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Abstract. In this study, we aim to generalize the Nash equilibrium
and efficiency established in conflict resolutions among decision-makers
with permissibility in their preferences for possible outcomes on the
framework of GMCR(Graph Model for Conflict Resolution). Obtaining
sufficient information on preferences, especially in emergent crises, can
often be daunting in real-world conflicts. However, identifying “unaccept-
able situations” is comparatively less challenging. Our proposed app-
roach dichotomizes preferences into binary categories of “permissible”
and “impermissible,” exhibiting a particular aptness for decision-making
in situations with limited or focused information that seek to prevent
severe crises, particularly during the emergent phase or convergence point
of conflicts. We provide propositions on the equilibrium and efficiency of
permissibility analysis, introducing a novel approach using coarse deci-
sion theory. Overall, our study contributes significantly to improving the
convenience and effectiveness of real-world conflict analysis.
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1 Introduction

Real-world decision-making often requires quick first-order decisions to prevent
worst-case scenarios, even in the absence of sufficient information for a detailed
analysis. We aim to develop a decision-making approach based on analyzing
coarse information. To achieve this, we have introduced several new concepts.
Firstly, we propose a method to describe states where unknown factors other
than the primary decision maker (DM) impact the DM’s state transitions [1,
2]. Secondly, we introduced a new state recognition concept that expands the
DM’s controllable choices beyond the binary values of true (T) or false (F) to
include both (B) and none (N), thus accommodating contradictions [3]. Finally,
we presented a concept for incorporating permissible ranges (PR) in the DM’s
preferences [4]. This paper explores a novel analytical approach that employs
Graph Model for Conflict Resolution (GMCR) [5,6] in situations where there
is insufficient information available regarding DMs’ preferences. Building on the
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foundational concept of PR proposed in our previous study [4], this research
presents several propositions to extend and generalize the approach.

To address preference uncertainty, GMCR has developed various approaches
based on pairwise relationships of states, such as unknown [7–10], fuzzy [11–14],
grey [15–18], and probabilistic [19,20] methods. The use of matrix representation
facilitates more intricate categorization calculations and effectively tackles these
uncertainties. Various other approaches have also been examined to manage
uncertain preferences, including setting a permissible range for alternatives based
on the committee framework in the context of simple game [21–25].

Nonetheless, due to their unique nature, there are inherent limitations in
dealing with severe crises. These crises are either unprecedented or infrequent,
resulting in restricted access to the information required for analysis. Addition-
ally, the severity of the crisis renders empirical testing of the model implausible.
For instance, while retrospective analysis of the simultaneous terrorist attacks in
2001 is feasible, evaluating experimentally the conditions under which the events
occurred is impractical. Assuming complete knowledge of environmental dynam-
ics, the optimal response to risk can be achieved through dynamic programming
based on state transitions and the utility derived from those transitions in a
given scenario. However, in cases where the information available is limited and
the worst-case scenario is catastrophic, the selection of an appropriate model and
the information partitioning utilized in the model must be carefully considered,
given the constraints.

This study is grounded on the premise that adopting a coarse framework
is rational and practical for decision-making in situations where information is
scarce, and the aim is to avoid worst-case scenarios. Concerning the resolution
of severe conflicts to prevent worst-case scenarios, the current approaches, for
addressing uncertain preferences in GMCR [7–20], tend to augment the infor-
mation categories required for managing uncertainty, which is antithetical to the
objective of this study. Furthermore, the simple game-based approach [21–25] is
a framework that is efficacious in situations originally intended for cooperative
resolution and may not necessarily be applicable to analyzing non-cooperative,
severe conflict scenarios. Within the framework of GMCR, this study presents
a new and innovative approach to analysis by employing a smaller number of
information categories and proposing several key propositions. These findings not
only advance our understanding of conflict resolution study but also have the
potential to establish valuable links with other theoretical perspectives, including
coarse decision theory.

