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Abstract Next-generation communication networks (NextG or 5G and beyond) 
have become more essential to be able to realize cutting-edge applications, such 
as autonomous cars, mobile healthcare and education, metaverse, digital twins, vir-
tual reality, and many more. All those applications need high-speed, low latency, and 
secure data transmission. Artificial intelligence (AI) technologies are the main drivers 
and play a critical role because of their significant contribution to all layers in NextG, 
i.e., from the physical to the application layer. On the other hand, the security and pri-
vacy concerns for applications using AI-based methods in next-generation networks 
have not been fully investigated in terms of cyber vulnerabilities. This book chapter 
focuses on the AI-enabled applications on the physical layer of NextG networks, 
including multiple input multiple output (MIMO) beamforming, channel estimation, 
spectrum sensing, and intelligent reflecting surfaces (IRS), as well as provides a com-
prehensive analysis of the potential use case, i.e., channel estimation, along with its 
vulnerability under adversarial machine learning attacks with and without the defen-
sive distillation mitigation method. According to simulations outcomes, AI-enabled 
Next-G applications are vulnerable to adversarial attacks, and the proposed miti-
gation methods are able to improve the robustness and performance of AI-enabled 
models under adversarial attacks. 
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1 Introduction 

The next-generation networks, i.e., 5G and beyond, have been penetrated into all 
sectors, including infrastructure, computing, security, and privacy. The main goal of 
NextG networks is to realize cutting-edge applications, including metaverse, mobile 
healthcare, and education, autonomous cars, augmented reality (AR), virtual reality 
(VR), and others. It is expected that NextG networks will support very high data trans-
mission (more than 100 Gbps), ultra-low latency (milliseconds), and a high cellular 
traffic capacity (10 million devices per square kilometer) [ 1– 3]. Advanced communi-
cation technologies are key drivers to achieve these goals, which include millimeter 
wave (mmWave), massive multiple-input multiple-output (massive MIMO), and arti-
ficial intelligence (AI). In the literature, advanced communication technologies have 
been studied in [ 4– 8]. In frequency bands above 24 GHz, mmWave provides many 
advantages in terms of throughput, capacity, and latency. The advanced version of 
MIMO, i.e., massive MIMO, can also significantly increase the quality throughput 
and capacity of the radio link by using a group of antennas at both the transmitter 
and receiver sides. 

AI also plays an essential role in achieving these requirements to improve network 
applications’ efficiency, latency, and reliability [ 9]. AI has been applied to especially 
several NextG applications at the physical layer, including beamforming, channel 
estimation, spectrum sensing, intelligent reflecting surfaces (IRS), and others. The 
authors in [ 4] investigate the role of AI-based solutions in deploying and optimizing 
5G and beyond network operations. They stressed that NextG networks are different 
from current networks in terms of architecture, communication and computing tech-
nologies, and applications. The study [ 10] emphasized the contribution of AI-based 
solutions to NextG networks in terms of improving network performance and pro-
vided an extensive review of NextG networks using AI-based solutions, which focus 
on physical layer applications, including reconfigurable intelligent surface (RIS), 
massive MIMO, and multi-carrier (MC) waveform. These AI-based algorithms sig-
nificantly improve the overall system performance for NextG networks. 

On the other hand, AI-based algorithms brings security and privacy concerns. In 
the literature, there are several studies regarding this concern, e.g., model poisoning 
in the wireless research community is studied [ 11– 16]. The authors in [ 17] proposed 
a robust framework to detect adversarial attacks for industrial artificial intelligence 
systems (IAISs). According to the results, the framework can detect several adversar-
ial attacks, including DeepFool and fast gradient signed method (FGSM), with high 
accuracy and low delay. Since AI-enabled models could be vulnerable to adversarial 
attacks, AI-enabled models should be evaluated in terms of risk assessment, vul-
nerabilities, security and privacy concerns before deploying in the next-generation 
wireless communication networks.
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This book chapter provides a comprehensive review of security and privacy con-
cerns in the NextG network using AI-based solutions along with a potential use case. 
It also provides a brief description of widely used adversarial attacks and mitigation 
methods. The attacks include Fast Carlini & Wagner (C&W), Basic Iterative Method 
(BIM), Momentum Iterative Method (MIM), Projected Gradient Descent (PGD), 
and, Gradient Sign Method (FGSM), while mitigation methods include adversarial 
machine learning and defensive distillation. It also implements a potential use case, 
i.e., channel estimation, along with its vulnerability under adversarial attacks with 
and without the mitigation method. 

