besl and McKay [2].
Similar to this, Chen and Medioni [4] introduced a point-to-plane distance metric
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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which is optimized as a non-linear least squares problem to achieve a registra-
tion. The solution of this problem can be approximated using a linear equation
system as shown by Low [15]. Different improved objective functions for ICP
were proposed by Yang et al. [24] and Rusinkiewicz [19]. State-of-the-art regis-
tration algorithms like Fast Global Registration by Zhou et al. [25] combine least
squares optimization with a feature-based correspondence search such as FPFH
by Rusu et al. [20]. Furthermore, many recent publications like NgeNet by Zhu
et al. [26] or GeDi by Poiesi and Boscaini [17] apply deep learning based meth-
ods to point cloud registration. A comprehensive survey of recent approaches is
presented by Huang et al. [9].

In addition to traditional linear algebra based methods, several methods for
point cloud registration using geometric algebra have been introduced. Kleppe
et al. introduced a non-linear least squares based registration algorithm [11]
as well as two different descriptors that can be used for registration [10,12].
Geometric algebra enables the registration of heterogeneous sets of objects in a
unified framework as shown by Valkenburg and Dorst [23] as well as Tingelstad
and Egeland [22]. Other approaches for geometric algebra based point cloud
registration include the use of a least-mean-squares adaptive filter called GA-
LMS by Al-Nuaimi et al. [1,13,14] and the formulation of ICP in conformal
geometric algebra and subsequent application to airborne laser scanning data
by Hitzer et al. [8].

2 Preliminaries

The term geometric algebra (GA) denotes a category of algebras that contain an
intuitive representation of geometric objects (e.g. points or spheres) and opera-
tions (e.g. intersections). For GAAlign we decided to use the 3D projective geo-
metric algebra R

∗
3,0,1 (PGA), as it enables an elegant representation of points,

lines and planes. While many good introductions to geometric algebra exist (see
[5,6]), we want to offer a quick overview over the relevant concepts that are used
in this paper.

The 3D projective geometric algebra consists of 4 basis vectors, also called
blades of grade 1, denoted as e0, e1, e2, e3. Hereby, the algebra defines e20 = 0 and
e21 = e22 = e23 = 1. The basis vectors can be combined using the outer product
(denoted as a∧b) to form blades of higher grade. Any object in GA can be defined
by a combination of blades. In 3D PGA there are 16 unique blades, hence any
object can be expressed as a 16-dimensional vector. For example, a point can be
defined using the equation p := xe032 +ye013 +ze021 +e123. Furthermore, a line
through two points p1,p2 can be defined using the join product : l = p1 ∨ p2.
Analogous, this can also be used to form a plane from three points.

In addition to geometric objects, it is also possible to define rigid transfor-
mations as multivectors. These are called motors (see [5]) and are defined on the
basis {1, e12, e31, e23, e01, e02, e03, e0123}. Hereby, e12, e31, and e23 square to -1
and e01, e02, and e03 square to 0. This basis is equivalent to dual quaternions as
shown by Dorst and De Keninck [5]. Furthermore, every motor is equivalent to
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the exponential of a bivector, which can be retrieved by using the logarithm. As
the bivector space is linear, it can be used for linear interpolation. The resulting
interpolated motor can subsequently be calculated by exponentiating the bivec-
tor. As a fast approximation, motors can also be interpolated directly. Hereby,
to stay on the motor manifold, the scalar of both motors need to have the same
sign and the resulting motor needs to be normalized. Notably, this interpolation
method is not in equal steps, which can only be guaranteed in the bivector space.

3 Sampling-Based Point Cloud Registration

3.1 GAALOP

The proposed algorithm is based on two major contributions to the geometric
algebra optimizer GAALOP [7] which were key to its implementation. Those
are the introduction of 3D projective geometric algebra (PGA) as well as a more
advanced optimization strategy that identifies common subexpressions resulting
in an improved runtime performance.

PGA in GAALOP. GAALOP turns geometric algebra code written in its
custom script language into symbolically optimized code for multiple common
programming languages. New algebras can be added by defining the base blades
and calculating a multiplication table, which is subsequently used to calculate
the geometric product. In addition to this, macros for common operations like
the regressive product can be defined. This was done to introduce 3D PGA to
GAALOP.

Common Subexpression Elimination. When generating C code from GA
expressions, it often happens, that the coefficients are very similar. These coeffi-
cients often contain long terms, that are not the same, but have subexpressions
in common. In compiler development, finding subexpressions and eliminating
these redundant computations is an often used approach, and several different
techniques for it are available. We added such a method for common subexpres-
sion elimination [16] to GAALOP and were able to improve the speed of the
generated code by ≈ 3.5%.

3.2 GAAlign

The proposed point cloud registration algorithm consists of two parts. First, a
method to calculate a motor from two corresponding triangles (Sect. 3.2) which
is then subsequently used inside the algorithmic structure of a stochastic gradient
descent (Sect. 3.2) to robustly perform a point cloud registration.
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Motor Estimation from Corresponding Triangles. The algorithm used for
estimating a motor from two corresponding triangles in GAALOP is shown in
Listing A.1 in the Appendix. This algorithm defines the points A src, B src and
C src of the source triangle as well as the points A tar, B tar and C tar of the
target triangle and computes the motor for the transformation between them.
The implementation of the algorithm follows the procedure detailed in Sect. 6.8
of the document A Guided Tour to the Plane-Based Geometric Algebra by Dorst
et al. [5]. The exclamation mark at the beginning of a line indicates that this
multivector should explicitly be computed. Hereby, GAALOP only computes
the coefficients which are needed for further computations. This is done for a
better runtime performance of the generated code.

Gradient Descent. While the previously described motor estimation algo-
rithm can accurately estimate a motor based on three corresponding points, any
noise or error in these correspondences will directly propagate to the resulting
motor and therefore also to the resulting registration. This is especially true
for outliers. To mitigate this, the motor estimation is used inside the algorith-
mic structure of a gradient descent, or more specifically a stochastic or mini
batch gradient descent, which is commonly used in machine learning to enable
a tradeoff between robustness and performance for optimization on noisy input
data [18].

Algorithm 1. Robust Sampling-based Motor Estimation
Require: Point correspondences C[i], i = 0, ..., N
Require: Step size α ∈ (0, 1]
Require: Maximum number of iterations Nmax > 0
Require: Sampled triangles per iteration Ntriangle > 0

procedure RobustMotorEstimation(C[])
mresult ← 1 � Initialize the output with an identity motor
for i ← 1, Nmax do

msum ← 0 � Initialize the temporary motor sum as zero
for j ← 1, Ntriangle do

[id1, id2, id3] ← SampleRandomIndices()
triangle correspondence ← [C[id1], C[id2], C[id3]]
msum ← msum+ EstimateMotor(triangle correspondence)

end for
msum ← msum/abs (msum) � Normalize the motor
if i > 0 then � Do not scale the motor for the first step

msum ← (1 − α) + αmsum

end if
mresult ← mresultmsum � Join the new motor with the current result

end for
end procedure
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The outline of the proposed algorithm is shown in Algorithm 1. Geometric
algebra enables an intuitive and efficient formulation, as the representation of
rigid transformations as a motor makes it possible to easily average and interpo-
late transformations. While interpolating and averaging motors is theoretically
only possible in bivector space, this can also be done directly on motor multivec-
tors as a fast and sufficiently accurate approximation (as discussed in Sect. 2).
The most common version of gradient descent estimates a number of gradients
based on sampled input data, averages them, and takes a step into the direction
of the negative averaged gradient. Instead of estimating gradients, our proposed
algorithm estimates motors based on three randomly sampled correspondences
at a time, averages them and takes a step into the direction of the averaged
motor.

As input, the algorithm requires point correspondences, which can be gener-
ated using a nearest neighbor or feature based approach. Additionally the algo-
rithm can be configured with three hyperparameters that can be set depending
on the use case: Nmax limits the number of iterations, Ntriangle specifies how
many motors are estimated and subsequently averaged per iteration, and the
steps size α, also known as learning rate, controls the strength at which each
averaged motor affects the resulting transformation. The influence of the hyper-
parameters on the runtime and robustness are examined in Sect. 4.2.

Note that the step size does not influence the first iteration, leading to an
effective step size of 1 for that iteration. Because of this, the first iteration can
be seen as a coarse registration, roughly transforming the point clouds onto each
other, while the following iterations try to optimize that registration leading to
what is called a fine registration.

4 Results

To evaluate the properties of the presented algorithm, a number of experiments
were conducted. Section 4.1 explains the procedure for generating synthetic test
data that was subsequently used to evaluate the influence of hyperparameters
(Sect. 4.2), the robustness (Sect. 4.3), runtime performance (Sect. 4.4) as well as
the accuracy in a real world pipeline (Sect. 4.5). The experiments were performed
on a system with an Intel Core i5-9600K processor.

4.1 Synthetic Data Generation

The different properties of the proposed algorithm were evaluated using a same-
source approach (see taxonomy in [9]). For this, a single point cloud is used
as both the source and target for the reconstruction. Both point clouds are
optionally perturbed with Gaussian noise and then the source is transformed
with a random rotation and translation. After this, we try to register the source
point cloud to the target, effectively undoing the previous transformation. This
approach enables us to directly compare the registration result to a ground truth.
As source data five different point clouds with varying complexity were used,
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including three models from the Stanford 3D Scanning Repository. Optionally,
instead of using the same point cloud as source and target, the original point
cloud can be cut into two parts with a partial overlap. This method mimics real
world datasets more closely and is used in Sect. 4.5

Fig. 1. Influence of the number of iterations, step size, and number of sampled trian-
gles on the runtime and RMSE for Gaussian noise with strength σ. While an increased
noise strength leads to an increased RMSE, the runtime appears to be invariant. Fur-
thermore, the runtime increases linearly with the number of iterations, while the error
reaches a constant value after approximately 30 iterations. The step size value does not
influence the runtime, but the RMSE is minimal for a step size α ≈ 0.1. Finally, the
runtime scales linearly with the number of triangles while the RMSE steadily decreases.

4.2 Influence of Hyperparameters

The proposed algorithm can be configured using its three hyperparameters.
These can be set depending on the use case and enable a trade-off between
registration accuracy and runtime performance. To test the influence of each
of the three parameters, the runtime and root-mean-square error (RMSE) were
measured over varying values of each parameter. For each experiment, the two
remaining parameters were kept constant. Additionally, multiple noise levels
were used in each experiment, to investigate the influence of noise on the choice
of hyperparameters.
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As a first experiment, the maximum number of iterations was varied, result-
ing in the runtime and RMSE values depicted in Fig. 1. The runtime linearly
increases with the number of iterations and only varies slightly for different
noise values. The RMSE reaches a nearly constant value after approximately
30 iterations. While this is true for all three noise levels, the resulting constant
value depends on the noise strength. For our combination of hyperparameters,
using more than 30 iterations only increases the runtime, but does not result in
an improved accuracy and is therefore discouraged.

For the second experiment, the influence of the step size α on the runtime
performance and RMSE under different noise strengths was tested. The results
are visualized in Fig. 1. The runtime appears constant and independent of the
step size, while the RMSE varies substantially. For all three noise levels, a min-
imum RMSE is achieved for a step size α ≈ 0.1. For step sizes α � 0.1 the
increased RMSE is likely caused by the algorithm not being able to converge
in the set number of iterations. In contrast, step sizes α > 0.1 can lead to an
increased RMSE, because the influence of each iteration on the final motor is
too large.

The third experiment tests the influence of the number of triangles Ntriangle

that are calculated and subsequently averaged in each iteration. As shown in
Fig. 1, the runtime increases linearly with the number of triangles and is inde-
pendent of the noise strength. For small values of Ntriangle, increasing the number
of triangles can lead to a large improvement of the RMSE, while for larger values
of Ntriangle an increase only results in a small gain in accuracy.

4.3 Robustness Against Noise and Outliers

A common property of gradient descent is its robustness against noise and
outliers. Two experiments were carried out to evaluate how well this prop-
erty translates to our proposed algorithm, especially in comparison to other
existing algorithms. Here, we used the hyperparameters Nmax = 25, α = 0.1,
and Ntriangle = 1024. We chose to include the three variants Point2Point [2],
Point2Plane [15] and Symmetric Point2Plane [19] that are part of the PCL [21]
library in the tests.
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Fig. 2. Comparison of the different algorithms to noise and outlier. While the robust-
ness of our algorithm against Gaussian noise is comparable to other state-of-the-art
algorithms, it is significantly more robust against outliers than any of the other algo-
rithms.

Additionally, we included the two variants of the state-of the-art geometric
algebra-based algorithm GA-LMS. First the original algorithm presented in [14],
and second the steepest descent based extension presented in [1] that calculates
an optimal step size in each iteration. While the authors of GA-LMS also pro-
posed several further improvements to the robustness of their algorithm in [1],
these were not published as part of their open source project OpenGA [13] and
could therefore not be included in the comparison.

For both experiments, the procedure described in Sect. 4.1 was used to gener-
ate synthetic test data with perfect correspondences. The correspondences were
subsequently perturbed with Gaussian noise (Fig. 2a) or outliers (Fig. 2b). For
each noise level/outlier percentage, the tests were repeated 200 times per model
and the resulting RMSE values were averaged.

Given perfect correspondences perturbed by Gaussian noise, Point2Point
ICP and the GA-LMS variant using steepest descent consistently lead to the
smallest RMSE, with our algorithm performing only slightly worse. The three
other tested algorithms appear to be notably less robust against noise.

The second experiment (Fig. 2b) shows that our proposed algorithm is sub-
stantially more robust against outliers, than any of the algorithms that are part
of the comparison. This is especially true for both GA-LMS variants, which is
consistent with the description of Al-Nuaimi et al. [1].
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4.4 Runtime Performance Evaluation

In addition to the previous experiments focusing on the influence of hyperpa-
rameters and the robustness, we also decided to separately test the runtime per-
formance of our algorithm depending on the number of correspondences (Fig. 3).

Fig. 3. Runtime depending on the number of correspondences. While the runtime of
our proposed algorithm is longer for small numbers of correspondences, it offers a
significantly better scalability.

For comparison, we used the same algorithms as in Sect. 4.3. While the
runtime of all other used algorithms approximately increases linearly, the runtime
of GAAlign is approximately constant. This constant runtime is due to the use of
the structure of a mini batch gradient descent with a fixed number of iterations.
Even though, GAAlign has a longer runtime than the other state-of-the-art
algorithms for small numbers of correspondences, it is significantly more scalable,
making it suitable for applications with large amounts of data. Because of this,
high resolution point clouds can directly be used as input, without requiring any
further subsampling or keypoint detection.

4.5 Performance in a Real-World Pipeline

As a final comparison, the performance of the proposed algorithm was evalu-
ated in a real world pipeline. In contrast to the previous experiments, no previ-
ously known correspondences were used to calculate the registration. Therefore,
the correspondence search is now part of the experiment. Furthermore, the test
objects were randomly cut into two parts with partial overlap, as described in
Sect. 4.1.

In addition to the algorithms in the previous experiments, we also now include
the ICP implementation of OpenCV [3] as well as the state-of-the-art algorithms
Fast Global Registration (FGR) presented by Zhou et al. [25], NgeNet by Zhu
et al. [26], and GeDi by Poiesi and Boscaini [17]. The latter two algorithms are
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machine learning based methods, which perform very highly on the 3DMatch
Benchmark for point cloud registration. These four algorithms were excluded
from the previous experiments, as their implementation prevented the direct
input of correspondences.

For the ICP variants from PCL and OpenCV, as well as for NgeNet and GeDi,
the respective built-in correspondence search was used. FPFH features [20] were
calculated and directly used as input for FGR. The same FPFH features were
matched and filtered by applying a combination of rejections schemes built into
PCL and used as input to our algorithm, as well as both GA-LMS variants.

To compare the resulting registration error of the different algorithms, we
calculated the alpha recall (see Eq. 1), which is the fraction of tests smaller than
an error threshold α. The same metric was used by Zhou et al. [25].

α-recall =
#tests with RMSE < α

#tests
(1)

For each model, 100 different combinations of random transformations and ran-
dom overlap were tested. The experiment was repeated with and without noise
and visualized in Fig. 4. Our results show, that our proposed algorithm outper-
forms all other tested algorithms in a noise-free environment. Furthermore, in
the presence of noise, GAAlign performs on the same level as the best state-of-
the-art algorithm that was part of the comparison.

Fig. 4. Visualization of the α-recall for different algorithms with and without noise.
Upper-left is better.

5 Conclusion

In our work we presented an original geometric algebra based point cloud reg-
istration algorithm, called GAAlign, that uses the algorithmic structure of a
mini batch gradient descent to achieve an improved robustness against outliers
compared to other algorithms. Experiments using a same-source approach on
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synthetic data showed a high robustness against noise and outliers, as well as a
better scalability for large numbers of correspondences. Furthermore, the influ-
ence of the hyperparameters on runtime and registration error was tested to
suggest an optimal choice of hyperparameters. Finally, the proposed algorithm
showed a state-of-the-art accuracy in a real world pipeline when used in con-
junction with a feature-based correspondence search.
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github.com/kai-neumann/GAAlign. We thank the anonymous reviewers whose com-
ments helped to improve this manuscript. Special thanks to Steven De Keninck for
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critical reading of the manuscript.

Appendix

Listing A.1. GAALOPScript for the Triangle Reconstruction.
1

2 /* Algorithm based on: Reconstructing a Motor from Exact Point Correspondences

3 according to Sect. 6.8 of the tutorial A Guided Tour to the Plane -Based Geometric

4 Algebra PGA by Leo Dorst , University of Amsterdam */

5 // source points

6 !A_src = createPoint(src1_x , src1_y , src1_z );

7 !B_src = createPoint(src2_x , src2_y , src2_z );

8 !C_src = createPoint(src3_x , src3_y , src3_z );

9

10 // target points

11 !A_tar = createPoint(tar1_x , tar1_y , tar1_z );

12 !B_tar = createPoint(tar2_x , tar2_y , tar2_z );

13 !C_tar = createPoint(tar3_x , tar3_y , tar3_z );

14

15 // Transformation from A_src to A_tar ( translation)

16 !VA_unnormalized = (1+ A_tar/A_src);

17 !VA_norm = abs(VA_unnormalized );

18 !VA = VA_unnormalized/VA_norm;

19

20 !A2 = VA * A_src * ∼VA;

21 !B2 = VA * B_src * ∼VA;

22 !C2 = VA * C_src * ∼VA;

23

24 // Transformation from B2 to Bt; based on the rotation from the line L2 to L1

25 !L1 = *(* A_tar ^ *B_tar);

26 !L2 = *(* A_tar ^ *B2);

27

28 !VB_unnormalized = (1+L1/L2);

29 !VB_norm = abs(VB_unnormalized );

30 !VB = VB_unnormalized/VB_norm;

31

32 !B3 = VB * B2 * ∼VB;

33 !C3 = VB * C2 * ∼VB;

34

35 // Transformation from C3 to Ct; based on the rotation of two planes

36 !P1 = *(*L1 ^* C_tar);

37 !P2 = *(*L1 ^*C3);

38

39 !VC_unnormalized = (1+P1/P2);

40 !VC_norm = abs(VC_unnormalized );

41 !VC = VC_unnormalized/VC_norm;

42

43 // complete transformation

https://github.com/kai-neumann/GAAlign
https://github.com/kai-neumann/GAAlign
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44 !combined_motor = VC * VB * VA;

45

46 // Get the norm

47 !motor_norm = abs(combined_motor );

48

49 // Make sure the out motor is normalized

50 ?out_motor = combined_motor/motor_norm;
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Abstract. We introduce Quantum Register Algebra (QRA) as an effi-
cient tool for quantum computing. We show the direct link between QRA
and Dirac formalism. We present GAALOP (Geometric Algebra Algo-
rithms Optimizer) implementation of our approach. Using the QRA basis
vectors definitions given in Sect. 4 and the framework based on the de
Witt basis presented in Sect. 5, we are able to fully describe and compute
with QRA in GAALOP using the geometric product. We illustrate the
intuitiveness of this computation by presenting the QRA form for the
well known SWAP operation on a two qubit register.

Keywords: quantum computing · geometric algebra · quantum
register algebra

1 Introduction

Geometric Algebra proved in recent years that it is a mathematical system cover-
ing many other mathematical systems as conventionally used in engineering and
physical science, [4–6,9]. Examples are linear algebra, quaternions, Dirac and
Pauli matrices, Plucker coordinates to mention only a few. This means, the big
advantage of Geometric Algebra is that you do not have to learn different math-
ematical systems in order to handle various application areas. You simply have
to learn only one mathematical system to handle them. Another simplification
based on Geometric Algebra is that both objects and operations are handled in
one algebra, means you do not have to distinguish, for instance, between points
or vectors as objects and matrices for the description of operations on them.
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Now, the question is: can Geometric Algebra also advantageously be used for
quantum computing? Quantum computing, currently, is based on working with
complex numbers, matrices of complex numbers and tensor computing in order
to handle operations with arbitrary numbers of qubits.

Some papers on geometric algebras and quantum computing demonstrate
application of geometric algebras G4,1 (relativistic case) and G3,0 (nonrealtivis-
tic case), [3], geometric algebra Gn,n, [1] and finally a complex Clifford algebra
Cn, [2].

In this paper, we show that quantum computing can simply be based on a
Geometric Algebra called QRA (quantum register algebra). In Sect. 2, we show
that complex numbers can easily be identified within Geometric Algebra.

The Dirac formalism is a very useful formalism to describe quantum comput-
ing. Although it is originally based on complex matrices (see Sect. 3), we show in
our definition of QRA according to Sect. 4 and Sect. 5, that it can still be used
with QRA.

In order to compute with QRA, we use GAALOP, a stand alone geometric
algebra algorithm optimizer. We extended the GAALOP tool presented in [1] for
the QRA support based on the definitions presented in Sects. 4 and 5. The full
implementation is shown in Sect. 6. In order to simplify the computing as much
as possible, we also integrated it in our online tool GAALOPWeb. In Sect. 7, we
present how easy it is to compute with QRA using GAALOP, for this we present
the QRA form for the SWAP gate. The big advantage for quantum computing
beginners is that they only have to know Geometric Algebra in order to describe
the objects and operations of quantum computing.

2 From Complex Numbers to Geometric Algebras
and Back Again

The algebra of complex numbers C is an essential tool for quantum computing.
Qubits are realised by vectors in complex vector space C

n and the gates by
matrices n × n over the complex numbers. In our approach, the complex linear
algebra is the language for quantum computing. More precisely, we are using
the natural concept of complex geometric algebras with the complex numbers
as one of their instances. In the sequel, we investigate these concepts in a more
detailed way.

Formally, geometric algebra Gp,q is a free, associative, distributive and uni-
tary algebra over the set of abstract elements {e1, . . . , en} endowed with the
following identities:

eiej = −ejei, where i �= j,

e2i = 1, where i = 1, . . . , p, (1)

e2i = −1, where i = p + 1, . . . , n.

In computer science notation, we understand Gp,q as a vector space where vectors
are built as words over the alphabet {e1, . . . , en}, including an empty word,
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using the following equivalency. Two words are equivalent (they are different
representations of the same object) if the first can be rewritten into the second
and vice versa with the help of identities (1), distributivity and associativity.

For example, let us consider geometric algebra G1,1, so we have words over
the alphabet {e1, e2} and identities e21 = 1, e22 = −1 together with anti–
commutativity e1e2 = −e2e1. Then the vector space basis is of the form

{1, e1, e2, e1e2}. (2)

Hence, for example the word e2e1e2e1e1e2e2 can by rewritten to −e1 with the
help of identities (1) in the following way:

e2e1e2e1e1e2e2 = e2e1e2(1)(−1) = e1e2e2 = e1(−1) = −e1.

The element e1 is in the basis (2). We can see that the elements of geometric
algebra G1,1 are the linear combinations over the basis (2), i.e.

G1,1 = {x1 + x2e1 + x3e2 + x4e1e2|xi ∈ R} (3)

together with multiplication given by identities (1). For example

(e1 + 2e1e2)(1 + e1 − 3e2) = e1(1 + e1 − 3e2) + 2e1e2(1 + e1 − 3e2)
= e1 + e1e1 − e13e2 + 2e1e2 + 2e1e2e1 − 2e1e23e2

= e1 + (1) − 3e1e2 + 2e1e2 − 2e2e1e1 − 6e1(−1)
= 1 + e1 − e1e2 − 2e2(1) + 6e1
= 1 + 7e1 − 2e2 − e1e2 ∈ G1,1.

In any geometric algebra G(p, q) such that p > 1 or q > 1 we can find a
subalgebra isomorphically equivalent to C in the following way: if p > 1 we have
two elements e, f ∈ G(p, q) such that e2 = f2 = 1 and ef = −fe, so

(ef)2 = efef = −eeff = −e2f2 = −1

and
C ∼= C̄ = {a + b(ef)|a, b ∈ R} ⊂ G(p, q).

In the same way, if we have q > 1 then we have two elements e, f such that
e2 = f2 = −1 and ef = −fe, so

(ef)2 = efef = −eeff = −e2f2 = −1(−1)(−1) = −1.

Note that the element ef commutes with the other basis elements in both cases.

Remark 1. The complex numbers C are in fact isomorphically equivalent geo-
metric algebra G0,1. Indeed, G0,1 is a space

G0,1 = {x1 + x2e1|xi ∈ R} (4)

such that e21 = −1 which is the vector space isomorphically equivalent to C. The
specific concept for the imaginary unit used in QRA is described in Sect. 4.
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3 Matrices vs. Dirac Formalism

In this section, we show the direct link between Dirac formalism and geometric
algebras. Original quantum mechanics is based on Dirac formalism, but quantum
computing can be built up of matrices because the Hilbert space of qubits’ states
is finite. We briefly recall the link between matrices and Dirac formalism, [10].

– the n-qubit (ket)

|i〉 = |a1 · · · an−1an〉, where ai ∈ {0, 1} and i = a12n−1 + · · · + an20

⇐⇒

⎛
⎜⎜⎜⎜⎜⎜⎝

0
...
1
...
0

⎞
⎟⎟⎟⎟⎟⎟⎠

, where 1 is on i+1 position, 0 otherwise.

– the dual n-qubit (bra)

〈i| = 〈a1 · · · an−1an|, where ai ∈ {0, 1} and i = a12n−1 + · · · + an20

⇐⇒ (
0 · · · 1 · · · 0)

, where 1 is on i+1 position, 0 otherwise.

The n-qubit gates are matrices A = (aij), where i, j = 1, . . . , 2n. So if a matrix
A acts on coordinates in canonical basis, then its element aij sends the j–th
element of canonical basis to i–th element of canonical basis in the same way as
Dirac expression |i − 1〉〈j − 1|, so

⎛
⎜⎝

a11 . . . a1n

...
...

an1 . . . ann

⎞
⎟⎠ ⇐⇒

n∑
i,j=1

aij |i − 1〉〈j − 1|.

For example, the representations of 1-qubits (ket and bra) are

|0〉 ⇐⇒
(

1
0

)
, |1〉 ⇐⇒

(
0
1

)
, 〈0| ⇐⇒ (

1 0
)
, 〈1| ⇐⇒ (

0 1
)

and the NOT gate is of the form
(

0 1
1 0

)
⇐⇒ |0〉〈1| + |1〉〈0|.

4 Definition of QRA

Recall that a Geometric Algebra Gn = Gn,0 is a free, associative, unitary alge-
bra over the set of anti–commuting generators {e1, . . . , en} such that e2i = 1,
i ∈ {1, . . . , n}. Now we finally define the Quantum Register Algebra (QRA).
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First, let us consider a geometric algebra Gn+2 with its basis elements {e1, . . . ,
en, r1, r2} together with the following identities

e21 = e22 = · · · = e2n = r21 = r22 = 1. (5)

Then we define a bivector
ι = r1r2

and show that the set C̃ = {a + bι|a, b ∈ R} is isomorphic to an algebra C, so
ι plays the role of a complex unit. The set C̃ is closed with respect to addition
and multiplication. The element ι is in square equal to −1. Indeed,

ι2 = r1r2r1r2 = −r21r
2
2 = −1,

so C̃ ∼= C. Now we define QRA as a geometric subalgebra Gn with the coefficients
in C̃, i.e.

QRA = {a0g0 + · · · + angn|ai ∈ C̃, gi ∈ Gn} ⊂ Gn+2.

Hence for any element A ∈ Gn we have ιA = Aι because ι is a bivector and
ι /∈ Gn.

5 QC in the QRA Framework

To use QRA to model quantum computing we choose a different basis of QRA
based on geometric algebra G2n. This basis is called Witt basis and it is formed
by elements {f1, f

†
1 , . . . , fn, f†

n} satisfying

fi =
1
2
(ei + ιei+n), (6)

f†
i =

1
2
(ei − ιei+n), (7)

where ι = r1r2. Now, we define an element I = f1f
†
1 · · · fnf†

n satisfying

I2 = I, (8)
fiI = 0, (9)

fif
†
i I = I (10)

then we have a straightforward identification of bra and ket vectors with the
elements of QRA as follows:

〈a1 . . . an| ↪→ I(fn)an . . . (f1)a1 , where ai ∈ {0, 1}, (11)

|a1 . . . an〉 ↪→ (f†
1 )a1 . . . (f†

n)anI, where ai ∈ {0, 1}. (12)

For example, let us consider the space of 2–qubit states. Then the identification
(11) and (12) for the ket vectors reads
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|00〉 �→ (f†
1 )0(f†

2 )0I = I,

|01〉 �→ (f†
1 )0(f†

2 )1I = f†
2I,

|10〉 �→ (f†
1 )1(f†

2 )0I = f†
1I,

|11〉 �→ (f†
1 )1(f†

2 )1I = f†
1f†

2I.

(13)

So the ket vectors in 2-qubit state space are linear combinations of the basis
{f1, f

†
1 , . . . , fn, f†

n} elements:

|ψ〉 = (ψ00 + ψ01f
†
2 + ψ10f

†
1 + ψ11f

†
1f†

2 )I. (14)

To define the quantum gates we have to identify the bra vectors in the similar
way:

〈00| �→ I(f2)0(f1)0 = I,

〈01| �→ I(f2)1(f1)0 = If2,

〈10| �→ I(f2)0(f1)1 = If1,

〈11| �→ I(f2)1(f1)1 = −If1f2.

(15)

Thus the bra vectors in 2-qubit state space are combinations of the basis
{f1, f

†
1 , . . . , fn, f†

n} elements as follows:

〈ψ| = I(ψ00 + ψ10f1 + ψ01f2 − ψ11f1f2).

To demonstrate our approach we show the design of the SWAP gate [8].
Recall that in Dirac notation, the SWAP gate is represented by

|00〉〈00| + |01〉〈10| + |10〉〈01| + |11〉〈11|.

Using the identification (13) and (15), the SWAP gate may be rewritten as:

SWAP = |00〉〈00| + |01〉〈10| + |10〉〈01| + |11〉〈11|
= f1f

†
1f2f

†
2 + f†

1f2 − f1f
†
2 + f†

1f1f
†
2f2. (16)

Before we present how the gate acts on 2-qubits, let us mention the rules
for calculations with the Witt basis {fi, f

†
i } elements in the form of a list of

properties which can be verified by straightforward computations:

(fi)2 = (f†
i )2 = 0 (17)

fifj = −fjfi, f†
i f†

j = −f†
j f†

i (18)

fif
†
i fi = fi, f†

i fif
†
i = f†

i (19)
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We present the SWAP gate functionality on 2-qubits step by step. Thus we can
calculate:

SWAP|ψ〉 =

= (f1f
†
1f2f

†
2 + f†

1f2 − f1f
†
2 + f†

1f1f
†
2f2)(ψ00 + ψ01f

†
2 + ψ10f

†
1 + ψ11f

†
1f†

2 )I

= f1f
†
1f2f

†
2 (ψ00 +���

ψ01f
†
2 +���

ψ10f
†
1 +����

ψ11f
†
1f†

2 )I by (17)

+ f†
1f2(��ψ00 + ψ01f

†
2 +���

ψ10f
†
1 +����

ψ11f
†
1f†

2 )I by (9) and (17)

− f1f
†
2 (��ψ00 +���

ψ01f
†
2 + ψ10f

†
1 +����

ψ11f
†
1f†

2 )I by (9) and (17)

+ f†
1f1f

†
2f2(��ψ00 +���

ψ01f
†
2 +���

ψ10f
†
1 + ψ11f

†
1f†

2 )I by (9) and (17)

= (f1f
†
1f2f

†
2 )(ψ00)I + (f†

1f2)(ψ01f
†
2 )I by (10)

+ f†
2f1ψ10f1

†I + (f†
1f1f

†
2f2)(ψ11f

†
1f†

2 )I

= (ψ00 + ψ01f
†
1 + ψ10f

†
2 + ψ11(f

†
1f1f

†
1 )(f†

2f2f
†
2 ))I the last step by (10)

= (ψ00 + ψ01f
†
1 + ψ10f

†
2 + ψ11f

†
1f†

2 )I,

where �g and g stand for g = 0 and g = 1. Finally, by means of (13), the final
2-qubit can be rewritten in Dirac notation as

(ψ00|00〉 + ψ01|10〉 + ψ10|01〉 + ψ11|11〉)I

which is the expected result.
The other gates may be interpreted in the very same way and thus we showed

how quantum computation in QRA is realized. We used the Witt basis axioms
(17)–(19) together with additional axioms (9) and (10). The use of the addi-
tional axioms may seem redundant and complicated but they only simplify the
written form of calculations and thus the functionality is easier for demonstra-
tion. Indeed, these rules may be avoided completely for which we point out the
following two reasons:

– If we interpret the element I as f1f
†
1 · · · fnf†

n, the rules (9) and (10) do not
apply because they are simple consequences of (17)–(19). Only the expressions
will be longer.

