
Token Trail Semantics – Modeling Behavior
of Petri Nets with Labeled Petri Nets

Robin Bergenthum1(&), Sabine Folz-Weinstein2, and Jakub Kovář3

1 Fakultät für Mathematik und Informatik, FernUniversität in Hagen, Hagen,
Germany

robin.bergenthum@fernuni-hagen.de
2 Lehrgebiet Softwaretechnik und Theorie der Programmierung, FernUniversität

in Hagen, Hagen, Germany
sabine.folz-weinstein@fernuni-hagen.de

3 Lehrgebiet Programmiersysteme, FernUniversität in Hagen, Hagen, Germany
jakub.kovar@fernuni-hagen.de

Abstract. There are different semantics for Petri nets. The behavior of a Petri
net is either its set of enabled firing sequences, the reachability graph, a set of
process nets, a valid partial language, its branching process, or any other known
semantics taken from the literature. Every semantics has different advantages in
different applications. Some focus on the set of reachable states and can model
conflicts well. Other focus on the control flow of actions and can directly specify
concurrency. Yet, every semantics has its drawbacks. State graphs explode in
size when there is concurrency. Sequential and partial languages explode in size
if there is conflict. Furthermore, all semantics use different concepts, definitions,
graphical representations, and related algorithms. In this paper, we introduce
token trails to define whether a labeled Petri net is in the language of another
Petri net. Using labeled Petri nets as a specification language, we show how to
faithfully model behavior including conflict and concurrency. Furthermore, we
prove that token trail semantics faithfully covers all other semantics of Petri nets
and, thus, serves as a kind of meta semantics.

Keywords: Petri nets � Labeled nets � Token trails � Semantics � Compact
tokenflows � Modeling behavior � Conflict � Concurrency

1 Introduction

Petri nets [1, 9, 10, 18, 20] have formal semantics, an intuitive graphical representation,
and can express conflict and concurrency among the occurrences of actions of a system.
Petri nets model actions by transitions, local states by places, and the relations between
actions and local states by arcs. We model a state of a Petri net by putting tokens in
places. A marked Petri net can change its state by firing a transition. A transition can
fire if every place in its pre-set is marked. If a transition fires, it consumes tokens from
its pre-set and produces tokens in its post-set. This firing rule is very intuitive and easy
to formalize. This surely is a big part of the success of Petri nets as a modeling
language and why we love Petri nets.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Gomes and R. Lorenz (Eds.): PETRI NETS 2023, LNCS 13929, pp. 286–306, 2023.
https://doi.org/10.1007/978-3-031-33620-1_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33620-1_16&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33620-1_16&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33620-1_16&amp;domain=pdf
https://doi.org/10.1007/978-3-031-33620-1_16


The firing rule is the core of every Petri net semantics. Although the firing rule itself
is simple, there are a lot of different semantics for Petri nets in the literature. There is
the sequential language of a Petri net, there are state graphs, partially ordered runs,
process nets, branching processes, prime event structures, and so on and so forth. Every
semantics has its own advantages and disadvantages in different applications. On the
one hand, every semantics is specialized, and we can choose the best fit for every
application. On the other hand, it is a mess of different definitions to choose from and
even if we choose the correct semantics there are drawbacks inherent to that choice.

For example, repeatedly processing the firing rule creates so called firing sequen-
ces. The set of enabled firing sequences is the language of a marked Petri net. This
language is very easy to handle but it is not able to specify concurrency. It is easy to
come up with a Petri net where we can fire two transitions in any order, but not
concurrently. Furthermore, a firing sequence cannot directly specify conflict. When
there is conflict, we need one firing sequence for every combination of options in every
conflict. Thus, even for a simple Petri net, the size of the language may be huge.

The set of all reachable states, together with the set of all transitions from one state
to another, is called the reachability graph of a Petri net. This semantics is still rela-
tively easy to handle. In contrast to firing sequences, these state graphs can very
conveniently express conflict, merging, and looping of sequences of actions. But again,
state graphs cannot express concurrency. Even worse, if there is concurrency there is
the so-called state space explosion where the number of global states grows expo-
nentially in the number of local states.

There are step sequences and state graphs based on multisets of transitions. These
semantics can specify concurrent sets of transitions but still, the number of global states
explodes just like in every other state graph. Furthermore, sequences of steps are rather
technical. Thus, it is neither easy nor intuitive to specify behavior using combinations
of sequences of steps.

To model concurrency, there are partially ordered runs [7, 15, 19, 22]. A run is a
firing sequence, but the sequence is a partial, not a total order. Thus, it is not sufficient
to a have sequences of global markings enabling transitions anymore. We need par-
tially ordered sets of local markings. These sets of markings are called compact
tokenflows [3]. Using runs we can easily model concurrent behavior, but just like for
firing sequences, it is not possible to directly specify conflict. Again, if there is conflict,
we need a run for every possible combination of options.

Compact tokenflows in runs abstract from the history of tokens. We can consider
labeled partial orders and regular tokenflows to include the history [16]. We can use so
called process nets to include the history and even distinguish individual tokens. Yet,
labeled partial orders and process nets have the same disadvantages as runs and
compact tokenflows.

We can extend runs and process nets with an additional conflict relation and get
prime event structures and branching processes [22]. These semantics can specify
concurrency but also merge identical prefixes of runs or process nets. Remark, we can
branch but not merge so that these structures fan-out and it is hard to keep track of the
relations between the different conflict-free sets of partially ordered nodes. Further-
more, they are not able to directly define looping behavior.

Token Trail Semantics – Modeling Behavior of Petri Nets 287



Altogether, we identify two major problems: Firstly, although the definition of a
Petri net is easy and clean, the different semantics are all over the place. Just to give one
example, the concepts of valid regular tokenflows, enabled cuts in runs, sets of enabled
step sequences, process nets, valid compact tokenflows, valid prime event structures,
and branching processes all define the same partial language for every Petri net. Yet,
there are these different definitions, proofs of their equivalence, different graphical
representations, and different algorithms in the literature. Wouldn’t it be nice to have
some easy to understand meta semantic covering them all? Secondly, it is still not
possible to come up with an intuitive and compact graphical representation of the
behavior of a Petri net if there is conflict and concurrency.

In this paper, to tackle these problems, we refer the reader to the first sentence of
this section. If there is conflict and concurrency, use Petri nets. We introduce token trail
semantics for Petri nets. Using token trails, we define whether a labeled Petri net is in
the language of another Petri net. To show that this is a valid and useful definition, we
prove that if a labeled net models a firing sequence, a state graph, or a run, the labeled
net is in the net language of a Petri net if and only if, the firing sequence, the state
graph, or the run is in the language of this Petri net as well. Thus, the language defined
by token trails will respect and cover all the above-mentioned semantics. Furthermore,
we prove that every Petri net is in its own net language. We show examples of how to
faithfully model behavior truly specifying conflict and concurrency generating readable
graphical representations of executions using general labeled nets. We show how to
calculate token trails and introduce a web-tool to demonstrate that token trails are a
simple yet very powerful semantics for Petri nets.