2 Next Generation Networks Architecture 

The next-generation networks (NextG or 5G and beyond) have been paying more 
attention from academia and industry to meet the demands of future applications, 
such as metaverse, mobile healthcare, autonomous cars, AR, VR, and many more. 
Significant improvements need to be performed in next-generation network archi-
tecture to meet requirements along with the driving force behind the evolution of 
wireless networks. Future applications have more rigid requirements in terms of data 
transmission and latency, which will force the limits of 5G networks. NextG networks 
are expected to enhance information transmission performance, i.e., up to 1 Tbps data 
rate and ultra-low latency (microseconds). One goal of NextG is to provide global 
coverage through satellite communication networks and underwater communications 
[ 18]. It is also expected NextG will offer energy-efficient and seamless wireless con-
nections in a global scope as well as guarantee future application requirements, such 
as ultra-high throughput and ultra-low latency. The NextG architecture is also differ-
ent from the traditional one, i.e., combined terrestrial and non-terrestrial networks, 
integration of fully AI-based models for all layers, and enhanced network protocol 
stack framework. Big data and AI will play a crucial role in NextG networks to 
meet the requirements in terms of efficient network management, distributed com-
puting, resource sharing, and security and privacy concerns. The authors in [ 19] 
proposed an architecture to tackle these challenges. Figure 1 derived from [ 19] rep-
resents the NextG network architecture. The architecture consists of three layers, 
i.e., (1) Resource level, (2) Network function level, and (3) Service and applica-
tion level. The first layer (resource level) provides the main resource for the upper 
layers, including communication, distributed cloud data, and computing resources. 
The second level (network function level) manages the resources and conducts the 
network functions for the service and application levels. The third level (service and 
application level) can generally be classified into two categories: (1) vertical ser-
vices focusing on specific applications, e.g., vehicles or drones, and (2) horizontal 
services crossing different applications, e.g., reporting and tracking the location of 
users and their devices. This architecture also consists of four planes: (1) Sharing and 
cooperation plane, (2) Data collection plan, (3) AI plane, and (4) Security plane. The 
sharing and cooperation plane is the most important plane to address the decentral-
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Fig. 1 Conceptual NextG network architecture [ 19] 

ization and interoperability issues. It connects the other three planes and facilitates 
the sharing among multiple parties. The data collection plane is responsible for data 
collecting from the user and network devices as well as storing them to be used for 
specific purposes, such as network operation and optimization. The AI plane is the 
other important plane in this architecture. It provides AI-enabled capabilities for the 
security plane, resource level, network function level, and service and application 
level on demand. The last plane is the security plane, which provides native security 
support for networks, services, and applications. 

3 CyberSecurity Framework for Next Generation 
Networks 

Below is a proposed framework alongside some of widely used cybersecurity frame-
works available. These frameworks help enterprises manage potential cyber risks 
efficiently and allow them to plan for future detection of cyber threats or investiga-
tion of security incidents during application and system development.



Security and Privacy Concerns in Next-Generation Networks … 209

3.1 Available Cybersecurity Frameworks 

3.1.1 ML Cyber Kill Chain 

Lockheed Martin created the Cyber Kill Chain methodology to support organizations 
understand and assess the risks they face from a potential cyber-attack. There are 
seven phases in a typical cyber-attack. These phases are reconnaissance, weaponiza-
tion, delivery, exploitation, installation, command and control/actuation, and actions 
on objectives. Organizations can assess the potential effect of an effective cyber-
attack on their operations by understanding the activities that occur during each 
cyber-attack phase. 

3.1.2 MITRE ATT&CK 

MITRE ATT&CK is designed to catalog the tradecraft and behaviors of adversaries to 
identify their activities better and generate an effective response strategy. By provid-
ing a common language and framework, organizations can more easily communicate 
their security processes and make attackers’ techniques and tactics more identifiable. 

3.1.3 MITRE Atlas 

MITRE Atlas is a framework that includes information on how attackers might try 
to harm AI systems so that people can be better prepared to defend against those 
attacks. It is similar to MITRE Att&ck, which is a general framework for regular 
systems, not just AI systems. MITRE Atlas is a resource that includes information 
from security groups and academic research. 

3.2 Proposed Framework 

Our study aims to address security threats and possible solutions by matching the 
Cyber Kill Chain and MITRE Atlas frameworks to catch and mitigate the vulnera-
bilities of AI models. These models will be a new part of potential AI-based 5G and 
beyond networks. Figure 2 illustrates 3 stages of the cyber kill chain for AI-based 
applications. 

The first stage of creating an adversarial AI model is to gather information about 
the AI model we want to exploit. This can be done by finding datasets from publicly 
available sources like the weights and hyperparameters used in the training process. 
After this, the adversary can make their own replica of the AI model to make malicious 
inputs. The second stage is to build the replicated model, find its vulnerabilities, and 
generate malicious pilot signals that will be used as inputs to the target AI model. 
The third stage is to execute the target AI model with the malicious input signals.
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Fig. 2 Cyber kill chain for AI-based applications of 6G wireless communication networks 

This will make the AI model fabricate incorrect outcomes, which the attacker can 
use to exploit the AI model and install a backdoor. With the backdoor, the adversary 
will take control of the AI model and the target system. 

The tactics and methodologies described in the adversarial tactics and method-
ologies section of MITRE Atlas will take place in the Cyber kill chain stages. 

(i) The reconnaissance phase is when the adversary gathers information about the 
organization and its networks, systems, and employees. This information can 
create a profile of the organization, employees, network, and procedures. Social 
engineering attacks can be made with this information by the attackers. 

