
Luis Gomes
Robert Lorenz (Eds.)

LN
CS

 1
39

29 Application and Theory
of Petri Nets
and Concurrency
44th International Conference, PETRI NETS 2023
Lisbon, Portugal, June 25–30, 2023
Proceedings

Lecture Notes in Computer Science 13929
Founding Editors
Gerhard Goos
Juris Hartmanis

Editorial Board Members
Elisa Bertino, Purdue University, West Lafayette, IN, USA
Wen Gao, Peking University, Beijing, China
Bernhard Steffen , TU Dortmund University, Dortmund, Germany
Moti Yung , Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

The series Lecture Notes in Computer Science (LNCS), including its subseries Lecture
Notes in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics (LNBI),
has established itself as a medium for the publication of new developments in computer
science and information technology research, teaching, and education.

LNCS enjoys close cooperation with the computer science R & D community, the
series countsmany renowned academics among its volume editors and paper authors, and
collaborates with prestigious societies. Its mission is to serve this international commu-
nity by providing an invaluable service, mainly focused on the publication of conference
andworkshop proceedings and postproceedings. LNCScommenced publication in 1973.

Luis Gomes · Robert Lorenz
Editors

Application and Theory
of Petri Nets
and Concurrency
44th International Conference, PETRI NETS 2023
Lisbon, Portugal, June 25–30, 2023
Proceedings

Editors
Luis Gomes
NOVA University Lisbon
Caparica, Portugal

Robert Lorenz
University of Augsburg
Augsburg, Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-33619-5 ISBN 978-3-031-33620-1 (eBook)
https://doi.org/10.1007/978-3-031-33620-1

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0003-4299-8270
https://orcid.org/0009-0005-0906-745X
https://doi.org/10.1007/978-3-031-33620-1

Preface

This volume contains the proceedings of the 44th International Conference on Applica-
tion and Theory of Petri Nets and Concurrency (Petri Nets 2023). The aim of this series
of conferences is to create an annual opportunity to discuss and disseminate the latest
results in the field of Petri nets and related models of concurrency, including their tools,
applications, and theoretical progress.

The 44th conference and affiliated events were organized by the R&D Group on
Reconfigurable and Embedded Systems (GRES) at School of Science and Technology
of NOVA University Lisbon (Campus of Caparica), during June 25–30, 2023. The con-
ference was organized for the third time in Portugal, twenty-five years after the first visit,
also organized at Costa da Caparica, in Lisbon region.

This year, 47 papers were submitted to Petri Nets 2023. Each paper was single-blind
reviewed by at least four reviewers. The discussion phase and final selection process
by the Program Committee (PC) were supported by the EasyChair conference system.
From 38 regular papers and 9 tool papers, the PC selected 21 papers for presentation:
17 regular papers and 4 tool papers. After the conference, some of these authors were
invited to submit an extended version of their contribution for consideration in a special
issue of a journal.

We thank the PCmembers and other reviewers for their careful and timely evaluation
of the submissions and the fruitful constructive discussions that resulted in the final
selection of papers. The Springer LNCS team provided excellent and welcome support
in the preparation of this volume.

The keynote presentations were given by

– Stefanie Rinderle-Ma, Technical University of Munich, on “Process Mining and
Process Automation in Manufacturing and Transportation”,

– Valeriy Vyatkin, Aalto University and Lulea University of Technology, on “Formal
Modelling, Analysis, and Synthesis of Modular Industrial Systems inspired by Net
Condition/Event Systems”, and

– Boudewijn van Dongen, Eindhoven University of Technology, on “Challenges in
Conformance Checking: Where Process Mining meets Petri Net Theory”.

The conference series is coordinated by a steering committee with the follow-
ing members: W. van der Aalst (Germany), G. Ciardo (USA), J. Desel (Germany),
S. Donatelli (Italy), S. Haddad (France), K. Hiraishi (Japan), J. Kleijn (The Nether-
lands), F. Kordon (France), M. Koutny (UK) (chair), L. M. Kristensen (Norway), C. Lin
(China), W. Penczek (Poland), L. Pomello (Italy), W. Reisig (Germany), G. Rozenberg
(The Netherlands), A. Valmari (Finland), and A. Yakovlev (UK).

Alongside Petri Nets 2023, the following workshops took place:

– Algorithms and Theories for the Analysis of Event Data (ATAED 2023),
– International Workshop on Petri Nets and Software Engineering (PNSE 2023),

vi Preface

– International Workshop on Petri Nets for Twin Transition (PN4TT 2023), and
– Petri Net games, examples, and quizzes for education, contest, and fun (PENGE

2023).

Other colocated events included the Petri Net Course and Tutorials, coordinated by
Jörg Desel and Jetty Kleijn, as well as a Tool Exhibition, coordinated by FilipeMoutinho
and Fernando Pereira.

We greatly appreciate the efforts of all members of the Local Organizing Committee,
chaired by Anikó Costa and Isabel Sofia Brito, and including FilipeMoutinho, Fernando
Pereira, Carolina Lagartinho-Oliveira, José Ribeiro, and Rogério Campos-Rebelo, for
their time spent in the organization of this event.

We hope you enjoy reading the contributions in this LNCS volume.

June 2023 Luis Gomes
Robert Lorenz

Organisation

Program Committee

Elvio Gilberto Amparore University of Turin, Italy
Abel Armas Cervantes The University of Melbourne, Australia
Paolo Baldan Università di Padova, Italy
Joao Paulo Barros Instituto Politécnico de Beja, Portugal
Beatrice Berard LIP6, Sorbonne Université & CNRS, France
Luca Bernardinello Università degli studi di Milano-Bicocca, Italy
Didier Buchs University of Geneva, Switzerland
Jörg Desel Fernuniversität in Hagen, Germany
Raymond Devillers ULB, Belgium
Susanna Donatelli Università di Torino, Italy
Javier Esparza Technical University of Munich, Germany
João M. Fernandes University of Minho, Portugal
David Frutos Escrig Universidad Complutense de Madrid, Spain
Luis Gomes (Co-chair) NOVA University Lisbon, Portugal
Stefan Haar Inria, ENS Paris-Saclay, France
Xudong He Florida International University, USA
Loic Helouet Inria, France
Ryszard Janicki McMaster University, Canada
Anna Kalenkova University of Adelaide, Australia
Jörg Keller Fernuniversität in Hagen, Germany
Ekkart Kindler Technical University of Denmark, Denmark
Michael Köhler-Bußmeier University of Applied Science Hamburg,

Germany
Irina Lomazova National Research University Higher School of

Economics, Russia
Robert Lorenz (Co-chair) University of Augsburg, Germany
Lukasz Mikulski Nicolaus Copernicus University, Poland
Andrew Miner Iowa State University, USA
Marco Montali Free University of Bozen-Bolzano, Italy
Laure Petrucci Université Paris 13, France
Artem Polyvyanyy University of Melbourne, Australia
Pierre-Alain Reynier Aix-Marseille Université, France
Arnaud Sangnier IRIF, Univ. Paris Diderot, CNRS, France
Natalia Sidorova Technische Universiteit Eindhoven,

The Netherlands

viii Organisation

Jaco van de Pol Aarhus University, Denmark
Boudewijn Van Dongen Eindhoven University of Technology,

The Netherlands
Remigiusz Wisniewski University of Zielona Gora, Poland
Alex Yakovlev Newcastle University, UK

Additional Reviewers

Adobbati, Federica
Aubel, Adrián Puerto
Barylska, Kamila
Bozorgi, Zahra Dasht
Guillou, Lucie
Helfrich, Martin
Kim, Yan
Morard, Damien
Pomello, Lucia
Reisig, Wolfgang
Rivkin, Andrey
Rubio, Rubén
Shershakov, Sergey
Su, Zihang
Verbeek, Eric
Winkler, Sarah

Alkhammash, Hanan
Balasubramanian, A. R.
Bergenthum, Robin
Coet, Aurélien
Habermehl, Peter
Kaniecki, Mariusz
Lime, Didier
Nesterov, Roman
Racordon, Dimi
Remi, Morin
Rosa-Velardo, Fernando
Rykaczewski, Krzysztof
Sommers, Dominique
Tour, Andrei
Weininger, Maximilian
Zaman, Eshita

Challenges in Conformance Checking: Where Process
Mining Meets Petri Net Theory (Extended Abstract)

Boudewijn van Dongen

Department of Mathematics and Computer Science, Eindhoven University
of Technology, Eindhoven, The Netherlands

b.f.v.dongen@tue.nl

1 Conformance Checking

Over the past 20 years, process mining has developed as a research area focusing on the
analysis of data to create insights into processes. Processes are typically expressed in
the form of control-flow models using languages such as Petri nets and data is available
in the form of collections of events referring to discrete state changes of objects in the
environment.

In practice, all processes share the property that their day to day operations differ
fromwhat is described inmodels and conformance checking [6] has become a significant
field in process mining dealing with the question how process models, data and reality
relate to each other.

Various types of conformance checking techniques exist for control flow only [1,
4, 7, 13]. More advanced techniques also consider data and resources [3, 11, 12] In
this keynote, we focus on the techniques based on synchronous product nets, as first
introduced for this purpose by Adriansyah et al. [2]. These synchronous products were
developed in a setting where the Petri net is a workflow net and the data consists of
sequences of events for a specific instance of that workflow (the case). Conformance is
then determined using an A� based search strategy on the statespace of a synchronous
product net [1, 7], or by means of logic programming [5] or planning [10]. Furthermore,
techniques exist to compute representations of classes of alignments [8] while other
techniques focus on approximations of alignments [9, 16]. However, all these techniques
have one fundamental property in common, namely that in the end, they all reason over
the synchronous product (although the techniques are not always instantiating this net).

2 Synchronous Products

In Petri net terms, a synchronous product Petri net is a low-level Petri net combining a
process model with a sequence of events. The question: “how well does this sequence fit
the given (process) model?” can be answered by solving a reachability question in this
synchronous product, with the additional challenge to minimize a cost function over the

https://orcid.org/0000-0002-3978-6464

x B. van Dongen

transition firings. The witness solution for this question provides the so-called alignment
and since reachability is typically guaranteedby the properties of themodel, the challenge
is to find the witness minimizing the cost, not so much to establish reachability itself.

More formally, let PN = ((P, T , F), mi, mf) be a marked Petri net, with an initial
and final marking and let c : T → R+ be a cost function assigning non-negative cost to
each transition T . If PN is a synchronous product of a model M and a sequence σ , then

an alignment γ ∈ T∗ is a firing sequence in PN , such that mi
γ→ mf , i.e. mf is reached

by firing γ from mi. An optimal alignment γ opt is an alignment such that there does not
exist another alignment γ with c(γ) < c(γ opt), where c is lifted to sequences by simply
summing over the transitions in the sequence.

It is easy to see that finding an alignment is at least as complex as reachability as the
question for a given Petri net PN = (P, T , F) whether mf is reachable from mi is the
same as looking for an alignment in PN = ((P, T , F), mi, mf) with for all t ∈ T holds
that c(t) = 0, making every alignment optimal by definition.

The problem of finding an alignment with specific cost C can also be translated to
reachability, provided that the cost function assigns integer (or rational) costs to each
transition. The intuition here is that you let each transition produce a number of tokens in
a cost place p and you try to reach the marking mf ∪ [pC]. If this is possible, the witness
sequence is an alignment with cost C. An optimal alignment can then be found by first
finding an alignment with a cost function assigning 0 cost to all transitions. The witness
of this reachability problem provides an upperbound for C and hence a binary search
can be conducted to find Cmin, i.e. the minimal cost with which mf ∪ [pC] is reachable.

While alignments for specific, isolated cases in a process are interesting, the more
challenging problem is to find alignments for entire event logs, taking into account
multiple perspectives, such as data and resources, as well as inter-case dependencies
introduced by these perspectives or by process properties such as batching.

In this keynote, we introduce the relation between conformance checking and reach-
ability andwe see look at the scenario where the processmodel becomes a systemmodel,
explicitly modeling inter-case dependencies in the form of ν-nets [14, 15]. We consider
the case where the event data is no longer a sequence representing a single case and how
this impacts the complexity of the conformance checking problem. We conclude with
a challenge for the Petri net community: To develop reachability techniques tailored
towards the problem of finding alignments between event data and system models.

References

1. van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.F.: Replaying history on
processmodels for conformance checking and performance analysis. Rev.DataMin.
Knowl. Discov. 2(2), 182–192 (2012). https://doi.org/10.1002/widm.1045. Wiley
Interdiscip.

2. Adriansyah, A., Sidorova, N., van Dongen, B.F.: Cost-based fitness in conformance
checking. In: Caillaud, B., Carmona, J., Hiraishi, K. (eds.) 11th International Con-
ference on Application of Concurrency to System Design, ACSD 2011, Newcastle
Upon Tyne, UK, 20–24 June, 2011, pp. 57–66. IEEE Computer Society (2011).
https://doi.org/10.1109/ACSD.2011.19

https://doi.org/10.1002/widm.1045
https://doi.org/10.1109/ACSD.2011.19

Challenges in Conformance Checking xi

3. Alizadeh, M., Lu, X., Fahland, D., Zannone, N., van der Aalst, W.M.P.: Linking data
and process perspectives for conformance analysis. Comput. Secur. 73, 172–193
(2018). https://doi.org/10.1016/j.cose.2017.10.010

4. Berti, A., van der Aalst, W.M.P.: A novel token-based replay technique to speed up
conformance checking and process enhancement. Trans. Petri Nets Other Model.
Concurr. 15, 1–26 (2021). https://doi.org/10.1007/978-3-662-63079-2_1

5. Boltenhagen, M., Chatain, T., Carmona, J.: Optimized SAT encoding of confor-
mance checking artefacts. Computing 103(1), 29–50 (2021). https://doi.org/10.
1007/s00607-020-00831-8

6. Carmona, J., van Dongen, B.F., Weidlich, M.: Conformance checking: foundations,
milestones and challenges. In: van der Aalst, W.M.P., Carmona, J. (eds.) Process
Mining Handbook, LNBIP, vol. 448, pp. 155–190. Springer, Cham (2022). https://
doi.org/10.1007/978-3-031-08848-3_5

7. van Dongen, B.F.: Efficiently computing alignments - using the extended marking
equation. In: Weske, M., Montali, M., Weber, I., vom Brocke, J. (eds.) BPM 2018.
LNCS, vol. 11080, pp. 197–214. Springer (2018). https://doi.org/10.1007/978-3-
319-98648-7_12

8. Garca-Bañuelos, L., van Beest, N., Dumas, M., Rosa, M.L., Mertens, W.: Complete
and interpretable conformance checking of business processes. IEEE Trans. Softw.
Eng. 44(3), 262--290 (2018). https://doi.org/10.1109/TSE.2017.2668418

9. Lee, W.L.J., Verbeek, H.M.W., Munoz-Gama, J., van der Aalst, W.M.P., Sepúlveda,
M.: Replay using recomposition: alignment-based conformance checking in the
large. In: Clarisó, R., et al. (eds.) Proceedings of the BPM Demo Track and BPM
Dissertation Award co-located with 15th International Conference on Business Pro-
cess Modeling (BPM 2017), Barcelona, Spain, 13 September 2017. CEUR Work-
shop Proceedings, vol. 1920. CEUR-WS.org (2017). http://ceur-ws.org/Vol-1920/
BPM_2017_paper_157.pdf

10. de Leoni, M., Lanciano, G., Marrella, A.: Aligning partially-ordered process-
execution traces and models using automated planning. In: de Weerdt, M., Koenig,
S., Röger, G., Spaan, M.T.J. (eds.) Proceedings of the Twenty-Eighth Interna-
tional Conference on Automated Planning and Scheduling, ICAPS 2018, Delft,
The Netherlands, 24–29 June 2018, pp. 321–329. AAAI Press (2018). https://aaai.
org/ocs/index.php/ICAPS/ICAPS18/paper/view/17739

11. Mannhardt, F., de Leoni, M., Reijers, H.A., van der Aalst, W.M.P.: Balanced multi-
perspective checking of process conformance. Computing 98(4), 407–437 (2016).
https://doi.org/10.1007/s00607-015-0441-1

12. Mehr, A.S.M., de Carvalho, R.M., van Dongen, B.F.: Detecting privacy, data and
control-flow deviations in business processes. In: Nurcan, S., Korthaus, A. (eds.)
Intelligent Information Systems - CAiSE Forum 2021, Melbourne, VIC, Australia,
28 June – 2 July 2021, Proceedings. LNBIP, vol. 424, pp. 82–91. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-79108-7_10

13. Rozinat, A., van der Aalst, W.M.P.: Conformance checking of processes based on
monitoring real behavior. Inf. Syst. 33(1), 64–95 (2008). https://doi.org/10.1016/j.
is.2007.07.001

14. Sommers, D., Sidorova, N., van Dongen, B.F.: Aligning event logs to resource-
constrained ν-petri nets. In: Bernardinello, L., Petrucci, L. (eds.) PETRI NETS

https://doi.org/10.1016/j.cose.2017.10.010
https://doi.org/10.1007/978-3-662-63079-2_1
https://doi.org/10.1007/s00607-020-00831-8
https://doi.org/10.1007/978-3-031-08848-3_5
https://doi.org/10.1007/978-3-319-98648-7_12
https://doi.org/10.1109/TSE.2017.2668418
http://ceur-ws.org/Vol-1920/BPM_2017_paper_157.pdf
https://aaai.org/ocs/index.php/ICAPS/ICAPS18/paper/view/17739
https://doi.org/10.1007/s00607-015-0441-1
https://doi.org/10.1007/978-3-030-79108-7_10
https://doi.org/10.1016/j.is.2007.07.001

xii B. van Dongen

2022. LNCS, vol. 13288, pp. 325–345. Springer, Cham (2022). https://doi.org/10.
1007/978-3-031-06653-5_17

15. Sommers, D., Sidorova, N., van Dongen, B.F.: Exact and approximated log align-
ments for processes with inter-case dependencies. In: Bernardinello, L., Petrucci,
L. (eds.) PETRI NETS 2023. LNCS. Springer (2023)

16. Taymouri, F., Carmona, J.: An evolutionary technique to approximate multiple opti-
mal alignments. In: Weske, M., Montali, M., Weber, I., vom Brocke, J. (eds.) BPM
2018. LNCS, vol. 11080, pp. 215–232. Springer (2018). https://doi.org/10.1007/
978-3-319-98648-7_13

https://doi.org/10.1007/978-3-031-06653-5_17
https://doi.org/10.1007/978-3-319-98648-7_13

Contents

Invited Papers

From Process-Agnostic to Process-Aware Automation, Mining,
and Prediction . 3

Stefanie Rinderle-Ma, Janik-Vasily Benzin, and Juergen Mangler

Formal Modelling, Analysis, and Synthesis of Modular Industrial Systems
Inspired by Net Condition/Event Systems . 16

Midhun Xavier, Sandeep Patil, Victor Dubinin, and Valeriy Vyatkin

Process Mining

There and Back Again: On the Reconstructability and Rediscoverability
of Typed Jackson Nets . 37

Daniël Barenholz, Marco Montali, Artem Polyvyanyy, Hajo A. Reijers,
Andrey Rivkin, and Jan Martijn E. M. van der Werf

ILP2 Miner – Process Discovery for Partially Ordered Event Logs Using
Integer Linear Programming . 59

Sabine Folz-Weinstein, Robin Bergenthum, Jörg Desel, and Jakub Kovář

Modelling Data-Aware Stochastic Processes - Discovery and Conformance
Checking . 77

Felix Mannhardt, Sander J. J. Leemans, Christopher T. Schwanen,
and Massimiliano de Leoni

Exact and Approximated Log Alignments for Processes with Inter-case
Dependencies . 99

Dominique Sommers, Natalia Sidorova, and Boudewijn van Dongen

Semantics

Taking Complete Finite Prefixes to High Level, Symbolically 123
Nick Würdemann, Thomas Chatain, and Stefan Haar

Interval Traces with Mutex Relation . 145
Ryszard Janicki, Maciej Koutny, and Łukasz Mikulski

xiv Contents

A Myhill-Nerode Theorem for Higher-Dimensional Automata 167
Uli Fahrenberg and Krzysztof Ziemiański

Tools

Hippo-CPS: A Tool for Verification and Analysis of Petri Net-Based
Cyber-Physical Systems . 191

Remigiusz Wiśniewski, Grzegorz Bazydło, Marcin Wojnakowski,
and Mateusz Popławski

Mochy: A Tool for the Modeling of Concurrent Hybrid Systems 205
Loïc Hélouët and Antoine Thébault

RENEW: Modularized Architecture and New Features . 217
Daniel Moldt, Jonte Johnsen, Relana Streckenbach, Laif-Oke Clasen,
Michael Haustermann, Alexander Heinze, Marcel Hansson,
Matthias Feldmann, and Karl Ihlenfeldt

Explorative Process Discovery Using Activity Projections 229
Yisong Zhang and Wil M. P. van der Aalst

Verification

Computing Under-approximations of Multivalued Decision Diagrams 243
Seyedehzahra Hosseini and Gianfranco Ciardo

Stochastic Decision Petri Nets . 264
Florian Wittbold, Rebecca Bernemann, Reiko Heckel, Tobias Heindel,
and Barbara König

Token Trail Semantics – Modeling Behavior of Petri Nets with Labeled
Petri Nets . 286

Robin Bergenthum, Sabine Folz-Weinstein, and Jakub Kovář

On the Reversibility of Circular Conservative Petri Nets . 307
Raymond Devillers

Automated Polyhedral Abstraction Proving . 324
Nicolas Amat, Silvano Dal Zilio, and Didier Le Botlan

Experimenting with Stubborn Sets on Petri Nets . 346
Sami Evangelista

Contents xv

Timed Models

Symbolic Analysis and Parameter Synthesis for Time Petri Nets Using
Maude and SMT Solving . 369

Jaime Arias, Kyungmin Bae, Carlos Olarte, Peter Csaba Ölveczky,
Laure Petrucci, and Fredrik Rømming

A State Class Based Controller Synthesis Approach for Time Petri Nets 393
Loriane Leclercq, Didier Lime, and Olivier H. Roux

Model Transformation

Transforming Dynamic Condition Response Graphs to Safe Petri Nets 417
Vlad Paul Cosma, Thomas T. Hildebrandt, and Tijs Slaats

Enriching Heraklit Modules by Agent Interaction Diagrams 440
Daniel Moldt, Marcel Hansson, Lukas Seifert, Karl Ihlenfeldt,
Laif-Oke Clasen, Kjell Ehlers, and Matthias Feldmann

Author Index . 465

Invited Papers

From Process-Agnostic to Process-Aware
Automation, Mining, and Prediction

Stefanie Rinderle-Ma(B) , Janik-Vasily Benzin , and Juergen Mangler

Technical University of Munich,
TUM School of Computation, Information and Technology,

Boltzmannstrasse 3, 85748 Garching, Germany
{stefanie.rinderle-ma,janik.benzin,juergen.mangler}@tum.de

Abstract. The entire research area of (business) process management
has experienced a tremendous push with the advent of process mining,
robotic process automation, and predictive process monitoring. While
this development is highly appreciated, the current process-agnostic
pipelines for process mining, robotic process automation, and predictive
process monitoring have several limitations. Taking a system perspective,
this keynote elaborates the limitations of process-agnostic automation.
Then, it shows how a shift towards process-aware automation and pre-
dictive compliance monitoring can be achieved and how process-aware
pipelines contribute to overcome the limitations of process-agnostic
automation. Finally, research implications with a focus on Petri nets
are derived.

Keywords: Process Automation · Process Mining · Predictive Process
Monitoring · Predictive Compliance Monitoring

1 Introduction

Process mining and robotic process automation are two mega trends. “The global
process mining software market is projected to grow from $933.1 million in 2022
to $15,546.4 million by 2029, at a CAGR of 49.5% in the forecast period.”1.
The combination of both technologies is expected to even increase their market
penetration [6].

Process mining comprises a set of techniques for the discovery and analysis
of process models and their executions based on process event logs [1] and the
expectations in practice are high [35]. Robotic process automation refers to the
automation of single process tasks by replacing human-task interaction with a
software bot [2]. The currently applied mine and automate pipeline (e.g., [14])
is depicted in Fig. 1a). Process mining is applied to discover process models, and
within these models tasks with the potential for automation are detected. As
an intermediate step between process mining and the automation of tasks, [14]

1 https://www.fortunebusinessinsights.com/process-mining-software-market-104792.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Gomes and R. Lorenz (Eds.): PETRI NETS 2023, LNCS 13929, pp. 3–15, 2023.
https://doi.org/10.1007/978-3-031-33620-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33620-1_1&domain=pdf
http://orcid.org/0000-0001-5656-6108
http://orcid.org/0000-0002-3979-400X
http://orcid.org/0000-0002-6332-5801
https://www.fortunebusinessinsights.com/process-mining-software-market-104792
https://doi.org/10.1007/978-3-031-33620-1_1

4 S. Rinderle-Ma et al.

advocate to standardize the process models by removing variations in the pro-
cess that might result due to, e.g., product variants. Once tasks are automated,
process mining can be used to continuously monitor their performance.

Process Mining

Robo�c Process
Automa�on

Iden�fica�on of tasks Con�nuous
monitoring

a) Mine and automate

Process Automa�on

Process Mining

Collec�on of
contextualized data

Con�nuous monitoring
and analysis

b) Automate and mine

Fig. 1. Pipelines: a) Mine and automate; b) Automate and mine

However, the mine and automate pipeline as depicted in Fig. 1a) has several
limitations:

1. Task-oriented automation: Robot process automation aims at the automa-
tion of single, often simple and repetitive interactions of humans with soft-
ware. However, a process is a task-overarching, orchestrating concept. Real
performance gains and analysis insights can only be achieved by taking an
orchestration point of view for process automation.

2. Data acquisition and preparation: Process mining relies on process event logs
emitted or extracted from information systems, e.g., ERP systems. If the
underlying system is not process-aware or a black box (e.g., legacy systems),
mechanisms for extraction and preparation of data are to be defined and
employed. Moreover, if the data is spread over multiple and possibly hetero-
geneous information systems [18,27], mechanisms for integrating the data are
to be defined and employed. Existing commercial systems support a range of
adaptors to different systems and data sources, e.g., data connections as sup-
ported in Celonis2. Using an object-centric approach offers the opportunity
to capture objects and their life cycles in the process event logs [8] and can
be used even if no case id is available or can be extracted form the underlying
data. However, data connections are not robust towards changes in the data
structures, i.e., data structure changes possibly require the adaptation of one,
several, or all of the established data connections.

3. Ex-post point of view: Most of the process mining analysis tasks are conducted
in an ex-post manner, i.e., based on process event logs that reflect already
finished process executions. This holds true for all three pillars of process min-
ing, i.e., process discovery, conformance checking, and process enhancement.
However, the monitoring and analysis of process executions during runtime
(online) based on process event streams provides current insights into the

2 https://docs.celonis.com/en/data-connections.html.

https://docs.celonis.com/en/data-connections.html

Process-Agnostic vs. Process-Aware Automation 5

process, e.g., detecting exceptions when they are actually happening, and
hence enabling a quicker reaction to potential problems such as compliance
violations [9,19,36]. Moreover, in practice, many analysis questions refer to
the monitoring of the process perspectives time, resources, and data, e.g., a
temperature sensor exceeding a certain threshold or temporal deviations that
“are mostly caused by humans, e.g., someone stepping into the safety area
of a machine causing a delay, and hint to problems with work organization”
[34]. Even predictive process monitoring, though suggesting to be applied
in an online manner due to the term “monitoring”, is mostly applied in an
ex-post way. More precisely, a process event log is split into training and
test data. One or several prediction models are learned based on the training
data. These prediction models are then applied to the test data, i.e., prefixes
from the test data are used to reflect a process event stream. Prediction goals
comprise, for example, the remaining time of cases, the next activity, and the
outcome of a process [13].

4. Dealing with uncertainty and concept drift: Ex-post mining allows to obtain
a picture of the past. However, an ever changing process environment and
uncertainties force processes to adapt constantly [5,9]. In the manufacturing
domain, for example, if new processes are set up, several adaptation cycles
are necessary until a process runs in a robust way. In health care, due to
unforeseen situations, ad-hoc changes of process instances can be frequently
required, e.g., the blood pressure exceeds a threshold such that the surgery has
to be delayed. “This uncertainty often manifests itself in significant changes
in the executed processes” [5]. Process changes, in turn, manifest as concept
drifts in process event logs [5] and as unseen behavior in process event streams
[23]. A selection of use cases for process changes from different domains can
be found in [17].

Limitations 1. and 2. refer to the system and data perspective and Limita-
tions 3. and 4. to the mining and analysis perspective of a process. In order to
address Limitations 1. and 2., we advocate an inversion of the mine and auto-
mate pipeline into an automate and mine pipeline as depicted in Fig. 1b). The
automate and mine pipeline starts with automated and orchestrated processes,
driven and managed by process engines or process-aware information systems.
These systems can be exploited to collect data in an integrated, orchestrated,
and contextualized manner at arbitrary granularity which, in turn, offers novel
process mining insights [29], for example, the combined analysis process event
logs/streams and sensors streams [11,37].

Limitations 3. and 4. emphasize the need to move towards approaches applied
during runtime when mining and monitoring processes. Most promising here are
approaches for online process mining such as [9] and predictive process monitor-
ing (cf., e.g., survey in [13]). One of the most crucial (business) goals of predictive
process monitoring is the prediction of possible compliance violations [26]. For
this, in existing approaches, the compliance constraint of interest, for example,
service level agreement “90% of the orders must be processed within 2 h”, is

6 S. Rinderle-Ma et al.

encoded as prediction goal in a prediction model (referred to as predicate pre-
diction [21]). Predicate prediction is illustrated through the comply and predict
pipeline depicted in Fig. 2a): compliance constraints are encoded as prediction
goals (comply) into a prediction model each, based on which violations of the
constraint are predicted (predict). The comply and predict pipeline for predicate
prediction comes with the following limitations (ctd.):

a) Predicate predic�on b) Predic�ve compliance monitoring

Comply

Predict

Predicate encoding

Predict

Comply

Mapping of predic�on goals
to compliance constraints

Con�nuous monitoring
and analysis

Fig. 2. Pipelines: a) Predicate prediction; b) Predictive compliance monitoring

5. Performance: In literature, predicate prediction, is mostly applied in the con-
text of simple scenarios. Simple here refers to i) compliance constraints of
limited complexity such as service level agreements and ii) a limited number
of predicates. The reason is that the encoding of i) is more manageable for
simple compliance constraints and ii) keeps the number of prediction models
limited that are necessary for predicate prediction (recall that for n compli-
ance constraints, n prediction models are to be created). However, real-world
scenarios can look very different [32]: contrary to i), compliance constraints
that stem from regulatory documents such as the GDPR are complex and
refer to multiple process perspectives. Contrary to ii) there might be several
hundred compliance constraints that are imposed on one process [28]. Sup-
porting predicate prediction for full-blown real-world scenarios would possibly
lead to a large number of complex prediction models, resulting in performance
issues.

6. Transparency: Predicate prediction yields a binary answer, i.e., either “the
predicate is violated” (possibly with a counterexample) or ”the predicate is
not violated”. Though this constitutes an essential information, in particular
in the case of violations, often some sort of reaction is required. At least, it
should become transparent why a violation occurred and for which instance(s)
(root cause). Without this information, it is difficult for users to decide on
remedy actions.

7. Maintainability: In predicate and compliance prediction in general, two
sources of change might occur. First of all, changes of the process and its
instances might become necessary, reflected by concept drift in the pro-
cess event log. Secondly, changes in the set of compliance constraints might
be performed by adding, deleting, and updating compliance constraints.

Process-Agnostic vs. Process-Aware Automation 7

Compliance constraint changes can occur frequently, e.g.: “Bank regulations
change about every 12min”3. For predicate prediction, a compliance con-
straint change requires the adaptation of the associated prediction model,
i.e., m compliance constraint changes result in the adaptation of m predic-
tion models.

In order to tackle Limitations 5.– 7., again, we advocate an inversion of the
comply and predict pipeline shown in Fig. 2a). Instead of encoding compliance
constraints and predicting their violations afterwards, we suggest the predict and
comply pipeline denoted as predictive compliance monitoring [32], depicted in
Fig. 2b): at first, predicting takes places through process monitoring approaches
with different prediction goals such as next activity, remaining time, outcome,
and other key performance indicators are applied (predict), followed by a map-
ping to the set of compliance constraints (comply).

In the following, we will contrast the different pipelines and approaches. For
this, we take the perspective of a holistic system and generalize the pipelines into
process-agnostic and process-aware automation (cf. Sect. 2). Finally, research
implications with a focus on Petri nets will be provided in Sect. 3.

2 Process-Agnostic and Process-Aware Automation

In the introduction, pipelines for process automation and mining as well as
prediction and compliance are shown, i.e., the current mine and automate and
the inverted automate and mine pipeline as well as the current comply and
predict and the inverted predict and comply pipeline. From a system perspective,
the two pipelines are not separated from each other, i.e., a holistic system can
support both. Figure 3 shows the system perspective realizing the mine and
automate and comply and predict pipelines on the left side and the system
perspective realizing the automate and mine and predict and comply pipelines on
the right side. Due to the fact, that the system perspective on the right side takes
an explicit process-aware point of view by employing a process engine or process-
aware information system, we refer to it as PAWA: process-aware automation.
Symmetrically, we refer to the system on the left side, where automation is
restricted to single tasks, as PAGA: process-agnostic automation.

In current PAGA systems, the event and data stream is extracted by ETL
pipelines from logs of the machine, ERP systems, and further systems as depicted
in Fig. 3. A multi-perspective process model is mined through process discovery,
conformance checking, and enriching the process model with additional perspec-
tives using further mining methods, e.g., decision and organizational mining [12].
The machine, ERP systems and further systems are then enhanced through pro-
cess analysts, domain experts, and/or developers as a result of insights gained
from analysing the multi-perspective process model. Enhancing refines robotic
process automation as shown for the mine and automate pipeline depicted in
3 https://thefinanser.com/2017/01/bank-regulations-change-every-12-minutes (last
accessed 2023-04-03).

https://thefinanser.com/2017/01/bank-regulations-change-every-12-minutes

8 S. Rinderle-Ma et al.

Fig. 1 by additionally optimizing existing automatic activities in the process
model, ad-hoc activities to mitigate possible problems that conformance check-
ing has unveiled, or circumventing bottlenecks by assigning further resources to
an activity.

The current state is dominated by the relational perspective of ERP sys-
tems that comes with major drawbacks. First, directly connecting to ERP and
further relational information systems necessitates sophisticated ETL pipelines
that emphasize ex-post over ex-ante views. Second, the lack of the process per-
spective in relational systems nudges the analysis to choose the traditional mine
and automate line of action (cf. Sect. 1 and Fig. 1) such that the corresponding
disadvantages apply.

Fig. 3. System View Comparison

PAWA systems serve as an orchestration and automation environment that
integrates the machine, ERP, and the system views (cf. Fig. 3). This enables
the implementation and execution of arbitrary processes (→ Limitation 1). To
illustrate this, in [29], we provide a classification of process automation scenarios
in manufacturing along the two dimensions of “human involvement” and “green
field – brown field”. This results in four automation classes that we have found
and realized across 16 real-world process scenarios. More precisely, the process
scenarios were modeled, implemented, and hence automated using the cloud pro-
cess execution engine cpee.org [25]. The scenarios comprise i) a robotic process
automation scenario (low human involvement, brown field), ii) fully automated
process orchestration (low human involvement, green field), iii) process-oriented

Process-Agnostic vs. Process-Aware Automation 9

user support (high human involvement, brown field), and iv) interactive process
automation (high human involvement, green field). i) was chosen to automate
a task due to a black box application system to be invoked. ii) orchestrates the
tasks of a robot, a machine, and measurement equipment. A video of the execu-
tion of the process orchestration can be found here4. iii) includes the automat-
ically generated instructions to be shown at work stations for staff in a process
with more than 20.000 variants. iv) features the on the fly creation and rout-
ing in process models based on interactions between human users and physical
devices such as machines [22] or other utilities, e.g., in the care domain [33]. Such
process scenarios are not only prevalent for the manufacturing domain, but also
for other domains such as health care and logistics which integrate “physical”
aspects (machines, vehicles) and human work. The variety of scenarios underpins
that robotic process automation can be supported by a PAWA system, but is
only one piece. PAWA systems are able to support any process orchestration and
integrate different systems, human work, and physical devices along the process
logic.

Moreover, PAWA systems can be employed to collect data in a systematic,
integrated, and contextualized manner (→ Limitation 2), i.e., they log every
event emitted during process execution and on top of that, PAWA systems can
collect and log process context data, e.g., IoT data in domains such as produc-
tion, health care, and logistics. The combined collection of process and IoT data
has gained interest lately, resulting in an extension of the process event log stan-
dard eXtensible event stream (XES)5, i.e., the XES Sensor Stream extension
[24]. This way, process engines and process-aware information systems serve as
systems for the process-oriented and contextualized collection of process data at
an arbitrary granularity (as defined in the process models) and a trusted, high
quality level (****(*) star level according to the L∗ data quality model for pro-
cess mining [3]) [30]. Using, for example, cpee.org as process collection system,
we collected and published three real-world process event logs with additional
context data6. Two data sets comprise data from public transport, augmented
with context data on weather, traffic, etc. and one data set stems from the
production domain on producing a chess piece.

In addition, PAWA systems collect and log data at an time, i.e., in an ex-post
manner as process event logs and during runtime as process event streams (→
Limitation 3). This also includes the runtime collection of context data such as
sensor streams. In particular, the online collection of event streams facilitates
the early detection of concept drifts [35] (→ Limitation 4).

Up to this point, we discussed how PAGA and PAWA systems realize the
mine and automate and automate and mine pipelines shown in Fig. 1. PAGA
and PAWA systems can also realize the comply and predict and predict and

4 https://lehre.bpm.in.tum.de/∼mangler/.Slides/media/media1.mp4, last accessed
2023-04-04.

5 www.xes-standard.org.
6 https://zenodo.org/communities/processmining.

https://lehre.bpm.in.tum.de/~mangler/.Slides/media/media1.mp4
www.xes-standard.org
https://zenodo.org/communities/processmining

10 S. Rinderle-Ma et al.

comply pipelines shown in Fig. 2, i.e., on the PAGA side by predicate prediction
and on the PAWA side as predictive compliance monitoring components.

We conducted a comprehensive literature review covering the research areas
of predictive process monitoring and compliance monitoring (see, e.g., [20]) with
respect to functionalities required for building a predictive compliance moni-
toring system [31]. A system that supports predictive compliance monitoring
employs the predict and comply pipeline (cf. Fig. 2b) to predict the future
progress of the monitored system and to monitor compliance on top of the
predictions and interprets them from a systems perspective. An abstract view
on how to integrate predictive compliance monitoring into a PAWA system is
depicted in Fig. 3, contrasted by the current state of how predicate prediction is
conceptualized and implemented in a PAGA system.

In PAGA systems, due to the current lack of the process perspective in the
monitored system and in the prediction models, the results of predicting com-
pliance violations have to be manually transformed into actions that can be
executed on an ERP system by notifying the respective employee (enhance).

In PAWA systems, the goal of predictive compliance monitoring centers
around the process perspective (cf. Fig. 3). By automating existing ERP sys-
tems or substituting existing systems through a PAWA system, ETL pipelines
are replaced by a simple connection to the logging service of PAWA system. The
optional mine and the compulsory predict separately consume the event and
data stream from the logging services. While mine is concerned with discovering
process models, analysing structural and behavioral properties of process models
and checking conformance, predict focuses on a single prediction model trained
to predict the future event and data stream of the overall process, i.e., the pre-
diction goal is a stream prediction (→ Limitations 3. and 4.). The prediction
model can additionally take the mined process model as input such that the
prediction of the event and data stream is based on the respective execution
states of running instances in the process model. Overall, the prediction goal
consists of future events and, in particular, data attributes. If required for very
important compliance constraints, the inverted, specialized comply and predict
pipeline (predicate prediction) can be added to the predictive compliance mon-
itoring system such that an independent prediction model for the very impor-
tant compliance constraint is trained. Stream predictions of the process are the
input to comply, while predicted violations of independent prediction models
can directly trigger mitigation actions in the monitored system. Given a stream
prediction, comply checks compliance of the compliance constraints resulting in
various compliance states. Due to the process perspective inherent in PAWA sys-
tems, predicted compliance states can automatically trigger mitigation actions,
e.g., by adding ad-hoc activities to an ongoing process instance.

Note that predictive compliance monitoring could also be integrated into the
PAGA system, inheriting its limitations due to enhance and the data collec-
tion. More importantly, note that the distinction into predicate prediction and
predictive compliance monitoring does not only apply to the domain of process
mining and automation, but also to the more general area of event prediction [7].

Process-Agnostic vs. Process-Aware Automation 11

At this point, we have to say that there is no solution for predictive compliance
monitoring yet and the “sweet spot” between predicate prediction and predic-
tive compliance monitoring w.r.t. prediction quality and limitations has to be
investigated [32].

Due to its process centricity, the PAWA system comes with the following
advantages regarding predictive compliance monitoring:

– Performance and maintainability of the prediction model (→ Limitations 5.
and 7.): If the set of compliance constraints is updated, no retraining of the
prediction model is necessary due to the clear separation of the prediction
model and the compliance checking. Furthermore, no new prediction models
have to be trained for new or updated constraints.

– Transparency and explainability of the predictve process monitoring system
(→ Limitation 6.): As the prediction model predicts the future event and data
streams, violations of compliance states can be pinpointed to their respective
events or data attributes in the stream. Hence, the predicted violation is
transparent and explainable.

– Actionable mitigations: Due to the process centricity of the PAGA system,
compliance states can directly trigger actions in the process engine, e.g.,
through adding ad-hoc activities, or spawning instances of specialized miti-
gation processes.

3 Implications on Research

In the introduction, we raise seven limitations with current mine and automate as
well as comply and predict pipelines which are integrated and analyzed through
the systems perspective (PAGA vs. PAWA in Fig. 3). In the following, we will
derive research implications with a focus on Petri net based research.

Soundness Verification for Automatic Changes to Automation. The
system view comparison in Fig. 3 shows the two extreme sides of a continu-
ous automation scale supported by process mining. A company on the move
to process-aware automation can exhibit both automation systems, i.e., PAGA
and PAWA, at the same time, as not all parts of the company are yet shifted
to PAWA. During the transition, companies can benefit from support on how to
shift from the manual enhance to the machine-enactable automate (cf. Fig. 3).

Petri Nets for Process-Aware Automation. Although Petri nets have been
proposed and applied for process execution in the past (cmp. FUNSOFT Nets
[10] in 1998), it remains not fully clear which Petri net class is sufficient to be
used as execution model in PAWA. Recent candidates include object-centric Petri
nets [4], Petri nets with identifiers [38], and colored Petri nets [16]. The main
question is to keep the balance between expressive power to model all process
perspectives and preventing problems such as checking soundness from becoming
undecidable. Hence, research on Petri nets classes such as object-centric Petri
nets or Petri nets with identifiers is ongoing.

12 S. Rinderle-Ma et al.

Conformance Checking on Petri Net Process Models of Collaborative
Systems. Conformance checking techniques for object-centric Petri nets and
Petri nets with identifiers comparable to alignment-based conformance checking
for sound workflow nets are missing. Also, replay-based techniques are yet miss-
ing, as the only existing object-centric Petri net implementation in PM4PY7

does not feature replay.

Rescheduling Processes Execution - Checking and Balancing Resource
Utilization. Whenever automatic changes are made, resource utilization may
be affected. As multiple processes may share the same resources, optimization
regarding resource utilization leads to better throughput. Scheduling of resource
allocation with timed Petri nets (cmp. [15]) based on process models, can allow
for simple, automatic and explainable solutions.

Instance and Process Spanning Constraints. Research on predicting and
checking compliance has focused on intra-instance constraints so far. Predicting
compliance states for instance and process spanning constraints remains an open
research problem [31].

Provision of Mitigation Actions. Automatically providing mitigation actions
for compliance violations, in particular at different granularity levels, and ana-
lyzing and visualizing their effects is relevant for both, predicate prediction and
predictive process monitoring, but yet to be solved [31].

Visualization and explanation of predictions and violations. Visual-
ization approaches for prediction results and future compliance violations are
mostly missing. Moreover, root cause analysis has to be extended in order to
deal with predicting violations of real-world compliance constraints [31].

Online Predictive Process Monitoring and Updating Compliance
States. Since predictive process monitoring predicts future event and data
streams given current event and data streams, prediction methods such as deep
learning cannot be applied for cases with frequent process adaptations. It is not
clear for which process environments existing prediction methods are capable
of updating the prediction model after each incoming event with data or which
batching methods are required such that existing prediction methods exhibit
a sufficient performance. Continuous update of prediction models and predic-
tions also results in continuous update of compliance states. It is open which
granularity levels for compliance states, i.e., event-level, instance-level, process-
level, multi-process-level, and multi-organisation-level, are supporting the users
in understanding the current system state. Moreover, it is unclear how compli-
ance states can be transformed between different granularity levels [31].

7 https://pm4py.fit.fraunhofer.de/.

https://pm4py.fit.fraunhofer.de/

Process-Agnostic vs. Process-Aware Automation 13

Data Properties and Quality. Exploiting data properties and quality is an
emerging research topic. Considering data quality, data values of low quality may
point to a compliance violation, e.g., redundant sensors fail quickly after each
other. The relation of data quality with compliance violation that goes beyond
merely removing low quality data points or imputating data values may reveal
further insights.

References

1. van der Aalst, W.M.P.: Process Mining - Data Science in Action. 2nd edn. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49851-4

2. van der Aalst, W.M.P., Bichler, M., Heinzl, A.: Robotic process automation. Bus.
Inf. Syst. Eng. 60(4), 269–272 (2018). https://doi.org/10.1007/s12599-018-0542-4

3. van der Aalst, W.M.P., et al.: Process mining manifesto. In: Business Process
Management Workshops, pp. 169–194 (2011). https://doi.org/10.1007/978-3-642-
28108-2 19

4. van der Aalst, W.M., Berti, A.: Discovering object-centric Petri nets. Fundamenta
informaticae 175(1–4), 1–40 (2020)

5. Adams, J.N., van Zelst, S.J., Rose, T., van der Aalst, W.M.P.: Explainable concept
drift in process mining. Inf. Syst. 114, 102177 (2023). https://doi.org/10.1016/j.
is.2023.102177

6. Badakhshan, P., Wurm, B., Grisold, T., Geyer-Klingeberg, J., Mendling, J., vom
Brocke, J.: Creating business value with process mining. J. Strateg. Inf. Syst. 31(4),
101745 (2022). https://doi.org/10.1016/j.jsis.2022.101745

7. Benzin, J.V., Rinderle-Ma, S.: A survey on event prediction methods from a
systems perspective: bringing together disparate research areas, February 2023.
http://arxiv.org/abs/2302.04018

8. Berti, A., van der Aalst, W.M.P.: OC-PM: analyzing object-centric event logs and
process models. Int. J. Softw. Tools Technol. Transf. 25(1), 1–17 (2023). https://
doi.org/10.1007/s10009-022-00668-w

9. Ceravolo, P., Tavares, G.M., Junior, S.B., Damiani, E.: Evaluation goals for online
process mining: a concept drift perspective. IEEE Trans. Serv. Comput. 15(4),
2473–2489 (2022). https://doi.org/10.1109/TSC.2020.3004532

10. Deiters, W., Gruhn, V.: Process management in practice applying the FUNSOFT
net approach to large-scale processes. Autom. Softw. Eng. 5(1), 7–25 (1998).
https://doi.org/10.1023/A:1008654224389

11. Ehrendorfer, M., Mangler, J., Rinderle-Ma, S.: Assessing the impact of context
data on process outcomes during runtime. In: Service-Oriented Computing, pp.
3–18 (2021). https://doi.org/10.1007/978-3-030-91431-8 1

12. Fahland, D.: Multi-dimensional process analysis. In: Business Process Manage-
ment, pp. 27–33 (2022). https://doi.org/10.1007/978-3-031-16103-2 3

13. Francescomarino, C.D., Ghidini, C., Maggi, F.M., Milani, F.: Predictive process
monitoring methods: which one suits me best? In: Business Process Management,
pp. 462–479 (2018). https://doi.org/10.1007/978-3-319-98648-7 27

14. Geyer-Klingeberg, J., Nakladal, J., Baldauf, F., Veit, F.: Process mining and
robotic process automation: a perfect match. In: Dissertation Award, Demonstra-
tion, and Industrial Track at BPM, pp. 124–131. CEUR-WS.org (2018)

15. Huang, B., Zhou, M., Lu, X.S., Abusorrah, A.: Scheduling of resource allocation
systems with timed petri nets: a survey. ACM Comput. Surv. 55(11), 230:1–230:27
(2023). https://doi.org/10.1145/3570326

https://doi.org/10.1007/978-3-662-49851-4
https://doi.org/10.1007/s12599-018-0542-4
https://doi.org/10.1007/978-3-642-28108-2_19
https://doi.org/10.1007/978-3-642-28108-2_19
https://doi.org/10.1016/j.is.2023.102177
https://doi.org/10.1016/j.is.2023.102177
https://doi.org/10.1016/j.jsis.2022.101745
http://arxiv.org/abs/2302.04018
https://doi.org/10.1007/s10009-022-00668-w
https://doi.org/10.1007/s10009-022-00668-w
https://doi.org/10.1109/TSC.2020.3004532
https://doi.org/10.1023/A:1008654224389
https://doi.org/10.1007/978-3-030-91431-8_1
https://doi.org/10.1007/978-3-031-16103-2_3
https://doi.org/10.1007/978-3-319-98648-7_27
https://doi.org/10.1145/3570326

14 S. Rinderle-Ma et al.

16. Jensen, K.: Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical
Use, vol. 1. Springer, Heidelberg (1996). https://doi.org/10.1007/978-3-662-03241-
1

17. Kaes, G., Rinderle-Ma, S., Vigne, R., Mangler, J.: Flexibility requirements in real-
world process scenarios and prototypical realization in the care domain. In: Meers-
man, R., et al. (eds.) OTM 2014. LNCS, vol. 8842, pp. 55–64. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-45550-0 8

18. Koenig, P., Mangler, J., Rinderle-Ma, S.: Compliance monitoring on process event
streams from multiple sources. In: Process Mining, pp. 113–120 (2019). https://
doi.org/10.1109/ICPM.2019.00026

19. Lee, W.L.J., Burattin, A., Munoz-Gama, J., Sepúlveda, M.: Orientation and con-
formance: a hmm-based approach to online conformance checking. Inf. Syst. 102,
101674 (2021). https://doi.org/10.1016/j.is.2020.101674

20. Ly, L.T., Maggi, F.M., Montali, M., Rinderle-Ma, S., van der Aalst, W.M.P.:
Compliance monitoring in business processes: functionalities, application, and tool-
support. Inf. Syst. 54, 209–234 (2015). https://doi.org/10.1016/j.is.2015.02.007

21. Maggi, F.M., Francescomarino, C.D., Dumas, M., Ghidini, C.: Predictive moni-
toring of business processes. In: Advanced Information Systems Engineering, vol.
8484, pp. 457–472 (2014). https://doi.org/10.1007/978-3-319-07881-6 31

22. Mangat, A.S., Mangler, J., Rinderle-Ma, S.: Interactive process automation based
on lightweight object detection in manufacturing processes. Comput. Ind. 130,
103482 (2021). https://doi.org/10.1016/j.compind.2021.103482

23. Mangat, A.S., Rinderle-Ma, S.: Next-activity prediction for non-stationary pro-
cesses with unseen data variability. In: Enterprise Design, Operations, and Com-
puting, pp. 145–161 (2022). https://doi.org/10.1007/978-3-031-17604-3 9

24. Mangler, J., et al.: Datastream XES extension: embedding IoT sensor data into
extensible event stream logs. Future Internet 15(3) (2023). https://doi.org/10.
3390/fi15030109

25. Mangler, J., Rinderle-Ma, S.: CPEE - cloud process execution engine. In: BPM
Demo Sessions, p. 51 (2014). http://ceur-ws.org/Vol-1295/paper22.pdf

26. Márquez-Chamorro, A.E., Resinas, M., Ruiz-Cortés, A.: Predictive monitoring of
business processes: a survey. IEEE Trans. Serv. Comput. 11(6), 962–977 (2018).
https://doi.org/10.1109/TSC.2017.2772256

27. Oberdorf, F., Schaschek, M., Weinzierl, S., Stein, N., Matzner, M., Flath, C.M.:
Predictive end-to-end enterprise process network monitoring. Bus. Inf. Syst. Eng.
65(1), 49–64 (2023). https://doi.org/10.1007/s12599-022-00778-4

28. Rinderle-Ma, S., Kabicher-Fuchs, S.: An indexing technique for compliance check-
ing and maintenance in large process and rule repositories. Enterp. Model. Inf. Syst.
Archit. Int. J. Concept. Model. 11, 2:1–2:24 (2016). https://doi.org/10.18417/
emisa.11.2

29. Rinderle-Ma, S., Mangler, J.: Process automation and process mining in manu-
facturing. In: Business Process Management, pp. 3–14 (2021). https://doi.org/10.
1007/978-3-030-85469-0 1

30. Rinderle-Ma, S., Stertz, F., Mangler, J., Pauker, F.: Process Mining-Discovery,
Conformance, and Enhancement of Manufacturing Processes, pp. 363–383.
Springer, Heidelberg (2023). https://doi.org/10.1007/978-3-662-65004-2 15

31. Rinderle-Ma, S., Winter, K., Benzin, J.V.: Predictive compliance monitoring in
process-aware information systems: state of the art, functionalities, research direc-
tions, March 2023. http://arxiv.org/abs/2205.05446, accepted in Information Sys-
tems

https://doi.org/10.1007/978-3-662-03241-1
https://doi.org/10.1007/978-3-662-03241-1
https://doi.org/10.1007/978-3-662-45550-0_8
https://doi.org/10.1109/ICPM.2019.00026
https://doi.org/10.1109/ICPM.2019.00026
https://doi.org/10.1016/j.is.2020.101674
https://doi.org/10.1016/j.is.2015.02.007
https://doi.org/10.1007/978-3-319-07881-6_31
https://doi.org/10.1016/j.compind.2021.103482
https://doi.org/10.1007/978-3-031-17604-3_9
https://doi.org/10.3390/fi15030109
https://doi.org/10.3390/fi15030109
http://ceur-ws.org/Vol-1295/paper22.pdf
https://doi.org/10.1109/TSC.2017.2772256
https://doi.org/10.1007/s12599-022-00778-4
https://doi.org/10.18417/emisa.11.2
https://doi.org/10.18417/emisa.11.2
https://doi.org/10.1007/978-3-030-85469-0_1
https://doi.org/10.1007/978-3-030-85469-0_1
https://doi.org/10.1007/978-3-662-65004-2_15
http://arxiv.org/abs/2205.05446

Process-Agnostic vs. Process-Aware Automation 15

32. Rinderle-Ma, S., Karolin Winter, J.V.B.: Predictive compliance monitoring in
process-aware information systems: state of the art, functionalities, research direc-
tions. Inf. Syst. (2023). https://doi.org/10.1016/j.is.2023.102210

33. Stertz, F., Mangler, J., Rinderle-Ma, S.: Balancing patient care and paperwork
automatic task enactment and comprehensive documentation in treatment pro-
cesses. Enterp. Model. Inf. Syst. Archit. Int. J. Concept. Model. 15, 11:1–11:28
(2020). https://doi.org/10.18417/emisa.15.11

34. Stertz, F., Mangler, J., Rinderle-Ma, S.: The role of time and data: online confor-
mance checking in the manufacturing domain. arXiv:2105.01454 (2021)

35. Stertz, F., Mangler, J., Scheibel, B., Rinderle-Ma, S.: Expectations vs. experiences
- process mining in small and medium sized manufacturing companies. In: Business
Process Management Forum, pp. 195–211 (2021). https://doi.org/10.1007/978-3-
030-85440-9 12

36. Stertz, F., Rinderle-Ma, S.: Process histories - detecting and representing concept
drifts based on event streams. In: On the Move to Meaningful Internet Systems,
pp. 318–335 (2018). https://doi.org/10.1007/978-3-030-02610-3 18

37. Stertz, F., Rinderle-Ma, S., Mangler, J.: Analyzing process concept drifts based
on sensor event streams during runtime. In: Business Process Management, pp.
202–219 (2020). https://doi.org/10.1007/978-3-030-58666-9 12

38. van der Werf, J.M.E.M., Rivkin, A., Montali, M., Polyvyanyy, A.: Correctness
notions for Petri nets with identifiers, December 2022. http://arxiv.org/abs/2212.
07363, arXiv:2212.07363 [cs]

https://doi.org/10.1016/j.is.2023.102210
https://doi.org/10.18417/emisa.15.11
http://arxiv.org/abs/2105.01454
https://doi.org/10.1007/978-3-030-85440-9_12
https://doi.org/10.1007/978-3-030-85440-9_12
https://doi.org/10.1007/978-3-030-02610-3_18
https://doi.org/10.1007/978-3-030-58666-9_12
http://arxiv.org/abs/2212.07363
http://arxiv.org/abs/2212.07363
http://arxiv.org/abs/2212.07363

Formal Modelling, Analysis, and Synthesis
of Modular Industrial Systems Inspired

by Net Condition/Event Systems

Midhun Xavier1 , Sandeep Patil1 , Victor Dubinin2 ,
and Valeriy Vyatkin1,3(B)

1 Department of Computer Science, Electrical and Space Engineering,
Luleå Tekniska Universitet, Luleå, Sweden
{midhun.xavier,sandeep.patil}@ltu.se
2 Independent Researcher, Penza, Russia

3 Department of Electrical Engineering and Automation, Aalto University,
Espoo, Finland

vyatkin@ieee.org

Abstract. This paper summarises recent developments in the appli-
cation of modular formalisms to model-based verification of industrial
automation systems. The paper is a tribute to the legacy of Profes-
sor Hans-Michael Hanisch who invented Net Condition/Event Systems
(NCES) and passionately promoted the closed-loop modelling approach
to modelling and analysis of automation systems. The paper surveys the
related works and highlights the impact NCES has made on the current
progress of modular automation systems verification.

1 Introduction

Modularity is a fundamental feature of technical systems, in particular in indus-
trial automation and cyber-physical systems. On the other hand, modular sys-
tems is a good example of distributed systems. Petri nets (PN) have been known
as a formal language specifically focused on modelling of distributed state sys-
tems. That suggests a clear overlap and the need to address modularity in formal
modelling. Petri nets inspired an uncountable number of derivatives.

Modularity in the context of PN has been discussed for a long time. According
to [6], the concept of Modular Petri Nets has been through four generations of
development.

On the other hand, the concept of Condition/Event Systems (C/ES) [31] was
invented to model modular systems composed of communicating modules and
study their generic properties.

Net Condition/Event Systems (NCES) [29] is a particular case of C/ES where
modules are defined as (extended) Petri nets. It was proposed to model more
efficiently distributed systems that are modular.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Gomes and R. Lorenz (Eds.): PETRI NETS 2023, LNCS 13929, pp. 16–33, 2023.
https://doi.org/10.1007/978-3-031-33620-1_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33620-1_2&domain=pdf
http://orcid.org/0000-0003-3371-6075
http://orcid.org/0000-0003-2936-4185
http://orcid.org/0000-0002-5761-2249
http://orcid.org/0000-0002-9315-9920
https://doi.org/10.1007/978-3-031-33620-1_2

Modular Industrial Systems Modelling 17

One should note that computational analysis of NCES is in general undecid-
able as shown by Starke and Hanisch [32]. Nevertheless, the formalism fits very
well with the emerging engineering concepts for CPS such as service-oriented
architecture (SOA) and IEC 61499 function blocks due to the properly addressed
event-driven semantics. The initial effort of NCES application to IEC 61499 mod-
elling is summarised in [14].

In this paper, we attempt to observe the developments related to the mod-
elling and analysis of distributed modular industrial automation systems from
the particular perspective of how the modular derivatives of Petri nets influence
them.

The rest of the paper is structured as follows. In Sect. 2 the necessary def-
initions of NCES are provided. It is followed by a brief illustration of some
features NCES provide for modelling distributed modular systems in Sect. 3.
Section 4 contains some observations of similarities between IEC 61499 and
NCES. Section 5 attempts to overview the related research works on the mod-
elling of modular systems. The recently developed modelling framework for mod-
ular systems based on IEC 61499 and influenced by the Condition/Event Systems
paradigm is described in Sect. 6. The paper is concluded with a short summary
and outlook in Sect. 7 and acknowledgements.

2 Some Definitions

Net Condition/Event Systems (NCES) is a finite state formalism that preserves
the graphical notation and the non-interleaving semantics of Petri nets [27],
and extends them with a clear and concise notion of signal inputs and outputs.
The formalism was introduced in [28] in 1995 and has been used in dozens of
applications, especially in embedded industrial automation systems.

Fig. 1. Graphical notation of an NCES module.

Given a place/transition net N = (P, T, F,m0), the Net Condition/Event
System (NCES) is defined as a tuple N = (N, θN , ΨN , Gr), where θN is an
internal structure of signal arcs, ΨN is an input/output structure, and Gr ⊆ T
is a set of so-called “obliged” transitions that fires as soon as it is enabled.
Figure 1 illustrates an example of an NCES module. The structure ΨN consists of
condition and event inputs and outputs (ci, ei, eo, co). The structure θN is formed

18 M. Xavier et al.

from two types of signal arcs. Condition arcs lead from places and condition
inputs to transitions and condition outputs. They provide additional enableness
conditions of the recipient transitions. Event arcs from transitions and event
inputs to transitions and event outputs provide one-sided synchronization of the
recipient transitions: firing of the source transition forces firing of the recipient
if the latter is enabled by the marking and conditions.

The NCES modules can be interconnected by the condition and event arcs,
forming thus distributed and hierarchical models as illustrated in Fig. 2. NCES
having no inputs can be analyzed without any additional information about its
external environment.

Fig. 2. Composition of NCES modules.

The semantics of NCES cover both asynchronous and synchronous behaviour
(required to model plants and controllers respectively). NCES are supported by
a family of model-developing and model-checking tools, such as a graphic editor,
SESA and ViVe [2].

The state of an NCES module is completely determined by the current mark-
ing m : P → N0 of places and values of inputs. A state transition is determined
by the subset τ ⊆ T of simultaneously fired transitions, called step. The transi-
tions having no incoming event arcs are called spontaneous, otherwise forced. The
step fully determines the values of event outputs of the module. In the original
NCES version the step is formed by choosing some1 of the enabled spontaneous
transitions, and all the enabled transitions forced by the transitions already
included in the step.

A state of NCES is fully described by the marking of all its places (in the
timed version also by clocks). A transition step specifies a state transition. When
used for system analysis, a set of all reachable states (complete or partial) of
NCES model is generated and then analyzed.
1 This means the step in NCES is non-deterministic.

Modular Industrial Systems Modelling 19

For describing the execution model of function blocks we use a deterministic
dialect of NCES and the modeling approach that guarantee certain properties
of the models as follows:

1. In the chosen dialect a step is formed from all enabled spontaneous transitions
and all forced transitions;

2. The models are designed so that there is no conflicts (i.e., deficient marking
in some places) leading to non-deterministic choice of some of the enabled
transitions;

3. The models also guarantee bounded marking in all places.

3 Modelling Distributed Systems with NCES

To illustrate the key features of NCES modelling for distributed systems, let us
consider an example of a simple distributed control system. In the system of two
cylinders in Fig. 3 each cylinder pushes a workpiece to the destination hole. The
process starts when the workpiece appears in front of the corresponding cylinder
as indicated by sensors P1 and P2 respectively. As it is clear from the Figure,
cylinders can collide in the middle point, therefore the goal of controller design
is to avoid such a situation.

Fig. 3. Two cylinders example of a distributed system.

There are many possible ways to achieve the desired behaviour, which can be
done by designing a “central” controller of both cylinders, or a protocol ensuring
that distributed controllers collaborate correctly. Distributed control is of inter-
est for many practical reasons, for example, for the case when control logic is
“embedded” in each cylinder, so they can start working as soon as powered on.

NCES model of the two cylinders system with distributed control is presented
in Fig. 5.

An abstract model of two processes interacting with each other with the help
of buffer is presented in Fig. 4. Here Process 1 adds a token to the Buffer, and
Process 2 sees it and removes it from the buffer.

20 M. Xavier et al.

Fig. 4. NCES model of the two cylinders system.

A more sophisticated synchronous communication mechanism between clock-
driven processes through a rendezvous channel is modelled by means of NCES
formalism in Fig. 6. The example represents a part of the previously considered
system (Fig. 4), where the Position_Control is a component inside the Robot,
and the input channel Position connects it to the Coordinator block.

To verify the correctness of the channel’s operation the model-checking tool
ViVe can be applied. The reachability graph of the model is presented in Fig. 4.

Fig. 5. NCES model of interprocess communication.

4 IEC 61499 Based Modular Engineering of Automation
Systems

The IEC 61499 architecture [1] is getting increasingly recognised as a power-
ful mechanism for engineering cyber-physical systems. In IEC 61499, the basic
design construct is called function block (FB). Each FB consists of a graphi-
cal event-data interface and a set of executable functional specifications (algo-
rithms), represented as a state machine (in basic FB), as a network of other FB

Modular Industrial Systems Modelling 21

Fig. 6. NCES model of the process synchronisation.

Fig. 7. Reachability graph of the model (left) and the behaviour along the S1→S2→S4
trace (right), where the rendezvous occurs at the state transition S2→S4.

22 M. Xavier et al.

instances (composite FB), or as a set of services (service interface FB). FBs can
be interconnected into a network using event and data connections to specify
the entire control application. The execution of an individual FB in the network
is triggered by the events it receives. This well-defined event-data interface and
the encapsulation of local data and control algorithms make each FB a reusable
functional unit of software (Fig. 7).

A basic Function Block (FB) consists of a signal interface (left-hand side)
and an Execution Control Chart (ECC) state machine (right-hand side). The
algorithms executed in the ECC states determine the behavior of the FB in
response to changes in its inputs and its internal state.

A function block application is a network of FBs connected by event and
data links as illustrated in the upper part of Fig. 8, which illustrates models
of the same one pneumatic cylinder system with IEC 61499 (top) and NCES
(bottom). The structural similarity is supported by the semantic similarity since
both modelling languages are event-based. Connections between modules in both
modelling languages are passing events and data. This simplifies the modelling of
IEC 61499 with NCES and several modelling and analysis tools were developed
to explore it.

Fig. 8. Similarity of IEC 61499 and NCES models.

In 1998, way before the IEC 61499 was formally accepted as a standard by
IEC, using an early draft, Hans-Michael Hanisch observed this stunning sim-
ilarity and wrote a research proposal together with Peter Starke, supported
by the German Research Council (DFG), on formal verification of IEC 61499
applications by means of NCES. That gave rise to a number of developments
summarised in [14].

Modular Industrial Systems Modelling 23

In particular, in 2001, Vyatkin and Hanisch developed a software pack-
age called “Verification Environment for Distributed Applications” (VEDA) for
model-based simulation and verification [33]. NCES is used for modelling and
IEC 61499 function blocks are automatically converted with the help of VEDA
for efficient simulation and verification.

But, surprisingly, the NCES-IEC 61499 similarity helped develop a modelling
approach in which IEC 61499 itself was directly used as a modelling language
as it will be illustrated in Sect. 6.

5 Survey of Works on Modular Engineering
and Modelling

To put the above-referenced developments on NCES and IEC 61499 to the
broader context, in this section we present a brief survey of other related works
on formal modelling and analysis of modular automation systems.

5.1 Modelling of Flexible Reconfigurable Systems

Reconfigurable Manufacturing Systems (RMS) are flexible and adaptable to
manufacture various products to meet changing market demands. Meng et al.
explain how complex RMS can be hierarchically modularized for modelling
reconfigurability using coloured Object Oriented Petri nets [16]. The RMS model
is developed with the help of the macro-level Petri net and the changes in RMS
drive the change in Petri net.

Later, Wu et al. introduced Intelligent Token Petri Net (ITPN) for modelling
reconfigurable Automated Manufacturing Systems (AMS) [35]. The ITPN model
captures dynamic changes in the system and the deadlock-free policy makes the
model always deadlock-free and reversible. The change in configuration modifies
only changed part of the current model and the deadlock-free policy remains the
same.

In real-time systems temporal constants are inevitable and these systems
need to be modelled to ensure that it satisfies functional and non-functional
requirements. Recently, Kaid et al. developed Intelligent Colored Token Petri Net
(ICTPN) and it models dynamic changes in a modular manner and produces a
compact model which ensures PN behavioural properties like boundness, liveness
and reversibility but the ITCPN model lacks a conversion method to industrial
control languages.

Reconfigurable Discrete Event System (RDES) such as reconfigurable manu-
facturing systems (RMS) has the ability to change the configuration of the sys-
tem to adapt to changes in conditions and requirements. Reconfigurable discrete
event control systems (RDECS) are an important part of RDESs. Reconfigura-
tion done at the run time is called Dynamic reconfiguration and it should occur
without influencing the working environment and with no deadlock. Zhang et al.
introduced the reconfiguration based on the Timed Net Condition/Event system
(R-TNCES) and it is a formalism for the modelling and verification of RDECSs.
SESA model checker does the layer-by-layer verification of R-TNCES [43].

24 M. Xavier et al.

Modern manufacturing systems switch energy-intensive machines between
working and idle mode with the help of dynamic reconfiguration to save energy.
The later works of Zhang et al. developed how formal modelling and verification
of reconfigurable and energy-efficient manufacturing systems can be done using
R-TNCES formalism and SESA tool is applied to check functional, temporal
and energy efficient properties [42,45].

System reconfiguration in run-time is inevitable and a discrete event system
with dynamic reconfigurability is called (DRDES). NCES is widely applied in
DRDESs in the past decade. NCES are a modular extension of PN and it is used
for modelling, analysis and control of DRDES. Many researchers worked on the
modelling, analysis and verification of reconfigurable RMS.

The system reconfiguration should be completed before the permissible recon-
figuration delay. Whenever a reconfiguration event is triggered then DRDES
should be able to go to the target state within the permissible reconfiguration
delay otherwise it should reject the reconfiguration requirement. Zhang et al.
developed to compute a shortest legal firing sequence (SLFS) of an NCES using
Integer Linear Programming (ILP) under a given maximum permissible recon-
figuration delay [44].

Interpreted time Petri net (ITPN) is used to model real-time systems, which
helps to increase the modelling power and expressiveness compared to (Timed
Petri net) TPN’s. Hadjidj et al. proposed RT-studio (Real-time studio) for mod-
elling, simulation and automatic verification. [13]. RT-studio tries to tighten the
gap with the UPPAAL model checker by modularizing the ITPN model.

Dehnert et al. introduced a new probabilistic model checker [7,15] called
Storm that can analyze both discrete- and continuous-time variants of Markov
chains and Markov decision processes (MDPs), using the Prism and JANI mod-
elling languages, probabilistic programs, dynamic fault trees and generalized
stochastic Petri nets. It has a flexible design that allows for easy exchange of
solvers and symbolic engines, and it offers a Python API for rapid prototyping.
Benchmark experiments have shown that Storm has competitive performance.

5.2 Modelling of IEC 61499

Another approach to verify the application of IEC 61499 was presented by
Schnakenhourg et al. , who explained the method to verify IEC 61499 function
blocks by converting to the SIGNAL model [30]. The specification also converts
to a SIGNAL model and verifies using SILDEX from the TNI society.

In order to formally model function blocks in IEC 61499, it is necessary to
first define their complete execution semantics. The semantic ambiguities in IEC
61499, can lead to different interpretations of function blocks. To address this,
the Sequential Hypothesis can be used, which defines a more intuitive and clear
sequential execution model of function blocks. Pang et al. [21], developed IEC
61499 basic function blocks using the sequential hypothesis, which assumes that
blocks within a network are activated sequentially. They used NCES and ver-
ified the behaviour of the model using model-checking tools such as iMATCH

Modular Industrial Systems Modelling 25

and SESA. They later proposed a model generator [22] that automatically trans-
lates IEC 61499 function blocks into the NCES formal model for the purpose
of verification. The function blocks developed using the FBDK (Function Block
Development Kit) are translated into functionally and semantically equivalent
NCES models following the sequential execution model. This NCES model can
be opened in ViEd and properties are verified using the ViVe tool.

Cengic et al. [5] introduced a new runtime environment called Fuber, which
uses a formal execution model to make the behaviour of IEC 61499 applications
deterministic and predictable. They developed a tool to translate IEC 61499
function blocks into a set of finite-state automata and used the Supremica tool for
supervisor verification and synthesis. After that, they introduced a software tool
to automatically generate formal closed-loop system models between control code
and process models expressed as IEC 61499 function blocks, using extended finite
automata (EFA) and Supremica for formal verification [3]. They further extended
this by defining the buffered sequential execution model (BSEM) and its formal
verification using Supremica by analyzing the EFA model [4]. In another study,
Yoong et al. developed a tool to translate IEC 61499 function blocks to Esterel
for verification [41]. Existing verification tools for Esterel help to analyze the
safety properties of IEC 61499 function block programs.

Formal verification of embedded control systems using closed-loop plant-
controller models is becoming more popular. However, the use of non-
determinism in the model of the plant can lead to the complexity explosion
in the model-checking process and make it difficult to verify the correctness of
the plant model itself before it can be used in the closed-loop verification pro-
cess. The paper [23] describes the integration of modelling principles into the
Veridemo toolchain, and it also explains the implementation of controlled non-
determinism in NCES systems. The controlled non-determinism limits the state
space and eventually results in better verification times. This approach provides
better model-checking performance with ViVe and SESA compared to NuSMV
and UPPAAL model checkers with fully deterministic state machines. Later they
introduced [26] a framework for model checking and counter-example playback
in simulation models used to verify the system. The control logic and dynamics
of the plant are modelled using Net Condition/Event Systems formalism and
ViVe/SESA toolchain is used for model checking. The counter examples for fail-
ures during model checking are played back in simulation models for a better
understanding of the failures.

The IEC 61499 standard is used for the development of distributed control
systems, but it has limited support for reconfigurable architectures. To address
this limitation, Guellouz et al. proposed a new model called reconfigurable func-
tion blocks (RFBs) in their study [11]. They use GR-TNCES, a derivative of
NCES, to model the system and applied the proposed approach to a medical
platform called BROS. Further studies [10,12] proposed translating RFBs to
GR-TNCES in order to verify their correctness and alleviate state space explo-
sion in model checking. Additionally, the latter paper aimed to analyze proba-
bilistic properties and used a smart-grid system as a case study to demonstrate

26 M. Xavier et al.

the approach. The study also developed a visual environment called ZiZo v3 for
modelling reconfigurable distributed systems.

The formal verification technique is a reliable approach to ensure the cor-
rectness of instrumentation and control (I&C) systems. It mentions that model-
checking is widely used in avionics, the automotive industry, and nuclear power
plants but has some difficulties in locating errors in the model. The Oeritte tool,
presented in the first study of Ovsiannikova et al. [19], is a solution for assist-
ing analysts in the debugging process of formal models of instrumentation and
control systems. It uses a method for automatic visual counterexample explana-
tion and includes reasoning for both the falsified LTL formula and the NuSMV
function block diagram of the formal model of the system. The tool addresses
the challenges of counterexample visualization, LTL formulae, and counterex-
ample explanation by providing methods, visual elements, and user interface.
The second study, [20], presents the development of a model-checking plugin
for IEC 61499 systems in the FBME graphical development environment. The
plugin automates the process of converting the system to a formal model, model-
checking, and providing a visual explanation of counterexamples.

The next step to verification is the formal synthesis of correct-by-design sys-
tems with ensured safe operation. Missal and Hanisch [17,18] present a modular
synthesis approach. It is based on the modular backward search in order to
avoid the complexity of generating all states and state transitions of the plant
model. It uses modular backward steps that describe the trajectories leading to
forbidden states. The generation of these trajectories is stopped as soon as a
preventable step is found. From this information, the models of the controllers
are generated. Each controller has decision functions and communications func-
tions. Together they establish a network of local, interacting controllers with
communication. It is assumed that the plant is completely observable, i.e. the
local controllers have complete information about the local states of the par-
tial plants they are supposed to control. The paper also contributes with the
definition of the behaviour of the plant without its complete composition. This
means that the behaviour can be studied by means of modular steps within the
modules and their interaction across module boundaries.

Dubinin et al. in [9] demonstrate safety controller synthesis using the descrip-
tion of the plant and forbidden behaviour, proposing a method of synthesis of
adaptive safety controller models for distributed control systems based on reverse
safe Net Condition/Event Systems (RsNCES). The method allows for the gen-
eration of prohibiting rules to prevent the movement of closed-loop systems to
forbidden states. The method is based on a backward search in the state space
of the model.

6 Use IEC 61499 for Condition/Event Modelling: A
Comprehensive Tool Chain

The works on formal modelling and verification of IEC 61499 systems by means
of NCES and its analysis tools have confirmed the benefits of exploring their

Modular Industrial Systems Modelling 27

structural and semantic similarities. On the other hand, applying the verification
to systems of industrial scale has raised several questions:

– Model-checking tools for NCES require constant support and improvement,
which was lacking. A bridge to industrially supported powerful tools was
desirable.

– Verification should be a part of the regular engineering and testing process
that includes testing by simulation, and analysis of results.

Towards the first goal, Patil et al. [25] introduce a method for formally mod-
elling and verifying IEC 61499 function blocks, a component model used in
distributed embedded control system design, using the Abstract State Machines
(ASM) as an intermediate model and the SMV model checker. The ASM model
is translated into the input format of the SMV model checker, which is used to
formally verify the properties. The proposed verification framework enables the
formal verification of the IEC 61499 control systems, and also highlights other
uses of verification such as the portability of IEC 61499-based control applica-
tions across different implementation platforms compliant with the IEC 61499
standard. Their other work [24] proposes a general approach for neutralizing
semantic ambiguities in the IEC 61499 standard by the formal description of the
standard in ASM.

Another study [25], highlights the importance of formally verifying function
block applications in different execution semantics and the benefits of verifying
the portability of component-based control applications across different plat-
forms compliant with the IEC 61499 standard. The paper applies the formal
model to an example IEC 61499 application and compares the verification results
of the two-stage synchronous execution model with the earlier cyclic execution
model, to verify the portability of the IEC 61499 applications across different
platforms.

After that, they addressed the SMV modelling of the IEC 61499 specific
timer function block types, particularly in hierarchical function block systems
with timers located at different levels of hierarchy [8]. The paper also introduces
plant abstraction techniques to reduce the complexity of cyber-physical systems
models using discrete-timed state machine models implemented in UPPAAL.
The approach is demonstrated with an example of formal verification of a mod-
ular mechatronic automated system and is shown to extend the abilities in the
validation of real cyber-physical automation systems. A toolchain was developed
to support the described modelling method, including an automatic FB-to-SMV
converter for the transformation of IEC 61499 FB applications to the control
part of SMV models. This approach can be used for the verification of newly
developing industrial safety-critical systems such as smart grids.

Addressing the second goal, the road map on the creation of a tool-chain
connecting engineering with verification seamlessly was outlined in [34]. A
problem-oriented notation within the IEC 61499 syntax for creating formal
closed-loop models of cyber-physical automation systems [40] is proposed. The
notation enables the creation of a comprehensive toolchain for the design, simu-
lation, formal verification, and distributed deployment of automation software.

28 M. Xavier et al.

The toolchain includes an IEC 61499-compliant engineering environment, a con-
verter for functions blocks to SMV code, the NuSMV model-checker and utilities
for interpreting counterexamples. The proposed method aims to overcome the
hurdle of verifying and analyzing function blocks implemented in IEC 61499
standard by providing a toolchain for continuous development and testing of
distributed control systems.

Fig. 9. Visualisation of the Two Cylinder system produced by the model of the plant
implemented in IEC 61499.

The two-cylinder system consists of two orthogonal pneumatic cylinders con-
trolled by a switch button shown in Fig. 9. It is built using five basic function
blocks, including a controller function block (Button FB) that triggers the move-
ment of the cylinders when pressed, plant function blocks (HorCyl and VerCyl
FBs) that model the physical device of each cylinder, and controller function
blocks (HorCTL FB and VerCTL FB) that control the plant by analyzing sen-
sor signals and triggering actuator signals. These blocks receive information from
the switch FB and send orders to the plant FB.

Fig. 10. a) Deterministic discrete state linear motion process model without NDT, b)
Discrete state linear motion process model with NDT.

To implement the closed-loop approach to system modelling, the model of
the plant needs also to be modelled using function blocks. A discrete state linear

Modular Industrial Systems Modelling 29

motion of a cylinder for a linear motion, for example, a linear axis, can be
represented by a LinearDDtrA function block with two states (sHOME and
sEND) that transition between them based on input signals (BACK or FWD)
Fig. 10, a. However, this minimal approach may not capture all possible errors
that can occur during transitions between states.

By using NDT (Non-deterministic transition), a more comprehensive model
can be created by adding two dynamic states (ddMOVETO and ddRETURN)
to capture potential errors during transitions Fig. 10,b.

The axis moves from the stHOME state to the stEND state via the motion
state ddMOVETO when the FWD signal is TRUE. The use of NDT (Non-
Deterministic Transition) in the transition from the ddMOVETO state to the
stEND state models the unknown duration of the motion from one state to
another. The NDT event input of the LinearDA function block, which was unas-
signed in the application, is reserved for non-deterministic transitions in the
proposed modelling notation. This approach can provide a more detailed and
accurate representation of the system, allowing for more thorough formal verifi-
cation.

The (multi-) closed-loop model of the two cylinders system using this exten-
sion of the IEC 61499 language is shown in Fig. 11. This is nothing else, but a
Condition/Event discrete-state model represented by means of IEC 61499.

Fig. 11. Complete two cylinders model in the modified FB language.

The fb2smv tool is a model generator that is used to generate SMV (Symbolic
Model Verifier) models of function block systems in IEC 61499. It is part of a
formal verification tool-chain that includes the model checker NuSMV and a
tool for analyzing counterexamples in terms of the original FB system. The tool
uses the Abstract State Machine (ASM) as an intermediate model to convert
IEC 61499 function blocks expressed in XML format into a formal model. The
generated SMV code has a structure that consists of a declaration part and

30 M. Xavier et al.

an ASM rules part. The tool can convert both basic and composite function
blocks, and also includes additional features such as limiting variable boundaries
to reduce the state space, changing the execution order of FBs, and deciding
the input event priority by changing its order. Additionally, the tool has been
updated to include a proposed non-deterministic transitions notation.

Closed-loop modelling is a powerful approach for the verification of dis-
tributed industrial automation systems, as it allows for a comprehensive evalua-
tion of the system’s behaviour. However, it requires the creation of a model of the
plant, which can be a complex and resource-intensive task, typically done man-
ually. In these papers [36–39], authors show how to generate the plant and con-
troller models automatically using a data-driven approach. The above-mentioned
toolchain has been effectively used in these experiments to verify, simulate and
analyse counterexamples.

7 Summary and Open Problems

Systems with dynamically created and terminated modules or dynamic connec-
tions between modules cannot be efficiently and naturally modelled within the
C/ES paradigm and require complicated workarounds.

The idea of modular analysis of NCES has not been developed although the
absence of token flow between the NCES modules could potentially facilitate it
(Fig. 12).

Fig. 12. Hans-Michael Hanisch (1957–2022).

Modular Industrial Systems Modelling 31

Acknowledgments. This paper attempts to be a tribute to Professor Hans-Michael
Hanisch who has been a co-inventor and a great enthusiast and proponent of NCES as
a part of the closed-loop modelling concept.

References

1. Function Blocks for Industrial Process Measurement and Control Systems, IEC
61499 Standard. International Electrotechnical Commission, Tech. Comm. 65,
Working group 6, Geneva (2005)

2. Visual verifier (2008). http://www.fb61499.com/license.html
3. Čengić, G., Åkesson, K.: A control software development method using IEC 61499

function blocks, simulation and formal verification. IFAC Proc. Volumes 41(2),
22–27 (2008)

4. Cengic, G., Akesson, K.: Definition of the execution model used in the fuber IEC
61499 runtime environment. In: 2008 6th IEEE International Conference on Indus-
trial Informatics, pp. 301–306. IEEE (2008)

5. Cengic, G., Ljungkrantz, O., Akesson, K.: Formal modeling of function block appli-
cations running in IEC 61499 execution runtime. In: 2006 IEEE Conference on
Emerging Technologies and Factory Automation, pp. 1269–1276. IEEE (2006)

6. Davidrajuh, R.: A new modular petri net for modeling large discrete-event systems:
a proposal based on the literature study. Computers 8(4), 83 (2019)

7. Dehnert, C., Junges, S., Katoen, J.-P., Volk, M.: A storm is coming: a modern prob-
abilistic model checker. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS,
vol. 10427, pp. 592–600. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63390-9_31

8. Drozdov, D., Patil, S., Dubinin, V., Vyatkin, V.: Formal verification of cyber-
physical automation systems modelled with timed block diagrams. In: 2016 IEEE
25th International Symposium on Industrial Electronics (ISIE), pp. 316–321. IEEE
(2016)

9. Dubinin, V., Vyatkin, V., Hanisch, H.M.: Synthesis of safety controllers for dis-
tributed automation systems on the basis of reverse safe net condition/event sys-
tems. In: 2015 IEEE Trustcom/BigDataSE/ISPA, vol. 3, pp. 287–292. IEEE (2015)

10. Fkaier, S., Khalgui, M., Frey, G.: Modeling methodology for reconfigurable dis-
tributed systems using transformations from GR-UML to GR-TNCES and IEC
61499. In: ENASE, pp. 221–230 (2021)

11. Guellouz, S., Benzina, A., Khalgui, M., Frey, G.: Reconfigurable function blocks:
extension to the standard IEC 61499. In: 2016 IEEE/ACS 13th International Con-
ference of Computer Systems and Applications (AICCSA), pp. 1–8. IEEE (2016)

12. Guellouz, S., Benzina, A., Khalgui, M., Frey, G., Li, Z., Vyatkin, V.: Designing effi-
cient reconfigurable control systems using IEC61499 and symbolic model checking.
IEEE Trans. Autom. Sci. Eng. 16(3), 1110–1124 (2018)

13. Hadjidj, R., Boucheneb, H.: Rt-studio: a tool for modular design and analysis of
realtime systems using interpreted time petri nets. In: PNSE+ ModPE, pp. 247–
254. Citeseer (2013)

14. Hanisch, H.M., Hirsch, M., Missal, D., Preuße, S., Gerber, C.: One decade of
IEC 61499 modeling and verification-results and open issues. IFAC Proc. Volumes
42(4), 211–216 (2009)

15. Hensel, C., Junges, S., Katoen, J.P., Quatmann, T., Volk, M.: The probabilistic
model checker storm. Int. J. Softw. Tools Technol. Transfer 24(4), 589–610 (2022)

http://www.fb61499.com/license.html
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-319-63390-9_31

32 M. Xavier et al.

16. Meng, X.: Modeling of reconfigurable manufacturing systems based on
colored timed object-oriented petri nets. J. Manuf. Syst. 29(2), 81–90
(2010). https://doi.org/10.1016/j.jmsy.2010.11.002, https://www.sciencedirect.
com/science/article/pii/S0278612510000518

17. Missal, D., Hanisch, H.M.: A modular synthesis approach for distributed safety
controllers, part a: modelling and specification. IFAC Proc. Volumes 41(2), 14473–
14478 (2008)

18. Missal, D., Hanisch, H.M.: A modular synthesis approach for distributed safety
controllers, part b: modular control synthesis. IFAC Proc. Volumes 41(2), 14479–
14484 (2008)

19. Ovsiannikova, P., Buzhinsky, I., Pakonen, A., Vyatkin, V.: Oeritte: user-friendly
counterexample explanation for model checking. IEEE Access 9, 61383–61397
(2021)

20. Ovsiannikova, P., Vyatkin, V.: Towards user-friendly model checking of IEC 61499
systems with counterexample explanation. In: 2021 26th IEEE International Con-
ference on Emerging Technologies and Factory Automation (ETFA), pp. 01–04.
IEEE (2021)

21. Pang, C., Vyatkin, V.: Towards formal verification of IEC 61499: modelling of data
and algorithms in NCES. In: 2007 5th IEEE International Conference on Industrial
Informatics, vol. 2, pp. 879–884. IEEE (2007)

22. Pang, C., Vyatkin, V.: Automatic model generation of IEC 61499 function block
using net condition/event systems. In: 2008 6th IEEE International Conference on
Industrial Informatics, pp. 1133–1138. IEEE (2008)

23. Patil, S., Bhadra, S., Vyatkin, V.: Closed-loop formal verification framework with
non-determinism, configurable by meta-modelling. In: IECON 2011–37th Annual
Conference of the IEEE Industrial Electronics Society, pp. 3770–3775. IEEE (2011)

24. Patil, S., Dubinin, V., Pang, C., Vyatkin, V.: Neutralizing semantic ambiguities
of function block architecture by modeling with ASM. In: Voronkov, A., Virbit-
skaite, I. (eds.) PSI 2014. LNCS, vol. 8974, pp. 76–91. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46823-4_7

25. Patil, S., Dubinin, V., Vyatkin, V.: Formal verification of IEC61499 function
blocks with abstract state machines and SMV-modelling. In: 2015 IEEE Trust-
com/BigDataSE/ISPA, vol. 3, pp. 313–320. IEEE (2015)

26. Patil, S., Vyatkin, V., Pang, C.: Counterexample-guided simulation framework for
formal verification of flexible automation systems. In: 2015 IEEE 13th International
Conference on Industrial Informatics (INDIN), pp. 1192–1197. IEEE (2015)

27. Petri, C.A.: Kommunikation mit Automaten. Schriften des IIM Nr. 2, Institut fur
Instrumentelle Mathematik, Bonn (1962)

28. Rausch, M., Hanisch., H.M.: Net condition/event systems with multiple condition
outputs. In: Symposium on Emerging Technologies and Factory Automation, vol.
1, pp. 592–600. INRIA/IEEE, Paris, France, October 1995

29. Rausch, M., Hanisch, H.M.: Net condition/event systems with multiple condition
outputs. In: Proceedings 1995 INRIA/IEEE Symposium on Emerging Technologies
and Factory Automation. ETFA’95, vol. 1, pp. 592–600. IEEE (1995)

30. Schnakenbourg, C., Faure, J.M., Lesage, J.J.: Towards IEC 61499 function blocks
diagrams verification. In: IEEE International Conference on Systems, Man and
Cybernetics, vol. 3, 6-p. IEEE (2002)

31. Sreenivas, R.S., Krogh, B.H.: On condition/event systems with discrete state real-
izations. Discret. Event Dyn. Syst. 1(2), 209–236 (1991)

https://doi.org/10.1016/j.jmsy.2010.11.002
https://www.sciencedirect.com/science/article/pii/S0278612510000518
https://www.sciencedirect.com/science/article/pii/S0278612510000518
https://doi.org/10.1007/978-3-662-46823-4_7

Modular Industrial Systems Modelling 33

32. Starke, P.H., Hanisch, H.M.: Analysis of signal/event nets. In: 1997 IEEE 6th
International Conference on Emerging Technologies and Factory Automation Pro-
ceedings, EFTA’97, pp. 253–257. IEEE (1997)

33. Vyatkin, V., Hanisch, H.M.: Formal modeling and verification in the software engi-
neering framework of IEC 61499: a way to self-verifying systems. In: ETFA 2001.
8th International Conference on Emerging Technologies and Factory Automation.
Proceedings (Cat. No. 01TH8597), vol. 2, pp. 113–118. IEEE (2001)

34. Vyatkin, V., Hanisch, H.M., Pang, C., Yang, C.H.: Closed-loop modeling in future
automation system engineering and validation. IEEE Trans. Syst. Man Cybern.
Part C (Appl. Rev.) 39(1), 17–28 (2008)

35. Wu, N., Zhou, M.: Intelligent token petri nets for modelling and control of recon-
figurable automated manufacturing systems with dynamical changes. Trans. Inst.
Meas. Control. 33(1), 9–29 (2011)

36. Xavier, M., Dubinin, V., Patil, S., Vyatkin, V.: An interactive learning approach on
digital twin for deriving the controller logic in IEC 61499 standard. In: 27th Inter-
national Conference on Emerging Technologies and Factory Automation (ETFA
2022), Stuttgart, Germany, 6–9 September 2022. IEEE (2022)

37. Xavier, M., Dubinin, V., Patil, S., Vyatkin, V.: Plant model generation from event
log using prom for formal verification of cps. arXiv preprint arXiv:2211.03681
(2022)

38. Xavier, M., Dubinin, V., Patil, S., Vyatkin, V.: Process mining in industrial control
systems. In: 2022 IEEE 20th International Conference on Industrial Informatics
(INDIN), pp. 1–6. IEEE (2022)

39. Xavier, M., Håkansson, J., Patil, S., Vyatkin, V.: Plant model generator from
digital twin for purpose of formal verification. In: 2021 26th IEEE International
Conference on Emerging Technologies and Factory Automation (ETFA), pp. 1–4.
IEEE (2021)

40. Xavier, M., Patil, S., Vyatkin, V.: Cyber-physical automation systems modelling
with IEC 61499 for their formal verification. In: 2021 IEEE 19th International
Conference on Industrial Informatics (INDIN), pp. 1–6. IEEE (2021)

41. Yoong, L.H., Roop, P.S.: Verifying IEC 61499 function blocks using Esterel. IEEE
Embed. Syst. Lett. 2(1), 1–4 (2010)

42. Zhang, J., et al.: Modeling and verification of reconfigurable and energy-efficient
manufacturing systems. Discret. Dyn. Nat. Soc. 2015 (2015)

43. Zhang, J., Khalgui, M., Li, Z., Mosbahi, O., Al-Ahmari, A.M.: R-TNCES: a novel
formalism for reconfigurable discrete event control systems. IEEE Trans. Syst. Man
Cybern. Syst. 43(4), 757–772 (2013)

44. Zhang, J., Li, H., Frey, G., Li, Z.: Shortest legal firing sequence of net condi-
tion/event systems using integer linear programming. In: 2018 IEEE 14th Interna-
tional Conference on Automation Science and Engineering (CASE), pp. 1556–1561.
IEEE (2018)

45. Zhang, J., Li, Z., Frey, G.: Simulation and analysis of reconfigurable assembly
systems based on R-TNCES. J. Chin. Inst. Eng. 41(6), 494–502 (2018)

http://arxiv.org/abs/2211.03681

Process Mining

There and Back Again
On the Reconstructability and Rediscoverability of Typed

Jackson Nets

Daniël Barenholz1(B), Marco Montali2, Artem Polyvyanyy3, Hajo A. Reijers1,
Andrey Rivkin2,4, and Jan Martijn E. M. van der Werf1

1 Department of Information and Computing Sciences, Utrecht University,
Princetonplein 5, 3584 CC Utrecht, The Netherlands

{d.barenholz,h.a.reijers,j.m.e.m.vanderwerf}@uu.nl
2 Faculty of Computer Science, Free University of Bozen-Bolzano,

piazza Domenicani 3, 39100 Bolzano, Italy
montali@inf.unibz.it

3 The University of Melbourne, Melbourne, VIC 3010, Australia
artem.polyvyanyy@unimelb.edu.au

4 Department of Applied Mathematics and Computer Science,
Technical University of Denmark, Richard Petersens Plads 321,

2800 Kgs. Lyngby, Denmark
ariv@dtu.dk

Abstract. A process discovery algorithm aims to construct a model
from data generated by historical system executions such that the model
describes the system well. Consequently, one desired property of a pro-
cess discovery algorithm is rediscoverability, which ensures that the algo-
rithm can construct a model that is behaviorally equivalent to the orig-
inal system. A system often simultaneously executes multiple processes
that interact through object manipulations. This paper presents a frame-
work for developing process discovery algorithms for constructing models
that describe interacting processes based on typed Jackson Nets that use
identifiers to refer to the objects they manipulate. Typed Jackson Nets
enjoy the reconstructability property which states that the composition
of the processes and the interactions of a decomposed typed Jackson Net
yields a model that is bisimilar to the original system. We exploit this
property to demonstrate that if a process discovery algorithm ensures
rediscoverability, the system of interacting processes is rediscoverable.

1 Introduction

Business processes are fundamental to a wide range of systems. A business pro-
cess is a collection of activities that, when performed, aims to achieve a business
objective at an organization. Examples of business processes are an order-to-cash
process at a retailer, a medical assessment process at a hospital, or a credit check
process at a bank. Business processes are modeled using process modeling lan-
guages, such as Petri nets, and used for communication and analysis purposes [1].
Petri nets provide a graphical representation of the flow of activities within a
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Gomes and R. Lorenz (Eds.): PETRI NETS 2023, LNCS 13929, pp. 37–58, 2023.
https://doi.org/10.1007/978-3-031-33620-1_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33620-1_3&domain=pdf
https://doi.org/10.1007/978-3-031-33620-1_3

38 D. Barenholz et al.

Fig. 1. A retailer system of three interacting processes.

process and can be used to model various types of concurrent and sequential
behavior [18].