2 Preliminaries

Let N be the non-negative integers. Let f be a function and B be a subset of the domain
of f . We write f jB to denote the restriction of f to B. As usual, we call a function
m : A ! N a multiset and write m ¼ P

a2A m að Þ � a to denote multiplicities of elements
in m. Let m0 : A ! N be another multiset. We write m�m0 if 8a 2 A : m að Þ�m0 að Þ
holds. We denote the transitive closure of an acyclic and finite relation \ by \�. We
denote the skeleton of \ by \}. The skeleton of \ is the smallest relation / so that
/� ¼ \� holds. Let V ;\ð Þ be some acyclic and finite graph, V ;\}� �

is called its
Hasse diagram.

We model distributed systems by Petri nets [5, 9, 18, 20].

Definition 1. A Petri net is a tuple P; T ;Wð Þ where P is a finite set of places, T is a
finite set of transitions so that P\T ¼ ; holds, and W : P� Tð Þ [ T � Pð Þ ! N is a
multiset of arcs. A marking of P; T ;Wð Þ is a multiset m : P ! N. Let m0 be a marking,
we call N ¼ P; T;W ;m0ð Þ a marked Petri net and m0 the initial marking of N.

Figure 1 depicts a marked Petri net. We show transitions as rectangles, places as
circles, the multiset of arcs as a set of weighted arcs, and the initial marking as a set of
black dots called tokens.

288 R. Bergenthum et al.



For Petri nets there is a firing rule. Let t be a transition of a marked Petri net
P; T ;W ;m0ð Þ. We denote �t ¼ P

p2P W p; tð Þ � p the weighted pre-set of t. We denote
t� ¼ P

p2P W t; pð Þ � p the weighted post-set of t. A transition t can fire in marking m if
m� �t holds. Once transition t fires, the marking of the Petri net changes from m to
m0 ¼ m� �tþ t�.

In our example marked Petri net, transition A can fire in the initial marking. If A
fires, this removes one token from p1. Additionally, firing A produces a new token in
p2, two new tokens in p3, and a new token in p4. In this new marking transitions B and
C can fire. A is not enabled anymore, because there are no more tokens in p1. Firing
transition B will enable transition X and transition D. Firing transition C will disable
transition X.

Repeatedly processing the firing rule of a Petri net produces so-called firing
sequences. These firing sequences are the most basic behavioral model of Petri nets.
For example, the sequence ABXCBD is enabled in the marked Petri net of Figure 1.
The sequence ACBD is another example. Let N be a marked Petri net, the set of all
enabled firing sequences of N is the sequential language of N.

Another formalism to model the behavior of a Petri net is the reachability graph.
A marking is reachable if there is a firing sequence that produces this marking. The
reachability graph of a marked Petri net N ¼ P; T;W ;m0ð Þ is a tuple R; T;Xð Þ where R
is the set of reachable markings of N, T is the set of transitions of N, and X (called
transitions as well) is a set of triples in R� T � R so that m; t;m0ð Þ is in X if and only if
t is enabled in P; T ;W ;mð Þ, and firing t in m leads to the marking m0.

We call a tuple R0; T 0;X 0; ið Þ a state graph enabled in N if there is an injective
function g:R0 ! R, g ið Þ ¼ m0, T 0 	 T , 8 m; t;m0ð Þ 2 X 0 : g mð Þ; t; g m0ð Þð Þ 2 X, and for
every m0 2 R0 there is a directed path from i to m0 using the elements of X 0 as arcs.
Roughly speaking, every node of a state graph relates to a reachable state, we don’t
have to include all transitions and states if every node can be reached from the initial
node. Thus, a state graph is kind of a prefix of a reachability graph. We call the set of
enabled state graphs the state language of N.

A

C

X

B

D

Fig. 1. A marked Petri net.

Token Trail Semantics – Modeling Behavior of Petri Nets 289



Figure 2 depicts a state graph modeling the behavior of the marked Petri net
depicted in Figure 1. The state graph has 16 states and 18 transitions labeled with
transitions of the Petri net. The state graph describes the Petri nets behavior as follows.
At first, we must fire transition A. Then, we have some choices. We can execute the
loop BXBXB until place p3 of the Petri net is empty, or we can fire transition C at any
time during this loop. As soon as we fire C, we disable transition X by removing a
token from place p5. If there is an occurrence of transition B after the last occurrence of
transition X, we can fire transition D once.

The state language includes firing sequences as the set of all paths through the
graphs. In this sense, state graphs can merge firing sequences on shared states and can
contain loops. Yet, these graphs are not able to directly express concurrency.

Firing A in the initial marking depicted in Figure 1 leads to the marking
p2 þ 2 � p3 þ p4. In this marking, transitions B and C can fire concurrently because they
don’t share tokens. Neither firing sequences nor state graphs can express this con-
currency. Two transitions can occur in any order but cannot be executed at the same
time. Therefore, there are additional semantics of Petri nets in the literature, able to
explicitly express concurrency. There are step semantics of Petri nets [14], process net
semantics of Petri nets [13], tokenflow semantics of Petri nets [16], and compact
tokenflow semantics of Petri nets [3]. Fortunately, these semantics are equivalent [3,
16, 17, 21] and all define the same partial language. In a partial language, every so-
called run is a partially ordered set of events. Obviously, runs can express concurrency
and are a very intuitive approach to model behavior of a distributed system.

Definition 2. Let T be a set of labels. A labeled partial order is a triple V ;
; lð Þ where
V is a finite set of events, 
 	V � V is a transitive and irreflexive relation, and the
labeling function l : V ! T assigns a label to every event. A run is a triple ðV ;\; lÞ iff
V ;\�; lð Þ is a labeled partial order. A run ðV ;\; lÞ is also called a labeled Hasse
diagram iff \} ¼ \ holds.

Using tokenflow semantics or compact tokenflow semantics, we can decide if a run
is in the partial language of a Petri net in polynomial time. Tokenflows, just like
branching processes, track the history of tokens. Compact tokenflows define a partially
ordered set of local states and thus, abstract from this history. Compact tokenflows are
more efficient [4]. Roughly speaking, a compact tokenflow is a distribution of tokens
on the arcs of a run so that every event receives enough tokens, no event must pass too
many tokens, and all events share tokens from the initial marking.

Fig. 2. A state graph of the Petri net of Figure 1.

290 R. Bergenthum et al.



Definition 3. Let N ¼ P; T ;W ;m0ð Þ be a marked Petri net and run ¼ ðV ;\; lÞ be a
run so that l Vð Þ 	 T holds. A compact tokenflow is a function x : V [\ð Þ ! N. Let
v 2 V be an event.Wedenote in vð Þ :¼ x vð Þþ P

v0\v x v0; vð Þ the inflowof v, andout vð Þ ¼P
v\v0 x v; v0ð Þ the outflow of v. We define, x is valid for p 2 P iff the following

conditions hold:

(i) 8v 2 V : in vð Þ� W p; l vð Þð Þ,
(ii) 8v 2 V : out vð Þ� in vð ÞþW l vð Þ; pð Þ �W p; l vð Þð Þ, and
(iii)

P
v2V x vð Þ�m0 pð Þ.

run is enabled in N iff there is a valid compact tokenflow for every p 2 P. The set of all
enabled runs of N is the partial language of N.