– We are using the axioms (17)–(19) for calculations in the Witt basis which
naturally corresponds to Dirac formalism. But Witt basis is just a different
set of generators for QRA elements. Thus the axioms (17)–(19) are derived
from geometric algebra axioms (5) which are very simple.

Our approach is based on the fact that QRA and the Witt basis provide
nice language for written QC schemes. The expressions are very similar to Dirac
formalism, so they are very simple to understand for people not familiar with
geometric algebra. But unlike abstract Dirac formalism, our objects are elements
of QRA which is a geometric algebra based on very simple axioms and, further-
more, it is very easy for implementation as shown in the following section.
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6 GAALOP Implementation

The integration of QRA into GAALOP is done based on the file Definition.csv
according to Chapt. 9 of [7]. Listing 1.1 shows the file for the definition of one
qubit.

Listing 1.1. Definition.csv for QRA for one qubit

1 1,e1 ,e2 ,er1 ,er2
2
3 1,e1 ,e2 ,er1 ,er2
4 e1=1,e2=1,er1=1,er2=1

In general, this file consists of 5 lines for the definition of the algebra. In the
case of QRA, the lines 2 and 5 are left blank since the used basis in Line 1 and
the standard basis in Line 3 are the same and no transformations between the
two bases are needed. The basis is defined by the basis vectors e1, e2, er1 and
er2 according to e1, e2, r1, r2 as defined in the previous sections. All their squares
are defined to 1 according to line 4.

For each additional qubit we need two additional basis vectors, while er1 and
er2 are always the same. The definition of a register with two qubits is shown in
Listing 1.2.

Listing 1.2. Definition.csv for QRA based on two qubits

1 1,e1 ,e2 ,e3,e4,er1 ,er2
2
3 1,e1 ,e2 ,e3,e4,er1 ,er2
4 e1=1,e2=1,e3=1,e4=1,er1=1,er2=1

For the second qubit we need the additional basis vectors e3 and e4. For this
paper, we also made a new version of GAALOPWeb1. It allows online computa-
tions with a number of n qubits without the installation of a specific software.

7 Example in GAALOP

As an example we implemented the SWAP gate on GAALOP for a register with
two qubits. Following the Eqs. (6) and (7), the vectors fi and f+

i as

f1 = 1
2 (e1 + ιe3), f†

1 = 1
2 (e1 − ιe3)

f2 = 1
2 (e2 + ιe4), f†

2 = 1
2 (e2 + ιe4) ,

where ι = r1r2. Then, we use the definitions in (13) to implement the basis
elements, Eq. (14) for |ψ〉 and (16) to define the operator of the SWAP gate. We
apply the SWAP operator on the element |ψ〉. But first, let us see the coordinates
of each ket vector basis when they are multiplied by I separately:

1 http://www.gaalop.de/gaalopweb/.

http://www.gaalop.de/gaalopweb/
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Listing 1.3. SWAP gate in QRA for two qubits.

1 // Imaginary unit

2 i = er1*er2;
3 // Witt basis

4 f1 = 0.5*( e1+i*e3);
5 f1T = 0.5*(e1 -i*e3);
6 f2 = 0.5*( e2+i*e4);
7 f2T = 0.5*(e2 -i*e4);
8 // Element "I"

9 Id = f1*f1T*f2*f2T;
10 // ket basis vectors multiplied by "Id"

11 ?ket00 = 1*Id;
12 ?ket01 = f2T*Id;
13 ?ket10 = f1T*Id;
14 ?ket11 = f1T*f2T*Id;

This is important to show which coordinates correspond to each vector in order
to see the amplitudes interchanging when SWAP is applied to some linear com-
bination of these vectors. The output for this code is shown below:

Listing 1.4. Basic elements multiplied by I.

1 ket00 [0] = 0.25; // 1.0

2 ket00 [42] = 0.25; // e1 ^ (e2 ^ (e3 ^ e4))

3 ket00 [50] = -0.25; // e1 ^ (e3 ^ (er1 ^ er2))

4 ket00 [55] = -0.25; // e2 ^ (e4 ^ (er1 ^ er2))

5 ket01 [2] = 0.25; // e2

6 ket01 [26] = -0.25; // e1 ^ (e3 ^ e4)

7 ket01 [41] = -0.25; // e4 ^ (er1 ^ er2)

8 ket01 [59] = 0.25; // e1 ^ (e2 ^ (e3 ^ (er1 ^ er2 )))

9 ket10 [1] = 0.25; // e1

10 ket10 [32] = 0.25; // e2 ^ (e3 ^ e4)

11 ket10 [40] = -0.25; // e3 ^ (er1 ^ er2)

12 ket10 [60] = -0.25; // e1 ^ (e2 ^ (e4 ^ (er1 ^ er2 )))

13 ket11 [7] = 0.25; // e1 ^ e2

14 ket11 [16] = -0.25; // e3 ^ e4

15 ket11 [51] = -0.25; // e1 ^ (e4 ^ (er1 ^ er2))

16 ket11 [54] = 0.25; // e2 ^ (e3 ^ (er1 ^ er2))

We remark that all identities given in (17)–(10) can be observed in GAALOP.
Now, let us choose a vector |ψ〉2 given by:

|ψ〉 = (|00〉 + 2|01〉 + 3|10〉 + 4|11〉)I
= (1 + 3f†

2 + 3f†
1 + 4f†

1f†
2 )I,

2 The vector |ψ〉 is not normalized, so the final result should be divided by
√

29.
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and apply the SWAP gate on it. The expected result is given by:

|ψ̄〉 = (1 + 3f†
2 + 2f†

1 + 4f†
1f†

2 )I
= (|00〉 + 3|01〉 + 2|10〉 + 4|11〉)I.

We add 3 lines to the code in 1.3:

Listing 1.5. Definition and application of the SWAP gate on GAALOP.

1 //SWAP

2 SWAP=(f1*f1T*f2*f2T )+( f1T*f2)-(f1*f2T )+( f1T*f1*f2T*f2);

3 ?psi = ket00 + 2*ket01 + 3*ket10 + 4*ket11;

4 ?SwapPsi = SWAP*psi;

The output is shown below and then we analyze the result.

Listing 1.6. Output of the application of the SWAP gate on GAALOP.

1 psi [0] = 0.25; // 1.0

2 psi [1] = 0.75; // e1

3 psi [2] = 0.5; // e2

4 psi [7] = 1.0; // e1 ^ e2

5 psi [16] = -1.0; // e3 ^ e4

6 psi [26] = -0.5; // e1 ^ (e3 ^ e4)

7 psi [32] = 0.75; // e2 ^ (e3 ^ e4)

8 psi [40] = -0.75; // e3 ^ (er1 ^ er2)

9 psi [41] = -0.5; // e4 ^ (er1 ^ er2)

10 psi [42] = 0.25; // e1 ^ (e2 ^ (e3 ^ e4))

11 psi [50] = -0.25; // e1 ^ (e3 ^ (er1 ^ er2))

12 psi [51] = -1.0; // e1 ^ (e4 ^ (er1 ^ er2))

13 psi [54] = 1.0; // e2 ^ (e3 ^ (er1 ^ er2))

14 psi [55] = -0.25; // e2 ^ (e4 ^ (er1 ^ er2))

15 psi [59] = 0.5; // e1 ^ (e2 ^ (e3 ^ (er1 ^ er2 )))

16 psi [60] = -0.75; // e1 ^ (e2 ^ (e4 ^ (er1 ^ er2 )))

17 SwapPsi [0] = 0.25; // 1.0

18 SwapPsi [1] = 0.5; // e1

19 SwapPsi [2] = 0.75; // e2

20 SwapPsi [7] = 1.0; // e1 ^ e2

21 SwapPsi [16] = -1.0; // e3 ^ e4

22 SwapPsi [26] = -0.75; // e1 ^ (e3 ^ e4)

23 SwapPsi [32] = 0.5; // e2 ^ (e3 ^ e4)

24 SwapPsi [40] = -0.5; // e3 ^ (er1 ^ er2)

25 SwapPsi [41] = -0.75; // e4 ^ (er1 ^ er2)

26 SwapPsi [42] = 0.25; // e1 ^ (e2 ^ (e3 ^ e4))

27 SwapPsi [50] = -0.25; // e1 ^ (e3 ^ (er1 ^ er2))

28 SwapPsi [51] = -1.0; // e1 ^ (e4 ^ (er1 ^ er2))

29 SwapPsi [54] = 1.0; // e2 ^ (e3 ^ (er1 ^ er2))

30 SwapPsi [55] = -0.25; // e2 ^ (e4 ^ (er1 ^ er2))

31 SwapPsi [59] = 0.75; // e1 ^ (e2 ^ (e3 ^ (er1 ^ er2 )))

32 SwapPsi [60] = -0.5; // e1 ^ (e2 ^ (e4 ^ (er1 ^ er2 )))
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Note that the groups of coordinates {0, 42, 50, 55} and {7, 16, 51, 54}, which refer
to the coefficients of |00〉 and |11〉 respectively, remained unchanged from psi
to SwapPsi, as expected. However, note that the coefficients in the coordinates
{2, 26, 41, 59} of psi that corresponds to |01〉 was exactly 2 times the coefficients
of ket01 given by 1.4 and, in SwapPsi, they became 3 times those same coef-
ficients. On the other hand, the coordinates {1, 32, 40, 60} changed from 3 (in
psi) to 2 (in SwapPsi) times the coefficients of ket10 in 1.4, that corresponds
to |10〉. So, the output vector SwapPsi is exactly the vector |ψ̄〉.

8 Conclusion

In this paper, we presented how naturally Geometric Algebra can be used for
quantum computing. Based on the newly developed QRA and its support by
the extended GAALOP tool, the handling of quantum computing is strongly
simplified, especially for beginners. The big advantage for quantum computing
beginners is that they only have to know Geometric Algebra in order to describe
the objects and operations of quantum computing. We hope that this can be the
reason for Geometric Algebra to become “the” language for quantum computing
in the future.
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Abstract. This paper presents exploratory investigations on the con-
cept of generalized geometrical frequency in electrical systems with an
arbitrary number of phases by using Geometric Algebra and Differen-
tial Geometry. By using the concept of Darboux bivector it is possible
to find a bivector that encodes the invariant geometrical properties of
a spatial curve named electrical curve. It is shown how the traditional
concept of instantaneous frequency in power networks can be intimately
linked to the Darboux bivector. Several examples are used to illustrate
the findings of this work.

Keywords: Geometric Algebra · Geometric Electricity · Power
systems · Geometric Frequency

1 Introduction

Multi-phase power systems play a crucial role in modern society due to the
tremendous increase in energy needs. Moreover, with the proliferation of new
generation smart grids based on a decentralized paradigm and focused on renew-
able energies, it is of utmost importance to investigate new methodologies that
can deal with the distortion and unbalance scenarios produced by nonlinear
loads. In this regard, voltage and frequency control is essential to achieve ade-
quate stability, so appropriate tools are necessary for a better understanding of
transient phenomena that can potentially disturb the grid. Currently, the con-
cept of instantaneous frequency, widely used in electrical power systems, presents
some issues in its classical definition as the time derivative of the phase angle
of a signal. Apparently, this definition only holds for a sine representation of
such a signal but fails for other representations where harmonics or transients
are included [9]. Existing techniques based on the Fourier or Hilbert Transform,
for example, are unable to deal with these problems and give rise to a number
of paradoxes, described in [10].

Geometric Algebra (GA) and Differential Geometry (DG) are among the
most promising tools recently proposed, as evidenced by recent works [13,14].
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For example, in [11,12] a geometrical interpretation of the frequency for three-
phase electric circuits is proposed. Through the analysis of the invariants of
spatial curves, it is possible to find a direct relation with the generalized con-
cept of frequency that can be of interest in electrical power systems. However, a
generalization to an arbitrary number of phases has yet to be presented. In par-
ticular, the study of multiphase electrical machines or electrical power systems
with a number of phases greater than three can benefit from the investigations
presented in this paper.

This approach not only allows a generalization through the use of exterior
algebra or geometric algebra but also provides a unifying mathematical frame-
work.

In this paper, GA and DG is applied to multi-phase electrical systems com-
prising any number of electrical phases by characterizing the voltage as a vector
describing a curve in n-dimensional space. We will refer to such curves as “elec-
trical curves” (EC). A new procedure is proposed that allows to obtain a mul-
tivector representation of the geometrical angular frequency, known as Darboux
Bivector.

2 Electrical Curves and Geometric Properties

The electric curve approach is an effort for the application of concepts related to
spatial curves within electrical systems. More specifically, geometric invariants
(e.g. curvature) of the curve can accurately describe properties of interest for
the power community. For example, the instantaneous or average grid frequency
in power systems can be linked easily to curvature properties. This approach
lead us to the concept of “geometric frequency” as introduced by Milano [11].
For higher dimensional, i.e., multi-phase power systems, the procedure depends
on the derivations of Hestenes [5] (Chap. 6) where arc-length parameterization
is assumed. Here we provide a procedure that expresses this idea using time-
dependent formulation of the original arc-length parameterization formulation.

2.1 Electrical Curve Definition and Parameterization

In practical power systems applications, we are typically given a uniformly sam-
pled multi-phase and periodic voltage (or current) signals vi [k] with k the sample
index and i = 1, 2, . . . , n, the electrical phase index, and n the total number of
electrical phases. We are allowed to create a discrete vector signal v[k] from vi[k]
that describes a curve in an n-dimensional Euclidean space. We call this object
an “electrical curve” (EC).

Because the method depends on differential geometric characteristics of
curves, the first step in this procedure is to use a suitable interpolation or fitting
method to obtain a time-dependent differentiable curve v(t) that closely approx-
imates the sampled signal v [k]. However, real-world signals can typically contain
a fair amount of noise and artifacts because of the Analog to Digital Converter
(ADC) quantization sampling process, transient phenomena, etc., that make this
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a hard task. Fortunately, many procedures exist in practice [3,8]. We will assume
this step is already implemented using any suitable method.

Assume now a time-dependent vector v (t) =
∑n

i=1 vi (t)σi that describes a
curve in n-dimensional Euclidean space defined on the interval t ∈ [t0, t1]. The-
oretically, we can express the curve by a reparameterization v (s) = v (t (s)) =
∑n

i=1 vi (t (s))σi using the arc-length variable s (t) =
∫ t

t0
‖v′ (α)‖ dα, where the

relation s (t) and its functional inverse t (s) = s−1 (t) between parameters s and
t are one-to-one. Note that this reparameterization s (t) , vi (t (s)) is not always
possible to express in closed form in most cases. Therefore, in-depth new knowl-
edge is required to overcome the exposed challenges and issues.

2.2 Time and Arc-Length Derivatives of Electrical Curves

The computation of derivatives for the EC is of paramount importance. They
can be obtained in two different ways: with respect to parameter t or with respect
to arc-length s. The relationship between s and t is crucial in this regard.

To investigate this point, we can start by calculating the t-derivatives of the
arc-length parameter s (t) using the vector v and basic rules of vector differen-
tiation [7]. The following illustrates the first four derivatives:

s′ (t) =
√

v′ · v′

s′′ (t) =
1
s′ v

′ · v′′

s′′′ (t) =
1
s′

(
v′′ · v′′ + v′ · v′′′ − (s′′)2

)

s′′′′ (t) =
1
s′ (3v

′′ · v′′′ + v′ · v′′′′ − 3 s′′s′′′)

(1)

Having a suitable closed form time-dependent curve v (t) =
∑n

i=1 vi (t)σi of
class Cp (i.e. differentiable up to p times in t), it is simple to find the t-derivatives
of arbitrary degree 0 < m ≤ p using:

v′ (t) = ∂tv (t) =
n∑

i=1

v′
i (t)σi

v′′ (t) = ∂2
t v (t) =

n∑

i=1

v′′
i (t)σi

...

v(m) (t) = ∂m
t v (t) =

n∑

i=1

[∂m
t vi (t)]σi

(2)
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On the other hand, the derivatives of the curve with respect to arc-length param-
eter1 s can be obtained in a similar fashion:

v̇ (s) = ∂sv (s) =
n∑

i=1

v̇i (s)σi

v̈ (s) = ∂2
sv (s) =

n∑

i=1

v̈i (s)σi

...
v (s) = ∂2

sv (s) =
n∑

i=1

...
v i (s)σi

...

v(m) (s) = ∂m
s v (s) =

n∑

i=1

[∂m
s vi (s)]σi

(3)

Interestingly, if one wants to express the above set of equations (3) in terms
of the parameter t, it is found that they are much more intricate. For example,
using the chain rule, the first s-derivative in terms of t can be obtained for every
vi(s):

v̇i (s(t)) = ∂svi (s(t)) =
dvi(s(t))

dt

dt

ds
=

1
s′ (t)

v′
i (t) (4)

From now on, we remove the t symbol to indicate dependency on time in s
and v for simplicity. The second and third derivatives follow:

v̈i (s) = ∂2
svi (s) = ∂sv̇i (s) =

1

s′
d

dt

(
v′
i

s′

)
=

1

(s′)3
(
s′v′′

i − s′′v′
i

)

...
v i (s) = ∂3

svi (s) = ∂s

[
∂2
svi (s)

]
=

1

s′
d

dt

(
1

s′
d

dt

(
1

s′
dvi
dt

))

=
1

(s′)5
([

3
(
s′′)2 − s′s′′′

]
v′
i − 3 s′s′′v′′

i +
(
s′)2 v′′′

i

)

(5)

The relation between t-derivatives and s-derivatives of degree k ≥ 2 in vi is
algebraically complicated, not at all as simple as the first derivative where v̇ (s) =
1
s′ v

′. To illustrate this complex relation between t-derivatives and s-derivatives,
the first 4 s-derivatives v̇ (s) , v̈ (s) ,

...
v (s) ,

....
v (s) in terms of t-derivatives are

presented:

1 We use a dot for s-derivatives instead of a prime used in t-derivatives.
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v̇ (s) =
1
s′ v

′

v̈ (s) =
1

(s′)3
[s′v′′ − s′′v′]

...
v (s) =

1
(s′)5

[
(s′)2 v′′′ − 3 s′s′′v′′ −

(
s′s′′′ − 3 (s′′)2

)
v′

]

....
v (s) =

1
(s′)7

[
(s′)3 v′′′′ − 6 (s′)2 s′′v′′′ −

(
4 (s′)2 s′′′ − 15 s′ (s′′)2

)
v′′

+
(
10 s′s′′s′′′ − 15 (s′′)3 − (s′)2 s′′′′

)
v′

]

(6)

Additionally, the following relations hold:

‖v̇‖ = 1 (7)

‖v̈‖ =
1

(s′)2

√

‖v′′‖2 − 2
s′′

s′ (v
′ · v′′) + (s′′)2 (8)

v̇ · v̈ = 0 (9)

The quantity ‖v̈‖ is important as it’s the base for computing the first cur-
vature coefficient κ1 of the curve v which has important implications for the
geometrical frequency as illustrated later on.

2.3 Local Orthogonal Frames in Electrical Curves

The next step in the proposed procedure involves the application of an orthog-
onalization method, such as the Gram-Schmidt process, to the s-derivative vec-
tors v̇, v̈ and so on. For a symbolic expression of the s-derivative vectors, this
is simple to compute using either the Classical Gram-Schmidt (CGS) [2], or the
Geometric Algebra-based Gram-Schmidt (GAGS) [6]. For practical numerical
computations, however, care must be taken when applying the CGS\GAGS as
they are highly unstable numerically. A much more numerically stable alter-
native is the Modified Gram-Schmidt (MGS) procedure [1,2], which we found
giving much better results when orthogonalizing higher (i.e. degree 3 or higher)
s-derivatives. In any case, we essentially compute at each instant of time a local
orthogonal frame {u1,u2, . . . ,um} ,m ≤ p from the set of p local s-derivative
vectors {v̇, v̈, . . . , ∂p

sv}. We can also normalize the frame {u1,u2, . . . ,um} to
get a fully orthonormal local frame {e1,e2, . . . ,em} where em = 1

‖um‖um.
According to the chain rule presented in (4), the arc-length derivatives of the

arc-length frame can be readily computed:

ėi (s) =
1
s′ e

′
i (10)

It is also interesting to find the explicit relation between vectors e1,e2 and
vectors v̇, v̈,v′,v′′. This will be useful later for expressing the “grid angular
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velocity” blade, on which the concept of geometric frequency is based. Applying
the GAGS process to v̇, v̈, we can write:

u1 = v̇ =
1
s′ v

′

e1 =
u1

‖u1‖ = v̇ =
v′

s′ =⇒ v′ = s′e1 (11)

And for the second vector we have:

u2 = v̈ =
1

(s′)2
(
v′′ − s′′e1

)
=⇒ ‖u2‖ = u2 =

1

(s′)2

√
(v′′)2 − 2

s′′

s′ (v′ · v′′) + (s′′)2

e2 =
u2

‖u2‖ =
v′′ − s′′e1

(s′)2 ‖v̈‖ =⇒ v′′ = s′′e1 +
(
s′)2 ‖v̈‖

e2 = s′′e1 +

√
(v′′)2 − 2

s′′

s′ (v′ · v′′) + (s′′)2e2

(12)

2.4 Frénet-Serret Curvature Coefficients of an Electrical Curve

The Frénet-Serret equations were formulated for three dimensions by Jean
Frédéric Frénet and Joseph Alfred Serret and generalized to higher dimensions
by Camile Jordan in the XIX century. They describe some dynamic properties of
moving objects along curves in space by establishing a relationship between an
orthonormal frame and its derivatives that also moves along the curve. The coeffi-
cients of these equations are known as curvature coefficients κi, i = 1, 2, . . . , n−1
with n the number of dimensions. They satisfy the Frénet equations [5]:

ė1 = κ1e2

ė2 = −κ1e1 + κ2e3

ėi = −κi−1ei−1 + κiei+1

ėn = −κn−1en−1

(13)

We can re-write these equations as:

ė1 = κ1e2

ė2 + κ1e1 = κ2e3

ėi + κi−1ei−1 = κiei+1

ėn = −κn−1en−1

(14)

This directly leads to the solutions:

κ1 = ė1 · e2

κi = (ėi + κi−1ei−1) · ei+1 = ėi · ei+1

(15)
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Another simpler alternative for computing κi is to use the relation from [4]:

κi =
‖ui+1‖
‖ui‖ (16)

Here, the vectors ui are defined as

ui = ∂i
sv −

i−1∑

j=1

(
∂i

sv
) · uj

uj · uj
uj (17)

and are computed using the CGS or MGS process, not the GAGS as before.
However, in this work, a slightly different expression will be used for practical
applications in power systems where the frequency is ultimately dependent on
the time variable t (instead of the arc-length variable s) through the voltage
v(t). A scaled version of κi will be used known as “scaled curvature coefficient”,
ki:

ki (t) = s′ ‖ui+1‖
‖ui‖ = s′κi (18)

These scaled curvature coefficients depend explicitly on the time variable t.

3 The Darboux Blades

The original Darboux bivector ΩH is described in [5]. Note that we use the
subscript H to highlight the Hestenes definition. It contains a summary of the
local differential geometric information of the electrical curve. In this work, a
slight modification of this original definition is used, where we flip the order of
multiplication. The rationale behind this decision is to fit the practical definitions
of frequency in power systems and the recently proposed geometric frequency for
particular cases, such as sinusoidal and balanced conditions. We can use either
of the following relations as the definition for the new Darboux bivector Ω:

Ω =
1
2
s′

n∑

i=1

ei ∧ ėi (19)

=
n−1∑

i=1

kiei ∧ ei+1 (20)

= s′
n−1∑

i=1

ui ∧ ui+1

‖ui‖2
(21)

= s′
n−1∑

i=1

u−1
i ∧ ui+1 (22)
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For the special case of s′ = 1, then Ω = −ΩH . Using this definition for the
Darboux bivector, the following important relation holds true:

ėi = ei	Ω = −Ω
ei (23)

For practical usage we found that it is advisable to separate the Darboux
bivector into several 2-blades Ωi, which we will call the Darboux Blades (DBs),
as follows:

Ω =
1
2

n−1∑

i=1

Ωi

Ω1 = k1e1 ∧ e2 → ‖Ω1‖ = |k1|

Ωi = ki−1ei−1 ∧ ei + kiei ∧ ei+1 = s′u−1
i ∧ ui+1 + s′u−1

i−1 ∧ ui

Note that Ωi are always 2-blades (i.e. represent planes in n-dimensions),
while the Darboux bivector Ω is generally a bivector, not a 2-blade (except in
3-dimensions where all bivectors are 2-blades).

The first DB Ω1, called the grid angular velocity blade, has special relevance
for our analysis, satisfying the following relations:

Ω1 = v̇ ∧ v̈

=
1

(s′)2
v′ ∧ v′′

= k1e1 ∧ e2

= s′ ‖v̈‖ e1 ∧ e2

=
1
s′

√

‖v′′‖2 − 2
s′′

s′ (v
′ · v′′) + (s′′)2e1 ∧ e2

v̇	 (Ω − Ω1) =
n−1∑

i=2

Ωi = 0

The difference Ω − Ω1 is proportional to the bivector B of relation (3.8) in
[5], which always satisfies v̇	B = 0. When the curve v (t) is a planar one (such as
in the case for 3-phase line-to-line voltages signal), all curvature coefficients are
zero except κ1. In this specific case, we have Ω −Ω1 = 0, and the two quantities
are equivalent Ω = Ω1.

4 Example Signals

A number of theoretical examples are now presented to validate the proposed
method. Sinusoidal and non-sinusoidal multi-phase systems with an arbitrary
number of phases are studied. The goal is to obtain a geometric representation
of the generalized frequency grid by using the concept of DB.
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4.1 Multi-phase Balanced Sinusoidal Signal

Assume we have a balanced multi-phase sinusoidal electrical signal. It means
that the amplitude is the same for all phases and the phase angle among them
is 2πm

n with m = 0, 1, . . . , n − 1 and n the number of phases.

v (t) = V

n−1∑

m=0

cos
(

ωt − 2π
m

n

)
σm+1 = V

n−1∑

m=0

[
cos

(
2π

m

n

)
cos (ωt) + sin

(
2π

m

n

)
sin (ωt)

]
σm+1

= cos (ωt)V

[
n−1∑

m=0

cos
(
2π

m

n

)
σm+1

]
+ sin (ωt)V

[
n−1∑

m=0

sin
(
2π

m

n

)
σm+1

]

= cos (ωt) a + sin (ωt) b

(24)

with

a = V
n−1∑

m=0

cos
(
2π

m

n

)
σm+1

b = V
n−1∑

m=0

sin
(
2π

m

n

)
σm+1

In this case the two n-dimensional vectors a, b are orthogonal with ‖a‖2 =
‖b‖2 = n

2V 2. This signal describes a perfect circular curve in the plane spanned
by the n-dimensional orthogonal vectors a, b inside the larger signal space
defined by orthonormal basis vectors {σi}n

i=1. We can express all relevant quan-
tities using vectors a and b as follows:

v′ = −ω (sin (ωt)a − cos (ωt) b)

v′′ = −ω2 (cos (ωt)a + sin (ωt) b)

∥∥v′∥∥2
=

ω2

2
nV 2

s′ =
∥∥v′∥∥ =

ω√
2

√
nV

u1 = v̇ = −
√
2√

nV
[sin (ωt)a − cos (ωt) b]

u2 = v̈ = − 2

nV 2
[cos (ωt)a + sin (ωt) b]

e1 =
u1

‖u1‖ = −
√
2√

nV
[sin (ωt)a − cos (ωt) b]

e2 =
u2

‖u2‖ = −
√
2√

nV
[cos (ωt)a + sin (ωt) b]

k1 = s′ ‖u2‖
‖u1‖ = ω

Ω1 = k1e1 ∧ e2 = ωe1 ∧ e2 = 2ω

[
1

nV 2

]
a ∧ b
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Note the constant nature of ‖Ω1‖ = ω for this signal, which confirms the
curve being a perfect circle.

4.2 Multi-phase Unbalanced Sinusoidal Signal

Assume we have a general (possibly unbalanced) multi-phase sinusoidal electrical
signal. This now means that the amplitude can be different among phases and
phase angle is not regularly spaced by 2πm

n . In this case the voltage vector is:

v (t) =
n∑

m=1

Vm cos (ωt − ϕm)σm =
n∑

m=1

[Vm cos (ϕm) cos (ωt) + Vm sin (ϕm) sin (ωt)]σm

= cos (ωt)

[
n∑

m=1

Vm cos (ϕm)σm

]
+ sin (ωt)

[
n∑

m=1

Vm sin (ϕm)σm

]

= cos (ωt)a + sin (ωt) b

with

a =
n∑

m=1

Vm cos (ϕm)σm

b =
n∑

m=1

Vm sin (ϕm)σm

This signal describes an ellipse in the plane spanned by the n-dimensional
vectors a, b inside the signal space defined by orthonormal basis vectors {σi}n

i=1.
We can express all relevant quantities using vectors a and b as follows:

v′ = −ω (sin (ωt)a − cos (ωt) b)

v′′ = −ω2 (cos (ωt)a + sin (ωt) b)

∥∥v′∥∥2
=

ω2

2
g2

s′ =
∥∥v′∥∥ =

ω√
2

g

g =
√

(b2 − a2) cos (2ωt) − 2 (a · b) sin (2ωt) + (b2 + a2)

u1 = v̇ = −
√
2

g
[sin (ωt)a − cos (ωt) b]

u2 = v̈ = − 4

g4

[(
b2 cos (ωt) − (a · b) sin (ωt)

)
a +

(
a2 sin (ωt) − (a · b) cos (ωt)

)
b
]

e1 =
u1

‖u1‖ = −
√
2

g
[sin (ωt)a − cos (ωt) b]

e2 =
u2

‖u2‖ = −
√
2

g

⎡

⎢⎣
b2 cos (ωt) − (a · b) sin (ωt)√

a2b2 − (a · b)2
a +

a2 sin (ωt) − (a · b) cos (ωt)√
a2b2 − (a · b)2

b

⎤

⎥⎦



A Geometric Procedure for Computing Differential Characteristics 135

k1 = s′ ‖u2‖
‖u1‖ =

(
2
g2

√

a2b2 − (a · b)2
)

ω

Ω1 = k1e1 ∧ e2 =
(

2
g2

√

a2b2 − (a · b)2
)

ωe1 ∧ e2

= 2ω
[
1
g2

− (a · b)
sin (2ωt)

g4

]

a ∧ b

In this signal we have ‖Ω1‖ = h (t)ω, where the constant angular frequency of
the grid ω is scaled by the periodic time dependent factor:

h (t) =
2
√

a2b2 − (a · b)2

(b2 − a2) cos (2ωt) − 2 (a · b) sin (2ωt) + (b2 + a2)

Which has unit average value h = 1
T

∫ T

0
h (t) dt = 1 where T = π

ω is the time
of a single cycle of h (t), which is half the time of a single cycle of the signal
v (t). This clearly indicates that by averaging Ω = Ω1 on one half cycle of this
signal, followed by taking the norm of the resulting bivector, we again get the
grid frequency ω as intuitively expected.

4.3 Multi-phase Balanced Harmonic Signal

Finally, assume we have the following harmonic electrical signal:

v (t) =
√
2 [200 sin (ωt) + 20 sin (2ωt) − 30 sin (7ωt)]σ1

+
√
2

[
200 sin

(
ωt − 2π

3

)
+ 20 sin

(
2

(
ωt − 2π

3

))
− 30 sin

(
7

(
ωt − 2π

3

))]
σ2

+
√
2

[
200 sin

(
ωt +

2π

3

)
+ 20 sin

(
2

(
ωt +

2π

3

))
− 30 sin

(
7

(
ωt +

2π

3

))]
σ3

This electrical signal traces a planar symmetric curve in the plane orthogonal
to vector (1, 1, 1). The expression for the first DB is:

Ω1 (t) =
5ω√
3

(
16 cos (3ωt) + 672 cos (6ωt) + 84 cos (9ωt) − 691

−160 cos (3ωt) + 840 cos (6ωt) + 168 cos (9ωt) − 857

)
(σ1,2 − σ1,3 + σ2,3)

The average DB and its norm are given by:

Ω1 =
1
T

∫ T

0

Ω1 (t) dt =
√
3ω (σ1,2 − σ1,3 + σ2,3) T =

2π
ω

∥
∥Ω1

∥
∥ = 3ω
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The norm of the average angular velocity blade
∥
∥Ω1

∥
∥ is proportional to the

grid nominal angular frequency ω.