(ii) The weaponization phase occurs when the attacker utilizes the information 
collected during the reconnaissance phase to develop the tools they need to 
successfully make an attack against the organization. The adversary will use 
the information collected during the previous stage to choose the best deliv-
ery instrument to get the information it wants to deliver to the organization’s 
IT infrastructure. The adversary can then concentrate on the delivery phase, 
using the same tools to provide information or files to the organization’s IT 
infrastructure. 

(iii) The attacker must make use of a vulnerability in the organization’s network 
once the information has been provided. The information gathered during the 
reconnaissance phase can be used to identify the software operated by the 
organization, operating systems, and applications running on the organization’s 
systems. 

(iv) After the adversary has gathered information about the target organization dur-
ing the reconnaissance phase, they will use this information to exploit the 
organization’s network during the exploitation phase. The adversary will iden-
tify the best software, operating systems, and applications to exploit to install 
malicious software on the organization’s systems. This malicious software will 
allow the adversary to manipulate or listen in the organization’s network. 

(v) The command and control phase refers to when the attacker uses the mali-
cious program installed during the exploitation phase to place further mali-
cious software on the organization’s systems. This allows them to control the 
organization’s systems.
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(vi) The attacker may utilize the malicious program placed in the course of the 
exploitation phase to reach the organization’s systems and loot information 
during the actions on objectives phase. They may also interfere with the orga-
nization’s network. 

The cyber kill chain is a process that details the steps an adversary takes to launch a 
successful cyberattack. Once the adversary has completed all the process steps, the 
organization’s ability to employ its network can be affected. 

3.3 Adversarial Machine Learning Attacks 

There are two main types of adversarial machine learning models: the attacker’s and 
the user’s models. The attacker’s goal is to manipulate the output of the user’s model 
so that the attacker can benefit from the user’s perspective [ 20]. Adversarial machine 
learning attacks are effective if the attacker accesses the training data. However, 
the proposed scheme is robust to the perturbations of the adversarial samples of the 
training data, which in turn makes the proposed scheme robust to adversarial machine 
learning attacks. 

For example, to attack a deep learning model that predicts beamforming vectors, 
the attacker first needs to find a noise vector σ ∈ Ck that will maximize the loss 
function  output. The attacker then uses the lowest possible budget to corrupt the 
inputs, which increases the distance (i.e., mean squared error (MSE)) between the 
model’s prediction and the real beam vector. Therefore, σ is calculated as 

σ ∗ = |σ |p ≤  arg max  (ω, x + σ, y) (1) 

where y ∈ Rm is the label (i.e., beamforming vectors), and p is the norm value, and 
it can be 0, 1, 2, ∞. 

There are two primary methods of constructing adversarial examples: content-
based and gradient-based [ 21]. Gradient-based attacks were chosen due to their 
simplicity and variety. Gradient-based attacks use the gradient of the loss function 
to generate adversarial examples, which are then incorrectly labeled. 

(i) Fast Gradient Sign Method (FGSM): FGSM tries to fool a neural network by 
changing the data given a little bit. The idea is to add noise to the data in the 
same direction as the loss function. The noise is controlled by a small number, 
epsilon. This makes the data look slightly different to the neural network, but 
enough to fool it. 

xadv = x +  · sign(∇x (ω, x, y)) (2) 

(ii) Basic Iterative Method (BIM): The BIM attack is a variation of the FGSM 
single-step attack. It works by iteratively updating adversarial examples multi-
ple times, with each value calculated in the neighborhood of the original input. 
The selected input with a smaller step size is manipulated by BIM iteratively.
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Fig. 3 Typical adversarial machine learning-based malicious input generation 

FGSM is applied multiple times to a small step size alpha instead of taking one 
significant step, i.e., epsilon/alpha. By doing this, BIM creates less distortion 
while still fooling the neural network. However, this increases the computing 
cost and complexity. The BIM can be explained using the following equation. 

xadv 
0 = x, xadv 

N+1 = Cli  px, {xadv 
N +  · sign(∇x (ω, xadv 

N , y))} (3) 

(iii) Projected Gradient Descent (PGD): PGD creates adversarial examples by start-
ing the search at random points in a specified region and running several iter-
ations to find an example that maximizes loss, which will be similar to a real 
input but different enough to trip up the ML model. PGD can generate more 
powerful attacks than BIM and FGSM. However, the size of the perturbation is 
kept smaller than a specified value, referred to as epsilon, so that the adversarial 
example is still realistic and isn’t just a random input. 

(iv) Momentum Iterative Method (MIM): MIM is another derivation of the BIM 
adversarial attack that improves the convergence of BIM by introducing a 
momentum term and integrating it into iterative attacks [ 22]. The step size 
of the  also determines the attack level of MIM as an attack parameter. MIM 
is better at finding the minimum amount of change needed to fool a model than 
BIM and can do so more quickly. 

A characteristic adversarial ML-based malicious input generation process is indi-
cated in Fig. 3. 

