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Abstract. Cybersecurity bulletins officially recognize and publicly
share the vulnerabilities of Information Systems. The attacks exploit
various aspects of those vulnerabilities, compromising confidentiality,
integrity or availability of the data collected. We analyze a public dataset
of security records so to obtain some common features and to be able
to forecast future attacks. We propose an intervention based on history
of attacks through data mining methods and so a more dynamic risk
analysis, by concentrating on some specific classes of cyberattacks in a
period of two years. We devise a fast algorithm to find strong rules which
provide an estimate of the probability that these attacks will occur so to
identify adequate controls and countermeasures.

Keywords: Pattern analysis · Cyber security · Association Rules ·
Data Mining · Anomaly detection · Optimization

1 Introduction

Cyberattacks affect different sectors such as healthcare, government, financial
and automotive industries. Incidents due to malware attacks impact industrial
production and critical infrastructures, causing significant delays in control oper-
ations and consequent process anomalies.

Particularly for programmable cars, a compromise of the system can lead to
risks to people safety, as well as to their privacy. Connected cars are targeted via
Spear Phishing mechanisms which lead to the download of malicious attachments
and payloads, or by Hardware Trojans which provide covert access to the onboard
computer system and can disrupt communication of Controller Area Network
buses. The vehicle can be affected by Ransomware attacks which encrypt user
data causing operational disruptions. Via the infotainment system, the victim
driver is threatened that the ignition of the car will be suspended until a ransom
is paid.
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Public data and technical reports regarding cybersecurity provide a descrip-
tion of vulnerabilities and exposures discovered over time, but the records con-
tained in the published databases are very numerous if we consider long periods
of time. Furthermore, faced with two or more vulnerabilities, it is generally not
possible to decide which one is more urgent to deal with and, in particular, each
vulnerability can have different impacts on different systems. Software developers
are often forced to work within a limited time frame and are unable to analyze
all security weaknesses. So they have to focus on targeting the most serious
weaknesses or the ones related to specific characteristics, such as vulnerability
metrics, type of exploits and so on.

It is therefore necessary to establish a priority among all the mitigation and
detection measures to be adopted, on the basis of the frequent relationships
among them, such as: basic metrics of vulnerability, weaknesses, attack tactics
and techniques, operating systems or architectures.

We propose in this paper to simplify the standard and computational chal-
lenging general data mining problem of finding strong association rules by con-
centrating the search onto the prediction of specific attack and vulnerabilities,
and in doing so create an information structure which can be easily updated.

Our work is organized as follows: Sect. 2 presents public security datasets,
and some research work of data mining applied to the field of cybersecurity.
Section 3 explains the methodology chosen to mine frequent patterns efficiently
and prioritize actions to safeguard security. In Sect. 5 the results of our analysis
show the forecasting of attacks based on past records. Section 6 concludes our
study and outlines some future research directions.

2 Dataset and Background

Since 1999 the MITRE Corporation collects a catalog of known cybersecurity
vulnerabilities and the NIST (National Institute of Standards and Technology)
assigns to each of them a severity score, based on a standard called CVSS (Com-
mon Vulnerability Scoring System), and publishes them in the National Vulner-
ability Database (NVD), available online1. CVSS estimates the severity of a
vulnerability and it is used by vendors, developers, researchers, security man-
agers in companies and public administration and security agencies that deal
with the publication of bulletins.

Common vulnerability and exposures entries, CVE for short, are reported
with a unique identifier which is tagged with CVE-YYYY-XXXX, where YYYY
is the year the vulnerability was discovered and XXXX is a sequential integer.
The CVE archive, available online2, provides a description of the vulnerabilities
included in MITRE reports. The CVE’s perspective is to catalog errors after they
have occurred and to investigate possible solutions. At the same time, MITRE
is responsible for providing a list of CWE (Common Weakness Enumeration) to
show the weaknesses in the architecture or in the code.
1 https://nvd.nist.gov.
2 https://cve.mitre.org.

https://nvd.nist.gov
https://cve.mitre.org
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All the catalogued CWE IDs are represented with a hierarchical tree orga-
nization, called “View 1000 - Research Concepts”3. The Pillars are the parents
from whom the first branch starts, and which, then, describe common classifica-
tions of weaknesses.