Section 2 begins with an exposition of the foundational principles that under-
pin the current research, focusing specifically on the core concepts of coarse
information and decision-making systems. Subsequently, we review the frame-
work for conflict analysis incorporating permissibility, which provides basic con-
cepts. We scrutinize the relationship between the DMs’ PRs, equilibrium, and
efficiency, and then present generally valid propositions. In Sect. 3, the valid-
ity of the propositions is verified by applying them to the case of the Elmira
environmental dispute: the case most frequently discussed in GMCR studies.
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2 Underlying Concepts and Methods

2.1 Coarse Decision Theory

There is a great deal of insight to be gained from literature in the fields of eco-
nomics, finance, and psychology about the models and information partitioning
that DMs adopt and their validity [26–34]. Among them, rational inattention
of DMs under limited information processing capacity, proposed by Sims [26] is
remarkable. A priori, we know that it is impossible to solve the problem of tem-
poral imprecision when considering the common knowledge that is the premise
of the state of the world in decision-making. In this sense, it can be said to
be reasonable to use a coarser granularity [32]. The coarser the criteria (fewer
categories for each criterion), the lower the decision-making cost, even though
the DM has to use more criteria [33]. The maximum number of alternative dis-
tinctions that can be generated considering the number of categories for each
criterion is equal to the product of the number of categories for the criterion
deployed. Theoretically, it can be said that there is a trade-off between cate-
gories and criteria when considering an efficient decision-making function with
a limited amount of information. Obviously, in the analysis aimed at a solution
that avoids the worst-case scenario, which is the subject of this study, a more
reasonable solution can be obtained by reducing the number of criteria.

2.2 Graph Model for Conflict Resolution (GMCR)

GMCR is a framework consisting of four tuples: (N,S, (Ai)i∈N , (�i)i∈N ) [5,6].
N is the set of all DMs, S denotes the set of all feasible states. (S,Ai) constitutes
DM i’, s graph Gi, where S is the set of all vertices and Ai ⊂ S × S is the set of
all oriented arcs. (S,Ai) has no loops; (s, s) ∈ A for each s ∈ S. The preferences
of each DM are presented as (�i), where the set of all DMs N : |N | ≥ 2, set of
all states S : |S| ≥ 2, and preference of DM i satisfy reflectiveness, completeness,
and transitivity. s �i s′: s is equally or more preferred to s′ by DM i ; s �i s′: s is
strictly preferred to s′ by DM i; s ∼i s′: s is equally preferred to s′ by DM i. We
assume that a rational DM desires the situation to change to a more favorable
state and attempts to transition to the preferred state by repeating unilateral
moves, which the DM exercises control over. For i ∈ N and s ∈ S, we define DM
i’s reachable list from state s as the set {s′ ∈ S | (s, s′) ∈ Ai}, denoted by Ri(s).
Ri(s) is the set of all the states in which DM i can move from s to s′ in a single
step. A unilateral improvement of DM i from state s is defined as an element
of the reachable list of DM i from s (i.e., s′ ∈ Ri(s)), where i strictly prefers
state s′ (s′ �i s). Therefore, the set of the unilateral improvement lists of DM i
from state s is described as {s′ ∈ Ri(s)|s′ �i s} and denoted by R+

i (s). φ+
i (s)

denotes the set of all states that are more preferential for DM i to s described as
{s′ ∈ S | s′ �i s}, and φ�

i (s) denotes the set of all states that are at most equally
preferential to state s, described as {s′ ∈ S | s �i s′}. Moreover, RN−{i}(s) is
defined as the set of all states that can be achieved by the sequences of unilateral
moves of DMs other than DM i. Similarly, R+

N−{i}(s) is defined as the set of all
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states that can be achieved by the sequences of unilateral improvements of DMs
other than DM i.

On the basis of the DMs’ state transitions, we can obtain standard stability
concepts : Nash stability (Nash) [35,36], general meta-rationality (GMR) [37],
symmetric meta-rationality (SMR) [37], and sequential stability (SEQ) [38,39].

2.3 GMCR Incorporating Permissible Range (GMCR-PR)

Using the elements of GMCR presented in the previous subsection, we now define
GMCR-PR.

Based on the properties of preferences in GMCR mentioned in Sect. 2.2
(reflexivity, completeness, and transitivity), defining DM’s permissibility as a
weak order on the set S of all possible states, then a non-empty subset of the
set L(S) of all weak orders on S can represent the permissible preference of a
DM. Specifically, for any i ∈ N , a subset Pi that satisfies ∅ �= Pi ⊆ L(S) can be
considered as the permissible states of DM i. We refer to Pi as the permission of
DM i, which is defined as a subset of the set of all linear orderings that includes
the DM’s actual preferences. This definition of DM’s permission is motivated by
the recognition that the true preferences of DMs are not always accurately known
in real-world group decision-making situations. While new definitions relating to
improvement are introduced, the general definitions of GMCR such as DM i’s
reachable list Ri(s) and φ�

i (s) provided in Sect. 2.2 remain unchanged.

Definition 1 (Permissible States (PS)). For any i ∈ N , Permissible States
(PS) of DM i is a non-empty subset of L, denoted by Pi. A list (Pi)i∈N for each
i ∈ N represents DMs’ PS, denoted by P .