3.4 Mitigation Methods for Wireless Networks 

The 5G and future generations of networks relying on DL are vulnerable to adversarial 
machine learning attacks. Adversarial training and defensive distillation are two 
possible methods of mitigating these attacks and protecting wireless networks.
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3.4.1 Adversarial Training 

The goal of iterative adversarial training is to reduce the adversarial inputs’ impact 
on the training process. The DL model is first trained with the normal training data 
in iterative adversarial training. Then, the DL model is trained with the adversarial 
examples using the correct labels. The DL model is trained multiple times with normal 
and adversarial examples. However, iterative adversarial training is not practical. To 
increase the robustness of the victim model, it must train against all the different 
attack types and parameters which will take a quite long time. 

The pseudo-code of adversarial training is shown in the algorithm 1. 

Algorithm 1 Iterative adversarial training-based mitigation 
Input h: vulnerable model, Ω: attacks, ||: epsilon values, xtrain : training data, ytrain  training 

data output , xtest  : test data, ytest  : test data output 
Output ĥ: robust model 

1: for  ∈ || do {For each epsilon budget} 
2: for attack ∈ Ω do {For each epsilon budget} 
3: xadv ← attack(xtrain,  )  {Generate malicious inputs with attack and  budget.} 
4: xadv_train  ← x

U
xadv {Merge newly created malicious inputs xadv and xtrain  } 

5: h. f i t  (xadv_train, ytrain  ) {Re-train the model h with new training data} 
6: end for 
7: end for 

3.4.2 Defensive Distillation 

Papernot et al. [ 23] proposed defensive distillation technique as an adversarial ML 
defense method against attacks. In knowledge distillation, a larger model (the teacher) 
is used to train a smaller model (the student). The teacher model is first trained with 
a high-temperature parameter to soften the softmax probability outputs of the DNN 
model. The student model is then trained using the outputs of the teacher model. 
The goal is for the student model to learn the knowledge of the teacher model but 
be smaller and faster. Equation 4 shows the modified softmax activation function as 
follows: 

pi = exp( zi T )∑
j exp( 

zi 
T ) 

(4) 

where pi is the probability of i-th class and zi are the logits. The teacher model is 
used to predict each sample to acquire the training data’s soft labels which are used 
to train the student model. Figure 4 shows the overall steps for this technique. 

The beamforming prediction model (i.e., student model) is drawn in Fig. 4 which 
is trained and used in base stations to protect against adversarial machine learning 
attacks. The student model inherits the training parameters after the teacher model’s
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Fig. 4 Defensive distillation 

training as a first step. In the second step, the student model is trained using the 
teacher models parameters, and the loss function is created with the actual labels 
and predictions of the student model. This technique allows preserving the teacher 
model’s knowledge to be compressed and transferred to the student model. And as a 
last step, student model is deployed to the base stations. 

A technique called defense distillation can be used to reduce the effects of gradient-
based untargeted attacks. This technique lowers the gradients to zero, making the 
standard objective function impractical. 

4 Potential Use Cases 

In this section, we will introduce several potential use cases including MIMO beam-
forming, spectrum sensing, channel estimation and IRS. 

4.1 MIMO Beamforming 

Signal to noise ratio is one of the key metrics for a channel that is affected by signal 
fading. Having diverse sources for a signal considerably reduces the error rate as 
each of the signal paths is not affected similarly. There are three ways to increase the 
diversity of the signals, i.e., Time diversity, Frequency, and space diversity. First, two 
uses use various times and frequencies, such as channel coding and OFDM. Space 
diversity benefits from the distribution of multiple antennas to capture different radio 
paths.
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MIMO is one of the widely used RF technology that provides increased link 
capacity and spectral efficiency. MIMO systems utilize multiple antennas for both 
the receiver and transceiver ends to handle more data simultaneously. 

Wireless signals can take various paths during the transmission between transmit-
ter and receiver. Also, the change in the location of any antennas will create additional 
paths. This multipath propagation nature of the signal is caused by the objects along 
the transmission path. Previously, multipath propagation is seen as interference that 
causes signal degradation. 

However, MIMO systems benefit from multipath propagation, where each addi-
tional signal path is considered as an additional channel to transmit additional data 
to the receiver. This is one of the main reasons that MIMO systems provide a robust 
link between the two ends. That is why the reliability of the MIMO systems depends 
on multipath propagation. 

4.2 Spectrum Sensing 

The electromagnetic spectrum that ranges 1 Hz to 3 THz is called the radio spectrum. 
It is one of the keys and limited resources that is not fully utilized due to region-based 
regulations and technical hardships. The majority of the existing radio spectrum is 
allocated to high-demand service providers, such as cellular communication, TV, and 
radio broadcasting. However, According to the report released by the Federal Com-
munications Commission (FCC), there is still an underutilized spectrum, such as the 
licensed 0–6 GHz band having the 90% of underage [ 24, 25]. To increase the utiliza-
tion of the limited spectrum, FCC recommends the use of free bands by a secondary 
user(s) until the primary user needs it. That’s why “spectrum sensing” processes are 
developed to check specific bands to detect non-occupied frequency bands. 