5 Conclusion

This paper has presented the generalized concept of geometrical angular fre-
quency applied to multi-phase systems with arbitrary number of phases, extend-
ing previous works where linear algebra were used to define the concept of geo-
metric frequency. Geometric Algebra and Differential Geometry have been used
to represent vectors in n-dimensional spaces and to compute the geometric invari-
ants associated to the generated spatial curves. Voltage signals have been used
to create such vectors and to compute the Darboux Bivector, which encodes the
specific differential geometric properties in the curves known as electrical curves.
The method can be conveniently employed for a variety of engineering problems
such as voltage stability, frequency control, to mention a few.
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Abstract. We use conformal transformations in the kinematic chain of
a specific planar mechanism. We present two possible ways to describe
the configuration of a three link generalised snake robot using compass
ruler algebra, which allows us to point out the nature of the generalised
snake as an extension of the classic snake robot.

Keywords: Compass ruler algebra · Clifford algebra · Mathematical ·
robotics · Non-holonomic mechanisms · Snake robots · Forward
kinematics

1 Introduction

In this paper we investigate a generalised planar robotic snake, which is inferred
from a standard robotic snake by adding one parameter. The scope of this paper
is to construct its forward kinematics using so-called compass ruler algebra. The
topic of the snake-like robots goes back to early 1970’s when Hirose formulated
the essential model design and developed limbless locomotors, for the complex
review of his work see [3]. He started the first bio-mechanical study using the
real snakes and designed the first snake-like robot based on so-called serpentine
locomotion. Original Hirose work has been followed by Downling [1], Chirikjian
and Burdick [8], and Ostrowski [6] in the next years. Recently, the theory of
robotic snakes have been developed in papers [4,5,7] in the framework of so-
called geometric algebras [2].

To investigate the mechanism, let us firstly recall the robotic snake-like mech-
anism. A robotic snake is a planar mechanism consisting of n rigid links con-
nected by n − 1 revolute joints. To each link, a pair of wheels is attached, such
that the ground friction in the direction perpendicular to the link is consider-
ably higher than the friction of a simple forward move. It means that the pair
of supportive wheels can not slip aside. Usually such a condition is referred to
as a non-slip condition. The configuration space of an n–link robotic snake is

(x, y, θ, Φ1, . . . , Φn−1) ∈ E(2) × S
n−1
1 ,

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
D. W. Silva et al. (Eds.): ICACGA 2022, LNCS 13771, pp. 138–146, 2024.
https://doi.org/10.1007/978-3-031-34031-4_12
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where p0 = (x, y) is the position of the beginning of the robotic snake, θ is
the absolute rotation w.r.t. the x axis and Φi are the relative rotations of the
respective revolute joints, see Fig. 1.

Fig. 1. The description of an n–link robotic snake

In a similar way, other planar mechanisms have been studied. As an example
let us mention the so-called trident snake robot. Originally the general trident
snake robot has been introduced in [9]. It is a planar robot with a body in the
shape of a triangle with three legs, where each leg can be understood as an n–link
robotic snake.

In our paper we introduce a new concept of planar mechanisms. We consider
generalised robotic snakes consisting of n prismatic joints connected by n−1 links
equipped with revolute joints. Similarly to robotic snakes, each link is equipped
with a pair of wheels with the same physical nature. The configuration space of
an n–link generalised robotic snake can be described as

(x, y, θ, �1, Φ1, �2 . . . , Φn−1, �n) ∈ E(2) × (R × S1)n−1 × R,

where (x, y, θ) ∈ E(2) is a position and an orientation in the plane,
(Φ1, , . . . , Φn−1) are parameters of revolute joints and (�1, . . . , �n) are param-
eters of prismatic joints, see Fig. 2.

Fig. 2. The description of the generalised n–link robotic snake
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From now on we will investigate a special case of such a snake. We consider
a 3-link generalised snake where not all links are prismatic. In our case a robotic
3-link generalised snake consists of three links connected by revolute joints, but
only the peripheral links are prismatic. Each link is equipped with a pair of
wheels with the same physical nature. The configuration space of such a 3–link
generalised robotic snake is

(x, y, θ, Φ1, Φ2, �1, �2) ∈ E(2) × S1 × (R × S1)2,

see Fig. 3. We denote a point in the configuration space as q. For such planar
mechanisms we generally assume the non-slip condition as

(xi, yi) · �n = 0,

where pi = (xi, yi).

Fig. 3. The description of the studied generalised 3–link robotic snake

2 Compass Ruler Algebra - CRA

Let R
3,1 denote the vector space R

4 equipped with the scalar product of the
signature (3, 1). Thus we have the corresponding Clifford algebra Cl(3, 1) such
that the set {e1, e2, e+, e−} is the basis. To describe elements of O := Cl(3, 1) we
have to determine a free, associative and distributive algebra as a span of the
set {e1, e2, e+, e−} such that the following identities are satisfied:

e21 = e22 = e2+ = 1, e2− = −1,

eiej = −ejei, i �= j, i, j ∈ {1, 2,+,−}.
In this case, we get a 24 = 16-dimensional vector space. Note that for sim-
plicity we will use a basis of R

3,1 as a set {e1, e2, e0, e∞} such that e0 =
1
2 (e− + e+) and e∞ = e− − e+, see Fig. 4. In CRA, the embedding of a point
(x, y) ∈ R

2 is realised by the following mapping:

point x �→ P = x1e1 + x2e2 +
1
2
(x2

1 + x2
2)e∞ + e0,
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Fig. 4. A basis of the compass ruler algebra

and a line is given by
L = P1 ∧ P2 ∧ e∞.

Moreover we can represent a point pair as

Pp = P1 ∧ P2.

Note that we have used the IPNS representation for a point construction whereas
we used the OPNS representations of a line and a point pair, which is more
convenient in the latter case. Notice that we can represent links of the generalised
snake-like robot as point pairs. In GA generally any transformation of the object
O is realized by the sandwich product

O �→ MOM̃,

where M is an appropriate multivector from O. For instance, the translation in
the direction t = xe1 + ye2 is realized by the multivector

T = 1 − 1
2
te∞

and the rotation around an axis L by an angle φ is realized by the multivector

R = cos
φ

2
− L sin

φ

2
,

where L = a1e1e2. Moreover we will use another important transformation,
which defines our concept. We will introduce the scaling multivector (acting
from the origin) as

S = e− ln γ
2 e0e∞ ,

where γ is the scaling factor.

Remark 1. The multivector Sx,y for scaling centered on a point (x, y) can be
obtained by a straightforward calculation:

Sx,y = e− lnγ
2 Ls ,

where

Ls = Te0e∞T̃ = (1 − 1
2
te∞)e0e∞(1 +

1
2
te∞) = e0e∞ + xe1e∞ + ye2e∞.
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The scalor multivector allows us to elegantly represent the change of the
length of a link using the transformation. Note that while the translation and
the rotation are euclidean transformations, the scaling is not.

Example 1. Let us demonstrate the application of the scalor centered in a point
acting on a point pair. The computation is done using the Python package Clif-
ford (the library imports in the code are omitted for brevity). In short, euclidean
points A,B and the origin O (used only for visualisation purposes) are embedded
into CRA using the up function and a point pair AB is constructed using the
wedge product. The midpoint of this point pair is found and used in the con-
struction of the scalor. The scalor is then applied using the sandwich product
and visualised. The resulting visualisation can be seen in the Fig. 5.

O = up(0)
A = up(2*e1+2*e2)
B = up(-e1+2*e2)
AB = A^B
gamma = log(2)
L = eo^einf

#midpoint of point pair
midpoint = AB*einf*(~AB)

#extract translation
downMidpoint = down(midpoint)
x = downMidpoint.value[1]
y = downMidpoint.value[2]
#translation from origin
T = 1 - 1/2*(x*e1 +y*e2)*einf
L = T*L*~T
S = exp(gamma/2 * L)
SAB = S*AB*~S

sc = GanjaScene()
sc.add_object(O, color=(46, 94, 42), label=’O’)
sc.add_object(AB, color=(255, 0, 0), label=’PP’)
sc.add_object(SAB, color=(0, 0, 255), label=’SPP’)
sc.add_object(midpoint, color=(0,0,0), label=’p’)

draw(sc, sig=layout.sig, scale=0.5)

3 Forward Kinematics of the Generalised 3-Link Snake

As mentioned earlier, the mechanism that we will work with is the 3-link snake
robot, where the 1st and the 3rd links include a prismatic joint.
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Fig. 5. Point pair PP scaled by a factor of 2 around the point p.

We interpret the prismatic links of the mechanism in the following sense: the
change of length of the first link is realised by an extension/retraction in the
direction of the vector Q1 − Q2 and the change of the length of the 3rd link is
realised by an extension/retraction in the direction of the vector Q4 − Q3.

Let us now describe the mechanism using CRA. The i-th link can be described
as the point pair Pi = Qi ∧ Qi+1, i.e. the outer product of two points. The
mechanism is then described as the triplet of point pairs P1, P2, P3. The point
pairs can be represented by their centres pi, given by

pi = Pie∞P̃i.

Let us show how the initial position for the point pair looks in terms of elements
of CRA. Setting the mechanism’s initial configuration as x = y = θ = φ1 = φ2 =
0, l1 = l3 = 1, we get

P1,0 = 2e0e1 + e0e∞,

P2,0 = 4 + 2e1e∞ + 2e0e1 + 3e0e∞,

P3,0 = 12 + 6e1e∞ + 2e0e1 + 5e0e∞.

We present two possible ways to describe the configuration of the mechanism.
The first approach is as follows. Denote the initial position of the point pair Pi as
Pi,0. Then we can understand Pi as the current configuration of the mechanism’s
i-th link. The first description of the configuration is taken as

P1 = RθTx,yS1P1,0S̃1T̃x,yR̃θ,

P2 = Rφ1RθTx,yP2,0T̃x,yR̃θR̃φ1 ,

P3 = Rφ2Rφ1RθTx,yS3P1,0S̃3T̃x,yR̃θR̃φ1R̃φ2 ,
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where Rθ is the rotor representing the change of the orientation of the mecha-
nism, Rφi

are rotors representing the change of φi, Tx,y is the translator repre-
senting the translation from the origin to Q1, and S1 and S2 are scalors repre-
senting the change of the length of the prismatic joints as described above. Let us
now give the explicit expressions for all transformations, using the exponential
notation:

Tx,y = e− 1
2 (xe1+ye2)e∞ , TQ2 = e− 1

2Q2e∞ , TQ3 = e− 1
2Q3e∞ , (1)

Rθ = e− θ
2 L0 , where L0 = Tx,ye1e2T̃x,y, (2)

Rφ1 = e− φ1
2 L1 , where L1 = TQ2e1e2T̃Q2 , (3)

Rφ2 = e− φ2
2 L2 , where L2 = TQ3e1e2T̃Q3 , (4)

S1 = e− ln γ1
2 L3 , where L3 = TQ2e0e∞T̃Q2 , (5)

S2 = e− ln γ2
2 L4 , where L4 = TQ3e0e∞T̃Q3 , (6)

where γi are scaling factors.
The second, and more interesting approach (shown in Fig. 6) how to describe

the configuration is given by

P1 = S1RθTQ2P1,0T̃Q2R̃θS̃1,

P2 = Rφ1RθTQ2P2,0T̃Q2R̃θR̃φ1 ,

P3 = S3R̃φ2Rφ1RθTQ2P3,0T̃Q2R̃θR̃φ1Rφ2 S̃3.

(7)

Fig. 6. Second approach to describing the configuration.

The transformations are same as in the first case. The difference lies in the
order of transformations, identification of the tracked point (x, y) with the point
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Q2 and the global angle of the orientation θ is also tracked with respect to the
second link. The argument for why this approach to formulate the kinematic
chain is more interesting is that it better coincides with the realisation of the
mechanism with respect to the order of the transformations. Take a look at
(7). Notice that if scalors S1, S3 were to be removed, the kinematic chain would
correspond to a 3-link snake without prismatic joints, thus the fact that the
generalised robot snake is an extension of the classic mechanism is clearly visible.

Remark 2. We have applied scaling, a non-euclidean transformation, to describe
the configuration of a generalised snake robot. However, a more interesting fam-
ily of mechanisms for which scaling would lead to a more natural representation
would be the generalised trident snake robot. The generalised trident snake mech-
anism is composed of a regular symmetric polygonal base, with an arm (which
can be viewed as an n-link snake robot) attached to every vertex. It would make
a sense to consider the last link of such an arm to be extensible, for example to
represent end effectors; then our approach of representing prismatic joints by a
scalor in CRA becomes much more attractive.

In fact, if we disregard the passive wheel in the middle of the central link
for our 3-link snake, we can think of it as a “degenerate” case of the generalised
trident snake, for which the base is a line segment.

4 Conclusion

We have presented a representation of the generalised snake robot using point
pairs as objects of CRA. The advantage of our approach is that we can eas-
ily describe such a non-rigid body motion using transformations represented as
bivectors (or their exponentials). This leads to a simple formalism used for the
description of the kinematic chain of our mechanism. Applying this approach to
other families of robotic mechanisms, such as the generalised trident snake, and
using the CRA approach in simulations could lead to further interesting work
topics.
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Abstract. In this work, a novel method to solve the hand-eye calibra-
tion problem for a camera attached to the end-effector of a robot artic-
ulation is proposed using the Geometric Algebra framework. In the pro-
posed method, the linear acceleration and angular velocity acquired from
an IMU (Inertial Measurement Unit) sensor attached to the camera is
employed with the kinematic model of the robot articulation to find the
relative camera position and orientation. Compared with other methods,
there is no need to employ a calibration pattern or human intervention,
allowing to implement the method easily while saving the computations
related to the image processing.

Keywords: Hand-eye calibration · Geometric Algebra · Kinematics

1 Introduction

Cameras are sensors widely used in robotics to acquire information from the
environment, like the position of objects, obstacles, and other related objects
that may imply some level of interaction with the robot. In this topic, hand-eye
calibration is a well-known problem, where the key idea is finding the rigid-body
transformation between the camera and the robot reference frame. Currently,
there is a rich literature on these methods, which includes the use of calibration
patterns and measurements taken from both camera and Inertial Measurement
Units (IMU) sensors. Despite the effectiveness of these methods, most of them
require several manual manipulations developed by users, which in practice com-
plicate the calibration process.

This paper proposes a real-time method for estimating the camera-grasping
point transformation while avoiding the processing of the camera image frames.
Instead, our approach is based on the acquired IMU signals: linear acceleration,
and angular velocity. First, we impose a sequenced prescribed movement at each
joint of the robot arm, and then we use the linear acceleration and angular
velocity to compute the transformation. The proposed algorithm is built using
the Geometric Algebra (GA) mathematical framework, in which many geometric
primitives can be operated naturally and directly.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
D. W. Silva et al. (Eds.): ICACGA 2022, LNCS 13771, pp. 147–158, 2024.
https://doi.org/10.1007/978-3-031-34031-4_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-34031-4_13&domain=pdf
http://orcid.org/0000-0002-0226-0047
http://orcid.org/0000-0003-2571-9460
http://orcid.org/0000-0002-6389-1790
https://doi.org/10.1007/978-3-031-34031-4_13


148 J. Zamora-Esquivel et al.

1.1 Related Works

The first challenge encountered during hand-eye calibration is usually the esti-
mation of the pose of the camera relative to the world as the hand pose can be
easily acquired by calculating the forward kinematics of the robot articulation.
Depending on how the camera pose is estimated, the hand-eye calibration can be
regarded as a target-based or target-less approach. In the target-based approach,
the calibration employs physical objects with measured distances or dimensions
(calibration objects). The basic idea is to estimate the camera pose by observing
a set of 3D points provided by a calibration object and their corresponding 2D
representations taken from the camera. Once the motions are calculated, the
end-effector position is calculated using the forward-kinematic model. Finally,
the homogeneous matrix is found through optimization algorithms [1,2].

In the target-less-based approach, the calibration employs just the informa-
tion acquired from sensors with no measured distances or calibration patterns: In
the structure from motion approach, the method employs the same approach as
the target approach, but the motions from the camera are estimated by detect-
ing and tracking a set of “features” through different camera frames, avoiding
the use of calibration objects [3,4]. On the other hand, there is another tech-
nique known as tool motion tracking, which is a variation where an exact CAD
model is employed to estimate the forward kinematics of the end-effector grasp-
ing an external tool, while the structure from the motion algorithm is employed
to calculate the camera motions looking at the end-effector [5].

Fig. 1. Algorithm to compute the angle and distance for the selected joint.

1.2 Algorithm Description

The proposed calibration algorithm is summarized in Fig. 1. First, we select a
periodic input function for each joint axis and lock all the other robot joints,
while we acquire the linear acceleration and angular velocity from the cam-
era attached to the end-effector using the information provided by the IMU.
Then, we solve the forward and differential kinematics and compute the rotation
transformation corresponding to the axis movement using the angular velocity.
Finally, using linear acceleration, we estimate the translation part. Repeating
this process for at least six robot joints will return the complete transformation
between the grasping point of the end-effector and the camera IMU.
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The rest of the paper is organized as follows: In Sect. 2, some preliminaries
related to Geometric Algebra and Robots Kinematics are provided. In Sect. 3,
the general mathematical framework employed by the proposed algorithm is
presented to describe how the calculations are made to determine the camera
position. In Sect. 4, a sample applied of the proposed algorithm is presented for a
single joint axis. Finally, in Sect. 5 the conclusions and future work of the present
paper are covered.

2 Geometric Algebra

A Geometric Algebra (GA) is a n dimensional space Gp,q, where p, q stand for
the number of basis vectors (ei) which squares to 1 and -1 respectively, and fulfill
n = p + q . In this algebra, the Clifford product (∗) between two basis vectors
can be defined as the operation [8,9]

eiej =

⎧
⎨

⎩

1 for i = j ∈ 1, · · · , p
−1 for i = j ∈ p+ 1, · · · , p+ q

eij = ei ∧ ej for i �= j,

which leads to a basis for the entire algebra:

{1}, {ei}, {ei ∧ ej}, {ei ∧ ej ∧ ek}, . . . , {e1 ∧ e2 ∧ . . . ∧ en}. (1)

2.1 G6,3 Geometry

A stereographic projection can be used to map points from R
1 into points on

R
2,1, by considering a three-dimensional mapping from e1, e2 and e3 a new G6,3

algebra is obtained:

G6,3 = R
2,1 × R

2,1 × R
2,1 (2)

As described in [7], G6,3 is a 9-dimensional geometry that has six bases
squaring to 1, and three squaring to −1, respectively:

e21, · · · , e26 = 1, e27, · · · , e29 = −1. (3)

Since this geometry allows the manipulation of quadratic entities, the points
mapped to this space are denoted by the subindex Q. A point in the Euclidean
space (x, y, z) ∈ R

3 can be mapped to G6,3 by employing the transformation:

xQ =
2xe1
x2 + 1

+
2ye2
y2 + 1

+
2ze3
z2 + 1

+
x2 − 1

x2 + 1
e4 + e7 +

y2 − 1

y2 + 1
e5 + e8 +

z2 − 1

z2 + 1
e6 + e9.(4)
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where the point at infinity e∞ is given by limx,y,z→∞ {XQ} as:

e∞ =
1
3
(e∞x + e∞y + e∞z), (5)

where e∞x = (e4 + e7), e∞y = (e5 + e8), e∞z = (e6 + e9). The above expressions
represent the basis of a new coordinate frame at the infinity or vanishing coordi-
nate frame, being the vanish vectors in x,y, and z direction. Based on [10], Eq. 4
can be rewritten as:

xQ = xe1 + ye2 + ze3 +
1

2
(x2e∞x + y2e∞y + z2e∞z) + eo. (6)

2.2 Translation

By definition a translator is given by:

Tx = 1 − 1
2
xe1e∞x, Ty = 1 − 1

2
ye2e∞y, Tz = 1 − 1

2
ze3e∞z, (7)

The mapping xQ of the Eq. 6 can be represented by

xQ = TzTyTxeo ˜Tx
˜Ty

˜Tz, (8)

xQ = Teo ˜T , (9)

where T represents the translator and can be written in exponential form as:

T = e− 1
2 (xe1e∞x+ye2e∞y+ze3e∞z). (10)

2.3 Rotation

The rotation is the product of two reflections between non-parallel planes as:

R = cos
(

θ

2

)

− sin
(

θ

2

)

l = e− θ
2 l, (11)

here l denotes the rotation axis. The screw motion called motor M = TRT̃
represents the rotation related to an arbitrary axis L defined on

M = e− q
2L, (12)

where q represents the rotation angle or the translation in case of L at infinity.
Any geometric entity can be rotated doing x′ = MxM̃ . Conformal Geometric
algebra can also used to perform this transformation. The reason of using QGA
is not only to compute the position of the end effector, but also the orientation
of it, because every point has an embedded coordinate frame as in [10].
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3 Robot Differential Kinematics

3.1 Forward Kinematics

The forward kinematics of articulations is given by the multiplication of suc-
cessive rotations, where each rotation is associated with every axis of the robot
joints (Fig. 2):

x′
j =

j
∏

i=1

Mixj

j
∏

i=1

M̃j−i+1. (13)

Fig. 2. Robot Axis for a Panda Robot 7 DoF.

3.2 Differential Kinematics

According to [6] the differential kinematics describes the linear velocity v of a
point x given by:

v = ẋ′ =
n

∑

1

x′ · L′
iq̇i, (14)

v =
(

x′ · L′
1 x′ · L′

2 x′ · L′
3 · · · x′ · L′

n

)

⎛

⎜

⎜

⎜

⎜

⎜

⎝

q̇1
q̇2
q̇3
...

q̇n

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, (15)

where Li represents the i−th axis of rotation as show in the Fig. 2, this equation
can be written as:

v = Jq̇, (16)
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J =
(

x′ · L′
1 x′ · L′

2 x′ · L′
3 · · · x′ · L′

n

)

, (17)

where:

L′
j =

j−1
∏

i=1

MiLj

j−1
∏

I=1

M̃j−i. (18)

The computation of the linear acceleration a of the end-effector (camera) as
a function of the joint accelerations can be determined using the derivatives of
the Jacobian J as:

a = J̇ q̇ + Jq̈, (19)

Here (J̇ q̇) can be computed by doing:

J̇ q̇ =
(

q̇1 q̇2 q̇3 · · · q̇n
)

(Φ + Ψ)

⎛

⎜

⎜

⎜

⎜

⎜

⎝

q̇1
q̇2
q̇3
...

q̇n

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, (20)

where:

Φ = x′ ·

⎛

⎜

⎜

⎜

⎜

⎜

⎝

L′
1 · L′

1 L′
1 · L′

2 · · · L1 · L′
n

L′
2 · L′

1 L′
2 · L′

2 · · · L′
2 · L′

n

L′
3 · L′

1 L′
3 · L′

2 · · · L′
3 · L′

n
...

...
...

...
L′
n · L′

1 L′
n · L′

2 · · · L′
n · L′

n

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, (21)

and:

Ψ =
1
2
x′ ·

⎡

⎢

⎢

⎢

⎣

⎛

⎜

⎜

⎜

⎝

L′
1L

′
1 0 · · · 0

L′
2L

′
1 L′

2L
′
2 · · · 0

...
...

. . .
...

L′
nL1 LnL′

2 · · · L′
nL′

n

⎞

⎟

⎟

⎟

⎠

−

⎛

⎜

⎜

⎜

⎝

L′
1L

′
1 0 · · · 0

L′
1L

′
2 L′

2L
′
2 · · · 0

...
...

. . .
...

L1Ln L′
2L

′
n · · · L′

nL′
n

⎞

⎟

⎟

⎟

⎠

⎤

⎥

⎥

⎥

⎦

, (22)

then, the acceleration is equal to

a = q̇T (Φ + Ψ) q̇ + Jq̈. (23)

This computed position, velocity, and acceleration are compared with the
measured position, velocity, and acceleration coming from the encoders, gyro-
scope, accelerometer, and solving for x, which gives us the position of the camera.
In the next section, we will illustrate the method used by estimating the position
of the camera using a single joint axis.
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4 Algorithm Description

In this section we will describe the steps followed to estimate the position of the
camera, we will show step by step using the information provided by a simulator
created previously (which has the dynamic model of the isolated robot). To
simplify the generated expressions, an example for a single axis is presented using
the following procedure: First, the forward kinematics of the end-effector are
calculated by manipulating a single joint. Second, the differential kinematics of
the end-effector by manipulating the same joint are calculated. Third, the camera
orientation is determined using the IMU signals. Finally, the above information
is employed to determine the camera position relative to the manipulated joint.

4.1 Compute Forward Kinematics for a Single Joint Movement

First, we produce a periodic motion in one of the joints, without moving the rest
of the motors. For the joint q1, any periodic motion can be selected, for instance:

q1 =
3π
10

(1 − cos(0.7πt + π)). (24)

Using this equation to move the joint, the end-effector rotates following a
circular trajectory around the center of the joint axis, going back and forward
over a quarter of the circle. The value of the radius d in the estimated circle is
defined by the position of the camera on the robot. Figure 3 shows the x and z
coordinate respectively of the end-effector as a result of the forward kinematics
simulation, recreated by using the encoder information of every joint. In this
case, the position of (x, z) coordinates is given by the equations of the forward
kinematics (13).

Fig. 3. X and Y - axis movement using the forward kinematics model feed with the
encoder measurements of the joints.
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4.2 Compute Differential Kinematics

After computing the kinematics, we must compute the differential kinematic to
estimate the linear velocity of the end-effector using Eq. (14), in this example,
we are moving only the first joint, then in this particular case the Eq. 2, can also
be computed as follows:

Fig. 4. Linear velocity of the end-effector as a function of the input joint q1

Where d represents the unknown distance from the camera to the rotation
axis. In the following graph the linear velocity for the two end-effector axis is
presented (vx, 0, vz):

Fig. 5. Linear velocity of the end-effector in the x and z axis.

In this step we have to compute the acceleration (Eq. (23)). For this particular
case, since we are only moving a single joint the simplified math model can be
described as:

Fig. 6. Computation of the acceleration for a particular case of one axis movement.

A comparison between the estimated and modeled acceleration is presented in
Fig. 7. The estimated acceleration is given by the red line, while the mathematical
model is given by the blue line. As can be seen, the math model can describe
the acceleration behavior properly.
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Fig. 7. Linear acceleration in z-axis. Mathematical model vs the differential kinematics
estimation of the acceleration based on the encoder of the joint position through time.

4.3 Estimation of the Camera Orientation

Ideally, when the IMU sensor is perfectly aligned with the axis of rotation, every
rotation applied on a single axis of the end-effector has no components with
other axis. Nevertheless, this is a strange situation in the real life. Whereby
it is required finding the orientation of the camera sensor respecting to the
end-effector axis. In this step we show one angle computation because we are
stimulating the rotation on this axis, to find the other angle we should repeat
this step rotating axis by axis, the following equation represents the original
rotation speed induced on the robot multiplied by h, where h is a scalar factor
that we will adjust to minimize the error interpolating the captured signal.

q̇e = 3h
π2

10
(0.7) sin(0.7πt + π). (25)

Figure 8 shows an example of the error minimization for the interpolation
of the function, this interpolation helps us to estimate with high precision the
measured signal (removing the error of 0.03r/s in our experiments). This func-
tion q̇e was generated by the misalignment of the sensor and the angle of miss
alignment, which is given by

h = sin(φ) = sin−1(q̇e/q̇). (26)

In our example it was h=0.04 with an estimated angle φ = 2.29o , this
orientation in the accelerometer will produce a constant component induced by
the gravity in the x-axis this offset according to:

agx = gh = g sin(φ), (27)

in this example for instance

agx = 0.04 ∗ 9.81m/s2 = 0.39m/s2, (28)
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Fig. 8. Angular velocity measured using the gyroscope and the adjusted by interpolated
function to minimize the error.

since the IMU is rotating due to the stimulation we introduced to the robot, the
accelerations mathematically computed for each axis should be mapped to the
IMU new axis and the offset introduced by the gravity should be incorporated
as:

ax = d sin (q) q̇2 − d cos (q) q̈ + agx, (29)
az = d cos (q) q̇2 + d sin (q) q̈ + agz. (30)

the estimated acceleration on the rotated x axis is given by

a = ax cos(q) − az sin(q). (31)

graphically for this example is given by:

Fig. 9. Estimated Linear acceleration expected to be measured by the accelerometer.

4.4 Determine the Camera Relative Position

Finally, the information from the accelerometer is compared with the estimated
previously. This comparison is presented in Fig. 10, where as can be seen, despite
the accelerometer is noisy it allows us to minimize the error and find the dis-
tance from the sensor to the rotation axis (d). By moving the joint one we have
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Fig. 10. Estimated Linear acceleration vs real acceleration captured by the accelerom-
eter.

estimated d as the distance to this axis. The process can be repeated to every
axis to get a more accurately result for all the axis, by intersecting the circular
trajectories generated by every movement.

As the algorithm can determine the position of the camera using periodic
movements on a single articulation, some considerations need to be addressed
when performing the algorithm for multiple joints: First, every joint is manip-
ulated using periodic inputs while maintaining the other fixed; the algorithm is
developed by considering a single joint by a time. And second, to avoid matrix
singularities it is important to be sure that there are no overlaps between the
robot’s axis.

5 Conclusions and Future Work

In this paper, a novel method for the estimation of the position and orientation of
a camera attached on the end-effector was proposed, employing the movements
measured by the camera’s sensors (Accelerometer and Gyroscope) as the reaction
of the stimulated motion on the robot joints.

– A computational online method to compute the transformation from the end-
effector to a camera attached to it based on Conformal Geometric Algebra
was proposed.

– The method only uses IMU information, avoiding the need to know intrinsic
calibration parameters specific to each camera.

– The method’s accuracy does not depend on the camera resolution, lens
attached, update frame, or other camera configuration.

– Calibration can be achieved online, by developing free movements on the
robot articulation which has the camera attached.

– Our method does not require a visual pattern and visual processing algorithm,
also, this not requires human intervention.
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1 Introduction

The author’s interest in spinors is sparked by the fact that spinors seem to be
the fundamental objects from which physics is built. All known forms of matter
(leptons and quarks) are made from spinors. And all known interactions, namely
the three forces of the standard model, plus gravity, emerge from symmetries of
spinors. The present paper, which is based on [1], shows how this works.

The present paper is a companion to [2], which presents a pedagogical intro-
duction to the Supergeometric Algebra (SGA), the square root of the Geometric
Algebra (GA). A central message of [2] is that a spinor, the fundamental rep-
resentation of the group Spin(N) of rotations in N spacetime dimensions, is
indexed by a bitcode with [N/2] bits.

2 The Electron as a Dirac Spinor

A Dirac spinor is a spinor in 3+1 spacetime dimensions. It has 4/2 = 2 bits, a
boost bit (⇑ or ⇓), and a spin bit (↑ or ↓). A Dirac spinor is said to be right-
handed if its boost and spin bits align, left-handed if they anti-align. Altogether,
a Dirac spinor has 22 = 4 complex components, or 8 real components. The 4
complex components of a Dirac electron, grouped into right- and left-handed (R
and L) are:

eR : e⇑↑ , e⇓↓ , eL : e⇓↑ , e⇑↓ . (1)

The right- and left-handed components eR and eL are called the Weyl compo-
nents of the electron, and they are massless. The massive electrons and positrons
observed in Nature are linear combinations of right- and left-handed components.
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Electrons e and positrons ē in their rest frames are complex conjugates of each
other:

e↑ = 1√
2
(e⇑↑ − ie⇓↑) , e↓ = 1√

2
(e⇓↓ − ie⇑↓) , (2a)

iē↑ = 1√
2
(e⇑↑ + ie⇓↑) , iē↓ = 1√

2
(e⇓↓ + ie⇑↓) . (2b)

3 The Electron as a Spin(10) Spinor

That the chiral nature, right- or left-handed, of the electron should be taken
seriously follows from the fact that only left-handed electrons feel the weak
SUL(2) force: right-handed electrons feel no weak force.

The standard model of physics is based on UY (1)×SUL(2)×SU(3), the prod-
uct of the hypercharge, left-handed weak, and color groups. At energies less the
electroweak scale ∼ 100GeV, the symmetry of the hypercharge and weak groups
breaks to the electromagnetic symmetry, UY (1)×SUL(2) → Uem(1). The method
of electroweak symmetry breaking proposed by Weinberg (1967) [3], based on
the so-called Higgs mechanism [4,5], has received spectacular experimental con-
firmation, culminating with the detection of the electroweak Higgs boson, with
a mass 125GeV, at the Large Hadron Collider in 2012 [6,7].