CAPEC (Common Attack Pattern Enumeration and Classification), avail-
able online4, describes and classifies the attack patterns. The MITRE ATT&CK
(Adversarial Tactics, Techniques and Common Knowledge) is a framework that
describes all the main procedures used by attackers to violate systems and pos-
sibly gain persistent access to them. Attack procedures include tactics, which
identify the attackers ultimate goals and the main purpose of their actions. Each
attack tactic contains different techniques, which are concrete actions aimed
at a specific goal and specify what an attacker achieves when finished. The
MITRE ATT&CK matrices, available online5 for the Enterprise, Mobile and
ICS domains report the technical-tactics of violations and persistence of fixed
corporate, mobile and industrial control systems.

ENISA, the European Network and Information Security Agency, aggregates
the records from the official databases mentioned above and from other resources
such as the Vulnerability Database (VULDB), online6, into a single .csv file. Each
row contains information about these features: CVE ID, source database, sever-
ity level, impact score, exploitability score, attack vector, complexity, privilege,
scope, confidentiality impact, integrity impact, availability impact, CWE ID,
CAPEC ID, date published, attack technique ID and tactic.

In [12], ENISA presents a technical cybersecurity report about 2018−19, but
it does not provide any prediction about future attacks. In this work we ana-
lyzed its aggregate information to establish what could be the next information
(within some tolerance) that could be reported in the security bulletins. The
ENISA statistics do not highlight the coexistence of vulnerabilities, weaknesses
and attacks in frequent tuples of the dataset, features which are co-present in
its rows according to a fixed minimum frequency.

We are interested in records that have common characteristics for a fixed
minimum percentage of the analyzed data (a total of about 230k rows).

2.1 Data Mining and Cybersecurity

We will now overview some works that link data mining to the field of cyberse-
curity.

In [15] the authors, starting from the Record Audit data - Snort log, identify
IP numbers and probable attacks, but they do not deal with the pattern detection
of vulnerability features.

Fan et al. in [7] created a dataset by adding code changes and summary for
C / C ++ vulnerability to the CVE archive.

3 https://cwe.mitre.org/data/definitions/1000.html.
4 https://capec.mitre.org.
5 https://attack.mitre.org/matrices.
6 https://vuldb.com.

https://cwe.mitre.org/data/definitions/1000.html
https://capec.mitre.org
https://attack.mitre.org/matrices
https://vuldb.com
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In [14], Murtaz et al. show that vulnerabilities can be treated like Markov
Chains, and so they can predict the next vulnerability by using only the previous
one.

The authors of [13] extract associations of words, used in websites for Cyber-
security, through the well-known Apriori data mining algorithm.

Dodiya et al. [6] provide statistical distributions of the NVD, such as the
number of new vulnerabilities reported by year, security levels, access complexity
and integrity impact.

Threat searching can involve anomaly detection on machine logs, where
behavioral data analysis is automatically separated from outliers using NLP and
deep learning [4]. A Big Data Platform [16] was created to centralize collection
of logs and metrics from heterogeneous data sources. It can be accessed so to
perform a semi-supervised anomaly detection using the results of log clustering
and visualize in real time the health of services through dashboards.

Anomaly detection finds application in many domains, including Cultural
Heritage [8] and Urban Informatics [5]. In particular, data mining methods are
also used to forecast next destinations [3].

3 Mining Association Rules

Let us start by introducing a mathematical formalization of the problem. Let D
be a dataset (matrix) with m rows and n columns. Each column represents a
specific attribute ID1, ID2, . . . , IDn, and each row represents a complete set of
values for the n attributes. Any attribute IDi and any of its values v found in
the rows of D, define the element < IDi = v >.

Given now any element I, the singleton {I}, also called 1-element itemset or
itemset of length 1, is said to be “infrequent” if it is contained in a number k of
rows of the dataset where k

m < min supp, i.e. is smaller than the fixed minimum
support (we use the notation supp({I},D) < min supp). The minimum support
represents then a fraction or percentage value of the rows of the dataset. If
supp({I},D) ≥ min supp then {I} is said to be “frequent”. We generalize the
above concept to itemsets of length h for any 1 ≤ h ≤ n, as follows: an itemset
of length h is a set of h elements, {I1, I2, . . . , Ih}, such that

– each element Ii represents the value of an attribute, i.e. Ii =< IDji = a >
for some attribute IDji and a one of the values of IDji ;

– two distinct elements Ii1 and Ii2 represent values of two different attributes.

