The Symbiotic Relation of IoT and AI for Applications in Various Domains: Trends and Future Directions

Aman Jolly, Vikas Pandey, Praveen Kumar Malik, and Turki Alsuwian

1 Introduction

The network of devices that are linked to the Internet is referred to as the Internet of Things (IoT). IoT is an umbrella phrase that refers to any device that is able to transmit and receive data via a network. In most cases, these gadgets take the form of sensors that monitor various physical parameters, such as the amount of light, humidity, or temperature. IoT is continuing to proliferate across a variety of corporate sectors, which has resulted in the development of brand-new possibilities for cooperation and innovation. Devices are able to gather data, take actions depending on that data, and then report the results of those activities back to a centralized server. This technology has been around for quite some time, but only lately has there been an explosion of new inventions in this sector of the industry. Artificial intelligence (AI) and the Internet of Things (IoT) are the two primary motivating factors behind the recent uptick in interest about linked gadgets. When coupled, AI and IoT provide even more opportunities for analyzing data and discovering new insights into how we may enhance the quality of our lives. In this article, we will discuss AI and IoT, focusing on how these two technologies might

A. Jolly (🖂)

V. Pandey

P. K. Malik

T. Alsuwian

Department of CSE, Delhi Technological University, Delhi, India e-mail: amanjolly_2k20phdco07@dtu.ac.in

School of Engineering, Babu Banarasi Das University, Lucknow, Uttar Pradesh, India

School of Electronics and Electrical Engineering, Lovely Professional University, Phagwara, Punjab, India

Electrical engineering department, Najran University, Najran, Saudi Arabia e-mail: tmalsuwian@nu.edu.sa

[©] The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 R. Sharma et al. (eds.), *Data Analytics for Internet of Things Infrastructure*, Internet of Things, https://doi.org/10.1007/978-3-031-33808-3_13

collaborate to provide innovative answers to common challenges. Some of the core areas where IoT has been used at its peak are as follows:

- 1. 5G: The next generation of wireless communication, 5G, will increase Internet access and network connection. The innovative design of 5G allows it to simultaneously connect more devices at greater speeds with less delay. This cellular IoT application was developed for the advantage of users at minimal cost and with increased speed. Using this innovative program, we can fully automate several sectors with the aid of smart grids. In the future, 5G will expand to support larger devices across wider regions, bridging the gap between smart cities and wireless vehicle communication. The public and commercial sectors may both profit greatly from this potential use of IoT. With 5G, it will be possible to remotely manage even more types of devices via software. The infrastructure for smartphones, tablets, and other mobile devices, as well as for sensors, medical equipment, and automobiles, is being established by IoT and 5G.
- 2. The Internet of Things and Augmented Reality: The connection between IoT and augmented reality is becoming stronger all the time. While IoT bridges the gap between physical assets and digital infrastructure, augmented reality (AR) brings digital components into the physical world. The future of AR and IoT seems bright in the medical field. Surgeons may, for instance, use software designed to reconstruct a body part in three dimensions, together with equipment monitoring the required statistics in real time. This software can be found on mobile devices. All these things could make difficult operations simpler for surgeons and more rewarding for patients who are patient.
- 3. Smart Cities on the Rise: The popularity of smart city technologies is at an all-time high right now, and analysts predict that interest in and investment in smart city technology will continue to soar in the not-too-distant future. City councils and other local authorities believe that smart city solutions are effective ways of involving the general public in the day-to-day operations of municipal administration and maintenance. Providing more comfort and convenience for the populace is just a minor portion of the whole bargain. Interactivity is being given a significant amount of consideration in the development of smart city initiatives all around the globe. There is a growing consensus that engaging individuals in a manner that requires greater hands-on participation is beneficial in all matters pertaining to the day-to-day maintenance of an urban space, which pays huge dividends for everyone concerned. Safe, habitable, and environmentally sustainable cities will not be possible without IoT-based smart city technologies. As city populations are expected to grow dramatically in the future, these strategies will become even more important.
- 4. Blockchain Technologies and Information Security: One of the most important developments in IoT technology is blockchain. Put together, IoT and blockchain technology are living up to their hype. As of today, the reliable exchange of money and data between IoT devices become possible once the blockchain technology provides them with a simple infrastructure for doing so. When these two phenomena are put together, they live up to their hype. The decentralized

nature of blockchain is analogous to the dispersed nature of the Internet of Things. The latter provides anonymity and security to numerous networks and the owners of those networks, while the digital signatures and private keys that accompany each transaction assure that the environment of the Internet of Things will be secure. IoT devices are intended to simplify a person's or an operational unit's day-to-day activities in some way. This necessitates the ongoing creation of personal data and introduces significantly increased opportunities for cybercriminal activity. In addition, it is anticipated that the quantity of data will exponentially increase in the same way as the number of machine-to-machine interactions increase. As a consequence of this, the decentralized structure of blockchain will cause massive numbers of data to be accessible whenever they are required and with a minimal number of associated security issues.

All the aforementioned applications require the use of IoT in various domains because IoT acts as a bridge between hardware sensors and the digital infrastructure. This work will focus on all the applications that employ IoT device to obtain real-time data, which will be further fed into the AI-based prediction models. In this review analysis, seven domains have been identified where AI and IoT are being employed: healthcare, sustainability, information security, education, pollution monitoring, robotics, and autonomous vehicles.

Healthcare Applications The IoT of the future will make it much simpler for doctors and nurses to keep track of their patients' activities and vital signs. This will be made possible by advancements in 5G wireless technology, AI, and sensor technology. A smart glucose-monitoring system and smart insulin pens will also be of assistance since they will automatically transmit the patient's important information to a monitoring system. This will serve to direct assistance, particularly in the situation involving insulin. The pen will be able to evaluate the quantity of insulin that has to be administered on the basis of the data that is derived from the patient. Security and patient safety are of the utmost importance in the clinical setting, and IoT may assist in enhancing the monitoring and transfer of patient data. The whole world has been forced to reconsider the significance of remote healthcare. It won't be long until patients and physicians won't even have to physically interact with one another, which might be quite helpful in times of lockdown. IoT developments will soon have stronger effects on healthcare, which will result in the proliferation of increasingly intelligent medical equipment.