By imposing a permissible threshold, the state set S can be partitioned into
two subsets: those that are permissible for the DM and those that are not. This
partition can be interpreted that |Pi| = 1.

Definition 2 (Permissible Range (PR)). We denote DM i’s PR by P k
i , that

is, in a conflict, DM i allows up to the kth most preferred state.

GMCR-PR is represented by five tuples: DMs (N), a set of feasible states
(S), a graph of DM i (Ai), the preferences of each DM i (�i), and a set of
permissible preferences of DM i (Pi).

Definition 3 (GMCR-PR).

G = (N,S, (Ai)i∈N , (�i)i∈N , (Pi)i∈N ). (1)

Example 1. Consider a conflict G = (N,S, (Ai)i∈N , (�i)i∈N , (Pi)i∈N ), where
N = {a, b}, S = {1, 2, 3, 4}, 1 �a 2 �a 3 �a 4 and 4 �b 3 �b 2 �b 1. Sup-
pose each DM’s PR is P 2

a and P 2
b respectively, P = ∅.

Definition 4 (Reachable Lists in GMCR-PR). DM i’s permissible reach-
able list from s ∈ S are subsets of S as follows:
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i. DM i’s reachable list from s to s′ by unilateral moves in GMCR-PR is defined
as in GMCR, Ri(s) = {s′ ∈ S | (s, s′) ∈ Ai}

ii. DM i’s Unilateral Improvement in GMCR-PR (PUI) is a transition from a
state s /∈ Pi to a state s′ ∈ Pi and is defined as follows:

PRi(s) = {s′ ∈ Ri(s) | (s, s′) ∈ Ai, s /∈ Pi, s
′ ∈ Pi}. (2)

A list of PUI by a DM other than DM i is represented as PRN−i(s) .
iii. DM i’s list of states regarding s and s′ being equally or less preferred is

defined as in GMCR, φ�
i (s) = {s′ ∈ S | s �i s′} .

When DM i has no PUI from state s, there are no further state transitions
exist, thereby establishing stability.

Definition 5 (PNash). For i ∈ N , state s ∈ S is PNash stable for DM i,
denoted by s ∈ SPNash

i , if and only if

PRi(s) = ∅. (3)

State s is PGMR stable for DM i when any PUI from state s of DM i may
cause a state equal or less preferred state than s in the responses of the other
DMs.

Definition 6 (PGMR). For i ∈ N , state s ∈ S is PGMR stable for DM i,
denoted by s ∈ SPGMR

i , if and only if

∀s′ ∈ PRi(s), RN−{i}(s′) ∩ φ�
i (s) �= ∅. (4)

When a state occurs where for any of DM i’s PUI, another DM’s countermove
would result in a state equal or less favorable than s. Furthermore, regardless
DM i’s subsequent countermove, a state more favorable than s cannot occur,
thereby establishing stability.

Definition 7 (PSMR). For i ∈ N , state s ∈ S is PSMR stable for DM i,
denoted by s ∈ SPSMR

i , if and only if

∀s′ ∈ PRi(s),∃s′′ ∈ RN−{i}(s′) ∩ φ�
i (s), Ri(s′′) ⊆ φ�

i (s). (5)

When DM i has at least one PUI from state s, but states resulting from PUI
of other DMs’ responses from s′ cause a state to be equal to or less preferable
than s for DM i, then s is PSEQ stable for DM i.

Definition 8 (PSEQ). For i ∈ N , state s ∈ S is PSEQ stable for DM i,
denoted by s ∈ SPSEQ

i , if and only if

∀s′ ∈ PRi(s), PRN−{i}(s′) ∩ φ�
i (s) �= ∅. (6)

The chicken game in GMCR-PR can be represented as follows.
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Example 2 (Chicken Game).
(N,S, (Ai)i∈N , (�i)i∈N ), N = {1, 2}, S = {s1, s2, s3, s4}
A1 = {(s1, s3), (s3, s1), (s2, s4), (s4, s2)},
A2 = {(s1, s2), (s2, s1), (s3, s4), (s4, s3)},
DM1’s preference order �1: s3 � s1 � s2 � s4,
DM2’s preference order �2: s2 � s1 � s3 � s4.

Let us assume that both DMs have permissibility up to the states of the
second preference order P 2, in stead of the linear order provided in the original
game: P1 = {s1, s3}, P2 = {s1, s2}. Then, we have unilateral improvements for
each DM as follows; PR1(s1) = ∅, PR1(s2) = ∅, PR1(s3) = ∅, PR1(s4) = ∅,
PR2(s1) = ∅, PR2(s2) = ∅, PR2(s3) = ∅, PR2(s4) = ∅. Hence, Nash equilibrium
is established in all states when P 2 is employed for each DM in the chicken
game. The Table 1 summarizes the permissibility, reachability, PUI, and Nash
equilibrium.