Spectrum sensing is also one of the notable research fields in cognitive radio 
(CR). CR is an intelligent software-based wireless communication concept that is 
introduced by Mitola in 1999 [ 26]. CR has a dynamic structure that senses and learns 
the wireless channels in its vicinity. It will then adopt the operating parameters to 
steer clear of user interference and congestion. 

There has been a constant interest in spectrum sensing and related fields in the 
literature. For example, the study [ 27], provides a comprehensive survey of spectrum 
sensing for CR. Enabling algorithms, challenges, sensing standards, approaches, and 
cooperative and multi-dimensional spectrum sensing is presented. Also, the study 
[ 28], provides detailed spectrum sensing techniques such as the optimal likelihood 
ratio test, energy detection, matched filtering detection, cyclostationary detection, 
eigenvalue-based sensing, joint space-time sensing, and robust sensing methods. 

Even though there are many studies and proposed methods for spectrum sensing, 
spectrum sensing is still subject to research because of the changeable nature of 
wireless communication channels, complexity, interferences, and noise in commu-
nication. AI methods would be a good alternative solution for spectrum sensing to 
deal with communication’s complexity and changeable nature.
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4.3 Channel Estimation 

Transmitters and receivers utilize various mediums or channels to exchange infor-
mation. In the case of wireless communication, a channel is simply the band of Radio 
Frequency that is used for the transmission of the signals. The characteristic and state 
of the channel is called channel state information (CSI). The transmitted signal (x(t)) 
is exposed to three main distortions to some degree, i.e., attenuation by a factor of 
h0, delay by a certain time τ0 and noise, depending on the properties of the channel. 
The delay of τ0 based on the electromagnetic wave’s speed and attenuation h0 is 
determined by the transmitter/receiver gains, frequency, and propagation medium. 
To transmit a signal from one point to another point meaningfully, the received signal 
(y(t)) needs to be decoded correctly. The first step to decode a signal is to understand 
the CSI such that the added noise and distortion can be rectified at the receiver. This 
process is called channel estimation. The signal at the receiver can be shown as: 

y(t) = h0 ∗ x(t − τ0) (5) 

Scattered and reflected signals also reach the receiver with various delays and 
attenuation. These are also summed on the receiver side. Moreover, the mobility 
of the communication sides affects the attenuation ht l and delay τ t l of the CSI by 
introducing a doppler frequency shift. 

y(t) = 
l∑

l=0 

ht l ∗ x(t − τ t l ) (6) 

where l is the specific path/tap at a time. 
To fully utilize the capacity of the channel and increase the overall performance 

of the information transmission, channel estimation is one of the critical topics in 
wireless communication. 

4.4 Intelligent Reflecting Surfaces (IRS) 

IRS has been recognized as valuable ingenious technology [ 29]. This newly emerged 
technology could be perceived as the extension of massive MIMO [ 30]. It will enable 
increased data rate and channel capacity that NextG wireless communication requires 
without the vast amount of energy consumption and complexity of massive MIMO 
applications. 

An IRS composes of a large number of predominantly passive elements, i.e., 
micro-strip type small antennas. Each of these elements’ properties, such as load 
impedance, could be tunable by PIN diodes or varactors. PIN diodes are turned on or 
off to alter the phase-shift difference of IRS elements with different load impedances. 
Varactors’ bias voltage is another parameter that can be utilized to tune phase shift by
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altering the load impedance of each element. The reflected signals amplitude is also 
changed with the variable resistor’s resistivity. By controlling the load impedance and 
resistivity of each element, different reflection coefficients are achieved individually. 

If the phase shifts of individual elements are controlled in a way that the reflected 
signals are added constructively or constructively, the signals could be directed at 
certain guidance. An IRS controller is responsible for receiving the reconfigura-
tion request communication. A field-programmable gate array (FPGA) could be 
employed to implement the IRS controller. Besides the passive elements, a few 
active IRS elements are also included in some of the IRS architectures. These active 
elements gather two orthogonal uplink communication links from both transmitter 
and receiver to predict the channel vectors and environment descriptors. AI-based 
techniques are adopted to utilize active elements as well. 

5 A Potential Use Case: AI-Enabled Channel Estimation 
Model 

In this section, we will take AI-based channel estimation modelling as a specific use 
case via presenting the dataset and experimental results. Experimental results cover 
the vulnerability analysis of the AI-enabled models to adversarial machine learning 
attacks with and without the selected mitigation method, i.e., defensive distillation. 
The model vulnerability will be evaluated through the MSE performance metric. 
MSE measures the average squared difference between the actual and predicted 
values. A high MSE score represents a high prediction error. 

5.1 Dataset Preparation 

In recent years, several network simulation tools have provided a wide range of 
examples for next-generation network communications systems, including NS3, 
OMNET++, NetSim, RemCom, MATLAB, and many more [ 31]. These tools are 
usually used for evaluating the performance of communication networks or dataset 
generation. In this study, a reference example in MATLAB 5G Toolbox [ 32], i.e., 
“Deep Learning Data Synthesis for 5G Channel Estimation,” is selected to obtain 
datasets for DL-based models. It also allows to customize and generate communica-
tion components, such as waveforms, antennas, and channel models. 