A process discovery algorithm aims to automatically construct a model from
data generated by historical process executions captured in an event log of the
system, such that the model describes the system well. A desired property of a
discovery algorithm is rediscoverability. This property states that if a system S,
expressed as a model M , generates an event log L, then a discovery algorithm
with the rediscoverability property should construct M from L. In other words,
the algorithm can reverse engineer the model of the system from the data the
model has generated. Only a few existing algorithms guarantee this property.
For example, if the model is a block-structured workflow net, and the event log
is directly-follows complete, then the α-Miner algorithm [22] can rediscover the
net that generated the event log. Similarly, again under the assumption that
the event log is directly-follows complete, Inductive Miner [16] can rediscover
process trees without duplicate transitions, self-loops, or silent transitions.

Most existing process discovery algorithms assume that a system executes
a single process [4]. Consequently, an event log is defined as a collection of
sequences where a sequence describes the execution of a single process instance.
However, many information systems, such as enterprise resource planning sys-
tems, do not satisfy this assumption. A system often executes multiple interact-
ing processes [11,23]. For example, consider a retailer system that executes three
processes: an order, product, and customer management process, as depicted
in Fig. 1. These processes are intertwined. Specifically, only available products
may be ordered, and customers can only have one order at a time. Consequently,
events do not belong to a single process but relate to several processes. For
instance, consider an event e in some event log that occurred as transition G
was executed for some customer c and created a new order o in the system. Event
e relates to the customer process instance c and the order process instance o.
Traditional process discovery techniques require event e to be stored in multiple
event logs and generate multiple models, one for each process [7].

A different approach is taken in artifact or object-centric process dis-
covery [5,17] and agent system discovery [20,21]. In object-centric process

There and Back Again 39

Fig. 2. The framework for rediscoverability of systems of interacting processes.

discovery, instead of linking each event to a single object, events can be linked
to multiple objects stored in object-centric event logs [9]. Existing object-centric
discovery algorithms project the input event log on each object type to create
a set of “flattened” event logs. For each event log, a model is discovered, after
which these models are combined into a single model [5]. In general, flattening is
lossy [7], as in this step, events can disappear [5], be duplicated (convergence) [3],
or lead to wrong event orders (divergence) [3]. In agent system discovery, instead
of interacting objects, a system is viewed as composed of multiple autonomous
agents, each driving its processes that interact to achieve an overall objective of
the system [20]. An agent system discovery algorithm proceeds by decomposing
the input event log into multiple event logs, each composed of events performed
by one agent (type) and an event log of interactions, and then discovering agent
and interaction models and composing them into the resulting system [21].

In this paper, we study under what conditions projections in event logs can
guarantee rediscoverability for interacting processes, represented as typed Jack-
son Nets, a subclass of typed Petri nets with identifiers [19,23]. The class of typed
Jackson Nets is inspired by Box Algebra [10] and Jackson Nets [14], which are
(representations of) block-structured workflow nets that are sound [2] by con-
struction [16]. As we demonstrate, typed Jackson Nets exhibit a special property:
they are reconstructable. Composing the projections of each type is insufficient
for reconstructing a typed Jackson Net. Instead, if the subset-closed set of all
type combinations is considered, the composition returns the original model of
the system. We show how the reconstructability property can be used to develop
a framework for rediscoverability of typed Jackson Nets using traditional process
discovery algorithms. The framework builds upon a divide and conquer strategy,
as depicted in Fig. 2. The principle idea of this strategy is to project an event
log L generated by some model M of the system onto logs L1, . . . , Ln. Then,
if these projected event logs satisfy the conditions of a process discovery algo-
rithm, composition of the resulting models D1, . . . , Dn into model D′ should

40 D. Barenholz et al.

rediscover the original model of the system. In this framework, we show that
every projected event log is also an event log of the corresponding projected
model. Consequently, if a process discovery algorithm guarantees the rediscov-
erability of projected models, then the composition operator for typed Jackson
Nets can be used to ensure the rediscoverability of the original system.

The next section presents the basic notions. In Sect. 3, we introduce typed
Jackson Nets, which, as shown in Sect. 4, are reconstructable. We define a frame-
work for developing discovery algorithms that guarantee rediscoverability in
Sect. 5. We conclude the paper in Sect. 6. Full proofs of the lemmata and theo-
rems can be found in [8].

2 Preliminaries

Let S and T be two possibly infinite sets. The powerset of S is denoted by
P(S) = {S′ | S′ ⊆ S} and |S| denotes the cardinality of S. Two sets S and T are
disjoint if S ∩ T = ∅, with ∅ denoting the empty set. The cartesian product of
two sets S and T , is defined by S × T = {(a, b) | a ∈ S, b ∈ T}. The generalized
cartesian product for some set S and and sets Ts for s ∈ S is defined as Πs∈STs ={
f : S → ⋃

s∈S Ts | ∀s ∈ S : f(s) ∈ Ts

}
. Given a relation R ⊆ S × T , its range

is defined by rng(R) = {y ∈ T | ∃x ∈ S : (x, y) ∈ R}. Similarly, the domain of
R is defined by dom(R) = {x ∈ S | ∃y ∈ T : (x, y) ∈ R}. Restricting the domain
of a relation to a set U is defined by R|U = {(a, b) ∈ R | a ∈ U}.

A multiset m over S is a mapping of the form m : S → N, where N =
{0, 1, 2, . . .} denotes the set of natural numbers. For s ∈ S, m(s) ∈ N denotes
the number of times s appears in multiset m. We write sn if m(s) = n. For
x 	∈ S, m(x) = 0. We use S⊕ to denote the set of all finite multisets over S and
overload ∅ to also denote the empty multiset. The size of a multiset is defined
by |m| =

∑
s∈S m(s). The support of m ∈ S⊕ is the set of elements that appear

in m at least once: supp (m) = {s ∈ S | m(s) > 0}. Given two multisets m1 and
m2 over S: (i) m1 ⊆ m2 iff m1(s) ≤ m2(s) for each s ∈ S; (ii) (m1 + m2)(s) =
m1(s)+m2(s) for each s ∈ S; and (iii) if m1 ⊆ m2, (m2−m1)(s) = m2(s)−m1(s)
for each s ∈ S.

A sequence over S of length n ∈ N is a function σ : {1, . . . , n} → S. If n > 0
and σ(i) = ai, for 1 ≤ i ≤ n, we write σ = 〈a1, . . . , an〉. The length of a sequence
σ is denoted by |σ|. The sequence of length 0 is called the empty sequence, and
is denoted by ε. The set of all finite sequences over S is denoted by S∗. We write
a ∈ σ if there is 1 ≤ i ≤ |σ| such that σ(i) = a and supp (σ) = {a ∈ S | ∃1 ≤ i ≤
|σ| : σ(i) = a}. Concatenation of two sequences ν, γ ∈ S∗, denoted by σ = ν · γ,
is a sequence defined by σ : {1, . . . , |ν| + |γ|} → S, such that σ(i) = ν(i) for
1 ≤ i ≤ |ν|, and σ(i) = γ(i − |ν|) for |ν| + 1 ≤ i ≤ |ν| + |γ|. Projection of
sequences on a set T is defined inductively by ε|T = ε, (〈a〉 · σ)|T = 〈a〉 · σ|T if
a ∈ T and (〈a〉 · σ)|T = σ|T otherwise. Renaming a sequence with an injective
function r : S → T is defined inductively by ρr(ε) = ε, and ρr(〈a〉 · σ) =
〈r(a)〉 ·ρr(σ). Renaming is extended to multisets of sequences as follows: given a

There and Back Again 41

multiset m ∈ (S∗)⊕, we define ρr(m) =
∑

σ∈supp(m) σ(m) · ρr(σ). For example,
ρ{x�→a,y �→b}(〈x, y〉3) = 〈a, b〉3.

A directed graph is a pair (V,A) where V is the set of vertices, and A ⊆ V ×V
the set of arcs. Two graphs G1 = (V1, A1) and G2 = (V2, A2) are isomorphic,
denoted by G1 � G2, if a bijection b : V1 → V2 exists, such that (v1, v2) ∈ A1

iff (b(v1), b(v2)) ∈ A2.
Given a finite set A of (action) labels, a (labeled) transition system (LTS)

over A is a tuple ΓA = (S,A, s0,→), where S is the (possibly infinite) set of
states, s0 is the initial state and → ⊂ (S × (A ∪ {τ}) × S) is the transition
relation, where τ 	∈ A denotes the silent action [13]. In what follows, we write
s

a−→ s′ for (s, a, s′) ∈→. Let r : A → (A′ ∪ {τ}) be an injective, total function.
Renaming Γ with r is defined as ρr(Γ) = (S,A\A′, s0,→′) with (s, r(a), s′) ∈→′

iff (s, a, s′) ∈→. Given a set T , hiding is defined as ĤT (Γ) = ρh(Γ) with h :
A → A ∪ {τ} such that h(t) = τ if t ∈ T and h(t) = t otherwise. Given a ∈ A,
p a q denotes a weak transition relation that is defined as follows: (i) p a q

iff p(τ−→)∗q1
a−→ q2(

τ−→)∗q; (ii) p τ q iff p(τ−→)∗q. Here, (τ−→)∗ denotes the reflexive
and transitive closure of τ−→.

Let Γ1 = (S1, A, s01,→1) and Γ2 = (S2, A, s02,→2) be two LTSs. A relation
R ⊆ (S1 × S2) is called a strong simulation, denoted as Γ1 ≺R Γ2, if for every
pair (p, q) ∈ R and a ∈ A ∪ {τ}, it holds that if p

a−→1 p′, then there exists
q′ ∈ S2 such that q

a−→2 q′ and (p′, q′) ∈ R. Relation R is a weak simulation,
denoted by Γ1 �R Γ2, iff for every pair (p, q) ∈ R and a ∈ A ∪ {τ} it holds that
if p

a−→1 p′, then a = τ and (p′, q) ∈ R, or there exists q′ ∈ S2 such that q a
2 q′

and (p′, q′) ∈ R. Relation R is called a strong (weak) bisimulation, denoted by
Γ1 ∼R Γ2 (Γ1 ≈R Γ2) if both Γ1 ≺ Γ2 (Γ1 �R Γ2) and Γ2 ≺R−1 Γ1 (Γ2 �R−1 Γ1).
Given a strong (weak) (bi)simulation R, we say that a state p ∈ S1 is strongly
(weakly) rooted (bi)similar to q ∈ S2, written p ∼r

R q (correspondingly, p ≈r
R q),

if (p, q) ∈ R. The relation is called rooted iff (s01, s02) ∈ R. A rooted relation is
indicated with a superscript r.

A weighted Petri net is a 4-tuple (P, T, F,W) where P and T are two disjoint
sets of places and transitions, respectively, F ⊆ ((P × T) ∪ (T × P)) is the flow
relation, and W : F → N

+ is a weight function. For x ∈ P ∪ T , we write
•x = {y | (y, x) ∈ F} to denote the preset of x and x• = {y | (x, y) ∈ F} to
denote the postset of x. We lift the notation of preset and postset to sets element-
wise. If for a Petri net no weight function is defined, we assume W (f) = 1 for
all f ∈ F . A marking of N is a multiset m ∈ P⊕, where m(p) denotes the
number of tokens in place p ∈ P . If m(p) > 0, place p is called marked in
marking m. A marked Petri net is a tuple (N,m) with N a weighted Petri net
with marking m. A transition t ∈ T is enabled in (N,m), denoted by (N,m) [t〉
iff W ((p, t)) ≤ m(p) for all p ∈ •t . An enabled transition can fire, resulting
in marking m′ iff m′(p) + W ((p, t)) = m(p) + W ((t , p)), for all p ∈ P , and
is denoted by (N,m) [t〉 (N,m′). We lift the notation of firings to sequences.
A sequence σ ∈ T ∗ is a firing sequence iff σ = ε, or markings m0, . . . ,mn

exist such that (N,mi−1)[σ(i)〉(N,mi) for 1 ≤ i ≤ |σ| = n, and is denoted
by (N,m0)[σ〉(N,mn). If the context is clear, we omit the weighted Petri net

42 D. Barenholz et al.

Fig. 3. An example block-structured WF-net. Each block corresponds to a node in
the Jackson type (p1; (t1; (((p2; ((t2 + t3) ; p3))#t4) ; (t5; p4)))). As example, the choice
between transitions t2 and t3 corresponds to the node (p2; ((t2 + t3) ; p3)) .

N . The set of reachable markings of (N,m) is defined by R(N,m) = {m′ |
∃σ ∈ T ∗ : m[σ〉m′}. The set of all possible finite firing sequences of (N,m) is
denoted by L(N,m0) = {σ ∈ T ∗ | m[σ〉m′}. The semantics of a marked Petri net
(N,m) with N = (P, T, F,W) is defined by the LTS ΓN,m = (P⊕, T,m0,→) with
(m, t,m′) ∈→ iff m[t〉m′. A Petri net N = (P, T, F,W) has underlying graph
(P ∪ T, F). Two Petri nets N and N ′ are isomorphic, denoted using N � N ′,
if their underlying graphs are.

A workflow net (WF-net for short) is a tuple N = (P, T, F,W, in, out) such
that: (i) (P, T, F,W) is a weighted Petri net; (ii) in, out ∈ P are the source and
sink place, respectively, with •in = out• = ∅; (iii) every node in P ∪ T is on a
directed path from in to out . N is called k-sound for some k ∈ N iff (i) it is
proper completing, i.e., for all reachable markings m ∈ R(N, [ink]), if [outk] ⊆ m,
then m = [outk]; (ii) it is weakly terminating, i.e., for any reachable marking
m ∈ R(N, [ink]), the final marking is reachable, i.e., [outk] ∈ R(N,m); and (iii)
it is quasi-live, i.e., for all transitions t ∈ T , there is a marking m ∈ R(N, [in])
such that m[t〉. The net is called sound if it is 1-sound.

3 Typed Jackson Nets to Model Interacting Processes

In this section, we introduce typed Jackson Nets as subclass of typed Petri nets
with identifiers. We show that this class is a natural extension to Jackson Nets,
which are representations of block-structured workflow nets. Typed Jackson Nets
are identifier sound and live by construction.

3.1 Jackson Nets

Whereas WF-nets do not put any restriction on the control flow of activities,
block-structured WF-nets divide the control flow in logical blocks [15]. Each
“block” represents a single unit of work that can be performed, where this unit of
work is either atomic (single transition), or one involving multiple steps (multiple
transitions). An example block-structured WF-net is shown in Fig. 3. The main
advantage of block-structured WF-nets, is that the block-structure ensures that
the WF-net is sound by definition [14–16]. In this paper, we consider Jackson
Types and Jackson Nets [14]. A Jackson Type is a data structure used to capture
all information involved in a single execution of a WF-net.

There and Back Again 43

Definition 1 (Jackson Type [14]). The set of Jackson Types J is recursively
defined by the following grammar:

J ::= A p | (
A p;

(J t;A p
))

J t ::= A t | (J t;
(J p;J t

)) | (J t + J t
)

J p ::= A p | (J p;
(J t;J p

)) | (J p ‖ J p) | (J p#J t
)

where A = A p ∪ A t = {a, b, c, . . .} denotes two disjoint sets of atomic types
for places and transitions, resp., and symbols ; , ‖,+,# stand for sequence, par-
allelism, choices, and loops. 	

A Jackson Net is a Petri net where each place has an assigned Jackson Type.
The class of Jackson Nets is obtained by recursively applying generation rules,
starting from a singleton net with only one place. These generation rules are
similar to those defined by Murata [18] and preserve soundness [14]. Thus, any
Jackson Net is sound by construction.

Definition 2 (Jackson Net [14]). A WF-net N = (P, T, F, in, out) is called a
Jackson Net if it can be generated from a single place p by applying the following
five generation rules recursively:

J1: p ↔ (p1; (t; p2)) J4: p ↔ (p1 ‖ p2)
J2: t ↔ (t1; (p1; t2)) J5: t ↔ (t1 + t2)
J3: p ↔ (p#t)

We say that N is generated by p. 	

As shown in [14], Jackson Nets are completely determined by Jackson Types,
and vice versa.

3.2 Petri Nets with Identifiers

Whereas WF-nets describe all possible executions for a single case, systems typ-
ically consist of many interacting processes. The latter can be modeled using
typed Petri nets with identifiers (t-PNIDs for short) [23]. In this formalism, each
object is typed and has a unique identifier to be able to refer to it. Tokens carry
vectors of identifiers, which are used to relate objects. Variables on the arcs are
used to manipulate the identifiers.

Definition 3 (Identifiers, Types and Variables). Let I , Λ, and V denote
countably infinite sets of identifiers, type labels, and variables, respectively. We
define:

– the domain assignment function I : Λ → P(I), such that I(λ1) is an infinite
set, and I(λ1) ∩ I(λ2) 	= ∅ implies λ1 = λ2 for all λ1, λ2 ∈ Λ;

– the id typing function typeI : I → Λ s.t. if typeI(id) = λ, then id ∈ I(λ);
– a variable typing function typeV : V → Λ, prescribing that x ∈ V can be

substituted only by values from I(typeV(x)).

44 D. Barenholz et al.

When clear from the context, we omit the subscripts of type. We lift the type
functions to sets, vectors, and sequences by applying the function on each of its
constituents. 	

In a t-PNID, each place is annotated with a label, called the place type. A
place type is a vector of types, indicating types of identifier tokens the place can
carry. Similar to Jackson Types, we use [p, λ] to denote that place p has type
α(p) = λ. Each arc is inscribed with a multiset of vectors of identifiers, such
that the type of each variable coincides with the place types. If the inscription
is empty or contains a single element, we omit the brackets.

Definition 4 (Typed Petri net with identifiers). A typed Petri net with
identifiers (t-PNID) N is a tuple (P, T, F, α, β), where:

– (P, T, F) is a classical Petri net;
– α : P → Λ∗ is the place typing function;
– β : F → (V∗)⊕ defines for each arc a multiset of variable vectors s.t.

α(p) = type(x) for any x ∈ supp (β((p, t))) and type(y) = α(p′) for any
y ∈ supp (β((t, p′))) where t ∈ T , p ∈ •t, p′ ∈ t•. 	

A marking of a t-PNID is the configuration of tokens over the set of places.
Each token in a place should be of the correct type, i.e., the vector of identifiers
carried by a token in a place should match the corresponding place type. The
set C(p) defines all possible vectors of identifiers a place p may carry.

Definition 5 (Marking). Given a t-PNID N = (P, T, F, α, β), and place p ∈
P , its id set is C(p) =

∏
1≤i≤|α(p)| I(α(p)(i)). A marking is a function m ∈

M (N), with M (N) = P → (Λ∗)⊕, such that m(p) ∈ C(p)⊕, for each place p ∈ P .
The set of identifiers used in m is denoted by Id(m) =

⋃
p∈P rng(supp (m(p)))

The pair (N,m) is called a marked t-PNID. 	

To define the semantics of a t-PNID, the variables need to be valuated with
identifiers.

Definition 6 (Variable sets [23]). Given a t-PNID N = (P, T, F, α, β), t ∈ T
and λ ∈ Λ, we define the following sets of variables:

– input variables as In(t) =
⋃

x∈β((p,t)),p∈•t rng(supp (x));
– output variables as Out(t) =

⋃
x∈β((t,p)),p∈t• rng(supp (x));

– variables as Var(t) = In(t) ∪ Out(t);
– emitting variables as Emit(t) = Out(t) \ In(t);
– collecting variables as Collect(t) = In(t) \ Out(t);
– emitting transitions as EN (λ) = {t | ∃x ∈ Emit(t) ∧ type(x) = λ};
– collecting transitions as CN (λ) = {t | ∃x ∈ Collect(t) ∧ type(x) = λ};
– types in N as type(N) = {�λ | ∃p ∈ P : �λ ∈ α(p)}. 	

A valuation of variables to identifiers is called a binding. Bindings are used
to inject new fresh data into the net via variables that emit identifiers, i.e., via
variables that appear only on the output arcs of that transition. Note that in
this definition, freshness of identifiers is local to the marking, i.e., disappeared

There and Back Again 45

identifiers (those fully removed from the net through collecting transitions) may
be reused, as it does not hamper the semantics of the t-PNID.

Definition 7 (Firing rule for t-PNIDs). Given a marked t-PNID (N,m)
with N = (P, T, F, α, β), a binding for transition t ∈ T is an injective function
ψ : V → I such that type(v) = type(ψ(v)) and ψ(v) 	∈ Id(m) iff v ∈ Emit(t).
Transition t is enabled in (N,m) under binding ψ, denoted by (N,m)[t, ψ〉 iff
ρψ(β(p, t)) ≤ m(p) for all p ∈ •t. Its firing results in marking m′, denoted by
(N,m)[t, ψ〉(N,m′), such that m′(p) + ρψ(β(p, t)) = m(p) + ρψ(β(t, p)). 	

The firing rule is inductively extended to sequences. A marking m′ is reachable
from m if there exists η ∈ (T × (V → I))∗ such that (N,m)[η〉(N,m′). We
denote with R(N,m) the set of all markings reachable from m for (N,m). We
use L (N,m) to denote all possible firing sequences of (N,m), i.e., L (N,m) =
{η | (N,m)[η〉} and Id(η) =

⋃
(t,ψ)∈η rng(ψ) for the set of identifiers used in η.

The execution semantics of a t-PNID is defined as an LTS that accounts for all
possible executions starting from a given initial marking. We say two t-PNIDs
are bisimilar if their induced transition systems are.

Definition 8. Given a marked t-PNID (N,m0) with N = (P, T, F, α, β), its
induced transition system is ΓN,m0 = (M(N), (T × (V → I)),m0,→) with

m
(t,ψ)−−−→ m′ iff (N,m) [t, ψ〉 (N,m′). 	

Soundness properties for WF-nets typically consist of proper completion,
weak termination, and quasi-liveness [6]. Extending soundness to t-PNIDs gives
identifier soundness [23]. In t-PNIDs, each object of a given type “enters” the
system through an emitting transition, binding it to a unique identifier. Identifier
soundness intuitively states that it should always be possible to remove objects
(weak type termination), and that once a collecting transition fires for an object,
there should be no remaining tokens referring to the removed object (proper type
completion).

Definition 9 (Identifier Soundness [23]). Let (N,m0) a marked t-PNID and
λ ∈ Λ some type. (N,m0) is λ-sound iff it is

– Proper λ-completing, i.e., for all t ∈ CN (λ), bindings ψ : V → I and
markings m,m′ ∈ R(N,m0), if m[t, ψ〉m′, then for all identifiers id ∈
rng(ψ|Collect(t)) ∩ Id(m) and type(id) = λ, it holds that id 	∈ Id(m′)1;

– Weakly λ-terminating, i.e., for every m ∈ R(N,m0) and identifier id ∈ I(λ)
such that id ∈ Id(m), there exists a marking m′ ∈ R(N,m) with id 	∈ Id(m′).

If it is λ-sound for all λ ∈ type(N), then it is identifier sound. 	

3.3 Typed Jackson Nets

In general, identifier soundness is undecidable for t-PNIDs [23]. Similar as Jack-
son Nets restrict WF-nets to blocks, typed Jackson Nets (t-JNs) restrict t-PNIDs
1 Here, we constrain ψ only to objects of type λ that are only consumed.

46 D. Barenholz et al.

to blocks, while guaranteeing identifier soundness and liveness. For t-JNs, we dis-
allow multiplicity on arcs and variables, i.e., β(f)(v) ≤ 1 for all f ∈ F and v ∈ V,
and imply a bijection on variables and identifier types. This prevents place types
like λ = 〈x, x〉. Assuming a Gödel-like number on types (cf. [14]), place types and
arc inscriptions can be represented as sets. Similar as Jackson Types describe
Jackson Nets, we apply a notation based on Jackson Types to denote typed
Jackson Nets.

Definition 10 (Typed Jackson Net). A t-PNID N is a typed Jackson Net if
it can be generated from a set of transitions T ′ by applying any of the following six
generation rules recursively. If N is generated from a singleton set of transitions
(i.e., |T ′| = 1), N is called atomic.

R1 Place Expansion: [p, λ] ↔ ([p1, λ] ; (t1; [p2, λ]))

p

ν

ν

ν

ν
p1

t

p2

ν

ν

μ μ
ν

ν

R2 Transition Expansion: t ↔ (t1; ([p, λ] ; t2)), with Var(t) ⊆ λ

t

ν1

ν2

ν3

ν4
t1

p

t2

ν1

ν2

μ μ
ν3

ν4

R3 Place Duplication: (t1; ([p, λ] ; t2)) ↔ (t1; (([p, λ] ‖ [p′, λ′]) ; t2)),
with λ′ ∩ Emit(p•) = ∅

t1

p

t2

ν1

ν2

μ1 μ2

ν3

ν4
t1

p

p′

t2

ν1

ν2

μ1 μ2

μ3 μ4

ν3

ν4

R4 Transition Duplication: t ↔ (t + t′)

t

ν1

ν2

μ1 μ2

ν3

ν4

t

t′

ν1

ν2

μ1 μ2

μ1 μ2

ν3

ν4

R5 Self Loop Addition: [p, λ] ↔ ([p, λ] #t)

p

ν

ν

ν

ν
p

t

ν

ν

μ μ

ν

ν

There and Back Again 47

R6 Identifier Introduction: t ↔ (t 	 (N1, [p, λ] , N2)), with (N1; ([p, λ] ;N2)) a
t-JN and λ ∩ Var(t) = ∅

t
ν1

ν2

ν3

ν4
t

p

t1 t2

ν1

ν2

μ μ

μ μ

ν3

ν4

	

An example t-JN is given in Fig. 1. Starting with the product process, tran-
sitions C and D can be reduced using rule R2. The resulting transition is
a self-loop transition, and can be reduced using R5, resulting in the block
(E 	 (A, product , B)). This block can be reduced using R6, leaving transition
E. Transition E is again a self-loop, and can be reduced using R5. The block
containing transitions H, J , L O, N and K can be reduced to a single place by
applying rules R1, R2 and R5 repeatedly. The remaining place is a duplicate
place with respect to place p, and can be reduced using R3. Applying R2 on G
and Z results in the block (G 	 (T, customer , V)), which can be reduced to the
transition G. Hence, the net in Fig. 1 is an atomic t-JN.

Theorem 1 (Identifier Soundness of typed Jackson Nets [23]). Given a
t-JN N , then N is identifier sound and live. 	

4 Decomposability of t-JNs

t-PNIDs specify a class of nets with explicitly defined interactions between
objects of different types within one system. However, sometimes one may want
to focus only on some behaviors exhibited by a given set of object types, by
extracting a corresponding net from the original t-PNID model. We formalize
this idea below.

Definition 11 (Type projection). Let N = (PN , TN , FN , α, β) be a t-PNID
and Υ ⊆ Λ be a set of identifier types. The type projection of Υ on N is a
t-PNID πΥ (N) = (PΥ, TΥ, FΥ, αΥ, βΥ), where:

– PΥ = {p ∈ P | Υ ⊆ α(p)};
– TΥ = {t ∈ T | (•t ∪ t•) ∩ PΥ 	= ∅};
– FΥ = F ∩ ((PΥ × TΥ) ∪ (TΥ × PΥ));
– αΥ(p) = Υ, for each p ∈ PΥ;
– βΥ(f) = β(f)|type−1

V (Υ), for each f ∈ ((PΥ × TΥ) ∪ (TΥ × PΥ)). 	

With the next lemma we explore a property of typed Jackson nets that,
in a nutshell, shows that t-JNs are closed under the type projection. This also
indirectly witnesses that t-JNs provide a suitable formalism for specifying and
manipulating systems with multiple communicating components.

Lemma 1. If N = (PN , TN , FN , α, β) is a t-JN, then πΥ (N) is a t-JN as well,
for any Υ ⊆ typeΛ(N). 	

48 D. Barenholz et al.

Fig. 4. Although both N and M are t-JNs, their composition is not

Proof. (sketch) Let us assume for simplicity that N is atomic. Then, using rules
from Definition 10, N can be reduced to a single transition. Starting from this
transition, one can construct a t-JN following the net graph construction from
Definition 11 using the same rules (but the identifier introduction one), proviso
that arc inscriptions are always of type Υ. Then, it is easy to check that the
constructed net is indeed the type projection of Υ on N . �

We define next how t-PNIDs can be composed and show that t-JNs are not
closed under the composition.

Definition 12 (Composition). Let N = (PN , TN , FN , αN , βN) and
M = (PM , TM , FM , αM , βM) be two t-PNIDs. Their composition is defined by:

N � M = (PN ∪ PM , TN ∪ TM , FN ∪ FM , αN ∪ αM , βN ∪ βM)

	It is easy to see that the composition of two t-JNs does not automatically
result in a t-JN. Consider nets in Fig. 4. It is easy to see that both N and M
can be obtained by applying R2 from Definition 10. However, their composition
cannot be reduced to a single transition by consecutively applying rules from
Definition 10.

A more surprising observation is that composing type projections of a t-
JN may not result in a t-JN. Take for example the net from Fig. 5. Both its
projections on {λ1} and {λ2} are t-JNs. However, bringing them together using
the composition operator results in a t-PNID that is not t-JN: indeed, since the
“copies” of place p appear in three places, and all such copies have same pre-
and post-sets (and only differ by their respective types), it is impossible to apply
identifier elimination rule R6 from Definition 10.

As one may observe from the above example, the only difference between
[pxy, 〈λ1, λ2〉] and its copies px and py is in their respective types, whereas the
identifiers carried by px and py are always contained in pxy, and thus both px and
py can be seen as subsidiary with respect to pxy. We formalize this observation
using the notion of minor places: a place p is minor to some place q if both p
and q have identical pre- and post-sets, and the type of q subsumes the one of p.

There and Back Again 49

Fig. 5. Composition of the projections on {λ1}, {λ2} and {λ1, λ2} on the t-JN
(a; [p, 〈x, y〉]; (b||c); [q, 〈x, y〉]; d). Here, type assignments are as follows: α(px) = α(qx) =
λ1, α(py) = α(qy) = λ2 and α(p) = α(q) = λ1λ2.

Definition 13 (Minor places). Let N = (PN , TN , FN , α, β) be a t-PNID. A
place p ∈ P is minor to a place q ∈ P iff the following holds:

– •p = •q, p• = q• and α(p) ⊂ α(q);
– β((t, p)) = β((t, q))|type−1(α(p)), for each t ∈ •p;
– β((p, t)) = β((q, t))|type−1(α(p)), for each t ∈ p•.

	

We show next that minor places can be added or removed without altering
the overall behavior of the net.

Lemma 2. Let N = (P, T, F, α, β) be a t-PNID with initial marking m0 s.t.
m0(p) = m0(q) = ∅, for p, q ∈ P , where p is minor to q. Let N ′ = (P \{p} , T, F \
({(p, t)|t ∈ p•} ∪ {(t, p)|t ∈ •p}), α, β) be a t-PNID obtained by eliminating from
N place p. Then ΓN,m0 ∼r ΓN ′,m0 . 	

Proof. (sketch) It is enough to define a relation Q ⊆ R(N,m0) × R(N ′,m0) s.t.
(m,m′) ∈ Q iff m(r) = m′(r), for r ∈ P \ {p}, and m(p)(id) = m′(q)(id), for all
id ∈ C(p), and |m(p)| = |m′(q)|. Then the lemma statement directly follows from
the firing rule of t-PNIDs and that pre- and post-sets of p and q coincide. �

Let us now address the reconstructability property. In a nutshell, a net is
reconstructable if composing all of its type projections returns the same net.
This property is not that trivial to obtain. For example, let us consider singleton
projections (that is, projections π{λ} (N) obtained for each λ ∈ typeΛ(N)) of
the net in Fig. 6. It is easy to see that such projections “ignore” interactions
between objects (or system components). Thus, the composition of the singleton
projections π{λ1} (N) and π{λ2} (N) from Fig. 6 does not result in a model that
merges px and py in one place as the composition operator cannot recognize
component interactions between such projections. This is reflected in Fig. 6d.

To be able to reconstruct the original model from its projections (or at least
do it approximately well), one needs to consider a projection reflecting compo-
nent interactions. In the case of the net from Fig. 6a, its non-singleton projection

50 D. Barenholz et al.

Fig. 6. t-PNID N (6a), its singleton projections and their composition

Fig. 7. Adding the projection π{λ1,λ2} (N) reflecting interactions to the composition
results in the original net N modulo places minor to p (such as px and py).

π{λ1,λ2} (N) is depicted in Fig. 7a. Now, using this projection we can obtain a
composition (see Fig. 7b) that closely resembles N . Notice that, in this compo-
sition, copies of the interaction place p appear three times as places px, py and
pxy, respectively. It is also easy to see that places px and py are minor to pxy,
and α(p) = α(pxy) witnesses that π{λ1,λ2} (N) is the maximal projection defined
over types of N s.t. the correct type of p is “reconstructed”. This leads us to
the following result stipulating the reconstructability property of typed Jackson
nets.

Theorem 2. Let N = (P, T, F, α, β) be a t-JN. Then ΓN,∅ ∼r ΓN ′,∅, where
N ′ =

⊎

∅⊂Υ⊆typeΛ(N)

πΥ (N). 	

Proof. (sketch) The proof immediately follows from the next observation. Among
all possible projections, for each place p ∈ P there exists a projection πΥ (N)
such that α(p) = Υ. This also means that πΥ (N) contains p and that all other

There and Back Again 51

projections πΥ′ (N) with Υ′ ⊂ Υ will at most include the minors of p. Following
Definition 12, it is easy to see that the composition of all the projections yields
a t-JN identical to N modulo additional place minors introduced by some of
the projections. Showing that the obtained net is bisimilar to N can be done by
analogy with Lemma2. �

Notice that the above result can be made stronger if all the additional minors
(i.e., minors that were not present originally in N) are removed using reduction
rules from Definition 10. For simplicity, given a t-PNID N with the set of places
P , we denote by �P � the set of its minor places.

Corollary 1. Let N be a t-JN and N ′ is as in Theorem2. Then (N, ∅) �
(N ′, ∅), if �P � = �P ′�, where P and P ′ are respectively the sets of places of N
and N ′. 	

The above result can be obtained by complementing the proof of Theorem 2 with
a step that applies finitely many t-JN reduction rules to all the minor places that
are in N ′ and not in N .

5 A Framework for Rediscoverability

In the previous section, we showed that t-JNs enjoy the reconstructability prop-
erty: given a t-JN, a composition of all its (proper) type projections yields a
t-JN that is strongly bisimilar to the original one.2

In this section, we propose a framework to rediscover systems of interacting
processes that rely on this property. The framework builds upon a divide and
conquer strategy [21]. The first step of the approach is to divide the event logs
over all possible projections. For this, we translate the notion of event logs to
event logs of interacting systems, and show that if these event logs are generated
by a t-JN, projections on these event logs have a special property: the projected
event log can be replayed by the projected net. In other words, there is no distinc-
tion between the projection on the event log, or that the projected net generated
the event log. This observation forms the basis of the proposed framework for
rediscoverability. In the second step, we conquer the discoverability problem of
the system of interacting processes by first discovering a model for each of the
projections, and then composing these projections into the original system. If the
event log and discovery algorithm guarantee the defined properties, composition
yields rediscoverability.

5.1 Event Logs and Execution Traces

In process discovery, an event log is represented as a (multi)set of sequences of
events (called traces), where each sequence represents an execution history of a

2 Such nets are also isomorphic if minor places of the composition are removed by
consecutively applying the reduction rules from Definition 10.

52 D. Barenholz et al.

Table 1. Firing sequence for the t-PNID in Fig. 1

transition x y z
A p1

A p2

T c1

G o1 c1

C p1

E p2 o1

transition x y z
T c2

H o1

L o1

J o1

B p2

O o1

transition x y z
D p1

V c2

K o1

Z o1 c1

V c1

B p1

process instance. Traditional process discovery assumes the process to be a WF-
net. Consequently, each trace in an event log should correspond to a sequence of
transition firings of the workflow net. If this is the case, the event log is said to
be generated by the WF-net. We generalize this notion to marked Petri nets.

Definition 14 (Event Log). Given a set of transitions T , a set of traces L ⊆
T ∗ is called an event log. An event log L is generated by a marked Petri net
(N,m) if (N,m)[σ〉 for all σ ∈ L, i.e., L ⊆ L(N,m0). 	

Each sequence in a single process event log assumes to start from the initial
marking of the WF-net. A marked t-PNID, instead, represents a continuously
executing system, for which, given a concrete identifier, exists a single observable
execution that can be recorder in an event log. Thus, event logs are partial
observations of a larger execution within the system: an event log for a certain
type captures only the relevant events that contain identifiers of that type, and
stores these in order of their execution. Since each transition firing consists of a
transition and a binding, a t-PNID firing sequence induces an event log for each
set of types Υ. Intuitively, this induced event log is constructed by a filtering
process. For each possible identifier vector for Υ we keep a firing sequence. Each
transition firing is inspected, and if its binding satisfies an identifier vector of Υ,
it is added to the corresponding sequence.

Definition 15 (Induced Event Log). Let (N,m0) be a marked t-PNID.
Given a non-empty set of types Υ ⊆ typeΛ(N), the Υ-induced event log of a fir-
ing sequence η ∈ L(N,m0) is defined by: LogΥ(η) = {η|i | i ∈ (Id(η)∩ I(Υ))|Υ|},
where η|i is inductively defined by (1) ε|i = ε, (2) (〈(t, ψ)〉 · η)|i = 〈(t, ψ)〉 · η|i if
supp(i) ⊆ rng(ψ), and (3) (〈(t, ψ)〉 · η)|i = η|i otherwise. 	

Different event logs can be induced from a firing sequence. Consider, for
example, the firing sequence of the net from Fig. 1 represented as table in
Table 1. As we cannot deduce the types for each of the variables from the
firing sequences in Table 1, we assume that there is a bijection between vari-
ables and types, i.e., that each variable is uniquely identified by its type,
and vice-versa. Like that, we can create an induced log for each variable, as
the type and variable name are interchangeable. For example, the x-induced
event log is Log{x} = {〈A,E,B〉 , 〈A,C,D,B〉}, and the z-induced event log is

There and Back Again 53

Log{z} = {〈T,G,Z, V 〉 , 〈T, V 〉}. Similarly, event logs can be also induced for
combinations of types. In this example, the only non-empty induced event logs
on combined types are Log{y,z} = {〈G,Z〉} and Log{x,y} = {〈E〉}.

As the firing sequence in Table 1 shows, transition firings (and thus also
events) only show bindings of variables to identifiers. For example, for firing G
with binding y �→ o1 and z �→ c1, it is not possible to derive the token types of
the consumed and produced tokens directly from the table. Therefore, we make
the following assumptions for process discovery on t-PNIDs:

1. There are no “black” tokens: all places carry tokens with at least one type,
and all types occur at most once in a place type, i.e., all places refer to at
least one process instance.

2. There is a bijection between variables and types, i.e., for each type exactly
one variable is used.

3. A Gödel-like number G is used to order the types in place types, i.e., for any
place p, we have G (α(p)(i)) < G (α(p)(j)) for 1 ≤ i < j ≤ |α(p)| and p ∈ P .

5.2 Rediscoverability of Typed Jackson Nets

Whereas traditional process discovery approaches relate events in an event log
to a single object: the process instance, object-centric approaches can relate
events to many objects [12]. Most object-centric process discovery algorithms
(e.g., [5,17]) use a divide and conquer approach, where “flattening” is the default
implementation to divide the event data in smaller event logs. The flattening
operation creates a trace for each object in the data set, and combines the traces
of objects of the same type in an event log. As we have shown in Sect. 4, single-
ton projections, i.e., those just considering types in isolation, are insufficient to
reconstruct the t-JN that induced the object-centric event log. A similar observa-
tion is made for object-centric process discovery (cf. [3,5,7]): flattening the event
data into event logs generates inaccurate models. Instead, reconstructability can
only be achieved if all possible combinations of types are considered. Hence, for
a divide and conquer strategy, the divide step should involve all possible combi-
nations of types, i.e., each interaction between processes requires their own event
log. In the remainder of this section, we show that if all combinations of types are
considered, flattening is possible, and traditional process discovery algorithms
can be used to rediscover a system of interacting processes.

For a system of interacting processes, we consider execution traces, i.e., a
firing sequence from the initial marking. Like that, event logs for specific types
or combinations of types are induced from the firing sequence. The projection of
the system on a type or combinations of types, results again in a t-JN. Similarly,
if we project a firing sequence of a t-JN N on a set of types Υ, then this projection
is a firing sequence of the Υ-projection on N . The property follows directly from
the result that t-JN N is weakly simulated by its Υ-projection.

Lemma 3. Let N be a t-JN, and let Υ ⊆ typeΛ(N). Then ĤU (ΓN,∅) �r

ΓπΥ(N),∅, with U = TN \ TΥ. 	

54 D. Barenholz et al.

Fig. 8. Framework for rediscoverability of typed Jackson Nets. Model M generates an
event log L. Log projections L1 . . . Ln are generated from projected nets M1 . . . Mn.
Discovery algorithm disc results in nets D1 . . . Dn, isomorphic to M1 . . . Mn, which can
be composed in D′. D′ is isomorphic to M ′ and thus to M .

Proof. (sketch) Let NΥ = Υ|N = (PΥ, TΥ, FΥ, αΥ, βΥ). We can define a rela-
tion Q ⊆ M (N) × M (πΥ (N)) s.t. Q(m)(p)(a|I(Υ)) = m(p)(a) if p ∈ PΥ and
Q(m)(p) = m(p) otherwise. The rooted weak bisimulation of Q follows directly
from the firing rule of t-PNIDs. �

As the lemma shows, projecting a firing sequence yields a firing sequence for
the projected net. A direct consequence of the simulation relation is that, no
matter whether we induce an event log from a firing sequence on the original
net, or induce it from the projected firing sequence, the resulting event logs are
the same.

Corollary 2. Let (N,m0) be a marked t-PNID. Given a set of types Υ ⊆
typeΛ(N). Then LogΥ(η) = LogΥ(πΥ (η)). 	

Hence, it is not possible to observe whether an induced event log stems from
the original model, or from its projection. Note that the projection may exhibit
more behavior, so the reverse does not hold. In general, not any induced event
log from the projection can be induced from the original model.

In general, a projection does not need to be an atomic t-JN (that is, a t-JN
that can be reduced by applying rules from Definition 10 to a single transition).
However, if the projection is atomic, then its structure is a transition-bordered
WF-net: a WF-net that, instead of having source and sink places, has a set of
start and finish transitions, such that pre-sets (resp., post-sets) of start (resp.,
finish) transitions are empty. The closure of a transition-bordered WF-net is
constructed by adding a new source place i so that each start transition consumes
from i, and a new sink place f so that each finish transition produces in f .

Lemma 4. Let N be a t-JN and πΥ (N) = (PΥ, TΥ, FΥ, αΥ, βΥ) for some Υ ⊆
typeΛ(N) such that πΥ (N) is atomic. Let η ∈ L(N, ∅) be a firing sequence.
Then LogΥ(η) is generated by (NΥ, ∅) with NΥ = (PΥ ∪ {i, f}, TΥ, FΥ{(i, t) |
•t = ∅} ∪ {(t, f) | t• = ∅}). 	

There and Back Again 55

Proof. (sketch) Let σ ∈ LogΥ(η). By construction, each firing sequence in
LogΥ(η) has some corresponding identifier vector that generated the sequence.
Assume �υ ∈ I |Υ| is such a vector for σ.

Observe that for any transition t ∈ T if •t = ∅, Emit(t) ∩ Υ 	= ∅, and
similarly, if t• = ∅, Collect(t) ∩ Υ 	= ∅. As N is identifier sound, only •σ(1) = ∅
and σ(|σ|)• = ∅. Define relation R = {(M,m) | ∀p ∈ P : M(p)(υ) = m(p)} and
U = {(t, ψ) | υ 	⊆ rng(ψ)}, i.e., U contains all transitions that do not belong to
σ. Then R is a weak simulation, i.e., ĤU (ΓN,∅) �r

R ΓNΥ,∅ and thus (NΥ, ∅)[σ〉. �

Given a set of types Υ, if its projection is atomic, the projection can be
transformed into a workflow net, and for any firing sequence of the original net,
this WF-net can generate the Υ-induced event log. Suppose we have a discovery
algorithm disc that can rediscover models, i.e., given an event log L that was gen-
erated by some model M , then disc returns the original model. Rediscoverability
of an algorithm requires some property Pdisc(M) on the generating model M ,
and some property Qdisc(L,M) on the quality of event log L with respect to the
generating model M . In other words, P (M) and Q(L,M) are premises to con-
clude rediscoverability for discovery algorithm disc. For example, α-miner [22]
requires for P (M) that model M is well-structured, and for Q(L,M) that event
log L is directly-follows complete with respect to model M . Similarly, Inductive
Miner [16] requires the generating model M to be a process tree without silent
actions or self-loops (P (M)), and that event log L is directly-follows complete
with respect to the original model M (Q(L,M)).

Definition 16 (Rediscovery). An algorithm disc can rediscover WF-net W =
(P, T, F, in, out) from event log L ⊆ T ∗ if Pdisc(W) and Qdisc(L,W) imply
disc(L) � W . 	

Thus, suppose there exists a discovery algorithm disc that is – under con-
ditions P and Q – able to reconstruct a workflow model given an event log. In
other words, given an event log L generated by some model M , disc returns
a model that is isomorphic to the generating model. Now, suppose we have a
firing sequence η of some t-JN N , and some projection Υ. Then, if P (πΥ (N)),
and Q(LogΥ(η), πΥ (N)), then disc returns a model that is isomorphic to the
closure of πΥ (N), as disc only returns WF-nets. With disc we denote the model
where the source and sink places are removed, i.e., disc � πΥ (N). Then, as
shown in Fig. 8, if we discover for every possible combination of types, i.e., the
subset-closed set of all type combinations, a model that is isomorphic to the
type-projected model, then the composition results in a model that is bisimilar
to the original model.

Theorem 3 (Rediscoverability of typed Jackson Nets). Let N be a
t-JN, and let η ∈ L(N, ∅) without minor places. Let disc be a discov-
ery algorithm with properties P and Q that satisfy Definition 16. If for
all ∅ ⊂ Υ ⊆ typeΛ(N) the Υ-projection is atomic and satisfies condi-
tions P (πΥ (N)) and Q(LogΥ(η)), πΥ (N)), then ΓN,∅ � ΓN ′,∅ with N ′ =⊎

∅⊂Υ⊆typeΛ(N) disc(LogΥ(η)).

56 D. Barenholz et al.

Proof. (sketch) Let ∅ ⊂ Υ ⊆ typeΛ(N) be a set of types in N . Since P (πΥ (N))
and Q(LogΥ(η)), πΥ (N))the closure of πΥ (N) and disc(LogΥ(η)) are isomor-
phic. From the closure, places in and out exist with •in = ∅ = out•. As the
nets are isomorphic, we have Υ|N � disc(LogΥ(η)). Combining the results
gives

⊎
∅⊂Υ⊆typeΛ(N) disc(LogΥ(η)) �

⊎
∅⊂Υ⊆typeΛ(N) πΥ (N). The statement

then follows directly from Corollary 1. �

6 Conclusion

In this paper, we studied typed Jackson Nets to model systems of interacting
processes, a class of well-structured process models describing manipulations
of object identifiers. As we show, this class of nets has an important property
of reconstructability. In other words, the composition of the projections on all
possible type combinations returns the model of the original system. Ignoring the
interactions between processes results in less accurate, or even wrong, models.
Similar problems occur in the discovery of systems of interacting processes, such
as object-centric process discovery, where event logs are flattened for each object.

This paper provides a formal foundation for the composition of block-
structured nets, and uses this to develop a framework for the discovery of systems
of interacting processes. We link the notion of event logs used for process discov-
ery to system executions, and show that it is not possible to observe whether an
event log is generated by a system of interacting processes, or by a projection of
the system. These properties form the key ingredients of the framework. We show
under what conditions a process discovery algorithm (that guarantees rediscov-
erability) can be used to discover the individual processes and their interactions,
and how these can be combined to rediscover a model of interacting processes
that is bisimilar to the original system that generated the event logs.

Although typed Jackson Nets have less expressive power than formalisms like
Object-centric Petri nets [5], proclets [11] or interacting artifacts [17], this paper
shows the limitations and potential pitfalls of discovering interacting processes.
This work aims to lay formal foundations for object-centric process discovery.
As a next step, we plan to implement the framework and tune our algorithms
to discover useful models from industrial datasets.

Acknowledgements. Artem Polyvyanyy was in part supported by the Australian
Research Council project DP220101516.

References

1. Aalst, W.M.P.: Workflow verification: finding control-flow errors using petri-net-
based techniques. In: van der Aalst, W., Desel, J., Oberweis, A. (eds.) Business
Process Management. LNCS, vol. 1806, pp. 161–183. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-45594-9_11

2. Aalst, W.M.P.: Verification of workflow nets. In: Azéma, P., Balbo, G. (eds.)
ICATPN 1997. LNCS, vol. 1248, pp. 407–426. Springer, Heidelberg (1997). https://
doi.org/10.1007/3-540-63139-9_48

https://doi.org/10.1007/3-540-45594-9_11
https://doi.org/10.1007/3-540-63139-9_48
https://doi.org/10.1007/3-540-63139-9_48

There and Back Again 57

3. Aalst, W.M.P.: Object-centric process mining: dealing with divergence and con-
vergence in event data. In: Ölveczky, P.C., Salaün, G. (eds.) SEFM 2019. LNCS,
vol. 11724, pp. 3–25. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
30446-1_1

4. van der Aalst, W.M.P.: Foundations of process discovery. In: van der Aalst,
W.M.P., Carmona, J. (eds.) Process Mining Handbook. LNBIP, vol. 448, pp. 37–75.
Springer, Cham (2022). https://doi.org/10.1007/978-3-031-08848-3_2

5. van der Aalst, W.M.P., Berti, A.: Discovering object-centric petri nets. Fund.
Inform. 1–4(175), 1–40 (2020)

6. van der Aalst, W.M.P., et al.: Soundness of workflow nets: classification, decidabil-
ity, and analysis. Formal Asp. Comput. 23(3), 333–363 (2011)

7. Adams, J.N., Park, G., Levich, S., Schuster, D., van der Aalst, W.M.P.: A frame-
work for extracting and encoding features from object-centric event data. In: Troya,
J., Medjahed, B., Piattini, M., Yao, L., Fernáindez, P., Ruiz-Cortés, A. (eds.)
ICSOC 2022. LNCS, vol. 13740, pp. 36–53. Springer, Cham (2022). https://doi.
org/10.1007/978-3-031-20984-0_3

8. Barenholz, D., Montali, M., Polyvyanyy, A., Reijers, H.A., Rivkin, A., van der
Werf, J.M.E.M.: On the reconstructability and rediscoverability of typed Jack-
son nets (extended version) (2023). https://doi.org/10.48550/ARXIV.2303.10039,
https://arxiv.org/abs/2303.10039

9. Berti, A., van der Aalst, W.M.P.: OC-PM: analyzing object-centric event logs and
process models. Int. J. Softw. Tools Technol. Transf. (2022). https://doi.org/10.
1007/s10009-022-00668-w

10. Best, E., Devillers, R., Koutny, M.: The box algebra=petri nets+process expres-
sions. Inf. Comput. 178(1), 44–100 (2002). https://doi.org/10.1006/inco.2002.3117

11. Fahland, D.: Describing behavior of processes with many-to-many interactions. In:
Donatelli, S., Haar, S. (eds.) PETRI NETS 2019. LNCS, vol. 11522, pp. 3–24.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21571-2_1

12. Ghahfarokhi, A.F., Park, G., Berti, A., van der Aalst, W.M.P.: OCEL: a standard
for object-centric event logs. In: Bellatreche, L., et al. (eds.) ADBIS 2021. CCIS,
vol. 1450, pp. 169–175. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
85082-1_16

13. Glabbeek, R.J.: The linear time—branching time spectrum II. In: Best, E. (ed.)
CONCUR 1993. LNCS, vol. 715, pp. 66–81. Springer, Heidelberg (1993). https://
doi.org/10.1007/3-540-57208-2_6

14. van Hee, K.M., Hidders, J., Houben, G.J., Paredaens, J., Thiran, P.: On the rela-
tionship between workflow models and document types. Inf. Syst. 34(1), 178–208
(2009). https://doi.org/10.1016/j.is.2008.06.003

15. Kopp, O., Martin, D., Wutke, D., Leyman, F.: The difference between graph-based
and block-structured business process modelling languages. EMISAJ 4(1), 3–13
(2009)

16. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured
process models from event logs - a constructive approach. In: Colom, J.-M., Desel,
J. (eds.) PETRI NETS 2013. LNCS, vol. 7927, pp. 311–329. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-38697-8_17

17. Lu, X., Nagelkerke, M., van de Wiel, D., Fahland, D.: Discovering interacting
artifacts from ERP systems. IEEE Trans. Serv. Comput. 8(6), 861–873 (2015)

18. Murata, T.: Petri nets: properties, analysis and applications. Proc. IEEE 77(4),
541–580 (1989). https://doi.org/10.1109/5.24143

https://doi.org/10.1007/978-3-030-30446-1_1
https://doi.org/10.1007/978-3-030-30446-1_1
https://doi.org/10.1007/978-3-031-08848-3_2
https://doi.org/10.1007/978-3-031-20984-0_3
https://doi.org/10.1007/978-3-031-20984-0_3
https://doi.org/10.48550/ARXIV.2303.10039
https://arxiv.org/abs/2303.10039
https://doi.org/10.1007/s10009-022-00668-w
https://doi.org/10.1007/s10009-022-00668-w
https://doi.org/10.1006/inco.2002.3117
https://doi.org/10.1007/978-3-030-21571-2_1
https://doi.org/10.1007/978-3-030-85082-1_16
https://doi.org/10.1007/978-3-030-85082-1_16
https://doi.org/10.1007/3-540-57208-2_6
https://doi.org/10.1007/3-540-57208-2_6
https://doi.org/10.1016/j.is.2008.06.003
https://doi.org/10.1007/978-3-642-38697-8_17
https://doi.org/10.1109/5.24143

58 D. Barenholz et al.

19. Polyvyanyy, A., van der Werf, J.M.E.M., Overbeek, S., Brouwers, R.: Information
systems modeling: language, verification, and tool support. In: Giorgini, P., Weber,
B. (eds.) CAiSE 2019. LNCS, vol. 11483, pp. 194–212. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-21290-2_13

20. Tour, A., Polyvyanyy, A., Kalenkova, A.A.: Agent system mining: vision, benefits,
and challenges. IEEE Access 9, 99480–99494 (2021)

21. Tour, A., Polyvyanyy, A., Kalenkova, A.A., Senderovich, A.: Agent miner: an algo-
rithm for discovering agent systems from event data. CoRR abs/2212.01454 (2022)

22. van der Aalst, W., Weijters, T., Maruster, L.: Workflow mining: discovering process
models from event logs. Knowl. Data Eng. 16(9), 1128–1142 (2004)

23. van der Werf, J.M.E.M., Rivkin, A., Polyvyanyy, A., Montali, M.: Data and process
resonance. In: Bernardinello, L., Petrucci, L. (eds.) PETRI NETS 2022. LNCS,
vol. 13288, pp. 369–392. Springer, Cham (2022). https://doi.org/10.1007/978-3-
031-06653-5_19

https://doi.org/10.1007/978-3-030-21290-2_13
https://doi.org/10.1007/978-3-031-06653-5_19
https://doi.org/10.1007/978-3-031-06653-5_19

ILP2 Miner –

Process Discovery for Partially Ordered Event Logs
Using Integer Linear Programming

Sabine Folz-Weinstein1(&), Robin Bergenthum2, Jörg Desel1, and Jakub Kovář3

1 FernUniversität in Hagen, Lehrgebiet Softwaretechnik und Theorie der
Programmierung, Hagen, Germany

{sabine.folz-weinstein,joerg.desel}@fernuni-hagen.de
2 FernUniversität in Hagen, Fakultät für Mathematik und Informatik,

Hagen, Germany
robin.bergenthum@fernuni-hagen.de

3 FernUniversität in Hagen, Lehrgebiet Programmiersysteme, Hagen, Germany
jakub.kovar@fernuni-hagen.de

Abstract. Process mining is based on event logs. Traditionally, an event log is
a sequence of events. Yet, there is a growing amount of work in the literature
that suggests we should extend the notion of an event log and use partially
ordered logs as a basis for process mining. Thus, the need for algorithms able to
handle these partially ordered logs will grow in the upcoming years. In this
paper, we adapt an existing, classical process discovery algorithm to be able to
handle partially ordered logs. We use the ILP Miner [1] as a basis and replace its
region theory part by compact tokenflow regions [2] to introduce the ILP2

Miner. This ILP2 Miner handles sequential event logs just like the ILP Miner
but, in addition, is able to directly process partially ordered logs. We prove that
the ILP2 Miner provides the same guarantees regarding structural and behavioral
properties of the discovered process models as the ILP Miner. We implement the
ILP2 Miner and show experimental results of its runtime using three well-known
example log files from the process mining community literature.

Keywords: Process mining � Process discovery � Synthesis � ILP Miner �
Partially ordered event log � Compact tokenflow � Integer linear programming

1 Introduction

Process mining aims to identify business processes and to gain insight into their per-
formance and conformance by analyzing recorded behavior [3, 4]. Over time, a wide
variety of process mining algorithms and methods have been introduced as well as many
tools, contests, and case studies. In this paper, we focus on process discovery, which is
often said to be the most interesting, but at the same time the most challenging part of

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Gomes and R. Lorenz (Eds.): PETRI NETS 2023, LNCS 13929, pp. 59–76, 2023.
https://doi.org/10.1007/978-3-031-33620-1_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33620-1_4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33620-1_4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33620-1_4&domain=pdf
https://doi.org/10.1007/978-3-031-33620-1_4

process mining [5]. The goal of process discovery is to automatically create a process
model that adequately describes the underlying process, based on recorded behavior.

Process discovery algorithms are based on two formalisms: event logs as the basis
and workflow models as the result. A workflow model is an executable, often Petri net-
like, model of a business process. An event log is a sequence of events, where every
event is an observed execution of an activity of a business process. Traditionally, an
event log is a total order on the activity instances. More recently, event logs are also
represented as partially ordered sequences of events. At the moment, it is not yet
common to directly record partially ordered event logs, but partially ordered repre-
sentations are derived from sequential logs in a pre-processing step using attributes
stored in the event data like timestamps, activity life-cycle information, resources or
other domain knowledge [6, 7].

The advantage is that partially ordered sets of events can directly express con-
currency and are able to model specific properties of the underlying activities like non-
zero duration, start and end point in time, inherent uncertainty in process data logging
etc., which are not supported by a total order assumption. Therefore, Marlon Dumas
and Luciano García-Bañuelos suggest recasting all process mining operations based on
partially ordered event structures [6]. Furthermore, Leemans, van Zelst, and Lu
advocate partial order-based process mining, at least using partial orders as an inter-
mediary data representation [7]. Altogether, we expect the need for algorithms designed
to handle partially ordered logs to grow in the upcoming years.

Paper [7] presents a survey and outlook concerning partial order-based process
mining. Although several new types of approaches have evolved in this area recently,
the number of new publications which in one way or another work with partial orders is
still limited compared to traditional, total order-based approaches. Concerning the field
of process discovery, most partial order-based work refers to synthesis. One example is
the process discovery approach called Prime Miner [8], which can handle partially
ordered logs, but has a slightly different goal and does not yet offer the same guarantees
and results as the established classical discovery algorithms.

In this paper, instead of developing a new and even more fancy discovery algorithm
able to handle partially ordered logs, we extend an existing, classical process discovery
algorithm, the ILP Miner [1]. The ILP Miner is well-established and part of every
process discovery tutorial and textbook. It works best in applications where the log is of
moderate size and of good quality. The main disadvantages are a high runtime com-
plexity and a tendency to produce over-fitting models. This is widely discussed in the
literature. By extending the ILP Miner, we obviously inherit all benefits and short-
comings. The goal of this paper, however, is to adapt the classical ILP Miner so that it
is able to handle partially ordered input and keep all other characteristics unchanged.

The ILP Miner algorithm has been implemented and is available in the HybridILP-
Miner package in the ProM (http://promtools.org) and RapidProM (http://rapidprom.
org) toolkits. As a typical process discovery algorithm, the ILP Miner expects
sequential event logs as input. The ILP Miner guarantees to discover relaxed sound
workflow nets. It uses an integer linear programming (ILP) formulation, i.e., an

60 S. Folz-Weinstein et al.

http://promtools.org
http://rapidprom.org
http://rapidprom.org

objective function over a system of inequalities representing the constraints for a
region, which is then solved for every causal relation in the event log to find the places
of the resulting net.

In the new ILP2 Miner, we use the algorithm structure and framework of the
classical ILP Miner but replace the region part of the integer linear program by compact
tokenflow (CTF) regions [2]. The CTF synthesis algorithm, which introduces this type
of regions, is the approach which currently offers the best runtime for partial order-
based synthesis. It uses labeled Hasse diagrams to represent the partially ordered input.
Just like the ILP Miner, the CTF synthesis algorithm uses a region theory-based system
of inequalities which is solved for every wrong continuation of the input to find places
of the resulting net. Thus, this is a very good fit.

We prove that if we integrate and use the compact region inequality system of the
CTF synthesis algorithm within slightly adapted formulations of the ILP Miner, we get
a new miner that: (1) generates the same results as the classical ILP Miner if we apply
the miner to a sequentially ordered event log, and (2) can perfectly handle partially
ordered event logs. We conduct experiments to show that if we have two kinds of event
logs, one totally ordered and the other partially ordered, both recording the same
business process, the ILP2 Miner, using the partially ordered event log, outperforms the
ILP Miner, using the totally ordered event log.

The remainder of this paper is organized as follows: Since the ILP Miner serves as
the basis for the new ILP2 Miner, we recall the main characteristics of the classical ILP
Miner in Sect. 2. There, we also present the core functional aspects of the CTF syn-
thesis algorithm and its compact region formulation. In Sect. 3, we introduce the
extended ILP2 Miner algorithm and prove that the systems of (in)equalities used for
finding the regions in the ILP Miner and the ILP2 Miner produce equivalent sets of
places when processing sequential orders. Therefore, the ILP2 Miner extends but does
not alter the classical ILP formulation. Finally, in Sect. 4 we present the implemen-
tation and runtime analysis for the extended ILP2 Miner compared to the classical ILP
Miner. We use three example event logs to illustrate benefits of the new approach.
Section 5 concludes the paper.

2 Preliminaries

Let N be the set of non-negative integers and R the set of real numbers. Let f be a
function and B a subset of the domain of f . We write f jB to denote the restriction of f to
B. We denote the transitive closure of an acyclic and finite relation \ by \þ . We
denote the skeleton of \ by \}. The skeleton of \ is the smallest relation / so that
/þ ¼ \þ holds.

X ¼ fx1; x2; . . .; xng denotes a set. B Xð Þ denotes the powerset of X.
A sequence w of length k relates positions to elements x 2 X, i.e., w : 1;

2; . . .; k ! X. An empty sequence is denoted as e. We denote a non-empty sequence as
h x1; x2; . . .; xki. The set of all possible sequences over a set X is denoted as X�.

ILP2 Miner – Discovery for Partially Ordered Event Logs 61

We write a concatenation of sequences w1 and w1 as w1w2, e.g.,
ha; bihc; di ¼ ha; b; c; di. Let Y 2 X� be a set of sequences. The prefix-closure of Y is
defined as: Y ¼ w1 2 X�j9w2 2 X� w1w2 2 Yð Þf g.

We assume the reader is familiar with the use of vectors, and all vectors to be
column vectors. We write 1 to denote the 1-vector and 0 to denote the 0-vector.

A Parikh vector represents the number of occurrences of an element within a
sequence, i.e. with and
#xi wð Þ ¼ jfi0 2 1; 2; . . .; wj jf g j w i0ð Þ ¼ xigj.

A multiset m over a set A is a function m : A ! N. We denote the empty multiset as
;. Let m be a multiset, we write m ¼ P

a2A m að Þ � a to denote all multiplicities of m.
We extend all set operations to multisets.

Let T be a set of activities. An event records the execution of an activity. A se-
quence of events over T is a case. A sequence over T . is a trace. An event log is a
multiset of traces.

In this paper, we model distributed systems by Petri nets also allowing for arc
weights [9–11].

Definition 1 (Petri net): A Petri net is a tuple P; T ;Wð Þ where P is a finite set of
places, T is a finite set of transitions such that P \ T ¼ ; holds, and W :
P� Tð Þ [T � Pð Þ ! N is a multiset of arcs. A marking of P; T;Wð Þ is a multiset
m : P ! N. Let m0 be a marking. We call the tuple N ¼ P; T ;W ;m0ð Þ a marked Petri
net and m0 the initial marking of N.

Figure 1 depicts an example Petri net modeling the business process of the so-
called repair example, well-known from the ProM Tools tutorial (http://promtools.org).
We show transitions as rectangles, places as circles, the multiset of arcs as weighted
arcs, and the initial marking as black dots called tokens. This Petri net serves as a
running example in this paper and will be discussed in more detail in the experimental
results section.

Fig. 1. Petri net of the repair example.

62 S. Folz-Weinstein et al.

http://promtools.org

2.1 ILP Miner

The ILP Miner [1, 12] is one of the corner stones of discovery algorithms and thus, part
of every textbook on process discovery. The following definitions and descriptions are
based on [1]. The algorithm uses integer linear programming to generate places of a
Petri net. Every solution of the program, also called a region, is a set of values of binary
variables encoding incoming and outgoing arcs of a valid place, as well as its initial
marking.

Definition 2 (ILP Miner region): Let L be an event log over a set of activities T , then a

region is a triple r ¼ m; x; yð Þ with x; y 2 0; 1f g Tj j;m 2 0; 1f g that satisfies:

Paper [1] uses these regions to define the integer linear program of the ILP Miner.

Definition 3 (ILP Miner process discovery program): Let L be an event log over a set
of activities T , let L be the prefix-closure of the set of traces of L, let m 2 0; 1f g and let

x; y 2 0; 1f g Tj j. Let M and M0 be two Ln ef g�� ��� Tj j matrices with
and where w ¼ w0t 2 L. Let ML be a Lj j � Tj j matrix with

for w 2 L, i.e., the equivalent of M for all complete traces in the
event log. Let cm 2 R and cx; cy 2 R

Tj j. The ILP Miner process discovery program is:

(1) minimize objective function

(2) such that m � 1þM0 � x�M � y� 0 theory of regions

and

(3:1) m � 1 þ ML � x� yð Þ ¼ 0 place is empty after each trace
(3:2) at least one arc connected
(3:3) 0 � x � 1 arc weight restricted to {0,1}
(3:4) 0 � y � 1 arc weight restricted to {0,1}
(3:5) 0 � m �1 initial marking restricted to {0,1}

The inequalities (2), marked above as “theory of regions”, are the inequalities
defined in Definition 2. Roughly speaking, they guarantee that every solution relates to
a place which can execute all traces of the input event log. The objective function
z selects the most expressive region considering the existing constraints. For example,
paper [12] proposes an objective function minimizing x values and maximizing y
values. Thus, the ILP Miner program minimizes the number of incoming arcs and
maximizes the number of outgoing arcs of all the generated places. Other objective
functions may be used. The other inequalities guarantee additional properties of the
resulting net so that the resulting net is a so-called workflow net.

ILP2 Miner – Discovery for Partially Ordered Event Logs 63

Finally, to find a finite number of places for the resulting workflow net, the ILP
Miner uses the so-called causal relations heuristics [1]. Roughly speaking, it solves the
integer linear program for each causal pair of activities of the event log. Two activities
a and b are a causal pair if and only if ab is a subsequence of a trace of the event log
and there is no trace so that ba is a subsequence. Paper [12] proves that for complete
logs, causal dependencies directly relate to places and hence provide a good guide for
finding a finite number of solutions.

To construct a net, we add a transition for every activity. A region r translates to a
Petri net place p as follows: we add an arc leading from transition t to p if x tð Þ ¼ 1, and
an arc from p to transition t if y tð Þ ¼ 1.

2.2 Compact Tokenflow Synthesis

In this section, we present the algorithm for synthesizing Petri nets from Hasse dia-
grams [2]. We refer to this algorithm as compact tokenflow (CTF) synthesis algorithm.
This algorithm applies region theory to partially ordered sets of events. We will use this
definition to replace the region theory part of the ILP Miner later. The approach
requires a complete specification of the desired behavior as a set of Hasse diagrams.

Definition 4 (labeled Hasse diagram): Let T be a set of labels. A labeled partial order
(lpo) is a triple lpo ¼ ðV ;\; lÞ where V is a finite set of events, \�V � V is a
transitive and irreflexive relation, and the labeling function l : V ! T assigns a label to
every event. A triple run ¼ V ; \; lð Þ is a labeled Hasse diagram if V ;\þ ; lð Þ is an
lpo and\} ¼ \ holds. We denote the set of all possible labeled Hasse diagrams over
a set of labels T as T\.

The CTF synthesis algorithm uses compact regions based on compact tokenflows to
build a Petri net from a specification. A compact tokenflow is a distribution of tokens
on the arcs of a Hasse diagram. We only distribute tokens over arcs because an event
can only consume tokens from its preset to ensure that these are available. If an event
produces tokens, it can pass these tokens to its postset. Tokens of the initial marking are
free for all, i.e., any event can consume tokens from the initial marking. Such a
distribution of tokens is valid if and only if (4) every event receives enough tokens, (5)
an event must not pass too many tokens, and (6) the initial marking is not exceeded.
A compact region is an abstract representation of a place together with a valid
tokenflow. Thus, every region defines a valid place.

Definition 5 (compact region): Let S= V1;\1; l1ð Þ; V2;\2; l2ð Þ; . . .; Vn;\n; lnð Þ�T\

be a set of labeled Hasse diagrams and p be a place. A function
r : ðSiðVi [\iÞ [T � pf gð Þ [pf g � Tð Þ [pf gÞ ! N is a compact region for
S if and only if

(4) 8i : 8v 2 Vi : r vð Þþ P
v0\v r v0; vð Þ� r p; li vð Þð Þ;

(5) 8i : 8v 2 Vi :
P

v\v0 r v; v0ð Þ � r vð Þþ P
v0\v r v0; vð Þ � r p; li vð Þð Þþ r li vð Þ; pð Þ;

(6) 8i : Pv2Vi
r vð Þ� r pð Þ holds.

64 S. Folz-Weinstein et al.

In Definition 5, a region r is a place together with a valid compact tokenflow for
every Hasse diagram. The region has one value for every event and every arc of the
Hasse diagrams, as well as values for incoming and outgoing arcs for every transition,
and one value for the initial marking. The region satisfies the defined set of inequalities.
Here, we have one inequality of type (4) per event to ensure that every transition
receives enough tokens, one of type (5) per event to ensure that no event has to pass too
many tokens, and additionally one inequality of type (6) per Hasse diagram to ensure
that the initial marking is not exceeded. Altogether, the place defined by the region is
able to execute all input Hasse diagrams.

3 ILP2 Miner

In this section, we introduce our new ILP2 Miner. This miner adapts and extends the
classical ILP Miner presented in Sect. 2.1. Like the ILP Miner, we use integer linear
programming to generate places of a workflow net. We use the compact region for-
mulation of Definition 5 instead of the sequence based ILP regions of Definition 2 to
get a mining algorithm that also supports partially ordered event logs as input.

To replace the region part of the ILP Miner, we need to adapt the compact region
inequality system because using (5) and (6) directly, we would not be able to define
whether a final marking is empty or not. In contrast to Definition 2, tokens in Definition
5 can disappear from the inequality system. This is because (5) and (6) are formulated
as inequalities. The reason for this is that compact tokenflows only produce tokens if
they are needed by later events. This has a positive effect on the runtime of a related
compact tokenflow verification algorithm [2]. To guarantee the same properties as the
ILP Miner, we extend every Hasse diagram by an initial event s and a final event f .
Furthermore, we transform inequality (5) into an equality so that superfluous tokens
must be passed to the final node. Thus, the resulting equality (8) enforces that no tokens
are lost and the tokenflow at the final event f is the final marking. Similarly, we
transform inequality (6) into equality (9) so that all the initial tokens are produced by
the initial event s, and every initial token is counted.

Definition 6 (ILP2 Miner compact region): Let S ¼ f V1;\1; l1ð Þ; V2;\2; l2ð Þ; . . .,
Vn;\n; lnð Þg be a specification, T be its set of labels, p be a place, and s; f two events.
A function r : ðSi \i [sf g � Við Þ [Vi � ff gð Þð Þ [T � pf gð Þ [pf g � Tð Þ [
pf g Þ ! N is a compact region with a final marking for S if and only if

(7) 8i : 8v 2 Vi : r s; vð Þþ P
v0\v r v0; vð Þ� r p; li vð Þð Þ;

(8) 8i : 8v 2 Vi :
P

v\v0 r v; v0ð Þ þ r v; fð Þ ¼
r s; vð Þþ P

v0\v r v0; vð Þ � r p; li vð Þð Þþ r li vð Þ; pð Þ;
(9) 8i : Pv2Vi

r s; vð Þ ¼ r pð Þ holds.

ILP2 Miner – Discovery for Partially Ordered Event Logs 65

A totally ordered event log is a multiset of traces. Now, we define a partially ordered
event log as a multiset of Hasse diagrams and apply Definition 6 to define the integer
linear program for the ILP2 Miner.

Definition 7 (ILP2 Miner process discovery program): Let L be a partially ordered
event log over a set of activities T , let { V1;\1; l1ð Þ; V2;\2; l2ð Þ; . . .; Vn;\n; lnð Þ} be
the set of labeled Hasse diagrams of L, p be a place, s and f two events, and r a function
r : ðSi \i [sf g � Við Þ [T � pf gð Þ [pf g � Tð Þ [pf g Þ ! N. The ILP2 Miner
process discovery program is:

(10) minimize z ¼ P
i

P
e2
S

i
\i [sf g�Við Þð Þ r eð Þ objective function

such that theory of regions
(11) 8i : 8v 2 Vi : r s; vð Þþ P

v0\v r v0; vð Þ� r p; li vð Þð Þ;
(12) 8i : 8v 2 Vi:

P
v\v0 r v; v0ð Þ ¼ r s; vð Þþ P

v0\v r v0; vð Þ � r p; li vð Þð Þþ r li vð Þ; pð Þ;
(13) 8i : Pv2Vi

r s; vð Þ ¼ r pð Þ;
and

(14:1) (-) place is empty after each trace
(14:2)

P
i

P
e2[i \i

r eð Þ� 1; at least one token consumed / arc connected
(14:3) 8t 2 T : 0� r t; pð Þ� 1; arc weight restricted to {0,1}
(14:4) 8t 2 T : 0� r p; tð Þ� 1; arc weight restricted to {0,1}
(14:5) 0� r pð Þ� 1; initial marking restricted to {0,1}

In Definition 7, condition (14.1) is empty. Just like the ILP Miner, we want to
guarantee that the place is empty after each trace. Therefore, we must ensure that there
is no tokenflow from any event v to the final event f . For the ILP2 Miner, this translates
to the restriction 8i : Pv2Vi

r v; fð Þ ¼ 0. Thus, we delete all variables r v; fð Þ from
equation (8) of Definition 6 to get to equation (12) of Definition 7, so that there can be
no tokenflow to the final event, and the place is empty after each trace.

Every solution of the ILP2 Miner integer linear program is a region defining a place.
r pð Þ is the initial marking and r p; l vð Þð Þ and r l vð Þ; pð Þ are ingoing and outgoing arcs.
To generate a finite set of places, we use the same heuristics as the ILP Miner, the so-
called causal relations, and solve the integer linear program for every causal pair of the
partially ordered log.

Altogether, both the ILP Miner and the ILP2 Miner use region theory-based sys-
tems of (in)equalities to generate places of the workflow net. In our ILP2 Miner, we still
use the same algorithm framework as the classical ILP Miner and guarantee the same
structural properties of the resulting net, but we replace the region theory part, i.e., the
region-matrix-form ILP-constraints, with the compact region inequality system based
on CTF synthesis to be able to process partial orders.

In the remainder of this section, we prove that the ILP2 Miner is in fact an extension
of the ILP Miner. Introducing the ILP2 Miner, we do not ruin already established
features. Roughly speaking, we still satisfy the same formal guarantees as the original.

66 S. Folz-Weinstein et al.

We show that if we apply both miners to a totally ordered event log, the region theory
parts (2) of Definition 3 and (11)–(13) of Definition 7 produce the same set of feasible
places.

As a first step, we look at lines (11), (12), and (13). Inequality (11) ensures every
event receives enough tokenflow and equation (12) ensures every event passes the
correct number of tokens. In a partially ordered event log one event can obviously have
multiple predecessors and multiple successors, thus, the number of ingoing and out-
going tokens is a sum of tokenflows. In a totally ordered event log, every event has at
most one predecessor and at most one successor, so that there is no need to sum up.

Figure 2 depicts an example of a totally ordered trace with at most one incoming
and outgoing arc, and Figure 3 an example of a partially ordered trace with multiple
incoming and outgoing arcs.

Let e be an event of a totally ordered event log, we denote 	e the predecessor and e	

the successor of e. Thus, we simplify (11) and (12) for totally ordered event logs as
follows:

110ð Þ 8i : 8e 2 Vi : r s; eð Þþ r 	e; e
� �� r p; li eð Þð Þ;

120ð Þ 8i : 8e 2 Vi : r e; e	ð Þ ¼ r s; eð Þþ r 	e; e
� �� r p; li eð Þð Þþ r li eð Þ; pð Þ:

Equation (13) ensures that all tokens from the initial marking are distributed over
all events of the Hasse diagram. In a partially ordered event log, one Hasse diagram can
have multiple initial events as well as several alternative, concurrent paths (see Fig-
ure 3), thus, we need to be able to distribute initial tokens. In a totally ordered event
log, every trace has one initial event and tokens distributed to this event can reach every
other event in a straight line (see Figure 2). There is no need to distribute initial tokens
anymore.

Fig. 2. One trace of the repair example.

Fig. 3. The most frequent partially ordered trace of the repair example.

ILP2 Miner – Discovery for Partially Ordered Event Logs 67

Let e be an event of a totally ordered event log. If 	e is empty, i.e., e has no
predecessor, we can simplify the inequality system so that this event is the only event
receiving all the tokens from the initial marking. Obviously, this event does not get
tokens from any other event so that in this case we also write r 	e; e

� �
to denote the

variable r s; eð Þ. Thus, we simplify the compact region ILP2 Miner program for totally
ordered event logs even further:

11�ð Þ 8i : 8e 2 Vi : r 	e; e
� �� r p; li eð Þð Þ;

12�ð Þ 8i : 8e 2 Vi : r e; e	ð Þ ¼ r 	e; e
� �� r p; li eð Þð Þþ r li eð Þ; pð Þ; and

13�ð Þ 8i : 8e 2 Vi;
	e ¼ ; : r 	e; e

� � ¼ r pð Þ:
Please note that these simplifications alter the inequalities as well as the variables of

the ILP2 Miner (in)equalities. Thus, they also alter the set of ILP2 Miner regions
concerning tokenflow variables but, obviously, they do not alter the set of places
related to all regions.

Using these simplifications, we prove that the set of places defined by the ILP
Miner is the set of places defined by the ILP2 Miner for totally ordered event logs.

Theorem 1: Let L be a totally ordered event log. The set of places defined by the ILP
Miner integer linear program for L is the set of places defined by the ILP2 Miner integer
linear program for L.

Proof. In a first step, we assume both systems of (in)equalities define the same set of
places for L. We now prove that by adding one event to some trace of L, we add the
same restrictions to both systems of (in)equalities so that both sets of related places
remain equal.

Choose an arbitrary trace w ¼ ht1; t2; . . .; tni 2 L, let t be an action, and let
L0 :¼ L� wþwt. Using ILP Miner notations, wt is a trace in L0. Obviously, all
inequalities for w in L are still in the ILP Miner system for wt in L0 because Definition 2
adds inequalities for every prefix of a trace.

Using the ILP2 Miner notations, let there be a trace of sequentially ordered events
e1e2. . .en in L so that l eið Þ ¼ ti holds. We append a new event e with l eð Þ ¼ t to en by
adding an arc en; eð Þ to construct the new trace wt ¼ e1e2. . .ene of L0. Obviously, all
(in)equalities for w in L are still in the ILP2 Miner system for wt in L0 because
Definition 7 adds inequalities for every event of a trace.

Adding wt to L, the ILP Miner system of inequalities changes as stated in Definition
2. If w ¼ e holds, the system for L0 is obtained from the system for L by adding the
following inequality:

⸆ ⸆

.

That is, the initial marking must be greater or equal to the arc-weight of the arc
starting at the place to be constructed and leading to transition t.

68 S. Folz-Weinstein et al.

If w 6¼ e holds, the system for L0 is obtained from the system for L by adding the
following inequality:

⸆ ⸆ ∑ ∑ .

That is, the initial marking of the place to be constructed plus the accumulated
changes caused by firing all ti of w; is greater or equal to the arc-weight of the arc
starting at the place to be constructed and leading to transition t.

Adding wt to L, the ILP2 Miner system of (in)equalities changes as stated in Def-
inition 7. L0 is totally ordered, thus, (11), (12), and (13) are equivalent to (11*), (12*),
and (13*).

If w ¼ e holds, the system for L0 is obtained from the system for L by adding the
following inequality and equations: , , r . ⇔ r ,

.

Like for Definition 2, the initial marking must be greater or equal to the arc-weight
of the arc starting at the place to be constructed and leading to transition t: The
additional condition which defines r e; fð Þ, i.e., the number of tokens remaining after
firing t, is a new, not yet bound variable; this does not restrict the solution space.

If w 6¼ e holds, the system for L0 is obtained from the system for L by replacing the
equality

r en; fð Þ ¼ r en�1; enð Þ � r p; l enð Þð Þþ r l enð Þ; pð Þ

by

r en; eð Þ ¼ r en�1; enð Þ � r p; l enð Þð Þþ r l enð Þ; pð Þ;

and adding the following inequality and equation:

r en; eð Þ� r p; tð Þ;

r e; fð Þ ¼ r en; eð Þ � r p; tð Þþ r t; pð Þ;

We replace the equation to detach the final event and append it to the new last event
of the sequence. Again, the second equation does not restrict the solution space because
r e; fð Þ is new and unbound.

The prefix w of wt is in L and in L0 so that we have the following equations in both
systems:

ILP2 Miner – Discovery for Partially Ordered Event Logs 69

r en; eð Þ ¼ r en�1; enð Þ � r p; l enð Þð Þþ r l enð Þ; pð Þ
r en�1; enð Þ ¼ r en�2; en�1ð Þ � r p; l en�1ð Þð Þþ r l en�1ð Þ; pð Þ;

� � �
r e2; e3ð Þ ¼ r e1; e2ð Þ � r p; l e2ð Þð Þþ r l e2ð Þ; pð Þ;
r e1; e2ð Þ ¼ r s; e1ð Þ � r p; l e1ð Þð Þþ r l e1ð Þ; pð Þ;

r s; e1ð Þ ¼ r pð Þ:

Thus, if we recursively replace the variables r ei�1; eið Þ in the new inequality above
by the right sides of their equations, we get:

r en; eð Þ� r p; tð Þ ,
Xn

i¼1
r l eið Þ; pð Þ � r p; l eið Þð Þð Þþ r pð Þ� r p; tð Þ:

Like for Definition 2, that is, the initial marking of the place to be constructed, plus
the accumulated changes caused by firing all ti of w, is greater or equal to the arc-
weight of the arc starting at the place to be constructed and leading to transition t.

Altogether, whenever we add an event to a trace of an event log, we add the same
restrictions to the set of places related to the solution space of the ILPMiner and to the set
of places related to the solution space of the ILP2 Miner. Finally, we add the recursive
argument that we can build every event log by adding events to the empty log. ∎

The ILP Miner and ILP2 Miner define the same set of places for totally ordered
logs. We add inequalities (3.1)–(3.5) of Definition 3 and inequalities (14.2)–(14.5) of
Definition 7, so that both algorithms guarantee the same additional properties of the
resulting net. Furthermore, both miners apply heuristics based on causal relations to
find a finite set of places. Thus, the ILP2 Miner generates the same results as the ILP
Miner on regular event logs. Obviously, in contrast to the ILP Miner, the ILP2 Miner
can process partially ordered logs.

Another important advantage of the ILP2 Miner is its objective function. The ILP
Miner selects optimal regions by maximizing the expressiveness of places by, roughly
speaking, counting and weighing connected arcs and the initial marking. The ILP2

Miner can now count tokens of the tokenflow directly because the variables are
available. Thus, we minimize tokens present in the sum of every reachable marking.

4 Experimental Results

The goal of this paper is to extend the well-known ILP Miner, working on totally
ordered inputs, to a new miner, able to process partially ordered inputs. Consequently,
we inherit all its benefits and shortcomings. These benefits and shortcomings, as well as
various comparisons of region-based miners to other discovery algorithms, are
extensively discussed in the literature. Thus, since the ILP Miner and the ILP2 Miner
produce similar results, there is no point in comparing the quality of these results to
other approaches again. Therefore, in this section, we only compare the runtime of our
new ILP2 Miner to the runtime of the ILP Miner.

70 S. Folz-Weinstein et al.

As stated in the introduction, partially ordered logs, in contrast to totally ordered
logs, are increasingly recommended as an expressive data representation and their
benefits are undisputed.

If we have a totally ordered log, we can apply a so-called concurrency oracle to
construct a partially ordered log. A concurrency oracle uses information like times-
tamps, life-cycle information, localities, resources or even user input to derive causal
and concurrency information. For more information on different approaches for partial
order extraction, we refer the reader to [7].

A partially ordered log is a much more compact representation of the observed
behavior if the oracle faithfully mines the underlying concurrency relation.

Assuming a partially ordered log as the basis for discovery, the existing classical
process discovery algorithms must construct a totally ordered log in a pre-processing
step. Here, every single partially ordered trace can induce a high number of totally
ordered traces. The number of traces is exponential in the length and factorial in the
breadth of the partially ordered trace. Thus, directly working on partial orders has a
significant positive effect on the runtime of a discovery procedure.

Altogether, we can go from totally ordered logs to partially ordered logs and the
other way around. But for the purpose of runtime experiments, starting with one or the
other would be unfair to one of the mining algorithms. Thus, in the remainder of this
section, we assume there are two versions of every event log: one totally ordered event
log and one partially ordered event log, both faithfully modeling the underlying
workflow process.

To illustrate the benefits of using partially ordered logs, we have a look at a well-
known example: the repair example included in the ProM framework tutorial [13, 14].
In the totally ordered version of the repair example, the event log records 11855 events,
1104 cases, and 39 different totally ordered traces. In the partially ordered version of
the repair example, the event log records the same set of events and cases, but only 9
partially ordered traces (Hasse diagrams) [8]. Figure 3 depicts the Hasse diagram of the
most frequent trace of the partially ordered log of the repair example. This trace alone
represents 524 of the 1104 cases, which means half of the observed behavior.

For the following experiments, we have implemented the ILP Miner and the ILP2

Miner as modules of the I ♥ Petri Nets website. The website is available at www.
fernuni-hagen.de/ilovepetrinets/. The module implements the ILP Miner, the
module implements the ILP2 Miner.

In this section, we compare the runtime of both algorithms using three example log
files quite famous in the process mining community. We consider the reviewing
example [15, 16], the already mentioned repair example [13, 14], and the teleclaims
example [15, 16]. We construct the partially ordered versions of these three totally
ordered event logs by an implementation of the so-called alpha oracle. This oracle
exploits the directly-follows-relation of activities to determine a concurrency relation
[8, 17]. All .xes-files of the logs used in the experiments are available on our website.

ILP2 Miner – Discovery for Partially Ordered Event Logs 71

http://www.fernuni-hagen.de/ilovepetrinets/
http://www.fernuni-hagen.de/ilovepetrinets/

Figure 4 depicts the ILP2 Miner module. We start the ILP2 Miner by dragging an.
xes-file to the ★ symbol. We download the synthesized model by clicking the ♥ button.
We can visualize the result using the “show a Petri net” module of the website.
Clicking the button downloads a report of the mining procedure.

We performed all the experiments on an Intel Core i5-8350U 1.70 GHz (4 CPUs)
machine with 16 GB RAM running a Linux Mint 20.2 operating system. The source
code of all modules is available on GitHub [18, 19].

In the ILP Miner, we use a simple objective function. We minimize 30 times the
initial marking plus 10 times the sum of ingoing arc-weights minus the sum of outgoing
arc-weights of possible solutions. Please note that the ProM tool (http://promtools.org)
offers different implementations of the ILP Miner using a large selection of objective
functions and additional heuristics that may provide better looking results in more
complex examples. However, for the sake of runtime comparison, we choose a simple
objective function and compute one region for every causal pair of the event log.

Fig. 4. The ILP2 Miner module in the I ♥ Petri Nets toolkit.

72 S. Folz-Weinstein et al.

http://promtools.org

In the ILP2 Miner, we could use the same objective function as in the ILP Miner to
obtain identical results. But every region produced by the ILP2 Miner also contains
variables describing the related compact tokenflow. Thus, we minimize the sum of
these variables to directly get minimal regions, and therefore very good-looking results.
These results are equivalent to the results obtained by the ILP Miner implementations
in ProM which use more sophisticated functions and heuristics. Again, we compute one
region for every causal relation.

Experiment 1: The reviewing example contains 100 cases. These relate to 96 totally
ordered traces or to 93 partially ordered traces. Thus, there is very limited concurrency,
and we consider this to be the worst-case scenario for the ILP2 Miner. The ILP Miner
constructs an integer linear program containing 863 equations and inequalities and uses
27 variables. The average runtime to construct and solve the integer linear program for
all causal pairs is round about 1100 ms. The ILP2 Miner constructs an integer linear
program containing 2378 equations and inequalities and introduces 1236 variables. It is
important to note that although the system is about triple the size, the individual
equations and inequalities are much simpler. The average runtime of the ILP2 Miner is
round about 750 ms. This is an improvement of 30%.

Figure 5 depicts the Petri net generated by the ILP2 Miner using the minimal regions
objective function.

Experiment 2: The repair example contains 1104 cases. These relate to 39 different
totally ordered traces, or 9 partially ordered traces. The ILP Miner constructs an integer
linear program containing 57 equations and inequalities and uses 16 variables. The
average runtime of the ILP Miner is round about 110 ms. The ILP2 Miner constructs an
integer linear program containing 90 equations and inequalities and introduces 66
variables. The average runtime of the ILP2 Miner is round about 70 ms. This is an
improvement of 36%.

Fig. 5. Petri net for the reviewing example (ILP2 Miner).

ILP2 Miner – Discovery for Partially Ordered Event Logs 73

Experiment 3: In the repair example, the four most frequent Hasse diagrams are
sufficient to mine a model representing the behavior of the complete log. These four
diagrams represent 913 cases of the original log file and 26 different totally ordered
traces. Here, we use this reduced repair example. The ILP Miner constructs an integer
linear program containing 33 equations and inequalities and uses 16 variables. The
average runtime of the ILP Miner is round about 47 ms. The ILP2 Miner constructs an
integer linear program containing 44 equations and inequalities and introduces 43
variables. Filtering based on frequencies of Hasse diagrams is easy. Please note that in
comparison to Experiment 2, both miners benefit from a reduction of the number of
inequalities but the ILP2 Miner also benefits from a reduction of the number of vari-
ables. The average runtime of the ILP2 Miner is round about 26 ms. This is an
improvement of 44%.

Figure 1 depicts the workflow net discovered by the ProM implementation of the
ILP Miner using the totally ordered repair example. The same net is discovered by the
ILP2 Miner using the partially ordered repair example in Experiments 2 and 3.

Experiment 4: The teleclaims example contains 3512 cases. These relate to 12 totally
ordered traces, or 8 partially ordered traces. The ILP Miner constructs an integer linear
program containing 31 equations and inequalities and uses 22 variables. The average
runtime of the ILP Miner is round about 93 ms. The ILP2 Miner constructs an integer
linear program containing 62 equations and inequalities and introduces 58 variables.
The average runtime of the ILP2 Miner is round about 45 ms. This is an improvement
of 51%.

In our experiments, the ILP2 Miner outperforms the ILP Miner in every example.
The more concurrency in the example, the bigger the speed-up. However, it is
important to note that the input for the ILP Miner is the totally ordered event log, and
the input for the ILP2 Miner is the set of Hasse diagrams after pre-processing the event
log using a concurrency oracle. This pre-processing obviously takes extra time and
resources. But assuming the input for the discovery algorithm is already a partially
ordered event log is the main point of developing the ILP2 Miner and the main reason
to write this paper. If we consider a partially ordered event log, we can feed this to the
ILP2 Miner directly and would have to pre-process it to feed all interleavings to the ILP
Miner.

5 Conclusion

The use of partially ordered event logs is increasingly recommended within process
mining and thus, in process discovery. The need for algorithms which can directly
process partial orders is expected to grow. However, the amount of such tools and
algorithms currently available is still limited, and the existing new approaches are not
yet comparable to the classical, well-known approaches based on regular, totally
ordered event logs. Classical approaches can only process sequential decompositions of
partially ordered data representations which contradicts the intentions and benefits of
these representations.

74 S. Folz-Weinstein et al.

Instead of developing an entirely new algorithm for process discovery, the goal of
this paper was to adapt and extend an established classical process discovery algorithm
so that it can directly process partially ordered inputs. In this paper, we focused on the
ILP Miner and showed that it is indeed possible to adapt and extend the algorithm to
partially ordered inputs by replacing the region theory core of its integer linear pro-
gram. We proved that the resulting ILP2 Miner can provide the same guarantees
concerning structural and behavioral properties of the discovered process models as the
classical ILP Miner, and that they find equivalent sets of places when applied to an
ordinary, totally ordered event log. On top of that, as we now have the tokenflow
variables available, it is possible to use an improved objective function in the ILP2

Miner which finds minimal regions without employing additional heuristics or post-
processing of the resulting net.

We implemented the ILP Miner and the ILP2 Miner and conducted four experi-
ments with well-established standard logs. The experiments show that there is a con-
siderable improvement concerning runtime. The more concurrency in the event log, the
bigger the speed-up using the ILP2 Miner.

In future work, we plan to further fold identical prefixes and suffixes of the Hasse
diagrams so that identical subgraphs are represented by fewer variables. Obviously, just
like the ILP Miner, the ILP2 Miner tends to over-fitting and has runtime issues for very
large event logs. This is another aspect we would like to address in future work. As
suggested in [7], we also hope that the process mining community will publish more
partially ordered event logs and will extend their algorithms, contests, and case studies
to partially ordered logs. Using these, we would further optimize and compare the ILP2

Miner to other partial order-based approaches.

References

1. van Zelst, S.J., van Dongen, B.F., van der Aalst, W.M.P., Verbeek, H.M.W: Discovering
Workflow Nets Using Integer Linear Programming. In: Computing 100, pp. 529–556.
Springer (2018). https://doi.org/10.1007/s00607-017-0582-5

2. Bergenthum, R.: Synthesizing Petri Nets from Hasse Diagrams. In: Carmona, J., Engels, G.,
Kumar, A. (eds.) BPM 2017. LNCS, vol. 10445, pp. 22–39. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-65000-5_2

3. van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement of
Business Processes. Springer (2011)

4. van der Aalst, W., et al.: Process Mining Manifesto. In: Daniel, F., Barkaoui, K., Dustdar, S.
(eds.) BPM 2011. LNBIP, vol. 99, pp. 169–194. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-28108-2_19

5. van der Aalst, W. M. P., Carmona, J.: Process Mining Handbook. Springer (2022)
6. Dumas, M., García-Bañuelos, L.: Process Mining Reloaded: Event Structures as a Unified

Representation of Process Models and Event Logs. In: Devillers, R., Valmari, A. (eds.)
PETRI NETS 2015. LNCS, vol. 9115, pp. 33–48. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-19488-2_2

7. Leemans, S. J. J., van Zelst, S. J., Lu, X.: Partial-order-based process mining: a survey and
outlook. Knowledge and Information Systems, vol. 65, pp. 1–29. Springer (2023).