Table 1. Chicken Game in GMCR-PR - P 2
1 , P 2

2

State 1 2 3 4

Permissibility DM1 1 0 1 0

DM2 1 1 0 0

Ri(s) DM1 3 4 1 2

DM2 2 1 4 3

φ+
i (s) DM1 1,3 1,3

DM2 1,2 1,2

PRi DM1

DM2

Nash E E

PNash E E E E

In our previous study [4], we examined the equilibrium and efficiency of 21
sets of 2×2 games classified as Class III in Rapoport and Guyer’s taxonomy [40],
in which neither DM has a dominant strategy for all combinations of the four
permissible levels. Consequently, any conflict in the category was concluded to be
resolved when both DMs set their threshold as P 3: “accept all states except the
least favorable one.” The following section develops the discussions on permissi-
bility and equilibrium/efficiency based on these results and present propositions.
Incorporating the concept of “permissibility” in the derivation of propositions
concerning conflict resolution would enrich the spectrum of recommendations
for resolving conflicts.
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3 Nash Stability and Efficiency for Conflicts
with Permissible Range

We present propositions for Nash stability and efficiency in conflict analysis
incorporating PR. These propositions were prepared separately for cases with
at least one state commonly permissible to all DMs in Subsect. 3.1, and cases
without such a state in Subsect. 3.2.

Consider a conflict presented in GMCR-PR: (N,S, (Ai)i∈N , (�i)i∈N , (Pi)).
Here, for i ∈ N , Pi denotes the set of all permissible states for DM i; Therefore,
if s ∈ S is permissible for DM i, then it is denoted by s ∈ Pi; otherwise, s /∈ Pi.

3.1 Case with ∩i∈NPi �= ∅
First, we consider the case with ∩i∈NPi �= ∅; that is, there exists at least one state
that is commonly permissible for all DMs. We have the following propositions:

Nash Stability

Proposition 1. State s ∈ ∩i∈NPi is Nash equilibrium.

Proof. For i ∈ N , we have R+
i (s) = ∅, because for all s′ ∈ S, s �i s′. �

Proposition 2. Consider state s′ /∈ ∩i∈NPi. For j ∈ N , if s′ ∈ Pj , then s′ is
Nash stable for DM j.

Proof. s′ is Nash stable for DM j, because for all s′′ ∈ S, s′ �j s′′. �
Proposition 3. Consider state ′s /∈ ∩i∈NPi. For k ∈ N , if s′ /∈ Pj , then s′ is
Nash stable for DM k if Rk(s′) ∩ Pk = ∅, and not if Rk(s′) ∩ Pk �= ∅.

Proof. s′ is Nash stable for DM k if Rk(s′)∩Pk = ∅, because we have R+
k (s′) = ∅

from s′ /∈ Pk and for all s′′ ∈ Rk(s′), s′′ /∈ Pk. s′ is not Nash stable for DM k
if Rk(s′) ∩ Pk �= ∅, because we have R+

k (s′) �= ∅ from s′ /∈ Pk and there exists
s′′ ∈ Pk(s′) such that s′′ ∈ Pk, which implies s′′ �k s′. �

For special cases in which each DM’s PR includes all states except the least
preferable one, we have Corollary 1 of Proposition 3.

Corollary 1 (Corollary of Proposition 3).
Consider cases that Pi = S\{min �i} for i ∈ N , where min �i denotes DM i’s
least preferred state. s′ = min �i is Nash stable for DM i if Ri(s′) = ∅, and not
if Ri(s′) �= ∅.
Proof. If Ri(s′) = ∅, then we always have R+

i (s′) = ∅, which means that s′ is
Nash stable for DM i. If Ri(s′) �= ∅, then we have that Ri(s′) ∩ Pi �= ∅, because
Ri(s′) ⊆ S\{s′} = S\{min �i} = Pi. Using the result of Proposition 3, we have
that s′ is not Nash stable for DM i. �
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Efficiency. The following are propositions on the efficiency of states under the
condition of ∩i∈NPi �= ∅
Proposition 4. State s ∈ ∩i∈NPi is weakly and strongly efficient.