Better Way to Store Data and Perform Data Analytics We've just recently become used to storing information on the cloud before it became necessary to make a switch. Edge computing, in its simplest form, enables interconnected gadgets to carry out computations, store results, and locally view results. Edge computing is a hybrid method of data processing that is altering the trajectory of the Internet of Things. The actual value that IoT may bring about via data analysis is in managing and analyzing these data. Therefore, machine learning and artificial intelligence will

play increasingly crucial roles. These developments will aid in making our lives simpler and more comfortable and will provide efficient methods for completing jobs.

2 Recent Works on IoT and AI in Various Domains

2.1 Healthcare

The healthcare industry has always relied on a small number of centralized agents freely disseminating raw data to the public. This system still faces substantial threats and weaknesses. With AI, however, the system would consist of several agents working together and effectively interacting with their preferred host. The most cutting-edge and fascinating innovations in the area of intelligent healthcare include federated learning (FL), AI, and explainable AI (XAI). FL operates in a decentralized way and keeps the communication based on a model in the favored system without transmitting raw data. Multiple healthcare constraints may be alleviated with the integration of FL, AI, and XAI methods. In [1], Rahman provides a comprehensive evaluation of FL as it relates to the use of AI in forward-thinking medical settings. They used FL-AI in several healthcare technologies and categorized the results.

Using multisensing, edge-based, and on-device AI components, T. Montanaro et al. [2] constructed a real-time IoT-aware healthcare system that comprises three layers: an edge computing layer, a data visualization layer, and an intelligent dataacquisition layer. (i) Three sublayers make up the intelligent data-acquisition layer. (1) Advanced sensors include motion, temperature, location, and electric charge buildup in skin sensors. These devices gather data for deductions. (2) Computation and data preprocessing devices control the selection and collection of sensor data. (3) AI modules contain microcontrollers linked with AI algorithms. These algorithms identify data irregularities, accurately differentiate between behaviors and between people, classify measured data, etc. (ii) The edge computing layer receives data from the preceding layer, provides a gateway to the top layer, handles multiple protocol communications, and performs additional analyses. This layer may accept data from the bottom layer, transmit changes to it, transfer data to the top layer, and receive notifications and updates from the upper layer. This layer allows communicates with employers, families, and intimate partners. (iii) The data visualization layer connects storage and user interactions. Web dashboards provide authorized users with local device warnings and historical occurrences. Healthcare providers may utilize this dashboard to give people ideas. Advanced data analysis is also possible. Finally, REST APIs connect with lower levels and contain a database to store data.

M. M. Kamruzzaman et al. [3] identified new difficulties, possibilities, case studies, and edge-AI applications for linking healthcare in smart cities. Relevant

publications and journals were studied, analyzed, and appraised, and this review also included secondary data sources such as Google Scholar, Science Direct, etc. Only papers including AI, edge AI, IoT, and deep learning (DL) were reviewed. The study selection and data abstraction yielded 22 relevant articles/research papers, which were grouped into two subtopics: edge AI and healthcare in smart cities. They addressed how the machine-learning (ML), DL, and IoT models could be used in healthcare. The accuracy of the models implemented in various research papers was assessed. A. Alghamdi [4] developed a VGG-Net model for analyzing electrocardiogram (ECG) images. VGG-MI-1 showed sensitivity, specificity, and accuracy values of 98.76%, 99.17%, and 99.02%, respectively, and the VGG-MI2 model showed sensitivity, specificity, and accuracy values of 99.15%, 99.49%, and 99.22%, respectively, which were the best so far.

Zhao-xia Lu et al. [5] examined the technical aspects of IoT, cloud computing, big data analysis, and machine learning in clinical medicine. They highlighted the application of AI and IoT in various medical scenarios and discussed challenges and future prospects in this rapidly evolving field. COVID-19 exacerbated the global scarcity of nurses and physicians. Automated tools employing IoT, cloud computing, ML, etc. may be helpful. IoT devices monitor real-time data and send them to the cloud. 5G has increased medical staff's accuracy and speed. Cloud computing services include processing power, machine learning, and storage. They provide data exchange, remote consulting, etc. Large data sets are analyzed by using big data. They can cluster, classify, and visualize data and can mine text. Clustering sorts data by proximity. Classification mining maps data to labels by using decision trees, neural networks, etc. Text mining methods shape unstructured medical data through preprocessing, segmentation, and semantic analysis. Visualizing data uses charts and graphs. This may prevent, diagnose, and cure illnesses. Machine learning creates data-driven models. High-dimensional, high-variance data are analyzed. Medical analysis uses supervised and unsupervised learning. Preprocessing techniques express data by using piecewise linear representation and Fourier transform. By using the sliding window, top-down, bottom-up, and other methods, time series data are segmented, but sliding window is the best method. Diminution involves feature selection and change, k-clustering, SVMs, etc. Decision trees, k-nearest neighbors, SVMs, naïve Bayes, etc. identify and classify data. Behavior detection monitors patient behavior by using CNNs or RNNs. Unsupervised learning detects abnormal values. Clustering is simpler. Patient data privacy is also vital. K anonymizes identifiable information but not attributes. Ldiversity and T-closeness models reduce granularity. Many clinical uses of IoT and 5G are have been explored. IoT and 5G allow remote diagnostics. Thanks to using IoT patient data and ML graphs, medical practitioners can cooperate. Neonatology, cardiology, and skin cancer screening have been used with nearprofessional precision. ML may be used for supplementary diagnostics, triage, and alerts for patient vitals. Patients' histories and conditions may be used to produce exercise and food regimens. Cloud-based medical photos may be examined by ML systems to diagnose patients. IoT data, cloud sharing, and ML and AI analysis may assist in diagnosis, spot warning signals, notify emergency services, and provide remote services. This study examines IoT-assisted wearable sensor systems, AI, blockchain difficulties, and other concerns that must be addressed to improve their use in Health management system (HMS).