The success of the electroweak symmetry-breaking model prompted proposals
in the mid-1970s that the three groups of the standard model would themselves
become unified in a so-called Grand Unified Theory (GUT) group, at an energy
that was estimated from the running of the three coupling parameters to be at
∼ 1014–1016 GeV. Three possible GUT groups fit the observed pattern of charges
of fermions, of which the most unifying was Spin(10) (the covering group of
SO(10)), first pointed out by [8,9]. The other two possible GUT groups, SU(5)
proposed by [10], and the Pati-Salam group Spin(4) × Spin(6) proposed by [11],
are subgroups of Spin(10).

As first pointed out by Wilczek in 1998 [12], and reviewed by Baez & Huerta
[13], a spinor of Spin(10) is described by a bitcode with 10/2 = 5 bits, consisting
of 2 weak bits and 3 color bits. Wilczek and Baez & Huerta proposed different
conventions for naming the bits. My own preference is to label the color bits
r, g, b, following [13], and the weak bits y and z, inspired by the fact that y and
z are infrared bands to be used by the Vera Rubin Observatory (the LSST) [14],
for which first light is expected in 2025. The sequence yzrgb is, in (inverse) order
of wavelength,

y ∼ 1000 nm , z ∼ 900 nm , r ∼ 600 nm , g ∼ 500 nm , b ∼ 400 nm . (3)

This is an electron in Spin(10), labeled according to its yzrgb bits (colored
silver, bronze, red, green, blue):

(4)

Flipping all 5 yzrgb bits flips between electron and positron. Flipping the y-
bit flips between right- and left-handed. In the Spin(10) picture, each of the
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Fig. 1. The electron generation of 32 fermions arranged according to their Spin(10)
yzrgb charges. A Spin(11, 1) version of this figure is Fig. 2

right- and left-handed components is itself a Weyl spinor, with two complex
components.

In the standard model, fundamental fermions come in 3 generations, the
electron, muon, and tauon generations. The three generations of fermions differ
only in their masses: the standard model charges of each generation replicate each
other. Only fermions come in three generations. The gauge bosons that mediate
the forces, the interactions between fermions, are the same for all generations:
there is only one “boson generation.” This suggests that the 3 generations are
not just another symmetry to be adjoined to the standard model. What causes
the 3 generations remains a deep mystery of physics.

The lightest fermion generation is the electron generation. The fermions of
the electron generation comprise 8 species, consisting of electrons and neutrinos,
and 3 colors each of down and up quarks. Each of the 8 species comes in right-
and left-handed varieties, and in particle and antiparticle versions, for a total
of 32 fermion types. Each of those fermion types can be either spin-up or spin-
down, for a total of 64 degrees of freedom. The pattern repeats for each of the
3 generations. Although no right-handed neutrino has been observed in Nature,
the fact that the left-handed neutrino carries a non-zero mass strongly suggests
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that a right-handed neutrino should exist, since a purely left-handed neutrino
would be massless.

Figure 1 shows the 32 fermions of the electron generation, arranged according
to their yzrgb charges. The same information illustrated in Fig. 1 is tabulated in
the following Spin(10) chart, which arrays the fermions in columns according to
the number of up-bits (compare Table 4 of [13]; see also [12]). The left element
of each entry (before the colon) signifies which bits are up, from – (no bits
up, or ) in the leftmost (0) column, to yzrgb (all bits up, or ) in
the rightmost (5) column; the right element of each entry is the corresponding
fermion, which comprise (electron) neutrinos ν, electrons e, and up and down
quarks u and d, each in right- and left-handed Dirac chiralities R and L, and
each in (unbarred) particle and (barred) antiparticle species, a total of 25 = 32
fermions:

Fermions and their Spin(10) bitcodes, arranged by the number of up-bits
0 1 2 3 4 5

– : ν̄L y : ν̄R c̄ : ūc̄
L yc̄ : ūc̄

R zrgb : νL yzrgb : νR

z : ēR yz : ēL rgb : eR yrgb : eL

c : dcR yc : dcL zc̄ : d̄c̄R yzc̄ : d̄c̄L
zc : uc

L yzc : uc
R

(5)

Here c denotes any of the three colors r, g, or b (one color bit up), while c̄
denotes any of the three anticolors gb, br, or rg (two color bits up, the bit flip
of a one-color-bit-up spinor).

The Spin(10) chart (5) of fundamental fermions is a Christmas puzzle of
striking features. The most striking feature is that Dirac chirality (subscripted
L or R in the chart) coincides with Spin(10) chirality. Spin(10) chirality counts
whether the number of Spin(10) yzrgb up-bits is even or odd: the even and odd
columns of the chart (5) have respectively left- and right-handed Spin(10) chiral-
ity. In any GA, chirality is the eigenvalue, ±1, of the pseudoscalar (normalized
by a phase so the eigenvalues are real). The coincidence of Dirac and Spin(10)
chiralities suggests that the pseudoscalars of the Dirac and Spin(10) geometric
algebras are somehow the same, in contrast to the usual assumption that the
Dirac and GUT algebras are distinct.

The second striking feature of the Spin(10) chart (5) is that standard-model
transformations connect fermions vertically, while Lorentz transformations con-
nect fermions (for the most part) horizontally. For example, electrons e and
positrons ē are arrayed along one row of the chart. Every Spin(N) group has
a subgroup SU([N/2]) that preserves the number of up-bits [15]. The columns
of the chart (5) are SU(5) multiplets within Spin(10), with dimensions respec-
tively 1, 5, 10, 10, 5, 1. The standard-model group is a subgroup of SU(5).
All standard-model interactions preserve the number of Spin(10) up-bits. With
standard-model transformations arrayed vertically and spacetime transforma-
tions arrayed horizontally, the chart (5) seems to be signalling that the two are
somehow connected.
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The third striking feature of the Spin(10) chart (5) is that right- and left-
handed versions of the same species (for example electrons eR and eL) differ
by a flip of the y-bit. In the Spin(10) picture, electroweak symmetry breaking
is a loss of y-symmetry. The electroweak Higgs field carries y-charge, and it
gives mass to fermions by flipping their y-bit. This is prettier than the some-
what abstruse traditional description UY (1) × SUL(2) → Uem(1) of electroweak
symmetry breaking.

4 The Electron as a Spin(11,1) Spinor

The two guises of each generation of fermions, on the one hand as spinors of the
Spin(3, 1) Dirac algebra under Lorentz transformations, and on the other hand
as spinors of the Spin(10) algebra under standard model transformations, cry
out for unification in a common algebra. Each of the 25 entries in the Spin(10)
chart (5) is a Weyl fermion with 2 components, so the unified algebra, if it
exists, must have 6 bits and 12 dimensions. And since the Dirac algebra has a
time dimension while Spin(10) has none, one of the extra dimensions must be
a time dimension, and the extra bit must be a boost bit. The algebra must be
that of Spin(11, 1) in 11+1 spacetime dimensions. The extra bit can be labeled
the t-bit, or time bit.

The conclusion that the unified algebra should have 11+1 spacetime dimen-
sions conflicts with the usual assumption that the Dirac and Spin(10) algebras
combine as a direct product, in which case the 3+1 dimensions of the Dirac alge-
bra and the 10 dimensions of the Spin(10) algebra would yield 13+1 spacetime
dimensions.

The standard assumption that Dirac and GUT algebras combine as a direct
product is motivated by the Coleman-Mandula no-go theorem [16,17], which
says, roughly, that any gauge group that contains the Poincaré group of space-
time symmetries and admits non-trivial analytic elastic scattering is necessarily
a direct product of the Poincaré group and a commuting group of internal sym-
metries. The Coleman-Mandula theorem generalizes to higher dimensions [18].

However, if the grand unified group is Spin(11, 1), then all grand symmetries
are spacetime symmetries, and there are no additional internal symmetries, so
the higher-dimensional Coleman-Mandula theorem [18] is satisfied trivially. After
grand symmetry breaking, the Coleman-Mandula theorem requires only that
spacetime and unbroken internal symmetries combine as a direct product. In
the present context, the Coleman-Mandula theorem requires that the Dirac and
standard-model algebras combine as commuting subalgebras of the Spin(11, 1)
algebra.

Encouragement that 11+1 dimensions is the right number comes from the
period-8 Cartan-Bott periodicity [19–21] of geometric algebras. which guarantees
that the discrete symmetries of the Spin(11, 1) algebra are the same as those
of the Dirac Spin(3, 1) algebra: the spinor metric is antisymmetric, while the
conjugation operator is symmetric.

If indeed the unified algebra is that of Spin(11, 1), then the Spin(10) chart (5)
cannot be quite right as it stands. Diagnosing the problem, and then solving it,
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Fig. 2. The electron generation of 26 = 64 fermions arranged according to their
Spin(11, 1) tyzrgb charges. This is similar to Fig. 1, but with the addition of the t-
bit

is tricky. It’s a Christmas puzzle. The loophole in the chart is that it assigns
a definite charge to each fermion based on its Spin(10) charges, whereas the
example of Eq. (2) shows that fermions and antifermions, which have opposite
charges, are linear combinations of the same chiral components. Fermions and
antifermions are distinguished by the fact that they are complex conjugates
of each other; more precisely, the antiparticle of a spinor ψ is the anti-spinor
ψ̄ ≡ Cψ∗, where C is the conjugation operator. The conjugation operator in
Spin(11, 1) proves to be the same as the conjugation operator in Spin(10): the
conjugation operator in Spin(11, 1) flips all bits except the time bit, so flips all
5 yzrgb Spin(10) bits, as does the conjugation operator in Spin(10).

The solution to the unification problem is to replace each 2-component Weyl
fermion in the Spin(10) chart (5) with a 2-component fermion with t-bit respec-
tively up and down, with opposite Dirac boost but the same Dirac spin, a fermion
and an antifermion. The Weyl companion of each fermion is identified as the
fermion with all 6 tyzrgb bits flipped. This is similar to the Dirac algebra, where
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the Weyl companion of for example the right-handed electron e⇑↑ is its all-bit-flip
partner e⇓↓.

This is a Dirac electron in Spin(11, 1), labeled according to its tyzrgb bits
(colored gold, silver, bronze, red, green, blue):

(6)

Flipping the time bit t flips between electrons e and positrons ē. Flipping the
y bit flips Dirac chirality. Flipping all 6 bits spatially rotates the spin of the
electron (or positron) between up and down, preserving chirality.

Figure 2 illustrates one generation (the electron generation) of fermions of
the standard model arranged according to their Spin(11, 1) tyzrgb charges. The
same information illustrated in Fig. 2 is tabulated in the following Spin(11, 1)
chart of spinors, arranged in columns by the number of Spin(10) up-bits as in
the earlier Spin(10) chart (5):

0 1 2 3 4 5

– : ν̄⇑↓
ν⇓↓ y : ν̄⇓↓

ν⇑↓ c̄ :
ū c̄

⇑↓
u c

⇓↓
yc̄ :

ū c̄
⇓↓

u c
⇑↓

zrgb :
ν⇓↑
ν̄⇑↑ yzrgb :

ν⇑↑
ν̄⇓↑

z : ē⇓↓
e⇑↓ yz : ē⇑↓

e⇓↓ rgb :
e⇑↑
ē⇓↑ yrgb :

e⇓↑
ē⇑↑

c :
d c

⇑↑
d̄ c̄

⇓↑
yc :

d c
⇓↑

d̄ c̄
⇑↑

zc̄ :
d̄ c̄

⇓↓
d c

⇑↓
yzc̄ :

d̄ c̄
⇑↓

d c
⇓↓

zc :
u c

⇓↑
ū c̄

⇑↑
yzc :

u c
⇑↑

ū c̄
⇓↑

(7)

whereas in the original Spin(10) chart (5) each entry was a 2-component Weyl
spinor, in the Spin(11, 1) chart (7) the 2 components of each Weyl spinor appear
in bit-flipped entries. For example, the right-handed electron eR of the original
chart is replaced by e⇑↑, and its spatially rotated partner e⇓↓ of the same chirality
appears in the all-bit-flipped entry. Each entry still has two components, but
in the Spin(11, 1) chart those two components differ by their t-bit; the upper
component has t-bit up, the lower t-bit down. The net number of degrees of
freedom remains the same, 26 = 64.

In the unified Spin(11, 1) algebra, the Dirac boost and spin of a fermion are
woven into the algebra, no longer dissociated from Spin(10). The Dirac boost ⇑
or ⇓ is the eigenvalue of the weak chiral operator κtyz, which counts whether
the number of tyz up-bits is odd or even. The Dirac spin ↑ or ↓ is the eigenvalue
of the color chiral operator κrgb, which counts whether the number of color rgb
up-bits is odd or even. The weak and color chiral operators κtyz and κrgb are
equal to weak and color pseudoscalars Ityz and Irgb modified by a phase factor
to make their eigenvalues real:

Ityz ≡ −iγ+
t γ−

t γ+
y γ−

y γ+
z γ−

z = −κtyz ≡ −γt ∧γt̄ ∧γy ∧γȳ ∧ γz ∧ γz̄ , (8a)

Irgb ≡ γ+
r γ−

r γ+
g γ−

g γ+
b γ−

b = −iκrgb ≡ −iγr ∧γr̄ ∧γg ∧ γḡ ∧ γb ∧γb̄ . (8b)
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The 12-dimensional pseudoscalar J is the product of the boost operator Ityz and
the spin operator Irgb,

J ≡ ItyzIrgb = −iγ+
t γ−

t γ+
y γ−

y γ+
z γ−

z γ+
r γ−

r γ+
g γ−

g γ+
b γ−

b

= iκ12 ≡ iγt ∧ γt̄ ∧ γy ∧ γȳ ∧ γz ∧γz̄ ∧γr ∧γr̄ ∧ γg ∧ γḡ ∧ γb ∧ γb̄ . (9)

In the Dirac algebra, the charge of a chiral fermion is ambiguous: a fermion
and its antifermion partner, which have opposite charges, are linear combina-
tions of the same chiral components, Eq. (2). The t-bit removes the ambiguity,
specifying whether a fermion is going forwards or backwards in time. The charge
of a fermion is determined unambiguously by its 6 tyzrgb bits. In Spin(10), the
standard-model charges of a fermion can be read off from its 5 yzrgb bits. In
Spin(11, 1), the standard-model charges are equal to Spin(10) charges multiplied
by the color chiral operator κrgb, as is evident from the fact that the spinors in
the Spin(10) chart (5) are fermions (unbarred) or antifermions (barred) depend-
ing on whether their color chirality is odd or even.

In Spin(10), the 5 standard-model charges are eigenvalues of the 5 diagonal
bivector generators of Spin(10),

1
2 γ+

i ∧γ−
i = i

2 γi ∧γı̄ , i = y, z, r, g, b . (10)

In Spin(11, 1), standard-model charges are eigenvalues of the 5 diagonal bivec-
tors (10) multiplied by the color chiral operator κrgb. A consistent way to imple-
ment this modification, that leaves the bivector algebra of the standard model
unchanged, is to multiply all imaginary bivectors γ+

i γ−
j in the Spin(10) geomet-

ric algebra by κrgb, while leaving all real bivectors γ+
i γ+

j and γ−
i γ−

j unchanged,

γ+
i γ−

j → γ+
i γ−

j κrgb i, j = y, z, r, g, b . (11)

Equivalently, replace the imaginary i in all Spin(10) bivectors by the color pseu-
doscalar −Irgb = iκrgb, Eq. (8b). A key point that allows this adjustment to
be made consistently is that κrgb commutes with all standard-model bivectors.
Note that κrgb does not commute with SU(5) bivectors that transform between
leptons and quarks; but that is fine, because SU(5) is not an unbroken symmetry
of the standard model.

The definitive proof that unification in Spin(11, 1) is consistent comes from
expressing the 4 orthonormal vectors γm, m = 0, 1, 2, 3, of the Dirac algebra
in terms of the 12 orthonormal vectors γ±

i , i = t, y, z, r, g, b of the Spin(11, 1)
algebra:

γ0 = iγ−
t , (12a)

γ1 = γ−
y γ−

z γ+
r γ+

g γ+
b , (12b)

γ2 = γ−
y γ−

z γ−
r γ−

g γ−
b , (12c)

γ3 = γ+
t γ+

y γ−
y γ+

z γ−
z . (12d)

The Dirac vectors (12) all have grade 1 mod 4 in the Spin(11, 1) algebra. The
multiplication rules for the Dirac vectors γm given by Eq. (12) agree with the
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usual multiplication rules for Dirac γ-matrices: the vectors γm anticommute,
and their scalar products form the Minkowski metric. All the spacetime vectors
γm commute with all standard-model generators modified per (11). The Dirac
pseudoscalar I coincides with the Spin(11, 1) pseudoscalar J , Eq. (9),

I ≡ γ0γ1γ2γ3 = J . (13)

Thus the Dirac and standard-model algebras are subalgebras of the
Spin(11, 1) geometric algebra, such that all Dirac generators commute with
all standard-model generators modified per (11), consistent with the Coleman-
Mandula theorem.

The time dimension (12a) is just a simple vector in the Spin(11, 1) alge-
bra, but the 3 spatial dimensions (12b)–(12d) are all 5-dimensional. The spatial
dimensions share a common 2-dimensional factor γ−

y γ−
z . Aside from that com-

mon factor, each of the 3 spatial dimensions is itself 3-dimensional: γ+
r γ+

g γ+
b ,

γ−
r γ−

g γ−
b , and γ+

t γ+
y γ+

z .

5 Predictions of the Spin(11,1) Theory

A first response to any new theory is, Does it make any predictions? Much of [1] is
devoted to answering this question. The specific question is, what predictions can
be made if the Grand Unified group is Spin(11, 1) and no additional ingredients
are admitted? The condition of no additional ingredients is highly restrictive.

The end result is that the theory predicts the following sequence of symmetry
breakings, at energies determined by the running of coupling parameters:

Spin(11, 1) −−→
??

Spin(10, 1) −−−−−−→
1015 GeV

Spin(4) × Spin(6) −−−−−−→
1012 GeV

UY (1) × SUL(2) × SU(3) −−−−−−→
100GeV

Uem(1) × SU(3) . (14)

The top line of the sequence (14) is the prediction, while the bottom line is the
standard model.

The addition of the 6th bit, the time bit t, to the 5 yzrgb bits of Spin(10)
adjoins to the bivectors of Spin(10) additional bivectors involving either or both
of the two extra dimensions γ±

t . Of those bivectors, four commute with all the
Dirac vectors γm defined by Eq. (12), and could therefore potentially play a role
in the standard model. The four happen to have precisely the properties of the
4-component electroweak Higgs multiplet required by the Weinberg [3] model of
electroweak symmetry breaking, motivating the identification of the electroweak
Higgs field H as (with the bivectors being understood to be modified per (11)
as usual)

H ≡ Hi±γ+
t γ±

i , i = y, z . (15)

Electroweak symmetry breaking occurs when the Higgs field acquires a vacuum
expectation value 〈H〉 proportional to γ+

t γ−
y ,

〈H〉 = 〈H〉γ+
t γ−

y κrgb (16)
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(the factor of κrgb from the modification (11), omitted from (15), is included
here to avoid possible confusion). The electroweak Higgs field (16) carries y-
charge, breaks y-symmetry, and generates masses for fermions by flipping their
y-bit. The three remaining components of the Higgs multiplet are absorbed into
the longitudinal components of the electroweak W± and Z bosons, giving them
mass, while leaving the photon massless.

As long as spacetime is 4-dimensional, as in today’s world, any intermedi-
ate gauge group on the path to grand unification must commute with all the
Dirac vectors (12). The largest subgroup of Spin(11, 1) whose bivector genera-
tors, modified per (11), all commute with the Dirac vectors (12) is a product
of weak and color groups Spin(5) × Spin(6) generated by, respectively, the ten
bivectors formed from γ+

t and γ±
i , i = y, z, and the fifteen bivectors formed

from γ±
i , i = r, g, b. However, the subset of four Spin(5) bivectors γ+

t γ±
i fail to

commute with the field (18) that mediates grand symmetry breaking, so those
bivectors are already eliminated as gauge fields (but not as scalar fields) at grand
symmetry breaking. Thus the largest possible group on the path to grand uni-
fication is the product of extended weak and color groups, the Pati-Salam [11]
group

Spin(4) × Spin(6) . (17)

The running of the three coupling parameters of the standard model indicates
that unification to Spin(4) × Spin(6) should happen at 1012 GeV, so that unifi-
cation does in fact happen. The energy 1012 GeV is comparable to that of the
most energetic cosmic rays observed [22,23].

The general principles underlying symmetry breaking by the Higgs mecha-
nism are: the Higgs field before symmetry breaking must be a scalar (spin 0)
multiplet of the unbroken symmetry; one component of the Higgs multiplet must
acquire a non-zero vacuum expectation value; components of the Higgs multi-
plet whose symmetry is broken are absorbed into longitudinal components of
the broken gauge (spin 1) fields, giving those gauge fields mass; and unbroken
components of the Higgs field persist as scalar fields, potentially available to
mediate the next level of symmetry breaking.

In the sequence (14) of symmetry breakings, the primordial Higgs field is a
scalar 66-component bivector multiplet of Spin(11, 1). The primordial Higgs field
is the parent of all the other Higgs fields.

The field that breaks grand symmetry proves to be the Majorana-Higgs field
〈T 〉 proportional to the bivector γ+

t γ−
t ,

〈T 〉 = −i〈T 〉γ+
t γ−

t κrgb , (18)

the imaginary i coming from the time vector being timelike, γ0 = iγ−
t , and the

factor κrgb from the modification (11). The Majorana-Higgs field (18) has the
property that it commutes with all Spin(4)×Spin(6) fields, and fails to commute
with all Spin(10) fields not in Spin(4) × Spin(6).

The Majorana-Higgs field 〈T 〉 carries t-charge, and is able to flip the t-bit of
the right-handed neutrino, flipping the neutrino between itself and its left-handed
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antineutrino partner of opposite boost, giving the right-handed neutrino a so-
called Majorana mass. Only the right-handed neutrino can acquire a Majorana
mass, because only the right-handed neutrino possesses no conserved standard-
model charge. A large Majorana mass for the right-handed neutrino can generate
a small mass for the left-handed neutrino by the well-known see-saw mechanism
proposed by [24].

The Majorana-Higgs field 〈T 〉 is available to drive cosmological inflation at
the GUT scale. The running of weak and color coupling parameters implies
that grand unification occurs at an energy of 3 × 1014 GeV. This unification
energy is well within the upper limit on the energy scale μinflation of cosmological
inflation inferred from the upper limit to B-mode polarization power in the
cosmic microwave background measured by the Planck satellite [25, eq. (26)],

μinflation ≤ 2 × 1016 GeV . (19)

The first step in the symmetry-breaking sequence (14) is Spin(11, 1) →
Spin(10, 1). The problem is that the Spin(11, 1) bivectors γ+

t γ±
i cannot be gen-

erators of a gauge (spin 1) field after grand symmetry breaking, because if
they were, then their Higgs scalar (spin 0) counterparts would be absorbed into
the gauge field after grand symmetry breaking, whereas the scalar counterparts
apparently persist in the form of the electroweak Higgs multiplet (15).

The vector γ+
t , the spatial vector companion to the time vector γ0 = iγ−

t ,
stands out as the only spatial vector missing from the Spin(10) algebra. The
solution to γ+

t not generating any gauge symmetry is to assert that it behaves
as a scalar dimension prior to grand symmetry breaking, so that the grand
unified group is Spin(10, 1), not Spin(11, 1). Why this should be so is unclear.
Possibly a non-trivial quantum field theory in higher dimensions requires 10+1
dimensions, as in M theory. Spin algebras live naturally in even dimensions, and
one way to accommodate a spin algebra in 10+1 dimensions is to embed it in
one extra dimension, 11+1 dimensions, and to treat the extra dimension, here
γ+
t , as a scalar. The scalar dimension γ+

t , which anticommutes with the other 11
dimensions, plays the role of a time-reversal operator, essential to a consistent
quantum field theory. It remains to be seen whether the Spin(11, 1) model can
in fact be accommodated in M theory.
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Abstract. The fundamental Stern-Gerlach (SG) experiments suggest
that the (pure) states of a q-bit are the points of the unit sphere S2 (in
some suitable system of units), with a distinguished vector corresponding
to the direction of the magnetic field. The goal of this paper is to elucidate
the Hermitian structure of the algebra of geometric quaternions H = G+

3

(that is, the even algebra of the geometric algebra of the Euclidean 3D
space) which allows to regard it as the Hilbert space of the q-bit. The
main results are phrased in terms of an explicit ket map κ : H → E3 such
that |κ(q)| = |q| for all q ∈ H, and include: that κ(q′) = κ(q) if and only
if q′ ≡ q (this relation denotes that the two quaternions differ by a phase
factor –a unit geometric complex number); that κ is onto; a check that
the computed probabilities obey the statistics of the SG experiments;
and a recall of the relations between the multiplicative group H× and
the rotation group SO(E3). A sequel paper will explore other facets of
the proposed analysis, including the study of the polarization states of
electromagnetic waves and more complex spin systems. In conclusion:

Jes, geometria algebro povas paroli kvantan Esperanton.

Keywords: Hermitian spaces · Quantum Esperanto · Geometric
algebra · Ket map · Spin statistics

1 The Grammar Rules

The language of mathematics makes the world of Maxwell fields and the
world of quantum processes equally transparent. [...] Each of the interpre-
tations of quantum mechanics is an attempt to describe quantum mechan-
ics in a language that lacks the appropriate concepts. The battles between
the rival interpretations continue unabated and no end is in sight.

Freeman J. Dyson, [1].

Since geometric algebras are finite-dimensional, in principle their use in quan-
tum mechanical questions cannot go beyond systems whose Hilbert spaces are
finite-dimensional. For such systems, the mathematics of their Hilbert spaces
reduces to the simpler mathematics of the Hermitian spaces, a simplicity that
here we metaphorically call ‘quantum Esperanto’ (QE)—after the wonderfully
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simple international language Esperanto invented by the ophthalmologist Lud-
wik L. Zamenhof. A convenient introduction of the QE notions that we will use
is through four axioms. The first two, QE1 and QE2, will be introduced in this
section and are sufficient for our present discussions, which will be focused on the
bearing of geometric algebra to model the geometry of a q-bit. The other two,
QE3 (unitary evolution) and QE4 (state vectors of a composite system), and
their fundamental role in areas such as quantum computing, will be inspected
with a similar lens in a sequel manuscript [2].

The reader can find the notions about Hermitian spaces to be used here in the
Appendix, page 10. In particular, the Hermitian scalar product 〈x|x′〉, the norm
|x| of a vector (|x|2 = 〈x|x〉), and the notation x̂ = x/|x| for the normalization
of a non-zero vector x (cf. §12). It is important to note the distinctive features
of the Hermitian angle between two vectors (P.15) as compared to the Euclidean
angle (P.16), which ultimately explain why the Hermitian angle between two
state vectors of a q-bit is half the angle between the corresponding states (for
instance, the state vectors of two antipodal points of S2 are orthogonal, P.8).

QE1. (a) Quantum systems, state vectors and states
In QE, there are three ingredients defining a quantum system: (1) A Hermitian
space H, whose non-zero elements are called state vectors, sometimes also wave
functions; (2) A set Σ, whose elements are called (pure) states; and (3) an onto
map H − {0} → Σ, x �→ |x〉 (Dirac’s ket notation) such that |x〉 = |x′〉 if and
only if x′ ∼ x (a shorthand for ‘x and x′ are equal up to a complex factor’).

The third property just says that Σ can be seen as the set of classes of non-
zero state vectors by the relation ∼. This set is the projective space associated
to H and is denoted by [H] or PH. In geometry, the elements of this space
are called (projective) points and the point associated to a non-zero vector x is
denoted by [x]. Thus, by definition, the relation [x] = [x′] is equivalent to x′ ∼ x
for non-zero vectors x, x′ ∈ H

The fact that |x〉 and [x] obey the same rule is not a coincidence, for although
Dirac never mentioned projective geometry explicitly in his research papers, later
in his life he acknowledged having used it in his reasonings all along. This is a
fascinating story, a bit mysterious, for which we can only refer to the literature,
for instance the biography [3] and the references there, particularly [4]. For our
purposes, the clearest connection appears in the definition of superposition of
states, as we will see in next paragraph.

QE1. (b) Quantum superposition
Given two different states, X = |x〉 and X ′ = |x′〉, each state of the projective
line XX ′ is said to be a (quantum) superposition of X and X ′. By definition,
such states have the form |ξx + ξ′x′〉, with ξ, ξ′ ∈ C and ξx + ξ′x′ �= 0.

Dirac’s ket notation is usually abused by writing ξ|x〉 + ξ′|x′〉 instead of
|ξx+ξ′x′〉. Although ξ|x〉+ξ′|x′〉 does not make sense mathematically, as Σ is not
a vector space (and even less a complex vector space), in practice it is understood
that the state expressed by |x〉 “remembers” the vector x that has been used
to represent it and thus calculations can usually be interpreted unambiguously.
For example, if e1, . . . , en is a basis of H and x = Σλjej , then custom favors
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to write the expression Σλj |ej〉, which in this case is unambiguously decoded as
|Σλjej〉 = |x〉.
QE2. Quantoscopes, measurements and observables
We define a quantoscope1 (to “observe” or “measure” the system) as a set of
pairs A = {(a1, V1), . . . , (ar, Vr)} such that:

1. The aj are distinct real numbers. The set {a1, . . . , ar} is the dial of the
quantoscope, and we assume it is ordered; and

2. The Vj are non-zero vector subspaces of H such that Vj ⊥ Vk for j �= k
(orthogonality condition), and H = ⊕jVj . The latter means that any x ∈ H
can be written in a unique way as x = x1 + · · · + xr with xj ∈ Vj , and the
orthogonality condition implies the Pythagoras theorem:

|x|2 = |x1|2 + · · · + |xr|2.
Note also that xj = PVj

(x) (the orthogonal projection of x on Vj). For a unit
vector u ∈ H, we have

1 = |u1|2 + · · · + |ur|2,
which means that the quantities pj = |uj |2 form a probability distribution on
the set {1, . . . , r}.

An observation or measure with the quantoscope A, assuming that the sys-
tem is in the state |u〉 (u unitary), consists in carrying out the following two
operations:

(i) to select at random a value aj with probability pj = |uj |2, where uj = PVj
(u)

is the orthogonal projection of u to Vj (we say that aj is the result or outcome
of the observation), and

(ii) to update the state of the system to |uj〉. Note that pj �= 0 if aj is selected
and hence uj �= 0.

If u ∈ Vj , then uj = u and pj = 1, which means that the outcome aj of the
measurement is certain and that the system’s state does not change.

Let us associate to each quantoscope A the operator ̂A = ΣjajPVj
. This

operator is selfadjoint and A �→ ̂A is a one-to-one map of the set of quanto-
scopes to the space of selfadjoint operators of H. Conversely, given a selfadjoint
operator A′, its eigenvalues a1, . . . , ar are real (we assume that they are distinct
and ordered according to the criterion used to order the quantoscopes’ dials),
and the corresponding eigenspaces V1, . . . , Vr are an orthogonal decomposition
of H (these statements are the conclusions of the diagonalization theorem for
self-adjoint operators). Thus we see that A = {(a1, V1), . . . , (ar, Vr)} is a quan-
toscope, and we will say that it is the quantoscope associated to (or defined by)
A′.
1 We introduce this notion to mediate between the intuitive notion of quantum mea-

surement (like a Stern-Gerlach experiment) and the less tangible realization that the
observables of the system can be identified with the selfadjoint operators of H.
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Example. The quantoscope associated to the orthogonal projection PV of H onto
the subspace V is {(1, V ), (0, V ⊥)}. Assuming that the system is in the state |u〉,
u unitary, a measurement with this quantoscope selects 1 or 0 at random with
probabilities |PV (u)|2 and |PV ⊥(u)|2, while resetting the state to |PV (u)〉 or
|PV ⊥(u)〉, respectively.

Observables. To concur with the conventional terminology, henceforth we will
refer to self-adjoint operators as observables of the system. By a measurement of
an observable we understand a measurement with the associated quantoscope.
As specified before, such a measurement supplies, if the state of the system is |u〉
(u unitary), a random eigenvalue aj of the observable with probability pj = |uj |2,
uj = PVj

(u), and resets the state of the system to |uj〉. Note that in general the
vector uj is not unitary, which illustrates the resilience of working with state
vectors that are not necessarily unitary.