Channel estimation model is created with a single-input single-output (SISO) 
antenna by using demodulation reference signal (DM-RS) and the physical downlink 
shared channel (PDSCH) to generate 256 training datasets. Each dataset presents 
8568 data points, i.e., 612X14X1 or 612 subcarriers, 14 OFDM symbols, and 1 
antenna. Then, each data point is converted to a real-valued 612-14-2 matrix, i.e., 
from a complex (real and imaginary) 612-14 matrix. It is required to provide real
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Table 1 The channel estimation parameters with values 

Channel parameter Value Channel parameter Value 

Delay profile TDL-A/B/C/D/E Modulation 16QAM 

Delay spread 1–300 ns Transmit antenna 1 

Doppler shift 5–400 Hz Receive antenna 1 

NFFT 1024 Transmission direction Downlink 

Sample rate 30,720,000 Polarization Co-Polar 

Symbols per slot 14 Windowing 36 

Slots per subframe 2 Slots per frame 20 

inputs instead of complex ones into the convolutional neural network (CNN) model 
used in the reference model during the training process. This is because the resource 
grids include complex data points, i.e., real and imaginary, in the channel estimation 
scenario. However, the CNN model handles the resource grids as 2-D images with 
real numbers. Finally, 4-D arrays (612-14-1-2N) are created from the training dataset 
with N as the number of training examples (256). In this study, 80% of the dataset is 
used for training, while 20% is used for testing. 

For each dataset, a new channel characteristic is generated based on selected 
channel parameters and tuned through MATLAB 5G toolbox. Table 1 below provides 
the channel estimation scenario parameters with values. 

5.2 Experimental Results 

This section investigates the experimental results of an AI-powered channel estima-
tion model against adversarial machine learning attacks. These results are represented 
in two ways: (1) line plots showing the impact of each adversarial machine learning 
attack (FGSM, MIM, BIM, and PGD) on the undefended and defended model per-
formance, i.e., MSE, and (2) the table showing the performance (i.e., MSE) of the 
defended and undefended models for each adversarial attack. Figures 5 and 6 show 
the line plots, while Table 2 shows the prediction performance results of the defended 
and undefended AI-powered channel estimation models against adversarial attacks. 

Figure 5 shows MSE values for the FGSM, MIM, BIM, and PGD attack methods 
for undefended models under attack powers from  = 0.01 to  = 3.0. MSE values 
are close to each other for attack methods with a low power attack, i.e.,  <  0.5. 
However, these values dramatically increase along with higher power attacks ( >  
0.5). For example, MSE values can reach from 1.51, 153 to 10.69, 9.32 for BIM 
and PGD. The case is different for FGSM and MIM attacks, i.e., MSE values are 
low compared to BIM and PGD. The reason is that FGSM and MIM attacks are 
simple types of attacks, and then MSE values do not dramatically increase with 
high attack power. According to the results, the AI-powered models are exposed to
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Fig. 5 MSE comparison for undefended channel estimation model under adversarial attacks 

adversarial attacks, especially PGD and BIM, and MSE can be very high under a 
heavy adversarial attack. Fortunately, the mitigation methods (such as adversarial 
training and defensive distillation) can significantly contribute to improving the AI-
powered model’s robustness against adversarial attacks. In this study, the defensive 
distillation method is used as a mitigation method. The model performance is shown 
in Fig. 6 after applying the mitigation method for the selected adversarial attacks and 
attack powers in terms of MSE. According to Fig. 6, defended AI-powered models 
are still vulnerable to adversarial attacks. However, the models’ robustness is better 
under adversarial attacks. Models can resist high attack power. For example, MSE 
values can go from 1.51, 1.12, 1.22, and 1.51 to 2.1, 1.03, 1.79, and 2.26 with 
the lowest attack power ( = 0.1) and the highest attack power ( = 3.0) for  BIM,  
FGSM, MIM, and PGD, respectively. The impact of the mitigation method on the 
model performance is different for some attack types. It has a high impact on the 
BIM and PDG attacks. This is because they are more complex attacks, and the MSE 
values can go very high under these attacks. As expected, the change in MSE is more 
compared to simple type attacks. For FGSM and MMI, the mitigation method has 
almost no impact on the models’ performance under adversarial attacks. 

Table 2 shows the impact of attack power ( ) on undefended and defended models’ 
performance, i.e., MSE, for each adversarial attack in detail. The value of  ranges 
from 0.1 to 3.0. The higher value of  means a powerful attack. The lowest MSE 
value is 1.12 (under FGSM attack), and the highest MSE value is 10.69 (under BIM 
attack) for defended models. On the other hand, the lowest MSE value is 1.12 (under 
FGSM attack), and the highest MSE value is 2.26 (under PGD attack). MSE values 
dramatically go down from 10.69/9.32 to 2.10/2.26 for BIM/PGD after the mitigation 
method is applied. It is clear that the mitigation method significantly improves the 
model’s robustness, especially BIM and PGD. However, it cannot be said for FGSM 
and MIM attacks. According to Table 2, MSE values do not change as expected; they 
look closely to undefended and defended models, e.g., MSE values are 1.02 and 1.03 
for undefended and defended models under an FGSM attack.
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Fig. 6 MSE comparison for defended channel estimation model under adversarial attacks 