The frequency of the itemset {I1, I2, . . . , Ih} is the number of rows of D which
contain its values. As in the case of itemsets of length 1, the itemset is frequent
if supp({I1, I2, . . . , Ih},D) ≥ min supp, otherwise is said to be infrequent.

Since supp({I1, I2, . . . , Ih},D) ≤ supp(S,D) for any S ⊆ {I1, I2, . . . , Ih}, it
is clear that if {I1, I2, . . . , Ih} is frequent, all its subsets are also frequent. Thus,
if any of its subsets is infrequent then the itemset is infrequent as well.

To clarify the above, let us consider the example of the dataset in Table 1.
We have a dataset with 20 rows and 5 columns, corresponding at the attributes



DSR and Datasets of Security Records 319

ID1, ID2, ID3, ID4, ID5. If we choose min supp = 0.3, i.e. 30% of the total
number of rows (6 in our case) the following elements, or 1-itemsets, are frequent
(shown with their frequencies):

a1, 6; a2, 6; a3, 6; b1, 7; b2, 8; c1, 6; c2, 6; d3, 9; e4, 6.

The itemsets {a1, b2} and {b1, c2, d3, e4} have frequencies 6, so they are both
frequent. The itemset {a2, b1}, instead, has frequency 3 and thus it is not fre-
quent.

Table 1. Dataset with 5 attributes and 20 rows

ID1 ID2 ID3 ID4 ID5

a1 b2 c3 d2 e1

a2 b1 c1 d3 e6

a1 b2 c1 d2 e1

a2 b1 c2 d3 e4

a1 b2 c1 d3 e2

a2 b1 c2 d3 e4

a1 b2 c3 d2 e2

a2 b3 c1 d5 e3

a4 b3 c3 d1 e2

a2 b4 c4 d3 e5

a1 b2 c4 d2 e2

a2 b2 c5 d6 e3

a3 b1 c2 d3 e4

a3 b4 c1 d1 e3

a3 b2 c1 d2 e2

a3 b1 c2 d3 e4

a1 b2 c3 d4 e3

a3 b5 c3 d1 e1

a3 b1 c2 d3 e4

a5 b1 c2 d3 e4

3.1 Mining Datasets

There are many algorithms available in literature for mining data and produce
association rules. Given that the problem is clearly computationally challenging,
many of these algorithms employ heuristics (see the excellent survey [9] for a
comprehensive list of heuristics approach) or population based algorithms such
as genetic algoritms (see for instance [17]) or particle swarm optimization (see
[1]).
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We briefly mention now the two most famous algorithms to find frequent
itemsets. We start with Apriori [2], the most famous and first to be used algo-
rithm for such a purpose, along with its successor FP-Growth [11]. It first com-
putes the support of each single item and, then, it does the same for each itemset
of cardinality 2, 3 and so on. In addition, the comparison of candidates for all
rows becomes more expensive as the iterations of the algorithm increase and
therefore the size of the itemsets to be generated increases. The Apriori algo-
rithm requires l + 1 scan of the dataset to find the longest patterns, of length
l.

The second algorithm is Prefix-Span (PREFIX-projected Sequential PAtterN
mining), a data mining algorithm introduced by Pei et al. [10], which is used for
marketing strategies.

Both algorithms would produce the entire collection of frequent itemsets.
In our working example (itemsets are shown followed by their frequencies) the
following itemsets are frequent:

{a1} : 6; {a2} : 6; {a3} : 6; {b1} : 7; {b2} : 8; {c1} : 6; {c2} : 6; {d3} : 9; {e4} : 6;

{a1, b2} : 6; {c2, b1} : 6; {d3, b1} : 7; {e4, b1} : 6; {d3, c2} : 6; {c2, e4} : 6; {d3, e4} : 6;

{d3, c2, b1} : 6; {c2, e4, b1} : 6; {d3, e4, b1} : 6; {d3, c2, e4} : 6; {d3, c2, e4, b1} : 6

3.2 Association Rules and Confidence

The concept or Association Rules A ⇒ B was presented in [2] along with its
related confidence value Confidence (A ⇒ B), which represents, for instance,
in market basket analysis the probability of buying a set of objects B, called
consequent, given the purchase of a set of objects A, called antecedent, within
the same transaction. More formally, given the probability distribution which
generated the rows in the dataset, Confidence (A ⇒ B)= P (B|A).

