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Abstract.  Integrating complex process knowledge into structural optimization 
of casting parts enables design proposals to exploit manufacturing processes’ 
full potential. However, a significant bottleneck for integrating process knowl-
edge is the computational effort necessary for process simulations. In this arti-
cle, we focused on low-pressure die casting. We used the medial axis transform 
and the shortest path algorithm to describe geometry-related features that we 
used as input data for a neural network metamodel, which replaced the casting 
process simulation. This allowed us to reduce the time for process simulation 
from multiple hours to a few seconds and, thus, incorporate the metamodel 
into the topology optimization framework. To reconstruct the geometry, we 
used an implicit modeling approach in which the modified geometry was built 
from volume lattices filtered afterward to obtain solid volumes. The approach 
was tested on two application examples and proved that the metamodel-based 
results are equivalent to the results obtained using casting process simulations.

Keywords:  Topology Optimization · Process Assurance · Medial Axis 
Transform · Neural Networks · Implicit Modelling

1  Introduction

Two key pillars for developing new products are climate neutrality and energy effi-
ciency. Casting processes have the capability to combine both pillars advantageously 
by fabricating complex structures at high volumes[1, 2]. Accordingly, we can derive 
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two main objectives, on the one hand lightweight structures that minimize material 
usage, respectively energy consumption during the product life cycle. On the other 
hand, efficient and error-free manufacturable geometries, which minimize the scrap-
rate. However, the search for a “perfect part” that combines both objectives is dif-
ficult. A major bottleneck is the integration of time-consuming process assurance 
simulation into a topology optimization framework. In this article, we integrate the 
process assurance via a geometric feature-based artificial neural network metamodel 
and modify the geometries using implicit modelling.

1.1  Background

Topology optimization is a widely used method for numerical structural optimiza-
tion with the purpose of identifying the best material distribution in a given design 
space [3–6]. Nevertheless, optimized design proposals are often non-manufacturable. 
Therefore, manufacturing constraints are commonly used, for casting processes, these 
are, among others, minimum length scale, symmetry, extrusion, or parting lines [7–9].

These manufacturing constraints represent a simplification of the unconstrained 
optimization problem and cannot describe the limits of stable casting processes [10]. 
Since the major bottleneck for the efficient integration of process assurance is the 
time-consuming process assurance simulation, the use of computationally cheap met-
amodels can leverage the quality of casting design proposals significantly.

Such metamodels are often built upon machine learning models, inspired by the 
idea that in particular artificial neural networks represent universal approximators [11]. 
Accordingly, machine learning is widely used in manufacturing related topics as energy 
consumption, wear modelling or tool wear prediction [12–14]. In the context of cast-
ing processes, metamodels were applied to predict the results of 2D-casting simulations 
[15], properties such as hardness based on process parameters [16], or for increasing 
the product quality by optimizing initial temperature and wall temperature [17].

All the named examples apply machine learning algorithms to optimize process 
parameters or conditions but are not used within the context of adapting the part’s geom-
etry. Accordingly, for the objective of combining topology optimization with process 
assurance, well suited machine learning models are not yet identified. The task of search-
ing a well-suited machine learning model for a new problem is difficult, since selecting 
algorithms and adjacent hyperparameters can be extremely costly. Automated machine 
learning systemizes the searching or selecting procedure [18, 19]. An efficient method 
for a neural architecture search system provides the work of Jin et al., where the search 
space is explored via morphing the neural network architectures guided by a Bayesian 
optimization algorithm [19]. Automated machine learning approaches do not guarantee to 
outperform human guided modelling, but they can provide a helpful assistance tool in the 
modelling process.

1.2  Approach

The objective of this article is to use a geometric feature-based metamodel to replace 
the casting simulation within a topology optimization process assurance framework, 
as we show in Fig. 1.
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In this article, we replace the time-consuming casting simulation by a geometric 
feature-based metamodel for process assurance. Subsequently, we use implicit model-
ling to modify the design proposals based on the given evaluation criterion along with 
the topology optimization results. We apply this approach to a cantilever beam and a 
traverse link, shown in Fig. 2, and compare the modified design proposals with simu-
lation-based geometry modification.