Table 2 MSE results 

Defended Undefended

 BIM FGSM MIM PGD BIM FGSM MIM PGD 

0.1 1.510613 1.121487 1.223872 1.513761 1.517611 1.123785 1.236382 1.534755 

0.2 1.508010 1.121527 1.140600 1.468598 1.582042 1.123365 1.171341 1.566335 

0.5 1.277997 1.121636 1.221769 1.646010 1.575610 1.122185 1.319650 2.164850 

0.8 1.520606 1.031109 1.062509 1.520017 2.553312 1.029960 1.143569 2.482308 

1.0 1.146857 1.109705 1.206056 1.617474 2.340146 1.108166 1.388278 2.982269 

1.1 1.458215 1.031218 1.139865 1.580210 3.158410 1.029011 1.291160 3.105877 

1.4 1.254450 1.121870 1.279377 1.603026 3.444848 1.119346 1.567613 3.878579 

1.7 1.562587 1.124703 1.360767 1.563201 4.917432 1.121440 1.695858 4.451830 

2.0 1.424730 1.160261 1.351300 1.744564 5.372514 1.156977 1.569844 5.602715 

2.3 1.538028 1.122384 1.544590 1.869615 6.512692 1.117764 1.955341 6.778334 

2.6 1.679046 1.125183 1.597183 2.076902 7.816463 1.120118 1.830526 7.618081 

2.9 1.834858 1.032794 1.741633 2.342456 9.272282 1.026461 1.961652 9.940795 

3.0 2.105044 1.032966 1.791616 2.264387 10.693936 1.026504 2.031071 9.321798 

5.3 Observations 

This study investigates undefended and defended AI-powered channel estimation 
models in NextG networks in terms of their vulnerabilities against adversarial attacks, 
i.e., FGSM, MIM, BIM, and PGD. Defensive distillation, as the migration method, 
is applied to the defended models. The overall results show that AI-powered models 
are vulnerable to adversarial attacks, and models’ vulnerabilities can be significantly 
reduced for some types of attacks, i.e., to be improved the models’ robustness. Obser-
vations can be given as follows: 
1: AI-powered channel estimation models are vulnerable to adversarial attacks, espe-
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cially, under a high attack power ( >  0.5) for BIM and PDG. 
2: The attack power ( ) has no impact on some adversarial attacks, i.e., FGSM and 
MIM. 
3: The selected mitigation method can significantly increase the model robustness, 
especially for BIM and PGD. 
4: The strongest attack is BIM, while the weakest is FGSM for undefended models. 
5: The strongest attack is PDG, while the weakest is FGSM for defended models. 

6 Security and Privacy Concerns 

6.1 Homomorphic Encryption 

Homomorphic encryption is a cryptosystem that enables computation on ciphertexts, 
producing an encrypted result that, when decrypted, matches the result of the opera-
tions as if they had been performed on the plaintext. The definition of homomorphic 
encryption (HE) scheme is given in [ 33] as follows: 

Definition 6.1 A homomorphic encryption scheme consists of a randomized 
polynomial-time algorithm, E , which takes as input a security parameter λ and a 
message m ∈ M and outputs a ciphertext c = E(1λ , m). The ciphertext space C is a 
polynomial-time deterministic function of λ. There is a randomized polynomial-time 
algorithm D, which takes as input a security parameter λ and a ciphertext c ∈ C , and 
outputs a message m ∈ M , such that m = D(1λ , c), with probability at least 1 −  (λ). 

There are several homomorphic encryption schemes proposed in the literature, 
such as Paillier cryptosystem [ 34], ElGamal encryption scheme [ 35], Goldwasser-
Micali (GM) scheme [ 36], Boneh-Goh-Nissim (BGN) scheme [ 37], and Paillier-
HOM scheme [ 33]. Among these schemes, Paillier, ElGamal, and GM schemes are 
additive homomorphic and can support only simple operations on ciphertexts. On 
the other hand, BGN and Paillier-HOM are multiplicative homomorphic and can 
support more complex computations on ciphertexts. 

A homomorphic encryption scheme is a pair of algorithms, Enc and Dec, with 
the following properties: 

(i) A polynomial-time randomized algorithm Enc which takes as input a security 
parameter λ ∈ N and a message m ∈ M and outputs a ciphertext c = Enc(λ, m) 
such that c ∈ C . 

(ii) A polynomial-time randomized algorithm Dec which takes as input a security 
parameter λ ∈ N and a ciphertext c ∈ C and outputs a message m ∈ M such 
that m = Dec(λ, c) with probability at least 1 −  (λ). 

