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Abstract Shear strengthening is a complex phenomenon that garnered significant 
attention in the structural engineering community. Due to the catastrophic nature of 
shear failures, several attempts have been made in retrofitting reinforced concrete 
(RC) beams out of which the incorporation of externally bonded fiber reinforced 
polymer (FRP) layers offer a remarkably fast, economical, and reliable solution. This 
paper presents an approach to predict the shear capacity of FRP strengthened RC 
T-beams using interpretable ensemble machine learning models. The study covers a 
comprehensive databank comprising a wide array of parameters including concrete 
design, FRP composition as well as beam cross sections. The efficiency of the devel-
oped models in predicting the shear capacity of FRP retrofitted RC T-beams is eval-
uated by comparing the results with several design guidelines. It is observed that the 
random forest and CatBoost models provide the most precise shear capacity estima-
tions of the FRP retrofitted RC T-beams. The R2 and MAE values obtained from the 
random forest model were 0.897 and 0.128 kN, respectively, whereas those by the 
CatBoost model were 0.899 and 0.127 kN, respectively. The best performing model 
CatBoost is made interpretable using the Shapley Additive exPlanations which reveal 
that the most important input parameter contributing to shear capacity of the FRP 
strengthened RC T-beams is the height of the FRP layers used in the retrofit process. 
The proposed ensemble models presented in this paper are proved to be superior to 
the existing mechanics-driven models currently being used for design practices. 
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1 Introduction 

Existing reinforced concrete (RC) structures are constructed following the old design 
guidelines where the design demand on the structure was evaluated based on mostly 
gravity loads. Such structures are highly vulnerable to deterioration due to acci-
dental damage, earthquakes, poor maintenance, and corrosion. It is essential to 
adopt a retrofitting technique to avoid demolition and disruption to typical daily 
services. About 28% of the local road bridges and 25% of rural highway bridges in 
Canada were built more than 50 years ago, and approximately 15% of these bridges 
were found to be in the worst condition [19]. The fiber reinforced polymer (FRP) 
has gained popularity due to its favorable properties: lightweight, high strength, 
durable, non-corrosive, and easier installation [10]. FRP has made its way into the 
shear strengthening of structures and is being studied for further improvements in its 
serviceability. 

Compared to rectangular beams, T-beams have higher resistance to shear cracks 
[16]. As the main objective of beam shear strengthening is to bridge the cracks, FRPs 
are one of the most effective strengthening solutions. The typical wrapping schemes 
observed in externally bonded FRP retrofitted beams are u-wrap, closed wrap, and 
side bonded wrap. Although termed as the best option, the closed wrap is mostly 
avoided as it is difficult to wire the FRP laminates up to the flange in T-beams. A 
reliable design method is necessary to increase the longevity of the retrofitted beams 
and utilize most of the properties of FRP laminates. Several experimental studies are 
available in the literature focusing on the shear strengthening of RC beams using 
externally bonded FRP layers [7, 8, 11]. Design codes and guidelines, namely ACI 
440.2R-17 [1], CSA S6:19 [2] and CSA S806 [3], are widely followed in designing 
such retrofitting systems. However, the precision obtained from the design guidelines 
is inadequate and the design equations rely heavily on several parameters calculation 
of which is often tedious. Furthermore, a number of studies developed semi-empirical 
equations for the shear strength determination of externally bonded FRP retrofitted 
beams [2, 6, 15]. Various prediction models have also been developed in the past by 
researchers to identify the shear capacity of the beams [14, 20, 21]. The prediction 
models, however, lack accuracy when applied to factors outside the range of the 
data that were used to develop the models. A more comprehensive database is thus 
required to develop a high accuracy prediction model for the shear capacity of RC 
T-beams strengthened with FRP. 

The application of artificial intelligence (AI) in structural engineering has allowed 
the community to attain reliable predictions models. The machine learning (ML) 
algorithms developed are able to estimate the shear capacity of structural components 
with satisfactory accuracy [5]. The ensemble learning models, namely random forest 
(RF), XGBoost (XGB), CatBoost (CB), and AdaBoost (AB) are found to be excellent 
tools to provide estimations with high precision. [17] studied the shear capacity 
estimation of steel fiber reinforced concrete beams using ML models and identified 
that the XGB gave the best results with the highest accuracy. This paper aims to 
develop an interpretable ML model using the ensemble learning models (RF, XGB,
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CB, and AB) to estimate the shear strength of externally bonded FRP retrofitted 
RC T-beams. To evaluate the accuracy, the results are compared with the equations 
provided by design guidelines as well as the empirical studies done in the past. The 
study is unique in the sense that it covers the largest data of T-beams and therefore 
can be used to increase the accuracy of the prediction model. 