ILP2 Miner – Discovery for Partially Ordered Event Logs 75

https://doi.org/10.1007/s00607-017-0582-5
https://doi.org/10.1007/978-3-319-65000-5_2
https://doi.org/10.1007/978-3-319-65000-5_2
https://doi.org/10.1007/978-3-642-28108-2_19
https://doi.org/10.1007/978-3-642-28108-2_19
https://doi.org/10.1007/978-3-319-19488-2_2
https://doi.org/10.1007/978-3-319-19488-2_2

8. Bergenthum, R.: Prime Miner - Process Discovery using Prime Event Structures. ICPM
2019, pp. 41–48 (2019)

9. Reisig, W.: Understanding Petri Nets - Modeling Techniques, Analysis Methods. Springer,
Case Studies (2013)

10. Desel, J., Juhás, G.: What is a Petri Net? In: Ehrig, H., Juhás, G., Padberg, J., Rozenberg, G.
(eds.) Unifying Petri Nets, Advances in Petri Nets, LNCS 2128, pp. 1–25. Springer (2001).
https://doi.org/10.1007/978-0-387-09766-4_134

11. Peterson, J.L.: Petri Net Theory and the Modeling of Systems. Prentice-Hall, Englewood
Cliffs (1981)

12. van der Werf, J. M. E. M., van Dongen, B. F., Hurkens, C. A. J., Serebrenik, A.: Process
discovery using integer linear programming. Fundamenta Informaticae, vol. 94 no. 3–4,
pp. 387–412. IOS Press (2009)

13. ProM Tools Documentation. https://www.promtools.org/doku/docs/index.html. Accessed 22
Dec 2022

14. ProM Tools example log files. https://www.promtools.org/doku/prom6/downloads/example-
logs.zip. Accessed 22 Dec 2022

15. van der Aalst, W.M.P.: Process Mining: Data Science in Action. Springer (2016). https://doi.
org/10.1007/978-3-662-49851-4

16. Event logs and models used in Process Mining book. https://processmining.org/old-version/
event-book.html. Accessed 22 Dec 2022

17. Armas-Cervantes, A., Dumas, M., La Rosa, M., Maaradji, A.: Local concurrency detection
in business process event logs. In: ACM Transactions on Internet Technology, vol. 19, no. 1,
pp. 1–23 (2019)

18. ILP Miner module repository. https://github.com/ILPN/ILPN-Module-ILP-miner. Accessed
22 Dec 2022

19. ILP2 Miner module repository. https://github.com/ILPN/ILPN-Module-ILP2-miner. Acces-
sed 22 Dec 2022

76 S. Folz-Weinstein et al.

https://doi.org/10.1007/978-0-387-09766-4_134
https://www.promtools.org/doku/docs/index.html
https://www.promtools.org/doku/prom6/downloads/example-logs.zip
https://www.promtools.org/doku/prom6/downloads/example-logs.zip
https://doi.org/10.1007/978-3-662-49851-4
https://doi.org/10.1007/978-3-662-49851-4
https://processmining.org/old-version/event-book.html
https://processmining.org/old-version/event-book.html
https://github.com/ILPN/ILPN-Module-ILP-miner
https://github.com/ILPN/ILPN-Module-ILP2-miner

Modelling Data-Aware Stochastic
Processes - Discovery and Conformance

Checking

Felix Mannhardt1(B) , Sander J.J. Leemans2 , Christopher T. Schwanen2 ,
and Massimiliano de Leoni3

1 Eindhoven University of Technology, Eindhoven, Netherlands
f.mannhardt@tue.nl

2 RWTH Aachen University, Aachen, Germany
3 University of Padova, Padua, Italy

Abstract. Process mining aims to analyse business process behaviour
by discovering process models such as Petri nets from process execu-
tions recorded as sequential traces in event logs. Such discovered Petri
nets capture the process behaviour observed in a log but do not pro-
vide insights on the likelihood of behaviour: the stochastic perspective.
A stochastic Petri net extends a Petri net to explicitly encode the occur-
rence probabilities of transitions. However, in a real-life processes, the
probability of a trace may depend on data variables: e.g., a higher
requested loan amount will trigger additional checks. Such dependen-
cies are not described by current stochastic Petri nets and correspond-
ing stochastic process mining techniques. We extend stochastic Petri
nets with data-dependent transition weights and provide a technique for
learning them from event logs. We discuss how to evaluate the quality
of these discovered models by deriving a stochastic data-aware confor-
mance checking technique. The implementations are available in ProM,
and we show on real-life event logs that the discovery technique is com-
petitive with existing stochastic process discovery approaches, and that
new types of stochastic data-based insights can be derived.

Keywords: Stochastic labelled data Petri nets · Process mining ·
stochastic data-aware process discovery · stochastic data-aware
conformance checking

1 Introduction

The largest portion of research in Process Mining has focused on the discovery,
conformance checking and enhancement of processes that do not consider the
likelihood of the behavior allowed by the process model. In other words, when
multiple activities are enabled according to the current state of the process
model, they are assumed to have the same probability to occur. This is often
unrealistic: even if multiple steps are possible as next, some are more common
than others. As an example, in a loan application, when the model allows the

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Gomes and R. Lorenz (Eds.): PETRI NETS 2023, LNCS 13929, pp. 77–98, 2023.
https://doi.org/10.1007/978-3-031-33620-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33620-1_5&domain=pdf
http://orcid.org/0000-0003-1733-777X
http://orcid.org/0000-0002-5201-7125
http://orcid.org/0000-0002-3215-7251
http://orcid.org/0000-0002-8447-5374
https://doi.org/10.1007/978-3-031-33620-1_5

78 F. Mannhardt et al.

notification of the application’s acceptance or rejection as next activities, they
cannot be associated with the same probability to occur.

These considerations motivate the importance of stochastic process mining,
which little research has been carried on. Existing works on stochastic process
discovery [3,9,21] and stochastic conformance checking [16] take the frequencies
of the event log, which are a sample of the full process behaviour, into account
and enable several analysis tasks, e.g., computing the occurrence probability for
a trace or obtaining the probability that a marking can be reached [18].

These and other works on stochastic process mining have only focused on
mining the activity occurrence probabilities on the basis of the sequence of
activities that have happened beforehand. This is certainly valuable. However, in
reality, the computation of the probability of an activity to occur as next within
a set of enabled ones depends on the current state of the process data variables,
as well. For instance, the probability to execute the activity of acceptable noti-
fication of a loan applicant will likely depend on the amount requested by the
applicants, and on the his/her wealthiness.

We address this shortcoming and enable the discovery of models that,
stochastically, fit better to the underlying distribution of the actual process. In
particular, the methods rely on process models that are implemented as stochas-
tic Data Petri nets, which are a variation on Data Petri nets [23] to encode
the occurrence probabilities of transitions. This requires new methods for both
process discovery and conformance checking. Our proposed discovery method
learns data-dependant weight functions by building a set of regression problems
that are fitted on the observed transition occurrences and the observed data
values. To determine the quality of the resulting discovered Stochastic Labelled
Data Petri nets (SLDPN), we design a new conformance checking technique that
allows to compare the learned process behavior expressed by an SLDPN with
that observed in an event log.

In contrast to existing work our methods leverage the information encoded
in data attributes from the event log. In particular, our conformance checking
technique overcomes the problem of stochastically comparing potentially infinite
behaviour defined by an SLDPN with finite and sparse behaviour observed in
an event log. The technique has been implemented as plug-ins of ProM, the
largest open-source process mining framework. The evaluation has been carried
out via a large set of publicly available event logs. For conformance checking,
we illustrate that the technique follows the intuition of stochastic conformance
and is a proper generalization of existing measures. For discovery of SLDPNs,
the inclusion of the data variables for the computation of the activity occurrence
probability is shown to improve the stochastic fitness for event logs. Of course,
this holds for event logs that include data variables.

Section 2 discusses related work on stochastic process mining. Section 3
reports on the notation and concepts used in the paper. Section 4 introduces
SLDPN. Sections 5 and 6 illustrates the techniques proposed for discovery and
conformance checking methods of SLDPN. Section 7 reports on the evaluation
with many real-life process event logs, while Sect. 8 concludes this paper, sum-
marizing the paper’s contributions and delineating potential future work.

Modelling Data-Aware Stochastic Processes 79

2 Related Work

A large body of work exists on the discovery of data-dependent guards for activi-
ties of business process models, including transitions. This research field is often
referred to as Decision Mining, starting from the seminal work by Rozinat et
al. [31]. Batoulis et al. [5] focus on extracting guards for the outgoing arcs of
XOR splits of BPMN models, while Bazhenova et al. [6] aims to discover Decision
Model and Notation tables. The discovery of guards for causal nets is discussed
in [24]. All of these approaches focus on ensuring that exactly one transition
is enabled when a decision point (i.e., an XOR split) is reached. Mannhardt
et al. [23] is the only approach that attempts to discover overlapping guards
for Petri Nets, namely such that multiple transitions may be enabled in certain
data states. However, this work does not provide a probability for transitions,
such that the most reasonable assumption is that every enabled transition has
the same probability to occur, whereas this paper aims to discover probabilities
of transitions to fire when being given a data state. Thus, this paper does not
consider guards, but generalisations of guards.

Within the realm of conformance checking, a few research works aim to check
the conformance of process executions with respect to a process model repre-
sented as a Data Petri Net [13,22], but the conformance of each event-log trace
is computed in isolation. This contrasts the notion of stochastic conformance
checking that this paper tackles: the determination of the suitability of the over-
all stochastic behaviour requires the consideration of all traces together.

Stochastic process discovery aims to find a stochastic model such as a stochas-
tic Petri net from an event log. Approaches include those that take a Petri net
and estimate their weights, using alignments or frequencies [8], or based on
time [29]. Our discovery technique falls into this category, but adds data aware-
ness. Another approach starts from a model with the stochastic behaviour of the
log, and reduces this into a smaller model repeatedly [9].

Examples of stochastic conformance checking techniques include the Earth
Movers’ Stochastic Conformance [20], Entropic Relevance [28] and Probabilistic
Trace Alignments [7]. It would be challenging to adapt these to data-aware set-
tings, as our models do not exhibit a stochastic language without data sequences
as input. Stochastic models that are declarative have been proposed in [3]; these
models express families of stochastic languages.

Key differentiators between stochastic process models and existing Markov-
based stochastic models are concurrency, silent transitions and arc-based labels,
the combination of which is not the focus of the latter [4,30]. Even though
stochastic model checkers such as [15] do not typically consider these three
aspects, they could still be applicable after appropriate translations.

Stochastic process discovery also relates to building a model that can compute
the firing probability of each enabled transition, as a function of the sequence
of fired transitions and data variables. This falls into the realm of predictive
process monitoring (cf. [12,25,27]), and several techniques can be leveraged to
compute the transition weights. However, the predictive monitoring techniques
rely on the typical evaluation of machine-learning techniques, which looks at

80 F. Mannhardt et al.

each transition in isolation and cannot be used for conformance checking against
stochastic process models, which is conversely a global property that looks at
traces as whole.

3 Preliminaries

In this section, we introduce required existing concepts.
A multiset is a function mapping its elements to the natural numbers. For

a set A, M(A) denotes the set of all multisets over A. For instance, [a2, b] is a
multiset containing two as and one b. Let X and Y be multisets, then X � Y if
and only if ∀aX(a) ≤ Y (a). The multiset union is ∀a(X �Y)(a) = X(a)+Y (a).
The multiset difference is ∀a(X \ Y)(a) = max(0,X(a) − Y (a)). The set view
˜X = {a | X(a) > 0}.

Let Σ be an alphabet of activities, i.e. process tasks, such that τ /∈ Σ. A data
state is an assignment to numeric1 variables; let Δ be the set of all data states.

An event denotes the occurrence of an activity in a process, and a trace
denotes the sequence of events that were executed for a particular case. A
stochastic language is a weighted set of traces, such that their weights sum up
to 1.

A data event is an event annotated with a data state, which indicates the data
state after the event happened. A data trace denotes all data events belonging to
a particular case. Formally, let a1, . . . , an ∈ Σ and d0, . . . , dn ∈ Δ, then a data
trace is a pair of lists (〈a1, . . . , an〉, 〈d0, . . . , dn〉), in which each ai indicates that
event i involved activity ai, and in which d0 indicates the data state at the start
of the trace, while subsequent di>0 indicate data states after occurrence of event
i. Given a data trace σ = (〈a1, . . . , an〉, 〈d0, . . . , dn〉), we refer to the sequence
〈a1, . . . , an〉 as the activity sequence (σΣ) and to the sequence 〈d0, . . . , dn〉 as
the data sequence (σΔ). We refer to the multisets of activity sequences and data
sequences of a log L as LΣ and LΔ.

For instance, (〈a, b, c〉, 〈x = 10, x = 15, x = 20, x = 0〉) indicates a data trace
with three activities (a, b and c), where the variable x is 10 before a, 15 after a,
20 after b and 0 after c.

A labelled Petri net (LPN) is a tuple (P, T, F, λ, S0), in which P is a set of
places, T is a set of transitions such that P ∩ T = ∅, F ∈ M(P × T ∪ T × P)
is a flow relation, λ : T → Σ ∪ {τ} is a labelling function, and S0 ∈ M(P) is
an initial marking. For a node n ∈ P ∪ T , we denote •n = [n′ | (n′, n) ∈ F]
and n• = [n′ | (n, n′) ∈ F]. We assume the standard semantics of Petri nets
here: a marking consisting of tokens on places indicates the state of the net. A
transition t ∈ T is enabled in a marking S if •t � S. Let E(S) be the set of all
enabled transitions in a marking S. An enabled transition t can fire in a marking
S, which changes the marking to S′ = S � t• \ •t. The firing of a transition such
that λ(t) �= τ indicates the execution of the mapped activity. A path of the net

1 Note that our technique only considers numeric variables. Other types of variables
can be mapped using a suitable encoding, such as one-hot-encoding.

Modelling Data-Aware Stochastic Processes 81

is a sequence of transitions that brings the marking from S0 to a marking in
which no transition is enabled. The corresponding activity sequence is obtained
by mapping the path using λ, while removing all transitions mapped to τ :

〈t1, . . . , tn〉 ↓λ=

⎧

⎪

⎨

⎪

⎩

〈〉 if n < 1
λ(t1) · 〈t2, . . . , tn〉 ↓λ if λ(t1) �= τ

〈t2, . . . , tn〉 ↓λ otherwise

A stochastic labelled Petri net (SLPN) is a tuple (P, T, F, λ, S0, w) such that
(P, T, F, λ, S0) is an LPN and w : T → R

+ is a weight function. In a marking
S, the probability to fire t ∈ E(S) is w(t)∑

t′∈E(S) w(t′) . Note that this probabil-
ity depends on all other enabled transitions, and as such also expresses likeli-
hoods on the order of transitions, even when they are concurrent. The probabil-
ity of a path 〈t1, . . . , tn〉 is, due to the independence of subsequent transitions,
∏n

i=1
w(ti)∑

t′∈E w(t′) . Note that the silent transitions make this a little-studied class
of models [18].

In order to validate the quality of a stochastic model, a useful measure is
the overlap in probability mass between the stochastic language of an event
log and the stochastic language of the model. For stochastic process models,
such a measure has been defined as the Unit Earth Movers’ Stochastic Confor-
mance (uEMSC) measure [20]. uEMSC measures the overlap in probability mass
between a log and a stochastic language, by, for each trace σ of the log L, taking
the positive difference between the probability of that trace in the log and the
probability of that trace in the SLPN M [20]:

uEMSC(L,M) = 1 −
∑

σ∈L

max(L(σ) − M(σ), 0) (1)

This rather simple formula uses the probability of a trace σ in a stochas-
tic process model (M(σ)), which is not trivial to compute. M(σ) indicates the
sum of all paths through the model that yield the trace σ, however in case of
silent transitions labelled τ there may be infinitely many such paths. A solution
proposed in [18] – for bounded SLPNs – is to explicitly construct a state space
of paths, and compute the trace probability using standard Markov reduction
techniques.

The Earth Movers’ Distance (EMD) is also known as the Wasserstein dis-
tance (W1) of order 1. For the present special case where we consider unit
distances, the EMD is also equivalent to the total variation distance (TV). A
proof of the coupling between EMD and TV is for example shown in [14]. Thus,
uEMSC(L,M) = 1 − TV(L,M).

4 SLDPN

In this section, we extend SLPNs with data-based weight functions to Stochastic
Labelled Data Petri nets (SLDPN). Syntactically, SLDPNs are similar to SLPNs,
but utilise a weight function that is dependent on a data state.

82 F. Mannhardt et al.

Definition 1 (Stochastic Labelled Data Petri Net - syntax). A stochas-
tic labelled data Petri net (SLDPN) is a tuple (P, T, F, λ, S0,w), such that
(P, T, F, λ, S0) is a Petri net and w : T × Δ → R

+ is a weight function.

The state of an SLDPN is the combination of a marking and a data state
(d ∈ Δ). The marking determines which transitions are enabled, while the data
state influences the probabilities of transitions.

Definition 2 (Stochastic Labelled Data Petri Net - semantics). Let
(P, T, F, λ, S0,w) be an SLDPN, and let 〈d0, d1, . . .〉 be a data sequence. The
SLDPN starts in state (S0, d0). Suppose the SLDPN is in state (Si, di). The
probability to fire t ∈ E(Si) is:

w(t, di)
∑

t′∈E(Si)
w(t′, di)

.

When a transition t fires, then the new state is (Si+1, di+1) with Si+1 = Si�t•\•t.

An SLDPN is not executable without further data modelling: the data state
influences the likelihood of decisions, but the model does neither describe how
the data state is initialised, nor how it changes with the execution of transitions.
Thus, an SLDPN potentially has infinitely many stochastic languages.

Furthermore, these definitions do not specify when the data state is consid-
ered. In a real-life process, the data state may change in between the executions of
visible transitions; for instance based on temperature, blood pressure or weather
events, time, etc. Our semantics abstracts from the timing of such a decision
point, however assumes that a stochastic decision between transitions is made
given a data state that does not change at the moment of choice. In future work,
this could be extended to choices at arbitrary moments.

Example. Figure 1 shows an example of an SLDPN. The control flow of this
SLDPN consists of a choice between a and b, followed by a choice between c and
d. The transitions are annotated with weight functions: the weight of a and b
depend on the continuous variable X, while c and d depend on the categorical
variable Y .

Fig. 1. Example of an SLDPN.

Modelling Data-Aware Stochastic Processes 83

4.1 Trace-Based Execution Semantics & XES Logs

In order to use SLDPNs in a process mining setting, we need to further oper-
ationalise the execution semantics. To this end, in this section, we draw links
with event logs of the XES standard [2] explicitly. Notice that we assume that
the log fits the LPN underlying the SLDPN.

An XES log (XLog) consists of XES traces (XTraces), which are sequences of
XES events (XEvents). All XLogs, XTraces and XEvents are annotated with key-
value pairs of data attributes. One of the attributes of an XEvent – typically
concept:name – is designated as the activity. There are also other attributes
indicating the time of occurrence and the identifier of the process case.

The activity sequences A and data sequences D of a trace σ can be directly
obtained from XES traces. The initial data state d0 is obtained from the
attributes of the XTrace. Note that in the context of our work typically a selec-
tion of considered attributes will need to be made. Only attributes that can be
assumed to be available at the start of the process case should be considered;
however, XTraces of real-life logs may also contain attributes that are the result
of the process case executing (e.g., a decision or outcome of the case).

Subsequent data states di>0 are obtained by updating the previous data state
with the values from the numeric attributes of that each of the XEvents provides.
The activities ai>0 are obtained from the designed activity attribute, which is not
used for the data state. In our operationalisation, we assume that this data state
represents the data directly after the event happened. This is not limiting as the
mapping could be adapted for other interpretations. Finally, silent transitions
are not observed in event logs; thus, there is no information about the data state
at the moment of their execution. Therefore, in our operationalisation, silent
transitions do not change the data state.

Example. Table 1 shows an example of an event log. In this log, the attribute
X is continuously uniform distributed between 1 and 10, and Y is a categorical
attribute of {k, l} with equal likelihood. Their distribution is shown in Fig. 3a.
The complete log has 10 000 traces.

Table 1. Running example of an event log with two attributes.

Trace attributes 〈event #1, Event #2〉
X = 5.381523 〈aX=5.381523,Y =l, dX=5.381523,Y =l〉
X = 8.214670 〈aX=8.214670,Y =l, dX=8.214670,Y =l〉
X = 2.463189 〈bX=2.463189,Y =l, dX=2.463189,Y =l〉
X = 6.361540 〈aX=6.361540,Y =k, cX=6.361540,Y =k〉
X = 3.125406 〈aX=3.125406,Y =l, dX=3.125406,Y =l〉
X = 4.099525 〈bX=4.099525,Y =k, cX=4.099525,Y =k〉
. . .

84 F. Mannhardt et al.

Fig. 2. The proposed method uses an alignment between a Petri net and an event log
to extract observation instances for inferring a weight function through regression. This
weight function extend the input Petri net to an SLDPN.

5 Data-Based Stochastic Discovery

In this section, we define a method to discover an SLDPN: Data-Based Stochastic
Discovery (DSD). DSD takes as input an LPN N = (P, T, F, λ, S0) as well as
an event log L, as indicated in Fig. 2. Our discovery method learns the weight
function w from the activity and data traces observed in the log and yields an
SLDPN = (P, T, F, λ, S0,w).

The weight function needs to be learned based on the data values and tran-
sition occurrences observed in the log, i.e., the data sequences σΔ and their
corresponding activity sequences σΣ for each trace σ ∈ L. For a transition t, the
learned function w(t) should return a higher weight for those data states d ∈ Δ
for which t is more likely to occur compared to other transitions that may be
enabled in the same marking.

As shown in Fig. 2, we transform this problem to a regression problem. The
first step is to build a set of observation instances (a training set) for each
transition t, where each instance is an observation in the log of t being enabled
in the LPN, with the corresponding data state. The second step is to fit a
regression model to each of the sets observations, and to combine the learned
regression models to the weight function of the SLDPN. Both steps are detailed
in the remainder of this section.

5.1 Extracting Observation Instances

To extract observation instances for the data traces in a log L and the transitions
of an LPN N we firstly relate the observed activity sequences LΣ to paths of N .
Secondly, we relate the observed data states in the data traces LΔ to sequences
of transition firings.

An activity sequence A ∈ LΣ has no direct correspondence to a path of the
LPN: there may be steps required in N that are not present in A, N may contain
silent transitions, or there may be activities in A that cannot be mapped to a
transition in N . Therefore, we use alignments [1] to establish a mapping between
LΣ and N . That is, each activity a ∈ A is either mapped to a transition t ∈ N

Modelling Data-Aware Stochastic Processes 85

Table 2. Example of an alignment computed for a data trace and our example LPN
(Fig. 1)

such that a = λ(t), or to a log move �. The thus-mapped transitions must form
a path of N , and may need intermediate transitions that are not represented in
A (model moves �). An alignment is such a mapping, such that the number of
log and model moves is minimised. We provide an example in Table 2, but do
not further detail the computation of the alignments; please refer to [1] for more
details. Please note that we index the matrix notation starting from 1.

Without loss of generality, we may assume that the alignment γ does not
contain column vectors in which only the log has an activity, without the model
having a corresponding transition (∀iγ(i, 1) = � ⇒ γ(i, 2) �= �). That is, that
the alignment contains no log moves. From such an alignment γ, we construct a
data sequence that corresponds to the followed path, by taking a previous data
state if none is present:

D(γ, 0) = σΔ0

D(γ, i ≥ 1) =

{

D(γ, i − 1) if γ(i, 1) = �∨λ(γ(i, 1)) = τ

γ(i, 3) otherwise

Then, we build observation instances for each transition. For a transition
t ∈ T , we collect all observations (d, t′) of transition t′ firing while t was enabled,
with the corresponding data state d. That is, here d ∈ Δ is the observed data
state before transition t′ fired. Note that t′ may be the same as t. To collect
observations, we define an observation instance builder OΓ (t) that provides a
multiset of instances from a collection of alignments Γ .

O(Γ, t) =
⊎

γ∈Γ∧γ(i,1)=t∧t′∈E(Si)

[(D(γ, i − 1), t′)]

with

Si≥1 =

{

Si−1 if γ(i, 0) = �
Si−1 � γ(i, 1)• \ •γ(i, 1) otherwise

(2)

This gives us a multiset of data states with positive and negative samples
concerning transition t – that is, t was enabled and fired (positive) or t was
enabled but another transition fired (negative). The multiset frequencies also
inform on the occurrences of transitions.

Example. From our running example (Fig. 1 and Table 1), consider the data trace
σe = (〈a, d〉, 〈{X = 5.381523}, {X = 5.381523, Y = l}, {X = 5.381523, Y = l}〉).

86 F. Mannhardt et al.

The observation points derived from this data trace are ({X = 5.381523}, a)
and ({X = 5.381523}, b) for a; and ({X = 5.381523, Y = l}, c) and ({X =
5.381523, Y = l}, d) for d.

5.2 Learning Weight Functions

In this section, we use the multisets of observations to discover weight functions
for transitions. This involves two steps for each transition: 1) choosing a weight
function w, and 2) estimating the parameters of the weight function. In prin-
ciple, any machine learning approach could be used, including regression and
classification, that eventually provides a numeric value. The positive or negative
cases with their attached data states can be used to learn the chosen weight
function. The choice for a weight function w also sets the types of variables in
the data states that can be supported: in principle, any data type up to images,
sound and even video can be supported, as long as there is a weight function
available that transforms a datum into a numeric weight.

We do not aim to cover a broad range of possible weight functions, however,
in order to illustrate SLDPNs, we consider numeric, categorical and boolean
variables, as such variables are typically found as attributes in event logs. As
weight function, we choose the simple logistic model with parameters β0 (the
intercept) and β1, . . . , βn (coefficients). Let x1, . . . , xn be the variables of the
data state, then

w(t) =
1

1 + e−(β0+β1x1+...+βnxn)
(3)

As this weight function only supports numerical variables, categorical and
boolean variables are included using one-hot encoding. As such, in the remainder
of this paper, we only consider numerical variables. Variables that have not been
assigned a value, e.g., because they are only observed later in the process, are
handled in the learning procedure through mean imputation; to distinguish these
cases, an additional variable is recorded that indicates whether the variable has
been assigned in the data state.

The use of the simple logistic model also implies that there is no need to
consider all transitions together: global approaches could learn the entire weight
function for all transitions together. Instead, a local approach learns the weight
function for each transition in isolation, thereby limiting the search space con-
siderably.

To estimate the parameters of the simple logistic weight function – one for
each transition –, we leverage the observation instances. For each observation
instance (d, t′) ∈ O(Γ, t) we obtain a data point in our training set as (d, c) with
the to-be predicted independent variable c encoded as:

c =

{

0 if t �= t′

1 if t = t′
.

Using simple logistic regression, the intercept β0 and a set of coefficients
β1, . . . , βn are fitted.

Modelling Data-Aware Stochastic Processes 87

Fig. 3. Distributions of our running example log and SLDPN.

There may be cases in which we cannot collect observation instances for either
the positive or the negative case, such as when no other transition is enabled
when t is enabled, when t was never observed, or when none of the variables
have been assigned (yet). In these case no sensible logistic weight function can
be learned from the data states and we resolve to setting w(t) to the support of
transition t, i.e., the relative frequency of occurrences of t when it was enabled.

Example. For our running example of (Fig. 1 and Table 1), the regressed parame-
ters for transition a are as follows: The intercept β0 is −0.716, while the coefficient
on X β1 is 0.359. For b, this is 0.716 and −0.359, respectively. Figure 3b shows that
the weight of a and b depend on X, e.g., the weight of b reduces with increasing
X. Note that we started the example with a function 1 − 1

X for transition a, and
the fitted logistic function 1

1+e−(−0.716+0.356X) on it; this is the best-fitting logistic
function, however it may be possible to fit other functions as well.

6 Conformance Checking

In this section, we introduce a technique to check the conformance of an SLDPN
and an event log. If the SLDPN was discovered from an event log, preferably, a
test log that has not been used in the discovery of the SLDPN should be used
for conformance checking. To evaluate the agreement between an SLDPN and
a log, we need to compare their respective probability distributions: whereas a
trace has a certain probability in a log, an SLDPN expresses a trace having a
probability for a particular data sequence. In this section, we first derive condi-
tional probabilities for SLDPNs, then for logs, and we finish with a conformance
measure.

6.1 Conditional Probabilities in SLDPNs

Given an SLDPN M = (P, T, F, λ, S0,w) in a marking S, the probability of an
enabled transition t ∈ E(S) to fire can be determined from the weights of all

88 F. Mannhardt et al.

enabled transitions given a data state d following Definition 2, i.e.,

pM (t | (S, d)) =
w(t, d)

∑

t′∈E(S) w(t′, d)
.

Given a data sequence D = 〈d0, . . . , dn〉 and a path P = 〈t1, . . . , tk〉 of M
where k ≤ n, the probability of that path is

pM (〈t1, . . . , tk〉 | (〈S0, . . . , Sk〉, 〈d0, . . . , dk〉)) =
k

∏

i=1

pM (ti | (Si−1, di−1))

Given a path and the initial marking S0, the sequence of markings is determin-
istic (see Eq. (2)). Thus, we may omit the sequence of markings.

However, in conformance checking we need to compare activity sequences
rather than paths of transitions. Given an activity sequence A, the conditional
probability pM (A | D) of the activity sequence given the data sequence D equals
the sum of the probabilities of all paths P such that P↓λ = A. However, there
may be infinitely many corresponding paths for a given activity sequence A,
due to duplicate labels, silent transitions and loops. We use the same technique
as in [20] to compute the conditional trace probability pM (A | D), which – for
bounded SLDPNs – explicitly constructs a state space of the cross product of A
and M under assumption of D, and then computes the probability of reaching
a deadlock state using standard Markov techniques. Note that the computation
requires the data sequence to be at least as long as the longest path taken into
consideration, which is easily guaranteed by replicating the last data state in D
a sufficient number of times.

Example. From our running example (Fig. 1 and Table 1), consider again the
data trace σe = (〈a, d〉, 〈{X = 5.381523}, {X = 5.381523, Y = l}, {X =
5.381523, Y = l}〉). As 〈a, d〉 is the only path in our SLDPN that corresponds to
σe, we could directly compute pM (σeΣ | σeΔ):

pM (〈a, d〉 | (〈[p0], [p1], [p2]〉, σeΔ)) = pM (a | ([p0], {X = 5.381523}))
· pM (d | ([p1], {X = 5.381523, Y = l}))

=
1 − 1

X
1
X + 1 − 1

X

· 0.2 + (0.6 if Y = l)
0.2 + (0.6 if Y = k) + 0.2 + (0.6 if Y = l)

= 0.651

To compute this probability when multiple paths would be present, we com-
pute the cross product of the SLDPN and σe, which is shown in Fig. 4. The proba-
bility of reaching the end state [p3] from the initial state [p0] is 0.814·0.8 = 0.651.
Thus, the conditional probability pM (σeΣ | σeΔ) is 0.651.

Modelling Data-Aware Stochastic Processes 89

Fig. 4. Cross product of the likelihood of σe in our running example.

6.2 Conditional Probabilities in Logs

A log can be seen as a multiset of pairs of an activity sequence A and a data
sequence D:

L = [(A0,D0)x0 , . . . , (An,Dn)xn].

From such a multiset, the probabilities we derive directly are conjunctive.
That is, each pair (A,D) is observed a number of times, and the corresponding
joint probability concerns both A and D:

pL(A ∧ D) =
L((A,D))

|L|
The probability of a data sequence is therefore:

pL(D) =
∑

A∈LΣ

pL(A ∧ D) =
|[D | (A,D) ∈ L]|

|L|

Their ratio is the conditional probability of a trace σ given a data sequence D:

pL(A | D) =
pL(A ∧ D)

pL(D)

Notice, however, that if D is unique in L, then pL(A | D) = 1 for any A,
which makes direct comparisons with an SLDPN challenging.

Example. From our running example (Fig. 1 and Table 1), consider again the
data trace σe = (〈a, d〉, 〈{X = 5.381523}, {X = 5.381523, Y = l}, {X =
5.381523, Y = l}〉). As X is continuous, the data sequence σΣ is unique in
our example log. Then:

pL(σeΣ ∧ σeΔ) = 1/10 000

pL(σeΔ) = 1/10 000

pL(σeΣ | σeΔ) = 1

90 F. Mannhardt et al.

6.3 A Conformance Measure

In this section, we adapt the uEMSC (Eq. (1)) stochastic similarity measure to
compare an event log L to an SLDPN M .

Since we need to account for the data sequences as well, the uEMSC measure
has to be extended to cope with the data-awareness of our approach. By adding
the data perspective as an additional dimension to the probability distributions
in the uEMSC measure, we directly obtain:

duEMSC(L,M) = 1 −
∑

D∈LΔ

∑

A∈L̃Σ

max(pL(A ∧ D) − pM (A ∧ D), 0)

We can rewrite the joint probabilities using conditional probabilities:

pM (A ∧ D) = pM (A | D)pM (D)

In absence of a data distribution in M , pM (D) is not defined. However,
intuitively, we compare the likelihood of the activity sequences in L (˜LΣ) with the
likelihoods of those activity sequences in M , under the same data distribution.
Henceforth, we can assume the data distribution of L (LΔ) for M , and thus
pM (D) = pL(D). Then, the duEMSC measure results to

duEMSC(L,M) = 1 −
∑

D∈LΔ

∑

A∈L̃Σ

max(pL(A ∧ D) − pM (A | D)pL(D), 0) (4)

Notice that if all data sequences in the log are equal, then duEMSC is equal
to uEMSC, and as such, duEMSC is a proper generalisation of uEMSC, and
can be used interchangeably.

Example. For our running example (Fig. 1 and Table 1), the overall value of
duEMSC is 0.997. This value is not precisely 1, which, given the large sample
size of the log (10 000), indicates that a logistic formula is not able to capture
the distributions in the log perfectly.

7 Evaluation

In this section, we validate our approach threefold: we show its feasibility using
an implementation, we compare the discovered models with existing stochastic
process discovery techniques, and we illustrate the new types of insights that
can be obtained using SLDPNs.

7.1 Implementation

We implemented discovery and conformance checking methods for SLDPNs as
plug-ins of the ProM framework2, in the StochasticLabelledDataPetriNet

2 Available in the nightly builds at https://promtools.org/.

https://promtools.org/

Modelling Data-Aware Stochastic Processes 91

package. Further functionality for SLDPNs provided by the package are plug-
ins to import, export, and visualise and interact with SLDPNs (see Sect. 7.2).
The source code is available at http://svn.win.tue.nl/repos/prom/Packages/
StochasticLabelledDataPetriNet/Trunk.

The discovery plug-in first uses the alignments provided by ProM [1] to obtain
the observation instances, after which the logistic regression implementation
provided by Weka 3.8 [32] based on ridge regression [11] is leveraged for inferring
the weight function. A parameter adjusts the one-hot encoding for categorical
event log attributes: it sets a maximum on the number of categories that are
considered for one-hot encoding for a single variable. Another parameter avoids
using one-hot encoding altogether and only considers numerical variables. This
is useful to avoid attempting to create a model with a very large number of
variables which poses the risk of over-fitting and excessive run times.

The conformance checking plug-in implements duEMSC, by extending the
EarthMoversStochasticConformance [20] implementation.

7.2 Insights

We illustrate the kind of insights provided by the data-dependant stochastic
perspective by presenting an example of a discovered SLDPN on a real-life event
log indicating a road fines handling process that is known to contain process
relevant data attributes [23]. Using the Directly Follows Model Miner (DFM),
an SLDPN was discovered using our ProM plug-in using only numeric attributes.

In the interactive visualisation of our ProM Package the discovered SLDPN
can explore influence of data variables on the likelihood of transitions. Figure 5a
shows the stochastic perspective for the variable points being 0, while Fig. 5b
shows the stochastic perspective for the variable points being 2 with all other
variables unchanged. This variable indicates the number of penalty points
deducted from the driving license. In total a driver has 20 points and a new
driving exam needs to be taken if all points are lost.

One can observe the difference in probability in the highlighted choice
between Payment and Send Fine. Here the occurrence of Send Fine indicates
that the fine was not directly paid [23]. In the SLDPN, we can observe that if a
fine corresponds to 2 penalty points deducted from the license, then it is much
less likely that the fine is paid on the spot without being sent out (1%) vs. if
the fine does not correspond to any points (36%). These types of insights can be
obtained with neither common process mining techniques, nor stochastic process
mining techniques, nor data-aware process mining techniques.

7.3 Quantitative

In this experiment, we compare the models of our technique with existing
stochastic discovery techniques. Figure 6 shows the set-up of this experiment:
from several of real-life logs, we first discover control-flow models. Second, on
a random 50% trace-based sample, we apply stochastic discovery techniques,
including ours. These stochastic process models are then measured with respect

http://svn.win.tue.nl/repos/prom/Packages/StochasticLabelledDataPetriNet/Trunk
http://svn.win.tue.nl/repos/prom/Packages/StochasticLabelledDataPetriNet/Trunk

92 F. Mannhardt et al.

Fig. 5. An SLDPN discovered by DFM from the road fines event log visualised inter-
actively in ProM. Variables are shown as yellow hexagon shaped nodes with their
assignment next to them. The assignment can be changed to investigate the impact
of a data state on the transition weights. Transitions are coloured according to their
weights. Note that to give a quick overview the marking is not considered. Nodes have
been repositioned for better legibility. (Color figure online)

to the remaining 50% of the log. The entire procedure is repeated 10 times to
nullify random effects. Table 3 shows the details of the set-up.

To study the impact of using more variables we not only use our technique
(DSD), but also include a variant (DSDwe) that does not use one-hot-encoding.
The stochastic discovery was bounded by a timeout of 6 h, which was never
reached. The experiments were conducted on an AMD EPIC 2 GHz CPU with
100 GB RAM available; the logs were taken from https://data.4tu.nl/search?q=:

https://data.4tu.nl/search?q=:keyword:%20%22real%20life%20event%20logs%22

Modelling Data-Aware Stochastic Processes 93

Fig. 6. Set-up of a single quantitative experiment.

Table 3. Details of the quantitative experiment’s set-up.

keyword:%20%22real%20life%20event%20logs%22. We archived the code and
the full results at Zenodo3.

Results. Table 4 summarises the full results that are available in the Zenodo
archive. The values obtained by uEMSC for BUC, ABE and FBE were equivalent
to the values obtained by duEMSC for these stochastic discovery techniques, as
shown in Sect. 6. Therefore, uEMSC is not shown or further discussed.

From these summarised results, it is clear that the data-aware stochastic pro-
cess discovery techniques can compete with existing stochastic discovery tech-
niques on model quality. In particular, they are – in most cases – able to better
represent the behaviour in real-life event logs than existing stochastic discov-
ery techniques. Out of 36 experiments DSD achieves most often the highest
duEMSC with 19 runs. Comparing to DSDwe it seems that considering cate-
gorical attributes is useful in two cases but has, overall, a limited impact. This
motivates future research on using categorical attributes. A potential pitfall is
that by adding more variables, or using other regression functions, the likeli-
hood of over-fitting increases, which would lead to lower scores in this experi-
ment. Unsurprisingly the state-of-the-art on non-data-aware discovery ABE is

3 https://dx.doi.org/10.5281/zenodo.7578655.

https://data.4tu.nl/search?q=:keyword:%20%22real%20life%20event%20logs%22
https://dx.doi.org/10.5281/zenodo.7578655

94 F. Mannhardt et al.

Table 4. Summary of our quantitative results for 36 experimental runs.

Stochastic algorithm Fastest Highest duEMSC

BUC 36 6

FBE 0 9

ABE 0 12

DSDwe 0 17

DSD 0 19

the second best algorithm with several times achieving the same score. Note
that in contrast to typical application scenarios we did not investigate or man-
ually select particular attributes for their relevance. Neither did we select event
logs for the suitability to data-aware techniques. Thus, it is expected that DSD
cannot always achieve better results.

We discuss the Sepsis log in a bit more detail. For IMf, the model contains quite
some concurrency,which involvesmanypotential traces, especiallywith local loops
within concurrent blocks. As alignment-based stochastic discovery techniques are
not sensitive to concurrent behaviour – they only consider how often transitions
are executed, not when –, all tested stochastic discovery techniques obtain low
duEMSC scores. For the DFM miner, the poor performance may be explained by
the repeated blood, leucocytes, lactic acid and CRP measurements are taken regu-
larly throughout the process, which makes control-flow without concurrency chal-
lenging. Furthermore, they are performed regularly, that is, they are not dependent
on data. For the flower model – in theory – any activity that is executed based on
data rather than other activities (control flow), should contribute to the stochas-
tic perspective. Hence, the low duEMSC score for all stochastic models shows that
the sepsis log describes a structured process.

Figure 7 shows the distribution of stochastic discovery run times in the exper-
iment. We observe that it takes more time to discover an SLDPN compared to
the non-data-aware approaches BUC, FBE and ABE. BUC does not consider
the log at all and simply assigns a weight of 1 to each transition, which takes
very little time. FBE traverses the log, and ABE creates an alignment. Thus,
DSD is expected to take at least as long as ABE. Still, all the SLDPNs could
be discovered within a maximum of 14 s, which is highly feasible. Please note
that for some logs, such as bpic11 and bpic15, alignments are hard to compute,
which keeps these logs out of reach for ABE and DSD.

Figure 8 shows the distribution of the stochastic conformance checking run
times in our experiment. In the worst case the conformance checking took 573 798
milliseconds for the bpic20-international declarations event log and discovered
SLDPN, which took into account 24 variables. Overall, conformance checking of
the models discovered by FM takes consistently much longer than their respec-
tive IMf and DFM counterparts. However, this difference can also be observed in
the non-data-aware approaches. With the exception of bpic20-international dec-
larations, the run times stay in most cases within a limit of 1 to 2 min. Notably,
up to 80 GB of RAM was required for these computations.

Modelling Data-Aware Stochastic Processes 95

Fig. 7. Run times of the stochastic process discovery.

Fig. 8. Run times of stochastic conformance checking for different algorithms.

8 Conclusion

Process models that are typically used in business process management and
mining do not incorporate stochasticity: when multiple activities are enabled,
no information is incorporated into the model that defines the likelihood of each
activity to fire. As a consequence, each activity has the same probability to fire.
This is oftentimes not realistic: some activities are more probable than others.

This paper is centered around stochastic process mining, and provides a
twofold contribution. On the one hand, it puts forward a technique to discover
stochastic models that incorporate a characterization of the probability of each
enabled activity to fire. On the other hand, it defines stochastic conformance
checking, which do not only aim to verify the compliance of each execution with
respect to a model, but also considers whether the distribution of traces in the
event log is consistent with the probability distribution of model executions.

96 F. Mannhardt et al.

Conformance checking thus requires to consider the whole event log together,
and cannot analyse each event-log trace in isolation.

Some research also exists in stochastic process mining (cf. Sects. 1 and 2), and
aims to discover and check the conformance of stochastic models that correlate
the activity occurrence probability to the activities performed beforehand. This
is often limiting, because this probability might be influenced by the current
values of the data variables of which process executions change the values.

This paper overcomes this limitation and incorporates the data variables
into stochastic process models. In particular, this paper introduces the notion
of SLDPN, which is conceptually simple but yet fully equipped to model the
process’ behavior, in terms of activities and manipulation of data variables, and
transition firing probabilities. The paper contributes techniques for discovering
and conformance checking of SLDPNs. About discovery, the experiments shows
that by including relevant data variables into the computation of the firing prob-
ability of SLDPN’s transitions can yield a more accurate characterization of
transition firing probabilities. In conformance checking, the technique follows
the intuition of stochastic conformance that computes metrics at event-log level,
rather than considering single traces in isolation.

SLDPNs are very suited to model business simulation models [26]. Business
Process Simulation enables to generate an arbitrarily large number of potential
process executions. It also allows process analysts to implement various process’
modifications with the aim to assess their correlation with process performance.
By trying several process modifications without putting them in real production,
analysts can determine those that improve the process’ performance with little
or no consequences. As future work, we plan to exploit the technique to discover
transition firing probabilities to mine more accurate and realistic simulation
models, compared with the state of the art (cf., e.g., [10]). Indeed, more accurate
firing probabilities allow analysts to better model the run-time characterisation
of business simulation models.

The discovery of the transition firing probabilities builds on logistic regression
as an oracle to find the transition’s weights and consequently the transition’s
firing probabilities. This has shown to be beneficial to better compute weights.
Logistic regression also has the advantage to naturally explain how weights are
computed in each and every case. However, generally it is not the best regression
technique in several settings, especially when the variables are correlated. Here,
we intend to evaluate alternative regression techniques, including those based on
neural networks, with the goal to improve the weight accuracy.

References

1. van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.F.: Replaying history on
process models for conformance checking and performance analysis. WIREs Data
Mining Knowl. Discov. 2(2), 182–192 (2012)

2. Acampora, G., Vitiello, A., Stefano, B.N.D., van der Aalst, W.M.P., Günther,
C.W., Verbeek, E.: IEEE 1849: the XES standard: the second IEEE standard spon-
sored by IEEE computational intelligence society [society briefs]. IEEE Comput.
Intell. Mag. 12(2), 4–8 (2017). https://doi.org/10.1109/MCI.2017.2670420

https://doi.org/10.1109/MCI.2017.2670420

Modelling Data-Aware Stochastic Processes 97

3. Alman, A., Maggi, F.M., Montali, M., Peñaloza, R.: Probabilistic declarative pro-
cess mining. Inf. Syst. 109, 102033 (2022)

4. Baier, C., Katoen, J.: Principles of Model Checking. MIT Press, Cambridge (2008)
5. Batoulis, K., Meyer, A., Bazhenova, E., Decker, G., Weske, M.: Extracting decision

logic from process models. In: Zdravkovic, J., Kirikova, M., Johannesson, P. (eds.)
CAiSE 2015. LNCS, vol. 9097, pp. 349–366. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-19069-3 22

6. Bazhenova, E., Buelow, S., Weske, M.: Discovering decision models from event logs.
In: Abramowicz, W., Alt, R., Franczyk, B. (eds.) BIS 2016. LNBIP, vol. 255, pp.
237–251. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39426-8 19

7. Bergami, G., Maggi, F.M., Montali, M., Peñaloza, R.: Probabilistic trace align-
ment. In: ICPM, pp. 9–16. IEEE (2021)

8. Burke, A., Leemans, S.J.J., Wynn, M.T.: Stochastic process discovery by weight
estimation. In: Leemans, S., Leopold, H. (eds.) ICPM 2020. LNBIP, vol. 406, pp.
260–272. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72693-5 20

9. Burke, A., Leemans, S.J.J., Wynn, M.T.: Discovering stochastic process models by
reduction and abstraction. In: Buchs, D., Carmona, J. (eds.) PETRI NETS 2021.
LNCS, vol. 12734, pp. 312–336. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-76983-3 16

10. Camargo, M., Dumas, M., González-Rojas, O.: Automated discovery of business
process simulation models from event logs. Decis. Support Syst. 134, 113284
(2020). https://www.sciencedirect.com/science/article/pii/S0167923620300397

11. le Cessie, S., van Houwelingen, J.: Ridge estimators in logistic regression. Appl.
Stat. 41(1), 191–201 (1992)

12. Di Francescomarino, C., Ghidini, C.: Predictive process monitoring. In: van der
Aalst, W.M.P., Carmona, J. (eds.) Process Mining Handbook. LNBIP, vol. 448, pp.
320–346. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-08848-3 10

13. Felli, P., Gianola, A., Montali, M., Rivkin, A., Winkler, S.: CoCoMoT: conformance
checking of multi-perspective processes via SMT. In: Polyvyanyy, A., Wynn, M.T.,
Van Looy, A., Reichert, M. (eds.) BPM 2021. LNCS, vol. 12875, pp. 217–234.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85469-0 15

14. Gibbs, A.L., Su, F.E.: On choosing and bounding probability metrics. Int. Stat.
Rev. 70(3), 419–435 (2002). https://onlinelibrary.wiley.com/doi/abs/10.1111/j.
1751-5823.2002.tb00178.x

15. Hensel, C., Junges, S., Katoen, J., Quatmann, T., Volk, M.: The probabilistic
model checker storm. Int. J. Softw. Tools Technol. Transf. 24(4), 589–610 (2022).
https://doi.org/10.1007/s10009-021-00633-z

16. Leemans, S.J.J., van der Aalst, W.M.P., Brockhoff, T., Polyvyanyy, A.: Stochas-
tic process mining: earth movers’ stochastic conformance. Inf. Syst. 102, 101724
(2021). https://doi.org/10.1016/j.is.2021.101724

17. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering Block-Structured
Process Models from Event Logs Containing Infrequent Behaviour. In: Lohmann,
N., Song, M., Wohed, P. (eds.) BPM 2013. LNBIP, vol. 171, pp. 66–78. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-06257-0 6

18. Leemans, S.J.J., Maggi, F.M., Montali, M.: Reasoning on labelled petri nets and
their dynamics in a stochastic setting. In: Di Ciccio, C., Dijkman, R., del Rıo
Ortega, A., Rinderle-Ma, S. (eds.) BPM 2022. LNCS, vol. 13420, pp. 324–342.
Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16103-2 22

https://doi.org/10.1007/978-3-319-19069-3_22
https://doi.org/10.1007/978-3-319-19069-3_22
https://doi.org/10.1007/978-3-319-39426-8_19
https://doi.org/10.1007/978-3-030-72693-5_20
https://doi.org/10.1007/978-3-030-76983-3_16
https://doi.org/10.1007/978-3-030-76983-3_16
https://www.sciencedirect.com/science/article/pii/S0167923620300397
https://doi.org/10.1007/978-3-031-08848-3_10
https://doi.org/10.1007/978-3-030-85469-0_15
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1751-5823.2002.tb00178.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1751-5823.2002.tb00178.x
https://doi.org/10.1007/s10009-021-00633-z
https://doi.org/10.1016/j.is.2021.101724
https://doi.org/10.1007/978-3-319-06257-0_6
https://doi.org/10.1007/978-3-031-16103-2_22

98 F. Mannhardt et al.

19. Leemans, S.J.J., Poppe, E., Wynn, M.T.: Directly follows-based process mining:
exploration & a case study. In: International Conference on Process Mining, ICPM
2019, Aachen, Germany, 24–26 June 2019, pp. 25–32. IEEE (2019). https://doi.
org/10.1109/ICPM.2019.00015

20. Leemans, S.J.J., Syring, A.F., van der Aalst, W.M.P.: Earth movers’ stochas-
tic conformance checking. In: Hildebrandt, T., van Dongen, B.F., Röglinger, M.,
Mendling, J. (eds.) BPM 2019. LNBIP, vol. 360, pp. 127–143. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-26643-1 8

21. Leemans, S.J.J., Tax, N.: Causal reasoning over control-flow decisions in process
models. In: Franch, X., Poels, G., Gailly, F., Snoeck, M. (eds.) CAiSE 2022. LNCS,
vol. 13295, pp. 183–200. Springer, Cham (2022). https://doi.org/10.1007/978-3-
031-07472-1 11

22. Mannhardt, F., de Leoni, M., Reijers, H.A., van der Aalst, W.M.P.: Balanced multi-
perspective checking of process conformance. Computing 98(4), 407–437 (2016).
https://doi.org/10.1007/s00607-015-0441-1

23. Mannhardt, F., de Leoni, M., Reijers, H.A., van der Aalst, W.M.P.: Decision min-
ing revisited - discovering overlapping rules. In: Nurcan, S., Soffer, P., Bajec, M.,
Eder, J. (eds.) CAiSE 2016. LNCS, vol. 9694, pp. 377–392. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-39696-5 23

24. Mannhardt, F., de Leoni, M., Reijers, H.A., van der Aalst, W.M.P.: Data-driven
process discovery - revealing conditional infrequent behavior from event logs. In:
Dubois, E., Pohl, K. (eds.) CAiSE 2017. LNCS, vol. 10253, pp. 545–560. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-59536-8 34

25. Márquez-Chamorro, A.E., Resinas, M., Ruiz-Cortés, A.: Predictive monitoring of
business processes: a survey. IEEE Trans. Serv. Comput. 11(6), 962–977 (2018)

26. Melão, N., Pidd, M.: Use of business process simulation: a survey of practitioners.
J. Oper. Res. Soc. 54(1), 2–10 (2003)

27. Park, G., Song, M.: Prediction-based resource allocation using LSTM and mini-
mum cost and maximum flow algorithm. In: International Conference on Process
Mining (ICPM), pp. 121–128 (2019)

28. Polyvyanyy, A., Moffat, A., Garćıa-Bañuelos, L.: An entropic relevance measure for
stochastic conformance checking in process mining. In: ICPM, pp. 97–104. IEEE
(2020)

29. Rogge-Solti, A., van der Aalst, W.M.P., Weske, M.: Discovering stochastic petri
nets with arbitrary delay distributions from event logs. In: Lohmann, N., Song, M.,
Wohed, P. (eds.) BPM 2013. LNBIP, vol. 171, pp. 15–27. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-06257-0 2

30. Rogge-Solti, A., Weske, M.: Prediction of business process durations using non-
Markovian stochastic petri nets. Inf. Syst. 54, 1–14 (2015). https://doi.org/10.
1016/j.is.2015.04.004

31. Rozinat, A., van der Aalst, W.M.P.: Decision mining in ProM. In: Dustdar, S.,
Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp. 420–425.
Springer, Heidelberg (2006). https://doi.org/10.1007/11841760 33

32. Witten, I.H., Frank, E., Hall, M.A.: Data Mining: Practical Machine Learning
Tools and Techniques, 3rd edn. Morgan Kaufmann, Elsevier, Amsterdam (2011)

https://doi.org/10.1109/ICPM.2019.00015
https://doi.org/10.1109/ICPM.2019.00015
https://doi.org/10.1007/978-3-030-26643-1_8
https://doi.org/10.1007/978-3-031-07472-1_11
https://doi.org/10.1007/978-3-031-07472-1_11
https://doi.org/10.1007/s00607-015-0441-1
https://doi.org/10.1007/978-3-319-39696-5_23
https://doi.org/10.1007/978-3-319-59536-8_34
https://doi.org/10.1007/978-3-319-06257-0_2
https://doi.org/10.1016/j.is.2015.04.004
https://doi.org/10.1016/j.is.2015.04.004
https://doi.org/10.1007/11841760_33

Exact and Approximated Log Alignments
for Processes with Inter-case Dependencies

Dominique Sommers(B), Natalia Sidorova, and Boudewijn van Dongen

Department of Mathematics and Computer Science,
Eindhoven University of Technology, Eindhoven, The Netherlands

{d.sommers,n.sidorova,b.f.v.dongen}@tue.nl

Abstract. The execution of different cases of a process is often restricted by
inter-case dependencies through e.g., queueing or shared resources. Various high-
level Petri net formalisms have been proposed that are able to model and ana-
lyze coevolving cases. In this paper, we focus on a formalism tailored to con-
formance checking through alignments, which introduces challenges related to
constraints the model should put on interacting process instances and on resource
instances and their roles. We formulate requirements for modeling and analyzing
resource-constrained processes, compare several Petri net extensions that allow
for incorporating inter-case constraints. We argue that the Resource Constrained
ν-net is an appropriate formalism to be used the context of conformance check-
ing, which traditionally aligns cases individually failing to expose deviations
on inter-case dependencies. We provide formal mathematical foundations of the
globally aligned event log based on theory of partially ordered sets and propose an
approximation technique based on the composition of individually aligned cases
that resolves inter-case violations locally.

Keywords: Petri nets · Conformance checking · Inter-case dependencies ·
Shared resources

1 Introduction

Event logs record which activity is executed at which moment of time, and additionally
they often include indications which resources were involved in which activity, men-
tioning the exact person(s) or machine(s). The availability of such event logs enables
the use of conformance checking for resource-constrained processes, analyzing not only
the single instance control-flow perspective, but also checking whether and where the
actual process behavior recorded in an event log deviates from the resource constraints
prescribed by a process model.

Process models, and specifically Petri nets with their precise semantics, are often
used to describe and reason about the execution of a process. In many approaches, a
process model considers a process instance (a case) in isolation from other cases [1]. In
practice, however, a process instance is usually subject to interaction with other cases
and/or resources, whose availability puts additional constraints on the process execu-
tion. In order to expose workflow deviations caused by inter-case dependencies, it is
crucial to use models considering multiple cases simultaneously.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Gomes and R. Lorenz (Eds.): PETRI NETS 2023, LNCS 13929, pp. 99–119, 2023.
https://doi.org/10.1007/978-3-031-33620-1_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33620-1_6&domain=pdf
https://doi.org/10.1007/978-3-031-33620-1_6

100 D. Sommers et al.

There are several approaches to modeling and analysis of processes with inter-case
dependencies. In [7] and [12], Petri nets are extended with resources to model availabil-
ity of durable resources, with multiple cases competing by claiming and releasing these
shared resources. To distinguish the cases, ν-Petri nets [22] incorporate name creation
and management as a minimal extension to classical Petri nets, with the advantage
that coverability and termination are still decidable, opposed to more advanced Petri
net extensions. The functionality of ν-Petri nets is inherited in other extensions such
as Catalog Petri nets [11], synchronizing proclet models [10], resource and instance-
aware workflow nets (RIAW-nets) [18], DB-nets [19] and resource constrained ν-Petri
nets [24], all with the ability to handle multiple cases simultaneously. For the latter, the
cases are assumed to follow the same process, interacting via (abstract) shared resources
in a one-to-many relation, i.e., a resource instance can be claimed by one case at a time.
More sophisticated extensions allow for cases from various perspectives with many-
to-many interactions, via e.g., concepts from databases, shared resources and proclet
channels. This may impose, however, problems of undecidability during conformance
checking, which we discuss in this work.

Many conformance checking techniques use alignments to expose where the behav-
ior recorded in a log and the model agree, which activities prescribed by the model are
missing in the log and which log activities should not be performed according to the
model [3,8]. The usual focus is on the control flow of the process. In more advanced
techniques [6,15–17], data and/or resource information is additionally incorporated in
the alignments by considering these perspective only after the control flow [15], by bal-
ancing the different perspectives in a customizable manner [16] or by considering all
perspectives at once [17]. These three types of techniques operate on a case-by-case
basis, which can lead to misleading results in case of shared resources, e.g., when mul-
tiple cases claim the same resource simultaneously.

In our previous work we considered the execution of all process instances by align-
ing the complete event log to a resource constrained ν-Petri nets [24]. In this paper, we
present our further steps: (1) We compare how the existing Petri net extensions support
modeling and analysis of processes with inter-case dependencies by formulating the
requirements to such models, and we argue that ν-nets are an appropriate formalism.
(2) We employ the poset theory to provide mathematical foundations for aligning the
complete event log and exposing deviations of inter-case dependencies; (3) We propose
an approximation method for computing optimal alignments in practice, which tackles
the limitation of the computational efficiency when computing the complete event log
alignment. The approximation method is based on composing alignments for isolated
cases first and then resolving inter-case conflicts and deviations in the log locally.

The paper is organized as follows. In Sect. 2 we introduce basic concepts of the
poset theory, Petri nets and event logs. In Sect. 3 we compare different Petri net exten-
sions. We provide the mathematical foundations of the complete event log alignment
in Sect. 4. Section 5 presents the approximation method for computing alignments. We
discuss implications of our work in Sect. 6.

Exact and Approximated Log Alignments for Processes 101

2 Preliminaries

In this section, we introduce basic concepts related to Petri nets and event logs and
present the notations that we will use throughout the paper.

2.1 Multisets and Posets

We start with definitions and notation regarding multisets and partially ordered sets.

Definition 1 (Multiset). A multiset m over a set X is m : X → N. X⊕ denotes the
set of all multisets over X . We define the support supp(m) of a multiset m as the set
{x ∈ X | m(x) > 0}. We list elements of the multiset as [m(x) · x | x ∈ X], and write
|x| for m(x), when it is clear from context which multiset it concerns.

For two multisets m1,m2 over X , we write m1 ≤ m2 if ∀x∈Xm1(x) ≤ m2(x),
and m1 < m2 if m1 ≤ m2 ∧ m1 �= m2. We define m1 +m2 = [(m1(x) +m2(x)) · x |
x ∈ X], and m1 − m2 = [max(0,m1(x) − m2(x)) · x | x ∈ X] for m1 ≥ m2.

Furthermore, m1 	 m2 = [max(m1(x),m2(x)) · x | x ∈ X], m1
 m2 =
[min(m1(x),m2(x)) · x | x ∈ X].

In some cases, we consider multisets over a set X as vectors of length |X|, assuming
an arbitrary but fixed ordering of elements of X .

Definition 2 (Partial order, Partially ordered set, Antichains). A partially ordered set
(poset) X = (X̄,≺X) is a pair of a set X̄ and a partial order ≺X⊆ X × X . We
overload the notation and write x ∈ X if x ∈ X̄ . For x, y ∈ X , we write x‖Xy if
x ⊀ y ∧ y ⊀ x and x � y if x ≺ y ∨ x = y.

Given ≺X , we define ≺+
X to be the smallest transitively closed relation containing

≺X . Thus ≺+
X is a partial order with ≺X⊆≺+

X .
We extend the standard set operations of union, intersection, difference and subsets

to posets: for any two posets X and Y , X ◦ Y = (X̄ ◦ Ȳ , (≺X ◦ ≺Y)+), with ◦ ∈
{∪,∩, \} and Y ⊆ X iff Ȳ ⊆ X̄ and ≺Y =≺X ∩(Ȳ × Ȳ).

A poset A is an antichain if no elements of A are comparable, i.e., ∀x,y∈A x‖y. For
poset X , A(X) denotes the set of all antichains A ⊆ X , and A+(X) is the set of all
maximal antichains: A+(X) = {A | A ∈ A(X),∀B∈A(X) B ⊆ A =⇒ B = A}.

Two special maximal antichains are the minimum and maximum elements of X ,
defined by min(X) = {x | x ∈ X,∀y∈Xy ⊀ x} ∈ A+(X) and max(X) = {x | x ∈
X,∀y∈Xx ⊀ y} ∈ A+(X).

We define X< = {(Ȳ ,≺Y) | Ȳ = X̄,≺X⊆≺Y ,∀a,b∈Y,a�=b a � ‖Y b} to be the set
of totally ordered permutations of X that respect the partial order.

Definition 3 (Interval, prefix and postfix in a poset). With a poset X and two antichains
A,B ∈ A(X), the closed jhkcbvinterval fromA toB is the subposet defined as follows:
[A,B] = (AB,≺X ∩(AB × AB)) with AB = {x | x ∈ X,A � x � B}, and
the half open and open intervals: (A,B] = [A,B] \ A, [A,B) = [A,B] \ B and
(A,B) = [A,B) \ A.

Artificial minimal and maximal elements are denoted as ⊥ and � respectively, i.e.,
∀x∈X⊥ ≺ x ≺ �. (⊥, A], (⊥, A), [A,�) (A,�) denote the corresponding prefixes
and postfixes of an antichain A ∈ A(X) in X .

102 D. Sommers et al.

2.2 Petri Nets

Petri nets can be used as a tool for the representation, validation and verification of
workflow processes to provide insights in how a process behaves [21].

Definition 4 (Labeled Petri nets, Pre-set, Post-set). A labeled Petri net [20] is a tuple
N = (P, T,F , �), with sets of places and transitions P and T , respectively, such that
P ∩ T = ∅, and a multiset of arcs F : (P × T)∪ (T × P) → N defining the flow of the
net. � : T → Στ = Σ ∪ {τ} is a labeling function, assigning each transition t a label
�(t) from alphabet Σ or �(u) = τ for silent transitions.

We assume that the intersection, union and subsets are only defined for two labeled
Petri nets N1, N2 where ∀t∈T1∩T2�1(t) = �2(t).

Given an element x ∈ P ∪ T , its pre- and post-set •x (x•) are multisets defined by
•x = [F(y, x) · y | y ∈ P ∪ T] and x• = [F(x, y) · y | y ∈ P ∪ T] resp.

Definition 5 (Marking, Enabling and firing of transitions, Reachable markings). A
marking m ∈ P⊕ of a (labeled) Petri net N = (P, T,F , �) assigns how many tokens
each place contains and defines the state of N .

With m and N , a transition t ∈ T is enabled for firing iff m ≥ •t. We denote the
firing of t by m

t−→ m′, where m′ is the resulting marking after firing t and is defined
by m′ = m − •t+ t•. For a transition sequence σ = 〈t1, . . . , tn〉 we write m

σ−→ m′ to
denote the consecutive firing of t1 to tn. We say that m′ is reachable from m and write
m

∗−→ m′ if there is some σ ∈ T ∗ such that m
σ−→ m′.

M(N) = P⊕ and it denotes the set of all markings in net N and R(N,m) the set
of markings reachable in net N from marking m.

Definition 6 (Place invariant). Let N = (P, T,F , �) be a Petri net. A place invariant
[14] is a row vector I : P → Q such that I ·F = 0, withP andF vector representations
of P and F . We denote the set of all place invariants as IN , which is a linear subspace
of Q

P .

The main property of a place invariant I in a net N with initial marking mi is that
∀m1,m2∈R(N,mi)I · m1 = I · m2.

Definition 7 (Net system, Execution poset and sequence, Language). A net system is
a tuple SN = (N,mi,mf), where N is a (labeled) Petri net, and mi and mf are
respectively the initial and final marking. An execution sequence in a net system SN =
(N,mi,mf) is a firing sequence from mi to mf . Additionally, an execution poset is a
poset of transition firings, where each totally ordered permutation is a firing sequence.
The language of a net system SN is the set of all execution sequences in SN .

2.3 Event Logs

An event log records activity executions as events including at least the occurred activ-
ity, the time of occurrence and the case identifier of the corresponding case. Often
resources are also recorded as event attributes, e.g., the actors executing the action. It is
generally known beforehand in which activities specific resource roles R are involved

Exact and Approximated Log Alignments for Processes 103

and which resource instances Idr are involved in the process for each role r ∈ R. We
assume that each resource has only one role (function) allowing to execute a predefined
number of tasks, and therefore define the set IdR of resource instances of all roles as the
disjoint union of resource instance sets of roles: IdR = �r∈RIdr. A resource instance
ρ ∈ IdR with role r ∈ R is equipped with capacity, making Idr and IdR both multisets.

Definition 8 (Event, Event log, Trace). An event e is a tuple (a, t, c, Id′
R), with an

activity a = activity(e) ∈ Σ, a timestamp t = time(e) ∈ R, a case identifier
c = case(e) ∈ Idc and a multiset of resource instances Id′

R = Res(e) ≤ IdR. Such
an event represents that activity a occurred at timestamp t for case c and is executed by
resource instances from Id′

R belonging to possibly different resource roles.
An event log L is a set of events with partial order ≺L that respects the chrono-

logical order of the events, i.e., ∀e1,e2∈Ltime(e1) < time(e2) =⇒ e2 �≺L e1. An
event log can be partitioned into traces, defined as projections e.g., on the case iden-
tifiers or on the resources names. For every c ∈ Idc, Lc denotes a trace projected
on the case identifier c defined by Lc = ({e | e ∈ L, case(e) = c},≺Lc

) with
≺Lc

= {(e, e′) | (e, e′) ∈≺L, case(e) = case(e′) = c}.
Alternatively, we write 〈e1, e2, · · ·〉 for an event log which is totally ordered, and

aId
′
R and aId

′
R for events where the case is identified by the activity color (and bar

position) and the time of occurrence is abstracted away from.
For a (labeled) Petri net modeling a process, the transitions’ names or labels corre-

spond to the activity names found in the recorded event log.

3 Modeling, Analysis and Simulation of Case Handling Systems
with Inter-case Dependencies

A classical Petri net models a process execution using transition firings and the cor-
responding changes of markings without making distinctions between different cases
on which the modeled system works simultaneously. To create a case view, Workflow
nets [2] model processes from the perspective of a single case. Systems in which cases
interact with each other, e.g., by queueing or sharing resources, need to be modeled
in a different way. We show from a modeling point how this boils down to multiple
cases competing over shared tokens representing resources in a Petri net, which requires
an extension on the formalism of the classical Petri nets. In Sect. 3.1, we motivate the
requirements by providing examples, after which, in Sect. 3.2, we discuss whether exist-
ing Petri net extensions satisfy these requirements. We end, in Sect. 3.3 by proposing a
minimal extension based on ν-Petri nets [22] that meets each requirement for simulation
and analysis of resource-constrained processes.

3.1 Requirements Imposed by Inter-case Dependencies

When modeling systems with inter-case dependencies, i.e., shared resources, simulta-
neous cases can interfere in each other’s processing via the resources, causing inter-case
dependencies. To model, simulate and analyze such behavior, the cases and resources,

104 D. Sommers et al.

Fig. 1. Example Petri net N1 to argue the requirements, with token colors denoting different
instances.

represented as tokens in a Petri net, should be handled together and simultaneously in
the process model. This introduces the need for case (R1) and resource isolation (R2)
as well as durable resources (R3) and case-resource correlations (R4), which regular
Petri nets are not capable of. For analysis, like computing alignments (see Sect. 4), non-
invertible functions can cause state-space explosions (R5). We show for each require-
ment, when not satisfied, how simulation and/or analysis concerning multiple simulta-
neous cases fails:

R1 Distinguishable cases are required when dealing with multiple cases. Tokens
involved in a firing of a transition should not belong to different cases, unless case
batching is used. Mixing tokens from different cases, possible in classical Petri
nets, can potentially cause model behavior that is not possible in the modeled sys-
tem: Suppose we have a simple operation process modeled by Petri net N1, shown
in Fig. 1, where a patient undergoes an operation involving the activities of prepa-
ration (op), assistance (oa), closed surgery (osc) and open surgery (oso) which is
followed by closeup (oc). We assume case tokens to be indistinguishable. The lan-
guage of (N1, [pi, 2ps], [pf , 2ps]) is {〈op, oa, osc〉, 〈op, osc, oa〉, 〈op, oa, oso, oc〉,
〈op, oso, oa, oc〉} and the language of the same net processing two cases with suffi-
cient resources has to consist of all possible interleaving of two traces belonging to
single cases. However, {〈op, oa, osc, op, oa, oso,oc〉} is included in the language of
(N1, [2pi, 2ps], [2pf , 2ps]), which is impossible to obtain by an interleaving of two
single cases, as oc is never enabled after osc fires. Here and later we use underlined
symbols when referring to the second case in examples. From now on, we assume
case tokens are distinguishable and we have mi(pi) = (c, c);

R2 Distinguishable resources are required when resource instances are uniquely iden-
tifiable. If the tokens in ps are indistinguishable, 〈. . . , o{x}

so , osc
{x}, o{x}

c 〉 belongs
to the language of (N1, [2pi, 2ps], [2pf , 2ps]). However, resource instance x can
only be claimed by the second case after it has been released by the first case (by
firing transition oc), hence it should not be included in the language. From now on,
we assume resource tokens are distinguishable and we have mi(ps) = (x, y);

R3 Resources are required to be durable when having a variable number of cases in
the system simultaneously. In N1, the resource instances in ps are modeled to be
durable, since these instances are always released after being claimed. However,
were arc (oc, ps) to be removed, problems arise when observed behavior concerns
more than two cases, since after transition oso fired twice, it is never enabled again,
causing a deadlock;

Exact and Approximated Log Alignments for Processes 105

R4 Capturing case-resource correlation is required when dealing with multiple dis-
tinguishable cases and resources in order to keep track of which resource handles
which case. Without it, the language of (N1, [2pi, 2ps], [2pf , 2ps]) includes e.g.,
〈. . . , o{x}

so , oso
{y}, oc

{x}, o{y}
c 〉, which is undesirable as resources x and y have

switched cases after transition oso is fired twice. Case-resource correlation should
ensure, in this case, that transition oc can only be fired using the same resource as
was claimed by firing transition oso;

R5 Operations on token values (e.g., guards, arc inscriptions) should be invertible and
computable when aligning observed and modeled behavior in order to keep the
problem decidable. Consider e.g., that patients enter the process by their name
and birthdate v, which is transformed to an identifier c in the first transition by an
operation f(v) on (op). When activity op is missing for a patient, it is undecidable
which value v should be inserted for the firing of op when f is not invertible.

3.2 Existing Petri Net Extensions

Several extensions on Petri nets have been proposed focusing on multi-case and/or
multi-resource processes able to handle (some) inter-case dependencies. We go over
each extension, describing how they satisfy (and violate) requirements listed in
Sect. 3.1. We propose an extension, which combines concepts of the described exten-
sions and satisfies all requirements.

Resource constrained workflow nets (RCWF-nets) [12] are Petri nets extended with
resource constraints, where resources are durable units: they are claimed and then
released again (R3). They define structural criteria for its correctness.

Definition 9 (Resource-constrained workflow net [12]). Let R be a set of resource
roles. A net system N = (Pp � Pr, T,Fp � Fr,mi,mf) is a resource-constrained
workflow net (RCWF-net) with the set Pp of production places and the set Pr = {pr |
r ∈ R} of resource places iff

– Fp : (Pp × T) ∪ (T × Pp) → N and Fr : (Pr × T) ∪ (T × Pr) → N;
– Np = (Pp, T,Fp, [mi(p) · p | p ∈ Pp], [mf (p) · p | p ∈ Pp]) is a net system, called

the production net of N .

The semantics of Petri nets is extended by having colored tokens on production places
(R1) and as resources are shared across all cases, tokens on resource places are colorless
(¬R2, ¬R4). A transition is enabled if and only if there are sufficient tokens on its
incoming places using tokens of the same color on production places.

ν-Petri nets [22] are an extension of Petri nets with pure name creation and name
management, strictly surpassing the expressive power of regular Petri nets and they
essentially correspond to the minimal object-oriented Petri nets of [13]. In a ν-Petri
net, names can be created, communicated and matched which can be used to deal with
authentication issues [23], correlation or instance isolation [9]. Name management is
formalized by replacing ordinary tokens by distinguishable ones, thus adding color the
Petri net.

106 D. Sommers et al.

Definition 10 (ν-Petri net [22]). Let Var be a fixed set of variables. A ν-Petri net is a
tuple ν-N = 〈P, T,F〉, with a set of places P , a set of transitions T with P∩T = ∅, and
a flow functionF : (P×T)∪(T×P) → Var⊕ such that ∀t∈T , Υ∩•t = ∅ ∧ t•\Υ ⊆ •t,
where •t =

⋃

p∈P

supp(F(p, t)) and t• =
⋃

p∈P

supp(F(t, p)). Υ ⊂ Var denotes a set of

special variables ranged by ν, ν1, . . . to instantiate fresh names.
A marking of ν-N is a function m : P → Id⊕. Id(m) denotes the set of names in

m, i.e. Id(m) =
⋃

p∈P

supp(m(p)).

A mode μ of a transition t is an injection μ : Var(t) → Id , that instantiates each
variable to an identifier.

For a firing of transition t with mode μ, we write m
tμ−→ m′. t is enabled with mode

μ if μ(F(p, t)) ⊆ m(P) for all p ∈ P and μ(ν) /∈ Id(m) for all ν ∈ Υ ∩ Var(t) =
supp(∪p∈P F(p, t)). The reached state after the firing of t with mode μ is the marking
m′, given by:

m′(p) = m(p) − μ(F(p, t)) + μ(F(t, p)) for all p ∈ P (1)

We denote Tμ to be the set of all possible transition firings.

ν-Petri nets support instance isolation for cases and resources requiring the tokens
involved in a transition firing to have matching colors (R1, R2). Due to the tokens
having singular identifiers, correlation between cases and resources can not be captured
(¬R4).

Resource and instance-aware workflow nets (RIAW-nets) [18], are Petri nets com-
bining the notions from above by defining similar structural criteria for handling
resource constraints on top of ν-Petri nets. However, the resource places are assumed
to only carry black tokens, not allowing for resource isolation and properly capturing
the case-resource correlation.

Synchronizing proclets [10] are a type of Petri net that describe the behavior of pro-
cesses with many-to-many interactions: unbounded dynamic synchronization of transi-
tions, cardinality constraints limiting the size of the synchronization, and history-based
correlation of token identities (R1,R2). This correlation is captured by message-based
interaction, specifying attributes of a message as correlation attributes (R4). The corre-
lation constraints are Cinit, C

⊆
match and C=

match, for initializing the attributes, partially
and fully matching them. ν-Petri nets are at the basis of proclets handling multiple
objects by separating their respective subnets. While the proclet formalism is sufficient
for satisfying all requirements listed above, they extend to many-to-many relations,
which lifts the restriction that a resource can only be claimed by a single case.

Object-centric Petri nets [4], similarly to synchronizing proclets, describe the
behavior of processes with multiple perspectives and one-to-many and many-to-many
relations between the different object types. These nets are a restricted variant of colored
Petri nets where places are typed, tokens are identifiable referring to objects (R1,R2),
and transitions can consume and produce a variable number of tokens. Correlation can
be achieved with additional places of combined types (R4). Again, due to many-to-
many relations, our one-to-many restriction on resources is lifted.

Database Petri nets (DB-nets) [19] are extensions of ν-Petri nets with multi-colored
tokens that allows for multiple types of objects and their correlation (R1,R2,R4). Addi-
tionally, they support underlying read-write persistent storage consisting of a relational

Exact and Approximated Log Alignments for Processes 107

database with full-fledged constraints. Special “view” places in the net are used to
inspect the content of the underlying data, while transitions are equipped with database
update operations. These are in the general sense not invertible causing undecidability
(¬R5).

Catalog Petri nets (CLog-nets) [11] are similar to DB-nets, but without the “write”
operations (R1,R2,R4). The queries from view places in DB-nets have been relocated
to transition guards, relying solely on the “read-only” modality for a persistent stor-
age, however suffering from the same undecidability problem as these guards are not
invertible in the general sense (¬R5).

3.3 Resource Constrained ν-Petri Net with Fixed Color Types

We combine conceptual ideas from the extensions described above, by extending
RIAW-nets, which inherit the modeling restrictions from RCWF-nets and name man-
agement from ν-Petri nets, using concepts from DB-nets and CLog-nets.

The resource places from RCWF-nets model the availability of resource instances
by tokens, which is insufficient to capture correlation of cases by which they are claimed
and released. We propose a minimal extension resource constrained ν-Petri nets (RC ν-
net) which additionally contain busy places P̄r = {p̄r | r ∈ R} for each resource role.
Token moves from pr to p̄r show that the resource gets occupied, and moves from p̄r to
pr show that the resource becomes available. Also tests whether there are free/occupied
resources can be modeled. A structural condition is imposed on the net to guarantee
that resources are durable, meaning that resources can neither be created nor destroyed.
This also implies that in the corresponding net system with initial and final marking mi

and mf , mi(pr) = mf (pr) and mi(p̄r) = mf (p̄r), for any resource role r ∈ R.
Furthermore, similar to DB-nets and CLog-nets, we extend the tokens from carry-

ing single data values to multiple. Where DB-nets and CLog-nets allow for a variable
number of predefined color types, we restrict ourselves to two which are strictly typed,
to distinguish between both cases and resources.

Definition 11 (Resource-constrained ν-Petri net). Let Cε be the set of case ids Idc

extended with ordinary tokens, i.e., ε ∈ Idc, and Id
ε
R be the set of resource ids extended

with ordinary tokens. A resource-constrained ν-Petri net N = (P, T,F ,mi,mf) is a
Petri net system with F : (P × T)∪ (T × P) → (Varε

c ×Varε
r)

⊕, where Var c denote
case variables and Varr denote resource variables, allowing for two colored tokens.
P = (Pp � Pr � P̄r), with production places Pp and resource availability and busy
places Pr = {pr | r ∈ R} and P̄r = {p̄r | r ∈ R}. The following modeling restrictions
are imposed on N for each r ∈ R:

1. •pr + •p̄r = p•
r + p̄•

r , i.e., ∀t∈T F(pr, t) + F(p̄r, t) = F(t, pr) + F(t, p̄r);
2. mi(pr) = mf (pr) and mi(p̄r) = mf (p̄r) = 0;

A marking of N is a function m : P → (Cε × Rε)⊕ with case ids C and resources
R, which is a mapping from places to multisets of colored tokens.

A mode of a transition t is an injection μ : (Varε
c × Varε

r)(t) → (Cε × Rε), that
instantiates each variable to an identifier.

108 D. Sommers et al.

Proposition 1. The resource-constrained ν-Petri nets as defined in Definition 11 satisfy
requirements R1-R5, i.e., they allow to distinguish cases and resource instances which
are durable, and capture case-resource correlation while restricting to operations that
are invertible.

Proof. The two-colored strictly typed tokens distinguish both the cases (R1) and
resource instances (R2) in the system. The modeling restrictions imposed on the RC
ν-net enforce that for each resource role r ∈ R, tokens can only move between pr and
p̄r, i.e., we have the place invariant (1, 1) on pr and p̄, implying that m(pr) +m(p̄r) =
mi(pr) for any reachable marking m, and that all resource tokens are returned to pr

when the net reaches its final marking, ensuring that resources are durable (R3). The
two colors on tokens residing in p̄ capture correlation between cases and resources
instances (R4), denoting by which case a resource instance is claimed throughout their
interaction. As the transition firing’s modes are bijective functions, each operation on
N is invertible (R5).
	

Note that the RC ν-net formalism is a restricted version of DB-nets, CLog-net and
synchronizing proclets, as all three can capture the behavior that can be modeled by
RC ν-nets. DB-nets and CLog-nets additionally have database operations which we
deem not relevant for our purposes. Synchronizing proclets allow for many-to-many
interactions, while we assume that a resource instance cannot be shared by several cases
at the same time.

4 Complete Event Logs Alignments

Several state-of-the-art techniques in conformance checking use alignments to relate the
recorded executions of a process with a model of this process [5]. An alignment shows
how a log or trace can be replayed in a process model, which can expose deviations
explaining either how the process model does not fit reality or how the reality differs
from what should have happened.

Traditionally, this is computed for individual traces, however, as we show in pre-
vious work [24], this fails to expose deviations on a multi-case and -resource level in
processes with inter-case dependencies as described in Sect. 3.3. In this section, we go
over the foundations of alignments in Sect. 4.1 and show how we extend this to compute
alignments of complete event logs in Sect. 4.2.

4.1 Foundations of Alignments

At the core of alignments are three types of moves: log, model, and synchronous moves
(cf. Definition 12), indicating, respectively, that an activity from the log can not be mim-
icked in the process model, that the model requires the execution of some activity not
observed in the log, and that observed and modeled behavior of an activity agree.

Definition 12 (Log, model and synchronous moves). Let L be an event log and N =
(P, T,F , �,mi,mf) be a labeled ν-Petri net with Tμ the set of all possible firings in N .
We define the set of log moves Γl = {(e,�) | e ∈ L}, the set of model moves Γm =

Exact and Approximated Log Alignments for Processes 109

{(�, tμ) | tμ ∈ Tμ} and the set of synchronous moves Γs = {(e, tμ) | e ∈ L, tμ ∈
Tμ, activity(e) = �(t)}. As abbreviations, we write Γls = Γl ∪ Γs, Γlm = Γl ∪ Γm,
Γms = Γm ∪ Γs, and Γlms = Γl ∪ Γm ∪ Γs.

Log moves and model moves can expose deviations of the real behavior from the
model, by an alignment (cf. Definition 13) on a net (N,mi,mf) and event log L (possi-
bly a single trace) which is a poset of moves from Definition 12 incorporating the event
log and execution sequences in N from mi to mf :

Definition 13 (Alignment). An alignment γ = align(N,L) of an event log L = (L̄,≺L

) and a labeled Petri net N = (P, T,F , �,mi,mf) is a poset γ = (γ̄,≺γ), where
γ̄ ⊆ (Γl ∪ Γs ∪ Γ⊕

m), having the following properties:

1. γ�L = L̄ and ≺L⊆≺γ�L

2. mi
γ�T−−→ mf , i.e., ∀σ∈(γ�T)< ,mi

σ−→ mf

with alignment projections on the log events γ�L and on the transition firings γ�Tμ
:

γ�L =
({e | (e, tμ) ∈ γ ∩ Γls} ,

{
(e, e′) | ((e, tμ), (e

′, t′
μ)) ∈≺γ ∩(Γls × Γls)

})
(2)

γ�T =
({tμ | (e, tμ) ∈ γ ∩ Γms} ,

{
(tμ, t′

μ) | ((e, tμ), (e
′, t′

μ)) ∈≺γ ∩(Γms × Γms)
})

(3)

Note the slight difference in the definition of an alignment as opposed to our pre-
vious work in [24], where the alignment is simplified from a distributed run to a poset
of moves. The process’s history of states (markings) as it has supposedly happened
in reality can be extracted from the alignment. For the general case, we introduce the
pseudo-firing of transitions from corresponding alignment’s non-log moves in the pro-
cess model, to obtain a pseudo-marking, which can be unreachable or contain a negative
number of tokens:

Definition 14 (Pseudo-markings). A pseudo-marking m of a Petri net N = (P, T,F)
is a multiset P → Z, i.e., the assigned number of tokens a place contains can be
negative. M̃(N) denotes the set of all pseudo-markings in N .

Definition 15 (Pseudo-firing of posets). Let N = (P, T,F ,mi,mf) be a RC ν-net and

γ be an alignment on N . We define a function m̃ : P(γ) → M̃(N), with powerset P ,
to obtain the model pseudo-marking of every subposet of γ. For every subposet γ′ ⊆ γ,
we have for every p ∈ P :

m̃(γ′)(p) = mi(p) +
∑

(e,tμ)∈γ′:tμ �=ε

(μ (F(t, p)) − μ (F(p, t))) (4)

i.e., the pseudo-marking is obtained by firing all the transitions of γ′ with corresponding
modes. Note that it is not necessarily reachable.

An antichain in an alignment denotes a possible point in time, and therefore a state
of the process. By pseudo-firing the respective (open) prefix of the antichain, we obtain
the corresponding pre- (or post-)antichain marking:

Definition 16 (Pre- and post-antichain marking). Let γ be an alignment andG ∈ A(γ)
an antichain in γ. The pre- (post-)antichain marking defines the marking reached after
the pseudo-firing of (⊥, G) ((⊥, G]), i.e., m̃((⊥, G)) (m̃((⊥, G])).

110 D. Sommers et al.

4.2 Alignments Extended to Include Inter-case Dependencies

The foundational work on constructing alignments is presented in [5] and it relies on the
synchronous product of the Petri net N = (P, T,F , �,mi,mf) modeling a process and

a trace Petri net Nσ = (P (σ), T (σ),F (σ), �(σ),m
(σ)
i ,m

(σ)
f) (a Petri net representation

of a trace in the event log). The synchronous product consists of the union of N and Nσ ,
and a transition ts for each pair of transitions (tm, tl) ∈ T ×T (σ) with •ts = •tm + •tl
and t•s = t•m + t•l , iff tm and tl share the same label and variables on the incoming arcs,
i.e., �(tm) = �(σ)(tl) and V ar(tm) = V ar(tl). The alignment is then computed by a
depth-first search on the synchronous product net from mi +m

(σ)
i to mf +m

(σ)
f using

the A∗ algorithm, with the firings of transition from T (σ), T and T (s) corresponding to
the log, model and synchronous moves from Definition 12 [5].

With c : Γlms → R
+ a cost function, usually defined for each (e, tμ) ∈ Γlms as

follows:

c((e, tμ)) =

⎧
⎪⎨

⎪⎩

0 (e, tμ) ∈ Γs

1 (e, tμ) ∈ Γlm ∧ �(t) �= τ

ε �(t) = τ

(5)

The optimal alignment is an alignment γ such that
∑

g∈γ c(g) ≤ ∑
g∈γ′ c(g) holds

for any alignment γ′, which prefers synchronous moves over model and log moves.
In terms of conformance checking and exposing realistic deviations, the optimal align-
ment provides the “best” explanation for the relation between observed and modeled
behavior.

In Sect. 3.3, we have shown how a RC ν-net is a Petri net formalism with capabil-
ity of modeling inter-case dependencies and suitability for conformance checking. We
extend the alignment problem in order to expose inter-case deviations by adapting the
synchronous product net to ν-nets: an RC ν-net and the log ν-net:

Definition 17 (Log ν-Petri net). Given an event log L, a log ν-Petri net N (L) =
(P (L), T (L),F (L), �(L),m

(L)
i ,m

(L)
f) is a labeled ν-net constructed as follows. For

every e ∈ L, we make a transition te ∈ T (L) with �(L)(t) = activity(e), and for
each resource instance ρr ∈ supp(Res(e)) we make a place p ∈ P (L) with •p = ∅,
•p = [|ρr| · t], F (L)(p, t) = [|ρr| · (ε, r)] and m

(L)
i (p)((ε, ρ)) = |ρ|. Further, for every

pair (e1, e2) ∈≺L, we make a place p ∈ P (L) with •p = [te1], p
• = [te2] and

F (L)(te1 , p) = F (L)(p, te2) =

{
[(c, ε)] case(e1) = case(e2)
[(ε, ε)] otherwise

(6)

For every e− ∈ min(L), we make a place p− ∈ P (L) with •
p− = ∅, p−• = [te−] and

m
(L)
i (p−)((case(e−), ε)) = 1. Similarly, for every e+ ∈ max(L), we make a place

p+ ∈ P (L) with •
p+ = [te+], p+• = ∅ and m

(L)
f (p+)((case(e+), ε)) = 1.

Computing the complete event log alignment is again a matter of finding a path
from the initial to the final marking in the synchronous product net, i.e., from mi +
m

(L)
i to mf + m

(L)
f , for which we can use any of the existing methods as described

Exact and Approximated Log Alignments for Processes 111

before. The optimal alignment is again the one with lowest cost. In terms of complexity,
the alignment problem with an empty event log and an all-zero cost function can be
reduced to the reachability problem for bounded Petri nets from mi to mf , which has
exponential worst-case complexity [20]. Adding event to the log ν-Petri net and a non-
zero costs on moves makes the problem strictly more complex.

Note that while ν-Petri nets are inherently unbounded in general due to the genera-
tion of fresh tokens, we can retain boundedness in the context of alignments, since the
bound is predicated by the event log and we can get this information by preprocessing
it.

For our running example, modeled in Fig. 2, we extend the small operation process
from Fig. 1 with an assistant resource during the operation, an intake subprocess (is, ip)
involving a general practitioner (GP), and a prescription subprocess with a FIFOwaiting
room (pw, we, wl, pr), where the prescription can only be written by the GP involved in
the intake, if appropriate. Both the intake and operation subprocesses can be skipped via
silent transitions τ1 and τ3 respectively in N . Figure 3 shows the recorded event log L
of this process which concerns two patients. An optimal complete event log alignment
on N and L, computed by the method above is presented in Fig. 4.

5 Approximation by Composition and Local Realignments

Since multiple cases are executed in parallel, computing the alignment on the complete
event log L, as described in Sect. 4, is a computationally expensive task. At the same
time, one can see that the multi-case and -resource alignment only deviates from the
classical individual alignments when violations occur on the inter-case dependencies,
e.g., when a resource is claimed while it is already at maximal capacity.

We can approximate the alignment of a complete event log L and a Petri net N by
using a composition of individually aligned cases. An overview of this method is illus-
trated in Fig. 7, which we subdivide into two parts, described respectively in Sects. 5.1
and 5.2.

1. L is decomposed into the individual cases (Lc, Lc), which are aligned to N (γc, γc)
and composed using the event log’s partial order≺L (γ̃). The result is not necessarily
an alignment as inter-case deviations may be left unresolved;

2. We transform this composed alignment into a valid alignment by taking a permuta-
tion (γ̃′) and realigning parts ([A1, B1], [A2, B2], [A3, B3]) of the event log locally to
resolve the violations. The approximated alignment (γ∗) is obtained by substituting
the realignments (γAB1 , γAB2 , γAB3).

The implementation of both the original method from [24] and the approx-
imation method for computing complete event log alignments is available at
gitlab.com/dominiquesommers/mira, including the examples used in this paper and
some additional examples.

5.1 Composing Individual Alignments

For every case c ∈ Idc, we have the trace Lc (cf. Definition 8) projected on the case
identifier c. As described in Sect. 4, the optimal complete event log alignment γL con-
sists of individual alignments γc, on N and Lc for every c ∈ Idc, composed together

https://gitlab.com/dominiquesommers/mira

112 D. Sommers et al.

Fig. 2. Process model RC ν-net N , with initial and final marking, annotated with circular and
square tokens respectively.

Fig. 3. Event log L.

Fig. 4. Complete event log alignment γ, with the colors depicting the move types; green, purple,
and yellow for synchronous, model, and log moves respectively. (Color figure online)

Fig. 5. Composed alignment γ̃ with annotated permutation and realignment intervals.

respecting the event log’s partial order ≺L, where each γc is not necessarily optimal
with regard to Lc.

It is computationally less expensive to compute the optimal alignments γc =
align(N,Lc) for each c ∈ Idc and then approximate γL. We create a composed

Exact and Approximated Log Alignments for Processes 113

Fig. 6. Approximated alignment γ∗.

Fig. 7. Overview of our approximation method.

alignment γ̃ with the optimal individual alignments and the event log’s partial order,
as defined in Definition 18. Figure 5 shows the composed alignment for the running
example with additional annotations (in red) which we cover later.

Definition 18 (Composed alignment). Given a Petri net N and an event log L with
traces Lc for c ∈ Idc, let γc = align(N,Lc) be the corresponding optimal individual
alignments. The composed alignment γ̃ = �c∈Idc

γc is the union of individual align-
ments with the extended partial order on the synchronous moves, defined as the transi-
tive closure of the union of partial orders from the individual alignments and the partial
order on moves imposed by the partial order ≺L of the event log:

≺γ̃ =

(
⋃

c∈Idc

≺γc
∪ ≺γL

)+

(7)

with ≺γL
=

{(
(e, tμ), (e′, t′μ)

) | e ≺L e′, (e, tμ), (e′, t′μ) ∈ (γ ∩ Γls)
}
.

Recall that for every sequence σ ∈ γ̃�T of an alignment γ̃, we have mi
σ−→ mf , i.e., σ is

a firing sequence in N . This property is not guaranteed for a composed alignment, even
in the absence of inter-case deviations. In the presence thereof, we say that a composed
alignment is violating as there exists no such sequence.

Definition 19 (Violating composed alignment). Let ρr ∈ supp(IdR) be a resource
instance and γ̃ = �c∈Idc

γc a composed alignment. We define

S(γ̃) = {(¯̃γ′
,≺γ̃′) | ¯̃γ = ¯̃γ

′
,≺γ̃⊆≺γ̃′ ,≺γ̃′= (≺γ̃′)+,∀g∈γ̃g ⊀γ̃′ g} (8)

as the set of transitively closed and acyclic antichain permutations of γ̃ that respect the
partial order ≺γ̃ .

γ̃ is in violation with any of the resource instances if and only if:

∀γ̃′∈S(γ̃)∃G∈A+(γ̃′) viol(G) (9)

114 D. Sommers et al.

with violation criteria viol : A+(γ̃) → B defined for each maximal antichain G ∈
A+(γ̃) as follows:

viol(G) = ∃ρr∈supp(IdR)

⎡

⎣m̃((⊥, G))(pr)((ε, ρr)) <
∑

(e,tμ)∈G

F(pr, t)(μ
−1((ε, ρr)))

⎤

⎦

(10)
i.e., there is no way of firing all transitions in the alignment such that at all times enough
capacity is available.

In Fig. 5, antichains meeting the violation criteria are the single moves with an incom-
ing red arc. In Theorem 1 we show that for every sequence of transitions σ ∈ γ̃�T in
violating composed alignment γ̃, we have mi � σ−→ mf , i.e., γ̃ is not firable.

Theorem 1. (A violating composed alignment is not firable) Let γ̃ = �c∈Idc
γc be a

composed alignment on RC ν-net N = (P, T,F ,mi,mf) and event log L, such that γ̃
is violating. Then there exists no firing sequence σ in γ̃ such that mi

σ−→ mf .

Proof. γ̃ is violating, therefore, for every γ̃′ ∈ S(γ̃), there is a maximal antichain
G ∈ A+(γ̃′) and resource instance ρr ∈ supp(IdR), such that

m̃((⊥, G))(pr)((ε, ρr)) <
∑

(e,tμ)∈G

F(pr, t)(μ−1((ε, ρr))) (11)

m̃((⊥, G))(pr)((ε, ρr)) −
∑

(e,tμ)∈G

F(pr, t)(μ−1((ε, ρr))) < 0 (12)

hence firing the transitions in G leads to a negative marking for (ε, ρr) in place pr,
which is invalid.
	
With an antichain G ⊆ A(γ̃), we show in Lemma 1 that m̃((⊥, G)) (and m̃(⊥, G]) is
reachable if an only if the prefix (⊥, G) ((⊥, G]) is not violating.

Lemma 1. (A pre- (and post-)antichain marking in a composed alignment is reachable
iff the corresponding prefix is not violating). Let γ̃ = �c∈Idc

γc be a composed alignment
on RC ν-netN = (P, T,F ,mi,mf) and event logL and letG ∈ A(γ̃) be an antichain.
Then the pre- (and post-)antichain marking m̃((⊥, G)) (m̃((⊥, G])) is reachable if and
only if (⊥, G) ((⊥, G]) is not violating.

Proof. We prove the lemma by proving both sides of the bi-implication:
(=⇒) mG = m̃((⊥, G)) is reachable, hence there exists a sequence σ ∈

(⊥, G)∗ with ≺(⊥,G)⊆≺σ such that mi
σ−→ mG. Let γ̃′ ∈ S(γ̃) be an antichain

permutation with ≺σ⊆≺γ̃′ . Then by definition of reachable marking, for every max-
imal antichain G ∈ A+(γ̃′) and every resource instance ρr ∈ supp(IdR), we have
m̃((⊥, G))(pr)((ε, ρr)) ≥ ∑

(e,tμ)∈G F(pr, t)(μ−1((ε, ρr))). Thus (⊥, G) is not vio-
lating.