To generate an association rule A ⇒ B, where A and B are itemsets, we will
take the support of A ∪ B, and divide it by the support of A, thus computing,
among the rows in the Dataset which contain A, the percentage of rows which
contain also B.

If the itemsets satisfy two fixed parameters, that are the min supp and also
the minimum value of Confidence c (see below), the predictions are called Strong
Rules. So, formally we have

Definition 1. Given a dataset D and given two fixed parameters, 0 ≤
min supp ≤ 1 and the minimum value of Confidence 0 ≤ c ≤ 1, and given
two disjoint itemsets A,B such that supp(A ∪ B,D) ≥ min supp, the associa-
tion rule A ⇒ B is strong if supp(A∪B,D)

supp(A,D) ≥ c.

In our work, we set as Minimum Confidence value c = 75% to get only
itemsets that have a higher (or equal) confidence and also a support that exceeds
or equals the Minimum Support chosen (30%).

When searching for strong rules we pay particular attention to maximal fre-
quent itemsets, i.e. itemsets which are frequent but such that by adding one more
element would no longer be frequent. Thus, given a maximal frequent itemset
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M and any itemset B such that B ∩ M = ∅, we know that the association rule
M ⇒ B, will not be strong, since M ∪ B is not frequent.

Going back to the example of Table 1, we have two maximal itemsets of
cardinality greater than 1, namely {b1, c2, d3, e4} and {a1, b2}. The Association
Rule {d3} ⇒ {b1, c2, e4} is not Strong because its confidence value is equal to
66.6%. Instead, the Association Rules {e4} ⇒ {b1, c2, d3}, {c2} ⇒ {b1, d3, e4},
and {b1} ⇒ {c2, d3, e4} are all strong and, in particular, the first two have 100%
confidence value while the last one 86%.

Table 2 shows the 15 strong association rules. In particular, rules
6, 7, 8, 12, 13, 14 are a consequence of the fact that rule 3 is strong. Same reason-
ing could be applied to the other rules which are a consequence of rules 4 and
5.

Table 2. Strong Rules for the maximal itemset of the example in Table 1

Rule n. Antecedent Consequent Antecedent support Itemset support Confidence

1 {a1} {b2} 6 6 100%

2 {b2} {a1} 8 6 75%

3 {b1} {e4, d3, c2} 7 6 86%

4 {c2} {e4, b1, d3} 6 6 100%

5 {e4} {c2, b1, d3} 6 6 100%

6 {b1, c2} {e4, d3} 6 6 100%

7 {b1, d3} {e4, c2} 7 6 86%

8 {b1, e4} {c2, d3} 6 6 100%

9 {c2, d3} {e4, b1} 6 6 100%

10 {c2, e4} {b1, d3} 6 6 100%

11 {d3, e4} {c2, b1} 6 6 100%

12 {b1, d3, e4} {c2} 6 6 100%

13 {b1, c2, e4} {d3} 6 6 100%

14 {b1, c2, d3} {e4} 6 6 100%

15 {c2, d3, e4} {b1} 6 6 100%

4 Mining Security Datasets for Decisively Strong Rules

In a field such as security, we are more interested in association rules where the
antecedent is a set of events and the consequent is a specific type of attack. Same
kind of reasoning may be applied in the medical field, where we are interested
in diagnosing the likely disease given a list of symptoms.

So, we are considering the case that B contains a single element, i.e. B =
{idj} and A = {id1, id2, ..., idi} is an itemset with i elements non containing idj .
We have formally
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Confidence({id1, . . . , idi} ⇒ {idj}) = P (B|A) =
supp({id1, . . . , idi, idj},D)
supp({id1, id2, ..., idi},D)

(1)
with {id1, . . . , idi} ∩ {idj} = ∅.

In other words, we would like to be able to infer which attack technique is
likely being used, so to apply proper countermeasures. Obviously, such an ability
is particularly important if the attack is not very common, i.e. the probability
of such an attack, though frequent, is not likely or very likely.

Equation 1 gives us the probability that, given some specific attribute values
id1, id2, ..., idi for weaknesses and vulnerabilities that occur as frequent itemsets,
they will appear together with attack tactics and techniques idj as maximal
frequent itemsets. The greater the confidence the greater the reliability in fore-
casting a certain type of attack, and therefore priority will be given to defensive
actions related to it.

