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Abstract. The present study applies Algorithm Selection to automat-
ically specify the suitable algorithms for Large-Scale Multi-objective
Optimization. Algorithm Selection has known to benefit from the
strengths on multiple algorithm rather than relying one. This trait offers
performance gain with limited or no contribution on the algorithm and
instance side. As the target application domain, Multi-objective Opti-
mization is a realistic way of approaching any optimization tasks. Most
real-world problems are concerned with more than one objective/quality
metric. This paper introduces a case study on an Algorithm Selec-
tion dataset composed of 4 Multi-objective Optimization algorithms on
63 Large-Scale Multi-objective Optimization problem benchmarks. The
benchmarks involve the instances of 2 and 3 objectives with the number
of variables changing between 46 and 1006, Hypervolume is the perfor-
mance indicator used to quantify the solutions derived by each algorithm
on every single problem instance. Since Algorithm Selection needs a suite
of instance features, 4 simple features are introduced. With this setting,
an existing Algorithm Selection system, i.e. ALORS, is accommodated
to map these features to the candidate algorithms’ performance denoted
in ranks. The empirical analysis showed that this basic setting with AS
is able to offer better performance than those standalone algorithms.
Further analysis realized on the algorithms and instances report similar-
ities/differences between algorithms and instances while reasoning the
instances’ hardness to be solved.

1 Introduction

Optimization [1] is a process concerned with exploring the best solution regarding
some performance criteria. These criteria are referred to objective functions that
can measure the solution quality regarding a target problem. The number of
objectives determine the nature of the problem. A large group of optimization
research focuses on the problems with only one objective, i.e. single-objective
optimization. However, the majority of the real-world applications actually come
with more than one objective. Those problems are categorized as the multi-
objective optimization problems (MOPs) [2]. Further categorization is possible
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when the number of objectives is exactly two, i.e. bi-objective optimization. If the
count exceeds three, then the MOPs are denoted as many-objective optimization.
[3,4].

The main challenge of having multiple objectives is that they are likely to
be conflicting. Improving one objective can degrade the quality of the remaining
objectives. This leads to solution quality evaluation based on various perfor-
mance indicators utilizing all the objectives. R2 [5,6], Hyper-volume (HV) [7],
Generational Distance (GD) [8], Inverted/Inverse GD (IGD) [9], IGD+ [10],
Spread [11], and Epsilon [12] are well-known examples of the performance indi-
cators. These indicators are mostly linked to Pareto fronts (PFs) where multi-
ple solutions are maintained. PFs consist of the solutions that do not strictly
dominate any other solution, i.e. the solutions that are not worse than the
remaining solutions considering all the objectives. In that respect, the algo-
rithms developed for the MOPs mostly operate on the populations of solutions,
i.e. the population-based algorithms. Multi-objective Evolutionary Algorithms
(MOEAs) [13,14] take the lead in that domain. Non-dominated Sorting Genetic
Algorithm II (NSGA-II) [11,15], Pareto Archived Evolution Strategy (PAES)
[16], Strength Pareto Evolutionary Algorithm 2 (SPEA2) [17], Pareto Envelope-
based Selection Algorithm II (PESA-II) [18] and MOEA based on Decomposi-
tion (MOEA/D) [19] are some examples from the literature. There are other
population-based algorithms besides MOEAs, using meta-heuristics like Particle
Swarm Optimization (MOPSO) [20] and Ant Colony Optimization [21]. It is also
possible to see their hybridized variants [22–24].

Despite these immense algorithm development efforts, it is unlikely to see a
truly best, i.e. always coming first, algorithm on the existing benchmark scenarios
under fair experimental conditions. This practical fact is further supported theo-
retically by the No Free Lunch (NFL) theorem [25]. This study focuses on auto-
matically determining the algorithm to be applied for each given MOP instance,
through Algorithm Selection (AS) [26]. AS is a meta-algorithmic approach offer-
ing improved performance through selection. The idea is to automatically choose
algorithms from given problem solving scenarios. The selection operations are
carried on a given algorithm set [27] consisting of those candidate methods to
be picked. The traditional way of approach AS is in the form of performance
prediction models. In that respect, a suite of features is needed to characterize
the target problem instances. These features are matched with the performance
of the candidate algorithms on a group of training instances. While the use of
human-engineered features is common for AS, Deep Learning (DL) has also been
used for automatically extracting features [28].