(⇐=) (⊥, G] is not violating, hence there exists a γ̃′ ∈ S((⊥, G]), such that for
all G′ ∈ A+(γ̃′) and all ρ ∈ supp(IdR) we have:

m̃((⊥, G))(pr)((ε, ρr)) ≥
∑

(e,tμ)∈G

F(pr, t)(μ−1((ε, ρr))) (13)

mi
σ−→ m̃((⊥, G]) with σ respecting the partial order ≺γ̃′ .
	

Exact and Approximated Log Alignments for Processes 115

5.2 Resolving Violations in the Composed Alignment

Let γ̃′ ∈ S(γ) be an antichain permutation of γ̃. Then, by Definition 19, we have a
set of violating maximal antichains (which is empty when γ̃ is not violating) where
the corresponding transitions are not enabled. Instead of needing to align the complete
event log, we show that we can resolve violations locally around such antichain. For
each violating antichain G, there exists an interval [A,B] ⊆ γ̃′ with A � G � B such
that [A,B] is alignable, formally defined in Definition 20.

Definition 20 (Alignable interval). Let γ = �c∈Idc
γc be a composed alignment on RC

ν-net N = (P, T,F ,mi,mf) and event log L, and let A,B ∈ A(γ) be two antichains.
We say that the interval [A,B] is alignable if and only if mB = m̃((⊥, B]) is reachable
from mA = m̃((⊥, A)), i.e., mA

∗−→ mB , assuming mA is reachable.

Note that [min(γ′),max(γ′)] is always an alignable interval. We use our running
example to show that it can be taken locally around G instead, e.g., [{is}, {ip}] with
G = {is} (cf. Fig. 5). Note how the violation can be resolved by substituting [A,B] by
a subalignment from mA = m̃((⊥, A)) to mB = m̃((⊥, B]).

In order to prove statements that do not depend on a chosen realignment mechanism,
we now assume that there exists a function fγ̃ : A+(γ̃) → P(γ̃) that produces an
alignable interval [A,B] for an arbitrary G ∈ A+(γ̃).

W (γ̃′
V) = {[min(γv),max(γv)] | γv ⊆ γ̃′

V ,∀g∈γv,g′∈γ̃′
V \γv

g‖γ̃′
V
g′, (14)

∀g∈γv
∃g′∈γv

g � ‖γv
g′}

with γ̃′
V =

⋃
G∈A+(γ̃′) fγ̃′(G), denotes the set of alignable intervals covering every

violating antichain in γ̃′, and it is annotated in red for the running example in Fig. 5,
with the three intervals [{is}, {ip}], [{op}, {of}], and [{we}, {τ}] covering the violat-
ing antichains {is}, {op}, {oso}, and {we}.

We resolve the violations in γ̃′ by substituting every interval [A,B] ∈ W (γ̃′
V) by

an alignment γAB on N and [A,B]�L from mA = m̃((⊥, A)) to mB = m̃((⊥, B]).
Since, for now, we assume that every interval f(G) is alignable, a subalignment

γAB exists. The approximated alignment γ∗ = (γ̄∗,≺γ∗) is then defined as follows:

γ̄∗ =
⋃

[A,B]∈W (γ̃′
V)

γ̄AB ∪ (¯̃γ \ ¯̃γ
′
V) (15)

≺γ∗ =

⎛

⎝
⋃

[A,B]∈W (γ̃′
V)

≺γAB
∪{(g1, g2) | g1, g2 ∈ γ \ γ̃′

V , g1 ≺γ̃′ g2}
⎞

⎠

+

(16)

γ∗ for the running example is shown in Fig. 6 with substituted realignments for the
intervals annotated in red from Fig. 5. Note that γ∗ is an approximation of the optimal
alignment γ from Fig. 4 as c(γ∗) ≥ c(γ), due to the local realignments. In Theorem 2
we show that γ∗ is a valid alignment.

Theorem 2 (γ∗ is an alignment). Let γ̃ = �c∈Idc
γc be a composed alignment on RC

ν-net N = (P, T,F ,mi,mf) and event log L and let γ̃′ ∈ S(γ̃) be an antichain

116 D. Sommers et al.

permutation of γ̃, with W (γ̃′
V) the set of alignable intervals covering every violating

antichain in γ̃′.
γ∗ = (γ̄∗,≺γ∗), following Eqs. 15 and 16, is a valid alignment, i.e., it has properties

(1), (2) and (3) from Definition 13.

Proof. We prove that γ∗ is an alignment by induction on the size of W (γ̃′
V). For the

base case with |W (γ̃′
V)| = 0, we have γ̄∗ = ¯̃γ and ≺γ∗=≺γ̃′ . By definition, ¯γ̃�L = L̄

and ≺L⊆≺γ̃�L
. Furthermore, since |W (γ̃′

V)| = 0, we know that for all G ∈ A+(γ̃′),

we have ¬ viol(G), implying that mi
γ̃′
−→ mf .

Let us assume that γ∗ is an alignment for |W (γ̃′
V)| = w. We prove the statement for

W ′(γ̃′
V) = W (γ̃′

V)∪{[A,B]}with |W ′(γ̃′
V)| = w+1 and [A,B] ∈ min(W ′(γ̃′

V)). For
every maximal antichain G ∈ A+((⊥, A)) before A, i.e., G ≺ A, we have ¬ viol(G),
which we prove by contradiction. Assume viol(G), then by our assumption of the exis-
tence of fγ̃′ , there is an alignable interval [A′, B′] ⊆ γ̃′ with A′ � G � B′, thus, by
G ≺ A, we have [A′, B′] ≺ [A,B], implying that [A,B] /∈ min(W ′(γ̃′)) which is
a contradiction. By Lemma 1 and the assumption that fγ̃′(G) is an alignable interval,
mi

∗−→ mA
∗−→ mB and [A,B] can be substituted by γAB without violations in (⊥, B],

completing the proof.
	

5.3 Obtaining Minimal Local Alignable Intervals

We propose a method to find an antichain permutation of a composed alignment γ̃
together with the intervals W (γ̃V) such that all violations can be resolved by realigning
these intervals as described in Sect. 5.2. For computational efficiency, we choose to
minimize the number of moves in the intervals that need to be realigned.

We formulate this as an Integer Linear Programming (ILP) problem. The objective
of the ILP problem is to adjust the partial order of γ̃, such that alignable intervals can
be identified around violating antichains, preferring intervals with fewer moves.

Let there be a (possibly arbitrary) fixed order in γ̃ and IdR such that each element
has a unique index, i.e., for every 1 ≤ i ≤ nγ̃ , γ̃(i) and (e(i), tμ(i)) both denote the ith

move in γ̃, with nγ̃ = |γ̃|. Furthermore, for every 1 ≤ j ≤ nr, IdR(j) denotes the jth

resource instance, with nr = |supp(IdR)|.
LetR be a nγ̃ ×nγ̃ matrix, withR defined for every two indices 1 ≤ i, j ≤ nγ̃ such

that Rij is a binary value denoting (γ̃(i), γ̃(j)) ∈≺γ̃ . For each c ∈ Idc, we introduce
the set Ic of indices corresponding to moves in γ̃�γc

. Furthermore, we use [1..n] =
{1, . . . , n} as an abbreviation for the set of all indices from 1 to n.

The set of minimal alignable intervals containing all violations, denoted by W (γ̃′
V),

with γ̃′
V given by

γ̃′
V =

⋃

i,j∈[1..nγ̃]:Xij−Rij=1

[γ̃(j), γ̃(i)] (17)

where X denotes the new partial order relation between alignment moves which
respects the resources capacities and provides the solution to

Minimize
∑

i,j∈[1..nγ̃]

(1 − Rij)RjiXij + ε · (1 − Rij)(1 − Rji)Xij (18)

Exact and Approximated Log Alignments for Processes 117

subject to

∀i,j∈[1..nγ̃] Xij ∈ {0, 1} (19)

∀c∈Idc
∀i,j∈Ic

Xij = Rij (20)

∀i,j∈[1..nγ̃] Rij + (1 − Xij) − Xji ≤ 1 (21)

∀i,j,k∈[1..nγ̃] Xij +Xjk − Xik ≤ 1 (22)

∀i∈[1..nγ̃] (1 − Xi•)C↓ − XT
•iC

↑ ≤ k (23)

with C↓ and C↑ both nγ̃ × nr matrices counting how many resource instances are
claimed and released respectively for every alignment move. Both are defined for every
i ∈ [1..nγ̃] and k ∈ [1..nr] with (e, tμ) = γ̃(i) and ρr = IdR(k):

C↓
ik = F(pr, t)((ε, μ−1(ρr))) and C↑

ik = F(t, pr)((ε, μ−1(ρr))) (24)

and capacity vector k of length nr, defined as kk = |IdR(k)| for every k ∈ [1..nr].
X provides the solution of a new partial order of moves in γ̃ such that all violations

are resolved and the least number of partial order relations is removed. For the running
example, the additional arcs from the solution X are shown in red in Fig. 5.

We refer to App. A in [25] for the correctness proof of the ILP problem, where we
show (1) the effectiveness of each constraint, (2) that there always exists a solution,
(3) that the optimal solution has zero cost if and only if the composed alignment is not
violating, and (4) that each interval obtained in W (γ̃′

V) is alignable.

6 Conclusion

We have formulated the requirements for modeling and analyzing processes with inter-
case dependencies and argued that our previously proposed Petri net extension named
Resource Constrained ν-Petri nets meets them. This paper continues on work presented
in [24], where we showed that the traditional methods of aligning observed behavior
with the modeled one fall short when dealing with coevolving cases, as they consider
isolated cases only. The technique we present here aligns multiple cases simultane-
ously, exposing violations on inter-case dependencies. We developed and implemented
an approximation technique based on a composition of individual alignments and local
resolution of violations, which is an important advancement for the use of the technique
in practice.

There can be ambiguity in the interpretation of the exposed violations, e.g., was the
activity executed but not recorded, executed by an “incorrect” resource instance, or not
executed at all? In [24], we briefly touched upon relaxations of the synchronous prod-
uct model as a means to improve the deviations’ interpretability. One such relaxation
helps to detect situations when a step required by the model was skipped in a process
execution, and the resources needed for the step were not available at the time when it
should have been executed. Adding “resource-free” model moves for transitions allows
to capture such deviations. Such special moves, when present in the alignment, reduce
the ambiguity and provide a better explanation, e.g., that the activity was not executed

118 D. Sommers et al.

at all, rather than it might also have been executed but not recorded. For future work,
we plan to extend and formalize the relaxations, and evaluate the insights obtained with
the alignments based on a real-life case study.

Acknowledgments. This work is done within the project “Certification of production process
quality through Artificial Intelligence (CERTIF-AI)”, funded by NWO (project number: 17998).

References

1. van der Aalst, W.M.P.: The application of Petri nets to workflow management. J. Circuits
Syst. Comput. 8(01), 21–66 (1998)

2. van der Aalst, W.M.P.: Data science in action. In: van der Aalst, W.M.P. (ed.) Process Mining,
pp. 3–23. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49851-4 1

3. van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.F.: Replaying history on process
models for conformance checking and performance analysis. Wiley Interdisc. Rev. Data Min.
Knowl. Discov. 2(2), 182–192 (2012)

4. van der Wil, M.P.: Aalst and Alessandro Berti. Discovering object-centric Petri nets. Funda-
menta informaticae 175(1–4), 1–40 (2020)

5. Adriansyah, A.: Aligning observed and modeled behavior. Ph.D. thesis, Mathematics and
Computer Science (2014)

6. Alizadeh, M., Lu, X., Fahland, D., Zannone, N., van der Aalst, W.M.P.: Linking data and
process perspectives for conformance analysis. Comput. Secur. 73, 172–193 (2018)

7. Barkaoui, K., Petrucci, L.: Structural analysis of workflow nets with shared resources (1998)
8. Carmona, J., van Dongen, B.F., Solti, A., Weidlich, M.: Conformance Checking. Springer,

Cham (2018). https://doi.org/10.1007/978-3-319-99414-7
9. Decker, G., Weske, M.: Instance isolation analysis for service-oriented architectures. In:

2008 IEEE International Conference on Services Computing, vol. 1, pp. 249–256. IEEE
(2008)

10. Fahland, D.: Describing behavior of processes with many-to-many interactions. In:
Donatelli, S., Haar, S. (eds.) PETRI NETS 2019. LNCS, vol. 11522, pp. 3–24. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-21571-2 1

11. Ghilardi, S., Gianola, A., Montali, M., Rivkin, A.: Petri nets with parameterised data: mod-
elling and verification (extended version). arXiv preprint arXiv:2006.06630 (2020)

12. van Hee, K., Sidorova, N., Voorhoeve, M.: Resource-constrained workflow nets. Fundamenta
Informaticae 71(2, 3), 243–257 (2006)

13. Kummer, O.: Undecidability in object-oriented Petri nets. In: Petri Net Newsletter. Citeseer
(2000)

14. Lautenbach, K.: Liveness in Petri Nets. Bonn Interner Bericht ISF. Selbstverl, GMD (1975)
15. de Leoni, M., van der Aalst, W.M.P.: Aligning event logs and process models for multi-

perspective conformance checking: an approach based on integer linear programming. In:
Daniel, F., Wang, J., Weber, B. (eds.) BPM 2013. LNCS, vol. 8094, pp. 113–129. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40176-3 10

16. Mannhardt, F., de Leoni, M., Reijers, H.A., van der Aalst, W.M.P.: Balanced multi-
perspective checking of process conformance. Computing 98(4), 407–437 (2016)

17. Mozafari Mehr, A.S., de Carvalho, R.M., van Dongen, B.: Detecting privacy, data and
control-flow deviations in business processes. In: Nurcan, S., Korthaus, A. (eds.) CAiSE
2021. LNBIP, vol. 424, pp. 82–91. Springer, Cham (2021). https://doi.org/10.1007/978-3-
030-79108-7 10

https://www.nwo.nl/projecten/17998
https://doi.org/10.1007/978-3-662-49851-4_1
https://doi.org/10.1007/978-3-319-99414-7
https://doi.org/10.1007/978-3-030-21571-2_1
http://arxiv.org/abs/2006.06630
https://doi.org/10.1007/978-3-642-40176-3_10
https://doi.org/10.1007/978-3-030-79108-7_10
https://doi.org/10.1007/978-3-030-79108-7_10

Exact and Approximated Log Alignments for Processes 119

18. Montali, M., Rivkin, A.: Model checking Petri nets with names using data-centric dynamic
systems. Form. Asp. Comput. 28(4), 615–641 (2016)

19. Montali, M., Rivkin, A.: DB-nets: on the marriage of colored petri nets and relational
databases. In: Koutny, M., Kleijn, J., Penczek, W. (eds.) Transactions on Petri Nets and
Other Models of Concurrency XII. LNCS, vol. 10470, pp. 91–118. Springer, Heidelberg
(2017). https://doi.org/10.1007/978-3-662-55862-1 5

20. Murata, T.: Petri nets: properties, analysis and applications. Proc. IEEE 77(4), 541–580
(1989)

21. Peterson, J.L.: Petri Net Theory and the Modeling of Systems. Prentice Hall PTR, Hoboken
(1981)

22. Rosa-Velardo, F., de Frutos-Escrig, D.: Decision problems for Petri nets with names. arXiv
preprint arXiv:1011.3964 (2010)

23. Rosa-Velardo, F., de Frutos-Escrig, D., Marroquı́n-Alonso, O.: On the expressiveness of
mobile synchronizing Petri nets. Electron. Notes Theor. Comput. Sci. 180(1), 77–94 (2007)

24. Sommers, D., Sidorova, N., van Dongen, B.F.: Aligning event logs to resource-constrained ν-
Petri nets. In: PETRI NETS 2022. LNCS, vol. 13288, pp. 325–345. Springer, Cham (2022).
https://doi.org/10.1007/978-3-031-06653-5 17

25. Sommers, D., Sidorova, N., van Dongen, B.F.: Exact and approximated log alignments for
processes with inter-case dependencies, arXiv (2023)

https://doi.org/10.1007/978-3-662-55862-1_5
http://arxiv.org/abs/1011.3964
https://doi.org/10.1007/978-3-031-06653-5_17

Semantics

Taking Complete Finite Prefixes to High
Level, Symbolically

Nick Würdemann1(B) , Thomas Chatain2 , and Stefan Haar2

1 Department of Computing Science, University of Oldenburg, Oldenburg, Germany
wuerdemann@informatik.uni-oldenburg.de

2 Université Paris-Saclay, INRIA and LMF, CNRS and ENS Paris-Saclay,
Gif-sur-Yvette, France

{thomas.chatain,stefan.haar}@inria.fr

Abstract. Unfoldings are a well known partial-order semantics of P/T
Petri nets that can be applied to various model checking or verification
problems. For high-level Petri nets, the so-called symbolic unfolding gen-
eralizes this notion. A complete finite prefix of the unfolding of a P/T
Petri net contains all information to verify, e.g., reachability of markings.
We unite these two concepts and define complete finite prefixes of the
symbolic unfolding of high-level Petri nets. For a class of safe high-level
Petri nets, we generalize the well-known algorithm by Esparza et al. for
constructing small such prefixes. Additionally, we identify a more gen-
eral class of nets with infinitely many reachable markings, for which an
approach with an adapted cut-off criterion extends the complete prefix
methodology, in the sense that the original algorithm cannot be applied
to the P/T net represented by a high-level net.

1 Introduction

Petri nets [17], also called P/T (for Place/Transition) Petri nets or low-level Petri
nets, are a well-established formalism for describing distributed systems. High-
level Petri nets [12] (also called colored Petri nets) are a concise representation
of P/T Petri nets, allowing the places to carry tokens of different colors. Every
high-level Petri net represents a P/T Petri net, here called its expansion1, where
the process of constructing this P/T net is called expanding the high-level net.

Unfoldings of P/T Petri nets are introduced by Nielsen et al. in [15]. Engel-
friet generalizes this concept in [9] by introducing the notion of branching pro-
cesses, and shows that the unfolding of a net is its maximal branching process.
In [14], McMillan gives an algorithm to compute a complete finite prefix of the
unfolding of a given Petri net. In a well-known paper [10], Esparza, Römer, and
Vogler improve this algorithm by defining and exploiting a total order on the set
of configurations in the unfolding. We call the improved algorithm the “ERV-
algorithm”. It leads to a comparably small complete finite prefix of the unfolding.

1 In the literature, the represented Petri net is often called the unfolding of the high-
level Petri net. To avoid a clash of notions, we use the term expansion as, e.g., in [4].

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Gomes and R. Lorenz (Eds.): PETRI NETS 2023, LNCS 13929, pp. 123–144, 2023.
https://doi.org/10.1007/978-3-031-33620-1_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33620-1_7&domain=pdf
http://orcid.org/0000-0001-7934-820X
http://orcid.org/0000-0002-1470-5074
https://doi.org/10.1007/978-3-031-33620-1_7

124 N. Würdemann et al.

In [13], Khomenko and Koutny describe how to construct the unfolding of the
expansion of a high-level Petri net without first expanding it.

High-level representations on the one hand and processes (resp. unfoldings)
of P/T Petri nets on the other, at first glance seem to be conflicting concepts;
one being a more concise, the other a more detailed description of the net(’s
behavior). However, in [8], Ehrig et al. define processes of high-level Petri nets,
and in [5], Chatain and Jard define symbolic branching processes and unfoldings
of high-level Petri nets. The work on the latter is built upon in [4] by Chatain and
Fabre, where they consider so-called “puzzle nets”. Based on the construction
of a symbolic unfolding, in [6], complete finite prefixes of safe time Petri nets
are constructed, using time constraints associated with timed processes. In [3],
using a simple example, Chatain argues that in general there exists no complete
finite prefix of the symbolic unfolding of a high-level Petri net. However, this is
only true for high-level Petri nets with infinitely many reachable markings such
that the number of steps needed to reach them is unbounded, in which case the
same arguments work for P/T Petri nets.

In this paper, we lift the concepts of complete prefixes and adequate orders
to the level of symbolic unfoldings of high-level Petri nets. We consider the class
of safe high-level Petri nets (i.e., in all reachable markings, every place carries at
most one token) that have decidable guards and finitely many reachable mark-
ings. This class generalizes safe P/T Petri nets, and we obtain a generalized
version of the ERV-algorithm creating a complete finite prefix of the symbolic
unfolding of such a given high-level Petri net. Our results are a generalization
of [10] in the sense that if a P/T Petri net is viewed as a high-level Petri net,
the new definitions of adequate orders and completeness of prefixes on the sym-
bolic level, as well as the algorithm producing them, all coincide with their P/T
counterparts.

We proceed to identify an even more general class of so-called symbolically
compact high-level Petri nets; we drop the assumption of finitely many reachable
markings, and instead assume the existence of a bound on the number of steps
needed to reach all reachable markings. In such a case, the expansion is possibly
not finite, and the original ERV-algorithm from [10] therefore not applicable.
We adapt the generalized ERV-algorithm by weakening the cut-off criterion to
ensure finiteness of the resulting prefix. Still, in this cut-off criterion we have
to compare infinite sets of markings. We overcome this obstacle by symbolically
representing these sets, using the decidability of the guards to decide cut-offs.

Due to spatial limitations, we move some proofs to the full version [18] of
this paper.

2 High-Level Petri Nets and Symbolic Unfoldings

In [5], symbolic unfoldings for high-level Petri nets are introduced. We recall
definitions and formalism for high-level Petri nets and symbolic unfoldings.

Multi-sets. For a set X, we call a functions A : X → N a multi-set over X.
We denote x ∈ A if A(x) ≥ 1. For two multi-sets A,A′ over the same set X,
we write A ≤ A′ iff ∀x ∈ X : A(x) ≤ A′(x), and denote by A + A′ and A − A′

Taking Complete Finite Prefixes to High Level, Symbolically 125

the multi-sets over X given by (A + A′)(x) = A(x) + A′(x) and (A − A′)(x) =
min(A(x)−A′(x), 0). We use the notation {| . . . |} as introduced in [13]: elements
in a multi-set can be listed explicitly as in {|x1, x1, x2 |}, which describes the
multi-set A with A(x1) = 2, A(x2) = 1, and A(x) = 0 for all x ∈ X \ {x1, x2}. A
multi-set A is finite if there are finitely many x ∈ X such that A(x) ≥ 0. In such
a case, {| f(x) | x ∈ A |}, with f(x) being an object constructed from x ∈ X,
denotes the multi-set A′ such that A′ =

∑
x∈X A(x) · f(x), where the A(x) · y is

the multi-set containing exactly A(x) copies of y.

2.1 High-Level Petri Nets

We assume two given sets Col (colors) and Var (variables). A high-level net struc-
ture is a tuple N = 〈P, T, F, ι〉, with disjoint sets of places P and transitions T ,
a flow function F : (P ×Var×T)∪(T ×Var×P)→ N, and a function ι mapping
each t ∈ T to a predicate ι(t) on Var(t) := {v ∈ Var | 〈p, v, t〉 ∈ F∨〈t, v, p〉 ∈ F},
called the guard of t. A marking in N is a multi-set M over P ×Col , describing
how often each color c ∈ Col currently lies on each place p ∈ P . A high-level Petri
net N = 〈N ,M0〉 is a net structureN together with a setM0 of initial markings,
where we assume ∀M0,M

′
0 ∈ M0 : {| p | 〈p, c〉 ∈ M0 |} = {| p | 〈p, c〉 ∈ M ′

0 |}, i.e.,
in all initial markings, the same places are marked with the same number of col-
ors.

For two nodes x, y ∈ P ∪ T , we write x → y, if there exists a variable v
such that 〈x, v, y〉 ∈ F . The reflexive and irreflexive transitive closures of →
are denoted respectively by ≤ and <. For a transition t ∈ T , we denote by
pre (t) := {| 〈p, v〉 | 〈p, v, t〉 ∈ F |} and post (t) := {| 〈p, v〉 | 〈t, v, p〉 ∈ F |} the
preset and postset of t. A firing mode of t is a mapping σ : Var(t) → Col
such that ι(t) evaluates to true under the substitution given by σ, denoted by
ι(t)[σ] ≡ true. We then denote pre (t, σ) := {| 〈p, σ(v)〉 | 〈p, v〉 ∈ pre (t) |} and
post (t, σ) := {| 〈p, σ(v)〉 | 〈p, v〉 ∈ post (t) |}. The set of modes of t is denoted
by Σ(t). t can fire in such a mode σ from a marking M if M ≥ pre (t, σ), denoted
by M [t, σ〉. This firing leads to a new marking M ′ = (M −pre (t, σ))+post (t, σ),
which is denoted by M [t, σ〉M ′. We collect in the set R(N ,M) the markings
reachable by firing a sequence of transitions in N from any marking in a set of
markings M. N resp. N is called finite if P , T and F are finite.

Let N = 〈P, T, F, ι〉 and N ′ = 〈P ′, T ′, F ′, ι′〉 be two net structures. A func-
tion h : P ∪ T → P ′ ∪ T ′ is called a high-level net homomorphism, if:

i) it maps places and transitions in N into the corresponding sets in N ′, i.e.,
h(P) ⊆ P ′ ∧ h(T) ⊆ T ′;

ii) it is “compatible” with the preset, postset, and guard of transitions, i.e., for
all t ∈ T we have pre (h(t)) = {| 〈h(p), v〉 | 〈p, v〉 ∈ pre (t) |}, post (h(t)) =
{| 〈h(p), v〉 | 〈p, v〉 ∈ post (t) |}, and ι(t) = ι′(h(t)).

For N = 〈N ,M0〉 and N ′ = 〈N ′,M′
0〉, the homomorphisms between N and N ′

are the homomorphisms between N and N ′. Such a homomorphism h is called
initial if additionally {{| 〈h(p), c〉 | 〈p, c〉 ∈M0 |} | M0 ∈M0} =M′

0 holds.
We define P/T Petri nets as high-level Petri nets with singletons Col = {•}

and Var = {v•} for colors and variables, i.e., in a marking, every place holds a

126 N. Würdemann et al.

number of tokens •, which is the only value ever assigned to the variable v• on
every arc. The guard of every transition in a P/T Petri net is true.

2.2 Symbolic Branching Processes and Unfoldings

We recall the definition of symbolic branching processes and unfoldings from [5].
It is a generalization of branching processes and unfoldings for P/T Petri nets.

A net structure N = 〈P, T, F, ι〉 is called ordinary if there is at most one
arc connecting any two nodes in N , i.e., ∀x, y ∈ P ∪ T :

∑
v∈Var F (x, v, y) ≤ 1.

For such an ordinary net structure, analogously to the low-level case described,
e.g., in [10], two nodes x, y ∈ P ∪ T are in structural conflict, denoted by x�y, if
∃p ∈ P ∃t, t′ ∈ T : t �= t′ ∧ p → t ∧ p → t′ ∧ t ≤ x ∧ t′ ≤ y.

A high-level occurrence net is a high-level Petri net O = 〈B,E,G, ι,K0〉 with
an ordinary net structure 〈B,E,G, ι〉, where B is a set of conditions (places), E
is a set of events (transitions), G is a flow relation, and K0 is the set of initial
cuts (markings), having the following properties:

i) No event is in structural self-conflict, i.e., ∀e ∈ E :¬(e�e).
ii) No node is its own causal predecessor, i.e., ∀x ∈ B ∪ E : ¬(x < x);
iii) The flow relation is well-founded, i.e., ∀x ∈ B ∪ E : |{y | y ≤ x}| <∞;
iv) For every b ∈ B, exactly one of the following holds:

a) ∀K0 ∈ K0 :
∑

c∈Col K0(b, c) = 0 and there exists a unique pair 〈e, v〉
called pre (b) s.t. 〈e, v, b〉 ∈ G, and for this pair we have G(e, v, b) = 1.

b) ∀K0 ∈ K0 :
∑

c∈Col K0(b, c) = 1 and {e | e → b} = ∅.
In this case we denote pre (b) := 〈⊥, vb〉.

The properties i) – iii) are exactly as in the low-level case and concern solely the
net structure. Property iv) generalizes the requirement of low-level occurrence
nets that every condition has at most one event in its preset, and that the
conditions with empty preset constitute the initial cut.

In a crucial notation for what follows in later sections, we identify in case iv.a)
the event e by e(b) and the variable v by v(b), and in case iv.b) we define
e(b) := ⊥, and v(b) := vb. We abbreviate ve(b) := v(b)e(b). We denote by
B0 := {b ∈ B | ∃K0 ∈ K0, c ∈ Col : 〈b, c〉 ∈ K0} the conditions from iv.b)
occupied in all initial cuts. ⊥ can be seen as a “special event” that fires only
once to initialize the net, and produces the initial cuts K0 ∈ K0 by assigning
values to the variables vb on “special arcs” 〈⊥, vb, b〉 towards the conditions
b ∈ B0.

For a high-level occurrence net, we define the mappings loc-pred and pred
equipping events with predicates. For any e ∈ E, pred(e) is satisfiable iff e is
not dead, i.e., there are cuts K0, . . . , Kn with K0 ∈ K0 and events e1, . . . , en, s.t.
K0[e1〉 . . . [en〉Kn[e〉. This predicate is obtained by building a conjunction over
all local predicates of events e′ with e′ ≤ e (including the special event ⊥). The
local predicate of e is, in its turn, a conjunction of two predicates expressing
that (i) the guard of the event e is satisfied, and (ii) that for any 〈b, v〉 ∈ pre (e),
the value of the variable v coincides with the color that the event e(b) placed b.

Taking Complete Finite Prefixes to High Level, Symbolically 127

Fig. 1. A safe high-level Petri net N in (a), and (a prefix of) the infinite symbolic
unfolding U(N) in (b). We have Col = {0, . . . , m} and Var = {k, �, �′}.

To realize this, the variables v ∈ Var(e) are instantiated by the index e, so that
ve describes the value assigned to v by a mode of e. Formally, we have

loc-pred(e) := ι(e)[v ← ve]v∈Var(e) ∧
∧

〈b,v〉∈pre (e)

ve = ve(b)

pred(e) := pred(⊥) ∧
∧

e′≤e

loc-pred(e′),

where pred(⊥) :=
∨

K0∈K0

∧
〈b,c〉∈K0

(vb
⊥ = c) describes the set of initial cuts.

A symbolic branching process of a high-level Petri net N is a pair β = 〈O, h〉
with an occurrence net O = 〈B,E,G, ι,K0〉 in which pred(e) is satisfiable for all
e ∈ E, and an initial homomorphism h : O → N that is injective on events with
the same preset, i.e., ∀e, e′ ∈ E : (pre (e) = pre (e′) ∧ h(e) = h(e′)) ⇒ e = e′.

For two symbolic branching processes β = 〈O, h〉 and β′ = 〈O′, h′〉 of a
high-level Petri net, β is a prefix of β′ if there exists an injective initial homo-
morphism φ from O into O′, such that h′ ◦φ = h. In [5] it is argued that for any
given high-level Petri net N there exists a unique maximal branching process
(maximal w.r.t. the prefix relation and unique up to isomorphism). This branch-
ing process is called the symbolic unfolding, and denoted by Υ (N) = 〈U(N), π〉.
Example 1. Let Col = {0, . . . , m} for a fixed m, and Var = {k,
,
′} be the given
sets of colors and variables. In Fig. 1a, the running example N of a high-level
Petri net2 is depicted. Places are drawn as circles, and transitions as squares. The
flow is described by labeled arrows, and the guards are written next to the respec-
tive transition. N has just one initial marking M0 = {| 〈p1, 0〉 |}, which is depicted
in the net. From M0 only t1 can fire, and only in the mode [k ← 0,
 ← 1], tak-
ing 0 from p1 and placing a token of color 1 on p2. From there, t2 can fire
2 The structure of this example is taken from Figure D.4.5 in [2].

128 N. Würdemann et al.

arbitrarily often, always replacing the color
 currently residing on p2 by any
color 0 <
′ ≤ m, until t3 fires, placing 0 on p3 and ending the execution.

The infinite occurrence net U(N) of the symbolic unfolding Υ (N) in Fig. 1b
describes this behavior: we depict the prefix of the unfolding representing the
executions of the net in which t2 fires up to three times. The values of the
homomorphism π (also called labels) are given by the subscript of a node’s
name, e.g., π(e1) = t1 or π(b23) = p3. The guards of events are omitted, since
they have the same guards as their label. Instead, the local predicate of each
event is written next to it. The local predicate of e22, e.g., expresses that (i) the
assignment of colors to variables by a mode of e22 must satisfy the constraint
given by the guard of its label t2 (
′

e2
2
�= 0), and that (ii) the color consumed

when firing e22 must be the one placed on b22 by e12 (
e2
2

=
′
e1
2
). The red dotted

line marks the complete finite prefix obtained by Algorithm 1, as described later.

As we see in the definition of high-level occurrence nets, the notion of causal-
ity and structural conflict are the same as in the low-level case. However, a set
of events in an occurrence net can also be in what we call color conflict, meaning
that the conjunction of their predicates is not satisfiable. In a symbolic branch-
ing process, this means that the constraints on the values of the firing modes,
coming from the guards of the transitions, prevent joint occurrence of all events
from such a set in any one run of the net:

The nodes in a set X ⊆ E ∪B and are in color conflict if
∧

e∈X∩E pred(e) ∧∧
b∈X∩B pred(e(b)) is not satisfiable. The nodes of X are concurrent if they are

not in color conflict, and for each x, x′ ∈ X ′, neither x < x′ , nor x′ < x, nor
x�x′ holds. A set of concurrent conditions is called a co-set.

Note that while a set of nodes is defined to be in structural conflict if and
only if two nodes in it are in structural conflict, the same does not hold for color
conflict: it is possible to have a set {x1, x2, x3} of nodes that are in color conflict,
but for which every subset of cardinality 2 is not in color conflict.

Definition 1 (Configuration [5]). A (symbolic) configuration is a set of high-
level events that is free of structural conflict and color conflict, and causally
closed. The configurations in a symbolic branching process β are collected
in the set C(β).

For a configuration C, we define by cut(C) := (B0 ∪ (C →)) \ (→ C) the
high-level conditions that are occupied after any concurrent execution of C. Note
that cut(C) is a co-set, and that ∅ is a configuration with cut(∅) = B0.

Let e ∈ E be a high-level event. We define the so-called cone configuration
[e] := {e′ ∈ E | e′ ≤ e}. Additionally, we define the sets Vare := {ve | v ∈
Var(e)} and Var⊥ := {vb

⊥ | b ∈ B0} of indexed variables, and for a set E′ ⊆
E ∪ {⊥} we denote VarE′ :=

⋃
e∈E′ Vare. Note that, for every event e, pred(e)

is a predicate over the variables Var [e]∪{⊥}.

2.3 Properties of the Symbolic Unfolding

Having recalled the definitions and formal language from [5], we now delve into
the novel aspects of this paper. We state three analogues of well-known proper-

Taking Complete Finite Prefixes to High Level, Symbolically 129

ties of the Unfolding of P/T Petri nets for the symbolic unfolding of high-level
nets. These properties are: (i) the cuts in the unfolding represent precisely the
reachable markings in the net, (ii) for every transition that can occur in the net,
there is an event in the unfolding with corresponding label (and vice versa), and
(iii) the unfolding is complete in the sense that for any configuration, the part of
the unfolding that “lies after” that configuration is the unfolding of the original
net with the initial markings being the ones represented by the configurations
cut. The properties are stated in Proposition 1, 2, and 3, respectively. Their
proofs are moved to [18].

To express these properties, we introduce the notion of instantiations of
configurations C, choosing a mode for every event in C without creating color
conflicts. This is realized by assigning to each variable ve ∈ VarC∪{⊥} a value in
Col , such that the above defined predicates evaluate to true. For each e ∈ C, the
assignment of values to the indexed variables in Vare corresponds to a mode of e.

Definition 2 (Instantiation). For a given configuration C, an instantiation
of C is a function θ : VarC∪{⊥} → Col, such that ∀e ∈ C ∪ {⊥} : pred(e)[θ] ≡
true, i.e., it satisfies all predicates in the configuration. The set of instantiations
of a given configurations C is denoted by Θ(C).

Note that, by definition, every configuration C has an instantiation θ. We denote
by cut(C, θ) := {〈b, c〉 | b ∈ cut(C) ∧ θ(ve(b)) = c} ⊆ B × Col the cut of
an “instantiated configuration”, and by mark(C, θ) := {| 〈h(b), c〉 | 〈b, c〉 ∈
cut(C.θ) |} its marking. We collect both of these in K(C) := {cut(C, θ) | θ ∈
Θ(C)} and M(C) := {mark(C, θ) | θ ∈ Θ(C)}. Note that in this notation, for
the empty configuration we have K(∅) = K0 and M(∅) = M0.

Proposition 1. Let N be a high-level Petri net and Υ its symbolic unfolding.
Then R(N) = {mark(C.θ) | C ∈ C(Υ), θ ∈ Θ(C)}.
Proposition 2. The symbolic unfolding Υ = 〈U, π〉 with events E of a high-level
Petri net N = 〈P, T, F, ι,M0〉 satisfies ∀C ∈ C(Υ) ∀θ ∈ Θ(C) ∀t ∈ T ∀σ ∈ Σ(t) :

mark(C, θ)[t, σ〉 ⇔ ∃e ∈ E : π(e) = t ∧ cut(C, θ)[e, σ〉.
Given a configuration C of a symbolic branching process β = 〈O, h〉, we define

⇑C as the pair 〈O′, h′〉, where O′ is the unique subnet of O whose set of nodes is
{x ∈ B∪E | x /∈ (C∪ → C)∧∀y ∈ C : ¬(y�x)∧(C∪{x} is not in color conflict)}
with the set K(C) of initial cuts, and h′ is the restriction of h to the nodes of O′.
The branching process ⇑C is referred to as the future of C.

Proposition 3. If β is a symbolic branching process of 〈N ,M0〉 and C is a
configuration of β, then ⇑C is a branching process of 〈N ,M(C)〉. Moreover, if
β is the unfolding of 〈N ,M0〉, then ⇑C is the unfolding of 〈N ,M(C)〉.

3 Finite and Complete Prefixes of Symbolic Unfoldings

We combine ideas from [10] (computing small finite and complete prefixes of
unfoldings) with results from [5] (symbolic unfoldings of high-level Petri nets)

130 N. Würdemann et al.

to define and construct complete finite prefixes of symbolic unfoldings of high-
level Petri nets. We generalize the concepts and the ERV-algorithm from [10]
for safe P/T Petri nets to a class of safe high-level Petri nets, and compare this
generalization to the original. We will see that for P/T nets interpreted as high-
level nets, all generalized concepts (i.e., complete prefixes, adequate orders, cut-
off events), and, as a consequence, the result of the generalized ERV-algorithm
all coincide with their P/T counterparts.

We start by lifting the definition of completeness to the level of symbolic
unfoldings. Together with Propositions 1 and 2, this can be seen as a direct
translation from the low-level case described, e.g., in [10].

Definition 3 (Complete Prefix). Let β = 〈O, h〉 be a prefix of the symbolic
unfolding of a high-level Petri net N , with events E′. Then β is called complete
if for every reachable marking M in N there exists C ∈ C(β) and θ ∈ Θ(C) s.t.

i) M = mark(C, θ), and
ii) ∀t ∈ T ∀σ ∈ Σ(t) : M [t, σ〉 ⇒ ∃e ∈ E′ : h(e) = t ∧ cut(C.θ)[e, σ〉.

We now define the class Nf of high-level Petri nets for which we generalize
the construction of finite and complete prefixes of the unfolding of safe P/T
Petri nets from [10]. We discuss the properties defining this class, and describe
how it generalizes safe P/T nets.

Definition 4 (Class Nf). The class Nf contains all finite high-level Petri nets
N = 〈P, T, F, ι,M0〉 satisfying the following three properties:

(1) The net is safe, i.e., in every reachable marking there lies at most 1 color
on every place (formally; ∀M ∈ R(N)∀p ∈ P :

∑
c∈Col M(p, c) ≤ 1).

(2) Guards are written in a decidable first-order theory with the set Col as its
domain of discourse.

(3) The net has finitely many reachable markings (formally; |R(N)| <∞).

We require the safety property (1) for two reasons; on the one hand, to avoid
adding to the already heavy notation. On the other hand, while we think that
a generalization to bounded high-level Petri nets is possible, it comes with all
the troubles known from going from safe to k-bounded in the P/T case in [10],
plus the problems arising from the expressive power of the high-level formalism.
We therefore postpone this generalization to future work. Note that, under the
safety condition, we can w.l.o.g. assume N to be ordinary (i.e., ∀x, y ∈ P ∪ T :∑

v∈Var F (x, v, y) ≤ 1), since transitions violating this property could never fire.
The finiteness of N implies that we can assume Var to be finite.

While property (2) seems very strong, the goal is an algorithm that generates
a complete finite prefix of the symbolic unfolding of a given high-level Petri
net. The definition of symbolic branching processes requires the predicate of
every event added to the prefix to be satisfiable, and the predicates are build
from the guards in the given net. Thus, satisfiability checks in the generation of
the prefix seem for now inevitable. An example for such a theory is Presburger
arithmetic [16], which is a first order theory of the natural numbers with addition.
The guards in the example from Fig. 1a are written in Presburger arithmetic.

Taking Complete Finite Prefixes to High Level, Symbolically 131

We need Property (3) to ensure that the generalized version of the cut-off
criterion from [10] yields a finite prefix constructed in the generalized ERV-
Algorithm. |R(N)| < ∞ can be ensured by having a finite set Col of colors. In
Sect. 4, we identify a class of high-level Petri nets with infinitely many reachable
markings for which the algorithm works with an adapted cut-off criterion.

Under these three assumptions we generalize the finite safe P/T Petri nets
considered in [10]: every such P/T net can be seen as a high-level Petri net with
Col = {•} and all guards being true, and thus satisfying the three properties
above. Replacing the safety property (1) by a respective “k-bounded property”
would result in a generalization of k-bounded P/T nets. In Sect. 3.3, we compare
the result of the generalized ERV-algorithm Algorithm 1 applied to a high-level
net to the result of the original ERV-algorithm from [10] applied to the nets
expansion.

For the rest of the section let N = 〈P, T, F, ι,M0〉 ∈ Nf with symbolic
unfolding Υ = 〈U, π〉 = 〈B,E,G, ι,K0, π〉.

3.1 Generalizing Adequate Orders and Cut-Off Events

We lift the concept of adequate orders on the configurations of an occurrence net
to the level of symbolic unfoldings. A main property of adequate orders is the
preservation by finite extensions, which are defined as for P/T-nets (cp. [10]):

Given a configuration C, we denote by C⊕D the fact that C ∪D is a config-
uration such that C ∩D = ∅. We say that C⊕D is an extension of C, and that
D is a suffix of C. Obviously, for a configuration C ′, if C � C ′ then there is a
nonempty suffix D of C such that C⊕D = C ′. For a configuration C⊕D, denote
by O(C|D) = 〈cut(C) ∪→D ∪D→,D,G′,K(C)〉 the occurrence net around D
from cut(C), where G′ is the restriction of G to the nodes of O(C|D). Note that
for every finite configuration C with an extension C⊕D, we have that D is a
configuration of ⇑C.

For better readability, we abbreviate for a marking M the fact C�M�D :⇔
∃θ ∈ Θ(C⊕D) : mark(C, θ|VarC∪{⊥}) = M. Thus, C�M�D means that the tran-
sitions corresponding to the events in D can fire from M ∈M(C).

The now stated Proposition 4 is a weak version of the arguments in [10], where
Esparza et al. follow from the low-level version of Proposition 3 that if the cuts
of two low-level configurations represent the same marking in the low-level net,
then their futures are isomorphic, and the respective (unique) isomorphism maps
the suffixes of one configuration to the suffixes of the other.

Proposition 4. Let C1 and C2 be two finite configurations in Υ , and let D
be a suffix of C1. If there is a marking M ∈ M(C1) ∩ M(C2) s.t. C1�M�D,
then there is a unique monomorphism ϕ2

1,D : O(C1|D) → ⇑C2 that satisfies
ϕ2
1,D(cut(C1)) = cut(C2) and preserves the labeling π.

For this monomorphism we have that ϕ2
1,D(D) is a suffix of C2.

The proof is an induction over the size of D (cp. [18]).
Equipped with Proposition 4, we can now lift the concept of adequate order

to the level of symbolic branching processes. Compared to [10,14], the monomor-
phism ϕ2

1,D defined above replaces the isomorphism I21 between ⇑ C1 and ⇑ C2

for two low-level configurations C1, C2 representing the same marking.

132 N. Würdemann et al.

Definition 5 (Adequate order). A partial order ≺ on the finite configurations
of the symbolic unfolding of a high-level Petri net is an adequate order if:

i) ≺ is well-founded,
ii) C1 ⊂ C2 implies C1 ≺ C2, and
iii) ≺ is preserved by finite extensions in the following way: if C1, C2 are two

finite configurations, and C1⊕D is a finite extension of C1 such that there
is a marking M ∈M(C1)∩M(C2) satisfying C1�M�D, then the monomor-
phism ϕ2

1,D from above satisfies C1 ≺ C2 ⇒ C1⊕D ≺ C2⊕ϕ2
1,D(D).

In the case of a P/T net interpreted as a high-level net, we have |M(C)| = 1
for every configuration C, and therefore, Definition 5 coincides with its P/T
version [10]. We could alternatively generalize the P/T case by replacing ‘∃M ∈
M(C1)∩M(C2) s.t. C1�M�D’ by ‘M(C1) = M(C2)’, and use the isomorphism
I21 between ⇑C1 and ⇑C2 to define preservation by finite extension. However, in
the upcoming generalization of the ERV-algorithm from [10], the generalized cut-
off criterion exploits property iii) of adequate orders. Using ‘M(C1) = M(C2)’
would produce an exponential blowup of the generated prefix’s size. This is
circumvented by using ‘∃M ∈ M(C1) ∩M(C2) s.t. C1�M�D’, which however
leads to obtaining merely a monomorphism that depends on the considered suf-
fix, instead of an isomorphism between the futures. We now show that this
monomorphism sufficient:

The upcoming proof that the generalized ERV-algorithm is complete is struc-
turally analogous to the respective proof in [10]. It uses that, under the condi-
tions of Definition 5 iii), we also have C2 ≺ C1 ⇒ C2⊕ϕ2

1,D(D) ≺ C1⊕D. This
result would directly be obtained if ϕ2

1,D was an isomorphism, as I21 is in the
low-level case. However, a monomorphism is an isomorphism when its codomain
is restricted to its range. This idea is used in the proof (cp. App [18]) of the fol-
lowing proposition, which states that ϕ2

1,D indeed satisfies the above property.

Proposition 5. Let ≺ be an adequate order. Under the conditions of Defini-
tion 5 iii) the monomorphism ϕ2

1,D also satisfies C2 ≺ C1 ⇒ C2⊕ϕ2
1,D(D) ≺

C1⊕D.

In [10], Esparza et al. discuss three adequate orders on the configurations of
the low-level unfolding. In particular, they present a total adequate order that
uses the Foata normal form of configurations. Using such a total order in the
algorithm limits the size of the resulting finite and complete prefix; It contains at
most |R(N)| non cut-off events. All three adequate orders presented in [10] can
be directly lifted to the configurations of the symbolic unfolding by exchanging
every low-level term by its high-level counterpart. The lifted order using the
Foata normal form is still a total order. We include these discussions in [18].

We now define cut-off events in a symbolic unfolding. In the low-level case [10],
e is a cut-off event if there is another event e′ satisfying [e′] ≺ [e] and mark([e]) =
mark([e′]), which ensures that the future of e needs not be considered further. In
the high-level case, we generalize these conditions to high-level events e. However,
we do not require the existence of one other high-level event e′ with [e′] ≺ [e]
and M([e]) = M([e′]). While this would still be a valid cut-off criterion and

Taking Complete Finite Prefixes to High Level, Symbolically 133

would lead to finite and complete prefixes, the upper bound on the size of such
a prefix would be exponential in the number of markings in the original net.
Instead, we check whether M([e]) is contained in the union of all M([e′]) with
[e′] ≺ [e]. This criterion expresses that we have already seen every marking in
M([e]) in the prefix β under construction, and therefore need not consider the
future of e any further. By this, we obtain the same upper bounds as in [10], as
discussed later.

Definition 6 (Cut-off event). Let ≺ be an adequate order on the configura-
tions of the symbolic unfolding of a high-level Petri net. Let β be a prefix of the
symbolic unfolding containing a high-level event e. The high-level event e is a
cut-off event in β (w.r.t. ≺) if M([e]) ⊆ ⋃

[e′]≺[e]M([e′]).

When interpreting P/T nets as high-level nets, this definition corresponds to the
cut-off events defined in [10], since then |M([e])| = 1 for all events e.

3.2 The Generalized ERV-Algorithm

We present the algorithm for constructing a finite and complete prefix of the
symbolic unfolding of a given high-level Petri net. It is a generalization of the
ERV-algorithm from [10], and is structurally equal (and therefore looks very
similar). However, the algorithm is contingent upon the previous section’s work
of generalizing adequate orders and cut-off events, which ultimately enables us
to adopt this structure.

A crucial concept of the ERV-algorithm is the notion of “possible extensions”,
i.e., the set of individual events that extend a given prefix of the unfolding. In
Definition 7, we lift this concept to the level of symbolic unfoldings. We do so
by isolating the procedure of adding high-level events in the algorithm from [5]
which generates the complete symbolic unfolding of a given high-level Petri net
(but does not terminate if the symbolic unfolding is infinite).

We define the data structures similarly to [10]. There, an event is given by a
tuple e = 〈t,B′〉 with h(e) = t ∈ T and pre (e) = B′ ⊆ B, and a condition given
by a tuple b = 〈p, e〉 with h(b) = p ∈ P and pre (b) = {e} ⊆ E. The finite and
complete prefix is a set of such events and transitions.

In the high-level case, we need more information inside the tuples. A high-
level event is given by a tuple e = 〈t,X, pred〉 described by h(e) = t, pre (e) =
X ⊆ B × Var , and pred(e) = pred . Analogously, a high-level condition is given
by a tuple b = 〈p, 〈e, v〉, pred〉, where h(b) = p, pre (b) = 〈e, v〉 ∈ (E × Var) ∪
({⊥} × {vb | b ∈ B0}), and pred(e(b)) = pred .

Definition 7 (Possible Extensions). Let β = 〈O, h〉 be a branching process
of a high-level Petri net N . The possible extensions PE (β) are the set of tuples
e = 〈t,X, pred〉 where t is a transition of N , and X ⊆ B ×Var satisfying

– {b | 〈b, v〉 ∈ X} is a co-set, and pre (t) = {〈h(b), v〉 | 〈b, v〉 ∈ X},
– pred = loc-pred ∧ (∧

〈b,v〉∈X pred(e(b))
)

is satisfiable,
where loc-pred = ι(t)[v ← ve]v∈Var(e) ∧

(∧
〈b,v〉∈X ve = ve(b)

)
,

– Fin does not contain 〈t,X, pred〉.

134 N. Würdemann et al.

Since the notion of co-set in high-level occurrence nets is achieved by the direct
translation from low-level occurrence nets plus the “color conflict freedom”, possi-
ble extensions in a prefix β can be found by searching first for sets of conditions
that are not in structural conflict as in the low-level case, and then checking
whether these sets are in color conflict.

Algorithm 1 is a generalization of the ERV-Algorithm in [10] for complete
finite prefixes of the low-level unfolding. The structure is taken from there, with
the only difference being the special initial transition ⊥. It takes as input a
high-level Petri net N ∈ Nf and assumes a given adequate order ≺.

Algorithm 1: Generalization of the ERV-Algorithm from [10] for complete
finite prefixes.
Data: High-level Petri net N = 〈P, T, F, ι, M0〉 ∈ Nf .
Result: A complete finite prefix Fin of the symbolic unfolding of N .
Fin ← {⊥};

pred(⊥) ← ∨
M0∈M0

∧
〈p,c〉∈M0

v
bp
⊥ = c;

foreach p ∈ P0 do
Create a fresh condition bp = 〈p, 〈⊥, vbp〉, pred(⊥)〉;
Fin ← Fin ∪ {b};

pe ← PE(Fin);
cut-off ← ∅;
while pe 	= ∅ do

Pick e = 〈t, X, pred〉 from pe such that [e] is minimal w.r.t. ≺;
if [e] ∩ cut-off = ∅ then

Fin ← Fin ∪ {e};
foreach 〈p, v〉 ∈ post (t) do

Create a fresh condition b = 〈p, 〈e, v〉, pred〉;
Fin ← Fin ∪ {b};

pe ← PE(Fin);
if e is a cut-off event of Fin then

cut-off ← cut-off ∪{e};

else
pe ← pe \ {e}

We now prove correctness of Algorithm 1 analogously to [10], by stating two
propositions – one each to show that the prefix is finite and complete, respectively.
The proof structure is also as in [10], but adapted to the setting of high-level
Petri nets and symbolic unfoldings.

Proposition 6. Fin is finite.

Proof (Sketch). As in [10], we prove the following results (1) – (3):

(1) For every event e of Fin, d(e) ≤ |R(N)|+ 1, where d is the depth of e.
(2) For every event e of Fin, the sets pre (e) and post (e) are finite, and
(3) For every k ≥ 0, Fin contains only finitely many events e such that d(e) ≤ k

Taking Complete Finite Prefixes to High Level, Symbolically 135

This works exactly as in [10], as shown in [18], with minor adaptations to the
generalization of cut-offs in the symbolic unfolding in (1). ��
Proposition 7. Fin is complete.

The proof also has the same general structure as the respective proof in [10].
However, since here we use the generalizations of adequate order, possible exten-
sions, and the cut-off criterion to symbolic branching processes, we include the
complete proof in the body of the paper.

Notation. For functions f : X → Y and f ′ : X ′ → Y with X ∩ X ′ = ∅ we
define f �f ′ : X∪X ′ → Y by mapping x to f(x) if x ∈ X and to f ′(x) if x ∈ X ′.

Proof of Proposition. 7 We first show that for every reachable marking in N
there exists a configuration in Υ satisfying a) from the definition of complete
prefixes, and then show that one of these configurations (a minimal one) also
satisfies b).

(1) Let M be an arbitrary reachable marking in N . Then by Proposition 1,
we have that there is a C1 ∈ C(Υ) s.t. M ∈ M(C1). Let θ1 ∈ Θ(C1)
s.t. M = mark(C1.θ1). If C is not a configuration in Fin, then it con-
tains a cut-off event e1, and so C1 = [e1]⊕D for some set D of events.
Let M1 = mark([e1].θ1|Var [e1]∪{⊥}) ∈ M([e1]). By the definition of cut-
off event, there exists an event e2 with [e2] ≺ [e1] and M1 ∈ M([e2]).
Since we have C1�M1�D, we get by Proposition 4 that the monomorphism
ϕ1 := ϕ

[e2]
[e1],D

: O([e1]|D) → ⇑[e2] exists and that ϕ1(D) is a suffix of [e2].
By Proposition 5 we know

C2 := [e2]⊕ϕ1(D) ≺ [e1]⊕D = C1.

Let θ′
2 ∈ Θ([e2]) s.t. M1 = mark([e2], θ′

2). Define now θ2 ∈ Θ(C2) by θ2 =
θ′
2 � θ′′

2 , where θ′′
2 : Varϕ1(D) → Col is given by θ′′

2 (vϕ1(e)) = θ1(ve). By this
construction we get M = mark(C2, θ2) ∈M(C2).
If C2 is not a configuration of Fin, then we can iterate the procedure and
find a configuration C3 such that C3 ≺ C2 and M ∈M(C3). The procedure
cannot be iterated infinitely often because ≺ is well-founded. Therefore, it
terminates in a configuration of Fin.

(2) Let now C be a minimal configuration w.r.t. ≺ s.t. M ∈M(C), and let t ∈ T ,
σ ∈ Σ(t) s.t. M [t, σ〉. If C contains some cut-off event, then we can apply the
arguments of a) to conclude that Fin contains a configuration C ′ ≺ C such
that M ∈ M(C ′). This contradicts the minimality of C. So C contains no
cut-off events. Let θ ∈ Θ(C) s.t. M = mark(C, θ). Since pre (t.σ) ⊆ M , we
have that there is a co-set Bt,σ ⊆ cut(C) s.t. pre (t, σ) = {〈h(b), θ(ve(b))〉 |
b ∈ Bt,σ}. Let now X := {〈b, v〉 | b ∈ Bt,σ, 〈h(b), v〉 ∈ pre (t)}. We then have
∀〈b, v〉 ∈ X : σ(v) = θ(ve(b)).
We now show that pred := ι(t)[v ← ve]v∈Var(e) ∧

(∧
〈b,v〉∈X ve = ve(b)

) ∧
∧

(b,v)∈X pred(e(b)) is satisfiable. Let θ′ := θ � (σ ◦ [ve �→ v]v∈Var(e)). Then
– ι(t)[v ← ve]v∈Var(e)[θ′] ≡ ι(t)[σ] ≡ true, and
–

(∧
〈b,v〉∈X ve = ve(b)

)
[θ′] ≡ (∧

〈b,v〉∈X σ(v) = θ(ve(b))
) ≡ true, and

136 N. Würdemann et al.

–
∧

〈b,v〉∈X pred(e(b))[θ′] ≡ ∧
〈b,v〉∈X pred(e(b))[θ] ≡ true, since θ ∈ Θ(C).

Thus, pred [θ′] ≡ true. Therefore, e = 〈t,X, pred〉 is a possible extension
and added in the execution of the algorithm. Then we directly have e /∈ C,
h(e) = t, and with the same arguments as in a), we get C ∪ {e} ∈ C(Fin)
and θ � (σ ◦ [ve �→ v]v∈Var(e)) ∈ Θ(C ∪ {e}), which means cut(C, θ)[e, σ〉.
Since we chose θ independently of t and σ, this concludes the proof. ��
Notice that by this construction, as described in [10], we get that if ≺ is

a total order, then Fin contains at most |R(N)| non cut-off events. As already
discussed in Sect. 3.1, the total adequate order defined in [10] can be lifted to the
configurations in the symbolic unfolding, where it again is total (cp. App ??).
Thus, we generalized the possibility to construct such a small complete finite
prefix by application of Algorithm 1 with ≺ being a total adequate order.

Running Example. For the example N from Fig 1a, the algorithm produces
the complete finite prefix marked by the red, dotted line in Fig 1b: starting with
the initial condition b1, the event e1 is the only possible extension and added to
Fin. Since e1 is obviously not a cut-off event, e12 and e13 are possible extensions
and also added. Now we haveM([e12]) = {{| 〈p2, i〉 |} | 0 < i ≤ m}, andM([e1]) =
{{〈p2, 1〉}}, so e12 is also not a cut-off event, and the possible extensions e23 and
e22 are added. Now, however, we have that M([e22]) = {{| 〈p2, i〉 |} | 0 < i ≤ m} =
M([e12]), and therefore, e22 is a cut-off event.

3.3 High-Level Versus P/T Expansion

Every high-level Petri net represents a P/T Petri net with the same behavior,
in which the places can only carry a number tokens with color •. Markings in a
P/T Petri net describe only how many tokens lie on each place. Each transitions
only has one possible firing mode that takes and/or lays a fixed number of tokens
from resp. onto each connected place.

In this section we state in Lemma 2 that the expansion of a finite complete
prefix of the unfolding of a high-level Petri net is a finite and complete prefix of
the unfolding of the expanded high-level Petri net. This means the generalization
of complete prefixes is “canonical”, and compatible with the established low-level
concepts. We then shortly compare the results of

– applying the generalized ERV-algorithm Algorithm 1 to obtain a complete
finite prefix of the symbolic unfolding of a given high-level Petri net, and

– first expanding a given high-level Petri net and then applying the ERV-
algorithm from [10] for a complete finite prefix of the (P/T) unfolding.

The procedure of constructing the represented P/T Petri net Exp(N) (called
the expansion) of a high-level Petri net N is well established (cp., e.g., Chap. 2.4
in [12]), and we describe it here only briefly; the places of Exp(N) are given by
P = {p.c | p ∈ P, c ∈ Col}, and its transitions by T = {t.σ | t ∈ T, σ ∈ Σ(t)}.
There is an arc from p.c to t.σ iff 〈p, c〉 ∈ pre (t, σ), and analogously for arcs from
transitions to places. Markings in Exp(N) are functions M : P → N, describing
how often the only color • lies on each place p.c. Every such marking corresponds

Taking Complete Finite Prefixes to High Level, Symbolically 137

Fig. 2. The expansion Exp(N) of the running example N from Fig. 1a for Col =
{0, 1, 2, 3} in (a), and (a prefix of) the respective unfolding Υ (Exp(N)) in (b).

to a marking M in the high-level net N , with M(p, c) = M(p.c), and a transition
t can fire in mode σ from M iff t.σ can fire from M. Thus, we say that N
and Exp(N) have the same behavior. For a finite high-level Petri net N , the
expansion Exp(N) is finite iff Col is finite.

For a high-level occurrence net O, we define the P/T net ExpO(O) :=
U(Exp(O)). The operator ExpO maps high-level occurrence nets to occurrence
nets, which is shown in [4]. We denote Υ (Exp(O)) = 〈ExpO(O), πO〉. Let now
β = 〈O, h〉 be a symbolic branching process of N . Then we can define the
expanded symbolic branching process ExpO(β) = 〈ExpO(O), hO〉 of Exp(N) with
the homomorphism hO : ExpO(O) → Exp(N), defined by hO(e) = t.σ ⇔
πO(e) = e.σ ∧ h(e) = t and hO(b) = p.c ⇔ πO(b) = e.c ∧ h(b) = p for events e
resp. conditions b in ExpO(O). The following result is shown in [4].

Lemma 1 ([4], Sec. 4.1). Υ (Exp(N)) ExpO(Υ (N))

With this result, we state the following:

Lemma 2. Let N be a high-level Petri net and β be a prefix of Υ (N). Then β is
finite and complete iff ExpO(β) is a finite and complete prefix of Υ (Exp(N)).

The detailed proof is moved to [18]. It mainly uses the results from Propositions 1
and 2, since the definition of completeness on the symbolic level is a direct
translation from its P/T analogue.

138 N. Würdemann et al.

We can now compare the two complete finite prefixes resulting from the
original ERV-algorithm from [10] applied to Exp(N) and the generalized ERV-
algorithm Algorithm 1 applied to N . From the definition of the generalized
cut-off criterion we get that both these prefixes have the same depth. However,
due to the high-level representation, the breadth of the symbolic prefix can be
substantially smaller.

Running Example. Consider again N ∈ Nf from Fig. 1a and assume Col =
{0, 1, 2, 3} (i.e., m = 3). The expansion Exp(N) is depicted in Fig. 2a. The
(infinite) unfolding of Exp(N) is shown in Fig. 2b. The prefix resulting from
applying the original ERV-algorithm from [10] is marked by the red dotted line.
We see that for this example and Col = {0, . . . , m}, the low-level prefix obtained
by the original ERV-algorithm has O(m2) nodes. In contrast, the complete finite
prefix (cp. Fig. 1b) obtained by Algorithm 1 has 11 nodes for every m.

The structure of this running example can easily be generalized, resulting in
the following proposition.

Proposition 8. For every a ∈ N there is a high-level net N ∈ Nf such that
for Col = {0, . . . , m} the complete finite prefix obtained by Algorithm 1 has
a constant number of nodes, while the number of nodes in the low-level prefix
obtained by the original ERV-algorithm is in O(ma).

4 Handling Infinitely Many Reachable Markings

Unfoldings of unbounded P/T Petri nets (i.e., with infinitely many markings)
have been investigated in [1,7], and in [11] concurrent well-structured transition
systems with infinite state space are unfolded. When applying the generalized
ERV-algorithm, Algorithm 1, to high-level Petri nets with infinitely many reach-
able markings (therefore violating (3) from the definition of Nf), the proof for
finiteness of the resulting prefix does not hold anymore: the proof of Proposi-
tion 6, step (1), is a generalization of the proof of the respective claim in [10]
(which uses the pigeonhole principle). It is argued that we cannot have |R(N)|+1
consecutive events s.t. their cone configurations each generate a marking in the
net not seen before, and we thus have a cut-off event. When we deal with infinitely
many markings, this argument cannot be made.

In this section, we introduce a class Nsc of safe high-level nets, called sym-
bolically compact, that have possibly infinitely many reachable markings (and
therefore an infinite expansion), generalizing the class Nf . We then proceed to
make adaptions to Algorithm 1 (i.e., to the used cut-off criterion), so that it gen-
erates a finite and complete prefix of the symbolic unfolding for any N ∈ Nsc.

The following Lemma precisely describes the finite high-level Petri nets for
which a finite and complete prefix of the symbolic unfolding exists.

Lemma 3. For a finite high-level Petri net N = 〈N ,M0〉 there exists a finite
and complete prefix of Υ (N) if and only if there exists a bound n ∈ N such that
every marking in R(N) is reachable from a marking in M0 by firing at most n
transitions.

Taking Complete Finite Prefixes to High Level, Symbolically 139

For the proof (cp. App ??), we argue that in the case of such a bound, the
symbolic unfolding up to depth n+1 is a finite and complete prefix, and that in
the absence of such a bound no depth of a prefix is enough for it to be complete.

4.1 Symbolically Compact High-Level Petri Nets

We use the result of Lemma 3 to define the class Nsc of high-level nets for
which we adapt the algorithm for constructing finite and complete prefixes of
the symbolic unfolding.

Definition 8 (Class Nsc). A finite high-level Petri net N is called symbolically
compact if it satisfies (1) and (2) from Definition 4, and

(3*) There is a bound n ∈ N on the number of transition firings needed to reach
all markings in R(N).

The class Nsc contains all symbolically compact high-level Petri nets.

Note that in the case of a (finite, safe) P/T net, property (3*) is equiv-
alent to (3) (i.e., |R(N)| < ∞). However, this is not true for all high-level
nets N : while |R(N)| < ∞ still implies (3*) (meaning Nf ⊆ Nsc), the reverse
implication does not hold, as our running example from Fig. 1a demonstrates
when we change the set of colors to Col = N: it still satisfies (1) and (2), with
R(N) = {{| 〈p1, 0〉 |}, {| 〈p3, 0〉 |}}∪{{| 〈p2,
〉 |} |
 ∈ N}. So we have infinitely many
markings that can all be reached by firing at most two transitions, meaning the
net satisfies (3*) and is therefore symbolically compact.

Lemma 3 implies that the class Nsc of symbolically compact nets contains
exactly all high-level Petri nets satisfying (1) and (2) for which a finite and
complete prefix of the symbolic unfolding exists (independently of the number
of reachable markings). Since the reachable markings of a high-level Petri net
and its expansion correspond to each other, this observation leads to an inter-
esting subclass Nsc \Nf of symbolically compact high-level Petri nets that have
infinitely many reachable markings (such as our running example from Fig. 1a
with Col = N). For every net N in this subclass

– there exists a finite and complete prefix of Υ (N), but
– there does not exist a finite and complete prefix of Υ (Exp(N)).

In particular, the original ERV-algorithm cannot be applied to Exp(N), since
the expansion is an infinite net.

For the rest of the paper, let N = 〈P, T, F, ι,M0〉 ∈ Nsc with symbolic
unfolding Υ = 〈U, π〉 = 〈B,E,G, ι,K0, π〉.

4.2 The Finite Prefix Algorithm for Symbolically Compact Nets

As previously discussed, the argument that states the existence of one event in
a chain of |R(N)| + 1 consecutive events, such that every marking represented
by its cone configuration is contained in the union of all markings represented
by previous cone configurations, cannot be applied in the case of an infinite

140 N. Würdemann et al.

number of reachable markings. Consequently, Algorithm 1 may not terminate
when applied to a net in Nsc\Nf. However, condition (3*) guarantees that every
marking reached by a cone configuration [e] with depth > n can be reached by
a configuration C containing no more than n events.

For the algorithm to terminate, we need to adjust the cut-off criterion since we
do not know whether C is also a cone configuration, as demanded in Definition 6.
Therefore, we define cut-off* events, that generalize cut-off events. They only
require that every marking in M([e]) has been observed in a set M(C) for any
configuration C ≺ [e], rather than just considering cone configurations:

Definition 9 (Cut-off* event). Under the assumptions of Definition 6, the
high-level event e is a cut-off* event (w.r.t. ≺) if M([e]) ⊆ ⋃

C≺[e]M(C).

We additionally assume that the used adequate order satisfies |C1| < |C2| ⇒
C1 ≺ C2, so that every event with depth > n will be a cut-off event. Since all
adequate orders discussed in [10] satisfy this this property (cp. App ??), this is
a reasonable requirement. This adaption and assumption now lead to:

Theorem 1. Assume a given adequate order ≺ to satisfy |C1| < |C2| ⇒
C1 ≺ C2. When replacing in Algorithm 1 the term “cut-off event” by “cut-off*
event”, it terminates for any input net N ∈ Nsc, and generates a complete finite
prefix of Υ (N).

Proof. The properties of symbolic unfoldings that we stated in Sect. 2.3 are inde-
pendent on the class of high-level nets. Definition 10 only uses that the considered
net is safe, and so do Propositions 4 and 5. We therefore only have to check that
the correctness proof for the algorithm still holds. In the proof of Proposition 6
(Fin is finite), the steps (2) and (3) are independent of the used cut-off criterion.
In step (1), however, it is shown that the depth of events never exceeds |R(N)|+1.
This is not applicable when |R(N)| = ∞, as argued above. Instead we show:

(1*) For every event e of Fin, d(e) ≤ n+1, where n is the bound on the number
of transitions needed to reach all markings in R(N).

This is done in detail in [18] and proves that Fin is finite. In the proof of Propo-
sition 7, the cut-off criterion is used to show (by an infinite descent approach),
for any marking M ∈ R(N) the existence of a minimal configuration C ∈ Fin
with M ∈ M(C). Due to the similarity of cut-off and cut-off*, this proof can
easily be adapted to work as before.

The only thing remaining to show is termination. In the case of nets in Nf ,
every object is finite, which, together with Proposition 6, leads to termination of
the algorithm. For nets in Nsc \Nf , however, there is at least one event e in Fin
s.t. |M([e])| = ∞. Thus, we have to show that we can check the cut-off* criterion
in finite time. This follows from Corollary 2 in the next section, which is dedicated
to symbolically representing markings generated by configurations. ��

4.3 Checking Cut-offs Symbolically

We show how to check whether a high-level event e is a cut-off* event in finite
time. By definition, this means checking whether M([e]) ⊆ ⋃

C≺[e]M(C). How-
ever, since the cut of a configuration can represent infinitely many markings, we

Taking Complete Finite Prefixes to High Level, Symbolically 141

cannot simply store the set M(C) for every C ∈ C(Fin). Instead, we now define
constraints that symbolically describe the markings represented by a configura-
tion’s cut. Checking the inclusion above then reduces to checking an implication
of these constraints. Since we consider high-level Petri nets with guards written
in a decidable first order theory, such implications can be checked in finite time.

We first define for every condition b a new predicate pred�(b) by

pred�(b) := pred(e(b)) ∧ (b = ve(b)).

This predicate now has (in an abuse of notation) an extra variable, called b. The
remaining variables in pred(e(b)) are Var [e(b)]∪{⊥}, and pred(e(b)) evaluates to
true under an assignment θ : Var [e(b)]∪{⊥} → Col if and only if a concurrent
execution of [e(b)] with the assigned modes is possible (i.e., under every instan-
tiation of [e(b)]). In such an execution, θ(ve(b)) ∈ Col is placed on b.

For a co-set B′ ⊆ B of high-level conditions, the constraint on B′ is an
expression over B′ describing which color combinations can lie on the high-level
conditions. We build the conjunction over all predicates pred�(b) for b ∈ B′ and
quantify over all appearing variables ve: the constraint on B′ is defined by

κ(B′) := ∃⋃
b∈B′ Var [e(b)]∪{⊥} :

∧

b∈B′
pred�(b),

where B′ serves as the set of free variables in κ(B′).
We denote by Ξ(B′) the set of variable assignments ϑ : B′ → Col that satisfy

κ(B′)[ϑ] ≡ true. Note that for a configuration C, we have
⋃

b∈cut(C) Var [e(b)] =
VarC , i.e., the bounded variables in κ(cut(C)) are exactly the variables appearing
in predicates in C. For every instantiation θ of C we define a variable assignment
ϑθ : cut(C) → Col by setting ∀b ∈ cut(C) : ϑθ(b) = θ(ve(b)). Instantiations of a
configuration and the constraint on its cut are now related as follows.

Lemma 4. Let C ∈ C(Υ). Then Ξ(cut(C)) = {ϑθ | θ ∈ Θ(C)}.
The proof is moved to [18], and follows by construction of pred� and ϑθ. From
the definition of K(C) and M(C) we get:

Corollary 1. Let C ∈ C(Υ). Then K(C) = {{〈b, ϑ(b)〉 | b ∈ cut(C)} | ϑ ∈
Ξ(cut(C))} and M(C) = {{| 〈π(b), ϑ(b)〉 | b ∈ cut(C) |} | ϑ ∈ Ξ(cut(C))}.
We now show how to check whether an event is a cut-off* event via the constraints
defined above. For that, we first look at general configurations in Theorem 2, and
then explicitly apply this result to cone configurations [e] in Corollary 2.

Since we consider safe high-level Petri nets, we can relate two cuts represent-
ing the same marking in the following way:

Definition 10. Let C1, C2 ∈ C(Υ) with π(cut(C1)) = π(cut(C2)). Then there is
a unique bijection φ : cut(C1) → cut(C2) preserving π. We call this mapping φC2

C1
.

Theorem 2. Let C,C1, . . . , Cn be finite configurations in the symbolic unfolding
of a safe high-level Petri net s.t. ∀1 ≤ i ≤ n : π(cut(C)) = π(cut(Ci)). Then

M(C) ⊆
n⋃

i=1

M(Ci) if and only if κ(cut(C)) ⇒
n∨

i=1

κ(cut(Ci))[φC
Ci

].

142 N. Würdemann et al.

Proof. Denote φi := φC
Ci

. Assume M(C) ⊆ ⋃n
i=1M(Ci) and let ϑ ∈ Ξ(cut(C)).

By Corollary 1 we have that Mϑ := {〈π(b), ϑ(b)〉 | b ∈ cut(C)} ∈ M(C). Thus,
∃1 ≤ i ≤ n : Mϑ ∈M(Ci). This, again by Corollary 1, means ∃ϑi ∈ Ξ(cut(Ci)) :

Mϑ = {〈π(b′), ϑi(b′)〉 | b′ ∈ cut(Ci)} = {〈π(φ−1
i (b)), ϑi(φ−1

i (b))〉 | b ∈ cut(C)}
= {〈π(b), (ϑi ◦ φ−1

i)(b)〉 | b ∈ cut(C)}.
This shows that ϑ|cut(C) = ϑi◦φ−1

i . Thus, κ(cut(Ci))[φi][ϑ] ≡ κ(cut(Ci))[ϑ◦φi] ≡
κ(cut(Ci))[ϑi ◦ φ−1

i ◦ φi] ≡ κ(cut(Ci))[ϑi] ≡ true, which proves the implication.
Assume on the other hand κ(cut(C)) ⇒ ∨n

i=1 κ(cut(Ci))[φi]. Let M ∈M(C).
Then ∃ϑ ∈ Ξ(cut(C)) : M = {〈π(b), ϑ(b)〉 | b ∈ cut(C)}. Thus, ∃1 ≤ i ≤ n :
κ(cut(Ci))[φi][ϑ] ≡ true. Let ϑi = ϑ ◦ φi. Then ϑi ∈ Ξ(cut(Ci)), and Mϑi

:=
{〈π(b′), ϑi(b′)〉 | b′ ∈ cut(Ci)} ∈ M(Ci). Since

Mϑi
= {〈π(φ−1

i (b)), ϑ ◦ φi(φ−1
i (b))〉 | b ∈ cut(C)} = {〈π(b), ϑ(b)〉 | b ∈ cut(C)},

we have M = Mϑi
∈M(Ci), which completes the proof. ��

The following Corollary now gives us a characterization of cut-off* events in a
symbolic branching process. It follows from Theorem 2 together with the facts
that M(C1) ∩M(C2) �= ∅ ⇒ π(cut(C1)) = π(cut(C2)), and that ≺[e] is finite.

Corollary 2. Let β be a symbolic branching process and e an event in β. Then
e is a cut-off* event in β if and only if

κ(cut([e])) ⇒
∨

C≺[e]
h(cut(C))=h(cut([e]))

κ(cut(C))[φ[e]
C].

Thus, we showed how to decide for any event e added to a prefix of the unfolding
whether it is a cut-off* event, namely, by checking the above implication in
Corollary 2. Note that we can also check whether e is a cut-off event (w.r.t.
Definition 6) by the implication in Corollary 2 when we replace all occurrences
of “C” by “[e′]” .

5 Conclusions and Outlook

We introduced the notion of complete finite prefixes of symbolic unfoldings of
high-level Petri nets. We identified a class of 1-safe high-level nets generalizing
1-safe P/T nets, for which we generalized the well-known algorithm by Esparza
et al. to compute such a finite and complete prefix. This constitutes a consolida-
tion and generalization of the concepts of [3–5,10]. While the resulting symbolic
prefix has the same depth as a finite and complete prefix of the unfolding of
the represented P/T net, it can be significantly smaller due to less branching.
In the case of infinitely many reachable markings (where the original algorithm
is not applicable) we identified the class of so-called symbolically compact nets
for which an adapted version of the generalized algorithm works. For that, we
showed how to check an adapted cut-off criterion by symbolically describing sets
of markings.

The next step is an implementation of the generalized algorithm. Future
works also include the generalization for k-bounded high-level Petri nets.

Taking Complete Finite Prefixes to High Level, Symbolically 143

References

1. Abdulla, P.A., Iyer, S.P., Nylén, A.: Unfoldings of unbounded Petri nets. In: Emer-
son, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 495–507. Springer,
Heidelberg (2000). https://doi.org/10.1007/10722167 37

2. Best, E., Grahlmann, B.: Programming Environment based on Petri nets - Docu-
mentation and User Guide Version 1.4 (1995). https://uol.de/f/2/dept/informatik/
ag/parsys/PEP1.4 man.ps.gz?v=1346500853

3. Chatain, T.: Symbolic unfoldings of high-level Petri nets and application to super-
vision of distributed systems, Ph. D. thesis, Universit é de Rennes (2006). https://
www.sudoc.fr/246936924

4. Chatain, T., Fabre, E.: Factorization properties of symbolic unfoldings of col-
ored Petri nets. In: Lilius, J., Penczek, W. (eds.) PETRI NETS 2010. LNCS,
vol. 6128, pp. 165–184. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-13675-7 11

5. Chatain, T., Jard, C.: Symbolic diagnosis of partially observable concurrent sys-
tems. In: de Frutos-Escrig, D., Núñez, M. (eds.) FORTE 2004. LNCS, vol. 3235, pp.
326–342. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30232-
2 21

6. Chatain, T., Jard, C.: Complete finite prefixes of symbolic unfoldings of safe
time Petri nets. In: Donatelli, S., Thiagarajan, P.S. (eds.) ICATPN 2006. LNCS,
vol. 4024, pp. 125–145. Springer, Heidelberg (2006). https://doi.org/10.1007/
11767589 8

7. Desel, J., Juhás, G., Neumair, C.: Finite unfoldings of unbounded Petri nets. In:
Cortadella, J., Reisig, W. (eds.) ICATPN 2004. LNCS, vol. 3099, pp. 157–176.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27793-4 10

8. Ehrig, H., Hoffmann, K., Padberg, J., Baldan, P., Heckel, R.: High-level net pro-
cesses. In: Brauer, W., Ehrig, H., Karhumäki, J., Salomaa, A. (eds.) Formal and
Natural Computing. LNCS, vol. 2300, pp. 191–219. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-45711-9 12

9. Engelfriet, J.: Branching processes of Petri nets. Acta Informatica 28(6), 575–591
(1991). https://doi.org/10.1007/BF01463946

10. Esparza, J., Römer, S., Vogler, W.: An improvement of McMillan’s unfolding algo-
rithm. Formal Methods Syst. Des. 20(3), 285–310 (2002). https://doi.org/10.1023/
A:1014746130920

11. Herbreteau, F., Sutre, G., Tran, T.Q.: Unfolding concurrent well-structured transi-
tion systems. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp.
706–720. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71209-
1 55

12. Jensen, K.: Coloured Petri nets - basic concepts, analysis methods and practi-
cal use - volume 1, Second Edition. Monographs in Theoretical Computer Sci-
ence. An EATCS Series. Springer, Heidelberg (1996). https://doi.org/10.1007/978-
3-662-03241-1

13. Khomenko, V., Koutny, M.: Branching processes of high-level Petri nets. In: Gar-
avel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 458–472. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-36577-X 34

14. McMillan, K.L.: A technique of state space search based on unfolding. Formal
Methods Syst. Des. 6(1), 45–65 (1995). https://doi.org/10.1007/BF01384314

15. Nielsen, M., Plotkin, G.D., Winskel, G.: Petri nets, event structures and domains,
part I. Theor. Comput. Sci. 13, 85–108 (1981). https://doi.org/10.1016/0304-
3975(81)90112-2

https://doi.org/10.1007/10722167_37
https://uol.de/f/2/dept/informatik/ag/parsys/PEP1.4_man.ps.gz?v=1346500853
https://uol.de/f/2/dept/informatik/ag/parsys/PEP1.4_man.ps.gz?v=1346500853
https://www.sudoc.fr/246936924
https://www.sudoc.fr/246936924
https://doi.org/10.1007/978-3-642-13675-7_11
https://doi.org/10.1007/978-3-642-13675-7_11
https://doi.org/10.1007/978-3-540-30232-2_21
https://doi.org/10.1007/978-3-540-30232-2_21
https://doi.org/10.1007/11767589_8
https://doi.org/10.1007/11767589_8
https://doi.org/10.1007/978-3-540-27793-4_10
https://doi.org/10.1007/3-540-45711-9_12
https://doi.org/10.1007/BF01463946
https://doi.org/10.1023/A:1014746130920
https://doi.org/10.1023/A:1014746130920
https://doi.org/10.1007/978-3-540-71209-1_55
https://doi.org/10.1007/978-3-540-71209-1_55
https://doi.org/10.1007/978-3-662-03241-1
https://doi.org/10.1007/978-3-662-03241-1
https://doi.org/10.1007/3-540-36577-X_34
https://doi.org/10.1007/BF01384314
https://doi.org/10.1016/0304-3975(81)90112-2
https://doi.org/10.1016/0304-3975(81)90112-2

144 N. Würdemann et al.

16. Presburger, M.: über die Vollständigkeit eines gewissen Systems der Arithmetik
ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt. In: Proc.
Comptes-rendus du I Congrés des Mathématiciens des Pays Slaves, Varsovie 1929,
pp. 92–101 (1930)

17. Reisig, W.: Understanding petri nets - modeling techniques, analysis methods, case
studies. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-33278-4

18. Würdemann, N., Chatain, T., Haar, S.: Taking complete finite prefixes to high
level, symbolically (Full Version) (2023). https://hal.inria.fr/hal-04029490

https://doi.org/10.1007/978-3-642-33278-4
https://hal.inria.fr/hal-04029490

Interval Traces with Mutex Relation

Ryszard Janicki1 , Maciej Koutny2 , and Łukasz Mikulski3(B)

1 Department of Computing and Software, McMaster University,
Hamilton, ON L8S 4K1, Canada
janicki@mcmaster.ca

2 School of Computing, Newcastle University, Newcastle upon Tyne NE4 5TG, UK
maciej.koutny@ncl.ac.uk

3 Faculty of Mathematics and Computer Science, Nicolaus Copernicus University,
Toruń 12/18, Poland

lukasz.mikulski@mat.umk.pl

Abstract. Interval traces can model sophisticated behaviours of concurrent sys-
tems under the assumptions that all observations/system runs are represented by
interval orders and simultaneity is not necessarily transitive. What they cannot
model is the case when a and b are considered independent, interleavings ab and
ba are deemed equivalent, but simultaneous execution of a and b is disallowed.
We introduce a new kind of interval traces, incorporating a mutex relation, that
can model these kind of cases. We discuss the soundness of this concept and show
how it can be applied in the domain of Petri nets.

Keywords: interval order · interval sequence · inhibitor net · mutex relation ·
semantics

1 Introduction

In concurrency theory, traces are quotient equational monoids over various types of
sequences. The sequences represent observations or system runs and traces themselves
represent sets of sequences that are interpreted as equivalent, so only one sequence can
represent the entire trace. This approach was pioneered by Mazurkiewicz [27].

Mazurkiewicz traces (or traces) are partially commutative quotient monoids over
sequences [3,27,28]. They have been used to model various aspects of concurrency
theory and since the late 1970 s s their theory has been substantially developed [5,6].
Traces can be interpreted as partial orders and can model ‘true concurrency’, i.e., the
case where a simultaneous execution of events a and b, and the orders a followed by b,
and b followed by a, are all considered equivalent. As a model of concurrent behaviours,
traces correspond to vector firing sequences [38] that have been used to model concur-
rent behaviours in the path expressions model [17]. The theory of traces has been used
to tackle problems from diverse areas including combinatorics, graph theory, algebra
and logic [6]. However, not all important aspects of concurrency can be adequately

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Gomes and R. Lorenz (Eds.): PETRI NETS 2023, LNCS 13929, pp. 145–166, 2023.
https://doi.org/10.1007/978-3-031-33620-1_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33620-1_8&domain=pdf
http://orcid.org/0000-0001-5364-9725
http://orcid.org/0000-0003-4563-1378
http://orcid.org/0000-0002-6711-557X
https://doi.org/10.1007/978-3-031-33620-1_8

146 R. Janicki et al.

modelled by the traces. For example, they can neither model ‘not later than’ relation-
ships nor the case when system runs are represented by interval orders, i.e., where
simultaneity is not transitive [14,15,21].

For the standard traces, the basic monoid is just a free monoid of sequences. This
means that generators, i.e., elements of a trace alphabet, have no visible internal struc-
ture that could be used to define appropriate equations. This is a limitation, as when
the generators have some internal structure (for example, if they are sets, or they are
divided into two distinct sets with different properties), this internal structure may be
used when defining the set of equations generating the quotient monoid.

One natural extension is to just assume that generators are sets, i.e., we have
some monoid of step sequences. An underlying assumption behind this approach is
that simultaneity is transitive and simultaneous executions are represented explicitly by
steps.

In trace theory, if the events a and b are independent, i.e., a-followed-by-b and
b-followed-by-a are equivalent in some trace, then the a and b are incomparable in
the partial order defined by this trace. Hence, simultaneity can be expressed, though
implicitly. Following this idea, the standard traces can be extended to step sequences in
a quite natural manner ([29,41] and, implicitly, in [18,19]). This extension is useful;
for example, it allows analyses of greedy maximal concurrency (cf. [18]), but it still
keeps the model within the standard ‘true concurrency paradigm’.

As long as it has some interpretation in concurrency theory, one might use freely
set theory operators in the equations that define equivalent generators. Exploiting this
idea has led to the concepts of comtraces [15], g-comtraces [19], and step traces [12,
13]. Here, step traces are the most advanced and general model. Although step traces
are quite a new notion, they have already been successfully utilized in computational
biology [33], digital graphics [32], and model checking [25]. Still, they can only be
used if event simultaneity is transitive, i.e., all observations of a concurrent system can
be represented by stratified orders.

It was argued by Wiener in 1914 [43] (and later, more formally, in [14]) that any
execution that can be observed by a single observer must be an interval order, and so
the most precise observational semantics is based on interval orders, where simultaneity
is often non-transitive. Trace generators are sequences and representing interval orders
by sequences is a little bit tricky; for example, one may use sequences of maximal
antichains, or sequences of beginnings and endings of events involved [9,14], and the
latter appears to be more suitable [16]. To model this with traces, we assume that gen-
erators are divided into two classes of objects, one interpreted as the beginnings and the
other as the endings (of events/actions, etc.). This has led to the concepts of interval
sequences and interval traces discussed in [21,22].

While each stratified order is interval, the relationship between comtraces [15], g-
comtraces [19], step traces [12] is more complex. Each comtrace can be represented by
an appropriate interval trace [21], but there are g-comtraces and step traces that cannot
be represented as any interval trace [20].

Interval traces cannot represent the case when a and b are considered independent,
interleavings ab and ba are deemed equivalent, but the simultaneous execution of a

Interval Traces with Mutex Relation 147

and b is not allowed1, for example, a : x= x+1 and b : x= x+2 (cf. [14,26]). Both g-
comtraces and step traces can easily model such cases. They both have a kind of explicit
mutex relation that always forbids simultaneity.

In this paper, we add a mutex relation to interval traces, based on the concept of this
relation for step traces [12,24]. We will prove validity of this concept, analyse its rela-
tionship to interval traces and show how it can be used to model the properties of Petri
nets with mutex relation (cf. [23]). Adding mutex relation required some modification
of interval traces of [21], and extensions of standard theory of interval orders.

2 Preliminaries

Throughout the paper we mainly use the standard notions of sets, relations and formal
languages, extended with a very few new notations.

A binary relation ≡ over a set X is an equivalence relation if it is reflexive, symmet-
ric and transitive, i.e., for all a,b,c ∈ X , a ≡ a,a ≡ b ⇐⇒ b ≡ a, and a ≡ b ≡ c =⇒
a ≡ c. An equivalence class containing a ∈ X is denoted as [a]≡.

A (strict) partial order is a pair po = (X ,≺) such that X is a set and ≺ is a binary
relation over X which is irreflexive and transitive, i.e., for all a,b,c ∈ X , a �≺ a and
a ≺ b ≺ c =⇒ a ≺ c. We also define a binary incomparability relation on the elements
of X : a � b if a �≺ b �≺ a �= b.

Let po= (X ,≺) and po′ = (X ,≺′) be partial orders. Then (cf. [9]):

– po is total if �= ∅, i.e., for all a �= b ∈ X , a ≺ b or b ≺ a.
– po is stratified if, for all a,b,c ∈ X , a � b � c =⇒ a � c or a= c, i.e., � ∪ idX is

an equivalence relation, where idX = {(x,x) | x ∈ X} is the identity relation on X .
– po′ is an extension of po if ≺ is a subset of ≺′.

Finite total orders are equivalent to finite sequences of elements without repeti-
tions: if po = (X ,≺) is a total order such that X = {a1, . . . ,ak} and a1 ≺ ·· · ≺ ak then
the corresponding sequence is seq(po) = a1 . . .ak. Similarly, finite stratified orders are
equivalent to finite sequences of mutually disjoint nonempty sets: if po = (X ,≺) is
a stratified order then the corresponding step sequence of po is sseq(po) = A1 . . .Ak,
where A1, . . . ,Ak is a unique partition of X such that ≺ is equal to

⋃
i< j Ai ×Aj.

The following result provides basis for various greedy canonical forms for concur-
rent behaviours.

Theorem 1 ([15]). Each partial order po = (X ,≺) has exactly one stratified order
extension spo such that sseq(spo) = A1 . . .Ak and, for all i ≥ 2 and b ∈ Ai, there is
a ∈ Ai−1 satisfying a ≺ b.

The unique stratified order spo is often interpreted as a greedy maximally concurrent
representation of po, and will be denoted by gmcr(po). Note that po is a stratified order
iff gmcr(po) = po.

1 Mazurkiewicz traces do not forbid simultaneous executions of a and b for independent a and
b, they just do not express it explicitly.

148 R. Janicki et al.

Fig. 1. Partial orders represented as Hasse diagrams (cf. [9]). po1 is total and uniquely repre-
sented by sequence v = abcd, i.e., po1 = sseq−1(v). Partial order po2 is stratified and uniquely
represented by step sequence w = {a}{b,c}{d}, i.e., po2 = sseq−1(w). po3 is interval, but
does not have a corresponding sequence or step sequence. po4 is an interval order on enu-
merated events and has a corresponding (non-unique) sequence of begins and ends of events
x= a�a�c�b�b�a�a�c�, i.e., po4 = intord(x) (see Sect. 6 for details).

3 Interval Orders

A partial order (X ,≺) is interval if, for all a,b,c,d ∈ X ,

a ≺ c ∧ b ≺ d =⇒ a ≺ d ∨ b ≺ c .

Example 1. Fig. 1 shows different types of partial orders. Note that po2 is an extension
of po3, and po1 extends both po2 and po3. Also, gmcr(po3) = po2.

The adjective ‘interval’ derives from the following Fishburn’s Theorem:

Theorem 2 (Fishburn [8]). A countable partial order (X ,≺) is interval iff there exists
a total order (Y,�) and two injective mappings β ,ε :X →Y such that β (X)∩ε(X) =∅

and, for all a,b ∈ X, β (a)� ε(a) and a ≺ b ⇐⇒ ε(a)�β (b).

The mappings β and ε are interpreted as the ‘beginning of’ and ‘ending of’ actions
represented by the elements of X .

The relevance of interval orders in concurrency theory follows from an observation,
credited to Wiener [43], that any execution of a physical system that can be observed by
a single observer is an interval order. Hence the most precise observational semantics
should be defined in terms of interval orders or their suitable representations (cf. [14]).

Example 2. The interval order po3 from Fig. 1 can be represented by exactly four dif-
ferent ways of totally ordering the values of mappings β and ε , as follows:

β (a) � ε(a) � β (b) � β (c) � ε(b) � β (d) � ε(c) � ε(d)
β (a) � ε(a) � β (c) � β (b) � ε(b) � β (d) � ε(c) � ε(d)
β (a) � ε(a) � β (b) � β (c) � ε(b) � β (d) � ε(d) � ε(c)
β (a) � ε(a) � β (c) � β (b) � ε(b) � β (d) � ε(d) � ε(c) .

Interval Traces with Mutex Relation 149

In the case of finite interval orders, the characterisation provided by Theorem 2 can
be modified as well as made more concrete so that there is essentially a unique way of
ordering the begins and ends of actions, which helps in some proofs.

Theorem 3. Let po= (X ,≺) be a finite partial order.

1. po is interval iff there exist two mappings β ,ε : X → {1,2,3, . . . ,2 · n− 1,2 · n}
(n ≥ 0) such that

β−1(1),β−1(3), . . . ,β−1(2 ·n−1) and ε−1(2),ε−1(4), . . . ,ε−1(2 ·n)
are both partitions of X and, for all a,b ∈ X,
(a) β (a) < ε(a),
(b) a ≺ b ⇐⇒ ε(a) < β (b).

2. If po is interval then β and ε as above are unique.

Proof. (1, =⇒) Let β and ε be as in Theorem 2. Then, since po is finite and � total as
well as the two mappings are injective and have disjoint codomains, we have, for some
f1, . . . , fm ∈ {β ,ε} (m= 2 · |X |), the following:

f1(a1)� f2(a2)� · · ·� fm(am) ,

where { f1(a1), f2(a2), . . . , fm(am)} = β (X)∪ε(X). Hence there are indices (indicating
places where we switch between β and ε or vice versa)

1 = l1 < l2 < · · · < lk ≤ m

such that fl j = · · · = fl j+1−1 �= fl j+1 (for j < k) and flk = · · · = fm. We then define
β ′(ai) = j for odd j and l j ≤ i < l j+1, and ε ′(ai) = j for even j and l j ≤ i < l j+1

(assuming that lk+1 = m+ 1). It is then straightforward to check that β ′ and ε ′ satisfy
the requirements.
(1, ⇐=) It is straightforward to derive from β and ε mappings satisfying the assump-
tions in Theorem 2. This can be done in

|β−1(1)| ! · |ε−1(2)| ! · . . . · |β−1(2 ·n−1)| ! · |ε−1(2 ·n)| !
different ways.

(2) Follows directly from the definitions and the construction in part (1). ��
We stress that the uniqueness of β and ε in Theorem 3(2) was possible since the

two mappings are no longer required to be injective as in Theorem 2. We will denote
these unique mappings and the integer n in the formulation of Theorem 3 by βpo, εpo
and npo.

Example 3. For the interval order po3 from Fig. 1 we have:

β (a) < ε(a) < β (b) = β (c) < ε(b) < β (d) < ε(c) = ε(d)
1 < 2 < 3 < 4 < 5 < 6

The mappings from Theorem 3 are related to the ordering of elements.

150 R. Janicki et al.

Proposition 1. Let po= (X ,≺) be a finite interval order and a,b ∈ X.

βpo(a) = βpo(b) ⇐⇒ {c | c ≺ a} = {c | c ≺ b}
εpo(a) = εpo(b) ⇐⇒ {c | a ≺ c} = {c | b ≺ c}
βpo(a) < βpo(b) ⇐⇒ a ≺ b ∨ ∃ c : a � c ≺ b
εpo(a) < εpo(b) ⇐⇒ a ≺ b ∨ ∃ c : a ≺ c � b .

Proof. Follows directly from the definitions. ��
Proposition 2. Let po1 = (X1,≺1) and po2 = (X2,≺2) be finite interval orders. Then:

po1 = po2 ⇐⇒ X1 = X2 ∧βpo1 = βpo2 ∧ εpo1 = εpo2 .