Proof. In this case, for all i ∈ N and all s′ ∈ S, s �i s′. Therefore, s′ �i s cannot
be satisfied for any i ∈ N and any s′ ∈ S, which implies that s is weakly and
strongly efficient. �
Proposition 5. Consider state s′ /∈ ∩i∈NPi. For j ∈ N , if s′ ∈ Pj (which
implies that s′ /∈ Pk for some k ∈ N), then s′ is weakly efficient and not strongly
efficient.

Proof. In this case, for all i ∈ N , s �i s′ and s �k s′, because s ∈ ∩i∈NPi and
s′ /∈ Pk. This implies that s′ is not strongly efficient. No s′′ ∈ S exists such that
s′′ � s′ for all i ∈ N , because s′ ∈ Pj . This implies that s′ is weakly efficient. �
Proposition 6. Consider state s′ /∈ ∩i∈NPi. If s′ /∈ Pi for all i ∈ N , then s′ is
neither weakly nor strongly efficient.

Proof. In this case, for all i ∈ N , s �i s′, because for all i ∈ N , and s ∈ Pi and
for all i ∈ N , s′ /∈ Pi. �

Worst Case Efficiency. For situations in which each DM’s PR includes all
cases except the least preferable one, we have Corollary 2 of Propositions 5
and 6.

Corollary 2 (Corollary of Propositions 5 and 6).
Consider the cases in which Pi = S\{min �i} for all i ∈ N , where min �i

denotes DM i’s least preferred state. min �i is weakly efficient and not strongly
efficient if min �i �= min �j for some i and j ∈ N . min �i is neither weakly nor
strongly efficient if min �i= min �j for all i and j ∈ N .

Proof. In the case in which min �i �= min �j for some i and j ∈ N , s′ = min �i /∈
Pi and s′ ∈ Pj . Then, by applying Proposition 5, we have that min �i is weakly
efficient and not strongly efficient.

In the case in which min �i= min �j for all i and j ∈ N , s′ = min �i /∈ Pi

for all i ∈ N . Then, by applying Proposition 6, we have that min �i is neither
weakly nor strongly efficient. �

3.2 Case with ∩i∈NPi = ∅
Next, we consider the case with ∩i∈NPi = ∅, that is, there is no state that is
commonly permissible for all DMs exists. We have the following propositions:
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Nash Stability

Proposition 7. Consider state s′ /∈ ∩i∈NPi. For j ∈ N , if s′ ∈ Pj , then s′ is
Nash stable for DM j.

Proof. s′ is Nash stable for DM j because for all s′′ ∈ S, s′ �j s′′. �
Proposition 8. Consider state s′ /∈ ∩i∈NPi. For k ∈ N , if s′ /∈ Pj , then s′ is
Nash stable for DM k if Rk(s′) ∩ Pk = ∅, and not if Rk(s′) ∩ Pk �= ∅.

Proof. s′ is Nash stable for DM k if Rk(s′)∩Pk = ∅, because we have R+
k (s′) = ∅

from s′ /∈ Pk and for all s′′ ∈ Rk(s′), s′′ /∈ Pk. s′ is not Nash stable for DM k
if Rk(s′) ∩ Pk �= ∅, because we have R+

k (s′) �= ∅ from s′ /∈ Pk and there exists
s′′ ∈ Pk(s′) such that s′′ ∈ Pk, which implies s′′ �k s′. �

For situations in which each DM’s PR includes all states except the least
preferable one, we have Corollary 3 of Proposition 8.

Corollary 3 (Corollary of Proposition 8).
Consider the cases in which Pi = S\{min �i} for all i ∈ N , where min �i

denotes DM i’s least preferred state. s′ = min �i is Nash stable for DM i if
Ri(s′) = ∅, and not Nash stable if Ri(s′) �= ∅.
Proof. If Ri(s′) = ∅, then we always have R+

i (s′) = ∅, which means that s′ is
Nash stable for DM i. If Ri(s′) �= ∅, then we have Ri(s′) ∩ Pi �= ∅, because
Ri(s′) ⊆ S\{min �i} = Pi. Using the result of Proposition 8, we have that s′ is
not Nash stable for DM i. �

Efficiency. The following are propositions on the efficiency of states under the
condition of ∩i∈NPi = ∅
Proposition 9. Consider state s′ /∈ ∩i∈NPi. For j ∈ N , if s′ ∈ Pj (which
implies that s′ /∈ Pk for some k ∈ N), then s′ is weakly efficient.