2 Database Collection 

A total of 302 data are collected for RC T-beams from experimental studies conducted 
between 1997 and 2021. The data includes details of cross-sectional dimensions: 
width (b) and effective depth (d), shear span to effective depth ratio (a/d), transverse 
steel ratio (Asv), concrete compressive strength ( f '

c), types of fiber, the total thickness 
of FRP (n*tf ), width of FRP strips (Wf ), elastic modulus of FRP (Ef ), ultimate 
strain of FRP ( 1frp,u), tensile strength of FRP (ffrp,u), and shear capacity contribution 
by FRP (Vf ) along with the total experimental shear capacity (V exp). The types of 
wrapping included in the database are U-wrap (UW ), side bonded (SB) and closed 
wrap (CW ). Correspondingly, the types of fibers in the database are carbon (CFRP), 
aramid (AFRP), basalt (BFRP), and glass fiber (GFRP). Figure 1 shows the schematic 
representation of an externally bonded FRP strengthened RC T-beam. 

The statistical properties of the database are summarized in Table 1. The distribu-
tion of the database collected from literature in terms of the type of fiber and wrapping 
scheme is presented in Fig. 2. From Fig.  2, it can be seen that CFRP and UW are 
the most common type of fiber and wrapping scheme, respectively. The shear contri-
bution by FRP is calculated by deducting the shear strength of RC T-beam without 
FRP (control specimen) from the total shear strength of the FRP retrofitted T-beams.

Fig. 1 a Typical T-beam under study and b orientation of FRP laminates 
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Table 1 Statistical measures of input parameters 

Parameters Min Max Mean SD 

Concrete strength, f '
c (MPa) 12.40 60 32.22 9.889 

FRP thickness, n*tf (mm) 0.055 3.00 0.781 1.833 

FRP elastic modulus, Ef (GPa) 6.80 640 154.10 95.82 

FRP strength, f frp,u (MPa) 13 4361 2295 1488 

FRP strain, εfrp,u 0.004 0.047 0.015 0.005 

Beam width, b (mm) 64 457 162.25 83.52 

Beam effective depth, d (mm) 140 1092 365 186 

Shear span to effective depth ratio, a/d 1.20 5.00 2.77 0.68 

Transverse steel ratio, Asv (%) 0.00 0.98 0.18 0.18 

*Note Min = minimum, Max = maximum, SD = standard deviation of the data 

85% 

14% 0.66% 0.33% 

(a) 

CFRP 
GFRP 
AFRP 
BFRP 

89% 

10.32% 0.66% 

(b) 

UW 
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CW 

Fig. 2 Distribution of data with respect to a type of fiber and b wrapping schemes 

3 Selection of Input Features 

For a satisfactory model performance, the selection of proper input features is very 
important. The input parameters chosen for this study in ML model development 
are based on the guidelines CSA S6:19 [4] and ACI 440.2R [1] as well as from  
empirical equations developed in earlier studies [2, 6]. The parameters considered 
as input include width of beam (b; effective depth of the beam (d); shear span to 
effective depth ratio (a/d); height of FRP strips (hf ); modulus of elasticity of FRP 
material (Ef ); ultimate strain of FRP ( 1frp,u); ratio of transverse reinforcement (Asv); 
concrete compressive strength ( f '

c); total thickness of FRP layers (n*tf ); ultimate 
strength of FRP ( f frp,u); type of wrapping scheme and type of fiber. The variation in 
total experimental shear capacity of T-beam specimens retrofitted with the externally 
bonded FRP laminates (V exp) with respect to a/d ratio, f '

c , n*tf and f frp,u is illustrated 
in Fig. 3. Figure 3 also includes the variation in experimental shear contribution by 
FRP (Vf exp) with respect to Asv.
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Fig. 3 Variation in shear capacity with respect to selected material parameters 

