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Preface

This book compiles the best papers submitted to the Sixth International Conference on
Optimization and Learning (OLA 2023). The choice was made according to the score of
all accepted long papers in the blind review process of the conference. OLA 2023 took
place in Malaga, Spain, May 3 to May 5. The main objective of OLA 2023 was to bring
together influential researchers from all over the world in the fields of complex problems
optimization, machine and deep learning, to benefit from synergies between the two
research fields, and to promote their application to real-world problems. The conference
offered a nice atmosphere where relevant researchers presented their innovative work.

Three categories of papers were considered in OLA 2023, namely ongoing research
work, high-impact journal publications (both of them in the shape of an extended
abstract), or regular papers with novel contents and important contributions. A selection
of the best papers in this latter category is published in this book.

Sixty papers were presented at OLA 2023, arranged in eleven sessions, covering
topics such as Deep Learning, the synergies between optimization and learning tech-
niques, their application to problems with uncertainty, reinforcement learning, logis-
tics, advanced optimization techniques, or parallelism. Also, five special sessions were
organized:

1. Reinforcement Learning and (multi-objective) optimization. Organizers: Ann Nowé
(VUB Brussels, Belgium) and Grégoire Danoy (University of Luxembourg, Luxem-
bourg).

2. Optimisation and Learning in Energy Demand Site Management. Organizers: Gül-
gün Kayakutlu, M. Özgür Kayalica, and Üner Çolak (Istanbul Technical University
Energy Institute, Turkey).

3. Computational Intelligence for SmartCities.Organizers: JamalToutouh andChristian
Cintrano (Universidad deMálaga, Spain), SergioNesmachnow, andRenzoMassobrio
(Universidad de la República, Uruguay).

4. AdvancedMethods forAnomalies Forecasting andDetection.Organizers:M. Pavone,
F. Zito, C. Cavallaro, and V. Cutello (University of Catania, Italy).

5. Artificial Intelligence for Sustainability. Organizers: Bernabé Dorronsoro, Juan Car-
los de la Torre, Jose Miguel Aragón, and Javier Jareño (University of Cádiz,
Spain).

The conference received a total of 78 papers, from which 32 compose this book,
making 41% of all submitted papers.

May 2023 Bernabé Dorronsoro
Francisco Chicano

Gregoire Danoy
El-Ghazali Talbi
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A Comparative Study of Fractal-Based
Decomposition Optimization

T. Firmin1(B) and E-G. Talbi2

1 Centre de Recherche en Informatique, Signal et Automatique de Lille, Lille, France
thomas.firmin@univ-lille.fr

2 University of Lille & INRIA, Lille, France

el-ghazali.talbi@univ-lille.fr

Abstract. In this work, we present a comparative study of 24 dif-
ferent and unique decomposition-based algorithms derived from Frac-
tal Decomposition Algorithm and Simultaneous Optimistic Optimiza-
tion. These algorithms were built within a generic, flexible and unified
algorithmic framework named fractal-based decomposition algorithms.
This generic framework is issued from previous works and is succinctly
described in this paper. A software, called Zellij, based on this methodol-
ogy was used to instantiate the 24 algorithms. Under our generic frame-
work, fractal-based decomposition algorithms are made of five indepen-
dent and well-defined search components: a type of fractal, a tree search
algorithm, a scoring method, an exploration, and exploitation strate-
gies. This new family of algorithms, hierarchically decomposes an ini-
tial search space using a generic geometrical object, named fractal. The
decomposition forms a rooted tree, where fractals are nodes, and the root
corresponds to the initial search space. The tree is explored, exploited
and expanded using the four other search components. The proposed
algorithms were tested and compared to each other on the CEC2020
benchmark. Obtained performances emphasize the impact of each search
component, and pointed out the scalability capacity of certain algo-
rithms. Our results strongly suggest that some search components have
major impact on FDA and SOO-based algorithms for large-scale prob-
lems, whereas others are used to fine tune performances in terms of
convergence.

Keywords: Continuous optimization · Hierarchical decomposition ·
Fractals

1 Introduction

We consider a black-box, non-convex, derivative free and non-linear continuous
optimization problem defined by f : S ⊂ R

n → R:

x̂ ∈ argmin
x∈S

f(x) (1)

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
B. Dorronsoro et al. (Eds.): OLA 2023, CCIS 1824, pp. 3–20, 2023.
https://doi.org/10.1007/978-3-031-34020-8_1
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https://doi.org/10.1007/978-3-031-34020-8_1


4 T. Firmin and E.-G. Talbi

where x̂ is the global optima, f the objective function, and S the search space
made of upper and lowers bounds.

Generally, the most popular optimization algorithms used to tackle these
problems are of various families. One can distinguish evolutionary algorithms,
making a population of solutions converge toward optima, such as differential
evolution, genetic algorithm or swarm intelligence [2]. Surrogate-based opti-
mization algorithms, for example, Bayesian optimization [6], can be used to
tackle such problems when the objective function gets computationally expen-
sive. Nonetheless, in this paper, we focus on a taxonomic group of optimiza-
tion techniques, inspired and inherited from divide-and-conquer methods. We
claim that these flexible and scalable algorithms can overcome some bottlenecks
encountered with previous algorithms when tackling high dimensional problems.

In prior works, we generalized algorithms based on the decomposition of the
decision space. These algorithms were from the optimization, machine learning
and computational intelligence research communities. Such as DIRECT [8], SOO
[18], FDA [19] or FRACTOP [4]. We call this family of metaheuristics fractal-
based decomposition algorithms. Our generalized, flexible and unified framework
is made of five different independent and well-defined search components, their
combination allows instantiating various fractal-based decomposition algorithms.
We built a software called Zellij 1 which allows to easily instantiate and modify
decomposition based metaheuristics. We reproduced previous algorithms and
some of their variations, such as Locally Biased DIRECT or DIRECT-Restart
[9].

Along these lines, we focused on the comparison of two algorithms, FDA and
SOO. We were able to instantiate 24 different versions by modifying the five
search components. The results highlight the behaviors and significance of all
24 fractal decomposition-based algorithms in terms of sensitivity to dimension,
convergence, and to search components. Furthermore, we noticed that we can
adapt search components according to the problem difficulty, so to obtain various
behaviors.

The paper is organized as follows. In Sect. 2, a recall of our flexible and
generalized framework for fractal-based decomposition algorithm is presented,
as well as the five search components. In Sect. 3, we describe FDA and SOO,
which are the methods behind the 22 other algorithms instantiated with Zellij.
Then, in Sect. 4, all 24 algorithms are presented in terms of search components,
some of their properties are also discussed. In Sects. 5 and 6, we explained the
selection of the benchmark, the experimental setup, and we present and discuss
the performances of the algorithms on the CEC2020 benchmark. Finally, Sect. 7,
concludes this work by summarizing our contributions and discussing future
works.

1 https://github.com/ThomasFirmin/zellij.

https://github.com/ThomasFirmin/zellij
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2 A Recall on Generalized Fractal-Based Decomposition
Algorithm

Fractal-based decomposition algorithms can be divided into five generic, unique
and independent search components: fractal, tree search, scoring, exploration and
exploitation strategies. Their combination allows to quickly instantiates fractal-
based decomposition algorithms.

For instance, to instantiate FRACTOP [4], one can use the following combi-
nation of search components:

– Fractal : Hypercube.
– Tree search: Best First Search [3].
– Scoring : Belief.
– Exploration: Genetic algorithm.
– Exploitation: Simulated annealing.

This family of algorithms is based on a hierarchical partition of the search
space, using a self-similar object named fractal. In our framework a fractal is
a generalized abstract object describing a high dimensional geometrical object,
a subset of an initial search space or of another fractal, and a node of a tree.
Fractals are stored in a k-ary rooted tree, where the initial search space cor-
responds to the root. Each fractal can be decomposed into k smaller fractals,
named children, by using a decomposition function F . Hence, all fractals contain
references to their children, and children are a partition of their parents. The
tree search component, τ , allows selecting non-expanded fractal within the k-
ary rooted tree. A fractal is considered as expanded when the exploration search
component, Explor, is applied within the selected fractal, and when its chil-
dren are created. This search component allows to quickly gather information
about a fractal, it can be sampling methods, metaheuristics or other optimiza-
tion algorithms. To determine how promising a fractal is, a scoring component,
γ, using gathered information computes the quality value for each fractal. More-
over, the k-ary rooted tree, has a maximum depth D, so, once a leave of this tree
reaches level D, instead of the exploration, an exploitation algorithm, Exploi, is
applied to emphasize the search within a promising area. The exploitation is not
restricted by the boundaries of a fractal, so it can freely converge toward local
optima.

The pseudocode, with the five search components F , τ , γ, Explor and Exploi
is resumed in Algorithm 1. In Fig. 1, the workflow of fractal-based decomposition
algorithms is presented. Search components are depicted in blue. The two tests,
in orange, correspond to the stopping criterion and the depth test of a fractal
(line 13 and line 18 in Algorithm 1). There are two additional inputs for fractal-
based decomposition algorithms, which are the initial search space S and the
maximum depth D of the k-ary rooted tree.

The following subsections will dive deep into the five search components,
their functions, and behaviors.
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2.1 Fractal Component

Considering a fractal-based decomposition algorithm, a fractal, in this context, is
a self-similar and self-contained object, used to perform a hierarchical partition of
the search space. The self-contained property of a fractal ensure that all necessary
information describing the object is locally contained within the fractal. Thus, a
fractal, is an independent subspace of the initial search space S. In Algorithm 1,
the function F takes a fractal, and returns its k children. We can identify several
fractal types according to the literature such as hypercubes [4], hyperspheres
[19], hyperrectangles from a trisection [8,18] or even Voronöı cells [11,13].

Fractals are categorized by five properties describing their behavior within
our framework. We distinguish the coverage, which describes the space covered
by the hierarchical partition. We then have the overlapping between fractals, the
building and memory complexities. These complexities have a major impact on
the scalability of fractal-based decomposition algorithms, for example, Voronöı
cells are hard to build in high dimensions [10,14]. Finally, we have the partition
size property, which describes the number of children per fractal. This property
has also an impact on the scalability, such as, in FRACTOP [4] where the num-
ber of smaller hypercubes of equal size needed to partition their parent has an
exponential complexity of 2n, as the dimension n increases. Or even simplices,
where each fractal has n! children [21]. These five properties are summarized in
Table 1. The coverage is said to be complete when the partition fully covers the
initial search space, and partial when only a part of S is covered. We can see in
this table that there is no dominant, universal, fractal. When selecting a fractal,
one has to make concessions on some properties.

2.2 Tree Search Component

Generated fractals are nodes of a k−ary rooted tree, where the root corresponds
to the entire initial search space. The tree search algorithm allows manipulating
the rooted tree and efficiently expend promising fractals. Within this tree, a
fractal is characterized by its level (i.e. depth). In Algorithm 1, this component
is noted τ , it takes a list of fractals and their quality values, so to returns Q
non-expanded fractals.

This search component determines some behaviors of fractal-based decom-
position algorithms, such as the tradeoff between exploration and exploitation.
In DIRECT, this problem is tackled by using the selection of all potentially opti-
mal rectangles [8]. In FDA, a sorted depth first search quickly allows exploiting
promising deep fractals. Other tree search algorithms can be worthless, such as
Breadth First Search, as it will explore all fractals of a level before exploring frac-
tals of the next level. We lose the notion of hierarchy within the partition. The
same applied to Depth First Search, as the criterion to select the next fractal is
its level and not its quality value. These algorithms can be replaced by Best First
Search [3] and some of its variations, such as Beam Search [5] which allows tack-
ling memory issues by pruning the tree. Epsilon Greedy Search [22] or Diverse
Best First Search [7] add stochasticity to the tree search component. Different
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Table 1. Properties of fractals

Fractal Hypercube Trisection Hypersphere Voronöı Simplex

Partition size (k) 2n 3 2n c* n!

Building
complexity

O(2n) O(n) O(n) O(2n)** O(n!)

Coverage of S by
the partition

complete complete partial complete complete

Overlapping no no yes no no

Data structure 2 points
of size n

2 points
of size n

2 points
of size n

See*** n points
of size n

* Number of centroids defined by the user
** Valid for usual algorithms, we can reduce this complexity by approximat-
ing the Voronöı diagram in high dimensions. Here we consider the complexity
depending on the dimension n, but it also depends on the number of centroids.
*** It can be a set of vertices for the QuickHull algorithm or a set of hyperplanes
for sampling methods.

algorithms allow selecting the exploration-exploitation tradeoff, such as Cyclic
Best First Search [16]. One can also tackle multi-objective problems by using
Pareto front selection [15]. These algorithms share a common structure called
the OPEN-CLOSED list algorithm [3]. The OPEN list contains all non-expanded
fractals, and the CLOSED list contains all expanded (i.e. explored) fractals.

2.3 Scoring Component

To introduce a notion of hierarchy between fractals, we need to assign a quality
value to all of them. This component can be seen as an acquisition function
used in Bayesian optimization [6], with the difference that it provides informa-
tion about how promising a fractal is. This value is determined by information
obtained by the exploration component, and used by the tree search algorithm
to select non-expanded fractals within the OPEN list. Measures can be of differ-
ent natures, some will be statistics about solutions sampled by the exploration
component within a fractal, such as the minimum objective value [8,18], the
median or the mean. Some use global information, such as in FDA [19] with
the distance to the best solution found so far. Others introduce inheritance or
uncertainty, such as Belief in FRACTOP [4]. In Algorithm 1, γ takes a fractal,
a list of sampled points, their objective values, and, it returns the quality value
of the given fractal.
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2.4 Exploration and Exploitation Components

The exploration search component defines how to sample within a fractal so
that the fractal-based decomposition algorithm can efficiently get information
on the landscape and quality of this fractal. One can use sampling methods,
metaheuristics or other optimization algorithms. Once, done, the quality of the
fractal is computed thanks to the scoring component which uses prior sampled
information. For some fractal-based algorithms, this component can be very basic
such as in DIRECT or SOO, where centers of all fractals are computed. In FDA,
the Promising Hypersphere Selection computes three fixed points inside each
hypersphere. Other fractal-based decomposition algorithms use active methods.
In FRACTOP, a genetic algorithm is used in each fractal.

Some decomposition-based algorithms can suffer from a lack of exploitation
(e.g., DIRECT [9]). The exploitation search component is applied to nodes of
maximum depth. This search component is not restricted to the fractal bound-
aries, so it can search within non generated fractals. For instance, in FRAC-
TOP, a simulated annealing is used, whereas in FDA, a coordinate local search
is applied. In Algorithm 1, Explor and Exploi take a fractal and return a list of
solutions and their objective values.

Fig. 1. Workflow of fractal-based decomposition algorithms
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Algorithm 1. Fractal-based decomposition algorithm
Inputs:
1: S Initial search space
2: D Maximum depth
3: F Function to build fractals
4: Explor Exploration strategy
5: Exploi Exploitation strategy
6: τ Tree search
7: γ Scoring
Outputs: x̂ Best solution found
8: x̂ ← ∞
9: OPEN ← [S] List of non-expanded fractals
10: CLOSED ← [·] List of expanded fractals
11: current ← S
12: scores ← [+∞]
13: while stopping criterion not reached do
14: for each leaf ∈ current do
15: children ← F (leaf) Decompose the leaf
16: for each child ∈ children do
17: Append child to OPEN

18: if level(child) < D then
19: P, values ← Explor(child)
20: score ← γ(child, P, values)
21: Append child to OPEN

22: Append score to scores

23: if min(values) < x̂ then
24: x̂ ← min(values)

25: else
26: values ← Exploi(child)
27: if min(values) < x̂ then
28: x̂ ← min(values)

29: Append leaf to CLOSED

30: index ← Index of leaf in OPEN

31: Remove element at index from OPEN

32: Remove element at index from scores

33: current ← τ(OPEN, scores)
return x̂

3 Related Works

This section describes two popular fractal-based optimization algorithms accord-
ing to the five search components. In this work, FDA and SOO were used and
modified to create new fractal-based decomposition algorithms to better under-
stand the functionalities and behaviors of their search components.
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3.1 FDA: Fractal Decomposition Algorithm

The FDA algorithm solves the curse of dimensionality problem of FRACTOP
[19]. Instead of a hypercubes-based decomposition, it uses hyperspheres. By using
such fractals, the decomposition has a lower complexity, but at the cost of over-
lapping fractals due to an inflation ratio. This ratio partly reduces the lack of
space coverage implied by hyperspheres decomposition. The exploration compo-
nent, called promising hypersphere selection, computes three points: the center of
the hypersphere and two opposite points equidistant to the center. The heuristic,
used to score a fractal, is the distance-to-the-best solution found so far. Finally,
a leaf at the maximum depth level of the tree, is exploited with an Intensive
Local Search, which is a coordinate descent algorithm with adaptive step size.

3.2 SOO: Simultaneous Optimistic Optimization

The DOO (Deterministic Optimistic Optimization) and SOO algorithms assume
the existence of a semi-metric l, and simplify the Lipschitz-continuous property
by only using a local smoothness assumption around the global optimum x̂ [18]:

f(x̂) − f(x) ≤ l(x̂, x), ∀x ∈ S

DOO is used when l is known; otherwise, SOO is more adapted. Both algorithms
are deterministic. At each iteration and at each level of the partition tree, the
best fractal is selected according to the evaluation of a representative solution
inside it (e.g. center). Here, the balance between exploration and exploitation
relies on a particular tree search algorithm, and on a heuristic value computed for
each fractal, according to one representative solution. In addition, a stochastic
version called Sto-SOO has been designed for noisy loss function, where each
fractal has to be evaluated multiple times [23].

4 Instantiation of Fractal-Based Decomposition
Algorithms

Five properties describe the selected algorithms. They are:

– Deterministic: two different runs of the same algorithm on the same noise-
less function should give the same results.

– Axis-aligned: they sample solutions or set up fractals in an axis-aligned
fashion.

– Symmetrical: they sample solutions or set up fractal symmetrically.
– Structure: they have the same algorithmic structure as described in Zellij.

They can be divided into the five search components of our generalized and
flexible framework.

– Non-distributed: We use the non-parallel version of these algorithms, as it
can alter their behaviors [20].
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Therefore, we choose FDA [19] and SOO [18] as a base for the other 22 new
versions obtained by modifying some of their five search components. These two
algorithms come from two different communities, and have drastically different
behaviors and purposes. Moreover, our choice is supported by the fact that the
author in [18] claims that SOO is a generalization of DIRECT. All 24 algorithms
are described by search components in Table 1, these search components are
described in depth within the following subsections.

4.1 Extensions of Fractal Components

Because the 22 instantiated new algorithms derivate from FDA and SOO, we can
distinguish two groups of algorithms, those using hyperspheres to decompose the
search space, and those using trisections. Compared to trisection, hyperspheres
have the advantage of simultaneously reducing all dimensions, whereas trisec-
tions only reduce the longest side of the parent fractal. However, hyperspheres
suffer from a low coverage capability. An inflation ratio tries to overcome this
behavior by increasing the surface of hyperspheres to the detriment of overlap-
ping fractals. It is important to mention that both hypersphere and trisection
suffer from the curse of dimensionality, and so, do not scale well when the dimen-
sion increases. Indeed, the Hausdorff measure (n-volume) of a hypersphere tends
to 0 as the dimension tends to infinity, meaning that a hypersphere covers less
and less space. Concerning the trisection, the reduction of the search space by
the children becomes insignificant, as only one dimension is reduced at a time,
meaning that SOO needs a deeper and deeper tree to significantly reduce the
search space. Figure 2 depicts visual explanations of fractals in FDA and SOO.
However, one should be careful and not infer what happens in high dimensions by
only looking at these figures, as high dimensional geometry is counterintuitive.

4.2 Extensions of Tree Search Components

As described before, FDA uses the Move-up tree search procedure, and SOO
selects the best fractal at each level of the tree. We switched these two algo-
rithms from FDA to SOO. The new versions are named FDA-SOO, and SOO-
MoveUp. The goal, here, is to determine if the performances of SOO and FDA
can be explained by their respective tree search component. We also tried the
Potentially Optimal Rectangle (POR) from DIRECT, which was adapted to
Hypersphere by using the radius as a measure of the size of the fractal. Algo-
rithms, using POR, are named FDA-POR and SOO-POR. Moreover, we tried
some algorithms coming from the A∗ family, such as, Best First Search (BFS)
to emphasize the search on the most promising fractal, or Beam Search (BS)2

introducing a pruning technique. We have also implemented Cyclic Best First
Search (CBFS) for SOO and FDA.

2 Here the beam length was set to 3000.
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Fig. 2. Examples of fractals in 2 dimensions

4.3 Extensions of Exploration and Exploitation Components

The FDA algorithm explores a fractal by using the Promising Hypersphere Selec-
tion (PHS). The PHS samples three points within a given hypersphere; its center
at level l,

−→
C l, and two other points s1 =

−→
C l + α rl

n and s2 =
−→
C l + α rl

n , with
rl the radius at level l, α the inflation ratio3 and n the dimension. SOO only
samples the center of each fractal. So, once again, here, the objective is to deter-
mine if the exploration component explains the performance of FDA and SOO.
Because we cannot directly apply the PHS to SOO, we decided to compute the
center and two fixed points on the diagonal of each hyperrectangle. This version
is called SOO-Diagonal. We have also instantiated FDA-Center, where only the
center of the hypersphere is computed. We also tried to sample 10.n solutions
using chaos with a Henon map sampling [1]. Algorithms using this method are
named FDA-Chaos and SOO-Chaos.

Concerning the exploitation search component, SOO does not use any. So,
we decided to instantiate the Intensive Local Search (ILS) from FDA to SOO,
by using the longest side of the hyperrectangle as the radius in the ILS. Thus,
we have two new algorithms SOO-ILS, and FDA-NoILS4 for which no ILS is
used. Here, we want to test the impact of a local optimizer on fractal-based
decomposition algorithms.

4.4 Extensions of Scoring Components

To analyze the behaviors of the scoring component, we tried the Distance-To-
The-Best (DTTB) solution found so far from FDA, the mean and the minimum
objective value from sampled points within a fractal. For SOO, because it only
computes the center, the minimum, and the mean were also used with SOO-
Diagonal and SOO-DMean. Moreover, we applied a fuzzy measure named Belief
from FRACTOP, the new algorithms are named FDA-Belief and SOO-Belief.

3 α was set to 1.75.
4 The maximum depth of the tree was set to 600.
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5 Experimental Setup

We have tested the 24 algorithms on the CEC2020 mono-objective continu-
ous benchmark [12], for dimensions 10, 15, 20, 30, 50 and 100. Functions of
this benchmark are characterized by five important properties for fractal-based
decomposition algorithms. Indeed, functions should not have their global opti-
mum in the center or on an axis of the search space, if so, then the function
should be shifted and/or rotated. For example, SOO, at the first iteration, sam-
ples one point directly into the center of the initial search space. Then, most of
the CEC2020’s functions are multimodal, it creates multiple local optima, and
so allows analyzing the exploration capability of optimization algorithms. More-
over, functions should not be separable. Indeed, SOO reduces only one dimension
at a time, so a focus can be given to only a few dimensions. We want to evaluate
if fractal-based optimization algorithms can optimize all dimensions at the same
time. Finally, functions have to be asymmetrical because SOO and FDA, sample
points and fractals symmetrically. In our experiments, the CEC2020’s functions
are considered as black box. The budget is set to 5000n calls to the objective
function.

To statistically compare performances of instantiated algorithms, we applied
a two-sided Wilcoxon signed-rank test on the regrets, r = f(x̂) − f(x∗), where
x̂ is the global known optimum of the evaluated objective function, and x∗ is
the best solution found by the optimization algorithm. We applied an error rate
α = 0.05 for the statistical test.

6 Results Analysis

The results, showed in Fig. 3, can be read column by column. For example, the
first column represents the performances of FDA, compared to the 23 other
algorithms (rows). If the color is gray, then there is no statistical evidence that
FDA is better than the algorithm at the current row. If it is green, then α <
%5, and the rank of the algorithm at the current column is higher than the
rank of the selected row, and conversely if the color is red. Two representative
convergence graphs are shown in Fig. 4 and Fig. 5 (on dimensions 50 and 100 for
the Composition 3 function), which allow to better understand the classification
depicted in Fig. 3 (Tables 2 and 3).



14 T. Firmin and E.-G. Talbi

Table 2. Instantiated algorithms using Zellij

# Algorithms Geometry Tree search Exploration Exploitation Scoring

1 FDA Hyperpshere MoveUp [19] Promising

Hypersphere

Selection [19]

Intensive Local

Search [19]

Distance to

the best [19]

2 FDA-BFS Hyperpshere Best First Search Promising

Hypersphere

Selection [19]

Intensive Local

Search [19]

Distance to

the best [19]

3 FDA-BS Hyperpshere Beam Search Promising

Hypersphere

Selection [19]

Intensive Local

Search [19]

Distance to

the best [19]

4 FDA-CBFS Hyperpshere Cyclic Best First

Search

Promising

Hypersphere

Selection [19]

Intensive Local

Search [19]

Distance to

the best [19]

5 FDA-POR Hyperpshere Potentially Optimal

Rectangle* [8]

Promising

Hypersphere

Selection [19]

Intensive Local

Search [19]

Distance to

the best [19]

6 FDA-SOO Hyperpshere Best fractal at each

level [18]

Promising

Hypersphere

Selection [19]

Intensive Local

Search [19]

Distance to

the best [19]

7 FDA-Belief Hyperpshere MoveUp [19] Promising

Hypersphere

Selection [19]

Intensive Local

Search [19]

Belief [4]

8 FDA-mean Hyperpshere MoveUp [19] Promising

Hypersphere

Selection [19]

Intensive Local

Search [19]

Mean

9 FDA-min Hyperpshere MoveUp [19] Promising

Hypersphere

Selection [19]

Intensive Local

Search [19]

Minimum

10 FDA-center Hyperpshere MoveUp [19] Promising

Hypersphere

Selection [19]

Intensive Local

Search [19]

Distance to

the best [19]

11 FDA-Chaos Hyperpshere MoveUp [19] Henon map

sampling**

Intensive Local

Search [19]

Distance to

the best [19]

12 FDA-NoILS Hyperpshere MoveUp [19] Promising

Hypersphere

Selection [19]

∅ Distance to

the best [19]

13 SOO Trisection Best fractal at each

level [18]

Hyperrectangle

Center

∅ Minimum

14 SOO-BFS Trisection Best fractal at each

level [18]

Hyperrectangle

Center

∅ Minimum

15 SOO-BS Trisection Beam Search Hyperrectangle

Center

∅ Minimum

16 SOO-CBFS Trisection Cyclic Best First

Search

Hyperrectangle

Center

∅ Minimum

17 SOO-MoveUp Trisection MoveUp [19] Hyperrectangle

Center

∅ Minimum

18 SOO-POR Trisection Potentially Optimal

Rectangle [8]

Hyperrectangle

Center

∅ Minimum

19 SOO-Belief Trisection Best fractal at each

level [18]

Hyperrectangle

Center

∅ Belief [4]

20 SOO-DTTB Trisection Best fractal at each

level [18]

Hyperrectangle

Center

∅ Distance to

the best [19]

21 SOO-Chaos Trisection Best fractal at each

level [18]

Henon map

sampling

∅ Minimum

22 SOO-Diagonal Trisection Best fractal at each

level [18]

3 points on a

Diagonal

∅ Minimum

23 SOO-DMean Trisection Best fractal at each

level [18]

3 points on a

Diagonal

∅ Mean

24 SOO-ILS Trisection Best fractal at each

level [18]

Hyperrectangle

Center

Intensive Local

Search [19]

Minimum

* Adapted to hyperspheres, by using the radius as the measure of the size of the fractal.

** Adapted to hyperspheres by using the Box-Muller method [17].
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Table 3. Functions of the CEC2020 benchmark [12]

# Function Shifted Rotated Unimodality Separability Symmetrical

1 Bent Cigar Yes Yes Yes No Yes

2 Schwefel Yes Yes No No No

3 Lunacek Bi-Rastrigin Yes Yes No No No

4 Rosenbrock + Griewangk No No Yes No Yes

5 Hybrid 1 No Yes No No No

6 Hybrid 2 No Yes No No No

7 Hybrid 3 No Yes No No No

8 Composition 1 Yes Yes No No No

9 Composition 2 Yes Yes No No No

10 Composition 3 Yes Yes No No No

6.1 Sensitivity to the Fractal Search Component

Results suggest that there is an unequivocal difference between FDA and SOO-
based algorithms. There is a clear dominance of FDA-based versions on SOO
ones for dimensions 50 and 100. For lower dimensions FDA and SOO appear to be
equivalent solutions on the CEC2020 benchmark. More fractals types should be
tested to have a better idea of their impacts, as FDA and SOO were specifically
designed for these geometrical objects.

6.2 Sensitivity to the Tree Search and Scoring Search Components

There is no clear evidence that modifying the tree search from FDA and SOO,
by other similar and efficient tree search algorithms, radically improves perfor-
mances. We can notice, in dimension 100, that using POR decreases perfor-
mances of the original SOO. And, using the tree search from SOO with FDA
also decreases FDA’s performances. In low dimensions, instantiating BFS, BS,
Move up from FDA, and POR, makes SOO worse.

Concerning the scoring search component FDA and SOO appear to be robust
to the modification of this component (except for SOO-DMean), so performances
of FDA and SOO might be explained by the fractal, exploration, and exploitation
search components. Tree search and scoring components seem to refine FDA and
SOO performances, as it can have a little impact on the convergence.

6.3 Sensitivity to the Exploitation and Exploration Search
Components

In high dimensions, FDA-Chaos appears to be the worse FDA version. One can
explain these performances by looking at convergence plots in Fig. 4 and Fig. 5.
Indeed, for dimension 50 we can see that the ILS is applied later compared to
other algorithms. One can observe a fast decrease in the error starting at approxi-
mately, 200000 evaluations. Whereas for dimension 100, the ILS is never applied.
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Fig. 3. Pair Wise Wilcoxon test comparison on CEC2020. Gray: Statistically unsigni-
ficative (α > 0.05). Green: Better. Red: Worse (Color figure online)
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Fig. 4. Convergence plot of the 24 algorithms for dimension 50 with Composition 3
function.

Fig. 5. Convergence plot of the 24 algorithms for dimension 100 with Composition 3
function.

Indeed, the number of sampled points gets higher when the dimension increases,
so in dimension 100 for FDA-Chaos, all the budget is consumed on exploring
fractals. We can notice that, computing only the center of the hypersphere with
FDA-Center, does not decrease in any dimension performances of FDA. Thus,
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one can perform a cheaper decomposition phase using FDA-Center. SOO-Chaos,
SOO-Diagonal and SOO-DMeans, are also part of the worst SOO-based algo-
rithms, an assumption to explain this behavior is to say that because the tree
from SOO is deeper, then computing more points inside each fractal slows down
the decomposition. But, SOO needs a deep decomposition tree to efficiently
reduce the search space. Indeed, a trisection only reduces one dimension at a
time. In high dimension, dividing by three a dimension of a hyperrectangle does
not significantly reduce the space.

Concerning the exploitation search component, FDA-based algorithms
quickly converge to a promising area where the ILS is applied. We can say that
the ILS has some difficulties to escape from local optima, and stays stuck in
these a priori good areas. Additionally, once SOO is improved with an exploita-
tion strategy (SOO-ILS), its performances appeared to be similar to FDA, but
with a lower convergence rate on some functions. When we remove the Inten-
sive Local Search (ILS) from FDA, the algorithm becomes the worst among
the others. This confirms that in high dimension, fractal-based decomposition
algorithms need a local search phase to emphasize the search within the most
promising areas found by the decomposition.

Finally, we can say that FDA and SOO performances are mainly explained
by first, the presence or not of an exploitation search component, and then by the
exploration search components. During the decomposition phase (exploration),
sampling many points within each fractal, does not appear to be an efficient
solution for FDA and SOO.

7 Conclusion

In this article, we have presented 24 different fractal-based decomposition algo-
rithms instantiated with our dedicated software named Zellij5. Our flexible
and generalized framework is divided into five independent and well-defined
search components. The fractal component defines the geometrical object used
to decompose the search space hierarchically. The tree search component allows
to better manipulate the k-ary rooted tree formed by the fractals. Then, the
exploration and scoring component are used to sample information and assign a
quality value for each fractal. And, the exploitation search component, empha-
sizes the search within and around promising fractals. A comparison between the
24 fractal-based decomposition algorithms shows that we can obtain different
behaviors and scalability according to the combinations of the five search com-
ponents. Results highlight that some search components (e.g. exploration and
exploitation) have a higher impact on the algorithm performances compared to
their original versions. The analysis strongly suggests, that in high dimensions, a
local optimizer appears to be necessary to improve fractal-based decomposition
algorithm performances.

Future work will focus on the development of new scalable search compo-
nents, particularly the exploration and exploitation component, to reduce the
5 https://github.com/ThomasFirmin/zellij.

https://github.com/ThomasFirmin/zellij
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allocated budget and improve the exploration capability. Furthermore, a mas-
sively asynchronous framework for fractal-based decomposition algorithms is
under development for multi-nodes distributed environments.
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Abstract. Minimization problems involving a finite sum as objective
function often arise in machine learning applications. The number of
components of the finite-sum term is typically very large, by making
unfeasible the computation of its gradient. For this reason stochastic
gradient methods are commonly considered. The performance of these
approaches strongly relies on the selection of both the learning rate and
the mini-batch size employed to compute the stochastic direction. In this
paper we combine a recent idea to select the learning rate as a diago-
nal matrix based on stochastic Barzilai-Borwein rules together with an
adaptive subsampling technique to fix the mini-batch size. Convergence
results of the resulting stochastic gradient algorithm are shown for both
convex and non-convex objective functions. Several numerical experi-
ments on binary classification problems are carried out to compare the
proposed method with other state-of-the-art schemes.

Keywords: Stochastic gradient methods · Diagonal Barzilai-Borwein
rules · Variance reduced methods

1 Introduction

In this paper we consider the following optimization problem

min
x∈Rd

F (x) ≡ 1
N

N∑

i=1

fi(x), (1)
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where each fi : R
d → R is a smooth function. This problem arises in many

machine learning applications where it is known as empirical risk minimization.
The definition of the empirical risk F (x) is based on a random sample ξ(N) =
{ξ

(N)
1 , ..., ξ

(N)
N } of size N of a random variable ξ whose probability distribution

is unknown. Each fi(x) ≡ f(x, ξ
(N)
i ) denotes the loss function related to the

instance ξ
(N)
i of this sample, called train set. We are especially interested in the

case when the number of components N is very large, and, hence, the adoption
of stochastic gradient methods is convenient. Indeed they exploit either a single
gradient ∇fi or a very limited number of them at each iteration, rather than the
entire gradient ∇F . Recently a number of stochastic methods has been developed
with the aim to adaptively estimate the hyper-parameters introduced in these
iterative schemes and to improve the effectiveness of the approach. In particular,
we consider the iteration of the standard stochastic gradient method

x(k+1) = x(k) − αg
(k)
Nk

, (2)

where, given a randomly selected subset Nk ⊆ N ≡ {1, . . . , N} of size Nk||N ,
the stochastic gradient is defined as follows

g
(k)
Nk

=
1

Nk

∑

i∈Nk

∇fi(x(k))

and α is a positive learning rate. In [1,2] the authors devise a technique to
estimate the learning rate α by a version of the well-known Barzilai-Borwein
(BB) rules, tailored for the stochastic approach and in [3] the authors used BB
rules in a stochastic framework to threshold the learning rate. We recall that the
standard BB rules are the solutions of the following problems:

αBB1
k = argmin

α
‖ 1
α

s(k−1) − y(k−1)‖2 =
s(k−1)T s(k−1)

s(k−1)T y(k−1)
, (3)

αBB2
k = argmin

α
‖s(k−1) − αy(k−1)‖2 =

s(k−1)T y(k−1)

y(k−1)T y(k−1)
, (4)

where s(k−1) = x(k) − x(k−1) and y(k−1) = ∇F (x(k)) − ∇F (x(k−1)). In the
stochastic framework, the basic idea is to keep fixed the estimate of the learning
rate in a cycle of m inner steps and, at the start of a new cycle, to update the
value of α by using the iterates at the end of the last two subsequent cycles
and their related gradients (or estimates of these). Variants of this approach are
developed for variance reduced methods, such as SVRG, SAG [2] or mS2GD [4].
Since these schemes perform a full gradient evaluation over the whole dataset per
epoch, the full gradients in two subsequent outer iterations are involved in the
computation of BB approximation. More recently [5], in the context of variable
metric proximal gradient iterative methods, the authors propose to replace the
learning rate with a diagonal scaling matrix U−1

k derived by properly adjusting
the secant conditions (3) and (4). In particular, the minimization is carried out
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with respect to a diagonal matrix, the entries of the solution are constrained to
the BB rules (as safeguarding policy) and a consistency term with the previous
metric Uk−1, weighted by a positive parameter μ, is included in the objective
function. The resulting updating rules for the diagonal matrices (U−1

k )BB1 and
(U−1

k )BB2 are given as follows:

(U−1
k )BB1

j = mid(αBB2
k ,

(s(k−1)
j )2 + μ

y
(k−1)
j s

(k−1)
j + μ(Uk−1)BB1

j

, αBB1
k ), j = 1, . . . , d, (5)

(U−1
k )BB2

j = mid(αBB2
k ,

y
(k−1)
j s

(k−1)
j + μ

(Uk−1)BB2
j

(y(k−1)
j )2 + μ

, αBB1
k ), j = 1, . . . , d, (6)

where mid(a, b, c) = min(max(a, b), c). This idea has been borrowed and adapted
to the stochastic context in [6,7], giving rise to the methods named mS2GD-
DBB and SRG-DBB-YOU, respectively. Also in this case the diagonal scaling
matrix is kept fixed along the internal iterations of a variance reduced method,
as mS2GD or SARAH, so that two full gradients are involved in the updating
rule of the scaling matrices. It is crucial to recall that to perform a full gradient
evaluation over the dataset per epoch is very expensive and it is not employed
in the practical deep learning applications and, more in general, in the big data
framework, for its computational cost, the hardware memory constraints and
the resulting high inefficiency when training a deep neural network. Moreover, a
stochastic gradient algorithm which avoids the computation of the full gradient
becomes necessary in the online learning scenarios, where data are not entirely
available at the beginning of the training process as well as the full gradient [8,
Sec. 2.2.2].

The aim of this paper is to introduce the scaling matrix technique in those
stochastic gradient methods which control the variance of the stochastic gradi-
ents by means of adaptive subsampling strategies based on a suitable increasing
of the mini-batch size employed for their computation, as for example in the
method described in [9], known as ASM (see also [10]). In more detail, when
suitable conditions, assuring that the negative of the current stochastic gradient
is a descent direction in expectation, are not satisfied, the size of the mini-batch is
increased until the aforementioned conditions are meet. The idea is to keep fixed
the scaling matrix for all the iterations based on mini-batches of the same size;
the scaling matrix is updated when an increase of the mini-batch size is required
or the whole train set has been visited. In Sect. 2, we state the conditions on the
stochastic scaled direction −U−1g

(k)
Nk

which enable to obtain theoretical conver-
gence results. Under suitable assumption on U−1, linear convergence is proved
for E[F (x(k))−F ∗] when F has gradient Lipschitz continuous gradient and satis-
fies the Polyak-Lojasiewicz condition, while sublinear convergence is obtained for
convex F . Finally, we discuss convergence results for general functions. Section 3
is devoted to detail the practical implementation of an algorithm, named ASM-
DIAG, which combines the adaptive subsampling technique suggested in [9]
with the updating rules for the scaling matrices (5)–(6). Finally, in Sect. 4 we
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describe the results of an extensive numerical experimentation. The conclusions
are drawn in Sect. 5.

Notation. We recall that, given two symmetric square matrices, A � B means
that xT Ax

xT x
≤ xT Bx

xT x
for all x 	= 0. Furthermore, we denote by λmin(A) and

λmax(A) the minimum and the maximum eigenvalue of A respectively. Given a
vector x, we denote by ‖x‖ the standard Euclidean norm; if A is a symmetric
and positive definite matrix, ‖x‖A denotes the norm with respect to A, defined
as

√
xT Ax.

2 Scaled Stochastic Gradient Methods

We consider a stochastic gradient (SG) iteration where the role of the standard
learning rate is taken by a scaling matrix U−1 which is assumed symmetric and
positive definite:

x(k+1) = x(k) − U−1g
(k)
Nk

, (7)

where g
(k)
Nk

= 1
Nk

∑
i∈Nk

∇fi(x(k)) is a stochastic gradient. As a standard assump-
tion, we assume that the stochastic gradient at the current iterate is an unbiased
estimate of the full gradient, i.e., Ek[gNk

] = ∇F (x(k)), where Ek[·] denotes the
conditional expected value with respect to the σ-algebra generated by the infor-
mation collected before iteration k, i.e., assuming x(0), . . . , x(k) given.

Following the suggestions in [9–11], the size of the current mini-batch is
selected so that suitable conditions are satisfied. In particular, it is required that
−U−1g

(k)
Nk

is a descent direction at least in expectation, that is

Ek

[
∇F (x(k))T U−1g

(k)
Nk

]
= ∇F (x(k))T U−1∇F (x(k)) > 0. (8)

Thus, to control the variance of the term on the left hand side, the value of Nk

has to be large enough to assure that the following condition is satisfied:

Ek

[(
∇F (x(k))T U−1g

(k)
Nk

− ∇F (x(k))T U−1∇F (x(k))

)2]
≤ θ2

(
∇F (x(k))T U−1∇F (x(k))

)2

,

(9)
for a prefixed value θ2 > 0. Moreover, we observe that, in view of the positive
definiteness of U−1, it is required that, at least in expectation, g

(k)
Nk

and ∇F (x(k))
should not be U−1 conjugate; thus, Nk has to be large enough to ensure that
the following condition holds:

Ek[w(k)T U−1w(k)] ≤ ν2∇F (x(k))T U−1∇F (x(k)), (10)

where w(k) = g
(k)
Nk

− g
(k)
Nk

T
U−1∇F (x(k))

∇F (x(k))T U−1∇F (x(k))
∇F (x(k)) and ν2 > 0 is a prefixed value.

Now we perform the following additional assumptions:

A ∇F is L-Lipschitz continuous;
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B the Polyak-Lojasiewicz (P-L) condition holds

‖∇F (x)‖2 ≥ 2c(F (x) − F ∗), ∀x ∈ R
d, (11)

where c is a positive constant and F ∗ = infx∈Rd F (x);
C U−1 is a symmetric positive definite matrix such that U−1 � 1

L(1+θ2+ν2)I (or
equivalently U�L(1 + θ2 + ν2)I), for given constants θ, ν in (9) and (10).

We remark that assumption B holds when F is c-strongly convex, but it is also
satisfied for other functions that are not convex (see [12]). In addition we observe
that assumptions A and B do not guarantee the existence of a stationary point
for F ; nevertheless, under the two assumptions, any stationary point x∗ for F is
a global minimizer and F ∗ = F (x∗).

Lemma 1. Under the Assumptions A and C, we have

Ek[F (x(k+1))] ≤ F (x(k)) − 1
2
∇F (x(k))T U−1∇F (x(k)). (12)

Proof. From the general equality E[‖z − E[z]‖2] = E[‖z‖2] − ‖E[z]‖2, we obtain
from (9) the inequality

Ek[(∇F (x(k))T U−1g
(k)
Nk

)2] ≤ (1 + θ2)(∇F (x(k))T U−1∇F (x(k)))2. (13)

From (10), we can write

Ek[g(k)Nk

T
U−1g

(k)
Nk

] ≤ Ek[(∇F (x(k))T U−1g
(k)
Nk

)2]
∇F (x(k))T U−1∇F (x(k))

+ ν2∇F (x(k))T U−1∇F (x(k))

≤ (1 + θ2 + ν2)∇F (x(k))T U−1∇F (x(k)), (14)

where the last inequality follows from (13). In view of (7) and the L-Lipschitz
continuity of ∇F , we have that

F (x(k+1)) ≤ F (x(k)) − ∇F (x(k))T U−1g
(k)
Nk

+
L

2
‖U−1g

(k)
Nk

‖2. (15)

By taking the conditional expectation on both sides of the last inequality, recall-
ing (8) and the assumption U−1 � 1

L(1+θ2+ν2)I, we can write

Ek[F (x(k+1))] ≤ F (x(k)) − ∇F (x(k))T U−1∇F (x(k))

+
1

2(1 + θ2 + ν2)
Ek[g(k)Nk

U−1UU−1g
(k)
Nk

]

≤ F (x(k)) −
(

1 − 1 + θ2 + ν2

2(1 + θ2 + ν2)

)
∇F (x(k))T U−1∇F (x(k)) (16)

where the last inequality follows from (14). ��
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Theorem 2. Suppose Assumptions A and B hold. Let {x(k)} be the sequence
generated by (7), where the size Nk of any sub-sample is chosen so that the
conditions (9) and (10) are fulfilled and U−1 satisfies the assumption C. Then,
we have that

E[F (x(k)) − F ∗] ≤ (1 − ρ)k(F (x(0)) − F ∗), (17)

where ρ = c λmin(U−1) < 1.

Proof. From the properties of symmetric and positive definite matrices and
Assumption B we can write

∇F (x(k))T U−1∇F (x(k)) ≥ λmin(U−1)‖∇F (x(k))‖2
≥ 2cλmin(U−1)(F (x(k)) − F ∗). (18)

Consequently, by subtracting F ∗ from both members of inequality (12) in Lemma
1 and using (18), we can write

Ek[F (x(k+1)) − F ∗] ≤ (F (x(k)) − F ∗) − 1
2
∇F (x(k))T U−1∇F (x(k))

≤ (1 − cλmin(U−1))(F (x(k)) − F ∗). (19)

We set ρ = cλmin(U−1); then, by taking the total expectation in the last inequal-
ity, we obtain the linear convergence to 0 of {E[F (x(k+1)) − F ∗]}

E[F (x(k+1)) − F ∗] ≤ (1 − ρ)k+1(F (x(0)) − F ∗).

��
In the case of a convex function F , we can state the following theorem.

Theorem 3. Suppose Assumption A holds. Let {x(k)} be the sequence generated
by (7), where the size Nk of any sub-sample is chosen so that the conditions
(9) and (10) are fulfilled and U−1 satisfies Assumption C, with λmax(U−1) <

1
L(1+θ2+ν2) . Assume that X∗ = argmin

x
F (x) 	= ∅ and the function F is convex.

Then, we have that

min
0≤k≤K

E[F (x(k)) − F (x∗)] ≤ 1
2(1 − γ)K

‖x(0) − x∗‖2U , (20)

where x∗ ∈ X∗ and γ = λmax(U−1)L(1 + θ2 + ν2).

Proof. Assume x∗ ∈ X∗. We have

Ek[‖x(k+1) − x∗‖2
U ] =

= ‖x(k) − x∗‖2
U + Ek[‖x(k+1) − x(k)‖2

U ] + 2Ek[(x(k+1) − x(k))TU(x(k) − x∗)]

= ‖x(k) − x∗‖2
U − 2Ek[g

(k)
Nk

]T (x(k) − x∗) + Ek[g
(k)
Nk

T
U−1g

(k)
Nk

]

≤ ‖x(k) − x∗‖2
U − 2∇F (x(k))T (x(k) − x∗) + (1 + θ2 + ν2)∇F (x(k))TU−1∇F (x(k))

≤ ‖x(k) − x∗‖2
U − 2∇F (x(k))T (x(k) − x∗) + (1 + θ2 + ν2)λmax(U−1)‖∇F (x(k))‖2

≤ ‖x(k) − x∗‖2
U − 2∇F (x(k))T (x(k) − x∗) +

γ

L
‖∇F (x(k))‖2 (21)
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where we set γ = L(1 + θ2 + ν2)λmax(U−1); in the first equality we use (7); the
second inequality follows from (14). From the assumption on λmax(U−1), γ < 1.
In view of the convexity of F and the Lipschitz continuity of its gradient, the
inequality ‖∇F (x(k))‖2 ≤ 2L(F (x(k)) − F (x∗)) holds [13]. Thus, in view of this
last inequality and again the convexity of F , we obtain

Ek[‖x(k+1) − x∗‖2U ] ≤ ‖x(k) − x∗‖2U − 2(1 − γ)(F (x(k)) − F (x∗)). (22)

By taking the total expectation, we can write

E[F (x(k)) − F (x∗)] ≤ 1
2(1 − γ)

(E[‖x(k) − x∗‖2U ] − E[‖x(k+1) − x∗‖2U ]). (23)

Summing up for k = 0, ...,K − 1 both the members of this last inequality, we
obtain

min
0≤k≤K−1

E[F (x(k)) − F (x∗)] ≤ 1
2(1 − γ)K

‖x(0) − x∗‖2U .

��
Finally, we consider the case of non-convex objective function. In this case,

{∇F (x(k))} converges to zero in expectation, with a sub-linear rate of conver-
gence of the smallest gradient arising after K iterations.

Theorem 4. Suppose Assumption A holds and F is bounded below by F ∗. Let
{x(k)} be the sequence generated by (7), where the size Nk of any sub-sample
is chosen so that the conditions (9) and (10) are fulfilled and U−1 satisfies
Assumption C. Assume that X∗ = argmin

x
F (x) 	= ∅. Then, we have that

lim
k→∞

E[‖∇F (x(k))‖2] = 0. (24)

Proof. From Lemma 1, by taking the total expectation, we can write

E[‖U−1∇F (x(k))‖2U ] ≤ 2E[F (x(k)) − F (x(k+1))].

Summing up for k = 0, ...,K − 1 both the members of this last inequality, we
obtain

K−1∑

k=0

E[‖U−1∇F (x(k))‖2U ] ≤ 2E[F (x(0)) − F (x(K))]

≤ 2(F (x(0)) − F ∗) < ∞.

Thus, we conclude that

min
0≤k≤K−1

E[‖∇F (x(k))‖2] ≤ 1
Kλmin(U−1)

K−1∑

k=0

E[‖U−1∇F (x(k))‖2U ]

≤ 2
Kλmin(U−1)

(F (x(0)) − F ∗). (25)

��
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3 Practical Implementation

For the convergence results, conditions (9) and (10) have a crucial role. We
observe that the left hand side terms of (9) and (10) are bounded from above by
the true expectations of individual gradient ∇fi(x(k)) of the sum in (1), so that
(9) and (10) are satisfied when the following conditions involving the mini-batch
size Nk hold:

Ek[∇F (x(k))T U−1∇fi(x(k)) − ‖∇F (x(k))‖2U−1 ]
Nk

≤ θ2‖∇F (x(k))‖4U−1 , (26)

Ek[w(k)
i

T
U−1w

(k)
i ]

Nk
≤ ν2‖∇F (x(k))‖2U−1 , (27)

where w
(k)
i = ∇fi(x(k)) − ∇fi(x

(k))
T

U−1∇F (x(k))
∇F (x(k))T U−1∇F (x(k))

∇F (x(k)). In order to implement
the above conditions, the expectation values can be approximated by the sample
expectations and the gradient ∇F (x(k)) on the right side by a sample gradient,
so that the above conditions can be replaced by the following tests:

∑
i∈Nk

(g(k)Nk

T
U−1∇fi(x(k)) − ‖g

(k)
Nk

‖2U−1)2

Nk(Nk − 1)
≤ θ2‖g

(k)
Nk

‖4U−1 , (28)

∑
i∈Nk

(w̃(k)
i )T U−1w̃

(k)
i

Nk(Nk − 1)
≤ ν2‖g

(k)
Nk

‖2U−1 , (29)

where w̃
(k)
i = ∇fi(x(k)) − ∇fi(x

(k))
T

U−1g
(k)
Nk

g
(k)
Nk

T
U−1g

(k)
Nk

g
(k)
Nk

. When these conditions are not

satisfied by the current sample size, the sample size is increased until (28) and
(29) are satisfied.

Now we specify how to define the scaling matrix which multiplies the stochas-
tic gradient. We call “cycle” the set of mk steps (i = 0, ...,mk − 1), where the
mini-batch is fixed, i.e., the tests (28) and (29) are meet by the selected current
mini-batch of size Nk. We impose that any cycle has at most a number of steps
corresponding to a visit of the whole dataset (epoch). For any i-th step of a cycle
(i = 0, ...,mk), the following basic iteration is repeated

x(k,i+1) = x(k,i) − U−1
k g

(k,i)
Nk,i

, i = 0, ...,mk − 1,

where x(k,0) = x(k), Nk,i are subset of size Nk and x(k+1) = x(k,mk−1). For a
whole cycle U−1

k is kept fixed and it is selected by means of either (5) or (6)
where s(k−1) and y(k−1) are defined as follows:

s(k−1) = x(k) − x(k−1) = x(k,0) − x(k−1,0)

y(k−1) = v(k) − v(k−1). (30)

The vectors {v(k)} are approximations of the full gradient and are computed as
in [2]; particularly, starting by v(k) = 0,

v(k) = βg
(k,i)
Nk,i

+ (1 − β)v(k),
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where β ∈ (0, 1) is a prefixed parameter.
Furthermore, as explained in [2], the standard BB rules are redefined in a

stochastic framework as

αBB1
k = mid

(
αmin,

1
mk−1

s(k−1)T s(k−1)

s(k−1)T y(k−1)
, αmax

)
(31)

αBB2
k = mid

(
αmin,

1
mk−1

s(k−1)T y(k−1)

y(k−1)T y(k−1)
, αmax

)
(32)

where mk−1 is the number of steps of cycle where the size of the mini-batches
is Nk−1.

For the initial two cycles, U−1
0 and U−1

1 are set as αiniI, with αini > 0 chosen
as a small value; furthermore, we set αmin and α̃max as bound values (i.e., 10−5,
104); αmax = α̃maxγ�, where � is the counter of the steps and {γ�}⊂ R is a
decreasing sequence as O(1� ) [1]. When αBB1

k = αBB2
k or one of the two values

is equal to αmax, a recovery cycle with U−1
k = αiniI is executed. We denote the

described method as ASM-DIAG-BB1 and ASM-DIAG-BB2 in according
to the rules (5) and (6) respectively used to update the diagonal matrix after a
cycle with fixed mini-batch size.

4 Numerical Results

To evaluate the effectiveness of ASM-DIAG method, in this section we report
the results of a set of numerical experiments aimed to obtain a binary classifier
for some datasets with respect to different loss functions. In particular we study
the behaviour of ASM-DIAG method in both convex and non-convex contexts
with respect to the following competitor methods: the standard SG method
with a fixed mini-batch size (50 elements) and optimal hand-tuned value for the
learning rate, named SG-mini 50, the ASM method in [9], the mS2GD-DBB
method in [6], the SRG-DBB-YOU method in [7].

We remark that mS2GD-DBB and SRG-DBB-YOU are hybrid methods
since they use cyclically full gradient computations.

We compare the methods by considering the accuracy of the classification
measured on the test set and the behaviour of the optimality gap with respect
to the epochs. The optimality gap is defined as |F (x(j)) − F ∗|, where F (x(j)) is
the objective function computed at the epoch j on the whole train set and F ∗ is
a ground truth value for the exact minimum of F , obtained by a huge number
of iterations of a stochastic method.

For the experiments we consider three datasets with four different loss func-
tions: two convex and two non-convex. Table 1 show the details of these datasets
and the cardinality of the train and the test sets.

In the following we list the functions used in the objective function in (1):

• logistic regression (LR) loss:

fi(x) = ln
[
1 + e−bia

T
i x

]
;
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Table 1. Features of each dataset.

Dataset d #train set (N) #test set

w8a 300 44774 4975

IJCNN 22 49990 91701

RCV1 47236 20242 10000

• smooth hinge (SH) loss:

fi(x) =

⎧
⎪⎨

⎪⎩

1
2 − bia

T
i x, if bia

T
i x ≤ 0;

1
2 (1 − bia

T
i x)2, if 0 < bia

T
i x < 1

0, if bia
T
i x ≥ 1;

;

• sigmoid (SIG) loss:
fi(x) = 1 − tanh(bia

T
i x);

• logistic difference (LD) loss:

fi(x) = ln(1 + e−bia
T
i x) − ln(1 + e−bia

T
i x−1);

where ai ∈ R
d is the sample and bi ∈ {+1,−1} is the label of the i-th element

of the dataset.

Hyper-Parameters Setting
Each of the five methods considered has different hyper-parameters to be set up
as best as possible.

1. For SG-mini 50 the mini-batch size is fixed to 50 and the best learning
rate has been obtained by successive trials. We emphasize that this phase is
computationally expensive, as it requires a run for each option tried.

2. For ASM the initial mini-batch size is set to 3, the initial learning rate α0 is
set to 10 and, using the notation in [9], θ = 0.7, ν = 5.84, r = 10, γ = 0.38,
η = 2 and ζk = ζ = 2. For the dataset IJCNN combined with the SH loss,
θ = 0.9.

3. For mS2GD-DBB we set μ = 10−3 in (5) and the mini-batch size as 50;
the initial value of the learning rate and the maximum dimension m of the
internal cycle are tuned by a trial procedure.

4. For SRG-DBB-YOU we set μ = 10−3 in (6) and the mini-batch size as 50;
the initial value of the learning rate and the maximum dimension m of the
internal cycle are tuned by a trial procedure.

5. For ASM-DIAG we set β = 0.9, αini = 1, αmin = 10−5, α̃max = 104,
μ = 10−4, θ = 0.5, ν = 3.82 and γ� = 1/(0.1l + 1).
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Fig. 1. Comparison between ASM-DIAG-BB1 (rule (5)) and ASM-DIAG-BB2
(rule (6)) in the case of the w8a dataset with the LD loss (left panel) and the RCV1
dataset with the LR loss (right panel).

First Experiment
In Fig. 1, the two versions ASM-DIAG-BB1 and ASM-DIAG-BB2 of the
proposed method are compared in the case of two test problems, i.e., the dataset
w8a combined with the convex LR loss and the dataset RCV1 combined with
the non-convex LD loss. We highlight the greater performance of ASM-DIAG-
BB1 with respect to the version ASM-DIAG-BB2: this behaviour can be
observed for all the considered test problems. For this reason, the version ASM-
DIAG-BB1 will always be used when comparing with the other methods.

We underline that to check conditions (28) and (29) can be very expen-
sive from a computational point of view. Therefore, in the implementation of
ASM-DIAG, this check is not performed at each iteration, but periodically
also according to the size of the dataset.

Second Experiment
In this section we present the results of the comparison among all the considered
methods. Due to the stochastic nature of the methods, we compute 10 runs with
different pseudo-random number generators. Specifically for each combination
dataset/loss, in Tables 2, 3, 4 and 5 we present the following metrics:

• average and STandard Deviation (STD) of the optimality gap |F (x) − F ∗|
evaluated on the train set, where x is the iterate at the end of the 30th epoch;

• average and STD of the accuracy A(x) evaluated on the test set, at the end
of the 30th epoch;

• the averaged execution time.
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Table 2. Results for the LR loss function.

Method w8a IJCNN RCV1

SG-mini 50

|F (x̄) − F∗| 0.0009 0.0002 0.0543

±STD ±0.0008 ±0.0001 ±0.0001

A(x̄) 0.9062 0.9199 0.9640

±STD ±0.0008 ±0.0005 ±0.0002

Time 10.5714 4.9242 13.2564

ASM

|F (x̄) − F∗| 0.0061 0.0002 0.0076

±STD ±0.0009 ±5.41e−5 ±0.0006

A(x̄) 0.9052 0.9193 0.9632

±STD ±0.0014 ±0.0004 ±0.0008

Time 28.8524 9.2412 328.0100

mS2GD-BB

|F (x̄) − F∗| 0.0271 0.0038 0.2687

±STD ±0.0019 ±0.0006 ±0.0004

A(x̄) 0.8995 0.9168 0.9435

±STD ±0.0012 ±0.0012 ±0.0005

Time 10.8022 4.0593 10.2900

SRG-DBB-YOU

|F (x̄) − F∗| 0.0654 8.85e−6 0.0089

±STD ±0.0096 ±1.20e−7 0.0011

A(x̄) 0.8930 0.9202 0.9648

±STD ±0.0030 ±2.83e−5 ±0.0005

Time 10.2375 8.6645 11.2300

ASM-DIAG

|F (x̄) − F∗| 0.0109 0.0013 0.0960

±STD ±0.0056 ±0.0012 ±0.0043

A(x̄) 0.9043 0.9185 0.9616

±STD ±0.0017 ±0.0020 ±0.0008

Time 16.3327 4.6291 27.4500

Table 3. Results for the SH loss function.

Method w8a IJCNN RCV1

SG-mini 50

|F (x̄) − F∗| 0.0010 0.0005 0.0045

±STD ±0.0005 ±0.0002 ±0.0003

A(x̄) 0.9072 0.9225 0.9638

±STD ±0.0012 ±0.0011 ±0.0003

Time 9.7397 7.3017 86.1983

ASM

|F (x̄) − F∗| 0.0134 0.0025 0.0506

±STD ± 0.0011 ±0.0005 ±0.0028

A(x̄) 0.9012 0.9169 0.9600

±STD ±0.0007 ±0.0006 ±0.0006

Time 18.1085 10.5134 89.3124

mS2GD-BB

|F (x̄) − F∗| 0.0196 0.0030 0.0666

±STD ±0.0011 ±0.0015 ±0.0003

A(x̄) 0.8996 0.9203 0.9569

±STD ±0.0010 ±0.0024 ±0.0007

Time 18.9906 6.6724 190.8110

SRG-DBB-YOU

|F (x̄) − F∗| 0.0051 0.0002 0.0020

±STD ±0.0116 ±0.0001 ±0.0004

A(x̄) 0.8833 0.9204 0.9628

±STD ±0.0077 ±0.0004 ±0.0007

Time 18.1700 6.2644 60.6231

ASM-DIAG

|F (x̄) − F∗| 0.0039 0.0006 0.0212

±STD ±0.0021 ±0.0009 ±0.0014

A(x̄) 0.9061 0.9204 0.9654

±STD ±0.0009 ±0.0022 ±0.0010

Time 21.4431 5.5339 156.6770

The execution time reported in the tables does not take into account the
preliminary tuning of the hyper-parameters. This phase is very expensive for
SG, mS2GD-DBB and SRG-DBB-YOU while ASM and ASM-DIAG are
more robust whit respect to the initial setting. Furthermore, the hybrid methods
require the computation of the full gradient several times during the training;
this may not be practicable in online learning or in contexts where the dataset
is too large compared to the available hardware memory resources. Regarding
the comparison between ASM and ASM-DIAG, we observe that in ASM the
increase of the mini-batch size is very quickly. This event, especially with medium
and large datasets such as RCV1, determines a consequent increase in execution
time. Furthermore, a very large mini-batch size can grow memory traffic, possibly
causing system crashes. In Figs. 2, 3 the comparison between ASM-DIAG and
the considered methods is shown. The averaged optimality gap and the increase
of the mini-batch size are reported. Figure 2 shows the results obtained for w8a
with SIG loss. Although the behavior of ASM-DIAG does not match that of
ASM, in ASM we observe a very large growth of the mini-batch size. As a
consequence, the execution time of ASM is higher than that of ASM-DIAG.
Figure 3 shows the experiment results carried out on IJCNN with SH loss. The
best final performance is reached by the SRG-DBB-YOU method, even if its
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Table 4. Results for the SIG loss func-
tion.

Method w8a IJCNN RCV1

SG-mini 50

|F (x̄) − F∗| 0.0075 6.15e−7 0.0230

±STD ±0.0058 ±1.40e−7 ± 0.0002

A(x̄) 0.9046 0.9050 0.9650

±STD ±0.0026 ±0.0000 ± 0.0004

Time 11.0278 3.3114 18.3694

ASM

|F (x̄) − F∗| 0.0085 0.0108 0.0054

±STD ±0.0018 ±0.0343 ±0.0007

A(x̄) 0.9053 0.8996 0.9643

±STD ±0.0009 ±0.0171 ± 0.0007

Time 25.3240 7.1951 347.4760

mS2GD-BB

|F (x̄) − F∗| 0.0330 0.0015 0.1818

±STD ±0.0000 ±0.0008 ± 0.0006

A(x̄) 0.8949 0.9050 0.9511

±STD ±0.0026 ±0.0000 ± 0.0005

Time 8.2558 4.0018 8.7160

SRG-DBB-YOU

|F (x̄) − F∗| 0.0782 2.20e−5 0.0064

±STD ±0.0202 ±1.02e−5 ±0.0012

A(x̄) 0.8828 0.9050 0.9651

±STD ±0.0077 ±0.0000 ±0.0006

Time 8.3621 3.9150 7.6961

ASM-DIAG

|F (x̄) − F∗| 0.0111 2.91e−5 0.0372

±STD ±0.0018 ±5.51e−6 ±0.0056

A(x̄) 0.9046 0.9050 0.9644

±STD ±0.0012 ±0.0000 ± 0.0008

Time 13.1858 7.7255 28.7361

Table 5. Results for the LD loss function;
the symbol * denotes a failure.

Method w8a IJCNN RCV1

SG-mini 50

|F (x̄) − F∗| 4.32e−5 0.0329 0.0088

±STD ±7.91e−5 ±0.0113 ± 0.0006

A(x̄) 0.9068 0.9085 0.9657

±STD ±0.0006 ±0.0110 ±0.0005

Time 6.6691 5.7566 286.6630

ASM

|F (x̄) − F∗| 0.0015 * 0.0031

±STD ±0.0096 ±* ± 0.0003

A(x̄) 0.9065 0.6221 0.9643

±STD ±0.0007 ±0.2358 ± 0.0006

Time 16.2706 16.8134 747.0070

mS2GD-BB

|F (x̄) − F∗| 0.0173 0.0380 0.1981

±STD ±0.0007 ±0.0001 ± 0.0001

A(x̄) 0.8978 0.9050 0.9324

±STD ±0.0008 ±0.0000 ± 0.0004

Time 6.1348 4.6669 273.6460

SRG-DBB-YOU

|F (x̄) − F∗| 0.0063 0.0365 0.0045

±STD ±0.0009 ±4.30e−5 ±0.0005

A(x̄) 0.9025 0.9050 0.9654

±STD ±0.0008 ±0.0000 ±0.0005

Time 5.7727 3.7509 159.2970

ASM-DIAG

|F (x̄) − F∗| 0.0115 0.0368 0.0502

±STD ±0.0009 ±3.16e−5 0.0026

A(x̄) 0.8998 0.9050 0.9584

±STD ±0.0004 ±0.0000 ±0.0011

Time 11.3575 5.9963 369.9070

Fig. 2. w8a dataset with SIG loss: optimality gap (left panel) and increase of sample
size in ASM and ASM-DIAG (right panel).

behaviour is the worst in the initial 10 epochs. The increase of the mini-batch
size for ASM is again very large compared to the one for ASM-DIAG.
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Fig. 3. IJCNN dataset with SH loss: optimality gap (left panel) and increase of sample
size in ASM and ASM-DIAG (right panel).

5 Conclusions

In this paper we introduce the idea of selecting the learning rate by means of
a diagonal scaling matrix in those stochastic gradient methods which reduce
the variance of the stochastic directions through an adaptive increase of the
mini-batch size, without any computation of the full gradient of the function to
minimize. For the resulting algorithm we prove convergence results in both cases
of convex and non-convex objective function. An extensive numerical experimen-
tation has been carried out on binary classification problems in order to evaluate
the effectiveness of the proposal. The numerical results show that the suggested
approach appears robust with respect to the selection of the hyper-parameters
involved in its definition and allows for a less rapid increase of the mini-batch
size.
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Abstract. The present study applies Algorithm Selection to automat-
ically specify the suitable algorithms for Large-Scale Multi-objective
Optimization. Algorithm Selection has known to benefit from the
strengths on multiple algorithm rather than relying one. This trait offers
performance gain with limited or no contribution on the algorithm and
instance side. As the target application domain, Multi-objective Opti-
mization is a realistic way of approaching any optimization tasks. Most
real-world problems are concerned with more than one objective/quality
metric. This paper introduces a case study on an Algorithm Selec-
tion dataset composed of 4 Multi-objective Optimization algorithms on
63 Large-Scale Multi-objective Optimization problem benchmarks. The
benchmarks involve the instances of 2 and 3 objectives with the number
of variables changing between 46 and 1006, Hypervolume is the perfor-
mance indicator used to quantify the solutions derived by each algorithm
on every single problem instance. Since Algorithm Selection needs a suite
of instance features, 4 simple features are introduced. With this setting,
an existing Algorithm Selection system, i.e. ALORS, is accommodated
to map these features to the candidate algorithms’ performance denoted
in ranks. The empirical analysis showed that this basic setting with AS
is able to offer better performance than those standalone algorithms.
Further analysis realized on the algorithms and instances report similar-
ities/differences between algorithms and instances while reasoning the
instances’ hardness to be solved.

1 Introduction

Optimization [1] is a process concerned with exploring the best solution regarding
some performance criteria. These criteria are referred to objective functions that
can measure the solution quality regarding a target problem. The number of
objectives determine the nature of the problem. A large group of optimization
research focuses on the problems with only one objective, i.e. single-objective
optimization. However, the majority of the real-world applications actually come
with more than one objective. Those problems are categorized as the multi-
objective optimization problems (MOPs) [2]. Further categorization is possible
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
B. Dorronsoro et al. (Eds.): OLA 2023, CCIS 1824, pp. 36–47, 2023.
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when the number of objectives is exactly two, i.e. bi-objective optimization. If the
count exceeds three, then the MOPs are denoted as many-objective optimization.
[3,4].

The main challenge of having multiple objectives is that they are likely to
be conflicting. Improving one objective can degrade the quality of the remaining
objectives. This leads to solution quality evaluation based on various perfor-
mance indicators utilizing all the objectives. R2 [5,6], Hyper-volume (HV) [7],
Generational Distance (GD) [8], Inverted/Inverse GD (IGD) [9], IGD+ [10],
Spread [11], and Epsilon [12] are well-known examples of the performance indi-
cators. These indicators are mostly linked to Pareto fronts (PFs) where multi-
ple solutions are maintained. PFs consist of the solutions that do not strictly
dominate any other solution, i.e. the solutions that are not worse than the
remaining solutions considering all the objectives. In that respect, the algo-
rithms developed for the MOPs mostly operate on the populations of solutions,
i.e. the population-based algorithms. Multi-objective Evolutionary Algorithms
(MOEAs) [13,14] take the lead in that domain. Non-dominated Sorting Genetic
Algorithm II (NSGA-II) [11,15], Pareto Archived Evolution Strategy (PAES)
[16], Strength Pareto Evolutionary Algorithm 2 (SPEA2) [17], Pareto Envelope-
based Selection Algorithm II (PESA-II) [18] and MOEA based on Decomposi-
tion (MOEA/D) [19] are some examples from the literature. There are other
population-based algorithms besides MOEAs, using meta-heuristics like Particle
Swarm Optimization (MOPSO) [20] and Ant Colony Optimization [21]. It is also
possible to see their hybridized variants [22–24].

Despite these immense algorithm development efforts, it is unlikely to see a
truly best, i.e. always coming first, algorithm on the existing benchmark scenarios
under fair experimental conditions. This practical fact is further supported theo-
retically by the No Free Lunch (NFL) theorem [25]. This study focuses on auto-
matically determining the algorithm to be applied for each given MOP instance,
through Algorithm Selection (AS) [26]. AS is a meta-algorithmic approach offer-
ing improved performance through selection. The idea is to automatically choose
algorithms from given problem solving scenarios. The selection operations are
carried on a given algorithm set [27] consisting of those candidate methods to
be picked. The traditional way of approach AS is in the form of performance
prediction models. In that respect, a suite of features is needed to characterize
the target problem instances. These features are matched with the performance
of the candidate algorithms on a group of training instances. While the use of
human-engineered features is common for AS, Deep Learning (DL) has also been
used for automatically extracting features [28].

AS has been applied to a variety of problem domains such as Boolean Satis-
fiability (SAT) [29] Constraint Satisfaction (CSP) [30], Blackbox Optimization
[31], Nurse Rostering (NRP) [32], Graph Coloring (GCP) [33], Traveling Sales-
man (TSP) [34] Traveling Thief Problem (TTP) [35], and Game Playing [36]. AS
library (ASlib) [37] provides a diverse and comprehensive problem sets for AS.
There have been development efforts of new AS systems for addressing these
problems. SATzilla [29] is a well known AS method, particularly popularized
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due to its success in the SAT competitions. Hydra [38] is an example aiming
at constructing algorithm sets, a.k.a. Algorithm Portfolios [27], via configuring
the given algorithms. The portfolio building task has been studied for different
selection tasks [39–42]. 3S [43] delivers algorithm schedules, assigning runtime
to the algorithms for each given problem instance. Unlike these AS level contri-
butions, Autofolio [44] takes the search to a higher level by seeking the best AS
setting of varying components and parameter configurations. As another high-
level approach, AS is used for performing per-instance selection across Selection
Hyper-heuristics (SHHs) [45].

The present study performs AS to identify suitable algorithms for the given
MOP instance. To be specific, the problem targeted here is the Large-scale MOP
(LSMOP) where the number of decision variables can reach up to the vicinity
of thousands. The instance set is based on 9 LSMOP benchmarks. Those base
benchmarks are varied w.r.t. the number of objectives, i.e. 2 or 3, and the num-
ber of decision variables, varies between 46 and 1006, leading to 63 LSMOP
instances. The task is to perform per-instance AS using an existing AS system
named ALORS [46], among 4 candidate population-based algorithms. Hypervol-
ume (HV) is used as the performance indicator. Experimental analysis carried
out illustrated that AS only with 4 basic features outperforms those constituent
multi-objective algorithms.

In the remainder of the paper, Sect. 2 discusses the use of AS. An empiri-
cal analysis is reported in Sect. 3. Section 4 comes with the concluding remarks
besides discussing the future research ideas.

2 Method

ALORS [46] is concerned with the selection task as a recommender system (RS).
ALORS specifically uses Collaborative Filtering (CF) [47] in that respect. Unlike
the existing AS systems, ALORS is able to perform with the sparse/incomplete
performance data, M , while maintaining high, comparable performance to the
complete data. The performance refers to running a set of algorithms, A, on a
group of instances, I. Thus, the performance data is a matrix of M|I|×|A|. For
decreasing the data generation cost of such sparse data has been further tar-
geted in [48,49]. While the entries of the performance data vary from problem
to problem, ALORS generalizes them by using the rank data, M. Thus, any
given performance data is first converted into rank data. Unlike the traditional
AS systems, ALORS builds a prediction model with an intermediate feature-to-
feature mapping step, instead of providing a direct rank prediction. The initial,
hand-picked/designed features are referenced to a set of latent (hidden) features.
These features are extracted directly from the rank performance data by using
Singular Value Decomposition (SVD) [50]. SVD is a well-known Matrix Fac-
torization (MF) strategy, used in various CF based RS applications [51]. SVD
returns two matrices, U and V besides a diagonal matrix accommodating the
singular values as M = UΣV t. U represents the rows of M, i.e. instances, while
V displays its columns, i.e. algorithms, similarly to [52,53]. Beyond representing
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those data elements, the idea is the reduce the dimensions, r ≤ min(|I|, |A|),
hopefully eliminating the possible noise in M.

M ≈ UrΣrV
t
r

ALORS maps a given initial set of instance features F to Ur. The predicted
performance ranks are calculated by multiplying Ur with the remaining matrices
of Σr and V t

r . In that respect, for a new problem instances, ALORS essentially
determines an array of values, i.e. a new row for Ur. Its multiplication with Σr

and V t
r delivers the expected performance ranks of the candidate algorithms on

this new problem instance.

3 Computational Results

Despite the capabilities of ALORS as the sole Algorithm Selection (AS) app-
roach, on working with incomplete performance data, the instance × algo-
rithm rank data here has the complete performance entries. The AS data is
directly derived from [54]. The data on the Large-Scale Multi-objective Opti-
misation Problem (LSMOP) consists of 4 algorithms. The candidate algorithms
are Speed-constrained Multi-objective Particle Swarm Optimization (SMPSO)
[55], Multi-objective Evolutionary Algorithm based on Decision Variable Anal-
ysis (MOEA/DVA) [56], Large-scale Many-objective Evolutionary Algorithm
(LMEA) [57] and Weighted Optimization Framework SMPSO (WOF-SMPSO)
[58]. The hypervolume (HV) indicator [59] is used as the performance metric.

Table 1. The base LSMOP instances

Problem Modality Separability

LSMOP1 Unimodal Fully Separable
LSMOP2 Mixed Partially Separable
LSMOP3 Multi-modal Mixed
LSMOP4 Mixed Mixed
LSMOP5 Unimodal Fully Separable
LSMOP6 Mixed Partially Separable
LSMOP7 Multi-modal Mixed
LSMOP8 Mixed Mixed
LSMOP9 Mixed Fully Separable

Table 1 shows the specifications of the LSMOP benchmark functions [60].
The functions differ in terms of modality and separability. The 2-objective and
3-objective variants of each function are considered. Besides that further vari-
ations on the functions are achieved using different number of decision vari-
ables. In total, 63 LSMOP instances are present. The instances are encoded
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as LSMOPX_m=a_n=b where X is the base LSMOP index, m refers to the
number of objectives and n is for the number of decision variables. All these
instances are represented using just 4 features. Besides the modality and separa-
bility characteristics, the number of objectives and the number of variables are
as the instance features.

Table 2. The average ranks of each constituent algorithm besides ALORS where the
best per-benchmark performances are in bold (AVG: the average rank considering the
average performance on each benchmark function; O-AVG: the overall average rank
across all the instances)

Benchmark SMPSO MOEA/DVA LMEA WOF-SMPSO ALORS

LSMOP1 4.57 1.71 3.71 3.07 1.93
LSMOP2 4.43 2.43 3.14 2.5 2.5
LSMOP3 4.86 2.43 3 2.36 2.36
LSMOP4 4.43 2.79 3.71 2.57 1.5
LSMOP5 3.14 1.86 5 2.93 2.07
LSMOP6 3.86 3.5 3.64 1.21 2.79
LSMOP7 3.71 3.79 4.29 1.29 1.93
LSMOP8 4 2.93 4.43 2.14 1.5
LSMOP9 2.86 1.79 4.43 3.86 2.07

AVG 3.98 ± 0.67 2.58 ± 0.74 3.93 ± 0.66 2.44 ± 0.84 2.07 ± 0.43
O-AVG 3.98 ± 1.04 2.58 ± 1.30 3.93 ± 1.19 2.44 ± 1.19 2.07 ± 0.89

Table 2 reports the performance of all the candidate algorithms besides
ALORS as the automated selection method. Average performance on all the
instances show that ALORS offers the best performance with the average rank
of 2.07. The closest approach that is the single best method, i.e. WOF-SMPSO,
comes with the average rank of 2.44 while SMPSO shows the overall worst per-
formance with the average rank of 3.98. Referring to the standard deviations,
ALORS also comes with the most robust behaviour.

Figure 1 reports the selection frequencies of each constituent algorithm. Ora-
cle denotes the optimal selection, i.e. choosing the best algorithm for each
instance. The graph shows that ALORS shows similar behaviour to Oracle
with minor variations. MOEA/DVA and WOF-SMPSO are the most frequently
selected algorithms. Besides the pure selection frequencies, ALORS does not
utilize SMPSO at all while it is preferred for two instances by Oracle.

Figure 2 illustrates the importance of each single feature in terms of Gini
Index, derived by Random Forest (RF). All four features happen to contribute
to the selection model. Being said that separability comes as the most critical
feature while modality is the least important one.

Figure 3 reports the dis/-similarities of the LSMOP benchmark function
instances. Linking to the feature importance analysis in Fig. 2, there is no a
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Fig. 1. The selection frequencies of each algorithm by Oracle and ALORS

Fig. 2. Importance of the initial, hand-picked LSMOP benchmark function instance
features, using Gini Index/Importance

single criterion/feature to emphasize instance dis/-similarity, yet it is still possi-
ble to see the effects of separability. As an example, consider the 10 most similar
instances provided on the right bottom of the clustering figure. The instances
are LSMOP1_m=2_n=46, LSMOP1_m=2_n=106, LSMOP5_m=3_n=212,
LSMOP5_m=3_n=112, LSMOP5_m=3_n=52, LSMOP2_m=2_n=106,
LSMOP5_m=2_n=1006, LSMOP1_m=2_n=206, LSMOP8_m=3_n=52 and
LSMOP9_m=3_n=112. 8 of them are fully separable. The remaining 2 instances
are partially separable and mixed, respectively. Referring to the second best fea-
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Fig. 3. Hierarchical clusters of instances using the latent features extracted from the
performance data by SVD (k = 3)
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tures, i.e. number of variables, the values change from 52 to 1006. Being said that
1006 occurs only once, thus The half of the instances have 2 objectives while the
other half is with 3 objectives. As 2 out of 3 fully separable benchmark functions
are unimodal, 7 instances happen to be unimodal. The other 3 instances are
mixed in terms of modality.

Figure 4 illustrates the candidate algorithms which are hierarchically clus-
tered. Referring to the best performing standalone algorithm, i.e. WFO-SMPSO,
there is resemblance to SMPSO which is the base approach of WFO-SMPSO.
Although their performance levels differ, their performance variations across the
tested instances are similar.

Fig. 4. Hierarchical clusters of algorithms using the latent features extracted from the
performance data by SVD (k = 3)

4 Conclusion

This study utilizes Algorithm Selection (AS) for Large-Scale Multi-objective
Optimization, using Hyper-volume (HV) as the performance criterion. Multi-
objective optimization is concerned with the majority of the real-world opti-
mization tasks. In that respect, there have been immense efforts both problem
modelling and algorithm development for multi-objective optimization. However,
there is no ultimate multi-objective optimization algorithm that can outperform
the competing algorithms under fair experimental settings. This practical fact
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reveals a clear performance gap that can be filled by AS. AS suggests a way to
automatically determine the best algorithms for given problem instances.

The present work performs on 4 multi-objective optimization algorithm for 63
benchmarks originated from 9 base problems. For the instance characterization
required to use AS, 4 simple instance features are determined. The corresponding
computational analysis showed that AS is able to suppress those candidate algo-
rithms. Further analysis carried on the algorithm and instance spaces delivered
insights on the instance hardness, instance similarity and algorithm resemblance.

As the first study of using AS for multi-objective optimization, there are a
variety of research tasks to be tackled as future research. The initial follow-up
work is concerned with extending both the algorithm and instance space. Addi-
tionally, the well-known multi-objective performance indicators will be incor-
porated. The analysis on the algorithm and instance spaces will be extended
accordingly. While an AS model will be derived for each indicator, the selec-
tion will be also achieved by taking all the indicators into account like a Pareto
frontier. The idea will then be reversed to devise AS a multi-objective selection
problem where the performance measures are the common AS metrics such as
the Par10 score and success rate.

References

1. Chong, E.K., Zak, S.H.: An Introduction to Optimization. Wiley, Hoboken (2004)
2. Deb, K., Deb, K.: Multi-objective optimization. In: Burke, E., Kendall, G. (eds.)

Search Methodologies, pp. 403–449. Springer, Boston (2014). https://doi.org/10.
1007/978-1-4614-6940-7_15

3. Ishibuchi, H., Tsukamoto, N., Nojima, Y.: Evolutionary many-objective optimiza-
tion: a short review. In: IEEE Congress on Evolutionary Computation (IEEE World
Congress on Computational Intelligence), pp. 2419–2426. IEEE (2008)

4. Li, K., Wang, R., Zhang, T., Ishibuchi, H.: Evolutionary many-objective optimiza-
tion: a comparative study of the state-of-the-art. IEEE Access 6, 26194–26214
(2018)

5. Hansen, M.P., Jaszkiewicz, A.: Evaluating the quality of approximations to the
non-dominated set. Citeseer (1994)

6. Brockhoff, D., Wagner, T., Trautmann, H.: On the properties of the R2 indica-
tor. In: Proceedings of the 14th Annual Conference on Genetic and Evolutionary
Computation, pp. 465–472 (2012)

7. Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algorithms—
a comparative case study. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.P.
(eds.) PPSN 1998. LNCS, pp. 292–301. Springer, Cham (1998). https://doi.org/
10.1007/bfb0056872

8. Van Veldhuizen, D.A., Lamont, G.B.: Multiobjective evolutionary algorithm
research: a history and analysis. Technical report, Department of Electrical and
Computer Engineering Air Force Institute of Technology, OH, Technical Report
TR-98-03 (1998)

9. Coello Coello, C.A., Reyes Sierra, M.: A study of the parallelization of a coevolu-
tionary multi-objective evolutionary algorithm. In: Monroy, R., Arroyo-Figueroa,
G., Sucar, L.E., Sossa, H. (eds.) MICAI 2004. LNCS (LNAI), vol. 2972, pp. 688–
697. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24694-7_71

https://doi.org/10.1007/978-1-4614-6940-7_15
https://doi.org/10.1007/978-1-4614-6940-7_15
https://doi.org/10.1007/bfb0056872
https://doi.org/10.1007/bfb0056872
https://doi.org/10.1007/978-3-540-24694-7_71


Algorithm Selection for Large-Scale Multi-objective Optimization 45

10. Ishibuchi, H., Masuda, H., Tanigaki, Y., Nojima, Y.: Modified distance calculation
in generational distance and inverted generational distance. In: Gaspar-Cunha,
A., Henggeler Antunes, C., Coello, C.C. (eds.) EMO 2015. LNCS, vol. 9019, pp.
110–125. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15892-1_8

11. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6, 182–197 (2002)

12. Fonseca, C.M., Knowles, J.D., Thiele, L., Zitzler, E.: A tutorial on the performance
assessment of stochastic multiobjective optimizers. In: Proceedings of the 3rd Inter-
national Conference on Evolutionary Multi-Criterion Optimization (EMO), vol.
216, p. 240 (2005)

13. Deb, K.: Multi-objective optimisation using evolutionary algorithms: an introduc-
tion. In: Wang, L., Ng, A., Deb, K. (eds.) Multi-objective Evolutionary Optimi-
sation for Product Design and Manufacturing, pp. 3–34. Springer, London (2011).
https://doi.org/10.1007/978-0-85729-652-8_1

14. Deb, K.: Multi-objective evolutionary algorithms. In: Kacprzyk, J., Pedrycz, W.
(eds.) Springer Handbook of Computational Intelligence, pp. 995–1015. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-43505-2_49

15. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated sort-
ing genetic algorithm for multi-objective optimization: NSGA-II. In: Schoenauer,
M., et al. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 849–858. Springer, Heidelberg
(2000). https://doi.org/10.1007/3-540-45356-3_83

16. Knowles, J.D., Corne, D.W.: Approximating the nondominated front using the
pareto archived evolution strategy. Evol. Comput. 8, 149–172 (2000)

17. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: improving the strength pareto evo-
lutionary algorithm. Technical Report 103, Computer Engineering and Networks
Laboratory (TIK), Swiss Federal Institute of Technology (ETH), Zurich, Switzer-
land (2001)

18. Corne, D.W., Jerram, N.R., Knowles, J.D., Oates, M.J.: PESA-II: region-based
selection in evolutionary multiobjective optimization. In: Proceedings of the 3rd
Annual Conference on Genetic and Evolutionary Computation (GECCO), pp. 283–
290. Morgan Kaufmann Publishers Inc. (2001)

19. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on
decomposition. IEEE Trans. Evol. Comput. 11, 712–731 (2007)

20. Coello, C.C., Lechuga, M.S.: MOPSO: a proposal for multiple objective particle
swarm optimization. In: Proceedings of the IEEE Congress on Evolutionary Com-
putation (CEC), vol. 2, pp. 1051–1056. IEEE (2002)

21. Ding, L.P., Feng, Y.X., Tan, J.R., Gao, Y.C.: A new multi-objective ant colony
algorithm for solving the disassembly line balancing problem. Int. J. Adv. Manuf.
Technol. 48, 761–771 (2010)

22. Mashwani, W.K.: MOEA/D with DE and PSO: MOEA/D-DE+PSO. In: Bramer,
M., Petridis, M., Nolle, L. (eds.) SGAI 2011, pp. 217–221. Springer, London (2011).
https://doi.org/10.1007/978-1-4471-2318-7_16

23. Ke, L., Zhang, Q., Battiti, R.: MOEA/D-ACO: a multiobjective evolutionary algo-
rithm using decomposition and antcolony. IEEE Trans. Cybern. 43, 1845–1859
(2013)

24. Alhindi, A., Zhang, Q.: MOEA/D with tabu search for multiobjective permutation
flow shop scheduling problems. In: Proceedings of the IEEE Congress on Evolu-
tionary Computation (CEC), pp. 1155–1164. IEEE (2014)

25. Wolpert, D., Macready, W.: No free lunch theorems for optimization. IEEE Trans.
Evol. Comput. 1, 67–82 (1997)

https://doi.org/10.1007/978-3-319-15892-1_8
https://doi.org/10.1007/978-0-85729-652-8_1
https://doi.org/10.1007/978-3-662-43505-2_49
https://doi.org/10.1007/3-540-45356-3_83
https://doi.org/10.1007/978-1-4471-2318-7_16


46 M. Mısır and X. Cai

26. Kerschke, P., Hoos, H.H., Neumann, F., Trautmann, H.: Automated algorithm
selection: survey and perspectives. Evol. Comput. 27, 3–45 (2019)

27. Gomes, C., Selman, B.: Algorithm portfolios. Artif. Intell. 126, 43–62 (2001)
28. Loreggia, A., Malitsky, Y., Samulowitz, H., Saraswat, V.A.: Deep learning for algo-

rithm portfolios. In: Proceedings of the 13th Conference on Artificial Intelligence
(AAAI), pp. 1280–1286 (2016)

29. Xu, L., Hutter, F., Hoos, H., Leyton-Brown, K.: SATzilla: portfolio-based algorithm
selection for SAT. J. Artif. Intell. Res. 32, 565–606 (2008)

30. Yun, X., Epstein, S.L.: Learning algorithm portfolios for parallel execution. In:
Hamadi, Y., Schoenauer, M. (eds.) LION 2012. LNCS, pp. 323–338. Springer, Hei-
delberg (2012). https://doi.org/10.1007/978-3-642-34413-8_23

31. Kerschke, P., Trautmann, H.: Automated algorithm selection on continuous black-
box problems by combining exploratory landscape analysis and machine learning.
Evol. Comput. 27, 99–127 (2019)

32. Messelis, T., De Causmaecker, P., Vanden Berghe, G.: Algorithm performance pre-
diction for nurse rostering. In: Proceedings of the 6th Multidisciplinary Interna-
tional Scheduling Conference: Theory and Applications (MISTA 2013), pp. 21–38
(2013)

33. Musliu, N., Schwengerer, M.: Algorithm selection for the graph coloring problem.
In: Nicosia, G., Pardalos, P. (eds.) LION 2013. LNCS, vol. 7997, pp. 389–403.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-44973-4_42

34. Kotthoff, L., Kerschke, P., Hoos, H., Trautmann, H.: Improving the state of the
art in inexact TSP solving using per-instance algorithm selection. In: Dhaenens,
C., Jourdan, L., Marmion, M.-E. (eds.) LION 2015. LNCS, vol. 8994, pp. 202–217.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19084-6_18

35. Wagner, M., Lindauer, M., Mısır, M., Nallaperuma, S., Hutter, F.: A case study
of algorithm selection for the traveling thief problem. J. Heuristics 24, 295–320
(2018)

36. Stephenson, M., Renz, J.: Creating a hyper-agent for solving angry birds levels. In:
AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment
(2017)

37. Bischl, B., et al.: ASlib: a benchmark library for algorithm selection. Artif. Intell.
237, 41–58 (2017)

38. Xu, L., Hoos, H., Leyton-Brown, K.: Hydra: automatically configuring algorithms
for portfolio-based selection. In: Proceedings of the 24th AAAI Conference on
Artificial Intelligence (AAAI), pp. 210–216 (2010)

39. Mısır, M., Handoko, S.D., Lau, H.C.: OSCAR: online selection of algorithm port-
folios with case study on memetic algorithms. In: Dhaenens, C., Jourdan, L.,
Marmion, M.-E. (eds.) LION 2015. LNCS, vol. 8994, pp. 59–73. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-19084-6_6

40. Mısır, M., Handoko, S.D., Lau, H.C.: ADVISER: a web-based algorithm portfolio
deviser. In: Dhaenens, C., Jourdan, L., Marmion, M.-E. (eds.) LION 2015. LNCS,
vol. 8994, pp. 23–28. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
19084-6_3

41. Lau, H., Mısır, M., Xiang, L., Lingxiao, J.: ADVISER+: toward a usable web-based
algorithm portfolio deviser. In: Proceedings of the 12th Metaheuristics Interna-
tional Conference (MIC), Barcelona, Spain, pp. 592–599 (2017)

42. Gunawan, A., Lau, H.C., Mısır, M.: Designing and comparing multiple portfolios
of parameter configurations for online algorithm selection. In: Festa, P., Sellmann,
M., Vanschoren, J. (eds.) LION 2016. LNCS, vol. 10079, pp. 91–106. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-50349-3_7

https://doi.org/10.1007/978-3-642-34413-8_23
https://doi.org/10.1007/978-3-642-44973-4_42
https://doi.org/10.1007/978-3-319-19084-6_18
https://doi.org/10.1007/978-3-319-19084-6_6
https://doi.org/10.1007/978-3-319-19084-6_3
https://doi.org/10.1007/978-3-319-19084-6_3
https://doi.org/10.1007/978-3-319-50349-3_7


Algorithm Selection for Large-Scale Multi-objective Optimization 47

43. Kadioglu, S., Malitsky, Y., Sabharwal, A., Samulowitz, H., Sellmann, M.: Algo-
rithm selection and scheduling. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp.
454–469. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23786-
7_35

44. Lindauer, M., Hoos, H.H., Hutter, F., Schaub, T.: AutoFolio: an automatically
configured algorithm selector. J. Artif. Intell. Res. 53, 745–778 (2015)

45. Misir, M.: Cross-domain algorithm selection: algorithm selection across selection
hyper-heuristics. In: 2022 IEEE Symposium Series on Computational Intelligence
(SSCI), pp. 22–29. IEEE (2022)

46. Mısır, M., Sebag, M.: ALORS: an algorithm recommender system. Artif. Intell.
244, 291–314 (2017)

47. Su, X., Khoshgoftaar, T.M.: A survey of collaborative filtering techniques. Adv.
Artif. Intell. 2009, 4 (2009)

48. Mısır, M.: Data sampling through collaborative filtering for algorithm selection.
In: The 16th IEEE Congress on Evolutionary Computation (CEC), pp. 2494–2501.
IEEE (2017)

49. Mısır, M.: Active matrix completion for algorithm selection. In: Nicosia, G., Parda-
los, P., Umeton, R., Giuffrida, G., Sciacca, V. (eds.) LOD 2019. LNCS, vol. 11943,
pp. 321–334. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-37599-
7_27

50. Golub, G.H., Reinsch, C.: Singular value decomposition and least squares solutions.
Numer. Math. 14, 403–420 (1970)

51. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender
systems. Computer 42, 30–37 (2009)

52. Mısır, M.: Matrix factorization based benchmark set analysis: a case study on
HyFlex. In: Shi, Y., et al. (eds.) SEAL 2017. LNCS, vol. 10593, pp. 184–195.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68759-9_16

53. Mısır, M.: Benchmark set reduction for cheap empirical algorithmic studies. In:
Proceedings of the IEEE Congress on Evolutionary Computation (CEC) (2021)

54. Zille, H., Mostaghim, S.: Comparison study of large-scale optimisation techniques
on the LSMOP benchmark functions. In: IEEE Symposium Series on Computa-
tional Intelligence (SSCI), pp. 1–8. IEEE (2017)

55. Nebro, A., Durillo, J., García-Nieto, J., Coello Coello, C., Luna, F., Alba, E.:
SMPSO: a new PSO-based metaheuristic for multi-objective optimization. In:
IEEE Symposium on Computational Intelligence in Multicriteria Decision-Making
(MCDM 2009), pp. 66–73. IEEE Press (2009)

56. Ma, X., et al.: A multiobjective evolutionary algorithm based on decision variable
analyses for multiobjective optimization problems with large-scale variables. IEEE
Trans. Evol. Comput. 20, 275–298 (2015)

57. Zhang, X., Tian, Y., Cheng, R., Jin, Y.: A decision variable clustering-based evolu-
tionary algorithm for large-scale many-objective optimization. IEEE Trans. Evol.
Comput. 22, 97–112 (2016)

58. Zille, H., Ishibuchi, H., Mostaghim, S., Nojima, Y.: A framework for large-scale
multiobjective optimization based on problem transformation. IEEE Trans. Evol.
Comput. 22, 260–275 (2017)

59. Auger, A., Bader, J., Brockhoff, D., Zitzler, E.: Hypervolume-based multiobjective
optimization: theoretical foundations and practical implications. Theor. Comput.
Sci. 425, 75–103 (2012)

60. Cheng, R., Jin, Y., Olhofer, M., et al.: Test problems for large-scale multiobjective
and many-objective optimization. IEEE Trans. Cybern. 47, 4108–4121 (2016)

https://doi.org/10.1007/978-3-642-23786-7_35
https://doi.org/10.1007/978-3-642-23786-7_35
https://doi.org/10.1007/978-3-030-37599-7_27
https://doi.org/10.1007/978-3-030-37599-7_27
https://doi.org/10.1007/978-3-319-68759-9_16


Solving a Multi-objective Job Shop
Scheduling Problem

with an Automatically Configured
Evolutionary Algorithm
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Abstract. In this work we focus on optimizing a multi-objective formu-
lation of the Job Shop Scheduling Problem (JSP) which considers the
minimization of energy consumption as one of the objectives. In prac-
tice, users experts in the problem domain but with a low knowledge in
metaheuristics usually take an existing algorithm with default settings
to optimize problem instances but, in this context, the use of automatic
parameter configuration techniques can help to find ad-hoc configura-
tions of algorithms that effectively solve optimization problems. Our aim
is to study what improvement in results can be obtained by applying
an autoconfiguration approach versus using a set of well-known multi-
objective evolutionary algorithms (NSGA-II, SPEA2, SMS-EMOA and
MOEA/D) for different instances of the JSP, with varying dimension-
ality. Our experiments showcase the potential of automated algorithmic
configuration for energy-efficient production scheduling, producing bet-
ter balanced solutions than the multi-objective solvers considered in the
study.