The study by Junaid et al. [6] aimed to explain the need for and uses of new technologies (sensor-IoT-AI-blockchain) in the healthcare sector by analyzing these technologies as well as past approaches and methodology. In the healthcare administration system, Junaid et al. [6] utilizes papers and survey research on topics such as sensors, IoT, AI, and blockchain. The majority of the data used in their study came from a network of intelligent wearable IoT devices. These devices monitor a patient's vital signs and other pertinent data and display them in real time. For instance, the LIFE Shirt is a multisensor extended HMS that collects and analyses a patient's health data. This information is obtained from the patient by means of the device. In addition to that, an AI-based data synthesis was carried out in order to provide data for testing and validation purposes. There are no well-known data sets that are available for purchase in a prepackaged manner. A smart health ecosystem that limits access to a patient's electronic health record (EHR) might be built with the use of smart contracts. As a result of this research, Junaid et al. [6] concluded that a single ledger that is maintained by healthcare stakeholders may record a patient's entitlements, and smart contracts automate information gathering and distribution and calculate benefits in real time. The acquisition and analysis of real-time patient data from hospital and home devices is facilitated by using sensing technology. It's possible that a real-time analysis may increase the accuracy of patient safety monitoring and incident prediction. When using ML, decisions are made on the basis of studying the data rather than on the basis of making intuitive assumptions. The proposed HMS is able to function by collecting data from its users via the use of smart wristbands and then feeding that information into an artificial neural network (ANN) for risk assessment. The findings of the studies demonstrate that the suggested HMS is capable of accurately assessing the health states of patients.

Ramasamy et al. [7] offered an AI-enabled combination of the Internet of Things with a cyber-physical system (IoT-CPS) for doctors to identify illnesses in patients. Human intelligence improves AI. Computers are better at arithmetic and numbers, whereas humans excel at logic and reasoning. AI might make things "thinkable." Two algorithms make up the AI-powered IoT-CPS algorithm. The first component of the algorithm generates classification rules by categorizing the training data set of patients' illnesses. The second part of the algorithm classifies patients according to their symptoms in order to make disease predictions for the disease-testing data set. The experimental findings show that the suggested AI-enabled IoT-CPS method outperforms state-of-the-art algorithms on accuracy, precision, recall, F-measure, and execution time when diagnosing patients' illnesses. Figures 1 and 2 display the IoT-CPS process.

The importance of the Internet of Things and artificial intelligence in COVID-19 was the primary focus of the research carried out by Praveen Kumar et al. in 2022 [8]. The Internet of Things was studied on a new level: how it manages the COVID-19 epidemic. In this research, long short-term memory (LSTM) with a recurrent neural network (RNN) was employed for diagnostic purposes because

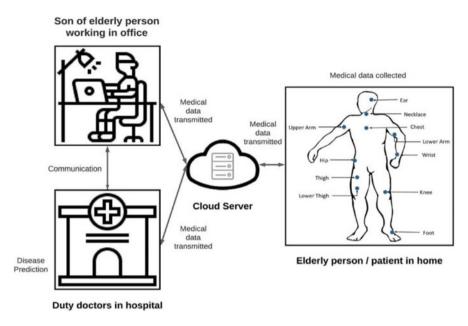


Fig. 1 IoT-CPS [7]

this architecture is particularly helpful in assessing the acoustic aspects of coughing and breathing. Real-time data on a patient's temperature and respiration levels are gathered via the use of a large number of IoT sensors.

The purpose of this chapter is to examine the use of various sensing devices to gather various types of information. The research focuses mostly on using AI systems on data sources. The major objective of this work is to gather data on the temperature and respiration rate of COVID-19 patients in real time by using a number of sensors.

Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV), Middle East Respiratory Syndrome Coronavirus (MERS-CoV), and Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) constitute serious public health hazards. These viruses risk countless lives and inflict economic damage. Recent IT and networking advances have led to IoT and AI applications in numerous sectors. The healthcare and diagnostic sectors are impacted by IoT and AI. By interfacing with smart gadgets and biometric sensors, they have expanded into telemedicine, healthcare, and disease prevention. Even though IoT and AI may improve disease diagnoses, surveillance, and quarantines, their influence is limited insofar as they aren't integrated or deployed quickly for a sudden outbreak. Conventional procedures fail to prevent large-scale illnesses and halt worldwide outbreaks via prediction, resulting in many deaths. Sungho Sim et al. [9] proposed a combined Internet of medical Things and AI (IoMT-AI) framework model to handle COVID-19 outbreaks. IoMT uses (1) remote monitoring, (2) prescriptions tracking, and (3) biometric sensors to provide health data to doctors. Image signal processing and

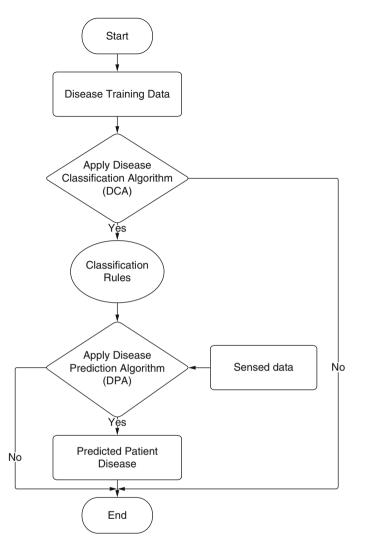


Fig. 2 Flowchart of an AI-enabled IoT-CPS [7]

virus infection detection using AI can carry out disease surveillance, risk prediction, medical diagnosis and screening, curative research, virus modeling and analysis, and the management of lockdown measures, as shown in Fig. 3 (Table 1).

Fig. 3 Applications of AI in medical IoT [10]

2.2 Sustainability

Internet of things (IoT) makes it possible to digitalize a wide variety of tasks and procedures, including the distribution of water, preventive maintenance, and smart manufacturing. Although IoT technologies and ideas such as edge computing hold a great deal of potential for the digital transition to sustainability, they are not yet making contributions to the sustainable development of the IoT industry. This sector has a significant carbon footprint because it makes use of a limited supply of raw materials and a significant amount of energy in its production, operation, and recycling processes. However, its sustainable vision collides with edge artificial intelligence (edge AI), which demands more energy, which is why the green Internet of Things (GIoT) paradigm has emerged as a study topic to reduce carbon footprints. In article [11, 12], the authors investigate the process of designing and developing edge-AI GIoT systems. The concepts discussed in the paper are highlighted by using a real-world example of an Industry 5.0 application case. To enhance operator safety and operation tracking, a smart Industry 5.0 workshop should be held. This application takes advantage of an IoT mist architecture that is equipped with AI. After the application situation has been explained, the energy consumption and carbon footprint of the application are analyzed. This article offers guidelines for aspiring developers who want to design edge-AI GIoT systems using the aforementioned technologies (Table 2).