In view of the above, let us define then, among the attributes in the dataset
D a specific attribute target T.

We introduce now the following definition, by recalling that any event whose
probability is not higher than 0.5 is typically called unlikely.

Definition 2. Given two fixed parameters, min supp and the minimum value
of Confidence c, and given an itemset A and a single value I /∈ A such that
supp(A ∪ {I},D) ≥ min supp, the association rule A → {I} is a Decisively
Strong Rule (DSR for short), if {I} is frequent, i.e. min supp ≤ supp({I},D)
but unlikely, i.e. min supp ≤ supp({I},D) ≤ 0.5 and supp(A∪{I},D)

supp(A),D ≥ c.

Our goal is to find all the decisively strong rules given the attribute target T,
i.e. association rules A → {ti} where ti is a frequent (at least 30%) but unlikely
value of the attribute target T.

Since both A and {ti} are frequent, i.e. their supports are both at least 30% of
the rows of the dataset, it follows that if m are the rows of D, since ti is unlikely,
supp({ti},D) = α · m with 0.3 ≤ α ≤ 0.5, while supp(A ∪ {Ti},D) = β · m with
0.3 ≤ β ≤ α then

supp(A ∪ {ti},D)
supp({ti},D)

=
β

α

from which it follows that supp(A ∪ {ti},D) = β
αsupp({ti},D). Thus, we need

to mine the sub-dataset where ti occurs for itemsets with a minimum support
of β

α .
We notice that since α ≤ 0.5 and β ≥ 0.3 we have

β

α
≥ 0.3

0.5
= 0.6

For instance, let us consider Table 1 and suppose our target is the value b1 of
ID2. The sub-table containing the value b1 is shown in Table 3. Since the support
of {b1} is 7

20 < 0.5 we need to look for itemsets with support at least 3
10 · 207 = 6

7 ,
and we find, as expected, just {c2, d3, e4}.
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Table 3. Dataset for target b1

ID1 ID2 ID3 ID4 ID5

a2 b1 c1 d3 e6

a2 b1 c2 d3 e4

a2 b1 c2 d3 e4

a3 b1 c2 d3 e4

a3 b1 c2 d3 e4

a3 b1 c2 d3 e4

a5 b1 c2 d3 e4

The algorithm, called DSR, formally described in the pseudocode 1, takes
as input the dataset D, the minimum support value min supp, the confidence
value c, a specific target attribute T and a frequent value ti for T.

To explain how DSR works, we will use the following notations:

– ti will denote the singleton {T = ti}
– D(ti) denotes the projections of the dataset D on the value ti for T, i.e. the

dataset obtained eliminating all the rows where T �= ti.
– supp(A,D(ti)) the support of the itemset A in the dataset D(ti) while

supp(A,D) is the support of the itemset A in the whole dataset D.

Let us suppose that F = {IDi = xi} is the collection of frequent elements all of
length 1, therefore for each element x ∈ F, we have supp({x},D) ≥ min supp.
Let also FT = {t1, . . . , th} be the set of the frequent values of target attribute
T. Thus, for each ti ∈ FT we have supp({ti},D) ≥ min supp.

Our goal is to find all subsets F ′ ⊆ F, such that F ′ ⇒ ti is a DSR for some
ti frequent value of T. So,

supp(F ′,D(ti)) ≥ min supp

supp({ti},D)
≥ 50% Searching condition

supp(F ′ ∪ {ti},D)
supp(F ′,D)

> c Pruning condition

DSR uses, as a subroutine, any fast algorithm to find maximal frequent item-
sets but on possibly quite small sub-datasets. For our tests, we used Apriori.
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Algorithm 1. Pseudo-code of DSR.
1: procedure DSR(D, min supp, c, T )
2: min supp = 0.3, c = 0.75
3: Compute F set of frequent elements, FT set of frequent values of T ;
4: for each attribute ti ∈ FT do
5: supp(ti, D) = αi

6: F ′(ti) = ∅
7: for each x ∈ F do
8: if supp(x, D(ti)) > min supp

αi
then

9: add x to F ′(ti)
10: end if
11: Use General Algorithm to find max. freq. itemsets from F ′(ti) in Dti

12: for each maximal frequent set A do
13: if supp(A ∪ {ti}, D) > c · supp(A, D) then
14: output DSR: A ⇒ ti

15: end if
16: end for
17: end for
18: end for
19: end procedure

5 Results

In order to predict future threats we divided the ENISA dataset into the set of
vulnerabilities and exposures published up to December 31st of 2018 (training
set) and the set of CVEs available for the first half of 2019 (testing set) for
comparisons with the obtained prediction. We add a new feature column in the
original ENISA dataset, and so processed the Pillars, as attribute targets, instead
of the single CWE ID because they group the weaknesses in a more generic way
and consequently the mitigation of the data predicted could be addressed on a
wider range.