Keywords: Multi-Objective Optimization · Job Shop Scheduling ·
Automatic Algorithm Configuration

1 Introduction

The Job Shop Scheduling problem (JSP) is a combinatorial optimization problem
where a set of jobs requiring different processing times have to be scheduled on
a set of machines having different processing power [9,15]. The main goal of JSP
is typically to minimize the makespan, namely, the minimum time to complete
all pending jobs in the production commit, but in the context of Industry 4.0
objectives such as the minimization of the consumed energy during production
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are of paramount importance. When accounting for this objective, it is intu-
itive to infer that productivity can be a conflicting goal with the consumption
of energy, especially when dealing with energy-demanding assets whose produc-
tion rate correlate tightly with the amount of required energy (e.g., electric arc
furnaces). In this paper, we are interested in a bi-objective formulation of the
JSP by considering makespan and production costs as objectives to minimize.
The production costs are assumed to be driven by different energy and non-
energy related concepts, including the cost of human workforce, which may vary
depending on the shift.

A common situation in practice is that an expert in the domain of a opti-
mization problem is interested in solving instances of it, but frequently that
user is not an expert in metaheuristics, so the adopted approach usually is
to take a well-known algorithm (typically, NSGA-II [10] in the case of multi-
objective optimization) configured with defaults settings. Although the results
obtained may be good enough, it seems obvious that they could be improved if
the algorithm were properly configured. Traditionally, the parameter adjustment
of metaheuristics has been addressed by manual adjustment of parameters and
conducting pilot tests, which is a tedious and not rigorous process. In this work,
we are interested in exploring the potential of automated algorithm design tools
for the multi-objective JSP. Given a set of algorithmic components that can be
combined together and a set of problems used as a training set, automated algo-
rithm configuration tools can autonomously discover an evolutionary algorithm
that is tailored to deal with unseen instances of the same problem [6,7].

This work relies on the jMetal framework [12,16], which has recently released
functionalities for the automated design of multi-objective evolutionary algo-
rithms [17], combined with the irace package for automated algorithm configu-
ration and design [14]. We define several training and test instances of a multi-
objective formulation of the JSP which, in addition to the factors considered in
[19], personnel costs by shifts and different electricity costs by hour are included
as new cost concepts. Then, a multi-objective evolutionary algorithm (hereafter
denoted as AutoMOEA) is designed from the training set of problem instances
by using the aforementioned optimization engine. Finally, we measure the qual-
ity of the solutions obtained by AutoMOEA over the test instances to inform a
discussion about the performance gaps that automatic algorithm configuration
can bring to this family of problems. We must note that our goal is not to find
an algorithm capable of outperforming state-of-the-art of techniques for the JSP,
but to assess whether using auto-configuration, which is a computing-intensive
process, can be worth when compared to known multi-objective evolutionary
algorithms with default parameter settings.

The rest of the manuscript is divided as follows: Sect. 2 first contextualizes
and exposes the novelty of this research work compared to existing studies.
Section 3 poses the multi-objective JSP under consideration, and describes how
solutions to this problem can be numerically encoded. Next, Sect. 4 details how to
automatic design a multi-objective evolutionary solver. Sections 5 and 6 respec-
tively presents the experimental setup and discusses on the results obtained
therefrom. Finally, Sect. 7 draws conclusions and outlines research directions.
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2 Previous Work and Motivation

The starting point of this research work is the recent survey contributed in
[19], in which a detailed study of the literature related to multi-objective JSP
formulations with energy as one of the objectives was performed. The survey
analyzes the most relevant publications that tries to solve the JSP problem
with energy as one of their objectives, setting the good practices detected and
pointing out areas of improvement. This review also comprised a use case made of
public synthetic instances aimed to showcase how a principled experimentation
with multi-objective metah euristic algorithms should be made. Such synthetic
instances were produced by considering machine on and off times, the time
to idle and start from idle, the power consumption at startup, idle, and
producing times, and the manufacturing speed (which relates to the energy
consumption while production). This work introduces two new considerations
in the problem formulation: variable electricity cost per hour of the day and
personnel cost per hour. These two novel ingredients shed further realism to the
use case formulated in [19], as electricity provision contracts in energy-intensive
industries are often subject to this modeled feature.

Besides the novel ingredients of the problem statement, this work steps
beyond one of the main conclusions arising from the survey in [19]: most existing
proposals in the literature related to energy-aware multi-objective JSP develop
are small modifications of a classical multi-objective algorithm, which is experi-
mentally justified by comparing its results for a specific problem instance against
the classical multi-objective algorithm. Furthermore, the reduced set of prob-
lem instances chosen for evaluation makes it difficult to ascertain if the perfor-
mance gains claimed for the newly proposed algorithm generalize to new problem
instances or variants of the already evaluated without requiring a major param-
eter tuning effort. In practice a plant manager would be willing to have an
scheduler that does not require long running latencies to elicit different energy-
aware schedules. Therefore, the generalization capability of the algorithmic con-
figuration is essential for the usability of any production scheduling software
embracing a multi-objective solver at its core. This calls for further insights on
the possibilities of automatic algorithmic configuration tools for multi-objective
JSP, examining its relative performance w.r.t. classical solvers and to reflect on
whether such performance differences hold when solving new problem instances.

3 Problem Formulation, Solution Encoding and Instances

In short, the JSP aims to assign production jobs (or tasks) to industrial pro-
duction assets over time. This production schedule must be optimized by taking
into account variables and restrictions that impact on the production of the
plant under consideration. Among the many objectives that have been regarded
in the literature related to the JSP, producing a given set of jobs (production
commit) within the minimum total production time possible (i.e., makespan) is
arguably the most widely adopted optimization goal. Makespan can be defined
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as the minimum time to complete all the scheduled jobs. There are several inves-
tigations in the literature trying to improve the quality of solutions for makespan
problems [8,20,26]. It can be described as a sorting task, searching for an opti-
mal arrangement such that production is concentrated in the shortest possible
period of time, avoiding gaps between tasks.

We define mathematically the JSP by adopting the notation in [19]. As such,
N independent production jobs {jn}Nn=1 are to be processed through M pro-
duction machines M = {mi}Mi=1. Each job jn consists of On ordered tasks
[Tn

1 , . . . , Tn
On

]. Task Tn
k is processed on a predefined machine mj ∈ M (as in the

naive JSP), or on any machine that is qualified for the task, given by Mj ⊆ M.
The assignment of task Tn

k to production machine mj yields a cost Cj,n,k. The
most simplistic formulation of the JSP considers that overall processing time of
the entire production commit is the only cost objective to be minimized, whereas
other formulations can pursue the minimization of other conflicting cost goals
(e.g. energy) or leverage the flexibility of deciding which qualified machine from
Mj can serve every task. When considering different objectives, the goal of the
multi-objective JSP is to find a number of production schedules that differently
balance between the considered objectives.

Table 1. Synthetic energy-aware JSP instances under consideration

Instances LA04
[2]

LA10
[2]

FT06
[3]

ORB01
[2]

ABZ5
[1]

SWV20
[22]

TA12
[4]

DMU11
[11]

YN03
[18]

DMU40
[11]

TA77
[23]

M (machines) 5 5 6 10 10 10 15 15 20 20 20

J (jobs) 10 15 6 10 10 50 20 30 20 50 100

Based on the above description, an instance of the energy-aware JSP is
defined by 1) the number of machines; 2) the number of jobs; 3) the tasks that
comprise every job; 4) the sequence of machines through which the job has to be
processed; and 5) the time taken by every machine to process the job. To realis-
tically produce instances for this problem, we depart from the benchmark JSP
instances proposed in [23], which defines a JSP problem as several jobs that have
to be processed through a number of machines in an orderly fashion. The time
taken by each of these machines to process a given job is predefined. It is impor-
tant to note that while this information is enough to define a single-objective
JSP seeking to minimize the makespan, further information must be enclosed to
these instances to model the energy consumption while producing the jobs: the
processing speed of the machine, the time and energy cost of turning a given
machine on and off or leaving it idle, the electrical hourly tariff and personnel
costs depending on the time of the day in which the commit is produced. Prob-
lem instances augmented with all these relevant modifications have been made
available in a repository [13], from which we select a representative subset of
them for the study. Such selected instances are listed in Table 1.

A crucial decision when undertaking the problem defined above with meta-
heuristic algorithms is the solution encoding strategy, namely, the methodology
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to numerically represent any solution to the problem. To this end we partially
embrace the encoding approach presented in [24], albeit with some modifications.
To begin with, an integer list encoding will be used, representing every solution
as a list of integers with length J × M × Z, where J is the number of jobs and
M is the number of machines. To include the capability to not work in one or
more hours during the day, this length of the array is multiplied by a factor Z,
divisible by 24, so that every entry in the list is now one hour in a block of 24
consecutive entries. The algorithm searches for the hours of the day to work with
this hourly cost, since it generates an array Z times replicated (multiple of 24),
whose binary encoding indicates the working/not working hours. As a result,
this directly affects the makespan (more time to completion if the job spans
hours whose encoded gen is set to 0) and the cost (due to peak and off-peak
hours of electricity cost). With this, we can satisfy the condition that the plant
might operate in hours of cheaper energy or instead, decide to produce during
periods of lower personnel costs. With each value in this string being between 1
and J , and by imposing that each value can only be repeated J times, the list
is traversed sequentially, so that each time a certain value appears over the list
a step forward in the job is taken, until job is finished.

Fig. 1. Example of the adopted solution encoding strategy.

To introduce the energy concept, lists of equal length are generated for
machine speed, machine idle, shift and hourly cost, so that the sum of the associ-
ated costs of the scalar product of these vectors will give us the production cost.
Figure 1 illustrates this encoding strategy, showing the different lists included in
the solution’s genotype. To begin with, job to execute denotes the number of the
job to be executed, encoded as an integer between 0 and J − 1. The velocity of
execution indicates the speed at which the job is executed, which is a multiplier
(×1, ×2 or ×3) of the baseline processing velocity of the machine. Elements
in the list denoted as stop or idle at finish? are equal to 1 or 2, depending
on whether the machine is set to idle state after finishing its job or, instead,
is stopped. The workers cost list indicates the shift during which the job is
processed: morning, afternoon or night shift, each featuring an average labour
cost per hour. Finally, the electricity cost per hour indicates the average hourly
cost of electricity incurred in production as per the hours in which the jobs are
processed and the status and processing speed of the machines.
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Table 2. Parameter space of AutoMOEA for solving JSP. The population size is 50.

Parameter Search domain

offspringPopulationSize [1, 400]

algorithmResult {externalArchive, population}
populationSizeWithArchive [10, 200] (subject to algorithmResult == externalArchive)

ranking {dominanceRanking, strengthRanking}
densityEstimator {crowdingDistance, kNN}
kValueForKNN [1, 3] (subject to densityEstimator == kNN)

selection {tournament, random}
selectionTournamentSize [2, 10] (subject to selection == tournament)

crossover JSPCrossover

crossoverProbability [0.0, 1.0]

mutation JSPMutation

The above encoding strategy is suitable for the crossover and mutation oper-
ators defined in [19], which will be used in our experiments. Specifically, the
JSPCrossover operator proceeds as follows: after selecting two parent solutions
from the population, a dimension of the encoded solution is chosen uniformly at
random between schedule, velocity or idle is chosen uniformly at random. After
that, two random positions are selected again within the list corresponding to
the selected dimension and they are interchanged between the two parents, lead-
ing to two children. In the mutation operator, a random choice is done between
(schedule, velocity and idle). Then, a random interchange is done between two
positions chosen at random. Mutation is always applied.

4 Automated Design of a Multi-objective Evolutionary
Algorithm for the JSP

The process of the automatic design of an multi-objective evolutionary algo-
rithms for our energy-aware JSP variant requires first to define the parameter
space, i.e. the parameters and components that can be combined to produce
certain algorithm. The JSP is implemented in jMetal, including the aforemen-
tioned specific variation operators labeled as JSPMutation and JSPCrossover,
so that any of the multi-objective evolutionary algorithms available in jMetal
can use them to solve the problem. The combined use of jMetal and irace for
auto-parameter tuning is based on the proposal presented in [17], where a study
involving the automatic configuration of NSGA-II [10] was presented.

The current design space is detailed in Table 2. Starting by a fixed population
size of 50 solutions, the offspring population size can take a value in the range 1
(i.e., steady-state) to 400, and an external archive can be incorporated; in such
case, the size of the population can vary within the integer range [10, 200] and
the result of the search will be the solutions contained in the archive instead
of the population. The archive has a maximum size of 50 individuals, and the
crowding distance density estimator [10] is used to prune it when it becomes full.
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Table 3. Parameters of NSGA-II and AutoMOEA for JSP (the population size is 100).

Parameter NSGA-II AutoMOEA

algorithmResult population population

offspringPopulationSize 100 36

ranking dominanceRanking strengthRanking

densityEstimator crowdingDistance crowdingDistance

crossover JSSPCrossover JSSPCrossover

crossoverProbability 0.90 0.955

selection tournament tournament

selectionTournamentSize 2 5

The algorithmic template assumes that a ranking method and a density
estimator are used for discriminating solutions both in the selection and the
replacement steps. These components can be the non-dominance ranking and
crowding distance of NSGA-II and the strength ranking and k-nearest neigh-
bour (KNN) density estimator of SPEA2 [27]. If KNN is selected, the value of
K ranges between 1 and 3. The selection can be random or by tournament with
a tournament size between 2 and 10. Finally, the probability of applying the
JSPCrossover operator ranges between 0.0 and 1.0 (the JSPMutation is always
applied).

The second step is to choose the training set, which is a key decision because
it affects the ability of the designed algorithm to generalize and effectively solve
other problems and it also impacts on the computing time required by irace to
find the best combination of components. As this is our first study on the capabil-
ities of automatic algorithmic design for tackling the JSP with metaheuristics, we
have chosen the three smallest JSP instances, namely, LA04, LA10, and FT06.
Thus, we prioritize a faster discovery of the final algorithmic design, hoping that
it generalizes nicely even if it is only evaluated in simple problem instances. In
this sense, the stopping condition of the AutoMOEA is reduced to compute a
maximum of 25,000 function evaluations, while in the experimentation section
this number will be increase to 200,000.

The irace tool requires a measure that, given two different algorithmic con-
figurations, determine which one is the best. As the subject of comparison are
Pareto front approximations, a quality indicator should be applied. We have
selected the hypervolume [28], which requires a reference point. As the optimum
of the considered instances are unknown, to define such reference points we have
examined for each problem instance all fronts produced after a number of pilot
tests performed off-line. After registering the extreme points spanned by all these
fronts for every objective, we have added a conservative offset to ensure that the
fronts found by AutoMOEA are likely to dominate them.

The last step is to run irace to find a configuration for AutoMOEA. The found
one is included in Table 3, where we include in the left column the configuration
of NSGA-II as a reference. Interestingly, we observe that AutoMOEA does not
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use an external archive, as opposed to the AutoNSGA-II algorithm reported
in [17], which did make use of it. Furthermore, the offspring population size is
reduced from 100 to 36, the ranking scheme is strength ranking, the crossover
probabilities are similar than that of NSGA-II, and the tournament size is 5
instead of 2. We must note that we used a 64 cores virtual machine and that the
autoconfiguration required about six hours of computing time.

5 Experiments and Results

Once irace has found a potentially good solver over the considered training JSP
instances, the next step is to assess whether our auto-designed AutoMOEA is
capable of improving the results obtained by other algorithms over the consid-
ered JSP instances. Concretely, we have selected representative techniques of the
three categories of multi-objective evolutionary algorithms: Pareto-dominance
based (NSGA-II [10] and SPEA2 [28]), decomposition-based (MOEA/D [25]),
and indicator-based (SMS-EMOA [5]). All the algorithms – including Auto-
MOEA – are configured with a population size of 50 individuals, whereas the
stopping condition is set to a maximum of 200,000 function evaluations. All of
them use the same variation operators: JSPCrossover, with a probability of 0.9
(excepting AutoMOEA, which uses 0.955), and JSPMutation. MOEA/D applies
the Tschebyscheff aggregation, the neighborhood selection probability is 0.9, the
neighbour size is 20, and the maximum number of replaced solutions is 2. GWAS-
FGA requires an epsilon parameter, which is set to 0.01.

To measure the quality of the Pareto front approximations achieved we have
used the normalized hypervolume (NHV), which is computed as 1.0 minus the
ratio between the hypervolume of the front to be evaluated and the hypervolume
of the reference front. The hypervolume metric [28] calculates the volume (in
the space of objectives) covered by members of a given set of non-dominated
solutions with respect to a reference point. To quantify the results for each
algorithm, we perform 25 independent runs per each pair of problem-algorithm,
reporting the median and interquartile range (IQR) for each quality indicator.

The results of this comparison are collected in Table 4, where the best and
second best results are highlighted in dark and light grey background, respec-
tively. To check for the statistical significance of the performance gaps, we have
applied the Wilcoxon rank-sum test [21], at 95% confidence level, with respect to
AutoMOEA, whose results are included in the last column. The reference fronts
to compute the NHV have been obtained by aggregating, for each problem, the
solutions returned by all the runs of all the algorithms, so that the reference
front is composed by all non-dominated solutions in the aggregated set.

When inspecting these results, we observe that AutoMOEA gets the best
(lowest) indicator and second best values in 7 and 3, respectively, out of the
11 JSP instances under consideration. If we focus on the first three problem
instances - which were used for the auto-design process (training) - SPEA2
results to be the solver that yields the overall best indicator values. In fact,
SPEA2 is the algorithm that presents the best figures in the 5 smallest instances,
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Table 4. Median and interquartile range (IQR) of the results of the NHV quality
indicator. Cells with dark and light gray background highlights, respectively, the best
and second best indicator values. The algorithm in the last column is the reference
algorithm, and the symbols +, − and ≈ indicate that the differences with the reference
algorithm are significantly better, worse, or there is no difference according to the
Wilcoxon rank sum test (confidence level: 95%).

NSGAII SPEA2 MOEA/D SMS-EMOA AutoMOEA

LA04 6.13e-02(6.65e-02) ≈ 1.18e-02(6.11e-02) ≈ 8.01e-01(2.16e-01)− 7.55e-02(6.26e-02)− 4.23e-02(7.28e-02)

LA10 6.67e-02(3.06e-02)+ 8.64e-02(3.93e-02) ≈ 6.49e-01(1.42e-01)− 8.12e-02(4.08e-02) ≈ 9.65e-02(3.18e-02)

FT06 1.05e-01(2.33e-01) ≈ 5.53e-02(2.16e-02)+ 1.00e+00(0.00e+00)− 1.40e-01(2.81e-01)− 9.76e-02(1.56e-01)

ORB01 3.38e-01(1.51e-01) ≈ 2.95e-01(5.58e-02) ≈ 1.00e+00(7.82e-02)− 3.16e-01(2.08e-01) ≈ 3.10e-01(1.87e-01)

ABZ5 1.65e-01(1.30e-01) ≈ 1.30e-01(7.47e-02) ≈ 8.12e-01(1.91e-01)− 1.70e-01(6.18e-02)− 1.27e-01(7.70e-02)

SWV20 2.26e-01(6.18e-02)− 2.64e-01(7.06e-02)− 8.79e-01(1.26e-01)− 2.67e-01(6.31e-02)− 1.44e-01(1.11e-01)

TA12 2.51e-01(1.09e-01)− 2.83e-01(7.75e-02)− 8.69e-01(1.99e-01)− 3.49e-01(1.72e-01)− 1.68e-01(9.21e-02)

DMU11 3.20e-01(1.71e-01)− 3.36e-01(1.10e-01)− 1.00e+00(0.00e+00)− 3.23e-01(1.01e-01)− 2.04e-01(1.77e-01)

YN03 2.80e-01(1.49e-01)− 3.57e-01(1.60e-01)− 1.00e+00(4.40e-02)− 3.45e-01(1.75e-01)− 2.27e-01(1.42e-01)

DMU40 6.14e-01(2.60e-01)− 7.33e-01(3.54e-01)− 1.00e+00(0.00e+00)− 6.45e-01(1.91e-01)− 2.86e-01(1.89e-01)

TA77 1.00e+00(0.00e+00)− 1.00e+00(0.00e+00)− 1.00e+00(0.00e+00)− 1.00e+00(0.00e+00)− 5.41e-01(5.70e-01)

+/ ≈ /− 1/4/6 1/4/6 0/0/11 0/2/9 −

Fig. 2. Median fronts of NSGA-II and AutoMOEA for different test instances.

but the Wilcoxon rank-sum tests indicates that the differences with AutoMOEA
are not statistically significant but instance FT06. NSGA-II performs best on
instance LA10 and second-best in the 6 largest instances. The other algorithms
compared, MOEA/D and SMS-EMOA, do not achieve the best NHV on any
problem.

For illustration purposes, we include in Fig. 2 the fronts found by NSGA-
II and AutoMOEA, corresponding those with the median value of the NHV
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indicator, on the 8 largest problem instances. We can observe that in general, the
fronts of AutoMOEA have a higher degree of convergence than those obtained
by NSGA-II.

6 Discussion

In the light of the results presented in the previous section, we can claim that
the use of auto-configuration can lead to an AutoMOEA algorithm that outper-
forms the rest of classical solvers for most of the synthetic JSP instances under
consideration. It is clear that the comparison is not fair, as the other algorithms
are configured by default and we have spent an important amount of resources
to find the settings of AutoMOEA. However, our aim has not been to make a
fair comparison, but to consider a hypothetical real-world scenario in which a
JSP-savvy user who is not an expert in metaheuristics is interested in finding an
ad-hoc algorithm using a methodology and tools that automatically produce such
an algorithm. Our experimentation shows that, from a quantitative point of view
(i.e., finding an algorithm with best average performance on the selected JSP
instances), the goal has been obtained; what remains is to determine whether
the obtained solutions are qualitatively better. The response to this question
largely depends on the cost model of the production line under study.

We delve into this matter with a practical example: let us assume that we
deal with three scenarios for every JSP instance, depending on the share between
fixed and variable production costs. Fixed costs include the cost of the build-
ing, maintenance/amortization of the fixed assets, depreciation of the use of
machines, indirect personnel costs, etc. Such costs can be can be extrapolated
to the hourly production, thus entailing a fixed share of the hourly production
cost. On the other hand, variable production costs include the cost of energy,
production personnel and electricity tariffs. Since NSGA-II is the best classi-
cal algorithm in the benchmark and autoMOEA has been shown to outperform
the rest of its counterparts in most instances, the example only considers these
algorithms. For each of such scenarios we will inspect the production schedules
with least consumed energy among the global set of dominated solutions found
by these algorithms for the different JSP instances. Together with their associ-
ated makespan values, we proceed by analyze the implications in terms of total
economical cost of the production for the three scenarios anticipated above. To
this end, the three scenarios will assume a fixed share of the cost equal to 10,
100 and 1, 000 e per hour, respectively. The overall fixed cost Cfixed required to
complete the production commit is given by the product between the makespan
(in hours) and the fixed hourly cost rate assumed for each scenario. Likewise,
the variable cost Cvar associated to the production commit will driven by the
cost of the energy and the working shift during which jobs are processed.

Intuitively, a production schedule with a higher makespan would increase the
fixed costs, but would surely reduce the variable costs, as the machines work at
a lower speed, avoiding night shifts (more expensive) or avoiding hours during
the day when the electricity cost is high. On the contrary, a lower makespan
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Table 5. Differences between fixed and variable production costs of the minimum-
energy solutions found by NSGA-II and AutoMOEA for each JSP instance, assuming
a fixed hourly cost rate of 10, 100 and 1,000 e per hour. All quantities are in e.

Instance LA04 LA10 FT06 ORB01 ABZ5 SWV20 TA12 DMU11 YN03 DMU40 TA77

10 e per hour

ΔCfixed 300.00 260.00 0.00 300.00 −420.00 855.00 −210.00 1, 940.00 3, 500.00 1, 285.00 −5, 070.00

ΔCvar −860.00 −1, 240.00 0.00 49.50 −729.00 5, 275.00 1, 977.50 3, 509.00 5, 400.00 29, 563.00 363, 816.00

ΔCT −560.00 −980.00 0.00 349.50 −1, 149.00 6, 130.00 1, 767, 50 5, 449.00 8, 900.00 30, 848.00 358, 746.00

Best? NSGA-II NSGA-II Equal AutoMOEA NSGA-II AutoMOEA AutoMOEA AutoMOEA AutoMOEA AutoMOEA AutoMOEA

100 e per hour

ΔCfixed 1, 200.00 5, 200.00 0.00 6, 000.00 −8, 400.00 17, 100.00 −4, 200.00 38, 800.00 14, 000.00 25, 700.00 −101, 400.00

ΔCvar −860.00 −1, 240.00 0.00 49.50 −729.00 5, 275.00 1, 977.50 3, 509.00 5, 400.00 29, 563.00 363, 816.00

ΔCT 340.00 3, 960.00 0.00 6, 049.50 −9, 129.00 22, 375.00 −2, 222.50 42, 309.00 19, 400.00 55, 263.00 262, 416.00

Best? AutoMOEA AutoMOEA Equal AutoMOEA NSGA-II AutoMOEA NSGA-II AutoMOEA AutoMOEA AutoMOEA AutoMOEA

1, 000 e per hour

ΔCfixed 12, 000.00 52, 000.00 0.00 60, 000.00 −84, 000.00 171, 000.00 −42, 000.00 388, 800.00 140, 000.00 257, 000.00 −1, 014, 000.00

ΔCvar −860.00 −1, 240.00 0.00 49.50 −729.00 5, 275.00 1, 977.50 3, 509.00 5, 400.00 29, 563.00 363, 816.00

ΔCT 11, 140.00 50, 760.00 0.00 60, 049.50 −84, 729.00 176, 275.00 −40, 022.50 391, 509.00 145, 500.00 286, 563.00 −650, 184.00

Best? AutoMOEA AutoMOEA Equal AutoMOEA NSGA-II AutoMOEA NSGA-II AutoMOEA AutoMOEA AutoMOEA NSGA-II

would reduce the fixed part of the cost, but would increase the variable share,
with machines working at a higher speed and the production commit concen-
trated in more expensive working shifts, leading to an overall increase of the pro-
duction cost. This intuitive reasoning is validated in Table 5. Columns in these
tables denote economical differences between the minimum-energy solutions of
the Pareto fronts approximated by NSGA-II and AutoMOEA. To begin with,
ΔCfixed = Cfixed(NSGA-II) − Cfixed(AutoMOEA) stands for the difference
between the fixed production costs of solutions found by both algorithms for each
JSP instance, which are intrinsically related to their associated makespan: longer
production runs will entail a higher fixed share of the production expenditure.
On the other hand, ΔCvar = Cvar(NSGA-II)−Cvar(AutoMOEA) reflect the dif-
ference in terms of variable production costs. Finally, ΔCT = ΔCfixed + ΔCvar

stands for the total cost difference between the schedules of both algorithms.
It is important to note that when any of these gaps is positive, the schedule
optimized by AutoMOEA yields an economical profit when compared to that of
NSGA-II. Conversely, negative values of these gaps unveil that the schedule of
NSGA-II is more economically convenient.

As can be observed in this table, the economical convenience of adopting the
minimum-energy production schedule found by AutoMOEA depend on the type
of product manufactured by the plant and its associated production costs. Longer
makespans can be detrimental for the economical viability of the plant as fixed
costs become higher, so the variable share of the production costs play a crucial
role in this regard. This can be noted in instance LA10: if fixed hourly costs
are low, the lower variable share of the minimum-energy schedule evolved by
NSGA-II results to be critical for the overall economical balance of the commit.
Conversely, when fixed costs increase, the shorter makespan associated to the
minimum-energy solution of AutoMOEA gives rise to a higher surplus of fixed
costs, making this solution more profitable than that of NSGA-II. This, together
with non-functional restrictions that often hold in practical industrial scenarios
(e.g., availability of personnel for night shifts, or regulatory constraints in terms
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of sustainability), suggests that no universal answer can be given to the question
of whether in real scenarios it makes sense to resort to automatic algorithm
configuration tools to improve the cost-productivity balance of production lines.

7 Conclusions and Future Work

In this work we have presented a study about the adoption of an automatic
algorithm design approach to efficiently solve a multi-objective JSP formulation
that includes energy considerations as an objective. Our proposal is based on
combining two software tools: the jMetal optimization framework and the irace
package for automatic algorithm configuration. The result is a multi-objective
solver (AutoMOEA), which results from an automatic design process over a
training set composed of three small instances of the JSP, as well as a parameter
space comprising 9 dimensions of a multi-objective metaheuristic algorithm.

Our proposal has been experimentally validated in a benchmark consisting
of representative multi-objective optimizers (NSGA-II, SPEA2, MOEA/D, and
SMS-EMOA) and 11 JSP instances with varying number of machines (from
5 to 20) and jobs (from 10 to 100). The results of the experiments in terms
of the normalized hypervolume quality indicator have revealed that AutoMOEA
outperforms the rest techniques according, achieving the best overall results with
statistical significance in most of the cases. Performance gaps are not significant
in the JSP instances where AutoMOEA does not achieve the best indicator
values. Our discussion has also delved into the relevance of performance gaps
in practical industrial settings, exposing that they must be examined further in
terms of the fixed and variable shares of the cost of evolved schedules.

Future work will elaborate in this last concluding remark, devising new for-
mulations of the energy-aware JSP problem that incorporate non-functional
aspects that may affect the quality and economical viability of the produced
schedules. To this end, we plan to investigate how to efficiently deal with changes
over time in the availability of staff and machinery. Other cost models tailored
for different industries will be also explored by the proposed optimization frame-
work.

Acknowledgements. This work has been partially funded by the Spanish Ministry
of Science and Innovation (grant PID2020-112540RB-C41, AEI/FEDER, UE) and the
Basque Government (IT1456-22).
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Abstract. Managing human resources is crucial in organizations, and this can be
best done through optimal workforce scheduling. Workforce scheduling is con-
ducted regularly in transportation, manufacturing, retail stores, academic institu-
tions, and health care units. For the latter, healthcare personnel must be assigned
required shifts to satisfy hospital requirements, while optimizing costs and qual-
ity of service. In this context, we propose a nature-inspired technique based on the
Whale Optimization Algorithm (WOA) for solving the Nurse Scheduling Prob-
lem (NSP). More precisely, we have redefined the WOA to deal with this combi-
natorial problem efficiently. To assess the performance of different variants of our
discrete WOA, we conducted several experiments on randomly generated NSP
instances. In the experiments, our WOA has been compared with variants of the
Branch & Bound (B&B) and the Stochastic Local Search (SLS) algorithms. B&B
uses constraint propagation at different levels while SLS starts with an initial con-
figuration obtained with a backtrack search technique. Overall, the results of the
comparative experiments demonstrate the superiority of the proposed WOA in
terms of quality of the solution returned and the related running time.

Keywords: Combinatorial Optimization · Nature-Inspired Techniques ·
Metaheuristics · Nurse Scheduling Problem (NSP)

1 Introduction

The Nurse Scheduling Problem (NSP) consists of assigning nurses to a set of shifts
such that all the hospital requirements are satisfied while defined costs are minimized.
Due to the challenge and complexity of this problem, the NSP is among the hard com-
binatorial applications to solve. This has motivated several researchers to investigate
different facets of the NSP and the outcomes have been reported in the literature. In
order to overcome the difficulty for solving the NSP in practice, we propose a nature
inspired technique, based on the Whale Optimization Algorithm (WOA). We consider
a variant of the NSP where a minimum and a maximum number of nurses per shift is
defined to meet hospital requirements. In addition, to ease the burden on nurses, some
constraints are defined accordingly. We have redefined the WOA operators so that it can
efficiently deal with this discrete optimization problem. We also propose different func-
tions for the exploration strategy in order to diverse the search process and escape local
minima. To assess the performance of different variants of our discrete WOA, we con-
ducted several experiments on randomly generated NSP instances. Our WOA has been
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B. Dorronsoro et al. (Eds.): OLA 2023, CCIS 1824, pp. 62–73, 2023.
https://doi.org/10.1007/978-3-031-34020-8_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-34020-8_5&domain=pdf
http://orcid.org/0000-0001-7381-1064
https://doi.org/10.1007/978-3-031-34020-8_5


Solving the Nurse Scheduling Problem Using the Whale Optimization Algorithm 63

compared with variants of the Branch & Bound(B&B) and the Stochastic Local Search
(SLS) algorithms. B&B [2] uses constraint propagation [7] to remove some locally
inconsistent values, which will reduce the size of the search space. SLS starts with
an initial configuration obtained with a Depth-First Search (DFS) technique. SLS then
attempts to improve it, at each iteration, while maintaining satisfiability. Like for B&B,
the backtrack search technique is enhanced with constraint propagation. The results
of the comparative experiments demonstrate the superiority of the proposed WOA in
terms of quality of the solution returned and the related running time. Despite the use of
constraint propagation, both B&B and DFS still suffer from their inherited exponential
time cost.

2 Related Works

There are many classifications for NSP, and different methods have been used to solve
this problem, including constraint programming, metaheuristic methods, and mathe-
matical programming. In the NSP, constraints can be categorized as hard or soft. Hard
constraints are the ones that cannot be violated, while soft constraints can be violated
and are often associated a penalty function to minimize [20]. In the following, we will
report on the main NSP solving methods.

Metaheuristics use random search to discover near-optimal answers in a proper
time. Basically, these techniques trade the quality of the solution returned for the pro-
cessing time. Jan et al. [11] defined the NSP as a Multi-Objective Optimization (MOO)
problem and used genetic algorithms to solve it. The method proposed in [8] uses the
Ant Colony Optimization (ACO) technique to tackle the NSP in a dynamic environ-
ment. In this study, according to the soft and hard constraints defined for the problem,
such as the priorities of the hospital and nurses, etc., a schedule is created. Despite the
limitations of the problem and the various scenarios considered, the simulation results
showed that this method does provide acceptable results. In 2013, Wu et al. [23] used
ACO to solve the NSP. Indeed, ACO has been shown to perform reasonably well for
over-constrained problems. In 2015, Jafari and Salmasi [10] define the NSP using sev-
eral constraints and objectives. The focus is on maximizing nurses’ priorities and hos-
pital policies. Mathematical programming has been adopted to model the problem, and
simulated annealing to solve it. In [19], the authors used the Bee Colony Optimization
algorithm to maximize nurses’ priorities and minimize penalties related to violating
some soft constraints.

Exact methods where used to solve the NSP and guarantee to find an optimal solu-
tion if one exists. These methods, such as branch and bound [1,22], are however time
consuming and suffer from their exponential time cost, especially when the size of the
problem increases. In [1], the NSP is defined as a MOO where nurses’ priorities and
fairness need to be optimized. Here, the NSP is defined into subproblems where each is
tackled with the branch and bound algorithm.

In [15], the authors used Bayesian optimization algorithm to solve the NSP through
a learning mechanism. The proposed method relies on human behavior to learn the main
NSP scenarios. A goal programming method was adopted in [21] to solve the NSP as a
set of hard and soft constraints.
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Hybrid methods have also been adopted to solve the NSP. These methods combine
two or more algorithms with the goal to take advantage of each. In [24], Zhang et al.
used a genetic algorithm and variable neighborhood search to find good schedules for
the NSP. In [4], the authors used a Memetic Approach to solve the NSP. The latter
uses Tabu search for small-scale problem, combined with GAs and the steepest descent
improvement heuristic. It has been demonstrated that a combination of these techniques
(which complement each others) performs better than when using these algorithms sep-
arately.

3 Problem Formulation

The Formulation of our NSP is listed below. Basically the main goal is to assign nurses
to daily shifts such that a set of constraints are met (following hospital personnel poli-
cies) while an overall cost is minimized.

Decision Variables

xi jk =

{
1, if nurse i works in shift j on day k.

0, otherwise.
(1)

We assume that we have d days and 3 shifts per day: morning shift ( j = 1), evening
shift ( j = 2), and night shift ( j = 3).

Constraints

1. Minimum and Maximum number of nurses per shift. The following constraint
expresses the minimum and maximum assigned number of nurses per shift j in
day k.

Qjk ≤ ∑
i
xi jk ≤ S jk (2)

Qjk and S jk are respectively the minimum and the maximum number of nurses
needed for shift j in day k.

2. Maximum number of shifts for a given nurse during the schedule. The following
constraint sets the maximum number of shifts wi, for a given nurse i during the
schedule.

∑
j
∑
k

xi jk ≤ wi (3)

3. Maximum number of consecutive shifts. The following constraint sets the maxi-
mum number of consecutive shifts L for a given nurse i during the schedule. A con-
secutive shift corresponds to j= 3 for day k, followed by j= 1 for day k+1(mod d).

d
∑
k

(xi3k+ xi1(k+1mod d)) ≤ L (4)
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4. Maximum number of night shifts. Each nurse i should not work more than ni night
shifts in the schedule.

∑
k

xi jk ≤ ni j = 3 (5)

Objective: Hospital Costs to Minimize

min(∑
i

∑
j
∑
k

ci j · xi jk) (6)

ci j is the cost of nurse i working in shift j for any day.

4 Proposed Solving Approach

We propose a new solving method based on the Whale Optimization Algorithm (WOA)
[16]. WOA is considered as a combination of two variants of PSO, namely the moth
flame and the grey wolf techniques [5]. WOA is inspired by the behavior of humpback
whales and has been effective in solving optimization problems. WOA uses shrinking
encircling as well as spiral motions for exploitation. Exploration is achieved by having
whales moving randomly. Given the discrete nature of the NSP, we have defined WOA
operators as follows.

4.1 Individual Representation and Fitness Function

Each whale corresponds to a potential solution (schedule) and is expressed by a matrix
where rows list nurses’ shifts while columns represent the different days. Each entry
(i, j) will then correspond to a given shirt (1≤ j ≤ 3) assigned to a particular nurse i, as
depicted in Fig. 1. Note that this representation implicitly represents the fact that each
nurse cannot have more than one shift per day. The fitness function of a given whale
corresponds to the objective function we defined in Eq. 6.

Fig. 1. A solution representation in WOA

4.2 Example

Let us consider the NSP instance defined with the following parameters: n = 3, k = 7,
Qjk = 1, S jk = 3, wi = 7, L= 0, and ni = 3. The costs are listed in Table 1. An example
of potential schedule (whale) is depicted in Fig. 2. The fitness function (objective) of
this whale is computed as follows.
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X1 =
3

∑
i=1

3

∑
j=1

7

∑
k=1

ci j · xi jk = 1.63

Moreover, the whale in Fig. 2 satisfies all the constraints, as shown below.

Qjk ≤ ∑
i
xi jk ≤ S jk ⇒ 1 ≤

3

∑
i=1

xi j1 = 2 ≤ 3

∑
j
∑
k

xi jk ≤ wi ⇒
3

∑
j=0

7

∑
k=1

x1 jk = 6 ≤ 7

k

∑
a=1

xi jk ≤ ni j = 3 ⇒
7

∑
a=1

x13k = 1 ≤ 3

Fig. 2. A solution representation

Table 1. Cost information for the NSP instance.

Nurse no. c(i, j)
Shift 1 Shift 2 Shift 3

1 0.1 0.1 0.11

2 0.095 0.095 0.105

3 0.07 0.07 0.08

4.3 Exploitation and Exploration in Discrete WOA

Before we define the discrete versions of the exploration functions (spiral motion and
shrinking encircling), let us first presents the definition of distance in discrete WOA.
The distance between two whales (representing two potential schedules) is equal to
the Hamming distance between the related matrices. This basically corresponds to the
number of entries that are different in both matrices.
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Shrinking Encircling. The following equations were defined in [16] to guide the
shrinking encircling exploration function. In this search process, each whale (repre-
sented by X(t)) approaches its prey (best whale, X∗) by rotating around it.

D= |C ·X∗(t)−X(t)| (7)

X(t+1) = X∗(t)−A ·D (8)

A= 2a · r−a (9)

C = 2 · r (10)

a and r are random parameters in [0,2] and [0,1] respectively.
We have redefined the above equations as follows. We first set parameter C to 1.

Then, we defined the distanceD as the Hamming distance we defined earlier. Therefore,
Eq. 7 will compute the Hamming distance between X(t) and X(t)∗. Equation 8 will then
allow whale X(t) to move closer to X∗ by reducing (according to A) the number of
entries that are different in both whales.

For example, we assume that the best whale, X∗, and whale X(t) are as depicted in
Fig. 3. The different values in both whales (identified in grey) are used to calculate the
Hamming Distance, which is equal to 5. Let us assume that a= 0.5 and r = 0.9, hence,
A equals 0.4. This means that from the entries identified as different, by the Hamming
Distance, we randomly select 40% (2 entries) from the best whale and assign them to
the current whale X(t). In Fig. 4, we assume that the entries shown in green are those
that are randomly selected for whale X(t). These 2 values (3 and 2) will be replaced
with the corresponding entries in X∗ (1 and 1 respectively). This will allow X(t+1) to
move closely to X∗ by reducing 40% of the different entries.

Fig. 3. Hamming distance between X(t) and X(t)∗ (5 different entries)
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Fig. 4. Selecting a percentage of entries (in green) based on the value of A (Color figure online)

Spiral Attack. The following equations were defined in [16] to express the spiral attack
exploration function. Here, each whale (represented by X(t)) approaches its prey (best
whale, X∗) by following a spiral curve.

X(t+1) = D
′ · ebl · cos(2πl)+X∗(t) (11)

In Eq. 11, b is a constant and l is a random variable between [−1,1]. We have used
a similar equation, with distance D

′
defined as the Hamming distance between the two

whales. The following equations define the spiral attack for the NSP.

X(t+1) = X∗(t)−A ·D′
(12)

A= ebl · cos(2πl) (13)

To balance shrinking and spiral attacks, a random parameter, p, is generated
between [0, 1] to choose between the two attacks as follows.

A=

{
2a · r−a p< 0.5

ebl · cos(2πl) p ≥ 0.5
(14)

Exploration. For the exploration phase, we take a similar approach to the exploitation
phase to redefine the operators. The only difference is that we choose a random whale
(Xrand) instead of the best whale (X∗). The following equation guides the exploration
process.

X(t+1) = Xrand(t)−A ·D (15)

It should be noted that in Eq. 15, A is calculated from Eq. 9. In addition to Eq. 15
allowing a given whale to perform a shrinking motion towards a random whale, we also
consider the following techniques for exploration. Each of these methods alter some
values of a given whale X(t).

– Random Resetting Mutation (RRM). In this method, a number of entries of X(t)
are randomly selected and their values will be randomly changed.

– Swap Mutation (SwM). Pairs of values are randomly selected. Then their values
are interchanged.

– Scramble Mutation (ScM). A subset of contiguous entries are selected from X(t).
Then these values are randomly scrambled.

– Inverse Mutation (IM). A subset of contiguous entries are selected and inverted.
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5 Experimentation

To evaluate the performance of our proposed WOA, we conducted comparative exper-
iments against variants of B&B [2] and SLS techniques. We updated the B&B in [2]
to reflect the minimization variant of the NSP. B&B relies on the Depth First Search
(DFS) strategy to generate and explore all candidate solutions. B&B uses the Upper
Bound (UB) and Lower Bound (LB) parameters to minimize the overall hospital cost
by pruning the non-optimal solutions as well as the sub-branches that are unlikely to
lead to an optimal solution (the overall hospital cost is computed according to the par-
tial costs related to shift assignments as shown in Table 2). Given that we are dealing
with a minimization problem, we use the UB to track the best most-recent solution
found during search, and use the LB as an optimistic estimation for the best solution
during the exploration of sub-branches. The LB is computed based on the cost of the
current sub-branch plus the minimum shift patterns’ costs that can possibly be assigned
to the remaining nurses to over-estimate the best possible solution at any search stage.
The purpose of estimating the LB is to mainly forward-check if the current decision
may lead to a better solution or not, as early as possible during search, to avoid the
exploration of nodes that may not lead to optimal solutions. The UB and LB param-
eters contribute to the pruning process in such a way that if the LB becomes greater
or equal to the UB at any point during search, there will be no need to further explore
the remaining nodes because the current sub-branch will definitely not lead to a better
solution than the optimal one that has already been found.

Although B&B guarantees the optimality of the solution returned, it may come with
an exponential running time cost with respect to the domain size and the number of
nurses (O(dn), where d designate the domain size and n the number of nurses). There-
fore, we adopt constraint propagation techniques [7] to overcome this challenge and
minimize the B&B execution time. Constraint propagation [7] may be considered as
a pre-processing step before the B&B execution, and it mainly consists in optimizing
the domain size by simply eliminating the locally inconsistent values that does not sat-
isfy some set of constraints including unary, binary, and k-ary constraints. Enforcing
constraint propagation may lead to two main situations. The first situation is removing
all the domain values and ending up with an empty domain which confirms the incon-
sistency of the problem (non-existence of feasible solutions). The second situation is
ending up with a reduced domain of values which will reduce the size of the search
space to be used by B&B for finding the optimal solution. Considering the scope of
the constraints presented in our problem formulation, and given the fact that constraints
3, 4, and 5 (in Sect. 3) are unary constraints, we apply Node Consistency (NC) [13]
using these constraints before search for the purpose of minimizing the domain size
and consequently reduce the B&B running time (node consistency is simply the pro-
cess of eliminating the values that violates the unary constraints). We call, B&B + NC,
the search method using NC as a pre-processing phase. Furthermore, we adopt the Gen-
eralized Arc Consistency (GAC) algorithm [6,14] using global constraint 2 (in Sect. 3)
to eliminate some inconsistent domain values that are not part of any feasible solution.
We call, B&B + NC + GAC, the method using GAC, in addition to NC.

For SLS, we use three variants. These variants simply work by getting an initial
feasible solution and then trying to tune the solution while maintaining the feasibil-
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ity of the solution by sequentially looking for an alternative value for each variable
from its respective domain such that replacing this value would minimize our objective
when paired with the remaining values in the solution. Note that improving the solution
may not be guaranteed. The main difference between our proposed SLS variants is the
method of obtaining the initial solution. The first variant, that we call SLS, consists of
a random search to generate the initial solution. The second variant may be considered
as an alternative to B&B. Given that B&B is very slow since it may require exploration
of the entire search space to return the optimal solution, we propose a different method
that simply returns the first feasible solution found following a Depth-first search (DFS)
instead of searching for the optimal solution. After getting the initial solution, the algo-
rithm iterates by improving the initial solution. This process works by filtering the vari-
ables’ domains (i.e. removing the values with a greater cost that would not improve the
solution even if they do not violate any constraint, if selected) and then systematically
looking for a better value that improves the objective for each variable, using a brute-
force search. We call, DFS + SLS, this second method. Since we know that DFS comes
with an exponential time cost, our third SLS variant involves constraint propagation as a
pre-processing step, before search, to optimize the search space and to avoid exploring
the values that are not part of any feasible solution. Like for B&B, we use NC and GAC
to eliminate some inconsistent values from the variables’ domains which will reduce
the size of the search space. We call DFS + NC + GAC + SLS this third method.

All the algorithms are implemented in MATLAB software on a computer with a
Core i5-6200U processor at 2.3GHz and 8 GB of RAM.

Table 2. The cost table

Nurse no. c(i, j)
Shift 1 Shift 2 Shift 3

1 0.81 0.16 0.64

2 0.90 0.79 0.37

3 0.12 0.31 0.81

4 0.91 0.52 0.53

5 0.63 0.16 0.35

6 0.09 0.60 0.93

7 0.27 0.26 0.87

8 0.54 0.65 0.55

9 0.95 0.68 0.62

10 0.96 0.74 0.58

11 0.15 0.45 0.20

12 0.97 0.08 0.30

13 0.95 0.22 0.47

14 0.48 0.91 0.23

15 0.80 0.22 0.84
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Fig. 5. The number of violated constraints (left) and cost function improvement (right) in each
iteration

Table 3. The NSP parameters used in the experiments for different numbers of nurses

n d Qjk S jk wi L ni

5 7 1 4 5 2 3

10 7 1 7 5 2 3

15 7 1 12 5 2 3

20 7 1 15 5 2 3

30 7 1 25 5 2 3

50 7 1 35 5 2 3

60 7 1 45 5 2 3

80 7 1 65 5 2 3

The first experiments are conducted in order to depict the convergence trend of
WOA. We randomly generate NSP instances with the following parameters: n = 15,
k = 7, Qjk = 1, S jk = 12, wi = 5, L = 2, and ni = 3. The cost of nurses for different
shifts is considered as a uniform distribution according to Table 2. According to the
parameters listed above and the cost information in Table 2, WOA seeks to find a suit-
able schedule for nurses with respect to all constraints, and optimizing the overall cost
function. In this regard, the left chart of Fig. 5 shows the convergence trend in terms of
solved constraints. As noticed, all constraints are satisfied with less than 40 iterations.
While WOA is satisfying the constraints, the cost function is decreasing at each itera-
tion, and finally, after 40 iterations, the algorithm has been able to optimize the cost.
This process is depicted in the right chart of Fig. 5. The NSP instances parameters used
to conduct the comparative experiments are depicted in Table 3.

Table 4 reports on the experiment results comparing variants of the WOA algorithm,
as described in the previous section, with B&B and SLS, as described previously. The
quality of the best solution returned (BS) and the corresponding running time (RT)
where used as comparison criteria. All the results are averaged over 10 run. The exper-
iments were conducted on several NSP instances with the number of nurses varying
from 5 to 80. While it is hard to distinguish between the different variants for small size
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Table 4. The Experimental results in various methods for different number of nurses

Method Number of Nurses

5 10 15 20 30 50 60 80

BS RT (s) BS RT (s) BC RT (s) BS RT (s) BS RT (s) BS RT (s) BS RT (s) BS RT (s)

WOA 10.22 1.01 21.29 1.62 33.39 3.03 40.83 2.90 69.93 37.86 106.25 244.34 124.75 2221.78 177.66 3393.23

WOA + RRM 10.82 1.50 21.72 1.46 30.56 1.50 43.09 9.98 65.04 44.33 105.04 412.05 129.19 653.03 170.18 4196.58

WOA + SwM 10.29 0.95 22.81 1.53 32.48 0.97 41.85 14.96 65.28 24.40 103.26 340.61 127.09 1073.41 175.55 959.06

WOA + ScM 9.78 1.73 19.56 0.11 29.51 3.49 40.68 6.01 63.38 42.05 102.01 332.04 123.40 240.24 169.480 1301.61

WOA + IM 10.45 1.85 22.19 0.21 33.01 1.60 41.21 15.41 63.49 4.14 103.78 277.68 127.66 599.18 173.491 2005.55

SLS 11.57 0.69 24.10 0.50 35.82 1.10 47.81 1.18 74.72 1.46 114.40 1.21 143.03 1.85 190.09 3.40

DFS + SLS 14.86 18.90 28.68 164.11 38.91 345.57 43.62 404.75 76.08 1060.31 119.21 3873.79 148.34 4351.57 189.96 6901.90

DFS + NC + GAC + SLS 12.34 5.49 25.81 89.24 32.28 100.16 49.33 246.71 67.98 1394.28 109.96 3830.05 140.86 4781.31 185.54 5813.59

B&B + NC 9.68 1894 18.86 14415 25.55 22689 38.58 28137 52.34 34259 89.35 41459 – – – –

B&B + NC + GAC 9.68 534 18.86 11400 25.55 16211 38.58 23418 52.34 29768 89.35 37108 – – – –

NSPs, WOA + ScM is superior to the other methods in terms of solution quality, for
large number of nurses. ScM consists of randomly scrambling a subset of contiguous
entries which is effective given the nature of our problem. B&B is an exact method
and always return the optimal solution (except for large instances). The algorithm does
however suffer from its inherited exponential time const. The same can be said when
adding DFS as an initial step for the SLS algorithm. In both B&B and SLS, constraint
propagation does help lowering the running time (as a consequence of reducing the
running time). However, this effort is still not enough to compete with WOA variants.

6 Conclusion and Future Work

The NSP is crucial in clinics and hospitals. Providing a schedule traditionally requires a
lot of time and effort. We propose a discrete variant of the WOA algorithm to efficiently
tackle the NSP. In order to evaluate the efficiency of our method, we conducted several
experiments on different NSP instances. The results obtained are promising.

In the near future, we plan to explore other nature-inspired techniques such as the
PSO [12] and GAs [9], and will conduct an experimental analysis on real-world scenar-
ios. We anticipate that the latter will require dealing with the challenging task of solving
the NSP in a dynamic environment. An example is the Physician Scheduling in Emer-
gency Rooms (PSER) which consists in finding a good (ideally the best) assignment
covering all the required shifts and duties, meeting work regulations and hospital poli-
cies, and maximizing individual preferences as much as possible. This task becomes
even more difficult when schedules need to be re-planned in real time, due to an unex-
pected change in demand or physicians (or nurses) call in sick. In this context, we will
adopt a nature-inspired solution that we have reported in [3,17,18]. Indeed, dynamic
changes require an algorithm that works in an iterative manner which is consistent with
the nature of metaheuristics.
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Abstract. In this paper, we propose a hierarchical Cooperative Coevo-
lution framework (hCC) to deal with the Very Large-scale Traveling
Salesman Problem (VLSTSP). Due to the existence of the curse of dimen-
sionality, it is difficult to find an acceptable solution for VLSTSP with
conventional Evolutionary Algorithms (EAs). Cooperative Coevolution
(CC) framework, which divides the problems into multiple subcompo-
nents and optimizes them independently, offers a potential opportunity
to find suitable solutions. However, conventional CC with large-scale
sub-size decomposition will still be affected by the curse of dimension-
ality, and small-scale sub-size decomposition ignores many interactions
between subcomponents. Although the initial sub-size of the proposed
hCC is small-scale, the ignored interactions will be reconsidered in the
higher layer of optimization. Another issue is how to decompose the
VLSTSP. In the numerical experiments, we design two strategies: (1).
Random decomposition. (2). Decomposition based on the greedy solu-
tion. 10 symmetric instances of VLSTSP ranging from 38,478 to 238,025
are employed to evaluate our proposal, and the basic optimizer is greedy
Local Search (gLS). Experimental results show that our proposal has
great potential and scalability to deal with VLSTSP, which can be easily
extended to deal with various types of TSP.

Keywords: hierarchical Cooperative Coevolution (hCC) · greedy
Local Search (gLS) · Very Large-scale Traveling Salesman Problem
(VLSTSP)

1 Introduction

The Traveling Salesman Problem (TSP) [8] is one of the most famous NP-hard
combinatorial optimization problems and has been widely studied in the fields
of operations research [14,17] and theoretical computer science [12] in the past
decades. Many real-world problems based on TSP also exist, such as planning
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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and logistics [4], arranging school bus paths [9], transportation of farming equip-
ment [10], and so on.

The time complexity of solving TSP by brute-force search is O(n!). Owing to
the existence of the curse of dimensionality [6], it is difficult to deal with Large-
scale TSP (LSTSP) and almost impossible to find the global optimal tour of Very
Large-scale TSP (VLSTSP) under the limited computational time. Meanwhile,
researchers notice that evolutionary algorithms (EAs) can achieve an accept-
able solution by iteration, and many algorithms have been proposed to deal
with LSTSP [2,7,11], which achieve great success. However, VLSTSP makes the
performance of EAs degrade rapidly, and the curse of dimensionality is a huge
obstacle in solving VLSTSP [5].

Cooperative Coevolution (CC) [13] is a flexible and efficient framework to
deal with Large-scale optimization problems (LSOPs). Based on divide and con-
quer, the original LSOPs are decomposed into several non-separable subcompo-
nents and optimized alternately. This strategy can alleviate the influence of the
curse of dimensionality directly and accelerates the convergence of optimization.

However, the conventional CC framework is also defective to solve VLSTSP:
The decomposition with large-scale subcomponents will still degenerate the per-
formance of EAs, and the decomposition with small-scale subcomponents will
ignore many interactions between subcomponents. Therefore, this paper pro-
poses a hierarchical Cooperative Coevolution (hCC) framework and combined it
with greedy Local Search (gLS) to solve VLSTSP, our proposal is named hCC-
gLS. Although hCC-gLS has a small-scale decomposition in the initial stage,
the repeat of subcomponents optimization and combination will reconsider the
neglected interactions in the higher layer of optimization.

The rest of the paper is organized as follows: Sect. 2 covers the related works.
Section 3 introduces our proposal hCC-gLS in detail. In Sect. 4, we show the
experimental results of our proposal. Section 5 discusses the analysis and future
direction of research. Finally, we conclude our paper in Sect. 6.

2 Related Works

2.1 Traveling Salesman Problem (TSP)

The simplest instance of TSP can be described as: A salesman tries to find the
shortest closed route to visit a set of cities under the conditions that each city
is visited exactly once. The salesman assumes the distances between any pair
of cities are assumed to be known. In this work, we concentrate on the 2-D
symmetric TSP. Given a list of N city coordinates {x1, x2, ..., xN} ∈ R

2, we
wish to find an optimal permutation σ over the cities that minimizes the tour
length:

L(σ,X) =
N∑

i=1

‖xσ(i) − xσ(i+1)‖2 (1)

where σ(1) = σ(N + 1), σ(i) ∈ {1, ..., N}, σ(i) �= σ(j) for any i �= j, and
X = {x1,x2, ...,xi} is a matrix consisting of all city coordinates xi.
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2.2 Cooperative Coevolution (CC)

Inspired by divide and conquer, CC decomposes the VLSTSPs into multiple
subcomponents, which can be described as:

min f(x1,x2, ...,xn) = (min
c1

f1(..., ...), ...,min
cm

fm(..., ...)) (2)

where xi denotes the coordinate of city i, and f(·) represents the objective func-
tion. The cj means a subcomponent in the CC framework, and fj(·) stands for
the objective function in subcomponent j. Different from the CC in continuous
LSOPs, it is unnecessary to maintain a context vector [1] to form a complete
solution, each subcomponent can be directly evaluated in TSP. In a study for
solving VLSTSPs, the CC deals with the problem by dividing it into a set of
smaller and simpler subcomponents and optimizing them separately. In sum-
mary, there are three steps consisting of the CC framework.

Problem decomposition: Decomposing the VLSTSPs into multiple subcom-
ponents.
Subcomponent optimization: Optimization methods are applied to each sub-
component.
Cooperative combination: Combining the solutions of all subcomponents to
construct the complete solution.

3 Our Proposal: hCC-gLS

In this section, we will introduce our proposal: hCC-gLS in detail. Figure 1
demonstrates the main steps.

In the decomposition period, we design two strategies to form the subcompo-
nents: random decomposition and knowledge-based decomposition. In random
decomposition, we randomly shuffle the city list [0, 1, 2, ..., n] and divide the
cities with pre-defined subcomponents’ size. In knowledge-based decomposition,
we first execute the greedy search (GS) to find an initial solution, and decom-
position is also implemented based on the order of this solution.

In the optimization stage, we optimize the subcomponents with gLS itera-
tively, and each optimized subcomponent is merged with the nearest subcompo-
nent to form a larger subcomponent. The procedure of optimization and combi-
nation is repeated until all subcomponents are merged.

3.1 Hierarchical Cooperative Coevolution (hCC)

hCC framework is proposed to deal with VLSTSP. Figure 2 is an example to
demonstrate how hCC works.

In Fig. 2(a), we divide 4 cities as a subcomponent, and the interactions
between subcomponents are neglected. However, these ignored interactions are
reconsidered in Fig. 2(d) and (f). This strategy endows the ability of the opti-
mizer to get rid of the local optima.
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Start

Optimize the subcomponents with gLS

Combine every two subcomponents 
and sub-tour with the nearest distance

Output the complete solution

End

number of subcomponent == 1?

No

Yes

Decompose the problem randomly 
or based on prior knowledge

Fig. 1. The flowchart of hCC-gLS.

(a) (c)(b)

(d) (e) (f)

Fig. 2. The demonstration of hCC-gLS. (a) The tour and decomposition are found by
the GS. (b) gLS is employed to optimize each subcomponent. (c) Subcomponents and
sub-tours are merged. (d) Repeat the subcomponents optimization. (e) Repeat the com-
bination of subcomponents and sub-tours. (f) Repeat the subcomponents optimization
until sub-tours form a complete solution.
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3.2 Greedy Local Search (gLS)

Greedy Local Search (gLS) is a hybrid operator to produce candidate solutions
[15]. This operator selects the best solution from three neighbors greedily. Specif-
ically, after two random and different positions i and j are selected, inverse,
insert, and swap operators are applied to generate three neighbor solutions.
And the best is chosen as the candidate solution. Furthermore, we develop a
new operator named rand, which randomly shuffles the order between city i and
city j. A demonstration of these four operators is shown in Fig. 3 and defined as
follows:

Definition 1. inverse(π, i, j) means to inverse the travel order of cities between
i and j, and the generated solution π′ follows the rules: π′(i) = π(j), π′(i + 1) =
π(j − 1), ..., π′(j) = π(i), where 1 ≤ i, j ≤ n ∧ 1 ≤ j − i ≤ n − 1. n is the
tour length. When i = 1 and j = n, then π′(i) = π(j) and π′(j) = π(i). Two
edges will be replaced by the inverse operator for symmetric TSP. An example
is shown in Fig. 3(b).

Definition 2. insert(π, i, j) means to insert city j into the position i. And a
new solution π′ follows the rules: π′(i) = π(j), π′(i+1) = π(i), ..., π′(j) = π(j−1)
in the case of i < j, or π′(j) = π(j + 1), ..., π′(i − 1) = π(i), π′(i) = π(j) in the
case of i > j. In general, three edges will be replaced by the insert operator. An
example is shown in Fig. 3(c).

Definition 3. swap(π, i, j) means to swap the city i and city j in travel tour,
which follows simple principle: π′(i) = π(j) and π′(j) = π(i). In general, four
edges will be replaced by the swap operator. An example is shown in Fig. 3(d).

Definition 4. rand(π, i, j) means to randomize the city order between city i
and city j in travel tour. An example is shown in Fig. 3(e).

Once the search generates four neighbor solutions using the above strategies,
considering the original solution π, the best solution π′ is selected by Eq. (3).

π′ = min(π, inverse(π, i, j), insert(π, i, j), swap(π, i, j), rand(π, i, j)) (3)

gLS repeat the procedure of inverse, insert, swap, and rand iteratively until
the computational budget exhausted. In summary, the pseudocode of greedy
search-based hCC-gLS is shown in Algorithm 1.

3.3 Time Complexity Analysis

This section analyzes the time complexity of greedy search-based hCC-gLS.
There are two stages of our proposal which need to be analyzed: (1). Initial-
ization (greedy search) stage (2). hCC-gLS stage.

Suppose the dimension of VLSTSP is n, in the initial solution generation
(greedy search), we first build the adjacent matrix to save the adjacent informa-
tion of the cities, and the time complexity is O(n(n−1)/2) = O(n2). To find the
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Fig. 3. The inverse, insert, swap, and rand operators generate neighbor solutions.
(a) Original tour π. (b) Inverse π with (i, j) = (4, 8). (c) Insert π with (i, j) = (4, 8).
(d) Swap π with (i, j) = (4, 8). (e) Randomize π with (i, j) = (4, 8).

greedy tour, each city has to find the closest city which has not been allocated,
thus the time complexity is also O(n(n − 1)/2) = O(n2). In summary, the time
complexity of initialization is O(n2).

In the hCC-gLS stage, suppose the optimization iteration for each subcom-
ponent is k, and the minimal scale of the subcomponent is m. Figure 4 further
demonstrates this tree-structure optimization.

In layer 1, the number of subcomponents is int((n + m− 1)/m), where int()
only keeps an integral part of a value, and optimization complexity is 4k because
four neighbor solutions are generated for once search. Therefore, the time com-
plexity of bottom layer is O(4k ·int((n+m−1)/m)), which approximately equals
to O(4kn/m)). And the time complexity of the second layer is approximately
equal to O(4kn/2m)), the third layer is O(4kn/4m)), and so on. Thus the time
complexity of hCC-gLS is:

4k · O(n/m + n/2m + n/4m...) := 4k · O(n/m) = O(4kn/m) (4)
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Algorithm 1: hCC-gLS
Input: cities : C, scale of subcomponents : s, Maximum iteration : M
Output: Best solution : E

1 Function hCC-gLS(C, n, M):
2 E ← GS(C) # Greedy search
3 sT ← decompose(E, s)
4 L ← size(sT )
5 while L �= 1 do
6 for i = 0 to L do
7 for j = 0 to M do
8 l ← size(sTi)
9 r1, r2 ← randint(1, l − 1), randint(1, l − 1) # r1 �= r2

10 sTi ← gLS(sTi, r1, r2) # greedy Local Search

11 end

12 end
13 sT ← merge(sT ) # Combination
14 E ← update(sT, E) # update the current best solution

15 end
16 return E

In summary, the time complexity of our proposal is max(O(n2), O(4kn/m)).

4 Numerical Experiments

In this section, a set of numerical experiments are executed for the algo-
rithm investigation. In Sect. 4.1, we introduce the experiment settings, includ-
ing the experiment environment, benchmark instances, and comparing methods.
Section 4.2 provides the experimental result of benchmarks.

Layer 1

Layer 2

Layer 3

Layer 4

Fig. 4. A demonstration of the structure of hCC framework.
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4.1 Experiment Settings

Experiment Environment. All algorithms are programmed with Python 3.7
and implemented in Hokkaido University’s high-performance intercloud super-
computer equipped with CentOS operating system, Intel Xeon Gold 6148 CPU,
and 384 GB RAM.

Benchmark Instances. In this paper, we apply 10 symmetric VLSTSP
instances to evaluate our proposal, they are bby34656, pba38478, ics39603,
rbz43748, fht47608, fna52057, bna56769, dan59296, sra104815, and ara238025.
The number in the name of instances is the number of cities. All instances are
provided by VLSI Data Sets [3].

Compared Methods. Table 1 shows the shortened name and description of
compared methods. The size of subcomponents and maximum iteration of a
subcomponent are 100. To compare these methods fairly, the evaluation times
of the complete solution among all compared methods are identical. Notice that
this description is to complete solution, which means all mutually exclusive sub-
components optimized 1 time are equal to optimizing a complete problem 1 time.
Thus, from Fig. 4, we can calculate the maximum iteration times without hCC
framework is equal to 100 × p, and p is the number of layers.

Table 1. The shortened name and description of compared methods

Name Description

gLS The shortened name of greedy Local Search, the initial
tour is randomly generated

hCC-gLS Our proposed hCC framework with gLS optimizer, the
initial tour is randomly generated

gLS-G The shortened name of greedy Local Search, the initial
tour is found by greedy search

hCC-gLS-G Our proposed hCC framework with gLS optimizer, the
initial tour is found by greedy search

4.2 Experimental Results

In this section, the performance of our proposal is studied. Experiments are
conducted on the benchmark functions presented in Sect. 4.1. Table 2 shows the
experimental results within 10 independent trial runs with compared methods.

5 Discussion

This section consists of two parts: Sect. 5.1 analyzes the experimental results,
and Sect. 5.2 lists some future topics.
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Table 2. The experimental results of 10 trial runs among 4 compared methods.

Inst gLS hCC-gLS gLS-G hCC-gLS-G

mean dis. time (sec.) mean dis. time (sec.) mean dis. time (sec.) mean dis. time (sec.)

bby34656 15,822,156 228 13,820,836 495 125,990 1674 125,602 1985

pba38478 19,182,518 236 16,749,710 508 134,730 1824 134,414 2162

ics39603 20,648,522 301 17,561,793 652 133,045 2014 132,624 2373

rbz43748 23,281,293 330 20,294,489 627 157,154 2126 156,725 2314

fht47608 26,678,349 364 22,924,353 683 155,180 2546 154,895 2747

fna52057 31,080,146 404 27,072,440 833 186,428 3044 185,971 3315

bna56769 32,034,954 443 28,271,489 908 199,225 3607 198,776 3902

dan59296 36,224,847 464 31,725,212 955 208,295 3949 207,667 4260

sra104815 80,233,169 796 70,242,189 1846 329,426 11813 328,548 12468

ara238025 284,079,330 1905 246,528,008 4655 760,400 58652 758,527 60351

5.1 Experimental Results Analysis

Comparison Between gLS and hCC-gLS. Experimental results between
the gLS and hCC-gLS in Table 2 show that the introduction of hCC can support
the gLS to find a better solution, and the extra time consumption is affordable.
Although the random decomposition cannot capture the interactions with high
accuracy, paper [18] provides a mathematical proof that random grouping has a
high probability to capture some correct interactions, and these limited correct
interactions and divide-and-conquer strategy can accelerate the optimization,
while pure gLS cannot detect the superior connections in VLSTSP due to the
curse of dimensionality.

Comparison Between gLS-G and hCC-gLS-G. Greedy Search (GS) is
a naive but efficient method, especially in VLSTSPs, improvements in Table 2
further verify the efficiency of GS in high-dimensional problems. This greedy
scheme connects the nearest city from candidates to construct the solution, which
is at the cost of computational time and easily trapped into the local optimum.
However, this greedy strategy is consistent with the decomposition principle that
the closer cities have stronger relationships, thus, the solution found by GS not
only an initial solution but also contains the correct linkage information, which
can help the hCC framework to form the subcomponent suitably and accelerate
the optimization.

5.2 Potential Topics

The above experimental results and analysis show that our proposal hCC-gLS
has great potential to solve VLSTSP, and there are still some open topics for
our future research.

More Powerful Optimizer. Greedy Local Search is a simple but efficient
optimizer for exploitation. However, as the dimension of the problem increases,
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the concept of local is affected by the curse of dimensionality, and the scale of
local also increases exponentially. No Free Lunch Theorem [16] proves that all
optimization algorithms have the same averaging performance on all possible
problems, and algorithm A performs better on exploration may perform worse
on exploitation. Thus, it is necessary to apply different types of optimizers for
specific problems with various scales. For example, local search is employed in
the early stage when the scale of subcomponents is quite small, and Genetic
Algorithm (GA) or Ant Colony Optimization (ACO) is applied in the late stage
when the scale of subcomponents is quite large. And how to make this decision
is an interesting topic. Reinforcement Learning (RL) is a good choice. The envi-
ronment of RL in this situation is the scale of subcomponents, the agent is a
decision maker, the action is the execution of exploitation or exploration, and
the reward is the performance of a certain decision.

Parallelization. VLSTSP is a very time-consuming task. From the execution
time in Table 2, a trial run of the instance with 100 million cities is unaffordable
without parallelization, even in the high-performance supercomputer. Luckily,
parallelization is a friendly and flexible approach to dealing with VLSTSP. It is
unnecessary to form a complete solution in optimization to be evaluated, each
subcomponent can be optimized separately and form an independent sub-tour
to calculate the distance. Thus, parallelization and GPU-based programming are
suitable approaches to accelerate the implementation of VLSTSP.

6 Conclusion

This paper proposes a hierarchical Cooperative Coevolution framework (hCC)
to deal with VLSTSP based on divide and conquer, and greedy Local Search
(gLS) as a basic optimizer is applied to optimize the subcomponents. We also
emphasize the importance of the initial solution. A well-performed solution con-
tains effective linkage information which can help the hCC framework to form
subcomponents.

At the end of this paper, we list some interesting and potential topics which
can improve our algorithm. Finally, our proposal is a promising study for address-
ing VLSTSP.

Acknowledgement. This work was supported by JSPS KAKENHI Grant Number
JP20K11967.
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Abstract. In this paper we propose an autonomous chaotic optimiza-
tion algorithm, called Tornado, for high dimensional global optimization
problems. The algorithm introduces advanced symmetrization, levelling
and fine search strategies for an efficient and effective exploration of the
search space and exploitation of the best found solutions. To our knowl-
edge, this is the first accurate and fast autonomous chaotic algorithm
solving large scale optimization problems.

A panel of various benchmark problems with different properties was
used to assess the performance of the proposed chaotic algorithm. The
obtained results have shown the scalability of the algorithm in contrast to
chaotic optimization algorithms encountered in the literature. Moreover,
in comparison with some state-of-the-art metaheuristics (e.g. evolution-
ary algorithms, swarm intelligence), the computational results revealed
that the proposed Tornado algorithm is an effective and efficient opti-
mization algorithm.

A panel of various benchmark problems with different properties was
used to assess the performance of the proposed chaotic algorithm. The
obtained results have shown the scalability of the algorithm in contrast to
chaotic optimization algorithms encountered in the literature. Moreover,
in comparison with some state-of-the-art metaheuristics (e.g. evolution-
ary algorithms, swarm intelligence), the computational results revealed
that the proposed Tornado algorithm is an effective and efficient opti-
mization algorithm.
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Levelling · Symmetrization · Fine search · Large scale optimization
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Chaos theory is a branch of mathematics dealing on the study of dynamical
systems whose apparently-random states of disorder and irregularities are often
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governed by deterministic laws [1]. Chaotic behavior exists in many natural sys-
tems, including fluid flow, weather and climate. It also occurs spontaneously in
some systems with artificial components, such as stock market and road traf-
fic. Chaotic systems are characterized by high sensitive dependence to initial
conditions, an effect which is popularly known as the butterfly effect [2]. As a
result of this sensitivity, the behaviour of such systems appears to be stochastic,
even though the model of the system is deterministic, meaning that their future
behaviour is fully determined by their initial conditions, with no random ele-
ments involved. Another consequence of the butterfly effect is unpredictability.
Small differences in initial inputs yield widely divergent solutions results after
several cycles through the system. In recent years, chaos has gained increasing
attention and have been widely investigated in various disciplines such as control
[3,4] and optimization [5].

Nowadays, there is a need for more effective and efficient optimization tech-
niques, able to solve high dimensional problems. State-of-the-art chaos based
optimization algorithms (COAs) are not efficient for high dimensional optimiza-
tion problems [6]. They are not even operational for a dimension greater than 5
[6]. Existing COAs are deficient in terms of:
– Exploration of the search space: indeed, the irregularity of the chaos dynam-

ics grows quickly with the problem dimension. This is due to the intrinsic
imprevisibility of chaotic dynamics [6].

– Exploitation of the best found solutions: the main search mechanism used in
COAs is not adapted for a good exploitation. It selects in a random way the
direction around the current solution [7].

This paper is the culmination of an approach that leads to an autonomous
COA algorithm. First, the following strategies have been introduced in a
gradient-based chaotic algorithm to improve the regularity and the flexibility
of the algorithm [8,9]:
– Symmetrization: on the one hand, Symmetrization induces a regular structure

into the chaotic dynamics for a better exploration. On the other hand, based
on a stochastic decomposition strategy, it enables an efficient and scalable
alternative search mechanisms for a better exploitation in the search space.

– Levelling: in fact, the chaotic dynamics has been restructured by a leveling
approach. This allows to generate different flexible chaotic levels to improve
the exploration and the exploitation of the search space.

– Hybridization with local search: a combination with gradient based algorithm
has been carried out for continuous differentiable functions.

In this paper, an autonomous Chaos is introduced which speed-ups the con-
vergence and improves the accuracy of the search for high dimensional prob-
lems. An autonomous and pure chaotic algorithm has been developed, in which
the combination with a local search algorithm (e.g. gradient descent) has been
replaced by a chaotic fine search. The computational results for many test func-
tions with different properties and levels of complexity has shown the effective-
ness, efficiency, and scalability of the autonomous chaotic algorithm in tackling
high dimensional optimization problems.
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This paper is organized as follows. In Sect. 2, the related work on chaos opti-
mization algorithms and state-of-the art global optimization algorithms (e.g.
evolutionary algorithms, swarm intelligence) are presented. Section 3 details the
novel autonomous chaos optimization, the Tornado algorithm. Section 4 shows
the computational experiments of the proposed algorithm. A comparison has
been carried out as well with popular chaos optimization algorithms and state-
of-the-art stochastic metaheuristics (e.g. evolutionary algorithms, swarm intelli-
gence). The conclusion and the perspectives of this work are made in Sect. 5.

2 Related Work

Consider an optimization problem with bounding constraints1:

Minimize f(X) subject to X ∈ [
L,U ], (1)

where

– f : IRn −→ IR, denotes the objective function,
– X = (x1, .., xn) ∈ IRn, the decision vector whose components xi are bounded

by lower bounds li and upper bounds ui. and [L,U ] =
n∏

i=1

[li, ui].

Chaos is a universal nonlinear phenomenon with stochastic, ergodic, and reg-
ular properties. Ergodicity can be used as a search mechanism for optimization.
The sequence of solutions is generated by means of a chaotic map. Different
chaotic maps exist in the literature [10]. The most popular ones are:

• The logistic map: xk = μ.xk(1 − xk), 0 < x0 < 1, 0 � μ � 4

• The Kent map: xk+1 =
{

xk/β if 0 < xk < β
(1 − xk)

/
(1 − β) if β < xk < 1 ,

• The Henon map:
{

xk+1 = 1 − ax2
k + yk

yk+1 = bxk
(x0, y0) ∈ IR2, a, b > 0

Chaos has been embedded in the development of novel search strategies for
global optimization known as chaos optimization algorithms (COAs). COAs have
the properties of easy implementation, reduced execution time and robust mech-
anisms of escaping from local optimum. COA has been used in many applications
such as optimization of power flow problems [11], control systems [12], neural net-
works [13], cryptography [14] and image processing [15]. In [10], the best chaotic
sequences generated by sixteen different chaotic maps have been analysed.

Chaos based optimization has been originally proposed in 1997 [5]. It includes
generally two main stages:

– Global search: an exploration of the global search space is carried out. A
sequence of chaotic solutions is generated using a chaotic map. Then, the
objective functions are evaluated and the solution with the best objective
function is chosen as the current solution.

1 Without loss of generality, we consider only minimization problems.
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– Local search: the current solution is assumed to be close to the global optimum
after a given number of iterations, and it is viewed as the centre on which
a little chaotic perturbation, and the global optimum is obtained through
local search. The above two steps are iterated until some specified stopping
criterion is satisfied.

Observations from existing COA algorithms reveal that COA still presents
some drawbacks especially with problems involving high dimensional spaces.
Furthermore, the exploration ability of the COA decreases with the increase of
the dimension space particularly because of the irregularity and the rigidity of
the chaos dynamic which does not always authorize the exploration of some iso-
lated regions containing the global optimum. Moreover, chaotic search has poor
fine search ability, and then existing COAs suffer from the exploitation aspect.
Most of the efficient chaos based optimization algorithms (COAs), proposed in
the literature, are hybrid algorithms. Used generally as a global search strategy,
COA is combined with local search efficient procedures such as gradient descent
[9], grey-wolf [16], golden section search [17], and stochastic metaheuristics (e.g.
butterfly [18], particle swarm [19,20], cucko search [21], firefly [22], genetic algo-
rithms [23]).

Hence, few articles proposed an autonomous COA algorithm for global opti-
mization [7,24,25]. Rather, COA has been widely involved in hybridization
strategies, and by contrast, these few autonomous COA approaches involve only
low-dimensional problems, and that reveals their limited efficiency and especially
their incapacity in handling higher-dimensional problems [6]. According to the
aforementioned difficulties, this paper presents a new COA approach based on
new strategies including symmetrization, levelling, and fined local search.

In the last two decades, many efficient metaheuristics have been developed for
tackling continuous optimization problems. Most of state-of-the-art algorithms
are stochastic metaheuristics:

– Differential evolution (DE): DE has two main control parameters that are
required to be fixed by a user before the evolutionary process starts: the scal-
ing factor F , and the crossover control parameter CR. Many adaptive and
self-adaptive DE variants have been developed (e.g. L-SHADE [26]). jSO [27]
and SHADE-cnEpSin [28] are DE-based winners of the CEC’2017 compe-
tition. SALSHADE-cnEpSin [29] and LSHADE-RSP [30] are the DE-based
winners of the CEC’2018 competition.

– Evolution strategies (ES): CMA-ES (Covariance Matrix Adaptation-
Evolution Strategy) represents an efficient algorithm for global optimization
[31] CMA-ES is a population based multivariate sampling algorithm, in which
new candidate solutions are sampled using the multivariate normal distribu-
tion, based on the adaptation of covariance matrix.

– Particle swarm optimization (PSO): designing learning methods that can use
previous search information more efficiently was one of the most salient PSO
research topics. The Orthogonal Learning PSO (OLPSO) [32] and the hetero-
geneous CLPSO [33] represent one of the most efficient PSO-based algorithms
to solve global optimization problems. In OLPSO, orthogonal learning (OL)
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strategy is used to discover useful information and guide particles to fly in bet-
ter directions by constructing a much promising and efficient exemplar [32].
In CLPSO, the swarm population is divided into two subpopulations. Each
subpopulation is assigned to focus solely on either exploration or exploitation.
Comprehensive learning (CL) strategy is used to generate the exemplars for
both subpopulations [33].

– Estimation of distribution algorithms (EDA): the principle of EDA is to
explore the space of potential solutions by generating and sampling promising
solutions [34]. The main stage is the construction of an explicit probabilistic
model that tries to capture the probability distribution of the promising solu-
tions by using tree-structured or Bayesian networks [35]. As the univariate
EDAs assume that all the variables are independent, it is widely used to solve
separable problems [36]. It has been shown that univariate EDAs such as uni-
variate marginal distribution algorithm continuous (UMDAc) is efficient for
solving some multimodal nonseparable problems [37,38].

– Hybrid metaheuristics: the hybrid metaheuristic LSHADE_SPACMA (Semi-
Parameter Adaptation Hybrid with CMA-ES) shows its efficiency for solving
the CEC’2017 benchmark problems [39]. The HS-ES (Hybrid Sampling Evo-
lution Strategy) is the general winner of the CEC’2018 competition on real
parameter bound-constrained optimization [40]. It combines CMA-ES and
univariate sampling UMDAc algorithms. Univariate sampling is very effective
for solving multimodal nonseparable problems. As the CMA-ES has obvious
advantages for solving unimodal nonseparable problems, the proposed HS-ES
tries to take advantages of these two complementary algorithms to improve
the performance of the search.

3 The Tornado Algorithm

The proposed Tornado algorithm is composed of three main procedures:

• The chaotic global search (CGS): CGS is a full exploration-based Chaotic
search procedure. Its goal is to produce initial solutions that will be improved
and refined by other exploitation-based chaotic search procedures.

• The chaotic local search (CLS): CLS is an exploitation-based Chaotic search
procedure. Starting from an initial solution given by CGS, it exploits the
neighbourhood of the solution. By focusing on successive promising solutions,
CLS allows also the exploration of promising neighbouring regions.

• The chaotic fine search (CFS): CFS is a full exploitation-based Chaotic pro-
cedure. It uses a coordinate adaptive zoom strategy to intensify the search
around the current optimum.

The structure of the proposed Tornado approach is given in Algorithm 1.
In this work, we use the Henon map as a generator of a chaotic sequence.
We consider a sequence (Zk)1≤k≤Nh

of normalized Henon vectors Zk =
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(zk,1, zk,2, .., zk,n) ∈ IRn through the following linear transformation of the stan-
dard Henon map (2) (Fig. 1):

zk,i =
yk,i − αi

βi − αi
, ∀ (k, i) ∈ [[1, Nh]] × [[1, n]], (2)

where αi = mink(yk,i) and βi = maxk(yk,i).
Thus, we get ∀ (k, i) ∈ [[1, Nh]] × [[1, n]], 0 � zk,i � 1.
In this work, the sequence of normalized Henon map vectors (Zk) is defined

as: a = 1.5, b = 0.2, ∀k ∈ [[1, n]], (x
k,0 , yk,0) = (rk, 0), rk ∼ U(0, 1).

Algorithm 1 : The Tornado algorithm structure
1: Initialisation of the Henon chaotic sequence ;
2: Set k = 1 ;
3: Repeat
4: Chaotic Global Search (CGS);
5: Set s = 1 ;
6: Repeat;
7: Chaotic Local Search (CLS);
8: Chaotic Finest Search (CFS);
9: s = s + 1;

10: Until s = Ml ; /* Ml is the number of CLS/CFS by cycle */
11: k = k + 1 ;
12: Until k = M ; /* M is maximum number of cycles of Tornado */

Fig. 1. Illustration of Henon Map.

In general, chaos dynamics suffer from irregularity and rigidity, which induces
a deficient exploration [?]. Indeed, the chaos dynamics does not always enable
to cover some isolated regions of the search space. For a better exploration
of the search space, the proposed Tornado algorithm uses symmetrization and
levelling strategies to better control the flexibility and the orientation of the
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chaotic search process. In fact, those proposed strategies provide a distribution
of chaos variables that contains several layers of symmetric solutions.

Chaotic global search and Chaotic local search will be briefly explained in
next sections, while further details can be found in

3.1 Chaotic Global Search (CGS)

In order to improve the exploration ability of the chaos dynamic, the CGS pro-
ceeds by restructuring the chaos dynamics using to approaches: Levelling and
Symmetrization.

– Levelling approach: In order to provide more diversification in the chaotic
distribution, CGS proceeds by levelling with Nc chaotic levels. More precisely,
the CGS procedure generates three chaotic variables for each iteration k, and
in each level, l ∈ [[1, Nc]] according to:

X1 = L + ZlZk × (U − L) (3)
X2 = θ + ZlZk × (U − θ) (4)

X3 = U − ZlZk × (U − θ). (5)

Note that we drop k from the subscript in the notation Xi,k for sake of
simplicity.

– Symmetrization approach: As the exploration of all the dimensions in a high-
dimensional space is not practical because of combinatorial explosion, we
have introduced a new strategy consisting of a stochastic decomposition of
the search space R

n into two vectorial subspaces: a vectorial line D and its
corresponding hyperplane H:

IRn = D ⊕ H, D = IR × ep, H = vect(ei)i�=p. (6)

By consequence,

∀X = (x1, x2, . . . , xn) ∈ IRn: X = Xd + Xh, (7)

where

Xd = (0, ··, 0, xp, 0, ··, 0) ∈ D,Xh = (x1, ··, xp−1, 0, xp+1, ··, xn) ∈ H. (8)

The symmetrization approach based on this stochastic decomposition of the
design space provides two main advantages:

– It Reduces significantly the complexity of a high dimensional problem in a
way as if we were dealing with a 2D space with four directions.

– The symmetric chaos is consequently more regular and more ergodic than the
initial one (Fig. 2).
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Fig. 2. Illustration of symmetrisation approach in 2D.

Therefore, by using the stochastic decomposition (6), at each chaotic level
l ∈ [[1, Nc]], CGS generates four symmetric chaotic points using axial symmetries
Sθ+D, Sθ+H:

Xi,1 = Xi, Xi,2 = Sθ+D(Xi,1),
Xi,3 = Sθ+H(Xi,2), Xi,4 = Sθ+D(Xi,3) = Sθ+H(Xi,1).

(9)

where the axial symmetries Sθ+D, Sθ+H are defined as follows:

Sθ+D(X) = Xd + (2θh − Xh) (10)
Sθ+H(X) = (2θd − Xd) + Xh (11)

At last, the best solution among these all generated chaotic points as illus-
trated by Algorithm 3 (Fig. 3).

Fig. 3. Generation of chaotic variables by the symmetrization approach in CGS
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Algorithm 2 : Chaotic global search (CGS).
1: Input: f, U, Z, Nc, k

2: Output: Xc

3: Y = +∞; θ = 1
2
(U + L)

4: for l = 1 to Nc

5: Generate three chaotic variables X1, X2, and X3 according to the following:
6: X1 = θ + Zl Zk× (U − θ), X2 = U − Zl Zk× (U − θ), X3 = L + Zl Zk× (U − L)

7: for i = 1 to 3
8: Select randomly an index p ∈ {1, · · · , n} and decompose Xi according to (79)
9: Generate the four corresponding symmetric points (Xi,j) 1�j�4 according to (9) and

(11)
10: for j = 1 to 4
11: if Y > f(Xi,j)

12: Xc = Xi,j ; Y = f(Xi,j)

13: end if
14: end for
15: end for
16: end for

3.2 Chaotic Local Search (CLS)

The Chaotic local search proceeds by exploiting the neighbourhood of the solu-
tion ω found by the chaotic global search CGS. However, CLS contributes also to
the exploration of the decision space by looking for potential solutions relatively
far from the current solution. In fact, the CLS conducts the search process near
the current solution ω within a local search area Sl of radius Rl = r×R focused
on ω, where r ∼ U(0, 1) is a random parameter corresponding to the reduc-

tion rate, and R denotes the radius of the search area S =
n∏

i=1

[li, ui] defined as

follows:
R =

1
2
(U − L) =

(1
2
(u1 − l1), . . . ,

1
2
(un − ln)

)
(12)

Like the CGS, the CLS also uses a levelling approach by creating Nl chaotic
levels focused on ω. In each chaotic level η ∈ [[ 0, Nl −1]], the local search process
is limited to a local area Sl,η focused on ω characterized by its radius Rη defined
by the following:

Rη = γη × Rl = r × γη × R, (13)

where γη is a decreasing parameter trough levels which we have formulated in
this work as follows:

γη =
10−2rη

1 + η
(14)

where r ∼ U(0, 1) is a random number distributed uniformly within the range
[0, 1].
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In fact, the levelling approach used by the CLS corresponds to a progressive
zoom focus on the current solution ω carried out through Nl chaotic levels, and
γη is the factor (decreasing throughout the chaotic levels η) that controls the
speed of this zoom process (γη ↘ 0).

Moreover, once the CGS provides an initial solution ω, the CLS intensifies
the search around this solution, through several chaotic layers. In each cycle of
the Tornado algorithm, a given number (i.e. Ml ) of CLS procedures is applied.
Hence, the CLS participates also to the exploration of neighbouring regions by
following the zoom dynamic as shown in Fig. 4.
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Fig. 4. Illustration of the selection of symmetric chaotic variables in CLS.

Moreover, in each chaotic level η, CLS generates two symmetric chaotic vari-
ables X1,X2 according to Fig. 5:

X1 = Z × Rη, X2 = (1 − Z) × Rη = Rη − X1. (15)

Fig. 5. Selection of symmetric chaotic variables in CLS.

We select randomly an index p ∈ {1, .., n} and generate the corresponding
stochastic decomposition of IRn:

IRn = D ⊕ H, D = IR × ep, H = vect(ei)i�=p. (16)
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Then, we get the corresponding decomposition of each chaotic variable Xi,(i=1,2) :

Xi = Xi,d + Xi,h. (17)

Finally we generate from each chaotic variable Xi, (i=1,2), Np symmetric chaotic
points (Xi,j)1�j�Np

using the polygonal model (Fig. 6):

Xi,j = ω + Xi = ω + cos(2π.j/Np)Xi,d + sin(2π.j/Np)Xi,h, (18)

Fig. 6. Illustration of the generation of Np = 6 symmetric chaotic points in CLS.

When ω is close enough to the borders of the search area S, the search process
can leave it and then it may give an infeasible solution localized outside S.

Fig. 7. Illustration of overflow:Rη,i > dB(ωi)

In fact, that occurs when Rη,i > dB(ωi) for at least one component ωi

(Fig. 7), where dB(ωi) denotes the distance of the component ωi to borders li, ui

defined as follows:
dB(ωi) = min(ui − ωi, ωi − li). (19)
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To prevent this overflow, we consider the improved radius R̃η instead of Rη,
given by the following:

R̃η = min
(Rη, dB(ω)

)
, (20)

where dB(ω) = (dB(ω1), . . . , dB(ωn)).
This guarantees R̃η,i � dB(ωi), ∀i ∈ [[1, n]] .
Hence, Eqs. (15) become

X1 = Z × R̃η, X2 = (1 − Z) × R̃η. (21)

Finally, the algorithm of the chaotic local search (CLS) is described in Algo-
rithm3.

Algorithm 3 : Chaotic Local Search (CLS)

Input:f, ω, L, U, Z, Nl , Np

Output: Xl: best solution among the local chaotic points
R = 1

2
(U − L); Rl = r × R;

X = ω; Xl = ω; Y = f(ω);
for η = 0 to Nl − 1
Set Rη = γη × Rl, and then compute ˜Rη = min

(Rη, dB(ω)
)

Generate 2 symmetric chaotic variables X1, X2 according to (21)
for i = 1 to 2

Select an index p ∈{1, .., n} randomly and decompose Xi according to (17)
Generate the Np corresponding symmetric points Xi,j according to (18)

for j = 1 to Np

if Y > f(Xi,j) then
Xl = Xi,j ;Y = f(Xi,j);

end if
end for

end for
end for

3.3 Chaotic Fine Search (CFS)

Chaotic search has limited fine search ability. The proposed CFS procedure
allows to speed up the intensification process and refines the accuracy of the
search. Suppose that the solution X obtained by the method CLS is close to
the global optimum Xo with precision 10−p, p ∈ IN . Then, we have:

X = Xo + ε, ‖ε‖ < 10−p (22)
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Thus, the distance ε can be interpreted as a parasitic signal of the solution,
which is sufficient to filter in a suitable way to reach the global optimum, or the
distance to which is the global optimum of its approximate solution. We carry
out a chaotic search in a local area in which the radius adapts to the distance
ε = X−Xo, component by component. However, in practice, the global optimum
is not known a priori. To work around this difficulty, knowing that as the search
process proceeds the resulting solution X is supposed to be close enough to the
overall optimum, the trick found is to consider instead of the relation (22) the
difference between the current solution X and its decimals fractional parts of
order η,(η ∈ IN):

εη = |X − Xη|
where the fractional of order η, Xη is the closest point of X to the precision
10−η defined by: Xη = 10−ηround(10ηX)

For instance, Table 1 illustrates the fifth fractional parts as well as the cor-
responding errors for X = (2.854732, 1.384527) (Fig. 8).

Table 1. Illustration of 5 first fractional and their corresponding errors.

Order k k− Fractional part Error of order k

0 X0 = (3, 1) ε0 = (0.145268, 0.384127)
1 X1 = (2.9, 1.4) ε1 = (0.045268, 0.084127)
2 X2 = (2.85, 1.38) ε2 = (0.004732, 0.004127)
3 X3 = (2.855, 1.384) ε3 = (0.000268, 0.000127)
4 X4 = (2.8547, 1.3841) ε4 = (0.000032, 0.000027)

Fig. 8. Illustration of the 10 power zoom via the successive fractional parts.
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Moreover, in order to perturb a potential local optima we propose to add a
stochastic component in the round process, in fact we consider the stochastic
round [.]

st
formalised as:

[X]st =

{
round(X) + P, if mod(k, 2) = 0
round(X), otherwise

(23)

where P ∼ U(−1, 1)d is a stochastic perturbation operated on X alternatively
during the process. Thus, we get a the new formulation of the η−error of X:

ε̃η(X) = |X − 10−η[10ηX]st)| (24)

The chaotic fine search CFS has a structure similar to the CLS local chaotic
search. Indeed it operates by levelling on Nf levels, except the fact that the local
area of level η is defined by its radius Rη proportional to the η−error εη and
given by:

Rη =
1

1 + η2
R̃, η ∈ [[0, Nf − 1]] (25)

This way the local area search is carried out in a narrow domain that allow a
focus adapted coordinate by coordinate unlike the uniform local search in CLS.