2.3 Information Security

The Internet of Things (IoT) has altered how humans live and has permeated all facets of human life, but it has also given rise to worries over data security, which in turn have led to a variety of technical ethical and security difficulties. For the information security of a company, these problems often center on the demand to obtain user data and maintain privacy when the IoT is deployed. This requirement becomes more sensitive when discussing the security of corporate information. The

Paper	Paper Authors and year	Methodology	Data set	Advantages	Limitations/future scope
Ξ	Rahman et al., 2022	This integrates the FL-AI into healthcare technologies and classifies them.	Arrhythmia database [13, 14] of ECG signals from the PTB-XL data set [15, 16]	Federated learning has more benefits than traditional machine-learning approaches do. Data security keeps locally training data on devices, so a data pool is not required. It contains heterogeneous data because it uses data from different users. Real-time continual learning is enabled by models that are continuously improved with client data. Hardware efficiency is improved by using less-complex hardware; federated learning does not need one complex central server for analysis.	The whole procedure runs over the Internet, so privacy and security are always major concerns in this field, especially in competent healthcare systems.

 Table 1
 Recent works on IoT and AI in healthcare

Edge AI presents security and computational complexity problems.	(continued)
Pros of healthcare AI and IoMT with smart cites include the following: (1) It will minimize processing delays and data traffic for essential analysis and patient monitoring. (2) Implementing a hierarchical edge-based computing system enables scalability, low latency, and the fortification of training model data, allowing researchers to evaluate COVID-19 with a reliable local edge server. (3) The SEG 3.0 strategy, which integrates, associates, and enables semantic interoperability, may be used everywhere in smart cities to enhance heterogeneous data.	
Multiple data sets [3]	
This employs a systematic review of 425 articles between 2016 and 2021, using AMSTAR tools.	
[3] M. M. Kamruzzaman et al., 2022	

Paper	Authors and year	Methodology	Data set	Advantages	Limitations/future scope
[2]	T. Montanaro et al.,	This improves the	ECG5000 [17, 18]	Some health conditions,	The reliability of IoT
	2022	precision and reliability of		such as a heart failure, are	devices and sensors can be
		IoT in healthcare by using		time critical, yet	further improved, and by
		ultrathin, skin-compatible,		cloud-based solutions are	using blockchain
		flexible, high-precision		slower. Onboard devices	technologies, we can
		piezoelectric sensors,		are quick and have	provide additional security
		low-cost communication		minimal latency. The	and privacy to users.
		technologies, on-device		approach fosters hybrid	
		intelligence, edge		solutions that combine	
		intelligence, and edge		advanced sensor	
		computing.		technology with low-cost,	
				low-power IoT	
				technologies, and AI.	
				Onboard intelligence	
				further reduces latency.	

(1) Integrating AI with IoT (1) The security of IoT	devices is a concern.	being Because there are so many	health interconnected devices,	nostic one compromised device	eration can compromise many				cquired new, and there are	ct when numerous vendors, each of	tients which has a different	standards and structures		e (3) AI models focus on	ments particular diseases, such as		ening Medical diagnoses	nel. sometimes need to have	ation	atients one part can affect another.	(4) Medical ethics are	concerning to some people.	idence Patients have difficulty	it quality accepting diagnoses made	by computers.	(continued)
(1) Integrating AI v	gives IoT greater	intelligence and is being	utilized to improve health	care. Remote diagnostic	and treatment cooperation	may advance service	parity. Combined with	medical IoT, real-time vital	sign data may be acquired	and utilized to detect when	NICU and CCU patients	are in early danger.	(2) AI and IoT can deliver	speedy and accurate	diagnoses and treatments	for emergency care, buying	rescue time and opening	the green life channel.	(3) The early identification	of high-risk VTE patients	and appropriate	management may	minimize VTE incidence	and enhance patient quality	of life.	
GHWA/WHO;	Nursing Report 2020 [19,	20]; World Population	Prospects 2019 [21, 22];	Tang X. data set [23, 24]																						
This summarizes AI and	IoT in clinical care,	analyses obstacles, and	discusses current and	potential advancements.																						
Zhao-xia Lu et al., 2021																										
[2]																										

Table 1	lable 1 (continued)				
Paper	Authors and year	Methodology	Data set	Advantages	Limitations/future scope
[9]	Junaid et al., 2022	This proposes an HMS that Health data from wearable	Health data from wearable	Smart contract promotes	The scarcity of
		uses user-provided data	IoT devices [6]	restricted access to the	cost-effective and accurate
		gathered from connected		patient's confidential	smart medical sensors,
		smart wristbands to		medical data.	unstandardized IoT system
		anticipate health status		Real-time analysis may	architectures, the
		hazards by using an ANN.		improve patient safety	heterogeneity of linked
		The experimental findings		monitoring and incident	wearable devices,
		demonstrate the utility of		prediction accuracy. With	multidimensional data, and
		the suggested HMS for		ML, decision-making is	interoperability are
		assessing health conditions		based on data analysis	difficulties.
		in humans.		rather than intuition.	Privacy and ethical
					difficulties and the lack of
					a legal framework to
					enable smart contracts are
					open research challenges
					in this sector. Healthcare
					data are diverse,
					incomplete, and
					ambiguous. Training an
					ML model with that much
					data is difficult.

 Table 1 (continued)

 Disease propagation and contagiousness can be determined by mobile phone location, as a future scope. Data encryption was not considered while writing this paper, but because health and condition data are personal, leaking it may embarrass individuals or swamp them with spam calls about treatments and drugs. The large amount of information on IoT and CPS devices makes them targets for fraudsters, other criminals, and unethical users. 	
 The experimental findings show that the suggested AI-enabled loT-CPS method outperformed the state-of-the-art algorithms on accuracy, precision, recall, F-measure, and execution time when diagnosing patients' illnesses. (2) The accuracy when using IoT + CPS is the highest when compared to all the other techniques, i.e., naïve Bayes, SVMs, KNN, and ANN. Comparisons between accuracy and F-measure are as follows: naïve Bayes. ANS, KNN-75.0% (F-measure-75.7%), ANN-78.9% 	AI-enabled IoT-CPS—85.1% (F-measure - 86.4%).
Kaggle data set	
This proposes cyber-physical systems (CPSs). The smart device is programmed to help elderly people in emergencies. The sensors collect data from various parts/joints of the subject and process that data to draw conclusions.	
[7] Ramasamy et al., 2022	