Figure 3 depicts three different runs modeling the behavior of the marked Petri net
depicted in Figure 1. Every run starts with executing transition A. The first run models
the concurrent execution of transitions B and C before firing D. The second run models
the execution of the loop BXB concurrently to transition C. But transition C can only
occur after X because of place p5. The third run models two times the loop, and again
modeling that there is no occurrence of X after the occurrence of C.

Figure 4 depicts the branching process of the Petri net of Figure 1. For formal
definitions we refer the reader to [13, 20]. Just note, that the maximal conflict-free sets
of events of Figure 4 are the three runs of Figure 3. Using the branching process, we
merge identical prefixes of the three runs and directly model conflict. But we can only
branch and not merge, which is weird when we model a sequence of choices. Only the
first choice will be modeled directly, any other following choice will be copied and
distributed over the consistency sets of the branching process. Adding such upwards-
closed conflict relation comes at a high cost of readability of the modeled behavior.

A

B

C

D A

B

C

D

X B

A

B

C

D

X B X B

Fig. 3. Three runs of the Petri net of Figure 1.

Fig. 4. The branching process of the Petri net of Figure 1.

Token Trail Semantics – Modeling Behavior of Petri Nets 291



Figure 2, Figure 3, and Figure 4 all model the behavior of the Petri net of Figure 1.
Figure 2 is unable to express the concurrency of transitions B and C. Figure 3 needs
three separate runs, because runs cannot contain conflict. Figure 4 is troublesome to
read because it cannot merge states as state graphs can. Thus, there will always be some
tradeoff choosing one semantics over the others.

3 Token Trails

In this section, we introduce token trails for Petri nets. Using token trails, we define
whether a labeled Petri net is in the language of another Petri net.

We define the rise of a transition as the difference between the number of tokens in
the pre-set and the number of tokens in the post-set of a transition. Whenever there are
arc weights, the rise is the difference between the weighted sums.

Definition 4. Let N ¼ P; T ;W ;mð Þ be a marked Petri net, let t 2 T be a transition. We
denote the weighted sum of tokens t as t :¼ P

p;tð Þ2W W p; tð Þ � m pð Þ, the weighted

sum of tokens t as t :¼ P
p;tð Þ2W W p; tð Þ � m pð Þ and define the rise as tM of transition

t as t = −t t .

We model behavior by labeled nets. A labeled net is just a regular Petri net but there
is an additional set of actions, and every transition is labeled by one of them. We call a
labeled net a plain marked labeled net if the labeled net is marked, every place is
carrying at most one token in the initial marking, and there are no arc weights.

Definition 5. A labeled net is a tuple C;E;F;A; lð Þ where (C;E;FÞ is a Petri net, A is a
finite set of actions, and l : E ! A is an injective labeling function. A marking m of
C;E;F;A; lð Þ is a marking of (C;E;FÞ.
We call C;E;F;A; l;mð Þ a plain marked labeled net if C;E;F;A; l;mð Þ is a marked
labeled net, F� P

f2 C�Eð Þ [ E�Cð Þð Þ f , and m� P
p2C p holds.

If a labeled net models behavior, similarly to process nets and branching processes,
every transition models an event and every place models a condition. Thus, we also call
them events and conditions. The arcs between events and conditions form the control
flow of the behavior. Now, we need to define when a labeled net is in the language of a
Petri net. We follow the ideas of compact tokenflows and model valid distributions of
tokens between the events of our specification. But this time the relations between the
events are given by a set of conditions and arcs, not by the later-than relation of the
partial order. Still, every valid distribution must respect the firing rule, so that every
event must receive enough tokens, every event must consume and produce the right
number of tokens, and tokens from the initial marking can be freely distributed over a
set of initial local states. To model the set of initial local states, we use an initial
marking of the labeled net. Roughly speaking, tokens from the initial marking of the
Petri net can be distributed to the initially marked places of the specification.

We call a valid distribution of tokens over the local states of a labeled net a token
trail. Such a distribution is a multiset of conditions. Thus, it is straight forward to just
formalize token trails as markings of a marked labeled net.

292 R. Bergenthum et al.



Definition 6. Let S ¼ C;E;F;A; l;mxð Þ be a marked labeled net and let m be a
marking of S. Let N ¼ P; T;W ;m0ð Þ be a marked Petri net, A 	 T , and p 2 P be a
place. The marking m is a token trail for p iff

(I) e e W p, l(e)E ≥ ( ),
(II) 8e 2 E : eM ¼ W l eð Þ; pð Þ �W p; l eð Þð Þ, and
(III)

P
c2C mx cð Þ � m cð Þ ¼ m0 pð Þ.

S is enabled in N iff there is a token trail for every p 2 P. The set of all enabled labeled
nets of N is the net language of N.

We just kind of brute-forced the definition of a token trail and the definition of the
net language of a Petri net. Remark, although conditions (I) and (II) look just like the
regular firing rule of Petri nets, they are not. They are derived from conditions (i) and
(ii) of compact tokenflows. For example, in the firing rule, we require that there are
enough tokens in every place in the pre-set of a transition. Fix a place p and a transition
t, we need at least W p; tð Þ tokens in p. In Definition 6, t needsW p; l tð Þð Þ tokens as well,
but these tokens can arrive at t over different paths through the labeled net. Tokens
could have been produced earlier and then be distributed over the dependencies defined
by the conditions of the specification until they arrive at t. Thus, the sum of all tokens
distributed over all conditions in the prefix of t count towards the number W p; l tð Þð Þ of
tokens needed for l tð Þ to be enabled. A token trail does not model a state of the Petri
net, it models a distribution of tokens where tokens can travel using conditions of the
specification. Obviously, this idea is directly taken from compact tokenflows, where
tokens travel along the defined later-than relation.

In this paper, we lift the idea of compact tokenflows to arbitrary labeled nets.
Tokenflows only travel in one direction, can synchronize, but not loop nor merge.
Token trails can utilize every condition of a specification, thus, can split, branch,
merge, synchronize, and loop. In the remainder of the paper, we show examples and
prove that Definition 6 is well-defined. We argue that the net language of a Petri net
covers, unifies, and extends existing semantics for Petri nets faithfully.

4 Token Trails for Transition Systems and Partial Languages

In this section, we prove that the net language covers the state language and the partial
language of a Petri net. If we model state graphs and runs as marked labeled nets, we
only need plain nets.

Let e be a transition of a plain marked labeled net. We denote •e and e• the pre-set

and the post-set of e. Using plain nets only, we can simply calculate e c e= Σ m c( )
and e c e= Σ m c( ). Furthermore, in a plain marked labeled net, the initial marking is

one-bound. We simplify condition (III) of Definition 6 to
P

c2mx
m cð Þ ¼ m0 pð Þ.