2 q-Bits

The quantum behavior of spin, or intrinsic angular momentum, was discovered
for the first time by the Stern-Gerlach (SG) experiments (see the Wikipedia
article Stern-Gerlach experiment for an apt presentation, including references to
the three original papers by O. Stern and W. Gerlach published in 1922, and a
discussion of the telling outcomes of composite SG procedures; for an epistemo-
logical analysis of its significance, see [5]). In general, the values j observed in an
SG experiment have the form (in appropriate units) j = −s,−s+1, . . . , s− 1, s,
with s an non-negative integer multiple of 1/2. In all cases, the number of values
j is 2s + 1.

Excluding s = 0, corresponding to a spinless system, the simplest case (as
in the original SG experiments) is s = 1/2, with two possible values: j = ± 1

2 .
It is such kind of systems, called q-bits, that we will consider in this paper. In
this case, the experimental results of the SG experiments suggest that we may
construe the (pure) states of a q-bit as ordinary vectors of norm 1 (in suitable
units). In other words, we may take the unit sphere S2 ⊂ E3 as the space of
(pure) states of a q-bit: Σ = S2. Here E3 is the ordinary Euclidean space and in
what follows ux, uy, uz ∈ E3 will be an orthonormal basis, with uz aligned with
the magnetic field.

To elicit the Hermitian space, two old geometric constructions are handy. On
one hand, S2 � ̂C = C 
 {∞}, via the stereographic projection of S2 from the
north pole uz onto the equatorial plane z = 0 (which we identify with C), and
with uz �→ ∞ (see Fig. 1). This is the Riemann sphere.

On the other hand, ̂C � [C2], via the map ξ �→ [(1, ξ)] (ξ ∈ C) and ∞ �→
[(0, 1)] = [e1]. By composing both bijections, we have a bijection S2 � [C2], and
so, according to Q1(a), we can take the (Pauli) spinor space C

2 as the space
of state vectors of the q-bit. In Table 1 we collect a detailed description of how
these bijections work in both directions.
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Fig. 1. Stereographic projecction of S2 to ̂C = C � {∞}.

Table 1. Bijections S2 � ̂C � [C2]. In the fourth row, k = 2/(a2 + b2 + 1) and
c = (a2 + b2 − 1)/2)

S2
̂C PC

2 = [C2]

(x, y, z) �= (0, 0, 1) → x

1 − z
+

y

1 − z
i = ξ → [(1, ξ)]

uz = (0, 0, 1) → ∞ → [(0, 1)] = [e1]

k(a, b, c) ← ξ = a + bi = ξ1/ξ0 ← [(ξ0, ξ1)] (ξ0 �= 0)

uz = (0, 0, 1) ← ∞ ← [(0, ξ1)] = [(0, 1)] = [e1]

Let us use Dirac’s notation |ξ0, ξ1〉 ∈ S2 to denote the state corresponding
to (ξ0, ξ1) ∈ C

2. If ξ0 �= 0, |ξ0, ξ1〉 = |1, ξ〉 (ξ = ξ1/ξ0), which we will abridge to
|ξ〉. In particular, |0〉 = |1, 0〉 = |e0〉 is the point −uz = (0, 0,−1) (the south pole
of S2). The state |∞〉 = |0, 1〉 = |e1〉 is (0, 0, 1) = uz, the north pole of S2.

Next statement provides explicit expressions for the coordinates x, y, z of
|ξ0, ξ1〉. First published in [6], we derive them by means of the stereographic
projection.

P.1. (Representation of S2 by spinors) If (x, y, z) = |ξ0, ξ1〉, then

x = (ξ1ξ̄0 + ξ0ξ̄1)/r2, y = i(ξ0ξ̄1 − ξ1ξ̄0)/r2, z = (ξ1ξ̄1 − ξ0ξ̄0)/r2, r2 = ξ0ξ̄0 + ξ1ξ̄1.

Proof. The formula for the stereographic projection ξ ∈ C of (x, y, z) ∈ S2 shows
that x + iy = (1 − z)ξ. So x − iy = (1 − z)ξ̄ and hence

x = 1
2 (ξ + ξ̄)(1 − z), y = − i

2 (ξ − ξ̄)(1 − z).

We also have

1 − z2 = x2 + y2 = (1 − z)2ξξ̄, or 1 + z = (1 − z)ξξ̄,
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from which it follows that 1 − z =
2

ξξ̄ + 1
and so

x =
ξ + ξ̄

ξξ̄ + 1
, y = −i

ξ − ξ̄

ξξ̄ + 1
, z =

ξξ̄ − 1
ξξ̄ + 1

.

In terms of spinors (cf. Table 1), ξ = ξ1/ξ0, and we get the expressions in the
statement. �


Next statement can be obtained via a little play with the expressions in
Table 1 or applying the formulas in P.1.

P.2. Let ũϕ,θ = (e−iϕ/2 sin θ
2 , eiϕ/2 cos θ

2 ) ∈ C
2. Then |ũϕ,θ〉 = uϕ,θ. �


Notice that Dirac’s notation allows us to write |ξ0, ξ1〉 = ξ0|e0〉 + ξ1|e1〉. In
other words, any state of a q-bit is a superposition of the states |e0〉 and |e1〉.
The states |e1〉 and |e0〉 can be described as “spin up” (parallel to the magnetic
field) and “spin down” (antiparallel to the magnetic field), and are sometimes
denoted by |+〉 and |−〉, or | ↑〉 and | ↓〉.

Given s = (ξ0, ξ1) ∈ C
2, we set s⊥ = (−ξ̄1, ξ̄0). This expression is appropriate,

as 〈s|s⊥〉 = 0. The map s �→ s⊥ is antilinear and satisfies |s| = |s⊥|, hence s, s⊥

is an orthonormal basis of C2 if s is a unit vector. Note also that s⊥⊥ = −s.

3 Let the Geometric Quaternions Speak up

Instead of C
2, whose relation to E3 is quite artificial (these structures speak

different languages), we could try to go over to Hamilton’s quaternions H by
means of the C-isomorphism j : C2 → H given by j((ξ0, ξ1)) = ξ0 + ξ1j, where
1, i, j, k is the usual basis of H as a real vector space, and use PCH as state space.
To do that, the basic requirement would be to express the Hermitian scalar
product inherited from C

2, via j, purely in terms of H. But even with this we
would still have to rely on the space of pure quaternions 〈i, j, k〉 as an artificial
substitute of E3.

These considerations clearly suggest that the optimal structure on which to
base the geometric theory of the q-bit is the algebra of geometric quaternions,
H = G+

3 ⊂ G3, as it is constructed directly on the geometry of E3, and besides it
keeps a free copy of E3, namely E3 = G1

3 (the grade 1 elements). There is a little
work we have to do, but, as we show next, it may be found to be worthwhile.

As a real vector space, H = 〈1, i, j, k〉, where i = uyuz, j = uxuz and k = uxuy.
Formally we have not moved from H, as (the new) 1, i, j, k satisfy Hamilton’s
relations, but now these objects are meaningful bivectors (unit areas) of E3.
We also have to ask a crucial question: what complex structure of H shall we
use? A convenient choice, as warranted by what follows, is C = Ci = 〈1, i〉, the
(geometric) complex numbers of the form a + b i, and denote by Hi the algebra
H when considered as a Ci-vector space. It is worth to keep in mind that there
are very many quaternions l such that l2 = −1 (unit pure quaternions satisfy
this condition, but they are not the only ones) and hence Cl = 〈1, l〉 = {a + bl :



180 S. Xambó-Descamps

a, b ∈ R} can be used as a field of complex numbers within H, and in that case
Hl is H regarded as a Cl-vector space.

Notice that q = a+ b i+ c j+ d k ∈ H can be written in the form q = ξ0 + ξ1j,
where ξ0 = a+bi and ξ1 = c+di. The question of how ξ0 and ξ1 can be retrieved
from q by operations involving only H is answered in the following proposition.

P.3. If q = ξ0 + ξ1j, ξ0, ξ1 ∈ C, then ξ0 = 1
2 (q − iqi) and ξ1 = − 1

2 (qj + iqk).

Proof. Since the expression 1
2 (q− iqi) is R-linear in q, it is enough to check that

it supplies q for q = 1, i and 0 if q = j, k. In fact, if q commutes with i, as is the
case for the elements of C, the formula supplies q, and if q anti-commutes with i,
as is the case for all elements of 〈j, k〉, it supplies 0. The second part follows
similarly: − 1

2 (qj + iqk) yields 0 for q = 1, i and q for q = j, k. �

Now we seek a Hermitian scalar product in H, again defined only in terms of

H, that plays the role of the Hermitian scalar product of C2. The next proposi-
tion provides the answer. We will use the map i : H → C defined by the relation
i(q) = 1

2 (q − iqi). The reverse involution in H will be denoted by q̄ (it coincides
with the Clifford involution). The customary symbol x̃ for the reverse involution
will be used for other purposes below.

P.4. (The hidden Hermitian structure of H) The scalar product H × H → C,
denoted by 〈q|q′〉 and defined by the formula 〈q|q′〉 = i(q′q̄) is Hermitian and for
ξ0, ξ1, ξ

′
0, ξ

′
1 ∈ C we have 〈ξ0 + ξ1j|ξ′

0 + ξ′
1j〉 = ξ̄0ξ

′
0 + ξ̄1ξ

′
1. Moreover, 〈q|q〉 = |q|2

for any q ∈ H, so that the Euclidean norm of q coincides with the Hermitian
norm. In the special case in which q = v i is the dual of a vector v ∈ E3,
|q|2 = |v|2. Here i is the pseudoscalar of G3, namely i = uxuyuz.

Proof. Since q̄ = ξ̄0 − jξ̄1, the terms in the expansion of q′q̄ not involving j and
k are ξ′

0ξ̄0 + (ξ′
1j)(−jξ̄1) = ξ′

0ξ̄0 + ξ′
1ξ̄1, as stated. If q′ = q, then qq̄ = |q|2 is real

and the claim follows. For the last point, note that for q = v i we have q̄ = − i v
and qq̄ = v2 = |v|2. �


Next question is how to realize the state space of H, which is the (abstract)
sphere PHi, as the sphere S2 ⊂ E3. In other words, if S3 = {q ∈ H : |q|2 = 1},
we are seeking a map S3 → S2, q �→ |q〉, that is onto and such that |q〉 = |q′〉 if
and only if q′ ≡ q (this map is usually called the Hopf fibration).

For that, let us define a more convenient generalized ket map κ : H → E3 that
induces, as we shall see in a moment, an onto map S3

r → S2
r for any radius r with

the property that κ(q) = κ(q′) if and only if q′ ≡ q. If q = ξ0+ξ1j (ξ0, ξ1 ∈ C), let
κ(q) = 0 if q = 0, and otherwise define it as the map in P.1, but with denominator
r instead of r2. In other words, let r = |q| and κ(q) = αux + βuy + γuz, where

α = (ξ1ξ̄0 + ξ0ξ̄1)/r, β = i(ξ0ξ̄1 − ξ1ξ̄0)/r, γ = (ξ1ξ̄1 − ξ0ξ̄0)/r.

We know that α2 + β2 + γ2 = r2 when |q|2 = r2, so indeed κ : S3
r → S2

r . For
r = 1, we clearly have κ(q) = |q〉 for any q ∈ S3.

P.5. (Examples) (1) κ(eiϕq) = κ(q), for any ϕ ∈ R. Thus κ(q′) = κ(q) if q′ ≡ q.
(2) κ(1) = κ(i) = −uz (the south pole of S2) and κ(j) = κ(k) = uz (the north
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pole of S2). Note that i ≡ 1 and k = ij ≡ j, so it is enough to check that
κ(1) = −uz and κ(j) = uz. (3) If κ(q) = uz then q ≡ j. �

P.6. The map κ : S3

r → S2
r is surjective and for q, q′ ∈ S3

r we have κ(q′) = κ(q)
if and only if q′ ≡ q.

Proof. From the definitions if follows easily that it is enough to prove the case
r = 1. Let u = αux + βuy + γuz ∈ S2 (so α2 + β2 + γ2 = 1). We are seeking
q = a + b i + c j + d k ∈ S3 such that κ(q) = u. By P.5, we may assume that
u �= uz (that is, γ �= 1). We may further assume that b = 0 (if ϕ is the phase
of a + bi, it is enough to replade q by e−iϕq). In other words, we may assume
that q = a + (c + di)j = a + cj+ dk, which means, with the notations above, that
ξ0 = a and ξ1 = c + d i. Since ξ0 = a is real, the expressions that define κ(q) are
a(ξ1 + ξ̄1) = 2ac, ia(ξ̄1 − ξ1) = 2ad, and c2 + d2 − a2 = 1 − 2a2, so the condition
κ(q) = u is equivalent to the relations

α = 2ac, β = 2ad, γ = 1 − 2a2.

The third relation gives a = ±√

(1 − γ)/2, and a �= 0 because γ �= 1. For each of
the two solutions, we get c = α/2a and d = β/2a. This shows that κ is surjective.
And the argument also shows that if κ(q′) = κ(q), then q′ ≡ q. �


Now in order to find the probabilities of an observation event when the state
is u = αux + βuy + γuz ∈ S2, it is convenient to define ũ ∈ H to be j if u = uz

and otherwise ũ = a+(c+d i)j, where a =
√

(1 − γ)/2, c = α/2a and d = β/2a.
Thus we have κ(ũ) = u in all cases. Note: this definition of ũ is not the same as
the one introduced in P.2, but, as shown in next statement, they differ (as they
should) by a phasor factor.

P.7. (1) For u �= uz, ũ = 1√
2(1−γ)

(1 − γ + αj + βk) ∈ S3.

(2) If we use spherical coordinates for the state u = αux + βuy + γuz, that is
(see Fig. 1), α = cos ϕ sin θ, β = sin ϕ sin θ, γ = cos θ, then

ũ = sin θ
2 + cos ϕ cos θ

2 j + sin ϕ cos θ
2 k

= sin θ
2 + eiϕ cos θ

2 j

≡ e−iϕ/2 sin θ
2 + eiϕ/2 cos θ

2 j.

This in particular shows that when θ → 0 (so u approaches uz, the north
pole) we get, in the limit, eiϕ j ≡ j, which is how we have defined ũz.

(3) We also have that

˜−u =
1

√

2(1 + γ)
(1 + γ − αj − βk).

In particular ˜−uz = 1, in agreement with the fact that κ(1) = −uz. �
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P.8. (Hermitian angle of two anti-podal states)If u ∈ S2, then ũ and ˜−u are
orthogonal with respect to the Hermitian metric of H. �


Now let us answer the question about probabilities. Let u ∈ S2 be a state.
This defines the quantoscope Au = {(1, 〈ũ〉), (−1, 〈 ˜−u〉)}. What is the proba-
bility of obtaining 1 if before measurement with Au the state is v ∈ S2? The
answer is given by the following result, which is in agreement with the experi-
mental observations. The result also says that the Hermitian angle between state
vectors is half the Euclidean angle between the corresponding states, which is a
more general statement than P.8.

P.9. The probability of observing 1 with Au, if the state before measurement is
v ∈ S2, is given by the expression pu(v) = cos2(α/2), where α is the Euclidean
angle between u and v (that is, cos(α) = u · v).

Proof. According to the QE prescriptions, pu(v) = |〈ũ|ṽ〉|2. To compute this,
let us use spherical coordinates for u and v, so that ũ = sin θ

2 + eiϕ cos θ
2 j and

likewise ṽ = sin θ′
2 + eiϕ

′
cos θ′

2 j. Now we know that 〈ũ|ṽ〉 = i(ṽ ¯̃u). On expanding
ṽ ¯̃u and retaining only the terms that are not scalar multiples of j and k, we find:

i(ṽ ¯̃u) = i
(

(

sin θ′
2 + eiϕ

′
cos θ′

2 j
) (

sin θ
2 − j e−iϕ cos θ

2

)

)

= sin θ′
2 sin θ

2 + ei(ϕ
′−ϕ) cos θ′

2 cos θ
2 .

Now pu(v) is the modulus squared of this expression and a little joggling with
trigonometric expressions yields that it is cos2(α

2 ), where, by definition of α,
cos(α) = cos θ cos θ′ + sin θ sin θ′ cos(ϕ′ − ϕ). �


P.10. (The group SU(H))

(1) Any q ∈ H1 defines a map Uq : H → H by the formula Uq(x) = xq. This
map is clearly H-linear, hence also Ci-linear, and satisfies |Uq(x)| = |x|. So
(see P20) Uq ∈ U(H).

(2) Uq ∈ SU(H).
(3) The map H1 → SU(H), q �→ Uq, is a group anti-isomorphism. By taking

matrices with respect to {1, j}, we are led to H1 � SU2.

Proof. (1) |Uq(x)|2 = |xq|2 = (xq)(q̄x̄) = xx̄ = |x|2.

(2) It is enough to see that the matrix Aq of Uq with respect to the basis {1, j},
which is obtained from Uq(1) = q, Uq(j) = jq = q⊥, has determinant 1.

(3) From the definition of Uq it follows that (Uq′Uq)(x) = (xq)q′ = x(qq′) =
Uqq′(x). And this implies that Aqq′ = AqAq′ .

P.11. (Symmetries). (1) A quaternion q ∈ H× defines a map Rq : E3 → E3 by
the formula Rq(v) = qvq−1, and Rq ∈ SO(E3).

(2) The map H× → SO(E3), q �→ Rq, is a group homomorphism.
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(3) We have ker(ρ) = R×. In other words, ρq = Id if and only if q is a non
zero real number. If q ∈ H1, then ρq = Id if and only if q = ±1.

(4) The rotation ρv,α of amplitude α about v ∈ S2 is given by ρv,α = Rq, where
q = e− i α

2 v ∈ H1. It follows that the homomorphism R : H1 → SO(E3) is
onto.

Proof. This is a well-known result, but cast here in terms of only the structures
of geometric quaternions. Let us just sketch a proof of (4). Since v commutes with
q, we have Rq(v) = v. So Rq is a rotation about v. To find its amplitude, pick
any v′ ∈ S2 orthogonal to v. Since v′ anticommutes with q, we have Rq(v′) =
v′q̄2 = v′e i αv = v′ cos α + v′ i v sin(α), where we have used that ( i v)2 = −1. If
we set v′′ = v × v′, then v′, v′′, v is a positively oriented orthornormal basis of
E3 and, in particular, i = v′v′′v, so that Rq(v′) = v′ cos α + v′′ sin α.

Appendix: Hermitian spaces

The aim of this appendix is to review the basic notions needed in the preceding
sections. Proofs are omitted, but the interested reader can find them in the paper
[7] or in the references therein.

12. A Hermitian vector space is a complex vector space H endowed with a scalar
product 〈x|x′〉 ∈ C (x, x′ ∈ H) satisfying the following properties:

(1) 〈x|x′〉 = 〈x′|x〉 (the overline means complex conjugation). In particular, 〈x|x〉
is self-conjugate for any x and therefore it is a real number.

(2) It is C-linear in x′. This property and (1) imply that the scalar product is
conjugate-linear (same as anti-linear) in x.

(3) 〈x|x〉 > 0 if x �= 0. We say that the scalar product is positive-definite.

For any x ∈ H, we set |x| =
√〈x|x〉 (norm or length of x; it is also customary

to denote it by ||x||). If |x| = 1, we say that x is unitary, or a unit vector. For
example, x̂ = x/|x| (normalization of x) is unitary for any x �= 0.

We say that x, x′ ∈ H are orthogonal if 〈x|x′〉 = 0, and we will write x ⊥ x′

to denote this relation.
A basis e1, . . . , en of H is said to be orthonormal if 〈ej |ek〉 = δjk for any

j, k. This means that the ej are unit vectors such that ej ⊥ ek for j �= k. The
components λj ∈ C of a vector x ∈ H with respect to an orthonormal basis
e1, . . . , en are given by λj = 〈ej |x〉, so that x = 〈e1|x〉e1 + · · · + 〈en|x〉en.

We will often use the relations x ∼ x′ and x ≡ x′ (x, x′ ∈ H). The first is a
shorthand for stating that x′ = λx, for some non-zero λ ∈ C. For example, we
have x ∼ x̂ for any non-zero x ∈ H (in this case λ is real). The second relation is
a shorthand for stating that x′ = λx for some λ ∈ C such that |λ| = 1. In other
words, x′ = eiϕx for some ϕ ∈ R. �

13. (Example) C

n with the scalar product

〈(ξ1, . . . , ξn)|(ξ′
1, . . . , ξ

′
n)〉 = ξ̄1ξ

′
1 + · · · + ξ̄nξ′

n
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is a Hermitian space. For the treatment of q-bits, the basic space we initially
need is C

2. For historical reasons, the elements of this space are called (Pauli)
spinors and we will re-index them as (ξ0, ξ1). Thus, in this case the Hermitian
scalar product reads 〈(ξ0, ξ1)|(ξ′

0, ξ
′
1)〉 = ξ̄0ξ

′
0 + ξ̄1ξ

′
1. Moreover, we will use the

notation e0 = (1, 0) and e1 = (0, 1). �

P.14. (Cauchy-Schwarz inequality for Hermitian spaces) Let H be a Hermitian
vector space. Then, for all x, x′ ∈ H, |〈x|x′〉| ≤ |x||x′|. �

P.15 (Hermitian angle between two no-zero vectors) If x, x′ ∈ H are non-zero
vectors, P.14 tells us that 0 ≤ |〈x|x′〉|/|x||x′| ≤ 1 and hence there is a unique
real number β = β(x, x′) ∈ [0, π/2] such that cos(β) = |〈x|x′〉|/|x||x′|. Moreover,
β = π/2 precisely when 〈x|x′〉 = 0 (that is, precisely when x ⊥ x′), and β = 0 if
and only if x′ ∼ x. Finally, β(x, x′) = β(y, y′) when y ∼ x and y′ ∼ x′. �

P.16. (Cauchy-Schwarz inequality for Euclidean spaces) For Euclidean spaces,
where the (real symmetric) inner product is denoted x · x′, the Cauchy-Schwarz
inequality says that |x · x′| ≤ |x||x′|. Since x · x′ is real, this is equivalent to the
inequalities −|x||x′| ≤ x · x′ ≤ |x||x′|. This implies that −1 ≤ (x · x′)/|x||x′| ≤ 1
if x, x′ �= 0, and therefore there exists a unique real number α = α(x, x′) ∈ [0, π]
such that cos(α) = x·x′/|x||x′|. This α is the (Euclidean) angle between x and x′.
With a bit more attention, it can be seen that α = 0 if and only if x′ = tx, with
t > 0, and that α = π if and only if x′ = tx, with t < 0. In any case, the angle
does not vary if we rescale the vectors: if t, t′ are positive real numbers, then
α(tx, t′x′) = α(x, x′). But note that α(−x, x′) = α(x,−x′) = π − α(x, x′). �

17. The C-endomorphisms of H are usually called operators. If L is an operator,
its adjoint, denoted L†, is defined as the unique endomorphism of H such that

〈L†y|x〉 = 〈y|Lx〉.

The map L �→ L† is conjugate-linear. If L† = L, we say that L is selfadjoint or
Hermitian.

Example. Let F be vector subspace of H. The orthogonal projection PF : H → H
(defined as PF x = x′ if x = x′ + x′′ with x′ ∈ F and x′′ ∈ F⊥) is selfadjoint, as
the expressions 〈PF y|x〉 and 〈y|PF x〉 are both equal to 〈y′|x′〉.

If v ∈ H is a non-zero vector, instead of P〈v〉 we will simply write Pv.

P.18. (Computation of PF ). If we know an orthonormal basis e1, . . . , er of F ,
then PF (x) = 〈e1|x〉e1 + · · · + 〈er|x〉er. In particular we have, for any non-
zero vector v ∈ H, that Pv(x) = 〈v|x〉v if v is unitary, or, in general, Pv(x) =
1

|v|2 〈v|x〉v. �

P.19. (Matrix of an operator relative to an orthonormal basis). Let A be the
matrix of an operator L of the Hermitian space H with respect to an orthonormal
basis e1, . . . , en, that is, A = (aij), where L(ei) = ai1e1 + · · · + ainen. Then the
matrix of L†, with respect to the same basis, is A†: L†(ei) = ā1ie1 + · · · + ānien.
This implies that L is self-adjoint if and only if the matrix A is self-adjoint (that
is, A† = A).
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P.20. (Unitary operators). An operator U is said to be unitary if U†U = I (the
identity operator). With the notations of the preceding exercise, we see that U is
unitary if and only if its matrix A is a unitary matrix (A†A = In). Equivalently, U
is unitary if and only if 〈Ux|Ux′〉 = 〈x|x′〉 for all x, x′ ∈ H. This relation implies
that |Ux| = |x| for all x ∈ H. This condition is also sufficient, because of the
identity 4〈x|x′〉 = |x+x′|2−|x−x′|2+i|ix+x′|2−i|−ix+x′|2 =

∑ν=3
ν=0 iν |iνx+x′|.

The unitary operators of H form a group with the composition operation (the
unitary group of H). It is denoted by U(H). If H has dimension n, U(H) � Un

(the group of unitary matrices of order n). SU(H) = {U ∈ U(H) : det(U) = 1}
is the special unitary group of H. Clearly, SU(H) � SUn if H has dimension n.
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1 Introduction

In this paper, we study degenerate (Clifford) geometric algebras Gp,q,r of arbi-
trary dimension and signature. Degenerate geometric algebras are important for
applications in geometry, computer science, engineering, signal and image pro-
cessing, physics, etc. For instance, projective geometric algebra (PGA) Gp,0,1

is useful for computations with flat objects and is applied in computer graph-
ics and vision, robotics, motion capture, dynamics simulations [4,6,14,19,20].
PGA can be realized as a subalgebra of conformal geometric algebra (CGA)
[13,22,25,26,28], which has applications in pose estimation, robotics, computer
animation, machine learning, neural networks, etc. [15–17,23,24,33]. The alge-
bras G3,0,1, G0,3,1, even subalgebras G(0)

3,0,1 (known as the motor algebra), G(0)
0,3,1,

G(0)
6,0,2, G(0)

6,0,6 are applied in robotics and computer vision [4,5,31].
We introduce and study several Lie groups in degenerate geometric alge-

bras. These groups are closely related to the degenerate spin groups, and that is
why they are interesting for consideration. These groups preserve the even sub-
space G(0)

p,q,r and the odd subspace G(1)
p,q,r under the adjoint representation and

the twisted adjoint representation. The twisted adjoint representation was intro-
duced in the classic paper [3], and it is an important mathematical notion that
is used to describe two-sheeted coverings of orthogonal groups by spin groups.
The Lie groups introduced in this paper are important for studying spin groups
and their generalizations in degenerate case. Degenerate spin groups, degenerate
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orthogonal groups, and their applications in physics are discussed in the papers
[1,7–9,11,12]. This paper generalizes the results of the papers [18,32] on Lie
groups in non-degenerate geometric algebras Gp,q to the case of degenerate geo-
metric algebras Gp,q,r.

In Sect. 2, we discuss degenerate geometric algebras, the Jacobson radical,
and some auxiliary statements. In Sect. 3, we present some statements on the
adjoint representation and the twisted adjoint representation in degenerate geo-
metric algebras Gp,q,r. In Sect. 4, we introduce the four groups P±

p,q,r, Pp,q,r,
P±Λ

p,q,r, PΛ
p,q,r and discuss several equivalent definitions of these groups. In Sect. 5,

we prove that the considered four groups preserve the even subspace and the odd
subspace under the adjoint representation and the twisted adjoint representation
in Gp,q,r. Theorems 1, 2, and 3 are new. We consider the Lie algebras of the four
Lie groups in Sect. 6. The conclusions follow in Sect. 7.

2 Degenerate Geometric Algebra and the Jacobson
Radical

Let us consider the (Clifford) geometric algebra [21,29,30] G(V ) = Gp,q,r, p +
q + r = n ≥ 1, over a vector space V with a symmetric bilinear form g. We
consider the real case V = R

p,q,r and the complex case V = C
p+q,r. We use F

to denote the field of real numbers R in the first case and the field of complex
numbers C in the second case respectively. In this paper, we concentrate on the
degenerate geometric algebras with r �= 0, but all the following statements are
true for arbitrary r ≥ 0.

We denote the identity element of the algebra Gp,q,r by e, the generators
by ea, a = 1, . . . , n. In the case of the real geometric algebra G(Rp,q,r), the
generators satisfy eaeb + ebea = 2ηabe, a, b = 1, . . . , n, where η = (ηab) is the
diagonal matrix with p times 1, q times −1 and r times 0 on the diagonal. In
the case of the complex geometric algebra G(Cp+q,r), the generators satisfy the
same conditions but with the diagonal matrix η with p + q times 1 and r times
0 on the diagonal. Let us denote by Λr := G0,0,r the subalgebra of Gp,q,r, which
is the Grassmann (exterior) algebra [11,13,29].

Consider the subspaces Gk
p,q,r of grades k = 0, 1, . . . , n, which elements are

linear combinations of the basis elements ea1...ak
:= ea1 · · · eak

, a1 < · · · < ak,
with ordered multi-indices of length k. Note that the subspace G0

p,q,r of grade 0
does not depend on the signature of the algebra, so we denote it by G0 without
the lower indices p, q, r.

The grade involute of the element U ∈ Gp,q,r is denoted by ̂U . This operation
has the following well-known property: ̂UV = ̂U ̂V for any U, V ∈ Gp,q,r. Consider
the even G(0)

p,q,r and odd G(1)
p,q,r subspaces: G(k)

p,q,r = {U ∈ Gp,q,r : ̂U = (−1)kU} =
⊕

j=k mod 2 Gj
p,q,r, k = 0, 1, with the property

G(k)
p,q,rG(l)

p,q,r ⊂ G(k+l) mod 2
p,q,r , k, l = 0, 1. (1)

Let us consider the Jacobson radical rad Gp,q,r of the algebra Gp,q,r. Let
A,B,C be ordered multi-indices with the non-zero length and eA = ea1 · · · eak
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with {a1, . . . , ak} ⊆ {1, . . . , p}, eB = eb1 · · · ebl with {b1, . . . , bl} ⊆ {p+1, . . . , p+
q}, eC = ec1 · · · ecm with {c1, . . . , cm} ⊆ {p+ q +1, . . . , n}. An arbitrary element
y ∈ rad Gp,q,r has the form y =

∑

C vCeC +
∑

A,C vACeAeC +
∑

B,C vBCeBeC +
∑

A,B,C vABCeAeBeC , where vC , vAC , vBC , vABC ∈ F.

Remark 1. Any element of the Jacobson radical is non-invertible (see [27]).

The Jacobson radical of the Grassmann algebra G0,0,n = Λn is the direct sum of
the subspaces of grades 1, . . . , n:

rad G0,0,n = G1
0,0,n ⊕ G2

0,0,n ⊕ · · · ⊕ Gn
0,0,n, G0,0,n = G0 ⊕ rad G0,0,n.

The non-degenerate algebra Gp,q,0 is semi-simple and rad Gp,q,0 = {0} ( [1,11,
27]).

We need the following well-known (see, for example, [2,27]) lemma.

Lemma 1. The element e + xy is invertible for any y ∈ rad Gp,q,r, x ∈ Gp,q,r.

The subset of invertible elements of any set is denoted with ×. For example, we
denote the group of invertible elements of the algebra Gp,q,r by G×

p,q,r.

Lemma 2. The element T ∈ G0 ⊕ rad Gp,q,r is invertible if and only if its
projection on grade 0 is non-zero:

T ∈ G0 ⊕ rad Gp,q,r, 〈T 〉0 �= 0 ⇔ T ∈ (G0 ⊕ rad Gp,q,r)×.

Proof. Suppose 〈T 〉0 �= 0 for some T = αe+W = α(e+ 1
αW ), where α ∈ F

×, W ∈
rad Gp,q,r. We have e + 1

αW ∈ G×
p,q,r by Lemma 1; thus, T ∈ (G0 ⊕ rad Gp,q,r)×.

Suppose T ∈ (G0 ⊕ rad Gp,q,r)×. Assume 〈T 〉0 = 0; then T ∈ rad G×
p,q,r, and

we get a contradiction by Remark 1. ��
Remark 2. The inverse of any invertible T = αe + βe1...n ∈ (G0 ⊕ Gn

p,q,r)
×,

where α, β ∈ F, has the form T−1 = αe − βe1...n ∈ (G0 ⊕ Gn
p,q,r)

×, since (αe +
βe1...n)(αe − βe1...n) = α2e − β2(e1...n)2 ∈ G0.

3 Adjoint and Twisted Adjoint Representations in Gp,q,r

Consider the adjoint representation ad and the twisted adjoint representation ǎd
acting on the group of all invertible elements ad, ǎd : G×

p,q,r → AutGp,q,r as T �→
adT and T �→ ǎdT respectively, where adT (U) = TUT−1, ǎdT (U) = ̂TUT−1,
U ∈ Gp,q,r. It is well-known (see, for example, [1,9]) that the center of Gp,q,r is

Zp,q,r =

{

Λ(0)
r ⊕ Gn

p,q,r if n is odd,

Λ(0)
r if n is even.