233

Table I (Collinian)					
Paper	Authors and year	Methodology	Data set	Advantages	Limitations/future scope
<u>∞</u>	Praveen Kumar et al., 2022	This uses long short-term memory (LSTM) with a recurrent neural network (RNN) for the diagnosis of COVID-19 and collects data from IoT sensors.	Coughing and respiratory samples and thermal and breathing levels, obtained from various IoT devices [8]	The proposed approach shows the following: (1) IoT manages risky patients so that conditions such as hyperglycemia, pulse rate, and heart infections may be diagnosed. (2) IoT is inventive and powerful at fighting COVID-19 and can be used for strengthening patient data.	Taking evolutionary approaches may solve the problems of interference and complexity in migrating data. Prediction isn't perfect. Electronic enforcement, which incorporates secrecy and trust, is another difficulty.
[6]	Sungho Sim et al., 2021	This proposes a framework where IoMT handles monitoring the patient from a remote location and tracking medication prescriptions by using biometric sensors. And AI/ML handles image signal processing and virus infection detection by using AI.	WHO [25, 26]	While research on AI and IoT for health services has advanced, cost-effective and inexpensive smart healthcare services have received little attention. AI-driven IoT (AIIoT) for smart healthcare could change many facets of healthcare, but several technological hurdles must first be overcome.	Future research on a model for an international integrated viral defense system might build on existing analyses and make use of already-acquired data. To this end, it is important to collect detailed information on viral outbreaks on a global scale and in a timely fashion in order to create a system for the prevention of viral illness transmission and prevalence and for early warning signs.

Table	2 Recent works on]	Table 2 Recent works on IoT and AI for sustainability	ability			
	Authors and vear	Methodology	Data set	Evaluation parameter	Advantages	Limitations/future scope
E		This nronoses an	Visual Wake	Accuracy	(1) Data mav he	Network, physical.
	Fraga-Lamas et	edge-AI GloT	Words Dataset,	Visual Wake Words	captured and processed	software, and
	al., 2021	system that	CIFAR-10,	Dataset—80%,	on the same device,	encryption threats
		improves operator	Google Speech	CIFAR-10—85%,	reducing network	require more protection.
		safety and	Commands, and	Google Speech	connection difficulties.	On-device learning
		operation	ToyADMOS	Commands—90%, and	(2) When processing is	must be protected
		tracking.	(ToyCar)	ToyADMOS(ToyCar)	carried out locally, all	against intrusions.
				85%	communication-related	The IoT industry is
					delays are eliminated,	fragmented, so a fully
					resulting in a latency	standardized framework
					that converges to the	is needed to address
					inference latency.	edge-AI GIoT needs.
					(3) Reduced	Future developers must
					communication	address how edge-AI
					between IoT edge	GIoT devices affect
					devices and the cloud	CO ₂ emissions. Such
					reduces the risk of data	expansion varies from
					loss, theft, or leakage.	nation to nation
					(4) Reducing IoT edge	depending on their
					device connectivity with	available energy.
					the cloud decreases	
					bandwidth demands and	
					costs, thus improving	
					bandwidth efficiency.	

·=
la
tain
·=
g
st
24
_
\sim
÷
or
Ę
Ι
~
~
Ч
an
b a
- 1
E-
Р
uc
5
0
Ś
- C.A.
5
~
3
t
n
E CD
ŏ
പ്
2
0
e
-
_
-

development of AI-based security solutions for IoT sensor networks has been a recent trend.

In [27, 28], the authors built a platform for the administration of information security that was comprised of four parts: the management of IoT data mining, management of equipment, management of keys, and management of databases. Testing for concurrency, stress, high data volume, and security were improved, together with the original architecture for physical security, which was also reorganized.

The purposes of this chapter are to provide some fresh suggestions for applying information security technology to IoT-based corporate management and to advocate for the use of IoT in industrial and commercial management in the near future. The following features are included in the functionality of the platform: authorization and revocation, staff scheduling, data storage and backup, rank role administration, and data encryption and mining (Table 3).

2.4 Education

In most cases, the services and administrations that rely on traditional libraries cannot function without them. A reader must follow a multistep procedure to borrow books, which includes entering a library to preserve books of interest, bringing books to a certain spot (i.e., the circulation desk), showing the librarian their identity for verification, and lastly confirming the books to borrow. The many occurrences of the targeted books being borrowed by others throughout the preceding method make it difficult to ignore them. If a reader doesn't know in advance which branch has the books they're looking for, they'll have to make many trips to different libraries. However, in the era of the "smart library," obtaining books requires only a few steps via a smart terminal device: confirm and make an appointment for the intended books and fetch the books under the smart guide and devices furnished by the library. This is the optimal schedule for the borrowing process. Thanks to the immense potential of AI and IoT, library circulation efficiency has greatly improved over more-conventional approaches.

One study [29] conducted an extensive literature review on the use of AI and IoT technologies in proposed future smart libraries in order to formally offer a systematic, organized, and comprehensive strategy for such a possible topic. When compared to librarianship that relies on only human effort, the smart library model, which incorporates AI and IoT, provides far superior service, as seen in the aforementioned smart circulation service. Smart service, smart sustainability, and smart security are the three primary foci of the author efforts. There is a wide variety of use cases for AI and IoT in a smart library. According to the findings of [29, 30], its authors have formally described the development of the smart library (Fig. 4).

Machine-learning and deep-learning techniques, including natural language preprocessing, deep-learning models, recurrent neural networks, and deep-learning-based recommendation systems, have been used throughout this study.

						Limitations/future
	Authors and year	Methodology	Data set	Evaluation parameter Advantages	Advantages	scope
[27, 28]	[27, 28] Hongbin Sun et al.,	With the current state	The authors gathered	The response time of	The proposed	Limitations:
	2022	of global	1000 groups of user	the system is	management system	(1) Different sectors'
		informatization as a	data to create a data	measured according	for IoT information	information security
		backdrop, this work	set, of which 800	to four aspects:	security has	demands aren't
		is being carried out	groups were used for	(1) concurrency	outperformed other	considered.
		to maintain the	training and 200 for	testing: 0.136 s	systems. The average	(2) The existing
		information security	testing.	(information input);	response time to an	management
		of enterprises and		(2) stress testing:	event is less than	platform is
		provide modern		0.137 s (event entry);	0.25 seconds; CPU	memory-intensive.
		upgrading means for		(3) large data volume	consumption does	Future scope:
		enterprise		testing: 0.126 s (gap	not exceed 20%; and	(1) It should address
		management; to		analysis); and	the memory	the information
		popularize		(4) security testing:	requirements are not	security demands of
		cutting-edge IoT		0.124 s (gap	excessive. Thus, this	diverse sectors.
		management		analysis).	product improves	(2) It should gather
		technology for			business information	more corporate
		enterprises; and to			security	information security
		address issues of			management.	data and enhance the
		information security				memory algorithm.
		in enterprise				
		management.				