Proof. No s′′ ∈ S exists such that s′′ �i s′ for all i ∈ N , because s′ ∈ Pj . Thus,
s′ is weakly efficient. �
Proposition 10. Consider state s′ /∈ ∩i∈NPi. Assume that N = {j, k}, that is
|N | = 2. Then, for j ∈ N , if s′ ∈ Pj (which implies that s′ /∈ Pk for the other
k ∈ N), then s′ is strongly efficient.

Proof. Assume that there exists s′′ ∈ S such that s′′ �j s′ and s′′ �k s′, and
that s′′ �j s′ or s′′ �k s′. Because s′ ∈ Pj , it is impossible that s′′ �j s′. This
implies that s′′ �k s′. Then, we must have that s′′ ∈ Pj and s′′ ∈ Pk, which
contradicts the condition that ∩i∈NPi = ∅. Therefore, s′ is strongly efficient. �

With respect to the strong efficiency of state s′ under the conditions of
∩i∈NPi = ∅, s′ ∈ Pj for some j ∈ N , s′ /∈ Pk for some k ∈ N , and |N | ≥ 3,
see the following example. We see that s′ may be strongly efficient depending
on (Pi)i∈N in the following examples.
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Example 3.

Case 1: Let N = {1, 2, 3}, S = {s1, s2, s3}, and P1 = {s1, s2}; P2 = {s2};
P3 = {s3, s1}. In this case, ∩i∈NPi = ∅, and s1 ∈ P1; s1 /∈ P2; s1 /∈ P3. We
see that s1 is strongly efficient, because s1 �3 s2 and s1 �1 s3.
Case 2: Let N = {1, 2, 3}, S = {s1, s2, s3}, and P1 = {s1, s2}; P2 = {s2};
P3 = {s3}. In this case, ∩i∈NPi = ∅, and s1 ∈ P1; s1 /∈ P2; s1 /∈ P3. We see
that s1 is not strongly efficient because s2 �1 s1; s2 �2 s1; s2 �3 s1.

Proposition 11. Consider state s′ /∈ ∩i∈NPi. If s′ /∈ Pi for all i ∈ N , then s′ is
weakly efficient and not strongly efficient.

Proof. Assume that there exists s′′ ∈ S such that for all i ∈ N , s′′ �i s′. Then,
we must have that for all i ∈ N , s′′ ∈ Pi, which contradicts the condition that
∩i∈NPi = ∅. Thus, s′ is weakly efficient. Because we assume that Pj �= ∅ for all
j ∈ N , we can take s′′ ∈ Pj . Then, it is satisfied that s′′ �j s′ and s′′ �i s′ for
all i ∈ N , because s′ /∈ Pi for all i ∈ N . Therefore, s′ is not strongly efficient. �

Worst Case Efficiency

Corollary 4 (Corollary of Proposition 9 and Proposition 10). Consider
the cases that Pi = S\{min �i} for all i ∈ N , in which min �i denotes DM
i’s least preferred state. Then, we have that min �i is weakly efficient. We also
have that min �i is strongly efficient if N = {1, 2}.
Proof. Under the conditions of ∩i∈NPi = ∅ and Pi = S\{min �i} for all i ∈ N ,
we have that S = {min �i | i ∈ N}, because otherwise, x ∈ S\{min �i | i ∈ N}
satisfies that x ∈ ∩i∈NPi, which contradicts the condition that ∩i∈NPi = ∅.
Then, S = {min �i | i ∈ N} implies the results using Propositions 9 and 10. �

For strong efficiency in cases with Pi = S\{min �i} for all i ∈ N and |N | ≥ 3,
we have the following proposition:

Proposition 12. Consider cases that Pi = S\{min �i} for all i ∈ N , where
min �i denotes the DM i’s least preferred state. Then, we have that min �i is
strongly efficient, if |N | ≥ 3.

Proof. Under the conditions of ∩i∈NPi = ∅ and Pi = S\{min �i} for all i ∈ N ,
we have that S = {min �i | i ∈ N}, because otherwise, x ∈ S\{min �i | i ∈ N}
satisfies x ∈ ∩i∈NPi, which contradicts the condition that ∩i∈NPi = ∅.