Token Trails for Firing Sequences. A firing sequence specifies sequential behavior
of a Petri net. The biggest application dealing with this type of semantics is of course
process mining [2]. In process mining, observations of a running workflow system are

Token Trail Semantics – Modeling Behavior of Petri Nets 293



recorded in (sequential) event logs. This behavioral specification is used to mine,
evaluate, operate, and optimize business processes.

It is easy to model a firing sequence as a labeled net. Every event relates to exactly
one transition of the firing sequence. Every condition relates to one element of the total
order relation. Arcs connect events and conditions to form a sequence. Consequently,
there is one place with an empty pre-set, and we mark this place as the starting point by
one token in the initial marking of the labeled net.

Figure 5 depicts a marked labeled net modeling a sequence of transitions of a firing
sequence. In figures of labeled nets, we show the labels of the transitions, not their
name. In this example, there are two different transitions in the labeled net both labeled
B. The token marks the first condition as the initial local state of the sequence.

Definition 8. We call a plain marked labeled net a sequence net if there is exactly one
place i with an empty prefix, the initial marking is i, there is exactly one place o with an
empty postfix, every other place and transition has exactly one predecessor and one
successor, and there is a path from i to o visiting all transitions and places.

To construct a token trail for p1 of Figure 1 in the labeled net depicted in Figure 5,
we start by looking at condition (III). There is a token in the initial marking of p1 of
Figure 1 and therefore, we must put this token in the first condition of Figure 5.
According to condition (I), the event labeled A gets enough tokens and, according to
condition (II), this event must consume this token because its rise needs to be �1. Now,
every other condition is unmarked, because, according to condition (II), the rise for all
other labels must be 0. Remark, we mentioned that the difference between the regular
firing rule and the conditions of a token trail is that we sum and weight all tokens in the
prefix of an event. In a sequence net there are no weights and there is only one
condition in every prefix, thus, there is no actual difference between the regular firing
rule and the rules of token trails.

Figure 6 depicts eight copies of the sequence net of Figure 5. The first copy shows
the token trail for place p1 of Figure 1. The second copy shows the token trail for p2 of
Figure 1 and so forth. There is a token trail for every place of Figure 1 and thus, the
sequence net depicted in Figure 5 is in the net language of the Petri net of Figure 1.

We look at the columns of conditions in Figure 6 to directly see the one-to-one
relation between a set of token trails of a sequence net and the set of markings enabling
a firing sequence. This comes down to the fact that transitions neither branch nor
merge, so we can prove the following theorem.

Theorem 1. Let S be a sequence net. S models a firing sequence of a Petri net N iff
there is a token trail in S for every place of N. Furthermore, the token trail in S for a
place p is the p-component of markings generated by the firing sequence.

Fig. 5. A plain marked labeled net modeling the firing sequence ABXCBD.

294 R. Bergenthum et al.



Proof. Let t0t1. . .tn be a firing sequence of N ¼ P; T ;W ;m0ð Þ. There is a unique
sequence of markings m1m2. . .mnþ 1 so that ti is enabled in mi, and firing ti in mi yields
miþ 1. If a marked sequence net S ¼ C;E;F;A; l;mxð Þ models the firing sequence
t0t1. . .tn, we can rename the elements of the net as follows: There is one place c0 with
an empty prefix carrying one token, transitions e0; e1; . . .; en labeled l eið Þ ¼ ti and
places c1; c2; . . .; cnþ 1 so that the multiset of arcs is

P
i ci; eið Þþ ei; ciþ 1ð Þð Þ, A ¼ T ,

and mx ¼ c0.
Fix a place p 2 P. The marking m ¼ P

i mi pð Þ � ci of S is the token trail for p becauseP
c2mx

m cð Þ ¼ m c0ð Þ ¼ m0 pð Þ and thus condition (III) holds. For all ei, firing ti in mi

yields miþ 1. Thus, miþ 1 ¼ mi � �ti þ t�i holds. We look at the p-component of this
equation to get miþ 1 pð Þ ¼ mi pð Þ �W p; tið ÞþW ti; pð Þ and thus, eMi ¼ m ciþ 1ð Þ�
m cið Þ ¼ miþ 1 pð Þ � mi pð Þ ¼ W lðeiÞ; pð Þ �W p; lðeiÞð Þ. This is condition (II). For all ti,
ti is enabled in mi. Thus, mi � �

ti holds. Again, mi pð Þ�W p; tið Þ and
P

c2�ei m cð Þ ¼
m cið Þ ¼ mi pð Þ� W p; l eið Þð Þ and thus condition (I) holds as well. Furthermore, for
every p, m is completely defined by the sequence of markings m1m2. . .mnþ 1.
Let S be a sequence net and for every p 2 P let mp be a token trail for p. Conditions (I),
(II), and (III) hold and we use the same arguments as above backwards to construct the
p-components of a sequence of markings m1m2. . .mnþ 1 enabling t0t1. . .tn in m0. ■

Theorem 1 shows that token trails respect the definitions of firing sequences.
A firing sequence is in the sequential language of a Petri net if and only if the related
sequence net is in the net language.

Token Trails for Transition Systems. A firing sequence models behavior as a
sequence of actions. We use transition systems to model behavior focused on states.
The biggest application dealing with this type of semantics is asynchronous circuit
design [8]. In circuit design, we specify behavior as a transition system and use region-
based approaches to synthesize a Petri net to be implemented.

A B DBX C

A B CBX C

A B DBX C

A B DBX C

A B DBX C

A B DBX C

A B DBX C

A B DBX C

Fig. 6. Eight token trails for the places of Figure 1 in copies of the labeled net of Figure 5.

Token Trail Semantics – Modeling Behavior of Petri Nets 295



Again, it is very easy to model a transition system in terms of labeled nets. Every
state is a condition, and every transition of the state graph is an event of the labeled net
connecting two conditions with one ingoing and one outgoing arc.

Definition 9. We call a plain marked labeled net a state graph net if there is exactly
one place i so that there is a path from i to any other place, the initial marking is i, and
every transition has exactly one predecessor and one successor.

Figure 8 depicts two copies of the state graph net of Figure 7 with two token trails.
The marking of the first state graph net is a token trail for p2 of Figure 1. The initial
marking of p2 is 0, thus, the marking of the initial place of Figure 8 must be 0 as well.
The rise of the event labeled A is 1, all events labeled B have a rise of �1, all events
labeled C or D have a rise of 0, and all events labeled X have a rise of 1. The marking
of the second state graph net of Figure 8 is a token trail for place p3 of Figure 1.

Like in sequence nets, events of a state graph net do not branch. Thus, there is just
one place in the pre-set of every event where tokens can arrive, and there is only one
place where an event can pass the tokens to. We build a token trail as follows: we put
the number of initial tokens in the initial place of the labeled net. Then we start a
breadth-first search at the initial place. For every visited event, we have the number of
ingoing tokens and just calculate the tokens to put in the successor place, using the rise
of the label. This will construct a token trail if merging paths agree on the number of
tokens and if no marking must be negative. Obviously, this is the case if the state graph
net models reachable states of the original Petri net, only considering the place p. Like

Fig. 7. A plain marked labeled net modeling the state graph of Figure 2.