AS has been applied to a variety of problem domains such as Boolean Satis-
fiability (SAT) [29] Constraint Satisfaction (CSP) [30], Blackbox Optimization
[31], Nurse Rostering (NRP) [32], Graph Coloring (GCP) [33], Traveling Sales-
man (TSP) [34] Traveling Thief Problem (TTP) [35], and Game Playing [36]. AS
library (ASlib) [37] provides a diverse and comprehensive problem sets for AS.
There have been development efforts of new AS systems for addressing these
problems. SATzilla [29] is a well known AS method, particularly popularized
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due to its success in the SAT competitions. Hydra [38] is an example aiming
at constructing algorithm sets, a.k.a. Algorithm Portfolios [27], via configuring
the given algorithms. The portfolio building task has been studied for different
selection tasks [39–42]. 3S [43] delivers algorithm schedules, assigning runtime
to the algorithms for each given problem instance. Unlike these AS level contri-
butions, Autofolio [44] takes the search to a higher level by seeking the best AS
setting of varying components and parameter configurations. As another high-
level approach, AS is used for performing per-instance selection across Selection
Hyper-heuristics (SHHs) [45].

The present study performs AS to identify suitable algorithms for the given
MOP instance. To be specific, the problem targeted here is the Large-scale MOP
(LSMOP) where the number of decision variables can reach up to the vicinity
of thousands. The instance set is based on 9 LSMOP benchmarks. Those base
benchmarks are varied w.r.t. the number of objectives, i.e. 2 or 3, and the num-
ber of decision variables, varies between 46 and 1006, leading to 63 LSMOP
instances. The task is to perform per-instance AS using an existing AS system
named ALORS [46], among 4 candidate population-based algorithms. Hypervol-
ume (HV) is used as the performance indicator. Experimental analysis carried
out illustrated that AS only with 4 basic features outperforms those constituent
multi-objective algorithms.

In the remainder of the paper, Sect. 2 discusses the use of AS. An empiri-
cal analysis is reported in Sect. 3. Section 4 comes with the concluding remarks
besides discussing the future research ideas.

2 Method

ALORS [46] is concerned with the selection task as a recommender system (RS).
ALORS specifically uses Collaborative Filtering (CF) [47] in that respect. Unlike
the existing AS systems, ALORS is able to perform with the sparse/incomplete
performance data, M , while maintaining high, comparable performance to the
complete data. The performance refers to running a set of algorithms, A, on a
group of instances, I. Thus, the performance data is a matrix of M|I|×|A|. For
decreasing the data generation cost of such sparse data has been further tar-
geted in [48,49]. While the entries of the performance data vary from problem
to problem, ALORS generalizes them by using the rank data, M. Thus, any
given performance data is first converted into rank data. Unlike the traditional
AS systems, ALORS builds a prediction model with an intermediate feature-to-
feature mapping step, instead of providing a direct rank prediction. The initial,
hand-picked/designed features are referenced to a set of latent (hidden) features.
These features are extracted directly from the rank performance data by using
Singular Value Decomposition (SVD) [50]. SVD is a well-known Matrix Fac-
torization (MF) strategy, used in various CF based RS applications [51]. SVD
returns two matrices, U and V besides a diagonal matrix accommodating the
singular values as M = UΣV t. U represents the rows of M, i.e. instances, while
V displays its columns, i.e. algorithms, similarly to [52,53]. Beyond representing
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those data elements, the idea is the reduce the dimensions, r ≤ min(|I|, |A|),
hopefully eliminating the possible noise in M.