For all s′′ ∈ S = {min �i | i ∈ N}, there exists i ∈ N such that s′′ = min �i,
which implies that s′ �i s′′. �

Table 2 summarizes the results for general cases in Subsects. 3.1 and 3.2, and
Table 3 shows the results for the cases with Pi = S\{min �i} for all i ∈ N given
by the corollaries in Subsects. 3.1 and 3.2.
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Table 2. Interrelationships between Nash Stability and Efficiencies

s ∈ S: s ∈ ∩i∈NPi s′ ∈ S: s′ ∈ Pj and s′ /∈ Pk s′ ∈ S: ∀k ∈ N, s′ /∈ Pk

If

∩i∈NPi �= ∅:

Nash for all i ∈ N

(Proposition 1)

Nash for j (Proposition 2) —

Nash for k depending on Rk(s′) and Pk (Proposition 3)

w.eff. (Proposition 4) w.eff. (Proposition 5) NOT w.eff. (Proposition 6)

s.eff. (Proposition 4) NOT s.eff. (Proposition 5) NOT s.eff. (Proposition 6)

If

∩i∈NPi = ∅:

—
Nash for j (Proposition 7) —

Nash for k depending on Rk(s′) and Pk (Proposition 8)

— w.eff. (Proposition 9) w.eff. (Proposition 11)

—
s.eff. if |N| = 2 (Proposi-

tion 10);

dep.on (Pi)i∈N if |N| ≥ 3

(Ex. 3)

NOT s.eff. (Proposition 11)

Table 3. Nash stability and efficiencies of min �i under the condition of Pi =
S\{min �i} for all i ∈ N

∃i, j ∈ N , min �i �= min �j ∀i, j ∈ N , min �i= min �j

If

∩i∈NPi �= ∅:

Nash for i depending on Ri(s
′) (Corollary 1)

w.eff. (Corollary 2) NOT w.eff. (Corollary 2)

NOT s.eff. (Corollary 2) NOT s.eff. (Corollary 2)

If

∩i∈NPi = ∅:

Nash for i depending on Ri(s
′) (Corollary 3)

w.eff. (Corollary 4) —

s.eff. (Corollary 4, Proposition 12) —

4 Verification of Propositions in Application Cases

In this section, the propositions presented in Sect. 3 are verified by applying
them to the Elmira conflict, a representative case of GMCR analysis [41,42].

Elmira Conflict. The Elmira conflict is an environmental contamination dis-
pute in Ontario, Canada, upon which numerous studies have been conducted
using GMCR. Three DMs are involved in the conflict: the Ministry of Envi-
ronment (M), Uniroyal (U), and the local government (L). M discovered con-
tamination and issued a control order to U that included a decontamination
operation to be conducted by U. They desire to exercise their authority effi-
ciently. U operates questionable chemical plants, and intends to exercise its right
to object, aiming to lift or relax the control order. L represents diverse interest
groups, and intends to protect the residents and the local industrial base. Table 4
summarizes all feasible states based on the DMs’ options, while (Fig. 1) displays
the corresponding conflict graph. In addition, the preference orders of the three
DMs are given as follows: M : s7 � s3 � s4 � s8 � s5 � s1 � s2 � s6 � s9;



124 Y. Kato

U : s1 � s4 � s8 � s5 � s9 � s3 � s7 � s2 � s6; L : s7 � s3 � s5 � s1 � s8 �
s6 � s4 � s2 � s9.

Table 4. Elmira Conflict - Options and States

State 1 2 3 4 5 6 7 8 9

M Modify N Y N Y N Y N Y -

U Delay Y Y N N Y Y N N -

Accept N N Y Y N N Y Y -

Abandon N N N N N N N N Y

L Insist N N N N Y Y Y Y -

Fig. 1. Graph Model of Elmira conflict

Elmira Conflict Case-1: ∩i∈NPi �= ∅. We verified the propositions presented
in Sect. 3.1 for the case with ∩i∈NPi �= ∅ by examining the stability analysis of
the Elmira conflict case-P 2

M , P 7
U , and P 5

L. Table 5 summarizes the permissibility,
reachability, and PNash.

In conflicts where at least one state is permissible to all DMs, we determined
the following propositions: 1) Proposition 1 concerns the permissible states for
all DMs; thus, Nash equilibria are established at s3 and s7. 2) Propositions 2
and 3 concern states other than those verified in 1) that are permissible for each
DM, and lead to Nash stability in s1, s5, s8, and s9. From 1) and 2), we can
conclude that PNash equilibria hold for s1, s3, s5, s7, s8, and s9. This verification
result is consistent with the GMCR-PR stability analysis presented in Table 5.
In addition, we observe that the weak and strong Pareto efficiency proposed in
Proposition 4 is consistent with the original results in Table 5. Each item in the
table indicates the following.