Fig. 8. The token trails for the place p2 and p3 of Figure 1 in the labeled net of Figure 7.

296 R. Bergenthum et al.



for sequence nets, there is a one-to-one relation between a set of token trails of a state
graph net and the set of markings of a state graph in the language of the Petri net.

Theorem 2. Let S be a state graph net. S models a state graph of a Petri net N iff there
is a token trail in S for every place of N. Furthermore, the token trail in S for a place p is
the p-component of every state of the state graph.

Proof. Let G ¼ R; T ;X; ið Þ be a state graph of N ¼ P; T ;W ;m0ð Þ. For every transition
m0; t;m00ð Þ 2 X, t is enabled in m0 and firing t in m0 yields m00. If a marked state graph
net S ¼ C;E;F;A; l;mxð Þ models G, we can rename this net as follows: there is a
transition e m0;t;m00ð Þ labeled l e m0;t;m00ð Þ

� � ¼ t for every transition, and a places pr for every
state r 2 R so that the multiset of arcs is

P
m0;t;m00ð Þ2X pm0 ; tð Þþ t; pm00ð Þð Þ, A ¼ T , and

mx ¼ pi.
For every state s of G there is a cycle free path of transitions leading from the initial
state to s. This path is a firing sequence. S ¼ C;E;F;A; l;mxð Þ models G and all
transitions of S have exactly one predecessor and exactly one successor. The path in G
relates to a subnet in S so that this net is a sequence net. Fix a place p 2 P, we apply
Theorem 1 to get m ¼ P

r2R r pð Þ � pr is the only candidate for a token trail in S for p.
Again, there is a one-to-one relation between the p-component of every state of the
state graph and the token trail in S for p. Even if a transition m0; t;m00ð Þ in G is part of a
cycle, e m0;t;m00ð Þ is unbranched so that, eMm0;t;m00ð Þ ¼ mm00 pð Þ � mm0 pð Þ¼ m00 pð Þ � m0 pð Þ ¼
W t; pð Þ �W p; tð Þ and

P
c2�e m0 ;t;m00ð Þ m cð Þ ¼ mm0 pð Þ ¼ m0 pð Þ�W p; tð Þ holds. m is a

token trail for p. Again, the p-components of the set of states define the token trail for
every place. Using the same arguments backwards, we also get the other direction. ■

Theorem 2 shows that token trails respect the definitions of state graphs. A transi-
tion system is a state graph of a Petri net if and only if the related state graph net is in
the net language.

Token Trails for Partial Languages. A partial language models behavior as partially
ordered sequences of actions. Using partial languages, we can model concurrency of
action occurrences. The biggest application dealing with this kind of semantics is
business process management [12]. Modern business processes, like for example
Order-to-Cash, Quote-to-Order workflow processes, are distributed over different
people, departments, and systems of a company, so that we model these processes
using partially ordered runs.

Modeling a partial order of events in terms of labeled nets is easy. Every event is a
labeled transition, and we model the skeleton of the partial order by a set of conditions.
We add a condition between two transitions whenever there is a later-than relation

Fig. 9. Three labeled nets modeling the partially ordered sequences of actions of Figure 3.

Token Trail Semantics – Modeling Behavior of Petri Nets 297



between the two related events. Thus, every condition has at most one ingoing and one
outgoing arc. There is concurrency but no conflict. Figure 9 depicts three labeled nets
modeling three runs.

Definition 10. We call a plain marked labeled net a partial order net if the net is
acyclic, every transition has at least one ingoing and at least one outgoing arc, every
place has at most one ingoing and at most one outgoing arc, and the initial marking is
the sum of places with an empty prefix.

Figure 10 depicts three copies of the three partial order nets of Figure 9 with token
trail markings. For partial order nets, for the first time in this paper, we actually have to
sum-up ingoing and outgoing tokens in order to calculate the rise of a transition. For
example, the rise of transition A is 1 in the first row of examples, 2 in the second row,
and 0 in the last row.

In Figure 10, the token trails of the first row all relate to place p2 of Figure 1. The
token trails of the second row relate to place p3, and the token trails of the last row
relate to p5. Remark, in partial order nets there is not a one-to-one relation between the
rises of events to token trails anymore. For example, the token trail in the middle of
Figure 10 relates to place p3. One token travels from X to the final marking. This token
could also travel via C and thus lead to another token trail related to p3. For partial
order nets, there is a one-to-one relation between a token trail in the partial order net
and a compact tokenflow in the labeled Hasse diagram.

Theorem 3. Let S be a partial order net. S models a run of a Petri net N iff there is a
token trail in S for every place of N. Furthermore, there is a one-to-one relation between
token trails in S and compact tokenflows in the run.

Proof. Let run ¼ ðV ;\; lÞ be a run of N ¼ P; T ;W ;m0ð Þ. For every p 2 P there is a
compact tokenflow x in run for p. If a marked partial order net S ¼ C;E;F;A; l;mxð Þ
models run, we can rename this net as follows: for every event v 2 V there is a
transition ev 2 E with l evð Þ ¼ l vð Þ, for every arc v; v0ð Þ 2 \ there is a place c v;v0ð Þ 2 C
so that �c v;v0ð Þ ¼ evf g and c v;v0ð Þ� ¼ ev0f g. For every v 2 V with an empty prefix there is

Fig. 10. Token trails for places p2, p3, and p5 of Figure 1 in the labeled nets of Figure 9.

298 R. Bergenthum et al.



a place civ in the pre-set of v, for every v 2 V with an empty postfix there is a place c fv in
the post-set of v, A ¼ T , and mx ¼

P
c2C;�c¼; c.

Fix a place p 2 P and its compact tokenflow x. Conditions (i), (ii), (iii) hold. The main
idea is to construct another valid compact tokenflow x so that (b) and (c) hold as well.

(b) 8v 2 V ; v� 6¼ ; : out vð Þ ¼ in vð ÞþW l vð Þ; pð Þ �W p; l vð Þð Þ,
(c)

P
v2V ;�v 6¼; x cð Þ ¼ m0 pð Þ.