This time the modified radius R̃ is defined by the following:

R̃ =

{
s × R · ε̃η, if r > 0.5
T · R · ε̃η, otherwise

(26)

where r, s ∼ U(0, 1) and T ∼ U(0, 1)d.
The Rη radius design allows you to zoom at an exponential rate of decimale

over the levels. Indeed, we have:

‖Rη‖ � ‖εη‖.R < 10−η × R. (27)

Thus, the fine chaotic search allows an ultra fast exploitation of the immediate
neighbourhood of the current solution and allows in principle the refinement of
the global optimum with a good precision (Fig. 9).
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Fig. 9. Illustration of the coordinate adaptative local search in CFS.
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The Fine Chaotic Search (CFS) algorithm is the following:

Algorithm 4 : Chaotic Fine Search (CFS)

1: Input:f, ω, L, U, Z, Nf , Np

2: Output: Xl: the best solution among local chaotic points
3: R = 1

2
(U − L);

4: X = ω; Xl = ω; Y = f(ω);
5: for η = 0 to Nl − 1 do
6: Compute the η−error ε̃η and then evaluate ˜Rη using equations (25)−(27)
7: Generate two symmetrical chaotic variables X1, X2 according to (21)
8: for i = 1 to 2
9: Choose randomly p in {1, · · · , n} and decompose Xi using (17)

10: Generate Np symmetrical points Xi,j according to (18)
11: for j = 1 à Np

12: if Y > f(Xi,j) then
13: Xl = Xi,j ;Y = f(Xi,j);
14: end if
15: end for
16: end for
17: end for

Finally the Tornado algorithm is detailed by the following algorithm:

Algorithm 5 : Tornado Pseudo-Code.
1: Given :f, L, U, Z, M, Ml, Nc, Nl, Nf , Np

2: Output : X, Y
3: k = 1; Y = +∞;
4: while k � M do
5: Xc = CGS (f, L, U, Zk, Nc)
6: if Y > f(Xc) then
7: X = Xc; Y = f(Xc);
8: end for
9: s = 1;

10: while s � Ml do
11: Xl = CLS (f, X, L, U, Zs+k, Nl, Np)
12: if Y > f(Xl) do
13: X = Xl; Y = f(Xl);
14: end if
15: Xf = CFS (f, X, L, U, Zs+k, Nf , Np)
16: if Y > f(Xl) do
17: X = Xf ; Y = f(Xf );
18: end if
19: s = s + 1;
20: end while
21: k = k + 1;
22: fin tant que



Tornado Algorithm 101

4 Computational Experiments

In this section, computational experiments are carried out in order to assess the
performance of the proposed Tornado algorithm for high dimensional problems
(i.e. 50, 100, and 200 variables). All the experiments were run using Intel(R)
Core(TM) i3 4005U CPU 1.70 GHz with 4 GB RAM. The implementation of
all used algorithms was done in MatLab. Upon recommendation from CEC con-
ference competitions2, a set of 24 well known benchmark problems were selected
with diverse properties and different levels of complexity (i.e. unimodal, multi-
modal, separable, non separable, shifted, rotated, noisy) as illustrated by Tables 2
and 3. Unimodality shows the exploitation capability of the developed algo-

Table 2. High dimensional Benchmark functions used in our experiments.

B.Function Expression C Search region Optimum

Shifted Bent

Cigar

f1 = y2
1 + 106

D∑

i=2
y2

i + bias, y = x − o, bias = 100 US [−100, 100]D bias

Shifted Rastri-

gin

f2 =
D∑

i=1
[y2

i − 10 cos(2πyi) + 10] + bias, y = x −
o, bias = 200

MS [−5, 12, 5, 12]D bias

Shifted Non

Continuous

Rastrigin

f3 =
D∑

i=1
[z2

i − 10 cos(2πzi) + 10] + bias, z = y −

o, yi =

⎧
⎪⎨

⎪⎩

xi if |xi| ≤ 0.5

round(2xi)/2, if |xi| > 0.5
bias = 300

MS [−5, 12, 5, 12]D bias

Shifted Discuss f4 = 106y2
1 +

D∑

i=2
y2

i + bias, y = x − o, bias = 600 US [−100, 100]D bias

Shifted Levy f5 = sin2(πy1)+
D−1∑

i=1
(yi −1)2)

[
1+10 sin2(πyi+1)

]
+

(y
D

−1)2
[
1+sin2(2πy

D
)
]
+bias, y = x−o, bias =

500,

MN [−50, 50]D biais

Shifted

Rotated H.C

Elliptic

f6(x) =
D∑

i=1

(
106

) i−1
D−1 y2

i + bias, y = M(x −
o), bias = 400

UN [−100, 100]D bias

Shifted

Rotated

Rosenbrock

f7(x) =
D−1∑

i=1
(100(yi+1 −y2

i )
2+(yi −1)2)+bias, y =

M(x − o), bias = 700

MN [−30, 30]D bias

SR Expended

Schaffer F6

f8 = g(y1, y2) + g(y1, y2) + · · · + g(yD, y1) +

bias, y = M(x − o), g(u, v) = 0.5 +

sin2(u2 + v2) − 0.5
(
1 + 0.001(u2 + v2)

)2 , bias = 800,

MN [−100, 100]2 biais

S.R. HappyCat f9 = |
D∑

i=1
y2

i −D|
1
4
+ 0.5

D
(

D∑

i=1
yi)

2−
D∑

i=1
yi)+0.5, y =

M(x − o)

MN [−5, 10]D biais

S.R. Zakharov f10 =
D∑

i=1
x2

i + (
D∑

i=1
0.5ixi)

2 + (
D∑

i=1
0.5ixi)

4 +

biais y = M(x − o) biais = 1000

UN [−5, 10]D 0

S.R. Ackley f11 = −20 exp(−0.2

√

1
D

D∑

i=0
y2

i ) −

exp
( 1

D

D∑

i=0
cos(2πyi

)
+ 20 + e + biais, y =

M(x − o), bias = 1100

MN [−32.768, 32.768]D biais

S.R HGBat f12 = |(
D∑

i=1
x2

i )
2 − (

D∑

i=1
xi)

2|0.5
+ 0.5(

D∑

i=1
xi)

2 −
D∑

i=1
xi)/D + 0.5 + biais y = M(x − o) bias = 1200

UN [−5, 10]D biais

C: Characteristic, U: Unimodal, M: Multimodal, S: Separable, N: Non-Separable.

2 Competition on single objective real-parameter numerical optimization.
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Table 3. High dimensional Benchmark functions used in our experiments (continued).

B.Function Expression C Search
region

Optimum

Quartic f13 =
D∑

i=1
ix4

i + rand(0, 1) MS [−1.28, 1.28]D 0

Inverted cosine
wave

f14 = −
D−1∑

i=1
exp

( − yi/8
)
cos(4

√
yi

)
, yi = x2

i +

x2
i+1 + 0.5xixi+1

MN [−5, 5]D −n + 1

Penalized 1 f15 = π
D { 10 sin2(3πx1) +

D−1∑

i=1
(yi −

1)2)
[
1 + 10 sin2(πyi+1)

]
+ (yD − 1)2} +

D∑

i=1
u(xi, 10, 100, 4) (∗), yi = 1 + 1

4 (xi + 1)

MN [−50, 50]D 0

Himmelblau f16 = 1
D

D∑

i=1
(x4

i − 16x2
i + 5xi) MS [−5, 5]D -78.3323

Alpine f17 =
D∑

i=1
|xi sin(xi) + 0.1xi| MS [−10, 10]D 0

PowerSum f18 =
D∑

i=1

( 4∑

k=1
xk

i − bk

)2 / b = (8, 18, 44, 114) MN [0, n]D 0

Cosine Mixture f19 =
D∑

i=1
x2

i − 0.1
D∑

i=1
cos(5πxi) MS [−1; 1]D −0.1n

Schwefel 2.22 f20 =
D∑

i=1
|xi| +

D∏

i=1
|xi| UN [−10, 10]D 0

Powell sum f21 =
D∑

i=1
|xi|i+1 MS [−100, 100]D 0

Easom f22 = −(−1)D
( D∏

i=1
cos(xi)

)
exp

(−
D∑

i=1
(xi −π)2

)
UN [−10, 10]D -1

Mishra 2 f23 =
(
1+χ

D

)χD , χ
D

= D − 1
2

D−1∑

i=1
xi +xi+1 MN [0, 1]D 2

Brown f24 =

D−1∑

i=1

(x
2
i )

(x2
i+1+1)

+ (x
2
i+1)

(x2
i +1) UN [−1, 4]D 0

C: Characteristic, U: Unimodal, M: Multimodal, S: Separable, N: Non-Separable.

rithms, while multi-modality confirms the exploration capabilities. The shifted
global optimum for all the functions is provided as o = (o1, o2, .., oD) and the
functions are defined as z = x − o for shifted functions and z = (x − o).M for
shifted rotated functions where M is the transformation matrix for the rotating
matrix. For instance, F1 − F6 are shifted functions and F7 − F12 are shifted and
rotated functions.

For the proposed Tornado algorithm, we have used the same set of values of
the parameters (e.g. number of chaotic levels) for all experiments. The algorithm
is not very sensitive to those parameters. In the current study, the parameters
were set as follows:

• The number of CGS chaotic levels (Nc): Nc = 5.
• The number of CLS chaotic levels (Nl): Nl = 5.
• The number of CFS chaotic levels (Nf ): Nf = 10.
• The number of CLS-CFS per cycle (Ml): Ml = 100.

4.1 Comparison with Other Chaotic Optimization Algorithms

In order to show the effectiveness of our new chaotic optimization strategy, this
section presents a comparison of the Tornado algorithm with state-of-the-art
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COA variants such as ICOLM [7] and ICOMM [25]. We have adopted the sug-
gested parameters by the authors of those algorithms, as illustrated in Table 4.
Three set of parameters have been suggested by the authors.

Table 4. The set of parameters used by ICOLM and ICOMM approaches.

Configuration Mg Ml Mgl1 Mgl2 λ λgl1 λgl2

C1 800 400 6 6 0.1 0.04 0.01
C2 800 400 6 6 0.01 0.04 0.01
C3 800 400 6 6 0.001 0.04 0.01

Where Mg is the maximum number of iterations of chaotic global search,
Mgl1 is maximum number of iterations of first chaotic Local search in global
search, Mgl2 is the maximum number of iterations of second chaotic local search
in global search, Ml is the maximum number of iterations of chaotic local search,
λgl1 is the step size in first global-local search, λgl2 is step size in second global-
local search, and λ is the step size in chaotic local search. The other specific
parameters of algorithms are given below:

• ICOLM uses Lozi map with: a = 1.7, b = 0.5.
• ICOMM uses Henon map with: a = 4, b = 0.9.

We choose the number of function evaluations (FEs) as a stopping criteria.
The maximum number of function evaluations was 104 for all functions. Since
the algorithms are stochastic in nature, 30 independent runs of each algorithm
are carried out. The performance indicators used are the mean and the standard
deviation. The comparison results for functions (f1−f15) on moderate dimension
D = 10 are shown in Table 5.

It is observed from the results presented in Table 5 that the performance
of our Tornado algorithm strongly dominates the existing COA approaches for
all functions. Indeed, the computational results show clearly the deficiency of
the classical COA approaches (here ICOLM and ICOMM) to even deal with
moderate 10-dimensional problems whereas Tornado succeeds systematically.
Therefore, it is needless to show the carried comparisons for high dimensional
problems.

4.2 Comparison with State-of-the-Art Algorithms

We have also compared the obtained results with three state-of-the-art algo-
rithms from different families of stochastic optimization algorithms:

– CMA-ES3: a Covariance Adaptation Evolution Strategy (ES) based algorithm
[31]. It is a ES algorithm in which the Covariance matrix is deterministically
adapted from the last move of the algorithm.

3 Available in the MATLAB library Yarpiz.
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– L-SHADE4: SHADE is an adaptive Differential Evolution (DE) which incor-
porates succes-history based parameter adaptation and one of the state-of-
the-art DE algorithm. L-SHADE is an extension of SHADE using Linear
Population Size Reduction (LPSR) [26].

– CLPPSO5: a comprehensive learning particle swarm optimizer (CLPPSO)
embedded with local search (LS) is proposed to pursue higher optimization
performance by taking the advantages of CLPPSO’s strong global search
capability and LS’s fast convergence ability [33].

Table 5. Comparison results for f1 − f12 on dimension D = 10 over 30 runs

No Stats Tornado ICOLM(1) ICOLM(2) ICOLM(3 ) ICOMM(1) ICOMM(2) ICOMM(3)

F1 Mean 5,30E-08 2.58E+08 2.28E+06 3.21E+04 2.44E+08 3.19E+06 8.98E+06

Std 6.10E-08 6.23E+07 9.28E+05 1.13E+04 9.28E+07 3.66E+06 2.40E+07

F2 Mean 1.24E+00 4.76E+02 2.99E+01 1.87E+03 1.36E+03 4.14E+02 1.04E+03

Std 4.97E-01 9.73E+01 7.04E+00 7.64E+02 4.88E+02 9.11E+01 2.94E+02

F3 Mean 2.75E+00 1.93E+01 7.05E+01 8.39E+01 2.82E+01 1.74E+01 2.21E+01

Std 9.58E-01 8.05E+00 2.15E+01 2.18E+01 9.00E+00 9.14E+00 1.11E+01

F4 Mean 5.62E-09 6.13E+02 9.92E+00 1.89E+04 1.99E+04 1.15E+04 8.33E+03

Std 8.96E-09 4.47E+02 3.44E+00 9.36E+03 9.79E+03 3.26E+03 5.34E+03

F5 Mean 0.00E+00 3.85E+00 3.31E+00 4.30E+00 4.99E-01 1.29E-01 1.26E-01

Std 1.14E-13 9.93E-01 1.76E+00 1.40E+00 1.71E-01 9.85E-02 1.05E-01

F6 Mean 3.14E-04 2.35E+05 3.91E+03 3.77E+01 7.84E+04 7.97E+03 2.35E+02

Std 7.54E-04 1.51E+05 2.55E+03 1.89E+01 2.96E+04 9.05E+03 2.29E+02

F7 Mean 8.51E+00 7.39E+01 1.82E+01 1.70E+01 1.93E+02 4.13E+01 1.21E+01

Std 2.09E+01 4.28E+01 2.90E+01 2.89E+01 1.21E+02 3.22E+01 2.26E+01

F8 Mean 5.10E-05 1.45E-01 4.46E-02 4.65E-03 8.78E-02 3.38E-02 6.78E-04

Std 1.55E-04 1.01E-01 8.97E-02 8.41E-03 5.14E-02 3.39E-02 9.88E-04

F9 Mean 1.99E+00 8.39E-01 8.80E-01 7.51E-01 1.04E+00 1.01E+00 9.08E-01

Std 3.25E-02 1.99E-01 1.22E-01 2.24E-01 1.74E-01 1.93E-01 1.61E-01

F10 Mean 8.87E+07 1.45E+04 8.59E+00 1.87E+05 9.09E+05 3.47E+05 9.42E+05

Std 2.80E+08 2.88E+04 2.90E+00 1.51E+05 7.93E+05 3.83E+05 4.43E+05

F11 Mean 2.00E+01 2.05E+01 2.06E+01 2.03E+01 2.04E+01 2.05E+01 2.04E+01

Std 5.84E-03 7.42E-02 4.20E-02 1.03E-01 1.05E-01 9.15E-02 5.20E-01

F12 Mean 4.87E-01 4.53E-01 4.75E-01 4.63E-01 4.92E-01 4.94E-01 4.99E-01

Std 1.89E-02 3.36E-02 1.62E-02 1.58E-02 8.58E-03 6.69E-03 4.75E-03

4 Available at sites https://google.com/site/tanaberyoji/software.
5 Available in https://github.com/hmofrad/Adaptative-CLPPSO.

https://google.com/site/tanaberyoji/software
https://github.com/hmofrad/Adaptative-CLPPSO
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Table 6. Comparison results for f1 − f24 problems on dimension D = 50 over 30 runs.

No CLPSO CMAES L-SHADE Tornado

Mean Std Mean Std Mean Std Mean Std

f1 7.17E+01 2.28E+01 2.44E+03 1.69E+03 3.48E−03 3.36E−03 3.00E−12 2.46E−12

f2 2.51E+03 2.50E+03 3.23E+02 1.20E+01 3.60E+01 8.43E+00 5.97E−01 1.33E+00

f3 1.54E+01 1.22E+00 2.82E+02 1.26E+01 1.11E+02 1.29E+01 2.20E+00 8.36E−01

f4 1.97E+01 1.97E+01 2.75E+03 1.01E+03 1.00E−11 5.55E−12 2.73E−12 4.40E−13

f5 1.87E-02 5.33E-03 9.80E−11 3.16E−11 4.55E−13 1.14E−13 1.24E−12 1.80E−13

f6 7.42E-08 1.60E-08 3.33E−06 1.02E−06 9.00E−11 6.72E−11 9.09E−13 1.80E−13

f7 4.89E+02 1.55E+01 3.86E+01 5.28E−01 4.38E+01 2.32E−02 3.00E−02 3.16E−02

f8 4.08E-01 3.66E-02 1.00E−02 2.10E−03 5.00E−02 1.44E−02 8.67E−02 9.17E−03

f9 3.44E+00 0.00E+00 2.30E−01 2.97E−02 2.95E+00 6.44E−05 2.95E+00 2.62E−04

f10 1.93E+00 1.57E-01 0.00E+00 1.51E−04 0.00E+00 4.81E−04 2.70E−01 5.61E−02

f11 2.13E+01 1.75E-02 2.12E+01 8.01E−02 2.09E+01 3.04E−01 2.00E+01 1.16E−02

f12 4.92E-01 2.46E-03 4.90E−01 4.29E−02 4.90E−01 1.12E−03 5.00E−01 2.32E−03

f13 3.85E-02 6.78E-03 6.51E−03 1.87E−03 3.15E−03 9.47E−04 6.70E−04 3.96E−04

f14 1.24E+01 1.65E+00 1.37E+01 5.56E−01 3.55E−14 1.23E−14 0.00E+00 1.07E−14

f15 3.49E-07 2.62E-07 1.81E−10 4.35E−11 2.68E−15 1.44E−15 9.42E−33 0.00E+00

f16 1.51E-07 6.05E-08 1.47E+00 6.45E−01 9.00E−02 8.79E−02 1.56E−09 3.26E−14

f17 1.42E-14 1.55E-14 1.22E−04 1.26E−04 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f18 3.36E-04 9.86E-05 3.03E−07 1.80E−07 2.96E−02 6.61E−02 0.00E+00 0.00E+00

f19 2.66E+00 2.74E-02 2.80E+00 1.57E+00 2.56E+00 1.43E+00 2.04E−15 5.96E−16

f20 8.68E+00 2.45E+00 2.21E−04 6.51E−05 3.26E−06 1.92E−06 6.04E−170 0.00E+00

f21 2.94E-04 1.51E-05 4.44E+10 7.46E+10 3.32E−16 5.81E−16 2.52E−196 0.00E+00

f22 1.00E+00 0.00E+00 1.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 9.61E−17

f23 0.00E+00 0.00E+00 1.33E+00 3.18E−08 4.00E−08 1.87E−08 0.00E+00 0.00E+00

f24 2.54E-07 1.30E-07 2.32E−11 1.09E−11 6.59E−15 5.40E−15 4.99E−77 2.16E−77

The choice of the algorithms in the computational study is mainly driven by
the high-quality of their results and the availability of code. We avoid the risk
of non-optimal implementations and hence unfair comparisons. The maximum
number of function evaluations is set to 2×103 ×D for all algorithms and tested
functions. We have adopted the suggested parameters by the authors of those
algorithms. The computational results (i.e. error mean, standard deviation) are
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Table 7. Comparison results for f1−f24 problems on dimension D = 100 over 30 runs.

No CLPSO CMAES L-SHADE Tornado

Mean Std Mean Std Mean Std Mean Std

F1 1.86E+06 4.33E+05 1.10E+01 8.96E+00 1.10E+01 8.96E+00 6.37E−12 2.96E−12

F2 1.38E+02 1.13E+01 1.97E+02 2.19E+01 1.97E+02 2.19E+01 1.10E+00 4.22E−01

F3 2.69E+01 1.27E+01 1.27E+02 7.72E+00 1.27E+02 7.72E+00 5.61E+00 2.10E+00

F4 1.63E+00 3.66E-01 3.95E−08 2.34E−08 3.95E−08 2.34E−08 4.32E−12 3.94E−13

F5 2.15E+02 4.34E+01 7.92E−07 5.44E−07 7.92E−07 5.44E−07 1.59E−12 2.60E−13

F6 1.84E-03 2.24E-04 3.25E−11 1.56E−11 3.25E−11 1.56E−11 1.59E−12 1.97E−13

F7 4.89E+02 1.55E+01 8.70E+01 9.60E−01 1.22E+02 1.75E+00 2.58E−02 8.84E−03

F8 4.08E-01 3.66E-02 3.45E−03 7.91E−04 2.08E−02 3.51E−03 1.56E−04 3.77E−04

F9 3.44E+00 0.00E+00 2.00E−01 2.42E−02 3.44E+00 2.51E−04 3.44E+00 9.72E−04

F10 1.93E+00 1.57E-01 1.76E−05 7.07E−06 4.29E−03 1.09E−03 9.48E−01 1.12E−01

F11 2.13E+01 1.75E-02 2.13E+01 1.93E−02 2.13E+01 3.64E−02 1.98E+01 4.31E−02

F12 4.92E-01 2.46E-03 5.04E−01 3.16E−02 4.92E−01 1.40E−03 5.00E−01 3.73E−02

F13 5.86E-02 1.02E-02 1.37E−02 2.18E−03 7.72E−03 2.03E−03 5.40E−04 5.52E−05

F14 3.04E+01 4.94E-01 2.82E+01 1.99E+00 1.33E−11 4.26E−12 0.00E+00 2.25E−14

F15 5.52E-08 2.69E-08 4.39E−12 1.86E−12 3.54E−12 2.16E−12 4.71E−33 0.00E+00

F16 4.79E-08 1.47E-08 2.83E+00 1.26E+00 5.35E+00 3.54E−01 1.41E−06 1.00E−14

F17 1.88E-17 1.59E-17 8.46E−05 8.67E−05 2.02E−28 1.24E−28 0.00E+00 0.00E+00

F18 1.03E-04 2.37E-05 5.10E−09 1.89E−09 7.98E−01 2.88E−01 0.00E+00 0.00E+00

F19 3.47E+00 3.12E-02 3.50E+00 8.60E−16 3.50E+00 1.25E−11 5.33E−15 1.54E−15

F20 9.26E+00 5.79E+00 3.35E−03 8.92E−04 3.02E−01 7.29E−02 4.20E+00 1.59E+00

F21 2.23E-04 2.59E-05 4.12E−05 7.78E−06 4.56E−04 3.56E−04 0.00E+00 0.00E+00

F22 1.00E+00 0.00E+00 1.00E+00 0.00E+00 1.00E+00 0.00E+00 9.99E−16 1.57E−16

F23 0.00E+00 0.00E+00 9.77E−01 2.33E+01 8.53E−05 3.07E−05 0.00E+00 0.00E+00

F24 2.49E-07 7.74E-08 1.63E−12 9.08E−13 1.47E−10 1.02E−10 4.99E−148 4.20E−148

presented in Tables 6, 7 and 8 for 30 independent runs. Moreover Tables 9, 10 and
11 show the ranking of the algorithms according to their computational results.

The obtained results show that the Tornado algorithm dominated largely the
other algorithms for most functions. The same conclusion has been observed for
all dimensions of the functions (i.e. 50, 100, 200).
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Table 8. Comparison results for f1−f24 problems on dimension D = 200 over 30 runs.

No CLPSO CMAES L-SHADE Tornado

Mean Std Mean Std Mean Std Mean Std

F1 2.44E+03 1.69E+03 1.19E+00 3.52E-01 3.48E-03 3.36E-03 3.00E-12 2.46E-12

F2 3.23E+02 1.20E+01 7.86E+01 5.67E+00 3.60E+01 8.43E+00 5.97E-01 1.33E+00

F3 2.82E+02 1.26E+01 2.38E+01 4.97E+00 1.11E+02 1.29E+01 2.20E+00 8.36E-01

F4 2.75E+03 1.01E+03 1.04E+04 4.40E+03 1.00E-11 5.55E-12 2.73E-12 4.40E-13

F5 9.80E-11 3.16E-11 0.00E+00 0.00E+00 4.55E-13 1.14E-13 1.24E-12 1.80E-13

F6 3.33E-06 1.02E-06 4.52E-08 9.63E-09 9.00E-11 6.72E-11 9.09E-13 1.80E-13

F7 3.86E+01 5.28E-01 1.85E+02 3.90E-01 4.38E+01 2.32E-02 3.00E-02 3.16E-02

F8 1.00E-02 2.10E-03 1.00E-05 4.99E-06 5.00E-02 1.44E-02 8.67E-02 9.17E-03

F9 2.30E-01 2.97E-02 2.77E-01 2.64E-02 2.95E+00 6.44E-05 2.95E+00 2.62E-04

F10 0.00E+00 1.51E-04 4.09E+03 6.24E+03 0.00E+00 4.81E-04 2.70E-01 5.61E-02

F11 2.12E+01 8.01E-02 2.15E+01 1.03E-02 2.09E+01 3.04E-01 2.00E+01 1.16E-02

F12 4.90E-01 4.29E-02 5.08E-01 5.40E-02 4.90E-01 1.12E-03 5.00E-01 2.32E-03

F13 6.51E-03 1.87E-03 2.92E-02 2.21E-03 3.15E-03 9.47E-04 6.70E-04 3.96E-04

F14 1.37E+01 5.56E-01 6.12E+01 1.03E+01 3.55E-14 1.23E-14 0.00E+00 1.07E-14

F15 1.81E-10 4.35E-11 2.87E-15 1.54E-16 2.68E-15 1.44E-15 9.42E-33 0.00E+00

F16 1.47E+00 6.45E-01 3.46E+00 1.30E+00 9.00E-02 8.79E-02 1.56E-09 3.26E-14

F17 1.22E-04 1.26E-04 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F18 3.03E-07 1.80E-07 1.26E-12 2.71E-14 2.96E-02 6.61E-02 0.00E+00 0.00E+00

F19 2.80E+00 1.57E+00 3.50E+00 0.00E+00 2.56E+00 1.43E+00 2.04E-15 5.96E-16

F20 2.21E-04 6.51E-05 2.14E-03 4.75E-04 3.26E-06 1.92E-06 6.04E-170 0.00E+00

F21 4.44E+10 7.46E+10 1.23E-06 9.76E-08 3.32E-16 5.81E-16 2.52E-196 0.00E+00

F22 1.00E+00 0.00E+00 1.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 9.61E-17

F23 1.33E+00 3.18E-08 1.33E+02 1.54E+02 4.00E-08 1.87E-08 0.00E+00 0.00E+00

F24 2.32E-11 1.09E-11 3.63E-16 2.00E-16 6.59E-15 5.40E-15 4.99E-77 2.16E-77

The final ranking of the evaluated algorithms is performed by using all the
obtained results. The algorithms are sorted for each test function. The ranking
are summed up and are presented in Tables 9, 10 and 11. Clearly the Tornado
algorithm is the winner, while LSHADE is the runner-up. We notice also that
the performance of the CMA-ES algorithm decreases function of the dimension
of the problem.
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Table 9. The rank of the four algorithms for the functions test on D = 50.

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 f20 f21 f22 f23 f24 Mean Rank

CLPSO 4 4 1 3 4 3 4 4 4 4 4 4 4 3 4 2 4 3 4 3 4 3 3 4 3,52

CMAES 3 2 4 4 3 4 2 1 1 2 3 2 3 4 3 4 1 2 3 4 3 4 4 2 2.76

LSHADE 2 3 3 2 1 2 3 2 2 3 2 1 2 2 2 3 1 4 2 1 2 1 2 3 2.12

Tornado 1 1 2 1 2 1 1 3 3 1 1 3 1 1 1 1 1 1 1 2 1 2 1 1 1.48

Table 10. The rank of the four algorithms for the functions test on D = 100

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 f20 f21 f22 f23 f24 Mean Rank

CLPSO 4 2 4 4 4 4 3 4 4 4 2 2 3 3 4 3 4 3 3 3 4 3 3 4 3.40

CMAES 3 3 3 3 3 2 1 1 1 2 3 3 4 4 3 4 1 2 4 4 3 4 4 2 2.72

LSHADE 2 4 2 2 2 3 2 2 2 3 4 1 2 2 2 2 1 4 2 2 1 1 2 3 2.20

Tornado 1 1 1 1 1 1 4 3 3 1 1 4 1 1 1 1 1 1 1 1 2 2 1 1 1.56

Table 11. The rank of the four algorithms for the functions test on D = 200

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 f20 f21 f22 f23 f24 Mean Rank

CLPSO 4 1 4 3 4 4 2 2 1 1 3 2 3 3 4 3 4 3 4 3 4 3 3 4 3.04

CMAES 3 4 3 4 1 3 4 1 2 4 4 4 4 4 3 4 1 2 3 4 3 4 4 2 3.12

LSHADE 2 3 2 2 2 2 3 3 3 2 2 1 2 2 2 2 1 4 2 1 2 1 2 3 2.12

Tornado 1 2 1 1 3 1 1 4 4 3 1 3 1 1 1 1 1 1 1 2 1 2 1 1 1.62

Table 12. Total of Mean time (per run) consumed by the four algorithms on dimensions
D = 50, D = 100 and D = 200.

CLPSO L-SHADE CMAES Tornado

Total of mean Time for D = 50 247.2 s 95.1 s 902.2 s 109.2 s

Total of mean Time for D = 100 536.4 s 328.3 s 2640.3 s 215.1 s

Total of mean Time for D = 200 1415.4 s 1385.4 s 10425.6 s 614.8 s

On the other hand, Table 12 indicates that Tornado releases the shortest
execution time whereas we observe that CMAES is so far the algorithm that
consumes the most execution time. This is due to the covariance matrix process
used by CMAES which is not integrated in the function evaluation (comparison
criteria).

Figures 10 and 11 show the convergence of the four algorithms for functions
f1 − f10 on dimensions D = 50 and D = 100. The obtained results show a quick
convergence for the Tornado algorithm compared to other algorithms. Other
carried experiments show the same trend for problems with D = 200.
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Fig. 10. Convergence performance of the four different methods for functions f1 − f10
on dimension D = 50.
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Fig. 11. Convergence performance of the four different methods for functions f1 − f10
on dimension D = 100.

5 Conclusions and Perspectives

In the big era, there is a need for developing optimization algorithms able to effec-
tively solve problems with hundreds, thousands, and even millions of variables.
In this paper we have proposed an autonomous chaotic optimization algorithm,
called Tornado, for high dimensional global optimization problems. The algo-
rithm introduces advanced symmetrization, levelling and fine search strategies
for an efficient and effective exploration of the search space and exploitation of
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the best found solutions. To our knowledge, this is the first accurate and fast
autonomous chaotic algorithm solving high dimensional optimization problems.

The obtained results has shown the scalability of the algorithm in contrast to
chaotic optimization algorithms encountered in the literature. Moreover, in com-
parison with some state-of-the-art metaheuristics (e.g. evolutionary algorithms,
swarm intelligence), the computational results revealed that the proposed Tor-
nado algorithm is an effective and efficient optimization algorithm.

We will investigate the application of the Tornado algorithm to high dimen-
sional scale real-life optimization problems such as learning of deep neural net-
works, the optimization of the hyper-parameters of deep convolution neural net-
works, and demand energy management in smart grids. An extension of the
Tornado algorithm to solve multi-objective optimization problems using scalar-
ization and Pareto approaches is also under study.

A parallel implementation of the algorithm on heterogeneous parallel archi-
tectures, composed of multi-cores and clusters of GPUs, will be also investigated.
We are also interested in the design of Fractals based decomposition strategies.
The Chaotic approach will be combined to a Fractal based decomposition model,
in which chaotic search is applied in each Fractal. This combination will generate
highly parallel approaches to be implemented on exascale parallel architectures
composed of millions of GPU cores. The parallel model will also improve the
exploration capabilities of the Tornado algorithm.
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Abstract. We investigate the problem of making an artificial neural net-
work perform hidden computations whose result can be easily retrieved
from the network’s output. In particular, we consider the following sce-
nario. A user is provided a neural network for a classification task by a
third party. The user’s input to the network contains sensitive informa-
tion and the third party can only observe the output of the network. I
this work, we provide a simple and efficient training procedure, which
we call hidden learning, that produces two networks: (i) one that solves
the original classification task with performance near to state of the art;
(ii) a second one that takes as input the output of the first, retriev-
ing sensitive information to solve a second classification task with good
accuracy. Our result might expose important issues from an informa-
tion security point of view, as for the use of artificial neural networks in
sensible applications.

Keywords: Artificial neural network · Hidden computation ·
Information security

1 Introduction

In this paper, we investigate the possibility of an attacker training an Artificial
Neural Network (ANN) such that, while its behaviour looks legitimate on a given
task, it secretly performs an additional task, possibly revealing information it
should not. In particular, we investigate the question: when using a model from
the shelf, is it possible that it computes and outputs more than supposed?

Such question naturally emerges with the current surge of machine learning
as a service scenarios (MLaaS) [16], which has motivated plenty of research
on the associated privacy and security problems [13]. Within the taxonomy of
attacks investigated by previous works, particular attention has been devoted to
model inversion (MI) attacks [1], in which an attacker tries to retrieve sensible
features about the input data by only accessing the model’s output. One can
apply this strategy with or without knowledge of the model itself (white-box vs.
black-box attacks).
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Fig. 1. Diagram illustrating the basic components of the Hidden Learning framework.
See Sect. 2 for a description of the components.

In this work, we consider a setting in which the attacker forges the weights of
the model based on the training data, thus being in a much more powerful posi-
tion compared to the MI settings. To ensure that the model looks unsuspicious,
we further require the attacker to use a conventional design for the network and
that it achieves state-of-the-art accuracy. (We further discuss MI and its relation
with the present work in Sect. 3.)

A natural way to perform hidden learning would be to combine two networks
with steganographic techniques; however, it is unclear how to do this under the
mentioned restrictions without making the model look suspicious.

In this paper, we investigate what may be regarded as the most natural
strategy to achieve the mentioned goal. We consider a simple scheme that trains
a network for two tasks at the same time, namely, the official task, which a
user expects it to perform, and a secret task, which is achieved by feeding the
output of the network to a secret network (see Fig. 1). We call this scheme hidden
learning, and we formally define it in Sect. 3.

To provide some intuition for the proposed framework, consider sets of points
on the Euclidean plane sampled from two standard gaussians centred at (0, 1)
and (0,−1). The official task is to classify those points according to the gaussian
they come from, so it only depends on one of the coordinates of the points.
In such set up, the faithful model should use the best separating line, y = 0.
However, the line y = x would still achieve substantial accuracy on the official
task while revealing some information about the input x coordinate.

An example where hidden learning could be problematic would be the sce-
nario where, for better handling the Covid-19 crisis, the government of a country
hires a company to develop a smartphone application for estimating how many
people are at risk in each region of the country. Each user is asked to feed sen-
sitive health information to a neural network that outputs a probability that
the user can develop severe Covid reaction if infected and a probability that the
user was already infected. Only these two probabilities and the user’s region are
communicated to the company’s server so it can provide statistics to the gov-
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ernment. If the application is open source, independent coders can check that
the application does indeed behave as expected. However, by applying hidden
learning to set up the weights of the neural network embedded in the application,
the company could use a secret (private) network to retrieve additional informa-
tion from the user’s output. Data such as high risk of cardio-vascular accident
could be valuable for some insurance companies, which might be tempted to
discreetly change their coverage conditions for cardio-vascular risks in certain
regions accordingly.

Our main goal is to draw attention to the possibility of an attack on the
weights of a model by showing that it can be made effective with a simple
approach at a very low computational cost.

After formally defining our framework (Sect. 2) and discussing related works
(Sect. 3), we describe and discuss our experiments on several synthetic tasks
defined on the CIFAR-10 and Fashion MNIST datasets (Sects. 4 and 5). Finally,
we provide our conclusions about the results in Sect. 6.

2 Hidden Learning Framework

In this section, we formally describe the Hidden Learning framework, whose
main components are represented in Fig. 1.

We start by providing the key definitions. Let S be a generic set and ko and
ks be two positive integers. Hidden Learning is performed by considering two
classification tasks:

– the official task To, which asks to classify points into S in ko categories;
– the secret task Ts, which asks to classify points into S in ks categories.

In order to perform those two tasks, the Hidden Learning framework produces
two artificial neural networks:

– an official network No, which assigns each x ∈ S to a vector No(x) ∈ [0, 1]ko

of scores associated to the ko categories of the task To;
– a secret network Ns, which classifies vectors in [0, 1]ko into ks categories.

Remark 1. The only specific constraint in the above framework lies in the co-
domain of the official network No, namely the space of vectors in R

ko , which
are then passed to a softmax function. The latter is a natural choice in many
scenarios and is consistent with typical MI attack settings, in which the attacker
is assumed to have query access to some model’s scores about the possible output
categories [15].

The training of the official and secret networks is simultaneous: at each
epoch, the updates of the weights of the two networks are computed by back-
propagation according to a combination of the loss functions for the respective
tasks. As a first simple choice for combining the loss functions, we consider their
sum.
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More formally, let Lo(ŷ, y) and Ls(ŷ, y) be the loss functions for the official
task To and the secret task Ts, respectively. The network is trained by optimizing
the combined loss function Lo(ŷ, y)+Ls(ŷ, y). More details about how we perform
the training in our experiments can be found in Sect. 4.

3 Related Work

Our work is closely related to the class of privacy attacks to neural network
models known as (white box ) model inversion (MI) attacks [1]. In the latter
setting, given an output f(x) and the model f that produced it, an attacker
tries to reconstruct the corresponding input x. We emphasize that, in contrast
to the MI setting in which the attacker does not intervene in the creation of the
model f , our hidden learning framework assumes that the attacker can forge the
model f (our No) itself in a disguised fashion that allows, by design, to easily
invert it (using Ns). Note also that contrarily to many MI settings, the training
data is not considered sensitive here, while the attack concerns input data fed
to the model in production use. We also mention here black box MI attacks
which, as the name suggest, are a more restrictive kind of MI attacks where
the attacker only needs to be able to arbitrarily query the model and observe
the corresponding output, without any knowledge about the model internals [5].
Contrarily to this setting, we do not assume that the attacker can propose forged
inputs and get the corresponding outputs.

Part of our experiments verifies the robustness of the secret network to per-
turbations of the official one. This can be compared to recent works which inves-
tigate the sensitivity of the explainability of a model when the latter is perturbed
as a consequence of other procedures, such as the disruption of input attribution
that arises when standard neural network compression methods are employed,
as recently shown in [11].

The present work investigates a simple approach to produce a neural network
(the official network No) which performs some hidden computation that can be
exploited by a third party to extract sensitive information from private inputs. In
this respect, it falls in the general area of [12]. While the application of artificial
neural networks for standard steganographic tasks (statically hiding information
in a given object) is being actively investigated [17,20], we are not aware of
works which, like the present one, explore how to produce an artificial neural
network which tries to hide information in its output through calculations that
are entirely transparent to the party who is making use of it. In particular, its
architecture should be legitimate for the official task. A concept related to the
latter is that of backdoor attacks on deep neural networks, where the goal is
to produce a neural network that appears to solve a task, but behaves quite
differently when fed specific triggering inputs [3,10]. It has also been shown that
the latter triggering inputs can be designed via steganography so that they would
not be identifiable by direct inspection [9].
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4 Experiments

This section describes our experiments on the Hidden Learning framework,
described in Sect. 2.

We perform experiments on the classical CIFAR-10 dataset [7] and Fashion
MNIST dataset (FMNIST) [19]. Both of them consist of small-size images (32×
32 and 28 × 28 pixels, respectively) classified in 10 classes:

– airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck for
CIFAR-10,

– T-shirt/top, trouser, pullover, dress, coat, sandal, shirt, sneaker, bag, and
ankle boot for FMNIST.

4.1 Description of Experimental Results

This section describes the experiments summarized in Table 1. All values are
rounded to the fourth decimal point.

We have adopted the same architecture for all experiments up to the number
of neurons in the output layers of the tasks To and Ts. For simplicity, we have
opted for a simple convolutional architecture for the official network, based on
LeNet5 [8]:

– A convolutional layer with 16 kernels 3× 3, stride 1× 1, padding of one, and
ReLu [4] activation function; which is followed by 2 × 2 max pooling;

– Two convolutional layers with 32 kernels, and otherwise identical to the pre-
vious (including the max pooling);

– A fully connected linear layer.

As for the secret network, we consider a multilayer perceptron with two hidden
layer with ReLu activation, the first with 16 and the second with 32 hidden
nodes. We remark that the above choices cover all hyperparameters.

We ran two types of experiments.

Hidden Learning Experiments. These experiments, summarized in Table 1, show
the accuracy achieved by the official network No over several tasks described
below. With the expression To-and-Ts we refer to the accuracies achieved in
the experiments in which the networks No and Ns were trained in the hidden
learning framework. The row To of column To-then-Ts and the column Ts-only
show the accuracies achieved in the experiments in which the networks No and
Ns were trained by taking into account, respectively, only the loss function for To

and for Ts (separately). Finally, the rows Ts of the column To-then-Ts show the
accuracies achieved by Ns in the experiments in which, first, the network No was
trained by taking into account only the loss function for To and, then, Ns was
trained by taking into account only the loss function for Ts, while the weights of
No are not modified. We observe that the latter experiments resemble black-box
MI where the attacker has access to the full training dataset with corresponding
model outputs.
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Robustness Experiments. These experiments, summarized in Table 2, estimate
the secret network’s robustness to perturbations of the official network. We do
so by adding gaussian noise with zero mean and standard deviation σ to each
weight of the official network. Each column of Table 2 shows the accuracies of
the official and secret networks, on the train and test sets, for different values
of σ, averaged over 10 independent noise injections.

Recall that both CIFAR-10 and FMNIST associate inputs to labels from 10
classes. We have simulated information removal by creating subtasks of classifi-
cation into1

– Two classes (C2): one class for the inputs belonging to any of the first 5
original classes, and other for the inputs belonging to any of the last 5. For
instance, for CIFAR-10, the first class in this subtask is “airplane or automo-
bile or bird or cat or deer ” while the other is “dog or frog or horse or ship or
truck ”.

– Five classes (C5): we pair original classes to create new ones. Furthermore, we
do this while avoiding pairs contained in the classes for the last subtask. This
ensures that the solutions to one of those subtasks do not provide any infor-
mation about the other. Using CIFAR-10 labels as an example, the classes
for this subtask are “airplane or dog”, “automobile or frog”, “bird or horse”,
“cat or ship”, and “deer or truck ”.

– The first n classes (Fn): classification into n + 1 classes, namely, the first n
original classes, and an extra one combining all the other. Exemplifying as
before, for n = 3 this subtask comprises the classes “airplane”, “automobile”,
“bird ”, and “neither an airplane nor an automobile nor a bird”.

– The last n classes (Ln): same as the previous subtask, but for the n last
original classes.

We organized the experiments by choosing one of those subtasks as To and
the other as Ts. We also consider cases where Ts is the original classification into
10 classes.

In the tables, we refer to the original task as C10, to subtasks with 2 and 5
classes as C2 and C5, respectively, to the classification into the first m original
classes as Fm, and to the classification into the last n original classes as Ln.

We initialized the weights of all the neural networks using Glorot uniform
initialization [2]. and then trained all of them for 40 epochs using the ADAM
optimizer [6] with a learning rate of 0.001. over 45,000 training entries for CIFAR-
10 and 54,000 for FMNIST, organized into batches of size 64. Even though the
actual number of training points in those datasets is, respectively, 50,000 and
60,000, we reserved 10% of those to use as the validation dataset. When training
No and Ns simultaneously, we chose sets of weights that maximize the sum of
the accuracies of both networks. The accuracy values discussed in this work refer
to the performance of the networks with these sets of weights on the test set.
The test dataset consists of 10,000 data points for both CIFAR-10 and FMNIST.
Those do not take any part in the training.
1 The symbols between parenthesis refer to the one used in the experiment tables.
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Furthermore, in subtasks of the type Fn and Ln, some of the classes are
the same as in the original task, so each corresponds to 10% of the dataset.
On the other hand, the extra class merges all the remaining original classes,
corresponding to 10 − n tenths of the points. We try to compensate for this
unbalance by proportionally under-weighting the loss for these extra classes.
More precisely, when computing the loss for subtasks of type Fn or Ln, we
divide the loss by 10− n whenever the input belongs to, respectively, the first n
or last n original classes.

The results of our experiments are discussed in Sect. 5.

5 Discussion

We start by discussing the experiments summarized in Table 1. Comparing the
accuracy achieved by the official network in the Hidden Learning experiments
(To-and-Ts) with its accuracy when trained for To only (provided in the To row
of the To-then-Ts column), we can see that the framework does not sensibly
decrease accuracy: for CIFAR-10 the two numbers are respectively2 68.5 ± 6.4
and 71.2 ± 10.6, while for FMNIST we have 91.5 ± 2.2 and 92.1 ± 2.6.

The corresponding accuracies achieved by the secret network Ns, namely
when trained with the framework and when trained after No has been trained
alone and is not modified, are respectively 58.7± 9.5 and 46.5± 16.3 on CIFAR-
10, and 82.6± 10.9 and 65.7± 15.1 on FMNIST. Hence, we can see that Hidden
Learning drastically improves the accuracy compared to what may be regarded
as a black-box MI approach (as mentioned in Sect. 4).

We can furthermore see that, when the entire architecture is trained by
uniquely taking into account the loss function of the secret task Ts, Ns achieves
accuracies which are only slightly better than those achieved with the Hidden
Learning framework, scoring 59.1±8.3 on CIFAR-10 and 83.4±9.9 on FMNIST.
The fact that the framework matches the latter results for Ts shows that it is
effective in exploiting the whole network despite the interference of the official
task.

We observe that the gain in accuracy for Ts is especially significant in the
experiments where this task involves fewer classes. This finding is consistent
with the fact that, in such cases, the secret network has fewer neurons as input
and, thus, when Ns is trained independently (Ts), it should get access to less
information in the first place.

Finally, we remark that, since our tasks consisted of different ways to group
and split the original dataset classes into different ones, we also verified that our
results are not sensitive to the ordering of the original labels.

We now discuss the robustness experiments summarized in Table 2. The goal
of these experiments is to provide a first assessment of the sensitivity of the
secret network Ns to perturbations of the official network No. We remark that

2 The value reported after the average is the sample standard deviation. All reported
statistical values are rounded to the first decimal place.
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Table 1. Summary table of experimental results described in Sect. 4.1.

Exp. Task CIFAR-10 FMNIST
To and Ts To then Ts Ts only To and Ts To then Ts Ts only

C2-C10 To 73.5% 74.9% 94.2% 94.3%
Ts 43.5% 21.3% 47.5% 85.3% 50.2% 86.5%

C5-C10 To 65.3% 64.8% 90.3% 89.5%
Ts 61.4% 49.6% 61.3% 89.8% 87.2% 89.5%

C5-C2 To 64.3% 65.0% 89.9% 89.9%
Ts 75.7% 66.3% 74.3% 94.3% 90.0% 94.5%

C2-C5 To 66.3% 74.7% 94.2% 94.4%
Ts 53.0% 27.6% 58.4% 85.6% 51.1% 88.0%

F2-L8 To 78.2% 89.8% 94.0% 96.3%
Ts 51.7% 22.2% 50.3% 87.0% 38.2% 86.9%

F3-L7 To 71.0% 81.4% 90.9% 93.3%
Ts 56.3% 41.9% 58.3% 88.4% 68.4% 88.9%

F4-L6 To 63.5% 67.0% 90.1% 92.1%
Ts 58.0% 45.6% 62.2% 89.9% 74.8% 90.1%

F5-L5 To 61.4% 60.4% 90.4% 90.2%
Ts 64.4% 49.1% 66.1% 92.2% 78.6% 92.9%

F6-L4 To 63.4% 60.4% 89.9% 89.6%
Ts 60.6% 51.4% 64.2% 78.9% 74.9% 78.7%

F7-L3 To 64.2% 64.0% 90.5% 90.3%
Ts 67.1% 63.1% 64.7% 66.1% 65.3% 65.9%

F8-L2 To 65.8% 65.8% 87.7% 89.3%
Ts 41.3% 45.3% 49.5% 62.0% 64.1% 71.8%

F2-L5 To 79.4% 89.3% 95.3% 96.3%
Ts 57.3% 33.2% 59.5% 92.3% 48.2% 92.4%

F5-L2 To 64.1% 58.9% 90.6% 90.2%
Ts 60.8% 73.9% 44.9% 80.3% 69.3% 75.0%

F3-L3 To 78.6% 80.8% 92.3% 93.6%
Ts 70.9% 60.9% 65.9% 64.7% 59.0% 66.0%

our experiments were not optimized to improve network robustness to weight
noise, e.g. by some regularization approach [21].

The table displays the corresponding accuracies obtained for the smallest
values we considered for the standard deviation of the gaussian noise applied (σ
for short) to the weights of No, namely from 0 to 0.1 with a step of 0.025.

When noise is very low (σ = 0.025), the average test accuracy for No drops
by 4.7% for CIFAR-10 while we see a 1.1% average decrease for FMNIST. The
corresponding percentages for Ns are 5.8% (CIFAR-10) and 1.7% (FMNIST).
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Table 2. Accuracies obtained in robustness experiments described in Sect. 4.1.

Exp. Task CIFAR-10 FMNIST
σ = 0 0.025 0.05 0.075 0.1 0 0.025 0.05 0.075 0.1

C2-C10 To 73.5% 71.0% 65.5% 60.6% 54.9% 94.2% 93.4% 91.6% 83.8% 74.0%
Ts 43.5% 38.5% 30.6% 21.5% 14.0% 85.3% 80.3% 67.2% 48.8% 37.2%

C5-C10 To 65.3% 56.3% 43.5% 33.5% 28.1% 90.3% 88.3% 80.9% 73.1% 50.3%
Ts 61.4% 51.0% 34.8% 23.4% 17.1% 89.8% 87.7% 77.7% 69.4% 39.9%

C5-C2 To 64.3% 56.9% 42.8% 32.5% 29.0% 89.9% 88.4% 84.3% 75.7% 54.4%
Ts 75.7% 71.0% 61.1% 55.0% 53.9% 94.3% 93.2% 90.6% 83.3% 69.1%

C2-C5 To 66.3% 64.5% 59.1% 54.1% 52.4% 94.2% 93.2% 90.9% 86.1% 79.2%
Ts 53.0% 45.7% 32.0% 25.1% 24.2% 85.6% 82.8% 73.3% 53.6% 48.8%

F2-L8 To 78.2% 78.0% 73.9% 64.0% 66.3% 94.0% 93.6% 92.9% 90.1% 86.6%
Ts 51.7% 44.6% 32.9% 23.7% 18.6% 87.0% 84.4% 72.5% 58.8% 51.4%

F3-L7 To 71.0% 70.0% 64.2% 43.5% 41.8% 90.9% 91.1% 86.1% 80.4% 74.9%
Ts 56.3% 45.4% 35.2% 27.6% 22.4% 88.4% 85.0% 74.8% 64.2% 46.5%

F4-L6 To 63.5% 60.0% 53.1% 47.8% 35.0% 90.1% 89.8% 86.4% 79.6% 70.0%
Ts 58.0% 50.1% 38.6% 27.8% 28.5% 89.9% 88.2% 81.3% 74.5% 56.1%

F5-L5 To 61.4% 55.2% 46.9% 39.1% 34.7% 90.4% 89.4% 85.8% 78.6% 74.7%
Ts 64.4% 60.6% 51.2% 37.0% 30.9% 92.2% 91.3% 86.0% 76.6% 70.5%

F6-L4 To 63.4% 56.9% 44.4% 31.8% 28.8% 89.9% 88.8% 85.0% 77.4% 67.2%
Ts 60.6% 55.4% 43.8% 38.9% 32.3% 78.9% 78.4% 74.4% 70.2% 63.0%

F7-L3 To 64.2% 56.1% 42.6% 26.2% 25.9% 90.5% 88.7% 84.6% 73.5% 53.8%
Ts 67.1% 62.5% 44.9% 40.2% 31.8% 66.1% 65.9% 65.1% 62.3% 52.9%

F8-L2 To 65.8% 55.9% 40.4% 29.0% 17.6% 87.7% 84.7% 75.5% 62.0% 48.9%
Ts 41.3% 39.5% 32.4% 31.2% 27.4% 62.0% 60.1% 67.7% 65.4% 66.6%

F2-L5 To 79.4% 78.7% 74.7% 63.1% 58.2% 95.3% 94.9% 93.4% 90.0% 82.8%
Ts 57.3% 53.4% 43.1% 30.9% 26.8% 92.3% 91.3% 88.4% 83.6% 74.0%

F5-L2 To 64.1% 59.2% 47.8% 37.3% 35.1% 90.6% 89.2% 85.9% 79.9% 75.8%
Ts 60.8% 57.6% 53.9% 39.3% 37.1% 80.3% 79.4% 79.8% 74.6% 74.6%

F3-L3 To 78.6% 74.3% 68.0% 62.3% 38.7% 92.3% 91.9% 88.4% 84.6% 75.3%
Ts 70.9% 64.9% 53.9% 45.9% 33.7% 64.7% 64.6% 63.2% 54.5% 49.9%

In comparison, when σ = 0.5, No achieves average accuracy 31.5% ± 13.3 on
FMNIST and 26.0% ± 13.6 on CIFAR10. For Ns those values are 28.4% ± 13.2
and 25.4% ± 10.9. This indicates that the perturbation in the official output
tends not to disturb the computation of the secret network unless it is strong
enough to change the official answer.

We can appreciate from the table that a noise level of 0.1 already deteriorates
the accuracy of the official network by 29.5% and 22.3% on average for CIFAR-
10 and FMNIST, respectively. In particular, the fact that No achieves, on across
different experiments, higher accuracies (22.9% difference) on FMNIST (aver-
age 91.4 ± 2.2) than on CIFAR10 (average 68.5 ± 6.4) in the absence of noise
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corresponds to lower deterioration when σ = 0.1, namely 69.2 ± 12.3 versus
39.0 ± 14.0.

We remark that the average standard deviation of test accuracies for No

appears quite low on both datasets despite the heterogeneity of the experiments
(especially the number of output classes). The trend is consistent for Ns, where
the noiseless averages are 82.6± 10.9 for FMNIST and 58.7± 9.5 for CIFAR-10,
while the corresponding numbers when σ = 0.1 are respectively 57.2 ± 12.5 and
28.5 ± 9.9.

6 Conclusions

In this work, we have introduced Hidden Learning, a simple and efficient training
procedure that produces two networks, an official and a secret one, such that the
official network solves an official task with performance comparable to state-of-
the-art; and the secret network uses the output of the official one to solve a secret
task with considerable accuracy. After contextualizing the above framework in
the current research on Model Inversion and related attacks on neural networks,
we have tested it on several synthetic tasks. In our experiments, the framework
shows to be effective in tuning the official network to enable the attacker to
better recover information via a secret network which is computationally very
light. Thus, the possibility for such attacks should be taken into account when
using a model provided by a third party.

Our preliminary investigation demands more sophisticated ones, particularly
on possible defence mechanisms against the Hidden Learning framework. Even
if the official network is suspected to be produced by such a framework, naive
strategies to use the it while preventing information leakage, such as perturbing
the network weights, appear ineffective in our robustness experiments3. More
generally, the fact that the official network is, by design, produced to assist the
secret network in extracting information might allow the framework to find ways
around defence mechanisms that have been proven successful against similar
attacks, such as model inversion ones. On the other hand, differential privacy
[18], together with strategies to decouple data from model training [14], should
prove successful in protecting against it.
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Abstract. Deep learning models are the state-of-the-art approach to
deal with semantic segmentation tasks. However, training deep models
require a considerable amount of images that might be difficult to obtain.
This issue can be faced by means of data augmentation techniques that
generate new images by applying geometric or colour transformations, or
more recently by mixing several images using techniques such as CutMix
or CarveMix. Unfortunately, mixing strategies are usually implemented
as ad-hoc methods and are difficult to incorporate into the pipeline to
train segmentation models. In this work, we present a library that imple-
ments several mixing strategies for data augmentation in semantic seg-
mentation tasks. In particular, we provide a set of callbacks that can be
integrated into the training pipeline of FastAI segmentation models. We
have tested the library with a vineyard dataset and show the benefits
of combining mixing strategies with traditional data augmentation tech-
niques; namely an improvement of almost 5% was achieved using these
methods regarding models trained only with traditional data augmenta-
tion methods.

Keywords: Data Augmentation · Semantic Segmentation · Deep
Learning

1 Introduction

Semantic segmentation is a computer vision task that aims to classify every pixel
of an image in a fixed set of classes. This task has received a lot of attention
in recent years due to its multiple applications in contexts such as agriculture,
manufacturing, robotics or medicine [4]. The interest in semantic segmentation
is partially due to the development of deep learning architectures that provide
accurate segmentation models [3]. One of the main drawbacks that hinder the
adoption of deep learning models for semantic segmentation tasks is the anno-
tation of a large number of images—a tedious and time-consuming task that
might require expert knowledge [7]. A common technique to deal with this issue
is data augmentation [14].
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Data augmentation is a set of techniques that generate additional training
data from existing data. The most widely used data augmentation methods for
computer vision tasks are based on the application of image transformations
such as rotations, flips or translations [6]; however, the diversity of images that
can be generated with this approach is limited. A more advanced data augmen-
tation strategy consists in generating new images using generative models [18];
but, the application of these generative methods is challenging [13]. A different
approach that has emerged to achieve a trade-off between diversity of images and
implementation easiness is the mixing of existing data [19]; for example, Cut-
Mix overlaps a region from an image with another image (potentially different),
making a new image.

Mixing data augmentation methods have been primarily designed for image
classification tasks, but they are not generalised to semantic segmentation prob-
lems. This is probably due to the fact that, in semantic segmentation, trans-
formations must be applied not only to the image but also to its associated
mask. Moreover, existing mixing data augmentation methods for semantic seg-
mentation are implemented as ad-hoc libraries and, therefore, it is challenging to
combine and compare them. In this paper, we aim to deal with these two draw-
backs by the development of a Python library that facilitates the application of
mixing data augmentation methods for semantic segmentation.

The rest of the paper is organised as follows. In the next section, we pro-
vide an overview of existing mixing data augmentation methods for semantic
segmentation. Subsequently, in Sect. 3, we explain how those methods have been
implemented in a Python library, and the results of evaluating such a library
in a vineyard dataset are presented in Sect. 4. The paper ends with some con-
clusions and further work. The developed library is available at https://github.
com/ruescog/semantic segmentation augmentations.

2 Mixing Data Augmentation

Mixing data augmentation strategies for semantic segmentation can be classified
into two classes: CutOut methods and CutMix methods.

Given an image, CutOut methods, first presented in [2], are a family of
techniques that drop regions from such an image, and fill them with the result
of a mathematical function such as the mean or the mode of the image, or
with a constant value, usually zero. CutOut methods for semantic segmentation
have been mainly applied in the literature in two different ways. The classical
CutOut method [2], from now on CutOut, picks randomly a region from the
image and replaces it with 0s; whereas, the HideAndSeek method [15] divides
the image into a grid and, randomly, replaces some portions of the grid with 0s.
In addition, in this paper, we propose a new method called CutOutSemantic,
a method that randomly picks a region and replaces all the pixels associated
with a given class inside that region with 0s. It is worth noting that all the
aforementioned transformations are not only applied to the images but also to
their corresponding masks. An example of each one of these methods is provided
in Fig. 1.

https://github.com/ruescog/semantic_segmentation_augmentations
https://github.com/ruescog/semantic_segmentation_augmentations
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Fig. 1. Samples of different variants of the CutOut method. The region that is modified
has been highlighted with a red frame. The same images with a higher resolution have
been provided on the project webpage. (Color figure online)

As CutOut methods, CutMix techniques, that first appeared in [17], also
drop a region from an image, but instead of replacing it with a fixed value,
such a region is filled with another region from either the same image or from
a different one—the same transformation is also applied to the mask associated
with the image. In the literature, we can find 5 variants of CutMix method called
CarveMix [19], CutMix [17], RICAP [16], ResizeMix [11] and SelfMix [20]. The
classical CutMix method replaces the picked region with a random region from a
different image. Similarly, CarveMix replaces the picked region with a region of
interest (that is, a region that contains objects different to the background) from
a different image. The RICAP method shuffles 4 image regions from (potentially)
different image; and the ResizeMix technique replaces the picked region with a
resized version of the given image. Moreover, SelfMix replaces the picked region
with a region of interest from a different image, but keeping as much information
as possible; that is, picking only the class pixels from the overlapped region.

In addition to the existing CutMix methods available in the literature, in
the present paper, we propose three new methods. CutMix+Mod is analogous
to CutMix but the replacement region is transformed by applying an operation
such as flipping or enhancing its contrast. CutMixSemantic is analogous to Cut-
MixRandom but in the replacement region the pixels of a given class are set to
0. Finally, TransparenceMix is a new method where the background pixels of
the replacement region are seen as a transparency; so, the original values of the
given image are used for those pixels. Examples of the existing CutMix methods
can be found in Fig. 2.
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Fig. 2. Samples of different variants of the CutMix method. The region that is modified
has been highlighted with a red frame. The same images with a higher resolution have
been provided on the project webpage. (Color figure online)

3 Library Description

We have designed, and implemented, an open-source library in Python that
implements all the aforementioned methods for the FastAI library [5]. To this
aim, the augmentation methods have been implemented using Callbacks, which
are objects that can perform actions at various stages of the training process.
In particular, the Callbacks provided in our library are applied before passing a
batch of images to the model during the training process.
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All the mixing augmentation methods presented in the previous section con-
sists of two steps: first, a region from an image is chosen; and, then, such a
region is filled in some way. Additionally, an optional in-between step can be
taken, applying traditional transformations to the selected regions. This abstract
separation allowed us to divide the API into three different components called
HoleMaker, RegionModifier and HolesFilling, and the different implementa-
tions of these components provide the mixing strategies.

In the case of the HoleMaker component, several strategies have been
designed as classes that implement the HoleMaker interface:

– Random: selects a random region with a fixed size.
– Bounded: selects a random region with a fixed size, but this region must be

inside the image.
– Attention: selects a random region, but this region must have enough pixels

of information (that is, containing non-background elements).
– Point: selects a fixed region given a point and with a fixed aperture.
– ROI: selects a region of interest; which is a region that contains a group of

pixels that belong to a fixed class that are separated from the other pixels
from that class.

For all these strategies, several parameters can be fixed, such as the size of
the region or a threshold in the attention strategy to determine whether a region
has enough information. One of these strategies is always provided as input to
the classes implementing the HolesFilling component.

The RegionModifier component can be used after the region has been cho-
sen, allowing the user to apply some traditional augmentations (those transfor-
mations are provided by means of the Albumentations library [1]) to the selected
region.

The HolesFilling component is an interface that has been implemented
with the different mixing methods presented in the previous section. All the
mixing strategies can be configured by fixing the number of holes that will be
taken from the original image, the HoleMaker strategy, and the probability for
applying the mixing augmentation. In addition, some strategies, such as CutMix,
include a parameter with the transformations that will be applied to the region
used for filling. Finally, multiple callbacks can be applied during the training
process as shown in Fig. 3.
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Fig. 3. Snippet showing how to define multiple callbacks and add them to a Learner
object.

4 Results

In order to test the methods developed in our library, we used a vineyard dataset
presented in [8]—a dataset that consists of 85 images (60 for training and 25 for
testing) of a vineyard taken from an agricultural robot, see Figs. 1 and 2. Using
the vineyard dataset, we trained different models using a U-Net segmentation
architecture with a Resnet50 backbone [12], and combining traditional data aug-
mentation methods with each mixing strategy implemented in our library. All
the models were trained with the libraries PyTorch [10] and FastAI [5] and using
a GPU Nvidia RTX 3080 Ti. The procedure presented in [5] was employed to set
the learning rate for the different architectures. Models were trained for 30 epochs
and early stopping was applied after 5 epochs without validation improvement.
Each data augmentation method was applied to construct deep segmentation
models by using a 5-fold strategy where the 60 images of the training set were
split using 80% for training and 20% for validation and to apply early stopping.
The resulting models were evaluated on the test set using the Averaged Dice
metric, also known as DiceMulti [9].

Table 1 shows the results achieved by traditional and mixing data augmen-
tation methods. The mean DiceMulti achieved by the models trained using tra-
ditional data augmentation methods was 0.8129, and this result was surpassed
by all the models trained with the mixing strategies.
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Table 1. Mean (std) DiceMulti of the mixing data augmentation methods. In bold the
best results.

Method Results

Traditional 0.8129 (0.0583)

CarveMix 0.8512 (0.0054)

CutOut 0.8504 (0.0193)

CutOutSemantic 0.8313 (0.0257)

CutMixRandom 0.8431 (0.0217)

CutMix + Mod. 0.8550 (0.0206)

CutMixSemantic 0.8435 (0.0205)

HideAndSeek 0.8546 (0.0121)

RICAP 0.8553 (0.0211)

ResizeMix 0.8474 (0.0287)

TransparenceMix 0.8612 (0.0221)

SelfMix 0.8619 (0.0193)

The best results were obtained by using the SelfMix method with a mean
DiceMulti of 0.8619, an improvement of about 5% regarding the base models
trained with traditional methods. Another method that also achieved a consid-
erable improvement was TransparenceMix. Both these methods combine images
but use transparency as background; hence, the integration of the original image
and the replacement region is more natural.

5 Conclusions and Further Work

In this paper, we have presented a library for easily applying mixing data aug-
mentation strategies in the construction of deep segmentation models. As shown
in the present paper, these techniques might have a positive impact when train-
ing those segmentation models. As further work, we plan to integrate this library
in a set of tools that facilitate the construction of deep segmentation models.
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Abstract. Surface matching usually provides significant deformations
that can lead to structural failure due to the lack of physical policy. In
this context, partial surface matching of non-linear deformable bodies is
crucial in engineering to govern structure deformations. In this article, we
propose to formulate the registration problem as an optimal control prob-
lem using an artificial neural network where the unknown is the surface
force distribution that applies to the object and the resulting deforma-
tion computed using a hyper-elastic model. The optimization problem
is solved using an adjoint method where the hyper-elastic problem is
solved using the feed-forward neural network and the adjoint problem
is obtained through the backpropagation of the network. Our process
improves the computation speed by multiple orders of magnitude while
providing acceptable registration errors.

Keywords: Optimal control · Artificial neural network ·
Hyper-elasticity

1 Introduction

We consider an elastic shape-matching problem between a deformable solid and
a point cloud. Namely, an elastic solid in its reference configuration is represented
by a tridimensional mesh, while the point cloud represents a part of the solid
boundary in a deformed configuration. The objective of the procedure is not
only to deform the mesh so that its boundary matches the point cloud, but also
to estimate the displacement field inside the object.

This situation also arises in computer-assisted liver surgery, where augmented
reality is used to help the medical staff navigate the operation scene [3]. Most
methods for intra-operative organ shape-matching revolve around a biomechan-
ical model to describe how the liver is deformed when forces are applied to its
boundary. Sometimes, a deformation is created by applying forces [13] or con-
straints [7,11] to enforce surface correspondence. Other approaches prefer to
solve an inverse problem, where the final displacement minimizes a cost func-
tional among a range of admissible displacements [5]. However, while living tis-
sues are known to exhibit a highly nonlinear behavior [8], using hyperelastic
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
B. Dorronsoro et al. (Eds.): OLA 2023, CCIS 1824, pp. 137–147, 2023.
https://doi.org/10.1007/978-3-031-34020-8_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-34020-8_10&domain=pdf
https://doi.org/10.1007/978-3-031-34020-8_10


138 A. Odot et al.

models in the context of real-time shape matching is prohibited due to high com-
putational costs. For this reason, the aforementioned methods either fall back
to linear elasticity [5] or to the linear co-rotational model [13]. In this paper, we
perform real-time hyperelastic shape matching by predicting nonlinear displace-
ment fields using a neural network. The network is included in an adjoint-like
method, where the backward chain is executed automatically using automatic
differentiation.

Neural networks are used to predict solutions to partial differential equa-
tions, in compressible aerodynamics [14], structural optimization [15] or astro-
physics [6]. Here we work at a small scale, but try to obtain real-time simulations
using complex models. Also, the medical image processing literature is full of
networks that perform shape-matching in one step [12]. However, the range of
available displacement fields is limited by the training dataset of the network,
and thus less robust to unexpected deformations. On the other hand, assigning a
very generic task to the network results in a very flexible method, where details
of the physical model, including the range of forces that can be applied to the
liver and the zones where they apply may be chosen after the training. Therefore,
our shape-matching approach provides a good compromise between the speed of
learning-based methods with the flexibility of standard simulations. We want to
mention that for the rest of this article due to how the method is formulated we
interchangeably use the terms “shape-matching” and “registration”.

We start by presenting the method split into three parts. First, the optimiza-
tion problem; second, the used neural network and finally, the adjoint method
computed using an automatic differentiation framework.

We then present the results considering a toy problem involving a square
section beam and a more realistic one involving a liver.

2 Methods

2.1 Optimization Problem

To model the registration problem, we use the optimal control formulation intro-
duced in Mestdagh and Cotin [9]. The deformable object is represented by a
tetrahedral mesh, endowed with a hyperelastic model. In its reference configura-
tion, the elastic object occupies the domain Ω0, whose boundary is ∂Ω0. When
a displacement field u is applied to Ω0, the deformed domain is denoted by Ωu,
and its boundary is denoted by ∂Ωu as shown in Fig. 1. Applying a surface force
distribution g onto the object boundary results in the elastic displacement ug,
solution to the static equilibrium equation

F(ug) = g, (1)

where F is the residual from the hyperelastic model. Displacements are dis-
cretized using continuous piecewise linear finite element functions so that the
system state is fully known through the displacement of mesh nodes, stored in u.
Note that g contains the nodal forces that apply on the mesh vertices. As we
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Fig. 1. Schematic of the problem which we are trying to optimize for.

only consider surface loadings, nodal forces are zero for nodes inside the domain.
Finally, the observed data are represented by a point cloud Γ = {y1, . . . , ym}.

We compute a nodal force distribution that achieves the matching between
∂Ωug and Γ by solving the optimization problem

min
g∈G

Φ(g) + α
2 ‖g‖2 (2)

where Φ(g) = J(ug), (3)

where, α > 0 is a regularization parameter, G denotes the set of admissible nodal
forces distributions, and J is the least-square term

J(u) = 1
2m

m∑

j=1

d2(yj , ∂Ωu). (4)

Here, d(y, ∂Ωu) = minx∈∂Ωu ‖y − x‖ denotes the distance between y ∈ Γ
and ∂Ωu. The functional J measures the discrepancy between ∂Ωu and Γ , and
it evaluates to zero whenever every point y ∈ Γ is matched by ∂Ωu.

A wide range of displacement fields u are minimizers of problem (2), but
most of them have no physical meaning. Defining a set of admissible controls
G is critical to generate only displacements that are consistent with a certain
physical scenario. The set B decides, among others, on which vertices nodal
forces may apply, but also which magnitude they are allowed to take. Selecting
zones where surface forces apply is useful to obtain physically plausible solutions.

2.2 A Neural Network to Manage the Elastic Problem

Nonlinear elasticity problems are generally solved using a Newton method, which
yields very accurate displacement fields at a high computational cost. In this
paper, we give a boost to the direct solution procedure by using a pre-trained
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neural network to compute displacements from forces. This results in much faster
estimates, while the quality of solutions depends on the network training.

Artificial neural networks are composed of elements named artificial neurons
grouped into multiple layers. A layer applies a transformation on its input data
and passes it to the associated activation layer. The result of this operation is
then passed to the next layer in the architecture. Activation functions play an
important role in the learning process of neural networks. Their role is to apply
a nonlinear transformation to the output of the associated layers thus greatly
improving the representation capacity of the network.

While a wide variety of architectures are possible we will use the one proposed
by Odot et al. [10]. It consists of a fully-connected feed-forward neural network
with 2 hidden layers (see Fig. 2).

Fig. 2. The proposed architecture is composed of 4 fully connected layers of size the
number of degrees of freedom with a PReLU activation function. The input is the nodal
forces and the output is the respective nodal displacements.

The connection between two adjacent layers can be expressed as follows

zi = σi(Wizi−1 + bi) for 1 � i � n + 1, (5)

where n is the total number of layers, σ(.) denotes the element wise activation
function, z0 and zn+1 denotes the input and output tensors respectively, Wi

and bi are the trainable weight matrices and biases in the ith layer.
In our case the activation functions σ(.) are PReLU [4], which provides a

learnable parameter a, allowing us to adaptively consider both positive and
negative inputs. From now on, we denote the forward pass operation in the
network by

ug = N(g). (6)

2.3 An Adjoint Method Involving the Neural Network

We now give a closer look at the procedure to evaluate Φ and its derivatives. We
use an adjoint method, where the only variable controlled by the optimization
solver is g. As J only operates on displacement fields, the physical model plays
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the role of an intermediary between these two protagonists. The adjoint method
is well suited to the network-based configuration, as the network can be used as
a black box.

In a standard adjoint procedure, a displacement is computed from a force
distribution by solving (1) using a Newton method, and it is then used to eval-
uate Φ(g). The Newton method is the algorithm of choice when dealing with
non-linear materials, it iteratively solves the hyper-elastic problem producing
accurate solutions. This method is also known for easily diverging when the load
is reaching a certain limit that depends on the problem. To compute the defor-
mation, one requires the application of multiple substeps of load which highly
increases the computation times. The backward chain requires solving an adjoint
problem to evaluate the objective gradient, namely

∇Φ(g) = pg where ∇F(ug)Tpg = ∇J(ug). (7)

In (7), the adjoint state pg is solution to a linear system involving the hyper-
elasticity Jacobian matrix ∇F(ug). When the network is used, however, the
whole pipeline is much more straightforward, as the network forward pass is
only composed of direct operations. The network-based forward and backward
chains read

Φ(g) = J ◦ N(g) and ∇Φ(g) = pg = [∇N(g)]T ∇J(ug), (8)

respectively. On a precautionnary basis, let us take a brief look at the (linear)
adjoint operator ∇N(g)T. When ∇N(g)T is applied, the information propagates
backward in the network, following the same wires as the forward pass. The
displacement gradient ∇J(ug) is fed to the output tensor sn+1 and the adjoint
state is read at the network entry s0. In between, the relation between two layers
is the adjoint operation to (5). It reads

si−1 = WT
i ∇σi(Wizi−1 + bi) si for 1 � i � n + 1, (9)

where ∇σi(Wizi−1 + bi) is a diagonal matrix saved during the forward pass.
The network-based adjoint procedure is summarized in Algorithm 1, keeping

in mind the backward chain is handled automatically. Given a nodal force vector
g, evaluating Φ(g) and ∇Φ(g) requires one forward pass and one backward pass
in the network. Then, (2) may be solved iteratively using a standard gradient-
based optimization algorithm. Because both network passes consist only of direct
operations, the optimization solver is less likely to fail for accuracy reasons,
compared to a Φ evaluation based on an iterative method.

Algorithm 1: Network-based adjoint method to evaluate Φ.
Data: Current iterate g
Perform the forward pass ug = N(g)
Evaluate J(ugv) and ∇J(ug)
Perform the backward pass pg = [∇N(g)]T ∇J(ug)
Result: ∇Φ(g) = pg
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3 Results

Our method is implemented in Python. To be more specific, we use PyTorch to
handle the network and evaluate J on the GPU, while the optimization solver
is a limited memory BFGS algorithm [1] available in the Scipy package. Our
numerical tests run on a Titan RTX GPU and AMD Ryzen 9 3950x CPU, with
32 GiB of RAM.

3.1 Surface-Matching Tests on a Beam Mesh

To assess the validity of our method, we first consider a toy problem involving a
square section beam with 304 hexahedal elements. The network is trained using
20,000 pairs (g,ug), computed using a Neo-Hookean material law with a Young
modulus E = 4, 500 Pa and a Poisson ratio ν = 0.49.

We create 10,000 additional synthetic deformations of the beam, distinct from
the training dataset, using the SOFA finite element framework [2]. Figure 3 shows
three examples of synthetic deformations, along with the sampled point clouds.
Generated deformations include bending (Fig. 3a), torsion (Fig. 3c) or a combi-
nation of them (Fig. 3b). For each deformation, we sample the deformed surface
to create a point cloud. We then apply our algorithm with a relative tolerance
of 10−4 on the objective gradient norm. We computed some statistics regarding
the performance of our method over a series of 10,000 different scenarios and
obtained the following results: mean registration error: 6 × 10−5 ± 6.15 × 10−5,
mean computation time: 48 ms ± 19 ms and mean number of iterations:
27 ± 11.

Fig. 3. Deformations from the test dataset. The red dots represent the target point
clouds, and the color map represents the Von Mises stress error of the neural network
prediction. (Color figure online)
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Using a FEM solver, each sample of the test dataset took between 1 and 2 s to
compute. This is mostly due to the complexity of the deformations as shown in
Fig. 3. Such displacement fields require numerous costly Newton-Raphson iter-
ations to reach equilibrium. The neural network provides physical deformations
in less than a millisecond regardless of the complexity of the force or resulting
deformation, which highly improves the computation time of the method. From
our analysis, the time repartition of the different tasks in the algorithm is pretty
consistent, even with denser meshes. Network predictions and loss function eval-
uations represent 10% to 15% each, gradient computations represent up to the
last 80% of the whole optimization process. This allows us to reach an average
registration error of 5.37 × 10−5 in less time than it takes to compute a single
simulation of the problem using a classic FEM solver.

Due to the beam shape symmetry, some point clouds may be compatible with
several deformed configurations, resulting in wrong displacement fields returned
by the procedure. However, our procedure achieved a satisfying surface matching
in each case. These results on a toy scenario prove that our algorithm provides
fast and accurate registrations.

In the next section, we apply our method in the field of augmented surgery
with the partial surface registration of a liver and show that with no additional
computation our approach produces with satisfying accuracy the forces that
generate such displacements.

3.2 An Application in Augmented Surgery and Robotics

We now turn to another test case involving a more complex domain. The set-
ting is similar to [9, Sect. 3.2]. In this context, a patient-specific liver mesh is
generated from tomographic images and the objective is to provide augmented
reality by registering, in real-time, the mesh to the deformed organ. During the
surgery, only a partial point cloud of the visible liver surface can be obtained.
The contact zones with the surgical instruments can also be estimated. In our

Fig. 4. Mesh of the liver used in this section. Composed of 3,046 vertices and 10,703
tetrahedral elements which represents a challenge compared to the one used in Sect. 3.1
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case, the liver mesh contains 3,046 vertices and 10,703 tetrahedral elements.
Homogeneous Dirichlet conditions are applied at zones where ligaments hold
the liver, and at the hepatic vein entry. Like previously, we use a Neo-Hookean
constitutive law with E = 4, 500 Pa and ν = 0.49, and the network is trained
on 20,000 force/displacement pairs. We create 5 series of synthetic deformations
by applying a variable local force, distributed on a few nodes, on the liver mesh
boundary. For each series, 50 incremental displacements are generated, along
with the corresponding point clouds. The network-based registration algorithm
is used to update the displacement field and forces between two frames. We also
run a standard adjoint method involving the Newton algorithm, to compare with
our approach. As the same mesh is used for data generation and reconstruction,
the Newton-based reconstruction is expected to perform well (Fig. 4).

3.3 Liver Partial Surface Matching for Augmented Surgery

In this subsection, we present two relevant metrics: target registration error
and computation times. In augmented surgery, applications such as robot-aided
surgery or holographic lenses require accurate calibrations that rely on regis-
tration. One of the most common metrics in registration tasks is the target
registration error (TRE), which is the distance between corresponding markers
not used in the registration process. In our case we work on the synthetic defor-
mation of a liver, thus, the markers will be the nodes of the deformed mesh.
The 5 scenarios present similar results with TRE between 3.5mm and 0.5mm.
Such errors are entirely acceptable and preserve the physical properties of the
registered mesh. We point out that the average TRE for the classic method is
around 0.1mm which shows the impact of the network approximations.

Fig. 5. Average target registration error and computation times of each sequence.
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Due to the non-linearity introduced by the Neo-Hookean material used to
simulate the liver we need multiple iterations to converge toward the target point
cloud. Considering the complexity of the mesh, computing a single iteration of
the algorithm using a classical solver takes multiple seconds which leads to an
average of 14min per frame. Our proposed algorithm uses a neural network to
improve the computation speed of both the hyper-elastic and adjoint problems.
The hyper-elastic problem takes around 4 to 5ms to compute while the adjoint
problem takes around 11ms. This leads to great improvement in convergence
speed as seen in Fig. 5 where on average we reduce the computation time by a
factor of 6000.

3.4 Force Estimation for Robotic Surgery

In the context of liver computer-assisted surgery, the objective is to estimate a
force distribution supported by a small zone on the liver boundary. Such a local
force is for instance applied when a robotic instrument manipulates the organ.
In this case, it is critical to estimate the net force magnitude applied by the
instrument, to avoid damaging the liver. To represent the uncertainty about the
position of the instruments the reconstructed forces are allowed to be nonzero
on a larger support than the original distribution. Figure 6 shows the reference
and reconstructed deformations and nodal forces for three frames of the same
series. While the Newton-based reconstruction looks similar to the reference one,

Fig. 6. Synthetic liver deformations and force distributions (left), reconstructed defor-
mations and forces using the Newton method (middle) and the network (right) for test
case 3.
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network-based nodal forces are much noisier. This is mostly due to the network
providing only an approximation of the hyperelastic model.

Fig. 7. Force estimation error of the 5
sequences using our method, in red the
average force reconstruction error with the
classical method.

The great improvement in speed
comes at the cost of precision. As
shown in Fig. 6 the neural network pro-
vides noisy force reconstructions. This
is mostly due to prediction errors since
the ANN only approximates solutions.
These errors also propagate through
the backward pass (adjoint problem),
thus, accumulate in the final solu-
tion. Although the force estimation is
noisy for most cases it remains accept-
able as displayed in Fig. 7. The red
dotted line corresponds to the aver-
age error obtained with the classi-
cal adjoint method (10.04 %). While
we are not reaching such value, some
sequences such as 1 and 3 provide
good reconstructions. The difference in
errors between scenarios is mostly due
to training force distribution. This problem can be corrected by simply adding
more data to the dataset thus providing better coverage of the force and defor-
mation space.

These results show that this algorithm can produce fast and accurate regis-
tration at the expense of force reconstruction accuracy. This also shows that the
force estimation is not directly correlated to registration accuracy. For example
sequence 1 has the worst TRE but a good force reconstruction compared to
sequence 4.

4 Conclusion

We presented a physics-based solution for a partial surface-matching problem
that works with non-linear material using deep learning and optimal control
formalism. The results are obtained on two main scenarios that differ both in
scale and complexity. We showed that a fast and accurate registration can be
obtained in both cases and can, in addition, predict the set of external forces
that led to the deformation. Such results show that deep learning and optimal
control have a lot in common and can be easily coupled to solve optimization
problems very efficiently. Current limitations of our work are mostly due to the
limited accuracy of the network and the need to retrain the network when the
shape or material parameters of the model change.
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Abstract. Hyperparameter optimization (HPO) is a well-studied
research field. However, the effects and interactions of the components in
an HPO pipeline are not yet well investigated. Then, we ask ourselves:
Can the landscape of HPO be biased by the pipeline used to evaluate indi-
vidual configurations? To address this question, we proposed to analyze
the effect of the HPO pipeline on HPO problems using fitness land-
scape analysis. Particularly, we studied over 119 generic classification
instances from either the DS-2019 (CNN) and YAHPO (XGBoost) HPO
benchmark data sets, looking for patterns that could indicate evaluation
pipeline malfunction, and relate them to HPO performance. Our main
findings are: (i) In most instances, large groups of diverse hyperparame-
ters (i.e., multiple configurations) yield the same ill performance, most
likely associated with majority class prediction models (predictive accu-
racy) or models unable to attribute an appropriate class to observations
(log loss); (ii) in these cases, a worsened correlation between the observed
fitness and average fitness in the neighborhood is observed, potentially
making harder the deployment of local-search-based HPO strategies. (iii)
these effects are observed across different HPO scenarios (tuning CNN
or XGBoost algorithms). Finally, we concluded that the HPO pipeline
definition might negatively affect the HPO landscape.

Keywords: Hyperparameter Optimization · Fitness Landscape
Analysis · Benchmarking

1 Introduction and Related Work

Modern data-driven approaches dealing with large-scale data require domain,
data science, and technical expertise. The variety of application tasks (e.g., clas-
sification and object detection) often require designing models that are not nec-
essarily reusable in other tasks, and this process is both resource-demanding
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and error-prone [3,8,12]. Thus, automating the design of ML pipelines, a.k.a.
AutoML [6], is much more desirable.

AutoML is usually split into four main activities: data preparation, feature
engineering, model generation, and model estimation [5]. Hyperparameter opti-
mization (HPO [1]) is an important task in model generation. HPO aims at
automatically tuning the hyperparameters of learning algorithms, and as with
all optimization problems, it is facing the process of minimizing/maximizing
a target function (e.g., the performance metric of the model) subject to a set
of constraints. HPO is a well-studied field [1], but the effects and interaction
between the components of its pipeline are not yet well investigated. Recently,
authors [10] have proposed to characterize the search space of AutoML pipelines
using fitness landscape analysis (FLA [11]). In the same line, [15] proposed a
FLA-base framework to characterize NAS problems, and applied it to a multi-
sensor data fusion problem [14]. Despite the great results and insights provided
by these studies, the relation between HPO and the rest of the HPO pipeline
remains barely explored.

Therefore, in this study, we pose the following research question: Can the
landscape of HPO be biased by the pipeline used to evaluate individual
configurations? To address this question, we propose to study HPO in the
context of AutoML using FLA. Particularly, using fitness distance correlation
(FDC [7]), locality and neutrality [2], we aim at patterns that arise from eval-
uation pipeline issues and assess how they could alter the landscapes of HPO
problems. The results on over 119 instances from either the DS-2019 [13] or
the YAHPO [9] HPO benchmarks show the existence of large groups of diverse
HP configurations that yield the same ill fitness value. This illness could be
explained by the fitness metric selection (e.g., predictive accuracy and log loss),
that induce various suboptimal model behavior, in scenarios of different natures
(tuning CNN and XGBoost algorithms). More precisely, for the predictive accu-
racy, we suspect the generation of majority class predictors. In the case of the
log loss criterion, the generation of models unable to classify. A complementary
analysis of locality shows that the resulting landscapes are more rugged, with
lesser correlation between the observed fitness and the fitness in the neighbor-
hood. In other words, these problems are hard to tackle using a local-search
strategy.

The rest of the paper is as follows: The next section introduces the method-
ology used in the study, Sect. 3 presents results of landscape analysis on HPO
problems, and Sect. 4 provides conclusions.

2 Methodology

Given a HPO problem, let S be the HP configuration space, f the fitness function
that assigns a value f(x) ∈ R to all configurations x ∈ S, and N(x) a neigh-
borhood operator that provides a structure to S. Then, the fitness landscape is
defined as L = (S, f,N).

We are interested in exploiting the landscape definition to study the rela-
tion between the HPO landscape and the HPO pipeline, and check whether the
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pipeline may bias the HPO landscape. Particularly, we propose to use the FDC
and locality to characterize this relation. The motivation is that issues related to
the evaluation pipeline should affect the fitness of configurations irrespectively
of their configuration, and thus their distance to the optimum. In other words,
repetitive or grouping patterns (such as lines) might appear when visualizing
distributions of distances to the optimum. Moreover, the locality of the con-
figuration space should be arbitrarily affected, i.e., some configurations should
present an unexpected or random behavior (in relation to the neighborhood).

Without loss of generality, we consider the problem of tuning the HPs of a
fixed model, e.g. neural network architecture or XGBoost ensemble, to perform a
task (e.g., classification). Typically, the HP configuration space consists of mixed
type features (continuous, discrete or categorical). Thus, we propose to evaluate
the distance between individuals using a dedicated similarity function, δ(x, y),
introduced by [4]. Then, we define a neighborhood function N(x) = {y ∈ S |
δ(x, y) < Δ}.

The FDC is often interpreted as a measure of the existence of search tra-
jectories from randomly picked configurations to the known global optimum.
In practice, the FDC is not collected as a correlation score but visualized as
the distribution of fitness versus distance to the global optimum. It writes
as: FDC(f, x∗, S) = {(δ(x∗, y), f(y)) | ∀y ∈ S}, where x∗ ∈ S is the global opti-
mum. On the other hand, locality corresponds to the relationship between the
observed fitness and the distribution of average fitness in the neighborhood [2].

Moreover, the neutrality degree [2] provides an additional picture of the inter-
action between solutions in the landscape. It is defined as Nd(x) = |{x′ ∈ N(x) ||
f(x

′
)−f(x) |< ε}|, and is interpreted as the number of neighbors of x that have

a similar fitness. In this case, we set ε = maxfitness/C. Besides, Table 1 and 2
give a description of abbreviations and symbols used in the paper.

Table 1. Table of abbreviations used in the paper.

Abbreviation Description

HP Hyperparameter

HPO Hyperparameter Optimization

CV Computer Vision

FLA Fitness Landscape Analysis

FDC Fitness Distance Correlation

CNN Convolutional Neural Network

MMCE Mean Misclassification Error

3 Results

To evaluate the proposed methodology, we propose to analyze the DS-2019 and
YAHPO HPO benchmark data sets. DS-2019 consists of a tabular benchmark
for the scenario of tuning the HPs of a (fixed) convolutional neural network
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(CNN), a ResNet-18, on ten instances of CV classification. For each instance,
15 hyperparameters should be optimized, including the batch size, number of
epochs, and momentum, among others.

Table 2. Table of symbols used in the paper.

Symbol Description

S Hyperparameter Configuration Space
N Neighborhood operator
f Fitness evaluation function
L Fitness landscape derived from the combination

of S, N , f

maxfitness Maximum fitness value observed in S

maxdist Maximum pairwise distance (to the optimum)
measured in S

Nd(x) Neutrality degree of a HP solution x

δ(x, y) Gower distance between HP solutions x and y

Δ Threshold (in Gower distance) used by N to
assign neighbors

ε Threshold (in fitness) used by Nd to assign
neutral neighbors

C Constant used to define the fitness neutrality
threshold ε

YAHPO consists of a tabular benchmark for the scenarios of tuning vari-
ous learning algorithms (e.g. XGBoost, Neural Networks) for 119 instances of
classification, in various domains of applications. Many of the instances were
obtained from the collaborative open-source OpenML platform, gathering an
ever-growing number of machine learning instances. In this study, we focus on
the specific scenario tuning a set of 15 HPs for the XGBoost learning algorithm.

The code used for the experiments is available following the anonymized link:
https://github.com/anonymous-for-open-review/late-breaking-automlConf-
2022.

3.1 Classification Accuracy

The following paragraphs introduce results when evaluating solutions using the
metric of predictive accuracy (DS-2019). In the case of YAHPO, the available
metric is the mean misclassification error (MMCE = 1 − predictive accuracy),
and we focus on the instances WDBC, YEAST, MINIBOONE, and ISOLET.
Similar observations are made for the rest of the 119 instances.

https://github.com/anonymous-for-open-review/late-breaking-automlConf-2022
https://github.com/anonymous-for-open-review/late-breaking-automlConf-2022
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Fitness Distance Correlation (FDC)
First, for each instance, we randomly sampled 1000 HP configurations and com-
puted the FDC. Results are shown in Figs. 1 and 2, respectively, for DS-2019
and YAHPO.

Overall, the distances to the global optimum cover a wide range of values:
the distribution of distances is wide and uniform in most instances. This is the
case for both benchmarks. This suggests a large diversity in the HP configura-
tions (with respect to the optimum), for the sample and potentially the whole
configuration space. This is true for both benchmarks, with slightly more narrow
distributions of distances for YAHPO. This suggests slightly less diversity within
the XGBoost HP configuration space (YAHPO), than one of the CNN classifiers
(DS-2019).

In most instances of DS-2019, the fitness also covers a wide range of values,
as opposed to relatively more narrow distributions of fitness on YAHPO. This
suggests a larger influence on HP configuration on the fitness of CNN classifiers
(DS-2019) than on more classical and notoriously robust ensembles of models,
i.e XGBoost (YAHPO). Overall, the distributions of fitness all seem to be multi-
modal, with a principal mode for large fitness values (i.e., good configurations),
and another mode for odd values, for both benchmarks.

Fig. 1. FDC plot for instances from the DS2019 benchmark, and the corresponding
regression line in blue. The fitness function is the predictive accuracy. (Color figure
online)

Fig. 2. FDC plot for a few instances from the YAHPO HPO benchmark, and the
corresponding regression line in blue. The fitness function is the MMCE. (Color figure
online)
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Besides, we checked the data distribution for each instance, and we notice
that the odd modes could be correlated to the majority class. Note that the fit-
ness metric used is predictive accuracy for DS-2019, and its opposite the MMCE
for YAHPO. For example in DS-2019, on FLOWER it is around 25%, SCMNIST
around 65% and SVHN around 20%. In YAHPO, on WDBC it is around 38%,
on YEAST around 70%, and ISOLET around 97%, among others. In particular,
configurations are affected regardless of the distance to the optimum. In other
words, very diverse configurations yield the same fitness value. This phenomenon
could be attached to issues with the learning process, failing to properly fit the
data and being stuck in poor local optima (i.e., majority class prediction), pre-
venting them to reach the fitness that their HP configuration would normally
yield. Besides, there is no clear global correlation between the observed fitness
and distance to the global optimum. This could be caused by the multi-modal
nature of the distributions of fitness.

Neighborhood
Next, we seek to identify how the observed artifacts, i.e., the majority class
predictors, affect the locality of landscapes. Figures 3 and 4 show the distribution
of average neighbor fitness as a function of the observed fitness, respectively, for
instances from DS-2019 and YAHPO. The black dash-dotted line represents
the bisector, i.e., the line connecting all points of equal value on both axis. To
generate the plots, we used the previously sampled configurations, and identified
the maximal pairwise distance (of any individual) to the optimum maxdist, and
maximum observed fitness maxfitness. Given a constant C = 40, we discretize
the range of fitness values into intervals, where a step is equal to the maximum
observed fitness maxfitness divided by C. In order to decide if a configuration is
a neighbor, we set Δ = maxdist/C.

Fig. 3. Distribution of the average fitness of neighbors as a function of the observed
fitness (predictive accuracy), for a few instances of the DS2019 benchmark.
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Overall, we observe in many instances of DS-2019 a strong correlation
between the observed fitness and the average fitness in the neighborhood. Indeed,
the box-plots are aligned with the bisector. From the perspective of local search,
it is easy to navigate the configuration space by consistently improving the fit-
ness, from randomly distant and bad configurations to configurations of high
fitness, for instances from DS-2019. This is less the case in YAHPO, as show
in Fig. 4. Indeed, we observe a weaker correlation between the two variables. In
the presence of unexpected mode in the distributions of fitness (see Fig. 2), e.g.
YEAST and ISOLET, we find that a majority of neighbors tend to have the
fitness of the observed mode, respectively around 70% and 97%. This suggests
that the respective landscapes might have many local optima surrounded by
plane areas at the odd fitness value. Thus, the chances for local search of being
stuck are higher in such instances. Besides, the instances with more uniform
and wider distribution of fitness (Fig. 1) tend to have a near perfect correlation.
On the other hand, the more the distributions are multi-modal and with peaky
modes, the worse the correlation between the variables of interest. This is the
case for both benchmarks.

Fig. 4. Distribution of the average fitness of neighbors as a function of the observed
fitness (MMCE), for a few instances from the YAHPO benchmark.

To summarize, results indicate that the evaluation protocol could have an
impact on the easiness and practicability of HPO landscapes, assessed by the
correlation.
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Neutrality
Next, we look into the neutrality of the landscape. Figures 5 and 6 show
the distribution of neutral neighbor counts as a function of the current fitness,
respectively, for instances from DS-2019 and YAHPO.

For instances from DS-2019, the neutrality degree is equal to or greater than
one, for most ranges of fitness values. In order words, most configurations have
at least one neutral neighbor. Also, note that the FDC and locality results for
CIFAR-10 are good, while for SCMNIST adn SVHN, with a multi-modal distri-
bution of fitness (Fig. 1), coupled with lower local correlation (i.e., between the
fitness and the fitness in the neighborhood, Fig. 3), the results are bad. Regarding
CIFAR-10, the neutrality degree is on average consistently greater than two. In
other words, most configurations have two or (many) more neutral neighbors.
On the other hand, for SCMNIST and SVHN, the neutrality degree is incon-
sistent and with lower values on average. In particular, Nd is lower for fitness
values ranging from 6.28 to 43.98% for SCMNIST, i.e., generally bad configura-
tions have fewer neutral neighbors than mid and good configurations. Also, as
expected, there is a huge number of neutral neighbors around the majority class
prediction fitness: around 65% for SCMNIST and 20% for SVHN.

In YAHPO, we find that the range of fitness for which one can find solutions
with neutral neighbors is limited. In practice, it represents a fraction of the range
covered by all evaluated solutions. Besides, the neutrality degree is generally
above 2, with larger counts associated to the modes in the distributions of fitness
(See Fig. 2). These two facts suggest that the landscapes might be highly rugged
with many local optima (no neutral neighbors), with areas centered towards
values of the observed modes.

Fig. 5. Neutrality degree as a function of the observed fitness (predictive accuracy),
for a few instances from the DS2019 benchmark.
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Fig. 6. Neutrality degree as a function of the observed fitness (MMCE), for a few
instances from the YAHPO benchmark.