We set the minimum confidence to 75% and min supp to 30% and searched
for decisively strong rules of the form {id1, . . . , idk} ⇒ {attack technique id}.
For year 2018 we found just one attack technique with support between 0.3
and 0.5, namely T1027 (Obfuscated Files or Information) with support value
39.99% and another attack technique T1148 (Impair Defenses: Impair Command
History Logging), whose support value is 66.25% therefore higher than 0.3 but
not unlikely according to our definition.

For the target value T1027, we obtained 24 DSR but only two with an
antecedent which are maximals, the following:

– A = {CVSS Complexity = Low,CVSS Scope = Unchanged, CWE Pillar =
Improper neutralization, CAPEC = Leverage Alternate Encoding, Attack
Tactic = Defense Evasion}

– B = {CVSS attack = Network, CWE Pillar = Improper neutralization,
CAPEC = Leverage Alternate Encoding, Attack Tactic = Defense Evasion}
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So, the two DSR found are A ⇒ {T1027} and B ⇒ {T1027}.
The total number of all strong rules (with min supp=0.3 and min conf=0.75)

that we could have obtained with traditional data mining algorithm would have
been 1073, so our procedure is way faster and it avoids many useless generation.

To test the accuracy of the found rules, we extracted the frequent item-
sets of the testing set (the first semester of 2019) that contain the same T1027
attack technique. By comparing the obtained prediction of the 2 DSR rules of
2018 with the restricted frequent itemsets of 2019, we obtained a perfect match-
ing.

To justify, experimentally, our choice of considering just target values with
support not higher than 50%, we use as an example the attack technique T1148
(Impair Defenses: Impair Command History Logging) which has support 0.66.

From the sub-datasets containing the value T1148 we searched for frequent
itemsets with support (0.3/0.66) = 0.45. We found 303 frequent itemsets but
only 5 maximal:
1. {CVSS severity = HIGH, CVSS scope = Unchanged, CAPEC = Subverting

Environment Variable Values, Attack Tactic = Defense Evasion}
2. {CVSS complexity = Low, CVSS scope = Unchanged, CVSS availability =

None, CAPEC = Subverting Environment Variable Values, Attack Tactic =
Defense Evasion}

3. {CVSS complexity = Low, CVSS scope = Unchanged, CWE Pillar =
Improper Neutralization, CAPEC = Subverting Environment Variable Val-
ues, Tactic = Defense Evasion}

4. {CVSS complexity = Low, CVSS scope = Unchanged, CVSS confidentiality
= High, CVSS integrity = High, CAPEC = Subverting Environment Variable
Values, Attack Tactic = Defense Evasion}

5. {CVSS attack = Network, CVSS complexity = Low, CVSS priveleges =
None, CVSS scope = Unchanged, CAPEC = Subverting Environment Vari-
able Values, Attack Tactic = Defense Evasion}

The above 5 maximal frequent itemsets are the antecedent to 5 DSR with mini-
mum confidence 0.75 and consequent T1148. After extracting the frequent item-
sets of the first semester of 2019 which contain T1148 we found that only 2
maximal itemsets out of 5 are also found for 2019. It follows that in this case
the accuracy is only 40%.

6 Conclusion

In this work, we addressed the general data mining problem of finding strong
association rules so to predict specific attacks and discover unknown vulnera-
bilities. We proposed a framework which takes into account frequent but not
very likely attacks and proposed a fast way to compute strong association rules
which turn out to be highly accurate. Our data-driven approach to deal with
potential attacks in order of priority, could in future research be extended by
experimentally setting the parameters of minimal support, confidence and likeli-
hood of target values. Keeping into account past and recent work using popula-
tion based methodologies [1,17] and heuristics [9] a possible future works could
involve population-based metaheuristics for the choice of such parameters.
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