Fig. 1.  Metamodel assisted framework for combined topology optimization and process 
assurance based on the workflow presented in [10]. A topology optimization with an initial 
Volume V0 and a target Volume Vt = µV0 with volume constraint µ and step length λ is 
conducted parallel to a casting simulation for process assurance. The latter is replaced by the 
metamodel (shaded in grey).

(a) (b)

Fig. 2.  Overview of the design space (green) and optimized design proposals without 
integrated process assurance (blue) for the two test examples. (a) Cantilever beam; (b) Traverse 
link. The load case is sketched in red on the design spaces, while the ingate position is marked 
orange on the design proposals.
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2  Materials and Methods

2.1  Metamodel Architecture

In this article, we used artificial neural networks as metamodels. For preparing the 
data, building, optimizing and evaluating the metamodel, we used the python librar-
ies numpy [20], seaborn [21], pandas [22, 23], matplotlib [24, 25], scikit-learn 
[26], scikit-optimize [27], TensorFlow[28, 29], Keras [30, 31] and Auto-Keras [19]. 
Figure 3 shows the general architecture of the artificial neural network.

The baseline model was a dense feed forward multilayer perceptron neural net-
work. We optimized the architecture and the hyperparameters using a two-step 
automated machine learning approach. The output parameter is the solidification 
time, which we obtained from previously made casting simulations. As geometric 
input features, we used shortest path distances, which provide the shortest distance 
between the ingate and any point in the geometry, and the radii of the medial axis 
points obtained by the medial axis transform, which represent the part thickness along 
the solidification path. The calculation of both geometric input features is shortly 
explained in the following.

Medial Axis Transform. The medial axis transform is a surface skeletonization 
technique for three dimensional objects, which is calculated from the Voronoi dia-
gram. Every point on the medial axis is associated to an internal ball that touches the 
part’s surface but does not penetrate it [32]. The radii of the balls provide therefore 
the part thickness for every point on the medial axis. We used the implementation pre-
sented in our previous work [32].

Fig. 3.  Architecture of the baseline feed forward multilayer perceptron. Two geometric input 
features are used to estimate the solidification time in low-pressure die castings.
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DIJkstra’s Shortest Path. Dijkstra’s shortest Path algorithm begins at a starting 
node and gradually selects the currently most favorable paths via the nodes on a graph 
that can be reached next [33]. We used the shortest path to calculate the shortest flow 
distances between the ingate and all points on the medial axis, thus providing qualita-
tive information how fast a point can possibly be reached by the melt.

Data Preparation. For training and testing the models, we used a dataset contain-
ing 220,000 pairs of shortest path distance, radius of medial axis point, and solidifica-
tion time. The data was split into 200,000 training and 20,000 test data.

Automated Machine Learning.The two-step automated machine learning 
approach consists of Bayesian optimization supported search for an well suited archi-
tecture and a subsequent hyperparameter optimization using the hyperband algorithm 
[34]. The objective for both optimization tasks was to minimize the mean squared 
error. During both optimizations, a 5-fold cross-validation was used on the training 
data. Table 1 shows the selected parameters summarized.

2.2  Evaluation of Process Assurance

The process assurance is evaluated using the evaluation criterion developed in our pre-
vious work for low-pressure die castings [10]. By assuming a directional solidification 
in low-pressure die casting, the ratio of the solidification time (tsol) and the shortest 
path distance (spd) should be descending along the solidification path, which we eval-
uated using the following equation:

2.3  Modification of the Design Space

To modify the design spaces, we used the software nTopology (Version 3.35, nTopol-
ogy Inc., New York, NY, USA) that allows an implicit representation of geometries. 
Based on the density values of the topology optimization, we first create a volume 
lattice for activated (high-density, material) and deactivated (low-density, holes) ele-
ments, which strut diameters are further adapted by the evaluation criterion point map 
of QL. We illustrate this procedure in Fig. 4.