As long as there is an event v with a non-empty prefix so that its outflow is not yet as
big as the inflow plusW l vð Þ; pð Þ �W p; l vð Þð Þ, there is a path from v to an event with an
empty post-set. We can add the missing tokens to every arc of this path to fix the
outflow of v. For every event on this path, inflow and outflow will be increased by the
same number, for the last event only the inflow will be increased so that (i), (ii),
(iii) still hold. We repeat until (b) holds. If there is an event v with a non-empty prefix
so that x vð Þ[ 0, there is a path from an event v0 with an empty prefix to v. Again, we
add x vð Þ to x v0ð Þ, add x vð Þ tokens to every event on the path and set x vð Þ to 0 to move
tokens consumed from the initial marking to the initial events, only increasing inflow
and outflow of every event by the same amount. Now, the value of the compact
tokenflow is 0 on non-initial events. If the sum of this tokenflow is not yet as big as the
number of tokens in the initial marking, we add tokens on a path from an event with an
empty prefix to an event with an empty postfix. Altogether, we construct a compact
tokenflow x so that (i), (ii), (iii), (b), and (c) hold.
We construct a token trail m in S for p as follows. m :¼ P

v;v0ð Þ2\ x v; v0ð Þ � c v;v0ð Þ þ
P

v2V ;�v¼; x vð Þ � civ þ
P

v2V ;v�¼; in vð ÞþW l vð Þ; pð Þ �W p; l vð Þð Þð Þ � c fv .
m is a token trail for p because the only difference between x and m is that we moved
tokens from the initial marking to the initial places and added the right number of
tokens to the final places so that (b) implies (II). Obviously, (i) implies (I), and
(c) implies (III) because all initial places of S are marked with one token in mx.
This time the other direction is even simpler because we build a valid compact
tokenflow from a token trail by just ignoring tokens in the final places and moving
tokens from the initial places to the initial events. Now, (I), (II), and (III) imply (i), (ii),
and (iii) directly without even adapting tokenflow on the edges of run. ■

Theorem 3 shows that token trails cover the definitions of compact tokenflows.
A run is in the partial language of a Petri net if and only if the related partial order net is
in the net language.

Like in the previous subsection, going from firing sequences to state graphs, we can
add conflict to a run of a Petri net. To add conflict, we use the formalism of labeled prime
event structures of a Petri net. The main idea is that there is an additional conflict relation
so that sets of conflict-free events are runs. The conflict relation is upwards closed so that
runs branch, but do not merge. Thus, every prime event structure is covered by runs and
is enabled in a Petri net if every run of the prime event structure is enabled with a
compact token flow so that the flows match on shared prefixes of the prime event
structure. We add this idea to the proof of Theorem 3, like going from proof of Theo-
rem 1 to the proof of Theorem 2, to get that there are also matching token trails.

Token Trail Semantics – Modeling Behavior of Petri Nets 299



Figure 11 depicts a labeled net modeling a prime event structure. The conflict free
sets of events of this net are the runs of Figure 9. In this prime event structure net we
don’t show its initial marking (just the first condition), but depict a token trail for place
p3 of Figure 1 as a composition of the three token trails for p3 depicted in the second
row of Figure 10.

A labeled net is a branching process of a Petri net if there is an additional one-to-
one relation between tokens in the Petri net and tokens in the token trails. This must be
examined in future work. Up to this point, the net language covers runs, as well as
prime event structures of a Petri net.

5 Token Trails for Labeled Petri Nets

In Section 4, we proved that token trails cover firing sequences, state graphs, and
partial languages using plain marked labeled nets only. In this section, we show that the
token trail semantics is a well-defined generalization of existing semantics, and we
show how to model behavior using general marked labeled nets. We show examples of
labeled nets and Petri nets to argue that some labeled nets model behavior of these Petri
nets and some do not.

Token Trails for Arbitrary Initial Markings. In the definition of a token trail, we
consider arbitrary initial markings. Up to this point, only modeling firing sequences,
state graphs, and partial languages there is no need to put multiple tokens in conditions.

The first labeled net in Figure 12 depicts our running example sequentially ordered
net, but this time with an initial marking of three tokens in the first place. Thus, it is
neither a plain marked labeled net, nor a sequence net anymore. However, if we
consider the token trails of Figure 6, trails number 2, 3, 4, 6, 7, and 8 are still token
trails for the related places p2, p3, p4, p6, p7, and p8 of Figure 1. If we change the initial
marking of Figure 1 to 3 � p1 þ 3 � p5, then token trails 1 and 5 would relate to p1 and
p5. The first labeled net in Figure 12 is only in the net language of a Petri net if the
sequence ABXCBD can be executed concurrently three times to itself. This perfectly
matches our intuition looking at the first net of Figure 12.

Fig. 11. Labeled net modeling the prime event structure for the three runs of Figure 9 marked
with a token trail for place p3 of Figure 1.

A B DBX C

A B DBX C

Fig. 12. Two marked labeled nets.

300 R. Bergenthum et al.



The second labeled net in Figure 12 depicts an even more sophisticated initial
marking. We specify that we start the sequence at the beginning and simultaneously
before the last two actions B and D. In this example, the first token trail of Figure 6 is
still a trail for p1 of Figure 1 because the fifth place of the sequence is not marked so
that the sum defined by condition (III) is 1 and thus, is the initial marking of p1 in
Figure 1. Similarly, the token trails 4, 5, 6, and 8 still hold for their related places. If we
consider places p2 and p7, we must add one token each to the initial marking of the
Petri net of Figure 1 to fix trails number 2 and 7. This is consistent with the intuition
behind the specification in Figure 12 because the marked Petri net should be able to
execute BD from the initial marking. However, something is strange about the third
token trail of Figure 6 because p3 is not connected to transitions B and D but still, we
must add one token to the initial marking of p3 so that the third token trail of Figure 6 is
a token trail for p3. But if we really think about the behavior we specify, we see that in
Figure 12, using the first initial token, the sequence of events ABXCB reaches the same
condition as using the second initial token and just execute the second event labeled B.
In other words, we specify that we want to have a Petri net so that firing ABXCB and
firing B leads to the same state. This is only satisfied if we add one additional token to
p3.

We can add an initial marking to any kind of labeled net to model a multiset of local
states as starting points. This is the main idea of condition (III) of Definition 6.

Token Trails for Merged Local States. Figure 13 depicts labeled nets modeling the
behavior of our running example in terms of marked labeled nets. There is conflict, a
merge, a split, and synchronization. Obviously, they are neither a state graph net nor a
partial order net. The upper net of Figure 13 specifies behavior where we start by an
action A. Then there is a split. In the top part of the split, we have the choice between
the sequence just B, or the sequence of actions BXB. Executing either of these two
sequences will lead to the merge at the local state c6. In parallel to this choice, we have
action C followed by a synchronization using action D. This kind of control flow seems
to fit the Petri net depicted in Figure 1.

Fig. 13. A marked labeled net with a merge and a marked labeled net with a loop.

Token Trail Semantics – Modeling Behavior of Petri Nets 301



Now, we check if the upper labeled net of Figure 13 is in the net language of the
Petri net of Figure 1 by constructing a token trail for every place. Figure 14 depicts the
token trails for places p1, p2, p6, p4, p7, and p8.

We still miss a token trail for the other places. For the place p3, the rise of X must
be �1 and thus, we need at least one token in c4. Assume there are n tokens in c4. The
rise of B must be 0 and thus, there must be n tokens in c2 as well. With the same
argument there must be n tokens in c6, and there must be n tokens in c5, all because B
must have a rise of 0. Consequently, the number of tokens in c4 is the number of tokens
in c5, therefore, the rise of X cannot be �1. There is no token trail for the place p3 in the
upper labeled net of Figure 13. Remark, this is perfectly fine with our intuition! In the
first labeled net of Figure 13, we specify that executing the loop, and not executing the
loop, leads to the same local state c6. Thus, if the upper net of Figure 13 is in the net
language of some Petri net, executing or skipping the loop must lead to the same state.
This holds for places p1, p2, p6, p4, p7, and p8, but not for place p3. If we skip the loop,
there are two tokens left in p3. If we execute the loop once, there is one token left in p3.
Altogether, the upper labeled net in Figure 13 specifies that counting iterations is not
allowed. It is only in the net language of Figure 1 if we were to delete p3 and thus,
allow for arbitrary iterations of B and X.