(2)

Lemma 3. We have

ker(ad) = Z×
p,q,r =

{

(Λ(0)
r ⊕ Gn

p,q,r)
× if n is odd,

Λ(0)×
r if n is even,

ker(ǎd) = Λ(0)×
r . (3)
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Proof. We obtain the statement on ker(ad) from (2). Let us prove Λ(0)×
r ⊆

ker(ǎd). Suppose T ∈ Λ(0)×
r ; then TUT−1 = U for any U ∈ Gp,q,r. Since T is

even, we have ̂T = T ; therefore, ̂TUT−1 = U for any U ∈ Gp,q,r.
Let us prove ker(ǎd) ⊆ Λ(0)×

r . Suppose T ∈ G×
p,q,r satisfies ̂TUT−1 = U for

any U ∈ G. Substituting the element U = e, we obtain ̂T = T ; hence, T ∈ G(0)×
p,q,r

and TUT−1 = U for any U ∈ Gp,q,r. In other words, T ∈ G(0)×
p,q,r ∩ ker(ad). Using

(3), we obtain T ∈ G(0)×
p,q,r ∩(Λ(0)

r ⊕Gn
p,q,r)

× = Λ(0)×
r in the case of odd n, T ∈ Λ(0)×

r

in the case of even n, and the proof is completed. ��
Lemma 4. We have {X ∈ Gp,q,r : ̂XV = V X ∀V ∈ G1

p,q,r} = Λr.

Lemma 5. We have

{X ∈ Gp,q,r : XV = V X ∀V ∈ G(0)
p,q,r} = Λr ⊕ Gn

p,q,r, (4)

{X ∈ Gp,q,r : ̂XV = V X ∀V ∈ G(0)
p,q,r} =

{

Λ(0)
r if n is odd,

Λ(0)
r ⊕ Gn

p,q,r if n is even.
(5)

Lemma 6. Consider an arbitrary element X ∈ Gp,q,r and an arbitrary fixed
subset H of the set G(0)

p,q,r ∪ G(1)
p,q,r. We have

̂XU = UX ∀U ∈ H ⇒ ̂X(U1 · · · Um) = (U1 · · · Um)X ∀U1, . . . , Um ∈ H

for any odd natural number m.

Proof. Lemmas 4–6 are proved in the similar way as the formula (2) and
Lemma 3. The proof of these lemmas will be provided in the extended version
of this paper. ��

4 The Groups P±
p,q,r, Pp,q,r, P±Λ

p,q,r, and PΛ
p,q,r

Let us denote by Sp,q,r the following subset of the center Zp,q,r (2):

Sp,q,r :=
{G0 ⊕ Gn

p,q,r if n is odd,
G0 if n is even.

(6)

Note that Sp,q,r ⊕ (Λ(0)
r \ G0) = Zp,q,r. In the case of the non-degenerate algebra

Gp,q,0, we have Sp,q,0 = Zp,q,0. Let us consider the groups P±
p,q,r and Pp,q,r:

P±
p,q,r := G(0)×

p,q,r ∪ G(1)×
p,q,r , (7)

Pp,q,r := P±
p,q,rZ

×
p,q,r =

{

(G(0)×
p,q,r ∪ G(1)×

p,q,r)(Λ(0)
r ⊕ Gn

p,q,r)
× if n is odd,

(G(0)×
p,q,r ∪ G(1)×

p,q,r)Λ(0)×
r if n is even,

(8)

= P±
p,q,rS

×
p,q,r =

{

(G(0)×
p,q,r ∪ G(1)×

p,q,r)(G0 ⊕ Gn
p,q,r)

× if n is odd,

G(0)×
p,q,r ∪ G(1)×

p,q,r if n is even,
(9)
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where we get (9) by Lemma 7. In the particular case Gp,q,0, we obtain the groups
from the paper [32]:

P±
p,q,0 = P± = G(0)×

p,q,0 ∪ G(1)×
p,q,0, Pp,q,0 = P = Z×

p,q,0(G(0)×
p,q,0 ∪ G(1)×

p,q,0). (10)

Lemma 7. In the case of arbitrary n, we have

(G(0)×
p,q,r ∪ G(1)×

p,q,r)Λ(0)×
r = G(0)×

p,q,r ∪ G(1)×
p,q,r , (11)

(G(0)×
p,q,r ∪ G(1)×

p,q,r)(Λ(0)
r ⊕ Gn

p,q,r)
× = (G(0)×

p,q,r ∪ G(1)×
p,q,r)(G0 ⊕ Gn

p,q,r)
×. (12)

Proof. The statement (11) is true by (1). The proof of the statement (12) in
the case r = 0 is trivial, since Λ(0)

0 = G0. Consider the case r �= 0. The right
set in (12) is a subset of the left one. Let us prove that the left set in (12)
is a subset of the right one. Suppose T = AW , where A ∈ G(0)×

p,q,r ∪ G(1)×
p,q,r and

W = αe + X + βe1...n ∈ (Λ(0)
r ⊕ Gn

p,q,r)
×, α, β ∈ F and X ∈ Λ(0)

r \ G0. Since W

is invertible, α �= 0 by Lemma 2. Then we get W = (e + 1
αX)(αe + βe1...n) ∈

Λ(0)×
r (G0 ⊕ Gn

p,q,r)
×, where the first factor is invertible by Lemma 2. Hence,

T = AW = A(e + 1
αX)(αe + βe1...n) ∈ (G(0)×

p,q,r ∪ G(1)×
p,q,r)Λ(0)×

r (G0 ⊕ Gn
p,q,r)

× =

(G(0)×
p,q,r ∪ G(1)×

p,q,r)(G0 ⊕ Gn
p,q,r)

×, and the proof is completed. ��
Also let us consider the groups P±Λ

p,q,r and PΛ
p,q,r:

P±Λ
p,q,r := Λ×

r P±
p,q,r = P±

p,q,rΛ
×
r = (G(0)×

p,q,r ∪ G(1)×
p,q,r)Λ×

r , (13)

PΛ
p,q,r := Λ×

r Pp,q,r = Pp,q,rΛ×
r (14)

= P±Λ
p,q,rZ

×
p,q,r =

{

(G(0)×
p,q,r ∪ G(1)×

p,q,r)(Λ(0)
r ⊕ Gn

p,q,r)
×Λ×

r if n is odd,

P±Λ
p,q,r = (G(0)×

p,q,r ∪ G(1)×
p,q,r)Λ×

r if n is even,
(15)

= P±Λ
p,q,rS

×
p,q,r =

{

(G(0)×
p,q,r ∪ G(1)×

p,q,r)(G0 ⊕ Gn
p,q,r)

×Λ×
r if n is odd,

(G(0)×
p,q,r ∪ G(1)×

p,q,r)Λ×
r if n is even,

(16)

=

{

(G(0)×
p,q,r ∪ G(1)×

p,q,r)(Λr ⊕ Gn
p,q,r)

× if n is odd,

(G(0)×
p,q,r ∪ G(1)×

p,q,r)Λ×
r if n is even,

(17)

where we get (16) and (17) by Lemma 8.

Lemma 8. In the case of arbitrary n, we have

(Λ(0)
r ⊕ Gn

p,q,r)
×Λ×

r = (G0 ⊕ Gn
p,q,r)

×Λ×
r = (Λr ⊕ Gn

p,q,r)
×. (18)

Proof. In the case r = 0, the proof of the equalities is trivial, since Λ0 = Λ(0)
0 =

G0. Consider the case r �= 0. By multiplying the factors in the first and the
second sets in (18), we get that each of these sets is a subset of the third one in
(18).

Let us show that the third set in (18) is a subset of the first two ones.
Suppose T = αe+X +βe1...n ∈ (Λr ⊕Gn

p,q,r)
×, where α, β ∈ F and X ∈ Λr \G0.
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Since T is invertible, α �= 0 by Lemma 2. Then T = (αe + βe1...n)(e + 1
αX) ∈

(G0 ⊕ Gn
p,q,r)

×Λ×
r ⊆ (Λ(0)

r ⊕ Gn
p,q,r)

×Λ×
r , where the second factor is invertible by

Lemma 2, and the proof is completed. ��
Remark 3. The groups P±

p,q,r, Pp,q,r, P±Λ
p,q,r, and PΛ

p,q,r are related as follows:

Pp,q,r = P±
p,q,rZ

×
p,q,r = P±

p,q,rS
×
p,q,r, P±Λ

p,q,r = P±
p,q,rΛ

×
r , (19)

PΛ
p,q,r = P±

p,q,rZ
×
p,q,rΛ

×
r = P±

p,q,rS
×
p,q,rΛ

×
r , (20)

P±
p,q,r is a subgroup of the groups Pp,q,r, PΛ

p,q,r, P±Λ
p,q,r, and the groups P±

p,q,r,
Pp,q,r, P±Λ

p,q,r are subgroups of PΛ
p,q,r.

Remark 4. In the particular case of the algebra Gp,q,0, the groups P±Λ
p,q,r and

PΛ
p,q,r coincide with the groups P± and P respectively:

P±Λ
p,q,0 = P±

p,q,0 = P± ⊆ PΛ
p,q,0 = Pp,q,0 = P, (21)

moreover, if n = p + q is even, all the considered groups coincide.

Let us give some examples on the groups P±
p,q,r, Pp,q,r, P±Λ

p,q,r, and PΛ
p,q,r in

the cases of the low-dimensional degenerate geometric algebras. We use that the
degenerate geometric algebra can be embedded into the non-degenerate geomet-
ric algebra of larger dimension (see Clifford–Jordan–Wigner representation [10]),
which is isomorphic to the matrix algebra (see, for example, [29,30]).

Example 1. Consider the algebra Λ1 = G0,0,1, which can be embedded into
G1,1,0

∼= Mat(2, F). We obtain P±
0,0,1 = Λ(0)×

1 = G0× and

P0,0,1 = P±Λ
0,0,1 = PΛ

0,0,1 = Λ×
1

∼= {
(

x0 + x1 x1

−x1 x0 − x1

)

: x0, x1 ∈ F, x0 �= 0}.

Example 2. Since Λ2 = G0,0,2 can be embedded into G2,2,0
∼= Mat(4, F), we get

P±Λ
0,0,2 = PΛ

0,0,2 = Λ×
2

∼= {

⎛

⎜

⎜

⎝

x0 0 0 0
x1 x0 0 0
x2 0 x0 0
x3 −x2 x1 x0

⎞

⎟

⎟

⎠

: x0, x1, x2, x3 ∈ F, x0 �= 0},

P±
0,0,2 = P0,0,2 = Λ(0)×

2
∼= {

⎛

⎜

⎜

⎝

x0 0 0 0
0 x0 0 0
0 0 x0 0
x3 0 0 x0

⎞

⎟

⎟

⎠

: x0, x3 ∈ F, x0 �= 0}.

Remark 5. In the case of the Grassmann algebra G0,0,n = Λn, we have

P±
0,0,n = P0,0,n = Λ(0)×

n ⊂ P±Λ
0,0,n = PΛ

0,0,n = Λ×
n , n is even;

P±
0,0,n = Λ(0)×

n ⊂ P0,0,n = (Λ(0)
n ⊕ Λn

n)× ⊂ P±Λ
0,0,n = PΛ

0,0,n = Λ×
n , n ≥ 3 is odd.

The statements P±
0,0,n = Λ(0)×

n and P0,0,n = Λ(0)×
n (G0 ⊕ Λn

n)× follow from
Lemma 2, since any invertible element of Λ×

n has the non-zero projection on
grade 0 and, consequently, is not odd.
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In Theorems 1 and 2, we give the equivalent definitions of the groups Pp,q,r,
P±

p,q,r, PΛ
p,q,r, and P±Λ

p,q,r. We use these definitions to prove Theorem 3. Note that
G0 ⊆ Λ(0)

r ⊆ G0 ⊕ rad G(0)
p,q,r in (23)–(25) and (27)–(29).

Theorem 1. We have the following equivalent definitions of the group Pp,q,r:

Pp,q,r =

{

(G(0)×
p,q,r ∪ G(1)×

p,q,r)(G0 ⊕ Gn
p,q,r)

×, n is odd,
G(0)×

p,q,r ∪ G(1)×
p,q,r , n is even,

(22)

= {T ∈ G×
p,q,r : ̂T−1T ∈ S×

p,q,r =
{

(G0 ⊕ Gn
p,q,r)

×, n is odd,
G0×, n is even,

} (23)

= {T ∈ G×
p,q,r : ̂T−1T ∈ ker(ad) =

{

(Λ(0)
r ⊕ Gn

p,q,r)
×, n is odd,

Λ(0)×
r , n is even,

} (24)

=

{

{T ∈ G×
p,q,r : ̂T−1T ∈ (G0 ⊕ rad G(0)

p,q,r ⊕ Gn
p,q,r)

×}, n is odd,
{T ∈ G×

p,q,r : ̂T−1T ∈ (G0 ⊕ rad G(0)
p,q,r)×}, n is even,

(25)

and the group P±
p,q,r:

P±
p,q,r = G(0)×

p,q,r ∪ G(1)×
p,q,r (26)

= {T ∈ G×
p,q,r : ̂T−1T ∈ G0×} (27)

= {T ∈ G×
p,q,r : ̂T−1T ∈ ker(ǎd)} = {T ∈ G×

p,q,r : ̂T−1T ∈ Λ(0)×
r } (28)

= {T ∈ G×
p,q,r : ̂T−1T ∈ (G0 ⊕ rad G(0)

p,q,r)
×}. (29)

Proof. First let us prove (22)–(25). Let us prove that the set (22) is a subset
of the set (23). Suppose T = AB ∈ Pp,q,r, where A ∈ G(0)×

p,q,r ∪ G(1)×
p,q,r and B ∈

(G0 ⊕ Gn
p,q,r)

× in the case of odd n, B = e in the case of even n. Then ̂T−1T =

(̂AB)−1(AB) = ̂B−1 ̂A−1AB = ± ̂B−1A−1AB = ± ̂B−1B. We have ̂B−1B ∈
(G0 ⊕ Gn

p,q,r)
× in the case of odd n (see Remark 2) and ̂B−1B = e ∈ G0× in the

case of even n, and the proof is completed. The set (23) is a subset of the set
(24), which is a subset of the set (25), since G0 ⊆ Λ(0)

r ⊆ G0 ⊕ rad G(0)
p,q,r.

Let us prove that the set (25) is a subset of the set (22) in the case of even
n. Suppose T ∈ G× satisfies ̂T−1T = W0 ∈ (G0 ⊕ rad G(0)

p,q,r)×; then T = ̂TW0.
Suppose T = T0+T1, where T0 ∈ G(0)

p,q,r, T1 ∈ G(1)
p,q,r. Then T0+T1 = (T0−T1)W0,

i.e. T0(e − W0) = 0, T1(e + W0) = 0. If at least one of the elements e − W0

and e + W0 is invertible, then we get either T0 = 0 or T1 = 0. Thus, T ∈
G(0)×

p,q,r ∪G(1)×
p,q,r = P±

p,q,r, and the proof is completed. Let us show that at least one
of the elements e − W0 and e + W0 is invertible. Note that at least one of these
elements has the non-zero projection on grade 0, since otherwise we can sum the
equations 〈e − W0〉0 = 0, 〈e + W0〉0 = 0 and get 〈2e〉0 = 0, i.e. a contradiction,
where we use the linearity of the projection operator. Then we obtain either
e − W0 ∈ (G0 ⊕ rad G(0)

p,q,r)× or e + W0 ∈ (G0 ⊕ rad G(0)
p,q,r)× by Lemma 2.
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Let us prove that the set (25) is a subset of the set (22) in the case of
odd n. This statement is proved in the particular case Gp,q,0 in the paper [32]
(see Theorem 3.2). Consider the case r �= 0. Suppose ̂T−1T = W0 + βe1...n ∈
(G0 ⊕ rad G(0)

p,q,r ⊕ Gn
p,q,r)

×, where W0 ∈ G0 ⊕ rad G(0)
p,q,r and β ∈ F. Then T =

̂T (W0 + βe1...n). Suppose T = T0 + T1, where T0 ∈ G(0)
p,q,r, T1 ∈ G(1)

p,q,r. Then we
get T0 = T0W0 − βT1e1...n, T1 = −T1W0 + βT0e1...n; therefore, T0(e − W0) =
−βT1e1...n, T1(e+W0) = βT0e1...n. As shown above, at least one of the elements
e − W0 and e + W0 is invertible; hence, we obtain one of the two following
equations:

T0 = −βT1e1...n(e − W0)−1, T1 = βT0e1...n(e + W0)−1. (30)

Therefore, either T0 = λT1e1...n or T1 = μT0e1...n, where λ, μ ∈ F, and we
use that (e − W0)−1, (e + W0)−1 ∈ G0 ⊕ rad G(0)

p,q,r and e1...nrad G(0)
p,q,r = 0.

Then we have either T = T0 + T1 = T1(e + λe1...n) ∈ G(1)×
p,q,r(G0 ⊕ Gn

p,q,r)
× or

T = T0(e+μe1...n) ∈ G(0)×
p,q,r(G0 ⊕Gn

p,q,r)
×, where in both cases, the second factor

is invertible by Lemma 2. Thus, T ∈ (G(0)×
p,q,r ∪ G(1)×

p,q,r)(G0 ⊕ Gn
p,q,r)

×.
Now let us prove (26)–(29). The set (26) is a subset of the set (27), since we

obtain ̂T−1T = ±T−1T = ±e ∈ G0× for any T ∈ G(0)×
p,q,r ∪ G(1)×

p,q,r . The set (27)
is a subset of the set (28), which is a subset of the set (29), since G0 ⊆ Λ(0)

r ⊆
G0 ⊕ rad G(0)

p,q,r.
Let us prove that the set (29) is a subset of the set (26). In the case of even

n, we have proved {T ∈ G× : ̂T−1T ∈ (G0 ⊕ rad G(0)
p,q,r)×} = G(0)×

p,q,r ∪ G(1)×
p,q,r

(see (25) and (22)). Consider the case of odd n. Suppose ̂T−1T = W0 +βe1...n ∈
G0 ⊕ rad G(0)

p,q,r, where β = 0, W0 ∈ G0 ⊕ rad G(0)
p,q,r. As shown above, we obtain

one of the Eqs. (30). Since β = 0, we get either T0 = 0 or T1 = 0; thus,
T ∈ G(0)×

p,q,r ∪ G(1)×
p,q,r and the proof is completed. ��

Theorem 2. We have the following equivalent definitions of the group PΛ
p,q,r:

PΛ
p,q,r =

{

(G(0)×
p,q,r ∪ G(1)×

p,q,r)(G0 ⊕ Gn
p,q,r)

×Λ×
r , n is odd,

(G(0)×
p,q,r ∪ G(1)×

p,q,r)Λ×
r , n is even,

(31)

=

{

{T ∈ G×
p,q,r : ̂T−1T ∈ (Λr ⊕ Gn

p,q,r)
×}, n is odd,

{T ∈ G×
p,q,r : ̂T−1T ∈ Λ×

r }, n is even,
(32)

= {T ∈ G×
p,q,r : ̂T−1T ∈ (Λr ⊕ Gn

p,q,r)
×} (33)

and the group P±Λ
p,q,r:

P±Λ
p,q,r = (G(0)×

p,q,r ∪ G(1)×
p,q,r)Λ×

r = {T ∈ G×
p,q,r : ̂T−1T ∈ Λ×

r } (34)

=

{

{T ∈ G×
p,q,r : ̂T−1T ∈ Λ×

r }, n is odd,
{T ∈ G×

p,q,r : ̂T−1T ∈ (Λr ⊕ Gn
p,q,r)

×}, n is even.
(35)

Proof. This theorem is proved in the similar way as Theorem 1. The proof of
this theorem will be provided in the extended version of this paper. ��
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5 The Groups Preserving the Subspaces of Fixed
Parity Under the Adjoint and Twisted Adjoint
Representations

We use the following notation for the groups preserving the subspaces of fixed
parity under the adjoint representation: Γ(k) = {T ∈ G×

p,q,r : TG(k)
p,q,rT−1 ⊆

G(k)
p,q,r}, k = 0, 1, and the twisted adjoint representation: Γ̌(k) = {T ∈ G×

p,q,r :
̂TG(k)

p,q,rT−1 ⊆ G(k)
p,q,r}, k = 0, 1.

Theorem 3. Pp,q,r = Γ(1) ⊆ PΛ
p,q,r = Γ(0), P±

p,q,r = Γ̌(0) ⊆ P±Λ
p,q,r = Γ̌(1).

Proof. The statements Pp,q,r ⊆ PΛ
p,q,r and P±

p,q,r ⊆ P±Λ
p,q,r follow from the defini-

tions of the groups (22), (9), (13), and (16).
Let us prove P±

p,q,r ⊆ Γ̌(0). Suppose T ∈ P±
p,q,r (22). If T ∈ G(0)×

p,q,r , then ̂T = T

and T−1 ∈ G(0)×
p,q,r . If T ∈ G(1)×

p,q,r , then ̂T = −T and T−1 ∈ G(1)×
p,q,r . In both cases,

we obtain ̂TG(0)
p,q,rT−1 ⊆ G(0)

p,q,r by (1). Thus, T ∈ Γ̌(0). Let us prove Pp,q,r ⊆ Γ(1).
Suppose T = XW ∈ Pp,q,r = P±

p,q,rZ
×
p,q,r (15), where X ∈ G(0)×

p,q,r ∪G(1)×
p,q,r and W ∈

Z×
p,q,r. Then we get TG(1)

p,q,rT−1 = XWG(1)
p,q,rW−1X−1 = XG(1)

p,q,rWW−1X−1 =

XG(1)
p,q,rX−1 ⊆ G(1)

p,q,r, where we use (1). Thus, T ∈ Γ(1).
Let us prove PΛ

p,q,r ⊆ Γ(0). Suppose T = XW ∈ PΛ
p,q,r (31), where

X ∈ G(0)×
p,q,r ∪ G(1)×

p,q,r , W ∈ (Λr ⊕ Gn
p,q,r)

× in the case of odd n and W ∈
Λ×

r in the case of even n. We obtain TG(0)
p,q,rT−1 = XWG(0)

p,q,rW−1X−1 =
XG(0)

p,q,rWW−1X−1 = XG(0)
p,q,rX−1 ⊆ G(0)

p,q,r, where we use the property (1) and
that WG(0)

p,q,r = G(0)
p,q,rW by Lemma 5. Thus, T ∈ Γ(0). Let us prove P±Λ

p,q,r ⊆ Γ̌(1).
Suppose T = XW ∈ P±Λ

p,q,r (13), where X ∈ G(0)×
p,q,r ∪ G(1)×

p,q,r and W ∈ Λ×
r . Since

̂Wea = eaW for any generator ea, a = 1, . . . , n, by Lemma 4 and since any odd
basis element can be represented as the product of an odd number of gener-
ators, we get ̂WG(1)

p,q,r = G(1)
p,q,rW by Lemma 6. Then we obtain ̂TG(1)

p,q,rT−1 =
̂X̂WG(1)

p,q,rW−1X−1 = ±XG(1)
p,q,rWW−1X−1 = ±XG(1)

p,q,rX−1 ⊆ G(1)
p,q,r by (1).

Thus, T ∈ Γ̌(1).
Let us prove Γ(1) ⊆ Pp,q,r. Suppose T ∈ G×

p,q,r satisfies TG(1)
p,q,rT−1 ⊆ G(1)

p,q,r;
then we obtain TUT−1 = −(TUT−1)̂ = ̂TU ̂T−1 for any U ∈ G(1)

p,q,r. Multiplying
both sides of this equation on the left by ̂T−1, on the right by T , we get

( ̂T−1T )U = U( ̂T−1T ), ∀U ∈ G(1)
p,q,r. (36)

In particular, (36) is true for any generator U = ea ∈ G(1)
p,q,r, a = 1, . . . , n. Since

the identity element U = e ∈ G0 satisfies (36) as well, we get ad
̂T−1T

(U) = U

for any U ∈ Gp,q,r. Therefore, ̂T−1T ∈ ker(ad). Thus, T ∈ Pp,q,r by Theorem 1.
Let us prove Γ̌(1) ⊆ P±Λ

p,q,r. Suppose T ∈ G×
p,q,r satisfies ̂TG(1)

p,q,rT−1 ⊆ G(1)
p,q,r.

Then we get ̂TUT−1 = −( ̂TUT−1)̂ = TU ̂T−1 for any U ∈ G(1)
p,q,r. Multiplying
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both sides of the equation on the left by T−1, on the right by T , we obtain

T−1
̂TU = U ̂T−1T , i.e. ̂( ̂T−1T )U = U( ̂T−1T ) for any U ∈ G(1)

p,q,r. In particular,
this equation is true for any generator U = ea ∈ G1

p,q,r, a = 1, . . . , n. Using
Lemma 4, we get ̂T−1T ∈ Λ×

r ; hence, T ∈ P±Λ
p,q,r by Theorem 2.

Let us prove Γ(0) ⊆ PΛ
p,q,r. Suppose T ∈ G×

p,q,r satisfies TG(0)
p,q,rT−1 ⊆ G(0)

p,q,r.
Then we get TUT−1 = (TUT−1)̂ = ̂TU ̂T−1 for any U ∈ G(0)

p,q,r. Multiplying
both sides of this equation on the left by ̂T−1, on the right by T , we obtain
( ̂T−1T )U = U( ̂T−1T ) for any U ∈ G(0)

p,q,r. Using Lemma 5, we have ̂T−1T ∈
Λr ⊕ Gn

p,q,r. Thus, T ∈ PΛ
p,q,r by Theorem 2.

Let us prove Γ̌(0) ⊆ P±
p,q,r. This statement is proved in the case r = 0 in the

paper [18]. Consider the case r �= 0. Suppose T ∈ G×
p,q,r satisfies ̂TG(0)

p,q,rT−1 ⊆
G(0)

p,q,r. Then ̂TUT−1 = ( ̂TUT−1)̂ = TU ̂T−1 for any U ∈ G(0)
p,q,r. Multiplying

both sides of this equation on the left by T−1, on the right by T , we obtain

T−1
̂TU = U ̂T−1T , i.e. ̂( ̂T−1T )U = U( ̂T−1T ) for any U ∈ G(0)

p,q,r. Using (5), we
get ̂T−1T ∈ (Λ(0)

r ⊕ Gn
p,q,r)

× in the case of even n and ̂T−1T ∈ Λ(0)×
r in the case

of odd n. Therefore, T ∈ P±
p,q,r by (28) in the case of odd n and by (29) in the

case of even n, since Λ(0)
r ⊕ Gn

p,q,r ⊆ G0 ⊕ rad G(0)
p,q,r. ��

Remark 6. In the particular case r = 0, we have by (10) and (21):

P±
p,q,0 = P±Λ

p,q,0 = Γ̌(0) = Γ̌(1) ⊂ Pp,q,0 = PΛ
p,q,0 = Γ(1) = Γ(0), n is odd,

P±
p,q,0 = P±Λ

p,q,0 = Γ̌(0) = Γ̌(1) = Pp,q,0 = PΛ
p,q,0 = Γ(1) = Γ(0), n is even.

Remark 7. In the particular case of the Grassmann algebra G0,0,n = Λn, we have
three different groups:

P±
0,0,n = Γ̌(0) = ker(ǎd) = Λ(0)×

n , PΛ
0,0,n = P±Λ

0,0,n = Γ(0) = Γ̌(1) = Λ×
n ,

P0,0,n = Γ(1) = ker(ad) =

{

(Λ(0)
n ⊕ Λn

n)× if n is odd,

Λ(0)×
n if n is even.

6 The Corresponding Lie Algebras

Let us denote the Lie algebras of the Lie groups P±
p,q,r, Pp,q,r, P±Λ

p,q,r, and PΛ
p,q,r

by p±
p,q,r, pp,q,r, p±Λ

p,q,r, and pΛ
p,q,r respectively.

Theorem 4. We have the Lie algebras

p±
p,q,r = G(0)

p,q,r, pp,q,r =

{

G(0)
p,q,r ⊕ Gn

p,q,r, n is odd;
G(0)

p,q,r, n is even;

p±Λ
p,q,r = G(0)

p,q,r ⊕ Λ(1)
r , pΛ

p,q,r =

{

G(0)
p,q,r ⊕ Λ(1)

r ⊕ Gn
p,q,r, n is odd, r �= n;

G(0)
p,q,r ⊕ Λ(1)

r , in the other cases;
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of the following dimensions

dim p±
p,q,r = 2n−1, dim pp,q,r =

{

2n−1 + 1, n is odd;
2n−1, n is even;

dim p±Λ
p,q,r =

{

2n−1 + 2r−1, r ≥ 1;

2n−1, r = 0;
dim p

Λ
p,q,r =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

2n−1 + 2r−1 + 1, n is odd, r �= n, r ≥ 1;

2n−1 + 1, n is odd, r = 0;

2n−1, n is even, r = 0;

2n−1 + 2r−1, in the other cases.

Proof. We use the well-known facts about the relation between an arbitrary Lie
group and the corresponding Lie algebra in order to prove the statements. We
calculate the dimensions of the considered Lie algebras using dim G(0)

p,q,r = 2n−1,
dim Λ(1)

r = 2r−1, dim Gn
p,q,r = 1. ��

Remark 8. In the particular case of the non-degenerate algebra Gp,q,0, we obtain

p±
p,q,0 = p±Λ

p,q,0 = G(0)
p,q,0, pp,q,0 = pΛ

p,q,0 =

{

G(0)
p,q,0 ⊕ Gn

p,q,0, n is odd;
G(0)

p,q,0, n is even.
(37)

7 Conclusions

In this paper, we introduce the four Lie groups P±
p,q,r, Pp,q,r, P±Λ

p,q,r, and PΛ
p,q,r in

the real and complex degenerate geometric algebras Gp,q,r of arbitrary dimension
and signature. We give the equivalent definitions of these groups in Theorems 1
and 2. We prove that these groups preserve the even and odd subspaces under
the adjoint representation and the twisted adjoint representation in Theorem 3.
We study the corresponding Lie algebras in Theorem 4.

The groups introduced in this paper are closely related to the degenerate
spin groups, and that is why they are interesting for consideration. We thank the
anonymous reviewers for the other important directions of the further research1.
In the extended version of this paper, we are going to consider the groups pre-
serving the subspaces of fixed grades and the subspaces determined by the grade
involution and the reversion under the adjoint and twisted adjoint representa-
tions in degenerate geometric algebras Gp,q,r. These groups are generalizations
of the groups studied in the special case of the non-degenerate algebra Gp,q,0 in
the papers [32] and [18]. Moreover, we will study the normalized subgroups of
these groups, which can be interpreted as generalizations of the spin groups in
degenerate case and can be used in applications.

Acknowledgements. This work is supported by the Russian Science Foundation
(project 21-71-00043), https://rscf.ru/en/project/21-71-00043/.

The authors are grateful to the three anonymous reviewers for their careful reading
of the paper and helpful comments on how to improve the presentation.

1 It would be of interest to study the relation between the results of this paper and
such concepts as the Classification Scheme of Lie groups, the root systems of the Lie
groups in degenerate and non-degenerate cases, the Universal enveloping algebras of
the Lie algebras.

https://rscf.ru/en/project/21-71-00043/.
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Abstract. Typically, Geometric Algebra (GA) is introduced via choos-
ing an orthogonal basis, and defining how multiplication acts on this basis
according to some simple rules. This works well computationally, but
can obscure insight mathematically. In particular, operations defined in
terms of coordinates on a multivector basis can be difficult to rigorously
show to be “coordinate-free”, especially in large algebras. This paper
explores the use of the “universal property” to ensure that operations
are “coordinate-free” by construction. To build some insight for applying
the universal property, we draw parallels to the process of writing recur-
sive programs. We then demonstrate a novel result using this approach
by deriving a universal property of the even subalgebra. Armed with
this second universal property, we provide an explicit construction for
a well-known equivalence between any Clifford algebra and its “one-up”
even subalgebra. We conclude with some remarks about formalization of
these ideas in a theorem prover.

Keywords: Geometric Algebra · Clifford Algebra · Universal
Property · Formalized Mathematics

1 Introduction

Conventionally when working with geometric algebra, we start by choosing an
orthogonal basis for our real vector space {e+1 , · · · , e+p , e−

1 , · · · , e−
q , e01, · · · , e0r},

where the superscripts describe the real-valued square of each vector; e+i ·e+i = 1,
e−
i · e−

i = −1, e0i · e0i = 0. The generators formed by this basis are then used to
construct the algebraic object known as the “Clifford algebra”1, via imposing
the constraint that vectors square to scalars.