(1)QL = log

(

tsol

spd

)

Table 1.  Summary of the chosen settings for two-step automated machine learning. The objec-
tive function was in both cases the mean squared error (MSE).

Algorithm Objective Iterations

Architecture Search Bayesian Optimization MSE 100

Hyperparameter Optimization Hyperband MSE 250
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This procedure allows further the filtering of geometric features according to the 
lattice density. Subsequently, the activated geometry and the deactivated geometry are 
filtered, smoothed, and merged, as we show in Fig. 5. The result is a modified design 
proposal with increased manufacturability.

3  Results and Discussion

3.1  Metamodel Performance

We show the results of the metamodel performance in Fig. 6 by plotting the predicted 
solidification times (ypredicted) against the true – or target – solidification times (ytar-

get). For the cantilever the coefficient of determination (R2) reached 0.79, while the 

(a) (b)

Fig. 4.  Volume lattices for (a) activated elements and (b) deactivated elements. The colored 
point map represents the evaluation criterion’s value on each cell of the design proposal.

(a) (b)

Fig. 5.  Illustration of the reconstruction process: (a) The filtered meshes for activated (grey) 
and deactivated (red) elements are merged. (b) Combined and smoothed geometry which 
represents the final design proposal.
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prediction for the traverse link reached 0.55. This result is plausible due to the cantile-
ver’s simpler geometry.

However, since the metamodel’s objective is an acceptable estimation rather than 
a high-fidelity prediction, the achieved results show sufficient accuracy for both test 
examples.

3.2  Evaluation of Modified Design Proposals

To evaluate the modified design proposals, the QL was first calculated using the pre-
dicted solidification times. In the next step the calculated QL modifies the geometries 
according to the process described in Sect. 2.3. In the following the final metamod-
el-based design proposals are compared to the simulation-based design proposals. 
Figure 7 shows that for the cantilever beam the difference volume between metamodel 
and simulation design proposal is close to zero (Fig. 7b). Accordingly, the presented 
metamodel-based approach led to equivalent design proposals.

(a) (b)

Fig. 6.  Results for the metamodel performance for (a) cantilever beam; (b) traverse link.
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The comparison of the traverse link design proposals shows Fig. 8. In this case 
deviations between simulated and predicted solidification were significantly greater, 
which also resulted in deviation of the modified design proposals. In both design pro-
posals, the reconstruction aimed to better connect the box with drill hole on the left 
side (Fig. 2b) to the rest of the geometry. Interestingly, the metamodel’s deviations 
led to a design proposal, which – geometrically – looks superior the simulation-based 
proposal.

(a) (b) (c)

Fig. 8.  Comparison of the final traverse link design proposals for (a) metamodel-based; (c) 
simulation-based. (b) represents the difference Volume between both design proposals.

(a) (b) (c)

Fig. 7.  Comparison of the final cantilever beam design proposals for (a) metamodel-based; (c) 
simulation-based. (b) represents the difference Volume between both design proposals.
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We attribute this effect to the evaluation criterion calculation on the acti-
vated elements and further extrapolation of the values on the deactivated elements. 
Accordingly, we conclude that also for the traverse link the metamodel resulted in an 
at least equivalent design proposal, though a smaller coefficient of determination.

4  Summary

In this article, we presented an incorporation of process assurance evaluation into a 
topology optimization framework, using geometric feature-based metamodel. While 
building the metamodel, we used a two-stage automated machine learning approach 
which helped to systematically exploit the parameter space and, thus, identifying a 
well-suited model architecture and hyperparameters.

The built metamodel reduced the needed time for process assurance evaluation 
from multiple hours to a few seconds while maintaining a sufficient prediction accu-
racy. The automated geometry reconstruction further mitigated weak points in the 
design proposal provided by the isolated topology optimization.

Therefore, our presented approach realizes an efficient incorporation of pro-
cess assurance into structural optimization and fosters its further dissemination and 
exploitation of lightweight potentials.
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