As a summary, the evaluation pipeline malfunction is responsible for an
imbalanced landscape, i.e., the AutoML pipeline generates arbitrary peaks of
fitness (low Nd) in areas of expected continuous fitness.

3.2 Log Loss

The following paragraphs present the results of the analysis when evaluating
solutions using the Log Loss for classification. This is done on a sub-sample
of the YAHPO benchmark, namely SEMEION, VEHICLE, SEGMENT, KC1.
Similar observations are made for the remaining 115 instances.

Fitness Distance Correlation (FDC)
First, we look at the FDC for the four instances SEMEION, VEHICLE, SEG-
MENT, KC1, as shown in Fig. 7.

Fig. 7. FDC plot for a few instances from the YAHPO HPO benchmark, and the
corresponding regression line in blue. The fitness function is the Log Loss. (Color
figure online)
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Similarly to results gathered in Sect. 3.1 (predictive classification accuracy),
we find that the distributions of fitness are also covering a wide range of values,
and are multi-modal. Several distributions also have the artifact identified pre-
viously: an unexpected mode around large (poor) fitness values, associated with
HP configurations of highly variable Gower dissimilarity to the optimum. For
instance, it is around the Log Loss value of 2.25 for SEMEION, 1.55 for VEHI-
CLE, and 1.98 for SEGMENT. It affects HP configurations at Gower distances
0.15 to 0.45, i.e. covering the whole range of dissimilarity to the optimal HP.
This phenomenon is also observed for a majority of the 119 analyzed instances
of YAHPO. Besides, another mode can exist (around 0.35 for KC1) at low fitness
values, i.e good HP configurations.

When looking at the nature of the instances (number of classes), we find
that the unexpected mode correlates with the fitness value yielded by the Log
Loss metric when attributing an equal probability of occurring to all classes, for
all observations. In other words, solutions associated with the mode are likely
solutions with no classification ability. This phenomenon could occur since the
Log Loss metric does not penalize such behavior, a local optimum to which many
solutions could naturally converge to.

Neighborhood
Next, we look at the neighborhood in the landscapes generated by the Log Loss
metric. This is shown in Fig. 8. Overall, we find that the correlation between
the average fitness of neighbors and the observed fitness, is weak in the case of
distributions of fitness with the identified artifact (peaks). Most neighbors have a
fitness value of the unexpected mode, e.g. a Log Loss value of 2.25 for SEMEION

Fig. 8. Distribution of the average fitness of neighbors as a function of the observed
fitness (Log Loss), for a few instances from the YAHPO benchmark.
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and 1.35 for VEHICLE. This observation is in line with those made when using
the metric of MMCE (see Figs. 1 and 2).

To summarize, using the Log Loss as an evaluation metric might also neg-
atively impact the easiness of the associated landscapes, by increasing their
ruggedness and decreasing their fitness potential.

Neutrality
Next, we look into the neutrality of the landscapes, as shown in Fig. 9. Similar
to the analysis provided when evaluating with the MMCE, we find that few
solutions have a neutral neighbor, and these are found within a restricted range
of fitness. This suggests highly rugged landscapes. Besides, the highest counts of
neutral neighbors are for solutions associated with the modes in the distributions
of fitness (see Fig. 7). For instance, at a Log Loss value of 2.2 for SEMEION,
and between 1.23 and 1.35 for VEHICLE. In other words, the landscapes are
highly rugged (numerous local minima), and surrounded by a plateau of HP
configurations associated with the high Log Loss values of the observed mode.

Fig. 9. Neutrality degree as a function of the observed fitness (Log Loss), for a few
instances from the YAHPO benchmark.

4 Conclusions and Future Work

In this paper, we investigate if AutoML pipelines can negatively affect the land-
scape of HPO problems. More precisely, we address the following question: Can
the landscape of HPO be biased by the pipeline used to evaluate individual con-
figurations? To tackle this question, we have studied the fitness landscape of
over 119 HPO instances obtained from either the DS-2019 (CNN) or YAHPO



When Performance Metric Malfunction Affects the Landscape of HPO 159

(XGBoost) HPO benchmark data sets, using the concepts of fitness distance
correlation, locality, and neutrality.

The FDC analysis shows unhealthy patterns in many HPO instances, with
large groups of very diverse HP configurations with the same ill fitness value.
These resulting peaks in fitness appear to be outliers in the respective distri-
butions. Looking at the locality (fitness versus fitness in the neighborhood), we
observe two things: First, there is a correlation between both variables of interest
in healthy landscapes, suggesting that an easy path from randomly picked HP
configurations could lead to the best performers, i.e., local-search may do the job.
Second, for HPO problems negatively affected by the mentioned illnesses (i.e.,
the majority class predictors, or the inability to classify), the correlation between
the current fitness and fitness in the neighborhood is worsened, indicating more
rugged local landscapes.

Even though the majority class prediction problem for models trained and
evaluated using some metrics (e.g., accuracy) is well known, the results show
that the problem may not be taken seriously into account. This is also the case
with the inability to classify arising when using the Log Loss as a training and
evaluation criterion.

Thus, a great amount of resources is wasted when addressing HPO (i.e.,
many simple majority class or inable models are evaluated). Furthermore, the
evidence shows that the landscape of HPO problems could be negatively affected
by the evaluation pipeline being used.

Future work will further investigate how such artifacts affect HPO algorithms
in practice.
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Abstract. Effective maintenance is essential in keeping industrial sys-
tems running and avoiding failure. Condition-based maintenance (CBM)
leverages the current degradation condition of the studied object to opti-
mize future maintenance interventions. CBM optimization problems are
complex for multi-component systems, facing the issue of the curse of
dimensionality brought by the increase in the number of components.
Reinforcement learning provides a promising perspective to overcome the
issue. In this paper, we studied CBM optimization for a multi-component
system in which the components degrade subject to the gamma pro-
cess independently. We considered multiple maintenance choices for indi-
vidual components, leading to a large combinatorial action space. In
this case, traditional deep reinforcement learning algorithms like DQN
may struggle to face the inefficiency of exploration. Instead, we propose
exploiting Branching Dueling Q-network (BDQ), which incorporates the
action branching architecture into DQN to drastically decrease the num-
ber of estimated actions. We trained a learning agent to minimize the
expected cost for a long time horizon by taking maintenance actions
according to the observed exact degrading signal for each component. We
compared the policy learned by the agent with some other pre-defined
static policies. The numerical results demonstrate the effectiveness of the
learning algorithm and its potential for application in systems with more
complex structures.

Keywords: Optimal maintenance planning · Condition-based
maintenance · Deep Reinforcement learning · Branching Dueling
Q-Network

1 Introduction

Every component in industrial systems degrades over time. In order to maintain
the regular operation of industrial equipment and reduce the loss caused by
system damage, maintenance activities should take place [1]. The stochastic
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process is one of the most commonly studied models to describe degradation
phenomena for maintenance policy [2,3]. In stochastic degradation models, the
health condition of a study target is represented by a degradation metric usually
constructed based on physical signals (such as the length of the crack, remaining
fuel, vibration frequency, and amplitude). As soon as such degradation metric
reaches a certain threshold, whether the threshold is known or not, the target will
no longer keep functioning and lead to a failure state. For a system that contains
multiple components, the health condition of the components will determine
whether the entire system can operate successfully. In order to prevent a system-
wide failure, maintenance actions on the components should be performed in a
coordinated way and based on their degradation level.

Modern sensor technologies enable monitoring and assessing system state
remotely and applying condition-based maintenance(CBM) policies to a degrad-
ing system whose state is observable. These policies recommend maintenance deci-
sions using the monitored system health conditions and are often more efficient
[4]. In practice, there are usually multiple maintenance choices, such as complete
repair, partial repair, and replacement, of different requirements on the financial
expense, human resources, and time. Often, the better the action can improve the
degradation metric, the higher the cost. Therefore, CBM policy aims to find a
trade-off between the cost carried by the maintenance action and the cost brought
by the system failure. Most of the CBM strategies are “static”, in the sense that
some fixed degradation thresholds are pre-defined, and corresponding mainte-
nance actions can only be performed if the degradation level reaches the thresholds.
Those static policies may sometimes be too conservative and waste some useful life
of the system. Hence a dynamic policy that can dynamically select maintenance
action based on the observed degradation level is much required.

Many existing methods struggle with maintenance optimization on large-
scale systems (with many components), facing the curse of dimensionality and
history. Reinforcement learning (RL), and especially deep reinforcement learning
(DRL), has shown promising performance in the application of optimization
and control problems of dynamic and huge-dimensionality nature [5]. The RL
paradigm can theoretically mitigate the curse of dimensionality associated with
state spaces, both under model-free approaches that do not exploit prior offline
environment information or under model-based approaches [6].

Solving maintenance optimization problems under the RL umbrella is studied
in a few works. In [7], authors apply RL to schedule condition-based maintenance
of fighter aircraft. Work [8] aims to minimize the long-run expected system
average cost rate of the maintenance problem for a flow line system consisting
of two series machines with an intermediate finite buffer in between. In [2], they
developed a new dynamic maintenance policy with RL for multi-component
systems with individually repairable components. [9] address their problem of
minimizing the expected sum of two conflicting objective functions: the average
inventory level and the average number of back-orders through Q-value-based
RL algorithms. [10] proposed an RL framework for a real-time control process
to improve manufacturing machines’ production performance in a small factory.
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Traditional RL algorithms, like Q-value-based algorithms, perform well on
some small-medium systems while struggling when facing large or complex sys-
tems containing large state and action space. In [3], they considered the exact
level of degradation as the maintenance cost for the duration of the mainte-
nance contract. Work [12] proposed a CBM model based on a customized DRL
algorithm DDQN(Double-DQN) for multi-component systems with independent
risks. In their work, both stochastic and economic dependencies among the com-
ponents are considered. Preventive maintenance policy on production lines using
DDQN is applied in [13], and in [14], they applied an actor-critic DRL algorithm.
They developed a new selective maintenance optimization for multi-state sys-
tems that can execute multiple consecutive missions over a finite horizon.

Consider that there are different kinds of maintenance action needs. The
action space for a multi-component system will have a combinatorial increase. A
few works of research studied the problem of applying reinforcement learning to
a maintenance optimization with a large state and action space [11,12] and [5]
developed a multi-agent reinforcement learning algorithm, providing efficient life-
cycle policies for large multi-component systems operating in high-dimensional.

The main contributions of this paper are 1) the formulation of the condition-
based decision-making problem into a Markov Decision Process; 2) the proposi-
tion to exploit the Branching Dueling Q-Network algorithm to solve the mainte-
nance optimization problem with combinatorial action space; 3) a comparison of
the performance of the trained agents with different maintenance policies from
multiple perspectives.

This paper is structured as follows. In Sect. 2, we describe the degradation
model and the maintenance strategies. Section 3 introduces the reinforcement
learning algorithm. Section 4 illustrates the numerical results, and in Sect. 5, we
draw the conclusion and discuss the potential work in the future.

2 Problem Description

2.1 Degradation Model of Multi-component Systems

System components degrade over time. The degradation process of different com-
ponents varies due to their materials, working loads, and environment. In this
paper, we use the gamma process to model the degradation of the system, which
is a very common degradation process studied in the condition-based mainte-
nance literature, and we assume each component degrades independently.

Let X(t) denote the degradation level of a component at time t, following
the gamma process. Then, for any t > t′ > 0, the probability density function
(PDF) g of X(t) − X(t′) for a given component i:

g(x;αi(t − t′), βi) =
β

αi(t−t′)
i xαi(t−t′)−1exp(−βix)

Γ (αi(t − t′))
(1)

where α, β stands for the shape and scale parameters separately. Γ (·) stands for
the gamma function. Components keep on degrading over time until they meet
their failure threshold (Hi).
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Due to the stochastic property of the gamma distribution, the degradation
process for the same type of components (having the same shape and scale
parameter) varies greatly. Figure 1 shows the different degradation paths of the
same component. Such stochastic property brings difficulties in finding a sta-
tionary maintenance policy. In this paper, we model the maintenance problem
as a Markov decision process, and reinforcement learning algorithms are applied
to find an optimal policy over time.

Fig. 1. Degradation paths of one component

2.2 Maintenance Strategy

Degradation level of the entire system which is composed of n components (Xt =
[Xt,1,Xt,2, ...,Xt,n]) is considered fully observable. Based on the degradation
level, maintenance actions can be performed at any time step t instantaneously,
i.e., the durations of maintenance actions are neglected.

This paper considers five different actions for each component. Each action
affects the current degradation level at different degrees and costs according to its
recovery efficiency (Table 1). The better the action can recover the degradation
level to a better place(i.e., smaller repair factor μ), the more expensive the
cost is. “Doing nothing” means no maintenance action is performed. “Imperfect
repair”, “Repair” and “Imperfect replacement” can recover the current health
condition to a better level, while “Replacement” will reset the degradation level
to 0. Additionally, a downtime cost (cD) will be counted when the entire system
fails (Table 2). The actions performed follow the assumptions:

– Maintenance action will affect the component health condition independently.
– When a component is at its functioning state(xi ∈ [0,Hi)), all the mainte-

nance actions are available.
– When a component is in the failure state(xi ≥ Hi), only “Doing nothing”

and “Replacement” are available.
– For each component, only one action per time step can be performed.



CBM Optimization with Deep Reinforcement Learning 165

Table 1. Available maintenance actions

Action Description Repair factor (µ) Cost (c)

0 Do nothing 1 0

1 Imperfect repair 0.6 40

2 Repair 0.5 80

3 Imperfect replacement 0.3 100

4 Replacement 0 150

Table 2. Cost of maintenance actions

Doing nothing (c0) Imperfect repair (c1) Repair (c2)

0 40 80

Imperfect replacement (c3) Replacement (c4) Down-time cost (cD)

100 150 200

Once performed on component i, an action At,i(At,i ∈ {0, 1, 2, 3, 4}) changes
the degradation level from Xt,i to Xt+1,i following Eq. 2

Xt+1,i = μ(at,i)Xt,i + Yt, Yt ∼ Γ (αi, βi) (2)

The system-wide action At taken every time step is the combination of individual
maintenance actions for all n components. It is denoted At = [At,1, At,2, ..., At,n].
We introduce δt,n,i as a binary variable to illustrate whether the action at,i =
n is performed on component i in time t. The following relation then holds
δt,0,i + δt,1,i + ... + δt,4,i = 1. Eventually, the total cost at inspection time t can
be expressed as:

Ct =
n∑

i=1

(c0δt,0,i + c1δt,1,i + c2δt,2,i + c3δt,3,i + c4δt,4,i) + cDIt (3)

where It is a binary variable that indicates the failure of the system (It = 1 when
system fails and It = 0 otherwise.). The optimization goal is to find a stationary
policy to minimize the expected long time cost (or maximize the reward, defined
as the opposite of the cost), namely:

max R (4)

s.t. R = −
T∑

t=1

(
n∑

i=1

4∑

p=1

cpδt,p,i + cDIt), (5)

4∑

p=0

δt,p,i = 1, (6)

δt,p,t, It ∈ 0, 1, (7)

where T is the total number of inspections. As t approaches +∞, it becomes a
infinite time horizon.
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2.3 Markov Decision Process

A Markov decision process can be described as a quintuple (S,A, P,R, γ), which
provides solutions for sequential decision problems under the interaction with an
environment. At each time step t, the agent observes the current state st ∈ S,
performs an action at ∈ A, and receives the corresponding reward r(st, at) (in
our case, −Ct). Then, the state transits to a new state st+1 ∈ S following the
dynamics P of the environment. The Markov property is reflected in the fact
that the next state st+1 is only related to the current state st and the action at.

The performance of the agent’s policy π is measured by the cumulative dis-
counted return Gt, which represents the sum of discounted (γ is the discount
factor) future rewards collected from time t to the time horizon T . Equation 8
illustrates this sum:

Gt = r(st, at) + γr(st+1, at+1) + ... + γT−tr(sT , aT )

=
T∑

i=t

γi−tr(si, ai)
(8)

3 Reinforcement Learning Algorithms

Following the degradation model and the maintenance strategy introduced pre-
viously, we propose a dynamic model for our CBM optimization problem.

– State space: The degradation level for each component in the system is
fully observable. The degradation condition for the n-components system is
denoted by the n dimensional vector Xt = [Xt,1,Xt,2, ...,Xt,n]. The degrada-
tion level xt,i in each dimension is continuous, ranging from 0 to the compo-
nent’s failure threshold Hi, i.e., xt,i ∈ [0,Hi],∀i = 1, .., n.

– Action space: The action output by the agent is the combination of the
“sub-actions” chosen for each component (At = [At,1, At,2, ..., At,n]). In our
case, the action set for each component is the same (At,i ∈ {0, 1, 2, 3, 4}).
Hence At ∈ {0, 1, 2, 3, 4}n

– Reward: The reward at each time step is the negative cost carried by the
maintenance actions, namely Rt = −Ct.

3.1 Dilemma of Applying Q-Learning Based Algorithm

Value-based and policy gradient methods are two main categories of today’s
RL algorithms. DQN [15] is often used as the baseline of the value-function-
based method, while PPO [16] and DDPG [17] are two classical policy gradient
methods. In this work, we chose to focus on value function-based methods.

As the number of components increases, the action space grows exponen-
tially in size due to the combinatorial effect. The traditional Q-learning method
(Tabular Q-learning) struggles with large spaces because it has to maintain an
extremely large matrix. Moreover, Q-learning algorithms cannot deal with con-
tinuous state space like the model proposed in this paper. Therefore it is a wise



CBM Optimization with Deep Reinforcement Learning 167

choice to resort to DRL. Considering the standard structure of the DQN-based
algorithms, the output of the neural networks is the Q-value for each action,
which means the output has the same size as the action space. For a system
with n components under the maintenance strategy introduced in Sect. 2.2, the
size of its action spaces becomes 5n. In this case, training a neural network with
numerous parameters is challenging. Exploration is very likely to be insufficient
and inefficient.

3.2 Branching Dueling Q-Network

Branching Dueling Q-Network (BDQ) is proposed in [18]. It consists in a neural
architecture that distributes the representation of the actions across individual
network branches, each branch representing one action dimension. The joint-
action tuple that concatenates the sub-action is the output for the entire network.
In practice, if k sub-actions are available for each action dimension, the DQN
would need to output kn Q-values, while the BDQ only outputs k × n Q-values,
which illustrates why the BDQ seems to scale better for large and combinatorial
action spaces. A feature-sharing model was added before the branching in order
to let the network encode a latent representation of the input and feed more
information to the branches for coordination (Fig. 2).

Fig. 2. Basic structure of Branching architecture

As mentioned in [18], BDQ can be thought of as an adaption of the dueling
network into the action branching architecture. [19] proposed Dueling architec-
ture instead of learning the Q value directly, but training the two branches of
the last few layers of the neural network to output the state value function (V )
and the advantage function (where A is defined as A(s, a) = Q(s, a) − V (s)).
The advantage function A represents the difference of taking different actions at
the same state (s); modeling them separately allows the agent to better handle
states less associated with actions.

Figure 3 illustrates the detailed structure of applying BDQ on a n-component
system. The BDQ maintains n branches, only leading to a linear increase in the
number of outputs with increasing action dimensionality.

4 Numerical Results

We considered two cases (a three-component series system and a nine-component
series system) to demonstrate the performance of the proposed BDQ on multi-
component systems. In addition, a DDQN algorithm is applied for comparison.
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Fig. 3. BDQ structure for a N components system

The numerical results of the trained agent and the comparison to other policies
are presented in this section. Table 3 presents the degradation parameters for
each component.

Table 3. Components Parameters

Parameters Description Comp. 1 Comp. 2 Comp. 3

Hi Failure threshold 30 33 26

αi Shape parameter 0.3 0.2 0.6

βi Scale parameter 1.2 1.1 1.1

To compare the performance of different policies, we ran simulations for each
policy from a brand new system (i.e., no degradation for each component) for
50 × 10000 time steps. We made sure to run simulations on a sufficiently long
time horizon so that it could lead to an accurate estimation of the performance
of each policy. Moreover, it has the advantage to evaluate the different policies
without giving too much importance to the initial state, chosen here to be an as-
good-as-new state. The indicator we use to demonstrate the performance of the
policy is the mean value for every 50 time steps. Besides, two static maintenance
policies are used for comparison, including:

– Corrective Maintenance(CM): Only do replacement (action 4) as soon
as one component fails.

– Static Condition-based Maintenance(CBM): An expert policy is given
by prior knowledge. When the component state level is below 0.8Hi, no repair
action is taken (action 0); when the component state level is in [0.8Hi,Hi],
apply repair (action 2); otherwise, when the component fails, replacement
(action 4) is triggered.



CBM Optimization with Deep Reinforcement Learning 169

4.1 Three-Component Series System

Hyperparameters for training the BDQ and DDQN on the three-component
series system can be found in Table 4. To monitor the training process, we display
the cost per episode and the average cost per 100 episodes shown in blue to
demonstrate the converging trend (Fig. 4(a), Fig. 5(a)).

Table 4. BDQ hyper-parameters

Parameters Description Value (BDQ) Value (DQN)

lr learning rate 1 × 10−4 2 × 10−3

ns number of episode 5 × 103 5 × 104

T length of one episode 50 50

γ discount factor 0.9 0.9

ε0 ε-greedy: Initial ε for BDQ 0.9 –

Δε0 ε0’s decay factor 0.995 –

ε1 ε-greedy: static ε for DQN – 0.01

C frequency to update the target network 1000 2000

Bu buffer size 5000 5000

Ba batch size 32 32

ms the minimal size of begin training 1000 1000

Fig. 4. Average rewards during training (BDQ on series system with 3 components)

Figure 4 and Fig. 5 show that the DDQN algorithm converges faster than
the BDQ algorithm while less stable. We tested the trained BDQ and DDQN
agent on the proposed degradation model for 5 × 106 time steps. For every 50
time steps, we collect the total cost accumulated in the interval. Table 5 reports
the simulation results (average cost, standard deviation, the 95% confidence
interval, and the total time spent during simulation). From the table, we can see
that for this simple series system with three components, the performance of the
BDQ algorithm can reach the same level as DDQN, and both learning agents
outperform the pre-defined static policy on average.
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Fig. 5. Average rewards during training (DDQN on series system with 3 components)

Table 5. Maintenance cost under different strategies on Series system (3 components)

Policy Cavg stdC 95%CI tsim

BDQN −631.87 212.47 ±4.16 4m 31 s

DDQN −603.13 202.97 ±3.98 1m 6 s

CM −1411.56 284.27 ±5.57 13.7 s

CBM −853.49 113.32 ±2.22 13.4 s

4.2 Nine-Component Series System

In this case, we consider a nine-component system with a series structure. The
components are the same as those in the three-component system but tripled.
Each of the three subsets {1, 2, 7}, {2, 5, 8}, and {3, 6, 9} has the same type of
components inside. Under this system, the action space is 59 ≈ 1 × 106, and the
DDQN architecture needs to maintain a vast network with an enormous number
of neurons and cannot converge in our training.

For BDQ, we double the size of each hidden layer in our BDQ structure to
train on the nine-component system; the ns is extended to 2×104 episodes while
other hyper-parameters remained the same as in Table 3. Figure 6 displays the
average cost per 100 episodes, where the variance is higher than training a three-
component system. Table 6 shows the good performance of the policy produced
by BDQ agent.

Table 6. Maintenance cost under different strategies on Series system (9 components)

Policy Cavg stdC 95%CI tsim

BDQN −1576.00 640.32 ±12.55 7m 6 s

CM −4054.73 474.98 ±9.31 30.2 s

CBM −2559.77 199.13 ±3.90 29.9 s
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Fig. 6. Average rewards during training (BDQ on series system with 9 components)

5 Conclusion and Future Work

For multi-component systems with independent repairable components, if we
consider multiple action choices, the maintenance decision for the whole system
will be the action combination of each component. Classic DRL algorithms like
DQN are inefficient in dealing with problems with a large, multi-dimensional
action space. Hence, we resort to BDQ, which enables the agent to learn the
policy in a combinatorial action space efficiently.

The numerical results show that the BDQ algorithm performs well for the
studied CBM optimization problem. It can perform the same as DDQN in a
small series system of three components and outperform the static policies on
average. When the number of components increases (nine-component), finding
some certain threshold to design a static policy becomes difficult. Q-learning-
based algorithms face the problem of maintaining a massive network with 59 ≈
106 neurons in the output layer, whereas the BDQ showed good performance in
training efficiency and convergence on the nine-components series system.

More work can be done to test the performance of BDQ on a multi-component
system. 1) The size of the system could be further expanded. 2) The system
structure could be more complex to see the potential of BDQ to recognize the
system’s structure. 3) Maintenance resources limit could be considered.
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Abstract. The minimum cardinality set covering problem (MCSCP) is
an NP-hard combinatorial optimization problem in which a set must be
covered by a minimum number of subsets selected from a specified col-
lection of subsets of the given set. It is well documented in the literature
that the MCSCP has numerous, varied, and important industrial appli-
cations. For some of these applications, it would be useful to know if there
are alternative optimums and the qualitative number of alternative opti-
mums. In this article, both classification trees and neural networks are
employed to qualitatively (small, medium, or large) predict the number
of optimal solutions to a MCSCP. Results show that both model types
have an accuracy in the low to mid 80%, with the neural network slightly
outperforming the classification tree. Sensitivity and positive predictive
value (PPV) are used to describe more detailed information.

Keywords: minimum cardinality set covering problem · alternative
solutions · machine learning · classification tree · neural networks

1 Introduction and Literature Review

The minimum cardinality set covering problem (MCSCP), also called the uni-
cost set covering problem, has numerous and varied industrial applications.
Although it is NP-hard [4], recent advances in integer programming software
[1,5] has made it possible to obtain optimal solutions for industrial problems
formulated as MCSCPs. Additionally, there are industrial applications for which
knowledge of alternative optimums would be very useful in practice. Three such
examples from the steel industry are optimal ingot mold selection [8], metallur-
gical grade assignment [9], and product size consolidation [7,10]. The product
size consolidation application has many and varied applications outside the steel
industry.

The only work in the literature that tries to predict qualitatively the number
of alternative optimums for the MCSCP is by Emerick et al. [2]. Being a prelim-
inary study, Emerick et al. only considered MCSCPs with constraint matrices
of 20% density and only analyzed the problem using classification trees.
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The main contributions of this article are twofold: (1) we analyze an extensive
set of MCSCPs for five different densities (10%, 15%, 20%, 25%, and 30%), (2)
in addition to using classification trees, we use neural networks to try to predict
qualitatively the number of alternative optimums for MCSCPs and analyze the
results of these two approaches.

This paper is organized as follows: we present a mathematical formulation of
the MCSCP in Sect. 2 follow by our methodology in Sect. 3, which includes the
construction of a large set of unique MCSCPs with varying density. We present
a brief statistical summary of our representative sample and perform a principal
component analysis and a correlation analysis on our set of decision variables. In
Sect. 4, we train a classification tree on a subset of the sample, validate the tree
on a validation subset of MCSCPs, and report the results of the classification
tree. In Sect. 5, we train and validate a neural network and report the results.
We summarize our findings in Sect. 6 and conclude the paper with a discussion
and future work in Sect. 7.

2 Mathematical Formulation

Let A = [aij ] be an m × n matrix, where the entries of A are ones and zeros.
The index i is the constraint index, with m total constraints; and the index j
is the variable index, with n total variables. Let p be the density of ones in the
matrix and assume the row and column sum of the matrix are at least one. We
seek the solution to the minimum cardinality set covering problem (MCSCP),
which is formulated as follows: Let x = [xi] be an n× 1 vector of ones and zeros
only (x is a bit string), then

Minimize:
n∑

j=1

xj (1)

Subject to:
n∑

j=1

aijxj ≥ 1 for i = 1, 2, . . . ,m (2)

For any matrix, A, that satisfies the above constraints, there is at least one
optimal solution, x, to the MCSCP. In fact, there may be alternative optima that
have the same minimum value as given in Eq. (1). Like the approach detailed
in Emerick et al. [2], we seek to construct predictive models using machine
learning that determines, with some degree of confidence, the qualitative number
of alternative solutions for any given matrix A. Emerick et al. [2] fixed the
dimensions to 10 × 20 and density to p = 20%. We generate matrices of this
size so that we can determine the number of alternative optima in a reasonable
amount of time at relatively low computational cost. We focus this article on the
predictive nature of a classification tree and a neural network on the number of
alternative solutions to the MCSCP.
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3 Research Methodology

Classification trees and neural network models are efficient tools used for input-
output mapping. We construct classification trees using the built-in fitctree func-
tion in Matlab from the Statistical and Machine Learning Toolbox [6]. Using a
set of pre-determined classification and regression tree (CART) predictor vari-
ables, this algorithm selects the optimal split predictor variable at each node
that maximizes the Gini diversity index (GDI) over all other predictors’ pos-
sible splits. To construct a neural network mapping from our input variables
to the qualitative number of alternative solutions, we use the built-in function
feedforwardnet in Matlab’s Statistical and Machine Learning Toolbox. This
algorithm produces a network with 10 hidden layers, with the initial layer con-
nected directly to the input variables and the output layer connected to the
number of alternative optima [6]. We construct and compare the performance of
each machine learning tool.

In order to construct a classification tree and a neural network to predict
the number of alternative solutions to a MCSCP, we study the characteristics
of a large sample of 10 × 20 constraint matrices with varying density. We only
use 10 × 20 constraint matrices because using larger matrices would require a
prohibitive amount of time to generate all optimums for each matrix in the
training set. We create five sets of matrices, each with an identifying density
of p = 10%, 15%, 20%, 25%, and 30%. We implement an algorithm in Matlab
that generates 50,000 unique, random matrices assuming that each row and
each column is nonempty. For example, a matrix of density p = 10% will contain
20 nonzero entries, but since every column must contain a one, there will be
exactly one nonzero entry in each column. Our Matlab algorithm sorts each
matrix using the sorting technique described by Emerick et al. [2]. This ensures
that every generated MCSCP is unique. For more details on generating unique
matrices, see [2].

A matrix with p = 10% density presents a simple case. Here, the MCSCP has
exactly one nonzero entry in each column. Any MCSCP solved with a constraint
matrix of this form has a minimum cardinality of 10 because there is only a single
one in every column; therefore, it will take exactly m columns to cover each row.
Since we are letting m = 10 in our study, the minimum cardinality of such an
MCSCP is 10. Furthermore, in the scenario where there are exactly two ones in
every row, there are two columns available to cover a single row. Hence, there are
210 alternative optima. This is the maximum number of alternative optima in
the p = 10% case. In contrast, if there is a single one in 9 rows, and 11 ones in a
single row, the number of alternative optima is exactly 11. This scenario gives the
minimum number of alternative optima in the p = 10% case. In both scenarios
described above and in every case when p = 10%, the number of alternative
optima is exactly equal to the product of the row sum. However, the number of
alternative solutions for any MCSCP of this size, with p �= 10%, cannot easily
be determined by simply examining the form of the matrix A. Therefore, we
seek a method to generate an accurate number of alternative solutions to any
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Table 1. Summary statistics for the number of alternative optimal solutions of the
global data set.

Mean Std.
Dev.

Five Number Summary Outlier
Threshold

Proportion
in Umin

Proportion
in Umax

Min QL M QU Max

65.50 109.28 1 4 12 55 1024 131.5 10.50% 19.39%

MCSCP, with a 10 × 20 constraint matrix. To this end, we study a global data
set of 250,000 unique, random matrices spanning five density categories.

The summary statistics for the number of alternative solutions for all 250,000
unique matrices are given in Table 1. The maximum number of solutions is 1024,
which is the case for the p = 10% density scenario with two nonzero entries
in each row. The minimum value is 1 i.e., the problem has a unique solution.
The sets Umin and Umax are defined as the set of all MCSCPs with exactly one
solution and the set of all MCSCPs that have a very large number of alternative
solutions as determined by the 1.5IQR rule for determining outliers, respectively.
The 1.5IQR is a commonly used threshold for identifying outliers in a dataset. It
is calculated by adding one and a half times the interquartile range (IQR) to the
upper quartile of the dataset. Approximately 10.50% fall in the Umin category
while 19.39% fall within Umax, which is defined by an outlier threshold of 131.50.
Further, the mean and standard deviation are 65.50 and 109.28, respectively.

A frequency distribution of the data shows a heavy right skew. This fact will
dictate our qualitative definition of small or large number of alternative solutions
to any MCSCP.

We wish to construct a classification tree and a neural network to predict
the number of alternative optima for any MCSCP. To this end, we consider
31 decision variables, two of them being the minimum cardinality, m, and the
density, p. Other variables are associated with row and column statistics as well
as eigenvalues and the general placement of ones in the sorted matrix A. A
complete list of all variables is included in Table 2.

We first perform a principal component analysis (PCA) on our variable set
[3]. In the initial stage of the PCA, x8 is removed because it turns out to be a
constant. When the threshold of 80% in cumulative proportion is used to select
proper decision variables, all variables except x8, x14, and x25 are included to the
first three principal components, which contribute most (see Fig. 1). A variable
is excluded if the magnitude of the eigenvectors contributing to the first three
principal components is less than a threshold of 0.2.

We also perform a correlation analysis by using a correlogram from Minitab
on the set of all 30 variables from the PCA above. We find that the variables
x16, x21, and x22 can be eliminated because they are perfectly linear with other
variables (a correlation of |r| = 1). We also identify all variables that have a
correlation of |r| > 0.95 and those with a correlation of |r| > 0.90 with at
least one other variable. Appropriate variables are removed in each stage of this
correlation analysis. These variables are identified in Table 2.
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Fig. 1. Scree plot illustrating the contribution of each principal component in terms
of eigenvalue. The three most dominant principal components, in terms of eigenvalues,
capture 80% of the variation.

After all eliminations of variables are performed, we are left with 14 variables
that are relatively less-correlated and contribute to the principal components of
the data set.

4 Classification Trees

We consider two versions of a 3-output classification tree generated using the
built-in function known as fitctree in the Statistical and Machine Learning Tool-
box of Matlab. We generate the tree using a random selection of 200,000 of
the 250,000 matrices as a training set. We note that the global set consists of
50,000 matrices selected from each density, p. We do not select an equal number
of matrices from each density for the training set. Table 2 shows the list of the 31
original decision variables. All variables that were eliminated from the principal
component analysis and correlation analysis are appropriately highlighted. We
proceed with 14 decision variables.

For the 3-output classification tree, the categories are defined as small (S),
medium (M), and large (L). The cutoff values for each category are based on
specific percentiles of the global data set. A small number of alternative optima
is considered to be less than the 33rd percentile of 6 solutions. Therefore, if the
MCSCP has 5 or less alternative solutions, the classification tree will identify
that problem as having a small number of alternative optima. A large number
of alternative solutions is defined as more than 120 solutions, which is the 80th

percentile. This threshold value was chosen because the data are strongly skewed
to the right. A medium number of alternative solutions is between 6 and 120
solutions.
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Table 2. Complete list of 31 decision variables. Variables with † were eliminated
because they are constant (1 variable). Variables with ‡ were eliminated using PCA
(2 variables). Variables with ∗ were eliminated for having a correlation of |r| = 1 (3
variables). Variables with ∗∗ were eliminated for having a correlation of |r| > 0.95 with
at least one other variable (7 variables). Similarly, variables with ∗∗∗ had a correlation
of |r| > 0.90 with at least one other variable (4 variables). The remaining 14 decision
variables were used to train the classification tree and neural network.

Decision Variable Notation

Minimum Cardinality m

Density p

Dominated Columns x1

Dominating Columns x2

Single Element Rows x∗∗∗
3

Single Element Columns x∗∗
4

Maximum Column Sum of Single Element Row x5

Isolated Points x∗∗∗
6

Duplicate Columns x∗∗
7

Rows with Maximum Row Sum x†
8

Proportion of Nonzero Elements in AAT x∗∗
9

Maximum Eigenvalue of AAT x∗∗
10

Maximum Element of AAT x11

Elements in the Northwest Quadrant of Sorted A x12

Elements in the Northeast Quadrant of Sorted A x∗∗∗
13

Elements in the Southwest Quadrant of Sorted A x‡
14

Elements in the Southeast Quadrant of Sorted A x15

Mean of Row Sum x∗
16

Standard Deviation of Row Sum x17

Median of Row Sum x∗∗
18

Interquartile Range of Row Sum x19

Minimum of Row Sum x20

Maximum of Row Sum x∗
21

Mean of Column Sum x∗
22

Standard Deviation of Column Sum x∗∗
23

Median of Column Sum x∗∗∗
24

Interquartile Range of Column Sum x‡
25

Minimum of Column Sum x26

Maximum of Column Sum x∗∗
27

Product of Row Sum x28

Product of Column Sum x29
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We train the classification tree on a random selection of 200,000 unique matri-
ces from the original global set of 250,000 MCSCPs. We consider the performance
of the full classification tree as created by Matlab and the pruned tree with
only 10 branches. The results of the two trees are presented in Table 3.

We let Sa denote a MCSCP that actually had a small number of alternative
solutions, and Sp be the number of MCSCP’s that were predicted by the model
to have a small number of optimal solutions. Similar definitions hold for the other
sizes. We compute the sensitivities (e.g. P (Sp |Sa)) and the positive predictive
value (PPV) (e.g. P (Sa |Sp)) for each output in each model. From the confusion
matrices, we can see that the pruned classification tree performs slightly better
than the full tree on the validation set. Indeed, the overall accuracy of the pruned
tree was 83.63% as compared to the full tree at 82.54%. This fact suggests that
using fewer branches and fewer decision variables is a benefit.

The results of Table 3 present the performance of each model at a glance.
We have constructed a classification tree using a single training and validation
set. To get a better understanding of the performance of the model, we perform
a Monte Carlo Cross Validation (MCCV) with 100 simulations. In this way, we
can gain a more accurate depiction of the performance by considering the mean
of the accuracies. Because of high computational cost, we only do a performance
analysis on the pruned tree. We construct a pruned tree using 100 training
sets, each set chosen randomly without replacement with each of size 200,000
MCSCPs. The validation sets are the remaining 50,000 MCSCPs for each of
the 100 trials. The average accuracy of the 10-node, pruned classification tree is
83.84% with a standard deviation of .21%.
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Fig. 2. A graphical depiction of the relative importance of each decision variable for
the full (red) and pruned (blue) classification tree. We see that m, x28, and x29 are the
top three deciders for branch points in each tree. (Color figure online)



182 B. Emerick et al.

For each classification tree, we find that the most important predictors are
minimum cardinality (m), product of the row sum (x28), and product of the
column sum (x29). This fact is depicted in Fig. 2. We see that for the pruned
tree, only these three variables are used to determine branch points. In the full
tree, variables other than these three important predictors are used after the
tenth branch point. We also note that density (p) and minimum of the column
sum (x26) have essentially no predictive power in the full model. This is in
direct contrast to Emerick et al. [2] whose study found that the number of single
element rows (x3) and proportion of nonzero elements in AAT (x9) were the
most important variables after minimum cardinality.

5 Neural Network

We train a neural network using the built-in function feedforwardnet in Matlab
on the exact same set of MCSCPs used to train the classification trees. We use
the default number of hidden layers, in this case 10. The output of the neural
network is numerical and so we reclassify the output of the model into the
predetermined bin sizes for S, M , and L. In this way, we can appropriately
compare the performance of each model. The training process was completed
after 492 epochs and 6 validation checks.

The performance of the model is given in Table 3. Here, we can see that the
neural network, at a glance, does slightly better at an accuracy of 84.82%. Similar
to the tree models, the neural network is best at predicting a larger number
of optima. The sensitivity of the neural network model for predicting a small
number of alternative solutions seems to be significantly higher than that of the
tree models. Similarly to the cross validation methods used for the classification
tree, we perform a MCCV using the identical set of 100 randomly chosen, without
replacement, training sets for the neural network. The average accuracy of the
cross-validated neural network is 84.28% with a standard deviation of .79%.

6 Discussion

The results of Table 3 present the performance of each model at a glance. The
accuracy of every model is in the lower to mid 80’s, which illustrate that both
the CART and the neural network models performed very well in general. After
cross-validation of 100 randomly selected MCSCPs, the neural network performs
slightly better.

Practitioners can directly use the most important predictors identified by the
pruned classification trees in all 100 cases of the cross-validation. These trees
consistently determined the first split based on minimum cardinality. When the
minimum cardinality (m) is greater than 7, the MCSCP is likely to have a large
number of solutions (i.e., greater than 120 alternative optima). For this branch
alone, the PPV given by P (La |Lp) is .9624, which is impressive for a validation
set of this size. Furthermore, in this set of 100 random MCSCPs, having a mini-
mum cardinality less than 4 will yield a small number of solutions (i.e., less than
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Table 3. Confusion matrices for the full classification tree (top), pruned classification
tree (middle), and neural network (bottom) on the validation set. The sensitivities,
predicted values, and overall accuracy are provided for each case.

Full Tree: Predicted

Sp Mp Lp Sensitivities:

A
ct

u
a
l Sa 12090 4189 0 .7427

Ma 4271 19372 106 .8157

La 1 164 9807 .9835

PPV: .7389 .8165 .9893 .8254

Pruned Tree: Predicted

Sp Mp Lp Sensitivities:

A
ct

u
a
l Sa 12684 3595 0 .7792

Ma 4174 19574 1 .8242

La 0 415 9557 .9584

PPV: .7524 .8300 .9999 .8363

Neural Network: Predicted

Sp Mp Lp Sensitivities:

A
ct

u
a
l Sa 12089 4190 0 .7426

Ma 2970 20734 45 .8730

La 0 385 9587 .9614

PPV: .8028 .8192 .9953 .8482

6 alternative optima) with a PPV of P (Sa |Sp) = .8712. Based on these find-
ings, we can conclude that minimum cardinality is the most important predictor
for determining whether there will be a small or large number of alternative
optima. In addition, variables x28 (product of the row sum) and x29 (product of
the column sum) are typically used to distinguish between small and medium-
sized solutions in the lower branches of the full tree. Typically, the number of
alternative optima increase with an increase in each of these variables. The fact
that x28, the product of the row sum, is an important predictor is not surprising
since this value is exactly the number of alternative optima in the p = 10% case.
This is in contrast to the results reported by Emerick et al. [2], who found that
x3 and x8 were valuable for lower branches.

We consider the sensitivity for each size, i.e., P (Sp |Sa) is the probability that
the MCSCP is predicted to have a small number of alternative solutions when
the model is actually in the group of small size. The sensitivity is for comparing
“between models”. To be precise, the sensitivity can be used to compare the
CARTs and the neural network in each output (small, medium, large) because
it shares the same “ballpark” (the actual count of output) in all models when
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calculated. In each model, the sensitivity is increasing in the order of small,
medium, and large (see Table 3).

We also consider the positive predictive value (PPV) for each size, i.e.,
P (Sa |Sp) is the probability that the MCSCP actually has a small number of
alternative solutions when the model predicted it to be small. The PPV is for
comparing “within a model”. To be more specific, the PPV can be used compare
each output if you fix the model of interest. In each model, the PPV is increasing
in the order of small, medium, and large (see Table 3).

To make comparisons between the classification tree and the neural network,
the authors originally tried to develop a random forest, but wound up with
computing resource shortage – more than 230 Gb of RAM was needed, which
cannot be satisfied in a standard PC. As a result, we used a simplified version
of a random forest - CART as an alternative.

7 Conclusions and Future Work

In this paper, we have considered the performance of two different machine learn-
ing tools on predicting qualitatively the number of alternative optimal solutions
to any MCSCP with 10 constraints and 20 variables. We constructed each model
from a reduced set of 14 decision variables and tested each model using identical
training and validation sets from a global set of 250,000 random MCSCPs.

For future work, we would like to develop a method for comparing the overall
performance of both models and to consider a random forest CART model. We
would also like to analyze how the lower threshold of the definition of “large”
number of alternative optima affects the accuracy each model. In our analysis,
we use the 80th percentile or 120 or more alternative solutions to define a large
number of solutions. How does changing this definition influence the predictive
nature of each model? The answer to this question may provide further insight
into the number of alternative optima of any given MCSCP.
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Abstract. This paper introduces an Adaptive Large Neighborhood
Search algorithm that uses an epsilon-greedy movement selection strat-
egy to solve a pickup and delivery problem for Smile Pickup, a real-life
business. The algorithm also takes into account multiple time windows,
heterogeneous fleets, and multiple depots as additional constraints. The
algorithm utilises two diversification processes: a simulated annealing
technique to update the current solution, and an epsilon-greedy strat-
egy to balance between exploration and exploitation for the selection
of neighbourhoods. We evaluated the algorithm’s performance using our
own benchmark PickOptBench and Li & Lim benchmarks, and found
that it shows great promise in solving Smile Pickup’s problem. More-
over, combining both the epsilon-greedy and simulated annealing restart
strategies resulted in a 1% improvement in ALNS performance on both
benchmarks. We also discovered that the algorithm found more than 70%
of the best-known solutions for 4 out of the 6 classes of instances in the
Li & Lim benchmark.

Keywords: Metaheuristic · Pickup and Delivery Problem · Time
Windows · Reinforcement Learning

1 Introduction

In 2020 alone, the number of parcels shipped in France has increased by 12.4% to
reach 1.5 billion1. This phenomenon can be seen all over the world and has been
reinforced by the recent sanitary crisis and successive lock downs. This growth
has seen the explosion of a business: pickup points. More environmentally-
friendly than home deliveries and often more practical, these pickup points are

1 https://www.data.gouv.fr/fr/datasets/observatoire-du-courrier-et-du-colis/.
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usually held by convenience stores close to customers. Although this works per-
fectly for small parcels, bigger ones such as furniture are usually not accepted
either because of size, weight or space.

Smile Pickup is a young business which manages a group of pickup points
dedicated to big parcels. With such an activity comes a logistical challenge for
shipping parcels from stores to pickup points using local transport solutions.
This sets up a vehicle routing problem with specific constraints that need to be
taken into account. The objective is to give our partners customers the choice to
be delivered in one of our pickup points accommodated for receiving oversized
parcels. The store then packs the order for our fleet of vehicles to deliver to the
pickup point chosen by the customer as soon as possible.

In this paper we describe the particular Vehicle Routing Problem (VRP)
faced by Smile Pickup: the Smile Pickup Problem (SPP) which combines dif-
ferent well known vehicle routing problems. SPP is part of the class of paired
vehicle routing problems with pick up and delivery [1]. As SPP is an extension
of the classic VRP and Pickup and Delivery Problem (PDP) problem [2], it can
be classified as an NP-hard problem. The core of SPP is similar to the Pickup
and Delivery Problem with Time Window (PDPTW) described by Li and Lim
[3] with which they provide a benchmark. Regarding the time windows, Smile
Pickup needs to be able to ensure great flexibility. For this purpose, we added
the possibility of multiple time windows. This constraint was first proposed by
DeJong et al. [4] to take into account customer brakes on home deliveries. More
recently, Belhaiza [5] and Ferreira [6] have both proposed variable neighbour-
hood search heuristics to solve the vehicle routing problem with multiple time
windows. Additional constraints such as multiple depots and an heterogeneous
fleet will also be considered in our problem as described in Salhi and al. [7]. If
we look at pickup and delivery problems, we can refer to the Multi-depot Dial-
A-Ride Problem with Heterogeneous Vehicles (M-DARP-HV) by Braekers [8]
or more recently by Detti [9]. Dial a ride problems are close to PDP problems
except that they transport people and not goods. Braekers [8] gives an exact
method while Detti’s article [9] gives a detailed integer linear program, a tabu
search algorithm and multiple variable neighbourhood searches all tested on real
life instances. Our problem differs from M-DARP-HV which incorporates con-
straints related to the quality of service provided to patients such as a bound on
the patient travel time. This makes it challenging to compare both problems.

The main features of SPP which distinguish our problem from those encoun-
tered in the literature are: stores and pickup points can be loading places and
unloading places for parcels at the same time - moreover, parcels can share
their origins and destinations. This prevents us from using classical exploration
methods of the solution space.

The remainder of this paper is organised as follows. Section 2 gives a detailed
description of Smile Pickup’s vehicle routing Problem (SPP). Section 3 presents
our ALNSε

SA algorithm. We detail movements and its two diversification pro-
cesses: an acceptance criterion based on simulated annealing and an epsilon
greedy exploration strategy. Results follow in Sect. 4 and conclusion in Sect. 5.
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2 Problem Description

In this section, a detailed description of the problem faced by Smile Pickup
is given. First, the problem’s data is presented before describing the chosen
representation of the solutions and describing the objective. The example in
Fig. 1 will be used throughout this article to illustrate the problem.

2.1 Data

The problem faced by Smile Pickup spans over a total of H ∈ N consecutive days
J = {1, ...,H} during which parcels C need to be transported between places Ω
using vehicles V .

Fig. 1. Example of the data of an instance

Places. The set of places Ω is divided in three subsets: depots D where vehicles
start and end their day, stores E and pickup points P which exchange parcels.
A travel distance dij and duration mij is associated to each arc between places
(i, j) ∈ Ω2. For day τ ∈ J , a set of time windows {[eτ

ik, fτ
ik]|k ∈ {1, ..., kmax}}

is assigned to each place i ∈ Ω. kmax is the maximum number of time windows
per place. Unused time windows are set to [0, 0]. When a vehicle visits a place,
it must load and unload its parcels during one of the associated time windows.
The vehicle can arrive early at a place even though it will have to wait until a
time window opens before starting loading and unloading. For depots, the time
windows model the opening hours during which vehicle may depart and return.

Parcels. A parcel cr ∈ C of length sr is made available in a store or a pickup
point or ∈ E ∪P and needs to be delivered to it’s destination dr ∈ E ∪P . parcel
cr can be picked up and delivered from day dayr ∈ J but can also be stored in or

and serviced on a later day τ ≥ dayr for a penalty cost pτ
r . Solutions do not need

to deliver all parcels but each undelivered parcel will cost PNL. Furthermore,
the time needed to load (resp. unload) a parcel cr is fc

r (resp. fd
r ).
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Vehicles. For each day τ ∈ J , a set of vehicles Vτ is available (V =
⋃

τ∈J Vτ ).
Each vehicle v ∈ V starts at a depot ov and returns at the same depot at the
end of the day. Vehicle v ∈ V is given a usage cost Puv and a capacity Kv. The
sum of the length of the parcels in a vehicle v must not exceed Kv at any time
during the tour. Finally, we will call τv ∈ J the day vehicle v is associated to.
Hence v ∈ Vτv

In Fig. 1, an example of data is given. The instance spans on a single day
J = 1 using 2 vehicles V = V1 = {v0, v1}, 6 parcels C = {c0, c1, ..., c5} and
7 places including depots D = {0, 1}, stores E = {2, 3} and pickup points
P = {4, 5, 6}. As for example, parcel c5 of length s5 = 1 needs to be picked up at
point 6 and delivered at store 3. Loading will take fc

5 = 7 min while unloading
only takes fd

5 = 4 min. If vehicle v0 is used, it starts from depot 0 and costs
Pu0 = 800. The vehicle would need to load at point 6 either between time slots
10 and 12 or 14 and 18. Unloading in 3 must take place between 8 and 13.

2.2 Solution Representation

A solution S is represented by a set of tours. A tour is assigned a single vehicle.
We will consider a vehicle to be equivalent to a tour and use the same notation
v. A tour v ∈ V is an ordered list of triplets <tv0, t

v
1, ..., t

v
k>. Triplet i of tour v is

such that tvi = (pv
i , Cv,+

i , Cv,−
i ) with pv

i ∈ Ω, Cv,+
i ⊆ C the set of parcels loaded

at pv
i by v and Cv,−

i ⊆ C the set of parcels unloaded at pv
i by v. During servicing

of a place, unloading will always be performed before loading. We notice that
∀v ∈ S, pv

0 ∈ D, pv
k ∈ D, pv

0 = pv
k, Cv,+

0 = Cv,−
0 = ∅ and Cv,+

k = Cv,−
k = ∅.

We also introduce the following notations: Cu the set of undelivered parcels,
Cd the set of delivered parcels, V + the set of used vehicles and the function
d : C → J indicating the day d(cr) ∈ J parcel cr ∈ Cd is delivered. For simplicity,
we also introduce dist(v) the distance travelled by vehicle v ∈ V +.

Furthermore, a solution S is feasible if capacity constraints are respected and
if for every tour, there exists at least one schedule for the associated vehicle to
be able to respect the time windows of every place visited by the tour.

Using this notation we can represent the solution in Fig. 2 as follows:

v0 = <(0, ∅, ∅), (2, {c4}, ∅), (6, ∅, {c4}), (0, ∅, ∅)>
v1 = <(1, ∅, ∅), (3, {c1}, ∅), (5, ∅, {c1}), (1, ∅, ∅)>

In the representation in Fig. 2, the sets Cv,+
i and Cv,−

i are listed under place
pi. If we look at Fig. 3 presenting a solution containing all parcels, the first vehicle
loads c5 when visiting pickup point 6 for the first time. It then goes to store 3
where c5 is unloaded and c3 is loaded. After having picked up parcel c4 in store
3, both c4 and c3 are unloaded when visiting pickup point 6 once again. The
vehicle finishes his journey by coming back to depot 0.

2.3 Solution Evaluation

The objective of SPP is to find the solution S which minimises the following
criteria: the cost of vehicles used, the number of undelivered parcels, the total
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Fig. 2. An initial solution. Fig. 3. An optimal solution.

distance travelled and the storage penalties. To normalise and prioritise these
criteria, they are assigned weights αveh, αnl, αdist and αpen. The fitness function
is shown in Eq. 1.

f(S) = αveh
∑

v∈V +

PUv + αnl |Cu| + αdist
∑

v∈V +

dist(v) + αpen
∑

cr∈Cd

pd(cr)
r (1)

3 An Adaptative Large Neighborhood Search: ALNSε
SA

This section outlines the various steps involved in the proposed local search
algorithm ALNSε

SA which aims at solving the Smile Pickup problem. Such a
method operates by exploring the solution space by generating a set of neigh-
bours from the current solution S and choosing one of them as the new current
solution. Neighbourhoods are generated by movements dedicated to the specific
problem considered. The process is iterated and the best solution SB found is
returned. After testing different local search algorithms as the Variable Neigh-
bourhood Search (VNS) and the Large Neighbourhood Search (LNS), we selected
the Adaptative Large Neighbourhood Search (ALNS) [10], an extension of the
LNS in which algorithms learn how to move in the search space more efficiently.
The method we use, iterates over a deterioration phase and a reconstruction
phase. Neighbours are generated from specific movements of two different types:
deteriorating movements and constructive movements which we will describe in
Sect. 3.2.

3.1 General ALNS Algorithm

Adaptative Large Neighbourhood Search algorithm dictates the general strategy
used to decide which neighbouring solution to move to at each iteration. A
general scheme is presented in Algorithm 1. The algorithm starts by generating
an initial solution using a greedy algorithm before iterating over the following
four steps until the time limit is exceeded.

The first step is the deterioration phase (lines 5 to 7). One of the three
deteriorating movements (see Sect. 3.2) is chosen and applied to the current



ALNS for Large Parcel Distribution 191

Algorithm 1 general scheme of ALNS algorithm
1: Nb_iterations ← 0
2: S ← greedy()
3: while stopping criteria do
4: Nb_iterations++
5: SP ← S
6: Ns ← choose a deteriorating movement using distribution WS

7: Apply Ns to SP

8: while stopping insertion criteria do
9: Ns ← choose a constructive movement using distribution WI

10: Apply Ns to SP

11: end while
12: Update current solution S according to SP .
13: Rewards (πm

S , πm
I ) and counts (θi

S , θi
I) movements used in iteration.

14: if Nb_iterations mod Δ = 0 then
15: Update movement weights W m

S and W m
I according to rewards and move-

ment counts.
16: end if
17: end while

solution SP . Each deteriorating movement m is given a weight Wm
S . Weights are

used to select movements.
The second step is the constructive phase (lines 8 to 11) which rebuilds the

solution by inserting unassigned parcels by performing constructive movements
(see Sect. 3.2). These movements are selected and applied based on their weights
Wm

I . While deteriorating movements are applied once, constructive movements
are applied iteratively. The process stops when Emax successive movements fail
to produce a feasible solution.

In the deteriorating phase as in the constructive phase, two different strate-
gies are tested. The first one is the classical roulette wheel selection which is
performed following the distribution WS (resp. WI) to choose the movement to
apply. The second one is the epsilon greedy strategy detailed in Sect. 3.4.

The next step decides if this newly built solution is worthy enough to become
the new current solution for the next iteration (line 12). It also classifies the
performance of the iteration based on the solution produced. This classification
will be used in the weight adjustment step. This step is detailed on Sect. 3.3.

The final step (lines 13 to 18) adapts the weights as follows: each movement
applied successfully is rewarded based on the classification given in the previous
step. πm

S (resp. πm
I ) counts the rewards earned by the deteriorating (resp. con-

structive) movement m while θm
S (resp. θm

I ) counts the number of times it was
successfully applied. Each Δ iterations, the weight distributions are corrected
using the formula in Eq. 2 with PS the sum of πm

S

θm
S

over the set of deteriorating
movements. The weights Wm

I are updated in the same way as Wm
S .
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Wm
S ← ρ

πm
S

θm
S PS

+ (1 − ρ)Wm
S (2)

3.2 Movements

In the following section, the six movements created to move from neighbour to
neighbour in the solution space are detailed.

Parcel Insertion Movement: pim
Movement pim first randomly selects a parcel r ∈ Cu and tries to insert it in a
tour. Candidate tours are classified in four sets ξj , j = 1, . . . , 4. The first one,
ξ1 contains tours that visit both origin or and destination dr of cr in the right
order. Next, ξ2 contains tours visiting origin or and ξ3 contains those that visit
only the destination dr. Finally, ξ4 contains tours that visit neither or nor dr.
Tours where dr precedes or are included in ξ2.

Let ξk be the first non-empty set, then operator pim will randomly pick out
in ξk a tour v. Depending on ξk, the following processes are applied to v:

– case ξk = ξ1. Choose a triplet tvi ∈ v and tvj ∈ v such that pv
i = or, pv

j = dr

and i < j. Add cr to Cv,+
i and to Cv,−

j .
– case ξk = ξ2. Choose triplet tvi ∈ v with pv

i = or. Add cr to Cv,+
i . Choose tvj

with j ≥ i. Insert the triplet (dr, ∅, {r}) in tour v between tvj and tvj+1.
– case ξk = ξ3. Choose triplet tvj ∈ v with pv

j = dr. Add cr to Cv,−
j . Choose tvi

with i < j. Insert triplet (or, {cr}, ∅) in tour v between tvi and tvi+1.
– case ξk = ξ4. Choose a triplet tvi . Insert the triplet (or, {cr}, ∅) in tour v

between tvi and tvi+1. Choose a second triplet tvj , i ≤ j. Insert the triplet
(dr, ∅, {cr}) in tour v between tvj and tvj+1.

When cr is added to Cv,+
i , if capacity constraints are violated, then movement

pim is rejected. In the same manner, when triplets tvi = (or, {cr}, ∅) and/or
tvj = (dr, ∅, {cr}) are inserted in tour v, if time window constraints are violated,
the movement is rejected.

Consider now the initial solution in Fig. 2 and c0 ∈ Cu the parcel to insert
(o0 = 2 and d0 = 4). Then the four sets are: ξ1 = ∅, ξ2 = {v1}, ξ3 = ∅ and
ξ4 = {v2}. We add c0 to Cv1,+

2 and insert the triplet tv1
4 = (dc0 , ∅, {c0}) in tour

v1. The resulting tour is illustrated in Fig. 4(b).

Fig. 4. Examples of solutions after the application of constructive movements.
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Fig. 5. Examples of solutions after the application of deteriorating movements.

Forced Parcel Insertion Movement: fpim
Movement fpim starts by randomly selecting a parcel cr ∈ Cu and a tour v ∈ V .
Then two triplets tvi and tvj (0 ≤ i ≤ j < k) are randomly selected. Next, triplets
(or, {cr}, ∅) and (dr, ∅, {cr}) are respectively inserted after tvi and tvj in the right
order. Capacity and time window constraints are checked on v. If unsuccessful,
fpim is rejected. Figure 4(a) presents a possible outcome of the application of
fpim on the solution of Fig. 2. c0 is added to v1 by inserting both (2, {c0}, ∅) and
(4, ∅, {c0}) after tv1

0 in the right order.

Fill Movement: fm
Movement fm randomly selects a vehicle v = <tv0, ..., t

v
k> and one of its triplets

tvi = (pv
i , Cv,+

i , Cv,−
i ) with 0 < i < k. For every triplet tvj = (pv

j , Cv,+
j , Cv,−

j ) such
that 0 < j < i, let’s define Cu

fm = {cr ∈ Cu | or = pv
j and dr = pv

i }. Parcels of
Cu

fm are added in a random order to both Cv,+
j and Cv,−

i as long as capacity and
time window constraints are not broken. Ditto with triplets tvj where i < j < k,
parcels of Cu

fm = {cr ∈ Cu | or = pv
i and dr = pv

j } are inserted in Cv,+
i and

Cv,−
j . Figure 4(c) gives an example with the application of fm on the solution in

Fig. 4(a) where Cu = {c2, c3, c5}. v1 is selected as well as tv1
1 . The only triplet

tv1
j (1 < j ≤ 4) where Cu

fm �= ∅ is tv1
4 : Cu

fm = {c2}. Hence, c2 is added in Cv1,+
1

and Cv1,−
4 . No more parcel can be added because the tour is full with capacity

Kv1 = 2.

Parcel Suppression Movement: psm
Movement psm starts by randomly selecting a parcel cr ∈ Cd. Let be tvi =
(pv

i , Cv,+
i , Cv,−

i ) and tvj = (pv
j , Cv,+

j , Cv,−
j ) such that cr ∈ Cv,+

i and cr ∈ Cv,−
j .

Movement psm modifies both triplets by removing cr from Cv,+
i and Cv,−

j . cr is
added to Cu. psm finishes by removing unused places (Cv,−

i = Cv,+
i = ∅) and

unused tours. Figure 5(a) shows the result of the application of psm on parcel
c0 of the solution in Fig. 4(c). c0 is added to Cu and removed from tv1

1 and tv1
2 .

Because Cv1,−
2 = Cv1,+

2 are empty, tv1
2 is removed from v1.

Place Suppression Movement: lsm
Movement lsm starts by randomly selecting a tour v ∈ V + and one of its triplet
tvi = (pv

i , Cv,+
i , Cv,−

i ). All parcels from Cv,+
i and Cv,−

i are removed from tour v.
psm finishes by removing unused places (Cv,−

i = Cv,+
i = ∅) and unused tours.

Figure 5(b) shows the outcome of applying lsm to tour v1 of the solution in
Fig. 4(c). tv1

4 = (5, ∅, {c1, c2}) is removed and {c1, c2} are added to Cu. Triplet
tv1
3 is now empty and hence removed from v.
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Tour Suppression Movement: tsm
This movement is the most disruptive one. A tour v ∈ V + is chosen at random.
All parcels serviced by v are added to Cu while v is removed.

A short term tabu memory is used to avoid cycling over a set of solutions.
Parcels are set tabu when removed from a tour. Afterwards, the parcel can not
be re-inserted in the same tour for δ iterations.

3.3 Solution Updating and Classification

After a neighbour SP of S has been chosen by the first two steps of an iteration,
we update the current solution S. Four cases are possible: (a) f(SP ) < f(SB)
where SB is the best solution visited so far, (b) f(SP ) < f(S), (c) SP satisfies
the acceptance criterion and (d) SP does not satisfy the acceptance criterion.
When cases (a), (b) or (c) occur, S is replaced by SP . Furthermore, when case
(a) is met, SB is updated with SP . These cases are also used to choose the reward
σi (i ∈ {1, . . . , 4}) according to the quality of the solution in order to update the
weights of the movements WS and WI [10].

The acceptance criterion is used to accept some solutions (case (c)) which
degrade the fitness function and hence avoid getting stuck in local optima. Sim-
ulated annealing was chosen to manage the acceptance criterion (see Sect. 3.4).

3.4 Exploitation, Exploration and Learning Strategies

In this subsection, strategies to improve the performance of the ALNS are dis-
cussed including a simulated annealing strategy which accepts degraded solutions
as well as an epsilon greedy movement selection strategy.

Simulated Annealing (SA). Simulated annealing is used as an acceptance cri-
terion to allow degradation of the solutions. Indeed, in case (c) (see Sect. 3.3) the
solution SP is accepted with probability (see Eq. 3) where T is the temperature
and S the current solution.

p(SP ) = e− f(SP )−f(S)
T (3)

The temperature controls the range of solutions to be accepted with high proba-
bility. When T is high, worse solutions have higher chance of passing while when
T is lower, only solutions with close fitness scores have a real chance of going
through.

We tested two scenarios. The first one is the classical SA process where the
temperature decreases progressively using a multiplicative coefficient γSA. The
second one proceeds with restarts when the solution is not improved for RSA

step
iterations.

Epsilon Greedy. The epsilon greedy strategy is used to balance between explo-
ration and exploitation during movement selection. This new strategy takes in
consideration the weight distributions WI and WS . The movement with the
heaviest weight is chosen with probability (1 − ε) while with probability ε the
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roulette wheel is used with weight distributions WI and WS to select a move-
ment. During the execution of the algorithm, ε is slowly decreased by a constant
multiplicative coefficient γε and reinitialised if, for Rε

step iterations, there is no
improvement since the last restart. The algorithm including SA with restart and
epsilon-greedy strategy is named ALNSε

SA.

4 Computational Experiments

In this section, we describe the experiments we performed to test our algorithms.
A description of the instances is first given before talking about parameter tun-
ing. A comparison of the performance of our algorithms on both benchmarks
follows before comparing roulette wheel and epsilon greedy movement selection
strategies. Finally, we tested our ALNSε

SA on Li & Lim benchmark [3] and com-
pared with best reported solutions2.

4.1 Instances

Our algorithms were tested on two different sets of instances: Li & Lim bench-
mark instances and our own instances. Li and Lim’s instances are dedicated
to the PDPTW. This benchmark was the closest we found to our problem. A
simplification of SPP is necessary to be able to compare. The horizon is set to
H = 1 and places have exactly one time window. Parcels do not share their place
of origin and destination meaning the number of stores and pickup points equal
the number of parcels. Finally, we adjust the weights αi of the criteria in the
fitness function in Eq. 1 in order to deliver all parcels and prioritise the number
of vehicles used before minimising the travelled distance.

We also generated a benchmark PickOptBench to fully test our problem.
These 135 instances where generated to be as close as possible to the reality
faced by Smile Pickup. This was achieved by analysing the distribution of parcels
across working days J and places Ω. Time windows and vehicles data where
chosen based on existing ones. Here are the main characteristics for our set of
instances: H = 3, |D| ∈ {1, 2}, |E| ∈ {1, 2, 4}, |P | ∈ {5, 10, 20, 40}, kmax = 3,
|C| ∈ {60, 120, 240, 480, 960}, |V | ∈ [2, 46] and Kv ∈ [20, 30] (see Sect. 2).

The experimentations were conducted on an Intel Xeon CPU E5-2680 v4
for a maximum execution time of 30min each. For each algorithms, instances of
both benchmarks were run a total of 10 times. Fitness function coefficient (see
Sect. 1) used are: αveh = 1000, αnl = 500, αdist = 1, αpen = 1.

4.2 Parameter Tuning

To tune our algorithms and the different strategies implemented, we used the
Irace software [11]. Tuning was performed on PickOptBench instances. We pro-
ceeded step by step and started by tuning the ALNS with simulated annealing
without restart. After having fixed those parameters, we added other strategies
one by one and tuned them separately. Final parameters are presented in Table 1.
2 Benchmark available on http://www.sintef.no/pdptw.

http://www.sintef.no/pdptw
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Table 1. Best configurations after tuning with irace.

algorithm parameters tuned configuration

ALNS SA <ρ, σ1, σ2, σ3, σ4, γSA, δ> <3, 29, 10, 1, 1, 895, 7428>

restart <Trestart, R
sa
step> <6164, 9598>

epsilon greedy <γε, R
ε
step> <4.5 · 105, 105>

4.3 ALNS and Simulated Annealing Contributions

We first compare the following algorithms: VNS, LNS and ALNS with and with-
out SA and ALNSε

SA on the PickOptBench and Li & Lim’s benchmark. VNSSA
(resp. LNSSA, ALNSSA) is the VNS (resp. LNS, ALNS) algorithm with a simu-
lated annealing acceptance criterion.

Table 2. Algorithm comparison on both benchmarks.

PickOptBench
algorithms VNS VNSSA LNS LNSSA ALNS ALNSSA ALNSε

SA

average 12455 10088 11312 9984 12842 10088 10050
stdev 570 172 124 109 268 188 182
best average 19.26 20.00 30.37 41.48 10.37 30.37 36.30
best instance 24.67 17.63 29.33 28.44 12.89 33.26 36.52
Li & Lim Benchmark
algorithms VNS VNSSA LNS LNSSA ALNS ALNSSA ALNSε

SA

average 9343 14165 17167 11109 16345 8824 8676
stdev 533 612 735 527 438 236 217
best average 0.00 0.00 0.00 0.00 0.00 26.79 46.43
best instance 9.11 0.00 0.00 0.71 0.00 26.25 31.61

For each benchmark and algorithm, Table 2 provides the average and stan-
dard deviation of the average scores obtained from 10 runs on each instance. It
also computes the best instance and best average proportions, where the former
indicates the percentage of instances that achieved the best known fitness score,
and the latter indicates the percentage of instances where the average fitness
score over 10 runs is the best known average. Table 2 contains multiple pieces
of information. Firstly, it is apparent that SA significantly enhances the average
fitness, except for the VNS algorithm. Moreover, the best performing algorithms
are the ALNS with simulated annealing with ALNSε

SA being the most effective
among all. The only algorithm that outperforms them is LNSSA but only on the
PickOptbench. In fact it does extremely poorly on Li & Lim’s benchmark and
has a lesser proportion of best instance on both benchmarks. Finally, the high
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null proportions observed on the first five algorithms on the Li & Lim bench-
mark may indicate that PickOptBench lacks sufficient discriminatory power to
evaluate fully ALNSε

SA.

4.4 Combining ε-Greedy and Simulated Annealing Restart
Strategies

In this study, we compare the impact of using the roulette wheel and epsilon
greedy strategies on movement choice for the ALNSSA. We also investigate the
benefits of including a restart of the SA when updating the current solution.
The results of our experiments on both benchmarks are presented in Table 3.
The table includes columns for the best, worst, and average fitness of the solu-
tions returned during the 10 runs of each instance. The column “Best avg” shows
the proportion of best averages on the 191 instances compared to the best known
averages. The table indicates that the four strategies tested do not significantly
affect the best, average or worst fitness scores. However, the epsilon greedy strat-
egy with restart for ALNSε

SA produced the most best averages. To determine if
one strategy outperformes the others, we used a paired t-test as a criteria. The
starting hypothesis assumed that the two models had the same distribution of
results. Only epsilon greedy with and without restart had a p-value greater than
0.005 and showed no evidence to reject the hypothesis. This shows the restart
strategy did not significantly improved the epsilon greedy ALNSε

SA algorithm.

Table 3. Comparison of the different strategies on both benchmarks.

ALNSSA roulette wheel epsilon greedy
best average worst best avg best average worst best avg

SA no restart 9491 9718 10007 21.99% 9416 9660 9897 28.27%
restart 9439 9695 9973 27.23% 9419 9655 9905 37.17%

4.5 Comparison on Li and Lim Benchmark

The comparison of ALNSε
SA with the best known results found for Li & Lim

benchmark [3] are presented in this section. This benchmark is composed of 56
instances organised in six classes LC1, LC2, LR1, LR2, LRC1 and LRC2, for
which results are a pair of values: the number of vehicles used and the total
distance travelled. ALNSε

SA finds the best known solutions on more than 70%
for LC1, LC2, LR1 and LRC1. Nevertheless, only 10% are reached for LR2 and
LRC2. Table 4 illustrates a small part of these results, for classes LC1 and LRC2.
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Table 4. Comparison with best solutions on classes LC1 and LRC2.

LC1 best known ALNSε
SA LRC2 best known ALNSε

SA

|V +| distance |V +| distance |V +| distance |V +| distance

lc101 10 824.94 10 824.94 lrc201 4 1406.94 5 1497.47
lc102 10 824.94 10 824.94 lrc202 3 1374.27 5 1544.84
lc103 9 1035.35 10 826.44 lrc203 3 1089.07 4 1092.13
lc104 9 860.01 9 860.01 lrc204 3 818.66 3 818.66
lc105 10 824.94 10 824.94 lrc205 3 1302.2 5 1363.63
lc106 10 824.94 10 824.94 lrc206 3 1159.03 4 1210.00
lc107 10 824.94 10 824.94 lrc207 3 1062.05 4 1138.55
lc108 10 826.44 10 826.44 lrc208 3 852.76 4 937.57

5 Conclusion

This paper presented an ALNSε
SA algorithm for a pickup and delivery problem

applied to a real life case for Smile Pickup business (SPP). Additional constraints
considered are multiple time windows, heterogeneous fleet and multiple depots.
ALNSε

SA is an Adaptive Learning Neighbourhood Search algorithm, combining
two diversification processes. The first one is based on a simulated annealing
technique dedicated to updating the current solution. The second one is an
epsilon greedy strategy used to balance between exploration and exploitation
during the generation of neighbourhoods. ALNSε

SA was tested on PickOptBench
and Li&Lim benchmarks. Experimentation results show that such an approach
is very promising for solving SPP. In addition, many levers exist to improve the
performance of ALNSε

SA. For example, we plan to improve suppression move-
ments by integrating more relevant selection criteria than the random selection
of deleted items.
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Abstract. ALNS is a popular metaheuristic with renowned efficiency in
solving combinatorial optimisation problems. However, despite 16 years
of intensive research into ALNS, whether the embedded adaptive layer
can efficiently select operators to improve the incumbent remains an
open question. In this work, we formulate the choice of operators as a
Markov Decision Process, and propose a practical approach based on
Deep Reinforcement Learning and Graph Neural Networks. The results
show that our proposed method achieves better performance than the
classic ALNS adaptive layer due to the choice of operator being condi-
tioned on the current solution. We also discuss important considerations
such as the size of the operator portfolio and the impact of the choice
of operator scales. Notably, our approach can also save significant time
and labour costs for handcrafting problem-specific operator portfolios.

Keywords: Adaptive Large Neighbourhood Search · Markov Decision
Process · Deep Reinforcement Learning · Graph Neural Networks

1 Introduction

Adaptive large neighbourhood search (ALNS) is a metaheuristic introduced by
Ropke and Pisinger [18] to solve combinatorial optimisation problems (COPs)
that iteratively deconstructs and reconstructs a part of the solution in the search
for more promising solutions. This “relax-and-reoptimise” process is executed
via a pair of destroy and repair heuristics called operators. Based on the prin-
ciple of Shaw’s large neighbourhood search (LNS) [21], ALNS contains multiple
operators and an adaptive layer that iteratively selects and applies different oper-
ator pairs from a predefined operator portfolio. This is typically an embedded
Roulette Wheel (RW) algorithm that selects operators in a probabilistic fashion.
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B. Dorronsoro et al. (Eds.): OLA 2023, CCIS 1824, pp. 200–212, 2023.
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ALNS is renowned for its efficiency in finding good-quality solutions within
reasonable computational time. However, despite the wide use of ALNS for solv-
ing various COPs, the ways in which each ALNS component contributes to
its general performance is not well understood. A recent ALNS state-of-the-art
review [12] indicated that only 2 out of 252 papers go beyond the straightforward
implementation and concentrate on component-based analysis, including [19]
which focuses on the selection of the ALNS acceptance criterion, and [25] on the
effectiveness of the ALNS adaptive layer for operator selection.

We summarise two main deficiencies that exist in the current ALNS frame-
work. Firstly, studies have shown that the adaptive layer has limited capability to
dynamically select the best operators, despite being engineered to do so. Turkeš
et al. [25] reported a mere 0.14% average improvement brought by the adaptive
layer from the analysis of 25 ALNS implementations, indicating a need for a more
efficient operator selection mechanism that reflects the contribution of individual
operators accurately. Secondly, operator portfolio design for a particular problem
can require considerable manual evaluation [12]. The choice of portfolio size is
also delicate: too few operators might not enable the search to visit unexplored
neighbourhoods, but a plethora of operators can introduce noise to the adaptive
layer. To mitigate these deficiencies, we make the following contributions:

• We formulate the choice of a sequence of operators as a Markov Decision Pro-
cess (MDP), in which an agent receives a reward proportional to the improve-
ment in the solution. We draw a correspondence between value-based Rein-
forcement Learning (RL) methods used to solve MDPs, such as Q-learning,
and the classic RW update used in ALNS. A key insight is that RL estimates
are conditioned on the current solution, while RW updates are independent of
it, which indicates the potential to learn a stronger operator selector through
the RL framework;

• We propose a practical approach based on Deep RL for learning to select
operators. Furthermore, we highlight the potential of Graph Neural Networks
(GNNs) for generalizing to larger problem instances than seen during training;

• We carry out an extensive evaluation that includes a large selection of rep-
resentative operators from the literature. Our results demonstrate that the
proposed approach performs significantly better than the RW mechanism. We
also analyse the impact of important practical considerations such as portfolio
sizes and destroy operator scales on the optimality of the solutions.

2 Literature Review

In the last decade, training Machine Learning (ML) methods to solve highly
complex COPs has become increasingly prominent [3], especially for the Vehicle
Routing Problem (VRP) and its variants [1]. Several pioneering studies applied
RL to directly construct solutions for routing-related problems. Bello et al. [2]
used policy gradient algorithms to tackle the Travelling Salesperson Problem
(TSP). Nazari et al. [14] proposed an end-to-end framework that outputs solu-
tions directly from the routing-based problem instances. Moreover, Kool et al.



202 S.-N. Johnn et al.

[10] proposed a construction heuristic that consists of an attention-based decoder
trained with RL to regressively build solutions for the TSP and its variants.

ML can also be applied in many cases to enhance existing solution
approaches, especially in the field of metaheuristics [24]. The reader is referred
to the work of Karimi-Mamaghan et al. [8] for a comprehensive review on the
integration of ML and metaheuristics to tackle COPs.

Several recent studies focused on integrating ML with classic LNS, which can
be viewed as a simplified version of the ALNS metaheuristic without the adap-
tive layer for operator selection. As the first paper on this topic, Hottung and
Tierney [7] proposed 2 generalised random-based destroy operators and a single
repair operator with automated learning based on a deep neural network with an
attention mechanism. Their work was the first to consider the application of RL
to LNS for solving a VRP, and achieved solutions of better quality than classic
optimisation approaches. Nevertheless, their proposed learning mechanism only
focuses on repairing incomplete solutions during the repair phase. In another
work, Falkner et al. [6] integrated a pre-trained neural construction heuristic as
the repair operator in the LNS framework to solve the VRP with time windows.
The destroy procedures remain handcrafted and are classified into 2 groups with-
out any learning involved. Moreover, Oberweger et al. [15] enhanced the LNS
framework with an ML-guided destroy operator to solve a staff rostering prob-
lem. For the reconstruction phase, the authors developed a mixed-integer linear
program as a repair method. Lastly, Syed et al. [23] proposed a neural network
in an LNS setting to solve a vehicle ride-hailing problem. However, it uses super-
vised learning, which requires a large training dataset and, furthermore, can only
perform as well as the algorithm used for its generation.

A very recent concurrent work by Reijnen et al. [17] also applies Deep RL
to improve ALNS operator selection. It considers a state space that only uses
information about the search status (such as the search step), ignoring informa-
tion about the current solution. In contrast to this, the design of our approach
focuses on isolating the problem of operator selection from the search process,
and proposing a learning mechanism that is conditioned on the decision space
characteristics of the current solution. Furthermore, a fixed operator portfolio
consisting of 4 destroy and 3 repair operators is used in their evaluation. In
contrast, we propose a more robust operator selection system compatible with
various operator portfolios of different sizes and train the system independently
prior to integration with ALNS. Our approach also proposes the use of GNNs
for scaling to large instances.

3 Methodology

3.1 Classic ALNS Algorithm

In ALNS [18], an initial solution is relaxed and re-optimised through iteratively
employing a pair comprising a destroy operator o−

i ∈ D and a repair operator
o+i ∈ R to form the new incumbent. The destroy scale d, which is randomly
drawn or set as a hyper-parameter, describes the proportion of the solution
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that is destructed and reconstructed. In ALNS, the search can be divided into
sequential segments, during which an initial score ψi = 0 is assigned to each
operator (indexed by i) at the beginning and is increased by δ each time a new
incumbent is formed using an operator pair that includes i. Depending on the
incumbent quality, the score is increased by δ1 if the newly-found incumbent is
a global best solution, δ2 for a local best one, and δ3 for an accepted yet worse
local solution, where δ1 > δ2 > δ3. At the end of each segment, the cumulated
score for each operator i and the number of times Ni it was selected are used to
compute a weight wi that estimates the operator’s capability to find promising
solutions. As shown in Eq. (1), for each operator employed in the current segment
K, its weight for the next segment K + 1 is updated using a weighted average
of the historical weight wi,K and its average performance in segment K.

wi,K+1 =

{
(1 − αRW) · wi,K + αRW · ψi

Ni
if ψi > 0,

wi,K if ψi = 0,
(1)

For each iteration within the segment, a pair of operators is selected using the RW
selection algorithm with probabilities w−

i,K

/∑
j∈D w−

j,K and w+
i,K

/∑
j∈R w+

j,K ,

where w
−/+
i,K is the weight associated with each operator i in any given segment

K. Initially, all operators are assigned the same score and therefore have the
same selection probability. Once a new solution is formed, an ALNS acceptance
mechanism, typically used in Simulated Annealing (SA), determines whether the
newly-formed solution is accepted as the new incumbent to start the next itera-
tion. The probabilistic acceptance mechanism helps to diversify the search and
reduce the chance of becoming trapped in a non-promising local neighbourhood.
The process continues until certain stopping criteria are met.

3.2 Operator Selection as a Markov Decision Process

Blueprint of our Approach. Our learning-based approach to improve the
operator selection in ALNS consists, at a high level, of the following two steps.
Firstly, we aim to isolate operator choice from the considerations of the SA
process in ALNS, which introduces additional noise for navigating the solution
space that may obscure the operators’ contributions. To achieve this, we formu-
late operator selection for the COP as a standalone Markov Decision Process
(MDP), in which an agent is given a limited budget of operators, and must learn
to select those that lead to the best solutions. Secondly, the learned model is
integrated into the ALNS loop and used to select operators in the SA process.

MDP Fundamentals. An MDP is a tuple (S,A, P,R). In each state s ∈ S, the
agent selects an action a ∈ A(s) out of a set of valid actions, receiving a reward r
according to a reward function R(s, a). Afterwards, the agent transitions to a new
state s′ that depends on P (s′|s, a), which is the transition function that governs
the environment dynamics. Interactions happen in episodes, each of which is
a finite sequence of (s, a, r, s′) pairs, until a terminal state is reached. Actions
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are selected by the agent through the policy π (a|s) that completely specifies its
behaviour. The state-action value function Q(s, a) is the expected reward the
agent receives by picking action a at a given state s, then following π.

MDP Formulation. We are given an undirected graph G = (V,E) defined by
the given COP and a feature matrix X in which each row contains information
about the node such as coordinates, demand, and distance. We formulate the
MDP as below. A visualisation of an episode is shown in Fig. 1.

• States S: each state St is a tuple (G,X, Jt, Ct, ϕ, bt), wherein the graph G
and feature matrix X remain static. Jt is the set of tours that start and end
at the depot, forming the solution at time t. The removal list Ct = V \Jt

holds all the d nodes temporarily removed from the solution. ϕ indicates the
phase: whether a destroy or repair operator is eligible to be applied. Finally,
bt indicates the operator pair budget available to the agent.

• Actions A involve the selection of an operator ot, with those available defined
as D if ϕ = 1 (i.e., we are in the destroy phase), and R otherwise.

• Transitions P apply the selected operator ot to the current solution. Applying
a destroy operator removes d nodes from Jt and places them in the removal
list Ct. Using a repair operator reinserts the nodes from Ct into Jt, leaving Ct

empty and the solution Jt complete, and decreases the operator pair budget by
1. Transitions are stochastic due to the inherent randomness of the operators.

• Rewards R are provided once the operator budget is exhausted and the
improvement in solution quality can be assessed via an objective function
F . Concretely, R(St, At) = F (St) − F (S0) if bt = 0, and 0 otherwise.

Fig. 1. Illustration of an MDP episode with budget b = 3 and destroy scale d = 3.
The action spaces contain 3 destroy operators D = {Random, Greedy, Related} and 2
repairs R = {Greedy, 2Regret}. The agent begins at state S0 with C0 = ∅ and routes
J0 = {[1], [2, 4], [3, 5, 8, 6], [7, 9]}, selecting operators o−0 = Random and o+1 = Greedy
to reach S2. The episode continues until the budget is exhausted and the terminal state
S5 with routes J5 = {[1, 2, 3], [4, 5, 6], [7, 8, 9]} is reached. Finally, it receives a reward
proportional to the improvement in solution quality.

3.3 Learning an Operator Selection Policy

Q-Learning and Relationship to Roulette Wheel Update. Q-learning [27]
is a model-free RL approach for solving MDPs that relies on estimating the



GRAPH RL for Operator Selection in ALNS 205

state-action value function Q(s, a), from which a policy π can be derived by
acting greedily with respect to it. The agent’s interactions with the environment
generate (s, a, r, s′) tuples, and its estimates are updated according to the rule

Q(s, a) ← (1 − αRL) · Q(s, a) + αRL ·
(

r + γ · max
a′∈A(s′)

Q(s′, a′)
)

(2)

where αRL is the learning rate, and γ trades immediate versus long-term rewards.
Written in this form, comparing the Q-learning update in Eq. (2) and the classic
RW update in Eq. (1), we notice that both use a weighted factor to balance two
terms representing the historical and current estimates of performance. The key
difference is that the Q-learning update is conditioned on the state and hence
captures more information that may be used to select a relevant operator, while
the RW update simply averages the gains of the operators irrespective of the
context in which they were applied. Therefore, RW can be interpreted as a very
rough approximation of the Q-learning update and, intuitively, using information
about the state can allow us to obtain operator selection policies that perform
at least as well. This means that Q-learning requires higher sample complexity.
However, this was not an issue in practice, as we found a relatively low number
of training steps suffices to reach a good policy.

Function Approximation and Graph Neural Networks. In problems with
large state spaces, neural networks are commonly used to perform function
approximation of the Q(s, a) function. This helps to generalize between states
that, while not being identical, share common characteristics and hence may
lead to similar future rewards. The Deep Q-Network (DQN) algorithm [13],
which uses this principle together with replay buffers and target networks, has
been used for successfully approaching a variety of decision-making tasks.

In this work, we consider two possible neural network architectures. Firstly,
we use a Multi-Layer Perceptron (MLP) formed of layers that apply a lin-
ear transformation of the inputs followed by a non-linear activation function.
Despite their simplicity, MLPs are known to be universal function approxima-
tors. Secondly, we consider Graph Neural Network (GNN) architectures [20],
that are explicitly designed to operate on graph-structured data. Such architec-
tures compute an embedding for each node in the graph by iteratively aggre-
gating the features of neighbouring nodes, resulting in node embeddings that
encode both structural and feature-based information. A desirable characteristic
of many GNN architectures is that their parametrization can be independent of
the size of the input graph. Hence, they enable learning an approximation of the
state-action value function on small instances and applying it directly on large
instances – an appealing approach for COPs [3].

Integrating the Model with ALNS. As mentioned above, the resulting
learned policy acts greedily with respect to the learned state-action value func-
tion, always choosing the action with the highest expected cumulative reward.
This might prove problematic once integrated within ALNS, given that, in prin-
ciple, greediness may cause the search to become trapped in local optima. To
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instead obtain a probabilistic policy, we use a softmax function as shown in
Eq. (3), in which the temperature τ allows adjusting the level of greediness of
the policy. Specifically, probabilities are uniform when τ → ∞, whereas the
action with the highest expected reward has probability approaching 1 when
τ → 0.

πτ (a|s) =
exp(Q(s, a)/τ)∑

a′∈A(s) exp(Q(s, a′)/τ)
(3)

3.4 Operators for ALNS

In the literature, operators are carefully tailored to fit different problem struc-
tures and features. Despite the large variety of operator designs, the mechanisms
behind them are surprisingly similar to the first version of ALNS [18]. We con-
ducted a thorough analysis of operators in the literature and have identified the
following 3 classes: random-based destroy that randomly removes d nodes accord-
ing to specific availability criteria, greedy-based destroy that removes the top-
ranking d nodes with respect to a particular measure, and related-based destroy
as an extension of Shaw’s destroy [21] that removes the most similar d nodes
according to a certain proximity value. Variations can include perturbations or
using problem-specific features including distance, time, cost, workload, demand
level, inventory level, removal gain, historical information, etc.

Barring a few random-based operators, almost all current repair operator
designs are related to greedy-based mechanisms that insert each node at the posi-
tion with the smallest cost. Variations can include a pre-sorting that changes the
order of node insertions according to certain criteria, including global minimum
insertion or smallest regret value. Others can have a noise factor that perturbs
the insertion cost values, or use restrictions based on historical information.

4 Experiments

4.1 Experimental Setup

Problem Settings. In this work, we consider the Capacitated Vehicle Routing
Problem (CVRP) with a single depot, a group of customer nodes and a number of
homogeneous vehicles each visiting an individual group of customer nodes. The
capacity restriction applies to the total carrying load of vehicles. Each customer
node can only be visited once. We use the R, C and RC instances (random,
clustered, and mixed random-clustered nodes) of the Solomon dataset [22] each
containing a depot and 100 customers. We assign the vehicle capacity to be 200,
and adjust it proportionally if scaling down the instance to fewer customers.

For the portfolio design, we identified 12 popular destroy operators from the
ALNS literature that span the representative categories described in Sect. 3.4:
the random-based variations random node destroy [18] and random route destroy
[4], the greedy-based variations worst-node removal [18], neighbourhood removal
[4] and greedy route destroy [9], and the related-based variations proximity
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destroy [4], cluster destroy [16], node neighbourhood destroy [4], zone destroy
[5], route neighbourhood destroy [5], pair destroy [11] and historical node-pair
removal [16]. The repair operator portfolio is comparatively smaller. We include
the group of classic greedy repair [18] and k-regret repair [16] for k = 2.

Operator Selection Approaches. The proposed DQN agent is compared to
the following approaches. As a baseline, we consider a uniform Random sampling
(RAN) of operators. We also compare against the classic RW (CRW), which can
only be used within ALNS since it requires information about the SA outcomes
and search progress. To make the RW mechanism applicable in the MDP setting,
we make the following adaptations to obtain a method we call Learned RW
(LRW). Firstly, in Eq. (1), we replace the manually-defined operator scores ψ
computed from the discretised δ with the continuous objective value F . We
also adjust the reward feedback frequency from every operator pair in RW to
every episode in the MDP. Preliminary experimental results suggested that the
performance difference between the LRW and CRW is within 2% when applied
in ALNS without any prior training.

Training and Evaluation Methodology. For each instance, we generate 3
distinct sets J train,J validate,J test of 128 randomly initialized tours each. J train

is used by DQN and LRW for model training. J validate is used for hyperpa-
rameter tuning and model selection. Finally, J test is used to perform the final
evaluation and obtain the reported results. There are two evaluation “modes”:
MDP-compatible agents can be evaluated in a standalone fashion given an oper-
ator budget (CRW is excluded), while all operators (including CRW) can be
evaluated on the end ALNS task. Training and evaluation is repeated across 10
random seeds for all agents, which are used to compute confidence intervals.

DQN Architectures and Inputs. For the DQN, we consider MLP and GNN
representations. The MLP has 256 units in the first hidden layer, with the sub-
sequent layers having half the size. As a GNN, we opt for the GAT [26], which
allows for flexible aggregation of neighbour features. We use 3 layers and a dimen-
sion of node embeddings equal to 32. Both use a learning rate of αRL = 0.0005
and are trained for 15 · 103 and 25 · 103 steps respectively. The DQN exploration
rate ε is linearly decayed from 1 to 0.1 in the first 10% of steps, then remains
fixed. The replay buffer size is equal to 20% of the number of steps. To obtain
the inputs, we construct vectors x̃i

t that concatenate the static instance-specific
features xi with time-dependant relevant information such as whether the node i
is routed in a tour and the number of tours in Jt. For the MLP, we stack the vec-
tors in a matrix X̃t as inputs, while for the GNN the node features are provided
directly. Unless otherwise stated, we use a softmax temperature τ = 0.01.

4.2 Experimental Results

Evaluating Agents within MDP Framework. In this experiment, we com-
pare the cumulative rewards gained by the DQN with an MLP representation,
LRW and RAN agents on the test set J test after undergoing training. To make
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Table 1. MDP evaluation results: cumulative rewards gained by the DQN, RAN and
LRW agents with destroy portfolios D of different sizes. Higher is better.

|D| C-instance R-instance RC-instance

DQN RAN LRW DQN RAN LRW DQN RAN LRW

2 232.2 ± 2.9 252.2±3.6 252.1 ± 4.5 216.3 ± 5 222.9±3.7 222.8 ± 4.4 240.2 ± 7.5 259.4±3.4 258.9 ± 5.6

3 228.6 ± 9.0 221.7 ± 3.5 245.9±6.0 212.9 ± 5.6 208.4 ± 4.7 215.1±3.8 236.1±6.1 224.0 ± 3.4 230.8 ± 7.6

4 232.5 ± 5.1 221.2 ± 6.4 240.3±5.8 220.2±3.1 206.9 ± 6.0 216.2 ± 4.1 241.2±5.8 222.4 ± 5.1 239.5 ± 4.8

5 328.8±2.4 258.5 ± 5.5 293.3 ± 8.0 330.9±4.2 246.8 ± 3.7 273.9 ± 6.1 331.1±2.9 260.9 ± 4.1 272.5 ± 7.6

6 329.9±4.2 231.7 ± 5.8 284.9 ± 8.9 329.5±3.3 217.5 ± 5.5 272.5 ± 14.9 329.5±2.6 239.5 ± 5.4 261.6 ± 5.1

7 328.5±2.8 246.7 ± 4.4 282.4 ± 11.0 330.5±3.8 236.1 ± 4.8 253.7 ± 8.1 331.7±2.9 247.6 ± 3.8 264.6 ± 6.4

8 329.5±3.9 235.6 ± 5.2 281.6 ± 10.6 330.9±3.6 220.4 ± 2.0 264.5 ± 7.0 333.7±3.3 243.7 ± 4.5 254.7 ± 4.8

9 330.7±3.1 225.8 ± 5.7 274.6 ± 12.2 328.9±4.6 212.6 ± 3.8 260.3 ± 5.7 332.4±3.7 226.7 ± 7.0 250.3 ± 8.4

10 330.2±4.5 224.4 ± 4.7 276.2 ± 9.3 330.3±3.3 206.7 ± 4.5 258.6 ± 7.0 331.0±2.6 224.3 ± 5.8 252.6 ± 15.3

11 330.3±2.9 222.0 ± 4.8 275.9 ± 6.4 327.2±8.0 210.4 ± 4.6 259.1 ± 9.0 326.1±15.2 223.3 ± 6.6 245.7 ± 8.3

12 361.8±0.2 246.9 ± 5.5 323.7 ± 7.0 404.2±0.6 246.8 ± 7.0 313.1 ± 17.7 354.9±4.1 258.5 ± 4.1 283.9 ± 13.0

mean 305.7±3.7 235.2 ± 5.0 275.5 ± 8.2 305.6±4.6 221.4 ± 4.6 255.4 ± 8.0 308.0±5.2 239.1 ± 4.8 255.9 ± 7.9

the training and evaluation processes less computationally intensive, we use the
first 20 customer nodes and the depot from the Solomon R, C and RC instances.
We define operator portfolios of different sizes ranging from 2 to 12 by sequen-
tially adding the 12 destroy operators introduced above, together with the 2
repair operators. The destroy scale is fixed as d = 4 and the operator pair bud-
get is b = 10, yielding MDP episodes of length 20.

Table 1 shows that the DQN agent is able to outperform competing methods
as the size of D grows. When the destroy portfolio is smaller than 3, the DQN
agent performs slightly worse due to the limited action space in which the impact
of the selected actions is difficult to distinguish from chance. The DQN agent
also yields smaller confidence intervals and hence a steadier performance. As
expected, the RAN agent fails to show a clear increase in rewards as the portfolio
size grows. The LRW agent, although showing a certain improvement, performs
significantly worse than the DQN. Two performance jumps in the DQN and
LRW agents were observed: from size 4 to 5 and 11 to 12 for all 3 instances, the
reason for which is the inclusion of a more efficient operator in the portfolio that
suits the behaviour of a greedy-based agent.