If we want to change the specification and model that counting should be possible,
we must split the local state called c6 in the upper net of Figure 13 into two separate
states. Thus, we would end up with a branching process. Here, token trail semantic
perfectly handles merging of local states.

We are still missing a token trail for place p5. This place is initially marked,
therefore, c1 must be initially marked as well. The rise of A must be 0 so that the initial
token can either go to c2 or to c3. The rise of C is −1 so that we must mark c3 and there
is no token left for c2. Thus, there is no token for c4 and X is not enabled according to
(I). Again, there is no token trail for p5. The reason is that p5 ensures that C can only be
executed after the execution of X: The upper net of Figure 13 models C and X as
independent. Thus, it is correct that there is no token trail for p5.

Summing up the first labeled net of Figure 13, if we delete p3 and p5 from Figure 1,
the upper net of Figure 13 is in the net language of Figure 1. If we keep p5 and add a
condition from X to C, as is the case in the partial order nets of Figure 9, the initial
token can go to X and another token from X to C. This labeled net would be in the net

Fig. 14. Token trails in copies of the labeled net of Figure 13 for some places of Figure 1.

302 R. Bergenthum et al.



language of Figure 1 without p3. If we want to count loops, we must split c6 to allow a
branched local state. These examples highlight how token trails deal with merging of
alternative executions and shared local states.

Token Trails for Loops. We just indirectly specified looping behavior using a shared
local state. What if the specification directly models a loop? The second labeled net of
Figure 13 depicts an example where we specify a similar behavior but this time using a
loop. Again, there is a loop of B and X in parallel to the action C. Here, we directly
specify that there is at least one execution of X and at least two executions of B before
another X can return to the local state c2. With the same arguments as before, we can’t
construct a token trail for place p3 where X (or B) is producing, and D is consuming
tokens because we must always be able to go back to c2. Again, it is not possible to
count Bs and Xs.

We can copy the token trails of Figure 14 into the second labeled net of Figure 13
to directly see that there are token trails for the places p1, p2, p6, p4, p7, and p8. There is
no token trail for p3 because of the merged local state c2 and there is no token trail for
p5 because C and X are modeled as independent again. Thus, again token trails match
our intuition and handle Figure 13 correctly, although it is a specification with a loop.

To really put token trails to the test we introduce the first Petri net of Figure 15.
This example might look strange at first, but we want to have a bounded Petri net where
we must execute the loop of our running example at least once. Here, after the first
execution of B the place p5 is not marked yet. We execute X to mark p5 and enable B
again. After firing B a second time p5 and p6 are marked, enabling D. We can fire Y to
move a token from p5 to p3 to reset the marking to the state already visited after firing
the first B.

In Figure 15, the first labeled net is in the net language of the first Petri net.
Intuitively, Figure 15 specifies that neither the local states c2 and c5 nor the local states
c4 and c6 are merged. Using an additional action Y , we can distinguish entering and re-

Fig. 15. Two Petri nets and two labeled nets of their languages.

Token Trail Semantics – Modeling Behavior of Petri Nets 303



entering the loop. Here, the token trail for place p5 is simply c5 þ c6. The token trail for
place p3 is simply c2 þ c4. Token trails faithfully handle merges and loops.

Token Trails for Weighted Arcs. The second Petri net of Figure 15 depicts our
running example net with additional arc weights. The second labeled net of the same
figure is in its net language. We need condition c3 twice to execute the event labeled C.
Whenever we execute an event labeled B, we produce condition c4 or c6 twice. The
marking c3 in the labeled net is a token trail of p4. The rise of the event labeled A is still
1, the rise of the event labeled C is �2. The marking c4 þ c6 is a token trail for p6.
Remark, in the second Petri net of Figure 15, C is not enabled after firing A in the
initial marking, but the same holds for the depicted labeled net. Token trails just respect
condition c3 and the related arc weights.

At the end of this section, we show one more strong argument highlighting that the
net language is well-defined. We prove that every labeled net without duplicate labels
is in its own net language.

Theorem 4. Let S be a marked labeled net without duplicate labels, so that S models a
Petri net N. S is in the net language of N.

Proof. Let N ¼ P; T ;W ;m0ð Þ be a Petri net and S ¼ C;E;F;A; l;mxð Þ be a labeled net
without duplicate labels. S models N, so we rename all elements of S so that S ¼
P; T ;W ; T; id;m0ð Þ holds. Fix a place p 2 P in N, m ¼ p is a token trail for p in S
because m cð Þ is only 1 for c ¼ p and 0 for any other condition.
Conditions (I), (II), and (III) hold because 8e 2 T :

P
c2 �e W c; eð Þ� m cð Þ ¼ W p; tð Þ,

8e 2 T :
P

c2PðW e; cð Þ �W c; eð ÞÞ � m cð Þ ¼ W e; pð Þ �W p; eð Þð Þ � m pð Þ ¼ W e; pð Þ�
W p; eð Þ, and P

c2C m0 cð Þ � m cð Þ ¼ m0 pð Þ. ■

Every Petri net is in its own net language. Token trails work perfectly fine for any
kind of state-based or event-based specification, as well as for general labeled nets with
loops, initial markings, and arc weights.

Calculating Token Trails. We implemented token trails as a new module of the I
Petri Nets website. The website is available at www.fernuni-hagen.de/ilovepetrinets/.
The module implements the conditions of Definition 6 as a simple Integer Linear
Program. We can drag a labeled net and a Petri net to the related Buttons and see if
there are token trails for every place of the Petri net. Click on some place to see an
example token trail in the labeled net. At www.fernuni-hagen.de/ilovepetrinets/fox/
please find the webtool and all the examples used in this paper.

6 Conclusion

In this paper, we introduced token trails. A token trail is a distribution of tokens on the
set of conditions of a labeled net respecting the consumption and production of tokens
of the labels of the events. Whenever there is conflict, a token trail must agree on the
number of tokens in every condition of a labeled net. Whenever there is concurrency, a
token trail can distribute tokens to local states. We have proven that token trails cover
firing sequences, state graphs, and partial languages of Petri nets. Furthermore, they

304 R. Bergenthum et al.

http://www.fernuni-hagen.de/ilovepetrinets/
http://www.fernuni-hagen.de/ilovepetrinets/fox/


faithfully extend Petri net semantics to labeled nets. Token trails have a very intuitive
graphical representation and are very easy to calculate. In addition to Petri nets, we
only need the additional concept of labels to directly define token trail semantics. For
all these reasons, we see token trails as a kind of meta semantics for Petri nets.