From Fig. 3, it is seen that the total shear strength increased as a/d ratio increased 
up to 2.3 and then began to decrease as the ratio increased. At a/d ratio less than 
2.0 the angle between the principal direction of fiber and critical shear crack is 
typically observed to be larger, thereby reducing the tensile stress in the fibers and 
consequently lower shear strength of the specimen [13]. The bond between FRP and 
concrete is vital in shear strengthening mechanism. It is observed in Fig. 3b that as
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the f '
c increased, the shear capacity of the beams increased as well. On the other 

hand, it is seen that as Asv increased, Vf exp decreased. According to [12], the reason 
for such behavior could be that both transverse steel stirrups and FRP share the 
shear force. When there is lower transverse steel, FRP contributes most to the shear 
resistance in the beams [9]. In Fig. 3d, it is observed that as the total thickness of FRP 
increased the shear capacity also increased up to a thickness of 1.4 mm. The shear 
strength, however, remained constant beyond 1.4 mm thickness. No particular trend 
is observed in variation of V exp with respect to f frp,u (Fig. 3e) although the beams are 
found to have the highest capacity when the f frp,u is between 3000 and 4300 MPa. 

4 Ensemble Machine Learning Model Overview and SHAP 
Feature 

This section provides a brief introduction to models generated in this paper including 
a description of the SHapley Additive exPlanations (SHAP) for identifying the 
feature importance. The k-fold cross-validation technique is applied for all the models 
analyzed in order to improve the model performance, details of which is described 
in the next section. 

The RF is a supervised ensemble learning algorithm that combines multiple deci-
sion trees in order to learn the mapping between input and output. The decision tree 
is a supervised learning algorithm that utilizes a chart-like tree to predict target vari-
ables from the training data. In RF, a random selection of training dataset and feature 
subset is made for each decision tree to avoid overfitting of data in the individual 
decision trees. Eq. 1 shows how the input variable (x) is mapped to the output where 
yn denotes the number of individual decision tree, X ' as random selection of features, 
and N as the total number of decision trees. 

y
⌃ = 

1 

N 

M∑

i=1 

yn
(
X ') (1) 

The XGB is called a gradient boosting algorithm which works on the decision tree 
as well. The gradient boosting feature minimizes the model error by using a gradient 
descent algorithm. An optimized technique for obtaining superior performance with 
diverse datasets is done in the XGB model. On the other hand, the CB algorithm 
works by combining the “Category” and “Boosting” features where the gradient 
boosting grows oblivious trees. All the nodes are maintained at the same level, and 
the predictions are done within the same conditions. Without extensive hyper tuning 
and data training, the CB yields a state-of-the-art performance. Adaptive Boosting 
technique is used in the AB algorithms where the weak learning algorithms are 
combined to improve the overall model performance. 

The SHAP is used to explain the prediction of an outcome by computing the 
importance of each feature for the target prediction. The concept of SHAP is based
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on the game theoretic approach of SHAP values, where each feature of the instance is 
considered as “player” and the output prediction as “payout.” The technique indicates 
how the payouts are distributed among the features. The “summary.plot” from SHAP 
has been used in this study to explain the feature importance of the best prediction 
model. 

5 Results and Discussion 

The dataset is divided into training and testing sets with 80% as the training set chosen 
randomly to obtain the initial model hyperparameters. The remaining set is used as the 
testing data for model performance evaluation. A tenfold cross-validation technique 
is applied where the dataset is divided equally into 10 subsets with 1 being used 
as the validation and the remaining 9 sets for model training. The cross-validation 
technique is repeated 10 times with each of the subsets being used as validation data 
and average considered as the final output. 

5.1 Cross-Validation and Hyperparameter Tuning 

The results of cross-validation accuracy are shown in Fig. 4 where the interquartile 
range is presented by the box and the median value with a straight line in the middle 
of the box. The whiskers represent data exceeding 1.5 times the difference between 
the first and third quartiles, respectively. The median cross-validation accuracy of the 
ML models developed in this study ranged from 75% (AB) to 86% (RF). The median 
accuracy by CB is also close to that of RF (85.5%). Moreover, the interquartile range 
in RF is seen to be the smallest out of the four models showing less variation among 
data. The interquartile ranges of AB and XGB are similar with the lowest accuracy 
shown by AB. Therefore, it is understood that the best performing models out of the 
ones developed in this study are RF and CB.