 Table 3
 Recent works on IoT and AI for information security

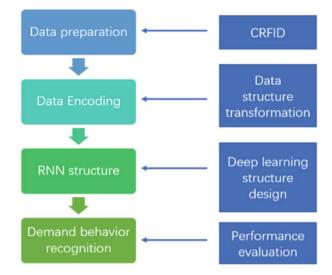


Fig. 4 The workflow of the personalized activity-learning system [31]

Using IoT with the help of artificial intelligence may significantly lessen the likelihood that sensitive data or valuables will be compromised. A new authentication system is being suggested to ensure the anonymity of readers. IoT and AI can work together to create a sustainable timetable that takes into account real-world requirements. The article proposes many AI-assisted IoT methods for controlling the library's lighting in order to maximize the efficiency of its use of natural light (Table 4).

2.5 Pollution Monitoring (Table 5)

2.6 Robotics (Table 6)

2.7 Other Related Works

Apart from the above-mentioned domain, Several papers have been identified that are relevant to the theme. Gültekin et al. [32] presented a deep learning approach based on multisensory data fusion for fault diagnosis in an industrial autonomous transfer vehicle. They focused on real-time fault detection and condition monitoring using edge artificial intelligence for industrial autonomous transfer vehicles [33]. Malik et al. [34] discussed the latest trends in the design and application of smart antennas. Rogers and Malik [25] explored the opportunities and challenges of planar and printed antennas for IoT-enabled environments. Abdul Rahim and Praveen Kumar Malik [36] analyzed and designed a fractal antenna for efficient communica-

Authors and	Mathadalagy	A duanta gas	Limitations/future
 year	Methodology	Advantages	scope
 Siguo Bi et al., 2022	This tries to solve the problems with traditional libraries by (1) providing a consistent definition of smart libraries; (2) surveying IoT technology in use; (3) using AI to enhance IoT devices and user experiences; (4) comparing CRFID with mobile IoT technology; (5) comparing AI technologies, including deep learning, OCR, recommender systems, and KNN and SVMs; and (6) separating smart libraries according to their services, sustainability, and security. Thus, better and more-specific solutions may be built for each phase of the library book-borrowing process. to improve customer experiences.	AI-assisted IoT reduces the danger of exposing private information and objects. Novel authentications can preserve readers' privacy. IoT and AI can arrange sustainability on the basis of practical demands. AI-assisted IoT solutions are offered to regulate light shading in libraries to enhance natural light consumption.	Smart libraries have advanced AI-assisted IoT, but there remains room for growth. The performance values of smart services for cutting-edge recommendation- based situations, such as accuracy and recall, are low. When combined with IoT, strong natural language processing (NLP) technologies such as bidirectional encoder representations from transformers (BERT and graph-based neural networks with side information improvement might power upstream or downstream data processing. Existing smart security systems deas with homogenous data from sensors such as radio-frequency identification (RFID sensors. With the diversity of smart library situations, processing heterogeneous data from multipurpose sensors such as RFID, near-field communication (NFC), Bluetooth, and infrared sensors among others, might be challenging.

Table 4 Recent works on IoT and AI for education

						Limitations/future
	Authors and year	Methodology	Data set	Evaluation parameter	Advantages	scope
[37]	Chao-Tung Yang et	This proposes a	PM 2.5 data set [37]	R2 compares each	The paper examines	AI for PM
	al., 2021	conceptual PM		sensor's performance	the integration of AI	monitoring should
		AlloT framework		in FRM/FEM. R2	and IoT (AlloT) into	combine current air
		that includes an		demonstrates	PM monitoring,	control infrastructure
		approach for		near-perfect	indoor air-quality	with satellite data to
		low-cost sensing		consistency around	management, and	produce an accurate
		technologies. IoT		1; near 0 shows no	future advances. It	estimate of air
		sensors and IoT		relationship.	summarizes existing	quality. AI in PM
		industrial		The Kaiterra/LE200	PM monitoring	monitoring can
		environmental		model used in plan	approaches,	identify air pollution
		quality sensors		tower sensor and	including the use of	from garbage
		should follow a		reference instrument	sensors for data	burning,
		protocol.		correlated well	collecting. Light	transportation,
				(R2 = 0.98). ITRI	scattering theory is	manufacturing,
				calibrates plan tower	followed to	resource distribution,
				sensors by providing	characterize most	and population
				the most accurate	low-cost PM AlloT	density. This needs
				and reliable data,	sensors.	an AI that can
				according to the		geospatially interpret
				best-performing		air-quality data.
				tester.		

 Table 5
 Recent works on IoT and AI for pollution control

	Authors and year	Methodology	Data set	Advantages	Limitations/future scope
[38]	Katy Borner et al., 2020	Many research articles have analyzed how AI, robotics, and IoT are utilized in research and how frequently they come together (be it two at a time or all three of them). Emergent ideas should display originality, persistence, and accelerated expansion, should establish a accelerated expansion, should establish a research community, according to the four-attribute model of four-attribute model of four-attribute model of four-attribute model of four-attribute model of four-attribute model of funding, scientific mapping and classification systems, and coauthor networks.	WOS publications and NSF awards	Because AI, IoT, and robots have been converging, we should expect the border between hardware and software to blur much more rapidly than we had previously anticipated. The combined potential for innovation across all fields bodes well for the progress of humanity and the quality of its future.	Some of the current research in these areas is undertaken by military agencies, making it difficult to collect its results in public databases. Only 1998–2017 WOS publications and NSF grants were analyzed. As a part of future scope, authors may want to study more data sets, such as studying the federal business opportunities (FBO) database to further understand financing for sales and trading.