In this paper, we will work in the more general setting of an R-module over
an arbitrary ring R rather than over a R-vector space. We will use G(V,Q)
as notation for the Clifford algebra over the R-module V with quadratic form
Q. What is often written as C�(p, q, r) or G(Rp,q,r) elsewhere would under this
1 In this paper, we will use “Clifford algebra” to refer to this object, and “geometric

algebra” to refer to the field of study.
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convention be written as G(Rp+q+r, Q) where Q(e+i ) = 1, Q(e−
i ) = −1, Q(e0i ) = 0

and is extended to all Rp+q+r in the way that satisfies the requirements of a
quadratic form.

Initially, this might seem like it just increases the verbosity; but the goal
is to avoid ever mentioning the basis in the first place. One of the core claims
of geometric algebra is that it lets you perform geometric manipulation in a
“coordinate-free” way. Exactly what this means typically depends on the author,
but a common interpretation is “the choice of basis vectors does not affect the
result of the manipulation” [5]. For clarity, we will refer to algorithms with this
property as “basis-agnostic”.

Let us quickly summarize some examples of operations which are and are not
“basis-agnostic”. Basic algebraic operations like multiplication and the wedge
product have a precise geometric meaning with no mention of coordinates, so
are “basis-agnostic”. However, the pseudoscalar I =

∏
i ei is not basis-agnostic;

choosing the basis vectors in a different order results in a change of sign. In 3D
this basis-dependence is transferred to the cross product, which in GA can be
expressed as a × b = −I(a ∧ b); the handedness of the cross-product depends on
the handedness of the vector space, which is determined by the basis.

There are some operations which despite being “basis-agnostic”, are still
typically defined by making a choice of basis, then proven to be invariant with
respect to that choice.

After introducing some intuition for recursion in Sect. 2, this paper shows
how the “universal property” can be used as a computational tool in the place
of choosing a basis, and in Sect. 3.2 demonstrates how to view this tool as a
variant of recursion. In Sect. 3.3 we derive a new universal property for the even
subalgebra from our first universal property, and use this in Sect. 3.4 to construct
a well-known isomorphism in an unusual way. In Sect. 3.5, we show how this
recursive technique can be applied to construct the left-contraction from one of
its properties alone. Section 4 makes brief remarks about the formalized versions
of our results that are provided throughout this paper via “�” links.

1.1 Notation

In this paper, we will use the colon notation x : R to say “x is in the ring R”,
and v : V to say “v is in the vector space V ”. Similarly, we will use F : V → W
to say “F is a function from the space V to the space W”, or Q : V → R to
describe our quadratic form. When referring to the value of F : V → W , we will
use F = (v �→ w). Whether → refers to a function, a linear map, or some other
type of morphism is left to the prose. For functions of two variables, we have
two choices of notation; F : U × V → W or F : U → (V → W ), where we will
omit the parentheses. This second “curried”2 interpretation may seem unusual,
but it is convenient for us for reasons that become apparent in (2). Similarly,
we shall use F = (u �→ v �→ w) for writing the values of such functions, and use
f(u, v) and f(u)(v) interchangeably.

2 So-named in reference to the mathematician Haskell Curry.
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Note in particular that for commutative R, an R-bilinear map F : U×V → W
can be considered as an R-linear map from U to the space of R-linear maps from
V to W , which is the F : U → V → W spelling.

2 Recursors

In functional programming, a list is usually defined inductively; either it is empty,
“[ ]”, or it is an element a followed by another list l, “a :: l”. This inductive
definition provides a recursion principle, or recursor: “To define a function from
a list of elements, it suffices to define its value on [ ], and define its value on a :: l
given its value on l”. Consider computing in this way a sum of a list of elements
of a ring R. In a functional programming language, we would usually do so as:
�

sum : list R → R (1)
sum([ ]) := 0 (1a)

sum(a :: l) := a + sum(l) (1b)

One way to describe the list recursor is as a “fold”; if we have a function f :
α → β → β, then fold[f ] : list α → β → β. This satisfies fold[f ]([ ], b0) = b0
and fold[f ](a :: l, b0) = f(a, fold[f ](l, b0)). The “pattern matching” in (1) can be
trivially transformed by the compiler into an application of fold[f ], as sum(l) =
fold[a �→ v �→ a + v](l, 0), where sum(l) in (1b) has been replaced with v.

Sometimes implementing a recursion scheme requires keeping track of inter-
mediate state. As an example, consider producing an accumulated sum of the
elements of a list, starting from zero, such that accum([a, b]) = [0, a, a + b]. To
implement this, we use the recursor to define an auxiliary helper function: �

accum from : list R → R → list R (2)
accum from([ ]) := a �→ [a] (2a)

accum from(b :: l) := a �→ a :: accum from(l)(a + b) (2b)

Note the unusual type signature in (2); for each list, it produces not a value but
another function. It is this function that consumes our intermediate state a : R,
which is the value to resume the accumulation from; allowing us to thread this
value through the recursion while still sticking to the rules of our list recursor.
We can recover our desired function by simply initializing this state: �

accum : list R → list R (3)
accum := l �→ accum from(l)(0) (3a)

https://github.com/pygae/lean-ga/blob/5821f46cf154501c8b2420e13f2136963ae22328/src/examples/recursors.lean#L29?decl=icacga.sum
https://github.com/pygae/lean-ga/blob/5821f46cf154501c8b2420e13f2136963ae22328/src/examples/recursors.lean#L35?decl=icacga.accum_from
https://github.com/pygae/lean-ga/blob/5821f46cf154501c8b2420e13f2136963ae22328/src/examples/recursors.lean#L39?decl=icacga.accum


202 E. Wieser and J. Lasenby

Finally, let us consider the example where the running sum should be in
reverse. As we recurse, we will keep track of what the first element of our list is.
Instead of introducing this intermediate state into the input as we did in (2) by
producing a function, we introduce it into the output by producing a pair (×):
�

rev accumaux : list R → (R × list R) (4)
rev accumaux([ ]) := (0, [ ]) (4a)

rev accumaux(a :: l) := (a + b, b :: l′) where (b, l′) := rev accumaux(l) (4b)

Instead of initializing the state as in (3a), we post-process it: �

rev accum : list R → list R (5)
rev accum := l �→ a :: l′ where (a, l′) := rev accumaux(l) (5a)

In this section, we have seen two important tricks for taking a simple recursor
and implementing more complex recursion schemes. In the rest of this paper, we
will show how these principles translate to the language of universal properties.

3 Universal Properties

To state the universal property of the Clifford algebra [7, §14.4]; [1, II.1.1], we
will need some of the terminology from abstract algebra. We met R-modules
in the introduction as a generalization of vector spaces. An R-algebra is a ring
that is also an R-module, while an “R-algebra morphism” is an R-linear map
that additionally preserves multiplication and the multiplicative identity. Armed
with these definitions (and deferring to [1] for the construction), we can state�3

the universal property,

Definition 1. For every R-algebra A and R-module V , we have a one to one
correspondence between linear maps f : V → A satisfying f(v)2 = Q(v), and
algebra morphisms F : G(V,Q) → A. This correspondence is compositional;
given another R-algebra A2 and an algebra morphism H : A → A2, if f corre-
sponds with F then v �→ H(f(v)) corresponds with x �→ H(F (x)). We write this
correspondence as lift+[f ] = F .

It can be helpful to present this graphically, as is done in Fig. 1.

3 Note we call this a definition as we are defining lift+, which has computational
content just like the recursor for lists did.

https://github.com/pygae/lean-ga/blob/5821f46cf154501c8b2420e13f2136963ae22328/src/examples/recursors.lean#L44?decl=icacga.rev_accum_aux
https://github.com/pygae/lean-ga/blob/5821f46cf154501c8b2420e13f2136963ae22328/src/examples/recursors.lean#L48?decl=icacga.rev_accum
https://github.com/leanprover-community/mathlib/blob/e1f01165ce7a8b650014e98bab47cdff5317e52e/src/linear_algebra/clifford_algebra/basic.lean#L102?decl=clifford_algebra.lift
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Fig. 1. Graphical representation of two equivalent ways to define the universal property,
where (b) corresponds to Definition 1. Setting F = (x �→ x) in (b) recovers (a). In this
paper, we will not make explicit reference to ι, leaving it implicit wherever we turn an
element of V into an element of G(V, Q).

This “universal property” is very similar to the perhaps more familiar concept
of taking the “outermorphism” [2, §4.2], but instead of extending the linear map
f to wedge products as F (u ∧ v) = f(v) ∧ f(w), we extend it to geometric
products using F (uv) = f(v)f(w). In fact, the “outermorphism” is simply the
forward direction of the universal property for the exterior algebra.

For one of the simplest examples of applying the universal property, consider
using f : V → G(V,Q) = (v �→ −v), which trivially satisfies f(v)2 = (−v)2 =
v2 = Q(v); the resulting lift[f ] is the familiar “grade involution” operator�

x �→ x̂. A key insight is that we can write this in the style of (1) as:

grade invol : G(V,Q) → G(V,Q) (6)
grade invol(v : V ) := −v (6a)

Note that unlike in (1), we are additionally obliged to show that (6a) is linear,
and that (−v)2 = v2 = Q(v).

A more complex example involves constructing the grade reversal operation�

x �→ x̃, which for example sends e1e2e3 to e3e2e1. For this case, we need a
different choice of A than G(V,Q). What we choose is G(V,Q)op, where Aop is
the algebra A but with multiplication reversed. This comes with two obvious
R-linear maps, op : A → Aop and op−1 : Aop → A, which convert between the
two spaces. Note that op(ab) = (op b)(op a), so these are not algebra morphisms;
but we do still have op 1 = 1. Using the notation of (6), we implement this in
the style of (4) as:

grade revaux : G(V,Q) → G(V,Q)op (7)
grade revaux(v : V ) := op v (7a)

Again, we must show that (7a) is linear, and that (op v)2 = op(v2) = op(Q(v)) =
Q(v). To recover the reversion operator (a linear map that reverses multiplica-
tion), we simply compose this with op−1 to eliminate the op.

grade rev : G(V,Q) → G(V,Q) (8)

grade rev := x �→ op−1(grade revaux(x)) (8a)

https://github.com/leanprover-community/mathlib/blob/e1f01165ce7a8b650014e98bab47cdff5317e52e/src/linear_algebra/clifford_algebra/conjugation.lean#L42?decl=clifford_algebra.involute
https://github.com/leanprover-community/mathlib/blob/e1f01165ce7a8b650014e98bab47cdff5317e52e/src/linear_algebra/clifford_algebra/conjugation.lean#L69?decl=clifford_algebra.reverse
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While these applications of the universal property let us implement compu-
tations, the universal property can also be used to assemble proofs; such as how
[9, §7.5] formalizes the induction principle� in Theorem 1 and the extensionality
principle� in Theorem 2.

Theorem 1. To show a property P (x) for all elements of the Clifford algebra
G(V,Q), it suffices to show:

– That P (r) holds on all scalars r : R
– That P (u) holds on all vectors u : V
– That P (x + y) holds on all multivectors x, y : G(V,Q) if P (x) and P (y) hold
– That P (xy) holds on all multivectors x, y : G(V,Q) if P (x) and P (y) hold

Theorem 2. To show that two algebra morphisms f, g : G(V,Q) → A are equal,
it suffices to show they agree on the generators v : V .

3.1 Universal Properties as a Universal Interface

If two different representations of a Clifford algebra are available, G1 and G2,
then the universal property of G1 provides a map between the two:

convert : G1(V,Q) → G2(V,Q) (9)
convert(v : V ) := v (= ι2(v)) (9a)

In the language of software; if two libraries implement the universal property
“API”, then they can interoperate without direct knowledge of each other.

3.2 Universal Properties as Recursors

In (2), we saw a trick to thread extra state through our recursor by choosing
our output to itself be a function. We can play a similar trick with the uni-
versal property, although we are forced to work within the functions that form
an algebra. These include the endomorphism algebra End(R,W ) (the R-linear
maps of the form W → W ); where 1 : End(R,W ) is the identity map and
× : End(R,W ) → End(R,W ) → End(R,W ) is composition. The scalars of this
algebra happen to also be the “scaler”s; the endomorphisms corresponding to a
uniform scaling by an element r : R.

This specialization to A = End(R,W ) allows us to apply the universal prop-
erty to produce a “fold” operation (so named due to its analogy to the list version
described just below (1)) by an R-bilinear map f : V → W → W to obtain a
algebra morphism into the endomorphism algebra�:

fold[f] : G(V,Q) →
End(R,W )
︷ ︸︸ ︷
W → W (10)

fold[f](v : V ) := w �→ f(v, w) (10a)

https://github.com/leanprover-community/mathlib/blob/e1f01165ce7a8b650014e98bab47cdff5317e52e/src/linear_algebra/clifford_algebra/basic.lean#L171?decl=clifford_algebra.induction
https://github.com/leanprover-community/mathlib/blob/e1f01165ce7a8b650014e98bab47cdff5317e52e/src/linear_algebra/clifford_algebra/basic.lean#L155?decl=clifford_algebra.hom_ext
https://github.com/leanprover-community/mathlib/blob/e1f01165ce7a8b650014e98bab47cdff5317e52e/src/linear_algebra/clifford_algebra/fold.lean#L84?decl=clifford_algebra.foldl
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where the f(v)2 = (w �→ f(v, f(v, w))) = Q(v) condition can be rewritten as

f(v, f(v, w)) = Q(v)w (11)

Similarly, the fact this is an algebra morphism tells us that fold[f ](r, v) = rv
for r : R and fold[f ](xy, v) = fold[f ](x, fold[f ](y, v)). As an example of what
“fold”ing means in the context of a Clifford algebra, if c + u + vw : G(V,Q) and
x : W then

fold[f ](c + u + vw, x) = cx + f(u, x) + f(v, f(w, x)).

3.3 The Even Subalgebra

The even subalgebra G+(V,Q) of a Clifford algebra G(V,Q) is the subalgebra
consisting of the closure under addition and multiplication of all elements of
the form vw where v, w : V �; its members are known [4, (1.29)] as the “even”
multivectors4. We will now show that this subalgebra has its own universal
property�, Definition 2:

Definition 2. For every R-algebra A and R-module V , we have a one-to-one
correspondence between R-bilinear maps f : V → V → A satisfying:

f(v, v) = Q(v) (12)
f(u, v)f(v, w) = Q(v)f(u,w) (13)

and algebra morphisms out of the even subalgebra F : G+(V ) → A. This corre-
spondence is compositional; if f corresponds with F then v �→ w �→ H(f(v, w))
corresponds with x �→ H(F (x)). We write this correspondence as lift+[f ] = F .

Again, it can be helpful to present this graphically, as is done in Fig. 2.

Fig. 2. The universal property of the even subalgebra. So as to resemble Fig. 1, we
show the bilinear map f : V → V → A as the equivalent linear map from the tensor
product, f : V ⊗ V → A. Here, ι+(v ⊗ w) = ι(v)ι(w) = vw.

4 Although the definition in [4] needs the construction in Sect. 3.5 and therefore doesn’t
work in characteristic 2.

https://github.com/pygae/lean-ga/blob/5821f46cf154501c8b2420e13f2136963ae22328/src/geometric_algebra/from_mathlib/even_odd.lean#L45?decl=clifford_algebra.even
https://github.com/pygae/lean-ga/blob/5821f46cf154501c8b2420e13f2136963ae22328/src/geometric_algebra/from_mathlib/even_odd.lean#L226?decl=clifford_algebra.even.lift
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As with Definition 1 this is a definition not just a theorem; we are not just
going to prove that there is a correspondence, but we will provide an explicit
basis-agnostic computation of that correspondence. We will start by showing
the reverse direction, which given the algebra morphism F : G+(V,Q) → A we
choose as

lift+−1[F ] = f = (v �→ w �→ F (vw)) (14)

which trivially satisfies (12) and (13):

f(v, v) = F (vv) = F (Q(v)) = Q(v) (15)
f(u, v)f(v, w) = F (uv)F (vw) = F (uvvw) = F (uQ(v)w) = Q(v)F (uw) (16)

= Q(v)f(u,w) (17)

To construct the forwards direction, we are going to use the same trick as
we did in (10), setting W = A ⊕ S to produce an auxiliary function lift+aux[f ] :
G(V,Q) → (A ⊕ S) → (A ⊕ S). Here, A is our target algebra, while S is some
additional state which mirrors the extra recursor state we saw in (4). A ⊕ S is
their direct sum, which is to say it consists of pairs (a, s) with (a1, s1)+(a2, s2) =
(a1 + a2, s1 + s2) and r(a, s) = (ra, rs). Note that for this to be an R-module
as required by Definition 2, we need S to also be an R-module. We will deduce
precisely what to choose for S shortly.

We want our fold to apply f on pairs of vectors v, w : V at a time; that is,

lift+aux[f ](vwx, (a, s)) = (f(v, w) lift+aux[f ](x, (a, s)), s′).

Using the fact that lift+aux[f ] will be an algebra morphism, this simplifies to

lift+aux[f ](v, lift+aux[f ](w, (a, s))) = (f(v, w)a, s′);

that is, each application of lift+aux[f ] needs to apply “half” of f . An obvious
choice would be to pick S = V → A, the space of R-linear maps which includes
the “half”-applied maps like v �→ f(v, w)a. Note that this is essentially using
the trick in (2) for a second time, but instead of producing an unconstrained
function we are required to produce a linear map. We can then define�

lift+aux[f ] : G(V,Q) → (A ⊕ S) → (A ⊕ S) (18)

lift+aux[f ](v : V ) := (a, s) �→ (s(v), w �→ f(w, v)a), (18a)

where the second component of the pair contains a partially-applied version of f ,
while the first component finishes off the invocation from the previous iteration.
Note that we cannot take the product of s(·) and a in a single step as then this
operation would cease to be linear; which is why we instead weave these terms
back and forth between the left and right halves of the pair.

We now verify that our lift+aux[f ] satisfies the required property in (11) as�

lift+aux[f ](v, lift+aux[f ](v, (a, s))) = lift+aux[f ](v, (s(v), w �→ f(w, v)a)) (19)
= (f(v, v)a,w �→ f(w, v)s(v))) (20)
?= (Q(v)a,w �→ Q(v)s(w)) (21)
= Q(v)(a, s), (22)

https://github.com/pygae/lean-ga/blob/5821f46cf154501c8b2420e13f2136963ae22328/src/geometric_algebra/from_mathlib/even_odd.lean#L103?decl=_private.f_fold
https://github.com/pygae/lean-ga/blob/5821f46cf154501c8b2420e13f2136963ae22328/src/geometric_algebra/from_mathlib/even_odd.lean#L132?decl=_private.f_fold_f_fold
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where ?= is the equality to be checked. f(v, v) = Q(v) was (12), so we can easily
match up the first half of the pair. However, matching up the second half of the
pair requires f(w, v)s(v) = Q(v)s(w), which is a stronger requirement than (13)
and not true for all linear maps s : S.

To solve this problem, we need to pick a smaller space S�, the module
spanned by linear maps s : V → A of the form s = (v �→ f(v, w)a) for all
w : V and a : A. Our definition of lift+aux in (18a) trivially adapts to this defini-
tion, as w �→ f(w, v)a lies in the new S by definition. We are now in a position
to solve f(w, v)s(v) = Q(v)s(w), as we can write s = (w �→ ∑

i f(w, ui)ai) (for
some arbitrary finite set of ui : V and ai : A) to get:

f(w, v) (
∑

if(v, ui)ai) =
∑

if(w, v)f(v, ui)ai (23)
=

∑
iQ(v)f(w, ui)ai (24)

= Q(v)
∑

if(w, ui)ai (25)
= Q(v)s(w) (26)

where we go from (23) to (24) using (13).
We can now extract lift+[f ] as

lift+[f ] : G+(V,Q) → A (27)

lift+[f ] := x+ �→ a where (a, s′) = lift+aux[f ](x, (1, v �→ 0)) (27a)

This is obviously linear, as it is the composition of operations each of which is
linear. We can show that lift+[f ](r) = r by using properties of (10). To complete
the proof that this is an algebra morphism, we must show that within the even
subalgebra it preserves multiplication. We will do this by induction, for which
we need Theorem 3�.

Theorem 3. To show a property P (x) for all elements of the even subalgebra
G+(V,Q), it suffices to show:

– That P (r) holds on all scalars r : R
– That P (x + y) holds on all elements x, y : G+(V,Q) if P (x) and P (y) hold
– That P (uvx) holds on all elements u, v : V and x : G+(V,Q) if P (x) holds

Proof. Follows by noting that G+(V,Q) is the vector space spanned by all prod-
ucts of even numbers of vectors in V , that such products can be decomposed
into pairs, and through an appropriate induction principle for spans of vectors.

We apply this principle with P (x) as ∀y, lift+[f ](xy) = lift+[f ](x) lift+[f ](y).
The first two conditions follow trivially by lift+[f ](r) = r and linearity. The
third condition can be shown as

lift+[f ](vwy) = a where (a, s′) = lift+aux[f ](vwy, (1, v �→ 0)) (28)

= f(v, w)a where (a, s′) = lift+aux[f ](y, (1, v �→ 0)) (29)

= f(v, w) lift+[f ](vwy) (30)

= lift+[f ](vw) lift+[f ](y) (31)

https://github.com/pygae/lean-ga/blob/5821f46cf154501c8b2420e13f2136963ae22328/src/geometric_algebra/from_mathlib/even_odd.lean#L97?decl=_private.S
https://github.com/leanprover-community/mathlib/blob/e1f01165ce7a8b650014e98bab47cdff5317e52e/src/linear_algebra/clifford_algebra/grading.lean#L184?decl=clifford_algebra.even_induction
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We now have lift+[f ] : G+(V,Q) → A, the forward direction of the uni-
versal property. Combined with our result in (14), all that remains is to show
that these two directions are inverses. Showing that this operation is a left-
inverse (lift+−1[lift+[f ]] = f) is straightforward. Showing that it is a right-
inverse requires the extensionality principle in Theorem 4, which we use in (33).

lift+[lift+−1[F ]](vw) = lift+−1[F ](v, w) = F (vw) (32)

=⇒ lift+[lift+−1[F ]] = F (33)

Theorem 4. To show that two algebra morphisms from the even subalgebra f, g :
G+(V,Q) → A are equal, it suffices to show they agree on the products of two
generators v, w : V .�

Proof. Rephrase as ∀x, f(x) = g(x), apply Theorem 3, and use the properties of
algebra homomorphisms.

3.4 The Isomorphism with the Even Subalgebra

Theorem 5. G(V,Q) is isomorphic as an R-algebra to G+(V ⊕ R,Q′), where
Q′((v, r)) = Q(v) − r2.�

Here V ⊕ R combines V (as elements of the form (v, 0)) with an extra basis
vector e = (0, 1) that squares to −1, and so we will write (v, r) as v + re. In
[6, Chapter 1, Theorem 3.7], this isomorphism is evaluated by choosing a basis
for V , and then copying coefficients by inspection: in the forward direction, each
basis vector ei is replaced with eei; and in the backwards direction5, where all
basis vectors appear in pairs, eiej is left alone and eie is mapped back to ei.
We will proceed without choosing a basis for V , and use our pair of universal
properties instead.

To construct the forward map, we can directly write down the coefficient
copying approach by applying Definition 1 with f = (v �→ ev), which sat-
isfies f(v)2 = (ev)(ev) = (−ve)(ev) = −v(−1)v = Q(v). This gives us
F : G(V,Q) → G+(V,Q′) = lift[f ], and is exactly the approach used in [6,
Chapter 1, Theorem 3.7]. This reference does not give an explicit construction
for the reverse mapping, noting that to verify one exists we must “check [F ] on
a linear basis”.

The reverse map f−1 needs to satisfy the pair of rules above:

f−1(0 + e, 0 + e) = −1 (as e2 = −1 in G+(V,Q′)) (34)

f−1(0 + e, v + 0e) = v (remove e from pairs of the form ev) (35)

f−1(u + 0e, 0 + e) = −u (rewrite ue = −eu and do the above) (36)

f−1(u + 0e, v + 0e) = uv (leave blades without e untouched) (37)

=⇒ f−1(u + re, v + se) = (u + r)(v − s) (38)
5 for which [6] proves only existence.

https://github.com/pygae/lean-ga/blob/5821f46cf154501c8b2420e13f2136963ae22328/src/geometric_algebra/from_mathlib/even_odd.lean#L77?decl=clifford_algebra.even.alg_hom_ext
https://github.com/pygae/lean-ga/blob/5821f46cf154501c8b2420e13f2136963ae22328/src/geometric_algebra/from_mathlib/even_odd_equiv.lean#L168?decl=clifford_algebra.equiv_even
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where (38) follows by linearity. (12) holds as f−1(v + se, v + se) = v2 − s2 =
Q′(v + se) and (13) follows similarly. We can thus apply Definition 2 with this
f to obtain F = lift+[f−1]; or in our functional notation:

F−1 : G+(V,Q′) → G(V,Q) (39)

F−1((u + re)(v + se)) := f−1(u + re, v + se) = (u + r)(v − s) (39a)

All that remains to conclude our construction of this isomorphism is to show
that these operations are inverses, that is for all x : G(V,Q) and x+ : G+(V,Q),

F−1(F (x)) = x, F (F−1(x+)) = x+. (40)

Rewriting (40) as equalities of functions gives

(x �→ F−1(F (x))) = (x �→ x), (x+ �→ F (F−1(x+)) = (x+ �→ x+), (41)

which allows us to apply Theorems 2 and 4 to solve these equations:

F−1(F (v))

= F−1(f(v))

= F−1(ev)

= f−1(e, v)
= (0 + 1)(v + 0)
= v

F (F−1((u + re)(v + se)))

= F (f−1(u + re, v + se))
= F ((u + r)(v − s))
= (f(u) + r)(f(v) − s)
= euev + rev − seu − rs

= uv + rev − seu + rse2

= (u + re)(v + se)

(42)

3.5 The Isomorphism to the Exterior Algebra

A key result in geometric algebra is that the Clifford algebra is isomorphic as
an R-module to the exterior algebra over the same vector space, as this provides
the non-metric wedge product. In [3, Theorem 34], this is shown by defining6

v�f and αf , characterized by [3, Theorems 6 and 21] as

v �f (u ⊗ U) = f(v, u)U − u ⊗ (v �f U), (43)

αf (u ⊗ U) = u ⊗ αf (U) − u�f (αf (U)). (44)

Here, f is a bilinear form associated with Q, that is f(x, y) = 1
2 (Q(x + y) −

Q(x) + Q(y)); thus imposing the restriction that the ring R is not of character-
istic 2. Note that these are defined on the tensor algebra; only later is it proved
that these mappings can be transferred to a Clifford algebra where the ⊗ is
simply multiplication7:

v �f (uU) = f(v, u)U − u(v �f U) (45)

αf (uU) = uαf (U) − u�f (αf (U)) (46)

6 Confusingly, [3] uses u�U as notation for u�U , with the symbol flipped.
7 (45) also appears as a special case of [4, (1.41a)] with r = 1.
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Without repeating the entire proof here, we will show how to define the v�f
operator satisfying (45) using the universal property, which we will write as
contract[v]. The construction of (46) is a simple application of (10)�, so we shall
omit it. Initially, it would seem that we cannot use the trick from “fold” in (10)
here, as we not only need the current vector “u” and the result so far “v �f U”,
but we also need the accumulation of the input so far, “U”. The solution is to
first apply the trick in (4), where we compute the value of U as we go along:

contractaux[v] : G(V,Q) → G(V,Q) ⊕ G(V,Q) → G(V,Q) ⊕ G(V,Q) (47)
contractaux[v](u : V ) := (U, x) �→ (uU, f(v, u)U − ux) (47a)

This is a fold over the pairs G(V,Q) ⊕ G(V,Q), with the first entry U holding
the input so far, and the second entry holding our result x. (47a) is obviously
linear, and we are obliged to show

contractaux[v](u)2 = (U, x) �→ (uuU, f(v, u)(uU) − u(f(v, u)U − ux)) (48)
= (U, x) �→ (Q(u)U, f(v, u)uU − f(v, u)uU + Q(u)x) (49)
= (U, x) �→ (Q(u)U,Q(u)x) (50)
= Q(u). (51)

All that remains is to initialize (U, x) = (1, 0) in contractaux, then discard x′

(which holds a copy of x anyway):�

contract[v] : G(V,Q)→ G(V,Q) (52)
contract[v] := x �→ c where (x′, c) = contractaux[v]((1, 0)) (52a)

With the aid of [3, Theorem 32] we can the show that α−f is a two-sided inverse
to αf�, recovering the promised isomorphism�.

4 Formalization

The approaches in this paper are particularly amenable to formalization, as
avoiding a basis allows them to hold in greater generality. Notably, avoiding a
basis ensures our constructions continue to be valid in cases where V is not a
free module, and does not have a basis at all. The results in Sects. 3.3 and 3.4
link via “�” to a formalization in the Lean proving language [8], building on top
of the work in [9], which can be found online at https://github.com/pygae/lean-
ga. An additional construction of the (known) isomorphism between G+(V,Q)
and G+(V,−Q) is included there�, for which there was no room to describe here.

5 Conclusions

Using the universal property for anything beyond trivial constructions like (6)
can appear anywhere between demanding and impossible. This paper demon-
strates some essential building blocks to bring more demanding constructions

https://github.com/pygae/lean-ga/blob/5821f46cf154501c8b2420e13f2136963ae22328/src/geometric_algebra/from_mathlib/contract.lean#L149?decl=clifford_algebra.alpha
https://github.com/pygae/lean-ga/blob/5821f46cf154501c8b2420e13f2136963ae22328/src/geometric_algebra/from_mathlib/contract.lean#L57?decl=clifford_algebra.apply_dual_left
https://github.com/pygae/lean-ga/blob/5821f46cf154501c8b2420e13f2136963ae22328/src/geometric_algebra/from_mathlib/contract.lean#L204?decl=clifford_algebra.alpha_alpha
https://github.com/pygae/lean-ga/blob/5821f46cf154501c8b2420e13f2136963ae22328/src/geometric_algebra/from_mathlib/contract.lean#L233?decl=clifford_algebra.equiv_exterior
https://github.com/pygae/lean-ga
https://github.com/pygae/lean-ga
https://github.com/pygae/lean-ga/blob/5821f46cf154501c8b2420e13f2136963ae22328/src/geometric_algebra/from_mathlib/even_odd_equiv.lean#L211?decl=clifford_algebra.even_equiv_even_neg
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within reach. While we only concerned ourselves with the universal properties
related to the Clifford algebra, the strategies used apply to many other algebraic
constructions with analogous properties.
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Abstract. Zeon algebras have proven to be useful for enumerating
structures in graphs, such as paths, trails, cycles, matchings, cliques,
and independent sets. Sym-Clifford algebras have been used to enumer-
ate walks on hypercubes without the need for adjacency matrices. In the
current work, zeon (“nil-Clifford”) and “sym-Clifford” methods are used
to reformulate essential concepts of binary linear coding theory. In par-
ticular, zeon and sym-Clifford methods are used to generate linear codes
and to illustrate Clifford-algebraic formulations of encoding, decoding
and error-correction.

Keywords: Binary codes · Clifford algebras · zeons

1 Introduction

Zeon algebras can be thought of as commutative analogues of fermion alge-
bras, which are isomorphic to Clifford algebras of appropriate signature. They
were first defined as subalgebras of Clifford algebras for counting self-avoiding
walks (paths, cycles, trails, & circuits) in finite graphs [10]. This idea has led to
numerous applications to graph problems, including routing problems in com-
munication networks [2,4].

The “sym-Clifford” algebra C�n
sym was first defined in [9] as a commutative

subalgebra of the Clifford algebra C�n,n, where it was used to model random
walks on hypercubes. The n-dimensional hypercube is a simple graph on 2n

vertices labeled by binary strings (i.e., “words”) of length n, in which pairs of
vertices are adjacent if and only if they differ in exactly one position. By asso-
ciating the words with basis blades of C�n

sym, combinatorial properties of the
geometric product can be used to represent random walks on hypercubes as
sequences within the algebra.

In the current work, zeon and sym-Clifford methods are applied to coding the-
ory. Here, we provide a formalism for generating, encoding, and decoding error-
correcting binary linear codes using basis blades of appropriately chosen Clif-
ford subalgebras. The symbolic approach presented here further demonstrates
the applicability of Clifford algebras and their generalizations as a “unifying
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language” not only for physics and engineering, but for problems in discrete
mathematics as well.

By reformulating binary linear codes in terms of zeon and sym-Clifford alge-
bras, additional tools can be brought to bear in establishing theoretical results
such as limit theorems and existence theorems.

1.1 Binary Linear Codes

The reader is directed to the books by Welsh [12] or Adams [1] for essential
background on coding theory beyond the scope of this paper. Here, we focus
only on binary linear codes.

Definition 1. A binary linear code C of length n is a set of binary n-tuples
such that the componentwise modulo 2 sum of any two codewords is contained
in C.

In this case, we say that the code’s alphabet is the set {0,1}, with all arithmetic
done modulo 2; i.e., the code’s alphabet is the finite field with two elements,
GF (2). Since a binary linear code must contain the sum of each of its codewords,
and this corresponds to what is needed to form a subspace, each binary linear
code over GF (2) is a subspace of the vector space GF (2)n, where n is the length
of each codeword.