Additively homomorphic and multiplicatively homomorphic are the most common 
encryption types.
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Table 3 Computational cost and security of various HE schemes 

Additively homomorphic schemes 

Scheme Security Runtime Key Ciphertext 

Paillier [ 34] IND-CPA O(n6) O(n2) O(n2) 
ElGamal [ 35] IND-CPA O(n3) O(n2) O(n2) 
GM [ 36] SEM-IND-CPA O(n3) O(n2) O(n2) 

Multiplicatively homomorphic schemes 

Scheme Security Runtime Key Ciphertext 

BGN [ 37] IND-CPA O(n4) O(n3) O(n3) 
Paillier-
HOM [ 33] 

IND-CPA O(n6) O(n2) O(n2) 

Definition 6.2 Homomorphic encryption E is additively homomorphic if 

(i) E(1λ , m1 + m2) = E(1λ , m1) + E(1λ , m2) 
(ii) E(1λ , m) = E(1λ , −m) 

Definition 6.3 Homomorphic encryption E is multiplicatively homomorphic if 

(i) E(1λ , m1m2) = E(1λ , m1) × E(1λ , m2) 
(ii) E(1λ , m) = E(1λ , 1/m) 

Homomorphic encryption has several applications in distributed systems, cloud 
computing, data mining, and database security. In these applications, the data is stored 
in the cloud, and the data owner wants to keep its data private. The data owner can 
encrypt the data and store it in the cloud. The cloud user can perform computations 
on the encrypted data, and the result will also be encrypted. The data owner can 
decrypt the result and get the required information (Table 3). 

6.2 Security of Homomorphic Encryption 

Many HE schemes have been proposed in the literature in the past decade. The 
security of these schemes is analyzed under different security models. The security 
of HE schemes can be categorized under three different security models: 

(i) Partial homomorphic encryption 
With partial homomorphic encryption, the user can perform only limited opera-
tions on the ciphertext. In [ 38], Rivest et al. proposed a scheme that can support 
only a limited number of multiplications in the ciphertext. In this scheme, a 
ciphertext can be decrypted only if all the multiplications in the ciphertext are 
performed. 

(ii) Limited homomorphic encryption 
With limited homomorphic encryption, a ciphertext can be decrypted after any
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number of operations are performed on the ciphertext. However, the number 
of operations that can be performed on the ciphertext is limited. 

(iii) Fully homomorphic encryption 
With fully homomorphic encryption, a ciphertext can be decrypted after any 
number of operations are performed on the ciphertext. In [ 33], Gentry, Sahai, 
and Waters proposed a scheme that supports both multiplications and addition in 
the ciphertext. In this scheme, a ciphertext can be decrypted after any number of 
multiplications and divisions are performed in the ciphertext. In [ 39], Brakerski 
and Vaikuntanathan proposed a scheme that supports only a limited number of 
multiplications in the ciphertext. In this scheme, a ciphertext can be decrypted 
after any number of multiplications are performed in the ciphertext. 

The global model wt can be trained on the aggregated dataset ∪m 
i=1 Di using any 

machine learning algorithm. 

6.3 Federated Learning 

In this section, we briefly describe the federated learning (FL) framework. We refer 
to [ 40, 41] for more details. 

Definition 6.4 (FL model) A federated learning (FL) model is a tuple 
M = ({Mi }N i=1, {wi }N i=1, {Di }N i=1, w,  {Ri }N i=1), where 

1. Mi is the model trained on the local dataset Di at client i , 
2. wi is the weight of client i , 
3. Di and D are the local and global datasets, respectively, 
4. w is the global model trained on the global dataset D, 
5. Ri is the loss of client i on the global dataset D. 

In the FL framework, the global model w is trained by optimizing the following 
objective: 

min 
w 

1 

N 

N∑

i=1 

wi Ri (w, Di ). (7) 

The objective function (7) is minimized by training individual models Mi on local 
datasets and aggregating the models by averaging the weights. FL is an iterative 
approach to finding the best global model w. In each iteration, the client trains the 
individual model Mi on the local dataset Di and sends the weights wi to the central 
server. The server aggregates the weights and updates the global model w. The  
process is repeated until the global model converges. The FL framework has several 
advantages compared to traditional learning approaches, including improved privacy 
and security and lower communication and computational costs.
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7 Summary 

The NextG projects have been initiated to support a wide range of diverse applica-
tions, from AR/VR, metaverse, mobile healthcare, autonomous cars to digital twins 
and many more, by both the academia and the industry integrated with advanced 
cloud communication and data, computing, AI technologies in recent years. It has 
no doubt that AI is the most important tool in terms of significant contribution to all 
layers in NextG, i.e., from the physical to the application layer. On the other hand, 
the security and privacy concerns for NextG applications using AI-enabled solu-
tions have not been fully addressed due to its complexity and multidisciplinary. This 
book chapter focuses on the AI-enabled applications on the physical layer of NextG 
networks, including beamforming, channel estimation, spectrum sensing, and IRS, 
and intends to investigate the vulnerability of AI-enabled channel estimation models 
under the selected adversarial attacks, such as FGSM, MIM, BIM, and PGD, with 
and without the selected mitigation (defensive distillation). According to the results, 
the AI-enabled channel estimation model is vulnerable to adversarial attacks. On 
the other hand, mitigation methods can significantly improve the performance and 
robustness of AI-enabled models under adversarial attacks. 
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