– Permissibility: Boolean value denoting permissibility for DM i.
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Table 5. Verification of Propositions: Elmira Conflict - P 2
M , P 7

U , P 5
L

State 1 2 3 4 5 6 7 8 9

Preference order M 7 3 4 8 5 1 2 6 9

U 1 4 8 5 9 3 7 2 6

L 7 3 5 1 8 6 4 2 9

Permissibility M 0 0 1 0 0 0 1 0 0

U 1 0 1 1 1 0 1 1 1

L 1 0 1 0 1 0 1 1 0

Ri(s) M 2 4 6 8

U 3,9 4, 9 9 9 7,9 8, 9 9 9

L 5 6 7 8 1 2 3 4

PNash Equilibrium E E E E E E

Proposition 1(Nash) E E

Proposition 2(Nash) U,L U U,L U,L U

Proposition 3(Nash) M M M M M,L

Proposition 4(eff.) � �
Proposition 5(eff.) � �
Proposition 6(eff.) � �

– Ri(s): States where DM i can unilaterally transition (UM) from each state.
The numbers indicate the number of states. The overbar signifies that the
transition is PUI.

– PNash Equilibrium: Nash holds for all i ∈ N
– Prop. 1–3(Nash): E denotes equilibrium, M, U, and L indicate DMs who

reached stability according to the proposition.
– Prop. 4–6(eff.): Weak and strong efficiency holds for the state with the check-

mark.

Elmira Conflict Case-2: ∩i∈NPi = ∅. We verified the propositions by setting
up a PR case P 2

M , P 2
U , and P 2

L in the Elmira conflict.
Table 6 presents the stability analysis when the PR of all DMs is set to P 2.

It is presented as a conflict without a single state that is commonly permissi-
ble for all DMs. Table 7 presents the correspondence between the stability and
propositions in the P 2

M , P 2
U , P 2

L case.
In conflicts where no state is permissible to all DMs, we determined the

following regarding the propositions: 1) Proposition 7 is about permissible states
for DM j; thus, Nash stability holds at s1 for U, s3 for M and L, s4 for U, and
s7 for M and L. 2) Propositions 8 concerns states other than those verified in 1)
that are permissible for DM j, and this proposition leads to Nash stability for
M, U, and L. From 1) and 2), we can conclude that the PNash equilibra hold
in s1, s3, s4, s5, s6, s7, s8 and s9. This verification result is consistent with the
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Table 6. Elmira Conflict - Stability Analysis: P 2
M , P 2

U , P 2
L

State 1 2 3 4 5 6 7 8 9

M 0 0 1 0 0 0 1 0 0

U 1 0 0 1 0 0 0 0 0

L 0 0 1 0 0 0 1 0 0

PNash � � � � � � � �
PGMR � � � � � � � � �
PSMR � � � � � � � � �
PSEQ � � � � � � � �
Pareto � � � �

Table 7. Verification of Propositions: Elmira Conflict - P 2
M , P 2

U , P 2
L

State 1 2 3 4 5 6 7 8 9

Preference order M 7 3 4 8 5 1 2 6 9

U 1 4 8 5 9 3 7 2 6

L 7 3 5 1 8 6 4 2 9

Permissibility M 0 0 1 0 0 0 1 0 0

U 1 0 0 1 0 0 0 0 0

L 0 0 1 0 0 0 1 0 0

Ri(s) M 2 4 6 8

U 3,9 4,9 9 9 7,9 8,9 9 9

L 5 6 7 8 1 2 3 4

PNash Equilibrium E E E E E E E E

Proposition 7(Nash) U M,L U M,L

Proposition 8(Nash) M,L M,L U M,L M,U,L M,U,L U M,U,L M,U,L

Proposition 9(eff.) � � � �
Proposition 11(eff.) � � � � �

GMCR-PR stability analysis shown in Table 6. In addition, we seek to confirm
that the weak and strong Pareto efficiencies provided in Propositions 9 and 11
are consistent with the original results in Table 6.

This section examined the propositions presented in Sect. 3 and verified it to
be consistent with the results of the GMCR-PR stability analyses of the Elmira
conflict.

5 Conclusion

This study discussed the analysis capability with coarse information by intro-
ducing the concept of PR to GMCR. PR is set by placing a threshold on the
preference, and the DM’s preference is processed as binary information. More-
over, because the GMCR framework is retained, the resolution can be changed
depending on the granularity of the information available. Introducing the con-
cept of PR allows for the analysis to reflect implicit assumptions that are not
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part of the fundamental framework; describing a situation in which even a DM
seeking reasonable resolution endeavors to avoid prolongation or escalation to
converge the conflict by adjusting its permissible level is possible.

This paper focused on equilibrium and efficiency in the two cases of the
presence or absence of commonly permissible states for all DMs. Future research
topics include more complex issues, such as those in which permissibility differs
from the initial judgment because of the availability of information after the
determination from the first analysis.
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