Table 2 summarizes the optimized model hyperparameters used in this study. Table 
3 presents the coefficient of determination (R2), root mean square error (RMSE), 
and mean absolute error (MAE) values obtained from the models developed. The 
ensemble models RF and CB outperformed XGB and AB as evident by the highest 
R2 (0.897 and 0.899, respectively) and relatively lower MAE values (0.128kN and 
0.127kN, respectively). Table 4 presents the equations used to calculate the statistical 
measures used in monitoring the model performances.
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Fig. 4 Cross-validation results

Table 2 List of optimized 
hyperparameters Model Hyperparameters Value 

RF a. Random state 500 

b. Number of estimators 400 

XGB a. Number of estimators 100 

b. Learning rate 0.1 

c. Gamma 0 

d. Subsample 0.75 

e. Col_Sample by tree 1 

f. Max_depth 3 

AB a. Random state 30 

b. Number of Estimators 50 

CB a. Iterations 700 

b. Learning rate 0.02 

c. Depth 5 

d. Eval_metric RMSE 

e. Random_seed 23 

f. Bagging_temperature 0.2 

g. od_type Iter 

h. metric_period 75 

i. od_wait 100
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Table 3 Performance measures of the developed ML models 

Model Training data (80%) Testing data (20%) 10-fold 
cross-validation 

RMSE 
(kN) 

R2 Adjusted 
R2 

MAE 
(kN) 

RMSE 
(kN) 

R2 Adjusted 
R2 

MAE 
(kN) 

Mean R2 

RF 0.089 0.987 0.987 0.061 0.184 0.963 0.955 0.128 0.897 

XGB 0.111 0.980 0.979 0.082 0.165 0.971 0.964 0.108 0.894 

AB 0.259 0.890 0.885 0.216 0.285 0.912 0.892 0.243 0.805 

CB 0.107 0.981 0.980 0.082 0.181 0.964 0.956 0.127 0.899 

Table 4 Formula to calculate 
the model performance 
measures 

Name of performance 
measure 

Notation Formula 

Coefficient of 
determination 

R2 
R2 = 1 −

∑m 
i=1(Pi−Ai )

2

∑m 
i=1

(
Pi−A

)2 

Root-mean-squared 
error 

RMSE 
RMSE =

/∑m 
i=1(Pi−Ai )

2 

m 

Mean absolute error MAE MAE =
∑m 

i=1|Pi−Ai | 
m 

* Note Ai represents actual data and Pi the predicted; A denotes 
the average value of actual data; i = 1, 2, 3,…, m indicates the 
number of samples 

5.2 Interpreting Model Results Using SHAP 

The effect of input features on the CB model for the FRP wrapped T-beams is 
presented in Fig. 5. The importance of each feature is ranked from low to high, where 
the higher SHAP value indicates higher importance of the feature and vice versa. 
The y-axis presents the order of features in terms of lowest to highest importance 
and each point on the plot horizontally along the individual feature indicate the high 
impact (red) and low impact (blue) conditions. It can be seen that the height of the 
FRP layer (hf ) plays the most important part in predicting the shear capacity for 
models developed for the T-beams where the associated SHAP value increased with 
hf values. The a/d ratio is at the mid-rank in importance which shows that at low a/ 
d values the SHAP values are higher, thereby implying that for lower values of a/ 
d, the impact of a/d ratio is high in shear strength prediction. The least important 
parameter is observed to be the type of fibers.
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Fig. 5 Feature importance explanation using SHAP 

6 Comparison with Design Code and Empirical Equations 

In order to identify the accuracy of the design guidelines and empirical equations 
proposed in literature, the results by these equations are compared with the experi-
mental data collected in this study. One of the common approaches in calculating the 
total shear capacity (V total) of FRP retrofitted RC beams is the summation of shear 
contribution by transverse steel (Vs), concrete (Vc), and FRP (Vf ) as shown  in  Eq.  2. 

Vc + Vs + V f = Vtotal (2) 

Deducting the shear contributions by transverse stirrups and concrete to find out 
FRP contribution does not provide accurate information as identified by Rousakis 
et al. [18]. Following such observation, the total shear capacity of externally bonded 
FRP strengthened RC T-beams is considered for comparison purposes in this study. 
A total of three design guidelines and three empirical equations are used to calculate 
the shear contribution by FRP in the T-beams. The shear crack inclination is an 
important factor in shear calculation and determining the angle of inclination (θ ) is  
difficult. The ACI 440.2R [1] guideline considered the value of θ to be 45°, whereas 
CSA S6:19 [4] suggested its value as 42°. This paper considers a 45° angle of shear 
crack inclination in the subsequent calculations. 