In an [n, k] linear code, messages m ∈ GF (2)k of length k are encoded as
codewords c ∈ GF (2)n of length n using a generator matrix G. Encoding is done
by computing c = mG. The rows of G form a basis for the linear code, so they
are required to be linearly independent.

By generating all 2k codewords, a codeword c can be decoded back to its
original message using a lookup table, assuming c was received without errors
in transmission. However, since errors may occur during transmission, it is vital
to be able to verify that a codeword is valid. This is typically accomplished by
using a parity check matrix.

Definition 2. Given an [n, k] linear code C, a parity check matrix for C is an
(n − k) × n matrix H such that c ∈ C if and only if cHᵀ = 0.

For the sake of brevity, details of computing the parity check matrix are
omitted, but the following example illustrates the idea.

Example 1. Consider the 3 × 5 matrix G seen in (1).

G =

⎛
⎝

1 0 0 0 1
0 1 0 1 1
0 0 1 1 1

⎞
⎠ H =

(
0 1 1 1 1
1 1 1 0 1

)
. (1)

By taking all products mG, where m runs through all eight binary 3-tuples,
the following code is generated:

C = {00000, 10001, 01011, 00111, 01010, 01100, 11010, 11100}. (2)



214 M. M. Price and G. S. Staples

The parity check matrix for G is the matrix H. Suppose r1 = 01111 is received.
Then r1Hᵀ �= 0, which verifies that r1 is not a valid codeword. Now suppose r2 =
01010 is received. Computing r1Hᵀ = 0 verifies that r2 is indeed a codeword,
which can then be decoded to the original message 110.

Error Correction. The following questions are crucial in coding:

1. If a received codeword contains errors, can those errors be detected?
2. If errors are detected, is it possible to correct them?

In order to discuss these questions, first note that the (Hamming) weight of
a codeword is the number of nonzero components in the codeword. For conve-
nience, we define the following notation for the n-set: [n] = {1, . . . , n}. Cardi-
nality of a finite set X = {x1, . . . , xk} is denoted by |X| = k = �{x1, . . . , xk}.

Definition 3 (Hamming weight). Let b = (b1b2 · · · bn) ∈ GF (2)n. The
(Hamming) weight of b is defined by

w(b) = �{i ∈ [n] : bi �= 0}. (3)

Now if a codeword c = (c1 . . . cn) is sent through a “noisy” channel and
the vector is r = (r1 . . . rn) is received, then the error vector is defined as
e = r − c = (e1 . . . en). The decoder must decide which codeword was most likely
transmitted–equivalent to determining which error vector most likely occurred.
Error vectors of lower weight are assumed to occur with higher probability than
error vectors of higher weight, so we may use a nearest neighbor decoding scheme,
which chooses the codeword that minimizes the distance between the received
vector and possible transmitted vectors.

Definition 4. The Hamming distance on GF (2)n is a mapping d : GF (2)n ×
GF (2)n → N0 defined1 as follows: given x,y ∈ GF (2)n and writing x =
(x1x2 · · · xn) and y = (y1y2 · · · yn), we define

d(x,y) = �{i ∈ [n] : xi �= yi}. (4)

Equivalently, d(x,y) = w(x + y).

It is not difficult to verify that Hamming distance establishes a well-defined
metric on GF (2)n. In other words, d(x,y) satisfies the following properties:

1. d(x,y) = 0 if and only if x = y;
2. d(x,y) = d(y,x) for all x,y ∈ GF (2)n;
3. d(x, z) ≤ d(x,y) + d(y, z) for all x,y, z ∈ GF (2)n.

Given a binary linear code C, the minimum distance of C is the minimum
distance among distinct pairs of codewords in C. Equivalently, since the distance
between codewords c1 and c2 is the weight of their binary sum, w(c1 + c2), the
1 The notation N0 denotes the nonnegative integers {0, 1, 2, . . .}.
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minimum distance d(C) of a binary linear code C is equal to the weight of the
lowest-weight nonzero codeword in C.

The minimum distance of a code is essential for determining the error-
correcting capabilities of the code, providing methods for determining both the
number of errors that can be detected and the number of errors that can be
corrected.

Theorem 1. Let C be a binary linear code having minimum distance μ = d(C).
Utilizing the code C, it is possible to

1. detect up to s errors in any received codeword if μ ≥ s + 1, and
2. correct up to t errors in any received codeword if μ ≥ 2t + 1.

Proof. 1. Suppose that a codeword c is transmitted such that s or fewer errors
occur during transmission. If d(C) ≥ s + 1, the received word cannot be an
element of C, since all codewords differ from c in at least s+1 places. Hence,
the errors are detected.

2. Suppose d(C) ≥ 2t + 1. Suppose a codeword x is transmitted and that the
received word, r, contains t or fewer errors. Then d(x, r) ≤ t. Let x′ be any
codeword other than x. Then d(x′, r) ≥ t + 1, since otherwise d(x′, r) ≤ t
which implies that d(x,x′) ≤ d(x, r) + d(x′, r) ≤ 2t (by the triangle inequal-
ity), which is impossible since d(C) ≥ 2t + 1. So x is the nearest codeword to
r, and r is decoded correctly.

1.2 Zeon and “sym-Clifford” Algebras

We begin with the essential definitions and terminology of Clifford algebras and
then construct the zeon and sym-Clifford algebras as subalgebras of Clifford
algebras of appropriate signature.

Definition 5. For fixed n ≥ 0, let V be an n-dimensional vector space having
orthonormal basis {e{1}, . . . , e{n}}. The 2n-dimensional Clifford algebra of sig-
nature (p, q), where p + q = n, is defined as the associative algebra generated by
the collection {e{i}} along with the scalar e∅ = 1 ∈ R, subject to the following
multiplication rules:

e{i} e{j} + e{j} e{i} = 0 for i �= j, and (5)

e{i}2 =

{
1, if 1 ≤ i ≤ p

−1, if p + 1 ≤ i ≤ p + q = n.
(6)

We denote the Clifford algebra of signature (p, q) by C�p,q.

Let [n] = {1, 2, . . . , n} and denote arbitrary, canonically ordered subsets of
[n] by capital Roman characters. The basis elements of C�p,q can then be indexed
by these finite subsets if we write

eI =
∏
j∈I

e{j}. (7)
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Arbitrary elements of C�p,q then have canonical expansions of the form

u =
∑

I∈2[n]

uI eI , (8)

where uI ∈ R for each I ∈ 2[n].

Definition 6. By the grade of a basis blade in C�p,q we shall mean the cardi-
nality of its multi index. That is, gr(eI) = |I|. For 0 ≤ k ≤ n, we define the
k-grade part of u ∈ C�p,q as the sum of k-grade monomials in the expansion of
u. In other words,

〈u〉k =
∑

I∈2[n]
|I|=k

uI eI . (9)

Introduction to the “Sym-Clifford” Algebra Sn . The sym-Clifford algebra
first appeared in [9], where it was used to enumerate walks on hypercubes.

Definition 7. For fixed n > 0, the sym-Clifford algebra2 Sn is defined as the
2n-dimensional associative algebra generated by the elements ς{i} = e{i} e{n+i} ∈
C�n,n for 1 ≤ i ≤ n along with the scalar ς∅ = 1 ∈ R.

It is easy to see that Sn is a commutative graded algebra whose generators
satisfy ς{i}2 = 1 for 1 ≤ i ≤ n; i.e., the generators are unipotent.

Basis elements of Sn can again be indexed by canonically-ordered subsets of
[n] so that arbitrary elements have the form

u =
∑

I∈2[n]

uI ςI . (10)

By the properties of Clifford multiplication, we see that for arbitrary I, J ∈ 2[n]

we have
ςI ςJ = ςI�J , (11)

where I � J = (I ∪ J) \ (I ∩ J) denotes the set-symmetric difference of I and J .

Remark 1. The generators ςI of Sn (disjoint bivectors in C�n,n) generate an
Abelian multiplicative group Σn which is isomorphic to the group generated by
reflections across orthogonal hyperplanes in the real vector space R

n, for these
also satisfy Ri Rj = Rj Ri and Ri

2 = I. It is equally evident that Σn
∼= (2[n],�),

the group consisting of the power set of [n] = {1, 2, . . . , n} with the set symmetric
difference operator. These groups are also isomorphic to the additive abelian
group Z2 ⊕ · · · ⊕ Z2︸ ︷︷ ︸

n-times

. Finally, it is evident that the Cayley graph of Σn is the

n-dimensional hypercube, a structure commonly seen in connection with coding
theory.
2 The 2n-dimensional sym-Clifford algebra has been denoted by C�n

sym in other works,
but that notation is cumbersome for this paper.
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Zeon (“nil-Clifford”) Algebra. For n ∈ N, let Zn denote the real abelian
algebra generated by the collection {ζ{i} : 1 ≤ i ≤ n} along with the scalar
1 = ζ∅ subject to the following multiplication rules:

ζ{i} ζ{j} = ζ{i,j} = ζ{j} ζ{i} for i �= j, and (12)

ζ{i}
2 = 0 for 1 ≤ i ≤ n. (13)

It is evident that a general element u ∈ Zn can be expanded as u =
∑

I∈2[n]

uI ζI ,

or more simply as
∑

I uIζI , where I ∈ 2[n] is a subset of the n-set,
[n] := {1, 2, . . . , n}, used as a multi-index, uI ∈ R, and ζI =

∏
ι∈I

ζι. The algebra

Zn is called the (n-particle) zeon algebra3.
As a vector space, this 2n-dimensional algebra has a canonical basis of basis

blades of the form {ζI : I ⊆ [n]}. The null-square property of the generators
{ζ{i} : 1 ≤ i ≤ n} guarantees that the product of two basis blades satisfies the
following:

ζIζJ =

{
ζI∪J I ∩ J = ∅,

0 otherwise.
(14)

It should be clear that Zn is graded. For non-negative integer k, the k-grade part
of element u =

∑
I uIζI is defined as

〈u〉k =
∑

{I:|I|=k}
uIζI . (15)

It is often convenient to separate the scalar (0-grade) part of a zeon from the
rest of it. To this end, for z ∈ Zn we write �z = 〈z〉0, the real part of z, and
Dz = z − �z, the dual part of z (these are referred to as the body and soul of z
in Neto’s works [5–7]).

Remark 2. Like Sn, the algebra Zn can be constructed within a Clifford alge-
bra of appropriate signature. For example, Zn is isomorphic to a subalgebra of
C�2n,2n. To see this, begin by letting {ei : 1 ≤ i ≤ 4n} be orthonormal genera-
tors of C�2n,2n. For each j = 1, . . . , 2n, let fj = (ej − en+j) to obtain a collection
of orthogonal, pairwise-anticommuting, null-square elements {fj : 1 ≤ j ≤ 2n}.
Finally, define ζ{�} = f{2�−1,2�} for � = 1, . . . , n. The resulting collection of null-
square bivectors {f{1,2}, f{3,4}, . . . , f{2n−1,2n}} is then pairwise commutative and
generates the algebra Zn.

Multiplicative Properties of Zeons

Since Zn is an algebra, its elements form a multiplicative semigroup. It is not
difficult to establish convenient formulas for expanding products of zeons. As
shown in [3], u ∈ Zn is invertible if and only if �u �= 0.
3 The n-particle zeon algebra is often denoted by C�n

nil in other works, but that
notation is cumbersome for this paper.
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More important for matters at hand, the null square property of zeon gener-
ators make zeons useful for performing computations on partitions of sets.

Lemma 1 (Powers of nilpotent zeons). Let u = ζI1 + ζI2 + · · · + ζIm
∈ Zn,

and let k be a positive integer. Then,

uk = k!
∑

J

ζJ , (16)

where the sum is over multi indices J obtained from disjoint unions of k of the
multi indices I1, . . . , Im.

Proof. Proof follows from a simple application of the multinomial theorem:

uk = (ζI1 + ζI2 + · · · + ζIm
)k

=
∑

�1,...,�m≥0
�1+···+�m=k

(
k

�1, . . . , �m

)
ζI1

�1ζI2
�2 · · · ζIm

�m

=
∑

�1,...,�m∈{0,1}
�1+···+�m=k

(
k

�1, . . . , �m

)
ζI1

�1ζI2
�2 · · · ζIm

�m . (17)

Note that the only nonzero terms of the sum correspond to pairwise-disjoint
unions of k subsets.

In the next section, the exponential function will be used to generate a binary
linear code. The exponential function exp : Zn → Zn is defined on zeon algebras
in the standard way. However, the null-square properties of zeon generators
reduce the infinite power series to a finite sum, as developed in [11]:

exp(u) = exp(Ru + Du)

= eRu
n∑

k=0

1
k!

(Du)k. (18)

2 Binary [n, k] Codes in Zk ⊗ Sn

Any codeword, consisting of a binary n-tuple, can be instead represented as a
blade from Sn via a mapping that takes binary strings of length n to elements
of the power set 2[n]. In particular, letting b = (b1b2 . . . bn) ∈ {0, 1}n, the subset
representation of b is given by

b �→ B = {j : bj = 1} ⊆ [n]. (19)

One can then represent b within Sn by

(b1b2 · · · bn) �→
n∏

j=1

ς{j}bj

= ς{j:bj=1} = ςB. (20)
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Example 2. The binary string b = 100110 ∈ GF (2)6 has subset representation
B = {1, 4, 5} and sym-Clifford representation ς{1,4,5}.

Linear independence of code generators in generator matrices is replaced by
“multiplicative independence” in Sn.

Definition 8. Let B = {ςI : I ∈ 2[n]} be the canonical basis for Sn. A collection
X ⊂ B is said to be multiplicatively independent if no element of X can be
written as a product of other elements of X. If an element of X can be expressed
as a product of other elements, then X is multiplicatively dependent.

It is evident from the definition that no multiplicatively independent collec-
tion can contain the scalar unit, ς∅ = 1.

Example 3. In S4, the collection {ς{1}, ς{1,4}, ς{2,4}, ς{3,4}} is multiplicatively
independent, whereas the collection {ς{1,3}, ς{2,3}, ς{1,2}} is multiplicatively
dependent.

Using this notation, a binary code can be generated using an expression from
Sn that represents the same information contained in a code’s generator matrix
but in a more succinct format.

Given a multiplicatively independent collection G = {ςI�
: 1 ≤ � ≤ k}, an

encoding map ϕ : 2[k] → 2[n] is defined implicitly by

ςϕ(M) =
∏
�∈M

ςI�
. (21)

The collection C = {ςϕ(M) : M ∈ 2[k]} is referred to as the [n, k] sym-Clifford
code generated by the collection G = {ςI�

: 1 ≤ � ≤ k}.
By combining properties of zeons and sym-Clifford algebras, the code can be

generated by the exponential of a generator g in the tensor algebra Zk ⊗ Sn.
The algebra Zk ⊗ Sn is the 2k+n-dimensional commutative algebra spanned by
canonical basis elements {ζI ⊗ ςJ : I ∈ 2[k], J ∈ 2[n]}. For ease of notation, a
typical element u ∈ Zk ⊗ Sn will be expanded in the form

u =
∑

I∈2[k],J∈2[n]

uIJζIςJ , (22)

where uIJ ∈ R for all I, J .

Lemma 2 (Generating A Code). Given g =
k∑

�=1

ζ{�}ςI�
∈ Zk ⊗ Sn, where

{ςI�
: 1 ≤ � ≤ k} is a multiplicatively independent collection, the exponential

exp(g) =
∑

M∈2[k] ζM ςϕ(M) reveals the [n, k] sym-Clifford code C generated by
g. In particular, exp(g) is a sum over messages M , such that each summand
represents a message/codeword pair.
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Proof. By nilpotent properties of zeons, the exponential of g is a finite sum

representing the code C. Writing g =
k∑

�=1

ζ{�}ςI�
, one sees that

exp(g) =
k∑

�=0

g�

�!

= 1 +
∑

M∈2k

M �=∅

ζM

∏
�∈M

ςI�

= 1 +
∑

M∈2k

M �=∅

ζM ςϕ(M). (23)

The canonical basis for the smallest subspace of Zk ⊗ Sn containing exp(g)
is

B = {ζIςϕ(I) : I ∈ 2[k]}. (24)
This basis provides all information necessary for encoding and decoding mes-
sages.

Definition 9. An element g =
k∑

�=1

ζ{�}ςI�
∈ Zk ⊗ Sn is an [n, k] sym-Clifford

code generator when the collection G = {ςI�
: � = 1, . . . , k} is multiplicatively

independent.

Inner Products. The algebra Zk ⊗ Sn admits two particularly useful inner
products.

Definition 10. Define the zeon inner product 〈·, ·〉Z : Zk ⊗Sn ×Zk ⊗Sn → Sn

by bilinear extension of

〈ζIςJ , ζLςK〉Z =

{
ςJ�K if I = L

0 otherwise.
(25)

The sym-Clifford inner product 〈·, ·〉s : Zk ⊗ Sn × Zk ⊗ Sn → Zk is defined by
bilinear extension of

〈ζIςJ , ζLςK〉s =

{
ζI∪L if J = K and I ∩ L = ∅

0 otherwise.
(26)

It is not difficult to see that the zeon and sym-Clifford inner products define
canonical orthogonal projections πZ onto Zk and πs onto Sn, respectively. More
specifically, for u ∈ Zk ⊗ Sn, these projections satisfy

πZ(u) =
∑

I∈2[k]

〈u, ζI〉Z ζI , and (27)

πs(u) =
∑

I∈2[n]

〈u, ςI〉s ςI . (28)
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Lemma 3 (Encoding). Let g ∈ Zk ⊗Sn be the generator of an [n, k] code. For
message M ∈ 2[k], the corresponding codeword is given by

ςϕ(M) = 〈exp(g), ζM 〉Z. (29)

Definition 11. For a sym-Clifford element u =
∑

I∈2[n] uIςI , it is useful to
define the minimal grade of u by

�u =

{
min {|I| : I �= ∅, uI �= 0} if u /∈ R

0 u = u∅ ∈ R.
(30)

Note that �u = 0 if and only if u is a scalar. The minimal grade part of u is
defined by

〈u〉� =
∑

{I:|I|=�u}
uIςI . (31)

Proposition 1. Let g be the generator of an [n, k] sym-Clifford code. Utilizing
the code generated by g, it is possible to

1. detect up to �(πs(exp(g))) − 1 errors and
2. correct up to (�(πs(exp(g))) − 1)/2 errors in any received codeword.

Proof. Note that letting μ = �(πs(exp(g))), which is the smallest nonzero grade
among codewords generated by g, this proposition is equivalent to Theorem 1.

Lemma 4 (Verification). Let g ∈ Zk ⊗Sn be the generator of an [n, k] code,
and let ςI ∈ Sn. Then,

〈exp(g), ςI〉s =

{
ζϕ−1(I) if I ∈ C,

0 otherwise.
(32)

Here M = ϕ−1(I) is the decoded message.

Proof. Let g be the generator of an [n, k] code G, and suppose ςL is a basis blade
of Sn. Expanding the exponential of g,

exp(g) =
∑
I∈G

ζϕ−1(I)ςI . (33)

If ςL is a codeword in G, it follows that

〈exp(g), ςL〉s =

〈∑
I∈G

ζϕ−1(I)ςI , ςL

〉

s

=
∑
I∈G

ζϕ−1(I) 〈ςI , ςL〉s

= ζϕ−1(L) = ζM , (34)

where ζM is the message corresponding to codeword ςL.
On the other hand, if ςL is not among the codewords of G, then all inner

products appearing in the sum are zero.
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Lemma 4 provides a method for decoding any valid received codeword. Error
correction is possible when a unique nearest-neighbor to a received codeword
exists.

Proposition 2 (Decoding). Let g ∈ Zk⊗Sn be the generator of an [n, k] code,
and let ςI ∈ Sn. If 〈exp(g), ςI〉s = 0 and if �(ςIπs(exp(g))) ≤ (�(πs(exp(g))) −
1)/2, then the message M is recovered from

ζM = 〈exp(g), ςJ 〉s, (35)

where
ςJ = ςI〈ςIπs(exp(g))〉�. (36)

Proof. Note that if 〈exp(g), ςI〉s = 0, then ςI is not an element of the code G
generated by g. However, if �(ςIπs(exp(g))) ≤ (�(πs(exp(g)))−1)/2, the minimal
grade part of ςIπs(exp(g))) is a unique nonzero term. In fact, this term is ςI�J ,
where ςJ ∈ G and

ςJ = ςI 〈ςIπs(exp(g)))〉�

= ϕ(ζM ). (37)

3 Example: A [7, 4]-sym-Clifford Code

In Z4 ⊗ S7, let g = ζ{1}ς{1,2,3} + ζ{2}ς{1,4,5} + ζ{3}ς{1,6,7} + ζ{4}ς{2,4,6}. The
exponential of g is then given by

exp(g) = 1 + ζ{1}ς{1,2,3} + ζ{2}ς{1,4,5} + ζ{3}ς{1,6,7} + ζ{4}ς{2,4,6} + ζ{2,3,4}ς{2,5,7}
+ ζ{1,3,4}ς{3,4,7} + ζ{1,2,4}ς{3,5,6} + ζ{3,4}ς{1,2,4,7} + ζ{2,4}ς{1,2,5,6}
+ ζ{1,4}ς{1,3,4,6} + ζ{1,2,3,4}ς{1,3,5,7} + ζ{1,2}ς{2,3,4,5} + ζ{1,3}ς{2,3,6,7}
+ ζ{2,3}ς{4,5,6,7} + ζ{1,2,3}ς{1,2,3,4,5,6,7}. (38)

The terms of the exponential reveal messages and their corresponding code-
words, as illustrated in Table 1. Note that the minimum weight of the code is 3.
Using this code, two errors may be detected and one error may be corrected in
any received codeword.

4 Conclusion

We have formalized error-correcting binary linear codes using zeon and sym-
Clifford algebraic methods. With this foundation established, generalizations
(ternary codes, Reed-Solomon Codes, etc.) and extensions (cryptography) can
be treated within a straightforward unified algebraic framework. Recent devel-
opments in encryption schemes using geometric algebra make these techniques
look promising for future work [8].

By reformulating binary linear codes in terms of zeon and sym-Clifford alge-
bras, previously overlooked algebraic methods can be applied to establishing
theoretical results such as limit theorems and existence theorems. Moreover,
these algebraic methods may provide new insight on other problems.
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Table 1. A [7, 4]-sym-Clifford Code

Message m c Codeword Message m c Codeword

1 0000 0000000 1 ζ{1} 1000 1110000 ς{1,2,3}
ζ{1,2} 1100 0111100 ς{2,3,4,5} ζ{2} 0100 1001100 ς{1,4,5}
ζ{1,3} 1010 0110011 ς{2,3,6,7} ζ{3} 0010 1000011 ς{1,6,7}
ζ{1,4} 1001 1011010 ς{1,3,4,6} ζ{4} 0001 0101010 ς{2,4,6}
ζ{2,3} 0110 0001111 ς{4,5,6,7} ζ{1,2,3} 1110 1111111 ς{1,2,3,4,5,6,7}
ζ{2,4} 0101 1100110 ς{1,2,5,6} ζ{1,2,4} 1101 0010110 ς{3,5,6}
ζ{3,4} 0011 1101001 ς{1,2,4,7} ζ{1,3,4} 1011 0011001 ς{3,4,7}
ζ{1,2,3,4} 1111 1010101 ς{1,3,5,7} ζ{2,3,4} 0111 0100101 ς{2,5,7}
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A Generalized Metric for Hypothesis Testing:
A Geometric Algebra Point of View

Matthew Anderson

Data and their collection methods are changing in characteristic and dimension. Using
Clifford algebras, we present a hypothesis testing framework for multidimensional
vectors sampled from distributions in the real or complex field. Our procedure aims to
obtain non-commutative information through the incorporation of the geometric outer
product not found in traditional i.i.d estimation methods. We construct a metric that
measures deviations in the geometry of the parallelepiped spanned from sampled data
represented as multivectors in G(n). The outer product provides additional geometric
structure of the data not captured solely by the inner product. Quadratic forms of
covariance matrices and trace operators are represented using geometric algebras. Null
and alternative hypothesis are formed from partitions of the geometric space generated
under G(n) as well as the direction of the multivectors sampled. A test statistic is
constructed to measure deviations in the geometry of the data from a model, and a
decision rule is applied to outcomes of the data fit to a loss function. Our method is
applied to discriminate between states of quantum information systems in the binary
and multiparameter setting. Representing data collected from the quantum system as a
set of multivectors with a geometric algebra, our method allows for the detection of
geometric deviations from the system when compared to a hypothesized null geometry
space.
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Quantum Space Structure by Geometric
Algebra Including the Hurwitz Unit

Quaternion Group

Jens Erfurt Andresen

The analysis aims to find a model for the internal structure of one local indivisible spin-
half fermions known from the Standard Model. The single universe idea dictates the
local space structure being scale invariant in physics. The quantum approach of steady
state Angular Momentum (AM) hides the chronometric development of internal
oscillations, in which case the three-dimensional founded Geometric Algebra G3(R) is
suitable. Each component quantity of AM is associated with the concept of constant
bivectors, representing preserved plane areas denoted by Kepler’s 2nd Law. The local
perpendicular plane unit bivector directions make the quaternion basis of G3

+(R).
Traditional Quantum Mechanics use the orthogonal interconnectivity structure of AM
commutators resulting in a spin-half projection in one direction. As a supplement, we
are using Adolf Hurwitz’s (1859–1919) Number Theory of Quaternions [A. Hurwitz,
Vorlesungen Über die Zahlentheorie der Quaternionen, Berlin: Verlag von Julius
Springer, 1919. A. Hurwitz, “Uber die Zahlentheorie der Quaternionen,” Nachrichten
von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische
Klasse, 1896, pp. 313–340.] to find a normal invariant subgroup of sixteen unit-½-
quaternions by superposition of the orthonormal bivector basis. This performs a regular
tetrahedron space structure of four interconnected non-orthogonal AM bivector di-
rections in physical space. Combining these as projections in one direction make
sixteen possibilities of one local contributing quantity charge for the spin-half fermions,
the values are − 1, − 2/3, − 1/3, − 0, + 0, + 1/3, + 2/3, + 1. Further superposition of
excitation of this tetrahedron bivector AM structure of unit-½-quaternions may con-
struct leptons, baryons, and mesons, in just one locality. Besides the internal spin-half
AM qualities, their composition also opens a port in one direction for integer spin-
boson AM interaction with the external of each fermion locality. –This investigation
shows, there is knowledge to get from using the quaternions and their bivector di-
rections of G3

+(R) together with the full G3(R) Geometric Algebra when studying the
particle structure of physics known from the Standard Model.
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A New Home for Bivectors

Norm Cimon

The impetus for the work (and the poster) is this quote: “…as shown by Gel’fand’s
approach, we can only abstract a unique manifold if our algebra is commutative.”
[Hiley, B. J. and Callaghan, R. E. (2010) ‘The Clifford Algebra approach to Quantum
Mechanics A: The Schroedinger and Pauli Particles’, arXiv:1011.4031 [math-ph,
physics:quant-ph] [Preprint]. Available at: http://arxiv.org/abs/1011.4031 (Accessed:
18 October 2020).] Geometric algebra is non-commutative. Components of different
grades can be staged on different manifolds. As operations on those elements proceed,
they will effect the promotion and/or demotion of components to higher and/or lower
grades, and thus to different manifolds. I’ve written a paper with imagery that visually
displays bivector addition and rotation on a sphere. Those images were then transferred
to a poster I’ve developed along with explanatory text. David Hestenes interpreted the
vector product or rotor in two-dimensions: “as a directed arc of fixed length that can be
rotated at will on the unit circle, just as we interpret a vectora as a directed line segment
that can be translated at will without changing its length or direction…” [Hestenes, D.
(2003) ‘Oersted Medal Lecture 2002: Reforming the mathematical language of phy-
sics’, American Journal of Physics, 71(2), pp. 104–121. Available at: https://doi.org/
10.1119/1.1522700]. Rotors, it turns out, can be used to develop addition and multi-
plication of bivectors on a sphere. For those rotational dynamics, rotors of length p⁄2
are the basis elements. The geometric algebra of bivectors – Hamilton’s “pure
quaternions” – is shown to transparently reside on a spherical manifold.
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Typing Gesture for One-Time Authentication
Using Smart Wearable

Kristina Mullen, Avishek Mukherjee, and Khandaker Rahman

A method for enhanced user authentication that relies on sensory data taken from a
smartwatch while the user types the username and password has been explored.
Eventually, these inherent gestures would work as an added layer of security to the
current password-based authentication scheme in a hostile scenario assuming the
username-password has been compromised. In our experiments, we recorded the 3D
coordinate values given off by the accelerometer and gyroscope over a set of username-
password typing combinations. For the sensor data collection, we developed an
Android Wear OS smartwatch application, then proceeded to implement our method of
sensor data processing and performed experiments to demonstrate the potential of this
method. We experimented with 50 samples taken from five users, performed 1,800
genuine and impostor authentication attempts, and achieved an equal error rate
(EER) as low as 0.07. With such low EER, the proposed method can be an effective
solution to username-password breaches.
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Computation of Multivector Inverses in
Non-degenerated Clifford Algebras

Dimiter Prodanov

The development of Clifford algebras is based on the insights of Hamilton, Grasss-
mann, and Clifford from the 19th century. After a hiatus lasting many decades, the
Clifford geometric algebra experienced a renaissance with the advent of contemporary
Computer Algebra Systems (CAS). The poster demonstrates an algorithm for the
computation of an arbitrary multivector inverse in a non-degenerate Clifford algebra of
arbitrary dimension, which is in fact a proof certificate for the existence of an inverse.
The algorithm is proven using an algorithmic, constructive representation of a Clifford
number in the matrix algebra over the reals, but it by no means depends on such a
representation. As a side product, the algorithm can compute the characteristic poly-
nomial of the Clifford number and its determinant also without any resort to a matrix
representation. The presented algorithm is based on the Faddeev–LeVerrier–Souriau
algorithm for matrix inverse computation [1. Faddeev, D. K., Sominskij, I. S.: Sbornik
Zadatch po Vyshej Algebre. Nauka, Moscow–Leningrad (1949), 4. Souriau, J.: Une
methode pour la decomposition spectrale et l’inversion des matrices. Comptes Rend.
227, 1010–1011 (1948)]. The algorithm is implemented in the open-source CAS
Maxima using the Clifford package [Prodanov, D., Toth, V. T.: Sparse representations
of Clifford and tensor algebras in Maxima. Advances in Applied Clifford Algebras
pp. 1–23 (2016). http://dx.doi.org/10.1007/s00006-016-0682-x]. The package can be
downloaded from the Zenodo repository [Prodanov D. Clifford: v2.5.1 (2021). Zenodo.
https://doi.org/10.5281/zenodo.5628359].
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Quaternions Associated to Curves
and Surfaces

Haohao Wang and J. William Hoffman

This paper investigates the use of quaternions in studying space curves and surfaces in
affine 3-space. First, we generate a large variety of rational space curves and rational
surfaces via quaternion multiplication by taking advantage of the fact that quaternions
represent space rotations. Then, we prove that the curvature and the torsion of a space
curve can be computed by a quaternion function that is associated to this space curve.
Finally, we show that the Gaussian and the mean curvature of a surface can also be
computed by a quaternion function that is associated to this surface.
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A Geometric Algebra Framework for Event
Driven Network Data Model: Taking

Emergency Evacuation Under Gas Diffusion
as an Example

Yuhao Teng and Zhao Yuan Yu

With the development of urbanization, there are numerous security problems that come
along with it, exposing many problems in emergency management. The evacuation of
the affected people, the rapid acquisition of the disaster situation and the real-time
quickly dispatch of relief resources still face great challenges. Based on these, this
study uses the mathematical structure of geometric algebra and computational operators
to construct and express the road network in emergency evacuation, designs a network
analysis model based on geometric algebra with multiple constraints, and constructs an
event-driven data model to realize emergency evacuation under the scenario of haz-
ardous gas diffusion.

In this paper, the characteristics and types of objects and events in emergency
evacuation under the diffusion of harmful gases are studied, and the elements are
abstracted and summarized. Then we study the characteristics and temporal-spatial
relationship of each element, and constructed three mathematical models for destination
selection, rescue material dispatch and affected people evacuation. Secondly, we study
the extension method of path in the network based on the geometry algebra, including
the extension rules between nodes, nodes and edges, edges and edges, and routes.
Thirdly, we study the route generation and filtering method. In the route filtering, we
learned four types of route filtering methods, including weight filtering, k-order fil-
tering, node filtering and topology filtering. Finally, an event-driven data model is
constructed. The dynamic update of the data is implemented during the network
analysis and its new drivers and constraints are used to optimize and solve the model.
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