ALNS Evaluation. Using the same experimental setup as above, we apply the
operator selection approaches within ALNS with a fixed number of iterations.
As shown in Table 2, the DQN agent yields the lowest objective values (best
results) when used to perform operator selection in ALNS for portfolios larger
than 5. Interestingly, LRW is able to perform substantially better than CRW due
to having undergone training on a different dataset of solutions prior to being
applied. Instead, the performance of CRW is indistinguishable from RAN in the
setting across all the 3 instances.

Scaling to Larger Instances with GNN. In this experiment, we train the
DQN with a GNN representation and the LRW on instances of size 20, then
evaluate them in an MDP setting on instances of size up to 100. The operator
budget is kept the same while the destroy scale is increased proportionally to the
size, i.e., d = n/5. We use the largest destroy portfolio with |D| = 12. As shown
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Table 2. Evaluating operator selection approaches in ALNS with destroy portfolios D
of different sizes. Values represent the average and best objective values found within
a fixed number of iterations, using each approach to select operators. Lower is better.

C-inst |D| 2 3 4 5 6 7 8 9 10 11 12 mean

DQN avg 316.28 314.96 311.18 216.33 213.03 216.34 215.12 215.75 214.19 213.09 188.11 239.49

min 244.64 245.28 240.32 154.06 149.29 153.05 151.87 153.04 150.7 149.99 146.71 176.27

LRW avg 293.84 299.56 302.66 248.31 259.06 261.17 266.59 264.65 265.62 264.78 224.49 268.25

min 209.8 211.62 207.6 172.97 180.96 178.07 187.71 183.88 182.07 185.3 160.95 187.36

RAN avg 293.5 313.98 315.05 284.31 299.86 294.57 299.64 303.58 312 305.74 286.08 300.76

min 209.95 219.79 212.33 194.6 206.28 199.23 203.63 208.35 212.2 213.38 197.54 207.03

CRW avg 293.94 314.56 314.28 285.53 299.51 295.77 302.67 307.64 311.32 308.53 286.75 301.86

min 210.27 222.46 213.42 197.82 208.25 198.37 206.6 210.7 213.69 213.38 194.63 208.14

R-inst |D| 2 3 4 5 6 7 8 9 10 11 12 mean

DQN avg 330.37 334.09 331.24 217.25 215.27 215.41 215.89 216.17 215.91 221.71 159.29 242.96

min 273.81 266.66 272.16 144.97 143.56 144.11 144.19 144.58 144.49 153.64 108.07 176.39

LRW avg 322.22 329.14 327.18 269.97 265.26 286.74 281.67 286.63 284.94 274.17 238.46 287.85

min 246.19 254.83 243.38 187.33 183.51 199.16 196.51 201.83 196.82 189.54 157.33 205.13

RAN avg 323.25 337.03 337.68 298.76 317.84 310.1 321.11 321.76 327.19 321.3 294.45 319.13

min 253.64 257.11 250.05 211.7 235.07 218.61 234.45 231.79 234.31 234.38 206.54 233.42

CRW avg 322.71 333.59 336.81 298.38 320.5 308.7 318.42 321.34 327.17 324.96 296.05 318.97

min 252.39 255.69 250.28 211.47 235.15 215.55 230.06 232.49 235.87 233.28 208.18 232.76

RC-inst |D| 2 3 4 5 6 7 8 9 10 11 12 mean

DQN avg 306.06 311.02 313.78 216.84 218.75 218.16 217.66 217.48 218.12 224.56 201.81 242.2

min 228.16 235.04 240.93 151.89 154.74 153.71 152.85 152.06 153.79 161.32 159.09 176.69

LRW avg 294.94 314.93 310.02 278.18 282.01 286.05 292.6 293.97 293.44 292.15 261.08 290.85

min 205.05 216.86 209.63 187.78 189.92 190.45 197.61 196.75 197.62 196.21 172.7 196.42

RAN avg 297.2 319.87 317.7 288.95 298.41 294.26 300.61 308.9 315.42 305.53 283.71 302.78

min 207.17 222.85 209.95 193.42 198.33 195.88 200.04 207.6 210.9 204.25 185.29 203.24

CRW avg 294.94 319.07 320.76 289.51 299.99 296.09 299.98 310.67 315.4 309.69 285.73 303.8

min 205.05 221.27 213.01 195.39 200.23 196.03 202.8 207.05 211.47 205.59 186.24 204.01
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Fig. 2. Top: cumulative rewards for the DQN, LRW and RAN agents with GNN rep-
resentation. Bottom: performance as a function of destroy scales. Higher is better.
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in the top half of Fig. 2, the DQN+GNN agent outperforms the other methods,
suggesting the strong generalization of the learned operator selection policies.
A larger confidence interval is observed for the C instance, due to 1 model seed
that generalizes poorly on J test despite good performance on J validate.

Impact of Destroy Scale. Furthermore, we analyse the impact of the destroy
scale on the agents’ performances in the MDP setting, with a smaller scale
implying the removal and reinsertion of a smaller proportion of nodes. We vary
the destroy scale d ∈ [2, 4, 6, 8, 10] with destroy portfolio |D| = 12 on 20 nodes.
Results are shown in the bottom half of Fig. 2. The gap between the DQN and
other methods is largest for the smallest scale, suggesting that a careful selection
of operators to remove the most expensive nodes contributes more significantly
to better solution quality. In contrast, a larger destroy scale requires building
up the solution from the ground, stressing the operators’ reconstruction ability
rather than the operator selection policy. When increasing the destroy scale, the
cumulative rewards gained by different agents all converge to a similar level.
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DQN temperature τ

100

150
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300

min(F )
avg(F )

Fig. 3. Values of F when
varying DQN temperature in
ALNS. Lower is better.

Impact of DQN Temperature. As discussed in
Sect. 3.3, the temperature parameter τ controls the
greediness of the resulting policy. Figure 3 shows the
minimum and mean F obtained with ALNS as a
function of τ ∈ {10−2, 10−1, 100, 101, 102}, averaged
over the 3 instance sets. Even though a probabilis-
tic policy may be desirable in some ALNS scenar-
ios, we find that performance generally degrades as
the temperature increases. This suggests that, in
the settings tested, the inherent stochasticity of the
operators is sufficient to explore the search space
without the need to combine different choices.

5 Conclusions and Future Research

In this work, we have proposed an operator selection mechanism based on Deep
Reinforcement Learning to enhance the performance of the ALNS metaheuristic.
A key insight and contribution is the proposal of an operator selector that is
conditioned on the decision space characteristics of the current solution. We have
demonstrated its ability to outperform the classic Roulette Wheel and random
operator selection, as well as the potential of using Graph Neural Networks to
scale the model to large problem instances. Our results also highlight the impact
of the operator portfolio size and the destroy scale on performance. Plans for
future work involve applications to other combinatorial optimization problems.
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Abstract. Finding the optimal process parameters for an adhesive
bonding process is challenging: the optimization is inherently multi-
objective (aiming to maximize break strength while minimizing cost),
constrained (the process should not result in any visual damage to the
materials, and stress tests should not result in adhesive failures), and
uncertain (measuring the same process parameters several times lead
to different break strength). Real-life physical experiments in the lab
are expensive to perform (∼6 h of experimentation and subsequent pro-
duction costs); traditional evolutionary approaches are then ill-suited to
solve the problem, due to the prohibitive amount of experiments required
for evaluation. In this research, we successfully applied specific machine
learning techniques (Gaussian Process Regression and Logistic Regres-
sion) to emulate the objective and constraint functions based on a lim-
ited amount of experimental data. The techniques are embedded in a
Bayesian optimization algorithm, which succeeds in detecting Pareto-
optimal process settings in a highly efficient way (i.e., requiring a limited
number of experiments).

Keywords: multi-objective optimization · constrained optimization ·
machine learning · adhesive bonding

1 Introduction

Adhesive bonding is the engineering process of joining two surfaces together by
a non-metallic substance [5]. This process occurs frequently in many engineering
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
B. Dorronsoro et al. (Eds.): OLA 2023, CCIS 1824, pp. 213–223, 2023.
https://doi.org/10.1007/978-3-031-34020-8_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-34020-8_16&domain=pdf
http://orcid.org/0000-0003-0053-4902
http://orcid.org/0000-0003-2759-3726
http://orcid.org/0000-0002-5145-872X
http://orcid.org/0000-0002-7607-3025
http://orcid.org/0000-0001-6769-1932
http://orcid.org/0000-0002-4170-5571
https://doi.org/10.1007/978-3-031-34020-8_16


214 A. Morales-Hernández et al.

design contexts, such as the automotive industry [8] and aeronautics [9]. It is a
complex process, in which several physical and chemical processes occur simul-
taneously [18], with outcomes that are influenced by many factors (e.g., environ-
mental conditions, material specifications, and specific process settings). Process
optimization is therefore traditionally performed by experts, based on acquired
knowledge and extensive experimental campaigns [7]. Physical experiments are
required in reality to detect the optimal settings for each specific adhesive pro-
cess. These tend to be costly in terms of time and manual labor. Data from one
industrial bonding process cannot be used to optimize another process, as not
only materials and adhesives may differ but also production process specifica-
tions. Moreover, the experimental approach may easily yield suboptimal results
with respect to other relevant performance metrics, such as production costs.

Evolutionary multi-objective algorithms are applicable to black-box opti-
mization problems, and have proven to be effective derivative-free optimizers
[24]. However, evolutionary algorithms require many function evaluations, which
make them ill-suited for optimizing design problems that require expensive (often
experimental) data (in terms of time or costs involved). Even when an emula-
tor or surrogate model is used to mitigate this issue [3,4], the search process in
this type of algorithm remains largely random, with convergence speeds that are
sensitive to the choice of user-defined (and often problem-specific) parameters.
Moreover, most machine learning techniques that might be used as emulators
(including neural networks) require lots of data to be trained, which again causes
a problem when function evaluations are expensive. Finally, the measurement
of the objectives is affected by noise and this is often neglected during the opti-
mization, leading to overly optimistic solutions.

In this article, we illustrate the power of Bayesian optimization (BO)
approaches for the multi-objective optimization of a novel adhesive bonding pro-
cess. The main contributions of this paper include:

– The use of a Gaussian Process Regression (GPR) surrogate that explicitly
accounts for the heterogeneous noise existing in the measurements of the
break strength.

– The use of an acquisition function to sequentially (one-by-one) select new
process parameter configurations to be evaluated. This acquisition function
uses information from a GPR model and a Logistic Regression classification
model (to predict the feasibility of bonding process configurations).

– Results for a “cheap simulation model” show that the BO method is able
to obtain better configurations than NSGA-II-based algorithms (w.r.t. aver-
age hypervolume and IGD+), with a small number of expensive evaluations
required. Since real experimentation of a single process configuration can take
up to 6 h, our approach is particularly relevant for settings where the analyst
can only afford a very limited number of observations. As the model is gen-
eral, it may constitute a powerful tool also in other constrained engineering
design settings.

The remainder of this article is organized as follows. Section 2 discusses the
main concepts in multi-objective optimization and introduces the bonding pro-
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cess problem under study. Section 3 details the main concepts of BO, and the
proposed algorithms. Section 4 discusses the design of experiments, while Sect. 5
compares the results with evolutionary algorithms. Section 6 summarizes the
findings and highlights some future research directions.

2 Multi-objective Adhesive Bonding Process Problem

The plasma treatment phase of the bonding process of two PolyPhenylene Sulfide
(PPS) substrates (using Araldite 2011 adhesive) is our focus. The plasma treat-
ment chemically modifies the top surface layer of the PPS substrate so that the
surface energy increases, which impacts the adhesion strength (i.e., the strength
of the connection between the adhesive and the substrate). In this process, the
adhesion strength is very sensitive to the configuration of six parameters (see
Sect. 4) that need to be specified properly.

Using lab experiments, stress tests can be performed to check the outcomes
of samples that have been treated with any particular plasma parameter config-
uration: the lap shear strength of the sample (MPa), the failure mode (adhesive,
cohesive or substrate failure), the production cost of the sample (in euros), and
the potential occurrence of visual damage (the substrates will burn when heated
above their maximum allowable temperature during plasma treatment).

The goal of the optimization is to set the plasma process parameters in such
a way that (1) the tensile strength (TS) is maximized, (2) the production cost
(PC) is minimized, and (3) adhesive failures and visual damage are avoided.
Equation 1 defines this optimization problem:

min [−TS(x), PC(x)]

s.t. 0.5 − Pf(x) ≤ 0
(1)

where the notation Pf(x) refers to the probability that a process configuration
x is feasible (classified as such using the most common output observed over
the replications). As the performance evaluation is expensive, the optimization
algorithm should be able to detect (nearly) Pareto-optimal solutions within a
small number of experiments required. We just cannot afford to collect large
amounts of experimental data.

3 Bayesian Optimization: Main Concepts and Proposed
Algorithm

Gaussian Process Regression (GPR) (also referred to as kriging, [21]) is com-
monly used to model an (unknown) target function. The function value predic-
tion at an unsampled point x is obtained through the conditional probability
P (f(x)|X, Y) that represents how likely the response f(x) is, given that we
observed the target function at n input locations x(i), i = 1, . . . , n (contained in
matrix X), yielding function values y(i), i = 1, . . . , n (contained in matrix Y)
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that may or may not be affected by noise. Ankenman et al. [1] provide a GPR
model (referred to as stochastic kriging) that takes into account the heteroge-
neous noise observed in the data, and models the observed response value in the
r -th replication at design point x(i) as:

yr(x
(i)

) = m(x
(i)

) + M(x
(i)

) + εr(x
(i)

) (2)

where m(·) represents the mean of the process, M(·) is a realization of a Gaussian
random field with mean zero (also referred to as the extrinsic uncertainty [1]),
and εr(·) is the intrinsic uncertainty observed in replication r. Popular choices
for m(·) are known linear or nonlinear functions of x, an unknown constant to
be estimated, or zero. M(·) can be seen as a function, randomly sampled from a
space of functions that, by assumption, exhibit spatial correlation according to
a covariance function (also referred to as kernel).

Figure 1 describes the steps in our Bayesian multi-objective optimization
approach. The algorithm starts by evaluating an initial set of points through
a Latin hypercube sample (Step 1). Simulation replications are used to estimate
the objective values at these points (Step 2). In the BO literature, it is common
to set the number of initial design points equal to k = 10d (with d the number
of dimensions of the input space; see [14]), though also smaller design sizes have
been advocated [20]. The augmented Tchebycheff scalarization function [13] is
applied to the objectives (Step a) to transform the problem into a single-objective
optimization problem. A different set of weights is chosen on each iteration to
find solutions across the entire Pareto front. Then, a metamodel is trained in
Step 4 using the scalarized objective. As a metamodel, we use GPR to handle
the existing uncertainty in the break strength, which variance depends on the
process configuration (we thus have heterogeneous noise).

Simultaneously, a Logistic Regression (LR) classification model [22] is trained
(Step 3) to determine whether a process configuration is feasible (meaning that
it will not entail visual damage or adhesive failure). The probability P (y = 1|x),
with which the class “Feassible” is predicted, is used as Pf(x) in the constraint
defined by Eq. 1. The LR classifier is trained with the most common output

Fig. 1. Multi-objective optimization of an adhesive bonding process
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observed over the replications of a given input configuration (binary class output,
with 1 if the configuration is feasible and 0 otherwise).

The accuracy and fit of a GPR model can be drastically affected by random
noise and just using a stochastic GPR model may not have a fair effect on the
traditional EI criterion [16] to sample candidate points. As a direct consequence
of the existing heterogeneous noise, the stochastic GPR may suggest (by using
the EI criterion) the current best design point several times to try next, at the
expense of exploring other promising regions of the design space. We propose
to use the Modified Expected Improvement (MEI) [16] instead of the well-known
EI, for having shown promising results in the optimization of problems affected
by heterogeneous noise [12,17]. The estimated improvement in the objective at
an arbitrary configuration x is:

MEI(x) =
(

Ẑ(xmin) − Ẑ(x)
)

Φ

(
Ẑ(xmin) − Ẑ(x)

ŝ(x)

)
+ ŝ(x)φ

(
Ẑ(xmin) − Ẑ(x)

ŝ(x)

)
(3)

where ̂Z(xmin) is the stochastic kriging prediction at xmin (i.e. the point having
the lowest sample mean for the scalarized objective among all feasible points
already sampled), φ(·) and Φ(·) are the standard normal density and standard
normal distribution function respectively, ŝ(x) is the (deterministic) ordinary
kriging standard deviation, and ̂Z(x) is the stochastic kriging prediction (see
[10] for a detailed mathematical formulation of this estimator).

Lastly, we propose to use the combination of the probability of feasibility
(predicted by the LR model) and MEI as the acquisition function used in Step
5 to suggest a new process configuration. We refer to this acquisition function
as Constrained Modified Expected Improvement (CMEI):

CMEI(x) = MEI(x) ∗ P (y = 1|x) (4)

In this work, we use the Particle Swarm Optimization (PSO) metaheuris-
tic to find the infill point that maximizes CMEI (i.e., the fitness function of
this inner optimization). Our choice is motivated by the good performance and
low computational time observed in other studies with high-dimensional search
space [23]. With PSO, the position of the particle represents the values of each
variable to optimize. At the end of the search performed in Step 5, the particle
representing the global best solution is evaluated with the expensive objectives,
and its information is used to update the parameters of both ML models (the
GPR model and the LR model). The algorithm continues searching for new infill
points until the computational budget is depleted.

4 Design of Numerical Experiments

A Matlab process simulator was provided by the Joining & Materials Lab1 to
test the proposed optimization approach outside the lab environment since the

1 https://www.flandersmake.be.

https://www.flandersmake.be
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real experimentation is very expensive to perform (besides the experimental cost,
testing a single process configuration can take up to 6 h). This simulator predicts
the lap shear strength of the sample (MPa), failure mode (adhesive, substrate,
or cohesive failure), sample production (in euros), and visual quality outcome
(OK or not OK) based on the process parameters discussed above. It is not
meant to be a perfect digital twin of the true process (such cheap digital twin
does not exist), but rather a tool for the relative comparison of the algorithms’
performance, under different conditions, at almost zero cost. Table 1 shows the
range of each process parameter considered in the optimization problem.

One of the factors that introduce noise in the measurements is the so-called
contact angle2: this re reflects the extent to which the adhesive can maintain
good contact with the material. We use γ = 30% as a realistic value for the
standard deviation of the contact angle.

Table 1. Range of the bonding process parameters (input variables)

ID Variable Min Max

v1 Pre-processing Yes or No

v2 Power setting (W) 300 500

v3 Torch speed (mm/s) 5 250

v4 Distance between the torch and the sample (cm) 0.2 2

v5 Number of passes 1 50

v6 Time between plasma treatment and glue application (min) 1 120

Table 2. Summary of the parameters for both optimization approaches

Setting MO-GP cNSGA-II GP-cNSGA-II

Size of initial design LHS: N = 20

Crossover probability - cp = 0.9

Mutation probability - mp = 0.1

Replications r = 5

Iterations/Generations 100 5

Acquisition function CMEI - EI

Acquisition function optimization PSO* -

Kernel Gaussian - Gaussian

We benchmark the performance of our proposal against two adaptations of
the popular NSGA-II: 1) a constrained version to handle feasibility constraints
(cNSGA-II) [6], and 2) an adaptation of cNSGA-II to use the surrogate predic-
tion to generate new populations (GP-cNSGA-II) [15]. Given the experimental
setting in Table 2, each algorithm evaluates exactly 120 process configurations
in an expensive way, with 5 replications per configuration (i.e., 600 expensive
evaluations in total). The BO algorithms start with an initial design of 20 config-
urations, and 100 new ones (infill points) will be obtained during the optimiza-
tion. Evolutionary algorithms use a population of 20 configurations, where the
2 Other noise factors not controlled in the simulator are not further discussed.



MOO of Adhesive Bonding Process in Constrained and Noisy Settings 219

initial population coincides with the initial set used by BO algorithms. Then, 5
populations are generated (i.e., 5 generations) by applying genetic operators. As
common in the literature, the fitness of the configuration outcomes is evaluated
in the evolutionary approaches based on the sample means over a number of
replications (note that, by doing so, both NSGA-II-based algorithms implicitly
ignore the fact that this sample mean is in itself noisy and, hence, uncertain).
The MO-GP approach takes into account both the sample mean and the sam-
ple variance though. While a total budget of 600 evaluations may seem high,
it allows us to study the progress the algorithms would have obtained at lower
budgets, and resemble real experimentation in the laboratory.

We evaluate the quality of the resulting fronts using the hypervolume (HV)
indicator (reference point with production cost = 3, break strength = 4) [2],
applied to the sample means. In addition, the modified Inverted Generational
Distance (IGD+) [11] is used to quantify the distance between the Pareto front
obtained by the algorithms and an ideal front (resulting from the Halton exper-
iment, see Fig. 2). As the front obtained by the algorithms may depend on the
initial design, we performed 50 macro-replications: each macro-replication starts
with a different initial design, on which the algorithms then start their calcula-
tions.

5 Results

Figure 2 shows the mean responses of the simulator on a Halton sample of 60 000
process configurations assuming the contact angle could be perfectly controlled
(i.e., noiseless with γ = 0%). Interestingly, the feasible solutions seem to be
clustered in areas with high break strength; moreover, the use of pre-processing
seems to merely lead to a cost increase, while the resulting gains in break strength
are very scarce.

Fig. 2. Sample mean of break strength versus production cost, estimated by the sim-
ulator for 60 000 random process configurations (γ = 0%)
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Figure 3 (Left) shows the final best Pareto front obtained by MO-GP over
50 macro-replications (along with the median and worst fronts), for γ = 30%.
Clearly, the Pareto front obtained by MO-GP is very close to the ideal Pareto
front estimated by means of the Halton set exploration. MO-GP also leads to a
faster increase in HV, in terms of the number of expensive evaluations performed,
than evolutionary approaches. This is evident from the evolution of the average
hypervolume (across macro-replications) observed in Fig. 3 (Right). MO-GP thus
is able to obtain better quality results for the Pareto front than cNSGA-II and
GP-cNSGA-II, particularly at very limited budgets (after 60 expensive evalu-
ations for instance). This makes the algorithm better suited than evolutionary
algorithms in settings with expensive evaluations. As it was observed in [4], the
inclusion of a surrogate in NSGA-II improves the performance of the evolution-
ary algorithm, but the small evaluation budget still limits its performance. The
improvement in MO-GP can also be observed by comparing the average HV
(MO-GP: 4.0829; cNSGA-II: 4.0204, GP-cNSGA-II: 4.0173) and IGD+ (MO-
GP: 0.0585; cNSGA-II: 0.0711; GP-cNSGA-II: 0.0739). Overall, MO-GP yields
Pareto fronts that are on average closer to the ideal front. Lastly, Wilcoxon’s rank
sum test [19] shows a significant p value (α = 0.05) for differences between MO-
GP and the other algorithms, both in hypervolume (GP-cNSGA-II: 0, MO-DGP:
1.0e−05, cNSGA-II: 0) and IGD+ (GP-cNSGA-II: 0.012, MO-DGP: 1.8e−04,
cNSGA-II: 0.0144).

Figure 3 (Right) shows a dashed line (MO-DGP), which represents the results
of training MO-GP neglecting the presence of noise in the break stress. As shown,
the HV curve under realistic conditions (γ = 30%) is over the (deterministic)
MO-GP after 40 expensive evaluations (20 new process configurations in addition
to the starting set), which illustrates that neglecting the presence of noise in
realistic settings can lead to poor optimal configurations.

Further analysis reveals that ±71% of the Pareto-optimal solutions put for-
ward by GP-cNSGA-II use preprocessing (i.e., they are located in the bump

Fig. 3. Optimization results. (Left) Best, median and worst Pareto front obtained for
MO-GP. (Right) The evolution of the hypervolume indicator (average of 50 macro-
replications)
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Fig. 4. Probability distributions of the Pareto-optimal input values obtained by MO-
GP and GP-cNSGA-II, across 50 macro-replications. The dashed lines represent the
25%, 50% (median), and 75% percentiles of the observed distributions. p values show
significant differences between the configurations suggested by the algorithms.

at the right-hand side of Fig. 2), showing that the algorithm tends to “miss”
solutions that do not require preprocessing (left-hand bump in Fig. 2). For MO-
GP, ±65% of the solutions used pre-processing. Figure 4 analyzes the differences
in the Pareto-optimal process configurations for the other input variables. Also
here, the results show that our algorithm succeeds in finding solutions that are
spread across the different ranges of all input variables, and the p value of the
Wilcoxon rank test indicates significant differences amongst the optimal con-
figurations suggested by the two best algorithms (MO-GP and GP-cNSGA-II),
implying that they were found on different regions of the search space.

6 Conclusions

In this paper, we apply a constrained BO algorithm to solve a bi-objective prob-
lem related to the adhesive bonding process of materials (maximizing break
strength while minimizing production costs). The proposed Bayesian approach
is shown to clearly outperform NSGA-II-based algorithms, which are commonly
used in engineering design when solving general multi-objective, constrained
problems. The difference lies in the way the experimental design is guided
throughout the search: the Bayesian approach selects infill points based on an
(explainable) infill criterion, which is related to the expected merit of the new
infill point for optimization.

The superiority of the Bayesian approach is particularly evident in settings
where the objectives are noisy: the GPR model used in the Bayesian app-
roach accounts for this noise, whereas NSGA-II-based algorithms rely on the
(noisy) sample means as information to guide the search. Moreover, the clas-
sification model embedded in the Bayesian approach ensures that the search
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focuses on infill points that have a high probability of being feasible. In evolu-
tionary approaches, the search is guided by (black box, hard-to-tune) evolution-
ary operators. The success of this evolutionary process is largely dependent on
the availability of a sufficient experimentation budget, which is not always the
case in practice.

We are convinced that the use of Bayesian approaches holds great promise
in solving noisy and expensive engineering problems, in terms of both search
efficiency (i.e., finding solutions within a limited budget) and search effectiveness
(i.e., yielding high-quality solutions). Future research will focus on the inclusion
of a third objective (minimization of the debonding break strength) and the
deployment of an interactive tool for real lab experiments.
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Abstract. Realistic robotic simulations are computationally demand-
ing, especially when considering large swarms of autonomous robots.
This makes the optimisation of such systems intractable, thus limiting
the instances’ and swarms’ size. In this article we study the viability
of using surrogate models based on Gaussian processes, Artificial Neu-
ral Networks, and simplified simulations, as predictors of the robots’
behaviour, when performing formations around a central point of inter-
est. We have trained the predictors and tested them in terms of accuracy
and execution time. Our findings show that they can be used as an alter-
native way of calculating fitness values for swarm configurations which
can be used in optimisation processes, increasing the number evaluations
and reducing execution times and computing cluster budget.

Keywords: predictors · surrogate models · machine learning ·
evolutionary algorithm · swarm robotics · robot formation

1 Introduction

A swarm of robots is a group of robots that show a collective behaviour, which is
usually achieved from their iterations, with the objective of performing some spe-
cific tasks. One of these tasks is robot formation where the swarm members are
arranged in a specific shape. These types of problems usually present unknown
initial positions of the swarm members, as well as the need of path planning
from these positions to the final locations. Having predefined final positions also
presents a challenging adaptability to real situations, e.g. asteroid observation
or escorting a rogue drone out of a restricted area, especially when there are
collisions, communication losses, or robot failures.

The simulation of swarm of robots in a 3D space is related to high comput-
ing resources (and time) to achieve high levels of accuracy. For example, using a
multi-physics robot simulator, e.g. ARGoS [12] to simulate a formation problem
would demand from seconds to minutes, depending on the number of robots
modelled [19]. If we take into account that many evaluations are needed when
we face an optimisation problem and that each evaluation requires a simulation,
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experimentation rapidly become unaffordable. Consequently, an alternative tech-
nique, e.g. surrogate models, is desired to successfully complete such studies.

Surrogate models mimic (with different levels of accuracy) the behaviour of
a complex system by giving an approximate outcome in a realistic execution
time, avoiding the use of exhaustive simulations. They have been used in many
applications such as modelling circuits and systems [23], wildfire forecasting [4],
predicting noise emission and aerodynamic performance of propellers [13], sus-
tainable building design [22], groundwater modelling [2], etc. We study in this
article the viability of using surrogate models based on Gaussian processes, Arti-
ficial Neural Networks, and simplified simulations, as predictors of the robots’
behaviour when arranging in a formation.

Our Distributed Formation Algorithm3 (DFA3) [19] consists of a range and
bearing based approach where the robots in the swarm self-organise to arrange
in a final desired formation, surrounding a central object in a sphere-like shape.
There is no global coordinate system nor a different, intelligent node in the
swarm. The robots just make their own local decisions based on local informa-
tion following a pre-calculated optimal parameters. Since the optimisation of
these robot parameters requires very accurate and time demanding simulations
combined with a meta-heuristic [19], we propose the study of seven surrogate
models that can be used to improve the evaluation times, predicting simulation
outcomes without losing accuracy.

The rest of this paper is organised as follows. In the next section, we review
the state of the art related to our proposal. In Sect. 3 our robot formation system
is described and in Sect. 4, ARGoS simulations and the seven proposed surrogate
models are discussed. The experimental results are in Sect. 5 and finally, Sect. 6
brings conclusion and future work.

2 Literature Review

In this section we discuss some recent research works related to robot simulations
using surrogate models. The interested reader can see [1] for a review in terms
of computational time, accuracy and problem size.

A quadcopter control is presented in [10]. The authors propose several
machine learning techniques such as time series, Gaussian processes and neu-
ral networks, to calculate optimum control gains for a specific mission to over-
come environmental uncertainties. These predictors are used in an optimisation
process and tested using simulations. Having observed a better exploration of
the design space, the obtained results showed performance improvements when
compared to nominal control gains. In our present work, we analyse some of the
predictors proposed in this article to parameterise a swarm of robots.

A surrogate approach using Kriging method is presented in [24] to optimise
the design of the delta wing and the canard wing of a tube-fan hybrid Unmanned
Aerial Vehicle (UAV). A multi-objective genetic algorithm is proposed to max-
imise lift while minimising energy consumption. The calculated solutions were
validated using computational fluid dynamics simulations. We also use gaussian
process regression (Kriging) among others as predictors, although applied to a
different problem.
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A parameter of the Rössler chaotic system to improve coverage of the CACOC
(Chaotic Ant Colony Optimisation for Coverage) algorithm is tuned in [15] by
using a surrogate-based method. The parameter space is efficiently explored
using Bayesian optimisation avoiding using costly simulations. The authors’
results showed that this method permitted to explore efficiently a bifurcation
diagram by-passing periodic regions, providing two groups of points with excel-
lent results in terms of coverage for the swarm. We have also analysed Gaussian
processes as well as other methods to calculate an accurate surrogate model for
our problem.

A mathematical-computational model for the control and navigation of
robots is proposed in [9]. The authors combined a 2D cellular automata, Tabu
search, ant colonies, and greedy approaches for selecting elitist cells, with a
genetic algorithm to optimize the parameters for the two proposed surrogate
models. The objective was maximising area coverage by using a pheromone-
based approach. In addition, the validation of the models was done using the
Webots simulator and E-Puck robots. In the present article we evaluate seven
surrogate models for the formation problem in a 3D space.

In this article we propose seven surrogate models for the robot formation
problem, train them and analyse their results in terms of accuracy and execution
times. We aim to use these models for the optimisation of the robot swarm
parameters in future works, achieving stable formations around a central point
of interest.

3 Robot Formation

Our Distributed Formation Algorithm3 (DFA3) [19] was designed to arrange
robots at the vertices of an imaginary polygon surrounding a central point of
interest (Fig. 1). Achieving stable robot formations frequently involves address-
ing different constraints such as limited communication range, absence of abso-
lute positions, and uncertain initial conditions. Each robot in the swarm receives
a beacon signal emitted by the other robots and uses it to calculate its relative
orientation and distance to the rest of swarm members. Since this system can be
used not only on Earth but also in space, no localisation system, such as GPS,
is used by the robots (UAVs, satellites, probes, etc.). Additionally, the robots
do not have a predefined final position in the formation. The central object is
tracked using its own radio signal in our experiments, although other methods
can be used such as images from cameras, LIDAR (LIght Detection And Rang-
ing) data, etc.

We have initially tested our formation algorithm in a 2D environment using
E-Puck2 robots [18] and then proposed an extension of the algorithm to deal
with 3D formations using UAVs [19]. A meta-heuristic was needed, e.g. a Hybrid
Genetic Algorithm, to calculate the optimal parameters for the formation since
it is a very complex problem requiring the use of realistic simulations. However,
we have observed that the optimisation process was taking too long when the
number of robots is high (720 h for 30 runs), limiting the size of the swarms.
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Fig. 1. Five robots in formation surrounding a central object.

Consequently, we propose the study of surrogate models [5] to speed up the
evaluation of the formation parameters, allowing not only having more robots
in the swarm but also assessing more accurate optimisations by increasing the
number of evaluations.

3.1 Problem Definition

The formation problem is defined by P = (G, co, S, C), where the distance graph
is given by G = (V,E,D), where V = {ROBOT1, . . . , ROBOTN} represents
the robots in the swarm, E = {(i, j) ∈ V × V } represents the edges of the
graph indicating the swarm connectivity, and D = {d(i, j),∀(i, j) ∈ E} rep-
resents the distances between robots (DROBOT ). Furthermore, co stands for
the central object, the distances between the robots and the central object
are given by S = {d(co, u), u ∈ V }, and the problem’s constraint is given by
C = ∀d(co, j) ∈ S, d(co, j) = DCENTRE , where DCENTRE is the desired dis-
tance to the formation centre (radius).

There are four parameters for the swarm used to achieve stable formations: a
distance threshold DTHRESHOLD to control the attracting/repelling movement
between robots, the minimum distance DMIN to the centre, the intensity of the
attracting/repelling force FCENTRE , with respect to the central object, and the
moving speed SPEED of each robot.

3.2 Distributed Formation Algorithm3 (DFA3)

The pseudocode of our DFA3 [19] is detailed in Algorithm 1. Each robot exe-
cutes the same algorithm using the optimal parameters and the same predefined
formation radius, i.e. the desired distance to the rogue drone DCENTRE , which



228 D. H. Stolfi and G. Danoy

is a constant value. The DFA3 first initialises the vector r where the calculation
of the resulting attracting/repelling force to/from the central object plus the
other robots will be stored. Then, for each beacon received, the range and the
vertical and horizontal bearings from the other robots are obtained and used to
calculate the three components of r, according to the given distance threshold
DTHRESHOLD. After that, the same calculation is done with respect to the for-
mation centre. In this case, depending on the actual distance from the robots to
the centre and the value of DMIN , an extra intensity FCENTRE can be applied
as a repelling force (ω) with respect to the formation centre. Finally, having cal-
culated the 3D components of r, the inclination θ and azimuth φ are obtained as
the new moving direction (in 3D space) to be returned to the robot’s controller.

Algorithm 1. Distributed Formation Algorithm3 (DFA3).
function DFA3(DCENTRE , DTHRESHOLD, DMIN , FCENTRE)

rx ← 0, ry ← 0, rz ← 0
for robot ∈ BEACONS do

range, vBearing, hBearing ← RangeAndBearing(robot) � Other Robots
rx ← rx + (range − DTHRESHOLD) × cos(hBearing) × sin(vBearing)
ry ← ry + (range − DTHRESHOLD) × sin(hBearing) × sin(vBearing)
rz ← rz + (range − DTHRESHOLD) × cos(vBearing)

end for
range, vBearing, hBearing ← RangeAndBearing(centre) � Centre
ω ← 1.0
if range < DMIN then

ω ← FCENTRE � Force intensity
end if
rx ← rx + ω(range − DCENTRE) × cos(hBearing) × sin(vBearing)
ry ← ry + ω(range − DCENTRE) × sin(hBearing) × sin(vBearing)
rz ← rz + ω(range − DCENTRE) × cos(vBearing)
θ ← arctan

ry
rx

, φ ← arccos rz√
r2x+r2y+r2z

� Next moving direction (angles)

return θ, φ � Inclination and azimuth
end function

4 Realistic Simulations vs. Surrogate Models

4.1 ARGoS Simulations

The proposed formation scenarios were modelled in ARGoS [12], a multi-physics
robot simulator which can efficiently simulate large-scale swarms of robots of
any kind. In our study, we have used the model of the Spiri UAVs [17] using the
ARGoS’ Range and Bearing communication model (Fig. 2) to simulate robot
communications. Each UAV is only aware of the relative distance and angles of
the other robots, calculated from the received beacon signals. The experimental
area is a cube of 30 × 30 × 30 m and the distance to the centre of the formation
was set to three metres, according to the simulation area dimensions.
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Fig. 2. Robot formation in the ARGoS simulator.

The DFA3 was implemented in each robot controller and was parameterised
using the aforementioned formation parameters, i.e. DTHRESHOLD, DMIN ,
FCENTRE , SPEED. A stable formation depends on the values of these param-
eters, requiring an optimisation process taking into account the distance to the
centre (DCENTRE) and the number of robots. As these simulations are very
computationally demanding, an alternative technique, e.g. surrogate models, is
needed when there are many robots in the swarm. In the next section we propose
an evaluation function to compute the correctness of the formation depending
on its parameters.

4.2 Formation Fitness

We have proposed in [19] the fitness function F (�x) (Eq. 1) to evaluate the for-
mation in terms of shape, distance to the centre, and how equally spaced are the
robots (avoiding forming local clusters). The terms in F (�x) are the minimum
error (Em(�x)) and maximum error (EM(�x)), both calculated from the distance
of every robot in the swarm to the centre, with respect to the desired distance
DCENTRE . The last term (D(�x)) is meant to evaluate how spread are the robots
throughout the surface (sphere). These terms are to be minimised by using an
optimisation algorithm. Thus, the lower the value of F (�x) the better.

F (�x) = Emj(�x) + EMj(�x) + Dj(�x) (1)
Em(�x) = |min δ(i, centre) − DCENTRE |, i ∈ {1 . . . N} (2)
EM(�x) = |max δ(i, centre) − DCENTRE |, i ∈ {1 . . . N} (3)

D(�x) = |2.0 × DCENTRE − min δ(l,m)|, ∀l,m ∈ {1 . . . N}, l �= m (4)
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4.3 Surrogate Models

We propose seven surrogate models to replace the costly simulations by predic-
tions. Five are based on Gaussian processes, the sixth is using an artificial neural
network, and the last one is based on a fast cellular simulator.

Gaussian Processes (GPs). Bayesian optimisation aims to solve black-box
problems by generating surrogate models of the problems using Gaussian pro-
cesses (GPs) [16]. GPs are both interpolators and smoothers of data and can be
used as effective predictors when the solutions’ landscape (F (�x) in our study)
is a smooth function of the parameter space. It calculates a distribution of the
objective function by sampling promising zones of the solution space. The Gaus-
sian distribution associated to the training data is given by a mean vector and
a covariance matrix, calculated by a kernel function. We propose testing five
different kernel functions: gp lin (linear), gp sexp (squared exponential), gp nn
(neural network), gp m32 (Matérn ν = 3/2), and gp m52 (Matérn ν = 5/2), pro-
vided by the R package “gplite” [11]. We have set up 1000 maximum iterations
and 100 restarts for training each of these predictors.

Artificial Neural Network (ANN). Neural networks have been used in
numerous machine learning research works in the last years. We propose an arti-
ficial neural network with four neurons as inputs corresponding to our problem’s
variables, one linear output neuron, and five neurons in the hidden layer (exper-
imentally chosen taking into account the required training time). We have used
resilient backpropagation (RPROP) with weight backtracking [14] during the
training process, which performs a direct adaptation of the weight step based on
local gradient information. RPROP has the advantage that for many problems
no choice of parameters is needed to obtain optimal convergence times. We have
used the R package “neuralnet” [7] to implement this predictor and performed
100 repetitions to select the best calculated network (minimum error).

Cellular Simulator (C-Sim). Finally, we propose a cellular simulator to
implement a simplified model of the robot simulation without using inertial real
physics. We kept the same arena dimensions as in the ARGoS simulations as well
as the robot’s starting positions. We have defined four constants, {ω1, ω2, ω3, ω4}
to calibrate this model as part of its training, reducing the error between the
fitness values obtained and the reference values provided by ARGoS. An opti-
misation of the four ωi values is then to be conducted using a genetic algorithm
(GA) implemented by using the jMetalPy package [3], to fit the C-Sim model to
the realistic ARGoS simulations. Binary Tournament [8] was used as selection
operator, Uniform Crossover [20] as recombination operator (Pc = 0.9), Inte-
ger Polynomial Mutation [6] as mutation operator (Pm = 1/L), while an elitist
replacement was used to update the algorithm population after each generation.
This generational GA has a population of λ = 100 individuals and will perform
10000 evaluations per run.



Evaluating Surrogate Models for Robot Swarm Simulations 231

5 Experimental Results

In this section we first present the training of the seven predictors followed by
the testing phase where we address the accuracy of each surrogate model and
the corresponding improvement in evaluation times.

5.1 Training

We have calculated a training set initially consisting of 300 fitness values cor-
responding to different formation parameters randomly chosen to sample the
parameter space. When there is a robot collision (which can happen when the
swarm is misconfigured), ARGoS simulations stop and the calculated fitness
value turns into a penalisation value. This represents discontinuities in the fit-
ness function which unnecessarily complicate the training process. For this first
study, we decided to treat these values as outliers and keep them out of the
training process. We propose the Mean Square Error (MSE) as a metric to eval-
uate the predictors’ accuracy. It is calculated as shown in Eq. 5, where n is the
number of data points, Yi are the observed values (from ARGoS), and ̂Yi are the
estimated values (from predictors).

MSE =
1
n

n
∑

i=1

(Yi − ̂Yi)2 (5)

All in all, we present in Table 1 the results of the training of the seven predic-
tors using surrogate models. We can see that the number of observations is lower
when the number of robots is higher as collisions are more likely to happen. GP
using neural networks as kernel function (gp nn) has shown the most accurate
results in terms of MSE. Predictions from ANN have not been so accurate and
C-Sim, despite of being a simulation based model, has obtained the worst results.
Note that GP using a linear kernel has not converged for swarms of five robots
during the training process.

Table 1. MSE values for the training process of predictors based on GP’s, ANN, and
C-Sim. Note that gp lin has not converged for five robots.

# robots # Obs gp lin gp sexp gp nn gp m32 gp m52 ann c-sim

3 238 13.030 6.138 5.081 5.408 5.408 5.835 12.788

5 192 �11.665 4.059 3.643 3.720 3.898 4.966 16.630

10 118 7.542 2.236 0.995 1.759 1.926 2.525 13.546

Moreover, Fig. 3 shows the boxplots representing the distribution of the mea-
sured error values for each predictor and swarm. It can be seen that despite out-
liers, the surrogate models based on GP present the most accurate values (except
by the linear kernels). Finally, in Table 2 the elapsed training times for each pre-
dictor are presented. It can be seen that GP models are quite fast compared to
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Fig. 3. Boxplots showing the error distribution between the ARGoS simulation fitness
values and the predictors’ ones.

Table 2. Elapsed training times in seconds for the seven predictors. Note that C-Sim
includes 30 parallel runs of the optimisation GA.

# robots gp lin gp sexp gp nn gp m32 gp m52 ann c-sim

3 0.457 1.324 2.203 1.071 1.060 2674 2859

5 5.622 0.558 0.754 0.876 0.955 1428 2365

10 0.099 0.190 0.402 0.318 0.354 330 1758

ANN and C-Sim. Taking this into account, plus their accuracy during the train-
ing stage, GP models look promising as surrogate models for the simulations of
robot formations. In the next section we test all the calculated predictors on a
number of unseen swarm configurations to address their accuracy beyond the
training set.

5.2 Testing

The testing dataset consists in 3000 new fitness values corresponding to forma-
tions developed by swarms of three, five, and ten robots. Table 3 shows the MSE
values calculated using the testing dataset compared with the predictions. Again,
in concordance with the training stage, the outliers corresponding to robot colli-
sions have been removed. It can be seen that all GPs predictors (except gp lin)
have performed well, being gp nn the most promising one (MSE = 6.199 for
three robots, MSE = 5.146 for five robots, and MSE = 3.966 for ten robots),
despite Matérn being slightly better for swarms of ten robots (MSE = 3.841).
In congruence with the observed during training, our proposed ANN predictors
are not good enough to compete with GPs and the cellular simulator (C-Sim) is
not accurate whatsoever (MSE > 11 for all the cases studied). Figure 4 shows
the distribution of the results where we can note the accuracy of gp sexp, gp nn,
gp m32, and gp m52, compared with the rest of the predictors.
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Table 3. MSE values for the predictions done using the GP’s, ANN, and C-Sim
models.

# robots # Obs. gp lin gp sexp gp nn gp m32 gp m52 ann c-sim

3 2220 12.564 6.596 6.199 6.279 6.399 8.330 11.318

5 1853 13.483 5.471 5.146 5.231 5.314 7.160 15.723

10 1096 11.680 3.977 3.966 3.841 3.872 5.319 16.076

Fig. 4. Error distribution between the predictions and the ARGoS’ fitness values.

Table 4. Average computing times in seconds for the seven predictors compared with
the corresponding ARGoS simulations.

# robots ARGoS gp lin gp sexp gp nn gp m32 gp m52 ann c-sim

3 6.609 0.171 0.171 0.170 0.170 0.171 0.106 0.004

5 10.126 0.170 0.169 0.170 0.170 0.170 0.106 0.004

10 36.410 0.170 0.171 0.169 0.169 0.170 0.106 0.007

We have also studied the time needed for calculating the fitness for a given
configuration of a robot swarm, using the different surrogate models, and com-
paring them to simulations using ARGoS. Table 4 shows the different average
execution times calculated from 300 evaluations per swarm. We can see that the
cellular simulator is by far the fastest model (milliseconds), although its pre-
dictions are not accurate as was aforementioned. The rest of predictors present
calculation times under two tenths of seconds which represents a huge improve-
ment compared with full ARGoS simulations which go from about 7 to more
than 35 s, depending on the swarm size.

6 Conclusions

In this paper we have addressed the training and testing of seven surrogate mod-
els to be used as predictors of the formation accuracy (fitness) for swarms of
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three, five, and ten robots. We have defined the formation problem and the pre-
dictors based on Gaussian Processes (GPs), Artificial Neural Networks (ANN),
and a simplified cellular simulator. Then, we have trained them using a dataset
calculated from real ARGoS simulations and tested on unseen configurations in
terms of accuracy (Median Square Error) and computation times. Our results
show that GPs predictors have achieved the best results in accuracy and that
they were very competitive in terms of execution times. These are good news
as we expect that the GPs models will scale appropriately with the number of
robots, showing even better time gains when compared with ARGoS simulations.

As future works we aim to pursue this research line, using dropout to reduce
overfitting and implementing k -fold cross validation to try to improve our surro-
gate models. We plan to integrate the more promising models in an optimisation
algorithm, e.g. a genetic algorithm, to address the optimisation of swarms made
of many robots which is not affordable using just accurate simulations.

Acknowledgements. This work is supported by the Luxembourg National Research
Fund (FNR) – ADARS Project, ref. C20/IS/14762457. The experiments presented
in this paper were carried out using the HPC facilities of the University of Luxem-
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Abstract. When solving a job scheduling problem that involves
humans, the times in which they are available must be taken into account.
For practical acceptance of a scheduling tool, it is further crucial that the
interaction with the humans is kept simple and to a minimum. Requiring
users to fully specify their availability times is typically not reasonable.
We consider a scenario in which initially users only suggest single starting
times for their jobs and an optimized schedule shall then be found within
a small number of interaction rounds. In each round users may only be
suggested a small set of alternative time intervals, which are accepted
or rejected. To make the best out of these limited interaction possibil-
ities, we propose an approach that utilizes integer linear programming
and a theoretically derived probability calculation for the users’ avail-
abilities based on a Markov model. Educated suggestions of alternative
time intervals for performing jobs are determined from these acceptance
probabilities as well as the optimization’s current state. The approach
is experimentally evaluated and compared to diverse baselines. Results
show that an initial schedule can be quickly improved over few interac-
tion rounds, and the final schedule may come close to the solution of the
full-knowledge case despite the limited interaction.

Keywords: Job scheduling · human machine interaction · preference
learning · integer linear programming

1 Introduction

We consider a class of job scheduling problems in which the personnel of a com-
pany is involved as a bottleneck resource. The central aim is to schedule jobs
of employees in an interactive way that works from the humans’ perspectives
as simple, stress-free, and with low cognitive effort—while at the same time a
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cost function is minimized. In the simplest, and from the users’ perspective most
convenient case, each user just suggests a starting time for each of her or his jobs.
As the jobs also require further shared resources, this directly obtained schedule
will rarely be feasible nor are cost-aspects considered. Ideally, we would have full
knowledge of all the users’ times at which they would be available for performing
their jobs, in which case we could solve an optimization problem in one shot.
In many practical scenarios, however, it is impossible or far too inconvenient to
request such complete information. We therefore start with the users’ initial sug-
gestions and perform a small number of simple interaction rounds to get more
freedom for finding better schedules. In each such round the solution approach
is allowed to suggest each user a small number of additional time intervals for
scheduling her or his jobs. The users are then supposed to indicate their accep-
tance or rejection of these intervals. Hereby, we intentionally avoid that users are
requested to specify larger amounts of additional availability intervals on their
own. With the increased knowledge on the users’ availabilities, the optimization
can aim at improving the solution in each round.

The main challenge we address in this work is to, in each round, come up
with meaningful queries for further time intervals to perform jobs in. Queried
time intervals are most meaningful when (a) they would allow the optimiza-
tion to obtain a better schedule and (b) the users are likely to accept them.
For example, very large time intervals may aid the optimization the most, but
as they are rather unlikely to be accepted by the users, they are usually not
that meaningful. To consider (b), the likelihood that users accept queried time
intervals, in some reasonable way, we need to exploit at least some stochastic
assumptions on the users’ unknown availabilities. Ideally, we would have precise
user-specific stochastic models available, for example derived from historic avail-
ability data. Here we assume that such information is not available and instead
build upon just a simple stochastic model represented by a two-stage Markov
process. In essence, we only assume to know average probabilities of users to be
available/unavailable in a timestep under the condition that the user is known
to be available/unavailable in the directly preceding timestep.

The overall scenario can also be seen as active learning, as the solution app-
roach queries the users to learn more information, which is further exploited in
the optimization. Our main contributions are (a) to propose this general inter-
active scheduling setting, (b) to narrow it down to a specific Interactive Job
Scheduling Problem (IJSP) to make concrete computational investigations on,
(c) an Integer Linear Programming (ILP) model as optimization core for solving
the IJSP, (d) an exact and computationally efficient calculation of the probabili-
ties for users to accept potentially queried time intervals based on the two-stage
Markov process and the already known availability information from the users,
and (e) to propose a heuristic solution approach for the IJSP that utilizes this
probability calculation. In an experimental evaluation, this solution approach is
compared to a greedy baseline approach as well as to solving the full-knowledge
case. Results show that already with a very moderate amount of interaction and



238 J. Varga et al.

the simplistic assumptions of the two-stage Markov model, schedules may be
obtained that come close to those of solving the full-knowledge case.

In the IJSP, we assume that each job is associated with and requires one
specific user and one of a set of available machines. On each machine, only one
job can be performed at any time in a non-preemptive manner. As planning
horizon we consider several days and time is discretized. Jobs have individual
but machine-independent durations. Scheduling a job induces costs, for example
for used electricity, and we consider these costs to be time-dependent. For exam-
ple, when electricity is bought on the spot market, (expected) electricity costs
may change significantly over time. For avoiding to have to deal with infeasible
schedules, we allow that jobs remain unscheduled at additional penalty costs.
The objective is to find a feasible schedule of minimum total cost.

The core of this problem, if neglecting the users, can be described in the com-
mon three-field notation for scheduling problems as Pm|| TEC, where Pm refers
to the m machines and that job durations do not depend on the machines, and
where the objective is to minimize the Total Energy Costs (TEC). The similar
problem Pm||Cmax,TEC, which additionally takes the makespan into account
for the objective, has been considered in the literature. Solving approaches for
it include a Mixed Integer Linear Program (MILP) [2,10], a problem specific
heuristic and a genetic algorithm [10], as well as a greedy heuristic and local
search [2]. Also similar is the scheduling problem Rm||TEC where jobs have in
general different processing times on different machines. For it, Ding et al. [5]
proposed a MILP and a Dantzig-Wolfe decomposition. The MILP was further
improved by Cheng et al. [4] and by Saberi-Aliabad et al. [8].

In interactive optimization approaches, most works only consider a single
user who guides the optimization process. For instance, Saha et al. [9] develop
approaches based on evolutionary algorithms that cooperate with human design-
ers to find aesthetic, aerodynamic, and structurally efficient designs for automo-
tives, and Aghaei-Pour et al. [1] consider a multiobjective optimization problem
where the human interactively specifies preferences on the solution, which are
also considered within evolutionary algorithms. Interactive optimization with
multiple users is less common. For instance, Jatschka et al. [6] consider a MILP-
based cooperative optimization approach that interacts with many users to learn
an objective function for distributing service points in mobility applications.

We perform active learning on the availability times of the users. This has also
been done in the domain of calendar scheduling. There, a calendar scheduling
agent assists the user in arranging meetings with others and to do so it learns
the user’s preferences over time. Existing approaches use decision trees [7], the
weighted-majority algorithm or the Winnow algorithm [3] for the learning task.

The next section formalizes our IJSP and introduces the ILP used as opti-
mization core. Section 3 presents our solution approaches: a greedy baseline
method and the advanced heuristic that makes use of estimated acceptance
probabilities for time interval suggestions. The calculation of acceptance proba-
bilities based on a two-stage Markov model is subsequently detailed in Sect. 4.
Section 5 shows experimental results, and Sect. 6 concludes this work.



Interactive Scheduling of Personnel Activities 239

2 Interactive Job Scheduling Problem

The IJSP is formally introduced as follows. Let the planning period be given
by tmax-day days, each with tmax uniform timesteps, and let T = {t | t =
(tday, ttime), tday = 1, . . . , tmax-day, ttime = 1, . . . , tmax} be a set of pairs where
each pair refers to a specific timestep at a specific day. To refer to a time inter-
val within a day and the corresponding set of timesteps, we use the notation
[t1, t2] = {(tday1 , ttime

1 ), . . . , (tday2 , ttime
2 )} for t1, t2 ∈ T | tday1 = tday2 , ttime

1 ≤ ttime
2 ,

and adding a scalar Δ to a tuple t ∈ T is defined as t + Δ = (tday, ttime + Δ).
Denote the set of users by U and let the set of jobs of user u ∈ U be Ju.

Let each job j ∈ Ju have a duration dj ∈ {1, . . . , tmax} and use the notation
Tj [t] = [t, t + dj − 1] to refer to the subset of timesteps where job j is performed
if started at timestep t. Furthermore, the possible starting times of job j ∈ J are
restricted to the set T job

j =
⋃tmax-day

tday=1 {(tday, 1), . . . , (tday, tmax −dj +1)}, because
of the job duration. Denote the set of all jobs by J =

⋃
u∈U Ju, and let n = |J |.

To perform a job, two resources are needed: the availability of the user associated
with the job and a machine. Denote the set of machines by M .

Using machine i ∈ M in timestep t ∈ T induces time-dependent cost cit ≥ 0,
e.g., for electricity depending on expected spot market prices. For a job to be
feasibly scheduled, it needs to be given non-preemptive access to its user and a
machine for the complete duration of the job. If a job j ∈ J cannot be feasibly
scheduled, this induces cost qj ≥ 0, e.g., for over-time or extra personnel. We
assume that the cost for leaving a job unscheduled is always higher than the
highest cost of scheduling it, i.e., qj ≥ dj maxi∈M, t∈T cit, j ∈ J .

The dynamic and interactive aspect of our problem is represented by T =
(Tj)j∈J where Tj ⊆ T job

j are the timesteps in which job j may start in when
considering the respective user’s currently known availabilities. More details on
T are addressed later.

Assuming for now T is given and fixed, we aim at finding a feasible schedule
of minimum cost. This can be expressed by the following ILP, in which the binary
decision variables xjit indicate if job j ∈ J is scheduled on machine i ∈ M to
start with timestep t ∈ Tj , or not.

ILP(T ) min
∑

j∈J

∑

i∈M

∑

t∈Tj

∑

t′∈Tj [t]

cit′xjit +
∑

j∈J

qj

⎛

⎝1 −
∑

i∈M

∑

t∈Tj

xjit

⎞

⎠ (1)

s.t.
∑

i∈M

∑

t∈Tj

xjit ≤ 1 j ∈ J (2)

∑

j∈J

∑

t∈Tj |t′∈Tj [t]

xjit ≤ 1 i ∈ M, t′ ∈ T (3)

∑

j∈Ju

∑

i∈M

∑

t∈Tj |t′∈Tj [t]

xjit ≤ 1 u ∈ U, t′ ∈ T (4)

xjit ∈ {0, 1} j ∈ J, i ∈ M, t ∈ Tj (5)
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The first and second term of the objective function (1) correspond to the total cost
for machine usage and unscheduled jobs, respectively. Constraints (2) ensure that each
job is scheduled at most once, constraints (3) limit the number of scheduled jobs per
machine and timestep to one, and constraints (4) limit the number of jobs per user
and timestep to one.

As indicated, this model can be solved for different sets T that reflect the user
availability information in the current stage of the decision-making. As an important
characteristic of the problem is that the user availability is not assumed to be fully
known, we introduce the following notation for the currently available information. Let
T avail

u ⊆ T be a subset of timesteps where user u ∈ U has confirmed to be available.
Feasible start times for each job j ∈ Ju can then be derived as T feas

j = {t ∈ T job
j |

Tj [t] ⊆ T avail
u }. Further, let T infeas

j ⊆ T refer to time steps where job j ∈ J is not
allowed to start since the user is known to be unavailable in at least one time step in
Tj [t], t ∈ T infeas

j .
Based on these confirmed availabilities and unavailabilities, it is possible to solve the

model ILP(T ) for two extreme cases. For T = (T feas
j )j∈J , only the timesteps that the

respective users have so far confirmed to be available are included, and thus the solution
to ILP((T feas

j )j∈J) is feasible for the IJSP and in general provides a pessimistic bound.

For T = (T job
j \ T infeas

j )j∈J , all timesteps except those where the users are already

known to be not available are included, and the solution to ILP((T job
j \ T infeas

j )j∈J)
provides an optimistic bound; but the corresponding schedule may not be feasible with
respect to user availability.

The interactive aspect of the problem is that users can be queried concerning their
availabilities. A query is represented by a pair (u, [t, t′]) specifying a user u ∈ U and
a time interval from t ∈ T to t′ ∈ T . If the user is available in the full interval of the
query, this information is directly included in the sets T avail

u and T feas
j . If the user is

unavailable in at least one timestep of the interval, the interval is rejected and included
in the set Irej

u . In such update, Irej
u is made sure not to contain any interval that is a

superinterval of another interval, as such superintervals are redundant. The interaction
with the users is made in a number of rounds, and before each new round an updated
ILP(T ) can be solved. Let the number of rounds be denoted by B ∈ N>0, and let the
allowed number of queries in each round be b ∈ N>0. In each round, a user may be
queried multiple times. The choice of queries to make in a round is critical for the
outcome of the scheduling, and our strategy for this is described in the next section.

3 Solving Approaches

The challenge in each round is to find a set of queries that are likely to be accepted and
reduce the objective value as much as possible if accepted. We consider only queries
that are reasonable in the following sense. They concern the scheduling of jobs outside
the users’ already known availabilities, and we do not want to have more than one
query for a user for the same day. Denote with T query

j = T job
j \T infeas

j \T feas
j all starting

times of job j that would require a confirmed user query. Most beneficial queries—if
accepted—can then be determined by solving the model ILP((T query

j ∪ T feas
j )j∈J) with

the additional constraints
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∑

j∈J

∑

i∈M

∑

t∈T
query
j

xjit ≤ b (6)

∑

j∈Ju

∑

i∈M

∑

t̄∈T
query
j |t̄day=tday

xjit̄ ≤ 1 u ∈ U, tday ∈ {1, . . . , tmax-day} (7)

where the former limits the total number of user queries to b and the latter
prevents multiple queries for the same user on the same day. Having obtained
a solution x, each value of one of a variable xjit for u ∈ U , j ∈ Ju, i ∈ M and
t ∈ T job

j \ T infeas
j \ T feas

j results in a query [t, t + dj ] for user u. We refer to this
approach to determine user queries by Greedy.

This approach can possibly be improved by assuming that the user avail-
abilities behave according to some model that yields an acceptance probabil-
ity for each query. To exploit such probabilities, we remove the starting times
from T query

j whose associated queries have probabilities below a given threshold
0 ≤ plim ≤ 1, i.e., which we do not consider promising. Queries are again obtained
by solving ILP((T query

j ∪ T feas
j )j∈J) with constraints (6) and (7), but now with

these reduced sets T query
j . As model for the acceptance probabilities, the next

section proposes one based on a two-state Markov process, and consequently, we
refer to this advanced model-based solution approach by Markov(plim).

4 Probability Calculation for Two-State Markov Process

Consider a single user u ∈ U and a single day tday ∈ {1, . . . , tmax-day}. For better
readability we refer to the timesteps of this day in the following by Ttday =
{1, . . . , tmax}. Assume that the average duration of the periods when a user
is available, and the average duration of the unavailable-periods are known.
When we want to exploit just this minimal information, it is natural to model
a user’s availabilities by a simple two-state Markov process. The two states
of this process are 0 and 1, representing that the user either is unavailable in
the current timestep or available, respectively. Moreover, let us introduce the
additional artificial timesteps 0 and tmax + 1 before the start of the day and
after the end of the day. In both of these timesteps, the user is not available
and therefore the corresponding state is 0. Proceeding from one timestep to
the next, we associate probabilities ρ00, ρ01, ρ10, and ρ11 for staying in state
0, transitioning from 0 to 1, transitioning from 1 to 0, and staying in state 1,
respectively. Naturally, ρ00 = 1 − ρ01 and ρ11 = 1 − ρ10 must hold. This Markov
process is depicted in Fig. 1a. The transition probabilities are computed based
on the fact that the expected number of steps the Markov process stays in state
1 is 1/ρ10 and 1/ρ01 for state 0. In this section we only consider one user, and
for the sake of simplicity we omit the index regarding this user.

Given the current set of known availability times T avail and the set of so far
rejected time intervals Irej, we now want to determine the probability that the
user is available in some given time interval [τ, τ ′], 1 ≤ τ ≤ τ ′ ≤ tmax. For this
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Fig. 1. (a) Two-state Markov process and (b) corresponding unrolled state graph.

purpose we unroll the Markov process into a state graph over all timesteps from
0 to tmax + 1 as follows and illustrated in Fig. 1b.

As the user is supposed to be not available outside of Ttday , the initial state
at the beginning of the day is represented by the single node 00. Then, we have
nodes 0t and 1t for each timestep t ∈ Ttday , indicating the availability or non-
availability of the user in timestep t. We also add node 0tmax+1 and for now
1tmax+1 to allow a correct modeling of the transition to the time after the con-
sidered time horizon by the two-state Markov process. All nodes of two successive
timesteps are connected with arcs corresponding to the state transitions of the
Markov process, and they are weighted with the respective transition probabili-
ties ρ00, ρ01, ρ10, and ρ11.

Ignoring known user availabilities T avail and rejected time intervals Irej for
now, this state graph has been constructed in such a way that each path from
node 00 to either node 0tmax+1 or 1tmax+1, which we call terminal nodes, corre-
sponds to exactly one outcome of the Markov process over tmax + 1 timesteps,
and each possible outcome of the Markov process has an individual correspond-
ing path. We refer by the probability of a path to the product of the path’s arc
weights, and with the probability of a set of paths to the sum of the paths’
probabilities. The probability of all paths from node 00 to any of the terminal
nodes is then one as this covers all possible outcomes of the Markov process.

Next, we consider the already known availability times T avail of the user by
removing all nodes 0t for T avail with their incident arcs. This effectively reduces
the set of possible paths, and thus represented Markov process outcomes, to
those where state 1 is achieved in all timesteps from T avail. Moreover, we also
remove node 1tmax+1 with its ingoing arcs in order to model that the user is
unavailable after the last actual timestep tmax.

To modify the graph w.r.t. the intervals in which the user is known to be
available was straightforward since all timesteps of such intervals must have
state 1. A time interval rejected by the user requires more care since it implies
only that for at least one timestep in the interval – but not necessary all –
the Markov process is in state 0. Only a rejected time interval [t, t] ∈ Irej of
length one can thus be handled directly by removing node 1t with its incident
arcs as the Markov process has to be in state 0 in this timestep. For a longer
rejected interval [t1, t2] ∈ Irej we ensure that only paths are kept in the graph
where the Markov process achieves state 0 at least once within this interval.
More specifically, observe that if the Markov process is in timestep t ∈ [t1, t2]
and state 0 has not been obtained in timesteps [t1, t] yet, then there has to
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Fig. 2. The state graph for tmax = 4, T avail = {2}, and Irej
u = {(1, 3), (2, 4)}.

follow at least one timestep t′ ∈ [t + 1, t2] in which state 0 is achieved. To model
this aspect, we add further nodes 1t2

t for t ∈ [t1, t2 − 1], [t1, t2] ∈ Irej to our
graph. Former arcs (0t, 1t+1) and (1t, 1t+1), t ∈ Ttday ∪ {0}, are now replaced
by arcs (0t, 1t2

t+1) and (1t, 1t2
t+1), respectively if there is a rejected time interval

[t1, t2] ∈ Irej starting in the next timestep t1 = t + 1 and ending in timestep
t2. Note that there can be at most one interval in [t1, t2] ∈ Irej that starts at
timestep t1 since Irej has been guaranteed not to contain a proper subinterval
of [t1, t2]. Each new node 1t2

t further has an outgoing arc to node 0t+1 if this
node still exists, corresponding to the transition to state 0. Moreover, there is
an outgoing arc from each node 1t2

t to node 1t2
t+1 as long as t + 1 < t2 for the

case of staying in state 1. Due to the absence of an arc from node 1t2
t2−1 to some

successor node in which state 1 is kept, it is effectively enforced that state 0 is
reached at least once within the rejected time interval [t1, t2]. Remaining nodes
without ingoing arcs except 00 and their outgoing arcs are pruned as they do
not play an active further role. An example of such a final state graph is shown
in Fig. 2.

Now, we want to utilize this graph to derive the probability that the consid-
ered user is available in a given time interval [τ, τ ′]. The key observation to do
this efficiently is that each path from node 00 to a node v passes through exactly
one predecessor of v. Therefore the total probability ppath00,v of all paths from 00
to v, denoted by Paths(00, v), can be computed recursively as

ppath
00,v =

∑

P∈Paths(00,v)

∏

(u,u′)∈P

ρ(u, u′)

=
∑

u∈N−(v)

∑

P∈Paths(00,u)

⎛

⎝
∏

(u,u′)∈P

ρ(u, u′)

⎞

⎠ · ρ(u, v) =
∑

u∈N−(v)

ppath
00,uρ(u, v), (8)

where P denotes one specific 00–v path represented by the corresponding
set of arcs and N−(v) is the set of predecessors of node v. Denoting the set of
successors of node v by N+(v), the probabilities ppathv,0tmax+1

of all paths from a
node v to node 0tmax+1 can be correspondingly computed recursively by

ppath
v,0tmax+1

=
∑

w∈N+(v)

ppath
w,0tmax+1

ρ(v, w). (9)
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We are now interested in all those paths from 00 to 0tmax+1 that stay for the
timesteps τ to τ ′ in state 1 nodes, indicating the availability of the user. Each of
these paths is composed of a path from 00 to 1t2

τ , a path P from 1t2
τ to 1t2

τ ′ that
only uses state 1 nodes, and a path from 1t2

τ ′ to 0tmax+1 for some t2 ≥ τ ′ + 1.
As a special case the middle segment P can also start in 1τ and then it either
ends in 1τ ′ if no rejected interval starts within [τ, τ ′] or otherwise in 1t2

τ ′ for an
appropriate t2 ≥ τ ′ +1. There are only a few possibilities for the middle segment
P and the probability of all paths that stay in state 1 nodes for the timesteps
from τ to τ ′ can be computed with a sum over these possibilities. For us, the
conditional probability in respect to all paths in the graph, i.e., those respecting
T avail and Irej and ending in 0tmax+1, is of main interest, which is

pavail([τ, τ ′] | T avail, Irej, 0tmax+1) =

∑
P∈1-Paths(τ,τ ′) ppath

00,Pτ
· ρτ ′−τ

11 · ppath
Pτ′ ,0tmax+1

ppath
0,tmax+1

,

(10)

where the sum is taken over all middle segments 1-Paths(τ, τ ′), and Pτ and Pτ ′

are the first and last nodes of a middle segment P , respectively. The denomi-
nator is the probability of all paths from 00 to 0tmax+1, and the nominator the
probability of only those paths that stay in state 1 nodes in timesteps τ to τ ′.

5 Experimental Evaluation

We implemented the approaches in Julia 1.8.3, using the solver Gurobi 10.0
(https://www.gurobi.com) and the package JuMP as interface to Gurobi. As
real world instances were not available to us we created artificial benchmark
instances and used them to compare the approaches with each other. Each test
run was performed on a single core of an AMD EPYC 7402 and Gurobi was
given a timelimit of 15 min for each ILP, which always led to final gaps below
5%.

5.1 Instance Generation

We consider a time horizon of tmax-day = 5 days, each starting at 6am and
ending at 10pm, with a time granularity of 15 min per timestep. Random time
intervals are determined by a function rand interval(μstart, σstart, μdur, σdur) that
first draws a random value from a normal distribution with mean μstart and
standard deviation σstart and rounds it to the closest timestep in T , which is
then the start of the time interval. The duration of the interval is then determined
by drawing another random value from a normal distribution with mean μdur

and standard deviation σdur, rounding it to the closest positive integer. Should
the interval exceed tmax, it is capped at this last timestep of our time horizon.

For each user u ∈ U a set of timesteps T avail∗
u at which she or he is, in total,

available is determined for each day independently as follows. With a probability
of 90%, the user is assumed to be available in rand interval(9 am, 1 h, 4 h, 1 h)

https://www.gurobi.com
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Fig. 3. Development of the objective value (a) and (b) respectively number of unsched-
uled jobs (c) and (d) for two different instance sizes.

and, again with a probability of 90%, the user is assumed to be available in
rand interval(1 pm, 1 h, 5 h, 1 h). If the two intervals overlap the union is taken.

For each job j ∈ Ju of a user u ∈ U the duration dj is chosen uniformly at
random from 30 min to 4 h. Moreover, a starting time tj is selected at random so
that the job can in principle be scheduled within T avail∗

u . The initially provided
set of availabilities for user u ∈ U is then T avail

u =
⋃

j∈Ju
Tj [tj ].

We generate 50 instances for m ∈ {1, 2, 3, 4, 5} machines and either 25 or
50 jobs per machine n ∈ {25m, 50m}. When considering the generated user
availabilities, each machine can execute roughly 30 jobs on average, thus for n =
25m usually it is possible to schedule all jobs, while for n = 50m this is not the
case. Each user has five jobs, thus there are either 5m or 10m users. We allow
|U | user queries in each round, for a total of seven rounds.

The costs are based on the real-world spot market prices ckWh
t for electricity

in Germany from week 26 in 2022 from https://energy-charts.info. We use as cost
ci,t = 15min · Pic

kWh
t , where the electric power Pi is assumed to differ among

the machines i ∈ M and is thus chosen uniformly at random from [50 kW, 150
kW]. The cost qj for not scheduling a job j ∈ J is set to 40 Euro · dj , which is
roughly twice the cost of scheduling the job in the most expensive timesteps.

https://energy-charts.info/charts/price_spot_market/chart.htm?l=en&c=DE&interval=week&legendItems=000010000000&week=26
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Table 1. Mean %-gaps of the objective values after five and seven interaction rounds
for Greedy and Markov(plim) with different limits plim.

m n Round 5 Round 7

Greedy Markov(plim) Greedy Markov(plim)

0.25 0.5 0.75 0.25 0.5 0.75

1 25 77.7 54.5 39.6 40.0 70.7 36.9 18.0 24.6

2 50 95.2 74.5 27.0 23.8 87.0 52.6 11.9 13.3

3 75 77.5 62.3 18.2 15.0 69.1 48.8 8.4 9.3

4 100 79.5 64.3 15.7 12.1 71.8 47.9 6.7 7.9

5 125 77.8 60.4 13.4 10.7 71.5 46.7 6.0 7.3

1 50 40.2 33.9 19.4 22.6 37.1 29.5 12.8 21.7

2 100 36.8 31.9 18.6 19.2 35.6 29.1 13.0 18.2

3 150 34.4 31.6 17.8 18.0 33.4 28.7 12.1 17.0

4 200 35.0 32.2 18.3 18.8 34.0 29.2 12.6 17.6

5 250 34.4 31.8 17.7 18.3 33.8 29.1 12.4 17.2

5.2 Comparison of the Approaches

We performed simulations for Greedy and Markov(plim) with acceptance
probability thresholds plim ∈ {0.25, 0.5, 0.75} on all benchmark instance. After
each round we determine the best schedule that is feasible for the information
collected up to this round. Figure 3 shows the development of the mean objec-
tive value and mean number of unscheduled jobs, respectively, over the rounds.
Values are aggregated over the 50 instances with m = 5 machines and n = 125
respectively n = 250 jobs. Furthermore, we determine the best feasible schedule
with the information that is available before the first round (“No Interaction”),
the best schedule when ignoring user availabilities (“Optimistic”) and the best
schedule with full knowledge about the users’ availabilities (“Full Knowledge”)
and show these as horizontal lines in the figures. Table 1 additionally shows the
mean optimality gaps of the objective values from Greedy and Markov(plim)
in respect to “Full Knowledge” after five and seven rounds in percent.

We observe that Markov(0.5) and Markov(0.75) quickly converge towards
the best possible schedule. For n = 125, the original objective values without
interaction could almost be halved after already five rounds, while for n = 250,
18% and 15% of the original costs could be saved after seven rounds. Moreover,
for n = 125, the final optimality gaps of these two approaches are by a factor
of more than nine better than the final gap of Greedy. In contrast plim = 0.25
leads to much slower convergence with an improvement over Greedy of only
roughly 35%. Remarkably, Markov(0.75) performs best in the first rounds,
while Markov(0.5) catches up later on and performs best in the end. The reason
is that the two-state Markov process has the steady state between 0.5 and 0.75
and therefore Markov(0.75) does not query days it knows nothing about while
Markov(0.5) does; while it takes more iterations to get enough information
about these days, this information provides more flexibility in scheduling the
jobs.
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6 Conclusions

We considered a job scheduling problem in which humans are involved as resource
and where their availabilities can only be partially revealed in a small number
of interaction rounds, within which few time interval queries can be made. The
proposed solution approach calculates probabilities for users to accept suggested
time intervals based on a two-state Markov process. An ILP is used as opti-
mization core and to select time intervals for the next round of queries, aiming
for sufficiently high probabilities of acceptance and a maximum cost reduction.
Experiments on artificial test instances show that an initial solution quickly
improves over the interaction rounds and may soon get close to a solution of
the full-knowledge case, despite the very restricted interaction and the simple
assumptions of the two-state Markov process. In future work it would be inter-
esting to replace the proposed probability computation by a machine learning
model trained on historic user availability data. Moreover, alternative ways to
consider the estimated acceptance probabilities of user queries in the optimiza-
tion core should be investigated.
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Abstract. Multi-armed bandit (MAB) is a well-known reinforcement
learning algorithm that has shown outstanding performance for recom-
mendation systems and other areas. On the other hand, metaheuris-
tic algorithms have gained much popularity due to their great perfor-
mance in solving complex problems with endless search spaces. Pendu-
lum Search Algorithm (PSA) is a recently created metaheuristic inspired
by the harmonic motion of a pendulum. Its main limitation is to solve
combinatorial optimization problems, characterized by using variables in
the discrete domain. To overcome this limitation, we propose to use a
two-step binarization technique, which offers a large number of possible
options that we call scheme. For this, we use MAB as an algorithm that
learns and recommends a binarization schemes during the execution of
the iterations (online). With the experiments carried out, we show that
it delivers better results in solving the Set Covering problem than using
a fixed binarization scheme.

Keywords: Pendulum Search Algorithm · Multi-Armed Bandit · Set
Covering Problem · Reinforcement Learning · Binarization Schemes
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In recent years, combinatorial optimization problems have become more fre-
quent and complex. Often these problems must be solved in a reasonable time
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to solve different optimization problems with minor modifications [17]. The pro-
cess of optimization consists of two main phases: exploration and exploitation.
In the exploration phase, the algorithm explores the search space for founding
promising areas where good results can be expected. In the exploitation phase,
the optimization process is intensified by expecting a better solution [20]. This
process allows high-quality solutions to be found in a short times.

In case the problem to be solved is combinatorial, these general-porpuse
algorithms must go through a binarization process, which allows for keeping the
value of variables in the discrete domain [18]. For this, a two-step technique is
used, which depending on its configuration, can get better or worse results.

Moreover, the development of machine learning in computer science has made
significant contributions to various areas of engineering, and operations research
was no exception. The use of these techniques across multiple optimization pro-
cesses has catapulted the performance of the previously described algorithms.
That is why for this work, an another reinforcement learning algorithm will be
implemented to improve the performance in the selection of binarization schemes
of metaheuristic algorithms in order to obtain better results in the optimization
of combinatorial problems [13]. For this, the Multi-Armed Bandit (MAB) algo-
rithm will be developed, binarizing the Pendulum Search Algorithm (PSA). The
proposed solution is assessed using the well-known Set Covering Problem (SCP)
as a test case.

This paper continues with the explanation of the problem to be solved (SCP)
in Sect. 2, then in Sect. 3 the metaheuristic to be used is explained, to continue
with the explanation of the Multi-Armed Bandit algorithm in Sect. 4. Sections 5
and 6 define the proposal and analyze the experimental results. Finally, the
conclusions are presented in Sect. 7.

2 Set Covering Problem

The Set Covering Problem is a classic NP-Hard combinatorial optimization prob-
lem. It consists of finding a subset of elements that satisfies a set of constraints
at the lowest possible cost [8].

Minimize Z =
N∑

j=1

cjxj (1)

s.t.
N∑

j=1

ai,j · xj ≥ 1 ∀i ∈ {1, . . . , M} (2)

xj ∈ {0, 1} ∀j ∈ {1, . . . , N} (3)

where cj corresponds to the cost of column j and vector x is the decision variable.
M is the number of constraint and N the number of variables of the solution.
ai,j is a binary value that indicate if the constraint i is covered by the column j.
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Equation 2 tells us that all constraints must be covered by at least one column
and Eq. 3 tells us the domain of the decision variables.

The complete mathematical model of the Set Covering Problem is explained
in more detail in [11]. This problem formulation has inspired the modeling of dif-
ferent real-world problems such as emergency humanitarian logistics [3], disaster
management system [14], dynamic vehicle routing problem [21], among others.

The tremendous practical applicability of this optimization problem has
motivated our research to develop new algorithms with good performance for
solving it.

3 Pendulum Search Algorithm

Pendulum Search Algorithm is a population-based metaheuristic recently cre-
ated by Nor Azlina and Kamarulzaman [1] to solve continuous optimization
problems. This metaheuristic was born in response to the premature conver-
gence problems of the Sine Cosine Algorithm (SCA). The authors mimic the
harmonic motion of the pendulum to improve premature convergence. Unlike
SCA, the harmonic motion of the pendulum decreases with an exponential func-
tion. This exponential function would enhance the exploration and exploitation
balance [2].

The search agents are initialized randomly and their position is updated using
Eq. 4.

Xt
i,j = Xt

i,j + pendti,j · (Bestj − Xt
i,j) (4)

where Xt
i,j is the position of the i-th solution in the j-th dimension in t-th

iteration, Bestj it is the j-th dimension of the global best solution, and pendti,j
is a parameter which is calculated for the i-th solution in the j-th dimension in
t-th iteration (Eq. 5).

pendti,j = 2 · e(−t/tmax) · cos(2 · π · rand) (5)

where t is the current iteration, tmax is the maximum number of iterations and
rand is a uniform random number between [0,1]. The pseudo-code of PSA is
shown in Algorithm 1.

The promising PSA performances previously demonstrated by the authors
are unusable when we try to solve binary combinatorial problems, because PSA
was initially designed for solving continuous optimization problems. To enable
PSA to tackle binary combinatorial problems it is necessary to transform the
solutions from the continuous domain to a binary one [6,7].

The Two-Step Technique is the most widely used mechanism in the literature
for binarizing continuous solutions. First, transfer functions are applied to leave
the continuous solution in the range [0, 1]; then, a binarization operator is applied
with the transferred number. We call each combination of these functions a
binarization scheme. For more details on Two-Step Technique please refer to
[6,7].
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Algorithm 1. Pendulum Search Algorithm
Input: The population X = {X1, X2, ..., Xi}
Output: The updated population X ′ = {X ′

1, X
′
2, ..., X

′
i} and Best

1: Initialize random population X
2: Evaluate the objective function of each individual in the population X
3: Identify the best individual in the population (Best)
4: for iteration (t) do
5: for solution (i) do
6: for dimension (j) do
7: Update pendt

i.j by Eq. (5)
8: Update the position of Xt

i,j using Eq. (4)
9: end for

10: end for
11: Evaluate the objective function of each individual in the population X
12: Update Best
13: end for
14: Return the updated population X ′ where Best is the best result

4 Multi-armed Bandit

This technique is a reinforcement learning algorithm, where learning consists of
an agent performing actions that generate a stimulus from its environment. This
signal is called a reward, and the objective is to maximize its value with the
following actions. For more details on reinforcement learning, refer to [19].

The metaphor of this technique puts us in a casino, where we have a series of
slot machines, of which the probability of success is unknown, nor is the reward
that will be obtained in each game. In this way, we must test each of them until
we know their behavior and use a strategy that allows us to maximize the gain at
the end of the experiment. Another common objective in this kind of experiment
is to minimize the difference between what is obtained and the maximum value
expected (known as the regret value) [5,15]. Based on this, the exploration-
exploitation dilemma is presented, where we must negotiate between activating
the arm that has the best rewards, and trying the others to find possible better
rewards [4]. This trade-off is essential to obtain good results.

4.1 Action Selection: UCB

One of the most common techniques to select actions in reinforcement learning
algorithms is the greedy criterion which chooses the action that has delivered
the best reward. For that, we will calculate each action’s average reward in each
iteration to make the decision.
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We will define the estimated value of action a at iteration t as Qt(a).

Qt(a) .=
∑t−1

i=1 Ri · 1Ai=a∑t−1
i=1 1Ai=a

(6)

where Ri is the reward obtained in iteration i, Ai is the arm selected in iteration
i and 1predicate defines a variable that will be 1 only if the predicate is true and
0 otherwise. If the fraction’s denominator equals zero, then a default value for
Qt(a) will be selected, such as 0 or another value depending on where we want
the optimal value to start. We also define the greedy action of the t iteration as
At

.= argmaxaQt(a) where argmaxa corresponds to the action a that maximizes
the value of Qt.

As mentioned above, MAB has an extensive exploration and exploitation
factor, so a correct balance between both characteristics is essential to achieve
good results. This trade-off is reflected in the different equations that model the
selection of actions in each iteration. One of the most used is the so-called Upper
Confidence Bound, which uses the average reward and a parameter to control
exploration and exploitation.

At
.= argmaxa

[
Qt(a) + c

√
ln t

Nt(a)

]
(7)

where Nt(a) corresponds to the number of times that arm a has been actuated
up to time t (the denominator in Eq. (6)), ln t is the natural logarithm of t,
and the constant c > 0 controls the degree of exploration that the algorithm
will have. The higher the c value, the more importance it will be the factor that
follows it.

5 Binary MAB-Pendulum Search Algorithm

To improve the proposal presented in [1], the MAB algorithm will be used, which
will learn to select the best binarization schemes to use in the binary version of
PSA (BPSA) metaheuristic.

In [12], the importance of binarization schemes for the search result, solving
SCP, is analyzed. The authors conclude that it directly affects and give recom-
mendations of schemes to use in certain instances.

As the selected scheme is so important [13], in this paper it is proposed to use
Multi-armed Bandit as a reinforcement learning algorithm, recognized for its use
in recommendation systems [10], to implement a dynamic binarization model in
the metaheuristic BPSA, solving SCP. In this way, our actions pull would be
made up of the 40 different combinations between the transfer functions, shown
in Table 1 and the binarization rules, shown in Table 2. In other words, each of
the arms of MAB would be represented by each tuple of the actions pull.
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Table 1. S-shape and V-shape transfer functions

Name Function
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An important factor for the success of any reinforcement learning algorithm
is the modeling of the reward that will be obtained with each action performed.
For this investigation, the way in which the reward will be calculated is with
its percentage of fitness improvement delivered by the metaheuristic in each
iteration, expressed as follows:

r = 100 ·
[
fold − fnew

fold

]
(8)

where fold is the best fitness of the last iteration, and fnew is the best fitness of
the current iteration.

As mentioned in Sect. 4, there are many ways to choose which arm to use
in each iteration, but based on the literature [9,16,22], one that has given good
results is the call UCB, described in the Sect. 4.1.

6 Experimentation

This section will discuss the experimentation process that was carried out, with
its respective results.

As mentioned in [12], one of the best binarization schemes is the combination
of the V4 transfer function and the Elitist binarization rule. This is why we will
compare the result of the BPSA execution, configured with V4-Elitist in all its
iterations, versus the MAB-BPSA proposal, binarizing in each iteration with the
technique provided by the MAB algorithm.

Regarding the development, first of all, the instances of the SCP problem
were captured from OR-library, from which instances 41, 51, 61, a1, b1, c1, nre1
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Table 2. Binarization Rules

Name Functions

D1: Standard Xj
new =

⎧⎨
⎩1 if rand ≤ T

(
dj

w

)
0 otherwise

D2: Complement Xj
new =

⎧⎨
⎩Complement

(
Xj

w

)
if rand ≤ T

(
dj

w

)
0 otherwise

D3: Static Xj
new =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if T
(

dj
w

)
≤ α

Xj
w if α < T

(
dj

w

)
≤ 1

2 (1 + α)

1 if T
(

dj
w

)
≥ 1

2 (1 + α)

D4: Elitist Xj
new =

⎧⎨
⎩X

j
Best

if rand < T
(

dj
w

)
0 otherwise

D5: Elitist Roulette Xj
new =

⎧⎨
⎩

P [Xj
w = δj ] =

f(δ)∑
δ∈X f(δ) if α < T

(
dj

w

)
P [Xj

w = 0] = 1 otherwise

and nrf1 were used. In this way we have a good representation of the different
families of instances.

Second, the BPSA and MAB algorithms, along with the different binariza-
tion techniques, were developed in the Python v3.9 with the NumPy library to
optimize matrix calculations.

Finally, the experiments were carried out on a Macbook Air computer with an
Apple M1 processor, 7-core CPU and 8GB of RAM. Each instance was executed
31 times independently, enough quantity to have a confidence idea of the behavior
of the algorithm in each one of the instances.

Regarding the configuration of parameters, a population size of 40 individ-
uals and 500 iterations were used for both tested approaches, 31 independent
runs were performed and the value for the value c of Eq. 7 is

√
2, based on the

suggestion of [9].

6.1 Experimental Results

The results obtained are shown in Table 3. This table has ten columns, where
the first one represents the instance of the Set Covering Problem evaluated,
the second one represents the global optimum of instances and the next four
columns are repeated for each algorithm executed. The first of these shows the
best fitness obtained among the thirty-one independent runs, the second of these
shows the average across the thirty-one independent runs, the third one of these
shows the standard deviation of the thirty-one independent runs, and the fourth
one shows the Relative Percentage Deviation (RPD) between global optimum
and the best fitness obtained among the thirty-one independent runs. RPD is
defined as follows:

RPD =
Z − Zopt

Zopt
× 100 (9)

where Z corresponds to the best value found and Zopt the global optimal value
that is expected to be reached.
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Table 3. Comparison of fitness between fixed and dynamic binarization.

Inst. Opt V4-ELIT MAB

Best Avg-fit Std-dev-fit RPD Best Avg-fit Std-dev-fit RPD

41 429 433 433 0 0.932 433 433 0 0.932

51 253 267 267 0 5.534 257 266.452 2.173 1.581

61 138 141 142.774 1.91 2.174 141 141 0 2.174

a1 253 257 257.065 0.25 1.581 257 257 0 1.581

b1 69 69 69.161 0.374 0 69 69.097 0.301 0

c1 227 230 232.387 1.202 1.322 231 232.645 0.798 1.762

d1 60 60 60.355 0.661 0 60 60.871 0.619 0

nre1 29 29 29 0 0 29 29 0 0

nrf1 14 14 14 0 0 14 14 0 0

Avg 163.556 166.667 167.194 0.489 1.283 165.667 167.007 0.432 0.892

The following criteria were used to determine the best algorithm:

* Best fitness obtained and RPD: This allows us to see what our best result
was and how far it is from the global optimum.

* Standard Deviation: A low standard deviation indicates the results
obtained with the thirty-one independent runs were close.

* Average between thirty-one independent: An average close to the opti-
mal value indicates the results obtained with the thirty-one independent runs
the algorithm performed well.

With this in mind, our proposed BPSA with MAB as binarization schemes
selector won in 5 out of 9 instances, tied in 3 out of 9 instances, and only lost in
one instance.

Figure 1 shows the convergence plots of the best execution of each algo-
rithm run. The X-axis shows the iterations and the Y-axis shows the best fitness
obtained during the process.

In these two figures, we can see the BPSA with MAB has a slower convergence
compared to BPSA with a fixed binarization scheme.

Thus, we can demonstrate that using MAB as a selector of binarization
schemes helps to balance the exploration and exploitation of BPSA and to find
better solutions.

On the other hand, in Fig. 2 we can see 3 horizontal bar graphs showing the
number of times each actions was selected. The one on the left shows how they
had been selected in the first 50 iterations of the run, then at 200 iterations,
and on the right at 500 iterations. In this way we can analyze the behavior that
MAB algorithm had throughout the execution. From Fig. 2, which shows the
average selection of instance 51, it stands out that in the first iterations, where
the algorithm has a greater exploratory component, the 4 actions that are most
selected have as a binarization rule (D2 at Table 2) the complement function,
while in advanced iterations the actions with the Elitist or Elitist Roulete func-
tion are selected more (D4 and D5 at Table 2). This result makes sense with
what is described in [12].
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Fig. 1. Fitness for each iteration (convergence) and Zoom for instance d1

Table 4. Comparison of time between fixed and dynamic binarization.

Instance V4-ELIT MAB

Avg-time (s) Std-dev-time (s) Avg-time (s) Std-dev-time (s)

41 69.429 4.15 71.727 9.763

51 88.634 4.35 89.497 13.175

61 42.355 3.303 39.683 5.878

a1 204.238 5.852 193.114 17.502

b1 113.087 4.817 123.087 17.13

c1 408.542 10.897 383.78 41.616

d1 218.491 6.603 199.662 20.153

nre1 257.875 7.011 277.048 34.237

nrf1 148.318 5.306 174.743 21.352

average 172.330 5.810 172.482 20.090

As mentioned above, the use of metaheuristics lies in their efficiency in deliv-
ering good results in reasonable times. The Table 4 shows the execution times
of each proposal, where the first one represents the instance of the Set Covering
Problem evaluated and the next two columns are repeated for each algorithm
executed. The first-one of these shows the average time in seconds across the
thirty-one independent runs, and the second one of these shows the standard
deviation of the thirty-one independent runs.

As can be seen in this table, both proposals have very similar implementa-
tion times. This indicates that there is not a large computational increase when
incorporating a machine learning technique such as MAB.
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Fig. 2. Average number of selections on instance 51

7 Conclusion

The ease of accessing large computational capacities at reduced costs has enabled
the use of machine learning techniques such as Multi Armed Bandit. The research
on hybrid algorithms between metaheuristics and machine learning with the
aim of improving the search process is increasing every year and the present
work is an example of that. In particular, Multi Armed Bandit was successfully
incorporated into Pendulum Search Algorithm where it was used to dynamically
and intelligently select binarization schemes.

Preliminary results indicate that our proposed hybrid performs better when
compared to Pendulum Search Algorithm using a fixed binarization scheme
(V4-Elitist). Better results were obtained by improving the balance of diver-
sification and intensification in the Pendulum Search Algorithm search process.
During the diversification process, Multi Armed Bandit determined that the
most exploratory binarization schemes are those that include the Complement
binarization rule. In contrast, for the intensification process, Multi Armed Ban-
dit determined that the most exploitative binarization schemes are those that
include the Elitist or Elitist Roulette binarization rule.

Regarding computation times, the results indicate that there is no great
increase in computation times when comparing both proposals. This dismisses
that incorporating machine learning techniques to metaheuristic algorithms
increases the computational time.

As future work, Multi Armed Bandit could be used to select other operators
specific to metaheuristics or use this work and apply it to another optimization
problem. On the Multi Armed Bandit side, other action selection techniques
could be studied or another action reward function could be applied.
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ELOS PREDICTIVOS EN SALUD”.

Broderick Crawford and Ricardo Soto are supported by Grant ANID/ FONDE-
CYT/REGULAR/1210810.

Felipe Cisternas-Caneo is supported by Beca INF-PUCV.

References

1. Ab. Aziz, N.A., Ab. Aziz, K.: Pendulum search algorithm: an optimization algo-
rithm based on simple harmonic motion and its application for a vaccine distribu-
tion problem. Algorithms 15(6) (2022)

2. Rahman, T.A., Ibrahim, Z., Ab. Aziz, N.A., Zhao, S., Aziz, N.H.A.: Single-
agent finite impulse response optimizer for numerical optimization problems. IEEE
Access 6, 9358–9374 (2018)

3. Alizadeh, R., Nishi, T.: Hybrid set covering and dynamic modular covering location
problem: Application to an emergency humanitarian logistics problem. Appl. Sci.
10(20), 7110 (2020)
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Abstract. Feature Selection (FS) is a pre-processing step in most big
data processing applications. Its purpose is to remove inconsequential
and redundant features from data to determine a final set of data prop-
erties that best describe the data as a whole. The FS process is an NP-
hard problem. It tries to determine the optimal subset, i.e., produces
all conceivable solutions to acquire only the best. In the last few years,
metaheuristic algorithms (MAs) have been coined as an ideal solution
for FS problems, particularly in high-dimensional data cases. This work
is an extension of our previous effort in finding an effective solution to
FS problems by applying a recently developed metaheuristic algorithm
called the Black Widow Optimization (BWO) algorithm. We combine
our previous algorithm, the Binary Black Widow Algorithm (BBWO),
with a Hill-Climbing Algorithm to solve the slow convergence problem
of the BBWO. The newly developed algorithm, BBWO-HCA, is tested
using 28 UCI datasets and compared with six well-regarded algorithms
in the domain. The test results show that the BBWO-HCA outperforms
our previous BBWO solution and almost all comparable solutions tested.

Keywords: Feature Selection · Evolutionary Algorithm ·
Metaheuristic Algorithm · Classification · Machine Learning · Data
Mining

1 Introduction

It has become a challenge for researchers and developers to cope with the explo-
sive growth of available data, the dimensions of which are expanding daily. Fea-
ture selection (FS) is a pre-processing step in most big data processing and
machine learning applications, particularly in data mining applications. It is
used to remove noisy and inconsequential features to determine a subset of fea-
tures that best represent and portray the data, thus, boosting the quality of the
data obtained.

Classical search approaches, such as random search and complete search have
been used to solve FS problems [17]. While these methods ensure the optimal
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solution for small datasets, their execution is impractical for large datasets. FS is
an NP-hard problem, it tries to determine the optimal subset. For example, if a
dataset contains n features, then 2n solutions must be formulated and assessed,
i.e., the problem complexity is O(∞). It also requires an enormous amount of
computational power and an excessive amount of time.

In the last few years, metaheuristic algorithms (MAs) have been identified as
an ideal solution to FS problems, particularly in cases involving high-dimensional
data. Researchers used the Simulated Annealing algorithm, Ant Colony Opti-
mization algorithm, Particle Swarm Optimization algorithm, Genetic Algorithm,
etc. to solve FS problems and have obtained valuable results. For example, see
[1,4,5,8,11,12,18].

MAs are the most appropriate alternative method for addressing the lim-
itations of lengthy, far-reaching searches that entail high computational cost.
Despite some desirable results, however, most MAs are impeded by the limita-
tions imposed by a local optimum and a disproportion between the explorative
and exploitative scope of the algorithm. Moreover, each dataset has a different
number of features, and no single method is the most appropriate for FS prob-
lems, i.e., one can still find room for improvements. These observations motivated
this work to look for means to overcome the limitations described and develop
a novel FS solution.