 Table 6
 Recent works on IoT and AI for robotics

tion networks in vehicular models. Shaik and Malik [39] conducted a comprehensive survey on 5G wireless communication systems, addressing open issues, research challenges, channel estimation, multi-carrier modulation, and applications. Malik, Wadhwa, and Khinda [40] conducted a survey on device-to-device and cooperative communication for future cellular networks. Tiwari and Malik [41] focused on wideband microstrip antenna design for higher "X" band frequencies. Kaur and Malik [42] presented a study on multiband elliptical patch fractal and defected ground structures microstrip patch antennas for wireless applications. Shaik and Malik [43] retrospectively analyzed channel estimation techniques for 5G wireless communications. Finally, Malik and Singh [44] proposed a multiple bandwidth design of a microstrip antenna for future wireless communication. These papers collectively contribute to the understanding and application of IoT and AI in various domains.

3 Conclusion and Future Directions

IoT and AI have offered wonderful opportunities for organizations to enhance efficiency, visibility, and profitability. AI and IoT are altering our world. More companies than ever are making use of IoT. ML, AI, rapid feedback, and remote monitoring are here and not slowing down. Businesses that embrace the IoT revolution early avail themselves of several possibilities. The intention of this work is to present various new future directions in the field of AI and IoT by exploring their applications in various domains, such as healthcare, education, sustainability, robotics, pollution control, and much more. Every application of AI and IoT has unique advantages and disadvantages. But security and privacy concerns are the most common shortcomings emerging as open challenges. These will be stepping stones for future research. More real-time case studies are needed in order to measure the real-time effects of AI-assisted IoT on the environment.

References

- Rahman, A., et al. (2022). Federated learning-based AI approaches in smart healthcare: Concepts, taxonomies, challenges and open issues. *Cluster Computing*, 1–41. https://doi.org/ 10.1007/s10586-022-03658-4
- Shumba, A. T., Montanaro, T., Sergi, I., Fachechi, L., De Vittorio, M., & Patrono, L. (2022). Leveraging IoT-aware technologies and AI techniques for real-time critical healthcare applications. *Sensors*, 22(19). https://doi.org/10.3390/S22197675
- Kamruzzaman, M. M., Alrashdi, I., & Alqazzaz, A. (2022). New opportunities, challenges, and applications of edge-AI for connected healthcare in internet of medical things for smart cities. *Journal of Healthcare Engineering*, 2022, 1. https://doi.org/10.1155/2022/2950699
- Alghamdi, A., et al. (2020). Detection of myocardial infarction based on novel deep transfer learning methods for urban healthcare in smart cities. *Multimedia Tools and Applications*, 1– 22. https://doi.org/10.1007/S11042-020-08769-X/TABLES/10

- Lu, Z. X., et al. (2021). Application of AI and IoT in clinical medicine: Summary and challenges. *Current Medical Science*, 41(6), 1134–1150. https://doi.org/10.1007/S11596-021-2486-Z
- Junaid, S. B., et al. (2022). Recent advancements in emerging Technologies for healthcare management systems: A survey. *Healthcare*, 10(10), 1940. https://doi.org/10.3390/ HEALTHCARE10101940
- Ramasamy, L. K., Khan, F., Shah, M., Prasad, B. V. V. S., Iwendi, C., & Biamba, C. (2022). Secure smart wearable computing through artificial intelligence-enabled internet of things and cyber-physical systems for health monitoring. *Sensors*, 22(3), 1076. https://doi.org/10.3390/ s22031076
- Kollu, P. K., et al. (2022). Development of advanced artificial intelligence and IoT automation in the crisis of COVID-19 detection. *Journal of Healthcare Engineering*, 2022, 1. https:// doi.org/10.1155/2022/1987917
- Sim, S., & Cho, M. (2021). Convergence model of AI and IoT for virus disease control system. *Personal and Ubiquitous Computing*, 1–11. https://doi.org/10.1007/S00779-021-01577-6
- Huang, X. (2020). Application analysis of AI reasoning engine in microblog culture industry. *Personal and Ubiquitous Computing*, 24(3), 393–403. https://doi.org/10.1007/S00779-019-01338-6/FIGURES/13
- 11. Priyadarshini, I., Kumar, R., Sharma, R., Singh, P. K., & Satapathy, S. C. (2021). Identifying cyber insecurities in trustworthy space and energy sector for smart grids. *Computers & Electrical Engineering*, 93, 107204.
- Fraga-Lamas, P., Lopes, S. I., & Fernández-Caramés, T. M. (2021). Green IoT and edge AI as key technological enablers for a sustainable digital transition towards a smart circular economy: An industry 5.0 use case. *Sensors*, 21(17). https://doi.org/10.3390/S21175745
- Vo, M. T., Vo, A. H., Nguyen, T., Sharma, R., & Le, T. (2021). Dealing with the class imbalance problem in the detection of fake job descriptions. *Computers, Materials & Continua, 68*(1), 521–535.
- 14. MIT-BIH Arrhythmia Database v1.0.0. https://physionet.org/content/mitdb/1.0.0/ (accessed Nov. 18, 2022).
- Sachan, S., Sharma, R., & Sehgal, A. (2021). Energy efficient scheme for better connectivity in sustainable mobile wireless sensor networks. *Sustainable Computing: Informatics and Systems*, 30, 100504.
- Wagner, P., et al. (2020). PTB-XL, a large publicly available electrocardiography dataset. *Sci. Data*, 7(1). https://doi.org/10.1038/S41597-020-0495-6
- Ghanem, S., Kanungo, P., Panda, G., et al. (2021). Lane detection under artificial colored light in tunnels and on highways: An IoT-based framework for smart city infrastructure. *Complex & Intelligent Systems*. https://doi.org/10.1007/s40747-021-00381-2
- Time Series Classification Website. http://timeseriesclassification.com/description.php? Dataset=ECG5000 (accessed Nov. 18, 2022).
- Sachan, S., Sharma, R., & Sehgal, A. (2021). SINR based energy optimization schemes for 5G vehicular sensor networks. *Wireless Personal Communications*, 127, 1023. https://doi.org/ 10.1007/s11277-021-08561-6
- State of the world's nursing 2020: investing in education, jobs and leadership. https:// www.who.int/publications/i/item/9789240003279 (accessed Nov. 18, 2022).
- Priyadarshini, I., Mohanty, P., Kumar, R., et al. (2021). A study on the sentiments and psychology of twitter users during COVID-19 lockdown period. *Multimedia Tools and Applications*, 81, 27009. https://doi.org/10.1007/s11042-021-11004-w
- World Population Prospects 2019: Highlights. Multimedia Library United Nations Department of Economic and Social Affairs. https://www.un.org/development/desa/publications/world-population-prospects-2019-highlights.html. (accessed Nov. 18, 2022).
- Azad, C., Bhushan, B., Sharma, R., et al. (2021). Prediction model using SMOTE, genetic algorithm and decision tree (PMSGD) for classification of diabetes mellitus. *Multimedia Systems*, 28, 1289. https://doi.org/10.1007/s00530-021-00817-2