M ≈ UrΣrV
t
r

ALORS maps a given initial set of instance features F to Ur. The predicted
performance ranks are calculated by multiplying Ur with the remaining matrices
of Σr and V t

r . In that respect, for a new problem instances, ALORS essentially
determines an array of values, i.e. a new row for Ur. Its multiplication with Σr

and V t
r delivers the expected performance ranks of the candidate algorithms on

this new problem instance.

3 Computational Results

Despite the capabilities of ALORS as the sole Algorithm Selection (AS) app-
roach, on working with incomplete performance data, the instance × algo-
rithm rank data here has the complete performance entries. The AS data is
directly derived from [54]. The data on the Large-Scale Multi-objective Opti-
misation Problem (LSMOP) consists of 4 algorithms. The candidate algorithms
are Speed-constrained Multi-objective Particle Swarm Optimization (SMPSO)
[55], Multi-objective Evolutionary Algorithm based on Decision Variable Anal-
ysis (MOEA/DVA) [56], Large-scale Many-objective Evolutionary Algorithm
(LMEA) [57] and Weighted Optimization Framework SMPSO (WOF-SMPSO)
[58]. The hypervolume (HV) indicator [59] is used as the performance metric.

Table 1. The base LSMOP instances

Problem Modality Separability

LSMOP1 Unimodal Fully Separable
LSMOP2 Mixed Partially Separable
LSMOP3 Multi-modal Mixed
LSMOP4 Mixed Mixed
LSMOP5 Unimodal Fully Separable
LSMOP6 Mixed Partially Separable
LSMOP7 Multi-modal Mixed
LSMOP8 Mixed Mixed
LSMOP9 Mixed Fully Separable

Table 1 shows the specifications of the LSMOP benchmark functions [60].
The functions differ in terms of modality and separability. The 2-objective and
3-objective variants of each function are considered. Besides that further vari-
ations on the functions are achieved using different number of decision vari-
ables. In total, 63 LSMOP instances are present. The instances are encoded
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as LSMOPX_m=a_n=b where X is the base LSMOP index, m refers to the
number of objectives and n is for the number of decision variables. All these
instances are represented using just 4 features. Besides the modality and separa-
bility characteristics, the number of objectives and the number of variables are
as the instance features.

Table 2. The average ranks of each constituent algorithm besides ALORS where the
best per-benchmark performances are in bold (AVG: the average rank considering the
average performance on each benchmark function; O-AVG: the overall average rank
across all the instances)

Benchmark SMPSO MOEA/DVA LMEA WOF-SMPSO ALORS

LSMOP1 4.57 1.71 3.71 3.07 1.93
LSMOP2 4.43 2.43 3.14 2.5 2.5
LSMOP3 4.86 2.43 3 2.36 2.36
LSMOP4 4.43 2.79 3.71 2.57 1.5
LSMOP5 3.14 1.86 5 2.93 2.07
LSMOP6 3.86 3.5 3.64 1.21 2.79
LSMOP7 3.71 3.79 4.29 1.29 1.93
LSMOP8 4 2.93 4.43 2.14 1.5
LSMOP9 2.86 1.79 4.43 3.86 2.07

AVG 3.98 ± 0.67 2.58 ± 0.74 3.93 ± 0.66 2.44 ± 0.84 2.07 ± 0.43
O-AVG 3.98 ± 1.04 2.58 ± 1.30 3.93 ± 1.19 2.44 ± 1.19 2.07 ± 0.89

Table 2 reports the performance of all the candidate algorithms besides
ALORS as the automated selection method. Average performance on all the
instances show that ALORS offers the best performance with the average rank
of 2.07. The closest approach that is the single best method, i.e. WOF-SMPSO,
comes with the average rank of 2.44 while SMPSO shows the overall worst per-
formance with the average rank of 3.98. Referring to the standard deviations,
ALORS also comes with the most robust behaviour.