We selected a recent algorithm, the Black Widow Optimization algorithm
(BWO) [9], to study FS problems due to its success in optimizing engineering
design problems. BWO is a nature-inspired algorithm that mimics the black
widow’s life cycle. It is inspired by the singular mating behaviour exhibited
by the black widow spider, a process that includes an exclusive stage called
cannibalism. The BWO approach is designed to deliver rapid convergence and
to avoid local optima, and, because BWO maintains equilibrium between the
exploration and exploitation stages [9], a property that most MAs applied to
FS problems are lacking [14], the BWO is particularly appropriate for solving
several kinds of optimization problems that involve a number of local optima.

This work is an extension of our previous effort in trying to find an effec-
tive solution to FS problems by applying the BWO algorithm. In our previous
effort, we modified the BWO algorithm to solve feature selection problems and
developed the Binary Black Widow Optimization (BBWO) algorithm [3].

Despite the competitive results of the BBWO, its performance can be fur-
ther improved by enhancing the slow convergence caused by the use of a pop-
ulation of solutions and a lack of local exploitation. In this article, we describe
an improved version of the BBWO. We combined the BBWO with the Hill-
Climbing Algorithm (HCA). The newly developed algorithm, the BBWO-HCA,
is tested using 28 UCI datasets and compared with six well-regarded algorithms
in the domain. The algorithms are Binary particle swarm optimization (BPSO)
[10], Binary multi-verse optimization algorithm (BMWO) [2], Binary grey wolf
optimizer algorithm (BGWO) [1,7], Binary moth-flame optimization algorithm
(BMFO) [19], Binary whale optimization algorithm (BWOA) [11], and Binary
bat algorithm (BBAT) [13].
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The rest of this article is organized as follows: In Sect. 2, the proposed algo-
rithm is presented. In Sect. 3, the experiment setup, test results, and result dis-
cussion are presented. Finally, in Sect. 4, the research is concluded and some
future works are identified.

2 BBWO-HCA Feature Selection Algorithm

The results presented in [3] show that the BBWO produces impressive results
and, in some cases, is competitive with the best-known algorithms. The results
also reveal that the BBWO performance can be further improved by enhancing
the slow convergence due to the use of a population of solutions and a lack of
local exploitation. The BBWO-HCA aims to increase the exploitation process of
the BBWO by incorporating it with a local metaheuristic algorithm based on the
Hill-Climbing Algorithm (HCA). HCA is a well-known local search algorithm. It
has been tested on various problems and has shown to be an effective and effi-
cient method that can produce sound results [6]. The BBWO-HCA’s main steps,
selection, procreation, and mutation, are described in the subsections below.

2.1 Solutions Representation

In the BBWO-HCA, each solution represents a single black widow. All possible
solutions to all FS problems are envisioned in terms of the attributes of the black
widow spider. In programming terms, this is equivalent to saying each spider is
represented by a class and spider attributes are class instance variables, or each
spider is an array and spider attributes are array values. The spider population
is modeled as an Nvar dimensional array, i.e., an array of spider objects, and the
FS problem becomes an Nvar dimensional optimization problem.

The BBWO-HCA algorithm uses binary values to represent a population
of solutions (Npop). In binary representation, a solution is shown by a one-
dimensional array. The length of the array varies in accordance with the feature
number of the original dataset. For example, if S features are contained in the
dataset, the solution length is S. The cell value in the array will be ‘1’ or ‘0’.
The value ‘1’ indicates that the corresponding feature is selected, whereas ‘0’
indicates that the feature is not selected. In general, when the number of fea-
tures is Nf and the population size is | Npop |, the array size of the problem will
be Nf × | Npop |.

2.2 Initialization

The population of solutions offered by the BBWO-HCA is randomly generated
by assigning a value of either “0” or “1” to each cell of the solution. The process
begins by initializing the population size and the number of features. The algo-
rithm then arbitrarily assigns either ‘0’ or ‘1’ by looping through each solution
in the population. This process is repeated until all solutions in the population
have been initialized.
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2.3 Fitness Function and Evaluation

Each solution is evaluated according to a fitness function. The function employed
is shown in Eq. 1. A similar function is used by [1,15]. The k-nearest neighbour
algorithm (KNN) [16] is used in the solution evaluation, i.e., the KNN classifier
determines the accuracy of the solution.

f = αγR(D) + β
| R |
| C | (1)

In Eq. 1, γR(D) represents the classification error rate of the KNN classifier,
| R | is the cardinality of the selected subset, | C | is the total number of the
original features in the dataset, and α, β are two weight parameters correspond-
ing to the importance of classification quality and subset length, α ∈ [0, 1] and
β = (1 − α). A similar approach is adapted by [7,11,19].

After initializing the population of solutions, we assign to each solution
(widow) a fitness value, which represents the quality of the solution. The fitness
value of each solution is calculated using the fitness function and is evaluated
using the KNN classifier. This is because the BBWO-HCA is a wrapper-based
FS approach.

2.4 Transformation Function

The positions of the search agents generated from the standard BWO are con-
tinuous values. This cannot be directly applied to our problem because it con-
tradicts the binary nature of the FS on selection or non-selection (0 or 1).

The sigmoidal function in 2 and 3, which is considered a form of the trans-
formation function, is used in our proposed method as a part of the reproduc-
tion process to convert any continuous values to binary equivalents. The per-
formance of the transformation function has been investigated and adopted by
many researchers, e.g., [1,7,19].

zsw =
1

1 + e−zw
(2)

zbinary =

{
0, if rand < zsw
1, if rand ≥ zsw

(3)

where each of zsw is a continuous value (feature) in the search agent for the S-
shaped function, specifically in the solution w at dimension d (w = 1,. . . ,d), and
is a random number drawn from the uniform distribution ∈ [0,1]. The zbinary
value can be 0 or 1 depending on the value of rand compared to the values of
zsw , where e is a mathematical constant known as Euler’s number.
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2.5 Reproduction Process

BWO is inspired by Darwin’s natural selection theory, which is defined as gener-
ational descent accompanied by modification where species are subtly adjusted
over time and new species arise as a result.

In the BBWO-BCA algorithm, the procreation process begins and parents
(in pairs) are selected randomly to perform the procreating steps by mating to
bring forth the new generation. An array known as alpha will be generated to
complete further reproduction. Offspring c1 and c2 will be produced by taking
α with the following equation in which w1 and w2 are parents.{

c1 = α×w1 + (1 − α)×w2

c2 = α×w2 + (1 − α)×w1

(4)

2.6 Cannibalism Process

The BWO includes an exclusive stage, cannibalism. Cannibalism can be classi-
fied into three kinds: sexual cannibalism where the husband gets eaten by the
female black widow during or after mating, sibling-cannibalism where the weaker
siblings are eaten by the stronger siblings, and mother cannibalism where the
mother is eaten by her strongest child. The BBWO-HCA uses this concept of can-
nibalism and determines the weak or strong spiders by calculating and evaluating
their fitness values. The best solutions (surviving spiders) from the reproduction
process will be selected and stored in population two, i.e., pop2.

2.7 Mutation Process and New Population Generation

The procedure of mutations begins by randomly selecting a number of solutions
(widows) from the pop1 which will be mutated individually. Two cells from each
selected solution are randomly exchanged, and the new mutation solutions will
be kept in pop3. The new generation can finally be generated as a combination
of pop2 and pop3, which will then be evaluated to return the optimal solution
(W ∗) of values bearing the N dimension.

In the BBWO-HCA, the cannibalism rate (CR), the procreation rate (Pr),
and the mutation rate (Mr) are used as parameters. The value of the (CR)
is determined by the fitness values obtained by Eq. 1, and the Pr and Mr are
identical to those of the standard BWO.

2.8 HCA Steps

The algorithm uses the best solution (W ∗) of the BBWO as an initial solution
for the HCA. The solution is modified by selecting one feature randomly and
flipping the value of that feature, i.e., if the feature value is “0” it is changed to
“1” (which indicates adding one feature), and if the value is “1” it is changed
to “0” (which indicates deleting one feature). If the fitness value of the modified



268 A. Al-saedi and A.-R. Mawlood-Yunis

solution is improved, it will replace the old one, otherwise, it discards the new
solution.

Next, the HCA iteration counter and BBWO best solution (W ∗) are updated,
and the stopping criteria of the BBWO is checked. If the BBWO stopping condi-
tion is met, i.e., the max iterations are reached, the algorithm stops and returns
the best solution (W ∗), otherwise, a new iteration for the BBWO starts.

The pseudocode for the BBWO is shown in Fig. 1 and the additional steps
involved in implementing the HCA are shown in Fig. 2. Together, they form the
pseudocode for the BBWO-HCA.

3 Experiment Setup and Results

28 well-known datasets from the University of California Irvine (UCI)1 machine
learning repository have been used to investigate the performance and strength
of our proposed methods. The dataset is randomly split into 80% for the training
set and 20% for the test set. These rates are widely accepted data partition rates.
The datasets vary in the number of features and instances. Table 1 presents a
brief description of the datasets. Each row in the table represents the number of
features, objects, classes, and the domain to which each of these datasets belong.

The performance of our proposed method, the BBWO-HCA, is compared
with six well-respected binary FS algorithms: (BPSO [10], BMVO [2], BGWO
[1,7], BMFO [19], BWOA [11], BBAT [13]) based on the two evaluation criteria,
classification accuracy and the number of features selected.

To ensure an impartial comparison and a correct evaluation between our
proposed method and other FS algorithms, we re-implemented the six FS algo-
rithms using the same parameters values as illustrated in Table 2 and the same
transformation function as explained in Sect. 2.4. The algorithms are run inde-
pendently multiple times and the average accuracy and the average number of
features selected are reported.

3.1 BBWO-HCA vs. BBWO Results and Discussion 1

Table 3 shows the comparison between our two algorithms (BBWO-HCA and
BBWO algorithms) based on the two evaluation criteria (the classification accu-
racy and feature selected). The best classification accuracy and the lower number
of features selected are highlighted in bold.

The results show that the BBWO-HCA is more efficient than the BBWO in
terms of maximizing classification accuracy. The BBWO-HCA outperforms the
BBWO in 15 datasets and obtains the same results in 13 datasets in terms of
classification accuracy. When considering the average accuracy for all datasets,
the performance of the BBWO-HCA is better than the BBWO. This is shown
in Fig. 3.

1 The datasets can be downloaded here: https://archive.ics.uci.edu/ml/datasets.php.

https://archive.ics.uci.edu/ml/datasets.php
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Fig. 1. The Binary Black Widow Algorithm Pseudocode for FS

In terms of minimizing the total number of features selected, the results show
that the BBWO-HCA obtains better results than the BBWO in 26 datasets, the
same results in one dataset, and worse results in one dataset. The results also
show that on average, the BBWO-HCA is more efficient than the BBWO in this
regard. This is shown in Fig. 4.
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Fig. 2. BBWO with the Hill-climbing (BBWO-HCA) Algorithm

Table 1. Datasets description.

No. Datasets Features Objects Classes Domain

1 Breastcancer 9 699 2 Medical

2 BreastEW 30 569 2 Medical

3 CongressEW 16 435 2 Politics

4 Exactly 13 1000 2 Medical

5 Exactly2 13 1000 2 Medical

6 HeartEW 13 270 5 Medical

7 IonosphereEW 34 351 2 Electronic

8 Lymphography 18 148 4 Medical

9 M-of-n 13 1000 2 Medical

10 PenglungEW 325 73 2 Medical

11 SonarEW 60 208 2 Medical

12 SpectEW 22 267 2 Medical

13 Tic-tac-toe 9 958 2 Game

14 Vote 16 300 2 Politics

15 WaveformEW 40 5000 3 Physical

16 Zoo 16 101 7 Artificial

17 Colon 2000 62 2 Medical

18 Parkinsons 22 195 2 Medical

19 Lungcancer 21 226 2 Medical

20 Leukemia 7129 72 2 Medical

21 Dermatology 34 366 6 Medical

22 Semeion 256 1593 10 Handwriting

23 Satellite 36 5100 2 Physical

24 Spambase 57 4601 2 Computer

25 Segment 19 2310 7 Images

26 Credit 20 1000 2 Business

27 KrvskpEW 36 3196 2 Game

28 Plants-100 64 1599 100 Agriculture
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Table 2. BBWO-HCA Parameters

Parameter Name Value Parameter Name Value

Population-size 20 No. of iterations 10

Number of independent runs 20 K (KNN classifier) 5

Dimension-size No. of features Number of iterations for hill climbing 20

pr(procreate rate) 0.6 mr (mutation rate) 0.4

α 0.99 β 0.01

Table 3. Compression between BBWO-HCA and BBWO

Datasets Classification accuracy Feature selected

BBWO-HCA BBWO BBWO-HCA BBWO

Breastcancer 0.98 0.97 3.00 3.00

BreastEW 0.95 0.94 4.60 12.25

CongressEW 0.95 0.95 1.50 4.60

Exactly 1 0.91 5.25 3.75

Exactly2 0.77 0.77 2.00 3.65

HeartEW 0.85 0.84 2.55 3.80

IonosphereEW 0.90 0.88 9.45 13.75

Lymphography 0.85 0.85 4.05 6.80

M-of-n 1 0.95 5.75 7.00

PenglungEW 0.90 0.90 100.85 151.75

SonarEW 0.87 0.86 14.75 24.40

SpectEW 0.82 0.81 6.50 8.50

Tic-tac-toe 0.82 0.80 4.05 3.80

Vote 0.95 0.93 1.55 4.05

WaveformEW 0.88 0.88 19.80 20.60

Zoo 0.92 0.92 4.60 5.05

Parkinsons 0.90 0.90 2.65 7.70

Lungcancer 0.92 0.90 4.70 7.00

Colon 0.89 0.87 888.35 980.22

Leukemia 0.86 0.86 3499.75 3531.90

Dermatology 0.97 0.97 11.25 14.70

Semeion 0.94 0.93 120.00 130.00

Satellite 0.99 0.99 4.40 9.20

Spambase 0.93 0.93 21.10 28.60

Segment 0.96 0.96 6.60 7.70

Credit 0.79 0.79 6.00 7.22

KrvskpEW 0.97 0.95 15.80 19.00

Plants-100 0.81 0.80 32.20 32.50

Average 0.9050 0.8932 171.53 180.44

Rank 1 2 1 2



272 A. Al-saedi and A.-R. Mawlood-Yunis

Fig. 3. Average of classification accuracy of BBWO-HCA vs. BBWO

Fig. 4. Average of feature selection of BBWO-HCA vs. BBWO

3.2 BBWO-HCA vs. Six FS Algorithms, Results and Discussion 2

We compared the BBWO-HCA results with six FS algorithms (BPSO, BMVO,
BGWO, BMFO, BWOA, BBAT). The results are presented in Tables 4 and 5.
The test results reveal that the BBWO-HCA outperforms all six algorithms
unless an algorithm already reached the best possible solution, in which case
the BBWO-HCA results are the same as the other algorithm. For example, the
BBWO-HCA produced better results than the BPSO in 26 datasets and the
same results in two datasets.

In to the number of features selected, the test results reveal that the BBWO-
HCA outperforms all six FS algorithms for all 28 datasets tested, see Table 5.
These results are depicted pictorially in Figs. 5 and 6, and they show that the
BBWO-HCA is an effective algorithm for solving FS problems.
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Table 4. Comparison BBWO-HCA with all algorithms based on the classification
accuracy

Datasets Name BBWO BPSO BMVO BGWO BMFO BWOA BBAT

HCA

Breastcancer 0.98 0.96 0.97 0.96 0.97 0.97 0.96

BreastEW 0.95 0.94 0.94 0.95 0.94 0.93 0.94

CongressEW 0.95 0.92 0.95 0.95 0.95 0.95 0.94

Exactly 1 0.76 0.89 0.74 0.90 0.91 0.73

Exactly2 0.77 0.77 0.76 0.75 0.76 0.74 0.74

HeartEW 0.85 0.81 0.85 0.84 0.85 0.85 0.82

IonosphereEW 0.90 0.86 0.88 0.88 0.88 0.88 0.88

Lymphography 0.85 0.82 0.84 0.82 0.85 0.83 0.81

M-of-n 1 0.83 0.99 0.88 0.98 0.98 0.81

PenglungEW 0.90 0.87 0.89 0.89 0.89 0.88 0.88

SonarEW 0.87 0.86 0.87 0.86 0.86 0.87 0.86

SpectEW 0.82 0.81 0.81 0.82 0.82 0.81 0.81

Tic-tac-toe 0.82 0.74 0.81 0.78 0.82 0.81 0.76

Vote 0.95 0.91 0.94 0.94 0.94 0.94 0.93

WaveformEW 0.88 0.86 0.88 0.87 0.88 0.88 0.83

Zoo 0.92 0.89 0.89 0.88 0.88 0.90 0.89

Parkinsons 0.90 0.88 0.89 0.86 0.89 0.89 0.88

Lungcancer 0.92 0.88 0.91 0.90 0.91 0.91 0.90

Colon 0.89 0.86 0.89 0.87 0.87 0.87 0.87

Leukemia 0.86 0.83 0.86 0.85 0.86 0.86 0.85

Dermatology 0.97 0.89 0.96 0.95 0.97 0.97 0.92

Semeion 0.94 0.92 0.93 0.92 0.93 0.93 0.92

Satellite 0.99 0.99 0.99 0.99 0.99 0.99 0.99

Spambase 0.93 0.88 0.93 0.92 0.93 0.93 0.89

Segment 0.96 0.94 0.96 0.96 0.96 0.96 0.94

Credit 0.79 0.76 0.79 0.77 0.78 0.79 0.78

KrvskpEW 0.97 0.90 0.96 0.95 0.97 0.97 0.87

Plants-100 0.81 0.78 0.79 0.78 0.80 0.79 0.77

Average 0.9050 0.8614 0.8935 0.8760 0.8939 0.8925 0.8632

Rank 1 7 3 5 2 4 6
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Table 5. Comparison BBWO-HCA all algorithms based on the features selected

Datasets BBWO-HCA BPSO BMVO BGWO BMFO BWOA BBAT

Breastcancer 3.00 3.40 4.55 5.15 4.35 4.60 3.45

BreastEW 4.60 11.40 10.95 13.55 13.20 12.12 13.15

CongressEW 1.50 5.20 4.25 5.95 5.40 4.20 5.55

Exactly 5.25 5.30 7.25 7.05 7.05 6.65 5.80

Exactly2 2.00 3.95 2.33 5.40 3.15 2.10 3.50

HeartEW 2.55 4.25 3.45 4.15 3.70 3.45 4.65

IonosphereEW 9.45 14.35 13.35 15.90 15.00 12.55 16.55

Lymphography 4.05 7.60 6.66 7.56 7.35 6.35 7.55

M-of-n 5.75 5.50 7.22 8.00 6.75 7.35 6.15

PenglungEW 100.85 154.80 152.35 155.20 152.45 146.35 156.85

SonarEW 14.75 27.05 25.55 28.05 28.95 23.85 27.00

SpectEW 6.50 8.95 8.22 10.15 8.20 8.75 9.85

Tic-tac-toe 4.05 4.20 4.55 4.55 4.41 4.05 4.28

Vote 1.55 5.05 4.95 6.35 5.85 4.50 6.15

WaveformEW 19.80 22.00 22.15 21.45 21.35 19.45 20.25

Zoo 4.60 5.59 6.35 6.65 6.13 5.75 6.50

Parkinsons 2.65 8.00 8.45 9.15 9.10 8.20 9.25

Lungcancer 4.70 7.25 8.66 9.35 8.90 8.05 8.95

Colon 888.35 961.65 963.25 965.55 962.15 943.55 963.35

Leukemia 3499.75 3555.82 3571.85 3535.85 3534.55 3511.35 3513.50

Dermatology 11.25 16.85 15.95 16.70 16.60 16.45 16.50

Semeion 120.00 131.85 127.00 128.6 131.60 126.80 126.70

Satellite 4.40 13.01 10.55 12.40 11.40 10.10 12.45

Spambase 21.10 29.77 26.55 30.50 26.25 26.50 27.25

Segment 6.60 8.72 9.25 9.90 9.95 8.90 9.60

Credit 6.00 8.41 7.95 8.50 8.30 7.72 8.75

KrvskpEW 15.80 19.73 19.81 21.30 18.56 17.92 18.45

Plants-100 32.20 35.55 33.15 33.80 33.32 34.15 35.50

Average 171.53 181.61 181.66 181.66 180.85 178.27 180.26

Rank 1 5 6 6 4 2 3

Fig. 5. Average number of classification accuracy of all algorithms
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Fig. 6. Average number of features selected of all algorithms

4 Conclusion and Future Works

Recently, a novel algorithm, the Black Widow Algorithm (BWO), has been devel-
oped to solve optimization problems. BWO is derived from nature; it mimics the
singular mating behaviour exhibited by the black widow spider.

Initially, we developed the BBWO algorithm based on the BWO for solving
FS problems. In this work, we further improved the BBWO by combining it with
the Hill-Climbing Algorithm. The newly developed algorithm, BBWO-HCA, is
tested using 28 UCI datasets and compared with six well-regarded algorithms
in the domain. The test results show that the BBWO-HCA outperforms the
BBWO and almost all comparable algorithms for most datasets tested.

This work opened the door for further FS and optimization studies. Examples
of such studies are:

– The test results of the BBWO-HCA can be further analyzed to determine
the impact of the dataset size, number of features in the dataset, number of
instances, etc. on the performance of the algorithm.

– Combining the BBWO with other algorithms and studying the outcomes of
these new combinations are open future works.

– The BBWO and BBWO-HCA can be applied to various other areas of study
to solve many other real-world optimization problems such as text mining,
clustering, image processing, and routing problems.
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Abstract. Among the clustering methods, K-Means and its variants
are very popular. These methods solve at each iteration the first-order
optimality conditions. However, in some cases, the function to be mini-
mized is not convex, as for the Fuzzy C-Means version with Mahalanobis
distance (FCM-GK). In this study, we apply the Alternating Directions
Method of Multiplier (ADMM) to ensure a good convergence. ADMM
is often applied to solve a separable convex minimization problem with
linear constraints. ADMM is a decomposition/coordination method with
a coordination step provided by Lagrange multipliers. By appropriately
introducing auxiliary variables, this method allows the problem to be
decomposed into easily solvable convex subproblems while keeping the
same iterative structure. Numerical results have demonstrated the sig-
nificant performance of the proposed method compared to the standard
method, especially for high-dimensional data.

Keywords: Clustering · FCM · Mahalanobis distance ·
Optimization · ADMM

1 Introduction

Clustering is a data analysis process that consists to split n objects of the dataset
into c subsets, with the idea that each group (subset) has similar objects and
that the subsets are quite distinguishable from each other [15]. It allows the
detection of hidden structures in data sets without prior knowledge. Several
different approaches exist, the methods are distinguished by the nature of the
partitions created. Among the models using centroids to represent clusters, there
is a variant of K-Means called Fuzzy C-Mean (FCM) [2,3] which allows to take
into account the uncertainty. This method creates a fuzzy partition that model
the degree to which each object belongs to each cluster. It is still used in various
fields such as bioinformatics [1] and image analysis [5,21]. The similarity between
objects and centroids in the FCM algorithm is calculated with the Euclidean
distance. The algorithm of Gustafson and Kessel FCM-GK [13] is an extension
of FCM that adjusts an adaptive distance for each cluster. It allows us to take

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
B. Dorronsoro et al. (Eds.): OLA 2023, CCIS 1824, pp. 277–286, 2023.
https://doi.org/10.1007/978-3-031-34020-8_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-34020-8_21&domain=pdf
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into account the shape of the clusters, to detect not only spherical structures
but also ellipsoidal structures. Indeed, based on the Mahalanobis distance, the
algorithm adapts symmetric positive definite matrices interpreted as the inverse
of the fuzzy covariance matrices of clusters. FCM and GK are two non-convex
optimization problems under constraints for which the standard optimization
method is the alternating optimization (AO) method, an iterative method of
the Gauss-Seidel type.

The Alternating Direction Method of Multiplier (ADMM) is a simple but pow-
erful decomposition-coordination method. It decomposes the problem into sub-
problems, and the solutions obtained locally are coordinated by Lagrange multi-
pliers to find a solution for the global problem. This method was introduced in the
mid-1970s for the numerical approximation of non-smooth convex problems from
mechanics [9,12]. This method has been used in many fields, first of all in nonlin-
ear mechanics [8,11,12,16], also in image restoration [17], in neural networks [7], in
large scale optimization [6,16], etc. A summary of ADMM applications in machine
learning is available in [4]. The standard ADMM focuses on the minimization of
separable (convex) functions with linear coupling constraints.

In this paper, we extend the application of ADMM to the non-convex cost func-
tion of FCM-GK. ADMM divides the FCM-GK problem into a sequence of sim-
pler, uncoupled subproblems, through the appropriate introduction of unknown
auxiliary variables. The solution formulation is close to the one obtained by alter-
nating optimization for the original variables (centroids, distance-related member-
ship matrices). The auxiliary variables sub-problem leads to the solution of small
uncoupled linear systems. Numerical experiments on UCI machine learning data
show that the proposed FCM-ADMM algorithm is robust, insensitive to random
initialization, and generally creates better partitioning.

The paper is organized into four sections. Section 2 presents the GK model
and the standard method optimization (AO). Then, in Sect. 3, we describe the
application of the ADMM method in this context. In Sect. 4, the numerical
experiments are presented. Finally, the conclusion and perspectives are given in
Sect. 5.

2 FCM-GK Model

2.1 Optimisation Problem

Let the data set represented by X = (x1 . . .xn) contain n objects xi ∈ R
p,

p is the number of attributes. The objective is to group objects into c clusters
2 ≤ c < n. The variables used in the FCM-GK method are

– the matrix of membership degrees (n × c), U = (uij) such that,

uij ∈ [0, 1],
c∑

j=1

uij = 1,

n∑

i=1

uij > 0. (1)

– the centroids of each group V = {v1, . . . ,vc}, vj ∈ R
p,
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– the positive definite matrices, S = {S1, . . . ,Sc}, inducing the norm of each
group, Sj ∈ R

p×p.

The K-Means algorithm and its variants focuses on minimizing the intra-class
inertia. In FCM-GK, the unknown variables (U ,V ,S) are determined by opti-
mizing the following problem

min
(U ,V,S)

J(U ,V ,S) =
n∑

i=1

c∑

j=1

um
ijq

�
ijSjqij , (2)

with the constraints, ∀i, j ∈ [1, n] × [1, c],

uij ≥ 0,
c∑

j=1

uij = 1,
n∑

i=1

uij > 0, (3)

det(Sj) = ρj , ∀j ∈ [1, c] (4)

where
qij = xi − vj . (5)

The fuzzy parameter m allows us to control the fuzziness of the partition. It’s
usually fixed at 2 [19]. The constraint Eq. (4) avoid trivial solution for the
minimization is the solution with all Sj matrices zero. From a geometric point
of view, ρj is the constant volume of the cluster j.

2.2 Alternating Optimization Method (AO)

The method used by Gustafson and Kessel to resolve this constrained problem is
the alternating optimization method (AO) [13]. It is also used for the other ver-
sions of k-means, such as PFCM [20] and ECM [18]. Starting from (U0,V0,S0),
the method successively minimizes U , V and S using first-order optimality con-
ditions:

Uk+1 = arg min
U∈U

J(U ,Vk,Sk), (6)

Vk+1 = arg min
V

J(Uk+1,V ,Sk), (7)

Sk+1 = arg min
S∈S1

J(Uk+1,Vk+1,S). (8)

With the two sets of constraints (3) and (4):

U =

⎧
⎨

⎩uij ≥ 0,
c∑

j=1

uij = 1,
n∑

i=1

uij > 0

⎫
⎬

⎭ ,

S1 = {S, p × p symmetric positive matrix,det(S) = 1} .

Algorithm 1 describes the FCM-GK algorithm. It stops when the partition is sta-
bilized, i.e. when the absolute error between two successive U matrices (member-
ship degrees) is smaller than a threshold fixed at 10−3. Note that for t iterations,
its complexity is O(tnc2p) [10].
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Algorithm 1. FCM-GK
1: Intput : c
2: err = 0, k = 0,
3: U 0 random initialization or through FCM.
4: while err > 10−3 do
5: k ← k + 1

6: compute Vk : vk
j =

∑n
i=1 uk−1

ij xi
∑n

i=1 uk−1
ij

, qk
ij = xi − vk

j .

7: compute Sk : Σk
j =

∑n
i=1 u

k−1
ij qk

ij(q
k
ij)

�,Sk
j = det(Σj)

1
p (Σk

j )−1.

8: compute U k : uk
ij =

[
∑c

�=1

(qk
ij)

�S k
j qk

ij

(qk
i�

)�S k
�
qk

i�

]−1

.

9: err ←‖ U k − U k−1 ‖
10: end while
11: Output : U k,Vk,Sk

3 Alternating Direction Method of Multipliers (ADMM)

The main idea of Alternating Direction Methods of Multipliers, introduced in
the mid-1970s, is to use a decomposition/coordination process where the coor-
dination is realized by Lagrange multipliers [8,9,12].

3.1 Augmented Lagrangien’s Formulation

ADMM does not only minimize the objective function but also the associated
augmented Lagrangian. Before formulating the latter, it is necessary to intro-
duce auxiliary variables into the original problem to obtain a constrained block
optimization problem. First, we write the characteristic functions of the original
constraints to introduce them in the function to be minimized.

IU (U) =

{
0 if U ∈ U
+∞ else

, IS1(Sj) =

{
0 if Sj ∈ S1

+∞ else.

and IS1(S) =
∑

j IS1(Sj). In addition to the auxiliary variables Q (5), we
introduce the variables P

pij = uijqij = uij(xi − vj).

Thus, we reformulate the cost function as (2) which becomes:

J(U ,V ,S,Q,P) =
n∑

i=1

c∑

j=1

p�
ijSjpij . (9)

To simplify the writings we note:
UUU = (U ,V ,S) the set of variables of the problem and QQQ = (Q,P) the set of
auxiliary variables. The constrained minimization problem becomes (2)–(8)

min J(UUU,QQQ) + IU (U) + IS1(S) (10)
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under constraints

qij = xi − vj , (11)
pij = uijqij . (12)

The coupling constraints are defined in such a way as to guarantee the equiv-
alence (in terms of solution) with the original problem (2)–(8), while allowing
independent optimization of variables. With (10)–(12), the function of the aug-
mented Lagrangian is :

Lr(UUU,QQQ,YYY) = J(UUU,QQQ) + IU (U) + IS1(S)

+
∑

i,j

[
y�

ij(qij − xi + vj) + z�
ij(pij − uijqij)

]

+
r

2

∑

i,j

[‖ qij − xi + vj ‖2 + ‖ pij − uijqij ‖2] (13)

where r > 0 is the penalty term, ‖ · ‖ is the Euclidean norm, yij and zij are the
Lagrange multipliers associated with the constraints of the auxiliary variables
(11) and (12), represented by YYY = (Y ,Z).

3.2 Application of ADMM

We apply the ADMM method to the augmented Lagrangian (13) by the fol-
lowing iterative algorithm. Starting with QQQ

0 : (Q0,P0) and YYY
0 :(Y0,Z0), we

successively compute UUU
k : (Uk,Vk,Sk), QQQk : (Qk,Pk) and YYY

k :(Yk,Zk) by the
following procedure.

UUU
k+1 = arg min

UUU

Lr(UUU,QQQk,YYYk), (14)

QQQ
k+1 = arg min

QQQ

Lr(UUUk+1,QQQ,YYYk), (15)

yk+1
ij = yk

ij + r(qk+1
ij − xi + vk+1

j ), (16)

zk+1
ij = zk

ij + r(pk+1
ij − uk+1

ij qk+1
ij ). (17)

Note that the iterations of the ADMM method (14)–(17) admit exact updates if
1) the function is bi-convex, i.e., convex along UUU for QQQ fixed and reciprocally, and
2) if the constraints are bi-affine, i.e., affine in UUU for QQQ fixed and reciprocally [4].
In (10), IS1(S) is non-convex because of the constraint det(Sj) = 1. To ensure
the convergence of the method, it is sufficient to fix a number ita of repetitions
of the relaxation blocks (14)–(15), recommended ita = 5, before updating the
multipliers [11,16].

Solution of the subproblem (14) in UUU

Assuming the auxiliary variables QQQ and the multipliers YYY
k fixed, the problem

(14) of the augmented Lagrangian (13) is decoupled according to each variable
of UUU, to be optimized separately.
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Vk+1 = arg min
V

n∑

i=1

c∑

j=1

(yk
ij)

�(qk
ij − xi + vj) +

r

2
‖ qk

ij − xi + vj ‖2, (18)

Uk+1 = arg min
U

IU (U) +
n∑

i=1

c∑

j=1

(yk
ij)

�(pk
ij − uijq

k
ij)

+
r

2
‖ pk

ij − uijq
k
ij ‖2,

(19)

Sk+1 = arg min
S

n∑

i=1

c∑

j=1

(pk
ij)

�Sjp
k
ij + IS1(S). (20)

The subproblems (18)–(20) are solved by taking the first-order optimality
conditions, as for the AO method. Thus, the formulations obtained are quite
close :

vk+1
j =

1
n

n∑

i=1

(
xi − qk

ij − 1
r
yk

ij

)
, (21)

uk+1
ij =

1
r2αk

i ‖ qk
ij ‖2

[
rαk

i (qk
ij)

�z̃k
ij + 1 −

c∑

�=1

(qk
i�)

�z̃k
i�

‖ qk
i� ‖2

]
, (22)

Sk+1
j = det(Σk

j )1/p(Σk
j )−1, (23)

with,

z̃k
ij = zk

ij + rpk
ij , αk

i =
1
r

c∑

j=1

1
‖ qk

ij ‖2 , Σk
j =

n∑

i=1

pk
ij(p

k
ij)

�.

Solution of the subproblem (15) in QQQ

Now assuming the variables UUU and the multipliers YYYk are fixed. The sub-problem
in QQQ : (Q,P) is an unconstrained optimization problem. Since Q �→ F (QQQ) =
Lr(UUUk+1,QQQ,YYYk) is quadratic, the unique solution is obtained by solving the
gradient equation ∇F (QQQ) = 0. A simple calculation allows to obtain the following
linear system in (qij ,pij).

r(1 + (uk+1
ij )2)qij − ruk+1

ij pij = uk+1
ij zk

ij − yk
ij + r(xi − vk+1

j ) (24)

−ruk+1
ij qij + (2Sk+1

j + rI)pij = −zk
ij (25)

It follows that at each iteration, we solve nc linear systems of size 2p

Ak
ij

[
qij ,
pij

]
= bk

ij (26)
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Ak
ij =

[
r(1 + (uk+1

ij )2)I −ruk+1
ij I

−ruk+1
ij I 2Sk+1

j + rI

]
, bk

ij =
[

uk+1
ij zk

ij − yk
ij + r(xi − vk+1

j )
−zk

ij

]
.

Algorithm
Algorithm 2 summarises the ADMM method. The stopping criterion is now
the relative error on all primal and dual variables less than a threshold fixed
at 10−3. For t iterations, the complexity of our method is the same O(tnc2p).
We initialize ADMM with random UUU, same then AO, and construct all other
variables QQQ (11)–(12). The Lagrange multipliers are initialized by solving the
first order optimality condition (10)–(12), deriving the Lagrangian according to
the variables Q,P : z0

ij = 2S0
jp

0
ij ,y

0
ij = u0

ijz
0
ij ,∀i, j.

Algorithm 2. ADMM
1: Intput : Number of clusters c, penalty term r
2: err = 1, k = 0,
3: Random initialization or through ADMM(euclidean).
4: while err > 10−3 do
5: k ← k + 1
6: for 1 until 5 do ( ita repetitions of the relaxation blocks)
7: Vk,Sk and U k respectively according to (21), (23) et (22)
8: Qk,Pk solving the system (26)
9: end for

10: Yk,Zk respectively according to (16) et (17)
11: err ←‖ (UUU,QQQ)k − (UUU,QQQ)k−1 ‖ / ‖ (UUU,QQQ)k ‖
12: end while
13: Output : U k,Vk,Sk

4 Numerical Experiences

In this section, we studied the performance of our ADMM method for the FCM
problem with Mahalanobis distance. We used Matlab (R2021). The penalty term
r influences the performance of ADMM. In order to fine-tune this parameteriza-
tion, we normalized all the data between [−1, 1]. Thus we take for r default the
product of the dimensions to ensure the coordination of the variables, rd = 4cnp.
To find the optimal value r∗, we test several values and keep the one that con-
verges the fastest in term of iterations.

In our study, we have fixed m = 2 and ρj = 1,∀j ∈ [1, c], such as [13]. We
compare the three following algorithms:

– FCM-GK, the original method with alternating optimization on the GK
model.

– ADMMr∗ , ADMM applied to the augmented Lagrangian (13), with the opti-
mal penalty value r∗.

– ADMMrd
, the same algorithm with the default value rd.
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In order to evaluate these different methods, we will use an external evaluation
criterion that measures the similarity between two hard partitions: the clustering
result and the ground truth. It is however necessary to transform the fuzzy par-
tition into hard partition by assigning each object to the cluster with the highest
membership. We used the Ajusted Rand Index (ARI) introduced by Hubert et al.
[14]. The ARI value is between 0 and 1, 1 corresponding to identical partitions.

We used 11 data sets. The first five corresponds to real data from the UCI
library1: IRIS, WINE, SEEDS, WDBC, and DRYBEAN. We also used six syn-
thetic data sets2: A1, A3, DIM32, DIM64, S1, and S3. We have referenced Table 1
their characteristics, i.e. the number of classes c, objects n and attributes p, as
well as the optimal penalty parameter r∗, and by default rd. For insensitivity
of the results to the initialization for every algoithms, we first ran ADMM with
the Euclidean distance (ADMMeu) with r = 2.5 and set a maximum number of
iterations to 50 starting with random U0.

Table 1. Characteristics of data sets.

IRIS WINE SEEDS WDBC DRYBEAN A1 A3 DIM32 DIM64 S1 S3

c 3 3 3 2 7 20 50 16 16 15 15

n 150 178 210 569 13611 3000 7500 1024 1024 5000 5000

p 4 13 7 30 16 2 2 32 64 2 2

r∗ 13 30 480 710 2.105 2000 1000 300 50 100 800

rd 7200 27768 17640 136560 6.097.728 4, 8.104 3.106 221 222 6.105 6.105

Table 2 shows that the ADMM methods perform better overall than the
FCM-GK method, except for DRYBEAN, where FCM-GK is better. It seems
that the larger number of individuals per class and the ratio between the number
of clusters and the number of individuals explain this behavior.

Table 2. ARI score (UCI).

IRIS WINE SEEDS WDBC DRYBEAN

FCM-GK 0.74 0.34 0.72 0.41 0.70

ADMMr∗ 0.78 0.81 0.71 0.74 0.32

ADMMrd 0.72 0.90 0.71 0.74 0.32

Table 3, corresponding to the results for the synthetic data, confirms this
characteristic: the greater the number of clusters (A1, A3) the lower the ARI
score. On the other hand, the greater the number of dimensions (DIM32,
DIM64), the better the score.

1 https://archive.ics.uci.edu/ml/datasets.php.
2 https://cs.joensuu.fi/sipu/datasets/.

https://archive.ics.uci.edu/ml/datasets.php
https://cs.joensuu.fi/sipu/datasets/
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Although their complexity is of the same order of magnitude, the ADMM
method is the fastest especially with the default penalty rd. Table 4 lists the num-
ber of iterations for some data, measured for ten different random initializations
(ADMMeu).

Table 3. ARI score (Synthetic data).

A1 A3 DIM032 DIM064 S1 S3

FCM-GK 0.90 0.93 0.44 0.18 0.97 0.66

ADMMr∗ 0.23 0.16 0.57 0.68 0.33 0.24

ADMMrd 0.20 0.16 0.57 0.68 0.33 0.26

Table 4. Number of iterations (mean ± standard deviation).

IRIS WINE SEEDS WDBC A1 S1

ADMMeu 30 ± 1 33 ± 3 30 ± 4 26 ± 1 10 ± 2 10 ± 0

FCM-GK 67 ± 0 113 ± 0 41 ± 0 35 ± 0 197 ± 75 92 ± 37

ADMMr∗ 35 ± 0 41 ± 0 6 ± 0 7 ± 0 4 ± 0 3 ± 0

ADMMrd 2± 0 2± 0 4± 0 3± 0 2± 0 2± 0

5 Conclusion

We have proposed an application of the ADMM method for the FCM clustering
model with the Mahalanobis distance. The interest of this method is to divide
the problem into a sequence of simpler sub-problems, easy to solve. Convergence
to the same minimum, assumed to be global, is ensured. The results obtained on
several data sets (real or synthetic) show good performances, in terms of ratios of
well-classified samples, when the number of clusters is not too large or when the
number of dimensions is significantly higher. To simplify the use of our method,
we have proposed a default value for the penalty term (hyperparameter), whose
convergence is assured and close to that of the optimal value. Our methods need
less iterations than FCM-GK to converge and consequently are faster regarding
the execution time.

The results are very encouraging. To confirm them, we wish to apply our
method to a biology dataset, where many objects to be classified have a large
number of attributes. To facilitate the use of our method, a formulation with
an adaptive penalty is envisaged to replace the study of the optimal r. Finally,
our study opens the possibility to apply the ADMM method to other cluster-
ing methods, having a non-convex objective function particularly those using
alternating optimization.
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Abstract. A well-known bottleneck of Min-Sum-of-Square Clustering
(MSSC, the celebrated k-means problem) is to tackle the presence of
outliers. In this paper, we propose a Partial clustering variant termed
PMSSC which considers a fixed number of outliers to remove. We solve
PMSSC by Integer Programming formulations and complexity results
extending the ones from MSSC are studied. PMSSC is NP-hard in
Euclidean space when the dimension or the number of clusters is greater
than 2. Finally, one-dimensional cases are studied: Unweighted PMSSC is
polynomial in that case and solved with a dynamic programming algo-
rithm, extending the optimality property of MSSC with interval clus-
tering. This result holds also for unweighted k-medoids with outliers. A
weaker optimality property holds for weighted PMSSC, but NP-hardness
or not remains an open question in dimension one.

Keywords: Optimization · Min-Sum-of-Square · Clustering ·
K-means · outliers · Integer Programming · Dynamic Programming ·
Complexity

1 Introduction

The K-means clustering of n d-dimensional points, also called Min Sum of Square
Clustering (MSSC) in the operations research community, is one of the most
famous unsupervised learning problem, and has been extensively studied in the
literature. MSSC was is known to be NP hard [4] when d > 1 or k > 1. Special
cases of MSSC are also NP-hard in a general Euclidean space: the problem is
still NP-hard when the number of clusters is 2 [1], or in dimension 2 [15]. The
case K = 1 is trivially polynomial. The 1-dimensional (1D) case is polynomially
solvable with a Dynamic Programming (DP) algorithm [19], with a time com-
plexity in O(KN2) where N and K are respectively the number of points and
clusters. This last algorithm was improved in [9], for a complexity in O(KN)
time using memory space in O(N). A famous iterative heuristic to solve MSSC

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
B. Dorronsoro et al. (Eds.): OLA 2023, CCIS 1824, pp. 287–303, 2023.
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was reported by Lloyd in [14], and a local search heuristic is proposed in [12].
Many improvements have been made since then: See [11] for a review.

A famous drawback of MSSC clustering is that it is not robust to noise nor to
outliers [11]. The K-medoid problem, the discrete variant of the K-means prob-
lem addresses this weakness of MSSC by computing the cluster costs by choosing
the cluster representative amongs the input points and not by calculating cen-
troids. Although K-medoids is more robust to noise and outliers, it induces more
time consuming computations than MSSC [5,10]. In this paper, we define Partial
MSSC (PMSSC for short) by considering a fixed number of outliers to remove as
in partial versions of facility location problems like K-centers [7] and K-median
[3], and study extensions of exact algorithms of MSSC and report complexity
results. Note that a K-means problem with outliers, studied in [13,20], has some
similarities with PMMSC, we will precise the difference with PMMSC. To our
knowledge, PMSSC is studied for the first time in this paper.

The remainder of this paper is structured as follows. In Sect. 2, we introduce
the notation and formally describe the problem. In Sect. 3, Integer Programming
formulations are proposed. In Sect. 4, we give first complexity results and ana-
lyze optimality properties. In Sect. 5, a polynomial DP algorithm is presented
for unweighted MSSC in 1D. In Sect. 6, relations with state of the art and exten-
sion of these result are discussed. In Sect. 7, our contributions are summarized,
discussing also future directions of research. To ease the readability, the proofs
are gathered in an Appendix.

2 Problem Statement and Notation

Let E = {x1, . . . , xN} be a set of N distinct elements of R
L, with L ∈ N

∗.
We note discrete intervals [[a, b]] = [a, b] ∩ Z, so that we can use the notation of
discrete index sets and write E = {xi}i∈[[1,N ]]. We define ΠK(E), as the set of
all the possible partitions of E into K subsets:

ΠK(E) =

{
P ⊂ P(E)

∣∣∣∣ ∀p, p′ ∈ P, p ∩ p′ = ∅ and
⋃
p∈P

= E and card(P ) = K

}

MSSC is special case of K-sum clustering problems. Defining a cost function
f for each subset of E to measure the dissimilarity, K-sum clustering are com-
binatorial optimization problems indexed by ΠK(E), minimizing the sum of the
measure f for all the K clusters partitioning E:

min
π∈ΠK(E)

∑

P∈π

f(P ) (1)

Unweighted MSSC minimizes the sum for all the K clusters of the average
squared distances from the points of the clusters to the centroid. Denoting with
d the Euclidean distance in R

L:

∀P ⊂ E, fUMSSC(P ) = min
c∈RL

∑

x∈P

d(x, c)2 =
∑

x∈P

d

⎛

⎝x,
1

|P |
∑

y∈P

y

⎞

⎠
2

(2)
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Fig. 1. MSSC clustering of a Pareto front in 4 clusters: (a) no outliers, (b) 2 outliers,
(c) 3 outliers, and (d) 4 outliers.

The last equality can be proven using convexity and order one optimality con-
ditions. In the weighted version, a weight wj > 0 is associated to each point
xj ∈ E. For x ∈ E, w(x) denotes the weight of point x. Weighted version of
MSSC considers as dissimilarity function:

∀P ⊂ E, fMSSC(P ) = min
c∈RL

∑

x∈P

w(x) × d(x, c)2 (3)

Unweighted cases correspond to wj = 1. Analytic computation of weighted
centroid holds also with convexity:

fMSSC(P ) =
∑

x∈P

w(x) × d

⎛

⎝x,
1∑

z∈P w(z)

∑

y∈P

w(y) × y

⎞

⎠
2

(4)

We consider a partial clustering extension of MSSC problem, similarly to the
partial p-center and facility location problems [3,7]. A bounded number M < N
of the points may be considered outliers and removed in the evaluation. It is an
optimal MSSC computation enumerating each subset E′ ⊂ E removing at most
M points, i.e. such that |E \ E′| � M . It follows that PMSSC can be written as
following combinatorial optimization problem:

min
E′⊂E:|E\E′|�M

min
π∈ΠK(E′)

∑

P∈π

fMSSC(P ) (5)

Figure 1 shows an example of MSSC and PMSSC with M ∈ {2, 3, 4}.
In the “robust K-means problem” studied in [13,20], also denoted or “K-

means problem with outliers”, “robust” also denotes the partial variant with a
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defined number of outliers. It is not the usual meaning of robust optimization in
the operations research community. These papers consider only the unweighted
version of the problem, this paper highlights the difficulty of meaningfully formu-
lating such a problem. The crucial difference with our assumptions is that their
partial version concerns a discrete clustering version with a discrete set of possi-
ble centroids like K-medoids, not a partial version of MSSC where the centroid
is continuous. Such problem will be denoted as “partial K-medoids problem”, it
is defined with (5) with following fmedoids measure instead of fMSSC :

fmedoids(P ) = min
c∈P

∑

x∈P

d(x, c)2 (6)

3 Mathematical Programming Formulations

Partial MSSC can be formulated with Integer Programming formulations,
extending the ones from MSSC [2,17,18].

For n ∈ [[1;N ]] and k ∈ [[1;K]], we use binary variables zn,k ∈ {0, 1} defined
with zn,k = 1 if and only if point xn is assigned to cluster k ∈ [[1,K]]. Using
definition (3), the weighted centroid of cluster K is defined as a continuous
variable ck ∈ R

L
+. It give rises to a first quadratic formulation:

min
zn,k,ck

K∑

k=1

N∑

n=1

wnd(xn, ck)2zn,k (7)

s.t :
K∑

k=1

zn,k � 1 ∀n, (8)

N∑

n′=1

K∑

k=1

zn′,k � N − M (9)

Objective function (7) holds also for (1) and (3) with zn,k encoding subsets
P ∈ π. If M = 0, constraint (9) is equivalent to

∑K
k=1 zn′,k = 1 for each index n′,

point xn′ shall be assigned to exactly one cluster. Constraints (8) impose that
each point is assigned to at least one cluster. Constraint (9) aggregates that at
most M points are unassigned, i.e.

∑K
k=1 zn′,k = 0 for these xn′ , and the other

ones fulfill
∑K

k=1 zn′′,k = 1.

As for unpartial MSSC, last quadratic formulation is not solvable by mathe-
matical programming solvers like Cplex and Gurobi because of non-convexity of
the objective function. A compact reformulation, as for unpartial MSSC, allows
such straightforward resolution. Using additional continuous variables sn,k � 0
as the squared distance from point xn to its cluster centroid ck if zn,k = 1 and
0 otherwise. It induces following convex quadratic formulation with quadratic
convex constraints with a big M that can be set to D = maxi,i′ d2i,i′ :
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min
zn,k,sn,k,ck

K∑

k=1

N∑

n=1

wnsn,k (10)

s.t :
K∑

k=1

zn,k � 1 ∀n, (11)

s.t :
N∑

n′=1

K∑

k=1

zn′,k � N − M (12)

sn,k � d(xn, ck)2 − D(1 − zn,k) ∀n, k, (13)

Previous formulations have a common weakness, it induces symmetric solu-
tions with permutations of clusters, which makes Branch & Bound tree search
inefficient. As in [2] for unpartial MSSC, an extended reformulation can improve
this known bottleneck. Enumerating each subset of E, p ∈ P = 2E , cp denotes
the clustering cost of p with formula (4), and we define a binary variable
zp ∈ {0, 1} with zp = 1 if and only if subset p is chosen as a cluster. We define
binaries yn ∈ {0, 1} with yn = 1 if and only if point xn is chosen to be counted
as outlier and not covered.

PMSSC = min
z

∑

p∈P
cpzp (14)

s.c : ∀n,
∑

p∈P 11n∈pzp � 1 − yn (15)
∑

n yn � M (16)
∑

p∈P zp � K (17)

Objective function (14) is linear in the extended reformulation. Constraint (16)
bounds the maximal budget of uncovered points. Constraint (17) bounds the
maximal number of clusters, having more clusters decreases the objective func-
tion. Constraints (15) express that either a point xn is uncovered when yn = 1
and there is no need to select a subset which contains xn, or one subset (at least)
contains xn. Note that 11n∈pzp is one if and only if subset p contains point xn.
These constraints are written with inequalities, equalities are valid also to have
the same optimal solutions. Inequalities are preferred for numerical stability with
Column Generation (CG) algorithm.

Variables zp, contrary to variables yn, are of an exponential size and cannot
be enumerated. CG algorithm applies to generate only a subset of zp variables to
compute the continuous (LP) relaxation of (14)–(17). We consider the Restricted
Master Problem (RMP) for a subset of zp variables in P ′ ⊂ P of the LP relax-
ation, so that dual variables are defined for each constraint:

RMP(P ′) = min
z�0

∑

p∈P′
cpzp

s.c : ∀n, yn +
∑

p∈P′ 11n∈pzp � 1 (πn)
−∑

n yn � −M (λ)
−∑

p∈P′ zp � K (σ)

(18)
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Inequalities imply that dual variables σ, λ, πn � 0 are signed. This problem is
feasible if E ∈ P ′ or if a trivial initial solution is given. Applying strong duality:

RMP(P ′) = max
πn,σ,λ�0

−Kσ − Mλ +
∑

n

πn

s.t : ∀p ∈ P ′, −σ +
∑

n 11n∈pπn � cp (zp)
∀n, πn − λ � 0 (yn)

(19)

Having only a subset of zp variables, RMP is optimal if for the non generated
zp variables, we have −σ +

∑
n 11n∈pπn � cp. Otherwise, a cluster p should be

added in the RMP if −σ +
∑

n 11n∈pπn > cp. It defined CG sub-problems:

SP = min
p∈P

cp −
∑

n

11n∈pπn (20)

CG algorithm iterates adding subsets p such that cp − ∑
n 11n∈pπn < −σ. Once

SP� −σ, the RMP is optimal for the full extended formulation.

As constraints (16) are always in the RMP, partial clustering induces the
same pricing problem with [2]. Primal variables yn influence numerical values of
RMP, and thus the values of dual variables πn, σ that are given to the pricing
problem, but not the nature of sub-problems. Sub-problems SP can be solved
with Cplex or Gurobi, using the same reformulation technique as in (10)–(13).
Defining binaries zn ∈ {0, 1} such that zn = 1 iff point xn is assigned to the
current cluster, sub-problem SP is written as:

SP = min
p∈P

cp −
∑

n

πnzn (21)

Considering continuous variables c ∈ R
d for the centroid of the optimal cluster,

and sn � 0, the squared distance from point xn to centroid c if zn = 1 and 0
otherwise. It gives rise to the following convex quadratic formulation:

SP = min
zn,sn,cd

N∑

n=1

sn −
∑

n

πnzn

s.t : ∀n, sn � d(xn, c)2 − D(1 − zn)

(22)

CG algorithm can thus be implemented using Cplex or Gurobi for LP com-
putations of RMP and for computations of SP. This gives a lower bound of the
integer optimum. Integer optimality can be obtained using Branch & Price.

4 First Complexity Results, Interval Clustering
Properties

PMSSC polynomially reduces to MSSC: if any instance of PMSSC (or a subset
of instances) is polynomially solvable, this is the case for any corresponding
instance of MSSC considering the same points and a value M = 0 and the same
algorithm. Hence, NP-hardness results from [1,4,15] holds for PMSSC:
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Theorem 1. Following NP-hardness results holds for PMSSC:

• PMSSC is NP-hard for general instances.
• PMSSC is NP-hard in a general Euclidean space.
• PMSSC is NP-hard for instances with a fixed value of K � 2.
• PMSSC is NP-hard for instances with a fixed value of L � 2.

After Theorem 1, it remains to study cases K = 1 and L = 1, where MSSC
is polynomial. In the remainder of this paper, we suppose that L = 1, i.e. we
consider the 1D case. Without loss of generality in 1D, we consider d(x, y) =
|x − y|. We suppose that E = {x1 < · · · < xN}, a sorting procedure running in
O(N log N) time may be applied. A key element for the polynomial complexity
of MSSC is the interval clustering property [16]:

Lemma 1. Having L = 1 and M = 0, each global minimum of MSSC is only
composed of clusters Ci,i′ = {xj}j∈[[i,i′]] = {x ∈ E | ∃j ∈ [[i, i′]], x = xj}.

The question is here to extend this property for PMSSC. Considering an
optimal solution of PMSSC the restriction to no-outliers points is an optimal
solution of PMSSC and an interval clustering property holds:

Proposition 1. Having L = 1 and an optimal solution of PMSSC induce an
optimal solution of MSSC removing the outliers. In this subset of points, the
optimality property of interval clustering holds.

Proposition 1 is weaker than Lemma 1, selected points are not necessarily
an interval clustering with the indexes of E. This stronger property is false
in general for weighted PMSSC, one can have optimal solutions with outliers
to remove inside the natural interval cluster as in the following example with
M = 1, L = 1 and K = 2:

• x1 = 1, w1 = 10
• x2 = 2, w2 = 1000
• x3 = 3, w2 = 1
• x4 = 100, w4 = 100
• x5 = 101, w5 = 1
Optimal PMSSC consider x2 as outlier, {x1;x3} and {x4;x5} as the two

clusters. For K = 1, changing the example with x4 = 3.001 and x5 = 3.002, gives
also a counter example with K = 1 with {x1;x3;x4;x5} being the unique optimal
solution. These counter-examples use a significant difference in the weights. In
the unweighted PMSSC, interval property holds as in Lemma 1, with outliers
(or holes) between the original interval clusters:

Proposition 2. Having L = 1, each global minimum of unweighted PMSSC is
only composed of clusters Ci,i′ = {xj}j∈[[i,i′]]. In other words, the K clusters may
be indexed Ci1,j1 , . . . , CiK ,jK with 1 � i1 � j1 < i2 � j2 < · · · < iK � jK � N

and
∑K

k=1(jk − ik) � N − M − K.
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As in [5], the efficient computation of cluster cost is a crucial element to com-
pute the polynomial complexity. Cluster costs can be computed from scratch,
leading to polynomial algorithm. Efficient cost computations use inductive rela-
tions for amortized computations in O(1) time, extending the relations in [19].
We define for i, i′ such that 1 � i � i′ � N :

• bi,i′ =
i′∑

k=i

wk∑i′
l=i wl

xk the weighted centroid of Ci,i′ .

• ci,i′ =
∑i′

j=i wjd(xj , bi,i′)2 the weighted cost of cluster Ci,i′ .

• vi,i′ =
∑i′

j=i wj

Proposition 3. Following induction relations holds to compute efficiently
bi,i′ , vi,i′ with amortized O(1) computations:

vi,i′+1 = wi′+1 + vi,i′ , ∀1 � i � i′ < N (23)
vi−1,i′ = wi−1 + vi,i′ , ∀1 < i � i′ � N (24)

bi,i′+1 =
wi′+1xi′+1 + bi,i′vi,i′

vi,i′+1
, ∀1 � i � i′ < N (25)

bi−1,i′ =
wi−1xi−1 + bi,i′vi,i′

vi−1,i′
, ∀1 < i � i′ � N (26)

Cluster costs are then computable with amortized O(1) computations:

ci,i′+1 = ci,i′ + wi′+1(xi′+1 − bi,i′)2 + vi,i′(bi,i′+1 − bi,i′)2 (27)
ci−1,i′ = ci,i′ + wi−1(xi−1 − bi,i′)2 + vi,i′(bi−1,i′ − bi,i′)2 (28)

Trivial relations vi,i = wi, bi,i = xi and ci,i = 0 are terminal cases.

Proposition 3 allows to prove Propositions 4 and 5 to compute efficiently
cluster costs. Proposition 3 is also a key element to have first complexity results
with K = 1 and M � 1 in Propositions 6, 7.

Proposition 4. Cluster costs c1,i for all i ∈ [[1;N ]] can be computed in O(N)
time using O(N) memory space.

Proposition 5. For each j ∈ [[1;N ]] cluster costs ci,j for all i ∈ [[1; j]] can be
computed in O(j) time using O(j) memory space.

Proposition 6. Having L = 1 and K = 1, unweighted PMSSC is solvable in
O(N) time using O(1) additional memory space.

Proposition 7. Having L = 1, M = 1 and K = 1, weighted PMSSC is solvable
in O(N) time using O(N) memory space.
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5 DP Polynomial Algorithm for 1D Unweighted PMSSC

Proposition 2 allows to design a DP algorithm for unweighted PMSSC, extending
the one from [19]. We define Oi,k,m as the optimal cost of unweighted PMSSC
with k clusters among points [[1, i]] with a budget of m outliers for all i ∈ [[1, N ]],
k ∈ [[1,K]] and m ∈ [[0,M ]]. Proposition 8 sets induction relations allowing to
compute all the Oi,k,m, and in particular ON,K,M :

Proposition 8 (Bellman equations). Defining Oi,k,m as the optimal cost
of unweighted MSSC among points [[1, i]] for all i ∈ [[1, N ]] , k ∈ [[1,K]] and
m ∈ [[0,M ]], we have the following induction relations

∀i ∈ [[1, N ]], Oi,1,0 = c1,i (29)

∀m ∈ [[1,M ]], ∀k ∈ [[1,K]], ∀i ∈ [[1,m + k]], Oi,k,m = 0 (30)

∀m ∈ [[1,M ]], ∀i ∈ [[m + 2, N ]], Oi,1,m = min (Oi−1,1,m−1, c1+m,i)) (31)

∀k ∈ [[2,K]], ∀i ∈ [[k + 1, N ]], Oi,k,0 = min
j∈[[k,i]]

(Oj−1,k−1,0 + cj,i) (32)

∀m ∈ [[1,M ]], ∀k ∈ [[2,K]], ∀i ∈ [[k + m + 1, N ]],

Oi,k,m = min
(

Oi−1,k,m−1, min
j∈[[k+m,i]]

(Oj−1,k−1,m + cj,i)
)

(33)

Using Proposition 8, a recursive and memoized DP algorithm can be imple-
mented to solve unweighted PMSSC in 1D. Algorithm 1 presents a sequential
implementation, iterating with index i increasing. The complexity analysis of
Algorithm 1 induces Theorem 2, unweighted PMSSC is polynomial in 1D.

Theorem 2. Unweighted PMSSC is polynomially solvable in 1D, Algorithm 1
runs in O(KN2(1 + M)) time and use O(KN(1 + M)) memory space to solve
unweighted 1D instances of PMSSC.

6 Discussions

6.1 Relations with State of the Art Results for 1D Instances

Considering the 1D standard MSSC with M = 0, the complexity of Algorithm
1 is identical with the one from [19], it is even the same DP algorithm in this
sub-case written using weights. The partial clustering extension implied using a
M+1 time bigger DP matrix, multiplying by M the time and space complexities.
This had the same implication in the complexity for p-center problems [6,7].
Seeing Algorithm 1 as an extension of [19], it is a perspective to analyze if some
improvement techniques for time and space complexity are valid for PMSSC.

As in [7], a question is to define a proper value of M in PMSSC. Algorithm
1 can give all the optimal ON,K,m for m � M , for a good trade-off decision.
From a statistical standpoint, a given percentage of outliers may be considered.
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Algorithm 1: DP algorithm for unweighted PMSSC in 1D

sort E in the increasing order
initialize Oi,k,m := 0 for all m ∈ [[0;M ]], k ∈ [[1;K − 1]], i ∈ [[k;N − K + k]]
compute c1,i for all i ∈ [[1;N − K + 1]] and store in Oi,1,0 := c1,i
for i := 2 to N

compute and store ci′,i for all i′ ∈ [[1; i]]
compute Oi,k,0 := minj∈[[k,i]] (Oj−1,k−1,0 + cj,i) for all k ∈ [[2;min(K, i)]]
for m = 1 to min(M, i − 2)

compute Oi,1,m := min (Oi−1,1,m−1, c1+m,i)
for k = 2 to min(K, i − m)

compute Oi,k,m := min
(
Oi−1,k,m−1,minj∈[[k+m,i]] (Oj−1,k−1,m + cj,i)

)
end for

end for
delete the stored ci′,i for all i′ ∈ [[1; i]]

end for
initialize P = ∅, i = i = N , m = M
for k = K to 1 with increment k ← k − 1

compute i := min{i ∈ [[i − m; i]]|Oi,k,m := Oi−i,k,m−i+i}
m := m − i + i
compute and store ci′,i for all i′ ∈ [[1; i]]

find i ∈ [[1, i]] such that i := argminj∈[[k+m,i]]

(
Oj−1,k−1,m + cj,i

)
add [xi, xi] in P
delete the stored ci′,i for all i′ ∈ [[1; i]]

end for
return ON,K,M the optimal cost and the selected clusters P

If we consider that 1% (resp 5%) of the original points may be outliers, it induces
M = 0, 01×N (resp M = 0, 05×N). In these cases, we have M = O(N) and the
asymptotic complexity of Algorithm 1 is in O(KN3) time and using O(KN2)
memory space. If this remains polynomial, this cubic complexity becomes a
bottleneck for large vales of N in practice.

In [7], partial min-sum-k radii has exactly the same complexity when α = 2,
which is quite comparable to PMSSC but considering only the extreme points
of clusters with squared distances. PMSSC is more precise with a weighted sum
than considering only the extreme points, having equal complexities induce to
prefer partial MSSC for the application discussed in [7]. A reason is that the
O(N2) time computations of cluster costs are amortized in the DP algorithm.
Partial min-sum-k radii has remaining advantages over PMSSC: cases α = 1 are
solvable in O(N log N) time and the extension is more general than 1D instances
and also valid in a planar Pareto Front (2D PF). It is a perspective to study
PMSSC for 2D PFs, Fig. 1 shows in that case that it makes sense to consider an
extended interval optimality as in [5,7].

6.2 Definition of Weighted PMSSC

Counter-example of Proposition 1 page 293 shows that considering both (diverse)
weights and partial clustering as defined in (5) may not remove outliers, which
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was the motivating property. This has algorithmic consequences, Algorithm 1
and the optimality property are specific to unweighted cases. One can wonder
the sense of weighted and partial clustering after such counter-example, and if
alternative definitions exist.

Weighted MSSC can be implied by an aggregation of very similar points, the
weight to the aggregated point being the number of original points aggregated
in this new one. This can speed-up heuristics for MSSC algorithms. In this case,
one should consider a budget of outliers M , which is weighted also by the points.
Let mn the contribution of a point xn in the budget of outliers. (35) would be
the definition of partial MSSC with budget instead of (5):

X =

⎧
⎨

⎩E′ ⊂ E :
∑

xn∈E\E′
mnxn| � M

⎫
⎬

⎭ (34)

min
x∈X

min
π∈ΠK(x)

∑

P∈π

f(P ) (35)

(5) is a special case of (35) considering mn = 1 for each n ∈ [[1;N ]]. Note that
this extension is compatible with the developments of Sect. 3, replacing respec-
tively constraints (9) and (16) by linear constraints (36) and (37). These new
constraints are still linear, there are also compatible with the convex quadratic
program and the CG algorithm for the extended formulation:

N∑

n′=1

(
1 − mn′

K∑

k=1

zn′,k

)
� M (36)

N∑

n=1

mnyn � M (37)

For the DP algorithm of Sect. 5, we have to suppose mn ∈ N. Note that it is
the case with aggregation of points, fractional or decimal mn are equivalent to
this hypothesis, it is not restrictive. Bellman equations can be adapted in that
goal: (30), (31) and (33) should be replaced by:

∀m ∈ [[1,M ]], ∀k ∈ [[1,K]], ∀i,

i∑

j=1

mi � m =⇒ Oi,k,m = 0 (38)

∀m ∈ [[1,M ]], ∀i, mi > m =⇒ Oi,1,m = cαm,i (39)

∀m ∈ [[1,M ]], ∀i, mi � m =⇒ Oi,1,m = min (Oi−1,1,m−mi
, cαm,i) (40)

where αm is the minimal index such that
∑αm

j=1 mj > m.

mi � m =⇒ Oi,k,m = min
(

Oi−1,k,m−mi
, min
j∈[[1,i]]

(Oj−1,k−1,m + cj,i)
)

(41)

mi > m =⇒ Oi,k,m = min
j∈[[1,i]]

(Oj−1,k−1,m + cj,i) (42)
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This does not change the complexity of the DP algorithm. However, we do
not have necessarily the property M < N anymore. In this case, DP algorithm
in 1D is pseudo-polynomial.

6.3 From Exact 1D DP to DP Heuristics?

If hypotheses L = 1 and unweighted PMSSC are restrictive, Algorithm 1 can
be used in a DP heuristic with more general hypotheses. In dimensions L � 2,
a projection like Johnson-Lindenstrauss or linear regression in 1D, as in [10],
reduces heuristically the original problem, solving it with Algorithm 1 provides
a heuristic clustering solution by re-computing the cost in the original space.
This may be efficient for 2D PFs, extending results from [10].

Algorithm 1 can be used with weights. For the cost computations, Proposi-
tions 4 and 5 make no difference in complexity. Algorithm 1 is not necessarily
optimal in 1D in the unweighted case, it gives the best solution with interval
clustering, and no outliers inside clusters. It is a primal heuristic, it furnishes
feasible solutions. One can refine this heuristic considering also the possibility
of having at most one outlier inside a cluster. Let c

(0)
i,i′ be the cost of cluster

xi, . . . , xi′ as previously and also c
(1)
i,i′ the best cost of clustering xi, . . . , xi′ with

one outlier inside that can be computed as in Proposition 7. The only adaptation
of Bellman equations that would be required is to replace (31), (33) by:

∀m ∈ [[1,M ]], ∀i ∈ [[m+2, N ]], Oi,1,m = min
(
Oi−1,1,m−1, c

(0)
1+m,i, c

(1)
1+m,i)

)
(43)

∀m ∈ [[1,M ]], ∀k ∈ [[2,K]], ∀i ∈ [[k + m + 1, N ]],

Oi,k,m = min
(

Oi−1,k,m−1, min
j∈[[k+m,i]],l∈{0,1}

(
Oj−1,k−1,m−l + c

(l)
j,i

))
(44)

Note that if case L = 1 and K = 1 is proven polynomial, one may com-
pute in polynomial time c

(m)
j,i values of optimal clustering with m outliers with

points indexed in [[j, i]] and solve weighted PMSSC in 1D with similar Bellman
equations. This is still an open question after this study.

6.4 Extension to Partial K-medoids

In this section, we consider the partial K-medoids problem with M outliers
defined by (5) and (6), as in [13,20]. To our knowledge, the 1D sub-case was not
studied, a minor adaptation of our results and proofs allows to prove this sub-case
is polynomially solvable. Indeed, Lemma 1 holds with K-medoids as proven in [5].
Propositions 4 and 5 have their equivalent in [8], complexity of such operations
being in O(N2) time instead of O(N) for MSSC. Propositions 1 and 2 still hold
with the same proof for K-medoids. Proposition 8 and Algorithm 1 are still
valid with the same proofs, the only difference being the different computation
of cluster costs. In Theorem 2 this only changes the time complexity: computing
the cluster costs ci,i′ is in O(N3) time instead of O(N2), it is not bounded by the
O(KN2(1 + M)) time to compute the DP matrix. This results in the theorem:
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Theorem 3. Unweighted partial K-medoids problem with M outliers is polyno-
mially solvable in 1D, 1D instances are solvable in O(N3 + KN2(1 + M)) time
and using O(KN(1 + M)) memory space.

7 Conclusions and Perspectives

To handle the problem of MSSC clusters with outliers, we introduced in this
paper partial clustering variants for unweighted and weighted MSSC. This prob-
lem differs from the “robust K-means problem” (also noted “K-means prob-
lem with outliers”), which consider discrete and enumerated centroids unlike
MSSC. Optimal solution of weighted PMSSC may differ from intuition of out-
liers: We discuss about this problem and present another similar variant. For
these extensions of MSSC, mathematical programming formulations for solving
exactly MSSC can be generalized. Solvers like Gurobi or Cplex can be used for
a compact and an extended reformulation of the problem. NP-hardness results
of these generalized MSSC problems holds. Unweighted PMSSC is polynomial
in 1D and solved with a dynamic programming algorithm which relies on the
optimality property of interval clustering. With small adaptations, “K-means
problem with outliers” defined as the unweighted partial K-medoids problem
with M outliers is also polynomial in 1D and solved with a similar algorithm.
We show that a weaker optimality property holds for weighted PMSSC. The rela-
tions with similar state-of-the-art results and adaptation of the DP algorithm to
DP heuristics are also discussed.

This work opens perspectives to solve this new PMSSC problem. The NP-
hardness complexity of weighted PMSSC for 1D instances is still an open ques-
tion. Another perspective is to extend 1D polynomial DP algorithms for PMSSC
for 2D PFs, as in [5,7]. Approximation results may be studied for PMSSC also,
trying to generalize results from [13,20]. Using only quick and efficient heuris-
tics without any guarantee would be sufficient for an application to evolutionary
algorithms to detect isolated points in PFs, as in [7]. Adapting local search
heuristics for PMSSC is also another perspective [10]. If K-medoids variants
with or without outliers are used to induce more robust clustering to noise and
outliers, the use of PMSSC is promising to retain this property without having
slower calculations of cluster costs with K-medoids. Finally, using PMSSC as a
heuristic for K-medoids is also a promising venue for future research.

Appendix: Proofs of Intermediate Results

Proof of Lemma 1: We prove the result by induction on K ∈ N. For K = 1,
the optimal cluster is E = {xj}j∈[[1,N ]]. Note that N � K is also a trivial case, we
suppose 1 < K < N and the Induction Hypothesis (IH) that Lemma 1 is true for
K −1. Let an optimal clustering partition, denoted with clusters C1, . . . , CK and
centroids c1 < · · · < cK , where ci is the centroid of cluster Ci. Strict inequalities
are a consequence of Lemma 2. Necessarily, xN � cK and xN ∈ CK because xN

is assigned to the closest centroid. Let A = {i ∈ [[1, N ]] | ∀k ∈ [[i,N ]], xk ∈ CK}
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and let j = min A. If j = 1, E = CK = {xj}j∈[[1,N ]], it is in contradiction with
K > 1. j − 1 ∈ A is in a contradiction with j = min A. Hence, we suppose
j > 1 and j − 1 /∈ A . Necessarily xj−1 ∈ CK−1, cK−1 is the closest centroid
among c1, . . . , cK−1. For each l ∈ [[1, j − 2]], xl is strictly closer from centroid
cK−1 than from centroid cK , then xl /∈ CK and A = [[j,N ]]. On one hand, it
implies that CK = {xl}l∈[[j,N ]]. On the other hand, the other clusters are optimal
for E′ = E \C with weighted (K −1)-means clustering. Applying IH proves that
the optimal clusters are of the shape Ci,i′ = {xj}j∈[[i,i′]]. �

Lemma 2. We suppose L = 1 and K < N . Each global optimal solution of
weighted MSSC indexed with clusters C1, . . . , CK and centroids such that c1 �
· · · � cK , where ci is the centroid of cluster Ci, fulfills necessarily c1 < · · · < cK .

Proof of Lemma 2: Ad absurdum, we suppose that an optimal solution exists
with centroids such that ck′ = ck. Having K < N , there exist a point xn that
is not a centroid (note that points of E are distinct in the hypotheses of this
paper). Merging clusters Ck′ and Ck does not change the objective function as
the centroid are the same. Removing xn from its cluster and defining it in a
singleton cluster strictly decreases the objective function, it is a strictly better
solution than the optimal solution. �
Proof of Proposition 1: Let X the set of selected outliers in an optimal solution
of weighted PMSSC. Ad absurdum, if there exists a strictly better solution of
weighted MSSC in E \ X, adding X as outliers would imply a strictly better
solution for PMSSC in E, in contradiction with the global optimality of the
given optimal solution. Lemma 1 holds in E \ X. �
Proof of Proposition 2: Let X the set of selected outliers in an optimal solution
of unweighted PMSSC. Ad absurdum, we suppose that there exists a cluster C
of centroid c with xj = min C, xj′ = max C and xi ∈ X such that xj < xi < xj′ .
If c � xi, the objective function strictly decreases when swapping xi and xj′ in
the cluster and outlier sets. If c � xi, the objective function strictly decreases
when swapping xi and xj in the cluster and outlier sets. This is in contradiction
with the global optimality. For the end of the proof, let us count the outliers. We
have: i1 − 1+ i2 − 1− j1 + ...+ iK − 1− jK−1 +N − jK � M which is equivalent
to N +

∑K
k=1(ik − jk) � M + K. �

Proof of Proposition 3: Relations (23) and (24) are trivial with the definition
of vi,i′ as a sum. Relations (25) and (26) are standard associativity relations
with weighted centroids. We prove here (28), the proof of (27) is similar. ci−1,i′ −
wi−1(xi−1 − bi−1,i′)

2 =
∑i′

j=i wj(xj − bi−1,i′)
2

=
∑i′

j=i wj

(
(xj − bi,i′)

2 + (bi,i′ − bi−1,i′)
2 + 2(xj − bi,i′)(bi,i′ − bi−1,i′)

)
= ci,i′ + (bi,i′ − bi−1,i′)

2 ∑i′
j=i wj + 2(bi,i′ − bi−1,i′)

∑i′
j=i wj(xj − bi,i′).

It gives the result as
∑i′

j=i wj(xj − bi,i′) =
∑i′

j=i wjxj − bi,i′
∑i′

j=i wj = 0. �
Proof of Proposition 4: We compute and store values c1,i with i increas-
ing starting from i = 1. We initialize v1,1 = w1, b1,1 = x1 and c1,1 = 0 and
compute values c1,i+1, b1,i+1, v1,i+1 from c1,i, b1,i, v1,i using (27) (25) (23). Such
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computation is in O(1) time, so that cluster costs c1,i for all i ∈ [[1;N ]] are
computed in O(i) time. In memory, only four additional elements are required:
b1,i+1, v1,i+1, b1,i, v1,i. The space complexity is given by the stored c1,i values. �
Proof of Proposition 5: Let j ∈ [[1;N ]]. We compute and store values ci,j with
i decreasing starting from i = j. We initialize vj,j = wj , bj,j = xj and cj,j = 0
and compute values ci−1,j , bi−1,j , vi−1,j from ci,j , bi,j , vi,j using (28) (26) (24).
Such computation is in O(1) time, so that cluster costs ci,j for all i ∈ [[1; j]]
are computed in O(j) time. In memory, only only four additional elements are
required bi−1,j , vi−1,j , bi,j , vi,j the space complexity is in O(i). �
Proof of Proposition 6: Using interval optimality for unweighted PMSSC, we
compute successively c1,N−M , c2,N−M+1, . . . , cM+1,N and store the best solution.
Computing c1,N−M , b1,N−M , v1,N−M is in O(N −M) time with a naive computa-
tion. Then c1,N−M+1, b1,N−M+1, v1,N−M+1 are computed from c1,N−M , b1,N−M ,
v1,N−M in O(1) time using successively (23), (25) and (27). Then c2,N−M+1,
b2,N−M+1, v2,N−M+1 are computed from c1,N−M+1, b1,N−M+1, v1,N−M+1 in
O(1) time using successively (24), (26) and (28). This process is repeated M
times, there are O(N − M) + O(M) operations, it runs in O(N) time. Spatial
complexity is in O(1). �
Proof of Proposition 7: We enumerate the different costs considering all the
possible outliers. We compute c1,N , b1,N , v1,N in O(N) time. Adapting Proposi-
tion 2, each cluster cost removing one point can be computed in O(1) time. The
overall time complexity is in O(N). �
Proof of Proposition 8: (29) is the standard case K = 1. (30) is a trivial case
where the optimal clusters are singletons. (31) is a recursion formula among
K = 1 cases, either point xi is chosen and in this case all the outliers are points
xl with l � m or xi is an outlier and it remains an optimal PMSSC with K = 1
and M = m − 1 among the i − 1 first points. (32) is a recursion formula among
M = 0 cases distinguishing the cases for the composition of the last cluster.
(32) are considered for MSSC in [9,19]. (33) is an extension of (32). Oi,k,m is
Oi−1,k,m−1 if point xi is not selected. Otherwise, the cluster k is a Cj,i and the
optimal cost of other clusters is Oj−1,k−1,m. �
Proof of Theorem 2: by induction, one proves that at each loop i of In Algo-
rithm 1, the optimal values of Oi,k′,m′ are computed for all k′,m′ using Propo-
sition 8. Space complexity is given by the size of DP matrix (Oi,k,m), it is in
O(KN(1+M)). Each value requires at most N elementary operations, building
the DP matrix runs in O(KN2(1+M)) time. The remaining of Algorithm 1 is a
standard backtracking procedure for DP algorithms, running in O(N2) time, the
time complexity of DP is thus in O(KN2(1 + M)). Lastly, unweighted PMSSC
is polynomially solvable with Algorithm 1, the memory space of inputs are in
O(N), mostly given y the N points of E, and using K,M � N , the time and
space complexity are respectively bounded by O(N4) and O(N3). �
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Abstract. The Patient Rule Induction Method (PRIM) is a bump hunting algo-
rithm that generates a big number of rules in high dimensional data. Despite the
high accuracy it provides, in this case it lacks of interpretability when the set
of rules is big. To address it, we aim, in this paper to optimize the number of
rules using Genetic Algorithm (GA) by formulating a combinatorial optimization
problem to minimize the ruleset and maximize the performance of the ruleset. We
applied this approach on a real-life dataset involving slope stability, one of the
most important subjects in civil engineering, by choosing random feature spaces
to generate the rules. We also set a performance score that balances between the
confidence and the support of the rules in a ruleset and that has to be maximized
to select a ruleset as a potential candidate. The results obtained show that opti-
mizing with GA gives a more powerful set of rules that eases the interpretation.
However, if the goal of the study is to detect small groups, we should minimize
the performance of the ruleset by looking at the weakest groups, hence with the
lowest support.

Keywords: PRIM · genetic algorithm · rules induction · combinatorial
optimization

1 Introduction

Machine learning (ML) and optimization are closely tied, in fact, each time we aim at
fitting anMLmethod on a dataset, we are solving an optimization problem. For instance,
in [6] authors propose a binary swarm particle optimization [15] based on association
rule where the rules are generated without specifying the minimum confidence and
support requested, thus generating the best rules from the given database. Authors in
[7] also propose to apply different optimization algorithm to construct the best road
traffic noise’s model to detect abnormal noise in the urban area. Moreover, we can use
optimization in data preparation, hyperparameter tuning or model selection that can be
found in the following papers [8–12]. In this paper we aim at using optimization to
increase the interpretability of the results generated for one class by the Patient Rule
Induction Method (PRIM).
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The Patient Rule Induction Method [3] is a bump hunting algorithm that is used in
a supervised learning setting to find regions, in the input variables subspace, that are
associated with the highest or lowest occurrence of a target label of a class variable
chosen by the data analyst. Although the resulting rules/regions when taken individually
are highly actionable, their high number and redundancy complicate the interpretation
task which requires selecting, organizing and eliminating useless/redundant rules. This
method is mostly characterized by the choice of the search space in which we aim at
discovering the subgroups of interest. Even if it takes place in a supervised context,
PRIM is not a classification algorithm.

This work aims at optimizing the number of rules generated by PRIM in a way to
select a representative subset of rules that provide the same information as the initial
set of rules. We explore achieving this goal using the Genetic Algorithm (GA) [1]. This
initial research orientation, seems to reconcile at best power, generality and ease of
programming. In fact, the GA is more adapted than other algorithms such as Gradient
Descent or Newton method [5] when it comes to modeling and solving the problem at
hand given the morphology of the rules generated by PRIM. Moreover, the rules are
generated by randomly selecting iteratively different search spaces, aiming at giving to
the experts’ new insights in datasets and discovering other subgroups of interest.

2 Overview of PRIM and Problem Definition

2.1 The Patient Rule Induction Method

The Patient Rule Induction Method is an algorithm introduced in 1999 by Friedman
and Fisher [3]. It innovates in the search of the interesting subgroups by performing a
bump hunting. It consists of two phases. Given a chosen subset of the input variables
subspace, the first step is the top-down peeling in which the search of the interesting
subgroups is done. Themethod starts by peeling dimension by dimension constructing at
the end a rectangle shaped group, hence the world box to refer to the output. The boxes
are constructed, such that each box is delimited by the variables defining the chosen
subspace. At each peel the portion of data removed can be controlled by the data analyst
and is usually 5%, hence the term patient. The final box found after the peeling process
may not be optimal because of past greedy suboptimal choices. Thus, the second step of
PRIM is the bottom up pasting in which the boxes are expanded by iteratively enlarging
their boundaries as long as the outcome’s density increases. Figure 1 illustrates PRIM’s
process to find a box in the first phase of the top-down peeling. These two steps are
repeated recursively to find other regions until stopping criteria are reached.

The outcome of PRIM is a set of boxes/regions that define rules relating the targeted
label of the depended variable to the explanatory attributes in the data subspace chosen
initially by the analyst. Each rule is shaped as:

if cond 1, ..., cond n → target variable = class
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Fig. 1. Search procedure of one box

Contrary to other methods such as decision trees, PRIM has a better exploration
of the dataset and can handle discrete and continuous variables. Also, the variation of
the hyperparameters such as the support, the pasting and the peeling thresholds can
give lot of different rules each time, which can even increase the set of possible rules
useful to the user. Authors in [2] and [13] give a literature review of PRIM where they
show the strength of PRIM in comparison with the most used search methods such as
the decision trees and the regression. Indeed, the decision trees can peel up to 50% of
the dataset in each split, loosing potential interesting rules whereas PRIM controls the
peeling threshold. The one complexity with PRIM is the big interaction with the user in
choosing the most optimal hyperparameter to find the best rules. Often experts test a lot
of combination of support, peeling threshold and pasting threshold to find good results.

2.2 Postprocessing of PRIM’s Rules

PRIM offers a number of tools to post-process [3] or inspect the result of rule induction.
The most important that could be used to optimize each rule are: Analyzing variables
redundancy, Interbox Dissimilarity and Relative frequency ratio plots.

After inducing the rules, we can look at ways to optimize each one of them by
pruning irrelevant variables. For each variable we consider the decrease in box/region
density when it is removed. The variable yielding the smallest decrease in box density
is provisionally removed, and we do the same for the remaining variables.

The second tool to optimize each rule, is to look at the InterboxDissimilarity. Indeed,
the covering procedure produces a sequence of boxes that cover a subregion of the
attribute space. These boxes can overlap or be disjoint, be close or far apart, depending
on the nature of the target function. By inspecting the dissimilarities of pairs of boxes
Bi and Bj in the sequence, we inspect the difference between the support of the smallest
box Bi,j that covers both of them, and the support of the union. It’s defined as:

D(Bi, Bj) = β(Bi, j)− β (Bi ∪ Bj)

with β(B) the support of a box B, defined as the fraction of observations in the entire
dataset that it covers, andD(Bi, Bj) is in the interval [0,1]. This measure is used to reduce
the number of boxes by assuming that ifD(Bi, Bj) approaches 1 then boxes are dissimilar
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and we can keep them both in our set of rules, and if it’s under 0.3 then we remove the
box because of low support.

From the perspective of interpretation, it is important to be aware of possible alterna-
tive definitions for each induced box Bk . Hence the Relative frequency ratio plots allow
us to compare the relative frequency distribution of values of each input variables xj
within the box pj(xj | x m Bk) to that over the entire data sample pj(xj).

The ratio is defined as:

rjk
(
xj

) = pj
(
xj|x ε Bk

)
pj

(
xj

)
.

A uniform distribution for rjk(xj) implies that xj is totally irrelevant to Bk because
the relative frequency of its values is the same inside or outside of the box, and a highly
peaked distribution for rjk(xj) implies that the input xj is highly relevant to the definition
of Bk .

Although these post processing tools contribute to improving each rule induced
by PRIM, they do not solve the redundancy problem as they may result in pruning
important variables because of their greedy approach. Furthermore, working on each
rule individually makes rules postprocessing time consuming.

As an alternative, we attempt in this work to postprocess and thereafter prune the
overall set of rules by modeling this problem as an optimization problem. The genetic
algorithm seems to have the potential for interpreting the rules without dealing with the
optimization of each box.

3 Formulation of the Optimization Problem

Let R be the ensemble of boxes generated by PRIM in the subspace of input variables
selected by the analyst. The optimization problem is to select a subset, S, of rules from
the overall set of rules R with an optimum density.

Let PerfS represents a performance indicator of S that balances confidence and
support of the ruleset generated. It should be noted that our research is exploring different
variations of PerfS and assessing the sensitivity of the optimal subset of rules S to the
definition of PerfS. We define PerfS as:

PerfS = √
(d ∗ β)

where d is the average density of S and β the average support of S.
This whole problem is formulated as a combinatorial optimization system with the

objectives:
{

Maximize PerfS
Minimize|S| : |S| is the cardinality of S, i.e. the number of rules in S

To facilitate the application of Genetic Algorithm in this problem we introduce
positive weights WG and WS and reformulate it through the objective function f(S) as
follows:

Maximizef (S) = WG.G − WS.|S| with SCR
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The weights, WG and Ws introduced are specified according to the objective to be
achieved in terms of trade-offs between a number of rules and the performance of S.

In the Genetic Algorithm, every realizable solution of our problem is individually
processed. The set of rules in S is represented by a string and is considered as an
individual. Thus, we note the rule set S by the string s1s2…sn and n the total number of
rules in R:

S = s1s2 . . . sn

{
sr = 1 if the rule number r is in S
sr = 0 if the rule number r is not in S

4 Implementation of the Genetic Algorithm

The first step of the algorithm is the genesis of the population of the rules, that is the
choice of the starting devices that we are going to evolve. We choose to do a random
initialization: the values of the genes are drawn randomly according to a uniform distri-
bution «1 if the rule is drawn 0 otherwise». Each string contains a set of rules. Each
rule, that is randomly included in each string, has a 50% chance of being chosen to
belong to any string. The size N of this population is a parameter whose choice results
from a compromise between calculation time and solution quality.

After defining the genesis of the population, we move to the “selection and elimi-
nation” step. We call “Generation” the population at a given moment t. Once we carry
out the evaluation of the generation, a selection is made from the adaptation function.
Only individuals passing the selection test can access the intermediate generation and
reproduce there. In fact, the size of the intermediate generation is twice smaller (N/2
chains of rules) than the previous generation. Thus, we reduce the number of rules in
our set. For the selection step we have chosen to work with the “tournament selection”.
In this approach, two individuals are randomly selected and they compete to access the
middle generation. This step is repeated until the intermediate generation is filled (N/2
chains). It is quite possible that some individuals participate in several tournaments: if
they win several times, they will be entitled to be copied several times in the middle
generation, which will promote the sustainability of their genes.

Once the intermediate generation is half full, individuals are randomly divided into
couples. The parents’ chromosomes (parameter sets) are then copied and recombined
to form two descendants with characteristics from both parents. Thus, the generation t
+ 1 is formed. The crossing operator promotes the exploration of the research space.
It ensures the mixing of genetic material and the accumulation of favorable mutations
which creates new combinations of component parameters. As a crossing method, we
used the single point crossover [4].

A mutation is defined as the inversion of a bit in a chromosome. This is equivalent
to modifying the value of a parameter of the device. The mutations play the role of
noise and prevent the evolution from freezing. They allow to ensure a global as well as
local search, according to the weight and the number of mutated bits. Moreover, they
guarantee that the global optimum can be reached. On the other hand, a population that
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Fig. 2. Genetic Algorithm for optimizing PRIM’s rules

is too small can homogenize because of stochastic errors: genes favored by chance can
spread to the detriment of others. This other mechanism of evolution, which exists even
in the absence of selection, is known as genetic drift. From the point of view of the
device, this means that we risk to end up with devices that are not necessarily optimal.
Mutations counteract this effect by constantly introducing new genes into the population.

The total number of generations, which we set as a parameter, is used as a stopping
condition. If this condition is not satisfied, we return to step 2, the evaluation step.
Figure 2 displays the procedure of the optimization with the genetic algorithms.

5 Experimentation and Results

5.1 Experiment

To test our concept, we use in the experiment a real-life dataset on slope stability. This
problematic is considered as one of the most important in civil engineering, since an
unstable slope can cause serious damages. The dataset set used can be found in [14]. It
contains 168 instances with balanced data having 84 examples for the ‘class = stable’
and 84 for the ‘class = unstable’. Six input variables are used: the bulk density (θ), the
cohesion (C), the angle of internal friction (Ø), the slope angle (β), the slope height (H)
and the pore water pressure ratio Ru.

In this illustration we considered the rules of both classes and we generated 10
random feature combinations among the six available for the study. We also kept to
the hyperparameters selected by the expert which are a support of 0.05, and a peeling
threshold of 0.07.

The random features are: (C, �, Ru), (θ, C, �, Ru), (β, Ru), (θ, C, �, β), (θ, �, β),
(θ, H, Ru), (θ, C, �, H, Ru), (θ, C, β), (�, β, H), (θ, C, H). For each one of these feature
space, PRIM performs a top-down peeling and a bottom up pasting to select the good
boxes.

We have chosen two pairs of values for Wc and Wr:

WG=1 et WS=0 we obtain f (S)=WG.G (1)
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WG=10 et WS=0.1 we obtain f (S)=WG.G−WS.|S| (2)

The first Eq. (1) allows us to have an optimization on the classification rates without
taking into account the number of rules. The second Eq. (2) takes into an account the
reduction of the number of rules but favors the classification rate on this number.

Table 1. Results obtained for the two classes with only generating random rules using PRIM,
with applying the GA on the ruleset for <Wc = 1 Wr = 0> and for <Wc = 10 Wr = 0.1>

Class = ‘stable’ Class = ‘unstable’

PerfS Number of rules in S PerfS Number of rules in S

WG = 1 WS = 0 68.49% 9 70% 11

WG = 10 WS = 0.1 67% 15 68.85% 13

PRIM random rules 56.33% 38 48.93% 45

As displays in Table 1, for the class ‘stable’ we obtain 38 rules with a performance of
56.33% with PRIM’s random generation on 10 feature combination, 9 rules and 68.49%
of the performance if we only consider the performance in the equation and 67% of
performance for 15 rules if we have WS = 0.1.

For the class ‘unstable’, the initial number of rules generated by random featureswith
PRIM is 45, which is hardly interpretable. With WG = 1 and WS = 0 the performance
rises to 70% for a number of 11 rules and for the implementation of the GA with WG =
10 and WS = 0.1 the performance is 68.85% for a ruleset of 13 rules.

5.2 Results and Discussion

The results obtained are in adequacy with the goal of the algorithm and its results.
PRIM aims at discovering small groups, which is called the subgroup discovery [16,
17]. Therefore, the rules obtained have a small support but a big range of confidence
from 100% to 20%.

In our implementation we tested the possibility to consider GA as a pruning method
for PRIM,however the use of it could lead tomissingvaluable rules for one’s problematic.
The key would be to either maximize the performance to select the strongest ruleset,
hence rules, to understand the subject or minimize the performance to detect the outliers
in the dataset.

To test our concept, we only took 10 random combinations of the features to variate
and search space and we noticed that PRIM gives rules with a complexity between 1 to
4, it’s rare to have numerous variables in the rules. This increased the interpretability
and the explainability of the rules since they are easily readable and usable.

Nonetheless, for further validation we are increasing the number of random
combinations and studying whether or not our solution converges to the same outputs.
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6 Conclusion

In this paper we propose a novel concept involving the genetic algorithm and the Patient
Rule Induction Method in a context where the search space is randomly generated.
The results obtained satisfy to the goal of the experiment, however the interpretability
of the results can differ according to the domain knowledge and the purpose of the
implementation.

As PRIM is considered in the literature as a subgroup discovery algorithm, having a
performant ruleset does not mean that the other rules should be ignored, it only allows a
better reading of the results to analyze the dataset. Thus, performing the combinatorial
problem to maximize and minimize at the same the performance can give a big range of
the big boxes as well as the smallest ones.

As ongoing works, we are testing the approach on other datasets and analyzing
whether or not imbalanced data can impact the performance of the model, also we are
conducting a sensitivity analysis on the number of combination that could give the best
results.
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Abstract. Cybersecurity bulletins officially recognize and publicly
share the vulnerabilities of Information Systems. The attacks exploit
various aspects of those vulnerabilities, compromising confidentiality,
integrity or availability of the data collected. We analyze a public dataset
of security records so to obtain some common features and to be able
to forecast future attacks. We propose an intervention based on history
of attacks through data mining methods and so a more dynamic risk
analysis, by concentrating on some specific classes of cyberattacks in a
period of two years. We devise a fast algorithm to find strong rules which
provide an estimate of the probability that these attacks will occur so to
identify adequate controls and countermeasures.

Keywords: Pattern analysis · Cyber security · Association Rules ·
Data Mining · Anomaly detection · Optimization

1 Introduction

Cyberattacks affect different sectors such as healthcare, government, financial
and automotive industries. Incidents due to malware attacks impact industrial
production and critical infrastructures, causing significant delays in control oper-
ations and consequent process anomalies.

Particularly for programmable cars, a compromise of the system can lead to
risks to people safety, as well as to their privacy. Connected cars are targeted via
Spear Phishing mechanisms which lead to the download of malicious attachments
and payloads, or by Hardware Trojans which provide covert access to the onboard
computer system and can disrupt communication of Controller Area Network
buses. The vehicle can be affected by Ransomware attacks which encrypt user
data causing operational disruptions. Via the infotainment system, the victim
driver is threatened that the ignition of the car will be suspended until a ransom
is paid.
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Public data and technical reports regarding cybersecurity provide a descrip-
tion of vulnerabilities and exposures discovered over time, but the records con-
tained in the published databases are very numerous if we consider long periods
of time. Furthermore, faced with two or more vulnerabilities, it is generally not
possible to decide which one is more urgent to deal with and, in particular, each
vulnerability can have different impacts on different systems. Software developers
are often forced to work within a limited time frame and are unable to analyze
all security weaknesses. So they have to focus on targeting the most serious
weaknesses or the ones related to specific characteristics, such as vulnerability
metrics, type of exploits and so on.

It is therefore necessary to establish a priority among all the mitigation and
detection measures to be adopted, on the basis of the frequent relationships
among them, such as: basic metrics of vulnerability, weaknesses, attack tactics
and techniques, operating systems or architectures.

We propose in this paper to simplify the standard and computational chal-
lenging general data mining problem of finding strong association rules by con-
centrating the search onto the prediction of specific attack and vulnerabilities,
and in doing so create an information structure which can be easily updated.