- Tang, X. (2019). The role of artificial intelligence in medical imaging research. *BJR open*, 2(1), 20190031. https://doi.org/10.1259/BJRO.20190031
- 25. Priyadarshini, I., Kumar, R., Tuan, L. M., et al. (2021). A new enhanced cyber security framework for medical cyber physical systems. SICS Software-Intensive Cyber-Physical Systems, 35, 159. https://doi.org/10.1007/s00450-021-00427-3
- Coronavirus disease (COVID-19). https://www.who.int/emergencies/diseases/novelcoronavirus-2019 (accessed Nov. 19, 2022).
- 27. Singh, R., Sharma, R., Akram, S. V., Gehlot, A., Buddhi, D., Malik, P. K., & Arya, R. (2021). Highway 4.0: Digitalization of highways for vulnerable road safety development with intelligent IoT sensors and machine learning. *Safety Science*, *143*, 105407. ISSN 0925-7535.
- Sun, H., & Bai, S. (2022). Enterprise information security management using internet of things combined with artificial intelligence technology. *Computational Intelligence and Neuroscience*, 2022. https://doi.org/10.1155/2022/7138515
- Bi, S., et al. (2022). A survey on artificial intelligence aided internet-of-things technologies in emerging smart libraries. *Sensors*, 22(8). https://doi.org/10.3390/S22082991
- Sahu, L., Sharma, R., Sahu, I., Das, M., Sahu, B., & Kumar, R. (2021). Efficient detection of Parkinson's disease using deep learning techniques over medical data. *Expert Systems*, 39, e12787. https://doi.org/10.1111/exsy.12787
- Bai, R., Zhao, J., Li, D., Lv, X., Wang, Q., & Zhu, B. (2020). RNN-based demand awareness in smart library using CRFID. *China Communications*, 17(5), 284–294. https://doi.org/10.23919/ JCC.2020.05.021
- Gültekin, Ö., Cinar, E., Özkan, K., & Yazıcı, A. (2022). Multisensory data fusion-based deep learning approach for fault diagnosis of an industrial autonomous transfer vehicle. *Expert Systems with Applications*, 200, 117055. https://doi.org/10.1016/J.ESWA.2022.117055
- Gültekin, Ö., Cinar, E., Özkan, K., & Yazıcı, A. (2022). Real-time fault detection and condition monitoring for industrial autonomous transfer vehicles utilizing edge artificial intelligence. *Sensors*, 22(9), 3208. https://doi.org/10.3390/s22093208
- 34. Malik, P., Lu, J., Madhav, B. T. P., Kalkhambkar, G., & Amit, S. (Eds.). Smart antennas: Latest trends in design and application. Springer. ISBN 978-3-030-76636-8.https://doi.org/10.1007/ 978-3-030-76636-8
- Roges, R., & Malik, P. K. (2021). Planar and printed antennas for internet of things-enabled environment: Opportunities and challenges. *International Journal of Communication Systems*, 34(15), e4940. https://doi.org/10.1002/dac.4940. (IF: 2.047) ISSN: 1099-1131.
- 36. Rahim, A., & Malik, P. K. (2021). Analysis and design of fractal antenna for efficient communication network in vehicular model. *Sustainable Computing: Informatics and Systems, Elsevier, 31*, 100586. https://doi.org/10.1016/j.suscom.2021.100586. ISSN 2210-5379.
- 37. Yang, C. T., Chen, H. W., Chang, E. J., Kristiani, E., Nguyen, K. L. P., & Chang, J. S. (2021). Current advances and future challenges of AIoT applications in particulate matter (PM) monitoring and control. *Journal of Hazardous Materials*, 419, 126442. https://doi.org/10.1016/j.jhazmat.2021.126442
- Börner, K., et al. (2020). Mapping the co-evolution of artificial intelligence, robotics, and the internet of things over 20 years (1998-2017). PLoS One, 15(12), e0242984. https://doi.org/ 10.1371/JOURNAL.PONE.0242984
- 39. Shaik, N., & Malik, P. K. (2021). A comprehensive survey 5G wireless communication systems: Open issues, research challenges, channel estimation, multi carrier modulation and 5G applications. *Multimedia Tools and Applications*, 80, 28789. https://doi.org/10.1007/s11042-021-11128-z
- Malik, P. K., Wadhwa, D. S., & Khinda, J. S. (2020). A survey of device to device and cooperative communication for the future cellular networks. *International Journal of Wireless Information Networks, Springer,* 27, 411–432. https://doi.org/10.1007/s10776-020-00482-8
- Tiwari, P., & Malik, P. K. (2021). Wide band micro-strip antenna design for higher "X" band. *International Journal of e-Collaboration (IJeC)*, 17(4), 60–74.https://doi.org/10.4018/ IJeC.2021100105. (ISSN: 1548-3673).

- 42. Kaur, A., & Malik, P. K. (2021). Multiband elliptical patch fractal and defected ground structures microstrip patch antenna for wireless applications. *Progress In Electromagnetics Research B*, *91*, 157–173. https://doi.org/10.2528/PIERB20102704. (ISSN: 1937-6472).
- 43. Shaik, N., & Malik, P. K. (2020). A Retrospection of Channel Estimation Techniques for 5G Wireless Communications: Opportunities and Challenges. *International Journal of Advanced Science and Technology*, 29(05), 8469–8479. ISSN: 2005-4238.
- 44. Malik, P. K., & Singh, M. (2019). Multiple bandwidth design of micro strip antenna for future wireless communication. *International Journal of Recent Technology and Engineering*, 8(2), 5135–5138. https://doi.org/10.35940/ijrte.B2871.078219. ISSN: 2277-3878.