In order to monitor the efficiency of the chosen guidelines for comparison study, 
the experimental shear capacity is plotted against predicted shear capacity by the 
equations with a 45° line to identify the conservativeness of the formulations (Fig. 6). 
For instance, the points below the line indicate that the prediction is safe/conservative
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to use whereas those above the line represent unsafe/unconservative prediction by 
the equations. In Fig. 6, it is seen that the CSA S6:19 showed the most conservative 
predictions with approximately 30% data above the line. Among the empirical equa-
tions, it is seen that D’Antino and Triantafillou [6] provided the least unsafe data. 
Most of the data points are above the 45° line in case of the Mofidi and Challaal 
(2014) equation implying its poor performance. It can also be noted that, except for 
CSA S6:19, the trend in all the results in Fig. 6 diverges significantly from the diag-
onal line. A comparison of the best models developed in this paper is also included 
where it is seen that the data points are close to the 1:1 diagonal line for the best and 
second-best performing models in terms of the tenfold cross-validation results (CB 
and RF, respectively). 

The distribution of predicted to experimental ratio with respect to a/d of all the 
equations chosen for this study is illustrated in Fig. 7. It is seen that the CSA S806 [3] 
shows results with fairly conservative estimation and the lowest standard deviation 
(SD). Among the empirical equations, the worst prediction is observed from Mofidi 
and Challaal [15] where the mean is at 1.372 and the SD is at 0.87, thereby showing 
the high dispersion in data. The high scattered nature of data points is prevalent in 
all the formulas adopted for comparison up to an a/d ratio of 3.40. It can be observed
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Fig. 6 Comparison of the design code and empirical equations with the experimental results 
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Fig. 7 Variation in predicted to experimental ratio with respect to a/d 

that the models CB and RF outperformed the rest chosen for comparison with a mean 
predicted to experimental results ratio of 1.00 and relatively low SD values of 0.13 
and 0.12, respectively. 

It is evident from the above speculations that the models developed in the current 
study are superior in prediction accuracy and can be applied to a wide range of data. It 
can also be noted that the equations chosen for comparison do not show a particular 
trend in terms of the performance measures analyzed in this study. For instance, 
from Fig. 6 it is seen that the code CSA S6:19 [4] shows the best performance with 
respect to the least data points in the unsafe zone. On the other hand, the results in 
Fig. 7 imply that the code CSA S806 [3] performs the best with low SD values and 
mean closest to 1.00. The models CB and RF, identified as the best and second-best 
models in this paper, are the only models that show consistent performance in all 
measures analyzed. Therefore, it is safe to say that the ensemble models CB and RF 
outperformed the XGB and AB in estimating the shear capacity of FRP strengthen 
T-beams.
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7 Conclusions 

This study is based on an extensive database regarding shear strengthening of rein-
forced concrete T-beams with externally bonded FRP layers. The database collected 
is then used to develop four ensemble learning models and identify the best models to 
generate an estimation method with higher accuracy and lower computational efforts 
that can be applied easily in the practical field. The effect of concrete and FRP prop-
erties and beam cross section details on the shear strength of the specimens is studied. 
SHapley Additive exPlanation is used to interpret the importance of input features of 
the models. Finally, a comparison of the data with those predicted with formulations 
used widely in research and practical designs is done to verify the accuracy of the 
guidelines. The following conclusions can be drawn from the study: 

1. The shear capacity increased with increase in a/d ratio to a point beyond which 
the capacity decreased with increasing a/d values. The highest shear contribution 
by FRP is observed in specimens with no transverse reinforcement. Moreover, 
no particular trend is observed in shear capacity due to changes in FRP tensile 
strength. 

2. From the tenfold cross-validation, the coefficient of determination obtained from 
RF and CB models were very close to 1.00 and the mean absolute error was found 
to be less than 0.25 kN. 

3. The most important feature as explained by SHAP is the height of FRP layers. 
On the contrary, the least important feature is the type of fiber. It was also noted 
that lower a/d ratio has greater impact on the prediction of shear strength. 

4. The design guidelines and empirical equations do not perform satisfactorily when 
applied to data outside the range considered in developing the corresponding 
equations. 

5. The prediction data points obtained from CB and RF are seen to have low scatter 
and cluster at the 1:1 line when plotted against the experimental capacity. 

6. The mean of predicted to experimental ratio results from CB and RF models is 
seen to be very close to 1.00 with standard deviations of only 0.12 and 0.13, 
respectively. 

The results summarized above identify the fact that CB and RF models perform 
with satisfactory accuracy in shear strength estimation of externally bonded FRP 
retrofitted RC T-beams. The models developed can be implemented in design and 
strengthening solutions in practical field application. 
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