Our work is organized as follows: Sect. 2 presents public security datasets,
and some research work of data mining applied to the field of cybersecurity.
Section 3 explains the methodology chosen to mine frequent patterns efficiently
and prioritize actions to safeguard security. In Sect. 5 the results of our analysis
show the forecasting of attacks based on past records. Section 6 concludes our
study and outlines some future research directions.

2 Dataset and Background

Since 1999 the MITRE Corporation collects a catalog of known cybersecurity
vulnerabilities and the NIST (National Institute of Standards and Technology)
assigns to each of them a severity score, based on a standard called CVSS (Com-
mon Vulnerability Scoring System), and publishes them in the National Vulner-
ability Database (NVD), available online1. CVSS estimates the severity of a
vulnerability and it is used by vendors, developers, researchers, security man-
agers in companies and public administration and security agencies that deal
with the publication of bulletins.

Common vulnerability and exposures entries, CVE for short, are reported
with a unique identifier which is tagged with CVE-YYYY-XXXX, where YYYY
is the year the vulnerability was discovered and XXXX is a sequential integer.
The CVE archive, available online2, provides a description of the vulnerabilities
included in MITRE reports. The CVE’s perspective is to catalog errors after they
have occurred and to investigate possible solutions. At the same time, MITRE
is responsible for providing a list of CWE (Common Weakness Enumeration) to
show the weaknesses in the architecture or in the code.
1 https://nvd.nist.gov.
2 https://cve.mitre.org.

https://nvd.nist.gov
https://cve.mitre.org
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All the catalogued CWE IDs are represented with a hierarchical tree orga-
nization, called “View 1000 - Research Concepts”3. The Pillars are the parents
from whom the first branch starts, and which, then, describe common classifica-
tions of weaknesses.

CAPEC (Common Attack Pattern Enumeration and Classification), avail-
able online4, describes and classifies the attack patterns. The MITRE ATT&CK
(Adversarial Tactics, Techniques and Common Knowledge) is a framework that
describes all the main procedures used by attackers to violate systems and pos-
sibly gain persistent access to them. Attack procedures include tactics, which
identify the attackers ultimate goals and the main purpose of their actions. Each
attack tactic contains different techniques, which are concrete actions aimed
at a specific goal and specify what an attacker achieves when finished. The
MITRE ATT&CK matrices, available online5 for the Enterprise, Mobile and
ICS domains report the technical-tactics of violations and persistence of fixed
corporate, mobile and industrial control systems.

ENISA, the European Network and Information Security Agency, aggregates
the records from the official databases mentioned above and from other resources
such as the Vulnerability Database (VULDB), online6, into a single .csv file. Each
row contains information about these features: CVE ID, source database, sever-
ity level, impact score, exploitability score, attack vector, complexity, privilege,
scope, confidentiality impact, integrity impact, availability impact, CWE ID,
CAPEC ID, date published, attack technique ID and tactic.

In [12], ENISA presents a technical cybersecurity report about 2018−19, but
it does not provide any prediction about future attacks. In this work we ana-
lyzed its aggregate information to establish what could be the next information
(within some tolerance) that could be reported in the security bulletins. The
ENISA statistics do not highlight the coexistence of vulnerabilities, weaknesses
and attacks in frequent tuples of the dataset, features which are co-present in
its rows according to a fixed minimum frequency.

We are interested in records that have common characteristics for a fixed
minimum percentage of the analyzed data (a total of about 230k rows).

2.1 Data Mining and Cybersecurity

We will now overview some works that link data mining to the field of cyberse-
curity.

In [15] the authors, starting from the Record Audit data - Snort log, identify
IP numbers and probable attacks, but they do not deal with the pattern detection
of vulnerability features.

Fan et al. in [7] created a dataset by adding code changes and summary for
C / C ++ vulnerability to the CVE archive.

3 https://cwe.mitre.org/data/definitions/1000.html.
4 https://capec.mitre.org.
5 https://attack.mitre.org/matrices.
6 https://vuldb.com.

https://cwe.mitre.org/data/definitions/1000.html
https://capec.mitre.org
https://attack.mitre.org/matrices
https://vuldb.com
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In [14], Murtaz et al. show that vulnerabilities can be treated like Markov
Chains, and so they can predict the next vulnerability by using only the previous
one.

The authors of [13] extract associations of words, used in websites for Cyber-
security, through the well-known Apriori data mining algorithm.

Dodiya et al. [6] provide statistical distributions of the NVD, such as the
number of new vulnerabilities reported by year, security levels, access complexity
and integrity impact.

Threat searching can involve anomaly detection on machine logs, where
behavioral data analysis is automatically separated from outliers using NLP and
deep learning [4]. A Big Data Platform [16] was created to centralize collection
of logs and metrics from heterogeneous data sources. It can be accessed so to
perform a semi-supervised anomaly detection using the results of log clustering
and visualize in real time the health of services through dashboards.

Anomaly detection finds application in many domains, including Cultural
Heritage [8] and Urban Informatics [5]. In particular, data mining methods are
also used to forecast next destinations [3].

3 Mining Association Rules

Let us start by introducing a mathematical formalization of the problem. Let D
be a dataset (matrix) with m rows and n columns. Each column represents a
specific attribute ID1, ID2, . . . , IDn, and each row represents a complete set of
values for the n attributes. Any attribute IDi and any of its values v found in
the rows of D, define the element < IDi = v >.

Given now any element I, the singleton {I}, also called 1-element itemset or
itemset of length 1, is said to be “infrequent” if it is contained in a number k of
rows of the dataset where k

m < min supp, i.e. is smaller than the fixed minimum
support (we use the notation supp({I},D) < min supp). The minimum support
represents then a fraction or percentage value of the rows of the dataset. If
supp({I},D) ≥ min supp then {I} is said to be “frequent”. We generalize the
above concept to itemsets of length h for any 1 ≤ h ≤ n, as follows: an itemset
of length h is a set of h elements, {I1, I2, . . . , Ih}, such that

– each element Ii represents the value of an attribute, i.e. Ii =< IDji = a >
for some attribute IDji and a one of the values of IDji ;

– two distinct elements Ii1 and Ii2 represent values of two different attributes.

The frequency of the itemset {I1, I2, . . . , Ih} is the number of rows of D which
contain its values. As in the case of itemsets of length 1, the itemset is frequent
if supp({I1, I2, . . . , Ih},D) ≥ min supp, otherwise is said to be infrequent.

Since supp({I1, I2, . . . , Ih},D) ≤ supp(S,D) for any S ⊆ {I1, I2, . . . , Ih}, it
is clear that if {I1, I2, . . . , Ih} is frequent, all its subsets are also frequent. Thus,
if any of its subsets is infrequent then the itemset is infrequent as well.

To clarify the above, let us consider the example of the dataset in Table 1.
We have a dataset with 20 rows and 5 columns, corresponding at the attributes
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ID1, ID2, ID3, ID4, ID5. If we choose min supp = 0.3, i.e. 30% of the total
number of rows (6 in our case) the following elements, or 1-itemsets, are frequent
(shown with their frequencies):

a1, 6; a2, 6; a3, 6; b1, 7; b2, 8; c1, 6; c2, 6; d3, 9; e4, 6.

The itemsets {a1, b2} and {b1, c2, d3, e4} have frequencies 6, so they are both
frequent. The itemset {a2, b1}, instead, has frequency 3 and thus it is not fre-
quent.

Table 1. Dataset with 5 attributes and 20 rows

ID1 ID2 ID3 ID4 ID5

a1 b2 c3 d2 e1

a2 b1 c1 d3 e6

a1 b2 c1 d2 e1

a2 b1 c2 d3 e4

a1 b2 c1 d3 e2

a2 b1 c2 d3 e4

a1 b2 c3 d2 e2

a2 b3 c1 d5 e3

a4 b3 c3 d1 e2

a2 b4 c4 d3 e5

a1 b2 c4 d2 e2

a2 b2 c5 d6 e3

a3 b1 c2 d3 e4

a3 b4 c1 d1 e3

a3 b2 c1 d2 e2

a3 b1 c2 d3 e4

a1 b2 c3 d4 e3

a3 b5 c3 d1 e1

a3 b1 c2 d3 e4

a5 b1 c2 d3 e4

3.1 Mining Datasets

There are many algorithms available in literature for mining data and produce
association rules. Given that the problem is clearly computationally challenging,
many of these algorithms employ heuristics (see the excellent survey [9] for a
comprehensive list of heuristics approach) or population based algorithms such
as genetic algoritms (see for instance [17]) or particle swarm optimization (see
[1]).
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We briefly mention now the two most famous algorithms to find frequent
itemsets. We start with Apriori [2], the most famous and first to be used algo-
rithm for such a purpose, along with its successor FP-Growth [11]. It first com-
putes the support of each single item and, then, it does the same for each itemset
of cardinality 2, 3 and so on. In addition, the comparison of candidates for all
rows becomes more expensive as the iterations of the algorithm increase and
therefore the size of the itemsets to be generated increases. The Apriori algo-
rithm requires l + 1 scan of the dataset to find the longest patterns, of length
l.

The second algorithm is Prefix-Span (PREFIX-projected Sequential PAtterN
mining), a data mining algorithm introduced by Pei et al. [10], which is used for
marketing strategies.

Both algorithms would produce the entire collection of frequent itemsets.
In our working example (itemsets are shown followed by their frequencies) the
following itemsets are frequent:

{a1} : 6; {a2} : 6; {a3} : 6; {b1} : 7; {b2} : 8; {c1} : 6; {c2} : 6; {d3} : 9; {e4} : 6;

{a1, b2} : 6; {c2, b1} : 6; {d3, b1} : 7; {e4, b1} : 6; {d3, c2} : 6; {c2, e4} : 6; {d3, e4} : 6;

{d3, c2, b1} : 6; {c2, e4, b1} : 6; {d3, e4, b1} : 6; {d3, c2, e4} : 6; {d3, c2, e4, b1} : 6

3.2 Association Rules and Confidence

The concept or Association Rules A ⇒ B was presented in [2] along with its
related confidence value Confidence (A ⇒ B), which represents, for instance,
in market basket analysis the probability of buying a set of objects B, called
consequent, given the purchase of a set of objects A, called antecedent, within
the same transaction. More formally, given the probability distribution which
generated the rows in the dataset, Confidence (A ⇒ B)= P (B|A).

To generate an association rule A ⇒ B, where A and B are itemsets, we will
take the support of A ∪ B, and divide it by the support of A, thus computing,
among the rows in the Dataset which contain A, the percentage of rows which
contain also B.

If the itemsets satisfy two fixed parameters, that are the min supp and also
the minimum value of Confidence c (see below), the predictions are called Strong
Rules. So, formally we have

Definition 1. Given a dataset D and given two fixed parameters, 0 ≤
min supp ≤ 1 and the minimum value of Confidence 0 ≤ c ≤ 1, and given
two disjoint itemsets A,B such that supp(A ∪ B,D) ≥ min supp, the associa-
tion rule A ⇒ B is strong if supp(A∪B,D)

supp(A,D) ≥ c.

In our work, we set as Minimum Confidence value c = 75% to get only
itemsets that have a higher (or equal) confidence and also a support that exceeds
or equals the Minimum Support chosen (30%).

When searching for strong rules we pay particular attention to maximal fre-
quent itemsets, i.e. itemsets which are frequent but such that by adding one more
element would no longer be frequent. Thus, given a maximal frequent itemset
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M and any itemset B such that B ∩ M = ∅, we know that the association rule
M ⇒ B, will not be strong, since M ∪ B is not frequent.

Going back to the example of Table 1, we have two maximal itemsets of
cardinality greater than 1, namely {b1, c2, d3, e4} and {a1, b2}. The Association
Rule {d3} ⇒ {b1, c2, e4} is not Strong because its confidence value is equal to
66.6%. Instead, the Association Rules {e4} ⇒ {b1, c2, d3}, {c2} ⇒ {b1, d3, e4},
and {b1} ⇒ {c2, d3, e4} are all strong and, in particular, the first two have 100%
confidence value while the last one 86%.

Table 2 shows the 15 strong association rules. In particular, rules
6, 7, 8, 12, 13, 14 are a consequence of the fact that rule 3 is strong. Same reason-
ing could be applied to the other rules which are a consequence of rules 4 and
5.

Table 2. Strong Rules for the maximal itemset of the example in Table 1

Rule n. Antecedent Consequent Antecedent support Itemset support Confidence

1 {a1} {b2} 6 6 100%

2 {b2} {a1} 8 6 75%

3 {b1} {e4, d3, c2} 7 6 86%

4 {c2} {e4, b1, d3} 6 6 100%

5 {e4} {c2, b1, d3} 6 6 100%

6 {b1, c2} {e4, d3} 6 6 100%

7 {b1, d3} {e4, c2} 7 6 86%

8 {b1, e4} {c2, d3} 6 6 100%

9 {c2, d3} {e4, b1} 6 6 100%

10 {c2, e4} {b1, d3} 6 6 100%

11 {d3, e4} {c2, b1} 6 6 100%

12 {b1, d3, e4} {c2} 6 6 100%

13 {b1, c2, e4} {d3} 6 6 100%

14 {b1, c2, d3} {e4} 6 6 100%

15 {c2, d3, e4} {b1} 6 6 100%

4 Mining Security Datasets for Decisively Strong Rules

In a field such as security, we are more interested in association rules where the
antecedent is a set of events and the consequent is a specific type of attack. Same
kind of reasoning may be applied in the medical field, where we are interested
in diagnosing the likely disease given a list of symptoms.

So, we are considering the case that B contains a single element, i.e. B =
{idj} and A = {id1, id2, ..., idi} is an itemset with i elements non containing idj .
We have formally
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Confidence({id1, . . . , idi} ⇒ {idj}) = P (B|A) =
supp({id1, . . . , idi, idj},D)
supp({id1, id2, ..., idi},D)

(1)
with {id1, . . . , idi} ∩ {idj} = ∅.

In other words, we would like to be able to infer which attack technique is
likely being used, so to apply proper countermeasures. Obviously, such an ability
is particularly important if the attack is not very common, i.e. the probability
of such an attack, though frequent, is not likely or very likely.

Equation 1 gives us the probability that, given some specific attribute values
id1, id2, ..., idi for weaknesses and vulnerabilities that occur as frequent itemsets,
they will appear together with attack tactics and techniques idj as maximal
frequent itemsets. The greater the confidence the greater the reliability in fore-
casting a certain type of attack, and therefore priority will be given to defensive
actions related to it.

In view of the above, let us define then, among the attributes in the dataset
D a specific attribute target T.

We introduce now the following definition, by recalling that any event whose
probability is not higher than 0.5 is typically called unlikely.

Definition 2. Given two fixed parameters, min supp and the minimum value
of Confidence c, and given an itemset A and a single value I /∈ A such that
supp(A ∪ {I},D) ≥ min supp, the association rule A → {I} is a Decisively
Strong Rule (DSR for short), if {I} is frequent, i.e. min supp ≤ supp({I},D)
but unlikely, i.e. min supp ≤ supp({I},D) ≤ 0.5 and supp(A∪{I},D)

supp(A),D ≥ c.

Our goal is to find all the decisively strong rules given the attribute target T,
i.e. association rules A → {ti} where ti is a frequent (at least 30%) but unlikely
value of the attribute target T.

Since both A and {ti} are frequent, i.e. their supports are both at least 30% of
the rows of the dataset, it follows that if m are the rows of D, since ti is unlikely,
supp({ti},D) = α · m with 0.3 ≤ α ≤ 0.5, while supp(A ∪ {Ti},D) = β · m with
0.3 ≤ β ≤ α then

supp(A ∪ {ti},D)
supp({ti},D)

=
β

α

from which it follows that supp(A ∪ {ti},D) = β
αsupp({ti},D). Thus, we need

to mine the sub-dataset where ti occurs for itemsets with a minimum support
of β

α .
We notice that since α ≤ 0.5 and β ≥ 0.3 we have

β

α
≥ 0.3

0.5
= 0.6

For instance, let us consider Table 1 and suppose our target is the value b1 of
ID2. The sub-table containing the value b1 is shown in Table 3. Since the support
of {b1} is 7

20 < 0.5 we need to look for itemsets with support at least 3
10 · 207 = 6

7 ,
and we find, as expected, just {c2, d3, e4}.
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Table 3. Dataset for target b1

ID1 ID2 ID3 ID4 ID5

a2 b1 c1 d3 e6

a2 b1 c2 d3 e4

a2 b1 c2 d3 e4

a3 b1 c2 d3 e4

a3 b1 c2 d3 e4

a3 b1 c2 d3 e4

a5 b1 c2 d3 e4

The algorithm, called DSR, formally described in the pseudocode 1, takes
as input the dataset D, the minimum support value min supp, the confidence
value c, a specific target attribute T and a frequent value ti for T.

To explain how DSR works, we will use the following notations:

– ti will denote the singleton {T = ti}
– D(ti) denotes the projections of the dataset D on the value ti for T, i.e. the

dataset obtained eliminating all the rows where T �= ti.
– supp(A,D(ti)) the support of the itemset A in the dataset D(ti) while

supp(A,D) is the support of the itemset A in the whole dataset D.

Let us suppose that F = {IDi = xi} is the collection of frequent elements all of
length 1, therefore for each element x ∈ F, we have supp({x},D) ≥ min supp.
Let also FT = {t1, . . . , th} be the set of the frequent values of target attribute
T. Thus, for each ti ∈ FT we have supp({ti},D) ≥ min supp.

Our goal is to find all subsets F ′ ⊆ F, such that F ′ ⇒ ti is a DSR for some
ti frequent value of T. So,

supp(F ′,D(ti)) ≥ min supp

supp({ti},D)
≥ 50% Searching condition

supp(F ′ ∪ {ti},D)
supp(F ′,D)

> c Pruning condition

DSR uses, as a subroutine, any fast algorithm to find maximal frequent item-
sets but on possibly quite small sub-datasets. For our tests, we used Apriori.
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Algorithm 1. Pseudo-code of DSR.
1: procedure DSR(D, min supp, c, T )
2: min supp = 0.3, c = 0.75
3: Compute F set of frequent elements, FT set of frequent values of T ;
4: for each attribute ti ∈ FT do
5: supp(ti, D) = αi

6: F ′(ti) = ∅
7: for each x ∈ F do
8: if supp(x, D(ti)) > min supp

αi
then

9: add x to F ′(ti)
10: end if
11: Use General Algorithm to find max. freq. itemsets from F ′(ti) in Dti

12: for each maximal frequent set A do
13: if supp(A ∪ {ti}, D) > c · supp(A, D) then
14: output DSR: A ⇒ ti

15: end if
16: end for
17: end for
18: end for
19: end procedure

5 Results

In order to predict future threats we divided the ENISA dataset into the set of
vulnerabilities and exposures published up to December 31st of 2018 (training
set) and the set of CVEs available for the first half of 2019 (testing set) for
comparisons with the obtained prediction. We add a new feature column in the
original ENISA dataset, and so processed the Pillars, as attribute targets, instead
of the single CWE ID because they group the weaknesses in a more generic way
and consequently the mitigation of the data predicted could be addressed on a
wider range.

We set the minimum confidence to 75% and min supp to 30% and searched
for decisively strong rules of the form {id1, . . . , idk} ⇒ {attack technique id}.
For year 2018 we found just one attack technique with support between 0.3
and 0.5, namely T1027 (Obfuscated Files or Information) with support value
39.99% and another attack technique T1148 (Impair Defenses: Impair Command
History Logging), whose support value is 66.25% therefore higher than 0.3 but
not unlikely according to our definition.

For the target value T1027, we obtained 24 DSR but only two with an
antecedent which are maximals, the following:

– A = {CVSS Complexity = Low,CVSS Scope = Unchanged, CWE Pillar =
Improper neutralization, CAPEC = Leverage Alternate Encoding, Attack
Tactic = Defense Evasion}

– B = {CVSS attack = Network, CWE Pillar = Improper neutralization,
CAPEC = Leverage Alternate Encoding, Attack Tactic = Defense Evasion}
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So, the two DSR found are A ⇒ {T1027} and B ⇒ {T1027}.
The total number of all strong rules (with min supp=0.3 and min conf=0.75)

that we could have obtained with traditional data mining algorithm would have
been 1073, so our procedure is way faster and it avoids many useless generation.

To test the accuracy of the found rules, we extracted the frequent item-
sets of the testing set (the first semester of 2019) that contain the same T1027
attack technique. By comparing the obtained prediction of the 2 DSR rules of
2018 with the restricted frequent itemsets of 2019, we obtained a perfect match-
ing.

To justify, experimentally, our choice of considering just target values with
support not higher than 50%, we use as an example the attack technique T1148
(Impair Defenses: Impair Command History Logging) which has support 0.66.

From the sub-datasets containing the value T1148 we searched for frequent
itemsets with support (0.3/0.66) = 0.45. We found 303 frequent itemsets but
only 5 maximal:
1. {CVSS severity = HIGH, CVSS scope = Unchanged, CAPEC = Subverting

Environment Variable Values, Attack Tactic = Defense Evasion}
2. {CVSS complexity = Low, CVSS scope = Unchanged, CVSS availability =

None, CAPEC = Subverting Environment Variable Values, Attack Tactic =
Defense Evasion}

3. {CVSS complexity = Low, CVSS scope = Unchanged, CWE Pillar =
Improper Neutralization, CAPEC = Subverting Environment Variable Val-
ues, Tactic = Defense Evasion}

4. {CVSS complexity = Low, CVSS scope = Unchanged, CVSS confidentiality
= High, CVSS integrity = High, CAPEC = Subverting Environment Variable
Values, Attack Tactic = Defense Evasion}

5. {CVSS attack = Network, CVSS complexity = Low, CVSS priveleges =
None, CVSS scope = Unchanged, CAPEC = Subverting Environment Vari-
able Values, Attack Tactic = Defense Evasion}

The above 5 maximal frequent itemsets are the antecedent to 5 DSR with mini-
mum confidence 0.75 and consequent T1148. After extracting the frequent item-
sets of the first semester of 2019 which contain T1148 we found that only 2
maximal itemsets out of 5 are also found for 2019. It follows that in this case
the accuracy is only 40%.

6 Conclusion

In this work, we addressed the general data mining problem of finding strong
association rules so to predict specific attacks and discover unknown vulnera-
bilities. We proposed a framework which takes into account frequent but not
very likely attacks and proposed a fast way to compute strong association rules
which turn out to be highly accurate. Our data-driven approach to deal with
potential attacks in order of priority, could in future research be extended by
experimentally setting the parameters of minimal support, confidence and likeli-
hood of target values. Keeping into account past and recent work using popula-
tion based methodologies [1,17] and heuristics [9] a possible future works could
involve population-based metaheuristics for the choice of such parameters.
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2. Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of
items in large databases. ACM SIGMOD Rec. 22(2), 207–216 (1993)

3. Cavallaro, C., Verga, G., Tramontana, E., Muscato, O.: Suggesting just enough
(Un)crowded routes and destinations. In: CEUR Workshop Proceedings, vol. 2706,
pp. 237–251 (2020)

4. Cavallaro, C., Ronchieri, E.: Identifying anomaly detection patterns from log files: a
dynamic approach. In: Gervasi, O., et al. (eds.) ICCSA 2021. LNCS, vol. 12950, pp.
517–532. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86960-1 36

5. Cavallaro, C., Vizzari, G.: A novel spatial–temporal analysis approach to pedes-
trian groups detection. Procedia Comput. Sci. 207, 2364–2373 (2022)

6. Dodiya, B., Singh, U.K., Gupta, V.: Trend analysis of the CVE classes across CVSS
metrics. Int. J. Comput. Appl. 183(33), 23–30 (2021)

7. Fan, J., Li, Y., Wang, S., Nguyen, T.N.: A C/C++ code vulnerability dataset
with code changes and CVE summaries. In: Proceedings of the 17th International
Conference on Mining Software Repositories. ACM (2020)

8. Fouladvand, S., Osareh, A., Shadgar, B., Pavone, M., Sharafi, S.: DENSA: an
effective negative selection algorithm with flexible boundaries for self-space and
dynamic number of detectors. Eng. Appl. Artif. Intell. 62, 359–372 (2017)

9. Ghafari, S.M., Tjortjis, C.: A survey on association rules mining using heuristics.
WIREs Data Min. Knowl. Discov. 9(4), e1307 (2019)

10. Han, J., et al.: PrefixSpan: mining sequential patterns efficiently by prefix-projected
pattern growth. In: Proceedings of the 17th International Conference on Data
Engineering, pp. 215–224. IEEE (2001)

11. Han, J., Pei, J., Yin, Y., Mao, R.: Mining frequent patterns without candidate
generation: a frequent-pattern tree approach. Data Min. Knowl. Discov. 8(1), 53–
87 (2004)

12. Katos, V., et al.: State of vulnerabilities 2018/2019 : analysis of events in the life
of vulnerabilities. European Network and Information Security Agency (2020). for
Cybersecurity, E.U.A.

13. Li, Z., Li, X., Tang, R., Zhang, L.: Apriori algorithm for the data mining of
global cyberspace security issues for human participatory based on association
rules. Front. Psychol. 11, 582480 (2021)

14. Murtaza, S.S., Khreich, W., Hamou-Lhadj, A., Bener, A.B.: Mining trends and
patterns of software vulnerabilities. J. Syst. Softw. 117, 218–228 (2016)

15. Saboori, E., Parsazad, S., Sanatkhani, Y.: Automatic firewall rules generator for
anomaly detection systems with Apriori algorithm. In: 2010 3rd International Con-
ference on Advanced Computer Theory and Engineering (ICACTE). IEEE (2010)

16. Tisbeni, S.R., et al.: A big data platform for heterogeneous data collection and
analysis in large-scale data centers. In: Proceedings of International Symposium
on Grids & Clouds 2021 — PoS (ISGC2021). Sissa Medialab (2021)

17. Yan, X., Zhang, C., Zhang, S.: Genetic algorithm-based strategy for identifying
association rules without specifying actual minimum support. Expert Syst. Appl.
36(2, Part 2), 3066–3076 (2009)

https://doi.org/10.1007/978-3-030-86960-1_36


Characterization and Categorization
of Software Programs on X86

Architectures

Javier Jareño1 , Juan Carlos de la Torre1 , and Bernabé Dorronsoro1,2(B)
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Abstract. The rapid technological growth in the computer industry has
brought a wide variety of computer architectures and available programs
with it. This makes the important problem of optimizing software per-
formance increasingly complex. The reason is that automatic processing
is required in order to consider in the decisions both the characteristics
of the program itself and those of the system where it will be executed,
in order to obtain remarkable results. With the aim of advancing in the
knowledge on automatic and adaptive optimization of computer soft-
ware, this paper presents a novel system for characterizing and clustering
programs on x86 architectures according to their intrinsic characteris-
tics, extracted with the Intel Software Development Emulator and perf

tools. As a case of study, a subset of the programs collected in EEMBC,
a benchmark suite for analyzing the performance of computing devices,
has been selected. The results show how 70 different programs can be
grouped together into 11 clusters wherein they share similar features.

Keywords: Software characterization · Software features extraction ·
Clustering · x86 Architecture · Intel Software Development Emulator ·
perf

1 Introduction

Due to the huge number of computer architectures (hardware), programming
languages, and computer programs (software) available, the characterization of
software takes special relevance as far as optimization techniques are concerned,
since achieving a perfect generic optimization system for any program and archi-
tecture is an unmanageable task. However, the possibility of categorizing pro-
grams according to their features would open the door towards the automatic
optimization of programs, adapted to their own characteristics and to the target
hardware. In this work, we propose the characterization of software programs by
categorizing them into groups that share program features.
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The characterization of a benchmark (or test software) lies in the extraction of
a predefined series of program features. They must be sufficiently representative
to be able to distinguish two different programs from each other, so their selection
requires a previous study. In addition, the features will be strongly related to
the architecture on which the software runs, so it is consistent to restrict the
software characterization to the specific desired architecture.

The dependence of a characterization on an architecture occurs because dif-
ferent hardware architectures have different physical features, such as cache sizes,
ALUs, RAM, hard disk, parallelism systems, instruction sets, or buses, among
others. This means that the set of features that can be extracted from the same
software in different contexts may vary.

The characterization of benchmark programs is a very important step for
their subsequent categorization. The aim is to obtain representative features of
a program that sufficiently distinguish it from others with different behavior.
The categorization of benchmarks makes it possible to create different subsets
of programs, depending on the objective of the study to be carried out on them.
In the future, this will allow optimization systems to specialize in dealing with
sets of programs with similar characteristics, instead of the inefficient current
approach that applies a generic optimization for any type of program. Such
achievement will be the cornerstone of a new generation of smart compilers.

For the study on characterization and categorization of software, it is essential
to have a diverse set of programs that are the object of study. This set is known
as a benchmark suite, and it must be complete, accurate, and consistent to serve
as a relative measure of the performance and characterization of a program.
Therefore, it is important to understand what type of computational load it
generates on the processors, as well as how it was done, since two programs can
generate the same computational load in terms of percentage of CPU used and
at the same time have a completely different characterization.

In the present work, the benchmark suite considered for our characteriza-
tion and categorization study is a subset of the one offered by EEMBC [7],
consisting of 70 benchmarks. This is comprised of different suites that in turn
contain a series of related benchmarks. They are all written in C, and the dif-
ferent suites define sets of benchmarks that perform tasks referred to a specific
topic. The existing suites are: automotive, consumer, digital entertainment,
embench, multibench, networking, networking V2, office automation and
telecommunications.

The purpose of each one can be deduced from its name, however, they per-
form simulations. That is to say, when evaluating network operations in one
of the benchmarks, the real operations are not actually performed, meaning
that they could be executed with the network card being disabled. Instead,
disk writes/reads are made, collecting the data that is supposed to be sent and
received through the network card. Therefore, using the benchmark suite names
as a grouping feature is not representative, and it is required to properly char-
acterize each of the benchmarks.
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It should be noted that the methodology designed in the present study can
be used with any benchmark suite written in C under x86 architecture, a study
has not been carried out on the range of application in terms of programs with
dependencies on modules written in other languages, or dynamic libraries, and
they are a matter for future works. Additionally, older x86 architectures with
possible outdated instruction sets are not considered, because they might include
certain deprecated assembly instructions that the program emulator used is not
able to account for.

The main contribution of this work is the proposal of a novel methodology for
the effective classification and categorization of software programs on x86 archi-
tectures. For that, an automatic software feature extraction system is designed,
based on the use of Intel Software Development Emulator (SDE) and perf tools.
Specifically, a study of the measurements is carried out to ensure their correct
use and interpretation, as well as a sensitivity study to select which features
are representative enough to differentiate the benchmarks from each other. As a
second contribution, a software program clustering system is proposed based on
the extracted features. For this purpose, an agglomerative connective method
based on the elbow method [6] will be used to define the number of clusters.

The document is organized as follows: Sect. 2 discusses the current state of the
art on software feature extraction and its categorization into groups by similarity.
Section 3 defines the software feature extraction method we propose, as well
as the tools used for that, and Sect. 4 summarizes the experiments performed,
mentioning their setup, as well as a discussion of the results obtained. Finally,
Sect. 5 discusses the conclusions obtained from the study and the main lines of
future work identified after this work.

2 State of the Art

Benchmark characterization and data clustering are frequently studied problems
in the literature, usually independently addressed. However, we can find several
works dealing with the classification and characterization of software.

Poovey et al. [11] study the characterization of software on the same bench-
mark used in the present study (EEMBC), in addition to offering a manual
grouping based on the results obtained. For this purpose, software character-
istics are divided into the following categories: cache references and misses for
different block sizes, distribution of instruction types (%ALU, %Memory, %Jump
and %Others), inter-process communication, and jump prediction failure.

Hoste et al. [8] propose a microarchitecture-independent characterization sys-
tem to study the inherent properties of benchmarks. For that, authors focus on
the use of features concerning dependency distance distribution to registers,
jump prediction, instruction set, data flow for a given size, and memory access
patterns.

Joshi et al. [9] study a microarchitecture-independent characterization and
clustering system. They establish the set of features extracted from the bench-
marks, as well as the tools used (SCOPE and STATISTICA). For clustering, they
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perform a dimensionality reduction of the features with Principal Component
Analysis (PCA) and a subsequent categorization with k-means and hierarchi-
cal clustering. The Bayesian Information Criterion method is used to define the
number of clusters [10].

Conte et al. [2] focus the characterization on memory instructions, since
the other types of instructions are architecture instruction set dependent. They
define that one of the most important aspects to take into account when studying
a benchmark is the cache reference miss rate, as this implies a considerable
workload.

In comparison to the previous studies, the feature extraction of the present
study diverges from the existing ones in the use of features intrinsic to the bench-
marks within a fixed x86 architecture, because the aim is to subsequently obtain
an optimization system specific to that architecture. The features extracted are
truly representative of the behavior of the benchmark, and they are generated
with an emulator. This approach allows, for instance, accounting for the number
of times loops are executed, unlike the other existing works.

3 Software Feature Extraction

Feature extraction can be performed both statically (by checking the object
code resulting from compilation) and dynamically (by executing the program
and extracting information from its execution). Static program analysis consists
of studying the object code written in assembler to extract the number of occur-
rences of each instruction in the program. However, this approach is ambiguous
because it does not allow considering important information about the program
execution, such as the number of iterations performed by a loop, the number of
function calls, or recursive calls.

Dynamic analysis solves the aforementioned problems of static analysis,
since it does allow the information generated during program execution to be
extracted. However, the impact of simultaneous measurements of the program
execution on its overall performance must be considered.

This study uses the latter approach, using the two tools previously men-
tioned: perf [1] and Intel’s SDE [5].

3.1 perf Tool

perf is a Linux performance analysis tool that provides information about the
performance registers located in the Performance Monitoring Unit (PMU Hard-
ware Events) physically inside the CPU. These registers maintain information
about hardware events occurring on the CPU and form an excellent basis for
specifying intrinsic characteristics of a program on a particular architecture.

On the one hand, it offers a large number of events that can be monitored,
although some of them do not work on certain architectures or may suffer from
measurement noise. On the other hand, there is no theoretical limit on how
many events can be measured simultaneously, this applies without any problem
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on software events. However, for hardware events there is a limitation due to the
number of counters in the CPU. These counters are in charge of monitoring the
events occurring at the hardware level and if the number of event types (hard-
ware) to be measured exceeds the number of counters, time division multiplexing
is applied.

Time multiplexing is a technique used by perf as an attempt to measure
all types of events, without being monitored at all times. At the end of the
execution, the data is scaled to estimate the number of events that would have
been performed based on the time during which that event has been measured
and the total execution time. The scaling is calculated as:

Total Events = Measured Events ∗ texecution
tenabled

. (1)

The scaling percentage returned by perf is calculated as:

pScaled =
tenabled
texecution

, (2)

where scaling gives the ratio of the time the event has been measured with
respect to the total program execution time.

3.2 SDE Intel Tool

Intel’s SDE is a code emulator on 64-bit x86 processors. It offers multiple mea-
surement tools, although the most important one for the present work is the
histogram of assembler instructions executed by the processor, either at thread,
logical core or global levels. The operation is similar to perf: it executes a soft-
ware binary monitoring which assembler instructions have been executed. How-
ever, its main advantage is that because it is a simulator, the computation of the
metrics do not have any impact on the performance of the measured programs.

For this study, the total number of x86 assembly instructions executed is
taken into account, therefore they are not divided into threads or logical cores.

Intel x86-64 assembler instructions are divided into different categories [3,4],
depending on the scope of operation, type of instruction or intrinsic features of
these instructions.

4 Experimentation

This section summarizes the experiments performed for this work. First, Sect. 4.1
presents the setup of the experiments. Then, in Sects. 4.2 and 4.3 the most
representative characteristics of the programs are selected for classification, as
well as the appropriate number of clusters to be used, respectively. Finally, the
main results obtained are discussed in Sect. 4.4.
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4.1 Experiment Setup

The tools used for the feature extraction system are Intel SDE version 9.0 and
perf version 5.13.19. For the compilation of the benchmarks, clang version 9.0.1-
12 is used, and it is configured so that it applies the lowest level of optimization
during the compilation (i.e., using “-O0” compilation flag).

As previously mentioned, the features are dependent on the architecture on
which the benchmarks are run. The present study has been performed on an
AMD Ryzen 7 3700x processor (x86-64 architecture) with 32 GB of DDR4 RAM
and Ubuntu 20.04 LTS as Operating System.

4.2 Features Selection

The features extracted by perf and SDE are multiple and of great variety,
but not all of them offer relevant information. For example, multiple events of
the perf list have been detected that either do not provide information due to
limitations of the architecture used in the experiments or do not provide relevant
information (they are linear combinations of other events).

From perf, it has been decided to take only cache-references (sum of
LLC-load, LLC-stores and prefetching of data and instructions, all referred
to the L3 cache) as a representative feature of the programs. The decision was
made thanks to an analysis of the median absolute deviation, which showed how
all the benchmarks reported similar values for the rest of the features studied,
making them not useful for the purpose of characterizing programs. The other
events studied were branch-instructions (jump assembly instructions executed),
branch-misses (jump assembly instructions that have failed), cache-misses
(sum of LLC-load-misses, LLC-stores-misses and prefetching failure of data
and instructions, all referred to the L3 cache), cpu-cycles (total CPU cycles), or
instructions (total assembly instructions executed).

As for Intel SDE, it provides information about the types and number of x86
assembly instructions executed by a program. The information returned by SDE
uses the Intel x86 manual’s own internal classification. This classification has
33 instruction categories, which we propose to group into sets of classes accord-
ing to their meaning (vector instructions, function calls, binary operators, etc.)
to form 17 groups of instruction categories. This decision was motivated after
a previous study where a manual and automatic classification of all the x86
instructions that were executed was performed, in addition to an exploratory
sensitivity analysis, all of which showed that those instruction categories with
similar meaning showed similar values to the resemblant categories. The charac-
teristic corresponding to each group is calculated as:

featurei =
ni

tinstr
, (3)

where i is the calculated feature category, ni is the number of executed assembler
instructions of that category, tinstr is the total number of executed assembler
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instructions and featurei is the value assigned to the feature. Once this value
has been calculated for all benchmarks, the data is normalized.

Finally, we obtained 18 potential features (1 from perf and 17 from SDE).
They adopt the name of the most important representative of each category (e.g.,
under SSEx we have SSEx, AVXx, MMX and VFMA) and they are: SSEx, BINARY, CALL,
CMOVBE, COND BR, CONVERT, DATAXFER, LOGICAL, MISC, POP, ROTATE, SEMAPHORE,
BITBYTE, SYSCALL, BROADCAST, XRSTOR, NOP and cache-references.

In order to test the strength of the 18 features selected for software classifi-
cation, two different analyses were performed, the results of which are shown in
the Fig. 1:

– Information gain: In specific terms, it calculates the entropy reduction
produced by the transformation of the data set. In general terms, it measures
how much information each feature adds to the data set. This information
translates into how much a feature helps to differentiate a benchmark i of a
cluster u from another benchmark j of a cluster v. The sklearn library1 has
been used for computing this metric.
For this study, agglomerative (hierarchical) clustering was used to group the
benchmarks into 10 clusters using the Euclidean distance function and ward
distance method.

– Mean absolute deviation: It calculates the mean absolute error on the
mean of each feature (not the mean square error). Therefore, the higher its
value, the greater the variability of the data and the more information the
feature includes.

For this study, each benchmark was run 30 times with the respective tools
(Intel SDE and perf) and the median is taken as the representative statistic for
each of the characteristics. It is done because of the uncertainty in the measure-
ments, because the number of executed assembly instructions are different in
each test. This non determinism is due to cache misses, jump prediction failure,
context switches, OS handling, etc., which affect the program execution.

Two thresholds are set for both analyses based on the mean and standard
deviation of the values. In the case of information gain (Fig. 1a), the thresh-
old value is 0.3. Therefore, those features whose information gain is below this
threshold are considered not to be sufficiently representative. For the mean abso-
lute deviation analysis (Fig. 1b) the threshold is set to 0.125, proceeding as in
the previous analysis with those features that do not exceed it.

Thus, the intersection of the categories that do not exceed the above thresh-
olds are classified as not representative. They are: BROADCAST, XRSTOR, SYSCALL,
BITBYTE, SEMAPHORE, DATAXFER, CONVERT and Cache-references. These cate-
gories will be unified under the new class called NOTREPRESENTATIVE. The only
exception is for cache-references, which has a different unit of measurement than
the other categories and therefore cannot be directly unified with them. As it
has values close to the discard threshold, it is considered itself as one additional
category, together with the previously unified and representative categories.
1 https://scikit-learn.org/.

https://scikit-learn.org/
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Fig. 1. Information gain (a) and mean absolute deviation (b) of the data set formed
by the benchmark features.

Finally, the characteristics selected after this study for the final characteri-
zation system are listed in Table 1, together with the categories they represent
and their description.

4.3 Selecting the Number of Clusters

After identifying the potential features for the program characterization and
clustering system, this section presents the final clustering system to be used for
software categorization. To do this, it is necessary to determine the appropriate
number of clusters. The elbow method [6] is used by applying k-means++ from
the sklearn library as a classification technique on the studied data set.

The elbow algorithm receives the data to be clustered and a range with the
possible number of clusters to be considered (in this study the range {1,24} is
taken). For each possible number of clusters, the k-means++ algorithm is applied
on the data, and the degree of distortion is obtained, calculated as the sum of
the mean squared errors on the distances of each pattern of a cluster with its
representative.
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Table 1. Features selected for benchmark characterization.

Feature Category Description

SSEx SSEx, AVXx, AVX2 MMX,

VFMA

Vector instructions (SIMD,

single instruction multiple data)

BINARY BINARY, X87 ALU Arithmetic operations (addition,

subtraction, multiplication, division)

with binary operators (two registers)

CALL CALL Function calls

CMOVBE CMOVBE, CMOV Conditional moves

COND BR COND BR, UNCOND BR Conditional and unconditional

jumps

LOGICAL LOGICAL, LOGICAL FP Logical operations and vector

logical operations

MISC MISC Miscellaneous (wait, halt...)

POP POP, PUSH, RET Stack operations

ROTATE ROTATE, SHIFT Rotating or shifting operations

NOP NOP, WIDENOP No operation

NOTREPRESENTATIVE BROADCAST, CONVERT,

XRSTOR,

Not representative enough features

XSAVE, SYSCALL, SYSTEM, BIT-

BYTE,

BMI1, SETCC, LODSD, SEMAPHORE

DATAXFER Data transfer

Cache-References Cache-References Referencias a caché

Fig. 2. Elbow method with final features.

The degree of distortion obtained for each cluster is shown in Fig. 2. Based
on the theory of the elbow method, the number of clusters corresponding to
the inflection point of the graph should be selected. In this case, due to the
complexity of the problem there is no sharp inflection point, but rather a grad-
ual reduction in the degree of distortion in the classification. We select 11 as
the ideal number of clusters for the considered problem, since between {10,14}
some stabilization of the distortion is observed. Other higher values with clearer
stabilization can be appreciated, but it is not considered appropriate to select
a high number of clusters, since this would imply a situation of over-fitting in
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Fig. 3. Radar graphs of the features of two benchmarks.

which programs with small variations in their characteristics could be placed in
different groups.

4.4 Discussion of Results

This section contains the results of the final characterization and clustering sys-
tem. After the studies carried out in Sects. 4.2 and 4.3, a characterization and
clustering model with the following features is obtained:

– Features are extracted with Intel SDE and perf, in both cases running each
benchmark 10 times using the mean of the runs as a proxy. The selected
features have been grouped as shown in Table 1, and their values have been
normalized.

– Clustering algorithm: The hierarchical agglomerative algorithm is used, which
is suitable for visualizing the order of merging clusters, the distance at which
they merge and the resulting groups with a dendrogram. This model allows
finding a suitable fit manually.

– Distance method: ward. This method avoids both generating clusters with
a single benchmark and the inclusion of most benchmarks on a single main
cluster. The ward method works with Euclidean distance.

– Number of clusters: 11. This number is obtained by applying the elbow
method (based on k-means++) on the final set of features.

As an example of the proposed software characterization, the characterization
of two of the benchmarks is shown in Fig. 3, for which different computational
loads are shown. In the case of the bezier01 benchmark (Fig. 3a) a higher load
of operations of the logical type, rotations and conditional movements is shown.
However, in the case of the nbody benchmark (Fig. 3b) a load mainly of NOP
type operations and vector instructions is presented.

As for the results of the proposed clustering model, they are summarized in
the dendrograms shown in Fig. 4. It can be seen in Fig. 4a the final grouping of
the benchmarks in the 11 selected clusters, while the complete dendrogram of
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Fig. 4. Dendrograms resulting from the configured clustering algorithm.

the clustering is detailed in Fig. 4b. This way, it is possible to visualize the order
in which the benchmarks were merged to end up in the final 11 clusters.

Finally, Fig. 5 and Fig. 6 show the features of all the benchmarks that have
been assigned to each of the 11 clusters. It can be seen how each cluster brings
together benchmarks with very similar characteristics to each other.

From these graphs it can be deduced that there is a great heterogeneity of
existing problem types, and a higher number of clusters could be obtained if
necessary. Furthermore, this classification indicates that the initial grouping of
the benchmarks hosted in EEMBC corresponds to a large extent with the one
obtained. For example, the packages referring to networking (networking and
networking V2 ) have been grouped under several clusters with cluster 1 being
the main representative. Those referring to image or signal processing (jpeg
and mp3) have also been grouped under the same clusters (groups 7 and 8), thus
showing that these types of benchmarks have similar features to those related
to matrix processing and yet they are so different from each other as to form
distinct clusters.
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Fig. 5. Clusters resulting from all the benchmarks considered. In each radar graph the
benchmarks corresponding to a group are collected.
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Fig. 6. Clusters resulting from all the benchmarks considered. In each radar graph the
benchmarks corresponding to a group are collected.

5 Conclusions and Future Work

In the present study, a complete automatic clustering and characterization sys-
tem for Intel x86-64 architectures has been designed. Likewise, a series of clusters
has been predefined with the EEMBC benchmarks already classified in them.
The characterization of the benchmarks and their corresponding grouping in
different clusters is a very important process to formally study any system that
operates on them. For its achievement, the following has been done:

– Design a complete characterization system based on the intrinsic features of
the program on a given architecture, being as deterministic as possible. For
this purpose, the main performance tools have been studied, filtering with a
sensitivity analysis all the candidate features to be selected as representative.

– To model and configure a clustering algorithm that would be suitable for the
problem that concerns us. For this purpose, a study of the possible parameters
has been carried out, highlighting among them the analysis with the elbow
method, as well as the combination of two sensitivity analyses to ensure the
representativeness of the features in the defined model.

As a future work, the main study is to extrapolate feature extraction to ARM
architectures. For this purpose, an ARM emulator must be designed, since there
is currently no open source emulator that allows us to extract the executed ARM
instructions. It is also considered very interesting to work with architecture-
independent features, as well as to study other methods of defining the number
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of clusters. Finally, this study opens a new line of research towards the intelligent
compilation of programs, whose decision making is based on the characteristics
of the software and the hardware where it will be executed.
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Abstract. This study focuses on the use of automated vehicles for last-
mile delivery, specifically using local depots and integrated trucks-robots.
The researchers developed two MILP models, RADP-1 and RADP-2,
with RADP-2 being a modified version of TSP-D by [1]. The models were
tested on three different service areas with varying customer densities,
and it was found that robots were more efficient in areas with high cus-
tomer densities. As the problem size increases, RADP-2 becomes more
difficult to solve than RADP-1 due to the exponential increase in the
number of feasible operations. The computational time of RADP-2 can
be improved by removing operations that are unlikely to be part of the
optimum solution.

Keywords: Vehicle Routing Problem · Robot · Scheduling · Last-mile
delivery

1 Introduction

Recent developments in technology and the growth of e-commerce has led to sev-
eral researches considering alternative assisted deliveries not only by drones, but
also by robots. Some technology and traditional logistics companies like Star-
ship technologies [2] and JD.com [5] have implemented the usage of autonomous
robots for small parcel delivery. Most robots are electrically powered and can
travel a limited distance owing to its limited battery capacity. Also, robots travel
at a very low speed, making their application for long distance delivery prob-
lems inefficient. As a result of this, logistics companies are considering integrated
truck-robot assisted deliveries to overcome the issue of limited travel distance of
robots by transporting them using trucks to dense customer areas for efficient
robot usage. Robots though characterized by low travel speed, would provide
better alternative solutions, particularly in an urban environment characterized
by a high number of stopping points with relatively short distances. Table 1
summarizes the strengths and limitations of both trucks and robots.

In this work, the authors proposed a framework called the “Robot-Assisted
Delivery Problem (RADP)”. The problem considers the integration of standard
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
B. Dorronsoro et al. (Eds.): OLA 2023, CCIS 1824, pp. 341–353, 2023.
https://doi.org/10.1007/978-3-031-34020-8_26
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Table 1. Comparison of Robot and Truck

Characteristics Truck Robot

Load Capacity large small

Endurance Unlimited short

Speed high low

Carbon-Emmision high low

Route Along road network padestrian walk

truck delivery, robot delivery (robots launched from trucks), and local depots
into one model, where customer orders can be served by either the truck, the
robot launched from the truck, or a local depot. The truck departs from the dis-
tribution center and travels to customer and/or depot locations to serve orders.
The truck carries a certain number of robots on board, which can be launched
at customer or local depot nodes to fulfill customer demands. The robots are
picked up at a different location from the drop-off point to allow for simulta-
neous service of orders by the two vehicles. The local depot is also equipped
with a certain number of localized robots that serve customers covered by the
depot. Two different models were developed for the Robot-Assisted Delivery
Problem, namely RADP-1 and RADP-2. In RADP-1, each node and each arc
are exclusively considered in the modeling process, while RADP-2 uses the con-
cept of operations, where each operation is made up of a combination of arcs
and nodes. The two proposed models, RADP-1 and RADP-2, offer different per-
spectives in solving the problem, and the comparison between the two models
provides valuable insights for future research in this area.

Figure 1 illustrates a simple example of the Robot-Assisted Delivery Problem
(RADP), which consists of 11 customer nodes and 1 local depot node. Node
1 represents the distribution center where the truck starts and terminates its
journey, while node 2 represents a local depot. The truck visits nodes 3, 5, 7,
2, and 4 to serve customer orders. At node 3, two robots are launched from the
truck to serve customers 8 and 9 and customers 13 and 12, respectively. The first
robot serves customers 8 and 9 and is picked up by the truck at node 4 while
the second robot serves customers 13 and 12 and is picked up by the truck at
the local depot node 2. Nodes 6, 10, and 11 are within the coverage range of
local depot 2 and are therefore served by the local depot’s localized robots. This
example shows how the RADP framework combines different delivery methods
to optimize the delivery system’s efficiency.

2 Literature Review

Scheduling procedure proposed in [3] involves a truck-based robot-assisted deliv-
ery system that uses autonomous robots to serve deliveries with time windows.
The system involves a single truck that loads customer shipments and robots
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Fig. 1. A simple illustration of RADP

from a central depot and transports them to drop-off points located in the city
center. The robots are loaded with the shipments to make deliveries to customers
and rejoins the truck. The authors assumed a network with an unlimited num-
ber of robots which is unrealistic in practice. In reality, deploying a large fleet
of robots and leaving them unused for a significant amount of time would be
cost-prohibitive. Therefore, there is a need to develop more realistic scheduling
procedures that consider the limited availability of robots and other resources
to optimize the delivery system’s efficiency while minimizing costs.

A similar idea of carrying robots on a conventional truck and releasing them
from the truck is the study presented in [4]. Unlike [3], where robots have a single
delivery capacity, it is assumed that a robot can serve up to six customers. A
comparison of their approach with a standard delivery truck was made based on
the assumption that a truck has the capacity of carrying a maximum of eight
robots and a robot can travel up to four miles to make deliveries. The study
revealed that autonomous robots may be more efficient when customer densities
is high.

The paper by [7] describes a location-routing problem that involves the use of
multi-compartment robots and customer time windows. The goal is to determine
the optimal locations of robot hubs, the set of tours that the robots will take,
and the number of robots needed to minimize the total costs of one working
day. The problem is modeled as a mixed-integer programming problem with the
objective to minimize the total costs while meeting the delivery requirements
and the battery swapping constraints. The results of the study show that the
proposed model and algorithm can effectively solve the location-routing problem
and provide solutions that are close to the optimal solution. The study also
highlights the potential benefits of using multi-compartment robots and battery
swapping to improve the efficiency of the delivery process.

[8] presents a two-echelon van-based robot hybrid pickup and deliveries (2E-
VRHPD) system. The system consists of vans carrying small robots that travel
along tier-1 routes, stopping at parking nodes to drop off and/or pickup robots,
and to replenish or swap robot batteries. There are two types of customers in
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the system: van customers and robot customers. Van customers can be served
by either vans or robots, while robot customers are served exclusively by robots.
Robots travel along tier-2 routes that are not accessible by vans to serve robot
customers. Overall, the 2E-VRHPD system presents an interesting approach to
solving the delivery problem by combining the use of vans and robots in a two-
echelon system. The adaptive search algorithm proposed by the authors also
provides a practical solution for solving larger instances of the problem.

It is interesting to note that the RADP approach is different from the Travel-
ling Salesman Problem with robots (TSP-R) approach presented in [6] by includ-
ing local depots in the distribution system. Customers located within a certain
distance from the local depots can be served by the local depot. The RADP
approach is entirely different from the existing studies in the literature, any cus-
tomer can be served either by a truck, a robot or a local depot. This allows
for greater flexibility and optimization in the distribution system, potentially
leading to more efficient and effective delivery of goods.

3 Problem Formulation of RADP Models

This problem involves a combination of conventional truck delivery, robot deliv-
ery (carried on trucks), and local depots to optimize the delivery process. The
scenario assumes a set of trucks, robots, customers, and local depots. The trucks
start from the distribution center, which is located in the countryside and carry
robots and customer orders. Since robots have limited battery capacity and travel
speed, they are not designed for long distances, and trucks carry them to suitable
areas for delivery. However, instead of just serving as mobile depots for robots,
trucks can also deliver customer orders as standard delivery vans. The robots’
storage is divided into compartments for multiple shipments, and they return to
either a customer or local depot pickup point after delivery. The trucks can also
service multiple local depots that provide other customer service facilities. The
aim of this study is to optimize the delivery schedules of all facilities involved so
as to minimize total work span of trucks.

3.1 Mixed Integer Programming Formulation of RADP-1

The important assumptions of the model are summarized below:

1. We assume that there are K trucks and R robots, starting and finishing at
the distribution center. We also assume that there are ND local depots.

2. There are NC customers to be served, each with known location, order size
qi and service time oi.

3. Robots carried by trucks are identical with their storage separated into com-
partments.

4. Each customer is served either by a truck, a localized robot from robot depot
or a robot carried on a truck.
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5. The drop-off and pick-up locations of robots are different
6. Multiple robots can be launched and retrieved at the same customer node.
7. The robots must be picked up by the truck from which it was dropped.

Variables and Notations

Sets:

K := {1, ...,K} - Set of trucks ND := {1, ..., ND} - Set of robot depots
R := {1, ..., R} - Set of robots NDC := {1, NC +ND +2} - Warehouse
NC := {1, ..., NC} - Set of customers N := NC ∪ ND ∪ NDC - All
nodes.

Parameters

qi - order size of node i ∈ NC oi- service time at node i ∈ NC

CR - capacity of robot CT - capacity of truck
vR - speed of robot vT - speed of truck
h - setup time of robot s - capacity occupation of a robot
dij - distance between node i and node j ∀i, j ∈ N .
pi - maximum capacity that can be served by the local depot.
Dmax - maximum allowable distance traveled by robot, r ∈ R.

λij =
{

1, if customer i is covered by depot j,
0, otherwise i ∈ NC , j ∈ ND.

Decision Variables

– xijk =
{

1, if truck k travels (i, j),
0, otherwise i �= j ∈ N ,k∈ K.

– yijr =
{

1, if robot r travels (i, j),
0, otherwise i �= j ∈ ND ∪ NC , r ∈ R.

– δkr =
{

1, if robot r is placed on truck k,
0, otherwise r ∈ R, k ∈ K.

– γikr =
{

1, if robot r is launched from truck k at node i,
0, otherwise r ∈ R, k ∈ K, i ∈

ND ∪ NC .

– ηikr =
{

1, if robot r is collected by truck k at node i,
0, otherwise r ∈ R, k ∈ K, i ∈

ND ∪ NC .

– zij =
{

1, if node i is served by depot j,
0, otherwise i ∈ NC , j ∈ ND.

– tik = the visiting time at node i by truck k, ∀i ∈ NC ∪ ND,∀k ∈ K.
– τir = the visiting time at node i by robot r, ∀i ∈ NC ∪ ND,∀r ∈ R.
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RADP-1

min
∑
k

(
t(NC+ND+2,k) − t1k

)
(1)

subject to:

∑
j∈N\{1}

x1jk = 1,∀k ∈ K. (2)

∑
i∈NC∪ND

xi,NC+ND+2,k = 1,∀k ∈ K. (3)

∑
j∈N

xijk =
∑
j∈N

xjik,∀i ∈ NC ∪ ND,∀k ∈ K. (4)

∑
j∈NC∪ND

yijr +
∑
k∈K

ηikr =
∑

j∈NC∪ND

yjir +
∑
k∈K

γikr,∀i ∈ Nc ∪ ND,∀r ∈ R. (5)

2γikr ≤ δkr +
∑
j∈N

xijk,∀k ∈ K,∀r ∈ R,∀i ∈ NC ∪ ND. (6)

2ηikr ≤ δkr +
∑
j∈N

xijk,∀k ∈ K,∀r ∈ R,∀i ∈ NC ∪ ND. (7)

∑
k∈K

δkr ≤ 1,∀r ∈ R. (8)

zij ≤ λij .∀i ∈ NC , j ∈ ND. (9)∑
i∈N

∑
k∈K

xijk ≥ 1
M

∑
i∈NC

qizij ,∀j ∈ ND. (10)

∑
j∈N

∑
k∈K

xijk +
∑

j∈NC∪ND

∑
r∈R

yijr +
∑

j∈ND

zij = 1 +
∑
r∈R

∑
k∈K

γikr,∀i ∈ NC (11)

∑
i∈NC

qizij ≤ pj ,∀j ∈ ND. (12)

∑
i∈NC∪ND

∑
j∈NC∪ND

dijyijr ≤ Dmax,∀r ∈ R. (13)

∑
i∈NC

qi

⎛
⎝ ∑

j∈NC∪ND

yijr −
∑
k∈K

γikr

⎞
⎠ ≤ CR,∀r ∈ R. (14)

∑
i∈NC

∑
j∈N

qixijk + αk + βk +
∑
r∈R

s.δkr ≤ CT ,∀k ∈ K. (15)
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αk ≥
∑
i∈Nc

qi

⎛
⎝ ∑

j∈Nc∪ND

yijr −
∑
k

γikr

⎞
⎠ − M (1 − δkr) ,∀k,∀r. (16)

βk ≥
∑
i∈Nc

qizij − M

(
1 −

∑
i∈N

xijk

)
,∀k,∀j. (17)

tjk ≥ tik + oi +
dij
vT

+ h
∑
r∈R

γikr − M(1 − xijk), i �= j∀i ∈ N ,∀k ∈ K. (18)

τjr ≥ τir + oi(1 − γikr) +
dij
vR

− M(1 − yijr), i �= j∀i, j ∈ Nc ∪ ND,∀k ∈ K.

(19)

tik ≥ τir − M(1 − ηikr),∀i ∈ NC ∪ ND,∀k ∈ K,∀r ∈ R. (20)
τir ≥ tik + h − M(1 − γikr),∀i ∈ NC ∪ ND,∀k ∈ K,∀r ∈ R. (21)

xijk ∈ {0, 1}, i �= j ∈ N , k ∈ K. (22)
yijr, δkr, γikr, ηikr ∈ {0, 1}, i ∈ NC ∪ ND, k ∈ K, r ∈ R. (23)

zij ∈ {0, 1}, i ∈ NC , j ∈ ND. (24)
αk, βk, tik, τir ≥ 0, i ∈ NC ∪ ND, k ∈ K, r ∈ R. (25)

The objective function (1) minimizes the total working time of all the trucks.
Constraints (2), (3) & (4) are standard network flow constraints for truck. Equa-
tion (5) is the network flow constraint for robot. Constraints (6) & (7) ensures
that robot can be launched from/collected at a node only if it is carried by a
truck which visits the node. Constraint (8) guarantees that same robot cannot be
carried by more than one truck. Constraint (9) ensures that a customer node is
covered by a depot before it can be served by the depot. Constraint (10) ensures
that all local depots with positive customer demands are visited by truck. Con-
straint (11) ensures that all customers are either served by truck, robot launched
from truck or by a local depot. Constraint (12) ensures that the total order size
served by a local depot does not violate its capacity. Constraint (13) ensures
that the total distance travelled by a robot does not violate its maximum travel
capacity, while constraint (14) ensures that total capacity of shipments carried
on robot does not exceed its carrying capacity. Constraint (15) ensures that total
capacity of shipments and capacity occupation of all robots carried on truck does
not violate the truck capacity. Constraints (18) & (19) calculate the visiting time
at nodes by trucks and robots respectively, while constraints (20) & (21) linked
them together. Finally, (22), (23), (24) & (25) defined the values of the decision
variables.
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3.2 Mixed Integer Programming Formulation of RADP-2

In this section, an IP formulation of the problem is presented using the concept
of operation, which is a modification of the Traveling Salesman Problem with
Drones (TSP-D) proposed by [1]. An operation o represents a sequence of nodes
that can be serviced by a truck with a robot on board or by a truck and robot
splitting at the departure node, visiting other nodes in parallel, and rejoining at
a pickup node. It is assumed that robots are allowed to visit at most two nodes
per launch

An operation is made up of a combination of either truck and robot nodes
(if the two modes are used in parallel), or only truck nodes ( if they are used
jointly). Each Operation is made up of at least two nodes consisting of start and
end nodes which are referred drop off and pick up nodes of robots respectively.

Variables and Notations

Sets:

N := NC ∪ ND - Set of all nodes, Nc : - Set of customer nodes
ND : - set of depots O : - set of feasible operations
O−(i) ⊂ O :- Set of operations with start node i ∈ N .
O+(i) ⊂ O :- Set of operations with end node i ∈ N .
O(i) ⊂ O :- Set of all operations that contain node i ∈ N .

Variables

Decision Variables

– xo =
{

1, if operation o is chosen
0, otherwise ∀o ∈ O.

– βi =
{

1, if depot i has positive demand
0, otherwise ∀i ∈ ND,

– vi : visiting time at node i ∈ N .

– yi=
{

1, if atleast one chosen operation uses node i as start node,
0, otherwise ∀i ∈ N .

Parameters

to :- time to complete operation o ∈ O and list of parameters in Subsect. 3.1

RADP-2

min v(nC+nD+2) (26)
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subject to:
∑

o∈O(i)

xo +
∑
j∈D

λijβj ≥ 1,∀i ∈ Nc (27)

∑
o∈O−(i)

xo =
∑

o∈O+(i)

xo,∀i ∈ N . (28)

∑
o∈O+(io)

xo ≥ 1. (29)

∑
o∈O(i)

xo ≥ βi,∀i ∈ ND. (30)

∑
o∈O−(i)

xo ≤ yi,∀i ∈ N . (31)

yi0 = 1. (32)

vj ≥ vi +
∑

o∈(O−(i)∩O+(j))

xo ∗ to − M(1 − xo),∀i, j (33)

xo ∈ {0, 1},∀o ∈ O. (34)
yi ∈ {0, 1},∀i ∈ N . (35)
βi ∈ {0, 1},∀i ∈ ND, . (36)

The objective function (26) minimizes the total time to complete the tour. Con-
straint (27) ensures that all customer nodes are covered either by an operation
or a local depot. Constraint (28) ensures that the chosen operation visits each
node once. Constraint(30) ensures that all local depots with positive demands
are covered by operations. Constraint (31) ensures that at most one operation
with start node i is chosen. Constraint (32) ensures that the tour starts (and
end) at the depot and Constraint (33) calculate the visiting time at each node.
Finally, constraints (34), (35) and (36) force the variables xo, yi, and βi to be
binary.

4 Computational Experiments

The location of all nodes are randomly generated using Matlab, and the road
distance between each pair of node calculated. Customer orders are also gen-
erated randomly. In all the experiments, we used the Robot set up time and
service time of customers as 1 min and 3 min respectively, covering range of local
depot to be 0.03 mi, while speed of Truck and robot as 13mph and 4mph. The
experiments were performed on different order densities.
The MILP solution approach to the model is coded in MATLAB R2020a and
executed on a CPU with Intel(R)Core(TM)i5-7300U processor. The MILP is
solved by CPLEX Studio 12.10.0.
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4.1 CPLEX MILP Solution of RADP Models

Due to complexity of the RADP models, numerical experiments were performed
for small instances. We considered one truck, two robots and one local depot.
We test the performance of the models on three different service areas with map
range = 0.5, 1.0 and 5.0 mi. Within each service area, we perform five different
tests with different order densities. The results of the experiments are presented
in Tables 2, 3 and 4 . Table 2 is a result of experiments with map range = 0.5, it
represents a solution of an area with high customer density covering around one
square miles. Robots and local depots are well utilized in this area with average
savings over TSP of up to 25% for both RADP-1 and RADP-2. RADP-1 is
solved to optimality for up to 8 nodes within an hour, while RADP-2 is solved
to optimality for up to 5 nodes only. The computational time of RADP-1 is
worse in Test 1 only and better in Tests 2, 3, 4 and 5 because of the exponential
increase in the number of feasible operations in RADP-2 due to increase in the
number of nodes.

For more details, a sample solutions of Test 5 in Table 2 are presented graph-
ically in Fig. 2, where sub-figures (a) and (b) are for RADP-1 and RADP-2
respectively. The central depot is node 1 (indicated by the square), the local
depot is node 2 (indicated by diamond) and the rest are customer nodes (indi-
cated by dots). With RADP-1, the truck starts from the central depot to launch
2 robots at customer node 9, one of the robots served customer at node 5 while
the other served customers at nodes 3 and 7, they both rejoin the truck at cus-
tomer node 4 for pickup. The truck from customer node 9 visits the local depot
node 2, then to customer node 4 and back to the central depot. Customers at
nodes 6 and 8 are served from the local depot. Robots and local depots are well
utilized because of the higher density of the area. Meanwhile, optimum solution
for RADP-2 is not obtained within one hour, the truck instead of visiting the
local depot node 2 from customer node 9, it travels to customer node 5 before
visiting the local depot, then returns to the central depot passing very close to
node 9 that is already visited. Like RADP-1, customers at nodes 6 and 8 are
served from the local depot. Table 3 is an example with map range = 1.0 mi. In
this example, the customer density is lesser than the area represented in Table 2.
In all the Tests, no customer is served by local depot because they are not within
the covering area of the local depot due to enlarged service area, however robots
are utilized in all test examples. Average savings over TSP for both models are
20%, which is less than the savings obtained in Table 2. Figure 3 is a graphi-
cal solution of Test 5 in Table 3 with sub-figures (a) and (b) for RADP-1 and
RADP-2 respectively. RADP-1 provides better solution than RADP-2 within
the computational time allowed, even though the truck route appears shorter in
RADP-2, this could be due to longer waiting time of truck due to slower speed
of robot.

Table 4 represents solutions of a less dense area (map range = 5.0 mi), robots
and the local depot are not efficiently utilised, this accounts for low average
savings over TSP of 7.23%.
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Table 2. RADP-1 Vs RADP-2: Map Range = 0.5, ST = 13, SR = 4

Model Test CPLEX MILP Solution Savings

# of # of # of robots Service Computational Gap over TSP

customers Local Dep. Used Time Time (%) (%)

RADP-1 1 3 1 1 0.1926 0.28 0.00% 9.02

RADP-2 1 3 1 1 0.1926 0.22 0.00% 9.02

RADP-1 2 4 1 2 0.1962 1.27 0.00% 25.65

RADP-2 2 4 1 2 0.1962 1.69 0.00% 25.65

RADP-1 3 5 1 2 0.2433 12.61 0.00% 22.64

RADP-2 3 5 1 2 0.2433 3600 19.90% 22.64

RADP-1 4 6 1 2 0.2448 261.28 0.00% 33.21

RADP-2 4 6 1 2 0.2458 3600 79.07% 32.93

RADP-1 5 7 1 2 0.2450 2748.72 0.00% 41.16

RADP-2 5 7 1 2 0.2625 3600 80.61% 36.96

Average Savings 25.89

Table 3. RADP-1 Vs RADP-2: Map Range = 1.0, ST = 13, SR = 4

Model Test CPLEX MILP Solution Savings

# of # of # of robots Service Computational Gap over TSP

customers Local Dep. Used Time Time (%) (%)

RADP-1 1 3 1 1 0.2185 0.42 0.00% 2.15

RADP-2 1 3 1 1 0.2185 0.21 0.00% 2.15

RADP-1 2 4 1 2 0.2258 1.69 0.00% 19.73

RADP-2 2 4 1 2 0.2258 1.58 0.00% 19.73

RADP-1 3 5 1 2 0.2560 9.67 0.00% 22.19

RADP-2 3 5 1 2 0.2560 240.04 0.00% 22.19

RADP-1 4 6 1 2 0.2746 454.8 0.00% 28.32

RADP-2 4 6 1 2 0.2990 3600 83.32% 21.95

RADP-1 5 7 1 2 0.2827 3600 11.17% 34.70

RADP-2 5 7 1 2 0.3044 3600 82.98% 29.68

Average Savings 20.28

Table 4. RADP-1 Vs RADP-2: Map Range = 5.0, ST = 13, SR = 4

Model Test CPLEX MILP Solution Savings

# of # of # of robots Service Computational Gap over TSP

customers Local Dep. Used Time Time (%) (%)

RADP-1 1 3 1 0 0.3166 0.22 0.00% 0.00

RADP-2 1 3 1 0 0.3166 0.31 0.00% 0.00

RADP-1 2 4 1 0 0.4065 2.01 0.00% 0.00

RADP-2 2 4 1 0 0.4065 1.17 0.00% 0.00

RADP-1 3 5 1 2 0.4115 15.55 0.00% 7.51

RADP-2 3 5 1 2 0.4115 53.52 0.00% 7.51

RADP-1 4 6 1 2 0.4368 525.47 0.00% 15.25

RADP-2 4 6 1 2 0.4568 3600 85.91% 11.37

RADP-1 5 7 1 2 0.4442 3600 9.17% 21.28

RADP-2 5 7 1 2 0.5114 3600 88.46% 9.37

Average Savings 7.23
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Fig. 2. RADP Solutions of Test 5 in Table 2

Fig. 3. RADP Solutions of Test 5 in Table 3

5 Conclusion

From the numerical results presented and discussed above, it can be seen that
the two models are consistent since they produced the same result when both
of them reached the optimum solution. RADP-1 is easier to solve than RADP-2
in all Tests except Test 1 and sometimes Test 2. Computational difficulty of
RADP-2 increases more than that of RADP-1 as the problem size increases
because of the exponential growth in the number of feasible operations. The
robots being very slow in speed compared to trucks, are more suitable in areas
where customer densities is high. Although RADP-1 looks more complex than
RADP-2 due to its larger number of variables and constraints, it is still better
in terms of computational difficulty. The number of feasible operations used
in RADP-2 grows exponentially and the computational time required to solve
problems with practical size is impossible. There is potential for RADP-2 to be
produced. This can be done by removing operations which are not likely to be
part of the optimum solution. It involves ranking the operations based on “time-
nodes ratio”, that is dividing the total time of performing each operation by the
number of nodes covered by the operation and selecting operations with smaller
ratios.
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Abstract. Business leaders have access to a new set of tools to monitor
and improve employees’ productivity and wellness as well as to retain tal-
ents: People or Human Resource Analytics. However, while People Ana-
lytics helps understanding employees at the individual level, it doesn’t
reflect the social interactions happening in the workplace. For that, you
would rather look at Organizational Network Analysis to examine how
people communicate across an organization and give a more accurate
and realistic understanding of employees’ interactions. In this paper, we
propose a framework for organizations to supplement their People Ana-
lytics with Organizational Network Analysis. We address the different
challenges associated to that and provide different case-studies based on
real clients’ data to demonstrate how Organizational Network Analysis
can be used to solve practical business applications.

Keywords: Relational Analytics · Organizational Network Analytics ·
People Analytics · 4th Industrial Revolution

1 Introduction

The Human Resource (HR) industry is experiencing a revolution led by the pro-
fusion of employee data and new possibilities to take data-driven decisions and
discover new insights about how organizations function [1]. Business leaders are
looking for ways to back up their hypotheses, understand better their employ-
ees, manage them better, and improve internal processes. They want to have
real-time access to their company’s turnover - where it happens and why? They
want to know their gender pay gap, see how diverse their organization is, retain
their talent, and more. This is called People Analytics (PA) or Human Resource
Analytics: the collection and application of talent data to improve critical talent
and business outcomes [2]. As a matter of fact, more than 70% of companies
now say that they consider PA to be a high priority [3]. PA focuses mostly on
employee attribute data, of which there are two kinds:
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– Static attributes (or traits): facts about individuals that don’t change, such
as ethnicity, gender, hire date, etc.

– Dynamic attributes (or state): facts about individuals that do change, such
as age, company tenure, compensation, etc.

PA is great to check that numbers are in order, benchmark data across differ-
ent teams, and set Key Performance Indicators (KPIs) for managers. A limitation
of PA, as Paul Leonardi and Noshir Contractor argue [4], is that it limits itself
to individuals attributes and neglect the interdependence between employees.
Indeed, what drives an organization or a team performance is not only the indi-
vidual attributes, but also the interplay among people and how it evolves over
time. Organizational Network Analytics (ONA), also called Relational Analyt-
ics, addresses that and captures communication between people to give insights
about the nature and the quality of their relationships. It makes it possible to
evaluate a collaboration in the context of the surrounding network, which is a
critical criterion for success in any collaborative project.

In this paper, we present a framework for not only exploring organizations’
key information based on employees’ static attributes as we see in standard
HR analytics systems, but we will also present how to factor in communication
metadata and unlock more insights. At Panalyt [5], we created a Software as a
Service (SaaS) tool where we plug in our clients’ data and allow them to perform
PA as well as ONA using our suite of pre-built dashboards which cover the end-
to-end employee lifecycle. Based on our experience building this product and
interacting with dozens of clients, we have identified multiple challenges. We
will present the main ones in the following sections, and how we overcame them.
Later, we will see how the association of PA and ONA can help to deduce
transformative insights by performing queries on a partial subgraph. Finally, we
will share advanced real case-studies from our client base.

2 Challenges

2.1 Ethical Concerns

The accessibility of employee communication data raises important ethical con-
cerns. Beyond legal considerations, employers should be mindful of the ethical
standards that they adhere to while utilizing this information. One study esti-
mated that 81% of people analytics projects are jeopardized by ethics and privacy
concerns [7]. At Panalyt, we purposefully refuse to ingest and analyse the content
of the communication between employees, due to the sensitivity of the informa-
tion. According to a recent study, transparency was identified as being one of
the most critical considerations for PA projects [8]. The use of aggregated, non-
identifiable data is recommended where possible, to demonstrate to employees
that the purpose behind PA projects is to capture larger organizational trends.

Organizations should communicate their reasons for pursuing PA projects
and the kind of benefits employees should expect from them. We also recommend
establishing clear governance around data collection, access and storage, consent,
and anonymity.
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2.2 Data and Storage

To perform our analysis, we need data of 2 kinds: people data and commu-
nication metadata. People data is collected from HR systems, such as human
resources information systems (HRIS), payroll tools, absence management tools,
performance management tools, and recruitment tools. In many cases, organi-
zations use Software as a service (SaaS) tools to store their data, and most of
them would have API connections. In other cases, the data is stored in Microsoft
Excel or CSV documents. On the other hand, communication metadata can be
retrieved from chat/email tools. Over the last few years, online communication
and management tools such as Microsoft Teams/Outlook, Slack, Gmail and oth-
ers have started providing API access for their customers, making it easier for
organizations to collect communication metadata.

Having the experience of working with many different clients, we have a good
overview of how people data and communication data is stored, and how they can
be retrieved, and used to perform analysis. At Panalyt, after being collected, the
data is stored, transformed and queried using SQL, a structured query language
that allows fast retrieval and transformation of data.

We recommend to versionize the data, at least monthly, before storing it
in one or multiple tables, to make it easier to query snapshots of the data for
any particular month and perform join operations across tables. If a record is
updated for an employee during a month, we forward propagate the change
to the future versionized rows, as we can see in Table 1. We then make query
on a partial subgraph to visualize a defined population of the network, where
nodes are employees (or their external contact) and where edges represent an
information about their interactions. We chose to aggregate the data by month
as we realize this granularity is large enough deducing trends, and small enough
to notice significant changes quickly in the scale that companies operate in.

Table 1. Employee table

empID versionId companyemail department salary JobT itle . . .

0001 30/09/2022 emp1@email.com Technology $6,000 Data Engineer

0001 31/10/2022 emp1@email.com Technology $6,000 Data Engineer

0001 30/11/2022 emp1@email.com Technology $6,000 Data Engineer

0001 31/12/2022 emp1@email.com Technology $7,000 Sr Data Engineer

0002 31/08/2022 emp2@email.com Marketing $4000 UI Designer

0002 30/09/2022 emp2@email.com Marketing $4,5000 UI Designer

. . .

Regarding communication data, the main fields that we retrieve are:

– messageId: unique identifier of the message
– sendingFrom: sender’s email
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– sendingTo: receiver’s email
– sentDatetime: time when the message was sent
– threadId: thread/conversation the message belongs to
– channelId: channel where the message has been sent - only for chat tools

We process the data to get one line per sender and receiver pair for each
month. We then compute various aggregated metrics, from person 1 to person 2
and person 2 to person 1, including, but not limited to:

– count of messages sent: The volume of messages sent by either or both cor-
respondents.

– average response time: The time taken for a correspondent to reply to the
other correspondent.

– response rate: The percentage of messages received by either correspondent
that they replied to.

– the reciprocity: the ratio of the volume of communication between a corre-
spondent and another.

– average time first/last message sent: The average time when a correspondent
sends his first/last message to another person.

– average time first/last message received: The average time when a correspon-
dent receives his first/last message to another person - emails only.

– channels in common (chat tools only): The number of channels or groups
where both correspondents are active (i.e have both send more than X number
of messages during that month).

We then create a graph based on the analysis. This could be a direct graph,
where arrows point from the sender to the recipient, or an undirected graph.
Although some authors propose to use the number of e-mails sent by a node i
to a node j divided by the total number of e-mails sent by member i [9], and
others suggests to use the geometric mean of sent-received counts, [10], there is
no unique way to generate the attributes to connect people in an ONA graph.
It really depends on the use case.

At Panalyt, we use simple metrics such as those described above as well as
more complex ones that we can’t disclose as they are confidential. We have also
created a score that includes the information of some of the metrics defined
above, especially the count of messages sent, the average response time, the
response rate, and the reciprocity. In general, our recommendation is to define
a metric based on the use case. For example, if we want to highlight employees
and managers who have an asymmetric collaboration, we should query the pairs
of employees where the number of direct messages sent one way is at least X
times greater than the other way.

For the purpose of this study, we use a metric called collaboration score
which is defined as follows: For each version (month), we count the number of
groups/channels where both employees are active. We define being active by
sending at least 5 message in the same group/channel and the same month.
For instance, if Mizuki and Hong have both sent more than 5 messages in the
channels “Client A” and “Engineers”, they would have a collaboration score
equal to 2.
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2.3 Dashboards

In order to efficiently use network data to understand their teams, managers need
access to interactive and easy to use dashboards. Most companies rely on data
analysts to get insights related to talent and performance management using BI
tools such as Tableau or Power BI. That often creates a bottleneck for multiple
reasons:

1. It requires a dedicated data team and decision makers to help them put the
data into context, which is very costly.

2. There are not enough data analysts to address all management queries in a
timely manner.

3. Employee data is sensitive, and business leaders often hesitate to share this
information with regular employees. The BI tools also just do not have a
permission system granular enough to give appropriate permissions to users.

Because of the complexity behind obtaining the data, as well as the technical
resources and cost needed to process large amounts of sensitive data, it is difficult
to build such a solution in-house for most companies. We had cases where clients
told us that they liked our product but wanted to build an in-house solution.
Many came back more than a year later with no progress. The resources and
amount of work required to build such a tool is often underestimated.

We have spent more than 4 years building Panalyt’s product at the time
of writing this paper. We have a product that efficiently extracts, processes
and stores people data and communication data every day and displays interac-
tive visualizations in pre-built dashboards where data from different sources can
interact with each other.

We also have a permissions system that allows an admin to give access a user
to specific data, aggregated or not, based on the line hierarchy of the user or on
defined attributes (e.g. a manager can be limited to see aggregated or individual’s
values only for the team he manages, or for a specific department/location/etc.)

In our application we use d3.js [6] for our network data visualizations. The
library takes in source-target pairs to create nodes and the edges between them.
In addition to that, we can also add other attributes like colour to each node
based on features like tenure, organization, function, etc.

Here are some of the salient features of the ONA dashboard:

– Colouration: By default, nodes are coloured based on the department of the
employee they belong to. In Fig. 1a, the nodes belong to different departments
- Sales and Marketing. The nodes in Fig. 1b belong to Engineering.

– Layering: Each node can also be recoloured based on user-selected properties.
For instance, in Fig. 1c, the nodes are not coloured based on departments -
yellow is applied to all employees that are working part-time and red to all
employees with less than one year of tenure. There is one employee that is
both part time and has less than one year of tenure. On the other hand, there
are three employees that have neither of those properties (in blue).
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Fig. 1. Different types of visualizations from Panalyt platfrom.

– A-B Filtering: The graph can itself be filtered based on employee data
attributes. For instance, in Fig. 1a we have filtered the data such that both
the senders (A) and receivers (B) are from two departments only.

2.4 Datasets

For the upcoming analyses, we will be using 3 datasets from 3 different clients:

– Client 1: the Slack communication data of 486 internal users of a Japanese
company from January 2019 to March 2022. This data includes their public
and private channels, but does not include any direct messages. We do not
include direct messages as their company’s Slack subscription does not allow
access to direct messages for extraction due to privacy reasons.

– Client 2: the Slack communication data of 845 internal users of an Australian
company from August 2022 to December 2022. Again, the data does not
include any direct messages for the same reasons.

– Client 3: we will share a case study with Panasonic Operational Excellence
Co., Ltd. that partnered with Panalyt in March 2022 and applied ONA to
identify organizational issues. The size of the dataset is confidential.

3 Basic Analysis

We can deduce important information about an organization using its communi-
cation data. However, on its own the network data can be imposing and unwieldy.
It is when we add attributes about the employees (e.g. their department, age,
grade, etc.) and make queries on a partial subgraph that we can get a deeper
and more precise understanding of the organization.
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3.1 Inter-Team Collaboration

Fig. 2. Collaboration between two teams

Many companies are divided
into multiple teams that
often work together. Com-
munication within the teams
as well as across teams is
very important for good and
timely results. It is difficult
to ascertain the quality of
communication between two
teams except through the
use of surveys or interviews
with managers. Not only can
they be difficult to arrange,
it is not feasible to have
every member of the team
take a survey and companies
often have to defer to man-

agers for their perspective on the communication level between teams. Even if
managers are unbiased in their responses, surveys can be prone to human errors
of judgement as we will see later in a case-study. A faster, more accurate, and
reproducible way to judge communication health between two teams is through
the use of their ONA data.

Fig. 3. Inter-Team Collaboration with Manager layer

In Fig. 2 (client 2), we look at ONA data for the Finance and Technology
teams (by applying the A-B filters to those teams only) and we see that while
there is an abundance of connections within each team, the flow of communi-
cation between the two teams is limited to only 5 channels, i.e., there are 5
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pairs of employees that are responsible for the communication between the two
teams. This can be crucial information for the organization. If the two teams
are supposed to be mostly independent of each other, then this communication
model will work fine. However, in a technology company, where the product is
the technology itself, the communication between the two teams is rather slim.
It would make sense to open up more channels of communication to prevent a
backlog of information. Moreover, if we use the layering function to add a layer
for managers(yellow), we uncover more detail on the health of communication
between the two teams. We see in Fig. 3 that even among the five channels, only
one of them is between managers. This means that there are only two decision
makers between the two teams that are connected. This can be an additional
concern.

3.2 Better Onboarding of New Employees

Many companies spend a lot of resources on getting the best talents. The cost
of hiring does not end with a signed contract - rather, it continues for the next
few months with companies spending money and months on onboarding the new
hires. At this stage, it is important to make sure that the new hires are sufficiently
connected to their team members to have a smooth onboarding process. They
need people to teach them the team’s business practices and the tools they use.
In addition, they also need to be able to get along with their teammates and get
to know their working styles.

Managers can make use of ONA data to pinpoint new hires that might not
be getting an adequate onboarding experience or who seem to be left out. They
can do that by looking at their communication within the team, and see if
they are connected to their manager and team members. As an example, we
can use A-B filters to restrict Client 2’s data to the Finance team and use
layering to pinpoint the employees with less than six months of tenure. The
resultant graph is displayed in Fig. 4. We can see that among the five new hires
for the Finance team, three seem to be adequately integrated. They have multiple
connections/collaborations with team members. However, we also see two new
hires that are only in communication with one other team mate. This can be
worth looking into as these two hires might not be getting adequate resources
to transition into their roles and this can prolong the time required to get them
fully on board.
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3.3 Gender Diversity in Teams

Fig. 4. New Hires Communications

Companies strive for an inclu-
sive work culture where employ-
ees from various genders and
demographics are not only rep-
resented but also included read-
ily in conversations. Foma [11]
details the benefits of workplace
diversity such as plurality of
ideas owing to diverse experi-
ences and the likelier retention
of employees. But they also note
that there can be significant
communication gaps between
the different groups. We see that
companies already spend time
and effort on streamlining their
hiring practices to make them

more inclusive. For instance, there has been a sustained effort, spanning many
decades, to include more women in the workplace, especially in the higher posi-
tions and male-dominated sectors like technology and finance.

Fig. 5. Gender Diversity chart

Looking at client 2, we
focused on looking at the gen-
der diversity in the Technol-
ogy department. From our Pan-
alyt dashboard, we can see
that for a particular department
the female headcount has been
steadily rising by more than
13% per year to reach 21.5%
of women from January 2020 to

November 2022 (Fig. 5). However, when we look at the communication graph
(Fig. 6) for the same department, we found that many females (in red) clus-
ter together, and there are entire subsections of the graph where there are no
collaborations with females - like in the bottom right, with just male employees
communicating with each other. Gaps like this in communication between demo-
graphics can impede the company from fully reaping the benefits of diversity.
Our clients also benefit from similar use cases by studying how populations with
different attributes (ages, tenure, etc.) work together.

4 Advanced Case Studies

4.1 Attrition vs Amplitude of Communication

For client 1, to understand how to help them promote a healthier company cul-
ture and retain talents, we studied their historical communication data to under-
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Fig. 6. Network Graph layered by gender

stand the impact of the amplitude of communication in attrition. We started by
looking at the count of messages sent by active employees by month (Fig. 7a).
We then averaged the results for all active employees by month. The average
time of the first message sent was roughly between 10am and 11am, while the
average time of the last message sent was between 6pm and 7pm. After that,
we focused our attention on the employees who quit (37 terminated employees
with at least 12 months tenure) to see if we could find any pattern in their
amplitude of work in the last 15 months before they left. We uncovered from
Fig. 7b and Fig. 7c that on average before employees quit, they start communi-
cating earlier, and send their last message later, until they reach a point around
5 months before termination where the trend starts to reverse. In Fig. 7d, we
looked at the total amplitude of communication (average time of last message
sent - average time of first message sent). As expected, we saw a similar pattern:
the amplitude of communication keeps increasing until it reaches a pic and start
decreasing again. Finally, in Fig. 7e, we wanted to make sure that this trend was
observable in comparison to their peers. We benchmarked the average first/last
time of messages sent by terminated employees, as well as the amplitude, against
the averages for the active population (380+ active employees) for that month
for each month leading up to their eventual termination date.

We found again a pattern of employees that start communicating earlier and
finish later compared to the average employee, especially between 5 to 7 months
before their termination where it peaks to 40 min more on average compared to
the active employees.

Our conclusions, based on those findings, was that the amplitude of commu-
nication is positively correlated to the overwork of employees and factors greatly
in the attrition. Interestingly, employees gradually disengage from 5 to 6 months
before they quit. This study is a good example that shows that it is possible
to uncover insightful information based on aggregated, non-identifiable data.
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Fig. 7. Analysis of communication times

Companies can then use it to create new policies and limit overwork by discour-
aging communication after a certain hour when possible, and to identify groups,
departments or talents where employees tend to overwork and disincentivize it.
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4.2 Improving Manager Effectiveness and Innovation

Our second case study has been done with Panasonic Operational Excellence
Co., Ltd., that partnered with Panalyt in March 2022 and applied ONA to
identify organizational issues that could not be discovered through conventional
methods such as surveys. The detailed case-study is accessible online [12]. Fol-
lowing a merger and a group restructuring, their goal was to further strengthen
collaboration between different departments that used to historically work inde-
pendently. Initially, the team had introduced a pulse survey to understand and
improve the collaboration between employees with a relatively short tenure and
their managers, as well as their motivation. They quickly found that pulse sur-
veys alone were not effective in identifying from where the communication issues
were coming from, presumably because the survey answers are subjective and
that bias could not be completely eliminated.

Fig. 8. Surveys vs ONA

Some of their initial assumptions were that “an employee with low motiva-
tion in a pulse survey may not be able to interact with other employees and
may be isolated.” and that “employees who interact with many other employ-
ees have high motivation.” After analyzing their ONA data with Panalyt, they
observed that some employees were “isolated but maintain high motivation”, or
had “low motivation despite being in the center of the organization and interact-
ing with many other employees including those from other departments”. The
initial assumptions were therefore proven to be false. Another assumption was
that the higher the collaboration between an employee and his manager, the
more likely the employee would meet expectations of their roles and responsi-
bilities. However, they realized that managers were only able to have a grasp
on their relationships with their direct reports; but they were unaware of the
work their team members were doing in collaboration with members from other
departments - making it impossible to notice signs of collaboration overload that
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can lead to burnout unless the employees speak out themselves (Fig. 8). This was
especially true at the time of the imposed working from home period during the
COVID-19 pandemic.

5 Discussions and Conclusion

People analytics has introduced new ways to make evidence-based decisions to
improve organizations’ processes. But most companies have been focused on
studying the attributes of their employees, forgetting the reality of interde-
pendence. As collaboration platforms such as Slack, Teams and others become
prominent and are increasingly used in virtual teams, organizations can now
better understand what drives group or organizational performance. This is con-
firmed by Keith G. Provan when he says: “only by examining the whole network
can we understand such issues as how networks evolve, how they are governed,
and, ultimately, how collective outcomes might be generated” [13].

In future work, we would like to develop ways to take communication metrics
from different sources and formulate a combined score that explains the overall
communication behaviour across multiple communication platforms.
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Abstract. The smart city concept refers principally to employing tech-
nology to deal with different problems surrounding the city and the cit-
izens. Urban mobility is one of the most challenging aspects considering
the logistical complexity as well as the ecological relapses. More specif-
ically, parking is a daily tedious task that citizens confront especially
considering the large number of vehicles compared to the limited park-
ing, the rush hours peaks, etc. Forecasting parking occupancy might
allow citizens to plan their parking better and therefore enhance their
mobility. Time-series forecasting methods have proved their efficiency
for such tasks, and this work goes in the same line by exploring how
to provide more accurate parking occupancy forecasting. Concretely, its
contributions stand in a complete pipeline, including (I) the automatic
extra-transform-load data module and (II) the time-series forecasting
methods themselves, where four have been studied: one additive regres-
sion model (Prophet), the Seasonal Auto-Regressive Integrated Moving
Average (SARIMAX), and two deep learning models, the Long Short
Term memory neural networks (LSTM), and Neural Prophet. Experi-
ments have been performed on data of 3 and 28 parking from the city of
Malaga (Spain) and Birmingham (England) using data recorded through
6 months (June-November 2022) and two and a half months (October-
December, 2016), for Malaga and Birmingham, respectively. The results
showed that Prophet provided very competitive results compared to the
literature.

Keywords: Deep Learning · Time Series Forecasting · Smart Cities

1 Introduction

The world’s technological and societal evolution has substantially increased
cities’ size and needs. Statistics have shown that 56% of the world’s popula-
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tion (around 4.4. billion) are living in the cities today and 8.8 billion by 20501).
This increases the complexity of city-life, whether from the citizen’s or the city
manager’s point of view. This makes maintaining the same quality of life harder,
especially since the logistics requirements are way more difficult to handle. Con-
sidering these facts, the smart city concept appeared to encompass the use of
cutting-edge technologies to enhance the city-life at several levels (e.g. education,
mobility, etc. [5]). The citizens’ mobility is increasingly attracting the interest
and efforts of academia and industry. The complexity of mobility emerges con-
sidering factors such as the number of vehicles, their type, the restricted trans-
portation paths, the economic and ecological relapses, etc. Previous works have
investigated how to enhance mobility from a moving-vehicle point of view (e.g.
by computing the shortest path, optimising the traffic lights [6], etc.). However,
enhancing the mobility of vehicles does not only depend on moving vehicles but
also on stationary ones. Actually, parking [2] turns out to be quite problematic
considering factors such as parking vs vehicles imbalance (2). In this case, the
parking quality depends on how two questions are answered: (Q1)When and
(Q2) Where to Park?.

To answer the above-stated questions, the idea consists in giving the citi-
zens a step ahead to plan their parking better. Technically, this will be done
by forecasting parking occupancy at a given moment. Bearing in mind this,
times-series techniques have already demonstrated their efficiency for forecast-
ing parking tasks [4,10]. Thus, this work goes along this research axis by building
a complete parking-occupancy forecasting pipeline composed of (I) the Extrac-
tion, Transformation and Loading (ETL) as well as (II) the forecasting mod-
ule based on times-series forecasting methods including one additive regression
model (Prophet) [12], the Seasonal Auto-Regressive Integrated Moving Average
(SARIMAX) [3], and two deep learning models, the Long Short Term Memory
neural networks (LSTM) [7], and Neural Prophet [13]. The study has been done
using real-life data of 3 parking in the city of Malaga (Spain) as well as 28 park-
ing in the city of Birmingham (UK) using data recorded throughout 6 months
(from 01/06/2022 to 30/11/2022) and two and a half months (from 04/10/2016
to 19/12/2016) for the city of Malaga and Birmingham [10], respectively.

The remainder of the paper is structured as follows. In Sect. 2, both time-
series and parking forecasting concepts are depicted. Then, in Sect. 3, the pro-
posed approach is introduced, while Sect. 4 presents the experimental analysis
as well as their discussion. Finally, Sect. 5 concludes the paper.

2 Basic Background

This section gives an overview of times-series forecasting and parking occupancy.

1 World Cities’ Statistics: https://ourworldindata.org/urbanization.
2 Vehicles Statistics: https://en.wikipedia.org/wiki/List of countries by vehicles per

capita.

https://ourworldindata.org/urbanization
https://en.wikipedia.org/wiki/List_of_countries_by_vehicles_per_capita
https://en.wikipedia.org/wiki/List_of_countries_by_vehicles_per_capita
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2.1 Techniques for Time Series Forecasting

Let Y = {y1, . . . , yn} denote times series data. Forecasting consists in estimating
the next values yn+h of Y , where the variable h denotes the forecasting horizon.
Two families of forecasting methods exist: parametric (e.g. statistical methods)
and non-parametric (e.g. machine learning) ones [9]. Unlike machine learning
models, statistical methods require prior knowledge of the data distribution to
build the predictive models, which makes the model depend on some hyper-
parameters needed to optimise the prediction’s results. Depending on the data
characteristics, a given forecasting method might be more suitable than others.
As an instance of these characteristics, one can cite the stationary nature of data
(i.e. mean and variance constant over time), including the presence/absence of
trends (i.e. a constant inc/decreasing behaviour) and seasonality (i.e. cyclic pat-
terns). In this work, both statistical models such as SARIMAX and Prophet
as well as machine learning models like LSTM and Neural Prophet are being
researched to faithfully represent the plethora of state-of-the-art time-series pre-
diction techniques. Section 3 will give more in-depth of the studied techniques.