Proof. From Theorem 3(2). ��
Also, being a total or stratified order is directly represented by the two mappings.

Proposition 3. Let po= (X ,≺) be a finite interval order.

1. po is total iff for i= 1,3, . . . ,2 ·npo −1,

β−1
po (i) = ε−1

po (i+1) are singleton sets .

2. po is stratified iff for i= 1,3, . . . ,2 ·npo −1

β−1
po (i) = ε−1

po (i+1) .

Proof. Follows directly from the definitions. ��
Note that finite interval orders do not have simple sequential representations in the

same way as the total and stratified orders do (cf. po3 from Fig. 1).

4 Sequences and Partial Orders

Let X be a nonempty set (of symbols). The set of all finite sequences over X , including
the empty sequence λ (i.e., the sequence of length zero), is denoted by X∗. We will use
the standard notions of concatenation of two sequences w and u, denoted by wu, as well
as the notions a prefix of w. A step sequence over X is a finite sequence of nonempty
subsets of X .

Associating sequential representations to finite total and stratified orders was
straightforward. The converse is not true for arbitrary finite (step) sequences, due to
the possibility of repeated occurrences of symbols. To address this problem, one usu-
ally proceeds by introducing individual occurrences of symbols, where a(i) represents
the i-th occurrence of a. We also denote X̂ = {a(i) | a ∈ X ∧ i ≥ 1}.

The following are useful notions associated with a sequence w ∈ X∗:

– len(w) is the length of w.
– πY (w) is the sequence obtained from w after deleting all the symbols in X \Y .
– alph(w) is the set of the symbols occurring within w.

Interval Traces with Mutex Relation 151

– #a(w) is the number of occurrences of a ∈ X within w.
– âlph(w) = {a(i) | a ∈ alph(w)∧ 1 ≤ i ≤ #w(a)} is the set of symbol occurrences

associated with w.
– posw(a

(i)) = len(u)+1 is the position of a symbol occurrence a(i) ∈ âlph(w), where
u is the longest prefix of w such that #u(a) = i−1.

– ŵ= pos−1
w (1) . . .pos−1

w (len(w)) is the enumerated representation of w.
– totord(w) = (âlph(w),{(a(i),b(j)) | pos−1

w (a(i)) < pos−1
w (b(j))}) is the total order

induced by w.

The definition of totord(w) is sound as we have seq(totord(w)) = ŵ.

5 Mazurkiewicz Traces

Let Σ be a nonempty alphabet of actions (symbols) fixed throughout the rest of this
paper. The finite sequences in Σ ∗ will be called words, and the indexed actions in Σ̂
will be called events.

A concurrent alphabet is a pair Ψ = (Σ , ind), where ind ⊆ Σ ×Σ is a reflexive and
symmetric independence relation on the actions in Σ . The corresponding dependence
relation is given by dep= (Σ ×Σ)\ ind.

A concurrent alphabet Ψ defines an equivalence relation ≡Ψ identifying words
which differ only by the ordering of independent actions. Two words, w,v ∈ Σ ∗, sat-
isfy w ≡Ψ v if there exists a finite sequence of commutations of adjacent independent
actions transforming w into v. More precisely, ≡Ψ is a binary relation over Σ ∗ which
is the reflexive and transitive closure of the relation ∼Ψ such that w ∼Ψ v if there are
u,z ∈ Σ ∗ and (a,b) ∈ ind satisfying w= uabz and v= ubaz.

Equivalence classes of ≡Ψ are called (Mazurkiewicz) traces (see [6,27,28]), and
the trace containing a given word w is denoted by [w]Ψ . The set of all traces over Ψ is
denoted by Σ ∗/≡Ψ , and the pair (Σ ∗/≡Ψ ,◦) is a (trace) monoid, where τ ◦ τ ′ = [ww′]Ψ ,
for any words w ∈ τ and w′ ∈ τ ′, is the concatenation operation for traces. Note that
trace concatenation is well-defined as [ww′]Ψ = [vv′]Ψ , for all w,v ∈ τ and w′,v′ ∈ τ ′.
Similarly, for every trace τ = [w]Ψ and every action a ∈ Σ , we can define alph(τ) =
alph(w) and #a(τ) = #a(w).

Trace equivalence can be characterised in at least two different ways, given below:
(i) by considering projections onto binary dependent subalphabets (i.e., {a,b} such that
(a,b) ∈ dep); and (ii) by considering positions of the occurrences of dependent actions.

Theorem 4. The following statements are equivalent for all u,w ∈ Σ ∗:

1. u ≡Ψ w.
2. π{a,b}(u) = π{a,b}(w), for all (a,b) ∈ dep.

3. âlph(u) = âlph(w) and, for all a(i),b(j) ∈ âlph(w) satisfying (a,b) ∈ dep:

posu(a
(i)) < posu(b

(j)) ⇐⇒ posw(a
(i)) < posw(b

(j)) .

Proof. (1) ⇐⇒ (2) follows from [39], and (1) ⇐⇒ (3) from [23]. ��

152 R. Janicki et al.

Let � be an arbitrary total order on Σ extended lexicographically to Σ ∗. A sequence
w ∈ Σ ∗ is in Foata canonical form w.r.t. the dependence relation dep and a lexicograph-
ical order � on Σ ∗, if w= w1 . . .wn (n ≥ 0), where:

– each wi is a nonempty word without multiple occurrences of actions such that the
actions of alph(wi) are pairwise independent and wi minimal w.r.t. lexicographical
order � among [wi]Ψ , and

– for each i > 1 and a occurring in wi, there is b occurring in wi−1 such that (a,b) ∈
dep.

The intuition behind the Foata canonical form is that it groups actions into greedy max-
imally concurrent steps.

Theorem 5 ([3]). Every Mazurkiewicz trace has a unique representation in the Foata
canonical form.

The above result is a simple consequence of Theorem 1; however, it was proven
independently and before Theorem 1.

6 Interval Sequences

Interval traces — introduced in [22] and substantially refined in [20,21] — have
their roots in Mazurkiewicz traces [6,27,28] and Fishburn’s representation of inter-
val orders [8]. The latter allows to represent interval orders by suitable sequences of
event beginnings and event endings that we call interval sequences. In principle, inter-
val traces are specialized Mazurkiewicz traces over the domain of interval sequences.

For each a ∈ Σ (or a ∈ Σ̂), we will use a� to denote the beginning of a, and a� to
denote the ending of a. Moreover, for every set A ⊆ Σ (or A ⊆ Σ̂), we denote A� = {a� |
a ∈ A}, A� = {a� | a ∈ A}, and A�� = A� ∪A�.

We would like to emphasise the difference between the notations β (a),ε(a) and
a�,a�. The first notation is used for partial orders, so each β (a),ε(a) are unique, while
the second notation is for sequences, so both a� and a� may occur many times.

Definition 1. A sequence x over Σ�� is interval if π{a�,a�}(x) ∈ (a�a�)∗, for every a ∈ Σ .

We then denote by ev(x) the subset of Σ̂ such that ev(x)= âlph(x). All interval sequences
are denoted by IntSeq.

Example 4. w= a�b�b�a�c�a�b�c�b�a�a�a� is an interval sequence, but neither a�b�b�a�
nor b�b�a�c� is. Moreover, ev(w) = {a(1),a(2),a(3),b(1),b(2),c(1)}.

Interval sequences are closed under concatenation.

Proposition 4 ([22]). For all x,y ∈ IntSeq, xy ∈ IntSeq.

Interval sequences provide a simple sequence representation of interval orders via
the Fishburn representation. They are conceptually close to ST-traces [40,42] proposed
earlier. The difference is that ST-traces were defined for Petri nets, whereas interval
sequences do not assume any system model.

Interval Traces with Mutex Relation 153

Every interval sequence x generates a total order totord(âlph(x),�x) as defined at
the end of Sect. 4. For example, x= a�b�a�b�a�a� generates

a(1)� �x b
(1)
� �x a

(1)
� �x b

(1)
� �x a

(2)
� �x a

(2)
� .

Although an interval sequence generates a total order on the beginnings and ends of
events it represents, in general there is no similar representation for the events in Σ̂ it
represents. To achieve the desired result, one needs to switch to interval orders.

Definition 2 ([21,22]). The interval order generated by an interval sequence x∈ IntSeq
is defined as intord(x) = (ev(x),�x), where, for all a(i),b(j) ∈ ev(x),

a(i) �x b
(j) ⇐⇒ a(i)� �x b

(j)
� .

Note that, by Theorem 2, intord(x) is an interval order.

Example 5. In Fig. 1, po4 = intord(a�a�c�b�b�a�a�c�). In Fig. 2, we have po4 =
intord(a�a�b�b�c�d�d�c�). Moreover, po5 is generated by a�a�b�c�b�d�c�d� as well as
thirteen other interval sequences.

A characterisation of interval orders generated by interval sequences is provided by
the next result.

Theorem 6. intord(x) = (ev(x),{(a(i),b(j)) | posx(a
(i)
�) < posx(b

(j)
�)}), for every x ∈

IntSeq.

Proof. Follows directly from the definitions. ��
There is an alternative way of associating ‘position’ to an event of an interval

sequence x ∈ IntSeq based on Theorem 3. More precisely, for all a(i),b(j) ∈ ev(x):

p̂osx(a
(i)
�) = βintord(x)(a

(i)) and p̂osx(b
(j)
�) = εintord(x)(b

(j)) .

For example, if x= a�b�a�b�a�a� then p̂osx(a
(2)
�) = 3 whereas posx(a

(2)
�) = 5.

Interval sequences generating the same interval orders assign the same modified
positions to events, and they also form a (Mazurkiewicz) trace. To show the latter, let
Ψiseq = (Σ��, indiseq) be a concurrent alphabet such that

indiseq = {(a�,b�) | a �= b ∈ Σ}∪{(a�,b�) | a �= b ∈ Σ} .

Theorem 7. The following statements are equivalent, for all x,y ∈ IntSeq:

1. intord(x) = intord(y).
2. x ≡Ψiseq y.
3. ev(x) = ev(y) and p̂osx = p̂osy.

Proof. (2) =⇒ (1) By the definition of indiseq we have x ∼Ψiseq y =⇒ �x=�y and
ev(x) = ev(y).
(1) =⇒ (2) Suppose that x �≡Ψiseq y and ev(x) = ev(y). From the definition of indiseq it

follows that there are a(i),b(j) ∈ ev(x) = ev(y) such that a(i)� �x b
(j)
� or b(j)� �y a

(i)
� , so by

Definition 2, �x �=�y.
(1) ⇐⇒ (3) It is a consequence of Proposition 2. ��
That is, [x]≡Ψiseq

comprises interval sequences generating the same interval order.

154 R. Janicki et al.

7 Interval Traces

An interval trace alphabet is a tuple Φ = (Σ ,wind), where wind ⊆ Σ ×Σ is an irreflex-
ive relation called weak independence. Intuitively, if (a,b) ∈ wind then a and b may
occur simultaneously, or a may occur before b, with both executions being equivalent.
In general, wind is not symmetric.

Example 6. If (a,b) ∈ wind then the interval sequences a�a�b�b� (representing a before
b) as well as a�b�a�b�, b�a�a�b�, a�b�b�a�, b�a�b�a� (all representing simultaneous exe-
cution of a and b), will be considered equivalent.

The following rendering of wind as a relation over Σ�� leads directly to the concept
of interval traces.

Definition 3. Let Φ = (Σ ,wind) be an interval trace alphabet. Then φ = (Σ��, indΦ) is
an internal interval trace alphabet, where indΦ is a relation over Σ�� given by:

indΦ = {(a�,b�),(a�,b�) | a �= b ∈ Σ}∪{(a�,b�),(b�,a�) | (a,b) ∈ wind} .

The corresponding interval dependence relation is

depΦ = (Σ�� ×Σ��)\ indΦ
= {(a�,b�),(b�,a�) | (a,b) /∈ wind}∪{(a�,a�),(a�,a�) | a ∈ Σ} .

We will skip ‘internal’ and just write ‘interval trace alphabet’ for φ = (Σ��, indΦ)
which is a well-defined concurrent alphabet. The first component in the formula for
indΦ follows from the generalisation of the observation that the interval sequences
a�b�a�b�, b�a�a�b�, a�b�b�a�, and b�a�b�a� represent the same relationships between
events, namely that a(1) and b(1) are simultaneous.

As interval traces are a class of Mazurkiewicz traces, we also adapt the standard
trace notation of the latter. Moreover, for the reminder of this section, we assume that
Φ = (Σ ,wind) and φ = (Σ��, indΦ) are fixed.

Definition 4 ([21,22]). A Mazurkiewicz trace [x]φ over φ = (Σ��, indΦ) is called an
interval trace if [x]φ ⊆ IntSeq.

The soundness of the above definition is due to the following result.

Proposition 5 ([21]). Let φ = (Σ��, indΦ) be an interval trace alphabet, and let x,y ∈
IntSeq.

1. [x]φ ⊆ IntSeq.
2. [x]φ [y]φ ⊆ [xy]φ ⊆ IntSeq.
3. intord(x) = intord(y) =⇒ x ≡φ y.

A result similar to Proposition 4 also holds for interval traces.

Theorem 8. The following statements are equivalent for all x,y ∈ IntSeq:

1. x ≡φ y.

Interval Traces with Mutex Relation 155

Fig. 2. A weak independence relation wind, the interval independence relation ind derived from
wind (the default part given by Definition 3 is represented by dotted lines), and interval orders
generated by interval sequences from the interval trace [a�a�b�b�c�c�d�d�]φ .

2. π{a�,b�}(x) = π{a�,b�}(y), for all (a,b) /∈ wind.

3. ev(x) = ev(y) and, for all a(i),b(j) ∈ ev(x) such that (a,b) /∈ wind:

posx(a
(i)
�) < posx(b

(j)
�) ⇐⇒ posy(a

(i)
�) < posy(b

(j)
�) .

Proof. (1) ⇐⇒ (2) follows from [20], and (1) ⇐⇒ (3) from Proposition 2. ��
Since interval traces are a special case of Mazurkiewicz traces, the concept of

canonicity applies for them as well. Assuming that � is a total ordering of Σ , we
extend it to Σ�� as follows: a� � b� � a� � b� whenever a � b. This new order is
called the natural ordering of Σ��, which is then extended to a lexicographical order on
Σ ∗

�� in the standard fashion. Let y∈ [x]φ be an interval sequence in Foata canonical form
with respect to the dependence relation depΦ and the natural lexicographical order on
Σ ∗

�� given above. Since any interval trace is also a Mazurkiewicz trace, there is exactly
one such a canonical sequence in [x]φ .

While interval traces can model a broad range of concurrent behaviours where the
observations are represented by interval orders, there are cases that cannot be handled
by them. Consider the following example.

Example 7. Let E = {a,b,c} where a, b and c are three atomic operations defined as
follows (we assume simultaneous reading is allowed):

a : x ← x+1, b : x ← x+2, c : y ← y+1.
It is reasonable to consider them all as ‘concurrent’ as any order of their executions,
yields exactly the same results. Note that while simultaneous execution of a and c, and
b and c are allowed, the simultaneous execution of a and b is not!.

This case cannot be modelled by any interval trace. Had such trace exist, we would
have: a�a�b�b� ≡Φ b�b�a�a�, as ab and ba are equivalent executions, but (a�,b�) /∈ indΦ
and (b�,a�) /∈ indΦ , as the simultaneous execution of a and b is not allowed, resulting
in a contradiction.

This case can easily be modelled by g-comtraces of [19] and powerful step traces
of [12], but these two models assume that observations are fully represented by step
sequences (i.e., stratified orders), a subclass of interval orders, so they still do not cover
the most general case.

156 R. Janicki et al.

8 Interval Traces with Mutex Relation

A solution to the problem discussed at the end of the last section is to add a new relation
called mutex. In principle the same idea was used for step traces [12].

Definition 5. A mutex interval trace alphabet (or MI-trace alphabet) is a triple Φ =
(Σ ,wind,mut), where wind ⊆ Σ ×Σ is an irreflexive relation called weak independence
and mut ⊆ Σ ×Σ is an irreflexive and symmetric relation called mutual exclusion.

If (a,b) ∈ mut then the executions orders a followed by b, and b followed by a are
equivalent. E.g., if (a,b) ∈ mut then the interval sequences a�a�b�b� - which represents
a before b, and b�b�a�a� - which represents a after b, will be considered equivalent.

For the case from Example 7, we would have wind = {(a,c),(c,a),(b,c),(c,b)}
and mut = {(a,b),(b,a)}.

Definition 6. Let Φ = (Σ ,wind,mut) be a MI-trace alphabet. Then φ = (Σ��, indΦ ,
mutΦ) is an internal mutex interval trace alphabet (or MI-trace alphabet), where indΦ ⊆
Σ�� ×Σ�� and mutΦ ⊆ Σ� ×Σ� ×Σ� ×Σ� are relations given by:

indΦ = {(a�,b�),(a�,b�) | a �= b ∈ Σ}∪{(a�,b�),(b�,a�) | (a,b) ∈ wind}
mutΦ = {(a�,a�,b�,b�) | (a,b) ∈ mut} .

We then introduce equivalences on sequences following ideas behind the original
traces model.

Definition 7. Let φ = (Σ��, indΦ ,mutΦ) be a MI-trace alphabet. We define binary rela-
tions ≈ind,≈mut,≈φ ,≡φ over Σ ∗

��, as follows:

1. For all x,y ∈ Σ ∗
��:

– x ≈ind y if x= ze fw and y= z f ew, for some z,w ∈ Σ ∗
�� and (e, f) ∈ indΦ .

– x ≈mut y if x= za�a�b�b�w and y= zb�b�a�a�w, for some z,w ∈ Σ ∗
�� and

(a�,a�,b�,b�) ∈ mutφ .
2. ≈φ = ≈ind ∪ ≈mut.
3. ≡φ = (≈φ)∗.

Clearly the relation ≡φ is an equivalence relation and an equivalence class of ≡φ ,
τ ∈ Σ/≡φ , will be called a mutex interval trace (or MI-trace) if τ ⊆ IntSeq.

The trace containing an interval sequence w is denoted by [w]φ , and the trace con-
catenation ◦ is defined as τ ◦ τ ′ = [ww′]φ , for any interval sequences w ∈ τ and w′ ∈ τ ′.
Clearly, we have [ww′]φ = [vv′]φ , for all w,v ∈ τ and w′,v′ ∈ τ ′. However, this is not
enough to prove that the definition of MI-trace is sound. For this we need to show a
result similar to Proposition 5.

Proposition 6. Let φ = (Σ��, indΦ ,mutΦ) be a MI-trace alphabet, and x,y ∈ IntSeq.

1. [x]φ ⊆ IntSeq.
2. [x]φ [y]φ ⊆ = [xy]φ ⊆ IntSeq.
3. intord(x) = intord(x) =⇒ x ≡φ y.

Interval Traces with Mutex Relation 157

Fig. 3. An example of relations wind, mut, indΦ and mutΦ for Σ = {a,b,c,d,e}. The relation
wind is represented by an arrow, mut by dashed line, the part of indΦ from Definition 6 by solid
line, quadruples of mutΦ are connected by dashed lines, and the part of indΦ from Definition 6
is omitted (dotted lines in Fig. 2).

Proof. (1) From Definition 6 we know that a� and a� cannot commute for any
a ∈ Σ . Similarly, from Definition 6, we have that mut also does not change the
orders between a� and a� for any a ∈ Σ . Hence, if π{a�,a�}(x) ∈ (a�a�)∗ then also
π{a�,a�}(s) ∈ (a�a�)∗ for each s ∈ [x]φ .

(2) A consequence of Proposition 4 and (1) above.
(3) From Proposition 5(3), it follows intord(x) = intord(x) =⇒ x(≈ind)∗y and from

Definition 7(3), we have x(≈ind)∗y =⇒ x ≡φ y.
��

Note that if mut �= ∅ then there always exists an interval sequence x such that [x]≡
is not a Mazurkiewicz trace. This follows from the fact that the set of interval sequences
{a�a�b�b�,b�b�a�a�} is not a Mazurkiewicz trace, for any ind. However, if wind = ∅

and mut = {(a,b),(b,a)}, then {a�a�b�b�,b�b�a�a�} = [a�a�b�b�]≡, so it is a legal MI-
trace.

Example 8. Let Φ = (Σ ,wind,mut) be a MI-trace alphabet, with Σ = {a,b,c,d,e}
and wind,mut as defined in Fig. 3. Consider an interval sequence a�c�a�b�c�b�d�d�e�e�
which generates the interval order po7 in Fig. 4. Let τ = [a�c�a�b�c�b�d�d�e�e�]≡ for
the relations from Fig. 3. One can show by inspection that τ comprises the following
sequences:

a�c�a�b�c�b�d�d�e�e� c�a�a�b�c�b�d�d�e�e� a�c�a�b�b�c�d�d�e�e�
c�a�a�b�b�c�d�d�e�e� a�c�a�b�c�b�e�e�d�d� a�c�a�b�b�c�e�e�d�d�
a�c�a�b�b�c�e�e�d�d� c�a�a�b�b�c�e�e�d�d� a�a�b�c�b�c�d�d�e�e�
a�a�c�b�b�c�d�d�e�e� a�a�b�c�c�b�d�d�e�e� a�a�c�b�c�b�d�d�e�e�
a�a�b�c�b�c�e�e�d�d� a�a�c�b�b�c�e�e�d�d� a�a�b�c�c�b�e�e�d�d�
a�a�c�b�c�b�e�e�d�d�

The interval orders generated by the interval traces from τ are exactly the partial orders
po7 − po10 presented on the right hand side of Fig. 4.

158 R. Janicki et al.

We will now prove the result similar (but weaker, one way only) to that of Theo-
rem 8, but for MI-traces.

Proposition 7. Let x,y ∈ IntSeq and x ≡φ y. Then:

1. π{a�,b�}(x) = π{a�,b�}(y), for all (a,b) /∈ wind∪mut.

2. ev(x) = ev(y) and, for all a(i)� ,b(j)� ∈ ev(x) such that (a,b) /∈ wind∪mut:

posx(a
(i)
�) < posx(b

(j)
�) ⇐⇒ posy(a

(i)
�) < posy(b

(j)
�) . (*)

Proof. (1) Since ≡φ equals (≈ind ∪ ≈mut)∗, it suffices to prove the result for ≈ind and
≈mut. For x ≈ind y it follows from Theorem 8. For x ≈mut y, we have:

x= za�a�b�b�w∧ y= zb�b�a�a�w∧ (a�,a�,b�,b�) ∈ mutφ .

For all c,d such that {c,d} �= {a,b} we have π{c�,d�}(x) = π{c�,d�}(z) ·π{c�,d�}(w) =
π{c�,d�}(y), so we are done.

(2) Again, it suffices to prove for ≈ind ∪ ≈mut. For x ≈ind y it follows from Theorem 8.
Consider x ≈mut y, i.e. x = za�a�b�b�w∧ y = zb�b�a�a�w∧ (a�,a�,b�,b�) ∈ mutφ .
For each α ∈ ev(z) we have posx(α) = posy(α) = posz(α), while for each α ∈
ev(w) we have posx(α) = posy(α) = len(z)+4+posw(α). This means the formula

(*) holds for all a(i)� ,b(j)� ,a(i)� ,b(j)� ∈ ev(z)∪ ev(w). Assume u = za�a�b�b� and û =

ẑa(k)� a(k)� b(l)� b(l)� , for some k, l. Clearly for every c(i)� ∈ ev(z), we have posx(c
(i)
�) <

posx(a
(k)
�) and posy(c

(i)
�)< posx(a

(k)
�). Similarly for b(l)� . Now consider c(j)� ∈ ev(w),

we have posx(a
(k)
�) < posx(c

(j)
�) and posy(a

(k)
�) < posx(c

(j)
�), and similarly for b(l)� .

��
Although MI-traces are no longer Mazurkiewicz traces, a version of Foata canon-

ical form can still be introduced, intuitively corresponding to some greedy maximally
concurrent representation.

Consider a MI-trace [x]φ . From Theorem 1 it follows that for each interval
order po there is its greedy maximally concurrent extension gmcr(po). Let SE[x]φ =
{gmcr(intord(y)) | x ≡φ y} be the set of such extensions generated by the MI-trace
[x]φ , and let SSEQ[x]φ = {sseq(gmcr(intord(y))) | x ≡φ y} be an equivalent set of step
sequences.

For example, if we take x = a�c�a�b�c�b�d�d�e�e� from Example 8, then SE[x]φ =
{po5, po6, po9, po10} and SSEQ[x]φ comprises the following sequences:

a�c�a�c�b�b�d�d�e�e� c�a�a�c�b�b�d�d�e�e� a�c�c�a�b�b�d�d�e�e�
c�a�c�a�b�b�d�d�e�e� a�c�a�c�b�b�e�e�d�d� c�a�a�c�b�b�e�e�d�d�
a�c�c�a�b�b�e�e�d�d� c�a�c�a�b�b�e�e�d�d� a�a�b�c�b�c�d�d�e�e�
a�a�c�b�b�c�d�d�e�e� a�a�b�c�c�b�d�d�e�e� a�a�c�b�c�b�d�d�e�e�
a�a�b�c�b�c�e�e�d�d� a�a�c�b�b�c�e�e�d�d� a�a�b�c�c�b�e�e�d�d�
a�a�c�b�c�b�e�e�d�d�

A step sequence σ = A1 . . .Ak ∈ SSEQ[x]φ is in greedy maximally concurrent form
if, for every B1 . . .Bm ∈ SSEQ[x]φ ,

Interval Traces with Mutex Relation 159

– either k = m and |Ai| = |Bi| for i= 1, . . . ,k, or
– there is j ≤ k such that |Ai| = |Bi| for i= 1, . . . , j−1 and |Aj| > |Bj|.

We denote this by σ ∈ SSEQgmc
[x]φ

.

Clearly, SSEQgmc
[x]φ

�= ∅, though in general it may contain more than one step

sequence. For example for x = a�c�a�b�c�b�d�d�e�e� from Example 8, SSEQgmc
[x]φ

com-

prises the following sequences:

a�c�a�c�b�b�d�d�e�e� c�a�a�c�b�b�d�d�e�e� a�c�c�a�b�b�d�d�e�e�
c�a�c�a�b�b�d�d�e�e� a�c�a�c�b�b�e�e�d�d� c�a�a�c�b�b�e�e�d�d�
a�c�c�a�b�b�e�e�d�d� c�a�c�a�b�b�e�e�d�d�

The first four interval sequences generate po5 and the last four po6, which are both
stratified orders from Fig. 4.

Let � be an arbitrary total ordering of Σ . We extend it to a natural ordering of Σ��
by a� � b� � a� � b� whenever a � b, and then extend it to a lexicographical order
of Σ ∗

��. Then interval sequence x is in Foata canonical form if it is the smallest among
those generating step sequences in SSEQgmc

[x]φ
. Note that not every interval trace has a

Foata normal form defined this way.

9 Mutex Interval Trace Semantics of Petri Nets

Inhibitor arcs, introduced in [10], allow a transition to check for an absence of a token.
In principle they allow ‘test for zero’, an operator the standard Petri nets do not have
(cf. [31]). In this paper, inhibitor nets are just elementary nets [37] with inhibitor arcs.

Formally, an inhibitor net is a tuple N = (P,T,F, I,m0), where P is a set of places,
T is a set of transitions, P and T are disjoint, F ⊆ (P×T)∪ (T ×P) is a flow relation,
I ⊆ P×T is a set of inhibitor arcs and m0 ⊆ P is the initial marking. An inhibitor arc
(p,e) ∈ I means that e can be enabled only if p is not marked. In diagrams (p,e) is
indicated by an edge with a small circle at the end. Any set of places m ⊆ P is called a
marking. The net N̂ of Fig. 4 is an inhibitor net with I = {(s3,c�),(b,c�),(d,e�),(e,d�)}.

A mutex inhibitor net (or MI-net) is a tuple N = (P,T,F, I,M,m0), where
(P,T,F, I,m0) is an inhibitor net and M ⊆ T × T is a symmetric mutex relation.
The mutex relation M can only be defined on transitions that can be interpreted as
independent, i.e., their neighbourhoods (unions of entries and exits) are disjoint in
(P,T,F, I,m0).

The net N from Fig. 4 is an example of MI-net, where I = {(s3,c)} and M =
{(d,e),(e,d)}. Consider this net N but without M = {(d,e),(e,d)}. Assuming the stan-
dard step sequence semantics of inhibitor nets (cf. [1,15]), we can get from the marking
{s4,s5} to {s6,s7} either by firing the step {e,d}, or by firing sequences of singleton
steps {e}{d} or {d}{e} (i.e., sequences ed or de). The relation M = {(d,e),(e,d)}
disallows simultaneous execution of d and e, leaving only sequences ed and de.

Inhibitor nets have been introduced in [11] to solve a synchronization problem not
expressible in classical Petri nets. Such nets allow ‘test for zero’, a feature that the stan-
dard Petri nets do not have (cf. [4,31]). Despite their simplicity, basic inhibitor nets [15]
can easily express complex behaviours involving weak causality [1,23,30], priorities,

160 R. Janicki et al.

Fig. 4. N̂ is the interval representation of MI-net N. All runs start from {s1,s2} and end at {s6,s7}.
po1 −−po8 on the right side represent runs of both N and N̂. N′ is an inhibitor net and N̂′ is its
interval representation. The interval border inside the dotted square is an observation in both N′
and N̂′.

various versions of simultaneity, etc. [15,42]. Inhibitor nets used in this paper are exten-
sions of the elementary net systems [37] (i.e., we always assume that (P,T,F,m0) form
an elementary net system). The mutex relation (arcs) were introduced in [24] and sub-
stantially influenced the development of step traces [12,13].

The mutex relation matters only if net operational semantics allows simultaneous
executions, e.g., it is step sequence semantics [1,15], ST-traces semantics [40,42], or
interval sequence semantics [16,21]. For the standard firing sequence semantics it is
irrelevant. On the other hand, interval sequence semantics for inhibitor nets has been
defined as firing sequence semantics of nets that are interpreted as their interval repre-
sentations. Consider the net N′ from Fig. 4 which is N after deleting s6, s7, d, and e. The
net N̂′ — a subnet of N̂ — is its interval representation.

The basic assumption behind interval executions and interval sequences is that each
transition has its beginning and end. In such a case, one cannot adequately describe

Interval Traces with Mutex Relation 161

system states by markings alone. We need to supplement markings with information
about transitions that have started, but have not finished yet.

The transformation of an inhibitor net into its interval representation is based on two
principles. If inhibitor arcs are not involved, to represent transitions by their beginnings
and ends we might just replace each transition t by the net t� t��� �t , as proposed
for example in [2] for nets with priorities, or in [44] for timed Petri nets. Each inhibitor
arc must be replaced by two when transformation is made, and this construction is
explained in detail in [21]. For the nets N′ and N̂′ of Fig. 4, the inhibitor arc (s3,c) in N′
is transformed into two inhibitor arcs, (s3,c�) and (b,c�), in N̂′.

Consider the net N′ in Fig. 4. Assuming that we can ‘hold tokens’ in executed tran-
sitions and holding a token in c overlap with holding tokens in a and b, the net N can
generate the interval order from Fig. 4 that is inside dotted square. This interval order
can for example be represented by an interval sequence a�c�a�b�b�c� which is a fir-
ing sequence of the net N̂′. Now consider the net N which includes the mutex relation
M = {(e,d),(d,e)}. It prevents firing simultaneously e and d. In the net N̂, transition
e is replaced by e� e��� �e , transition d is replaced by d� d��� �d , and
the simultaneous execution of e and d is modelled either by sequence e�d� or by d�e�
(followed by e�d� or d�e�). Inhibitor arcs added by the translation, (e,d�) and (d,e�),
prevent such firing sequences. All this leads to the following definition.

Definition 8. The interval representation of a MI-net N = (P,T,F, I,M,m0) is the
inhibitor net N̂ = (P̂, T̂ , F̂ , Î,m0) such that P̂= P∪T , T̂ = T��, Î = Îiarcs ∪ Îmut, where:

F̂ = {(p, t�) | (p, t) ∈ F}∪{(t�, p) | (t, p) ∈ F}∪{(t�, t),(t, t�) | t ∈ T}
Îiarcs = {(p, t�) | (p, t) ∈ I}∪{(r, t�) | (p, t) ∈ I∧ (p,r) ∈ F}
Îmut = {(v, t�),(t,v�) | (t,v) ∈ M} .

The net N̂ in Fig. 4 is the interval representation of N from the same diagram. Note
also that initial markings of N and N̂ are equal (meaning that all new places from P̂\P
are initially empty). In a similar way we can capture states of N̂, where all initiated
transitions are also finalised.

We will use the standard black arrowhead notation for the flow arcs, and white
dot notation for the inhibitor arcs. Sometimes we write ‘◦ia’ and ‘◦m’ instead of ‘◦’ to
indicate which kind of inhibitor arc is involved, i.e., Îiarcs or Îmut.

The interval representation of any MI-net is always an inhibitor net and we are inter-
ested in interval sequences2 (that represent interval orders) generated by this inhibitor
net. In other words, as for inhibitor nets [21], the interval sequence semantics of N is
the firing sequence semantics of N̂.

The standard firing sequence semantics for an inhibitor net NI = (P,T,F, I,m0) is
defined as follows:

– A transition t is enabled at marking m if •t ⊆ m and (t• ∪ t◦)∩m= ∅.

2 Defining interval step sequences is mathematically possible but it does not make much sense
as t� and t� are interpreted as event beginning and its end, i.e., they are instantaneous, so their
simultaneous occurrence is not observable - when time is continuous, or it can entirely be
represented by interleaving - when time is discrete (see [22,34]).

162 R. Janicki et al.

– An enabled t can occur leading to a new marking m′ = (m\•t)∪t•, which is denoted
by m[t〉m′, or m[t〉Nm′.

– A firing sequence from marking m to marking m′ is a sequence of transitions t1 . . . tk
(k ≥ 0) for which there are markings m = m0, . . . ,mk = m′ such that mi−1[ti〉mi, for
every 1 ≤ i ≤ k. This is denoted by m[t1 . . . tk〉m′ and t1 . . .tk ∈ FSNI(m � m′). In
other words, FSNI(m � m′) is the set of firing sequences of NI that lead from the
marking m to m′.

Definition 9. Let N and N̂ be as in Definition 8, and m,m′ ⊆ P. We respectively define
the firing interval sequences of N from m to m′ and the firing interval orders of N from
m to m′, as follows:

FISN(m � m′) = FSN̂(m � m′)
FION(m � m′) = intord(FSN̂(m � m′)) .

The following result validates the last definition.

Proposition 8. Let N and N̂ be as in Definition 8, and let m,m′ ⊆ P.

1. FISN(m � m′) ⊆ IntSeq.
2. For all x ∈ FISN(m � m′) and y ∈ IntSeq,

intord(x) = intord(y) =⇒ y ∈ FISN(m � m′) .

Proof. (1) Let x ∈ FISN(m�m′). We need to show that π{a�,a�}(x) ∈ (a�a�)∗, for every
a ∈ Σ . Let x = za�w and m[za�〉m′′. Since a•

� = {a}, we have a ∈ m′′. We also have

that: (i) for any ma ⊆ P̂, if a ∈ ma, then a� is not enabled in ma, and (ii) the only way
to remove a from ma is to fire a� (as •a� = {a}). Hence we must have x = y a� w′ a� v,
where π{a�,a�}(w

′) = λ . As a result, π{a�,a�}(x) ∈ (a�a�)∗.
(2) Assuming that Σ = T , let � be a binary relation on IntSeq such that x � y if

x= za�b�w and y= zb�a�w, for some z,a,b,w. By Theorem 7, x �∗ y ⇐⇒ intord(x) =
intord(y). Hence it suffices to show that if x ∈ FISN(m � m′) and x � y, then y ∈
FISN(m � m′).

Let x = za�b�w and y = zb�a�w. Suppose that m[z〉m1[a�〉m2[b�〉m3[w〉m′. This
means that both a� and b� are enabled in m1, so the statement m[z〉m1[b�〉m′

2[a�〉m3[w〉m′
is also true, i.e., y ∈ FISN(m � m′). ��

In order to define trace semantics of MI-nets we need to construct suitable relations
wind and mut from a MI-net N = (P,T,F, I,M,m0). While mut is just M, the relation
wind can only be derived from the structure of the interval representation N̂, similarly
as for the interval trace semantics of [21].

Definition 10. Let N and N̂ be as in Definition 8. We define relations indN̂ , windN,
mutN, and mutN̂ , as follows:

indN̂ = {(a�,b�),(a�,b�) | a �= b ∈ T}∪
{(a�,b�) | a �= b ∈ T ∧•a•

� ∩•b•
� =

◦iaa� ∩•b•
� =

◦iab� ∩•a•
� = ∅}

windN = {(a,b) | (b�,a�) ∈ indN̂}
mutN = M
mutN̂ = {(a�,a�,b�,b�) | (a,b) ∈ M}.

Interval Traces with Mutex Relation 163

Note that the formula for indN̂ is in the spirit of Mazurkiewicz’s original concept and
follows from a detailed discussion of similar relations in [21].

It is straightforward to check that (T,windN ,mutN) is a MI-trace alphabet. Let ≡N be
the MI-trace equivalence relation induced by it. The following result shows the sound-
ness of concepts discussed above.

Proposition 9. Let N and N̂ be as in Definition 8, and m,m′ ⊆ P. Then:

x ∈ FISN(m � m′) ⇐⇒ [x]≡N ⊆ FISN(m � m′) .

Proof. (⇐=) Obvious.
(=⇒) It suffices to consider the following two cases.
Case 1: x= za�b�w, y= zb�a�w and (a�,b�) ∈ indN̂ . Suppose that

m[z〉m1[a�〉m2[b�〉m3[w〉m′ .

Since (a�,b�) ∈ indN̂ , both a� and b� are enabled at m1, so we also have

m[z〉m1[b�〉m′
2[a�〉m3[w〉m′ .

Hence y ∈ FISN(m � m′).
Case 2: x= z1a�a�b�b�z2, y= z1b�b�a�a�z2 and (a�,a�,b�,b�) ∈ mutN̂ . Suppose that

m[z〉m1[a�〉m2[a�〉m3[b�〉m4[b�〉m5[w〉m′ .

Since (a�,a�,b�,b�) ∈ mutN̂ , both a� and b� are enabled at m1. If a� is fired then a ∈ m2

and, since (a,b�) ∈ Î, b� is not enabled in m2, but a� is. However, b� is enabled in m3,
etc. Similarly, when we fire b� in m1, so we also have

m[z〉m1[b�〉m′
2[b�〉m3[a�〉m′

4[a�〉m5[z2〉m′ .

Hence y ∈ FISN(m � m′). ��

10 Concluding Remarks

We have enriched interval traces by the mutex relation. The resulting MI-traces capture
not only the ‘not later than’ relationship, but also the ‘no simultaneity’ relationship.
The concept of mutex relation was adopted from [12], where it was used to extend the
comtraces [15] to more powerful step traces. We elaborated on the soundness of the
MI-traces definition and their basic properties have been proved. Some new results for
interval orders and interval traces have also been provided.

We have also investigated MI-trace semantics for inhibitor Petri nets with mutex
arcs. To do this, we have incorporated translations from [12,21,23]. We have also dis-
cussed the soundness of the proposed construction.

There are still several open problems in the development of our model, such as the
relationship between wind and mut. They are unconstrained in this paper, but this might
not always be a realistic assumption. Few models can handle interval orders as observa-
tions. One that can are Higher Dimensional Automata of [7,36], but their relationship
to our model is not clear at this moment.

Finally, we would like to point out that interval order semantics (cf. [21,40,42]) and
interval semantics (cf. [35]) are incomparable.

164 R. Janicki et al.

Acknowledgment. A partial support by the Discovery NSERC of Canada grant No. 6466-15,
and the Leverhulme Trust grant RPG-2022-025 is acknowledged. The authors gratefully acknowl-
edge four anonymous referees, whose comments significantly contributed to the final version of
this paper.

References

1. Baldan, P., Busi, N., Corradini, A., Pinna, G.M.: Domain and event structure semantics for
Petri nets with read and inhibitor arcs. Inf. Comput. 323, 129–189 (2004)

2. Best, E., Koutny, M.: Petri net semantics of priority systems. Theor. Comput. Sci. 96(1),
175–174 (1992)

3. Cartier, P., Foata, D.: Problèmes combinatoires de commutation et réarrangements. LNM,
vol. 85. Springer-Verlag, Berlin (1969)

4. Desel, J., Reisig, W.: Place/transition petri nets. In: Reisig, W., Rozenberg, G. (eds.) ACPN
1996. LNCS, vol. 1491, pp. 122–173. Springer, Heidelberg (1998). https://doi.org/10.1007/
3-540-65306-6 15

5. Diekert, V., Métivier, Y.: Partial commutation and traces. In: Rozenberg, G., Salomaa, A.
(eds.) Handbook of Formal Languages, pp. 457–533. Springer, Heidelberg (1997). https://
doi.org/10.1007/978-3-642-59126-6 8

6. Diekert, V., Rozenberg, G., editors. The Book of Traces. World Scientific (1995)
7. Fahrenberg, U., Johansen, C., Struth, G., Ziemiański, K.: Posets with interfaces as a model

for concurrency. Inf. Comput. 285 (2022)
8. Fishburn, P.C.: Intransitive indifference with unequal indifference intervals. J. Math. Psychol.

7, 144–149 (1970)
9. Fishburn, P.C.: Interval Orders and Interval Graphs. John Wiley, New York (1985)

10. Flynn, M.J., Agerwala, T.: Comments on capabilities, limitations and correctness of Petri
nets. In: Lipovski, G.J., Szygenda, S.A., editors, Proceedings of the 1st Annual Symposium
on Computer Architecture, Gainesville, FL, USA, December 1973, pp. 81–86. ACM (1973)

11. Flynn, M.J., Agerwala, T.: Comments on capabilities, limitations and correctness of Petri
nets. In: Lipovski, G.J., Szygenda, S.A., editors, Proceedings of the 1st Annual Symposium
on Computer Architecture, Gainesville, FL, USA, December 1973, pp. 81–86. ACM (1973)

12. Janicki, R., Kleijn, J., Koutny, M., Mikulski, Ł: Characterising concurrent histories. Fund.
Inform. 139(1), 21–42 (2015)

13. Janicki, R., Kleijn, J., Koutny, M., Mikulski, Ł: Classifying invariant structures of step traces.
J. Comput. Syst. Sci. 104, 297–322 (2019)

14. Janicki, R., Koutny, M.: Structure of concurrency. Theor. Comput. Sci. 112(1), 5–52 (1993)
15. Janicki, R., Koutny, M.: Semantics of inhibitor nets. Inf. Comput. 123(1), 1–16 (1995)
16. Janicki, R., Koutny, M.: Operational semantics, interval orders and sequences of antichains.

Fund. Inform. 169(1–2), 31–55 (2019)
17. Janicki, R., Lauer, P.E.: Specification and Analysis of Concurrent Systems - The COSY

Approach, 2nd edn. Springer, EATCS Monographs on Theoretical Computer Science (2012).
https://doi.org/10.1007/978-3-642-77337-2

18. Janicki, R., Lauer, P.E., Koutny, M., Devillers, R.: Concurrent and maximally concurrent
evolution of nonsequential systems. Theor. Comput. Sci. 43, 213–238 (1986)

19. Janicki, R., Lê, D.T.M.: Modelling concurrency with comtraces and generalized comtraces.
Inf. Comput. 209(11), 1355–1389 (2011)

20. Janicki, R., Mikulski, Ł: Algebraic structure of step traces and interval traces. Fund. Inform.
175(1–4), 253–280 (2020)

21. Janicki, R., Yin, X.: Modeling concurrency with interval traces. Inf. Comput. 253, 78–108
(2017)

https://doi.org/10.1007/3-540-65306-6_15
https://doi.org/10.1007/3-540-65306-6_15
https://doi.org/10.1007/978-3-642-59126-6_8
https://doi.org/10.1007/978-3-642-59126-6_8
https://doi.org/10.1007/978-3-642-77337-2

Interval Traces with Mutex Relation 165

22. Janicki, R., Yin, X., Zubkova, N.: Modeling interval order structures with partially commu-
tative monoids. In: Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol. 7454, pp.
425–439. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32940-1 30

23. Kleijn, J., Koutny, M.: Formal languages and concurrent behaviours. In: Enguix, G.B.,
Jiménez-López, M.D., Martı́n-Vide, C., editors, New Developments in Formal Languages
and Applications, volume 113 of Studies in Computational Intelligence, pp. 125–182.
Springer, Cham (2008). https://doi.org/10.1007/978-3-540-78291-9 5

24. Kleijn, J., Koutny, M.: Mutex causality in processes and traces of general elementary nets.
Fund. Inform. 122(1–2), 119–146 (2013)

25. Laarman, A.: Stubborn transaction reduction. In: Dutle, A., Muñoz, C., Narkawicz, A. (eds.)
NFM 2018. LNCS, vol. 10811, pp. 280–298. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-77935-5 20

26. Lengauer, C., Hehner, E.C.R.: A methodolgy for programming with concurrency. In:
Händler, W., editor, CONPAR 81: Conference on Analysing Problem Classes and Program-
ming for Parallel Computing, Nürnberg, Germany, June 10–12, 1981, Proceedings, volume
111 of Lecture Notes in Computer Science, pp. 259–270. Springer (1981)

27. Mazurkiewicz, A.: Concurrent program schemes and their interpretations. DAIMI Rep. PB
78, Aarhus University (1977)

28. Mazurkiewicz, A.W.: Introduction to trace theory. In: Diekert, V., Rozenberg, G., editors,
The Book of Traces, pp. 3–41. World Scientific, (1995)

29. Mikulski, Ł.: Algebraic structure of combined traces. Log. Methods Comput. Sci., 9(3),
(2013)

30. Montanari, U., Rossi, F.: Contextual nets. Acta Infortmatica 32(6), 545–596 (1995)
31. Murata, T.: Petri nets: properties, analysis and applications. Proc. IEEE 77(4), 541–580

(1989)
32. Nagy, B., Akkeleş, A.: Trajectories and traces on non-traditional regular tessellations of the

plane. In: Brimkov, V.E., Barneva, R.P. (eds.) IWCIA 2017. LNCS, vol. 10256, pp. 16–29.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59108-7 2

33. Paulevé, L.: Goal-oriented reduction of automata networks. In: Bartocci, E., Lio, P., Paoletti,
N. (eds.) CMSB 2016. LNCS, vol. 9859, pp. 252–272. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-45177-0 16

34. Petri, C.A.: Nets, time and space. Theor. Comput. Sci. 153(1&2), 3–48 (1996)
35. Popova-Zeugmann, L., Pelz, E.: Algebraical characterisation of interval-timed Petri nets with

discrete delays. Fundam. Informaticae 120(3–4), 341–357 (2012)
36. Pratt, V.: Modeling concurrency with geometry. In: POPL ’91: Proceedings of the 18th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp. 311–322.
ACM (1991)

37. Rozenberg, G., Engelfriet, J.: Elementary net systems. In: Reisig, W., Rozenberg, G. (eds.)
ACPN 1996. LNCS, vol. 1491, pp. 12–121. Springer, Heidelberg (1998). https://doi.org/10.
1007/3-540-65306-6 14

38. Shields, M.W.: Adequate path expressions. In: Kahn, G., editor, Semantics of Concurrent
Computation, Proceedings of the International Symposium, Evian, France, July 2–4, 1979,
volume 70 of Lecture Notes in Computer Science, pp. 249–265. Springer (1979)

39. Shields, M.W.: Concurrent machines. Comput. J. 28(5), 449–465 (1985)
40. van Glabbeek, R., Vaandrager, F.: Petri net models for algebraic theories of concurrency.

In: de Bakker, J.W., Nijman, A.J., Treleaven, P.C. (eds.) PARLE 1987. LNCS, vol. 259, pp.
224–242. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-17945-3 13

41. Vogler, W.: A generalization of trace theory. RAIRO Infornatique théorique et Appl. 25(2),
147–156 (1991)

42. Vogler, W.: Partial order semantics and read arcs. Theor. Comput. Sci. 286(1), 33–63 (2002)

https://doi.org/10.1007/978-3-642-32940-1_30
https://doi.org/10.1007/978-3-540-78291-9_5
https://doi.org/10.1007/978-3-319-77935-5_20
https://doi.org/10.1007/978-3-319-77935-5_20
https://doi.org/10.1007/978-3-319-59108-7_2
https://doi.org/10.1007/978-3-319-45177-0_16
https://doi.org/10.1007/978-3-319-45177-0_16
https://doi.org/10.1007/3-540-65306-6_14
https://doi.org/10.1007/3-540-65306-6_14
https://doi.org/10.1007/3-540-17945-3_13

166 R. Janicki et al.

43. Wiener, N.: A contribution to the theory of relative position. Proc. Camb. Philos. Soc. 17,
441–449 (1914)

44. Zuberek, W.M.: Timed Petri nets and preliminary performance evaluation. In: Lenfant, J.,
Borgerson, B.R., Atkins, D.E., Irani, K.B., Kinniment, D., Aiso, H., editors, Proceedings of
the 7th Annual Symposium on Computer Architecture, La Baule, France, May 6–8, 1980,
pp. 88–96. ACM (1980)

A Myhill-Nerode Theorem
for Higher-Dimensional Automata

Uli Fahrenberg1(B) and Krzysztof Ziemiański2

1 EPITA Research Laboratory (LRE), Le Kremlin-Bicêtre, France
uli@lrde.epita.fr

2 University of Warsaw, Warsaw, Poland

Abstract. We establish a Myhill-Nerode type theorem for higher-dim-
ensional automata (HDAs), stating that a language is regular precisely if
it has finite prefix quotient. HDAs extend standard automata with addi-
tional structure, making it possible to distinguish between interleavings
and concurrency. We also introduce deterministic HDAs and show that
not all HDAs are determinizable, that is, there exist regular languages
that cannot be recognised by a deterministic HDA. Using our theorem,
we develop an internal characterisation of deterministic languages.

Keywords: higher-dimensional automata · Myhill-Nerode theorem ·
concurrency theory · determinism

1 Introduction

Higher-dimensional automata (HDAs), introduced by Pratt and van Glabbeek
[23,27,28], extend standard automata with additional structure that makes it
possible to distinguish between interleavings and concurrency. That puts them in
a class with other non-interleaving models for concurrency such as Petri nets [22],
event structures [21], configuration structures [31,32], asynchronous transition
systems [3,26], and similar approaches [19,24,25,30], while retaining some of the
properties and intuition of automata-like models. As an example, Fig. 1 shows
Petri net and HDA models for a system with two events, labeled a and b. The
Petri net and HDA on the left side model the (mutually exclusive) interleaving
of a and b as either a.b or b.a; those to the right model concurrent execution of
a and b. In the HDA, this independence is indicated by a filled-in square.

Fig. 1. Petri net and HDA models distinguishing interleaving (left) from non-
interleaving (right) concurrency. Left: Petri net and HDA models for a.b + b.a; right:
HDA and Petri net models for a ‖ b.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Gomes and R. Lorenz (Eds.): PETRI NETS 2023, LNCS 13929, pp. 167–188, 2023.
https://doi.org/10.1007/978-3-031-33620-1_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33620-1_9&domain=pdf
https://doi.org/10.1007/978-3-031-33620-1_9

168 U. Fahrenberg and K. Ziemiański

We have recently introduced languages of HDAs [6], which consist of partially
ordered multisets with interfaces (ipomsets), and shown a Kleene theorem for
them [7]. Here we continue to develop the language theory of HDAs. Our first
contribution is a Myhill-Nerode type theorem for HDAs, stating that a language
is regular iff it has finite prefix quotient. This provides a necessary and sufficient
condition for regularity. Our proof is inspired by the standard proofs of the
Myhill-Nerode theorem, but the higher-dimensional structure introduces some
difficulties. For example, we cannot use the standard prefix quotient relation but
need to develop a stronger one which takes concurrency of events into account.

As a second contribution, we give a precise definition of deterministic HDAs
and show that there exist regular languages that cannot be recognised by deter-
ministic HDAs. Our Myhill-Nerode construction will produce a deterministic
HDA for such deterministic languages, and a non-deterministic HDA otherwise.
(We make no claim as to minimality of our Myhill-Nerode HDAs.) Our definition
of determinism is more subtle than for standard automata as it is not always
possible to remove non-accessible parts of HDAs. We develop a language-internal
characterisation of deterministic languages.

2 Pomsets with Interfaces

HDAs model systems in which labelled events have duration and may happen
concurrently. Every event has a time interval during which it is active: it starts at
some point, then remains active until its termination and never reappears. Events
may be concurrent, that is, their activity intervals may overlap; otherwise, one
of the events precedes the other. We also need to consider executions in which
some events are already active at the beginning (source events) or are still active
at the end (target events).

At any moment of an execution we observe a list of currently active events
(such lists are called losets below). The relative position of any two concurrent
events on these lists remains the same, regardless of the point in time. This
provides a secondary relation between events, which we call event order.

To make the above precise, let Σ be a finite alphabet. An loset1 (U, ���, λ)
is a finite set U with a total order ��� called the event order and a labelling
function λ : U → Σ. Losets (or rather their isomorphism classes) are effectively
strings but consist of concurrent, not subsequent, events.

A labelled poset with event order (lposet) (P,<, ���, λ) consists of a finite set
P with two relations: precedence < and event order ���, together with a labelling
function λ : P → Σ. Note that different events may carry the same label: we do
not exclude autoconcurrency. We require that both < and ��� are strict partial
orders, that is, they are irreflexive and transitive (and thus asymmetric). We
also require that for each x �= y in P , at least one of x < y or y < x or x ��� y or
y ��� x must hold; that is, if x and y are concurrent, then they must be related
by ���.

1 Pronunciation: ell-oh-set.

A Myhill-Nerode Theorem for Higher-Dimensional Automata 169

Fig. 2. Activity intervals (top) and corresponding iposets (bottom), see Example 1. Full
arrows indicate precedence order; dashed arrows indicate event order; bullets indicate
interfaces.

Losets may be regarded as lposets with empty precedence relation; the last
condition enforces that their elements are totally ordered by ���. A temporary
state of an execution is described by an loset, while the whole execution provides
an lposet of its events. The precedence order expresses that one event terminates
before the other starts. The execution starts at the loset of <-minimal elements
and finishes with the loset of <-maximal elements. The event order of an lposet
is generated by the event orders of temporary losets. Hence any two events which
are active concurrently are unrelated by < but related by ���.

In order to accommodate source and target events, we need to introduce
lposets with interfaces (iposets). An iposet (P,<, ���, S, T, λ) consists of an
lposet (P,<, ���, λ) together with subsets S, T ⊆ P of source and target inter-
faces. Elements of S must be <-minimal and those of T <-maximal; hence both
S and T are losets. We often denote an iposet as above by SPT , ignoring the
orders and labelling, or use SP = S and TP = T if convenient. Source and target
events will be marked by “•” at the left or right side, and if the event order is
not shown, we assume that it goes downwards.

Example 1. Figure 2 shows some simple examples of activity intervals of events
and the corresponding iposets. The left iposet consists of three totally ordered
events, given that the intervals do not overlap; the event a is already active at the
beginning and hence in the source interface. In the other iposets, the activity
intervals do overlap and hence the precedence order is partial (and the event
order non-trivial).

Given that the precedence relation < of an iposet represents activity intervals
of events, it is an interval order [12]. In other words, any of the iposets we will
encounter admits an interval representation: functions b and e from P to real
numbers such that b(x) ≤ e(x) for all x ∈ P and x <P y iff e(x) < b(y)
for all x, y ∈ P . We will only consider interval iposets in this paper and omit
the qualification “interval”. This is not a restriction, but rather induced by the
semantics.

170 U. Fahrenberg and K. Ziemiański

Iposets may be refined by shortening the activity intervals of events, so that
some events stop being concurrent. This corresponds to expanding the prece-
dence relation < (and, potentially, removing event order). The inverse to refine-
ment is called subsumption and defined as follows. For iposets P and Q, we say
that Q subsumes P (or that P is a refinement of Q) and write P � Q if there
exists a bijection f : P → Q (a subsumption) which

– respects interfaces and labels: f(SP) = SQ, f(TP) = TQ, and λQ ◦ f = λP ;
– reflects precedence: f(x) <Q f(y) implies x <P y; and
– preserves essential event order: x ���P y implies f(x) ���Q f(y) whenever x

and y are concurrent (that is, x �<P y and y �<P x).

(Event order is essential for concurrent events, but by transitivity, it also appears
between non-concurrent events; subsumptions may ignore such non-essential
event order.)

Example 2. In Fig. 2, there is a sequence of refinements from right to left, each
time shortening some activity intervals. Conversely, there is a sequence of sub-
sumptions from left to right:

a•

c
b �

a•

c
b �

a•

c
b �

a•

c
b

Interfaces need to be preserved across subsumptions, so in our example, the left
endpoint of the a-interval must stay at the boundary.

Iposets and subsumptions form a category. The isomorphisms in that cate-
gory are invertible subsumptions, and isomorphism classes of iposets are called
ipomsets. Concretely, an isomorphism f : P → Q of iposets is a bijection which

– respects interfaces and labels: f(SP) = SQ, f(TP) = TQ, and λQ ◦ f = λP ;
– respects precedence: x <P y iff f(x) <Q f(y); and
– respects essential event order: x ���P y iff f(x) ���Q f(y) whenever x �<P y

and y �<P x.

Isomorphisms between iposets are unique (because of the requirement that all
elements be ordered by < or ���), hence we may switch freely between ipomsets
and concrete representations, see [7] for details. We write P ∼= Q if iposets P
and Q are isomorphic and let iiPoms denote the set of ipomsets.

Ipomsets may be glued, using a generalisation of the standard serial com-
position of pomsets [13]. For ipomsets P and Q, their gluing P ∗ Q is defined
if the targets of P match the sources of Q: TP

∼= SQ. In that case, its carrier
set is the quotient (P � Q)/x≡f(x), where f : TP → SQ is the unique isomor-
phism, the interfaces are SP∗Q = SP and TP∗Q = TQ, ���P∗Q is the transitive
closure of ���P ∪ ���Q, and x <P∗Q y iff x <P y, or x <Q y, or x ∈ P − TP and
y ∈ Q−SQ. We will often omit the “∗” in gluing compositions. For ipomsets with
empty interfaces, ∗ is serial pomset composition; in the general case, matching
interface points are glued, see [6,8] or below for examples.

A Myhill-Nerode Theorem for Higher-Dimensional Automata 171

Fig. 3. Sparse decomposition of ipomset into starters and terminators.

An ipomset P is discrete if <P is empty and ���P total. Losets are discrete
ipomsets with empty interfaces. Discrete ipomsets UUU are identities for gluing
composition and written idU . A starter is an ipomset U−AUU , a terminator is
UUU−A; these will be written A↑U and U↓A, respectively.

Any ipomset can be presented as a gluing of starters and terminators [8,
Prop. 21]. (This is related to the fact that a partial order is interval iff its
antichain order is total, see [12,17,18]). Such a presentation we call a step decom-
position; if starters and terminators are alternating, the decomposition is sparse.

Example 3. Figure 3 shows a sparse decomposition of an ipomset into starters
and terminators. The top line shows the graphical representation, in the mid-
dle the representation using the notation we have introduced for starters and
terminators, and the bottom line shows activity intervals.

Proposition 4. Every ipomset P has a unique sparse step decomposition.

A language is, a priori, a set of ipomsets L ⊆ iiPoms. However, we will
assume that languages are closed under refinement (inverse subsumption), so
that refinements of any ipomset in L are also in L:

Definition 5. A language is a subset L ⊆ iiPoms such that P � Q and Q ∈ L
imply P ∈ L.

Using interval representations, this means that languages are closed under
shortening activity intervals of events. The set of all languages is denoted L ⊆
2iiPoms.

For X ⊆ iiPoms an arbitrary set of ipomsets, we denote by

X↓ = {P ∈ iiPoms | ∃Q ∈ X : P � Q}

its downward subsumption closure, that is, the smallest language which con-
tains X. Then

L = {X ⊆ iiPoms | X↓ = X}.

172 U. Fahrenberg and K. Ziemiański

3 HDAs and Their Languages

An HDA is a collection of cells which are connected according to specified face
maps. Each cell has an associated list of labelled events which are interpreted as
being executed in that cell, and the face maps may terminate some events or,
inversely, indicate cells in which some of the current events were not yet started.
Additionally, some cells are designated start cells and some others accept cells;
computations of an HDA begin in a start cell and proceed by starting and
terminating events until they reach an accept cell.

To make the above precise, let � denote the set of losets. A precubical set
consists of a set of cells X together with a mapping ev : X → � which to
every cell assigns its list of active events. For an loset U we write X[U] = {x ∈
X | ev(x) = U} for the cells of type U . Further, for every U ∈ � and subset
A ⊆ U there are face maps δ0A, δ1A : X[U] → X[U − A]. The upper face maps
δ1A terminate the events in A, whereas the lower face maps δ0A “unstart” these
events: they map cells x ∈ X[U] to cells δ0A(x) ∈ X[U − A] where the events in
A are not yet active.

If A,B ⊆ U are disjoint, then the order in which events in A and B are
terminated or unstarted should not matter, so we require that δν

Aδμ
B = δμ

Bδν
A for

ν, μ ∈ {0, 1}: the precubical identities. A higher-dimensional automaton (HDA)
is a precubical set together with subsets ⊥X ,�X ⊆ X of start and accept cells.
For a precubical set X and subsets Y,Z ⊆ X we denote by XZ

Y the HDA with
precubical set X, start cells Y and accept cells Z. We do not generally assume
that precubical sets or HDAs are finite. The dimension of an HDA X is dim(X) =
sup{|ev(x)| | x ∈ X} ∈ N ∪ {∞}.

Example 6. One-dimensional HDAs X are standard automata. Cells in X[∅] are
states, cells in X[a] for a ∈ Σ are a-labelled transitions. Face maps δ0a and δ1a
attach source and target states to transitions. In contrast to ordinary automata
we allow start and accept transitions instead of merely states, so languages of
such automata may contain not only words but also “words with interfaces”. In
any case, at most one event is active at any point in time, so the event order is
unnecessary.

Example 7. Figure 4 shows an HDA both as a combinatorial object (left) and in
a more geometric realisation (right). We write isomorphism classes of losets as
lists of labels and omit the set braces in δ0{a} etc.

An HDA-map between HDAs X and Y is a function f : X → Y that preserves
structure: types of cells (evY ◦ f = evX), face maps (f(δν

A(x)) = δν
A(f(x))) and

start/accept cells (f(⊥X) ⊆ ⊥Y , f(�X) ⊆ �Y). Similarly, a precubical map is a
function that preserves the first two of these three. HDAs and HDA-maps form
a category, as do precubical sets and precubical maps.

Computations of HDAs are paths: sequences of cells connected by face maps.
A path in X is, thus, a sequence

α = (x0, ϕ1, x1, . . . , xn−1, ϕn, xn), (1)

A Myhill-Nerode Theorem for Higher-Dimensional Automata 173

Fig. 4. A two-dimensional HDA X on Σ = {a, b}, see Example 7.

where the xi are cells of X and the ϕi indicate types of face maps: for every i,
(xi−1, ϕi, xi) is either

– (δ0A(xi),↗A, xi) for A ⊆ ev(xi) (an upstep)
– or (xi−1,↘B , δ1B(xi−1)) for B ⊆ ev(xi−1) (a downstep).

Upsteps start events in A while downsteps terminate events in B. The source
and target of α as in (1) are src(α) = x0 and tgt(α) = xn.

The set of all paths in X starting at Y ⊆ X and terminating in Z ⊆ X is
denoted by Path(X)Z

Y ; we write Path(X)Y = Path(X)X
Y , Path(X)Z = Path(X)Z

X ,
and Path(X) = Path(X)X

X . A path α is accepting if src(α) ∈ ⊥X and tgt(α) ∈
�X . Paths α and β may be concatenated if tgt(α) = src(β); their concatenation
is written α ∗ β, and we omit the “∗” in concatenations if convenient.

Path equivalence is the congruence � generated by (z ↗A y ↗B x) �
(z ↗A∪B x), (x ↘A y ↘B z) � (x ↘A∪B z), and γαδ � γβδ whenever
α � β. Intuitively, this relation allows to assemble subsequent upsteps or down-
steps into one “bigger” step. A path is sparse if its upsteps and downsteps are
alternating, so that no more such assembling may take place. Every equivalence
class of paths contains a unique sparse path.

Example 8. Paths in one-dimensional HDAs are standard paths, i.e., sequences
of transitions connected at states. Path equivalence is a trivial relation, and all
paths are sparse.

Example 9. The HDA X of Fig. 4 admits five sparse accepting paths:

v ↗a e ↘a w ↗b h, v ↗a e ↘a w ↗b h ↘b y,

v ↗ab q ↘a h, v ↗ab q ↘ab y, v ↗b g ↘b x ↗a f ↘a y.

The observable content or event ipomset ev(α) of a path α is defined recur-
sively as follows:

– If α = (x), then ev(α) = idev(x).
– If α = (y ↗A x), then ev(α) = A↑ev(x).

174 U. Fahrenberg and K. Ziemiański

Fig. 5. HDA Y consisting of three squares glued along common faces.

– If α = (x ↘B y), then ev(α) = ev(x)↓B .
– If α = α1 ∗ · · · ∗ αn is a concatenation, then ev(α) = ev(α1) ∗ · · · ∗ ev(αn).

[7, Lemma 8] shows that α � β implies ev(α) = ev(β). Further, if α = α1∗· · ·∗αn

is a sparse path, then ev(α) = ev(α1)∗· · ·∗ev(αn) is a sparse step decomposition.

Example 10. Event ipomsets of paths in one-dimensional HDAs are words, possi-
bly with interfaces. Sparse step decompositions of words are obtained by splitting
symbols into starts and terminations, for example, • ab = • a ∗ b • ∗ • b.

Example 11. The event ipomsets of the five sparse accepting paths in the HDA
X of Fig. 4 are ab •, ab, [a

b •], [a
b], and ba. Figure 5 shows another HDA which

admits an accepting path (δ0ax ↗a x ↘a δ1ax ↗c y ↘b δ1by ↗d z ↘d δ1dz). Its
event ipomset is precisely the ipomset of Fig. 3, with the indicated sparse step
decomposition arising directly from the sparse presentation above.

The language of an HDA X is

Lang(X) = {ev(α) | α accepting path in X}.

[7, Prop. 10] shows that languages of HDAs are sets of ipomsets which are closed
under subsumption, i.e., languages in the sense of Def. 5.

A language is regular if it is the language of a finite HDA.

Example 12. The languages of our example HDAs are Lang(X) ={
[a

b •] , [a
b]

}↓ =
{

[a
b •] , ab •, [a

b] , ab, ba
}

and

Lang(Y) =
{[

a c •
b• d

]}
↓.

We say that a cell x ∈ X in an HDA X is

– accessible if Path(X)x
⊥ �= ∅, i.e., x can be reached by a path from a start cell;

– coaccessible if Path(X)�
x �= ∅, i.e., there is a path from x to an accept cell;

– essential if it is both accessible and coaccessible.

A Myhill-Nerode Theorem for Higher-Dimensional Automata 175

A path is essential if its source and target cells are essential. This implies that
all its cells are essential. Segments of accepting paths are always essential.

The set of essential cells of X is denoted by ess(X); this is not necessarily
a sub-HDA of X given that faces of essential cells may be non-essential. For
example, all bottom cells of the HDA Y in Fig. 5 are inaccessible and hence
non-essential.

Lemma 13. Let X be an HDA. There exists a smallest sub-HDA Xess ⊆ X that
contains all essential cells, and Lang(Xess) = Lang(X). If ess(X) is finite, then
Xess is also finite.

Proof. The set of all faces of essential cells

Xess = {δ0Aδ1B(x) | x ∈ ess(X), A,B ⊆ ev(x), A ∩ B = ∅}
is a sub-HDA of X. Clearly every sub-HDA of X that contains ess(X) must also
contain Xess. Since all accepting paths are essential, Lang(Xess) = Lang(X). If
|ess(X)| = n and |ev(x)| ≤ d for all x ∈ ess(X), then |Xess| ≤ n · 3d. ��

Track objects, introduced in [6], provide a mapping from ipomsets to HDAs
and are a powerful tool for reasoning about languages. We only need some of
their properties in proofs, so we do not give a definition here but instead refer
to [6, Sect. 5.3]. Let �P denote the track object of an ipomset P ; this is an HDA
with one start cell cP

⊥ and one accept cell c�
P . Below we list properties of track

objects needed in the paper.

Lemma 14. Let X be an HDA, x, y ∈ X and P ∈ iiPoms. The following condi-
tions are equivalent:

1. There exists a path α ∈ Path(X)y
x such that ev(α) = P .

2. There is an HDA-map f : �P → Xy
x (i.e., f(cP

⊥) = x and f(c�
P) = y).

Proof. This is an immediate consequence of [6, Prop. 89]. ��
Lemma 15. Let X be an HDA, x, y ∈ X and γ ∈ Path(X)y

x. Assume that
ev(γ) = P ∗ Q for ipomsets P and Q. Then there exist paths α ∈ Path(X)x and
β ∈ Path(X)y such that ev(α) = P , ev(β) = Q and tgt(α) = src(β).

Proof. By Lemma 14, there is an HDA-map f : �PQ → Xy
x . By [6, Lem. 65],

there exist precubical maps jP : �P → �PQ, jQ : �Q → �PQ such that
jP (cP

⊥) = cPQ
⊥ , jP (c�

P) = jQ(cQ
⊥) and jQ(c�

Q) = c�
PQ. Let z = f(jP (cP

⊥)), then
f ◦ jP : �P → Xz

x and f ◦ jQ : �Q → Xy
z are HDA-maps, and by applying

Lemma 14 again to jP and jQ we obtain α and β. ��

4 Myhill-Nerode Theorem

The prefix quotient of a language L ∈ L by an ipomset P is the language

P\L = {Q ∈ iiPoms | PQ ∈ L}.

176 U. Fahrenberg and K. Ziemiański

Similarly, the suffix quotient of L by P is L/P = {Q ∈ iiPoms | QP ∈ L}. Denote

suff(L) = {P\L | P ∈ iiPoms}, pref(L) = {L/P | P ∈ iiPoms}.

We record the following property of quotient languages.

Lemma 16. If L is a language and P � Q, then Q\L ⊆ P\L.

Proof. If P � Q, then PR � QR. Thus,

R ∈ Q\L ⇐⇒ QR ∈ L =⇒ PR ∈ L ⇐⇒ R ∈ P\L.

��
The main goal of this section is to show the following.

Theorem 17. For a language L ∈ L the following conditions are equivalent.

(a) L is regular.
(b) The set suff(L) ⊆ L is finite.
(c) The set pref(L) ⊆ L is finite.

We prove only the equivalence between (a) and (b); equivalence between (a)
and (c) is symmetric. First we prove the implication (a) =⇒ (b). Let X be an
HDA with Lang(X) = L. For x ∈ X define languages Pre(x) = Lang(Xx

⊥) and
Post(x) = Lang(X�

x).

Lemma 18. For every P ∈ iiPoms, P\L =
⋃{Post(x) | x ∈ X,P ∈ Pre(x)}.

Proof. We have

Q ∈ P\L ⇐⇒ PQ ∈ L ⇐⇒ ∃ f : �PQ → X = X�
⊥

⇐⇒ ∃ x ∈ X, g : �P → Xx
⊥, h : �Q → X�

x

⇐⇒ ∃ x ∈ X : P ∈ Lang(Xx
⊥), Q ∈ Lang(X�

x)
⇐⇒ ∃ x ∈ X : P ∈ Pre(x), Q ∈ Post(x).

The last condition says that Q belongs to the right-hand side of the equation. ��
Proof. of Theorem. 17, (a) =⇒ (b). The family of languages {P\L | P ∈ iiPoms}
is a subfamily of {⋃x∈Y Post(x)

∣
∣ Y ⊆ X} which is finite. ��

HDA Construction. Now we show that (b) implies (a). Fix a language L ∈ L ,
with suff(L) finite or infinite. We will construct an HDA MN(L) that recognises
L and show that if suff(L) is finite, then its essential part MN(L)ess is finite. The
cells of MN(L) are equivalence classes of ipomsets under a relation ≈L induced
by L which we will introduce below. The relation ≈L is defined using prefix
quotients, but needs to be stronger than prefix quotient equivalence. This is
because events may be concurrent and because ipomsets have interfaces. We
give examples just after the construction.

A Myhill-Nerode Theorem for Higher-Dimensional Automata 177

For an ipomset SPT define its (target) signature to be the starter fin(P) =
T−S↑T . Thus fin(P) collects all target events of P , and its source interface con-
tains those events that are also in the source interface of P . We also write
rfin(P) = T − S ⊆ fin(P): the set of all target events of P that are not source
events. An important property is that removing elements of rfin(P) does not
change the source interface of P . For example,

fin
([• a •• a

c •

])
= [• a •

c •] , fin ([• ac •
• b •]) = [c •

• b •] , fin ([ac •
b •]) = [c •

b •] ;

rfin is {c} in the first two examples and equal to [c
b] in the last.

We define two equivalence relations on iiPoms induced by L:

– Ipomsets P and Q are weakly equivalent (P ∼L Q) if fin(P) ∼= fin(Q) and
P\L = Q\L. Obviously, P ∼L Q implies TP

∼= TQ and rfin(P) ∼= rfin(Q).
– Ipomsets P and Q are strongly equivalent (P ≈L Q) if P ∼L Q and for all

A ⊆ rfin(P) ∼= rfin(Q) we have (P − A)\L = (Q − A)\L.

Evidently P ≈L Q implies P ∼L Q, but the inverse does not always hold. We
explain in Example 21 below why ≈L, and not ∼L, is the proper relation to use
for constructing MN(L).

Lemma 19. If P ≈L Q, then P − A ≈L Q − A for all A ⊆ rfin(P) ∼= rfin(Q).

Proof. For every A we have (P − A)\L = (Q − A)\L, and

fin(P − A) = fin(P) − A ∼= fin(Q) − A = fin(Q − A),

Thus, P − A ∼L Q − A. Further, for every B ⊆ rfin(P − A) ∼= rfin(Q − A),

((P − A) − B)\L = (P − (A ∪ B))\L = (Q − (A ∪ B))\L = ((Q − A) − B)\L,

which shows that P − A ≈L Q − A. ��
Now define an HDA MN(L) as follows. For U ∈ �,

MN(L)[U] = (iiPomsU/ ≈L) ∪ {wU},

where the wU are new subsidiary cells which are introduced solely to define some
lower faces. (They will not affect the language of MN(L)).

The ≈L-equivalence class of P will be denoted by 〈P 〉 (but often just by P in
examples). Face maps are defined as follows, for A ⊆ U ∈ � and P ∈ iiPomsU :

δ0A(〈P 〉) =

{
〈P − A〉 if A ⊆ rfin(P),
wU−A otherwise,

δ1A(〈P 〉) = 〈P ∗ U↓A〉, (2)

δ0A(wU) = δ1A(wU) = wU−A.

In other words, if A has no source events of P , then δ0A removes A from P (the
source interface of P is unchanged). If A contains any source event, then δ0A(P)
is a subsidiary cell.

178 U. Fahrenberg and K. Ziemiański

Fig. 6. HDA MN(L) of Example 20, showing names of cells instead of labels (labels are
target interfaces of names). Tables show essential cells together with prefix quotients.

Finally, start and accept cells are given by

⊥MN(L) = {〈idU 〉}U∈�, �MN(L) = {〈P 〉 | P ∈ L}.

The cells 〈P 〉 will be called regular. They are ≈L-equivalence classes of ipomsets,
lower face maps unstart events, and upper face maps terminate events. All faces
of subsidiary cells wU are subsidiary, and upper faces of regular cells are regular.
Below we present several examples, in which we show only the essential part
MN(L)ess of MN(L).

Example 20. Let L = {[a
b] , abc}↓ = {[a

b] , ab, ba, abc}. Figure 6 shows the HDA
MN(L)ess together with a list of essential cells of M(L) and their prefix quotients
in L. Note that the state 〈a〉 has two outgoing b-labelled edges: 〈ab •〉 and 〈[a

b •]〉.
The generating ipomsets have different prefix quotients because of {[a

b] , abc} ⊆ L
but the same lower face 〈a〉.

Intuitively, MN(L)ess is thus non-deterministic; this is interesting because the
standard Myhill-Nerode theorem for finite automata constructs deterministic
automata. We will give a precise definition of determinism for HDAs in the
next section and show in Example 42 that no deterministic HDA X exists with
Lang(X) = L.

Example 21. Here we explain why we need to use ≈L-equivalence classes and
not ∼L-equivalence classes. Let L = {[a

b] , aa}↓. Then MN(L)ess is as below.

ε
⊥

a

b [a
b]
�

aa
�

a •

b •

aa •

ba •

ab •[a •
b •]

Note that (aa •)\L = (ba •)\L = {• a}, thus aa • ∼L ba •. Yet aa • and ba •
are not strongly equivalent, because a\L = {a, b} �= {a} = b\L. This provides

A Myhill-Nerode Theorem for Higher-Dimensional Automata 179

an example of weakly equivalent ipomsets whose lower faces are not weakly
equivalent and shows why we cannot use ∼L to construct MN(L).

Example 22. The language L = {[• aa •• a •]} is recognised by the HDA MN(L)ess

below:

wε wε

wε y

wε

y

wa

wa

wa

y•a• ya•

y•a•[• a •
• a •] [• aa •

• a •]⊥
�

Cells with the same names are identified. Here we see subsidiary cells wε and
wa, and regular cells (denoted by y indexed with their signature) that are not
coaccessible. The middle vertical edge is 〈[• a• a •]〉, y•a• = 〈[• a •• a]〉 = 〈[• aa• a •]〉,
ya• = 〈[• aa •• a]〉, and y = 〈[• a• a]〉 = 〈[• aa• a]〉.
MN(L) is well-defined. We need to show that the formulas (2) do not depend
on the choice of a representative in 〈P 〉 and that the precubical identities are
satisfied.

Lemma 23. Let P , Q and R be ipomsets with TP = TQ = SR. Then

P\L ⊆ Q\L =⇒ (PR)\L ⊆ (QR)\L.

In particular, P\L = Q\L implies (PR)\L = (QR)\L.

Proof. For N ∈ iiPoms we have

N ∈ (PR)\L ⇐⇒ PRN ∈ L ⇐⇒ RN ∈ P\L

=⇒ RN ∈ Q\L ⇐⇒ QRN ∈ L ⇐⇒ N ∈ (QR)\L. ��

The next lemma shows an operation to “add order” to an ipomset P . This
is done by first removing some points A ⊆ TP and then adding them back in,
forcing arrows from all other points in P . The result is obviously subsumed by P .

Lemma 24. For P ∈ iiPoms and A ⊆ rfin(P), (P − A) ∗ A↑TP � P . ��
The next two lemmas, whose proofs are again obvious, state that events may

be unstarted or terminated in any order.

Lemma 25. Let U be an loset and A,B ⊆ U disjoint subsets. Then

U↓B ∗ (U − B)↓A = U↓A∪B = U↓A ∗ (U − A)↓B . ��

Lemma 26. Let P ∈ iiPoms and A,B ⊆ TP disjoint subsets. Then

(P ∗ TP ↓B) − A = (P − A) ∗ (TP − A)↓B. ��

180 U. Fahrenberg and K. Ziemiański

Lemma 27. Assume that P ≈L Q for P,Q ∈ iiPomsU . Then P ∗ U↓B ≈L

Q ∗ U↓B for every B ⊆ U .

Proof. Obviously fin(P ∗ U↓B) = fin(P) − B ∼= fin(Q) − B = fin(Q ∗ U↓B). For
every A ⊆ rfin(P) − B � rfin(Q) − B we have

((P − A) ∗ (U − A)↓B)\L = ((Q − A) ∗ (U − A)↓B)\L

by assumption and Lemma 23. But (P ∗ U↓B) − A = (P − A) ∗ (U − A)↓B and
(Q ∗ U↓B) − A = (Q − A) ∗ (U − A)↓B by Lemma 26. ��
Proposition 28. MN(L) is a well-defined HDA.

Proof. The face maps are well-defined: for δ0A this follows from Lemma 19, for δ1B
from Lemma 27. The precubical identities δν

Aδμ
B = δμ

Bδν
A are clear for ν = μ = 0,

follow from Lemma 25 for ν = μ = 1, and from Lemma 26 for {ν, μ} = {0, 1}.��
Paths and essential cells of MN(L). The next lemma provides paths in MN(L).

Lemma 29. For every N,P ∈ iiPoms such that TN
∼= SP there exists a path

α ∈ Path(MN(L))〈NP 〉
〈N〉 such that ev(α) = P .

Proof. Choose a decomposition P = Q1 ∗ · · · ∗ Qn into starters and terminators.
Denote Uk = TQk

= SQk+1 and define

xk = 〈N ∗ Q1 ∗ · · · ∗ Qk〉, ϕk =

{
d0A if Qk = A↑Uk,

d1B if Qk = Uk−1↓B

for k = 1, . . . , n. If ϕk = d0A and Qk = A↑Uk, then

δ0A(xk) = 〈N ∗ Q1 ∗ · · · ∗ Qk−1 ∗ A↑Uk − A〉
= 〈N ∗ Q1 ∗ · · · ∗ Qk−1 ∗ idUk−A〉 = xk−1.

If ϕk = d1B and Qk = Uk−1↓B , then

δ1B(xk−1) = 〈N ∗ Q1 ∗ · · · ∗ Qk−1 ∗ Uk−1↓B〉 = xk.

Thus, α = (x0, ϕ1, x1, . . . , ϕn, xn) is a path with ev(α) = P , src(α) = 〈N〉 and
tgt(α) = 〈N ∗ P 〉. ��

Our goal is now to describe essential cells of MN(L).

Lemma 30. All regular cells of MN(L) are accessible. If P\L �= ∅, then 〈P 〉 is
coaccessible.

Proof. Both claims follow from Lemma 29. For every P there exists a path
from 〈idSP

〉 to 〈idSP
∗ P 〉 = 〈P 〉. If Q ∈ P\L, then there exists a path α ∈

Path(MN(L))〈PQ〉
〈P 〉 , and PQ ∈ L entails that 〈PQ〉 ∈ �MN(L). ��

A Myhill-Nerode Theorem for Higher-Dimensional Automata 181

Lemma 31. Subsidiary cells of MN(L) are not accessible. If P\L = ∅, then 〈P 〉
is not coaccessible.

Proof. If α ∈ Path(MN(L))wU

⊥ , then it contains a step β from a regular cell to a
subsidiary cell (since all start cells are regular). Yet β can be neither an upstep
(since lower faces of subsidiary cells are subsidiary) nor a downstep (since upper
faces of regular cells are regular). This contradiction proves the first claim.

To prove the second part we use a similar argument. If P\L = ∅, then a path
α ∈ Path(MN(L))�

〈P 〉 contains only regular cells (as shown above). Given that
R\L �= ∅ for all 〈R〉 ∈ �MN(L), α must contain a step β from 〈Q〉 to 〈R〉 such
that Q\L = ∅ and R\L �= ∅. If β is a downstep, i.e., β = (〈Q〉 ↘A 〈Q ∗ U↓A〉),
and N ∈ R\L = (Q ∗ U↓A)\L, then U↓A ∗ N ∈ Q\L �= ∅: a contradiction. If
β = (〈R − A〉 ↗A 〈R〉) is an upstep and N ∈ R\L, then, by Lemma 24,

(R − A) ∗ A↑U ∗ N � R ∗ N ∈ L,

implying that Q\L = (R − A)\L �= ∅ by Lemma 16: another contradiction. ��
Lemmas 30 and 31 together immediately imply the following.

Proposition 32. ess(MN(L)) = {〈P 〉 | P\L �= ∅}. ��
MN(L) recognises L. One inclusion follows immediately from Lemma 29:

Lemma 33. L ⊆ Lang(MN(L)).

Proof. For every P ∈ iiPoms there exists a path α ∈ Path(MN(L))〈P 〉
〈idSP

〉 such
that ev(α) = P . If P ∈ L, then ε ∈ P\L, i.e., 〈P 〉 is an accept cell. Thus α is
accepting and P = ev(α) ∈ Lang(MN(L)). ��

The converse inclusion requires more work. For a regular cell 〈P 〉 of MN(L)
denote 〈P 〉\L = P\L (this obviously does not depend on the choice of P).

Lemma 34. If S ∈ � and α ∈ Path(MN(L))〈idS〉, then tgt(α)\L ⊆ ev(α)\L.

Proof. By Lemma 31, all cells appearing along α are regular. We proceed by
induction on the length of α. For α = (〈idS〉) the claim is obvious. If α is non-
trivial, we have two cases.

– α = β ∗ (δ0A(〈P 〉) ↗A 〈P 〉), where 〈P 〉 ∈ MN(L)[U] and A ⊆ rfin(P) ⊆ U ∼=
TP . By the induction hypothesis,

(P − A)\L = δ0A(〈P 〉)\L = tgt(β)\L ⊆ ev(β)\L.

For Q ∈ iiPoms we have

Q ∈ P\L ⇐⇒ PQ ∈ L =⇒ (P − A) ∗ A↑U ∗ Q ∈ L (Lemma 24)
⇐⇒ A↑U ∗ Q ∈ (P − A)\L

=⇒ A↑U ∗ Q ∈ ev(β)\L (induction hypothesis)
⇐⇒ ev(β) ∗ A↑U ∗ Q ∈ L

⇐⇒ ev(α) ∗ Q ∈ L ⇐⇒ Q ∈ ev(α)\L.

Thus, 〈P 〉\L = P\L ⊆ ev(α)\L.

182 U. Fahrenberg and K. Ziemiański

– α = β ∗ (〈P 〉 ↘B δ1B(〈P 〉)), where 〈P 〉 ∈ MN(L)[U] and B ⊆ U ∼= TP . By
inductive assumption, P\L = tgt(β)\L ⊆ ev(β)\L. Thus,

tgt(α)\L = δ1B(〈P 〉)\L = 〈P ∗ U↓B〉\L ⊆ (ev(β) ∗ U↓B)\L = ev(α)\L.

The inclusion above follows from Lemma 23. ��
Proposition 35. Lang(MN(L)) = L.

Proof. The inclusion L ⊆ Lang(MN(L)) is shown in Lemma 33. For the converse,
let S ∈ � and α ∈ Path(MN(L))〈idS〉, then Lemma 34 implies

tgt(α) ∈ �MN(L) ⇐⇒ ε ∈ tgt(α)\L =⇒ ε ∈ ev(α)\L ⇐⇒ ev(α) ∈ L,

that is, if α is accepting, then ev(α) ∈ L. ��

Finiteness of MN(L). The HDA MN(L) is not finite, since it contains infinitely
many subsidiary cells wU . Below we show that its essential part MN(L)ess is finite
if L has finitely many prefix quotients.

Lemma 36. If suff(L) is finite, then ess(MN(L)) is finite.

Proof. For 〈P 〉, 〈Q〉 ∈ ess(L), we have 〈P 〉 ≈L 〈Q〉 iff f(〈P 〉) = f(〈Q〉), where

f(〈P 〉) = (P\L, fin(P), ((P − A)\L)A⊆rfin(P)).

We will show that f takes only finitely many values on ess(L). Indeed, P\L
belongs to the finite set suff(L). Further, all ipomsets in P\L have source inter-
faces equal to TP . Since P\L is non-empty, fin(P) is a starter with TP as under-
lying loset. Yet, there are only finitely many starters on any loset. The last
coordinate also may take only finitely many values, since rfin(P) is finite and
(P − A)\L ∈ suff(L). ��
Proof of Theorem. 17, (b) =⇒ (a). From Lemma 36 and Lemma 13, MN(L)ess

is a finite HDA. By Prop. 35 we have Lang(MN(L)ess) = Lang(MN(L)) = L. ��

Example 37 We finish this section with another example, which shows some
subtleties related to higher-dimensional loops. Let L be the language of the
HDA shown to the left of Fig. 7 (a looping version of the HDA of Fig. 5), then

L = {• a •} ∪ {[• aa •
b]n | n ≥ 1}↓.

Our construction yields MN(L)ess as shown on the right of the figure. Here,
e = 〈[• a

b •]〉, and cells with the same names are identified. These identifications
follow from the fact that [• aa

bb •] ≈L [• a
b •], [• aa

bb] ≈L [• a
b], and [• aa

b] ≈L • a.
Note that [• a •

b •] and [• aa •
bb •] are not strongly equivalent, since they have different

signatures: [• a •
b •] and [a •

b •], respectively.

A Myhill-Nerode Theorem for Higher-Dimensional Automata 183

Fig. 7. Two HDAs recognising the language of Example 37. On the left side,
start/accept edges are identified.

5 Determinism

We now make precise our notion of determinism and show that not all HDAs
may be determinised. Recall that we do not assume finiteness.

Definition 38 An HDA X is deterministic if

1. for every U ∈ � there is at most one initial cell in X[U], and
2. for all V ∈ �, A ⊆ V and an essential cell x ∈ X[V −A] there exists at most

one essential cell y ∈ X[V] such that δ0A(y) = x.

That is, in any essential cell x in a deterministic HDA X and for any set A
of events, there is at most one way to start A in x and remain in the essential
part of X. We allow multiple initial cells because ipomsets in Lang(X) may have
different source interfaces; for each source interface in Lang(X), there can be at
most one matching start cell in X. Note that we must restrict our definition to
essential cells as inessential cells may not always be removed (in contrast to the
case of standard automata).

A language is deterministic if it is recognised by a deterministic HDA. We
develop a language-internal criterion for being deterministic.

Definition 39 A language L is swap-invariant if it holds for all P,Q, P ′, Q′ ∈
iiPoms that PP ′ ∈ L, QQ′ ∈ L and P � Q imply QP ′ ∈ L.

That is, if the P prefix of PP ′ ∈ L is subsumed by Q (which is, thus, “more
concurrent” than P), and if Q itself may be extended to an ipomset in L, then
P may be swapped for Q in the ipomset PP ′ to yield QP ′ ∈ L.

Lemma 40 L is swap-invariant iff P � Q implies P\L = Q\L for all P,Q ∈
iiPoms, unless Q\L = ∅.

184 U. Fahrenberg and K. Ziemiański

Proof. Assume that L is swap-invariant and let P � Q. The inclusion Q\L ⊆
P\L follows from Lemma 16, and

R ∈ Q\L, R′ ∈ P\L ⇐⇒ QR,PR′ ∈ L =⇒ QR′ ∈ L ⇐⇒ R′ ∈ Q\L

implies that P\L ⊆ Q\L. The calculation

PP ′, QQ′ ∈ L, P � Q ⇐⇒ P ′ ∈ P\L, Q′ ∈ Q\L, P � Q =⇒
P ′ ∈ Q\L ⇐⇒ QP ′ ∈ L

shows the converse.

Our main goal is to show the following criterion, which will be implied by
Propositions 47 and 49 below.

Theorem 41. A language L is deterministic iff it is swap-invariant.

Example 42. The regular language L = {[a
b] , ab, ba, abc} from Example 20 is

not swap-invariant: using Lemma 40, ab • � [a
b •], but {ab •}\L = {• b, • bc} �=

{• b} = {[a
b •]}\L. Hence L is not deterministic.

The next examples explain why we need to restrict to essential cells in the
definition of determinacy.

Example 43. The HDA in Example 22 is deterministic. There are two differ-
ent a-labelled edges starting at wε (wa and 〈[• a• a •]〉), yet it does not disturb
determinism since wε is not accessible.

Example 44. Let L = {ab, [a •
b •]}. Then MN(L)ess is as follows:

ε⊥ a

y y

ab
�

a •

b •
ab •

ya•

yb•[a •
b •]�

It is deterministic; there are two b-labelled edges leaving a, namely yb• and ab •,
but only the latter is coaccessible.

Lemma 45. Let X be a deterministic HDA and α, β ∈ Path(X)⊥ with tgt(α),
tgt(β) ∈ ess(X). If src(α) = src(β) and ev(α) = ev(β), then tgt(α) = tgt(β).

Proof. We can assume that α = α1 ∗ · · · ∗ αn and β = β1 ∗ · · · ∗ βm are sparse;
note that all of these cells are essential. Denote P = ev(α) = ev(β), then

P = ev(α) = ev(α1) ∗ · · · ∗ ev(αn)

is a sparse step decomposition of P . Similarly, P = ev(β1)∗· · ·∗ev(βm) is a sparse
step decomposition. Yet sparse step decompositions are unique by Prop. 4; hence,

A Myhill-Nerode Theorem for Higher-Dimensional Automata 185

m = n and ev(αk) = ev(βk) for every k. We show by induction that αk = βk.
Assume that αk−1 = βk−1. Let x = src(αk) = tgt(αk−1) = tgt(βk−1) = src(βk).
If Pk = ev(αk) = ev(βk) is a terminator U↓B , then αk = δ1B(x) = βk. If Pk is a
starter A↑U , then there are y, z ∈ X such that δ0A(y) = δ0A(z) = x. As y and z
are essential and X is deterministic, this implies y = z and αk = βk. ��
Lemma 46. Let α and β be essential paths on a deterministic HDA X. Assume
that src(α) = src(β) and ev(α) � ev(β). Then tgt(α) = tgt(β).

Proof. Denote x ∈ src(α) = src(β) and y = tgt(β). By Lemma 14 there exists
an HDA-map f : �ev(β) → Xy

x . By [6, Lemma 63] there is an HDA-map i :
�ev(α) → �ev(β). We apply Lemma 14 again to the composition f ◦ i and obtain
that there is a path α′ ∈ Path(X)y

x such that ev(α′) = ev(α). Lemma 45 then
implies tgt(α) = tgt(α′) = y. ��
Proposition 47. If L is deterministic, then L is swap-invariant.

Proof. Let X be a deterministic automaton that recognises L and fix ipomsets
P � Q. From Lemma 16 follows that Q\L ⊆ P\L. It remains to prove that if
Q\L �= ∅, then P\L ⊆ Q\L. Denote U ∼= SP

∼= SQ.
Let R ∈ Q\L and let ω ∈ Path(X)�

〈idU 〉 be an accepting path that recognises
QR. By Lemma 15, there exists a path β ∈ Path(X)〈idU 〉 such that ev(β) = Q.

Now assume that R′ ∈ P\L, and let ω′ ∈ Path(X)�
〈idU 〉 be a path such

that ev(ω′) = PR′. By Lemma 15, there exist paths α ∈ Path(X)〈idU 〉 and
γ ∈ Path(X)tgt(ω

′) such that tgt(α) = src(γ), ev(α) = P and ev(γ) = R′. From
Lemma 46 and P � Q follows that tgt(α) = tgt(β). Thus, β and γ may be
concatenated to an accepting path β ∗ γ. By ev(β ∗ γ) = QR′ we have QR′ ∈ L,
i.e., R′ ∈ Q\L. ��
Lemma 48. If 〈P 〉 ∈ ess(MN(L)) and A ⊆ rfin(P), then 〈P − A〉 ∈ ess(MN(L)).

Proof. By Lemma 33, 〈P − A〉 is accessible. By assumption, 〈P 〉 is coaccessible
and (〈P − A〉 ↗A 〈P 〉) is a path, so 〈P − A〉 is also coaccessible. ��
Proposition 49. If L is swap-invariant, then MN(L) is deterministic.

Proof. MN(L) contains only one start cell 〈idU 〉 for every U ∈ �.
Fix U ∈ �, P,Q ∈ iiPomsU and A ⊆ U . Assume that δ0A(〈P 〉) = δ0A(〈Q〉),

i.e., 〈P − A〉 = 〈Q − A〉, and 〈P 〉, 〈Q〉, 〈P − A〉 ∈ ess(MN(L)). We will prove
that 〈P 〉 = 〈Q〉, or equivalently, P ≈L Q.

We have fin(P −A) = fin(Q−A) =: S↑(U − A). First, notice that A, regarded
as a subset of P (or Q), contains no start events: else, we would have δ0A(〈P 〉) =
wU−A (or δ0A(〈Q〉) = wU−A). As a consequence, fin(P) = fin(Q) = S↑U .

For every B ⊆ rfin(P) = rfin(Q) we have

(P − A) ≈L (Q − A) =⇒
(P − (A ∪ B))\L = (Q − (A ∪ B))\L =⇒

((P − (A ∪ B)) ∗ (A−B)↑U)\L = ((Q − (A ∪ B)) ∗ (A−B)↑U)\L.

186 U. Fahrenberg and K. Ziemiański

The first implication follows from the definition, and the second from Lemma
23. From Lemma 24 follows that

(P − (A ∪ B)) ∗ (A−B)↑U � P − B, (Q − (A ∪ B)) ∗ (A−B)↑U � Q − B.

Thus, by swap-invariance we have (P − B)\L = (Q − B)\L; note that Lemma
48 guarantees that neither of these languages is empty. ��

6 Conclusion and Further Work

We have proven a Myhill-Nerode type theorem for higher-dimensional automata
(HDAs), stating that a language is regular iff it has finite prefix quotient. We
have also introduced deterministic HDAs and shown that not all finite HDAs
are determinizable.