Figure 1 reports the selection frequencies of each constituent algorithm. Ora-
cle denotes the optimal selection, i.e. choosing the best algorithm for each
instance. The graph shows that ALORS shows similar behaviour to Oracle
with minor variations. MOEA/DVA and WOF-SMPSO are the most frequently
selected algorithms. Besides the pure selection frequencies, ALORS does not
utilize SMPSO at all while it is preferred for two instances by Oracle.

Figure 2 illustrates the importance of each single feature in terms of Gini
Index, derived by Random Forest (RF). All four features happen to contribute
to the selection model. Being said that separability comes as the most critical
feature while modality is the least important one.

Figure 3 reports the dis/-similarities of the LSMOP benchmark function
instances. Linking to the feature importance analysis in Fig. 2, there is no a
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Fig. 1. The selection frequencies of each algorithm by Oracle and ALORS

Fig. 2. Importance of the initial, hand-picked LSMOP benchmark function instance
features, using Gini Index/Importance

single criterion/feature to emphasize instance dis/-similarity, yet it is still possi-
ble to see the effects of separability. As an example, consider the 10 most similar
instances provided on the right bottom of the clustering figure. The instances
are LSMOP1_m=2_n=46, LSMOP1_m=2_n=106, LSMOP5_m=3_n=212,
LSMOP5_m=3_n=112, LSMOP5_m=3_n=52, LSMOP2_m=2_n=106,
LSMOP5_m=2_n=1006, LSMOP1_m=2_n=206, LSMOP8_m=3_n=52 and
LSMOP9_m=3_n=112. 8 of them are fully separable. The remaining 2 instances
are partially separable and mixed, respectively. Referring to the second best fea-
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Fig. 3. Hierarchical clusters of instances using the latent features extracted from the
performance data by SVD (k = 3)
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tures, i.e. number of variables, the values change from 52 to 1006. Being said that
1006 occurs only once, thus The half of the instances have 2 objectives while the
other half is with 3 objectives. As 2 out of 3 fully separable benchmark functions
are unimodal, 7 instances happen to be unimodal. The other 3 instances are
mixed in terms of modality.

Figure 4 illustrates the candidate algorithms which are hierarchically clus-
tered. Referring to the best performing standalone algorithm, i.e. WFO-SMPSO,
there is resemblance to SMPSO which is the base approach of WFO-SMPSO.
Although their performance levels differ, their performance variations across the
tested instances are similar.

Fig. 4. Hierarchical clusters of algorithms using the latent features extracted from the
performance data by SVD (k = 3)

4 Conclusion

This study utilizes Algorithm Selection (AS) for Large-Scale Multi-objective
Optimization, using Hyper-volume (HV) as the performance criterion. Multi-
objective optimization is concerned with the majority of the real-world opti-
mization tasks. In that respect, there have been immense efforts both problem
modelling and algorithm development for multi-objective optimization. However,
there is no ultimate multi-objective optimization algorithm that can outperform
the competing algorithms under fair experimental settings. This practical fact
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reveals a clear performance gap that can be filled by AS. AS suggests a way to
automatically determine the best algorithms for given problem instances.

The present work performs on 4 multi-objective optimization algorithm for 63
benchmarks originated from 9 base problems. For the instance characterization
required to use AS, 4 simple instance features are determined. The corresponding
computational analysis showed that AS is able to suppress those candidate algo-
rithms. Further analysis carried on the algorithm and instance spaces delivered
insights on the instance hardness, instance similarity and algorithm resemblance.

As the first study of using AS for multi-objective optimization, there are a
variety of research tasks to be tackled as future research. The initial follow-up
work is concerned with extending both the algorithm and instance space. Addi-
tionally, the well-known multi-objective performance indicators will be incor-
porated. The analysis on the algorithm and instance spaces will be extended
accordingly. While an AS model will be derived for each indicator, the selec-
tion will be also achieved by taking all the indicators into account like a Pareto
frontier. The idea will then be reversed to devise AS a multi-objective selection
problem where the performance measures are the common AS metrics such as
the Par10 score and success rate.
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