2.2 Parking Occupancy Forecasting

Some previous works have studied some parking-related aspects, such as car
parking occupancy detection [2], but still, parking occupancy forecasting has
been of keen interest in both academia and industry [4,10,11]. In [4,10], the
authors studied the parking data of the city of Birmingham (UK), while in
[11], the cities of Birmingham, Glasgow, Norfolk, and Nottingham (UK) were
researched. In both [10,11], the forecasting has been made using several tech-
niques such as polynomial fitting, Fourier series, k-means clustering, and time
series predictors, while in [4], deep learning techniques have been used. Therefore,
this work takes a further step towards more advanced techniques (e.g. LSTM,
Prophet, Neural Prophet and SARIMAX) to attain more accurate parking occu-
pancy forecasting. Also, this work goes beyond current literature in terms of the
used data by studying more fresh and never-used-before data representing 6
months of parking records in the city of Malaga (Spain). These data represent
different time laps and complexities since they include parking behaviours in
seasonal periods (e.g. summer and winter), and different societal influences (e.g.
beginning of the academic year, end of summer and beginning of winter holidays,
the end of the natural year, etc.) which provide more diversity in the study.

3 The Proposed Approach

This section presents the contributions of this work including: (I) the ETL
module as well as (II) the time-series forecasting module (see Fig. 1).

3.1 The Extract-Transform-Load Module

This section presents the ETL components where the data being extracted is the
one of Malaga, while those of Birmingham were proposed in [4,10]. The complete
source-code of the devised approach is available in [1].
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Fig. 1. The workflow of the proposed forecasting pipeline

Extraction. The extraction module uses the API provided by Malaga city hall
(3) to extract, every 15 min, real-life parking occupancy data of 13 public parking
in the city of Malaga with are updated every 60 s: Salitre, Cervantes, El Palo,
Av. de Andalućıa, Camas, Cruz De Humilladero, Alcazaba, San Juan De La
Cruz, Pz. de la Marina, Tejón y Rodriguez, El Carmen, Mármoles, El Limonar
and Bailén (see Fig. 2). The pseudo-code of the extraction module devised in
this work is made publicly available for further use by the community at [1]. It
is also worth stating that some historical data of the same type that are made
publicly available at (4) have been considered as well in this work.

Fig. 2. Geographic localisation of the studied parking

Transformation. The transformation module starts by converting, to CSV files,
the raw data downloaded by the extraction module, where the header (i.e. the
name of the columns) is similar to the one used in other open access repositories.
This aims to ease the generalisation of the ETL and comparison against previous
works [4,10].

The transformation includes data pre- and post-processing (see Fig. 3). The
pre-processing stands in dealing with missing or incoherent information (e.g.
HTTPS requests’ failure returning incomplete/empty data). First, the data is

3 Malaga City Hall API: https://datosabiertos.malaga.eu/dataset/ocupacion-aparcami
entos-publicos-municipales.

4 Malaga parking history data: https://github.com/javisenberg/malaga-parking-data.

https://datosabiertos.malaga.eu/dataset/ocupacion-aparcamientos-publicos-municipales
https://datosabiertos.malaga.eu/dataset/ocupacion-aparcamientos-publicos-municipales
https://github.com/javisenberg/malaga-parking-data
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divided per half-hour interval and thus obtaining 48 data samples/day. Con-
cretely, the natural hours of the day are divided into 48 time slots representing
half-hours, starting from midnight 00:00PM to 23:30PM. Secondly, the time the
data has been extracted may not match the previous reference half-hour slicing.
So, to homogenise the whole extraction timing, the extracted data are fitted into
reference half-hour slicing by considering the half-hour slot closest to the extrac-
tion time of the processed data sample. If multiple data samples are assigned to
the same half-hour slot, one is chosen randomly. Some intervals may not have
assigned data samples at all. These orphans’ half-hour slots will be assigned data
sample closer to them in terms of “extraction timing”.

Fig. 3. The transformation module: pre- and post-preocessing

Thirdly, there might be days where the variation of the parking is so small
that it does not provide interesting information, and therefore is discarded. The
deviation considered to discard the records of a given day is of 0.005 with respect
to the total capacity of the parking. So, as a fourth step, every discarded day is
replaced by applying the following conditions: if the same day of the next week
fulfils the condition of parking variability, it is considered instead of the discarded
day. Otherwise, the previous week is the one analysed. In general, there is no
need to go beyond this double-checking (i.e. next and previous weeks).

Loading. Once complete and homogenised data are obtained, the loading mod-
ule stores the test and training data in separate files according to whether it
is dedicated to testing using one to four last weeks of the whole data samples.
The training and test data are stored in CSV files with the following appellation
to ease their further use: "train/test parking name weeks number". Also, for
further use and comparison with this work, Malaga’s parking occupancy data
are constantly being extracted and stored every 24 h at [1].

3.2 The Times-Series Forecasting Methods

This section explains the time-series forecasting methods studied in this work.

The SARIMAX Model. SARIMAX model [3] is an extension of the SARIMA
model, which by its turn is an extension of the ARIMA model. It combines
three parts that capture the stationary, seasonal and exogenous variables (i.e.
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external data). Concretely, it is defined by Eq. (1) that includes Auto-Regressive
(AR(p)), Integration (I) and Moving Average (MA(q)) terms, where p, d and q
represents the nonseasonal variables, P , D, Q, S for the seasonal part and r
for the exogenous variable. More specifically, the variable p is the number of
previous data points used to predict the current data point, d is the number of
times a differencing transformation is applied to the times series until it becomes
stationary before applying the AR-MA(p,q), and q is the number of past forecast
errors used to predict the current data point. The same applies to the parameters
P , D, and Q for seasonality if present. Next, S represents the duration of the
repetitive pattern. The parameters θ, φ, α, β, and γ represent the parameters
of the model, yt and εt represent the time series value as well as the error at an
instant t. The variables y, y′, and y′′ represent the original time series data, the
transformed one after applying the differencing using non-seasonal and seasonal
difference operator degree d and D, respectively (see Eqs. (2) and (3)).

yt = c+
p∑

i=1

θiy
′
t−i +

q∑

i=1

φiεt−i +
r∑

i=1

αix(i,t) +
P∑

i=1

βiy
′′
t−iS +

Q∑

i=1

γiεt−iS + εt (1)

y′
t = Δ(Δd−1yt),Δyt = yt − yt−1 (2) y′′

t = Δ(ΔD−1yt),Δyt = yt − yt−1 (3)

The Prophet Model. The Prophet model [12], developed by Facebook, is an
additive regression model which extends the basic AR models. It specialises in
handling time series with cyclical patterns (daily, weekly and yearly), trends and
holidays effects as well. In addition to using lagged values of the target variable,
the model applies the Fourier series to the input variable as an additional form
of feature engineering. That allows further model refinement and decomposition
of the results for better interpretation. Prophet can also use exogenous variables
such as holidays and automatically detect trend change points. It has four main
components, including (I) a piecewise linear or logistic growth curve trend to
automatically detect changes in trends by selecting change points from the data,
(II) a yearly seasonal component modeled using Fourier series, (III) a weekly
seasonal component using dummy variables, and (IV) a user-provided list of
important holidays.

The Neural Prophet. The Neural Prophet model [13] is based on Prophet
but with an embedded neural network which allows handling time series with
more complex patterns. Neural networks, in contrast to autoregressive models,
have the advantage of being non-parametric, which implies that they do not
make strong assumptions about the shape of the mapping function. So, they can
learn any nonlinear function to approximate any continuous function from the
training data. However, their disadvantages are that they: (I) require a large
volume of data, (II) the fitting of hyperparameters is not as straightforward
as with parametric models, and (III) are less interpretable than parametric
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models. Neural Prophet tries to maintain the advantages of Prophet, such as
good performance, interpretability and ease of configuration while improving its
accuracy and scalability. Technically it replaces the Stan backend for a PyTorch
one and uses Auto-Regressive Network (AR-Net), a one-layer Neural Network
trained to mimic the AR process in a time-series signal.

Stacked Long Short-Term Memory Model. The LSTM model [7] is a
type of Recurrent Neural Network (RNN) designed to remember information
over extended periods and resist vanishing and exploding gradients significantly
affecting RNNs. Unlike the RNNs that have one interacting layer in their repeat-
ing module, LSTMs have four (see Equations (4)–(9)), where ft, it, ot and c̃t are
the activation vectors of forget, input, output, and cell input gates. ct, ht and
xt are the cell, hidden and input state vectors. Input and recurrent connections
weights are stored in matrices of the form Wq and Uq. The σh and σc variables
denote the hyperbolic tangent and sigmoid functions, respectively [8].

ft =σg(Wfxt + Ufht−1 + bf ) (4) it = σg(Wixt + Uiht−1 + bi) (5)
ot =σg(Woxt + Uoht−1 + bo) (6) c̃t = σh(Wcxt + Ucht−1 + bc) (7)

ct = ft ◦ ct−1 + it ◦ c̃t (8) ht = ot ◦ σh(ct) (9)

4 The Experimental Study, Results and Analysis

This section presents the experiments used to assess the proposal, including the
experimental settings, the benchmarks, the obtained results and their analysis.

4.1 Benchmarks, Experiments and Techniques Settings

The LSTM model is composed of three layers with 14880, 29040 and 61 param-
eters and training via Adam optimiser over 5000 epochs using a batch size of 32
and a sliding window size of 48 (48 input data equals one day). In the case of neu-
ral/Prophet, the variability interval of the forecasting (i.e. confidence interval)
has been set to 0.80, the seasonality has been set to 1 day, and experiments were
performed by considering and neglecting the holidays. Regarding the SARIMAX,
the (p, d, q)(P,D,Q) values were selected by auto arima (5) for each case, and
we set a seasonality S equal to 48 for all cases. The experiments were designed
to assess the forecasting in different time laps by considering testing and train-
ing using (I) single days as well as (II) natural weeks. Since parking tasks
have short-term purposes where the citizens do not make real use of forecasting
beyond 7 days, the test was done on the last week of the data samples recording.
That means that in the case of training using a single day, the testing has been
5 Auto ARIMA: https://alkaline-ml.com/pmdarima/modules/generated/pmdarima.

arima.auto arima.

https://alkaline-ml.com/pmdarima/modules/generated/pmdarima.arima.auto_arima
https://alkaline-ml.com/pmdarima/modules/generated/pmdarima.arima.auto_arima
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done using the same day of the week (e.g. Thursday) of the last week of data
samples, while when training using the entire week, the test is done using the
last complete natural week. The Mean Absolute Error (MAE) (see Eq. (10)) has
been used as a metric during the training and testing steps.

MAE =
1
N

N∑

i=1

|ŷi − yi| (10)

As a benchmark, two datasets have been considered: one of Malaga and one
of Birmingham cities. For the data of the city of Malaga, an explanation has
already been provided in Sect. 3.1. Although 13 parking were extracted, only three
had changing parking occupancy rates: Salitre, San Juan de La Cruz, Cruz de
Humilladero. The remaining 10 parking data occupancy is constant for some rea-
son (e.g. sensors failure), so they are neglected in this work. In the case of Birm-
ingham, the data being used is of 28 parking previously studied in [10].

4.2 Obtained Results and Discussion

Tables 1–4 show the parking occupancy forecasting for the city of Malaga and
Birmingham, respectively. In Tables 1–4, the metrics Median, Mean, Best, Worst
and STD represent the median, mean, minimum, maximum and the standard
deviation of the MAE found for each technique across all the studied parking. The
best results are highlighted in bold based on the Median metric.

Parking Occupancy in the City of Malaga. Tables 1 and 2 show the results
obtained by the studied techniques when addressing the parking data of the city
of Malaga. Table 1 shows that for the case of the parking “Cruz de Humilladero”
and “Salitre”, the best predictor was found to be Neural Prophet, while for the
case of the parking “San Juan de la Cruz”, Prophet was found to be competi-
tive. It is to be noted that overall Prophet and Neural Prophet were found to
be relatively better than SARIMAX and LSTM when addressing data without
holidays. So, a decision was made to discard executing SARIMAX and LSTM
when considering holidays. If we consider the mean and median of the solutions
obtained, the predictors that achieve the best results are Neural Prophet and
Prophet when separate training is carried out for both each day of the week as
well as the entire week (see Table 2).

Since predictors such as Prophet provide a range of predictions (i.e. confi-
dence interval), Table 3 indicates how many times the predictor has attained
a prediction range that includes the real forecasting. It is to be noted that the
confidence interval is wider when considering the whole week (around 0.2), while
when using single days it is narrower (around 0.1). This explains why better hit
rates are obtained in the first case and not the second one (see Fig. 7). When
using Prophet, the advantage over other techniques is that the forecasting can
be found with a hit rate of 80%. Also, one can note that there is no improvement
when using “holidays”. A hypothesis for enhancing this aspect is the use of more
training data. This being said, for these data the Prophet model seems to be the
most appropriate.
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Figures 4 and 5 present the concatenation of the results of applying the
Prophet for predicting the parking occupancy using all days of the week and per
day, respectively. Figures 6–8 represent the parking occupancy prediction using
Prophet for the “Salitre”, “San Juan de la Cruz” and “Cruz de Humilladero”
parking during Sundays, Tuesdays and Wednesdays, respectively. The results
show that Prophet obtains forecasting intervals of confidence that include, in
general, the real parking occupancy value.

Table 1. MAE results of Prophet, Neural Prophet and LSTM in the case study of Malaga

Parking Technique
Without Holidays With Holidays

Per Week Per day Per Week Per day

Cruz de Humilladero

Prophet 0.071 0.088 0.074 0.089

Neural Prophet 0.070 0.078 0.070 0.078

LSTM 0.109 0.107 - -

SARIMAX 0.072 0.120 - -

Salitre

Prophet 0.112 0.078 0.109 0.077

Neural Prophet 0.110 0.073 0.110 0.073

LSTM 0.215 0.082 - -

SARIMAX 0.124 0.109 - -

San Juan de la Cruz

Prophet 0.081 0.074 0.081 0.070

Neural Prophet 0.084 0.074 0.083 0.074

LSTM 0.096 0.059 - -

SARIMAX 0.081 0.061 - -

Table 2. Summary of MAE results in the case study of Malaga

Type Per Technique Best Worst Mean Median STD

Without Holidays

Week

Prophet 0.071 0.112 0.085 0.081 0.017

Neural Prophet 0.070 0.110 0.085 0.084 0.017

LSTM 0.096 0.215 0.140 0.109 0.031

SARIMAX 0.072 0.124 0.092 0.081 0.023

Day

Prophet 0.074 0.088 0.080 0.078 0.006

Neural Prophet 0.073 0.078 0.075 0.074 0.002

LSTM 0.059 0.107 0.083 0.082 0.020

SARIMAX 0.061 0.120 0.097 0.109 0.026

With Holidays

Week
Prophet 0.074 0.109 0.086 0.081 0.015

Neural Prophet 0.070 0.110 0.085 0.083 0.017

Day
Prophet 0.070 0.089 0.078 0.077 0.008

Neural Prophet 0.073 0.078 0.075 0.074 0.002

Table 3. Summary of hit rate results in the case study of Malaga

Type Per Technique Best Worst Mean Median STD

Without Holidays

Week
Prophet 0.878 0.735 0.801 0.804 0.058

Neural Prophet 0.554 0.390 0.480 0.533 0.073

Day
Prophet 0.756 0.649 0.684 0.658 0.048

Neural Prophet 0.479 0.310 0.381 0.390 0.069

With Holidays

Week
Prophet 0.875 0.774 0.809 0.786 0.045

Neural Prophet 0.554 0.390 0.480 0.533 0.073

Day
Prophet 0.768 0.649 0.690 0.664 0.053

Neural Prophet 0.485 0.310 0.389 0.411 0.072
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Fig. 4. Training one model on Salitre
using all days of the week.

Fig. 5. Training one model on Salitre
per day of the week.

Fig. 6. Training one
model on Salitre only
considering Sundays.

Fig. 7. Training one
model on San Juan de
la Cruz only considering
Tuesdays.

Fig. 8. Training one
model on Cruz de
Humilladero only con-
sidering Wednesdays.
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Parking Occupancy in the City of Birmingham. Table 4 shows the results
obtained by the best of the predictors found in the case of Malaga city and
compared to the results given in [4] using the parking occupancy data of the
city of Birmingham. The authors in [4] used polynomials (P), Fourier series (F),
k-means clustering (KM), polynomials fitted to the k-means’ centroids (KP),
shift and phase modifications to KP polynomials (SP), and time series (TS).
In the case of Neural Prophet, it could not get any acceptable results on any
of the Birmingham parking, which indicates that it might need more training
data to get good results. However, it can be seen that in 7 out of 28 parking,
Prophet is outperforming the state-of-the-art literature. The interesting thing to
note is that in each of the instances where the Prophet has been outperformed,
a different technique has been able to do so. In other words, no technique could
outperform Prophet in all instances. Now, considering the mean and median of
the results, the Prophet is the best predictor on the Birmingham dataset.

Table 4. MAE results: state-of-the-art predictors vs Prophet on Birmingham dataset

Parking
State-of-the-art [4] Neural Prophet Prophet

P F KM KP SP TS RNN Per Week Per Day Per Week Per Day

BHMBCCMKT01 0.041 0.053 0.087 0.086 0.059 0.067 0.063 0.377 0.276 0.076 0.054

BHMBCCPST01 0.076 0.072 0.148 0.149 0.083 0.111 0.137 0.447 0.420 0.114 0.107

BHMBCCSNH01 0.132 0.141 0.150 0.148 0.139 0.069 0.117 0.559 0.336 0.100 0.081

BHMBCCTHL01 0.122 0.142 0.134 0.131 0.123 0.080 0.103 0.355 0.435 0.058 0.069

BHMBRCBRG01 0.101 0.148 0.148 0.149 0.133 0.095 0.123 0.501 0.679 0.101 0.085

BHMBRCBRG02 0.087 0.116 0.122 0.122 0.097 0.088 0.112 0.389 0.430 0.107 0.096

BHMBRCBRG03 0.068 0.085 0.113 0.112 0.074 0.059 0.076 0.432 0.200 0.073 0.058

BHMEURBRD01 0.044 0.057 0.087 0.085 0.036 0.042 0.077 0.438 0.424 0.194 0.066

BHMEURBRD02 0.072 0.078 0.064 0.063 0.067 0.068 0.062 0.722 0.442 0.224 0.089

BHMMBMMBX01 0.063 0.067 0.074 0.072 0.084 0.129 0.084 0.338 0.322 0.101 0.099

BHMNCPHST01 0.060 0.079 0.130 0.127 0.073 0.034 0.050 0.212 0.363 0.101 0.037

BHMNCPLDH01 0.030 0.034 0.087 0.084 0.036 0.072 0.072 0.311 0.329 0.124 0.054

BHMNCPNHS01 0.072 0.084 0.082 0.078 0.060 0.082 0.102 0.340 0.340 0.184 0.064

BHMNCPNST01 0.085 0.083 0.150 0.154 0.117 0.074 0.124 0.237 0.274 0.063 0.044

BHMNCPPLS01 0.078 0.088 0.067 0.066 0.080 0.058 0.076 0.176 0.209 0.059 0.050

BHMNCPRAN01 0.083 0.094 0.143 0.140 0.084 0.055 0.089 0.470 0.486 0.221 0.089

BroadStreet 0.047 0.057 0.073 0.071 0.041 0.034 0.064 0.540 0.395 0.203 0.064

BullRing 0.088 0.119 0.113 0.112 0.101 0.074 0.100 0.529 0.409 0.085 0.071

NIACarParks 0.033 0.033 0.048 0.049 0.028 0.054 0.033 0.087 0.121 0.047 0.052

NIASouth 0.040 0.036 0.064 0.064 0.031 0.078 0.053 0.158 0.183 0.077 0.081

Others-CCCPS105a 0.032 0.050 0.119 0.121 0.050 0.072 0.065 0.207 0.263 0.054 0.047

Others-CCCPS119a 0.090 0.092 0.081 0.081 0.089 0.095 0.091 0.135 0.248 0.111 0.116

Others-CCCPS133 0.083 0.108 0.093 0.092 0.087 0.061 0.091 0.343 0.288 0.063 0.069

Others-CCCPS135a 0.057 0.075 0.078 0.076 0.058 0.029 0.049 0.277 0.345 0.129 0.043

Others-CCCPS202 0.016 0.024 0.074 0.075 0.025 0.023 0.033 0.332 0.138 0.055 0.023

Others-CCCPS8 0.038 0.055 0.081 0.079 0.040 0.047 0.061 0.353 0.238 0.043 0.035

Others-CCCPS98 0.092 0.089 0.177 0.179 0.101 0.097 0.092 0.273 0.254 0.097 0.101

Shopping 0.035 0.054 0.065 0.066 0.032 0.032 0.037 0.494 0.353 0.108 0.036

Median 0.070 0.078 0.087 0.086 0.074 0.069 0.077 0.348 0.333 0.101 0.065

Mean 0.067 0.079 0.102 0.101 0.073 0.067 0.079 0.286 0.285 0.086 0.058

Worst 0.132 0.148 0.177 0.179 0.139 0.129 0.137 0.722 0.679 0.224 0.116

Best 0.016 0.024 0.048 0.049 0.025 0.023 0.033 0.087 0.121 0.043 0.023

STD 0.029 0.033 0.035 0.035 0.033 0.026 0.028 0.144 0.116 0.052 0.024

5 Conclusions and Perspectives

This paper prototypes a parking occupancy forecasting pipeline including (I)
the ETL module that automatically extracts and processes real-time parking
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data and (II) the forecasting module composed of four time-series techniques:
LSTM, Prophet, Neural Prophet and SARIMAX. The experiments have been
made using real-life data of parking occupancy rate of 3 parking in the city of
Malaga (Spain) during 6 months, while the second represents 28 parking spaces
in the city of Birmingham (UK) for two and a half months. The obtained results
have shown that the Prophet technique is the one achieving the best forecasting
in both benchmarks. In future works, it is planned to expand the current study
to other advanced time-series forecasting techniques and extend the ETL module
to include other cities with more complex parking behaviours, city size, etc.
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Abstract. There is an increasing interest in alternative vehicle mobil-
ity, such as electric scooters (e-scooters). E-scooters are getting atten-
tion not only for their environmental impact but also because they are
easy to ride on. However, could our current infrastructure support e-
scooter trips? Could e-scooter offer a better way to move on our present
streets and roads? Using current open data such as the census segments
of Malaga city (Spain), the list of non-tertiary institutions, and a map
of OpenStreetMap, this work explores the potential of e-scooter in a
growing European city by simulating routes trips in Origin-Destination
Matrix. The main results are 1) in the current streets, a person can
reduce at least 40% of the time using an e-scooter to commute compared
to walking; 2) the road infrastructure offered for e-scooters downtown is
adequate, especially for routes of more than one kilomete; however this
infrastructure needs to be improved in the outskirts of the city.

1 Introduction

Modern city planning must consider urban mobility because it impacts citizens’
everyday lives and a city’s overall sustainability and livability [17]. As well as
the advent of new technology and services like ride-sharing and e-scooters, there
has been a shift in recent years toward more environmentally friendly and active
means of transportation, including walking, cycling, and public transportation.

For this reason, the study of mobility has increased in recent years, espe-
cially those related to the public system, such as buses and subways. For exam-
ple, Toutouh et al. [19] used open data to analyze the bus service in the city
of Melilla and assumed an older pedestrian target. In the work of Toto et al.
[18], they used an analysis of smart card data to predict crowd subway to offer
recommendations about the route to take. The same type of data was studied
by Fabbiani et al. to optimize bus schedules, and bus-stop location [6]. In our
work, we use an alternative vehicle, electric scooters, to characterize its current
mobility infrastructure in a growing European city. This type of work is helpful
to realize the potential of alternative mobility in today’s infrastructure.

In this context, e-scooters are electric-powered vehicles that, as an inexpen-
sive, practical, and greener alternative to cars and other forms of public transit,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
B. Dorronsoro et al. (Eds.): OLA 2023, CCIS 1824, pp. 380–392, 2023.
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have grown in popularity in cities worldwide [9,11]. According to the study by
Wanganoo et al. [20], e-scooters have the potential to reduce carbon emissions
and traffic congestion in urban areas.

However, introducing e-scooters has also brought some difficulties, such as
issues with regulation, accessibility, and safety. For instance, a research study
discovered that between 2014 and 2018, e-scooter injuries climbed by 222% in the
United States, with head injuries accounting for most cases [7]. E-scooters have
the potential to significantly influence how urban transportation will develop in
the future, despite these obstacles.

We can find a few studies about electric e-scooters mobility in the literature.
For example, Hardt et al. [9] studied the usage of e-scooters in urban environ-
ments and found that people used e-scooters mainly to commute. Moreover,
Almannaa et al. [2] analyzed the trips in e-scooter and e-bikes in Austin, Texas,
in the USA. They realized that people riding an e-scooter go at 2.78 m per second
and supported the hypothesis that people used e-scooters to commute. However,
these works are quite limited, and more research is required to fully compre-
hend how e-scooters affect urban mobility, particularly traffic congestion, road
infrastructure impact, air quality, public health, and social equity.

Many cities are modifying (albeit slightly) their road infrastructure to make
it suitable for e-scooters. They are using cycle lanes or creating speed-limited
lanes to facilitate e-scooter traffic. This study will analyze whether these changes
make it possible to offer quality routes for this transport mode. In our work, we
assumed that people over 16 years old, especially teenagers, would use e-scooters
to commute to educative institutions in a real scenario: Malaga, a medium-sized
city. Also, we computed our simulations in the current infrastructure mobility
model. The final objective is to analyze if there is a significant difference between
making the trip by walking.

The rest of this paper is organized as follows. Section 2 presents some crucial
details about mobility in Malaga, the use case in this work. The methodology
applied in this study and the results are discussed in Sects. 3 and 4, respectively.
Finally, in Sect. 5, we summarize our main achievements and give some hints
about the following analyses that can extend this study.

2 Malaga City Use Case

Malaga is located in the region of Andalusia in the South of Spain. It is a top-10-
highest populated city in the country. Its density is comparable with cities such as
Alicante in Spain and Austin (Texas). Malaga city has an area of 394.98 km2. In
2022, Malaga had a population of 577 405 people. About 85% of its population is
over 15 years old; more precisely, 38% are from 15 to 44 years old, where females
and males share a similar percentage of the population [1]. It is administratively
divided into 11 districts and 441 census segments. The districts near the coast
are the most populated ones (66% of the population live near the coast) [4]. As
shown in Fig. 1a, the highest density of schools is found in these districts.
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Fig. 1. Maps of Malaga city with the information used in this study.

In Malaga, the Official State Gazette n◦ 297 of November 11, 2020, and the
Official Bulletin of the province of Malaga, n◦ 252/2021, published from Jan-
uary 11 to 19, 2021, set the regulations regarding Personal Mobility Vehicles
(PMV) [14,16] administrative regulations include electric scooters. The main
regulations established that the minimum age to ride an e-scooter is 16 years
old. In turn, they fixed the maximum speed between 6 km per hour (km/h) to
25 km/h. Moreover, they restricted the type of roads and streets not permit-
ted to ride on with an e-scooter. The e-scooters cannot be used on footways,
pedestrians-only roads, primary and intercity highways, cars-only streets, and
tunnels [14]. Figure 1b shows in blue the streets allowed for riding e-scooters. On
the contrary, they let the use of e-scooters in cycleways, residential roads, and
highways with maximum speeds of 20 km/h or 30 km/h.

3 Materials and Methods

This section presents the primary artifacts employed in this research to analyze
the road infrastructure quality offered to e-scooter users in Malaga. We focused
on a significant user segment of this type of transport: young people over 16
years old who still go to educational institutions [5]. In Malaga, these users use e-
scooters daily to go to their centers of study. Thus, we evaluated the routes users
can take from their homes (i.e., the centroids of the Malaga census segments)
to the schools. The open data, methods, and metrics used in this analysis are
presented below.
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3.1 Open Data Used

In this research, we employed real-world data to characterize the quality of road
infrastructure for e-scooter mobility. We use mainly two types of available data
sources: official open data and collaboratively open data.

The official open data portal from the region of Andalusia (i.e., Junta of
Andalusia) provided data about educational institutions [10]. This data was
evaluated and processed to get the location of high schools with 16-year-old or
older students. These institutions are the destination of the evaluated routes
in the analysis. Figure 1a illustrates the location of the schools in the map of
Malaga. Most of the information about the city of Malaga used, such as the
census segments, was gathered from the Malaga Open Data portal [13]. The
census segments centroids are the origin of the trips studied here. These two open
data portals were developed as part of the transparent governance initiatives that
allow citizens to know more about their institutions.

This study required spatial information about the road mobility infrastruc-
ture. This information includes several aspects of the roads, such as the type of
road, the number, and type of lanes, etc. In order to get this spatial informa-
tion, we downloaded and processed data from the collaborative initiative project
OpenStreetMap (OSM) [8]. Figure 1b shows the road data used to perform the
analysis.

3.2 Methods and Tools for the Evaluation

The Origin-Destination matrix (OD matrix) is widely used in mobility studies
to enhance the analysis of routes. It is formed by two sets of points, origin and
destination, and allows it to represent a sample of local mobility. The OD matrix
generates structured traffic flow data that helps to characterize the mobility and
can be used as a stepstone for other analysis [15].

In our study, the origins were the centroids of the census segments and the
destinations were educational institutions. On the one hand, we used schools
and educational institutions as destinations because the age to ride an e-scooter
is over 16. In the case of Malaga, the type of non-tertiary institutions for people
of that age include high schools and adult education institutions.

On the other hand, we used census segments as origin points in our OD
matrix. We used the data from Malaga Open Data portal to find the geospatial
information of each district and segment. Then, we calculated every census seg-
ment’s more geometric representative point and transformed them to represent
them in our map. Figure 1a shows the map with both markers, red for schools
and black for census segments centroids.

The experiments were carried out using a graph representing the city’s dif-
ferent types of roads/streets. This graph was constructed by using OSM graph
of Malaga as a base. The OSM graphs consist of nodes, edges, and a dictionary
of attributes related to the streets and points they represent. The length, the
street type, the maximum speed allowed, and if it has a cycleway were some of
the most valuable characteristics used.
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In our analysis, we did two types of simulations: a) on foot-only (walking),
which represents the trips in which the student only walks from the origin to
the school, and b) using an e-scooter (e-scooter), which represents the users
that use the e-scooter if it is allowed on a given road/street. Thus, for each
pair origin-destination, there are two different types of trips, i.e., walking and
e-scooter, respectively.

This study considered 44 541 routes (441 census segments × 101 schools).
The e-scoter mobility was simulated by finding the shortest route from each pair
origin-destination of our OD matrix. The routing paths were computed using
the Dijkstra algorithm, which uses the time between two nodes as a weight
metric to optimize the routes. In order to compute the time weight of the edges
between two nodes, we relied on the length of the edge and assumed linear
straight-line motion, i.e., people and e-scooters had a constant speed. We did
not consider gender in our study for the reason that, as reported by Campisi et
al. [3], less than 20% of women use e-scooter. However, we used gender-neutral
speed metrics. For walking trips, we used the speed specified by Knoblauch et
al. of 1.25 m per second (m/s) for young people [12]. For e-scooter simulation,
we considered 2.78 m/s speed following the study of Almannaa et al. in Austin
city [2].

The software required for the computations has been developed using Python.
Specific software libraries were applied to implement the code for the data anal-
ysis: Numpy, scikit-learn, and Pandas. Geopandas and Arcpy were used for the
GIS computations. Finally, OSMnx and NetworkX software libraries were used
to computed the routes and paths.

3.3 Metrics Evaluated

This paper aims to use open data to study the quality of road infrastructure to be
used by e-scooter users, emphasizing the service provided to young users that use
this transportation mean to go to school every day. The metrics evaluated here
are associated with the trip time, path length, and users’ route decision-making.
These metrics evaluated are presented below:

1. Total duration trip time: It measures the travel time in minutes when the
user travels from the census segments to the schools. It allows understanding
the traffic flow between every two points in the OD matrix in each type of
simulation (e-scooter and walking).

2. Walking distance length: It evaluates the total distance a user walked in the
trip considering e-scooter and walking.

3. Trip time reduction: Given a route between a census segment s and a high
school h, it takes into account the difference relative of time that a non e-
scooter user walked that route (t(s,h)ow ) and with the time took to the e-scooter
rider (t(s,h)sw ). It is computed according to Eq. 1.

4. Percentage of mobility mode switching : To explore the quality of the road
infrastructure, we calculate the number of times a user had to switch the
mobility mode when changing the street/road during the trip, i.e., how many
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times it changed from riding to walking or to walking to riding. It was mea-
sured in terms of the ratio (percentage) between the number of times the user
changed the mobility mode cm and the number of times the user changed the
street/road cr. It is computed according to Eq. 2

t
(s,h)
ow − t

(s,h)
sw

t
(s,h)
ow

% (1)

1 − cm
cr

% (2)

4 Empirical Analysis

This section presents the experimental analysis results to evaluate e-scooter
mobility in Malaga. A preliminary analysis is performed on the whole city by
considering all the trips between any census segment centroid and any educa-
tional institution. Then, the road e-scooters’ quality for a selected route type is
studied.

4.1 Preliminary Analysis

The e-scooter and walking trips between all the origins and destinations are
computed. The main idea is to provide a global overview of the degree of connec-
tivity among the census segments and high schools using e-scooters. Thus, the
route length and time are considered to compare the e-scooter and walking
trips.

Table 1 summarizes the trip time and length results. As the distributions of
the results are non-normally distributed according to the Shapiro-Wilk statistical
test, this table presents the median, interquartile range (IQR), and maximum
values for each distribution. Figures 2 and 3 show the distribution of the trip time
and length results as probability density functions, respectively. Finally, Fig. 4
illustrates the distribution of travel time reduction that occurs when riding an e-
scooter compared to walking. This way of graphically representing the results has
been used because 44 541 different routes have been analyzed, and the probability
distributions encapsulate well the result distributions when there are so many
of them.

Table 1. Trip time and length distance results for e-scooter and walking routes.

Trip type Time (in minutes) Length (in meters)

median IQR maximum median IQR maximum

e-scooter 35.30 35.95 473.21 5 353.18 5 676.95 44 262.19

walking 62.97 69.32 562.79 4 723.08 5 199.57 42 209.56
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The results in Table 1 show how using e-scooters considerably reduces travel
time. The median and IQR values for the e-scooter routes are almost half those
of the walking routes. The Kruskal-Wallis H-test statistical test confirmed that
e-scooter trip times are significantly shorter than walking times (p-value <
0.001).

The longest routes require 473.21 and 562.79 min for e-scooter and walking
trips, respectively. These routes occur from the most remote census segments
that do not have nearby high schools and are far from roads suitable for scooter
use.

Fig. 2. Trip times probability density distribution for e-scooter and walking trips.

Figure 2 shows that the probability density distributions representing the
trip time results for e-scooter and walking are bimodal (i.e., two modes group
different types of results). The first mode with the highest frequency of results (on
the left side of the figure) includes the trip times for routes involving downtown
districts. In these central districts, there are a significant number of (nearby)
high schools, and more roads suitable for scooter use are installed. Therefore,
this mode includes the shortest trips. The second mode, with a much lower
frequency, includes the longest trips and involves the districts on the outskirts of
the city that are less well-connected and have fewer educational centers nearby.

Focusing on the routes distance length, Table 1 shows that the scooter routes
are longer than the walking ones. The median distance of the e-scooter trips
is 5 353.18 m, and the median length of the walking ones is 4 723.08 m. This dis-
tance difference shows that pedestrians can find shorter alternatives to walking.
But as mentioned above, pedestrians require more travel time. Figure 3 confirms
that the walking routes lengths are shorter than the e-scooter ones. Besides,
the distribution of route length results is bimodal, where the first mode (with
the highest frequency) represents the shorter routes and the second includes the
very long-distance trips.
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Fig. 3. Route lengths probability density distribution for e-scooter and walking trips.

The distance length results show that the trips that required maximum times
(of more than seven hours) represent routes of more than 40 km. This shows that
census segments from the city’s outskirts are unconnected from some high schools
(i.e., the students cannot walk or ride from their homes to given educational
centers).

Fig. 4. Time reduction percentage probability density distribution.

As is shown in Table 1 and Fig. 2 e-scooter riders require shorter times to
get to their destination. We studied the improvement in terms of time when
moving using an e-scooter as the trip time reduction. Again, the probability
function representing the travel time reduction results is bimodal (see Fig. 4).
However, the shape of this probability density function is symmetric to that
shown in Fig. 1b (travel time results). That means that the most distant routes
improve travel times the least (represented by the distribution mode on the left
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of the figure). This is because the census segments (where these routes start) are
far away from the roads where users can ride the e-scooters. In contrast, Fig. 4
shows that most analyzed routes offer trip time reductions between 40% and
50% (represented by the distribution mode with the highest frequency).

4.2 Road E-Scooters Infrastructure Quality

This section analyzes the quality of the routes got for e-scooters. For this pur-
pose, the walking routes of up to one hour (i.e., 4.5 km length) were selected
and compared with the same ones using e-scooters. This threshold was chosen
because it is understood that students should not walk more than one hour to
school, although this criterion is not decisive in the results of the study.

The metrics evaluated were: the reduction in walking distance when using
the e-scooter versus only walking (see Fig. 5), the reduction in travel times (see
Fig. 6), and the number of times the travel mode had to be changed (from walking
to riding or from riding to walking) during the route (see Fig. 7). In order to study
these three metrics, the trips have been grouped into 500-meter length walking
routes. Thus, we analyzed nine classes of routes defined by c, where each class
is defined as c ≥ route length > 500 × (c + 1).

Fig. 5. Difference in walk length between e-scooter and walking grouped by c class
of 500m. Higher reductions mean better trips, i.e., lower walking distances when riding
e-scooters.

The boxplots in Fig. 5 show the distribution of the percentage reduction in
walking distance relative to the one walked when using an e-scooter. In general,
reductions are obtained for all classes of routes studied. These reductions go up
to 100% (i.e., the person can ride the entire path on an e-scooter).

The shortest routes (from 0 to 500 m) offer the slightest improvement in
walking distance (see Fig. 5). This is because the educational centers are too
close, so there are few alternatives to riding the e-scooter. As the route length
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between the census segments and the high schools increases, the benefit of using
the e-scooter is more significant. These results illustrate that there is adequate
infrastructure to use e-scooters.

Fig. 6. Time reduction percentage per group of 500 m. Higher reduction times mean
better trips, i.e., lower walking distances when riding e-scooters.

Something similar occurs with the improvements in travel times depicted in
Fig. 6. For shorter routes, the reduction in travel time by employing an e-scooter
is less than for longer routes. In the worst case (routes from 0 to 500 m), the
median value is 33% of the reduction in trip times. At the same time, Fig. 6
shows that 40% of the travel time is saved in general. There are even cases
where this travel time is reduced by more than 60% (e.g., trips ranging from
1000 to 1500 m).

Finally, a metric has been studied that reflects the quality of the infrastruc-
ture provided to ride e-scooters in terms of the number of times the user has
to change travel mode. This metric considers the number of times the e-scooter
users have to switch between riding to walking or walking to riding when chang-
ing streets/roads while moving to the destination. This metric is a ratio of the
number of mode changes over the total number of street/road changes. It is
understood that a lower ratio of changes is indicative that the roads that e-
scooters can use are well-designed because the rider does not have to switch
modes continuously.

Figure 7 illustrates the results on the switching mode percentage. The short-
est routes are those with the least competitive results. This is mainly because,
even though the number of times the mode is switched is not very high, as the
number of possible changes is also small, the resultant rate is higher than for the
other routes studied. Overall, these results show that mode switching is required
less than 10% of the time when the e-scooter user changes from the street or
road. Thus, the e-scooter infrastructure design allows users to use comfortable
routes (i.e., not requiring multiple mode switching).
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Fig. 7. Switching travel mode percentage results. Lower switching percentages mean
better quality e-scooters infrastructure.

In general, the analysis of the results shows that for the trips evaluated
here (those of less than 4.5 km), the road infrastructure offered for e-scooters
is adequate, especially for routes of more than one kilometer. This outcome is
positive because high school students can walk such paths in less than 15 min.

5 Conclusions and Future Work

This paper has studied how infrastructure affects the quality of routes using e-
scooters. The study was carried out on the trips that young people have to take
to attend their educational centers in Malaga, a medium-sized city.

In our analysis, we observed two very different behaviors detected in this city.
On the one hand, we have peripheral districts without educational institutions
or large segments of roads suitable for scooters where this type of individual
vehicle only contributes a little.

On the other hand, we have another widely populated area (downtown dis-
tricts) with many schools and road infrastructure suitable for scooters. This sec-
ond scenario shows the advantages of this vehicle, allowing a significant reduction
in time (about 40%) and walking time (more than 80% when the route exceeds
half a kilometer).

All these observations have shown that an infrastructure suitable for e-
scooters can enable this alternative transport mode in medium-sized cities.
Adopting this mode of transport could reduce car use, which would significantly
impact emissions, congestion, and even road safety (fewer cars in educational
centers at school start and finish times).

In future work, we plan to extend this study by including other types of pub-
lic transport, such as buses, to study longer routes that can cover the entire city.
We are also interested in using the system developed to apply different optimiza-
tion problems allowing the e-scooter users to select routes by optimizing other
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metrics, such as mode switching, battery consumption, safety, etc. Moreover, we
are also considering applying more demographic characteristics such as power
energy, gender, purchasing power, and geographic aspects such as terrain and
topological elevation. Finally, we will apply the same analysis in other cities with
different road systems to study their impact on this type of vehicle.
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tarios de andalućıa - portal de datos abiertos. https://www.juntadeandalucia.es/
datosabiertos/portal/dataset/directorio-de-centros-docentes-de-andalucia

11. Kazemzadeh, K., Sprei, F.: Towards an electric scooter level of service: a review
and framework. Travel Behav. Soc. 29, 149–164 (2022)

12. Knoblauch, R.L., Pietrucha, M.T., Nitzburg, M.: Field studies of pedestrian walk-
ing speed and start-up time. Transp. Res. Rec. 1538(1), 27–38 (1996). https://
doi.org/10.1177/0361198196153800104

https://www.juntadeandalucia.es/institutodeestadisticaycartografia/sima/index2.htm
https://www.juntadeandalucia.es/institutodeestadisticaycartografia/sima/index2.htm
https://doi.org/10.1080/15568318.2020.1833117
https://doi.org/10.1080/15568318.2020.1833117
https://doi.org/10.3390/socsci10100403
https://www.mdpi.com/2076-0760/10/10/403
https://www.mdpi.com/2076-0760/10/10/403
https://gestrisam.malaga.eu/estadisticas-informes/#estadisticas-de-poblacion
https://gestrisam.malaga.eu/estadisticas-informes/#estadisticas-de-poblacion
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1024151/perceptions-of-current-and-future-e-scooter-use-in-the-uk-summary-report.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1024151/perceptions-of-current-and-future-e-scooter-use-in-the-uk-summary-report.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1024151/perceptions-of-current-and-future-e-scooter-use-in-the-uk-summary-report.pdf
https://doi.org/10.1109/MPRV.2008.80
https://www.juntadeandalucia.es/datosabiertos/portal/dataset/directorio-de-centros-docentes-de-andalucia
https://www.juntadeandalucia.es/datosabiertos/portal/dataset/directorio-de-centros-docentes-de-andalucia
https://doi.org/10.1177/0361198196153800104
https://doi.org/10.1177/0361198196153800104


392 D. D. Pedroza-Perez et al.

13. Malaga Open Data Portal: Sistema de información cartográfica - sección censal.
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Abstract. Nowadays, public institutions usually provide videos that
contain important information in their webpages. However, people suf-
fering from hearing impairment have difficulties accessing content pro-
vided by that mean, and the manual transcription of those videos is a
time-consuming task. This problem can be faced by means of Automatic
Speech Recognition (ASR) systems. In this work, we have evaluated
the performance of several ASR systems when applied to videos from
the Government of La Rioja, Spain. Our study shows that the Whisper
medium model provides the best trade-off between accuracy and speed.
Using this model, we have generated the transcription of all the videos
from the YouTube channel of the Government of La Rioja. In addition,
we have created a tool to facilitate this task for other YouTube Span-
ish channels. Hence, this can be seen as a step towards improving the
accessibility of the information and contents produced by Spanish public
administrations.

Keywords: Accessibility · Automatic Speech Recognition · Subtitles

1 Introduction

The Spanish law of 2002, 11 July [4], says that all the information provided by
electronic means in web sites of public institutions must be accessible to people
with disabilities. Among those sources of information, videos are an important
information carrier that presents visual and audio content in live form, and
play a key role in people’s daily life due to the advances to capture and stream
them. However, people suffering from hearing impairment have great difficulty
in comprehending video content as auditory information is lost or incomplete in
their hearing. This issue can be faced by transcribing the audio of videos and
synchronously showing such a transcription when the videos are played [8].

Manual video transcription is a time-consuming task; therefore, computa-
tional methods that can automatically generate subtitles can considerably reduce
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that burden. Automatic Speech Recognition (ASR) systems help us achieve this
goal. Such systems allow a computer to take an audio file and convert it into
text [16]. As in many other fields, deep learning techniques have also revolution-
ized ASR systems reaching a performance close to humans [18]. Unfortunately,
most ASR systems are focused on the English language, and do not work with
other languages. In addition, ASR systems available in other languages than
English are usually tested with short audios of good quality.

In this work, we have conducted a thorough study of existing Spanish ASR
systems when applied to the videos of the YouTube channel of the Government
of La Rioja, Spain. In particular, there are three contributions in this work:

1. We evaluate state-of-the-art Spanish open ASR models when applied to the
transcription of videos from different quality and length.

2. We provide the transcriptions of all the videos of the YouTube channel of the
Government of La Rioja.

3. Finally, we have created a tool to automatically generate the transcriptions
of all the videos from a Spanish YouTube channel.

All the code associated with this project is available at https://github.com/
mirenmirari/TFM.

2 Materials and Methods

In this section, we present the studied ASR models, the dataset of videos of La
Rioja council, and the evaluation metric employed to measure the performance
of the studied ASR models.

2.1 Spanish ASR Models

We start by providing a brief introduction to 6 open deep learning ASR models
that can be directly apply to transcribe Spanish audio files. The selected ASR
models have been chosen for this work mainly because they have been trained
with datasets in Spanish, have an open-source licence, and are easily accessible
through the HuggingFace platform [10]. Other models have been seen to be com-
petitive (for example, Deep Speech [6] or Listen, Attend and Spell (LAS) [3] but
they only work right for English videos, or have a privative licence. A complete
description of the techniques employed by these models is out of the scope of
this paper, and we refer the interested reader to [12] for an introduction to the
topic; in the rest of this section, we just provide a brief overview of the selected
models.

Conformer-CTC and Conformer-Transducer [5] are two variants of Con-
former, an architecture that combines convolutions with self-attention to pro-
duce an ASR system. Conformer-CTC is a non-autoregressive model (that is, it
transcribes speech without using any historical context or previous transcriptions
as input), whereas Conformer-Transducer is an autoregressive model (that is, it

https://github.com/mirenmirari/TFM
https://github.com/mirenmirari/TFM
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transcribes speech based on previous transcriptions or historical context). For
the Spanish version of these models, they were trained using the nemo NVIDIA
library [9] and using the LibriSpeech [17] and Common Voice [1] datasets. Pocket-
Sphinx [11] is an open-source speech recognition software library that is designed
to be lightweight and run on resource-constrained devices, such as mobile phones
or low-power embedded systems. PocketSphinx uses a Hidden Markov Model
(HMM) approach to speech recognition, and supports many languages including,
among others, English, Chinese, French, Spanish, German, or Russian. Pocket-
Sphinx is the only analyzed systems that is not provided by Hugging Face, but
it is available as a Python package.

STT Quartznet [13] is a convolutional model based on Jasper [15]. In our
study, we used a fine-tuned version of this model with around 944 h of Spanish
data gathered or developed by the CIEMPIESS-UNAM Project [7].

Wav2Vec [2] is a self-supervised framework for learning speech representa-
tions by training a convolutional model to predict the next frame of an audio
waveform, given the previous frames as input. Such representations can then be
used for other tasks such as speech recognition or music classification by apply-
ing fine-tuning — a technique that transfers knowledge from one model, usually
trained on a large dataset, to another model, where the data is scarce, by making
small changes to the original model [19]. In the case of the Spanish ASR system
based on Wav2Vec, the model was trained using the Common Voice dataset [1].

Whisper [18] is a transformer based model trained on 680,000 h of multilin-
gual and multitask supervised data collected from the web. The Whisper model
process audio by splitting it into 30 s chunks that are converted into a log-Mel
spectrograms. Whisper is provided in 6 sizes: tiny, base, small, medium, large,
and large-v2 — the difference between the large and large-v2 versions is that the
large-v2 was trained longer than the large version. The 6 versions of Whisper
can be directly applied for transcribing audios in multiple languages including
Spanish. Moreover, we have analysed whether Whisper models (in particular
the small and medium versions) fine-tuned on Spanish datasets (namely, the
Common Voice dataset [1]) improve with respect to their original counterparts.

It must be taken into account that a limitation of this type of models is the
duration of the audio files that can be processed. Most models allow audio files
that last at most 120 s. However, in this work, we broke them into 60 s chunks in
order to generalize the process to more restrictive models. This fragmentation
of the videos implies that a post-processing step to reconstruct the transcription
is necessary. To this end, an overlap time between fragment and fragment of 8 s
is considered and will serve as a reference to join the transcriptions of all the
fragments.

Once that we have presented the studied ASR models, we introduce the
dataset that has been used to evaluate those models in a real scenario.
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2.2 Dataset

The YouTube channel of the Government of La Rioja1 contains 3246 videos2,
approximately 60% of the videos include subtitles that were automatically gen-
erated by YouTube, but 1256 do not. The videos represent a diverse range of
subjects, including news, documentaries, and education. In spite of the existence
of videos with subtitles, all the videos of the channel have been downloaded, using
the YouTube API, since YouTube transcriptions cannot be edited.

The videos are in MP4 format and have a resolution of 1080p, and have a
duration that ranges from less than a minute (19% of the videos), to more than
an hour (1.6% of the videos); but most of the videos last between 1 and 10 min
(60% of the videos). In order to transcribe the videos the audio was extracted
to acc format using the ffmpeg library. From the 3246 audio files, 74 of them
were randomly picked to evaluate the ASR models. These 74 were manually
transcribed, and such a transcription was stored in txt files.

2.3 Evaluation

In order to evaluate the aforementioned ASR models on our dataset of videos, we
have used the Word Error Rate (WER) [20], a common metric to measure the
performance of ASR systems. WER is defined from the Levenshtein distance [14]
and works at the word level. Given a reference sentence and an automatically
generated sentence, WER is computed using the following formula:

WER =
S + D + I

N

where S is the number of substitutions, D is the number of deletions, I is the
number of insertions, and N is the number of words in the reference; therefore,
the lower the WER value, the better. Moreover, we can consider a normalized
version of WER, from now on WERN , that uses the same formula than WER,
but the reference sentence and an automatically generated sentence are normal-
ized by removing punctuation marks and lower casing the sentences.

3 Results and Discussion

In this section, we analyse the performance of the ASR models in our dataset.
Table 1 presents the WER and WERN of the studied ASR models. From those
results we can draw several conclusions. First of all, PocketSphinx is far from the
state-of-the-art models since it is the only model with a WER and a WERN over
1 — the rest of the models obtained a WER value below 0.4, and a WERN value
below 0.25. On the contrary, all the Whisper models achieved a better WER
value than the rest of the models, showing the outstanding results produced by
these models, even when using the smallest version of this model. Note that the
1 https://www.youtube.com/@GobiernoDeLaRiojaES.
2 On July 28th, 2022.

https://www.youtube.com/@GobiernoDeLaRiojaES
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WER metric evaluates unnormalized text; so, this indicates that Whisper models
are more adjusted than the rest of the models to transcriptions given by humans.
If the text is normalized, the smallest versions of Whisper (tiny and base) are
overcame by the Conformer Transducer, but the bigger version still produce the
best results. For the NVIDIA models, Conformer Transducer achieved the best
results followed by STT and Conformer CTC.

Table 1. Mean (std) results obtained by the different ASR models. In bold, the best
results.

Model WER WERN

Conformer-CTC Large 0.393 (0.158) 0.242 (0.154)

Conformer-Transducer Large 0.229 (0.068) 0.068 (0.046)

PocketSphinx 1.720 (0.374) 1.709 (0.373)

STT Quartznet 0.317 (0.093) 0.176 (0.093)

Wav2Vec 0.312 (0.098) 0.169 (0.090)

Whisper tiny 0.216 (0.086) 0.129 (0.073)

Whisper base 0.169 (0.073) 0.083 (0.053)

Whisper small 0.132 (0.064) 0.053 (0.041)

Whisper small fine-tuned 0.872 (0.443) 0.847 (0.452)

Whisper medium 0.112 (0.060) 0.042 (0.037)

Whisper medium fine-tuned 0.224 (0.177) 0.140 (0.179)

Whisper large 0.111 (0.063) 0.042 (0.036)

Whisper large-v2 0.108 (0.062) 0.044 (0.046)

If we compare the different versions of Whisper, the performance of the
models increases with the size. Namely, the best results are obtained with the
medium, large, and large-v2 versions of the Whisper model that achieved a sim-
ilar WER value (0.112, 0.111, and 0.108) and obtained a similar WERN , with
a value of 0.042 in the case of medium and large versions, and 0.044 in the
case of the large-v2 version. In contrast with the success of fine-tuning in other
areas like Computer Vision or Natural Language Processing [21], the fine-tuned
versions of the Whisper models obtain worse parts than their original coun-
terparts, the Whisper small fine-tuned obtained a WER of 0.872 (the original
version achieved 0.132), and the medium fine-tuned version obtained a WER of
0.2241 (the original counterpart achieved 0.112). This might happen because the
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fine-tuned versions of Whisper are over-tuned on the Common Voice dataset (the
medium model obtained state-of-the-art results) and they are no able to gener-
alize to other kinds of audios. On the contrary, the original versions of Whisper
were trained on a diverse multi-lingual dataset, which make them robust to dif-
ferent conditions. Further research is necessary to confirm this hypothesis using
other datasets.

We have also studied the inference times of each ASR models for a video
that lasts 7 min. To this aim, we have used a GPU NVIDIA GeForce RTX 3080,
and the results are presented in Table 2 — note that the fine-tuned versions
of Whisper and their original counterparts are the same model with different
weights, and the same happens with the large and large-v2 versions; therefore,
only one of the versions of those models has been included. The worst models
are PocketSphinx and Wav2Vec that took more than 5 min to process the video.
On the contrary, the fastest models are the NVIDIA models that can process
the video in less than 12 s — this shows the optimizations that have been intro-
duced in the nemo library to use GPUs. In the case of the Whisper models,
the bigger the model, the slower. Namely, the tiny version took approximately
30 s to process the video, but the large model took almost 3 min. If we compare
the medium and large versions of Whisper, that were the models with a smaller
WER; the medium version took one minute less than the large model. Hence,
we can conclude that the Whisper medium model provides the best trade-off
between accuracy and speed, but if speed is more important, it is better to use
the Conformer-Transducer model.

Table 2. Inference times of the ASR models. In bold, the best result.

Model Time (secs)

Conformer-CTC Large 11.047

Conformer-Transducer Large 8.625

PocketSphinx 522.13

STT Quartznet 7.729

Wav2Vec 306.54

Whisper tiny 33.30

Whisper base 37.29

Whisper small 60.83

Whisper medium 106.67

Whisper large 167.29
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For our project, and since we did not have a time constraint, we have
employed the Whisper medium model to generate the transcription of the 3246
videos from the YouTube channel of the Government of La Rioja3. It is worth
mentioning that Whisper models not only generate subtitles, but also phrase-
level timestamps that indicate when the text must be shown. Hence, the subtitles
can be easily uploaded to YouTube or shown in video players, see Fig. 1.

Fig. 1. Video player showing the transcription generated by the Whisper model.

Finally, to facilitate the automatic transcription for other videos, we have
created a HuggingFace space4, see Fig. 2. This space is a freely available web
application where any user can provide a URL from a Spanish YouTube video
and obtain automatically the transcription of the video.

3 The transcriptions of the videos are available at https://github.com/mirenmirari/
subtitulos canalgobierno.

4 Available at https://huggingface.co/spaces/mirari/Whisper-Youtube.

https://github.com/mirenmirari/subtitulos_canalgobierno
https://github.com/mirenmirari/subtitulos_canalgobierno
https://huggingface.co/spaces/mirari/Whisper-Youtube
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Fig. 2. HuggingFace space to automatically obtain transcription of YouTube videos.

4 Conclusions and Further Work

In this work, we have analyzed several ASR systems to automatically transcribe
the videos of the official webpage of the Government of La Rioja. Our study has
shown that the Whisper medium model produces the best transcriptions in a
reasonable time, obtaining better results than the large version of this model.
In addition, we have shown that, for our particular dataset, fine-tuning Whisper
models on a dataset of Spanish audios produces worse models than their original
counterparts.

The final result of this project is a webpage that contains the transcriptions
of all the videos available in the YouTube channel of the Government of La Rioja;
and the project can be applied to any Spanish YouTube channel. Therefore, this
is a step towards improving the accessibility of the information and contents
produced by Spanish public administrations.

As further work, several tasks remain to improve the accessibility of video
transcriptions. First of all, none of the analyzed models can produce transcrip-
tions on real time, this is an important for facilitating the access to stream events.
Moreover, the models do not incorporate information about who is speaking; so,
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dialogues might be difficult to follow. Finally, it would be interesting to produce
simplified transcriptions or summaries of videos, and apply the ASR technology
to other contents like podcasts.
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Abstract. Obesity is a non-communicable disease that has a major
impact on people’s health, increasing the risk of other chronic diseases
such as diabetes, hypertension, and cardiovascular problems. Usually,
the nutritional status of the population is determined by the body mass
index (BMI) applied on a population sample via a national health sur-
vey (NHS), whose results are extrapolated. Except for highlighted cases
such as the United States of America, these NHSs are infrequently carried
out with different sampling methodologies. The outcomes are sparse and
low-quality data, which complicate the estimation and forecasting of the
population’s BMI distribution. In this work, this problem is addressed
by considering the case of Chile, one of the countries with the highest
prevalence of obesity, with an NHS every 7 years. Our approach proposes
a maximum entropy optimization model to estimate the probability tran-
sition between different nutritional states, considering age and sex, which
is based on the analogy with the determination of the origin-destination
trip matrix used in the transport setting. The obtained results show that
for the year 2024, there will be an increase of 798,898 (35%) and 758,124
(30%) men and women respectively, with overweight and obesity.

Keywords: Sparse Data · Obesity · Non-linear Programming ·
Transition Probabilities

1 Introduction

Nutritional status can be evaluated using the body mass index (BMI), which is
calculated by the ratio of weight in kilograms to the square of height in meters
(kg/m2). This indicator defines the categories in which the individual is classified
according to the value of their BMI: (a) Underweight, BMI < 18.5; (b) Normal
weight, 18.8 ≤ BMI ≤ 24.9; (c) Overweight, 25.0 ≤ BMI ≤ 30.0; (d) Obesity,
30.0 < BMI [3].
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It is alarming that obesity has become a constantly increasing public health
problem worldwide, considered a global pandemic. According to the World
Health Organization (WHO), in 2016, more than 1.9 billion adults worldwide
were overweight, of which more than 650 million were obese. Additionally, WHO
reports that obesity has tripled in many countries since 1975 [12]. A study pub-
lished in The Lancet in 2016 [4] suggests that if current trends in obesity preva-
lence continue, it would not be possible to achieve the global non-communicable
diseases goal, which aims to maintain 2010 levels by 2025. In that study, it is
estimated that if current trends continue, the global prevalence of obesity will
reach 18% in men and exceed 21% in women.

Obesity is a growing public health problem in the United States of America,
with a significantly higher prevalence compared to previous decades. According
to the Centers for Disease Control and Prevention (CDC), in 2019, the prevalence
reached 41.9%, showing an increase of 11.4%, while the prevalence of severe obesity
reached 9.2% according to the National Health and Nutrition Examination Sur-
vey (NHANES) data in 2021. In addition, obesity has been observed to be more
common in adults over 40 years of age and is more prevalent among certain popu-
lations, such as African Americans, Latinos, and people with low incomes [6].

In recent decades, a significant increase in the prevalence of obesity worldwide
has been observed. According to the Aprovian study in 2016 [1], an increase of
27.5% in adults and 47% in children has been recorded. Additionally, the author
established that an increase of 5 units in the Body Mass Index (BMI) above
25 kg/m2 is associated with an increase in overall mortality of 29%, in vascular
mortality of 41%, and in diabetes-related mortality of 210%.

Obesity also has a significant economic impact. In fact, a 77% increase in
drug costs and a 36% increase in annual medical costs are due to comorbidities
associated with obesity, such as diabetes and hypertension [13]. Additionally,
Kelly et al. [9] suggest that a higher level of BMI may have negative effects on
economic growth. For Latin American countries, Elgart et al. [7] note that BMI
shows a high incidence in the expenditure of drugs for the treatment of type 2
diabetes and cardiovascular diseases in Latin American countries. In particular,
Cuadrado [5] determines an average of 2.29% of total annual health expenditure
is attributed to obesity and related conditions for the Chilean case.

1.1 Related Work

The estimation of obesity prevalence and transition rates in developing countries,
such as Chile, is crucial for understanding and addressing the public health
phenomenon, which often faces challenges due to the sparse and low-quality data.
However, one way to address this limitation is through the use of mathematical
and statistical models.
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In recent studies [10,17], it has been seen an increase in the use of systems
dynamics (SDM) and agent-based models (ABM) in the field of health, the
first of which is particularly useful in non-communicable diseases such as obe-
sity. Differential equations models are seen that consider social and non-social
parameters for measurement, with data from the United States and the United
Kingdom [15]. In Avalos et al. [2] the same line of research is studied, proposing
a non-linear programming model to characterize the population in a disaggre-
gated way, assuming that transition probabilities depend on gender and age.
Another study, published in 2022, uses heteroscedastic longitudinal mixed mod-
els to adapt to data scarcity and predict trends of overweight and growth delay
in the European region [14]. It is important to note that the use of these models
not only allows adapting to data scarcity but also allows for a more accurate
characterization of the population, which is essential for implementing effective
prevention and treatment strategies. Additionally, the use of mathematical and
statistical models also allows for simulating future scenarios and thus taking
preventive measures and preparing for changes in obesity prevalence.

1.2 Our Contribution

This research focuses on addressing the problem of estimating the nutritional
status of the population with sparse and low-quality data. Chile has been chosen
as a case study, as according to the State of Food Security and Nutrition in the
World 2021 [16], a prevalence of 28% of obesity in adults over 18 years old has
been identified in this country, which is above the average for Latin America
and the Caribbean, which was 24.2%. Additionally, Chile has a shortage of data
in its health surveys, as only three surveys have been conducted between 2003
and 2017. Therefore, for this research, the national health surveys (NHS) and
data from the National Institute of Statistics (NIS) will be used to understand
the population projections. The model used is based on the maximum entropy
transport model [11], as this model determines transition rates assuming high
levels of misinformation or uncertainty. In this model, only data by age range
and Body Mass Index (BMI) will be taken into account, making a differentiation
between men and women. Finally, an estimation for the year 2024 of the levels
of obesity in Chile will be given.

2 Material and Methods

2.1 Statement of the Problem

The issue at hand focuses on estimating BMI of the adult Chilean population
using spaced and lower quality data. To tackle this problem, a method composed
of several phases is employed. Firstly, a maximum entropy model is used to
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determine the existing transition rates between the years 2003 and 2010, as well
as between 2010 and 2017. Then, these rates are projected into the future starting
from the year 2017, normalizing the population for each age range, this is due to
the expansion factor of the health surveys consider the population projections
made by the National Institute of Statistics. Finally, the simple average between
both projected rates for the years 2017–2024 is calculated and the estimated
population is obtained.

2.2 Mathematical Model

Initially, the population data is distributed among different age ranges i and BMI
j, denoted as xi,j for each combination of origin. Since we work with populations,
and in order to maintain the equality constraints present in the model, it can
also be formulated under the approach of probability distributions. The same
applies for the destination data. Therefore, we consider the variable Oi,j ∈ [0, 1]
and Di,j ∈ [0, 1].

Oij =
xij∑ ∑

xij
Dij =

di′j′
∑ ∑

di′j′

The mathematical model used is based on a maximum entropy model in which
the transition rates, tij,i′j′ , are considered, with Oij as the source data where i
is the age range, j is the BMI, and Di′j′ as the destination data where i′ is the
age range and j′ is the BMI.

max −
∑

i∈I

∑

j∈J

∑

i′∈I

∑

j′∈J
tiji′j′ ln tiji′j′ (1)

∑

i′∈I

∑

j′∈J
tiji′j′ = Oij ∀i ∈ I;∀j ∈ J (τij) (2)

∑

i∈I

∑

j∈J
tiji′j′ = Di′j′ ∀i′ ∈ I;∀j′ ∈ J (γi′j′) (3)

∑

i∈I

∑

j∈J

∑

i′∈I

∑

j′∈J
tiji′j′Ciji′j′ = C′ (β) (4)

tiji′j′ > 0 (5)

Expression (1) defines the objective function. Constraints (2) and (3) are
used to ensure conservation of the input and output population. Constraint (4)
states a value for the sum over the proportional cost Ci,j,i′.j′ associated with
the transition rate ti,j,i′.j′ . Additionally, expression (5) defines the nature of
the variables. It should be noted that the values of Oij and Di′j′ are previously
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known. In order to provide flexibility to the formulation, intervals were chosen to
be used for the source and destination data, which allows the model to maintain
feasibility.

max −
∑

i∈I

∑

j∈J

∑

i′∈I

∑

j′∈J
tiji′j′ ln tiji′j′ (6)

∑

i′∈I

∑

j′∈J
tiji′j′ = 0.95 · ρij · Oij + 1.05 · (1 − ρij) · Oij ∀i ∈ I;∀j ∈ J

(7)
∑

i∈I

∑

j∈J
tiji′j′ = 0.95 · αi′j′ · Di′j′ + 1.05 · (1 − αi′j′) · Di′j′ ∀i′ ∈ I;∀j′ ∈ J

(8)
∑

i∈I

∑

j∈J

∑

i′∈I

∑

j′∈J
tiji′j′ = 1 (9)

tiji′j′ > 0 (10)

Expression (6) is used as the objective function, aimed at maximizing entropy.
Additionally, constraints (7) and (8) are employed to ensure the conservation of
the input and output population. Since only one data point is available for each
Oij and Di′j′ , a range between 95% and 105% is established, and the variables
ρij and αi′j′ are incorporated, respectively, to provide slack.

Furthermore, constraint (9) is included to limit the sum of tijij to one. It is
worth noting that there are constraints that restrict population mobility based on
their age range. This is because people cannot decrease their age, and according
to the data used in the research, they can only stay in the same age range or
move to the next one. Finally, reference is made to the nature of the variables
in Eq. (10).

2.3 Case Study

This case study focuses on the analysis of health data of the Chilean population,
taking the country itself as a reference, which is in a process of development.
To do this, two main sources of information have been used: health surveys
conducted every 7 years and population projections developed by the National
Institute of Statistics (NIS).
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The National Health Survey of Chile is a valuable resource for analyzing the
health status of the Chilean population. One of the indicators evaluated in the
survey is the BMI, which is used to determine if an individual is in a healthy
weight, overweight or obese. The data collected is divided into 7 age intervals,
each one considering people from 10 years, starting at 15 years and ending with
people of 75 years or more. In addition, the data is also segmented into 20
different BMI categories.

However, because the survey has only been carried out in the years 2003,
2009–2010, and 2016–2017, the data is scarce for long-term research. Despite this,
it is expected that the information collected will be valuable for understanding
the evolution of health in Chile and taking measures to improve it.

3 Results

Graphs are presented showing the proportions obtained for the year 2024, pro-
jecting the transition rates for the years 2003–2010 and the transition rates for
the years 2010–2017, normalizing the proportions for each age range, for both
men and women (see Fig. 1 and Fig. 2, respectively). Subsequently, a simple aver-
age of these data was obtained to obtain the population estimate for men for
2024 (see Table 2) and the population estimate for women for 2024 (see Table 3).

From the obtained graphs, it is notable that for both men and women and
for different age ranges, the proportions are higher among those with a BMI
of 23–24, which corresponds to a classification of normal weight, and a BMI of
25–30, which corresponds to individuals with overweight. Additionally, it can
be seen that individuals in the youngest age range, 15–24 years old, have the
highest proportions of obesity.

The National Institute of Statistics (NIS) projects that by 2024, the popula-
tion of men over 15 years of age will reach 8.027.132 people, and the population
of women over 15 years of age will reach 8.361.220 people [8] as shown in Table 1.

Table 1. Population projection 2024 INE

Age range 15–24 25–34 35–44 45–54 55–64 65–75 75+

Men 1.297.516 1.629.350 1.506.681 1.279.988 1.107.086 757.796 448.715

Women 1.255.894 1.584.519 1.475.987 1.298.457 1.183.687 881.158 681.518
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Table 2. Male estimates 2024

Estimated ratios Estimated population of men

IMC Age range IMC Age range

15–24 25–34 35–44 45–54 55–64 65–75 75+ 15–24 25–34 35–44 45–54 55–64 65–75 75+

36 0,0202 0,0011 0,0002 0,0002 0,0001 0,0006 0,0024 36 26.154 1.827 327 246 136 470 1.084

35 0,0241 0,0030 0,0008 0,0007 0,0005 0,0017 0,0048 35 31.257 4.833 1.243 922 535 1.321 2.168

34 0,0405 0,0080 0,0029 0,0025 0,0017 0,0050 0,0110 34 52.613 13.026 4.341 3.176 1.930 3.772 4.957

33 0,0599 0,0178 0,0080 0,0068 0,0051 0,0117 0,0215 33 77.665 28.956 12.104 8.760 5.594 8.902 9.658

32 0,0788 0,0333 0,0183 0,0156 0,0121 0,0234 0,0365 32 102.211 54.266 27.643 19.905 13.362 17.751 16.360

31 0,0938 0,0491 0,0351 0,0298 0,0243 0,0402 0,0546 31 121.658 79.951 52.907 38.163 26.913 30.496 24.506

30 0,1022 0,0700 0,0575 0,0492 0,0421 0,0606 0,0734 30 132.618 114.113 86.621 63.017 46.583 45.913 32.922

29 0,1431 0,1292 0,1096 0,1057 0,0953 0,1186 0,1286 29 185.704 210.440 165.156 135.337 105.513 89.869 57.724

28 0,0574 0,0629 0,0643 0,0573 0,0536 0,0604 0,0610 28 74.455 102.517 96.947 73.322 59.393 45.757 27.366

27 0,0866 0,1084 0,1062 0,1065 0,1027 0,1076 0,1038 27 112.358 176.634 159.953 136.373 113.685 81.506 46.559

26 0,0732 0,1056 0,1094 0,1128 0,1122 0,1088 0,1003 26 94.936 171.996 164.905 144.381 124.210 82.459 45.023

25 0,0591 0,0958 0,1047 0,1100 0,1124 0,1022 0,0912 25 76.688 156.028 157.797 140.777 124.405 77.468 40.920

24 0,0610 0,1097 0,1237 0,1287 0,1419 0,1216 0,1057 24 79.086 178.736 186.330 164.746 157.138 92.159 47.446

23 0,0194 0,0392 0,0479 0,0487 0,0519 0,0428 0,0367 23 25.196 63.854 72.143 62.340 57.513 32.410 16.465

22 0,0251 0,0501 0,0634 0,0675 0,0727 0,0586 0,0500 22 32.587 81.676 95.549 86.414 80.512 44.371 22.443

21 0,0178 0,0382 0,0484 0,0512 0,0556 0,0439 0,0375 21 23.144 62.273 72.969 65.475 61.541 33.259 16.817

20 0,0124 0,0276 0,0345 0,0369 0,0403 0,0315 0,0270 20 16.075 45.046 51.918 47.284 44.650 23.894 12.138

19 0,0086 0,0191 0,0236 0,0255 0,0279 0,0218 0,0189 19 11.212 31.122 35.565 32.700 30.900 16.525 8.469

18 0,0062 0,0125 0,0156 0,0170 0,0185 0,0146 0,0128 18 8.107 20.291 23.564 21.747 20.487 11.047 5.729

17 0,0106 0,0195 0,0257 0,0273 0,0290 0,0243 0,0222 17 13.792 31.765 38.698 34.900 32.086 18.448 9.960

Table 3. Female estimates 2024

Estimated ratios Estimated population of women

IMC Age range IMC Age range

15–24 25–34 35–44 45–54 55–64 65–75 75+ 15–24 25–34 35–44 45–54 55–64 65–75 75+

36 0,0235 0,0058 0,0012 0,0004 0,0002 0,0003 0,0048 36 29.544 9.125 1.744 455 284 223 3.295

35 0,0262 0,0093 0,0026 0,0010 0,0008 0,0008 0,0070 35 32.886 14.727 3.837 1.255 917 723 4.753

34 0,0426 0,0186 0,0064 0,0028 0,0024 0,0026 0,0136 34 53.489 29.518 9.488 3.609 2.882 2.278 9.237

33 0,0613 0,0303 0,0136 0,0067 0,0063 0,0067 0,0233 33 76.930 47.988 20.103 8.739 7.433 5.876 15.902

32 0,0792 0,0449 0,0252 0,0140 0,0136 0,0144 0,0361 32 99.405 71.067 37.176 18.175 16.121 12.723 24.578

31 0,0931 0,0617 0,0412 0,0254 0,0254 0,0268 0,0506 31 116.951 97.739 60.872 33.022 30.050 23.632 34.508

30 0,1009 0,0772 0,0577 0,0409 0,0414 0,0435 0,0652 30 126.718 122.269 85.193 53.151 49.013 38.338 44.463

29 0,1411 0,1264 0,1062 0,0879 0,0893 0,0930 0,1117 29 177.168 200.335 156.707 114.126 105.683 81.958 76.127

28 0,0567 0,0574 0,0600 0,0484 0,0491 0,0507 0,0528 28 71.151 91.001 88.596 62.878 58.092 44.695 35.993

27 0,0857 0,0953 0,0978 0,0924 0,0932 0,0956 0,0907 27 107.665 151.009 144.321 119.938 110.268 84.214 61.832

26 0,0727 0,0902 0,1007 0,1015 0,1019 0,1035 0,0898 26 91.328 142.991 148.698 131.801 120.642 91.242 61.221

25 0,0590 0,0812 0,0968 0,1007 0,1035 0,1041 0,0846 25 74.039 128.666 142.806 130.777 122.504 91.707 57.662

24 0,0609 0,0943 0,1184 0,1256 0,1349 0,1340 0,1038 24 76.535 149.479 174.827 163.092 159.684 118.049 70.771

23 0,0194 0,0331 0,0472 0,0527 0,0513 0,0504 0,0382 23 24.377 52.488 69.700 68.392 60.670 44.372 26.059

22 0,0250 0,0459 0,0623 0,0769 0,0744 0,0725 0,0549 22 31.446 72.710 91.883 99.878 88.080 63.888 37.449

21 0,0177 0,0356 0,0506 0,0624 0,0600 0,0579 0,0443 21 22.193 56.449 74.654 81.048 71.008 50.982 30.225

20 0,0121 0,0274 0,0371 0,0484 0,0463 0,0442 0,0348 20 15.255 43.411 54.831 62.832 54.752 38.929 23.687

19 0,0082 0,0211 0,0262 0,0360 0,0343 0,0324 0,0265 19 10.240 33.387 38.701 46.730 40.548 28.566 18.079

18 0,0057 0,0152 0,0179 0,0258 0,0245 0,0229 0,0198 18 7.161 24.011 26.349 33.466 28.949 20.221 13.474

17 0,0091 0,0291 0,0308 0,0501 0,0474 0,0437 0,0472 17 11.411 46.148 45.503 65.093 56.107 38.544 32.201
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Fig. 1. Distribution graphs for 2024 by age range in males
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Fig. 2. Distribution graphs for 2024 by age range in females

4 Discussion and Conclusions

According to recent data provided by health surveys in Chile, it is expected that
the number of women with obesity will increase by 295,277 compared to the year
2017, resulting in a total of 1,073,261 women with obesity in the country. This
number represents 12.84% of the total number of women in Chile. Additionally,
it is expected that by the year 2024, the number of women with overweight in
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the country will reach 4,189,988, which means an increase of 462,847 compared
to the previous survey, corresponding to 50.22% of the total number of women.

Regarding men, it is expected that the number of men with obesity in Chile
will increase by 160,271 compared to the year 2017, reaching a total of 934,071
men with obesity. This number represents 11.64% of the total number of men in
Chile. On the other hand, it is expected that by the year 2024, the number of
men with overweight in the country will reach 4,380,350, indicating an increase
of 638,627 compared to the previous survey, corresponding to 54.57% of the total
number of men in Chile.

However, it is important to note that the data presents significant disparities,
which generate significant uncertainty for the model. Therefore, these results
should be interpreted with caution and considering all potential limitations
and biases of the survey. In any case, these results underline the importance
of addressing obesity and overweight in Chile through effective prevention and
treatment measures to improve the overall health of the population.

5 Future Works and Difficulties

The aim of this study is to report on difficulties encountered in the work due to
the health surveys that have been used. It has been observed that these problems
could be due to a lack of standardization in the amount of population samples
and the way surveys are conducted. Additionally, it has also been identified
that the long periods between surveys can contribute to the quality of the data
collected. Another concern is the way in which the expansion factor is handled
in cases where the data yield a value of 0.

In order to improve the quality of the data collected, this research presents
the question of the optimal frequency of conducting health surveys. This will
allow for both the optimization of data quality and the budgetary expenditure
required to carry out these surveys.

It is expected that the results obtained from this research will help to improve
the effectiveness and efficiency of health surveys, which will contribute to a better
understanding of population health and to the making of more informed decisions
in the field of public health.
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Abstract. One of the most important business decisions is how to
acquire customers. Indeed, whatever the size of the company, it is faced
with the problem of limited resources. Therefore, it is necessary to know
which customers are worthy of marketing activities and efforts and which
are not. Knowing the journeys and characteristics of customers that lead
to successful sales would allow businesses to optimize their spending by
targeting those likely to make purchases. Customer prioritization involves
assigning a score (i.e., a buying probability) to each possible lead gen-
erated for the business. An accurate scoring process can help marketing
and sales teams prioritize and respond appropriately to selected leads in
an optimal time frame, increasing their propensity to become customers.
The purpose of this article is to develop a new automated method to pri-
oritize customers. A complete process for implementing a prioritization
solution is described. We present experiments that show positive results
using a real-world dataset.

Keywords: Customer Prioritization · Lead Scoring · Data Cleaning ·
Data Quality

1 Introduction

Customer prioritization has become a common business practice and an impor-
tant area of marketing research. Companies often set priorities and assign
resources based on priorities when resources are limited. Indeed, client prior-
itization is defined as the degree to which customers are treated differently and
preferentially in terms of marketing instruments according to their importance
to the business [1]. On one hand, several studies have focused on the impact of
prioritization on desirable and revenue-generating customer behaviors such as
retention, loyalty, and positive word of mouth. The proponents of customer pri-
oritization argue that firms use marketing tools differently for various levels of
their customers. They affirm that such differentiation in marketing efforts allows
companies to achieve high profits. Actually, firms can achieve greater effective-
ness and efficiency by focusing these efforts on priority customers [3]. On the
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other hand, opponents of customer prioritization argue that customer prioriti-
zation is not always profitable. They assume that client prioritization can leave
demoted clients dissatisfied [2]. As a result, these dissatisfied customers could fail
or spread negative word of mouth, leading to lower sales and long-term profits.

Against this background, this article shows the positive impact of customer
prioritization on the company’s sales and work organisation.

In our work, we collaborate with a company specialized in the sale of ready-
mix concrete. It acts as an intermediary between concrete factories and con-
sumers, its work as follows:

1. The customer request an estimate on-line via a dedicated platform.
2. A sales advisor calls the customer back to validate his order.
3. If it works for both, the customer can pay for their order and the advisor will

schedule the delivery with the plant concerned.

The second step of the work process is essential to the way the company
operates. In this step, an estimate needs to be validated before the client pays
and the order is placed. Indeed, considering the sensitivity of the product, the
sales advisor should contact the customer to verify the order and delivery details.
This verification stage guarantees a correct and compliant delivery to satisfy the
client.

The company receives hundreds of requests every day which sales advisors
must process it and call back customers to convert it into purchases. As the num-
ber of sales advisors is limited, they are not always able to process all requests
on time. For this reason, we have decided to prioritize client requests. The idea
is to assign a score (i.e., a buying probability) to each request and the higher
the score the higher the priority is given to process the command. In this way,
the sales advisors will not spend time randomly contacting all prospects and will
only focus their efforts on the most likely converts. In this article, we describe
the entire process followed to develop the scoring algorithm Fig. 1.

The rest of this article is organized into four sections. In the following Sect. 2,
the data cleaning process is described. In Sect. 3, the prioritization algorithm is
presented. Section 4 details the experimental setup and discusses the obtained
results and Sect. 5 concludes the paper.

Fig. 1. General architecture of our proposed system.
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2 Data Cleaning

To better understand market demands and extract features to be used to prior-
itize customers, data analysis is required. Data analysis is defined as a process
of cleaning, transforming, and modeling data to discover useful information for
business decision-making. It is important to know that high-quality decision
depends not only on the appropriate decision-making methods but also on high-
quality data. Actually, over the past several years, industry and academia have
shown an increased interest in data quality and data cleaning issues [4]. One of
the most anticipated data quality challenges, which becomes especially critical
when data comes from multiple or unique real-world data sources, is duplication
or non-uniqueness. Indeed, duplication is one of the main causes of poor data
quality in databases. To resolve this issue, the process of detecting and correcting
duplicate records is required.

In this section, we describe the data cleaning process.

2.1 Related Works

Data quality represents a great challenge in real-world datasets. Data quality
and Database researchers have discussed various types of data anomalies types.
Recent research suggests workflows and methodologies for cleaning and repairing
data sets using different approaches, such as: statistical analysis [4], integrity
constraints [6], neuronal networks and machine learning models [7]. In addition,
a data cleaning process does not only require sophisticated methods, but it also
requires contextual and integrative expertise that generates rules based on the
nature of the data [8]. Experts can help answer the three key questions posed
during data processing to find errors in the data: what to detect, how to detect,
and where to detect. Within this context, there has been much discussion and
research on the detection of duplicates in the data. It is important that the
procedure be efficient and precise in order to produce high quality data [15].

Probably, the most popular one is the data similarity-based approach [9].
It identifies the similarity of the data to determine whether the data objects
in question are two unique objects or duplicates. It is a matter of finding every
possible duplication and eliminating them. The duplication detection is generally
done in 3 steps. The first step is to standardize and to index records using
blocking variables. The second is to match records of similar pairs based on a
similarity function adapted to the data type. And the third is to create clusters
of coherent related records.

2.2 Rule-Based Data Cleaning

In this section, we describe our followed data cleaning process. Figure 2 illustrates
the general architecture of the system.

The process starts with the detection and correction of null and empty values
then the elimination of outliers. Next we proceed to the detection and elimination
of duplicates by following these steps:
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Fig. 2. Data cleaning process.

Prepare the Data. To start, data is brought in a standardized form to facili-
tate the identification of duplicates. This standardization may vary considerably
depending on the field concerned. As an example, when data is strings all upper-
case letters are often converted into lowercase letters or when we deal with dates
it should be brought in a uniform format.

Search Area Definition. This step focuses on the definition of the search area.
To detect duplicate records in a database D, the maximum number of possible
comparisons is |D|(|D| − 1)/2 because each D record must be compared with
all other records. The task of defining research areas is to reduce the number
of comparisons and minimize the resources to be spent. Two ways to accom-
plish this are the Sorted Neighbourhood Method (SNM) and Blocking. Sorted
Neighbourhood is a method where rows are sorted according to a suitable key.
Next, a fixed-size window is moved across the rows and only the rows in the win-
dow are considered for comparison. The selection of the key is important in this
method, it is necessary to ensure that the duplicates are reconciled in the order
of the key. About Blocking, it is a method whereby the search area is divided
into blocks where the detection of duplicates is carried out inside those blocks.
Splitting into blocks may be done in various ways. The principle is to generate or
use a block key, where all tuples with the same block key are grouped together
in the same block for processing. In the literature, there are several Blocking-
based and Sorting-based indexing techniques that allow reducing the possibly
very large number of record pairs that need to be compared in the case of large
datasets [10].

Matching and Clustering Duplicates. To compare two record pairs E1 and
E2, similarity functions S = sim (E1, E2) are used. According to the type of
attribute value, the similarity function can vary. For example, for dates, it could
be the number of seconds between, or for numbers the difference could be an
appropriate option. Using the similarity vector, a decision model is used to deter-
mine whether the tuples compared are duplicates or not. There are two most
common ways to design a decision model: probability-based decision and domain
knowledge-based decision. The probability-based decision determines two con-
ditional probabilities: the probability that the two compared pairs are dupli-
cates and the probability that they are not. The resulting probabilities are then
compared to boundary values to determine whether or not the compared pairs
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match. The limit values can be set using appropriate machine learning models
or manually by a domain expert. The domain knowledge-based decision model
is dependent upon the domain expert. It defines the conditions and rules for
considering two records as duplicates.

It’s not enough to find duplicates. The aim is to find all records that belong
to the same real-world entity so duplicates must be combined into clusters.
Generally, this clustering is carried out using certain forms of transitivity [13].
Indeed, if E1 is a duplicate of E2, and E2 is a duplicate of E3, it is true that E1
is a duplicate of E3 and the three records belong to the same cluster. Finally, the
recognized clusters are properly merged or the decision on the remaining records
and those to be removed is made.

3 Automated Customer Prioritization

The use of data to resolve business problems and support business decisions has
become standard practice today. A Harvard Business Review article by Andrew
McAfee and Erik Brynjolfsson claims that “Data-driven decisions tend to be
better decisions. Leaders will either embrace this fact or be replaced by others who
do” [11]. One of the most important business decisions involves the acquisition
of customers. Indeed, no matter how large the enterprise it is, it is confronted
with problem of limited resources, which is in principle the central economic
problem. Therefore, there is a need to know what clients are worth of marketing
activities and efforts and what are not.

In this section, we provide a literature review of lead scoring. Then, we present
our automated customer prioritization method.

3.1 Related Works

Lead scoring is used to help decision-makers to identify which leads to target.
The idea is to assign scores to all leads based on how their features fit the pre-
established profile of a converted client. In this way, the salesforce professionals
will focus their efforts on prospects more likely to convert.

In traditional or manual lead scoring, a marketing expert or a senior sales
executive assigns points to the customer’s actions based on how important those
actions are to the business. Figure 3 presents an example of traditional lead
scoring. However, there are several problems related to it. Indeed, there is no
statistical support for manual lead scoring. In addition, due to human nature,
the lead scoring officer’s decisions can be biased or based on prior prejudices.
Also, it is very long to always adjust the scores manually and the time used
could be spent more efficiently somewhere else.

On the other hand, smart or predictive lead scoring is based on a math-
ematical and statistical approach called propensity modeling [12]. It aims at
predicting the chances that a visitor will perform certain actions (reservation,
registration, purchase, etc.). Data Mining and Machine Learning algorithms are
capable of automatically detecting useful patterns for lead scoring from historical
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Fig. 3. Traditional lead scoring.

sales data. K. Prasad et al. [17] suggested a comparative analysis between Logis-
tic Regression and SVM algorithms in the construction of propensity predictive
models and evaluated their performance. R. Nyg̊ard et al. [18] proposed a super-
vised learning approach to lead scoring based on algorithms such as Decision
Trees to predict the purchase probability. The authors discovered that the best
performing algorithm is the Random Forest model. Y. Zhang et al. [19] used the
machine leaning to identify the most valuable prospects. The authors compared
the predictive capacity of Logistic Regression and Random Forest. The results
showed that Logistic Regression model outperformed the other one.

3.2 Proposed Customer Prioritization Approach

The lead scoring allows companies to optimize their spending by targeting peo-
ple who are likely to convert and it is an important and effective practice for
optimizing conversion rates. A conversion rate registers the percentage of users
that have performed a desired action. It’s calculated by taking the total number
of users who ‘convert’ (for example, by placing an order), dividing it by the over-
all size of the audience, and converting it to a percentage. For example, let’s say
that our company records 3000 requests for estimates this month. Out of those
3000 estimates, a total of 400 estimates are paid (which is the conversion event).
Therefore, the conversion rate of the company for this month can be calculated
as follows: 400/3000 = 0.133 or 13.3%. The main objective of any commercial
enterprise is to maximize this conversion rate.

A more thorough exploitation of the conversion rate is used. Indeed, com-
panies look for the elements (product, service, etc.) that transform the most to
highlight them and improve those that do not transform effectively. If we want
to use the conversion rate for lead scoring, we can say that the higher the con-
version rates of the order details and customer characteristics, the higher the
customer score. For instance, a customer who requests a product with a 30%
transformation rate will have a higher score than one who requests a product
with a 5% transformation rate.

If we switch from the business language to a formal one, we could present a
customer conversion rate-based score as follows:

Scorei =
n∑

j=1

wj ∗ xi,j (1)
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where:

– Scorei the score of the ith client;
– wj the weight of the jth characteristic;
– xi,j the conversion rate of the jth characteristic of the ith client;
– n number of characteristics of a client taken into account for scoring.

In general, the set of features chosen reflects experts’ understanding of the sit-
uation and preferences of managers. Characteristics can be very varied depending
on the context, e.g:

– Features about customer profile (number of previous purchases, professional
or individual, etc.);

– Features about customer’s behaviour (number of pages visited, time spent to
complete the estimate form, etc.);

– Features about the order (the type of the requested product, the quantity,
etc.)

For weights, it will be more efficient to calculate them automatically. The
weight of a feature will be its importance in a classification model. Feature
Importance refers to techniques that calculate a score for all the input features
for a given model. The feature scores simply represent their “importance”. A
higher score means that the specific feature will have a larger effect on the
model that is being used to predict a certain variable.

To the end, all clients are sorted by Scorei from maximum to minimum. The
highest rated client has the highest priority.

4 Experiments

In this section, we introduce our test dataset and discuss the experimental
results.

4.1 Dataset

For our experiments, we use the dataset of the company. It contains a sample
of estimate records (123 287 records). For the data cleaning step, the dataset
is reduced to 10 attributes including estimate information (id, creation date,
requested quantity, etc.) and customer information (id, number of previous
orders, acquisition source, etc.). Then, for the prioritization model, data on user
behaviour on the site is added (time spent on the site, pages per visit, etc.).

In the initial dataset exploration, redundant information was found. The
disturbing cause is the creation of various variants or versions of an estimate
to place a single order since customers and advisors can make more than one
to correct some details or make another proposal. This practice results in an
imbalance in the database in terms of paid and unpaid estimates, as only one of
the estimates created, will be paid and the others will not, even if they are for
the same project. For this reason, the objective of the data cleaning is to pool
estimates of the same order and derive a representative one.
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4.2 Results and Discussion

For the data cleaning, we followed the steps mentioned in Sect. 2. After detect-
ing and correcting the empty values and outliers, we resolved the duplication
problem as follows:

Prepare the Data. We have changed client names to their unique identifiers,
we have also put customer addresses into a standard format and substituted the
required product types with their unique technical references.

Search Area Definition. We have been inspired by the two indexing methods
cited previously in Sect. 2.2. First, tuples are grouped together in the same block.
The blocking-key used is the customer’s unique identifier. This step reduces
significantly the number of comparisons to be made. Actually, it ensures that
the same person’s estimates will be compared to each other as there is no need
to compare the estimates of two different clients. Then, records from each block
are sorted based on their creation date. This step will also reduce the number of
comparisons needed because estimates related to the same order are normally
created one by one.

Matching and Clustering Duplicates. Using the transitivity principle to
group duplicates is not effective in our case. In fact, we can find two estimates
that are detected as similar but do not belong to the same project or order in
reality. A client can make two separate similar orders which, if we limit ourselves
to transitivity, will be detected as a single project while they are two. In this
way, the conversion rate used to analyze the data will be biased. To this end,
we have added additional rules when forming clusters. These rules are created
by domain experts. In addition to the result of the decision model to determine
whether two records are duplicated or not, external rules are used to decide
whether they belong to the same group or not.

Through our data cleaning method, the Imbalanced Ratio [16] increases from
21,38 to 8,93 and the number of samples in the majority class (unpaid esti-
mates) is decreased by about 42%.

Figure 4 shows the duplicate detection result using the transitivity principle
(1) and our modified method (2) for the formation of clusters.

We consider E1, E2, E3, E4, and E5 are 5 estimates from the same customer
and with the same characteristics. The domain knowledge-based decision model
used to determine whether the tuples compared are duplicates or not provides
the following results: E1 is similar to E2, E2 is similar to E3, E3 is similar to
E4 and E4 is similar to E5. The next step is the clustering of duplicates. The
result of the transitivity-based model is shown in (1) in Fig. 4. All estimates are
put in the same group as by transitivity they are all similar. This clustering is
not effective in this example case. Actually, E3 is a paid estimate and it was
paid before E4 and E5 were created. In this case, E1, E2, and E3 belong to the
same cluster (order or project) and E4 and E5 belong to another one as shown
in (2) in Fig. 4. The two main expert rules used in this duplication clustering are
according to the state of the estimate when comparing (paid or unpaid) and the
creation and payment dates of the estimates. Using this method, a more correct
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Fig. 4. Data duplication detection results.

conversion rate is obtained. The results of method (1) show that the customer
has transformed 100% (1 cluster = 1 project and 1 paid estimate in a project =
1 paid project) whereas in reality, it is 50% (1 project paid out of 2).

We apply 10-fold cross-validation to provide a robust estimate of the perfor-
mance of our model which is trained using Random Forest, Decision Tree, and
Logistic Regression.

Table 1. Models results before and after data cleaning.

Methods Before cleaning After cleaning

Accuracy Precision Recall AUC Accuracy Precision Recall AUC

Random Forest 0,92 0,05 0,02 0,50 0,90 0,57 0,25 0,62

Decision Tree 0,93 0,07 0,05 0,51 0,87 0,36 0,32 0,63

Logistic Regression 0,95 0,26 0,00 0,50 0,91 0,76 0,21 0,60

Apart from the accuracy, all the other metrics are higher for the cleaned
dataset. The models trained before the data cleaning process fails to identify the
paid estimates compared to the models after the data cleaning Table 1. Further-
more, our method allows more effective data analysis and more real profitability
value because it removes the noise from the dataset. Due to the duplication detec-
tion and clustering, we have obtained a new useful feature number of estimates
per project (number of the samples in the cluster) for prioritization. Actually,
the analysis of this new feature shows that the more a person requests estimates,
the more likely he will place an order.

To evaluate our customer prioritization model and after the data cleaning
and data preparation step, we started by calculating the weights of the used
features. The Random Forest algorithm is chosen for this task due to its opti-
mal results in feature selection found in the literature [20]. Figure 5 shows the
importance of certain features of our database. According to the Eq. (1), the
resulting weightings are used with the corresponding feature conversion rates to
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Fig. 5. Feature importance scores.

calculate the client’s final score. The obtained scores are then normalized using
the following formula:

normalizedScorei =
Scorei − Scoremin

Scoremax − Scoremin
(2)

where:

– Scorei the score of the ith client;
– Scoremin the lowest score;
– Scoremax the highest score;

In order to evaluate our model, we create intervals of 0.1 between 0 and 1
where if normalizedScorei ∈ [0, 0.1[ the ith client takes the priority 10 and if
normalizedScorei ∈]0.9, 1] the ith client takes the priority 1. A good prioriti-
zation model will contain the maximum number of estimates paid in the top
priorities. it will be able to detect customers who are more likely to convert and
assign them a high priority.

We tested the algorithm on a database that contains 1000 estimates from
different clients which 300 are paid. We compare our method to the Random
Forest (RF) and Logistic Regression (LR) algorithms used in the literature for
lead scoring. As shown in Fig. 6 our algorithm classifies over 70% of paid esti-
mates compared to RF algorithm which classifies about 36% and to the LR
algorithm which classifies about 37% Fig. 7 in the top 3 priorities. Furthermore,
our algorithm classifies very few paid estimates in the latest priorities, unlike
LR and RF. The classification of estimates that are likely to be paid in low
priorities results in lost opportunities. As a result, our customer prioritization
algorithm provides a better understanding of which estimates are more likely to
be paid. The complete model is implemented in the back office of the company
and showed good results on this year’s conversion rate.
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Fig. 6. Number of estimates paid by priority using our method.

Fig. 7. Number of estimates paid by priority using (a) RF and (b) LR

5 Conclusion

Prioritizing customers is a hot topic for businesses looking for new opportunities.
In this paper, we have presented a complete process for customer prioritization
using a real-world dataset. For the data cleaning process, we used a rules-based
method for detecting and eliminating duplicates. It has contributed to reducing
the imbalance in the dataset and improving the quality of the data for analysis.
The algorithm is also used for the automatic matching of new recorded data. In
the second section, a new lead scoring method has been introduced. It uses the
conversion rate and the importance of the features to calculate the customer’s
scores. The calculated score helps marketing and sales teams focus these efforts
on priority customers to achieve high profits. Our solution is currently being
used by the company and work is underway to improve it.
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