Besides the rather formal stuff, we see a lot of applications for token trails. In future
work, we will define synthesis based on token trails. The goal is to come up with a
framework so that we specify behavior of a system in terms of labeled nets and get the
resulting Petri net for free. Using token trails, we can unify the definitions of state-
based and event-based regions. We refer the reader to the workshop paper [6] for a first
glimpse at this new region definition. Roughly speaking, we will specify labeled nets
and calculate a set of places for the set of labels so that for every place there is a token
trail using the ILP defined in Definition 6. We use the concept of minimal token trails
(i.e., minimal number of tokens) to get a finite result. A prototype of the approach is
already implemented in the module of the I Petri Nets website.

References

1. van der Aalst, W.M.P., van Dongen, B.F.: Discovering Petri Nets from Event Logs. In:
Jensen, K., van der Aalst, W.M.P., Balbo, G., Koutny, M., Wolf, K. (eds.) Transactions on
Petri Nets and Other Models of Concurrency VII. LNCS, vol. 7480, pp. 372–422. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-38143-0_10

2. van der Aalst, W.M.P., Carmona, J.: Process Mining Handbook. Springer (2022). https://doi.
org/10.1007/978-3-031-08848-3

3. Bergenthum, R., Lorenz, R.: Verification of Scenarios in Petri Nets Using Compact
Tokenflows. In: Fundamenta Informaticae, vol. 137, no. 1, pp. 117–142. IOS Press (2015)

4. Bergenthum, R.: Firing Partial Orders in a Petri Net. In: Buchs, D., Carmona, J. (eds.)
PETRI NETS 2021. LNCS, vol. 12734, pp. 399–419. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-76983-3_20

5. Bergenthum, R.: Petrinetze: Grundlagen der Formalen Prozessanalyse. In: Prozessmanage-
ment und Process-Mining, De Gruyter Studium, pp. 125–152. De Gruyter (2021)

6. Bergenthum, R., Kovar, J.: A First Glimpse at Petri Net Regions. In: Proceedings of
Application and Theory of Petri Nets 2022, CEUR Workshop Proceedings 3167, pp. 60–68
(2022)

7. Best, E., Devillers, R.: Sequential and Concurrent Behaviour in Petri Net Theory. In:
Theoretical Computer Science 55, nr. 1, pp. 87–136. Elsevier (1987)

8. Cortadella, J., Kishinevsky, M., Kondratyev, A., Lavagno, L., Yakovlev, A.: Hardware and
Petri Nets Application to Asynchronous Circuit Design. In: Nielsen, M., Simpson, D. (eds.)
ICATPN 2000. LNCS, vol. 1825, pp. 1–15. Springer, Heidelberg (2000). https://doi.org/10.
1007/3-540-44988-4_1

9. Desel, J., Reisig, W.: Place/Transition Petri Nets. In: Reisig, W., Rozenberg, G. (eds.) ACPN
1996. LNCS, vol. 1491, pp. 122–173. Springer, Heidelberg (1998). https://doi.org/10.1007/
3-540-65306-6_15

10. Desel, J., Juhás, G.: What is a Petri Net? In: Ehrig, H., Juhás, G., Padberg, J., Rozenberg, G.
(eds.) Unifying Petri Nets, Advances in Petri Nets, LNCS 2128, pp. 1–25. Springer, Cham
(2001). https://doi.org/10.1007/3-540-45541-8_1

Token Trail Semantics – Modeling Behavior of Petri Nets 305

https://doi.org/10.1007/978-3-642-38143-0_10
https://doi.org/10.1007/978-3-031-08848-3
https://doi.org/10.1007/978-3-031-08848-3
https://doi.org/10.1007/978-3-030-76983-3_20
https://doi.org/10.1007/978-3-030-76983-3_20
https://doi.org/10.1007/3-540-44988-4_1
https://doi.org/10.1007/3-540-44988-4_1
https://doi.org/10.1007/3-540-65306-6_15
https://doi.org/10.1007/3-540-65306-6_15
https://doi.org/10.1007/3-540-45541-8_1


11. van Dongen, B.F., de Medeiros, A.K.A., Verbeek, H.M.W., Weijters, A.J.M.M., van der
Aalst, W.M.P.: The ProM Framework: A New Era in Process Mining Tool Support. In:
Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp. 444–454. Springer,
Heidelberg (2005). https://doi.org/10.1007/11494744_25

12. Dumas, M., La Rosa, M., Mendling, J., Reijers, H.A.: Fundamentals of Business Process
Management. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-33143-5

13. Goltz, U., Reisig, W.: Processes of Place/Transition-Nets. In: Diaz, J. (eds.) Automata
Languages and Programming, vol. 154, pp. 264–277. Springer, Heidelberg (1983). https://
doi.org/10.1007/BFb0036914

14. Grabowski, J.: On Partial Languages. In: Fundamenta Informaticae, vol. 4, no. 2, pp. 427–
498. IOS Press (1981)

15. Janicki, R., Koutny, M.: Structure of Concurrency. In: Theoretical Computer Science 112,
no. 1, pp. 5–52. Elsevier (1993)

16. Juhás, G., Lorenz, R., Desel, J.: Can I Execute My Scenario in Your Net? In: Ciardo, G.,
Darondeau, P. (eds.) Proceedings of Application and Theory of Petri Nets 2005, LNCS
3536, pp. 289–308. Springer, Heidelberg (2005). https://doi.org/10.1007/11494744_17

17. Kiehn, A.: On the Interrelation Between Synchronized and Non-Synchronized Behavior of
Petri Nets. In: Elektronische Informationsverarbeitung und Kybernetik, vol. 24, no. 1–2,
pp. 3–18 (1988)

18. Peterson, J.L.: Petri Net Theory and the Modeling of Systems. Prentice-Hall, Englewood
Cliffs (1981)

19. Pratt, V.: Modelling Concurrency with Partial Orders. In: International Journal of
ParallelProgramming 15, pp. 33–71 (1986)

20. Reisig, W.: Understanding Petri Nets - Modeling Techniques, Analysis Methods, Case
Studies. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-33278-4

21. Vogler, W. (ed.): Modular Construction and Partial Order Semantics of Petri Nets. LNCS,
vol. 625. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-55767-9

22. Winskel, G.: Event Structures. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.) ACPN 1986.
LNCS, vol. 255, pp. 325–392. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-
17906-2_31

306 R. Bergenthum et al.

https://doi.org/10.1007/11494744_25
https://doi.org/10.1007/978-3-642-33143-5
https://doi.org/10.1007/BFb0036914
https://doi.org/10.1007/BFb0036914
https://doi.org/10.1007/11494744_17
https://doi.org/10.1007/978-3-642-33278-4
https://doi.org/10.1007/3-540-55767-9
https://doi.org/10.1007/3-540-17906-2_31
https://doi.org/10.1007/3-540-17906-2_31

	Token Trail Semantics – Modeling Behavior of Petri Nets with Labeled Petri Nets
	Abstract
	1 Introduction
	2 Preliminaries
	3 Token Trails
	4 Token Trails for Transition Systems and Partial Languages
	5 Token Trails for Labeled Petri Nets
	6 Conclusion
	References