An obvious follow-up question to ask is whether finite HDAs are learnable,
that is, whether our Myhill-Nerode construction can be used to introduce a
learning procedure for HDAs akin to Angluin’s L∗ algorithm [1] or some other
recent approaches [2,15,16]. (See also [33] which introduces learning for pomset
automata.)

Our Myhill-Nerode theorem provides a language-internal criterion for
whether a language is regular, and we have developed a similar one to dis-
tinguish deterministic languages. Another important aspect is the decidability
of these questions, together with other standard problems such as membership
or language equivalence. We believe that membership of an ipomset in a regu-
lar language is decidable, but we are less sure about decidability of the other
problems.

Given that we have shown that not all regular languages are deterministic,
one might ask for the approximation of deterministic languages by other, less
restrictive notions. Preliminary results indicate that ambiguity does not buy
much, given that we seem to have found a language of unbounded ambiguity;
an avenue that remains wide open is the one of history-determinism [4,14,20].

Lastly, a remark on the fact that we only consider subsumption-closed (or
weak) languages in this work. While this is quite common in concurrency theory,
see for example [10,11,13,34], an extension of our setting to non-weak languages
would certainly be interesting. (Note that, for example, languages of Petri nets
with inhibitor arcs are non-weak [18].) Such an extension may be obtained by
considering partial HDAs or HDAs with interfaces, see [5,7,9], but this is subject
to future work.

Acknowledgement. We are indebted to Amazigh Amrane, Hugo Bazille, Christian
Johansen, and Georg Struth for numerous discussions regarding the subjects of this
paper; any errors, however, are exclusively ours.

A Myhill-Nerode Theorem for Higher-Dimensional Automata 187

References

1. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.
75(2), 87–106 (1987)

2. Barlocco, S., Kupke, C., Rot, J.: Coalgebra learning via duality. In: Bojańczyk, M.,
Simpson, A. (eds.) FoSSaCS 2019. LNCS, vol. 11425, pp. 62–79. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-17127-8 4

3. Bednarczyk, M.A.: Categories of asynchronous systems, Ph. D. thesis, University
of Sussex, UK (1987)

4. Colcombet, T.: The theory of stabilisation monoids and regular cost functions.
In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W.
(eds.) ICALP 2009. LNCS, vol. 5556, pp. 139–150. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-02930-1 12

5. Dubut, J.: Trees in partial higher dimensional automata. In: Bojańczyk, M., Simp-
son, A. (eds.) FoSSaCS 2019. LNCS, vol. 11425, pp. 224–241. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-17127-8 13

6. Fahrenberg, U., Johansen, C., Struth, G., Ziemiański, K.: Languages of higher-
dimensional automata. Math. Struct. Comput. Sci. 31(5), 575–613 (2021). https://
arxiv.org/abs/2103.07557

7. Fahrenberg, U., Johansen, C., Struth, G., Ziemiański, K.: A Kleene theorem for
higher-dimensional automata. In: Klin, B., Lasota, S., Muscholl, A. (eds.) CON-
CUR, volume 243 of Leibniz International Proceedings in Informatics (LIPIcs), pp.
1–18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022). https://arxiv.org/
abs/2202.03791

8. Fahrenberg, U., Johansen, C., Struth, G., Ziemiański, K.: Posets with interfaces as
a model for concurrency. Inf. Comput. 285(B), 104914 (2022). https://arxiv.org/
abs/2106.10895

9. Fahrenberg, U., Legay, A.: Partial higher-dimensional automata. In: Moss, L.S.,
Sobocinski, P., (eds.) CALCO, volume 35 of Leibniz International Proceedings
in Informatics, pp. 101–115. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2015)

10. Fanchon, J., Morin, R.: Regular sets of pomsets with autoconcurrency. In: Brim, L.,
Křet́ınský, M., Kučera, A., Jančar, P. (eds.) CONCUR 2002. LNCS, vol. 2421, pp.
402–417. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45694-5 27

11. Fanchon, J., Morin, R.: Pomset languages of finite step transition systems. In:
Franceschinis, G., Wolf, K. (eds.) PETRI NETS 2009. LNCS, vol. 5606, pp. 83–
102. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02424-5 7

12. Fishburn, P.C.: Interval orders and interval graphs: a study of partially ordered
sets. Wiley (1985)

13. Grabowski, J.: On partial languages. Fundamentae. Informatica 4(2), 427 (1981)
14. Henzinger, T.A., Piterman, N.: Solving games without determinization. In: Ésik,

Z. (ed.) CSL 2006. LNCS, vol. 4207, pp. 395–410. Springer, Heidelberg (2006).
https://doi.org/10.1007/11874683 26

15. Howar, F., Steffen, B.: Active automata learning as black-box search and lazy
partition refinement. In: Jansen, N., Stoelinga, M., van den Bos, P. (eds.) A Jour-
ney from Process Algebra via Timed Automata to Model Learning. LNCS, vol.
13560, pp. 321–338. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-
15629-8 17

https://doi.org/10.1007/978-3-030-17127-8_4
https://doi.org/10.1007/978-3-642-02930-1_12
https://doi.org/10.1007/978-3-030-17127-8_13
https://arxiv.org/abs/2103.07557
https://arxiv.org/abs/2103.07557
https://arxiv.org/abs/2202.03791
https://arxiv.org/abs/2202.03791
https://arxiv.org/abs/2106.10895
https://arxiv.org/abs/2106.10895
https://doi.org/10.1007/3-540-45694-5_27
https://doi.org/10.1007/978-3-642-02424-5_7
https://doi.org/10.1007/11874683_26
https://doi.org/10.1007/978-3-031-15629-8_17
https://doi.org/10.1007/978-3-031-15629-8_17

188 U. Fahrenberg and K. Ziemiański

16. Isberner, M., Howar, F., Steffen, B.: The TTT algorithm: a redundancy-free app-
roach to active automata learning. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV
2014. LNCS, vol. 8734, pp. 307–322. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-11164-3 26

17. Janicki, R., Koutny, M.: Structure of concurrency. Theoret. Comput. Sci. 112(1),
5–52 (1993)

18. Janicki, R., Koutny, M.: Operational semantics, interval orders and sequences of
antichains. Fundamentae Informatica 169(1–2), 31–55 (2019)

19. Johansen, C.: ST-structures. J. Logic Algeb. Methods Programm. 85(6), 1201–1233
(2015). https://arxiv.org/abs/1406.0641

20. Kupferman, O., Safra, S., Vardi, M.Y.: Relating word and tree automata. Ann.
Pure Appl. Logic 138(1–3), 126–146 (2006)

21. Nielsen, M., Plotkin, G.D., Winskel, G.: Petri nets, event structures and domains,
part I. Theoret. Comput. Sci. 13, 85–108 (1981)

22. Petri, C.A.: Kommunikation mit Automaten. Number 2 in Schriften des IIM. Insti-
tut für Instrumentelle Mathematik, Bonn (1962)

23. Pratt, V.R.: Modeling concurrency with geometry. In: POPL, pp. 311–322, New
York City. ACM Press (1991)

24. Pratt, V.: Chu spaces and their interpretation as concurrent objects. In: van
Leeuwen, J. (ed.) Computer Science Today. LNCS, vol. 1000, pp. 392–405. Springer,
Heidelberg (1995). https://doi.org/10.1007/BFb0015256

25. Pratt, V.R.: Transition and cancellation in concurrency and branching time. Math.
Struct. Comput. Sci. 13(4), 485–529 (2003)

26. Mike, W.: Shields. Concurrent machines. Comput. J. 28(5), 449–465 (1985)
27. van Glabbeek, R.J.: Bisimulations for higher dimensional automata. Email mes-

sage, June (1991). http://theory.stanford.edu/rvg/hda
28. van Glabbeek, R.J.: On the expressiveness of higher dimensional automata. The-

oret. Comput. Sci. 356(3), 265–290 (2006)
29. van Glabbeek, R.J.: Erratum to “On the expressiveness of higher dimensional

automata”. Theoret. Comput. Sci. 368(1-2), 168–194 (2006)
30. van Glabbeek, R.J., Goltz, U.: Refinement of actions and equivalence notions for

concurrent systems. Acta Informatica 37(4/5), 229–327 (2001)
31. van Glabbeek, R.J., Plotkin, G.D.: Configuration structures. In: LICS, pp. 199–

209. IEEE Computer Society (1995)
32. van Glabbeek, R.J., Plotkin, G.D.: Configuration structures, event structures and

Petri nets. Theoret. Comput. Sci. 410(41), 4111–4159 (2009)
33. van Heerdt, G., Kappé, T., Rot, J., Silva, A.: Learning pomset automata. In:

FOSSACS 2021. LNCS, vol. 12650, pp. 510–530. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-71995-1 26

34. Vogler, W. (ed.): Modular Construction and Partial Order Semantics of Petri
Nets. LNCS, vol. 625. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-
55767-9

https://doi.org/10.1007/978-3-319-11164-3_26
https://doi.org/10.1007/978-3-319-11164-3_26
https://arxiv.org/abs/1406.0641
https://doi.org/10.1007/BFb0015256
http://theory.stanford.edu/rvg/hda
https://doi.org/10.1007/978-3-030-71995-1_26
https://doi.org/10.1007/978-3-030-71995-1_26
https://doi.org/10.1007/3-540-55767-9
https://doi.org/10.1007/3-540-55767-9

Tools

Hippo-CPS: A Tool for Verification and Analysis
of Petri Net-Based Cyber-Physical Systems

Remigiusz Wiśniewski , Grzegorz Bazydło(B) , Marcin Wojnakowski ,
and Mateusz Popławski

Institute of Control and Computation Engineering, University of Zielona Góra, Ul. Prof. Z.
Szafrana 2, 65-516 Zielona Gora, Poland
g.bazydlo@issi.uz.zgora.pl

Abstract. The paper deals with the verification and analysis techniques offered
by the Hippo-CPS system. The presented tool offers alternate examination meth-
ods of the Petri net-based cyber-physical system. In particular, the set of pro-
posed modules permits the classification of the system, verification of its main
properties (such as liveness, boundedness, and safeness), and the performance of
advanced concurrency and sequentiality analysis of the system (including state-
space analysis, place invariant analysis, state machine component-based analysis,
etc.). Although the paper is focused on the Hippo-CPS application, the presented
tools have a strong theoretical background, including adequate algorithms, theo-
rems, and proofs. The functionality of the tools was verified experimentally, by
examination of the efficiency and effectiveness of the implemented techniques.

Keywords: Verification · Analysis · Petri net · Cyber-physical system ·
Boundedness · Safety · Liveness · Invariants · Reachability tree

1 Introduction

A cyber-physical system (CPS) integrates computation and physical processes [1] and
focuses on the interactions between the control (cyber) and physical components of the
system. Several applications of CPSs can be found in many areas of modern life, such
as smart homes, buildings, cities [2], medical systems [3], production systems [4], etc.

One of the most effective technique of CPS modelling are Petri nets [5–9]. Their
formal notation and simplicity of use allow for various formal analyses and verifications
of the designed concurrent CPS, aswell as their automatic translation intomodels that are
very close to the implementation. Basically, a Petri net is a bipartite graph that consists
of two types of nodes: places and transitions that are connected by directed arcs [10–12].
Modelling a system using Petri nets has many advantages compared to other approaches
[13–15]. The graphical representation of Petri netsmakes themodelling relatively simple
and intuitive and legible (intuitiveness of graphical representation), and well-developed
analysis methods easily detect certain anomalies of system behaviours [10–12, 14, 16].

The designmethodology of a Petri net-based CPS consists of several steps, including
modelling, verification, and analysis, as well as further prototyping (designing) of the

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Gomes and R. Lorenz (Eds.): PETRI NETS 2023, LNCS 13929, pp. 191–204, 2023.
https://doi.org/10.1007/978-3-031-33620-1_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33620-1_10&domain=pdf
http://orcid.org/0000-0001-6829-2263
http://orcid.org/0000-0003-3103-4767
http://orcid.org/0000-0002-9830-9262
http://orcid.org/0000-0001-6911-3060
https://doi.org/10.1007/978-3-031-33620-1_10

192 R. Wiśniewski et al.

system-oriented for its further implementation within integrated or distributed devices
(see [16, 17] for details). Petri net-based techniques allow for the examination of the
reliability and robustness of the system at the early specification stage, whichmay impact
significantly the time and costs of the designed system. There are various testing tech-
niques, including analysis of the concurrency and sequentiality relations in the system,
as well as verification of its crucial properties, such as boundedness, safeness, and live-
ness [11–13, 18–23]. In short, examination of such attributes helps, for example, avoid
redundancy (unreachable states), and deadlocks in the system [24–28]. On the other
hand, verification and analysis of a Petri net-based CPS are not trivial tasks. The main
bottleneck refers to the computational complexity of algorithms. Therefore, the existing
techniques balance between the optimal results and the reasonable computation time
[16].

In the paper, the Hippo-CPS system is presented. The tool is especially dedicated
for the Petri net-based CPSs. Such systems are usually strictly oriented on the practical
applications, thus they ought to be adequately analysed (verified) and designed. Hippo-
CPS consists of several modules that permit to improve such processes. The main aim
of the tool was to confront the problem related to the computational complexity of algo-
rithms, by proposing alternative methods of verification and analysis for the modelled
CPS. Therefore, the designer is able to select the most suitable technique in order to
perform the examination efficiently within the assumed time (in our research it means
max. 1 h) and effectively, by gaining the required results. In the paper we focus on the
tool, but behind the particular modules of Hippo-CPS there is strong theoretical back-
ground, including adequate algorithms, theorems, and proofs that can be found in other
Authors’ papers (indicated in the description of a particular method).

2 Hippo-CPS

TheHippo-CPS system is a set of computer-aided tools (modules) that guide the design,
verification, and analysis of the Petri net-based systems. Initially (since 2005) devel-
oped as a support for the prototyping of discrete-event systems, it is currently mainly
oriented toward CPSs (especially the control part of those systems). Although this paper
is focused on the verification and analysis aspects, Hippo-CPS coversmuchwider design
aspects, including decomposition and automatic translation into the destination device
description (e.g., Verilog for Field Programmable Gate Arrays, FPGAs). For all modules
the input data remain the same, that is, the specification of the system in the Petri Net
Hippo (PNH) format (q.v. [17] for details). There is also the possibility of importing
systems written in other formats, including known tools and standards, such as Petri Net
Markup Language (PNML) [29] or Extensible Markup Language (XML).

2.1 Architecture

The paper presents seven Hippo-CPS modules related to verifying and analysing the
Petri net-based CPS. Although each is considered as separate modules, they all together
formone consistent framework.TheHippo-CPSmodules are split into threemaingroups,
presented in detail in the next subsections. Thefirst one consists of twomodules and refers

Hippo-CPS: A Tool for Verification and Analysis 193

to the methods of general purposes, i.e., checking of the Petri net class and verification
of the liveness, boundedness, and safeness. The second group (two modules) is aimed at
the concurrency verification of the Petri net-based CPS. Finally, the third group of three
tools is oriented on the sequential verification of the CPS.

2.2 Classification of the Petri Net-Based System

Thismodule permits the classification of thePetri net-based system.Such an arrangement
may strongly influence further analysis and design of the CPS, since several classes of
the Petri net permit for reduction of the complexity of algorithms. In particular, there
are five classes considered, according to [10, 16]:

• State Machine (SM) – each transition has exactly one input and one output place;
• Marked Graph (MG) – each place has exactly one input and one output transition;
• Free-Choice (FC) – every outgoing arc from a place is unique or is a unique incoming

arc to a transition;
• Extended Free-Choice (EFC) – every pair of places having a common output

transition, has all their output transitions in common;
• Simple net (SN) – every pair of places having a common output transition, one of

them has all the output transitions of the other.

The above classes form a hierarchy with respect to expressiveness. In particular, SM
and MG belong to the FC, while FC is a part of EFC. Finally, SN includes EFC (and,
of course, all the remaining “bottom” classes). Classification of the system is especially
important regarding the applied verification and design algorithms. In particular, sys-
tems that are classified as EFC have unique properties that may result in the reduction of
computational complexity. For example, an optimal decomposition (that is, splitting the
Petri net into a minimal number of state machine components, SMCs) is exponential in
the general case. However, under certain conditions, such a decomposition can be exe-
cuted polynomially (see [30] for details). Similarly, verification of the system coverage
by sequential components (that is, whether the Petri net is covered by SMCs) can also
be bounded by a polynomial in respect of the number of places (cf. [31]). From the tech-
nical (programming) point of view, the module was written in C/C++, by examination
of the subsequent classes (starting form SM). Its computational complexity is estimated
as polynomial (bounded by O = (|P|2|T |2), where |P| denotes the number of places,
and |T | denotes the number of transitions in the system. The module simply outputs the
name of the particular class of a Petri net-based system.

2.3 Reachability Tree Verification (Boundedness, Safeness, Liveness Analysis)

The reachability tree analysis is one of the most popular forms applied to the Petri net-
based systems verification. In short, the technique permits the generation of all possible
states of the system. However, the total number of states (called markings) can be expo-
nential, thus the main bottleneck of this method is related to its exponential complexity.
Nevertheless, such a technique can be useful, since it gives very wide opportunities for
further verification and analysis of the system. In particular, the main properties of the
Petri net-based CPS can be examined, such as boundedness, safeness, and liveness. The

194 R. Wiśniewski et al.

module implemented within the Hippo-CPS permits all the important operations related
to the reachability tree analysis. There is a capacity for the full reachability tree gener-
ation and representation as a figure (picture) for further examination. Furthermore, the
tool allows verification of the system. Additional improvements were applied for the
examination of the boundedness and safeness of the system. The tool checks bounded-
ness (or safeness, respectively) at each step of the algorithm. If an unbounded (unsafe)
place is found, the method terminates, avoiding the computation of the whole reach-
ability tree. Finally, the tool allows for the examination of the liveness property. This
operation requires the generation of the complete tree, and further examination of all
transitions starting from the initial state (see [32] for details).

Contrary to almost all other Hippo-CPS modules, this tool was written in Java. The
output is parameterized according to the user’s needs. The tool results in either: the full
reachability tree (as a JPG figure), the information about the boundedness, safeness, or
liveness of the system. The computational complexity of the method (generation of the
reachability tree) is bounded exponentially by the number of places in the system.

2.4 Structural Concurrency Verification (Graph-Based Analysis)

This module permits the computation of the structural concurrency relation of the Petri
net-based CPS. Such a relation shows explicitly whether each two pair of places are
structurally concurrent. This information is useful in further analysis and design of the
system (especially by verification and decomposition techniques, cf. [30, 31]). The main
advantage of the method is its polynomial complexity, bounded byO = (|P|+|T |)5 [30]
(for EFC systems it can even be computed with a cubic complexity [33]). On the other
hand, the tool computes the concurrency relation between at most each pair of places
in the system. Therefore, analysis of more complicated models can be difficult or even
impossible. Furthermore, the structural concurrency relation does not always coincide
with the real one, and may contain redundant pairs of places that are not concurrent (cf.
[16]). The algorithm implemented within Hippo-CPS is written in C/C++ and is based
on the method initially shown in [34], with further enhancements and modifications
(mainly presented in [16]]). In short, the method searches for the structural concurrency
relations in the system by consecutive analysis of the transition input and outputs [16].
The resulting concurrencygraphholds the structural concurrency relations between every
pair of places of the Petri net-based system. Hippo-CPS offers two output formats for
this module: the neighbour matrix of the structural concurrency graph, and the structural
concurrency relations between every pair of places in the system.

2.5 Concurrency Verification (Concurrency Hypergraph-Based Analysis)

A concurrency hypergraph is an alternative method to the graph-based method for con-
currency analysis. Its main advantage stems from the (exact) results it obtains. Each edge
(hyperedge) of the obtained structure directly refers to a reachable state (marking) of the
system [16, 35]. In other words, a concurrency hypergraph holds complete information
about the state space of the examined system. Therefore, it permits for the detailed ver-
ification of the concurrency relations in the Petri net-based CPS. Moreover, it is a base
for further sequential analysis of the system (q.v. Sect. 2.7). A concurrency hypergraph

Hippo-CPS: A Tool for Verification and Analysis 195

is closely related to the reachability set of the Petri net-based model [10]. However, it
is additionally supported by authors’ algorithms, definitions (including a new type of
c-exact hypergraph), theorems, and proofs that permit a much more advanced analysis
of the examined system. First of all, the subsequent hyperedges (reachable states) of the
system are obtained polynomially [16] (although obtaining the complete set of hyper-
edges is exponential). Moreover, the structure is a base for further computation of SMCs
in the system, which are especially used in the decomposition and analysis of the system
[35]. The tool was written in C/C++. Let us underline that Hippo-CPS includes a very
wide range of varied hypergraph-based algorithms.

2.6 Structural Sequential Verification (Graph-Based Analysis)

This tool offers two functionalities. The first one permits to obtain the structural sequen-
tiality relation between each pair of places in the Petri net-based system [16]. Such a
relation is complementary to the structural concurrency relation described in Sect. 2.4.
Furthermore, the module allows for the computation of the state machine components
(SMCs) in the system. Each SMC forms a sequential component. Calculation of SMCs
is essential in the verification, design and analysis of Petri net-based CPS (cf. [16, 18, 21,
30, 31, 36, 37). In particular, the tool examines whether the system is covered by SMCs
[31]. If this property holds, the system is bounded and safe [31, 36]. The module was
written in C/C++, and it runs in a polynomial time [16, 31]. It is especially applicable
in the safeness and boundedness analysis.

2.7 Sequentiality Verification (Sequentiality Hypergraph-Based Analysis)

The sequentiality hypergraph is a structure that preserves the sequential relation between
places in the Petri-net based CPS. Its hyperedges strictly refer to the SMCs. Those
components are obtained from the concurrency hypergraph (see [16, 35] for details). The
SMCs are obtained by computation of exact transversals in the concurrency hypergraph.
An exact transversal of a hypergraph is a set of vertices that has exactly one intersection
with every edge of a hypergraph [16, 35]. The computation of single exact transversal
(single SMC) is polynomial. However, obtaining of the sequentiality hypergraph can
be exponential (cf. [16, 35]). Contrary to the graph-based method, the sequentiality
hypergraph holds complete information about the sequential relations in the system,
since each of its hyperedges may include more than two vertices. Furthermore, there is
no need for additional computation of SMCs as it is required in the case of typical graphs.
So, it can be directly used in the decomposition of the system [16]. The tool was written
in C/C++. The applied algorithms, among others, include the authors’ implementation
of the DLX technique [38], which operates on the four-way linked matrix. In particular,
themethod searches for exact transversals in the concurrency hypergraph, which directly
refer to the SMCs in the Petri net-based CPS.

2.8 Sequentiality Verification (Linear Algebra Technique)

The last presented tool applies a linear algebra technique. In particular, the method
searches for the so-called place invariants (p-invariants) in the Petri net-based CPS

196 R. Wiśniewski et al.

[10, 16]. Place invariants have wide application in the design, verification, and analysis
of the Petri net models. For example, the system covered by p-invariants is bounded.
Furthermore, place invariants are closely related to the sequential components. Under
certain assumptions, it is possible to obtain SMCs in the analysed CPS. Therefore (upon
additional actions) safeness of the system can be examined [21, 36]. The tool imple-
mented within Hippo-CPS was written in C/C++. It should be noted that obtaining all
p-invariants is exponential in the general case [39]. Therefore, the discussed module
additionally utilizes the authors’ techniques that permit for computation of the reduced
set of p-invariants (cf. [21, 36]). The tool is parameterized, and it contains four function-
alities. The first computes the complete set of p-invariants, while the second generates
all SMCs in the system. Both methods are exact, thus they can be very time-consuming.
The remaining two options permit verification of the boundedness and safeness of the
system. Thosemethods utilize the reduced set of invariants; thus, their run-time is usually
much faster than the former two.

2.9 Experimental Results

Each of the presented tools was examined in terms of its efficiency (run-time) and effec-
tiveness (proper results). Themodules were tested on the dedicated computational server
with the use of an Intel® Xeon® Gold 5220 @2.2 GHz processor and 128 GB of RAM.
The library of benchmarks contains 242 Petri nets that describe real and hypothetical
cyber-physical systems, control systems, and discrete systems. Due to the page limita-
tion here and the huge information of data (242 benchmarks examined by 7 tools that
include 13 functionalities), the detailed results can be obtained under the following link:
https://hippo-cps.issi.uz.zgora.pl/download/pn2023_results.xlsx.

Let us briefly discuss the obtained data. First of all, it can be observed that clas-
sification of the Petri nets was possible for all tested cases. Moreover, it was done in
fractions of a second. Moving on to the reachability tree-based tool, the complete struc-
ture (as well as liveness verification) was obtained for 223 (92%) benchmarks (14 nets
were marked as unbounded and 5 exceeded the assumed time, which was set to 1 h).
Furthermore, it was possible to check safeness and boundedness for 237 tests (98%).
Several benchmarks require up to several minutes to complete the calculation. Those
results were expected since this method is bounded exponentially. Results for struc-
tural concurrency and structural sequentiality graphs were achieved in at most a few
seconds. Both techniques are bounded by a polynomial in the number of places, thus
it was possible to examine all benchmarks. In contrast, the exact methods based on the
concurrency and sequentiality hypergraphs were not able to complete all tasks. Con-
currency hypergraph was efficient for 225 tests (93%), while sequentiality hypergraph
found results for 223 benchmarks (92%). On the other hand, the results gained by those
tools were always optimal. Finally, linear algebra-based techniques were able to obtain
p-invariants for 237 tests (98%). Let us underline that the experimental results greatly
confirmed the theoretical assumptions. Tools based on exact methods (reachability tree,
hypergraphs, linear algebra) are effective, but not always efficient. On the other hand,
approximate algorithms guarantee the obtaining of results, but they can be insufficient
(i.e., graph-based tools).

https://hippo-cps.issi.uz.zgora.pl/download/pn2023_results.xlsx

Hippo-CPS: A Tool for Verification and Analysis 197

2.10 A Case-Study Example

This section illustrates the application of the presented Hippo-CPS tools by an example.
Figure 1 (left) shows a real model of a crossroads, and Fig. 1 (right) a working model
(miniaturization). The purpose of the system is an implementation in the FPGAwith the
possibility of further dynamic partial reconfiguration (cf. [16, 40, 41] for details).

Fig. 1. The idea of the traffic light controller (left) and its miniaturization model (right).

It is assumed that each road contains three independent lanes for cars (right, straight,
left), controlled by three traffic lights (red, yellow, green). Additionally, there are pedes-
trian crossings on each road, controlled by two traffic lights (red, green). The controller
can be configured in several modes (e.g., collision-free, priority for cars, priority for
pedestrians, etc.). The Petri net model of the presented CPS is shown in Fig. 2. Each
place of the net refers to a particular traffic light (or two lights if controlled in common).
The particular lights are numbered and prefixed by the part number and followed by
the first letter of a particular signal colour (R-red, Y-yellow, G-green), while letters “A”
and “B” refer to the side of the crossroad (cf. Figure 1, left). To clarify the presentation,
places are coloured according to the active output signals. The presented Petri net-based
CPS consists of 32 places and 12 transitions. Let us now verify and analyse the system
with the set of proposed Hippo-CPS tools. The first module classified the system as a
Marked Graph. It is very useful information since this class may influence the further
verification and design steps of the CPS. The run-time of the tool was 0.005ms. The sec-
ond tool (reachability tree) gave a very important result that the system is live, bounded,
and safe. Verifications of those properties were completed within 97.967 ms, 79.008 ms,
and 43.831 ms, respectively. This information is essential since it assures that the model
is deadlock-free and does not contain unreachable states.

Moving on to the concurrency analysis, there are 233 edges in the structural concur-
rency graph (obtainedwithin 2.841ms). Thismeans that there are 233 pairs of concurrent
places in the net. Such a fact is essential in the case of the proper functionality of the traffic
light controller in order to avoid collisions and unwanted situations where two lights are
active simultaneously (i.e., green light for cars and pedestrians at the same line). On the

198 R. Wiśniewski et al.

other hand, analysis of each pair of lights can be insufficient and problematic, since there
are 233 such pairs. Indeed, the concurrency hypergraph consists of only 12 edges. More-
over, it holds information between all signals that are active simultaneously. It also gives
the information that there are in total 12 markings (states) that the traffic light controller
may reach. The concurrency hypergraph for this systemwas obtained in just 0.086 ms. It
is surprisingly fast compared to the time used for the generation of the concurrency graph
(which took much longer) and considering that the method computes all SMCs. Such
a situation clearly and practically shows the need for alternative verification tools. The
sequential verification of the CPS by a sequentiality graph resulted in 234 connections
between every pair of places. This information was achieved within 1.347ms.Moreover,
the tool reported that the system is covered by SMCs, therefore it is safe and bounded.
This confirms the results obtained by the reachability tree verification. Further analysis
by the sequentiality hypergraph showed that there are in total 530 SMCs. It should be
underlined that the run-time of the algorithm was very fast (2.070 ms). Finally, the tool
based on linear algebra was applied. It shows that there are in total 542 place invariants,
and 530 SMCs in the system (which confirms the results obtained by the sequentiality
hypergraph). These values were computed within 891,400.791 ms and 891,401.325 ms,
respectively. It means that the set of place invariants was obtained in about 15 min,
thus run-time of those methods was significantly longer than corresponding graph- or
hypergraph-based techniques. Moreover, the tool reported that the system is bounded
and safe, once more confirming the results gained by other Hippo-CPS modules. Let us
underline that the obtained results (liveness, safeness, boundedness, and SMCs) were
essential in the verification and further realisation in FPGAs, and the resulting sequential
components formed a base for the dynamic partial reconfiguration (according tomethods
from [16, 41, 42]).

Fig. 2. Specification of the traffic light controller by a Petri net.

Hippo-CPS: A Tool for Verification and Analysis 199

3 Installation

The Hippo-CPS tool can be download for free in a form of packed ZIP from http://
hippo-cps.issi.uz.zgora.pl/download/hippo-cps.zip under freeware license. Eachmodule
consists of a readme file with the detailed description of the usage instructions.

4 Comparison with Other Tools

There are many noteworthy tools, that are designed to analyse and verify the Petri net-
based system. We have analysed and examined more than 25 available tools that offer
similar functionalities to Hippo-CPS. Let us briefly present a selected few of them.

IOPT-Tools [43] is a very popular and functional web application for editing, simu-
lating, and analysing Petri nets models. The tool allows for the manual decomposition of
the net into synchronised sub-modules. An interesting feature is VHDL or C code gen-
eration in terms of FPGA or Arduino implementation. The limitations of the tool are its
analysis of only selected properties of the Petri net (boundedness, safeness, occurrence
of deadlocks) and its inability to analyse place invariants.

PIPE [44] and its successor PIPE2 [45] are Petri net editors and analysis tools. A
big advantage of both programs is open access to the source code and the possibility for
users to develop their own analysis modules or adjust existing ones. PIPE2 enables the
determination of the Petri net class, the calculation of place and transition invariants,
and the analysis of siphons, boundedness, safeness, and deadlocks. The main limita-
tions of the tools refer to the exponential computational complexity of the implemented
algorithms, thus the solution can be not found at all.

CPN Tools [46] is dedicated to Coloured Petri nets (CPNs), but it could also be
applied to other Petri net classes. It offers an analysis module and a graphical editor with
the rare ability to edit the shapes of places, transitions, or arcs. Unfortunately, the tool
is unintuitive, and to use it the study of extensive documentation is needed.

Snoopy [47] is an advanced editor for various classes of Petri nets, including CPNs,
Continuous Petri nets, and Fuzzy Petri nets. The tool has many functions dedicated to
specific Petri net classes and can export models into many formats, e.g., MATLAB,
PNML. A drawback of the tool is the lack of net analysis or simulation. Although there
is an analysis extension [48] of Snoopy called Charlie, it is inconvenient because it
requires the installation of other tools, as well as converting models between them.

Yasper [49] is a simple graphical Petri net editor with a simulation module. Its
interface seems to be user-friendly and accessible. An interesting feature is an export
function to the MS Visio format. Unfortunately, the tool has not been developed since
2005. Moreover, a significant limitation of the program is the lack of Petri net analysis.

JSARP [50, 51] has a very intuitive and friendly user interface. The inbuilt simulator
allows users to graphically indicate the transitions selected for firing. The analysis mod-
ule generates the Petri net incident matrix and based on the reachability graph, provides
information only about the boundness and liveness of the Petri net.

JARP [52] tool consists of a manual Petri net simulation component, reachability
graph analysis, and invariant computation module. Unfortunately, there is a lack of Petri
net properties analysis, such as boundness, safeness, or liveness.

http://hippo-cps.issi.uz.zgora.pl/download/hippo-cps.zip

200 R. Wiśniewski et al.

WOLFGANG [53] is dedicated to two classes of Petri nets: regular P/T
(place/transition) Petri nets and CPNs. It offers a simple and intuitive GUI and the possi-
bility of editing shapes or changing the font of labels. Another advantage is compliance
with the PNML standard. Unfortunately, the tool has very modest analysis capabilities,
limited to verifying the correctness of the Petri net structure, boundness, and soundness.

GreatSPN [54, 55] is a powerful tool for editing and analysing complex Petri nets.
Unfortunately, to use the tool there is a need for the manual compilation of sources (with
16 external libraries). The tool is also available on a ready-to-use virtual machine.

TINA [56] has a simple but hardly functional graphical editor. The tool is dedicated
to Timed Petri net analysis (similar to the Romeo tool [57]) and is mainly focused on
the computation of place and transition invariants, and detailed analysis of the Petri net
properties, such as boundedness, liveness, reversibility, and presence of deadlocks.

GPenSIM [58] is a popular toolbox for MATLAB and is used for Petri net-based
discrete systems design, while the console tool MIST is devoted to Linux users and it
must be compiled from the source. It is dedicated to analysing the safeness of a Petri net
(must be entered in MIST format), based on state-space analysis.

A Low Level Petri Net Analyzer (LoLA) [59] is an is a tool for the analysis of Petri
nets that is designed particularly for large and complex nets. Unlike IOPT-Tools, PIPE,
GreatSPN, LoLA is a console application, which means that it requires calling formulas
rather than a graphical user interface. One of the key benefits of LoLA is its speed. It can
analyse Petri nets with millions of states and transitions, making it a valuable tool for
working with very large and complex Petri net-based models. However, it has also some
limitations. As a console application, it can be quite difficult to use, particularly for users
who are not familiar with command line interfaces and its own non-standard Petri net
format. Additionally, its analysis capabilities are limited to the most basic behavioural
properties as boundedness, deadlock occurrence, liveness or soundness. Overall, its
console interface and limited analysis capabilities may make it less accessible to some
users particularly practitioners.

An interesting tool dedicated to Petri net-based systems analysis is AdamMC [60].
The tool appliesmodel-checkingverification techniques, and to reduce the computational
complexity it proposes sequential and parallel optimization approaches.

5 Conclusion

Seven Hippo-CPS modules have been presented in the paper. The tools are oriented
toward the verification and analysis of the Petri nets. The presented modules offer alter-
nate examination techniques, allowing the user to verify the system in several different
ways. The efficiency and effectiveness of the implemented algorithms were examined
experimentally. The obtained results confirmed both: theoretical assumptions (in regard
to run-time of methods), and proper functionality of modules (achieved results). Future
work will include the enhancement of the Hippo-CPS. It is planned to extend the tool
with additional verification and designmodules. In particular, the verification and design
of systems classified as EFC are going to be thoroughly investigated in order to obtain
polynomial algorithms (and further implementation within the tool).

Hippo-CPS: A Tool for Verification and Analysis 201

Acknowledgements. Thiswork is supported by theNational ScienceCentre, Poland, underGrant
number 2019/35/B/ST6/01683.

References

1. Lee, E.A., Seshia, S.A.: Introduction to Embedded Systems: A Cyber-Physical Systems
Approach, 2nd edn. The MIT Press, Cambridge (2016)

2. Shih, C.-S., Chou, J.-J., Reijers, N., Kuo, T.-W.: Designing CPS/IoT applications for smart
buildings and cities. IET Cyber-Phys. Syst. Theory Appl. 1(1), 3–12 (2016). https://doi.org/
10.1049/iet-cps.2016.0025

3. Dey, N., Ashour, A.S., Shi, F., Fong, S.J., Tavares, J.M.R.S.: Medical cyber-physical systems:
a survey. J. Med. Syst. 42(4), 1–13 (2018). https://doi.org/10.1007/s10916-018-0921-x

4. Patalas-Maliszewska, J., Posdzich, M., Skrzypek, K.: Modelling information for the burnish-
ing process in a cyber-physical production system. Int. J. Appl. Math. Comput. Sci. 32(3),
345–354 (2022). https://doi.org/10.34768/amcs-2022-0025

5. Zhu, Q., Zhou, M., Qiao, Y., Wu, N.: Petri net modeling and scheduling of a close-down
process for time-constrained single-arm cluster tools. IEEE Trans. Syst. Man Cybern. Syst.
48(3), 389–400 (2018). https://doi.org/10.1109/TSMC.2016.2598303

6. Wiśniewski, R., Bazydło, G., Szcześniak, P.: Low-cost FPGA hardware implementation of
matrix converter switch control. IEEETrans.Circuits Syst. II ExpressBriefs66(7), 1177–1181
(2019). https://doi.org/10.1109/TCSII.2018.2875589

7. Patalas-Maliszewska, J., Wiśniewski, R., Topczak, M., Wojnakowski, M.: Modelling of the
effectiveness of integrating additive manufacturing technologies into Petri net-based manu-
facturing systems. In: 2022 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE),
July 2022, pp. 1–9 (2022). https://doi.org/10.1109/FUZZ-IEEE55066.2022.9882766

8. Wiśniewski, R., Wojnakowski, M., Li, Z.: Design and verification of petri-net-based cyber-
physical systems oriented toward implementation in field-programmable gate arrays—a case
study example. Energies 16(1), Article no. 1 (2023). https://doi.org/10.3390/en16010067

9. Wojnakowski, M., Wiśniewski, R., Popławski, M., Bazydło, G.: Analysis of control part
of cyber-physical systems specified by interpreted Petri nets. In: 2022 IEEE International
Conference on Systems, Man, and Cybernetics (SMC), October 2022, pp. 1090–1095 (2022).
https://doi.org/10.1109/SMC53654.2022.9945425

10. Murata,T.: Petri nets: properties, analysis and applications. Proc. IEEE 77(4), 541–580 (1989).
https://doi.org/10.1109/5.24143

11. Best, E., Devillers, R., Koutny,M.: Petri Net Algebra. Springer, Heidelberg (2001). https://
doi.org/10.1007/978-3-662-04457-5

12. David, R., Alla, H.: Bases of petri nets. In: David, R., Alla, H. (eds.) Discrete, Continuous,
and Hybrid Petri Nets, pp. 1–20. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-10669-9_1

13. Reisig, W., Rozenberg, G. (eds.) Lectures on Petri Nets I: Basic Models: Advances in Petri
Nets. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-65306-6

14. Aalst, W.M.P.: Workflow verification: finding control-flow errors using petri-net-based tech-
niques. In: van der Aalst, W., Desel, J., Oberweis, A. (eds.) Business Process Management.
LNCS, vol. 1806, pp. 161–183. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-
45594-9_11

15. Patalas-Maliszewska, J., Wiśniewski, R., Topczak, M., Wojnakowski, M.: Design opti-
mization of the Petri net-based production process supported by additive manufacturing
technologies. Bull. Pol. Acad. Sci. Tech. Sci. 70(2), e140693 (2022)

https://doi.org/10.1049/iet-cps.2016.0025
https://doi.org/10.1007/s10916-018-0921-x
https://doi.org/10.34768/amcs-2022-0025
https://doi.org/10.1109/TSMC.2016.2598303
https://doi.org/10.1109/TCSII.2018.2875589
https://doi.org/10.1109/FUZZ-IEEE55066.2022.9882766
https://doi.org/10.3390/en16010067
https://doi.org/10.1109/SMC53654.2022.9945425
https://doi.org/10.1109/5.24143
https://doi.org/10.1007/978-3-662-04457-5
https://doi.org/10.1007/978-3-642-10669-9_1
https://doi.org/10.1007/3-540-65306-6
https://doi.org/10.1007/3-540-45594-9_11

202 R. Wiśniewski et al.

16. Wiśniewski, R.: Prototyping of Concurrent Control Systems Implemented in FPGA Devices.
Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-319-45811-3

17. Wisniewski, R., Bazydło, G., Gomes, L., Costa, A., Wojnakowski, M.: Analysis and design
automation of cyber-physical system with hippo and IOPT-tools. In: IECON 2019 - 45th
AnnualConference of the IEEE Industrial Electronics Society,October 2019, vol. 1, pp. 5843–
5848 (2019). https://doi.org/10.1109/IECON.2019.8926692

18. Wojnakowski, M., Wiśniewski, R.: Verification of the boundedness property in a petri net-
based specification of the control part of cyber-physical systems. In: Camarinha-Matos, L.M.,
Ferreira, P., Brito,G. (eds.)DoCEIS 2021. IAICT, vol. 626, pp. 83–91. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-78288-7_8

19. Silva, M., Colom, J.M., Campos, G.C.: Linear algebraic techniques for the analysis of Petri
nets. In: Recent Advances inMathematical Theory of Systems, Control, Networks, and Signal
Processing II, pp. 35–42 (1992)

20. Celaya, J.R., Desrochers, A.A., Graves, R.J.: Modeling and analysis of multi-agent systems
using Petri nets. In: 2007 IEEE International Conference on Systems, Man and Cybernetics,
October 2007, pp. 1439–1444 (2007). https://doi.org/10.1109/ICSMC.2007.4413960

21. Wojnakowski,M.,Wiśniewski, R., Bazydło, G., Popławski,M.: Analysis of safeness in a Petri
net-based specification of the control part of cyber-physical systems. AMCS 31(4), 647–657
(2021). https://doi.org/10.34768/amcs-2021-0045

22. Esparza, J., Silva, M.: A polynomial-time algorithm to decide liveness of bounded free choice
nets. Theor. Comput. Sci. 102(1), 185–205 (1992). https://doi.org/10.1016/0304-3975(92)902
99-U

23. Barkaoui, K., Minoux, M.: A polynomial-time graph algorithm to decide liveness of some
basic classes of bounded Petri nets. In: Jensen, K. (ed.) ICATPN 1992. LNCS, vol. 616,
pp. 62–75. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-55676-1_4

24. Barkaoui, K., Ben Abdallah, I.: A deadlock prevention method for a class of FMS. In: 1995
IEEE International Conference on Systems, Man and Cybernetics. Intelligent Systems for the
21st Century, October 1995, vol. 5, pp. 4119–4124 (1995). https://doi.org/10.1109/ICSMC.
1995.538436

25. Ezpeleta, J., Colom, J.M., Martinez, J.: A Petri net based deadlock prevention policy for
flexible manufacturing systems. IEEE Trans. Robot. Autom. 11(2), 173–184 (1995). https://
doi.org/10.1109/70.370500

26. Guo, X., Wang, S., You, D., Li, Z., Jiang, X.: A siphon-based deadlock prevention strategy
for S3PR. IEEE Access 7, 86863–86873 (2019). https://doi.org/10.1109/ACCESS.2019.292
0677

27. Huang, Y., Jeng, M., Xie, X., Chung, S.: Deadlock prevention policy based on Petri nets
and siphons. Int. J. Prod. Res. 39(2), 283–305 (2001). https://doi.org/10.1080/002075400100
02405

28. Karatkevich, A., Grobelna, I.: Deadlock detection in Petri nets: one trace for one deadlock?.
In: 2014 7th International Conference on Human System Interactions (HSI), June 2014,
pp. 227–231 (2014). https://doi.org/10.1109/HSI.2014.6860480

29. Gomes, L., Barros, J.P., Costa, A., Nunes, R.: The input-output place-transition petri net class
and associated tools. In: 2007 5th IEEE International Conference on Industrial Informatics,
June 2007, vol. 1, pp. 509–514 (2007). https://doi.org/10.1109/INDIN.2007.4384809

30. Wiśniewski, R., Karatkevich, A., Adamski, M., Costa, A., Gomes, L.: Prototyping of con-
current control systems with application of Petri nets and comparability graphs. IEEE Trans.
Control Syst. Technol. 26(2), 575–586 (2018). https://doi.org/10.1109/TCST.2017.2692204

31. Karatkevich, A.G., Wiśniewski, R.: A polynomial-time algorithm to obtain state machine
cover of live and safe Petri nets. IEEE Trans. Syst. Man Cybern. Syst. 50(10), 3592–3597
(2020). https://doi.org/10.1109/TSMC.2019.2894778

https://doi.org/10.1007/978-3-319-45811-3
https://doi.org/10.1109/IECON.2019.8926692
https://doi.org/10.1007/978-3-030-78288-7_8
https://doi.org/10.1109/ICSMC.2007.4413960
https://doi.org/10.34768/amcs-2021-0045
https://doi.org/10.1016/0304-3975(92)90299-U
https://doi.org/10.1007/3-540-55676-1_4
https://doi.org/10.1109/ICSMC.1995.538436
https://doi.org/10.1109/70.370500
https://doi.org/10.1109/ACCESS.2019.2920677
https://doi.org/10.1080/00207540010002405
https://doi.org/10.1109/HSI.2014.6860480
https://doi.org/10.1109/INDIN.2007.4384809
https://doi.org/10.1109/TCST.2017.2692204
https://doi.org/10.1109/TSMC.2019.2894778

Hippo-CPS: A Tool for Verification and Analysis 203

32. Popławski, M., Wojnakowski, M., Bazydło, G., Wiśniewski, R.: Reachability tree in live-
ness analysis of Petri net-based cyber-physical systems. In: AIP Conference Proceedings,
Heraklion, Greece, September 2021

33. Kovalyov, A., Esparza, J.: A polynomial algorithm to compute the concurrency relation of
free-choice signal transition graphs. In: Proceedings of International WODES, June 1996

34. Kovalyov, A.V.: Concurrency relations and the safety problem for Petri nets. In: Jensen, K.
(ed.) ICATPN 1992. LNCS, vol. 616, pp. 299–309. Springer, Heidelberg (1992). https://doi.
org/10.1007/3-540-55676-1_17

35. Wisniewski, R.,Wisniewska,M., Jarnut,M.: C-exact hypergraphs in concurrency and sequen-
tiality analyses of cyber-physical systems specified by safe petri nets. IEEE Access 7,
13510–13522 (2019). https://doi.org/10.1109/ACCESS.2019.2893284

36. Wisniewski, R., Wojnakowski, M., Stefanowicz, Ł.: Safety analysis of Petri nets based on the
SM-cover computed with the linear algebra technique. In: AIP Conference Proceedings, vol.
2040, no. 1, p. 080008, November 2018. https://doi.org/10.1063/1.5079142

37. Wiśniewski, R., Karatkevich, A., Adamski, M., Kur, D.: Application of comparability graphs
in decomposition of Petri nets. In: 2014 7th International Conference on Human System
Interactions (HSI), June 2014, pp. 216–220 (2014). https://doi.org/10.1109/HSI.2014.686
0478

38. Knuth,D.E.: Dancing links. arXiv:cs/0011047,November 2000.Accessed 07 Jan 2022. http://
arxiv.org/abs/cs/0011047

39. Martínez, J., Silva, M.: A simple and fast algorithm to obtain all invariants of a generalised
Petri net. In: Girault, C., Reisig, W. (eds.) Application and Theory of Petri Nets, vol. 52,
pp. 301–310. Springer, Heidelberg (1982). https://doi.org/10.1007/978-3-642-68353-4_47

40. Wiśniewski, R., Bazydło, G., Gomes, L., Costa, A.: Dynamic partial reconfiguration of con-
current control systems implemented in FPGA devices. IEEE Trans. Industr. Inf. 13(4),
1734–1741 (2017). https://doi.org/10.1109/TII.2017.2702564

41. Wiśniewski, R.: Dynamic partial reconfiguration of concurrent control systems specified by
Petri nets and implemented in Xilinx FPGA devices. IEEE Access 6, 32376–32391 (2018).
https://doi.org/10.1109/ACCESS.2018.2836858

42. Bazydło, G.: Designing reconfigurable cyber-physical systems using unified modeling
language. Energies 16(3), Article no. 3 (2023). https://doi.org/10.3390/en16031273

43. Gomes, L., Moutinho, F., Pereira, F.: IOPT-tools—a web based tool framework for embedded
systems controller development using Petri nets. In: 2013 23rd International Conference on
Field Programmable Logic and Applications, September 2013, p. 1 (2013). https://doi.org/
10.1109/FPL.2013.6645633

44. Bonet, P., Lladó, C.: PIPE v 2.5: a Petri net tool for performance modelling (2007)
45. Dingle, N.J., Knottenbelt, W.J., Suto, T.: PIPE2: a tool for the performance evaluation of

generalised stochastic Petri Nets. SIGMETRICS Perform. Eval. Rev. 36(4), 34–39 (2009).
https://doi.org/10.1145/1530873.1530881

46. Yu, Q., Cai, L., Tan, X.: Airport emergency rescue model establishment and performance
analysis using colored Petri nets and CPN tools. Int. J. Aerosp. Eng. 2018, e2858375 (2018).
https://doi.org/10.1155/2018/2858375

47. Heiner,M., Herajy,M., Liu, F., Rohr, C., Schwarick,M.: Snoopy – a unifying Petri net tool. In:
Haddad, S., Pomello, L. (eds.) PETRI NETS 2012. LNCS, vol. 7347, pp. 398–407. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-31131-4_22

48. Heiner, M., Schwarick, M., Wegener, J.-T.: Charlie – an extensible petri net analysis tool. In:
Devillers, R., Valmari, A. (eds.) PETRINETS 2015. LNCS, vol. 9115, pp. 200–211. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-19488-2_10

49. van Hee, K., Oanea, O., Post, R., Somers, L., van der Werf, J.M.: Yasper: a tool for workflow
modeling and analysis. In: Sixth International Conference on Application of Concurrency to

https://doi.org/10.1007/3-540-55676-1_17
https://doi.org/10.1109/ACCESS.2019.2893284
https://doi.org/10.1063/1.5079142
https://doi.org/10.1109/HSI.2014.6860478
http://arxiv.org/abs/cs/0011047
http://arxiv.org/abs/cs/0011047
https://doi.org/10.1007/978-3-642-68353-4_47
https://doi.org/10.1109/TII.2017.2702564
https://doi.org/10.1109/ACCESS.2018.2836858
https://doi.org/10.3390/en16031273
https://doi.org/10.1109/FPL.2013.6645633
https://doi.org/10.1145/1530873.1530881
https://doi.org/10.1155/2018/2858375
https://doi.org/10.1007/978-3-642-31131-4_22
https://doi.org/10.1007/978-3-319-19488-2_10

204 R. Wiśniewski et al.

System Design (ACSD’06), June 2006, pp. 279–282 (2006). https://doi.org/10.1109/ACSD.
2006.37

50. JSARP - Simulador e Analisador de Redes de Petri. http://www.geocities.ws/jsarp_project/
index-2.html. Accessed 21 Dec 2021

51. Oliviera Lino, F.G., Analisador e Simulador de Redes de Petri. Bachelor thesis, University
of Rio de Janeiro, Rio de Janeiro (2007). http://www.geocities.ws/jsarp_project/downloads/
monografia2007.pdf. Accessed 11 Dec 2021

52. JARP. http://jarp.sourceforge.net/us/index.html. Accessed 21 Dec 2021
53. WOLFGANG - Petri Net Editor. IIG Telematics, 16 April 2021. https://github.com/iig-uni-

freiburg/WOLFGANG. Accessed 21 Dec 2021
54. GreatSPN: The GreatSPN framework version 3.0. 21 December 2021. https://github.com/gre

atspn/SOURCES. Accessed 23 December 2021
55. Baarir, S., Beccuti, M., Cerotti, D., De Pierro, M., Donatelli, S., Franceschinis, G.: The

GreatSPN tool: recent enhancements. SIGMETRICS Perform. Eval. Rev. 36(4), 4–9 (2009).
https://doi.org/10.1145/1530873.1530876

56. “The TINA toolbox Home Page - TIme petri Net Analyzer - by LAAS/CNRS. http://projects.
laas.fr/tina/. Accessed 23 Dec 2021

57. Gardey, G., Lime, D., Magnin, M., Roux, O.(H.): Romeo: a tool for analyzing time Petri nets.
In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 418–423. Springer,
Heidelberg (2005). https://doi.org/10.1007/11513988_41

58. Davidrajuh, R.: Introduction to GPenSIM. In: Davidrajuh, R. (ed.) Petri Nets for Modeling
of Large Discrete Systems, pp. 15–27. Springer, Singapore (2021). https://doi.org/10.1007/
978-981-16-5203-5_2

59. Schmidt, K.: LoLA a low level analyser. In: Nielsen, M., Simpson, D. (eds.) ICATPN 2000.
LNCS, vol. 1825, pp. 465–474. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-
44988-4_27

60. Finkbeiner, B., Gieseking, M., Hecking-Harbusch, J., Olderog, E.-R.: AdamMC: a model
checker for petri nets with transits against flow-LTL. In: Lahiri, S.K., Wang, C. (eds.) CAV
2020. LNCS, vol. 12225, pp. 64–76. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-53291-8_5

https://doi.org/10.1109/ACSD.2006.37
http://www.geocities.ws/jsarp_project/index-2.html
http://www.geocities.ws/jsarp_project/downloads/monografia2007.pdf
http://jarp.sourceforge.net/us/index.html
https://github.com/iig-uni-freiburg/WOLFGANG
https://github.com/greatspn/SOURCES
https://doi.org/10.1145/1530873.1530876
http://projects.laas.fr/tina/
https://doi.org/10.1007/11513988_41
https://doi.org/10.1007/978-981-16-5203-5_2
https://doi.org/10.1007/3-540-44988-4_27
https://doi.org/10.1007/978-3-030-53291-8_5

Mochy: A Tool for the Modeling
of Concurrent Hybrid Systems

Löıc Hélouët(B) and Antoine Thébault

University Rennes, Inria, CNRS, IRISA, Rennes, France
{loic.helouet,antoine.thebault}@inria.fr

Abstract. This paper introduces MOCHY, a tool designed for the mod-
eling of concurrent systems with variants of stochastic, timed and hybrid
Petri nets. Beyond modeling, the tool serves as a platform for fast simu-
lation, and can be used for statistical verification of properties, controller
testing, and learning of control rules. The targeted models are variants
of stochastic and timed nets where tokens can be continuous quantities
depicting trajectories of moving objects. The architecture of the tool
is designed to be as adaptive as possible, and allow the redefinition of
objects behaviors or transitions firing through the refinement of a few
semantic rules. The framework also allows for the integration of con-
trollers. For any model variant, MOCHY can perform fast simulation,
and perform statistical verification, evaluate some quantitative proper-
ties of a model, or learn control rules for reachability or quantitative
objectives.

1 Introduction

This paper introduces a new tool called MOCHY, tailored for the modeling of
systems with timed variants of Petri nets, and for fast simulation. The origin of
MOCHY stems from the need of fast simulation tools to test traffic management
policies for metro networks [12]. We rapidly came to the conclusion that trans-
port networks had so many specificities that time Petri nets, timed Petri nets,
or most of their variants were not adapted to the design of such models. First of
all, even if models such as time Petri nets (TPNs) are Turing powerful, and can
hence simulate most systems, using this expressive power in practice forces to
loose the graphical and concurrent nature of nets and results in complex mod-
els that are hard to simulate, and cannot be understood by humans. A way to
circumvent these issues were to tune existing models to obtain ad-hoc variants
of Petri nets. However, this was not satisfactory either, because every transport
network comes with its own traffic management policy, i.e. a light form of control
that is used to mitigate effects of incidents and delays, that affects the semantics
of the model. With this additional constraint, every transport network can have
its own ad-hoc semantics, and is hence a new kind of model. An example of vari-
ation point for instance is whether a metro network follows a fixed block policy
allowing at most one train in each track segment, or a moving block policy that
allows several trains in a segment provided they preserve safety headways.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Gomes and R. Lorenz (Eds.): PETRI NETS 2023, LNCS 13929, pp. 205–216, 2023.
https://doi.org/10.1007/978-3-031-33620-1_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33620-1_11&domain=pdf
http://orcid.org/0000-0001-7056-2672
https://doi.org/10.1007/978-3-031-33620-1_11

206 L. Hélouët and A. Thébault

The main principles of MOCHY are the following: we consider timed models
that can depict trajectories of objects in a bounded environment, such as trains
on a track, cars on a road lane, manufactured objects on a conveyor, etc. The
simulation scheme of the tool is designed to be as generic as possible. To reach
this objective, the semantics of a model is given in a few generic operational rules
depicting how the state of a network transforms upon occurrence of a discrete
event, or when time elapses. Those rules are repeated within a simulation loop,
that may use a controller to select the next actions or delays allowed. Controllers
also maintain a memory that can be used for further decisions.

This paper is organized as follows: we first describe the general architecture
of the tool, the common features of models that can be simulated by MOCHY,
the rules used by its adaptive semantics, and the way runs of MOCHY models
are simulated. We then explain how MOCHY has been used to model a metro
line in Rennes, and to learn a controller which aim is to help a metro recovering
from a bunching situation. These studies show pertinence of our high-level sim-
ulation scheme. We conclude with related work, and perspectives on the future
development of the tool.

2 Mochy Description

MOCHY is designed to be as modular and adaptable as possible. Its architecture
decouples semantics, interfaces, simulation scheme and control. This architecture
allow redefinition of a semantics attached to a particular project, modification
of a controller to guide choices of delays and actions during simulation, etc.
This approach was proved particularly useful when considering models for metro
networks: several train management policies have been implemented by simply
changing the controller part of the tool.

2.1 Architecture

Mochy’s architecture (see Fig. 1) is composed of four main parts: an interface,
and three modules describing a Physical Model, a Controller and a Simulator
loop. The Physical Model contains the data structures needed to describe the
Petri net variant that will be simulated, its initial configuration (mainly initial
contents of its places), a net type, which will be used to load a class implementing
the semantics rules of the net and a controller if needed. The physical model is
loaded from an input project file. The Core part is composed of semantics rules
and of a controller. This part is composed of classes that are loaded once the type
of net is known from the input project file. The controller and semantic classes
define the effects of possible actions and delays on configurations. The Simulator
part implements a simulation loop, i.e. it handles semantics rules and control to
animate a fixed number of semantics steps set from the interface. The interface
allows interaction with these modules, by displaying current configuration of a
loaded model, and providing access to the simulation functions of the tool and
to standard functions (load, save...).

Mochy: A Tool for the Modeling of Concurrent Hybrid Systems 207

Fig. 1. Mochy architecture

The Physical Model: The goal of MOCHY is to provide a generic tool for the
analysis and simulation of Petri nets variants. The models used as input for
MOCHY share some common characteristics, namely notions of events repre-
sented by transitions of a net, notions of resources represented by places, and
the flows of resources consumed/produced by transitions, and timing informa-
tion. The common elements of MOCHY models are hence close to those of a
stochastic timed Petri-Net. The variation points are the contents of places, the
way they evolve over time, the firing rules of transitions, and the way a firing of a
transition affects place contents. The contents of places can be simple tokens, or
more complex objects evolving in a multi dimensional space. We have specialized
this generic description to address models for transport networks.

Structure of Nets. The models used by MOCHY are variants of Petri nets with
time. They share common features, such as the notions of places, transitions,
flows, and time intervals. Places are contents holders for quantities that may
evolve over time. They can be used as usual as containers for tokens, i.e. integral
numbers that are affected by transitions firings, but not by time elapsing. In this
case, places represent conditions needed to fire transitions. They can also be used
to represent a physical space such as a track portion in a metro network. In this
case, contents depict trajectories of objects, i.e. functions depicting evolution
of a place contents according to time elapsed. Transitions represent classes of
events. As usual in Petri nets, they have a preset, i.e. a set of places depicting
resources needed for an occurrence of the transition, a postset, i.e. a set of places
depicting resources impacted by the firing of a transition. A transition t can be
triggered upon conditions that depend on time, and on the contents of places in
the preset and in the postset of t. These conditions and the effect of a transition
firing vary depending on the semantics rules.

The core structure of a net is hence a tuple N = (P, T,A, I), where P is
a set of places, T is a set of transitions representing events in a system, A ⊆
(P ×T)∪(T ×P) is a set of arcs connecting places to transitions, and transitions
to places. Map I : T → Q×Q× DF associates a time interval [α(t), β(t)] and a
distribution function ft : [α(t), β(t)] → [0, 1] to each transition t ∈ T .

208 L. Hélouët and A. Thébault

Place Contents: Standard timed variants of Petri nets (Time Petri nets, timed
arc Petri nets, stochastic nets...) manipulate tokens that are put in places, and
moved by each transition firing. In the models addressed by MOCHY, we allow
for the definition of more complex place contents. For instance, we have used
MOCHY to design models for metro networks, where trains can move at several
speeds on a track segment as soon as they respect some safety headways. In
one of the studied models, called trajectory nets, some places represent track
segments, and their contents are trajectories of trains in a track portion depicted
by space-time diagrams (see [12] for a complete description of this model). Figure
2 shows an example of a configuration of a trajectory net. Place p1 contains a
space-time diagram with two train trajectories, depicting how the remaining
distance to arrival evolves over time for each train. As one can imagine, as time
elapses, the remaining distance to arrival decreases, which modifies the contents
of places. When the remaining distance of a trajectory is zero, this trajectory
is moved to another place by firing of a transition. The duration of the newly
created trajectory is sampled from an interval attached to the transition that will
consume it. In the example of Fig. 2, a duration for a new trajectory arriving
in p1 can be sampled between 20 and 25 time units according to a defined
probability law, and the initial distance for this trajectory is obviously the size
of the space (here a track segment) represented by p1. The semantics of the model
also enforces safety of trains by allowing only trajectories preserving a sufficient
headway between trains. This type of model was successfully implemented by
instantiating the high-level semantics rules specified below.

Fig. 2. A simple Trajectory Net.

2.2 Semantics

The current state of a model is called a configuration. Configurations are denoted
by C1, C2, The semantics of models designed with MOCHY are defined in
terms of timed moves of the form Ci

δ−→ Ci+1 which describe how a system
evolves when a certain amount of time δ elapses, and discrete moves of the
form Ci

ev−→ Ci+1, that describe how a system evolves when a discrete event
ev (usually the firing of a transition) occurs. We assume a sampling semantics,
that is when a transition gets enabled, the time before its urgent firing is chosen
according to the current configuration and never changed. In the context of
time Petri nets for instance, this corresponds to sampling a duration δt within a

Mochy: A Tool for the Modeling of Concurrent Hybrid Systems 209

interval [α, β] for every newly enabled transition t when using a discrete move,
and considering t as urgent δt time units later if it was not disabled before.

In a configuration C, a transition is urgent if it has to fire or be disabled
before some time elapses. In urgent semantics timed moves are forbidden in a
configuration C if C has urgent transitions. The notion of urgency may vary
from a variant of a model to another. In trajectory nets [12], transitions are
urgent if a trajectory of an object has reached a border of the physical space
depicted by a place, and a transition is ready to move this object to another
part of the net. To allow for the specification of many models, the semantics of
a model in MOCHY is given by redefinition of two configuration transformation
rules and two functions to test place contents or check values of clocks:

– R1(C, δ) : depicts the transformation occurring in a configuration C when δ
time units elapse

– R2(C, ev): depicts the transformation occurring in a configuration C when
event ev occurs (mainly firing of a transition)

– F1(C) : returns the time that can elapse before a transition becomes urgent
– F2(C) : returns the list of transitions that are firable in C.

2.3 Simulation

Configurations and transformation rules differ for every type of model, but pro-
viding functions R1(C, δ), R2(C, ev), F1(C), F2(C) is sufficient to implement the
simulation loop proposed in Algorithm 1 below. Creating a model with a new
semantics in MOCHY hence boils down to coding these rules and functions.
Then simulation of a model with MOCHY consists in repeatedly deciding which
transition to fire or which delay to elapse.

Algorithm 1. Rule-base Operational semantics for MOCHY
set a number of steps n
set an initial configuration C0; C = C0

i ← 1
while i ≤ n do

L = F2(C)
if L = ∅ then

δ = F1(C)

Use function R1(C, δ) for timed moves: C
δ−→ C′ = R1(C, δ)

else
Use controller to choose t ∈ L and update controller’s memory

Use function R2(C, t) for discrete moves: C
t−→ C′ = R2(C, t)

end if
i++; C=C’

end while

Let us detail the role of controllers during simulation. When several transi-
tions are firable, a controller is used to choose which transition fires. Controllers

210 L. Hélouët and A. Thébault

can be any program making such choice. The most basic controllers chose ran-
domly a transition among firable ones. More involved controllers can be equipped
with memory, with a schedule to follow, etc. and can implement complex strate-
gies. We detail in Sect. 3, a controller designed to fix speed and dwell time of
metros to recover from bunching situations.

2.4 Inputs-Outputs

MOCHY takes as input project files that contain: the class of model used by
the project (it is a compiled Java class that implements the semantics rules), a
description of the structure of an instance of the loaded model: the places, transi-
tions, and flow relations of the net, the time intervals attached to transitions and
the associated distributions. Depending on the specialization of the model, the
project file can also provide pointer to additional features: a controller, sched-
ules, etc.). This approach allowed for the modeling of metro networks equipped
with a traffic management algorithm designed to adhere to a timetable.

Once a project is loaded, users can play with the specification in an interactive
manner, or run a simulation for several steps using the simulation scheme of Algo-
rithm 1. At each stop of the simulator, the contents of places is displayed. The net
can be reset to its initial configuration at every stop. During simulation, MOCHY
generates logs. Each line of a log is of the form <cdate>;<tname>;<v1>...<vk>
where cdate is an occurrence date for an event, tname is the name of the transi-
tion fired at that date, and v1, ...vk are variables values at date cdate. The list of
variables to save in logs is one of the simulation parameters specified by users.
Logs are saved in a file at the end of each simulation, and can then be used by
other tools for statistics, process mining...

2.5 User Interface

Figure 3 shows the main window of MOCHY. The top of the window shows the
structure of the simulated net, and its current configuration. Below, a control
panel for simulation allows launching a simulation for a given number of steps,
letting time elapse, or firing a single transition. An additional log part (not shown
on the Figure) displays simulation logs, warnings and statistics : mean duration
of a simulation after a simulation campaign, performance indicator...

3 Case Studies

MOCHY has been tested successfully on several models of metro networks, with
various semantics. In this section, we present a first experiment that successfully
used MOCHY to test accuracy of traffic management algorithms, and a second
one that allowed to teach a controller to recover from train bunching.

A Metro Line in Rennes: The Metro line A in Rennes has 15 stations and
a length of 9 km. The model developed with MOCHY uses a controller that
implements a traffic management policy whose goal is to give dwell duration and
speed advices to trains in order to adhere to a given timetable. The timetable

Mochy: A Tool for the Modeling of Concurrent Hybrid Systems 211

Fig. 3. The main window of MOCHY’s graphical interface

describes planned operations for 4 hours, and contains dates for more than 3000
events. The net model is composed of 56 places and 63 transitions. MOCHY
showed good performance for the simulation of this metro network: simulation
of 10 runs (i.e. sequences of at least 3000 discrete moves) can be performed in 1.5
minutes on an average laptop (HP Elitebook with Intel Core i7). Using the high-
level rules of MOCHY, we were able to simulate different traffic management
policies, both in a fixed block and in a moving block setting.

Regulation by Equalization. The good performance of the tool allows for its
use for applications that require intensive simulation campaigns, such as statis-
tical model-checking or learning techniques. We have used MOCHY to train a
neural network in charge of controlling a metro network to recover from a bunch-
ing situation. Bunching is a situation where all trains are not well distributed on
a network, causing long periods without service in stations, followed by arrival
of many trains in a short amount of time. This situation is depicted in Fig. 4.

We have considered a simple network, namely a loop of 20 kilometers, modeled
by a net with 60 places and 60 transitions equipped with a controller that aims at
equalizing distances between trains in the network (see [10] for more details on the
experiment). Several traffic management algorithms have been tested. For each of

212 L. Hélouët and A. Thébault

them, the decision taken was to choose an appropriate speed and dwell time for
trains stopped at a quay. The first tested approach was based on optimization of
a quadratic function considering distances of a train w.r.t. its predecessor and its
successor. The second approach tested was a neural network, with similar param-
eters as input, and trained with a genetic learning approach [16], selecting muta-
tions improving the controller’s statistics during intensive simulation campaigns
realized with MOCHY. The tool allowed to simulate runs of duration of up to 2 h
for fleet sizes ranging from 5 to 50 trains in less than 15 s. Both controller types
were evaluated w.r.t. the time needed to return to an equilibrate distribution of
trains and to the average speed of trains after this equalization. Figure 5 shows
the performance of a neural network controller trained with MOCHY. The black
curve represents the average time needed to recover from the worst possible bunch-
ing situation. One can notice that this value decreases when the size of the metro
fleet increases. The reason is that when many trains are used on a loop, the aver-
age distance between trains in a normal situation is rather close to the minimal
headway allowed on the line. So, with large fleets of trains, the starting bunch-
ing situation is almost a normal equilibrate situation, and an equilibrium can be
reached in a very short amount of time.The blue curve represents the average speed
(in meters/min, with an objective of a 500 m/min) during the equalization period.
This speed increases with the size of metro fleets. Again this is due to side effect
of possible distances between trains: if a controller does not have to handle space
between trains because maintenance of safety headways suffices to equilibrate dis-
tances, then its decisions favour speed objectives. We can draw several conclusions
from this second case study. The first one is that simulation with MOCHY is fast
enough to achieve large simulation campaigns and train AI tools such as neural
networks. The second conclusion is that the high-level semantics approach is par-
ticularly well adapted to the metro setting : changing controllers was done through
a minor refinement of a few methods in a class, and could be integrated without
changing the description of the physical models of the controlled metro network,
nor any other part of the software.

Fig. 4. From a bunching situation to a good distribution of trains in a Metro network.

4 Related Work

Mochy can be seen as a very generic tool allowing for the specification of timed
and stochastic variants of nets which semantics can be described as discrete con-
figuration transformations, and timed moves. Such specification is done by easy

Mochy: A Tool for the Modeling of Concurrent Hybrid Systems 213

Fig. 5. Time to equalization guided by a neural network for varying fleet sizes.

refinement of configurations definition, and of four methods (the R1, R2, F1, F2

functions in Sect. 2) from core classes of MOCHY. This vague description encom-
passes time Petri nets, timed Petri nets, stochastic nets, etc. Once a net variant
is specified, MOCHY can load an instance of model, and perform fast simulation
based on these rules. Several tools, usually dedicated to a particular variant of
Petri nets exist (see [17] for an extensive list). Some of them can handle time,
complex firing rules or hybrid variables needed to model trajectories of objects.
Many tools are dedicated to time(d) Petri nets and their variants. Romeo [13]
is a verification tool for time Petri nets (TPNs). In addition to the standard
urgent semantics of TPNs, ROMEO allows for the specification of ad-hoc fir-
ing rules, read/inhibitor arcs, and for parameters synthesis. ORIS [5] is close to
ROMEO, but is tailored for transient analysis of stochastic timed Petri nets.
Tapaal [4] targets verification of timed arcs Petri nets. It allows inhibitor/read
arcs. TINA [2] is an analyser for TPNs extended with read arcs, inhibitor arcs,
open intervals and data. Several other tools can perform simulation of timed
and stochastic variants of nets. ARP analyzes and simulates nets where transi-
tions are attached an interval and a distribution over this interval. Petrisim [19]
allows for the simulation of Petri nets with delay between token production and
consumption.

Some tools target net variants with colors, a way to introduce variables
and data in nets. Alpha/Sim [15] allows for the simulation of stochastic, timed,
attributed or colored Petri nets. Great SPN [14] is a tool for generalized (colored)
Stochastic Petri nets, that allows for timed simulation. ExSpect [20] is dedicated
to the design of business processes and is formally based on colored Petri nets.
CPN tools [11] allows for the definition of colored High-level nets and nets with
time, and can simulate them to analyse performance of the modeled systems.
PnetLab is a tool dedicated to the control of High-level coloured Petri net and

214 L. Hélouët and A. Thébault

allows in addition side management of time to test scheduling strategies when
transitions are given a service time. TimeNET [21] is a tool for the modelling and
analysis of stochastic Petri nets with non-exponentially distributed firing times.
It supports graphical modeling of uncolored and colored Petri nets as well as
Markov chains. Numerous performance evaluation and structural analysis algo-
rithms are available as well as an interactive token game.

Modeling of transport systems calls for mechanisms that can encode objects
movements, road/track bounds, safety distances. Obviously, this can be simu-
lated by Turing powerful models such as all colored variants, time Petri nets,
etc. but at the cost of low-level encodings of objects movements, that are more
intuitively captured by continuous or hybrid variants of nets. QPME [3] is a
tool that implements Queueing Petri nets. This type of nets/tools is of great
interest for the design and analysis of transport systems, but does not allow for
the modeling of constraints among the moving objects. As for queuing theory,
analyses lead either to optimistic or pessimistic performance evaluation w.r.t.
the actual behavior of a train network. Batch Petri nets [6], or Differential Petri
nets [8], and the tool Hisim [1] can handle mixed discrete and continuous tokens/
transitions, where places contain quantities that evolve according to differential
equations. Discrete transitions firings have the usual semantics, and continuous
firings are allowed when place contents exceed some threshold, and moves some
quantities of token per time unit. Hisim simulates hybrid nets via a simulation
loop that : fires immediate transitions, computes the next event date, progress
time to this date, and iterates. Simulation in MOCHY is based on a similar
simulation loop.

Fluid-survival-tool [18] considers Hybrid Petri nets to model systems with
discrete and continuous quantities, and computes the probability to be in a given
state at a certain time, or to verify Stochastic Timed Logic. Time is handled by
attaching constant firing times to discrete transitions, distributions on firing
times to stochastic transitions, and firing speed to continuous ones.

5 Conclusion and Future Work

This paper has introduced MOCHY, a tool for fast simulation of time Petri
nets variants. One advantage of MOCHY is to allow for the specification of new
semantics rules as part of the inputs of the model, which gives a huge flexibility
to the tool. In particular, the tool was used to develop several variants of nets
handling quantitative aspects that are mandatory to design metro networks (e.g.
distance between trains, distance to arrival in station...). For all projects handled
with MOCHY, the tool showed good performance on average machines, and
allowed for extensive simulation campaigns with large case studies modelling
existing metro lines. The tool was also successfully used to train neural networks
and then use them as controllers.

The MOCHY toolbox can be freely downloaded at the following url: https://
adt-mochy.gitlabpages.inria.fr/mochy/. The available packages contain imple-
mentation of semantic rules for several variants of nets, including waiting nets [9]

https://adt-mochy.gitlabpages.inria.fr/mochy/
https://adt-mochy.gitlabpages.inria.fr/mochy/

Mochy: A Tool for the Modeling of Concurrent Hybrid Systems 215

and trajectory nets [12] and examples of models for metro networks. Future dis-
tributions will include a statistical model checker for Signal LTL, and Machine
Learning techniques to train controllers.

References

1. Amengual, A.: A specification of a hybrid petri net semantics for the HISim sim-
ulator. Tech. rep, International Computer Science Institute (2009)

2. Berthomieu, B., Vernadat, F.: Time petri nets analysis with TINA. In: Proceedings
of QEST 2006, pp. 123–124. IEEE Computer Society (2006)

3. Buchmann, A., Dutz, C., Kounev, S.: QPME- queueing petri net modeling envi-
ronment. In: Proceedings of QEST2006, pp. 115–116 (2006)

4. Byg, J., Jørgensen, K.Y., Srba, J.: TAPAAL: editor, simulator and verifier of timed-
arc petri nets. In: Liu, Z., Ravn, A.P. (eds.) ATVA 2009. LNCS, vol. 5799, pp.
84–89. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04761-9 7

5. Carnevali, L., Paolieri, M., Vicario, E.: The ORIS tool: app, library, and toolkit for
quantitative evaluation of non-Markovian systems. SIGMETRICS Perform. Eval-
uation Rev. 49(4), 81–86 (2022)

6. Demongodin, I.: Generalised batches petri net: Hybrid model for high speed sys-
tems with variable delays. Discret. Event Dyn. Syst. 11(1–2), 137–162 (2001)

7. Demongodin, I., Koussoulas, N.: Differential petri net models for industrial
automation and supervisory control. IEEE Trans. Syst. Man Cybern. Syst. 36(4),
543–553 (2006)

8. Hamdi, F., Messai, N., Manamanni, N.: Design of switched observer using timed
differential petri nets: A dwell time approach. In: Proceedings of European Control
Conference, ECC 2009, pp. 4641–4646. IEEE (2009)

9. Hélouët, L., Agrawal, P.: Waiting nets. In: Bernardinello, L., Petrucci, L. (eds.)
PETRI NETS 2022. LNCS, vol. 13288, pp. 67–89 (2022)

10. Hélouët, L., Fabre, E., Thébault, A.: Optimization of traffic management with
learning machines. HAL-03777459 (2022)

11. Jensen, K., Kristensen, L.M.: Coloured Petri Nets. Springer, Heidelberg (2009).
https://doi.org/10.1007/b95112

12. Kecir, K.: Performance evaluation of urban rail traffic management techniques.
(Évaluation de Performances pour les Techniques de Régulation du Trafic Ferrovi-
aire Urbain), Ph. D. thesis, University of Rennes 1, France (2019)

13. Lime, D., Roux, O.H., Seidner, C., Traonouez, L.-M.: Romeo: a parametric model-
checker for petri nets with stopwatches. In: Kowalewski, S., Philippou, A. (eds.)
TACAS 2009. LNCS, vol. 5505, pp. 54–57. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-00768-2 6

14. Marsan, M., Balbo, G., Conte, G., Donatelli, S., Franceschinis, G.: Modelling with
generalized stochastic petri nets. SIGMETRICS Perform. Evaluation Rev. 26(2),
2 (1998)

15. Moore, K., Chiang, J.: Alpha/sim: Alpha/sim simulation software tutorial. In:
Proceedings of WSC 2000, pp. 259–267 (2000)

16. Palmes, P., Hayasaka, T., Usui, S.: Mutation-based genetic neural network. IEEE
Trans. Neural Networks 16(3), 587–600 (2005)

17. Petri nets tools database: quick overview. https://www.informatik.uni-hamburg.
de/TGI/PetriNets/tools/quick.html. Accessed 01 Feb 2023

https://doi.org/10.1007/978-3-642-04761-9_7
https://doi.org/10.1007/b95112
https://doi.org/10.1007/978-3-642-00768-2_6
https://doi.org/10.1007/978-3-642-00768-2_6
https://www.informatik.uni-hamburg.de/TGI/PetriNets/tools/quick.html
https://www.informatik.uni-hamburg.de/TGI/PetriNets/tools/quick.html

216 L. Hélouët and A. Thébault

18. Postema, B., Remke, A., Haverkort, B., Ghasemieh, H.: Fluid survival tool: a
model checker for hybrid petri nets. In: Proceedings of Measurement, Modelling,
and Evaluation of Computing Systems and Dependability and Fault Tolerance -
17th International GI/ITG Conference, MMB & DFT 2014. LNCS, vol. 8376, pp.
255–259 (2014)

19. Sklenar, J.: Petrisim - environment for simulation of petri networks. In: Proceedings
of the 20th Conference of the ASU Object Oriented Modelling and Simulation, pp.
214–221 (1994)

20. van der Aalst, W., et al.: ExSpect 6.4: an executable specification tool for hierar-
chical colored petri nets. In: Proceedings of ICATPN 2000. LNCS, vol. 1825, pp.
455–464 (2000)

21. Zimmermann, A.: Modelling and performance evaluation with TimeNET 4.4. In:
Bertrand, N., Bortolussi, L. (eds.) QEST 2017. LNCS, vol. 10503, pp. 300–303.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66335-7 19

https://doi.org/10.1007/978-3-319-66335-7_19

RENEW: Modularized Architecture
and New Features

Daniel Moldt, Jonte Johnsen, Relana Streckenbach, Laif-Oke Clasen(B),
Michael Haustermann, Alexander Heinze, Marcel Hansson,

Matthias Feldmann, and Karl Ihlenfeldt

University of Hamburg, Faculty of Mathematics, Informatics and Natural Sciences,
Department of Informatics, Hamburg, Germany

laif-oke.clasen@uni-hamburg.de
http://www.paose.de

Abstract. Renew is an extensible Petri Net IDE that supports the
development and execution of high-level Petri Nets and other modeling
techniques. Over the past seven years, Renew has undergone significant
development and refinement.

To this end, Renew’s code base has been reworked extensively, and its
tool collection has been expanded. The reworking was necessary due to
technical debt caused by environmental changes: especially Java’s tran-
sition from version 9 to 17. Adapting to the latest Java versions enables
the modularization of Renew’s architecture through the Java Platform
Module System (JPMS) which was introduced with Java 9. Additionally,
some new features have been implemented, which were used to test our
new architectural design.

One of our main results gave Renew a cleaner code interface design
and a more modern architecture. Examples of the extensions and
improvements made are the new P/T-nets with synchronous channels
(PTC) formalism and the Modular Model Checker (MoMoC). In addi-
tion to the aforementioned changes, the GUI has also been altered and
now offers an all-in-one window.

Keywords: Petri Nets · Reference Nets · Synchronous Channels ·
Tools · Java Platform Module System · Software Architecture

1 Introduction

Long living software requires continuous maintenance, otherwise technical debts
are built up [14]. Changes in the environment lead to changed or new require-
ments with respect to the functionality and technical basis. Java is the main pro-
gramming language for Renew1 [11]. As the development of the software started

K. Ihlenfeldt: Supported by all participants of our teaching project classes and many
student theses.
1 Reference Net Workshop can be installed directly from the website http://renew.

de. There is a selection of download options. The license terms can be found on the
website mentioned above.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Gomes and R. Lorenz (Eds.): PETRI NETS 2023, LNCS 13929, pp. 217–228, 2023.
https://doi.org/10.1007/978-3-031-33620-1_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33620-1_12&domain=pdf
http://renew.de
http://renew.de
https://doi.org/10.1007/978-3-031-33620-1_12

218 D. Moldt et al.

at the end of the 20th century, several nowadays deprecated language concepts
were used and powerful new ones not yet utilized. Over the years Java was
improved which led to some intermediate and, more importantly, to long-term
support (LTS) versions2. With the introduction of Java 9, the Java Platform
Module System (JPMS) was introduced, which provides modules and module
layers as abstraction mechanisms that are directly supported by the Java Vir-
tual Machine.

As a result, we started a major refactoring of our whole software system
based on our plugin architecture, which has already been presented [4,9,13].
From Java 9 onwards we continuously improved the software in our (teaching)
projects and several theses through the JPMS [8]. This was a major transition
and severely changed the interfaces and structure of Renew, leading to the
Renew 4.1 version. Beside the new features since Renew 2.5 [5,10], which was
the last major release, we share our knowledge about the development of a widely
used Petri net tool. Main aspects are the insights we gained for the architectural
advantages of the JPMS.

In the following we address some formalisms of Renew (Sect. 2), discuss the
objectives of this contribution (Sect. 3), sketch the functionality and some new
features of our tool (Sect. 4), present our new architecture (Sect. 5, illustrates
some use cases (Sect. 6), and we will finalize with the conclusion (Sect. 7).

2 Formalisms

2.1 Reference Nets

One of the main formalisms of Renew is the Reference Net formalism [13], which
combines the concept of nets-within-nets [20] with reference semantics and the
expressiveness of Java code [5].

Every time a simulation is called on a net in Renew, one instance of it is
created and can be observed by the user. This implementation’s advantage is
the possibility of creating multiple instances of a single net. Another advantage
is that a net instance can be created from within a net and its reference is kept
as a colored marking [6]. To achieve this goal, users simply need to annotate a
transition with the new keyword followed by the name of the net they want to
use [12].

Synchronous channels call other parts of nets to get a result. They consist of
an uplink and a downlink. These two inscriptions are unified by Renews runtime
for matching identifiers and parameters. That means two transitions are treated
as a single one for the purpose of firing [12].

When using Reference Nets in Renew, Java objects can be used as tokens
as well [6]. If a transition is inscribed with action followed by a Java expression,

2 Java (Oracle): https://www.oracle.com/java; OpenJDK: https://openjdk.java.net/;
Java Community Process: https://jcp.org; background information on Jigsaw the
predecessor of the JPMS, starting in 2008 / 2014: https://openjdk.java.net/projects/
jigsaw/.

https://www.oracle.com/java
https://openjdk.java.net/
https://jcp.org
https://openjdk.java.net/projects/jigsaw/
https://openjdk.java.net/projects/jigsaw/

Renew: Modularized Architecture and New Features 219

Renew will execute the instruction upon the firing of the transition [6]. This
makes Renew very expressive, especially in the hands of a skilled Java developer.

Figure 1 depicts two Reference Nets. In the upper part of the window, their
models can be seen. The net model to the right takes a token o and calls the
Java method toLowerCase() on it. The net model to the left calls an instance
of that net, stores it in the token n, and then uses it to convert its other input,
the string HELLO, to lowercase. The running simulations are shown in the lower
part of the window. The inspection of their tokens reveals that the instance of
calledNet is actually in the bottommost place of CallerNet’s instance and that
the String was converted to lowercase and now is in calledNet’s place.

Fig. 1. Screenshot of Renew running a simulation with Reference Nets

2.2 P/T-Nets with Synchronous Channels

PTC-nets are Place/Transition nets (P/T-nets) with synchronous channels.
They were introduced to extend the existing model with synchronous channels
as well as with net partitioning, in order to allow for larger models [21].

Figure 2, which is taken from [21], compares the difference between two small
nets. The one on the right side uses a transition to synchronize between producer
and consumer. The one on the left uses a channel to the same end but the visual
separation of the producer and the consumer reflects their status as two separate
entities.

3 Objectives

From the outset of Renew’s development, its main purposes have been to draw,
edit, and simulate Petri Nets. This mission statement still holds true but is being
built upon with each subsequent release adding functionality, improving the IDE,
and gaining new application scenarios.

220 D. Moldt et al.

Fig. 2. Synchronization of a Single Producer and Consumer [21, p. 44]

The following Sect. 3.1 briefly describes those additions in the history of
Renew which have been comprehensively presented [5,6] and clarifies the pur-
poses of the latest releases of its maintained major versions 2.x and 4.x during
the past seven years. Finally, the typical user group is described in Sect. 3.2.

3.1 Developments after RENEW 2.5

In its most basic form, Renew can be used to work with regular P/T-nets, as
well as higher level nets including Java nets and nets-within-nets. The features,
that were added after Renew’s first introduction as a Petri Net IDE, encompass
modeling techniques for diagrams such as UML and BPMN as well as various for-
malisms including the FA formalism for finite automata. Thus, it even manages
to work with other types of models. It also allows for checking created models
for desired properties or unwanted side effects.

With the expansion of its capabilities, Renew also developed into an IDE
for Petri Net-based agent-oriented software engineering (Paose) [2,15,16]. This
approach to software engineering emphasizes on distribution and concurrency.
Multi-agent applications can be edited, debugged, and simulated since the intro-
duction of the multi-agent nets framework Mulan [6].

The objective when releasing Renew 2.6 in April 2022 was to enable the
support of new standards and provide useful features in order to improve the user
experience. This required for example the reimplementation of the PNML import
and export since this standard had changed since its former implementation in
Renew (see Sect. 4.3). The list of improvements also includes an upgrade of
automatic net layouts and undo snapshots (see Sects. 4.1 and 4.3) [8].

The introduction of Renew 4.0 in April 2022 marked the modularization of
the software using the Java Platform Module System (JPMS) and the switch
from Ant to Gradle as the build tool (see Sect. 5). These changes were made
to improve the overall quality of Renew and to stay current. This new major
version also features an enhanced user interface which aims to ease navigating
projects developed in Renew and streamline the overall design. This is achieved
by consolidating all functionality to one window, offering the zoom feature and
the MiniMap plugin (see Sect. 4.1). Additionally, in order to stay up to date with
new Petri-Net-research, Renew 4.1 introduced the PTC formalism for P/T-nets

Renew: Modularized Architecture and New Features 221

with synchronous channels which allows for expressive synchronization behavior
(see Sect. 4.3) [8]. For future developments, we aim to implement our plugins as
Heraklit Agents [17].

3.2 Users

User groups include both teaching and development on and with Renew. Within
this context, it can be used for teaching theoretical foundations, such as finite
automata or Petri nets. In addition, Renew is utilized by students to model
using different modeling techniques like Petri nets or BPMN, which facilitates
their understanding.

As already mentioned, Renew can be used as an IDE for Petri net-based
applications. A corresponding approach including framework and toolset was
presented in [6]. Thus, applications can be built with Renew like Settler
explained in Sect. 6.2.

Furthermore, there are also developments at Renew. Here we can distinguish
between internal and external developments. In the context of internal develop-
ments, Renew is also used as a development object for teaching and research in
our university projects. External developments are easily possible through the
plugin system of its open source software in the form of own plugins.

4 Functionality

4.1 Usability

New Look for the UI. The new and improved user interface now consists of
only one singular window that includes all functionality. Palettes, drawings, and
other helpful tools are all neatly packed into a single frame, the arrangement of
which can be customized as desired. Additionally, important windows can still
be detached and moved independently of the whole UI.

The new look also includes some quality-of-life features. For example fast
access to customization options of graphical components can be found right
above the canvas and allows for quick changes. Figure 3 shows the current version
of Renew in use.

Zooming and MiniMap. When working with large nets, it is important to
have an overview. Therefore, the zoom feature was introduced, which simplifies
editing [11]. This can now either be operated via buttons or, like a large number
of Renew’s functions, also has shortcuts for control. If an overview cannot be
achieved despite the zoom, a manually activatable MiniMap is also provided. It
can be used to simplify navigation in large nets greatly.

222 D. Moldt et al.

Fig. 3. Screenshot of Renew in use

Automatic Net Layouts. Previously Renew provided an option for finetun-
ing an automatic layout processor that slowly moved the diagram around until
it matched all criterions as well as possible. Newly implemented is a randomizer
that simply skips to a final result [11]. This allows for quick checks of how a good
layout might be possible, without taking much time. It also allows the program
to come up with new (random) orientations of the diagram that would not be
reached by simply spacing some parts differently.

4.2 New Functionality

PTC Formalism. The paper [21] describes the use of synchronous channels in
P/T-nets. The implementation provided by these works is now generally avail-
able in Renew with a new plugin. It extends the simulator with two additional
formalisms: The Single P/T-net with Channel Compiler allows the use of regular
synchronous channels consisting of an up and a downlink in P/T-nets. The P/T
nets-within-nets Compiler composes multiple uplinks dynamically with the use
of a SystemNet. This allows for a more expressive synchronization behavior.

MoMoC. Modular Model Checker (MoMoC) [22] is a plugin for Renew that
allows for model checking based on reachability graphs. Its goal is to allow for
the verification of nets using the CTL model checking algorithm [1,7]. P/T nets
as well as higher-level nets can be evaluated. Because Renew always translates
the model into a Petri net representation first when running a simulation, this
also allows checking finite automata and other types. Additionally, it allows for
visualization of the reachability graph itself as well as quickly checking various
net properties such as reversibility, deadlock freedom, and net liveness. It also
exposes its framework for further implementation of additional model-checking

Renew: Modularized Architecture and New Features 223

procedures. Because MoMoC is still in a prerelease state, it is not currently
shipped with the 4.1 version. It is, however, available on our websites3.

4.3 Improvements

PNML Import and Export. Because the PNML standard for saving nets as
XML files has been updated since its integration in Renew, the implementation
has been updated too. The import allows for nets created in other software to
be loaded into Renew. Similarly, the export facilitates cross-platform sharing
of nets originating in Renew.

Improved Undo Snapshots. While editing nets it is inevitable to make mis-
takes. That is why Renew provides the Undo-option with Ctrl + Z which is
commonly used. This feature was recently improved upon where the grouping of
movements into a single Snapshot was handled more consistently [11].

5 Architecture

The plugin architecture of Renew was introduced with the 2.0 version and has
already been presented [4,9,13]. This anchored the extensibility of the software
as a basic principle. Due to it being based on Java and Java being an object-
oriented language, the realization of Renew is also object-oriented.

Prior attempts to use OSGi as an improvement of our plugin architecture
by that library proved to be unsatisfactory. Therefore Renew 3.0 never became
public.

In the fourth major version, we addressed modularization using the Java Plat-
form Module System (JPMS) [8]. One result of this contribution is to provide a
deeper insight into the evolved architecture. For this purpose, the modulariza-
tion of Renew by the JPMS and the resulting architecture in particular will
be discussed next. In addition to this change, Renew’s build tool was changed
from Ant to Gradle.

As a starting point for the modularization, we were able to use our plugin
architecture. First, we mapped each plugin to exactly one module, which has a
module-info file. Within this file, dependencies to other modules, which result
from the dependencies of the classes in the plugins, and the provided function-
alities are defined.

For a class in module A to use a class in module B, there must be a depen-
dency between module A and module B in the JPMS, expressed by requires.
However, due to the information hiding principle [18] this is not sufficient. There-
fore, module B must additionally release the package, in which the class to be
used is located, to the outside. To accomplish this, module B must export the
corresponding package, expressed by the keyword exports.

3 MoMoC - A Modular Model Checker: https://paose.informatik.uni-hamburg.de/
paose/wiki/MoMoC.

https://paose.informatik.uni-hamburg.de/paose/wiki/MoMoC
https://paose.informatik.uni-hamburg.de/paose/wiki/MoMoC

224 D. Moldt et al.

The goals to be achieved through modularization are strong encapsulation,
high cohesion, loose coupling, and explicit interfaces, which increase the software
quality. Here, our initial focus was on stronger encapsulation than before, making
interfaces explicit, and increasing cohesion to improve our software architecture.
The use of the exports and requires keywords reinforces the encapsulation con-
cerning the previously existing package structure by introducing an additional
layer of access modifiers. Furthermore, the interfaces have been made explicit
through the module-info files. In addition, higher cohesion has also been achieved
by prohibiting so-called split packages within the JPMS.

This means that Java packages which were distributed over several com-
ponents before the modularization are now located in a single module. Thus,
functionality is now contained in a single component increasing cohesion.

Loose coupling was initially pursued with less focus by us. However, within
the module-info, the keywords uses and provides are suitable for loose coupling.
These keywords can be used to express service relations.

But initially, we have deliberately relied exclusively on the requires/exports
relation, as described above. This shows that our modularization has still room
for improvement, even though we could already achieve some intermediate goals.
These include stronger encapsulation, increased cohesion, and the explication of
the interfaces.

In JPMS, modules are grouped into module layers at runtime. For this, one
or more root modules as well as one or more parents of the module layer are
specified for a module layer during creation. All modules which are needed by
the root modules including their dependencies and by the dependencies of the
dependencies etc. and which are not reachable by the parent relation of the mod-
ule layers are loaded into the module layer to be created. For our implementation
in Renew, we decided to map each plugin to exactly one module layer. The main
reason for this is that module layers can be created and destroyed at runtime.
This allows us to load and unload our plugins at runtime. For this, we have
implemented a module manager within the loader plugin, which is responsible
for the management of the module layers.

From the user’s point of view, plugins can now actually be unloaded at run-
time through the JPMS in Renew, which was not possible before. Furthermore,
the software quality of Renew could be increased. Through this, we hope that
development times and especially the time-to-market will be reduced. Java itself
has so far successfully managed to release a new version every half year after its
modularization. We want to get into similar dimensions with Renew.

During the implementation of modularization using the JPMS, additional
new plugins were also developed. The new plugins have been modularized from
the beginning. Here, too, the modularization improved the quality right from
the start through the aforementioned benefits. These include, for example, the
PTChannel plugin. Other internal plugins also benefit from the modularization.
This shows that new developments can also benefit from modularization.

Renew: Modularized Architecture and New Features 225

In addition to Renew there is the framework Mulan4 which was developed
at our workspace. Mulan builds on Renew and implements additional plug-
ins for the agent context. Here we managed to run Mulan both non-modular
and modular with the modularized Renew. This shows that the whole system
does not have to be modularized and that modularized and non-modularized
components can be run in the same environment.

An overview of the published plugins5 of Renew can be seen in Fig. 4. We
offer Renew for Windows, Linux, and Mac. Renew runs under the Java LTS-
Version 11 as well as 17.

Fig. 4. Renew 4.1 Plugins

6 Use Cases

6.1 MULAN

Mulan [19] is a framework to develop Petri net-based multi-agent systems. The
framework is used in particular in the context of Petri net-based, Agent-
and Organization-Oriented Software Engineering (Paose, [2]). The
Paose approach [2] is used to develop multi-agent systems. Cabac comprehen-
sively describes the modeling techniques and the foundations used, which have
been developed over the years. Furthermore, Mulan was also developed using
nets and Java code, by using the Renew tool as a basis for Mulan. Due to the
modularization of Renew, we were also able to implement an internal modu-
larized version of the Mulan framework.
4 The source code of Mulan and thus its plugins have not been published yet.
5 Details about the plugins can be found in the associated READMEs.

226 D. Moldt et al.

6.2 Settler

Another larger example of the possibilities Mulan and Renew have in develop-
ing software is Settler [2]. The famous game Catan (also known as The Settlers
of Catan) was developed as a multi-agent system within the context of Paose.

Fig. 5. Coarse Design Diagram of Settler [2,3]

The development time was several years and included several teaching projects.
For this purpose, the framework Mulan as well as the tool Renew were used.
By using Mulan and Renew, Settler was implemented with both nets and Java
code. To get an idea of how the larger example consists of interactions between
different actors, Fig. 5 shows the coarse design diagram. Due to the modularizing
Renew and Mulan, we were also able to implement an internal modularized
version of Settler.

7 Conclusion

Renew is a tool that has been developed for more than two decades. It is
a powerful tool for creating reference nets, but in the meantime, it has also
undergone many other developments. Thus, it is now able to support entire
programs based on Petri nets and Java. In addition, its extensions can be used
not only to control the creation of nets, but also to advance their understanding.

With the old age of the software, it has been necessary to introduce improve-
ments. These are partially visible to the user with the new interface. However,
it is much more important that the underlying architecture is kept up to date
to support software development in the future. This paper has shown how this
challenge has been met.

Renew: Modularized Architecture and New Features 227

References

1. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT press, Cambridge
(2008)

2. Cabac, L.: Modeling petri net-based multi-agent applications. Dissertation, Univer-
sity of Hamburg, Department of Informatics, Vogt-Kölln Str. 30, D-22527 Hamburg
(Apr 2010). https://ediss.sub.uni-hamburg.de/handle/ediss/3691

3. Cabac, L., et al.: PAOSE Settler demo. In: First Workshop on High-Level Petri
Nets and Distributed Systems (PNDS) 2005. University of Hamburg, Depart-
ment of Computer Science, Vogt-Kölln Str. 30, D-22527 Hamburg (Mar 2005).
http://www.informatik.uni-hamburg.de/TGI/events/PNDS2005/program_and_
abstracts.html

4. Cabac, L., Duvigneau, M., Moldt, D., Rölke, H.: Modeling dynamic architectures
using nets-within-nets. In: Ciardo, G., Darondeau, P. (eds.) Applications and The-
ory of Petri Nets 2005. 26th International Conference, ICATPN 2005, Miami, USA,
June 2005. Proceedings. Lecture Notes in Computer Science, vol. 3536, pp. 148–167
(2005), https://doi.org/10.1007/11494744_10

5. Cabac, L., Haustermann, M., Mosteller, D.: Renew 2.5 - towards a comprehensive
integrated development environment for petri net-based applications. In: Kordon,
F., Moldt, D. (eds.) Application and Theory of Petri Nets and Concurrency - 37th
International Conference, PETRI NETS 2016, Toruń, Poland, June 19–24, 2016.
Proceedings. Lecture Notes in Computer Science, vol. 9698, pp. 101–112. Springer-
Verlag (2016). https://doi.org/10.1007/978-3-319-39086-4_7

6. Cabac, L., Haustermann, M., Mosteller, D.: Software development with Petri nets
and agents: approach, frameworks and tool set. Sci. Comput. Program. 157, 56–70
(2018). https://doi.org/10.1016/j.scico.2017.12.003

7. Clarke, E.M., Jr., Grumberg, O., Kroening, D., Peled, D., Veith, H.: Model Check-
ing. MIT Press, Cambridge (2018)

8. Clasen, L.O., Moldt, D., Hansson, M., Willrodt, S., Voß, L.: Enhancement of Renew
to version 4.0 using JPMS. In: Köhler-Bußmeier, M., Moldt, D., Rölke, H. (eds.)
Proceedings of the International Workshop on Petri Nets and Software Engineering
2022 co-located with the 43rd International Conference on Application and Theory
of Petri Nets and Concurrency (PETRI NETS 2022), Bergen, Norway, June 20th,
2022. CEUR Workshop Proceedings, vol. 3170, pp. 165–176. CEUR-WS.org (2022).
https://ceur-ws.org/Vol-3170

9. Duvigneau, M.: Konzeptionelle Modellierung von Plugin-Systemen mit Petrinet-
zen, Agent Technology - Theory and Applications, vol. 4. Logos Ver-
lag, Berlin (2010). http://www.logos-verlag.de/cgi-bin/engbuchmid?isbn=2561&
lng=eng&id=

10. Kummer, O., Wienberg, F., Duvigneau, M., Cabac, L., Haustermann, M.,
Mosteller, D.: Renew - User Guide (Release 2.5). University of Hamburg, Fac-
ulty of Informatics, Theoretical Foundations Group, Hamburg (Jun 2016). http://
www.renew.de/

11. Kummer, O., Wienberg, F., Duvigneau, M., Cabac, L., Haustermann, M.,
Mosteller, D.: Renew - the Reference Net Workshop (Feb 2023). http://www.renew.
de/, release 4.1

12. Kummer, O., Wienberg, F., Duvigneau, M., Cabac, L., Haustermann, M.,
Mosteller, D.: Renew - User Guide (Release 4.1). University of Hamburg, Fac-
ulty of Informatics, Theoretical Foundations Group, Hamburg (Feb 2023). http://
www.renew.de/

https://ediss.sub.uni-hamburg.de/handle/ediss/3691
http://www.informatik.uni-hamburg.de/TGI/events/PNDS2005/program_and_abstracts.html
http://www.informatik.uni-hamburg.de/TGI/events/PNDS2005/program_and_abstracts.html
https://doi.org/10.1007/11494744_10
https://doi.org/10.1007/978-3-319-39086-4_7
https://doi.org/10.1016/j.scico.2017.12.003
https://ceur-ws.org/Vol-3170
http://www.logos-verlag.de/cgi-bin/engbuchmid?isbn=2561&lng=eng&id=
http://www.logos-verlag.de/cgi-bin/engbuchmid?isbn=2561&lng=eng&id=
http://www.renew.de/
http://www.renew.de/
http://www.renew.de/
http://www.renew.de/
http://www.renew.de/
http://www.renew.de/

228 D. Moldt et al.

13. Kummer, O., Wienberg, F., Duvigneau, M., Schumacher, J., Köhler, M., Moldt,
D., Rölke, H., Valk, R.: An extensible editor and simulation engine for Petri nets:
renew. In: Cortadella, J., Reisig, W. (eds.) Applications and Theory of Petri Nets
2004. 25th International Conference, ICATPN 2004, Bologna, Italy, June 2004.
Proceedings. Lecture Notes in Computer Science, vol. 3099, pp. 484–493. Springer,
Berlin Heidelberg New York (Jun 2004). https://doi.org/10.1007/978-3-540-27793-
4_29

14. Lilienthal, C.: Komplexität von Softwarearchitekturen, Stile und Strategien. Ph.D.
thesis, Staats-und Universitätsbibliothek Hamburg Carl von Ossietzky (2008)

15. Moldt, D.: Petrinetze als Denkzeug. In: Farwer, B., Moldt, D. (eds.) Object Petri
Nets, Processes, and Object Calculi, pp. 51–70. No. FBI-HH-B-265/05 in Report of
the Department of Informatics, University of Hamburg, Department of Computer
Science, Vogt-Kölln Str. 30, D-22527 Hamburg (Aug 2005)

16. Moldt, D.: PAOSE: A way to develop distributed software systems based on Petri
nets and agents. In: Barjis, J., Ultes-Nitsche, U., Augusto, J.C. (eds.) Proceedings
of The Fourth International Workshop on Modelling, Simulation, Verification and
Validation of Enterprise Information Systems (MSVVEIS’06), May 23–24, 2006 -
Paphos, Cyprus 2006, pp. 1–2 (2006)

17. Moldt, D., et al.: Enriching heraklit modules by agent interaction diagrams. In:
Gomes, L., Lorenz, R. (eds.) Application and Theory of Petri Nets and Concurrency
- 44th International Conference, PETRI NETS 2023, Lisboa, Portugal, June 26–30,
2023, Proceedings. Lecture Notes in Computer Science, vol. this volume. Springer
(2023)

18. Parnas, D.L., Clements, P.C., Weiss, D.M.: The modular structure of complex
systems. IEEE Trans. Softw. Eng. 3, 259–266 (1985)

19. Rölke, H.: Modellierung von Agenten und Multiagentensystemen - Grundlagen und
Anwendungen, Agent Technology - Theory and Applications, vol. 2. Logos Verlag,
Berlin (2004). http://logos-verlag.de/cgi-bin/engbuchmid?isbn=0768&lng=eng&
id=

20. Valk, R.: Petri nets as token objects - an introduction to elementary object nets.
In: Desel, J., Silva, M. (eds.) 19th International Conference on Application and
Theory of Petri nets, Lisbon, Portugal. pp. 1–25. No. 1420 in Lecture Notes in
Computer Science, Springer-Verlag, Berlin Heidelberg New York (1998). https://
doi.org/10.1007/3-540-69108-1_1

21. Voß, L., Willrodt, S., Moldt, D., Haustermann, M.: Between expressiveness and ver-
ifiability: P/T-nets with synchronous channels and modular structure. In: Köhler-
Bußmeier, M., Moldt, D., Rölke, H. (eds.) Proceedings of the International Work-
shop on Petri Nets and Software Engineering 2022 co-located with the 43rd Inter-
national Conference on Application and Theory of Petri Nets and Concurrency
(PETRI NETS 2022), Bergen, Norway, June 20th, 2022. CEUR Workshop Pro-
ceedings, vol. 3170, pp. 40–59. CEUR-WS.org (2022). https://ceur-ws.org/Vol-
3170

22. Willrodt, S., Moldt, D., Simon, M.: Modular model checking of reference nets:
MoMoC. In: Köhler-Bußmeier, M., Kindler, E., Rölke, H. (eds.) Proceedings of the
International Workshop on Petri Nets and Software Engineering co-locatd with
41st International Conference on Application and Theory of Petri Nets and Con-
currency (PETRI NETS 2020), Paris, France, June 24, 2020 (dueto COVID-19:
virtual conference). CEUR Workshop Proceedings, vol. 2651, pp. 181–193. CEUR-
WS.org (2020). http://ceur-ws.org/Vol-2651/paper12.pdf

https://doi.org/10.1007/978-3-540-27793-4_29
https://doi.org/10.1007/978-3-540-27793-4_29
http://logos-verlag.de/cgi-bin/engbuchmid?isbn=0768&lng=eng&id=
http://logos-verlag.de/cgi-bin/engbuchmid?isbn=0768&lng=eng&id=
https://doi.org/10.1007/3-540-69108-1_1
https://doi.org/10.1007/3-540-69108-1_1
https://ceur-ws.org/Vol-3170
https://ceur-ws.org/Vol-3170
http://ceur-ws.org/Vol-2651/paper12.pdf

Explorative Process Discovery Using Activity
Projections

Yisong Zhang(B) and Wil M. P. van der Aalst(B)

Chair of Process and Data Science (PADS), RWTH Aachen University, Aachen, Germany
{zhang,wvdaalst}@pads.rwth-aachen.de

Abstract. This paper presents a tool to Explore Process Discovery (EPD) results
using activity projection. Our EPD-Tool aims at exploring quality changes after
removing activities from an event log. The main idea is to create a projected
event log for every non-empty subset of activities and apply process discovery
and conformance checking on them. The tool has been implemented as a plugin
in ProM. First, EPD-Tool uses a process discovery algorithm to discover Petri net
models for each projected event log. Then, EPD-Tool uses a conformance check-
ing technique to compute conformance measures for each projected event log
and model pair (L,N), e.g., fitness, precision, and F1-score. Finally, a dendro-
gram is generated to visualize the relationship between each log-model pair, thus
enabling the systematic exploration of the different models using the dendrogram
to find the best-performing node, i.e., a best log-model pair. This method prior-
itizes activities and detects redundancy in the process, which contributes to pro-
cess enhancement. Conversely, critical activities are uncovered to help to shorten
the processing time or save the process cost. This paper presents the EPD-Tool
implementation and some example results.

Keywords: Process mining · Petri nets · Log projection · ProM

1 Introduction

After obtaining event logs from the underlying information systems, stakeholders can
use process mining techniques to uncover their actual processes, provide insights, diag-
nose problems, and automatically trigger corrective actions [15,16]. Process discovery
is a crucial step and the most challenging process mining task, since it aims to learn a
process model from example behavior recorded in an event log. Each event in such a
log refers to an activity, a well-defined step in some process, a process instance (case),
and a timestamp. Process models discovered from event data show the actual process,
e.g., the ordering of activities, frequencies, exceptional paths, and bottlenecks.

After obtaining a process model, we evaluate the quality of this model using sev-
eral measures. Two widely-used control-flow-based quality criteria are replay fitness
and precision. Fitness indicates how well the model reflects the behavior of the log.
Precision reflects whether the model allows for additional unobserved behavior that is
unlikely given the data.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Gomes and R. Lorenz (Eds.): PETRI NETS 2023, LNCS 13929, pp. 229–239, 2023.
https://doi.org/10.1007/978-3-031-33620-1_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33620-1_13&domain=pdf
http://orcid.org/0000-0002-0022-5934
http://orcid.org/0000-0002-0955-6940
https://doi.org/10.1007/978-3-031-33620-1_13

230 Y. Zhang and W. M. P. van der Aalst

State-of-the-art process discovery technologies [1–6] focus on the entire event log,
and they ignore the impact of individual activity in the whole process. For instance, it is
hard to prioritize activities in an event log using a traditional process discovery method,
and the method of classifying which activities are redundant or critical is still missing.
Therefore, we propose Explorative Process Discovery using Activity Projections (EPD)
in this paper. This method uses activity-based projection to extract the sub-logs, and
discovers the process model after deleting any activity in the event log. Afterward, a
conformance checking technique records the changes in process model quality before
and after deleting an activity. According to the comparison, we can prioritize activi-
ties and judge whether the activity is redundant or critical. We fully implemented the
approach using the ProM [7] framework.

The remainder of the paper is structured as follows. In Sect. 2, we introduce basic
concepts. Section 3 describes the approach. Section 4 presents the implementation of
EPD-Tool and shows how to use this tool. Section 5 evaluates our approach using vari-
ous data sets. Section 6 concludes the paper.

2 Preliminaries

In this section, we introduce some basic concepts and notations related to our research.
The first and most important thing is the event log. Event logs serve as the starting point
for any process mining task. An event log is a multiset of traces that describe the life
cycle of cases in terms of the activities executed.

Definition 1 (Event Log). Let Uact be the activity universe, i.e., the set of all possible
activity attributes of events. A trace σ = 〈a1, a2, . . . , an〉 ∈ U∗

act is a sequence of
activities. An event log L ∈ B (U∗

act) is a multiset of traces. UL = B (U∗
act) is the

universe of event logs.

L1 = [〈a, b, c〉5, 〈a, b, c, d, d〉3, 〈a, d〉2] and L2 = [〈a, b, c, d〉5, 〈a, b, c, d, d〉3, 〈a, d〉2]
are two examples of an event log.

Definition 2 (Activity Projection). Let L ∈ UL be an event log and A ⊆ Uact be
a subset of activities. A projected event log is an event log where all activities not in
A are removed. The projection function is L�A= [σ�A |σ ∈ L] where σ�A is defined
recursively: (1) 〈〉�A= 〈〉 and (2) for σ ∈ L:

(〈a〉 · σ)�A=

{
σ�A if a /∈ A
〈a〉 · σ�A if a ∈ A (1)

where 〈a〉 · σ appends activity a to trace σ.
Consider L1 and L2 introduced before, given A1 = {b, c} and A2 = {a, d}, then

L1�A1= [〈b, c〉8, 〈〉2] and L2�A2= [〈a, d〉7, 〈a, d, d〉3].
Process discovery techniques aim to learn a formal process model based on example

behaviors in the event log [15,16]. There is a plethora of process modeling notations,
e.g., Business Process Model and Notation (BPMN) [8], Process Trees, etc. Most of
these modeling notations can be directly transformed into a Petri net [9], allowing for a

Explorative Process Discovery Using Activity Projections 231

Fig. 1. Labeled Petri net N1: A product repair process

range of analysis techniques including conformance checking and performance analy-
sis. Therefore, we focus on labeled accepting Petri nets, i.e., Petri nets where transitions
have activity labels and there is a well-defined initial and final marking. Note that we
also allow for silent activities, i.e., transitions that do not have a label and that cannot be
observed in the event log. This way, we can also model skipping and handle gateways
in BPM and operators in process trees. UN is the universe of labeled accepting Petri
nets. An example of a labeled Petri net is depicted in Fig. 1.

Our approach does not focus on any specific process discovery algorithm. Instead, it
can use any existing process discovery algorithm provided that it can be converted into
a labeled accepting Petri net. For instance, this paper uses Inductive Miner - infrequent
(IMi) [10]. IMi takes an event log as input and discovers a process tree as output which
could be transformed into a Petri net directly.

Definition 3 (Exploratory Process Discovery). disc : UL → UN is a function that
discovers a labeled accepting Petri net for any event log. Given an event log L ∈ UL,
we can discover a model N = disc (L). (L,N) is a log-model pair. Given a collection
of event log we can create a collection of log-model pairs.

For any log-model pair (L,N) conformance checking techniques are used to eval-
uate the quality of process models. In this paper, we use alignments [11] to compute
replay fitness and precision [12] of each log-model pair. The F1-score is based on these.

Definition 4 (Quality Measures). Let (L,N) ∈ UL × UN be a log-model pair.
Fit (L,N) ∈ [0, 1] measures fitness (indicating how well the model reproduces the
behavior of the log). Pre (L,N) ∈ [0, 1] measures precision (indicating to what degree
the model’s behavior is likely given the log). The harmonic mean of fitness and precision
F1 (L,N) ∈ [0, 1] is defined as follows: F1 (L,N) = 2 Fit(L,N)·Pre(L,N)

Fit(L,N)+Pre(L,N) .

Here we abstract from the exact computation of fitness and precision and use the
alignment-based fitness and precision values implemented in ProM [11,12].

232 Y. Zhang and W. M. P. van der Aalst

Fig. 2. Overview of explorative process discovery using activity projections.

3 Approach

Since traditional process discovery methods focus on the entire event log and ignore
the impact of each activity in the process, they cannot prioritize activities nor classify
which activities are redundant or critical. Thus, we propose our “Explorative Process
Discovery using Activity Projections” method to address this problem. The approach
consists of the following three phases, as Fig. 2 shows:

– Phase 1: Projection. Given an event log L ∈ UL containing n activities, for each
subset of activities Ak, where Ak ⊆ Uact and Ak �= ∅, we use activity projection
defined in Definition 2 to get a projected event log. Therefore, there are 2n − 1
sub-logs {L1, L2, · · · , L2n−1}.

– Phase 2: Exploration. For each projected event log Lk, we use Explorative Pro-
cess Discovery as in Definition 3 to discover a Petri net model disc(Lk) = Nk,
there will be 2n − 1 log-model pairs (L1, N1) , (L2, N2) , · · · , (L2n−1, N2n−1)
where (Lk, Nk) ∈ UL × UN . Then we use the quality measures described in Def-
inition 4 to compute fitness, precision, and harmonic mean for each pair (Lk, Nk):
Fit (Lk, Nk), Pre (Lk, Nk), and F1 (Lk, Nk).

– Phase 3: Visualization. Finally, we visualize the relationship between log-model
pairs in a dendrogram and color it using the quality measures to explore the impact
of removing a specific activity on the process model.

4 Implementation

The approach has been implemented as a plugin in the ProM framework, named “Explo-
rative Process Discovery using Activity Projections” in the package “ExplorativePro-
cessDiscovery”. To install EPD-Tool, simply download the latest ProM Nightly build
from https://promtools.org/, run the PackageManager, select the package “Explorative-
ProcessDiscovery”, and run ProM. Now the user can import any event log data and
apply the plugin “Explorative Process Discovery using Activity Projections”. Our tool
includes two versions of the function, “Full version” and “Lite version”. The main dif-
ference between them is that the Full version handles all projected event logs simul-
taneously, and the Lite version requires users to configure step-by-step to explore

https://promtools.org/

Explorative Process Discovery Using Activity Projections 233

Fig. 3. The main interface of the Full version. Each node corresponds to a log-model pair. Only
the connections that improve quality are shown.

the changes in model quality after removing any activity. Moreover, the Full version
includes a Pareto optimal model of all the results, while the Lite version does not. We
need these two versions because the Full version is time-consuming when processing
large [13] event logs, while the Lite version improves efficiency by discarding some
insignificant nodes.

4.1 Full Version Discovering Pareto Optimal Models

As Fig. 3 shows, we use a tree structure to show every projected event log simultane-
ously, and users can choose to color the dendrogram by fitness, precision, or F1-score
through the drop-down list on the upper right. The best route for removal is always
shown in this dendrogram. When a node is selected, it will display the connections to its
child nodes. For more details, there is a floating “Inspect” window which also includes
a “View” panel used to control the zoom function since the generated dendrograms are
usually quite large.

• Square box: Each node corresponds to each projected event log.
– Color: colors from blue to red; deep blue indicates low quality (fitness, preci-
sion, or harmonic mean), while the more red the color is, the better the quality
is.

– Bottom grey rectangle: the proportion of events left after projection; the longer
the length is, the higher the proportion is.

– Right yellow rectangle: the proportion of activities left after projection, the
longer the length, the higher the proportion.

– Red box: best node(s) with the highest quality.

234 Y. Zhang and W. M. P. van der Aalst

Fig. 4. Detailed information is provided when selecting an edge connecting two models.

– Blue box: worst node(s) with the lowest quality.
– Black box (optional): there may exist some log-model pairs that cannot proceed
with alignments under limited resources (both RAM and time).

– Green box (optional): all nodes will be colored green if they all have the same
best quality.

– Green border: the best node(s) will be marked with a green border.
• Line: connect related nodes, the width indicates the degree of quality improve-
ment/degradation after deleting the corresponding activity from the upper node to
the lower node.
– Red line: quality increased.
– Blue line: quality decreased.
– Green line: quality unchanged.
– Black line (optional): connected with a “Black box”.

By selecting an edge between each pair of nodes, users can collect more information
about this node pair, such as which activities are included in this subset, which element
was deleted from the parent node, and the performance change between this node pair.
Also, users can have an overview of the Petri net models of this node pair, as Fig. 4
shows. We aim to find a “sweet spot” among all projected event logs with the highest
fitness and precision. However, such a “sweet spot” is hard to obtain in some cases.
Therefore, the concept of Pareto optimality is used to guide the user.

Pareto Optimality. When multiple evaluation indicators exist, an object that is best on
all evaluation indicators does not always exist. The concept of Pareto optimality aims to

Explorative Process Discovery Using Activity Projections 235

Fig. 5. (a) The window of “Pareto optimality”. (b) Detailed information of selected “sweet spot”.

achieve a trade-off between those indicators, i.e., none of these indicators can be better
without making at least one worse.

For most event logs, there is no node with both the highest fitness and the highest
precision (except for nodes with only one activity). However, having a process with only
one activity makes little sense. Therefore, as Fig. 5(a) shows, in the “Pareto Optimal
Model”, the user can adjust the sliders to set the ratio of activities and events she wants
to keep. After this, the tool will extract and show the “sweet spots” based on the concept
of Pareto optimality, which contains the node with the highest fitness, the node with the
highest precision, and a set of nodes with a trade-off between fitness and precision.
Similarly, the specific information of each projected event log and the discovered Petri
net model are visualized by selecting the corresponding node, as Fig. 5(b) shows.

4.2 Lite Version for Guided Exploration

As mentioned above, the Full version will be time-consuming when faced with large
event logs, so we also provide a “Lite version” to improve the efficiency of the tool
in some cases. As shown in Fig. 6, the dendrogram has only one layer of sub-nodes
in this version. The user needs to configure to explore further sub-nodes step by step.
Therefore, further operations are introduced in the inspector of the Lite version, such as
“Go back”, “Go deeper”, and “Forward”.

• Go back: When the interface shows a deep layer, users can select “Go back” to
return to the previous layer.

• Go deeper: Select “Go deeper” after choosing any child node to explore the deep
layer of this child node. Note that it may take a while to display the results after
selecting. Because the Lite version calculates each layer of nodes separately by
selecting “Go deeper”.

• Forward: After selecting “Go back”, users have a chance to return to the deep layer
without recalculation by selecting “Forward”. This improves efficiency in some
cases because returning to the deep layer through “Go deeper” requires recalcu-
lation.

236 Y. Zhang and W. M. P. van der Aalst

Fig. 6. The main interface of the Lite version.

All other functions in the Lite version are the same as the Full version, including
viewing the detailed information of sub-nodes and checking the Petri net model. The
only difference is that the Lite version can record the best removals in a table, and the
exploration of Pareto optimality models is not supported.

5 Evaluation

In this section, we conduct experiments using two data sets “Repair1” and “Road Traffic
Fine Management Process” [14] to evaluate our approach. It includes two parts: (1)
evaluations of the general functions of our tool and (2) an explanation of why we need
a “Lite version” by comparing the time required by the two versions.

5.1 General Functions

First, for a general function of our tool, we can define an activity route or the priority
of activities. As shown in Fig. 7 and Fig. 8, we use F1-score as the evaluation crite-
ria. Here we call the best-performing sub-log the “sweet spot”. Each row from top to
bottom of these tables records the performance change after removing an activity from
the previous sweet spot. Colored cells indicate the sweet spot for the corresponding
layer, red means performance increased, and blue means performance decreased. Col-
umn “Removed” indicates the activities removed from the previous sweet spot to get
the current sweet spot. As a result, the priority of activities in “Repair” is {(Register,
Inform User), Restart Repair, Repair (Complex), Repair (Simple), Archive Repair, Ana-
lyze Defect, Test Repair}, which means the most frequent (stable) activity in “Repair”
is “Register” or “Inform User”, and if organizations want to reduce the process or detect

1 https://processmining.org/old-version/files/repairexample.zip.

https://processmining.org/old-version/files/repairexample.zip

Explorative Process Discovery Using Activity Projections 237

Fig. 7. The best route to remove problematic activities for the data set “Repair”.

Fig. 8. The best remove route for the data set “Road Traffic Fine Management Process”.

problems of this process, they should start from “Test Repair”. More specifically, the
infrequent (unstable) activities might be {Test Repair, Analyze Defect} because the per-
formance increased after removing these activities, and the performance will decrease
if we keep removing any other activities.

Similarly, the priority of activities in “Road Traffic Fine Management Process” is
{(Notify Result Appeal to Offender, Insert Fine Notification), Receive Result Appeal
from Prefecture, Insert Date Appeal to Prefecture, Send Fine, Create Fine, Appeal to
Judge, Send Appeal to Prefecture, Send for Credit Collection, Add penalty, Payment},
that means the most frequent (stable) activity in “Road Traffic Fine Management Pro-
cess” is “Notify Result Appeal to Offender” or “Insert Fine Notification”. If organiza-
tions want to reduce the process or detect problems in this process, they should start with
“Payment”, and the infrequent (unstable) activities might be {Payment, Add penalty,
Send for Credit Collection, Send Appeal to Prefecture, Appeal to Judge}.

Moreover, to describe the function of “Pareto optimality” more intuitively, we use
the data set “Repair” as a demonstration. As shown in Fig. 5(a), in Pareto optimality,
we set the activity and event thresholds to 60% and 80%, respectively, and extracted
4 “sweet spots”. Consider the “sweet spot” marked with a red circle, as detailed in
Fig. 5(b). After removing the activity Archive Repair, the model’s F1-score changes
from 0.85 to 0.9. This result indicates that “Archive Repair” might be an infrequent

238 Y. Zhang and W. M. P. van der Aalst

Table 1. Comparison of time cost between two versions.

Data size Time cost

Events Activities Full version Lite version

Repair 11,855 8 38.9s 7.2s

RTFMP 561,470 11 11,724.9s 161.0s

(unstable) activity in this process. Therefore, organizations can optimize the whole pro-
cess by focusing on this activity.

5.2 Scalability

To explain the necessity of the “Lite version” more clearly, we compare the time
required by the full and Lite versions to get the same result of priority and classification.
As Table 1 shows, for the Repair log, the processing time in the Lite version is around
one-tenth that in the Full version, and for RTFMP (Road Traffic Fine Management Pro-
cess), it decreased from more than 3 h to less than 3min. (Experiment conducted using
an 11th Gen Intel Core i7-1165G7 2.8GHz processor and 16GB RAM.) Although the
Lite version does not display all the results at once, it saves much time to observe the
impact of removing a specific activity. Additionally, users can still explore the priority
of activities step by step instead of just waiting.

6 Conclusion

This paper introduced a new tool for process discovery named the Explorative Process
Discovery tool using Activity Projections (EPD-Tool), which is implemented as a ProM
plugin. With this plugin, users can explore the impact of removing any activity from the
event log on the model. EPD-Tool provides users with insight to identify redundant
or critical activities. Therefore, they can optimize processes and reduce process costs
based on their expert knowledge. In the future, we plan to refine this tool to improve
efficiency and integrate more features to provide users with a deeper insight into the
event log incorporating performance related to time and resources (to find problematic
resources and time consuming activities). Moreover, there are ways to further improve
the scalability of the tool.

Acknowledgments. The authors thank the Alexander von Humboldt (AvH) Stiftung for sup-
porting this research. Funded by the Deutsche Forschungsgemeinschaft (DFG) under Germany’s
Excellence Strategy, Internet of Production (390621612).

Explorative Process Discovery Using Activity Projections 239

References

1. Augusto, A., Conforti, R., Dumas, M., et al.: Automated discovery of process models from
event logs: review and benchmark. IEEE Trans. Knowl. Data Eng. 31(4), 686–705 (2018)

2. DeWeerdt, J., Vanden Broucke, S., Vanthienen, J., et al.: Active trace clustering for improved
process discovery. IEEE Trans. Knowl. Data Eng. 25(12), 2708–2720 (2013)

3. Goedertier, S., Martens, D., Vanthienen, J., et al.: Robust process discovery with artificial
negative events. J. Mach. Learn. Res. 10, 1305–1340 (2009)

4. Vanden Broucke, S., De Weerdt, J.: Fodina: a robust and flexible heuristic process discovery
technique. Decis. Support Syst. 100, 109–118 (2017)

5. Ghose, A., Koliadis, G., Chueng, A.: Process discovery from model and text artifacts. IEEE
Congress on Services (Services 2007), 167–174. IEEE (2007)

6. Slaats, T.: Declarative and hybrid process discovery: recent advances and open challenges.
J. Data Semant. 9(1), 3–20 (2020)

7. van Dongen, B.F., de Medeiros, A.K.A., Verbeek, H.M.W., Weijters, A.J.M.M., van der
Aalst, W.M.P.: The ProM framework: a new era in process mining tool support. In: Ciardo,
G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp. 444–454. Springer, Heidelberg
(2005). https://doi.org/10.1007/11494744_25

8. Chinosi, M., Trombetta, A.: BPMN: an introduction to the standard. Comput. Stand. Inter-
faces 34(1), 124–134 (2012)

9. Murata, T.: Petri nets: properties, analysis and applications. Proc. IEEE 77(4), 541–580
(1989)

10. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured process
models from incomplete event logs. In: Ciardo, G., Kindler, E. (eds.) PETRI NETS 2014.
LNCS, vol. 8489, pp. 91–110. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
07734-5_6

11. Van der Aalst, W.M.P., Adriansyah, A., Van Dongen, B.F.: Replaying history on process
models for conformance checking and performance analysis. Wiley Interdisc. Rev.: Data
Min. Knowl. Discov. 2(2), 182–192 (2012)

12. Adriansyah, A., Munoz-Gama, J., Carmona, J., van Dongen, B.F., van der Aalst, W.M.P.:
Alignment based precision checking. In: La Rosa, M., Soffer, P. (eds.) BPM 2012. LNBIP,
vol. 132, pp. 137–149. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
36285-9_15

13. Leemans, S.J.J., Fahland, D., Van der Aalst, W.M.P.: Scalable process discovery and confor-
mance checking. Softw. Syst. Mod. 17(2), 599–631 (2018)

14. de Leoni, M. (Massimiliano); Mannhardt, Felix (2015): Road Traffic Fine Management Pro-
cess. 4TU.ResearchData Dataset. https://doi.org/10.4121/uuid:270fd440-1057-4fb9-89a9-
b699b47990f5

15. Van der Aalst, W.M.P.: Process Mining: Data Science in Action. Springer-Verlag, Berlin
(2016). https://doi.org/10.1007/978-3-662-49851-4

16. Van der Aalst, W.M.P., Carmona, J. (eds.): Lecture Notes in Business Information Process-
ing, vol. 448. Springer-Verlag, Berlin (2022)

https://doi.org/10.1007/11494744_25
https://doi.org/10.1007/978-3-319-07734-5_6
https://doi.org/10.1007/978-3-319-07734-5_6
https://doi.org/10.1007/978-3-642-36285-9_15
https://doi.org/10.1007/978-3-642-36285-9_15
https://doi.org/10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5
https://doi.org/10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5
https://doi.org/10.1007/978-3-662-49851-4

Verification

Computing Under-approximations
of Multivalued Decision Diagrams

Seyedehzahra Hosseini(B) and Gianfranco Ciardo

Department of Computer Science, Iowa State University, Ames, IA, USA
{hosseini,ciardo}@iastate.edu

Abstract. Efficient manipulation of binary or multi-valued decision dia-
grams (BDDs or MDDs) is critical in symbolic verification tools. Despite
the applicability of MDDs to real-world tasks such as discovering the
reachable states of a model, their large demands on hardware resources,
especially memory, limit algorithmic scalability. In this paper, we focus
on memory-constrained algorithms that employ a novel O(m logn)-time
under-approximation technique for MDDs, where m and n are the num-
ber of MDD edges and nodes, respectively. The effectiveness of our app-
roach is demonstrated experimentally by a reduction in peak memory
usage for the symbolic reachability computation of a set of Petri nets.

Keywords: decision diagrams · under-approximation · memory
constraints

1 Introduction

Multi-valued decision diagrams (MDDs) are a compact symbolic representation
of discrete functions over finite domains, such as those used by verification algo-
rithms to validate a system’s intended properties, where we need to manipulate
large propositional formulae. To this end, reachability analysis is often the first
step in the study of a discrete-state system. The most basic MDD-based method
to discover the reachable state space is symbolic breadth-first search (BFS),
which finds new reachable states by applying the next-state function to the set
of currently-known reachable states, until it finds a fixpoint (until it cannot find
any new state). Such approach is highly effective, but it cannot complete reach-
ability analysis for many finite but large systems [8,9]. In other words, “exact”
formal methods approaches always provide a proof or counterexample for a sys-
tem property by exhaustively searching through all potential behaviors given
enough resources, but “under-approximation” approaches may deliver the same
result within given resource limitations.

Ravi et al. proposed three approximations, based on the density of each
node p (number of minterms for node p divided by number of nodes reachable
from p, see Sect. 2) in a fully-reduced binary decision diagram (BDD). The first
approach [8] computes each node’s density, finds a replacement node (top-down,
one of its children, grandchildren, or terminal 0, in that order), and applies this

Work supported in part by National Science Foundation under grant CCF-2212142.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Gomes and R. Lorenz (Eds.): PETRI NETS 2023, LNCS 13929, pp. 243–263, 2023.
https://doi.org/10.1007/978-3-031-33620-1_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33620-1_14&domain=pdf
http://orcid.org/0000-0001-8585-9188
http://orcid.org/0000-0002-4906-6145
https://doi.org/10.1007/978-3-031-33620-1_14

244 S. Hosseini and G. Ciardo

replacement based on its impact (number of minterms that would be removed
and a lower bound on number of nodes that would be eliminated). Its runtime is
quadratic in the BDD size. The second approach [9] (heavy branch subsetting)
considers the number of minterms in the node’s children, and deletes the child
with the fewest minterms until the BDD size drops below a given threshold. Its
runtime is linear in the BDD size, but it might create a string of nodes at the top
of the BDD, each with one child set to 0. The third approach [9] (shortest-path)
favors short paths, since they encode more minterms, by assigning a path-length
to each node v (sum of the length of the shortest paths from root to v and from v
to terminal 1), and deleting nodes with largest path-length. This performs best
when the BDD has many paths of various lengths. Up to now, this has been the
state of the art on BDD under-approximation.

An important application where this under-approximation can be effectively
used to answer questions about the original set is partial model checking. For
example, suppose we are generating the state space of a system to find out
whether it can experience a deadlock. If, at some point, we have generated a
(partial) set of reachable states X encoded in an MDD, but we are running out of
memory, we can eliminate some states in X , resulting in a set X ′ ⊂ X , hopefully
with much smaller memory requirements (many fewer MDD nodes). Then, we
can restart the state space exploration from X ′ and, if at any point we find a
deadlock state s, we know that the system would be able to reach this deadlock.
Furthermore, if each under-approximation X ′ ⊂ X is chosen with care (e.g.,
ensuring that the initial state of the system is retained), then the entire reachable
state space can still be reached from X ′, given enough iterations. If instead we
do not find a deadlock, we cannot conclude that the original system is deadlock
free, unless we are sure that, upon termination, the set X of encoded states is
not a strict under-approximation, i.e., it is actually the entire state space. This
may happen because different reachability algorithms may build the same final
set going through different sequences of MDDs, some much more compact than
others. This is the reason for the success of the saturation algorithm [4].

The rest of this paper is organized as follows. Section 2 gives background on
MDD under-approximation and decomposition. Section 3 introduces our MDD
under-approximation approach, Sect. 4 shows how to improve its speed, and
Sect. 5 uses it for state-space generation. Section 6 reports experimental results
on a set of Petri net benchmarks. Finally, Sect. 7 concludes and discusses future
work.

2 Preliminaries

An L-level quasi-reduced multi-valued decision diagram (MDD) is a directed
acyclic edge-labeled multi-graph where:

– Level 0 can only contain the two terminal nodes 0 and 1.
– Each nonterminal node p belongs to a level p.lvl = k ∈ {1, ..., L} and has nk

outgoing edges labeled by distinct elements of Sk = {0, ..., nk − 1}, pointing

Computing Under-approximations of Multivalued Decision Diagrams 245

to nodes at level k − 1 or to 0, but not all its outgoing edges can point to 0.
If the edge labeled by ik points to a node q, we write p[ik] = q.

– There are no duplicates: if p.lvl =q.lvl =k and p[ik]=q[ik] for all ik ∈Sk, then
p = q.

(we recall that an alternative canonical version of MDDs, fully-reduced MDDs,
forbids both duplicate and redundant nodes, i.e., any nonterminal node p such
that all its outgoing edges point to the same node, p[0] = p[1] = · · · = p[nk −1]).

MDDs encode functions of the form SL:1 = SL × · · · × S1 → B. Specifically,
node p at level k encodes fp : Sk:1 = Sk × ... × S1 → B, defined recursively by

fp(ik, ..., i1) =

{
p if p.lvl = 0
fp[ik](ik−1, ..., i1) if p.lvl > 0.

As defined, an MDD can have multiple roots at level L, each encoding a
“function of interest” (except for the constant function 0, which is encoded
by 0), but we focus on MDDs encoding a single function, with one root node
r� at level L, with the understanding that the MDD has no other roots unless
stated otherwise, i.e., “MDD r�” means “the MDD rooted at r�”.

Given node p at level k > 0, we recursively define the node reached from p
through sequence α = (ik, ik−1, ..., ih+1) ∈ Sk:h+1, for L ≥ k ≥ h ≥ 0, as:

p[α] =

⎧⎪⎨
⎪⎩

p if α is the empty sequence
0 if α = (ik, β) and p[ik] = 0
q[β] if α = (ik, β) and p[ik] = q �= 0.

We can use an MDD r� to encode a set of states. Let the substates reaching
node p, or “above” p, and those encoded by p, or “below” p, be respectively
A(p) = {α ∈ SL:k+1 : r�[α] = p} and B(p) = {β ∈ Sk:1 : p[β] = 1}. Thus, A(p) is
the set of paths from r� to node p and B(p) the set of paths from p to terminal 1.
Then, the set of states “traversing” p is S(p) = A(p) × B(p). As a special case,
the set of states encoded by the MDD r� is S(r�) = B(r�) = A(1) = S(1).

Finally, let N (p) be the set of nonterminal nodes reachable from p at level k,
N (p) = {q : k ≥ q.lvl > 0 ∧ ∃α ∈ Sk:q.lvl+1, p[α] = q}. As a special case, N (r�)
is the entire set of nonterminal nodes in the MDD.

Letting M(k) be the set of MDD nodes at level k ∈ {1, ..., L}, we can parti-
tion the states encoded by MDD r� according to which level-k node they traverse:
for any k ∈ {1, ..., L}, we have S(r�) =

⋃
p∈M(k) S(p) =

⋃
p∈M(k) A(p) × B(p).

We assume that the nonterminal nodes of the MDD, N (r�) =
⋃L

k=1 M(k),
are stored in a unique table organized by level. This allows us to access the nodes
at specific level efficiently and avoid node duplication.

an MDD rooted at node r∗ can encode a large, even enormous, set of states,
but its memory efficiency, measured as the number of states it encodes divided by
the number of nodes it uses to encode them, |S(r∗)|/|N (r∗)|, is highly dependent
on the specific set being encoded. For example, the full set SL:1 requires only a

246 S. Hosseini and G. Ciardo

chain of L nonterminal nodes: the node at level k has all its nk outgoing edges
pointing to the node at level k − 1, or terminal 1 if k = 1; this is the same
number of nodes required to encode a single state (iL, ..., i1): in this MDD, all
the outgoing edges of the node at level k point to terminal 0, except for the edge
labeled with ik, which points to the node at level k − 1, or terminal 1 if k = 1.
Furthermore, it is well-known that the size of the MDD encoding a given set can
be highly dependent on the chosen variable order [2], that finding the optimal
variable order is NP-hard [1], and that some particularly “difficult” subsets of
SL:1 require an exponential number of nodes for any variable order [2].

One approach explored by researchers to reduce memory consumption (mea-
sured in number of nodes) is to under-approximate a set by encoding most of its
elements (states), but with substantially fewer nodes. More precisely, we formu-
late a threshold version of the under-approximation problem as:

Given MDD r� and threshold T ∈ N, find MDD s� such that |S(s�)| is
maximum among all MDDs t� satisfying |N (t�)| ≤ T and S(t�) ⊆ S(r�).

3 Our under-approximation Algorithm

For any nonterminal node p, let its unique-below-set be the set of nonterminal
nodes that can be reached from the root r� only by first traversing p:

Ub(p) = {q ∈ N (p) : ∀α, r�[α] = q ⇒ ∃α′, α′′, α = α′ ·α′′ ∧ r�[α′] = p} ⊆ N (p).

Ub(p) always includes p and has the property that, if we remove p from the
MDD (by redirecting to 0 any edge pointing to p), the remaining nodes in Ub(p)
become unreachable from r�, thus they, too, must be removed from the MDD.

Analogously, let the unique-above-set of p be the set of nonterminal nodes,
at levels strictly above p, that can reach 1 only by traversing p:

Ua(p) = {q∈N (r�) : ∀α, q[α]=1 ⇒ ∃α′, α′′, α=α′ ·α′′ ∧ α′ �= ε ∧ q[α′]=p}.

Again, if we remove p from the MDD, all nodes in Ua(p) must be removed from
the MDD as well, as they encode the empty set.

Intuitively, the key idea in our under-approximation is to select a node p� and
remove the nodes in U(p�) = Ub(p�)∪ Ua(p�) from the MDD (by redirecting to 0
any edge pointing to them). Then, the resulting MDD s� satisfies S(s�) ⊂ S(r�)
and |N (s�)| < |N (r�)|, since |N (r�)| ≥ |N (s�)| + |U(p�)|. After this step, we
test whether |N (s�)| ≤ T , and continue removing nodes in this manner if this
is not yet the case. It is then essential to devise a good and efficient strategy to
pick node p� at each iteration. We do so by defining the density of node p as

Density(p) = |S(p)|/|U(p)|,

and letting p� be a node with the smallest density (it may not be unique).
The approach must ensure that, by eliminating the selected node p�, the

resulting MDD encodes a nonzero function, which would be an obvious but unde-
sirable answer to any under-approximation problem. By checking that p� is not

Computing Under-approximations of Multivalued Decision Diagrams 247

Fig. 1. An MDD where the root is the node with the lowest density.

Fig. 2. A portion of an MDD where eliminating p� produces a duplicate node.

the only node at its level, the algorithm ensures that the resulting MDD encodes
a nonzero function. This is an issue because in some cases, the lowest density
nodes in an MDD could those that are the only ones on their level (including
r�), with density |S(r�)|/|N (r�). Figure 1 shows such an MDD, together with
the density of each node. The root node p1 in this MDD is the (only) node with
the lowest density. Our algorithm then avoids removing a node if it is the only
one at its level (since doing so would remove all nodes and all states).

We wrote |N (r�)| ≥ |N (s�)| + |U(p�)|, not |N (r�)| = |N (s�)| + |U(p�)|,
because, after removing U(p�), some nodes with edges pointing to p�, once mod-
ified to point to 0 instead, might duplicate existing nodes, in which case they
are merged with them (this in turn may make nodes pointing to them become
duplicates as well, and so on). The MDD of Fig. 2 illustrates this situation.

Ideally, we would compute the number of nodes that become duplicates and
are eliminated when removing each candidate node p, so that we could know
beforehand the exact size of the resulting MDD if we removed U(p), but this is
too computationally expensive (essentially, it amounts to performing the removal
of p and observing its effect on the higher levels). Thus, we instead call a recursive
algorithm to eliminate these duplicate nodes after the fact, so that |U(p�)| is just
a lower bound on the number of nodes actually eliminated by removing p�, and
our under-approximation algorithm is not guaranteed to be optimal.

248 S. Hosseini and G. Ciardo

The algorithm in Fig. 3 detects and removes the duplicate nodes created
by the removal of p�, to ensure that the resulting MDD is canonical. It must
be called as RmDuplicate(p�), and it removes p�, U(p�), and any resulting
duplicate node. Nodes in Ub(p�) are deleted by disconnecting p�, while nodes
in Ua(p�) and the resulting duplicate nodes are eliminated by RmDuplicate.
Algorithm RmDuplicate uses Map, a mapping of the identifiers of the nodes
at level k� = p�.lvl , initialized to Map(q.id) = q.id except for Map(p�.id) = 0:

∀q ∈ N (r�), q.lvl = p�.lvl , Map(q.id) =

{
0 if q = p�

q.id otherwise.

RmDuplicate moves through the MDD levels, from k�+1 to L because, if
node p is mapped to 0, all of its ancestors should be updated. At level l, it checks
each node q at that level and updates it if any of its children is mapped to 0 or
any other node (line 12). If the children of node q change, the algorithm checks
to see if the modified node q duplicates a node already in the unique table. If the
unique table already contains a node q′ equal to the modified node q, any node
at level l + 1 pointing to q should point to q′ instead (line 19); otherwise, a new
node qnew should be created, and any node pointing to q should now point to
node qnew (line 22). Either way, the required change is recorded by updating the
entry for q in the Map for level l + 1. After RmDuplicate completes, Map for
level k� contains p�.id , but the unique table does not include p�. Map(p.id) is
p.id for each nonterminal node p.id if and only if all of its nonterminal children
are in the unique table level k − 1; otherwise, node p is removed or modified
because at least one of its children is removed or modified. Therefore,

Map(p.id) =

{
p.id if ∀i ∈ Sk : p[i] ∈ M(k − 1)
0 or {q.id : q ∈ M(k)} otherwise.

Eliminating duplicate nodes induced by removing p� requires O(N (r�)) time.
RmDuplicate is a specialization of Bryant’s reduction algorithm [2]: we achieve
the same effect, but require a smaller cache (Map) because we proceed by level.
The rest of this section describes how to compute node densities. See Table 1 for a
summary of the acronyms used in our under-approximation, and their meaning.

3.1 Incoming-edge-count

Algorithm Iec in Fig. 4 counts the number of incoming edges to each nonterminal
node. It is called as Iec(r�) after setting the “incoming edge” counter p.iec to 0,
for each nonterminal node p. Theorem 1 addresses the correctness of algorithm
Iec.

Theorem 1. The call Iec(r�) sets p.iec, for any nonterminal node p, to the
number of incoming edges to p. Its runtime is O(N (r�)).

Computing Under-approximations of Multivalued Decision Diagrams 249

Table 1. Acronyms used in our under-approximation and their meaning.

Ub(p) Unique Below node set of node p

Ua(p) Unique Above node set of node p

U(p) Unique node set of node p

IEC(p) Incoming Edge Count of node p

ASC(p) Above State Count of node p

BSC(p) Below State Count of node p

H(p) Highest-unique-below-set of node p

L(p) Lowest-unique-above-set of node p

Proof. For a node p at level k, the for-loop at lines 2- 5 is executed |Sk| times;
thus, each outgoing edge from p, if it is an incoming edge for a corresponding
nonterminal child of p, is traversed and counted only once. Iec(p) calls itself
only on its unvisited children (identified by having their incoming-edge-count
equal to 0). Considering the sizes |Sk| as constants, the runtime is linear in the
number of MDD nodes, O(N (r�)). �

3.2 Above-state-count

Algorithm Asc in Fig. 5 computes the above-state-counts, i.e., the number
p.asc = |A(p)| of substates from r� to each nonterminal node p ∈ N (r�). It
is called as Asc(r�) after initializing r�.asc = 1, and p.asc to 0 for all other
nonterminal nodes p, and after having computed the incoming-edge-counts with
the call Iec(r�). To keep track of when all edges to a node p have been traversed
(implying that counter p.asc has the correct final value and the recursion can
proceed downward), algorithm Asc decrements the incoming-edge-count p.iec
of node p every time p is reached, so that p.iec will have value 0 after the call
Asc(r�) completes. Theorem 2 addresses the correctness of algorithm Asc.

Theorem 2. The call Asc(r�) sets p.asc to |A(p)| for any nonterminal node p.
Its runtime is O(N (r�)).

Proof. To compute the above-state-count of node p, we need to have computed
the correct value q.iec for each node q with a path to p. The algorithm uses the
fact that, in each recursive call Asc(p), p.asc has the correct value of above-
state-count for node p, and p.iec = 0.

Obviously, since Iec sets the incoming-edge-count of the root to 0, r�.iec = 0.
Similarly, the recursive call Asc(p[i]) on line 6 occurs only if p[i].iec is 0,

which means that p[i].asc has been updated to take into account the (correct)
q.asc value of each parent q of p[i]. Then, in each recursive call Asc(p), p.asc
has the correct value of the above-state-count. Asc(r�) visits each node once,
therefore its runtime is O(N (r�)) �

250 S. Hosseini and G. Ciardo

Fig. 3. Algorithm to remove duplicate nodes.

3.3 Below-state-count

One of the fundamental unary operations for MDDs is to compute the cardinality
of the set encoded by a node p, i.e., the number of paths from p to 1. We call
this the below-state-count of node p. Bsc(r�) should be called after setting p.bsc
to 0 for all nonterminal nodes p. This algorithm to compute the cardinality is
well known, so we include the pseudo-code in Fig. 6, but omit its proof.

3.4 Highest-unique-below-set

The highest-unique-below-set of node p is the subset of Ub(p) \ {p} containing all
the nodes that are in the unique-below-set of p but not in the unique-below-set
of a node q′ �= p that is in the unique-below-set of p:

H(p) = {q ∈ Ub(p) \ {p} : ∀q′ ∈ Ub(p) \ {p, q}, q /∈ Ub(q′)}.

We define H(p) because it turns out that every nonterminal node q �= r�

belongs to H(p) for exactly one p, but possibly to Ub(p) for many nodes p, thus
we can store all sets H(p) using memory linear in the number of MDD nodes, but,
in general, (explicitly) storing all sets Ub(p) would require an overall quadratic
memory in the number of MDD nodes. Furthermore, we could still obtain Ub(p)

Computing Under-approximations of Multivalued Decision Diagrams 251

Fig. 4. Algorithm to compute the incoming-edge-count of each node.

Fig. 5. Algorithm to compute the above-state-count of each node.

as the transitive closure of H(p), this is explained and proved in Theorem 4, but
we do not need to, as we merely need to know its size |Ub(p)| to compute our
under-approximation, not its actual elements.

Theorem 3. The set {H(q) : q ∈ Ub(p),H(q) �= ∅} is a partition of Ub(p) \ {p}.

Proof. To prove the proposition we must verify that H(p) satisfies the following:

1.
⋃

q∈Ub(p)
H(q) = Ub(p)\{p}. First, it is easy to show that, if t ∈

⋃
q∈Ub(p)

H(q)
then t ∈ Ub(p) \ {p}. If t ∈ H(q) for some q ∈ Ub(p), then, all paths from r�

to q pass through p, and all paths from r� to t pass through q. Therefore, all
paths from r� to t pass through p, so t ∈ Ub(p) \ {p}. To prove containment
in the other direction, consider the lowest node q ∈ Ub(p) such that t ∈ Ub(q);
there must be such a node since, at the very least, we could have q = p. But
since q is the lowest node satisfying t ∈ Ub(q), then no other node q′ between
q and t can satisfy t ∈ Ub(q′), thus t ∈ H(q), by definition.

2. For any given pair of nodes q, q′ ∈ Ub(p), H(q) and H(q′) are disjoint, i.e.,
H(q)∩H(q′) = ∅. By contradiction, assume that ∃q, s, t ∈ Ub(p), s �= t and
q ∈ H(s) ∩ H(t), i.e., q ∈ H(s) and q ∈ H(t), therefore q ∈ (Ub(s) \ {s}) ∩
(Ub(t) \ {t}), thus q ∈ Ub(s) and q ∈ Ub(t). This means that any path from r�

to q must pass through both s and t and, since s �= t, nodes s and t must be
at different levels. Without loss of generality, assume that s is above t, then
q cannot be in H(s), thus we have a contradiction. �

Theorem 4. Let the reflexive and transitive closure of H(p) for a given node p
be defined as H∗(p) = H(p)∪H(H(p))∪· · · , where H({p1, ..., pc}) =

⋃c
d=1 H(pd).

If Ub(p) contains nodes beyond p, then {Hn(p) : n ∈ N,Hn(p) �= ∅} is a coarser
partition than {H(q) : q ∈ Ub(p),H(q) �= ∅}. Thus, H∗(p) = Ub(p) \ {p}.

Proof. We need to prove that, for any q ∈ Ub(p), there is a minimum n such
that H(q) ⊆ Hn(p). Consider t ∈ Ub(p) \ {p}. Since Theorem 3 states that

252 S. Hosseini and G. Ciardo

Fig. 6. Algorithm to compute the below-state-count of each node.

Fig. 7. Algorithm to compute the unique-below-count.

{H(q) : q ∈ Ub(p),H(q) �= ∅} is a partition of Ub(p) \ {p}, there exists a q such
that t ∈ H(q). If q = p, then t ∈ Hn(p) for n = 1. If q �= p, then we know that
Ub(p) contains p, q, and t, and that there exists a node q1 such that q ∈ H(q1).
If q1 = p, then q ∈ H(p), t ∈ H(q) which means that t ∈ H2(p); otherwise,
we can repeat the reasoning and eventually, since Ub(p) is a finite set, we must
eventually find a qn = p, implying that t ∈ Hn+1(p). �

Procedure Ubc(r�) computes the size |Ub(p)| of the unique-below-set for any
nonterminal node p ∈ N (r�), using the information in H(p).

3.5 Lowest-unique-above-set

The lowest-unique-above set of node p is the subset of Ua(p) containing all nodes
that are in the unique-above-set of p but not in the unique-above-set of a node
in the unique-above-set of p:

L(p) = {q ∈ Ua(p) : ∀q′ ∈ Ua(p) \ {q}, q /∈ Ua(q′)}.

As for H(p), we define L(p) because it turns out that every node belongs to L(p)
for exactly one p, but possibly to Ua(p) for many nodes p, thus we can store all
sets L(p) using memory linear in the number of MDD nodes, but, in general, we
cannot (explicitly) store all sets Ua(p) in linear memory. Furthermore, again, we
could obtain Ua(p) as the transitive closure of L(p), as stated in Theorem 6, but
we do not need to, we only need to compute its size |Ua(p)|.
Theorem 5. The set {L(q) : q ∈ Ua(p)} is a partition of Ua(p).

Proof. Similar to that of Theorem 3. �

Theorem 6. Let the reflexive and transitive closure of L(p) for a given node p
be defined as L∗(p) = L(p) ∪ L(L(p)) ∪ · · · , where L({p1, ..., pc}) =

⋃c
d=1 L(pd).

If Ua(p) contains nodes beyond p, then {Ln(p) : n ∈ N} is a coarser partition
than {L(q) : q ∈ Ua(p)}. Thus, L∗(p) = Ua(p).

Computing Under-approximations of Multivalued Decision Diagrams 253

Fig. 8. Algorithm to compute the unique-above-count

Proof. Similar to that of Theorem 4. �

Procedure Uac(r�) computes the size of the unique-above-set |Ua(p)|, for
any nonterminal node p ∈ N (r�), by recursively using the information in L(p).

3.6 Dominator and Post-dominator

A simplistic iterative algorithm to calculate H(p) and L(p) for all nodes p has
quadratic complexity in the number of MDD nodes [5]; to reduce this complexity,
we use a dominator algorithm. Given a flow graph with a single source and sink
(in our case, r� and 1), a node v dominates another node w, if every path from
the r� to w must traverse v Every node w �= r� has at least one dominator. A
node v is the immediate dominator of w, denoted by idom(w) = v, if v dominates
w and every other dominator of w also dominates v. Every node w �= r� has a
unique idom(w). Importantly, q is in Ub(p) iff q is in dom(p), and is the immediate
dominator of p iff it is the only node in p’s highest-unique-below-set H(p).

The dominator algorithm builds a dominator tree whose nodes V are the
MDD nodes and whose edges {(idom(w), w) : w ∈ V \ {r�}} form a direct tree
rooted at r�. It performs a depth-first search and assigns the visit time to each
node, effectively defining a total order, where v > w means that the visit time
of node v is larger than that of node w. The dominator algorithm uses the visit
time of the node instead of the original node label in the following steps. Next,
for each node w �= r�, it defines the “semidominator” sdom(w) ∈ N as:

sdom(w) = min{v : ∃ path v = v0, v1, ..., vj = w s.t. vi > w for 1 ≤ i ≤ j − 1}.

The algorithm uses Theorem 7 to compute sdom(w) for any w �= r�:

Theorem 7. (from [6]) For any node w �= r�:

sdom(w) = min({v | (v, w) is an edge and v < w} ∪ {sdom(u) | u > w and

there is an edge (v, w) such that u is an ancestor of v, u
∗−→ v}).

Then the algorithm uses Corollary 1 to compute the immediate dominator
of all nodes using the semidominator information.

254 S. Hosseini and G. Ciardo

Fig. 9. Algorithm to under-approximate MDD r� by selecting one node at a time.

Corollary 1. (from [6]) Let w �= r� and u be a node for which sdom(u) is
the minimum among nodes u satisfying sdom(w) +−→ u

+−→ w, i.e., sdom(w) is a
proper ancestor of u and u is a proper ancestor of w, then

idom(w) =

{
sdom(w) if sdom(w) = sdom(u)
idom(u) otherwise.

A node w post-dominates another node v, if every path from v to 1 traverse
w. A node v is the immediate post-dominator of w, if v post-dominates w and
every other post-dominator of w also post-dominates v. Again, node q is in Ua(p)
iff q is in postdom(p) and node q is the post-dominator for node p iff node q is
the only node in p’s lowest-unique-above-set.

q ∈ postdom(p) ⇐⇒ q ∈ Ua(p) ipostdom(p) = q ⇐⇒ L(p) = {q}

The post-dominator algorithm applies the dominator algorithm to the reverse
MDD (with source 1 and sink r�) to compute the lowest-unique-above-sets.

3.7 Under-approximation (one Node at a Time)

Given MDD r�, the call UnderApproxOne(r�, Tmin, Tmax) computes an
under-approximation for r� if the size of the MDD r� is greater than Tmax. The
algorithm reduces the size of the MDD so that it does not exceed Tmin (Tmin

must be at least the number of MDD levels). Tmax and Tmin introduce hysteresis
to avoid calling the under-approximation too frequently. In practice, Tmax should
be as large as possible and Tmin a fraction of Tmax (in our experiments, it is
0.6 · Tmax). The algorithm computes the below-state-count, above-state-count,
unique-count, and density (lines 4 , 6, 7, and 8) for each node at each iteration
of the while-loop. Then, it selects a single node p� with lowest density (line 9)
and removes from the MDD the nodes in U(p�) and any resulting duplicate using
RmDuplicate, until the number of MDD nodes is at most Tmin.

As the algorithm recomputes the information after each deletion, the selected
node p� is the “quasi-optimal” choice: it is optimal based on density information,
but it ignores the effect of removing duplicate nodes.

Computing Under-approximations of Multivalued Decision Diagrams 255

4 Speeding up the under-approximation

In large models, recomputing the above-state-count, below-state-count,
incoming-edge-count, and unique-count after deleting each set of nodes U(p�) can
be costly. UnderApproxMany selects instead a set of nodes P�, and deletes
all nodes in

⋃
p∈P� U(p) before recomputing all node densities.

While eliminating duplicate nodes caused by deleting just one set U(p�) is
slightly simpler, identifying and removing all duplicate nodes created by remov-
ing the set of nodes

⋃
p∈P� U(p) has the same time complexity, thus its cost can be

better amortized. The call RmDuplicateSet(P�) in Fig. 10 finds and removes
the duplicate nodes created by eliminating the nodes in

⋃
p∈P� U(p), to ensure

MDD canonicity. K = {p�.lvl : p� ∈ P�} stores the MDD levels of the selected
nodes (line 2), and Map maps the identifiers of nodes at level k� = min{K},
initialized as

∀q ∈ N (r�), q.lvl = p�.lvl , Map(q.id) =

{
q.id , if q /∈ P�

0, otherwise.

RmDuplicateSet traverses the MDD from level min(K) + 1 to L. Like
RmDuplicate, it starts at level k� + 1; if q’s child q[i] is mapped to another
node (line 15), node q must change (line 16), and the algorithm checks if the
new node is a duplicate of a node q′. Any edge pointing to q from higher-level
nodes must be changed.

UnderApproxOne selects node p� with lowest density, deletes U(p�), and
recomputes the density (U , B, and A), while UnderApproxMany selects a set
of nodes P�, one after another, but it does not update the density information
after selecting each node. This reduces execution time since calculating density is
a heavy duty operation, but uses increasingly stale, thus less precise, information.
This is because not only the number of nodes eliminated or merged after calling
RmDuplicateSet is not taken into account, but also because, by selecting a
sequence of nodes (p1, p2, ..., pk), the selection of any node except for p1 uses an
approximation of the correct values for U , A, and B.

When the MDD size N (r�) exceeds Tmax, a call to UnderApproxMany
reduces the size to Tmin or less. Selecting a set of nodes P� instead of just
node p� increases the chances of deleting more nodes than necessary. This is
because, ideally, every time the algorithm selects node pi ∈ P�, S(pi) should be
disjoint from S(pj), for any other pj ∈ P�, but this is not necessarily the case.
Before adding pi to P�, the algorithm checks that |S(pi)| +

∑
pj∈P� |S(pj)| <

|S(r�)|, to ensure that removing the set of nodes P� does not produce an empty
MDD. UnderApproxMany uses a (lower bound) on the percentage ψ of |S(r�)|
that must be kept as a constraint: if |S(pi)| +

∑
pj∈P� |S(pj)| > ψ · |S(r�)|, the

algorithm does not add pi to P�; instead, it removes just U(P�) and any duplicate
nodes created by removing U(P�) from the MDD, then it recomputes the new
densities of the nodes of the resulting MDD.

The exact call is UnderApproxMany(r�, Tmin, Tmax, ψ), where Tmin is
the selected Tmin, Tmax is the maximum (triggering) threshold, and ψ is the

256 S. Hosseini and G. Ciardo

Fig. 10. Algorithm to remove a set of duplicate nodes.

maximum percentage of removed states (required to be strictly less than 100%).
The greater ψ is, the less frequently the algorithm needs to recompute node den-
sities. line 11 ensures that UnderApproxMany deletes at least one node at a
time, even when ψ is near zero (in which case UnderApproxMany behaves
like UnderApproxOne).

5 Application

The first step in the study of a discrete system is often reachability analysis, i.e.,
the computation of its reachable states. Given an initial state set Sinit ⊆ SL:1

and a next-state function of the form T : SL:1 → 2SL:1 , the reachability set
Srch is the smallest set X satisfying X = X ∪ T (X) ∪ Sinit. The breadth-first
(BF) method is a common exploration approach for MDD-based reachability
analysis, as it naturally implements this definition of Srch as a fixpoint. It starts
by initializing Srch to Sinit, and repeatedly adds to it the states reachable from it
in one application of T , until no more new states are found. At the ith iteration,
Srch contains all states at distance up to i from Sinit. Thus, it builds Srch as
Sinit ∪ T (Sinit) ∪ T 2(Sinit) ∪ · · · .

Computing Under-approximations of Multivalued Decision Diagrams 257

Fig. 11. Under-approximating MDD r� by selecting many nodes at a time.

Fig. 12. Algorithm to compute the reachable state space using breadth-first.

The chained BF (ChBF) approach [7] observes that, if T is partitioned as
T =

⋃
α∈E Tα, where E is a set of (asynchronous) events, runtime and memory

requirements may be reduced by using a different iteration: if E = {α, β, γ}, the
generic ith ChBF iteration updates Srch using three sequential steps:
(1) Srch ←Srch ∪Tα(Srch); (2) Srch ←Srch ∪Tβ(Srch); (3) Srch ←Srch ∪Tγ(Srch).
This has the effect of potentially accelerating convergence to the fixpoint, as the
ith iteration discovers states reachable not just through one of the three single
events, but also through one of the sequences of events αβ, αγ, βγ, or αβγ.

ChBF was proposed in conjunction to Petri net models [7], the formalism
we use for our experiments. In this case the events are the Petri net transitions,
which are by definition asynchronous, and Tα(i) = ∅ if Petri net transition α is
not enabled in marking i, while Tα(i) = {j} if transition α is enabled in marking
i and its firing in i leads (deterministically) to marking j.

258 S. Hosseini and G. Ciardo

Fig. 13. Chained breadth-first algorithm with under-approximation.

Figure 13 shows our ChBF approach invoking “UnderApprox”, i.e., either
UnderApproxOne or UnderApproxMany, whenever the MDD size exceeds
Tmax (line 9). Either under-approximation may delete the initial state(s),
which would then make it impossible to generate the entire state space. Thus,
ChBFUA adds back the initial state(s) after each under-approximation (line 10).
ChBF is exactly the same as ChBFUA, except it does not have lines 9, and 10.

As shown, algorithm ChBFUA might not halt because, after calling under-
approximation, the set of states could be exactly the same as after the previous
under-approximation: the algorithm is in a cycle where it adds and removes the
same set of states. To recognize this situation, we should keep the old set of
states, but this would require storing two MDDs; we use instead the old number
of states and nodes as a proxy to (conservatively) detect this problem and let
ChBFUA output a partial state space Spart instead of the full state space Srch.

Assume that, before calling under-approximation, the number of MDD nodes
is nold > Tmax and the number of states is rsold, and that, after calling under-
approximation once and firing one or more events, the numbers are nnew >Tmax

and rsnew. If nnew =nold and rsnew =rsold, the algorithm applies one more event
resulting in n′

new MDD nodes and rs′
new states. Then, three cases may arise:

1. If n′
new > nnew and rs′

new2 > rsnew, the MDD with nnew nodes is not
a fixpoint; the algorithm conservatively decides that the MDD with nnew

nodes is the same as that with nold nodes, it refrains from calling under-
approximation, and returns the partial state space Spart encoded by the MDD
with n′

new nodes.
2. If n′

new ≤nnew and rs′
new >rsnew, ChBFUA continues its normal execution.

3. If n′
new = nnew and rs′

new = rsnew, the algorithm applies a new event and
repeats the check for cases 1, 2, and 3, until either case 1 or 2 happens, or all
events have been applied once without discovering new states (in which case
it reached a fixpoint and returns Srch, encoded by nold =nnew nodes).

Computing Under-approximations of Multivalued Decision Diagrams 259

6 Results

We designed a set of experiments and ran them on a Linux workstation with
16GB of RAM. We implemented ChBFUA, chained breadth-first reachability
with under approximation, within the model checker SmArT [3]. Our benchmark
is a subset of the bounded models from the Model Checking Contest (MCC)
2021 (https://mcc.lip6.fr/2021/). Models are described as Petri nets, and most
of them have one or more scaling parameters that affect their state space size.
799 models in the MCC benchmark are bounded, 499 of which generate the
next-state function within 60 seconds, and 259 of which generate the entire
state space using ChBF within one hour. Of these, we eliminated 72 models
because they have the same peak and final number of nodes using ChBF (the
under-approximation algorithm does not make sense for such models; admittedly
this cannot be determined a priori). Thus, we considered the remaining 187
models. For our experiments, we selected Tmin = 10,000 and Tmax = 15,000,
the percentage ψ of the minimum number of states to be kept was set to 0.5,
and the maximum execution time for each run was set to 24 hours. The peak
number of nodes for 123 of the 187 models is less than 15,000, therefore the
under-approximation is not triggered on those models (thus ChBFUA behaves
exactly like ChBF on them). Using UnderAproxMany, 19 of the remaining
64 models generate the complete state space using under-approximation in less
than 24 hours; in these models, whenever the number of node exceeds Tmax, the
algorithm selects a set of nodes P� and deletes

⋃
p∈P� U(p), until the number of

nodes is less than Tmin. The algorithm adds Sinit back and finally generates the
complete state space Srch. 15 models out of remaining 64 generate only a partial
state space Spart.

For the other 30 models out of the remaining 64 models, our algorithm is
unable to generate either Spart or Srch in 24 h. Given enough time, it would
always terminate and generate the complete state space or a partial state space.
For example, if we increase the running time from 24 to 48 hours, 4 of these 30
models can generate a partial state space. If the model is run indefinitely and
the final number of nodes is greater than Tmax, our approach would in princi-
ple eventually generate a partial state space because the number of increasing
possible state space sequences is bounded.

6.1 Experimental Results

We compare ChBFUA with ChBF in terms of both memory and time.
The more frequently the under-approximation calculates node densities, the
slower our algorithm will be. Thus, UnderApproxOne is slower than
UnderApproxMany, and we report only the results for the latter.

Figure 14 compares the peak node and time ratios for ChBF and ChBFUA
(PeakChBFUA/PeakChBF and TimeChBFUA/T imeChBF respectively) for models
where ChBFUA generates Srch. For these models, the final number of nodes is
less than Tmax, otherwise the ChBFUA would not be able to generate the entire
state space (whenever the number of nodes is greater than Tmax, ChBFUA

https://mcc.lip6.fr/2021/

260 S. Hosseini and G. Ciardo

Fig. 14. Time and peak node ratios for the 19 models where ChBFUA generates the
entire state space (sorted by increasing peak node ratio).

calls under-approximation to reduce the number of nodes to no more than Tmin,
thus this would eventually result in finding only a partial state space). This
experiment shows that:

– The smaller the peak node ratio, the more the under-approximation algo-
rithm is applicable to the model. The peak number of nodes generated by
ChBFUA in most cases (except model 19) is less than the peak number of
nodes generated by ChBF.

– The peak number of nodes for model 19 in ChBFUA is slightly higher than
ChBF, i.e., the peak node ratio is greater than one. This can happen because,
after deleting a set of nodes, even just applying the transition relation Tα for
one transition α may result in an MDD with more nodes than the peak
number of nodes needed by the ChBF algorithm.

– The runtime ratio in all cases is greater than one, because once the number
of nodes reaches Tmax and ChBFUA invokes UnderApproxMany, it cal-
culates node’s density to select and delete nodes until the number of nodes is
less than or equal to Tmin. Calculating the density information and adding
back removed states causes ChBFUA to have a higher runtime than ChBF.

Table 2 shows detailed experimental results for models where ChBFUA gen-
erates Srch. The more ChBFUA invokes the under-approximation (row “#UA
calls”), the larger its runtime is than that of ChBF. Also, in most cases, the
fewer times the under-approximation algorithm is invoked, the closer the peak
of ChBFUA and peak of ChBF are; this is because it is more likely that Tmax

is close to the peak number of nodes in ChBF.
Figure 15 reports instead the final node and state space ratios for ChBFUA

and ChBF (FinalNodeChBFUA/F inalNodeChBF and |SChBFUA|/|SChBF|, where
FinalNodeChBFUA is the final number of nodes generated by ChBFUA and

Computing Under-approximations of Multivalued Decision Diagrams 261

Table 2. Results for models where ChBFUA generates the complete state space.

Model# 1 2 3 4 5 6 7 8 9 10

#UA calls 533 137 71 101 27 217 59 423 43 15

Peak nodes ChBF 845,847 348,203 222,344 293,111 130,602 105,738 46,549 70,858 30,065 26,251

Peak nodes ChBFUA) 43,970 29,683 25,162 36,320 21,887 19,379 16,247 28,642 16,330 16,587

runtime ChBF (sec) 1,692 275 443 308 250 1,268 237 392 196 206

runtime ChBFUA (sec) 100,345 2,952 1,649 1,126 434 10,243 978 32,482 567 411

Model# 11 12 13 14 15 16 17 18 19

#UA calls 7 11 5 9 4 6 4 6 28

Peak nodes ChBF 26,917 24,983 20,213 20,078 18,873 23,875 21,813 17,235 18,773

Peak nodesChBFUA 18,282 18,674 15,559 16,106 15,251 21,748 20,491 16,245 18,899

runtime ChBF (sec) 233 31 32 240 61 12 22 41 133

runtime ChBFUA (sec) 433 76 99 379 165 33 37 115 557

Fig. 15. Runtime, peak node, state space, and final node ratios for models where
ChBFUA generates a partial state space (sorted by increasing peak node ratio).

|SChBFUA| is the size of the state space generated by ChBFUA), for models
where ChBFUA generates Spart. The final number of nodes for most of these
models (except model 13 and 15) is greater than Tmax. The state space ratio is
always less than one, since the ChBFUA does generate the complete state space.
The final number of nodes generated by ChBFUA in most models is less than
the final number of nodes for ChBF, however ChBFUA encodes only a portion
of the entire state space. In some models, e.g., 15, the algorithm detects a partial
state space faster (time ratio less than one), but the final node ratio is greater
than one, indicating that the algorithm is unable to merge nodes to obtain a
denser MDD. In these cases, a self-adjusting heuristic could be beneficial.

262 S. Hosseini and G. Ciardo

7 Conclusions and Future Work

We presented a new algorithm for MDDs under-approximation that uses a more
precise density than in previously-proposed techniques for BDDs. We demon-
strated the soundness of our approach by applying it to the symbolic Petri net
state-space generation, where it can compute the entire state space, or possibly
a subset of it, with lower memory requirements, at the price of longer runtimes.

Further work is needed towards reducing the number of user-provided param-
eters. Specifically, we envision a self-adjusting heuristic that automatically
chooses and updates (upward or downward) the percentage ψ parameter and
the minimum threshold for under-approximation, by self-monitoring the algo-
rithm’s own performance (in practical applications, the maximum threshold
would instead be likely set to a large value dictated by the amount of avail-
able RAM).

Finally, it is worth investigating whether our approach can be adapted to
compute an over-approximation. Simply substituting a highest-density node with
terminal 1 would result in an over-approximation but, for the monotonically-
increasing fixpoint algorithm we use for state-space generation, an unreachable
state added by an over-approximation call would never be removed; this is in
contrast to a reachable state removed by an under-approximation call, which
can always in principle be added back.

References

1. Bollig, B., Wegener, I.: Improving the variable ordering of OBDDs is NP-complete.
IEEE Trans. Comput. 45(9), 993–1002 (1996). https://doi.org/10.1109/12.537122

2. Bryant: graph-based algorithms for Boolean function manipulation. IEEE Trans.
Comput. C-35(8), 677–691 (1986). https://doi.org/10.1109/TC.1986.1676819

3. Ciardo, G., Jones, R., Marmorstein, R., Miner, A., Siminiceanu, R.: SMART:
stochastic model-checking analyzer for reliability and timing. In: Proceedings Inter-
national Conference on Dependable Systems and Networks, pp. 545- (2002). https://
doi.org/10.1109/DSN.2002.1028976

4. Ciardo, G., Marmorstein, R., Siminiceanu, R.: The saturation algorithm for symbolic
state-space exploration. Int. J. Softw. Tools Technol. Transfer 8(1), 4–25 (2006)

5. Hosseini, S.: memory constrained algorithms for multi-valued decision dia-
grams. Master’s thesis, Iowa State University (2021). https://www.proquest.
com/dissertations-theses/memory-constrained-algorithms-multi-valued/docview/
2628162662/se-2

6. Lengauer, T., Tarjan, R.E.: A fast algorithm for finding dominators in a flowgraph.
ACM Trans. Program. Lang. Syst. 1(1), 121–141 (1979). https://doi.org/10.1145/
357062.357071

7. Pastor, E., Roig, O., Cortadella, J., Badia, R.M.: Petri net analysis using Boolean
manipulation. In: Valette, R. (ed.) ICATPN 1994. LNCS, vol. 815, pp. 416–435.
Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-58152-9 23

https://doi.org/10.1109/12.537122
https://doi.org/10.1109/TC.1986.1676819
https://doi.org/10.1109/DSN.2002.1028976
https://doi.org/10.1109/DSN.2002.1028976
https://www.proquest.com/dissertations-theses/memory-constrained-algorithms-multi-valued/docview/2628162662/se-2
https://www.proquest.com/dissertations-theses/memory-constrained-algorithms-multi-valued/docview/2628162662/se-2
https://www.proquest.com/dissertations-theses/memory-constrained-algorithms-multi-valued/docview/2628162662/se-2
https://doi.org/10.1145/357062.357071
https://doi.org/10.1145/357062.357071
https://doi.org/10.1007/3-540-58152-9_23

Computing Under-approximations of Multivalued Decision Diagrams 263

8. Ravi, K., McMillan, K.L., Shiple, T.R., Somenzi, F.: Approximation and decomposi-
tion of binary decision diagrams. In: Proceedings of the 35th Annual Design Automa-
tion Conference, pp. 445–450. DAC 1998, Association for Computing Machinery,
New York, NY, USA (1998). https://doi.org/10.1145/277044.277168

9. Ravi, K., Somenzi, F.: High-density reachability analysis. In: Proceedings of the
1995 IEEE/ACM International Conference on Computer-Aided Design, pp. 154–
158. ICCAD 1995, IEEE Computer Society, USA (1995)

https://doi.org/10.1145/277044.277168

Stochastic Decision Petri Nets

Florian Wittbold1(B) , Rebecca Bernemann1 , Reiko Heckel2 ,
Tobias Heindel3 , and Barbara König1

1 Universität Duisburg-Essen, Duisburg, Germany
florian.wittbold@uni-due.de

2 University of Leicester, Leicester, UK
3 Heliax Technologies GmbH, Berlin, Germany

Abstract. We introduce stochastic decision Petri nets (SDPNs), which
are a form of stochastic Petri nets equipped with rewards and a control
mechanism via the deactivation of controllable transitions. Such nets can
be translated into Markov decision processes (MDPs), potentially leading
to a combinatorial explosion in the number of states due to concurrency.
Hence we restrict ourselves to instances where nets are either safe, free-
choice and acyclic nets (SAFC nets) or even occurrence nets and policies
are defined by a constant deactivation pattern. We obtain complexity-
theoretic results for such cases via a close connection to Bayesian net-
works, in particular we show that for SAFC nets the question whether
there is a policy guaranteeing a reward above a certain threshold is NPPP-
complete. We also introduce a partial-order procedure which uses an
SMT solver to address this problem.

1 Introduction

State-based probabilistic systems are typically modelled as Markov chains [28],
i.e., transition systems where transitions are annotated with probabilities. This
admits an intuitive graphical visualization and efficient analysis techniques [17].
By introducing additional non-determinism, one can model a system where a
player can make decisions, enriched with randomized choices. This leads to the
well-studied model of Markov decision processes (MDPs) [6,15] and the challenge
is to synthesize strategies that maximize the reward of the player.

In this paper we study stochastic systems enriched with a mechanism for
decision making in the setting of concurrent systems. Whenever a system exhibits
a substantial amount of concurrency, i.e., events that may potentially happen
in parallel, compiling it down to a state-based system – such as an MDP – can
result in a combinatorial state explosion and a loss in efficiency of MDP-based
methods. We base our models on stochastic Petri nets [21], where Petri nets are
a standard formalism for modelling concurrent systems, especially such systems
where resources are generated and consumed. When considering the discrete-
time semantics of such stochastic nets, it is conceptually easy to transform them
into Markov chains, but this typically leads to a state space explosion.

There exist successful partial order methods for analyzing concurrent sys-
tems that avoid explicit interleavings and the enumeration of all reachable states.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Gomes and R. Lorenz (Eds.): PETRI NETS 2023, LNCS 13929, pp. 264–285, 2023.
https://doi.org/10.1007/978-3-031-33620-1_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33620-1_15&domain=pdf
http://orcid.org/0000-0001-8307-503X
http://orcid.org/0000-0002-3240-0952
http://orcid.org/0000-0003-4719-0772
http://orcid.org/0000-0003-3371-8564
http://orcid.org/0000-0002-4193-2889
https://doi.org/10.1007/978-3-031-33620-1_15

Stochastic Decision Petri Nets 265

Instead, they work with partial orders – instead of total orders – of events. While
such techniques are well understood in the absence of random choices, leading
for instance to methods such as unfoldings [14], there are considerable difficul-
ties to reconcile probability and partial order. Progress has been made by the
introduction of the concept of branching cells [1] that encapsulate independent
choices, but to our knowledge there is no encompassing theory that provides
off-the-shelf partial order methods for computing the probability of reaching a
certain goal (e.g. marking a certain place) in a stochastic net.

The contributions of this paper are the introduction of a new model: stochas-
tic decision Petri nets (SDPNs) and its connection to Markov decision processes
(MDPs). The transformation of SDPNs into MDPs is relatively straightforward,
but may lead to state space explosion, i.e., exponentially many markings, due to
the concurrency inherent in the Petri net. This can make the computation of the
optimal policy infeasible. We restrict ourselves to a subclass of nets which are safe,
acyclic and free-choice (SAFC) and to constant policies and study the problem of
determining a policy that guarantees a payoff above some bound. Our result is that
the problemSAFC-POL of determining such a policy, despite the restrictions, is still
NPPP-complete. We reduce from the D-MAP problem for Bayesian networks [24]
(in fact the two problems are interreducible under mild restrictions) and show the
close connection of reasoning about stochastic Petri nets and Bayesian networks.
Furthermore, for SAFCnets, there is a partial-order solutionprocedure via anSMT
solver, for which we obtain encouraging runtime results. For the simpler free-choice
occurrence nets, we obtain an NP-completeness result.

Note that the paper contains some proof sketches, while full proofs and an
additional example can be found in [29].

2 Preliminaries

By N we denote the natural numbers without 0, while N0 includes 0.
Given two sets X,Y we denote by (X → Y) the set of all functions from

X to Y . Given a function f : X → N0 or f : X → R with X finite, we define
‖f‖∞ = maxx∈X f(x) and supp(f) = {x ∈ X | f(x) �= 0}.

Complexity Classes: In addition to well-known complexity classes such as P and
NP, our results also refer to PP (see [23]). This class is based on the notion of
a probabilistic Turing machine, i.e., a non-deterministic Turing machine whose
transition function is enriched with probabilities, which means that the accep-
tance function becomes a random variable. A language L lies in PP if there exists
a probabilistic Turing machine M with polynomial runtime on all inputs such
that a word w ∈ L iff it is accepted with probability strictly greater than 1/2. As
probabilities we only allow numbers ρ that are efficiently computable, meaning
that the i-th bit of ρ is computable in a time polynomial in i. (See [2] for a dis-
cussion on why such probabilistic Turing machines have equal expressivity with
those based on fair coins, which is not the case if we allow arbitrary numbers.)

Given two complexity classes A,B and their corresponding machine models,
by AB we denote the class of languages that are solved by a machine of class

266 F. Wittbold et al.

A, which is allowed to use an oracle answering yes/no-questions for a language
L ∈ B at no extra cost in terms of time or space complexity. In particular
NPPP denotes the class of languages that can be accepted by a non-deterministic
Turing machine running in polynomial time that can query a black box oracle
solving a problem in PP.

By Toda’s theorem [27], a polynomial time Turing machine with a PP oracle
(PPP) can solve all problems in the polynomial hierarchy.

In order to prove hardness results we use the standard polynomial-time many-
one reductions, denoted by A ≤p B for problems A,B (see [16]).

Stochastic Petri Nets: A stochastic Petri net [21] is given by a tuple N =
(P, T, •(), ()•, Λ,m0) where P and T are finite sets of places and transitions,
•(), ()• : T → (P → N0) determine for each transition its pre-set and post-set
including multiplicities, Λ : T → R>0 defines the firing rates and m0 : P → N0

is the initial marking. By M(N) we denote the set of all markings of N , i.e.,
M(N) = (P → N0).

We will only consider the discrete-time semantics of such nets. The firing rates
determine stochastically which transition is fired in a marking where multiple
transitions are enabled: When transitions t1, . . . , tn ∈ T are enabled in a marking
m ∈ M(N) (i.e., •ti ≤ m pointwise), then transition ti fires with probability
Λ(ti)/

∑n
j=1 Λ(tj), resulting in a discrete step m →ti

m′:=m − •ti + ti
•. In

particular, the firing rates have no influence on the reachability set R(N):={m ∈
M(N) | m0 →∗ m} but only define the probability of reaching certain places
or markings. Defining “empty” transitions m →ε m for markings m ∈ R(N)
where no transition is enabled, such a stochastic Petri net can be interpreted as
a Markov chain on the set of markings M(N).

This Markov chain thus generates a (continuous) probability space over
sequences (m0,m1, . . .) ∈ M(N)ω where a sequence is called valid if m0 is
the initial marking of the Petri net and for a prefix (m0, . . . ,mn) all cones
{(m′

0,m
′
1, . . .) ∈ M(N)ω | ∀k = 0, . . . , n : m′

k = mk} have non-zero proba-
bility. We write FS(N):={μ ∈ M(N)ω | μ is valid} to denote the set of valid
sequences. We assume that no two transitions have the same pre- and postcon-
ditions to have a one-to-one-correspondence between valid sequences and firing
sequences μ : (m0 →t1 m1 →t2 . . .).

For a firing sequence μ, we write μk : m0 →t1 m1 →t2 · · · →tk
mk to denote

the finite subsequence of the first k steps, len(μ):= min{k ∈ N | tk = ε} − 1, for
its length, as well as

pl(μ):=
∞⋃

n=0

supp(mn) tr(μ):={tn | n ∈ N} \ {ε}

to denote the set of places reached in μ (or, analogously, μk), and the set of fired
transitions in μ (independent of their firing order), respectively.

We are, furthermore, interested in the following properties of Petri nets: A
Petri net N as above is called

Stochastic Decision Petri Nets 267

– ordinary iff all transitions require and produce at most one token in each
place (‖ •t‖∞, ‖t•‖∞ ≤ 1 for all t ∈ T);

– safe iff it is ordinary and all reachable markings also only have at most one
token in each place (‖m‖∞ ≤ 1 for all m ∈ R(N));

– acyclic iff the transitive closure ≺+
N of the causal relation ≺N (with p ≺N t

if •t(p) > 0 and t ≺N p if t•(p) > 0) is irreflexive;
– an occurrence net iff it is safe, acyclic, free of backward conflicts (all places

have at most one predecessor transition, i.e., |{t | t•(p) > 0| ≤ 1 for all
p ∈ P) and self-conflicts (for x ∈ P ∪T , there exist no two distinct conflicting
transitions t, t′ ∈ T , i.e., transitions sharing preconditions, on which x is
causally dependent, i.e., t, t′ ≺+

N x), and the initial marking has no causal
predecessors (for all p ∈ P with m0(p) = 1, we have t•(p) = 0 for all t ∈ T);

– free-choice [13] iff it is ordinary and all transitions t, t′ ∈ T are either both
enabled or disabled in all markings (i.e., •t =• t′ or supp(•t)∩ supp(•t′) = ∅);

– ϕ-bounded (for ϕ : N0 → N0) iff all its runs, starting from m0, have at most
length ϕ(|P | + |T |), i.e., iff len(μ) ≤ ϕ(|P | + |T |) for all firing sequences
μ ∈ FS(N).

We will abbreviate the class of free-choice occurrence Petri nets as FCON,
safe and acyclic free-choice nets as SAFC nets, and the class of ϕ-bounded Petri
nets as [ϕ]BPN. Note that FCON ⊆ SAFC and also SAFC ⊆ [id]BPN for the
identity id.1

We also introduce some notation specifically for SAFC nets: As common
in the analysis of safe Petri nets, we will interpret markings as well as pre-
and postconditions of transitions as subsets of the set P of places rather than
functions P → {0, 1} ⊆ N0.

The set of maximal configurations will be denoted by Cω(N):={tr(μ) | μ ∈
FS(N)} and configurations by C(N):={tr(μk) | μ ∈ FS(N), k ∈ N0}.

An important notion in the analysis of a (free-choice) net are branching
cells (see also [1,8]). We will define a cell to be a subset of transitions C ⊆ T
where all transitions t ∈ C share their preconditions and all t′ ∈ T \ C share no
preconditions with t ∈ C. In other words, C is an equivalence class of a relation
↔ on T defined by

∀t, t′ ∈ T : t ↔ t′ ⇐⇒ •t = •t′.

We will write Ct:=[t]↔ to denote the equivalence class of transition t ∈ T and
•
C:=

⋃
t∈C

•t as well as C
•:=

⋃
t∈C

t• to denote the sets of pre- and postplaces
of C, respectively. The set of all cells of a net N is denoted by BC(N).

Markov Decision Processes: A Markov decision process (MDP) is a tuple
(S,A, δ, r, s0) consisting of finite sets S, A of states and actions, a function
δ : S × A → D(S) of probabilistic transitions (where D(S) is the set of prob-
ability distributions on S), a reward function r : S × A × S → R of rewards and
an initial state s0 ∈ S (see also [6,15]).

1 Indeed, [id]BPN contains any safe and acyclic Petri net, omitting the free-choice
constraint.

268 F. Wittbold et al.

A policy (or strategy) for an MDP is some function π : S → A. It has been
shown that such stationary deterministic policies can act optimally in such an
(infinite-horizon) MDP setting (see also [15]). A policy gives rise to a Markov
chain on the set of states with transitions s �→ δ(s, π(s)) ∈ D(S). The associated
probability space is s0S

ω, the set of all infinite paths on S starting with s0, which
– due to its uncountable nature – has to be dealt with using measure-theoretic
concepts. As before we equip the probability space with a σ-algebra generated
by all cones, i.e., all sets of words sharing a common prefix.

The value (or payoff) of a policy π is then given as the expectation of the
(undiscounted) total reward (where si, i ∈ N0 are random variables, mapping an
infinite path to the i-th state, i.e., they represent the underlying Markov chain):

E

[
∑

n∈N0

r(sn, π(sn), sn+1)

]

.

To avoid infinite values, we have to assume that the sum is bounded.
The problem of finding an optimal policy π : S → A for a given MDP

(S,A, δ, r, s0) with finite state and action space is known to be solvable in poly-
nomial time using linear programming [15,19].

Bayesian Networks: Bayesian networks are graphical models that give compact
representations of discrete probability distributions, exploiting the (conditional)
independence of random variables.

A (finite) probability space (Ω,P) consists of a finite set Ω and a probability
function P : Ω → [0, 1] such that

∑
ω∈Ω P(ω) = 1. A Bayesian network [25] is a

tuple (X,Δ,P) where

– X = (Xi)i=1,...,n is a (finite) family of random variables Xi : Ω → Vi, where
Vi is finite.

– Δ ⊆ {1, . . . , n}×{1, . . . , n} is an acyclic relation that describes dependencies
between the variables, i.e., its transitive closure Δ+ is irreflexive. By Δi =
{j | (j, i) ∈ Δ} we denote the parents of node i according to Δ.

– P = (Pi)i=1,...,n is a family of probability matrices Pi :
∏

j∈Δi Vj → D(Vi),
whose entries are given by Pi(vi | (vj)j∈Δi).

A probability function P is consistent with such a Bayesian network whenever
for v = (vi)i=1,...,n ∈ ∏n

i=1 Vi we have

P(X = v) =
n∏

i=1

Pi(vi | (vj)j∈Δi).

The size of a Bayesian network is not just the size of the graph, but the sum
of the size of all its matrices (where the size of an m × n-matrix is m · n). In
particular, note that a node with k parents in a binary Bayesian network (i.e.,
with |Vi| = 2 for all i) is associated with a 2 × 2k probability matrix.

Stochastic Decision Petri Nets 269

Example 2.1. An example Bayesian network is given in Fig. 1. There are four
random variables (a, b, c, d) with codomain {0, 1}. The tables in the figure denote
the conditional probabilities, for instance Pd(0 | 01) = P(Xd = 0 | Xa = 0,Xb =
1) = 1/6, i.e., one records the probability that a random variable has a certain
value, dependent on the value of its parents in the graph. The probability P(X =
0100) = P(Xa = 0,Xb = 1,Xc = 0,Xd = 0) is obtained by multiplying Pa(0) ·
Pb(1) · Pc(0 | 0) · Pd(0 | 01) = 1/3 · 1/2 · 2/3 · 1/6 = 1/54.

Fig. 1. A Bayesian Network.

We are interested in the following two prob-
lems for Bayesian networks (see also [24]):

– D-PR: Given the Bayesian network (X,Δ,P)
and E = {Xi1 , . . . , Xi�

} ⊆ X, e ∈
VE :=

∏�
j=1 Vij

(the evidence) and a rational
p > 0, does it hold that P(E = e) > p? This
problem is known to be PP-complete [20].

– D-MAP: Given a Bayesian network (X,Δ,P), a
rational number p > 0, disjoint subsets E,F ⊆
X,2 and evidence e ∈ VE , does there exist f ∈
VF such that P(F = f,E = e) > p, or, if P(E =
e) �= ∅, equivalently, P(F = f | E = e) > p (by
adapting the bound p). It is known that this
problem, also known as maximum a-posteriori problem, is NPPP-complete
(see [11,20]).

The corresponding proof in [24] also shows that the D-MAP problem remains
NPPP-complete if F only contains uniformly distributed ‘input’ nodes, i.e., nodes
Xi with Δi = ∅ and Pi(xi) = 1/|Vi|, as well as Vi = {0, 1} for all i = 1, . . . , n.

In particular, the following problem (where E,F are switched!) is still NPPP-
complete: Given a binary Bayesian network (X,Δ,P) (i.e., Vi = {0, 1} for all
i), a rational p > 0, disjoint subsets E,F ⊆ X where F only contains uniformly
distributed input nodes, as well as evidence e ∈ VE , does there exist f ∈ VF

such that P(E = e | F = f) > p (as P(F = f) = 1/2|F | is independent of f
and known due to uniformity)? We will, in the rest of this paper, refer to this
modified problem as D-MAP instead of the original problem above.

Example 2.2 (D-MAP). Given the Bayesian Network in Fig. 1 with F = {Xa}
(MAP variable), E = {Xc,Xd}, e = (0, 1) ∈ Vc × Vd (evidence) and p = 1/3,
we ask whether ∃f ∈ {0, 1} : P(Xc = 0,Xd = 1 | Xa = f) > 1/3. When choosing
f = 1 ∈ Va, the probability P(Xc = 0,Xd = 1 | Xa = 1) = 3/4·(1/2·3/4+1/2·1/3) =
13/32 > 1/3 exceeds the bound. Note that to compute the value in this way, one has
to sum up over all possible valuations of those variables that are neither evidence
nor MAP variables, indicating that this is not a trivial task.

2 The variables contained in F are called MAP variables.

270 F. Wittbold et al.

3 Stochastic Decision Petri Nets

We will enrich the definition of stochastic Petri nets to allow for interactivity,
similar to how MDPs [6] extend the definition of Markov chains.

Definition 3.1. A stochastic decision Petri net (SDPN) is a tuple (P, T, •(),
()•, Λ,m0, C,R) where (P, T, •(), ()•, Λ,m0) is a stochastic Petri net; C ⊆ T is
a set of controllable transitions; R : P(P) → R is a reward function.

Here we describe the semantics of such SDPNs in a semi-formal way. The
precise semantics is obtained by the encoding of SDPNs into MDPs in Sect. 4.

Given an SDPN, an external agent may in each step choose to manually deac-
tivate any subset D ⊆ C of controllable transitions (regardless of whether their
preconditions are fulfilled or not). As such, if transitions D ⊆ C are deactivated
in marking m ∈ M(N), the SDPN executes a step according to the semantics
of the stochastic Petri net ND = (P, T \ D, •(), ()•, ΛD,m0) where the pre- and
post-set functions and ΛD are restricted accordingly.

Fig. 2. Example SDPN

For all rewarded sets Q ∈ supp(R), the agent
receives an “immediate” reward R(Q) once all the
places p ∈ Q are reached at one point in the
execution of the Petri net (although not neces-
sarily simultaneously). In particular, any reward
is only received once. Note that this differs from
the usual definition of rewards as in MDPs, where
a reward is received each time certain actions is
taken in given states. However, logical formulae
over reached places (such as “places p1 and p2 are reached without reaching place
q”) are more natural to represent by such one-time rewards instead of cumulative
rewards.3 The framework can be extended to reward markings instead of places
but at the cost of an exponential explosion, since to be able to compute the
one-time step-wise rewards not only already reached places but already reached
markings would have to be memorized. Note that a reward need not be positive.

More formally, given a firing sequence μ : m0 →t1 m1 →t2 . . . , the agent
receives a value or payoff of V (pl(μ)) where V (M):=

∑
Q⊆M R(Q).

Example 3.2. As an example consider the SDPN in Fig. 2. The objective is to
mark both places coloured in yellow at some point in time (not necessarily at the
same time). This can be described by a reward function R which assigns 1 to the
set {p4, p5} containing both yellow places and 0 to all other sets.

The transitions with double borders (t1, t2) are controllable and it turns out
that the optimal strategy is to deactive both t1 and t2 first, in order to let t5 or
t6 mark either of the two goal places before reaching the marking (1, 1, 0, 0, 0)
from which no information can be gained which of the two goal places have been
marked. An optimal strategy thus has to have knowledge of already achieved sub-
goals in terms of visited places. In this case, the strategy can deactivate one of
the transitions (t1, t2) leading to the place already visited.
3 Firings of transitions can also easily be rewarded by adding an additional place.

Stochastic Decision Petri Nets 271

Policies may be dependent on the current marking and the places accu-
mulated so far. Now, for a given policy π : M(N) × P(P) → P(C), deter-
mining the set π(m,Q) ⊆ C of deactivated transitions in marking m for the
set Q of places seen so far, we consider the (continuous) probability space
m0M(N)ω, describing the infinite sequence m0 →t1 m1 →t2 . . . of markings
generated by the Petri net under the policy π (i.e., if in step n the transitions
Dn:=π(mn−1,

⋃n−2
k=0 supp(mk)) are deactivated).

Then we can consider the expectation of the random variable V ◦ pl, i.e.,

V
π:=E

π [V ◦ pl] ,

over the probability space m0M(N)ω. We will call this the value of π and, if
π ≡ D ⊆ C is constant, simply write V

D which we will call the value of D.
For the complexity analyses we assume that R is only stored on its support,

e.g., as a set R ⊆ P(P) × R which we will interpret as a dictionary with entries
[Q : R(Q)] for some Q ⊆ P , as for many problems of interest the size of the
support of the reward function can be assumed to be polynomially bounded
w.r.t. to the set of places and transitions.

We consider the following problems for stochastic Petri nets, where we param-
eterize over a class N of SDPNs and (for the second problem) over a class
Ψ ⊆ (M(N) × P(P) → P(C)) of policies:

– N -VAL: Given a rational p > 0, a net N ∈ N and a policy π ∈ Ψ for N ,
decide whether V

π > p.
– N -POL: Given a rational p > 0 and a net N ∈ N , decide whether there exist

a policy π ∈ Ψ such that V
π > p.

Although paramterized over sets of policies, we will omit Ψ if is clear from
the context (in fact we will restrict to constant policies from Sect. 5 onwards).

4 Stochastic Decision Petri Nets as Markov Decision
Processes

We now describe how to transform an SDPN into an MDP, thus fixing the
semantics of such nets. For unbounded Petri nets, the resulting MDP has an
infinite state space, but we will restrict to the finite case later.

Definition 4.1. Given an SDPN N = (P, T, F, Λ,C,R,m0) where m0 is not
the constant zero function, the MDP for N is defined as the tuple (S,A, δ, r, s0)
where

– S = R(N) × P(P) (product of reachable markings and places collected),
– A = P(C) (sets of deactivated transition as actions),
– δ : (R(N) × P(P)) × P(C) → D(R(N) × P(P)), with

δ((m,Q),D)((m′, Q′)):=

{
p(m′ | m,D) if Q′ = Q ∪ supp(m),
0 otherwise,

272 F. Wittbold et al.

where

p(m′ | m,D) =

∑
t∈En(m,D),m→tm′ Λ(t)
∑

t∈En(m,D) Λ(t)

whenever En(m,D):={t ∈ T\D | •t ≤ m} �= ∅. If En(m,D) = ∅, we set
p(m′ | m,D) = 1 if m = m′ and 0 if m �= m′. That is, p(m′ | m,D) is the
probability of reaching m′ from m when transitions D are deactivated.

– r : S × A × S → R (reward function) with

r((m,Q),D, (m′, Q′)):=

{∑
Q⊆Y ⊆Q′ R(Y) if Q = ∅,

∑
Q�Y ⊆Q′ R(Y) if Q �= ∅.

– s0 = (m0, ∅)

The transition probabilities are determined as for regular stochastic Petri
nets where we consider only the rates of those transitions that have not been
deactivated and that can be fired for the given marking. If no transition is
enabled, we stay at the current marking with probability 1.

Note that the reward for the places reached in a marking m is only collected
when we fire a transition leaving m. This is necessary as in the very first step
we also obtain the reward for the empty set, which might be non-zero, and due
to the fact that the initial marking is assumed to be non-empty, this reward for
the empty set is only collected once.

The following result shows that the values of policies π : S → A (note that
these are exactly the policies for the underlying SDPN) over the MDP are equal
to the ones over the corresponding SDPN.

Proposition 4.2. Let N = (P, T, F, Λ,C,R,m0) be an SDPN and M =
(S,A, δ, r, s0) the corresponding MDP. For any policy π : S → A, we have

(Vπ =)Eπ [V ◦ pl] = E
π

[
∑

n∈N0

r(sn, π(sn), sn+1)

]

where (sn)n is the Markov chain resulting from following policy π in M .

This provides an exact semantic for SDPNs via MDPs. Note, however, that
for analysis purposes, even for safe Petri nets, the reachability set R(N) (as a
subset of P(P)) is generally of exponential size whence the transformation into
an MDP can at best generally only yield algorithms of exponential worst-case-
time. Hence, we will now restrict to specific subproblems and it will turn out that
even with fairly severe restrictions to the type of net and the policies allowed,
we obtain completeness results for complexity classes high in the polynomial
hierarchy.

Stochastic Decision Petri Nets 273

5 Complexity Analysis for Specific Classes of Petri Nets

For the remainder of this paper, we will consider the problem of finding optimal
constant policies for certain classes of nets. In other words, the agent chooses
before the execution of the Petri net which transitions to deactivate for its entire
execution. For a net N , the policy space is thus given by

Ψ(N) = {π : M(N) → P(C) | π ≡ D ⊆ C} =̂ P(C).

Since one can non-deterministically guess the maximizing policy (there are
only exponentially many) and compute its value, it is clear that the complexity
of the policy optimization problem N -POL is bounded by the complexity of the
corresponding value problem N -VAL as follows: If, for a given class N of Petri
nets, N -VAL lies in the complexity class C, then N -POL lies in NPC.

We will now show the complexity of these problems for the three Petri net
classes FCON, SAFC, and [ϕ]BPN and work out the connection to Bayesian
networks. In the following we will assume that all probabilities are efficiently
computable, allowing us to simulate all probabilistic choices with fair coins.

5.1 Complexity of Safe and Acyclic Free-Choice Decision Nets

We will first consider the case of Petri nets where the length of runs is bounded.

Proposition 5.1. For any polynomial ϕ, the problem [ϕ]BPN-VAL is in PP. In
particular, [ϕ]BPN-POL is in NPPP.

Proof (sketch). Given a Petri net N , a policy π and a bound p, a PP-algorithm
for [ϕ]BPN-VAL can simulate the execution of the Petri net and calculate the
resulting value, checking whether the expected value for π is greater than the pre-
defined bound p. For this, we have to suitably adapt the threshold (with an affine
function ψ) so that the probabilistic Turing machine accepts with probability
greater than 1/2 iff the reward for the given policy is strictly greater than p.

As the execution of the Petri net takes only polynomial time in the size of
the Petri net (ϕ), this can be performed by a probabilistic Turing machine in
polynomial time whence [ϕ]BPN-VAL lies in PP.

Since a policy can be guessed in polynomial time, we can also infer that
[ϕ]BPN-POL is in NPPP. ��

This easily gives us the following corollary for SAFC nets.

Corollary 5.2. The problem SAFC-VAL is in PP and SAFC-POL in NPPP.

Proof. This follows directly from Proposition 5.1 and the fact that SAFC ⊆
[id]BPN. ��
Proposition 5.3. The problem SAFC-POL is NPPP-hard and, therefore, also
NPPP-complete.

274 F. Wittbold et al.

Proof (sketch). This can be proven via a reduction D-MAP ≤p SAFC-POL, i.e.,
representing the modified D-MAP problem for Bayesian networks as a decision
problem in safe and acyclic free-choice nets. NPPP-completeness then follows
together with Corollary 5.2. Note that we are using the restricted version of
the D-MAP problem as explained in Sect. 2 (uniformly distributed input nodes,
binary values).

We sketch the reduction via an example: we take the Bayesian network in
Fig. 1 and consider a D-MAP instance where E = {Xc,Xd} (evidence, where we
fix the values of c, d to be 0, 1), F = {Xa} (MAP variables) and p is a threshold.
That is, the question being asked for the Bayesian network is whether there
exists a value x such that P(Xc = 0,Xd = 1 | Xa = x) > p.

Fig. 3. SAFC net corresponding to BN in Fig. 1.

This Bayesian network is
encoded into the SAFC net in
Fig. 3, where transitions with
double borders are control-
lable and the yellow places
give a reward of 1 when both
are reached (not necessarily
at the same time). Transi-
tions either have an already
indicated rate of 1 or the
rate can be looked up in the
corresponding matrix of the
BN. The rate of a transi-
tion tix1x2→x3

is the probabil-
ity value Pi(x3 | x1x2), where
Pi is the probability matrix
for i ∈ {a, b, c, d}.

Intuitively the first level
of transitions simulates the
probability tables of P a, P b, the nodes without predecessors in the Bayesian
network, where for instance the question of whether P a

0 or P a
1 are marked corre-

sponds to the value of the random variable Xa associated with node a. Since Xa

is a MAP variable, its two transitions are controllable. Note that enabling both
transitions will never give a higher reward than enabling only one of them. (This
is due to the fact that max{x, y} ≥ p1 ·x+p2 · y for p1, p2 ≥ 0 with p1 +p2 = 1.)

The second level of transitions (each with rate 1) is inserted only to obtain
a free-choice net by creating sufficiently many copies of the places in order to
make all conflicts free-choice.

The third level of transitions simulates the probability tables of P c, P d, only
to ensure the net being free-choice we need several copies. For instance, transition
tc0→0 consumes a token from place P a,c

0 , a place specifically created for the entry
P c(c = 0 | a = 0) in the probability table of node c.

In the end the aim is to mark the places P c
0 and P d

1 , and we can find a policy
(deactivating either ta()→0 or ta()→0) such that the probability of reaching both
places exceeds p if and only if the D-MAP instance specified above has a solution.

Stochastic Decision Petri Nets 275

This proof idea can be extended to more complex Bayesian networks, for a
more formal proof see [29]. ��

In fact, a reduction in the opposite direction (from Petri nets to Bayesian
networks) is possible as well under mild restrictions, which shows that these
problems are closely related.

Proposition 5.4. For two given constants k, �, consider the following problem:
let N be a SAFC decision Petri net, where for each branching cell the number
of controllable transitions is bounded by some constant k. Furthermore, given its
reward function R, we assume that |∪Q∈supp(R) Q| ≤ �. Given a rational number
p, does there exist a constant policy π such that Vπ > p?

This problem can be polynomially reduced to D-MAP.

Proof (sketch). We sketch the reduction, which is inspired by [8], via an example:
consider the SAFC net in Fig. 5, where the problem is to find a deactivation pat-
tern such that the payoff exceeds p. We encode the net into a Bayesian network
(Fig. 4), resulting in an instance of the D-MAP problem.

Fig. 4. Bayesian network obtained from
the SAFC net in Fig. 5 below. Entries ∗
are ‘don’t-care’ values.

We have four types of random vari-
ables: place variables (Xp, p ∈ P),
which record which place is marked; tran-
sition variables (Xt1 ,Xt5 ,Xt6), one for
each controllable transition, which are
the MAP variables; cell variables (XCi

for C1 = {t1, t2}, C2 = {t3, t4}, C3 =
{t5, t6}) which are non-binary and which
record which transition in the cell was
fired or whether no transition was fired
(ε); a reward variable (Xrew) such that
P(Xrew = 1) equals the function ψ
applied to the payoff. Note that we use
the affine function ψ from the proof of
Proposition 5.1 to represent rewards as
probabilities in the interval [0, 1]. The
threshold for the D-MAP instance is ψ(p).
Dependencies are based on the structure
of the given SAFC net. For instance, XC3

is dependent on Xp3 , Xp4 (since •
C3 =

{p3, p4}) and Xt5 , Xt6 (since t5, t6 are the
controllable transitions in C3).

Both the matrices of cell and place
variables could become exponentially
large, however this problem can be
resolved easily by dividing the matrices
into smaller ones and cascading them.
Since the number of controllable transi-
tions is bounded by k and the number of
rewarded places by �, they will not cause
an exponential blowup of the corresponding matrix. ��

276 F. Wittbold et al.

Corollary 5.5. The problem SAFC-VAL is PP-hard and, therefore, also PP-
complete.

Proof. We note that using the construction in the proof of Proposition 5.3 with
the set F of MAP variables being empty, we can reduce the D-PR problem for
Bayesian networks to the SAFC-VAL problem, showing that SAFC-VAL is PP-
hard. Using Corollary 5.2, this yields that SAFC-VAL is PP-complete. ��
Corollary 5.6. For any polynomial ϕ : N0 → N0 fulfilling ϕ(n) ≥ n for all
n ∈ N0, the problem [ϕ]BPN-VAL is PP-complete and [ϕ]BPN-POL is NPPP-
complete.

Proof. As any safe and acyclic free-choice net is an id-bounded net, it is, in
particular, a ϕ-bounded net with ϕ as above, and we have SAFC-VAL ≤p

[ϕ]BPN-VAL and SAFC-POL ≤p [ϕ]BPN-POL. Propositions 5.1 and 5.3 as well as
Corollary 5.5, therefore show that [ϕ]BPN-VAL is PP-complete and [ϕ]BPN-POL
is NPPP-complete. ��

5.2 Complexity of Free-Choice Occurrence Decision Nets

Now we further restrict SAFC nets to occurrence nets, which leads to a substan-
tial simplification. The main reason for this is the absence of backwards-conflicts,
which means that each place is uniquely generated, making it easier to trace
causality, i.e., there is a unique minimal configuration that generates each place.

Proposition 5.7. The problem FCON-VAL is in P. In particular, FCON-POL
is in NP.

Proof (sketch). Determining the probability of reaching a set of places Q in
an occurrence net amounts to multiplying the probabilities of the transitions
on which the places in Q are causally dependent. This can be done for every
set Q in the support of the reward function R, which enables us to determine
the expected value in polynomial time, implying that FCON-VAL lies in P. By
guessing a policy for an occurrence net with controllable transitions, we obtain
that FCON-POL lies in NP. ��
Proposition 5.8. The problem FCON-POL is NP-hard and, therefore, also NP-
complete.

Proof (sketch). To show NP-hardness we reduce 3-SAT (the problem of deciding
the satisfiability of a propositional formula in conjunctive normal form with at
most three literals per clause) to FCON-POL. Given a formula ψ, this is done
by constructing a simple occurrence net with parallel controllable transitions,
one for each atomic proposition � in ψ. Then we define a reward function with
polynomial support in such a way that the expected reward for the constructed
net is larger or equal than the number of clauses iff the formula has a model.
The correspondence between the model and the policy is such that transitions
whose atomic propositions are evaluated as true are deactivated. ��

Stochastic Decision Petri Nets 277

6 An Algorithm for SAFC Decision Nets

Here we present a partial-order algorithm for solving the policy problem for
SAFC (decision) nets. It takes such a net and converts it into a formula for
an SMT solver. We will assume the following, which is also a requirement for
occurrence nets:

Assumption 6.1. For all places p ∈ m0: •p:={t ∈ T | p ∈ t•} = ∅.

This is a mild assumption since any transition t ∈ •p for a place p ∈ m0 in a
safe and acyclic net has to be dead as all places can only be marked once.

We are now using the notion of (branching) cells, introduced in Sect. 2: The
fact that the SDPN is safe, acyclic and free-choice ensures that choices in dif-
ferent cells are taken independently from another, so that the probability of a
configuration τ ∈ C(N) under a specific deactivation pattern D ⊆ C is given by

P
D(tr ⊇ τ) =

∏

t∈τ

χT\D(t) · Λ(t)
∑

t∈Ct\D Λ(t)
=

{
0 if τ ∩ D �= ∅
∏

t∈τ
Λ(t)∑

t′∈Ct\D Λ(t′) otherwise

where χT\D is the characteristic function of T \ D and 0/0 is defined to yield 0.
The general idea of the algorithm is to rewrite the reward function R :

P(P) → R on sets of places to a reward function on sets of transitions that
yields a compact formula for computing the value V

D for specific sets D (i.e.,
solving SAFC-VAL), that we can also use to solve the policy problem SAFC-POL
via an SMT solver.

We first need some definitions:

Definition 6.2. For a maximal configuration τ ∈ Cω(ND) for a given deactiva-
tion pattern D ⊆ C, we define its set of prefixes in C(ND) to be

preD(τ):={τ ′ ∈ C(ND) | τ ′ ⊆ τ}

which corresponds to all configurations that can lead to the configuration τ . We
also define the set of extensions of a configuration τ ∈ C(ND) in Cω(ND), which
corresponds to all maximal configurations that τ can lead to, as

extD(τ):={τ ′ ∈ Cω(ND) | τ ⊆ τ ′}.

Definition 6.3. Let N be a Petri net with a reward function R : P(P) → R

on places and a deactivation pattern D. A reward function [R] : P(T) → R on
transitions is called consistent with R if for each firing sequence μ ∈ FS(ND):

V (pl(μ)) =
∑

Q⊆pl(μ)

R(Q) =
∑

τ∈preD (tr(μ))

[R](τ).

This gives us the following alternative method to determine the expected
value for a net (with given policy D):

278 F. Wittbold et al.

Lemma 6.4. Using the setting of Definition 6.3, whenever [R] is consistent with
the reward function R and [R](τ) = 0 for all τ �∈ C(N), the expected value for
the net N under the constant policy D is:

V
D =

∑

τ⊆T

P
D(tr ⊇ τ) · [R](τ).

Note that [R](tr(μ)):=V (pl(μ)) for μ ∈ FS(N) fulfills these properties triv-
ially. However, rewarding only maximal configurations can lead, already in occur-
rence nets with some concurrency, to an exponential support (w.r.t. the size of
the net and its reward function). The goal of our algorithm is to instead make
use of the sum over the configurations by rewarding reached places immediately
in the corresponding configuration, generating a function [R] that fulfills the
properties above and whose support remains of polynomial size in occurrence
nets. Hence, we have some form of partial-order technique, in particular concur-
rent transitions receive the reward independently of each other (if the reward is
not dependent on firing both of them).

The rewriting process is performed by iteratively ‘removing maximal cells’
and resembles a form of backward-search algorithm. First of all, �∗

N (the reflexive
and transitive closure of causality ≺N) induces a partial order � on the set
BC(N) of cells via

∀C,C′ ∈ BC(N) : C � C
′ ⇐⇒ ∃t ∈ C, t′ ∈ C

′ : t �∗
N t′.

Let all cells (C1, . . . ,Cm) with m = |BC(N)| be ordered conforming to �,
then we let Nk denote the Petri net consisting of places Pk:=P \ (

⋃
l>k Cl

•) ∪
(
⋃

l≤k Cl
•) (where the union with the post-sets is only necessary if backward-

conflicts exist) and transitions Tk:=
⋃

l≤k Cl, the remaining components being
accordingly restricted (note that the initial marking m0 is still contained in Pk

by Assumption 6.1). In particular, it holds that N = Nm as well as T0 = ∅ and
P0 = {p ∈ P | ∀t ∈ T : p /∈ t•}.

Let N be a Petri net with deactivation pattern D, μ ∈ FS(ND) be a firing
sequence and k ∈ {1, . . . , |BC(N)|}. We write tr≤k(μ):=tr(μ) ∩ Tk for the tran-
sitions in the first k cells and tr>k(μ):=tr(μ) \ Tk for the transitions in the cells
after the k-th cell as well as pl≤k(μ):=m0 ∪ (

⋃
t∈tr≤k(μ)

t•) for the places reached
after all transitions in the first k cells were fired.

We will now construct auxiliary reward functions R[k] that take pairs of a
set of places (U ⊆ Pk) and of transitions (V ⊆ T \ Tk) as input and return a
reward. Intuitively, R[k](U, V) corresponds to the reward for reaching all places
in U and then firing all transitions in V afterwards where reaching U ensures
that all transitions in V can fire.

Stochastic Decision Petri Nets 279

Starting with the reward function R[m] : P(P) × {∅} → R, (M, ∅) �→ R(M),
we iteratively compute reward functions R[k] : P(Pk)×P(T \Tk) → R for k ≥ 0:

R[k](U, V):=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

R[k + 1](U, V) if Ck+1 ∩ V = ∅
∑

U ′∩t• �=∅
U=U ′\t•∪ •t

R[k + 1](U ′, V \{t}) if Ck+1 ∩ V = {t}

0 otherwise

The first case thus describes a scenario where no transition from the (k +1)-
th cell is involved while the second case sums up all rewards that are reached
when some transition t in the cell has to be fired (that is, all rewards that are
given when some of the places in t• are reached). We give non-zero values only
to sets V that contain at most one transition of each cell and U has to contain
the full pre-set of t of the transition t removed from V . This is done in order to
ensure that in subsequent steps those transitions that generate •t are in the set
to which we assign the reward. This guarantees that V is always a configuration
of N after marking U while R[k](U, V) is zero if the transitions in V cannot be
fired after U . In this way, rewards are ultimately only given to configurations
and to no other sets of transitions, enabling us later to compute the probabilities
of those configurations.

And if N is an occurrence net, every entry in R[k + 1] produces at most one
entry in R[k], meaning that supp(R[k]) ≤ supp(R[k + 1]).

Now we can prove that the value of a firing sequence is invariant when rewrit-
ing the auxiliary reward functions as described above.

Proposition 6.5. The auxiliary reward functions satisfy
∑

V ⊆tr>k(μ)

∑

U⊆pl≤k(μ)

R[k](U, V) =
∑

V ⊆tr>k+1(μ)

∑

U⊆pl≤k+1(μ)

R[k + 1](U, V),

for k ∈ {0, . . . , |BC(N)| − 1}.
Hence, for every μ ∈ FS(N)

V (pl(μ)) =
∑

U⊆pl(μ)

R[|BC(N)|](U, ∅) =
∑

V ⊆tr>k(μ)

∑

U⊆pl≤k(μ)

R[k](U, V),

which means that we obtain a reward function on transitions consistent with R
by defining [R] : P(T) → R as

[R](V):=
∑

U⊆m0

R[0](U, V).

This leads to the following corollary:

Corollary 6.6. Given a net N and a deactivation pattern D, we can calculate
the expected value

V
D = E[V ◦ pl] =

∑

τ⊆T

∏

t∈τ

χT\D(t) · Λ(t)
∑

t′∈Ct\D Λ(t′)
[R](τ).

280 F. Wittbold et al.

Checking whether some deactivation pattern D exists such that this term is
greater than some bound p can be checked by an SMT solver.

Note that, in contrast to the naive definition of [R] only on maximal con-
figurations, this algorithm constructs a reward function on configurations that,
for occurrence nets, has a support with at most supp(R) elements. For arbitrary
SAFC nets, the support of [R] might be of exponential size.

Fig. 5. A SAFC decision net.
The goal is to mark one or both
of the yellow places at some
point without ever marking the
red place. (Color figure online)

Example 6.7. We take the Petri net from
Fig. 5 as an example (where all transitions have
firing rate 1). The reward function R is given in
the table below. By using the inclusion-exclusion
principle we ensure that one obtains reward 1 if
one or both of the yellow places are marked at
some point without ever marking the red place.

The optimal strategy is obviously to only
deactivate the one transition (t6) which would
mark the red place.

The net has three cells C1 = {t1, t2},C2 =
{t3, t4}, and C3 = {t5, t6} where C1,C2 � C3.
As such, R[3] = R with R below and obtain
R[2] (due to P2 = {p1, p2, p3, p4, p5}). In the
next step, we get (by removing t3 and t4) R[1]
and finally R[0], from which we can derive [R],
the reward function on transitions, as described
above.

This allows us to write the value for a set D of deactivated transitions as
follows (where if both t5, t6 ∈ D, we assume the last quotient to be zero)

V
D =

χT\D(t1)
χT\D(t1) + 1

+
1

χT\D(t1) + 1
1
2

χT\D(t5)
χT\D(t5) + χT\D(t6)

R =[{p5} : 1, {p6} : 1, {p5, p6} : −1, {p5, p7} : −1, {p6, p7} : −1, {p5, p6, p7} : 1]
R[2] =[({p5}, ∅) : 1, ({p3, p4}, {t5}) : 1, ({p3, p4, p5}, {t6}) : −1]
R[1] =[({p5}, ∅) : 1, ({p2, p3}, {t3, t5}) : 1, ({p2, p3, p5}, {t3, t6}) : −1]
R[0] =[({p1}, {t1}) : 1, ({p1, p2}, {t2, t3, t5}) : 1]
[R] =[{t1} : 1, {t2, t3, t5} : 1]

Writing xi:=χT\D(ti) ∈ {0, 1}, i = 1, 5, 6, the resulting inequality

x1

x1 + 1
+

1
2

1
x1 + 1

x5

x5 + x6
> p

can now be solved by an SMT solver with Boolean variables x1, x5, and x6 (i.e.,
x1, x5, x6 ∈ {0, 1}).

Stochastic Decision Petri Nets 281

Runtime Results: To test the performance of our algorithm, we performed run-
time tests on specific families of simple stochastic decision Petri nets, focussing
on the impact of concurrency and backward-conflicts on its runtime. All families
are based on a series of simple branching cells each containing two transitions,
one controllable and one non-controllable, reliant on one place as a precondition.
Each non-controllable transition marks a place to which we randomly assigned a
reward according to a normal distribution (in particular, it can be negative). The
families differ in how these cells are connected, testing performance with concur-
rency, backward-conflicts, and sequential problems, respectively (for a detailed
overview of the experiments see [29]).

Rewriting the reward function (and, thus, solving the value problem) pro-
duced expected results: Runtimes on nets with many backward-conflicts are
exponential while the rewriting of reward functions of occurrence nets exhibits
a much better performance, reflecting its polynomial complexity.

To solve the policy problem based on the rewritten reward function, we com-
pared the performances of naively calculating the values of each possible deac-
tivation pattern with using an SMT solver (Microsoft’s z3, see also [12]). Tests
showed a clear impact on the representation of the control variables (describ-
ing the deactivation set D) as booleans or as integers bounded by 0 and 1 with
the latter showing a better performance. Furthermore, the runtime of solving the
rewritten formula with an SMT solver showed a high variance on random reward
values. Nonetheless, the results show the clear benefit of using the SMT solver on
the rewritten formula in scenarios with a high amount of concurrency, with much
faster runtimes than the brute force approach. In scenarios without concurrency,
this benefit vanishes, and in scenarios with many backward-conflicts, the brute
force approach is considerably faster than solving the rewritten function with an
SMT solver. The latter effect can be explained by the rewritten reward function
[R] having an exponential support in this scenario.

All in all, the runtime results reflect the well-known drawbacks and benefits
of most partial-order techniques, excelling in scenarios with high concurrency
while having a reduced performance if there are backward- and self-conflicts.

7 Conclusion

We have introduced the formalism of stochastic decision Petri nets and defined
its semantics via an encoding into Markov decision processes. It turns out that
finding optimal policies for a model that incorporates concurrency, probability
and decisions, is a non-trivial task. It is computationally hard even for restricted
classes of nets and constant policies. However, we remark that workflow nets
are often SAFC nets and a constant deactivation policy is not unreasonable,
given that one cannot monitor and control a system all the time. We have also
presented an algorithm for the studied subproblem, which we view as a step
towards efficient partial-order techniques for stochastic (decision) Petri nets.

Related Work: Petri nets [26] are a well-known and widely studied model of
concurrent systems based on consumption and generation of resources. Several

282 F. Wittbold et al.

subclasses of Petri nets have received attention, among them free-choice nets [13]
and occurrence nets, where the latter are obtained by unfolding Petri nets for
verification purposes [14].

Our notion of stochastic decision Petri nets is an extension of the well-known
model of stochastic Petri nets [21]. This model and a variety of generalizations are
used for the quantitative analyses of concurrent systems. Stochastic Petri nets
come in a continuous-time and in a discrete-time variant, as treated in this paper.
That is, using the terminology of [28], we consider the corresponding Markov
chain of jumps, while in the continuous-time case, firing rates determine not only
the probability which transition fires next, but also how fast a transition will fire
dependent on the marking. These firing times are exponentially distributed, a
distribution that is memoryless, meaning that the probability of a transition
firing is independent on its waiting time.

Our approach was motivated by extending the probabilistic model of stochas-
tic Petri nets by a mechanism for decision making, as in the extension of Markov
chains [28] to Markov decision processes (MDPs) [6]. Since the size of a stochastic
Petri net might be exponentially smaller than the Markov chain that it generates,
the challenge is to provide efficient methods for determining optimal strategies,
preferably partial order methods that avoid the explicit representation of con-
current events in an interleaving semantics. Our complexity results show that
the quest for such methods is non-trivial, but some results can be achieved by
suitably restricting the considered Petri nets.

A different approach to include decision-making in Petri nets was described
by Beccuti et al. as Markov decision Petri nets [4,5]. Their approach, based on a
notion of well-formed Petri nets, distinguishes explicitly between a probabilistic
part and a non-deterministic part of the Petri net as well as a set of components
that control the transitions. They use such nets to model concurrent systems and
obtain experimental results. In a similar vein, graph transformation systems –
another model of concurrent systems into which Petri nets can be encoded – have
been extended to probabilistic graph transformation systems, including decisions
in the MDP sense [18]. The decision is to choose a set of rules with the same
left-hand side graph and a match, then a randomized choice is made among these
rules. Again, the focus is on modelling and to our knowledge neither of these
approaches provides complexity results.

Another problem related to the ones considered in this paper is the computa-
tion of the expected execution time of a timed probabilistic Petri net as described
in [22]. The authors treated timed probabilistic workflow nets (TPWNs) which
assumes that every transition requires a fixed duration to fire, separate from the
firing probability. They showed that approximating the expected time of a sound
SAFC TPWN is #P-hard which is the functional complexity class corresponding
to PP. While the problems studied in their paper and in our paper are different,
the fact that both papers consider SAFC nets and obtain a #P- respectively
PP-hardness result seems interesting and deserves further study.

Our complexity results are closely connected with the analysis of Bayesian
networks [25], which are a well-known graphical formalism to represent con-

Stochastic Decision Petri Nets 283

ditional dependencies among random variables and can be employed to rea-
son about and compactly represent probability distributions. The close relation
between Bayesian networks and occurrence nets was observed in [8], which gives
a Bayesian network semantics for occurrence nets, based on the notion of branch-
ing cells from [1] that were introduced in order to reconcile partial order meth-
ods – such as unfoldings – and probability theory. We took inspiration from this
reduction in Proposition 3 and another of our reductions (Proposition 5.3) –
encoding Petri nets as Bayesian networks – is a transformation going into the
other direction, from Bayesian networks to SAFC nets.

In our own work [7,9] we considered a technique for uncertainty reasoning,
combining both Petri nets and Bayesian networks, albeit in a rather different
setting. There we considered Petri nets with uncertainty, where one has only
probabilistic knowledge about the current marking of the net. In this setting
Bayesian networks are used to compactly store this probabilistic knowledge and
the main challenge is to update respectively rewrite Bayesian networks repre-
senting such knowledge whenever the Petri net fires.

Future Work: As future work we plan to consider more general classes of Petri
nets, lifting some of the restrictions imposed in this paper. In particular, it would
be interesting to extend the method from Sect. 6 to nets that allow infinite runs.
Furthermore, dropping the free-choice requirement is desirable, but problematic.
While the notion of branching cells does exist for stochastic nets (see [1,8]), it
does not accurately reflect the semantics of stochastic nets (see e.g. the discussion
on confusion in the introduction of [8]).

As already detailed in the introduction, partial-order methods for analyz-
ing probabilistic systems, modelled for instance by stochastic Petri nets, are in
general poorly understood. Hence, it would already be a major result to obtain
scalable methods for computing payoffs values for a stochastic net without deci-
sions, but with a high degree of concurrency.

In addition we plan to use the encoding of Petri nets into Bayesian networks
from [8] (on which we based the proof of Proposition 5.4) and exploit it to analyze
such nets by using dedicated methods for reasoning on Bayesian networks.

Naturally, it would be interesting to extend analysis techniques in such a way
that they can deal with uncertainty and derive policies when we have only partial
knowledge, as in partially observable Markov decision process (POMDPs), first
studied in [3]. However, this seems complex, given the fact that determining the
best strategy for POMDPs is a non-trivial problem in itself [10].

Similarly, it is interesting to introduce a notion of time as in continuous-time
Markov chains [28], enabling us to compute expected execution times as in [22].

Last but not least, our complexity analysis and algorithm focus on finding
optimal constant policies. A natural step would be to instead consider the prob-
lem of finding optimal positional strategies as defined in Sect. 3, which is the
focus of most works on Markov decision processes (see for example [10]).

284 F. Wittbold et al.

References

1. Abbes, S., Benveniste, A.: True-concurrency probabilistic models: branching cells
and distributed probabilities for event structures. Inf. Comput. 204(2), 231–274
(2006)

2. Arora, S., Barak, B.: Computational complexity: a modern approach. Cambridge
University Press (2009)

3. Astrom, K.J.: Optimal control of Markov decision processes with incomplete state
estimation. J. Math. Anal. Appl. 10, 174–205 (1965)

4. Beccuti, M., Amparore, E.G., Donatelli, S., Scheftelowitsch, D., Buchholz, P.,
Franceschinis, G.: Markov decision Petri nets with uncertainty. In: Beltrán, M.,
Knottenbelt, W., Bradley, J. (eds.) EPEW 2015. LNCS, vol. 9272, pp. 177–192.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23267-6 12

5. Beccuti, M., Franceschinis, G., Haddad, S.: Markov decision Petri net and Markov
decision well-formed net formalisms. In: Kleijn, J., Yakovlev, A. (eds.) ICATPN
2007. LNCS, vol. 4546, pp. 43–62. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-73094-1 6

6. Bellman, R.: A Markovian decision process. J. Math. Mech. 6(5), 679–684 (1957)
7. Bernemann, R., Cabrera, B., Heckel, R., König, B.: Uncertainty reasoning for prob-

abilistic Petri nets via Bayesian networks. In Proceedings of FSTTCS 2020, vol.
182 of LIPIcs, pp. 1–17. Schloss Dagstuhl - Leibniz Center for Informatics (2020)

8. Bruni, R., Melgratti, H.C., Montanari, U.: Bayesian network semantics for Petri
nets. Theor. Comput. Sci. 807, 95–113 (2020)

9. Cabrera, B., Heindel, T., Heckel, R., König, B.: Updating probabilistic knowledge
on condition/event nets using Bayesian networks. In Proceedings of CONCUR
2018, vol. 118 of LIPIcs, pp. 1–17. Schloss Dagstuhl - Leibniz Center for Informatics
(2018)

10. Cassandra, A.R.: Exact and approximate algorithms for Markov decision processes,
Ph. D. thesis, Brown University, USA (1998)

11. de Campos, C.P.: New complexity results for MAP in Bayesian networks. In: Pro-
ceedings of IJCAI 2011, pp. 2100–2106. IJCAI/AAAI (2011)

12. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

13. Desel, J., Esparza, J.: Free choice Petri nets. Number 40 in Cambridge Tracts in
Theoretical Computer Science. Cambridge University Press (1995)

14. Esparza, J., Heljanko, K.: Unfoldings: a partial order approach to model checking.
Springer (2008). https://doi.org/10.1007/978-3-540-77426-6

15. Feinberg, E.A., Shwartz, A. (eds.): Handbook of Markov Decision Processes.
Kluwer, Boston, MA (2002)

16. Garey, M.R., Johnson, D.S.: Computers and Intractability. Freeman (1979)
17. Grinstead, C., Snell, L.: Markov chains. In Introduction to Probability, chapter 11,

pp. 405–470. American Mathematical Society, second edition (1997)
18. Krause, C., Giese, H.: Probabilistic graph transformation systems. In: Ehrig, H.,

Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.) ICGT 2012. LNCS, vol. 7562, pp.
311–325. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33654-
6 21

19. Littman, M.L., Dean, T.L., Kaelbling, L.P.: On the complexity of solving Markov
decision problems. In: Proceedings of UAI 1995, pp. 394–402. Morgan Kaufmann
(1995)

https://doi.org/10.1007/978-3-319-23267-6_12
https://doi.org/10.1007/978-3-540-73094-1_6
https://doi.org/10.1007/978-3-540-73094-1_6
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-77426-6
https://doi.org/10.1007/978-3-642-33654-6_21
https://doi.org/10.1007/978-3-642-33654-6_21

Stochastic Decision Petri Nets 285

20. Littman, M.L., Majercik, S.M., Pitassi, T.: Stochastic Boolean satisfiability. J.
Autom. Reason. 27(3), 251–296 (2001)

21. Marsan, M.A.: Stochastic Petri nets: an elementary introduction. In: Rozenberg,
G. (ed.) APN 1988. LNCS, vol. 424, pp. 1–29. Springer, Heidelberg (1990). https://
doi.org/10.1007/3-540-52494-0 23

22. Meyer, P.J., Esparza, J., Offtermatt, P.: Computing the expected execution time of
probabilistic workflow nets. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019. LNCS,
vol. 11428, pp. 154–171. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-17465-1 9

23. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley (1994)
24. Park, J.D., Darwiche, A.: Complexity results and approximation strategies for

MAP explanations. J. Artif. Intell. Res. 21, 101–133 (2004)
25. Pearl, J.: Causality: models, reasoning, and inference. Cambridge University Press

(2000)
26. Reisig, W.: Petri Nets: An Introduction. EATCS Monographs on Theoretical Com-

puter Science. Springer-Verlag, Berlin, Germany (1985)
27. Toda, S.: PP is as hard as the polynomial-time hierarchy. SIAM J. Comput. 20(5),

865–877 (1991)
28. Tolver, A.: An introduction to Markov chains. University of Copenhagen, Depart-

ment of Mathematical Sciences (2016)
29. Wittbold, F., Bernemann, R., Heckel, R., Heindel, T., König, B.: Stochastic deci-

sion Petri nets (2023). arXiv:2303.13344

https://doi.org/10.1007/3-540-52494-0_23
https://doi.org/10.1007/3-540-52494-0_23
https://doi.org/10.1007/978-3-030-17465-1_9
https://doi.org/10.1007/978-3-030-17465-1_9
http://arxiv.org/abs/2303.13344

Token Trail Semantics – Modeling Behavior
of Petri Nets with Labeled Petri Nets

Robin Bergenthum1(&), Sabine Folz-Weinstein2, and Jakub Kovář3

1 Fakultät für Mathematik und Informatik, FernUniversität in Hagen, Hagen,
Germany

robin.bergenthum@fernuni-hagen.de
2 Lehrgebiet Softwaretechnik und Theorie der Programmierung, FernUniversität

in Hagen, Hagen, Germany
sabine.folz-weinstein@fernuni-hagen.de

3 Lehrgebiet Programmiersysteme, FernUniversität in Hagen, Hagen, Germany
jakub.kovar@fernuni-hagen.de

Abstract. There are different semantics for Petri nets. The behavior of a Petri
net is either its set of enabled firing sequences, the reachability graph, a set of
process nets, a valid partial language, its branching process, or any other known
semantics taken from the literature. Every semantics has different advantages in
different applications. Some focus on the set of reachable states and can model
conflicts well. Other focus on the control flow of actions and can directly specify
concurrency. Yet, every semantics has its drawbacks. State graphs explode in
size when there is concurrency. Sequential and partial languages explode in size
if there is conflict. Furthermore, all semantics use different concepts, definitions,
graphical representations, and related algorithms. In this paper, we introduce
token trails to define whether a labeled Petri net is in the language of another
Petri net. Using labeled Petri nets as a specification language, we show how to
faithfully model behavior including conflict and concurrency. Furthermore, we
prove that token trail semantics faithfully covers all other semantics of Petri nets
and, thus, serves as a kind of meta semantics.

Keywords: Petri nets � Labeled nets � Token trails � Semantics � Compact
tokenflows � Modeling behavior � Conflict � Concurrency

1 Introduction

Petri nets [1, 9, 10, 18, 20] have formal semantics, an intuitive graphical representation,
and can express conflict and concurrency among the occurrences of actions of a system.
Petri nets model actions by transitions, local states by places, and the relations between
actions and local states by arcs. We model a state of a Petri net by putting tokens in
places. A marked Petri net can change its state by firing a transition. A transition can
fire if every place in its pre-set is marked. If a transition fires, it consumes tokens from
its pre-set and produces tokens in its post-set. This firing rule is very intuitive and easy
to formalize. This surely is a big part of the success of Petri nets as a modeling
language and why we love Petri nets.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Gomes and R. Lorenz (Eds.): PETRI NETS 2023, LNCS 13929, pp. 286–306, 2023.
https://doi.org/10.1007/978-3-031-33620-1_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33620-1_16&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33620-1_16&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33620-1_16&domain=pdf
https://doi.org/10.1007/978-3-031-33620-1_16

The firing rule is the core of every Petri net semantics. Although the firing rule itself
is simple, there are a lot of different semantics for Petri nets in the literature. There is
the sequential language of a Petri net, there are state graphs, partially ordered runs,
process nets, branching processes, prime event structures, and so on and so forth. Every
semantics has its own advantages and disadvantages in different applications. On the
one hand, every semantics is specialized, and we can choose the best fit for every
application. On the other hand, it is a mess of different definitions to choose from and
even if we choose the correct semantics there are drawbacks inherent to that choice.

For example, repeatedly processing the firing rule creates so called firing sequen-
ces. The set of enabled firing sequences is the language of a marked Petri net. This
language is very easy to handle but it is not able to specify concurrency. It is easy to
come up with a Petri net where we can fire two transitions in any order, but not
concurrently. Furthermore, a firing sequence cannot directly specify conflict. When
there is conflict, we need one firing sequence for every combination of options in every
conflict. Thus, even for a simple Petri net, the size of the language may be huge.

The set of all reachable states, together with the set of all transitions from one state
to another, is called the reachability graph of a Petri net. This semantics is still rela-
tively easy to handle. In contrast to firing sequences, these state graphs can very
conveniently express conflict, merging, and looping of sequences of actions. But again,
state graphs cannot express concurrency. Even worse, if there is concurrency there is
the so-called state space explosion where the number of global states grows expo-
nentially in the number of local states.

There are step sequences and state graphs based on multisets of transitions. These
semantics can specify concurrent sets of transitions but still, the number of global states
explodes just like in every other state graph. Furthermore, sequences of steps are rather
technical. Thus, it is neither easy nor intuitive to specify behavior using combinations
of sequences of steps.

To model concurrency, there are partially ordered runs [7, 15, 19, 22]. A run is a
firing sequence, but the sequence is a partial, not a total order. Thus, it is not sufficient
to a have sequences of global markings enabling transitions anymore. We need par-
tially ordered sets of local markings. These sets of markings are called compact
tokenflows [3]. Using runs we can easily model concurrent behavior, but just like for
firing sequences, it is not possible to directly specify conflict. Again, if there is conflict,
we need a run for every possible combination of options.

Compact tokenflows in runs abstract from the history of tokens. We can consider
labeled partial orders and regular tokenflows to include the history [16]. We can use so
called process nets to include the history and even distinguish individual tokens. Yet,
labeled partial orders and process nets have the same disadvantages as runs and
compact tokenflows.

We can extend runs and process nets with an additional conflict relation and get
prime event structures and branching processes [22]. These semantics can specify
concurrency but also merge identical prefixes of runs or process nets. Remark, we can
branch but not merge so that these structures fan-out and it is hard to keep track of the
relations between the different conflict-free sets of partially ordered nodes. Further-
more, they are not able to directly define looping behavior.

Token Trail Semantics – Modeling Behavior of Petri Nets 287

Altogether, we identify two major problems: Firstly, although the definition of a
Petri net is easy and clean, the different semantics are all over the place. Just to give one
example, the concepts of valid regular tokenflows, enabled cuts in runs, sets of enabled
step sequences, process nets, valid compact tokenflows, valid prime event structures,
and branching processes all define the same partial language for every Petri net. Yet,
there are these different definitions, proofs of their equivalence, different graphical
representations, and different algorithms in the literature. Wouldn’t it be nice to have
some easy to understand meta semantic covering them all? Secondly, it is still not
possible to come up with an intuitive and compact graphical representation of the
behavior of a Petri net if there is conflict and concurrency.

In this paper, to tackle these problems, we refer the reader to the first sentence of
this section. If there is conflict and concurrency, use Petri nets. We introduce token trail
semantics for Petri nets. Using token trails, we define whether a labeled Petri net is in
the language of another Petri net. To show that this is a valid and useful definition, we
prove that if a labeled net models a firing sequence, a state graph, or a run, the labeled
net is in the net language of a Petri net if and only if, the firing sequence, the state
graph, or the run is in the language of this Petri net as well. Thus, the language defined
by token trails will respect and cover all the above-mentioned semantics. Furthermore,
we prove that every Petri net is in its own net language. We show examples of how to
faithfully model behavior truly specifying conflict and concurrency generating readable
graphical representations of executions using general labeled nets. We show how to
calculate token trails and introduce a web-tool to demonstrate that token trails are a
simple yet very powerful semantics for Petri nets.

2 Preliminaries

Let N be the non-negative integers. Let f be a function and B be a subset of the domain
of f . We write f jB to denote the restriction of f to B. As usual, we call a function
m : A ! N a multiset and write m ¼ P

a2A m að Þ � a to denote multiplicities of elements
in m. Let m0 : A ! N be another multiset. We write m�m0 if 8a 2 A : m að Þ�m0 að Þ
holds. We denote the transitive closure of an acyclic and finite relation \ by \�. We
denote the skeleton of \ by \}. The skeleton of \ is the smallest relation / so that
/� ¼ \� holds. Let V ;\ð Þ be some acyclic and finite graph, V ;\}� �

is called its
Hasse diagram.

We model distributed systems by Petri nets [5, 9, 18, 20].

Definition 1. A Petri net is a tuple P; T ;Wð Þ where P is a finite set of places, T is a
finite set of transitions so that P\T ¼ ; holds, and W : P� Tð Þ [T � Pð Þ ! N is a
multiset of arcs. A marking of P; T ;Wð Þ is a multiset m : P ! N. Let m0 be a marking,
we call N ¼ P; T;W ;m0ð Þ a marked Petri net and m0 the initial marking of N.

Figure 1 depicts a marked Petri net. We show transitions as rectangles, places as
circles, the multiset of arcs as a set of weighted arcs, and the initial marking as a set of
black dots called tokens.

288 R. Bergenthum et al.

For Petri nets there is a firing rule. Let t be a transition of a marked Petri net
P; T ;W ;m0ð Þ. We denote �t ¼ P

p2P W p; tð Þ � p the weighted pre-set of t. We denote
t� ¼ P

p2P W t; pð Þ � p the weighted post-set of t. A transition t can fire in marking m if
m� �t holds. Once transition t fires, the marking of the Petri net changes from m to
m0 ¼ m� �tþ t�.

In our example marked Petri net, transition A can fire in the initial marking. If A
fires, this removes one token from p1. Additionally, firing A produces a new token in
p2, two new tokens in p3, and a new token in p4. In this new marking transitions B and
C can fire. A is not enabled anymore, because there are no more tokens in p1. Firing
transition B will enable transition X and transition D. Firing transition C will disable
transition X.

Repeatedly processing the firing rule of a Petri net produces so-called firing
sequences. These firing sequences are the most basic behavioral model of Petri nets.
For example, the sequence ABXCBD is enabled in the marked Petri net of Figure 1.
The sequence ACBD is another example. Let N be a marked Petri net, the set of all
enabled firing sequences of N is the sequential language of N.

Another formalism to model the behavior of a Petri net is the reachability graph.
A marking is reachable if there is a firing sequence that produces this marking. The
reachability graph of a marked Petri net N ¼ P; T;W ;m0ð Þ is a tuple R; T;Xð Þ where R
is the set of reachable markings of N, T is the set of transitions of N, and X (called
transitions as well) is a set of triples in R� T � R so that m; t;m0ð Þ is in X if and only if
t is enabled in P; T ;W ;mð Þ, and firing t in m leads to the marking m0.

We call a tuple R0; T 0;X 0; ið Þ a state graph enabled in N if there is an injective
function g:R0 ! R, g ið Þ ¼ m0, T 0 	 T , 8 m; t;m0ð Þ 2 X 0 : g mð Þ; t; g m0ð Þð Þ 2 X, and for
every m0 2 R0 there is a directed path from i to m0 using the elements of X 0 as arcs.
Roughly speaking, every node of a state graph relates to a reachable state, we don’t
have to include all transitions and states if every node can be reached from the initial
node. Thus, a state graph is kind of a prefix of a reachability graph. We call the set of
enabled state graphs the state language of N.

A

C

X

B

D

Fig. 1. A marked Petri net.

Token Trail Semantics – Modeling Behavior of Petri Nets 289

Figure 2 depicts a state graph modeling the behavior of the marked Petri net
depicted in Figure 1. The state graph has 16 states and 18 transitions labeled with
transitions of the Petri net. The state graph describes the Petri nets behavior as follows.
At first, we must fire transition A. Then, we have some choices. We can execute the
loop BXBXB until place p3 of the Petri net is empty, or we can fire transition C at any
time during this loop. As soon as we fire C, we disable transition X by removing a
token from place p5. If there is an occurrence of transition B after the last occurrence of
transition X, we can fire transition D once.

The state language includes firing sequences as the set of all paths through the
graphs. In this sense, state graphs can merge firing sequences on shared states and can
contain loops. Yet, these graphs are not able to directly express concurrency.

Firing A in the initial marking depicted in Figure 1 leads to the marking
p2 þ 2 � p3 þ p4. In this marking, transitions B and C can fire concurrently because they
don’t share tokens. Neither firing sequences nor state graphs can express this con-
currency. Two transitions can occur in any order but cannot be executed at the same
time. Therefore, there are additional semantics of Petri nets in the literature, able to
explicitly express concurrency. There are step semantics of Petri nets [14], process net
semantics of Petri nets [13], tokenflow semantics of Petri nets [16], and compact
tokenflow semantics of Petri nets [3]. Fortunately, these semantics are equivalent [3,
16, 17, 21] and all define the same partial language. In a partial language, every so-
called run is a partially ordered set of events. Obviously, runs can express concurrency
and are a very intuitive approach to model behavior of a distributed system.

Definition 2. Let T be a set of labels. A labeled partial order is a triple V ;
; lð Þ where
V is a finite set of events,
 	V � V is a transitive and irreflexive relation, and the
labeling function l : V ! T assigns a label to every event. A run is a triple ðV ;\; lÞ iff
V ;\�; lð Þ is a labeled partial order. A run ðV ;\; lÞ is also called a labeled Hasse
diagram iff \} ¼ \ holds.

Using tokenflow semantics or compact tokenflow semantics, we can decide if a run
is in the partial language of a Petri net in polynomial time. Tokenflows, just like
branching processes, track the history of tokens. Compact tokenflows define a partially
ordered set of local states and thus, abstract from this history. Compact tokenflows are
more efficient [4]. Roughly speaking, a compact tokenflow is a distribution of tokens
on the arcs of a run so that every event receives enough tokens, no event must pass too
many tokens, and all events share tokens from the initial marking.

Fig. 2. A state graph of the Petri net of Figure 1.

290 R. Bergenthum et al.

Definition 3. Let N ¼ P; T ;W ;m0ð Þ be a marked Petri net and run ¼ ðV ;\; lÞ be a
run so that l Vð Þ 	 T holds. A compact tokenflow is a function x : V [\ð Þ ! N. Let
v 2 V be an event.Wedenote in vð Þ :¼ x vð Þþ P

v0\v x v0; vð Þ the inflowof v, andout vð Þ ¼P
v\v0 x v; v0ð Þ the outflow of v. We define, x is valid for p 2 P iff the following

conditions hold:

(i) 8v 2 V : in vð Þ� W p; l vð Þð Þ,
(ii) 8v 2 V : out vð Þ� in vð ÞþW l vð Þ; pð Þ �W p; l vð Þð Þ, and
(iii)

P
v2V x vð Þ�m0 pð Þ.

run is enabled in N iff there is a valid compact tokenflow for every p 2 P. The set of all
enabled runs of N is the partial language of N.

Figure 3 depicts three different runs modeling the behavior of the marked Petri net
depicted in Figure 1. Every run starts with executing transition A. The first run models
the concurrent execution of transitions B and C before firing D. The second run models
the execution of the loop BXB concurrently to transition C. But transition C can only
occur after X because of place p5. The third run models two times the loop, and again
modeling that there is no occurrence of X after the occurrence of C.

Figure 4 depicts the branching process of the Petri net of Figure 1. For formal
definitions we refer the reader to [13, 20]. Just note, that the maximal conflict-free sets
of events of Figure 4 are the three runs of Figure 3. Using the branching process, we
merge identical prefixes of the three runs and directly model conflict. But we can only
branch and not merge, which is weird when we model a sequence of choices. Only the
first choice will be modeled directly, any other following choice will be copied and
distributed over the consistency sets of the branching process. Adding such upwards-
closed conflict relation comes at a high cost of readability of the modeled behavior.

A

B

C

D A

B

C

D

X B

A

B

C

D

X B X B

Fig. 3. Three runs of the Petri net of Figure 1.

Fig. 4. The branching process of the Petri net of Figure 1.

Token Trail Semantics – Modeling Behavior of Petri Nets 291

Figure 2, Figure 3, and Figure 4 all model the behavior of the Petri net of Figure 1.
Figure 2 is unable to express the concurrency of transitions B and C. Figure 3 needs
three separate runs, because runs cannot contain conflict. Figure 4 is troublesome to
read because it cannot merge states as state graphs can. Thus, there will always be some
tradeoff choosing one semantics over the others.

3 Token Trails

In this section, we introduce token trails for Petri nets. Using token trails, we define
whether a labeled Petri net is in the language of another Petri net.

We define the rise of a transition as the difference between the number of tokens in
the pre-set and the number of tokens in the post-set of a transition. Whenever there are
arc weights, the rise is the difference between the weighted sums.

Definition 4. Let N ¼ P; T ;W ;mð Þ be a marked Petri net, let t 2 T be a transition. We
denote the weighted sum of tokens t as t :¼ P

p;tð Þ2W W p; tð Þ � m pð Þ, the weighted

sum of tokens t as t :¼ P
p;tð Þ2W W p; tð Þ � m pð Þ and define the rise as tM of transition

t as t = −t t .

We model behavior by labeled nets. A labeled net is just a regular Petri net but there
is an additional set of actions, and every transition is labeled by one of them. We call a
labeled net a plain marked labeled net if the labeled net is marked, every place is
carrying at most one token in the initial marking, and there are no arc weights.

Definition 5. A labeled net is a tuple C;E;F;A; lð Þ where (C;E;FÞ is a Petri net, A is a
finite set of actions, and l : E ! A is an injective labeling function. A marking m of
C;E;F;A; lð Þ is a marking of (C;E;FÞ.
We call C;E;F;A; l;mð Þ a plain marked labeled net if C;E;F;A; l;mð Þ is a marked
labeled net, F� P

f2 C�Eð Þ [E�Cð Þð Þ f , and m� P
p2C p holds.

If a labeled net models behavior, similarly to process nets and branching processes,
every transition models an event and every place models a condition. Thus, we also call
them events and conditions. The arcs between events and conditions form the control
flow of the behavior. Now, we need to define when a labeled net is in the language of a
Petri net. We follow the ideas of compact tokenflows and model valid distributions of
tokens between the events of our specification. But this time the relations between the
events are given by a set of conditions and arcs, not by the later-than relation of the
partial order. Still, every valid distribution must respect the firing rule, so that every
event must receive enough tokens, every event must consume and produce the right
number of tokens, and tokens from the initial marking can be freely distributed over a
set of initial local states. To model the set of initial local states, we use an initial
marking of the labeled net. Roughly speaking, tokens from the initial marking of the
Petri net can be distributed to the initially marked places of the specification.

We call a valid distribution of tokens over the local states of a labeled net a token
trail. Such a distribution is a multiset of conditions. Thus, it is straight forward to just
formalize token trails as markings of a marked labeled net.

292 R. Bergenthum et al.

Definition 6. Let S ¼ C;E;F;A; l;mxð Þ be a marked labeled net and let m be a
marking of S. Let N ¼ P; T;W ;m0ð Þ be a marked Petri net, A 	 T , and p 2 P be a
place. The marking m is a token trail for p iff

(I) e e W p, l(e)E ≥ (),
(II) 8e 2 E : eM ¼ W l eð Þ; pð Þ �W p; l eð Þð Þ, and
(III)

P
c2C mx cð Þ � m cð Þ ¼ m0 pð Þ.

S is enabled in N iff there is a token trail for every p 2 P. The set of all enabled labeled
nets of N is the net language of N.

We just kind of brute-forced the definition of a token trail and the definition of the
net language of a Petri net. Remark, although conditions (I) and (II) look just like the
regular firing rule of Petri nets, they are not. They are derived from conditions (i) and
(ii) of compact tokenflows. For example, in the firing rule, we require that there are
enough tokens in every place in the pre-set of a transition. Fix a place p and a transition
t, we need at least W p; tð Þ tokens in p. In Definition 6, t needsW p; l tð Þð Þ tokens as well,
but these tokens can arrive at t over different paths through the labeled net. Tokens
could have been produced earlier and then be distributed over the dependencies defined
by the conditions of the specification until they arrive at t. Thus, the sum of all tokens
distributed over all conditions in the prefix of t count towards the number W p; l tð Þð Þ of
tokens needed for l tð Þ to be enabled. A token trail does not model a state of the Petri
net, it models a distribution of tokens where tokens can travel using conditions of the
specification. Obviously, this idea is directly taken from compact tokenflows, where
tokens travel along the defined later-than relation.

In this paper, we lift the idea of compact tokenflows to arbitrary labeled nets.
Tokenflows only travel in one direction, can synchronize, but not loop nor merge.
Token trails can utilize every condition of a specification, thus, can split, branch,
merge, synchronize, and loop. In the remainder of the paper, we show examples and
prove that Definition 6 is well-defined. We argue that the net language of a Petri net
covers, unifies, and extends existing semantics for Petri nets faithfully.

4 Token Trails for Transition Systems and Partial Languages

In this section, we prove that the net language covers the state language and the partial
language of a Petri net. If we model state graphs and runs as marked labeled nets, we
only need plain nets.

Let e be a transition of a plain marked labeled net. We denote •e and e• the pre-set

and the post-set of e. Using plain nets only, we can simply calculate e c e= Σ m c()
and e c e= Σ m c(). Furthermore, in a plain marked labeled net, the initial marking is

one-bound. We simplify condition (III) of Definition 6 to
P

c2mx
m cð Þ ¼ m0 pð Þ.

Token Trails for Firing Sequences. A firing sequence specifies sequential behavior
of a Petri net. The biggest application dealing with this type of semantics is of course
process mining [2]. In process mining, observations of a running workflow system are

Token Trail Semantics – Modeling Behavior of Petri Nets 293

recorded in (sequential) event logs. This behavioral specification is used to mine,
evaluate, operate, and optimize business processes.

It is easy to model a firing sequence as a labeled net. Every event relates to exactly
one transition of the firing sequence. Every condition relates to one element of the total
order relation. Arcs connect events and conditions to form a sequence. Consequently,
there is one place with an empty pre-set, and we mark this place as the starting point by
one token in the initial marking of the labeled net.

Figure 5 depicts a marked labeled net modeling a sequence of transitions of a firing
sequence. In figures of labeled nets, we show the labels of the transitions, not their
name. In this example, there are two different transitions in the labeled net both labeled
B. The token marks the first condition as the initial local state of the sequence.

Definition 8. We call a plain marked labeled net a sequence net if there is exactly one
place i with an empty prefix, the initial marking is i, there is exactly one place o with an
empty postfix, every other place and transition has exactly one predecessor and one
successor, and there is a path from i to o visiting all transitions and places.

To construct a token trail for p1 of Figure 1 in the labeled net depicted in Figure 5,
we start by looking at condition (III). There is a token in the initial marking of p1 of
Figure 1 and therefore, we must put this token in the first condition of Figure 5.
According to condition (I), the event labeled A gets enough tokens and, according to
condition (II), this event must consume this token because its rise needs to be �1. Now,
every other condition is unmarked, because, according to condition (II), the rise for all
other labels must be 0. Remark, we mentioned that the difference between the regular
firing rule and the conditions of a token trail is that we sum and weight all tokens in the
prefix of an event. In a sequence net there are no weights and there is only one
condition in every prefix, thus, there is no actual difference between the regular firing
rule and the rules of token trails.

Figure 6 depicts eight copies of the sequence net of Figure 5. The first copy shows
the token trail for place p1 of Figure 1. The second copy shows the token trail for p2 of
Figure 1 and so forth. There is a token trail for every place of Figure 1 and thus, the
sequence net depicted in Figure 5 is in the net language of the Petri net of Figure 1.

We look at the columns of conditions in Figure 6 to directly see the one-to-one
relation between a set of token trails of a sequence net and the set of markings enabling
a firing sequence. This comes down to the fact that transitions neither branch nor
merge, so we can prove the following theorem.

Theorem 1. Let S be a sequence net. S models a firing sequence of a Petri net N iff
there is a token trail in S for every place of N. Furthermore, the token trail in S for a
place p is the p-component of markings generated by the firing sequence.

Fig. 5. A plain marked labeled net modeling the firing sequence ABXCBD.

294 R. Bergenthum et al.

Proof. Let t0t1. . .tn be a firing sequence of N ¼ P; T ;W ;m0ð Þ. There is a unique
sequence of markings m1m2. . .mnþ 1 so that ti is enabled in mi, and firing ti in mi yields
miþ 1. If a marked sequence net S ¼ C;E;F;A; l;mxð Þ models the firing sequence
t0t1. . .tn, we can rename the elements of the net as follows: There is one place c0 with
an empty prefix carrying one token, transitions e0; e1; . . .; en labeled l eið Þ ¼ ti and
places c1; c2; . . .; cnþ 1 so that the multiset of arcs is

P
i ci; eið Þþ ei; ciþ 1ð Þð Þ, A ¼ T ,

and mx ¼ c0.
Fix a place p 2 P. The marking m ¼ P

i mi pð Þ � ci of S is the token trail for p becauseP
c2mx

m cð Þ ¼ m c0ð Þ ¼ m0 pð Þ and thus condition (III) holds. For all ei, firing ti in mi

yields miþ 1. Thus, miþ 1 ¼ mi � �ti þ t�i holds. We look at the p-component of this
equation to get miþ 1 pð Þ ¼ mi pð Þ �W p; tið ÞþW ti; pð Þ and thus, eMi ¼ m ciþ 1ð Þ�
m cið Þ ¼ miþ 1 pð Þ � mi pð Þ ¼ W lðeiÞ; pð Þ �W p; lðeiÞð Þ. This is condition (II). For all ti,
ti is enabled in mi. Thus, mi � �

ti holds. Again, mi pð Þ�W p; tið Þ and
P

c2�ei m cð Þ ¼
m cið Þ ¼ mi pð Þ� W p; l eið Þð Þ and thus condition (I) holds as well. Furthermore, for
every p, m is completely defined by the sequence of markings m1m2. . .mnþ 1.
Let S be a sequence net and for every p 2 P let mp be a token trail for p. Conditions (I),
(II), and (III) hold and we use the same arguments as above backwards to construct the
p-components of a sequence of markings m1m2. . .mnþ 1 enabling t0t1. . .tn in m0. ■

Theorem 1 shows that token trails respect the definitions of firing sequences.
A firing sequence is in the sequential language of a Petri net if and only if the related
sequence net is in the net language.

Token Trails for Transition Systems. A firing sequence models behavior as a
sequence of actions. We use transition systems to model behavior focused on states.
The biggest application dealing with this type of semantics is asynchronous circuit
design [8]. In circuit design, we specify behavior as a transition system and use region-
based approaches to synthesize a Petri net to be implemented.

A B DBX C

A B CBX C

A B DBX C

A B DBX C

A B DBX C

A B DBX C

A B DBX C

A B DBX C

Fig. 6. Eight token trails for the places of Figure 1 in copies of the labeled net of Figure 5.

Token Trail Semantics – Modeling Behavior of Petri Nets 295

Again, it is very easy to model a transition system in terms of labeled nets. Every
state is a condition, and every transition of the state graph is an event of the labeled net
connecting two conditions with one ingoing and one outgoing arc.

Definition 9. We call a plain marked labeled net a state graph net if there is exactly
one place i so that there is a path from i to any other place, the initial marking is i, and
every transition has exactly one predecessor and one successor.

Figure 8 depicts two copies of the state graph net of Figure 7 with two token trails.
The marking of the first state graph net is a token trail for p2 of Figure 1. The initial
marking of p2 is 0, thus, the marking of the initial place of Figure 8 must be 0 as well.
The rise of the event labeled A is 1, all events labeled B have a rise of �1, all events
labeled C or D have a rise of 0, and all events labeled X have a rise of 1. The marking
of the second state graph net of Figure 8 is a token trail for place p3 of Figure 1.

Like in sequence nets, events of a state graph net do not branch. Thus, there is just
one place in the pre-set of every event where tokens can arrive, and there is only one
place where an event can pass the tokens to. We build a token trail as follows: we put
the number of initial tokens in the initial place of the labeled net. Then we start a
breadth-first search at the initial place. For every visited event, we have the number of
ingoing tokens and just calculate the tokens to put in the successor place, using the rise
of the label. This will construct a token trail if merging paths agree on the number of
tokens and if no marking must be negative. Obviously, this is the case if the state graph
net models reachable states of the original Petri net, only considering the place p. Like

Fig. 7. A plain marked labeled net modeling the state graph of Figure 2.

Fig. 8. The token trails for the place p2 and p3 of Figure 1 in the labeled net of Figure 7.

296 R. Bergenthum et al.

for sequence nets, there is a one-to-one relation between a set of token trails of a state
graph net and the set of markings of a state graph in the language of the Petri net.

Theorem 2. Let S be a state graph net. S models a state graph of a Petri net N iff there
is a token trail in S for every place of N. Furthermore, the token trail in S for a place p is
the p-component of every state of the state graph.

Proof. Let G ¼ R; T ;X; ið Þ be a state graph of N ¼ P; T ;W ;m0ð Þ. For every transition
m0; t;m00ð Þ 2 X, t is enabled in m0 and firing t in m0 yields m00. If a marked state graph
net S ¼ C;E;F;A; l;mxð Þ models G, we can rename this net as follows: there is a
transition e m0;t;m00ð Þ labeled l e m0;t;m00ð Þ

� � ¼ t for every transition, and a places pr for every
state r 2 R so that the multiset of arcs is

P
m0;t;m00ð Þ2X pm0 ; tð Þþ t; pm00ð Þð Þ, A ¼ T , and

mx ¼ pi.
For every state s of G there is a cycle free path of transitions leading from the initial
state to s. This path is a firing sequence. S ¼ C;E;F;A; l;mxð Þ models G and all
transitions of S have exactly one predecessor and exactly one successor. The path in G
relates to a subnet in S so that this net is a sequence net. Fix a place p 2 P, we apply
Theorem 1 to get m ¼ P

r2R r pð Þ � pr is the only candidate for a token trail in S for p.
Again, there is a one-to-one relation between the p-component of every state of the
state graph and the token trail in S for p. Even if a transition m0; t;m00ð Þ in G is part of a
cycle, e m0;t;m00ð Þ is unbranched so that, eMm0;t;m00ð Þ ¼ mm00 pð Þ � mm0 pð Þ¼ m00 pð Þ � m0 pð Þ ¼
W t; pð Þ �W p; tð Þ and

P
c2�e m0 ;t;m00ð Þ m cð Þ ¼ mm0 pð Þ ¼ m0 pð Þ�W p; tð Þ holds. m is a

token trail for p. Again, the p-components of the set of states define the token trail for
every place. Using the same arguments backwards, we also get the other direction. ■

Theorem 2 shows that token trails respect the definitions of state graphs. A transi-
tion system is a state graph of a Petri net if and only if the related state graph net is in
the net language.

Token Trails for Partial Languages. A partial language models behavior as partially
ordered sequences of actions. Using partial languages, we can model concurrency of
action occurrences. The biggest application dealing with this kind of semantics is
business process management [12]. Modern business processes, like for example
Order-to-Cash, Quote-to-Order workflow processes, are distributed over different
people, departments, and systems of a company, so that we model these processes
using partially ordered runs.

Modeling a partial order of events in terms of labeled nets is easy. Every event is a
labeled transition, and we model the skeleton of the partial order by a set of conditions.
We add a condition between two transitions whenever there is a later-than relation

Fig. 9. Three labeled nets modeling the partially ordered sequences of actions of Figure 3.

Token Trail Semantics – Modeling Behavior of Petri Nets 297

between the two related events. Thus, every condition has at most one ingoing and one
outgoing arc. There is concurrency but no conflict. Figure 9 depicts three labeled nets
modeling three runs.

Definition 10. We call a plain marked labeled net a partial order net if the net is
acyclic, every transition has at least one ingoing and at least one outgoing arc, every
place has at most one ingoing and at most one outgoing arc, and the initial marking is
the sum of places with an empty prefix.

Figure 10 depicts three copies of the three partial order nets of Figure 9 with token
trail markings. For partial order nets, for the first time in this paper, we actually have to
sum-up ingoing and outgoing tokens in order to calculate the rise of a transition. For
example, the rise of transition A is 1 in the first row of examples, 2 in the second row,
and 0 in the last row.

In Figure 10, the token trails of the first row all relate to place p2 of Figure 1. The
token trails of the second row relate to place p3, and the token trails of the last row
relate to p5. Remark, in partial order nets there is not a one-to-one relation between the
rises of events to token trails anymore. For example, the token trail in the middle of
Figure 10 relates to place p3. One token travels from X to the final marking. This token
could also travel via C and thus lead to another token trail related to p3. For partial
order nets, there is a one-to-one relation between a token trail in the partial order net
and a compact tokenflow in the labeled Hasse diagram.

Theorem 3. Let S be a partial order net. S models a run of a Petri net N iff there is a
token trail in S for every place of N. Furthermore, there is a one-to-one relation between
token trails in S and compact tokenflows in the run.

Proof. Let run ¼ ðV ;\; lÞ be a run of N ¼ P; T ;W ;m0ð Þ. For every p 2 P there is a
compact tokenflow x in run for p. If a marked partial order net S ¼ C;E;F;A; l;mxð Þ
models run, we can rename this net as follows: for every event v 2 V there is a
transition ev 2 E with l evð Þ ¼ l vð Þ, for every arc v; v0ð Þ 2 \ there is a place c v;v0ð Þ 2 C
so that �c v;v0ð Þ ¼ evf g and c v;v0ð Þ� ¼ ev0f g. For every v 2 V with an empty prefix there is

Fig. 10. Token trails for places p2, p3, and p5 of Figure 1 in the labeled nets of Figure 9.

298 R. Bergenthum et al.

a place civ in the pre-set of v, for every v 2 V with an empty postfix there is a place c fv in
the post-set of v, A ¼ T , and mx ¼

P
c2C;�c¼; c.

Fix a place p 2 P and its compact tokenflow x. Conditions (i), (ii), (iii) hold. The main
idea is to construct another valid compact tokenflow x so that (b) and (c) hold as well.

(b) 8v 2 V ; v� 6¼ ; : out vð Þ ¼ in vð ÞþW l vð Þ; pð Þ �W p; l vð Þð Þ,
(c)

P
v2V ;�v 6¼; x cð Þ ¼ m0 pð Þ.

As long as there is an event v with a non-empty prefix so that its outflow is not yet as
big as the inflow plusW l vð Þ; pð Þ �W p; l vð Þð Þ, there is a path from v to an event with an
empty post-set. We can add the missing tokens to every arc of this path to fix the
outflow of v. For every event on this path, inflow and outflow will be increased by the
same number, for the last event only the inflow will be increased so that (i), (ii),
(iii) still hold. We repeat until (b) holds. If there is an event v with a non-empty prefix
so that x vð Þ[0, there is a path from an event v0 with an empty prefix to v. Again, we
add x vð Þ to x v0ð Þ, add x vð Þ tokens to every event on the path and set x vð Þ to 0 to move
tokens consumed from the initial marking to the initial events, only increasing inflow
and outflow of every event by the same amount. Now, the value of the compact
tokenflow is 0 on non-initial events. If the sum of this tokenflow is not yet as big as the
number of tokens in the initial marking, we add tokens on a path from an event with an
empty prefix to an event with an empty postfix. Altogether, we construct a compact
tokenflow x so that (i), (ii), (iii), (b), and (c) hold.
We construct a token trail m in S for p as follows. m :¼ P

v;v0ð Þ2\ x v; v0ð Þ � c v;v0ð Þ þ
P

v2V ;�v¼; x vð Þ � civ þ
P

v2V ;v�¼; in vð ÞþW l vð Þ; pð Þ �W p; l vð Þð Þð Þ � c fv .
m is a token trail for p because the only difference between x and m is that we moved
tokens from the initial marking to the initial places and added the right number of
tokens to the final places so that (b) implies (II). Obviously, (i) implies (I), and
(c) implies (III) because all initial places of S are marked with one token in mx.
This time the other direction is even simpler because we build a valid compact
tokenflow from a token trail by just ignoring tokens in the final places and moving
tokens from the initial places to the initial events. Now, (I), (II), and (III) imply (i), (ii),
and (iii) directly without even adapting tokenflow on the edges of run. ■

Theorem 3 shows that token trails cover the definitions of compact tokenflows.
A run is in the partial language of a Petri net if and only if the related partial order net is
in the net language.

Like in the previous subsection, going from firing sequences to state graphs, we can
add conflict to a run of a Petri net. To add conflict, we use the formalism of labeled prime
event structures of a Petri net. The main idea is that there is an additional conflict relation
so that sets of conflict-free events are runs. The conflict relation is upwards closed so that
runs branch, but do not merge. Thus, every prime event structure is covered by runs and
is enabled in a Petri net if every run of the prime event structure is enabled with a
compact token flow so that the flows match on shared prefixes of the prime event
structure. We add this idea to the proof of Theorem 3, like going from proof of Theo-
rem 1 to the proof of Theorem 2, to get that there are also matching token trails.

Token Trail Semantics – Modeling Behavior of Petri Nets 299

Figure 11 depicts a labeled net modeling a prime event structure. The conflict free
sets of events of this net are the runs of Figure 9. In this prime event structure net we
don’t show its initial marking (just the first condition), but depict a token trail for place
p3 of Figure 1 as a composition of the three token trails for p3 depicted in the second
row of Figure 10.

A labeled net is a branching process of a Petri net if there is an additional one-to-
one relation between tokens in the Petri net and tokens in the token trails. This must be
examined in future work. Up to this point, the net language covers runs, as well as
prime event structures of a Petri net.

5 Token Trails for Labeled Petri Nets

In Section 4, we proved that token trails cover firing sequences, state graphs, and
partial languages using plain marked labeled nets only. In this section, we show that the
token trail semantics is a well-defined generalization of existing semantics, and we
show how to model behavior using general marked labeled nets. We show examples of
labeled nets and Petri nets to argue that some labeled nets model behavior of these Petri
nets and some do not.

Token Trails for Arbitrary Initial Markings. In the definition of a token trail, we
consider arbitrary initial markings. Up to this point, only modeling firing sequences,
state graphs, and partial languages there is no need to put multiple tokens in conditions.

The first labeled net in Figure 12 depicts our running example sequentially ordered
net, but this time with an initial marking of three tokens in the first place. Thus, it is
neither a plain marked labeled net, nor a sequence net anymore. However, if we
consider the token trails of Figure 6, trails number 2, 3, 4, 6, 7, and 8 are still token
trails for the related places p2, p3, p4, p6, p7, and p8 of Figure 1. If we change the initial
marking of Figure 1 to 3 � p1 þ 3 � p5, then token trails 1 and 5 would relate to p1 and
p5. The first labeled net in Figure 12 is only in the net language of a Petri net if the
sequence ABXCBD can be executed concurrently three times to itself. This perfectly
matches our intuition looking at the first net of Figure 12.

Fig. 11. Labeled net modeling the prime event structure for the three runs of Figure 9 marked
with a token trail for place p3 of Figure 1.

A B DBX C

A B DBX C

Fig. 12. Two marked labeled nets.

300 R. Bergenthum et al.

The second labeled net in Figure 12 depicts an even more sophisticated initial
marking. We specify that we start the sequence at the beginning and simultaneously
before the last two actions B and D. In this example, the first token trail of Figure 6 is
still a trail for p1 of Figure 1 because the fifth place of the sequence is not marked so
that the sum defined by condition (III) is 1 and thus, is the initial marking of p1 in
Figure 1. Similarly, the token trails 4, 5, 6, and 8 still hold for their related places. If we
consider places p2 and p7, we must add one token each to the initial marking of the
Petri net of Figure 1 to fix trails number 2 and 7. This is consistent with the intuition
behind the specification in Figure 12 because the marked Petri net should be able to
execute BD from the initial marking. However, something is strange about the third
token trail of Figure 6 because p3 is not connected to transitions B and D but still, we
must add one token to the initial marking of p3 so that the third token trail of Figure 6 is
a token trail for p3. But if we really think about the behavior we specify, we see that in
Figure 12, using the first initial token, the sequence of events ABXCB reaches the same
condition as using the second initial token and just execute the second event labeled B.
In other words, we specify that we want to have a Petri net so that firing ABXCB and
firing B leads to the same state. This is only satisfied if we add one additional token to
p3.

We can add an initial marking to any kind of labeled net to model a multiset of local
states as starting points. This is the main idea of condition (III) of Definition 6.

Token Trails for Merged Local States. Figure 13 depicts labeled nets modeling the
behavior of our running example in terms of marked labeled nets. There is conflict, a
merge, a split, and synchronization. Obviously, they are neither a state graph net nor a
partial order net. The upper net of Figure 13 specifies behavior where we start by an
action A. Then there is a split. In the top part of the split, we have the choice between
the sequence just B, or the sequence of actions BXB. Executing either of these two
sequences will lead to the merge at the local state c6. In parallel to this choice, we have
action C followed by a synchronization using action D. This kind of control flow seems
to fit the Petri net depicted in Figure 1.

Fig. 13. A marked labeled net with a merge and a marked labeled net with a loop.

Token Trail Semantics – Modeling Behavior of Petri Nets 301

Now, we check if the upper labeled net of Figure 13 is in the net language of the
Petri net of Figure 1 by constructing a token trail for every place. Figure 14 depicts the
token trails for places p1, p2, p6, p4, p7, and p8.

We still miss a token trail for the other places. For the place p3, the rise of X must
be �1 and thus, we need at least one token in c4. Assume there are n tokens in c4. The
rise of B must be 0 and thus, there must be n tokens in c2 as well. With the same
argument there must be n tokens in c6, and there must be n tokens in c5, all because B
must have a rise of 0. Consequently, the number of tokens in c4 is the number of tokens
in c5, therefore, the rise of X cannot be �1. There is no token trail for the place p3 in the
upper labeled net of Figure 13. Remark, this is perfectly fine with our intuition! In the
first labeled net of Figure 13, we specify that executing the loop, and not executing the
loop, leads to the same local state c6. Thus, if the upper net of Figure 13 is in the net
language of some Petri net, executing or skipping the loop must lead to the same state.
This holds for places p1, p2, p6, p4, p7, and p8, but not for place p3. If we skip the loop,
there are two tokens left in p3. If we execute the loop once, there is one token left in p3.
Altogether, the upper labeled net in Figure 13 specifies that counting iterations is not
allowed. It is only in the net language of Figure 1 if we were to delete p3 and thus,
allow for arbitrary iterations of B and X.

If we want to change the specification and model that counting should be possible,
we must split the local state called c6 in the upper net of Figure 13 into two separate
states. Thus, we would end up with a branching process. Here, token trail semantic
perfectly handles merging of local states.

We are still missing a token trail for place p5. This place is initially marked,
therefore, c1 must be initially marked as well. The rise of A must be 0 so that the initial
token can either go to c2 or to c3. The rise of C is −1 so that we must mark c3 and there
is no token left for c2. Thus, there is no token for c4 and X is not enabled according to
(I). Again, there is no token trail for p5. The reason is that p5 ensures that C can only be
executed after the execution of X: The upper net of Figure 13 models C and X as
independent. Thus, it is correct that there is no token trail for p5.

Summing up the first labeled net of Figure 13, if we delete p3 and p5 from Figure 1,
the upper net of Figure 13 is in the net language of Figure 1. If we keep p5 and add a
condition from X to C, as is the case in the partial order nets of Figure 9, the initial
token can go to X and another token from X to C. This labeled net would be in the net

Fig. 14. Token trails in copies of the labeled net of Figure 13 for some places of Figure 1.

302 R. Bergenthum et al.

language of Figure 1 without p3. If we want to count loops, we must split c6 to allow a
branched local state. These examples highlight how token trails deal with merging of
alternative executions and shared local states.

Token Trails for Loops. We just indirectly specified looping behavior using a shared
local state. What if the specification directly models a loop? The second labeled net of
Figure 13 depicts an example where we specify a similar behavior but this time using a
loop. Again, there is a loop of B and X in parallel to the action C. Here, we directly
specify that there is at least one execution of X and at least two executions of B before
another X can return to the local state c2. With the same arguments as before, we can’t
construct a token trail for place p3 where X (or B) is producing, and D is consuming
tokens because we must always be able to go back to c2. Again, it is not possible to
count Bs and Xs.

We can copy the token trails of Figure 14 into the second labeled net of Figure 13
to directly see that there are token trails for the places p1, p2, p6, p4, p7, and p8. There is
no token trail for p3 because of the merged local state c2 and there is no token trail for
p5 because C and X are modeled as independent again. Thus, again token trails match
our intuition and handle Figure 13 correctly, although it is a specification with a loop.

To really put token trails to the test we introduce the first Petri net of Figure 15.
This example might look strange at first, but we want to have a bounded Petri net where
we must execute the loop of our running example at least once. Here, after the first
execution of B the place p5 is not marked yet. We execute X to mark p5 and enable B
again. After firing B a second time p5 and p6 are marked, enabling D. We can fire Y to
move a token from p5 to p3 to reset the marking to the state already visited after firing
the first B.

In Figure 15, the first labeled net is in the net language of the first Petri net.
Intuitively, Figure 15 specifies that neither the local states c2 and c5 nor the local states
c4 and c6 are merged. Using an additional action Y , we can distinguish entering and re-

Fig. 15. Two Petri nets and two labeled nets of their languages.

Token Trail Semantics – Modeling Behavior of Petri Nets 303

entering the loop. Here, the token trail for place p5 is simply c5 þ c6. The token trail for
place p3 is simply c2 þ c4. Token trails faithfully handle merges and loops.

Token Trails for Weighted Arcs. The second Petri net of Figure 15 depicts our
running example net with additional arc weights. The second labeled net of the same
figure is in its net language. We need condition c3 twice to execute the event labeled C.
Whenever we execute an event labeled B, we produce condition c4 or c6 twice. The
marking c3 in the labeled net is a token trail of p4. The rise of the event labeled A is still
1, the rise of the event labeled C is �2. The marking c4 þ c6 is a token trail for p6.
Remark, in the second Petri net of Figure 15, C is not enabled after firing A in the
initial marking, but the same holds for the depicted labeled net. Token trails just respect
condition c3 and the related arc weights.

At the end of this section, we show one more strong argument highlighting that the
net language is well-defined. We prove that every labeled net without duplicate labels
is in its own net language.

Theorem 4. Let S be a marked labeled net without duplicate labels, so that S models a
Petri net N. S is in the net language of N.

Proof. Let N ¼ P; T ;W ;m0ð Þ be a Petri net and S ¼ C;E;F;A; l;mxð Þ be a labeled net
without duplicate labels. S models N, so we rename all elements of S so that S ¼
P; T ;W ; T; id;m0ð Þ holds. Fix a place p 2 P in N, m ¼ p is a token trail for p in S
because m cð Þ is only 1 for c ¼ p and 0 for any other condition.
Conditions (I), (II), and (III) hold because 8e 2 T :

P
c2 �e W c; eð Þ� m cð Þ ¼ W p; tð Þ,

8e 2 T :
P

c2PðW e; cð Þ �W c; eð ÞÞ � m cð Þ ¼ W e; pð Þ �W p; eð Þð Þ � m pð Þ ¼ W e; pð Þ�
W p; eð Þ, and P

c2C m0 cð Þ � m cð Þ ¼ m0 pð Þ. ■

Every Petri net is in its own net language. Token trails work perfectly fine for any
kind of state-based or event-based specification, as well as for general labeled nets with
loops, initial markings, and arc weights.

Calculating Token Trails. We implemented token trails as a new module of the I
Petri Nets website. The website is available at www.fernuni-hagen.de/ilovepetrinets/.
The module implements the conditions of Definition 6 as a simple Integer Linear
Program. We can drag a labeled net and a Petri net to the related Buttons and see if
there are token trails for every place of the Petri net. Click on some place to see an
example token trail in the labeled net. At www.fernuni-hagen.de/ilovepetrinets/fox/
please find the webtool and all the examples used in this paper.

6 Conclusion

In this paper, we introduced token trails. A token trail is a distribution of tokens on the
set of conditions of a labeled net respecting the consumption and production of tokens
of the labels of the events. Whenever there is conflict, a token trail must agree on the
number of tokens in every condition of a labeled net. Whenever there is concurrency, a
token trail can distribute tokens to local states. We have proven that token trails cover
firing sequences, state graphs, and partial languages of Petri nets. Furthermore, they

304 R. Bergenthum et al.

http://www.fernuni-hagen.de/ilovepetrinets/
http://www.fernuni-hagen.de/ilovepetrinets/fox/

faithfully extend Petri net semantics to labeled nets. Token trails have a very intuitive
graphical representation and are very easy to calculate. In addition to Petri nets, we
only need the additional concept of labels to directly define token trail semantics. For
all these reasons, we see token trails as a kind of meta semantics for Petri nets.

Besides the rather formal stuff, we see a lot of applications for token trails. In future
work, we will define synthesis based on token trails. The goal is to come up with a
framework so that we specify behavior of a system in terms of labeled nets and get the
resulting Petri net for free. Using token trails, we can unify the definitions of state-
based and event-based regions. We refer the reader to the workshop paper [6] for a first
glimpse at this new region definition. Roughly speaking, we will specify labeled nets
and calculate a set of places for the set of labels so that for every place there is a token
trail using the ILP defined in Definition 6. We use the concept of minimal token trails
(i.e., minimal number of tokens) to get a finite result. A prototype of the approach is
already implemented in the module of the I Petri Nets website.

References

1. van der Aalst, W.M.P., van Dongen, B.F.: Discovering Petri Nets from Event Logs. In:
Jensen, K., van der Aalst, W.M.P., Balbo, G., Koutny, M., Wolf, K. (eds.) Transactions on
Petri Nets and Other Models of Concurrency VII. LNCS, vol. 7480, pp. 372–422. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-38143-0_10

2. van der Aalst, W.M.P., Carmona, J.: Process Mining Handbook. Springer (2022). https://doi.
org/10.1007/978-3-031-08848-3

3. Bergenthum, R., Lorenz, R.: Verification of Scenarios in Petri Nets Using Compact
Tokenflows. In: Fundamenta Informaticae, vol. 137, no. 1, pp. 117–142. IOS Press (2015)

4. Bergenthum, R.: Firing Partial Orders in a Petri Net. In: Buchs, D., Carmona, J. (eds.)
PETRI NETS 2021. LNCS, vol. 12734, pp. 399–419. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-76983-3_20

5. Bergenthum, R.: Petrinetze: Grundlagen der Formalen Prozessanalyse. In: Prozessmanage-
ment und Process-Mining, De Gruyter Studium, pp. 125–152. De Gruyter (2021)

6. Bergenthum, R., Kovar, J.: A First Glimpse at Petri Net Regions. In: Proceedings of
Application and Theory of Petri Nets 2022, CEUR Workshop Proceedings 3167, pp. 60–68
(2022)

7. Best, E., Devillers, R.: Sequential and Concurrent Behaviour in Petri Net Theory. In:
Theoretical Computer Science 55, nr. 1, pp. 87–136. Elsevier (1987)

8. Cortadella, J., Kishinevsky, M., Kondratyev, A., Lavagno, L., Yakovlev, A.: Hardware and
Petri Nets Application to Asynchronous Circuit Design. In: Nielsen, M., Simpson, D. (eds.)
ICATPN 2000. LNCS, vol. 1825, pp. 1–15. Springer, Heidelberg (2000). https://doi.org/10.
1007/3-540-44988-4_1

9. Desel, J., Reisig, W.: Place/Transition Petri Nets. In: Reisig, W., Rozenberg, G. (eds.) ACPN
1996. LNCS, vol. 1491, pp. 122–173. Springer, Heidelberg (1998). https://doi.org/10.1007/
3-540-65306-6_15

10. Desel, J., Juhás, G.: What is a Petri Net? In: Ehrig, H., Juhás, G., Padberg, J., Rozenberg, G.
(eds.) Unifying Petri Nets, Advances in Petri Nets, LNCS 2128, pp. 1–25. Springer, Cham
(2001). https://doi.org/10.1007/3-540-45541-8_1

Token Trail Semantics – Modeling Behavior of Petri Nets 305

https://doi.org/10.1007/978-3-642-38143-0_10
https://doi.org/10.1007/978-3-031-08848-3
https://doi.org/10.1007/978-3-031-08848-3
https://doi.org/10.1007/978-3-030-76983-3_20
https://doi.org/10.1007/978-3-030-76983-3_20
https://doi.org/10.1007/3-540-44988-4_1
https://doi.org/10.1007/3-540-44988-4_1
https://doi.org/10.1007/3-540-65306-6_15
https://doi.org/10.1007/3-540-65306-6_15
https://doi.org/10.1007/3-540-45541-8_1

11. van Dongen, B.F., de Medeiros, A.K.A., Verbeek, H.M.W., Weijters, A.J.M.M., van der
Aalst, W.M.P.: The ProM Framework: A New Era in Process Mining Tool Support. In:
Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp. 444–454. Springer,
Heidelberg (2005). https://doi.org/10.1007/11494744_25

12. Dumas, M., La Rosa, M., Mendling, J., Reijers, H.A.: Fundamentals of Business Process
Management. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-33143-5

13. Goltz, U., Reisig, W.: Processes of Place/Transition-Nets. In: Diaz, J. (eds.) Automata
Languages and Programming, vol. 154, pp. 264–277. Springer, Heidelberg (1983). https://
doi.org/10.1007/BFb0036914

14. Grabowski, J.: On Partial Languages. In: Fundamenta Informaticae, vol. 4, no. 2, pp. 427–
498. IOS Press (1981)

15. Janicki, R., Koutny, M.: Structure of Concurrency. In: Theoretical Computer Science 112,
no. 1, pp. 5–52. Elsevier (1993)

16. Juhás, G., Lorenz, R., Desel, J.: Can I Execute My Scenario in Your Net? In: Ciardo, G.,
Darondeau, P. (eds.) Proceedings of Application and Theory of Petri Nets 2005, LNCS
3536, pp. 289–308. Springer, Heidelberg (2005). https://doi.org/10.1007/11494744_17

17. Kiehn, A.: On the Interrelation Between Synchronized and Non-Synchronized Behavior of
Petri Nets. In: Elektronische Informationsverarbeitung und Kybernetik, vol. 24, no. 1–2,
pp. 3–18 (1988)

18. Peterson, J.L.: Petri Net Theory and the Modeling of Systems. Prentice-Hall, Englewood
Cliffs (1981)

19. Pratt, V.: Modelling Concurrency with Partial Orders. In: International Journal of
ParallelProgramming 15, pp. 33–71 (1986)

20. Reisig, W.: Understanding Petri Nets - Modeling Techniques, Analysis Methods, Case
Studies. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-33278-4

21. Vogler, W. (ed.): Modular Construction and Partial Order Semantics of Petri Nets. LNCS,
vol. 625. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-55767-9

22. Winskel, G.: Event Structures. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.) ACPN 1986.
LNCS, vol. 255, pp. 325–392. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-
17906-2_31

306 R. Bergenthum et al.

https://doi.org/10.1007/11494744_25
https://doi.org/10.1007/978-3-642-33143-5
https://doi.org/10.1007/BFb0036914
https://doi.org/10.1007/BFb0036914
https://doi.org/10.1007/11494744_17
https://doi.org/10.1007/978-3-642-33278-4
https://doi.org/10.1007/3-540-55767-9
https://doi.org/10.1007/3-540-17906-2_31
https://doi.org/10.1007/3-540-17906-2_31

On the Reversibility of Circular
Conservative Petri Nets

Raymond Devillers(B)

Université Libre de Bruxelles, Boulevard du Triomphe C.P. 212,
1050 Bruxelles, Belgium

raymond.devillers@ulb.be

Abstract. The paper examines how to decide if a given (initially
marked) Petri net is reversible, i.e., may always return to the initial
situation. In particular, it concentrates on a very specific subclass of
weighted circuits where the total number of tokens is constant, for which
the worst case complexity is not known. Various ways to tackle the prob-
lem are considered, and some subcases are derived for which the problem
is more or less easy.

Keywords: Petri net · weighted circuit · reversibility · polynomial
complexity

1 Introduction

A specific feature of P/T Petri nets is that many interesting problems are decid-
able, but their (worst case) complexity may be huge and hard to analyse. For
instance, it is known since the eigthies that the reachability problem is decidable
[9,12,13] (while it becomes undecidable if we add at least two inhibitor arcs [15]),
but only from 2018 that the worst case complexity is ackermanian [4,5,10].
As a consequence several other decidable properties, like the existence of home
states [1], the reversibility (is the initial marking a home state?) [7],... are also (at
least) ackermanian. An idea is then to consider structural subclasses to determine
if some of these properties become easier to check. In this respect, a colleague1

incidentally mentioned to me that it was not even known if the reversibility for
a very special subclass of weighted circuits, where the total number of tokens is
constant, is polynomial or exponential.

That is the problem we shall tackle in this paper, considering various
approaches, exhibiting necessary and sufficient conditions, and special subcases
where the problem may be solved (more or less) easily.

The structure of the paper is as follows: after recalling the context, Sect. 2
concentrates on invariant weighted circular Petri Nets. Some algorithms are
developed in Sect. 3 and necessary and sufficient conditions in Sect. 4. Reduc-
tion to potential reachability is exploited in the next Section and the search for
the largest dead number of tokens is considered in Sect. 6. The last Section, as
usual concludes and suggests possible future developments.
1 Pr. Eike Best, retired from Carl von Ossietzky Universität Oldenburg, Germany.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Gomes and R. Lorenz (Eds.): PETRI NETS 2023, LNCS 13929, pp. 307–323, 2023.
https://doi.org/10.1007/978-3-031-33620-1_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33620-1_17&domain=pdf
https://doi.org/10.1007/978-3-031-33620-1_17

308 R. Devillers

2 Invariant Weighted Circular Petri Nets

Definition 1. Petri Nets
A (weighted, initially marked, place-transition or P/T) Petri net (PN for short)
is denoted as N = (P, T, F,M0) where P is a set of places, T is a disjoint set
of transitions (P ∩ T = ∅), F is the flow function F : ((P × T) ∪ (T × P)) → N

specifying the arc weights (in graphical representations, arcs with a null weight
are usually omitted), and M0 is the initial marking (where a marking is a map-
ping M : P → N, indicating the number of tokens in each place). We shall only
consider here finite nets, where P and T are finite sets. Its incidence matrix
is the matrix C : (P × T) → Z defined as C(p, t) = F (t, p) − F (p, t), i.e., the
difference between the number of tokens produced and absorbed by t on p. For
each node x ∈ P ∪ T , its post-set is x• = {y ∈ P ∪ T |F (x, y) > 0} and its preset
is •x = {y ∈ P ∪ T |F (y, x) > 0}.
A transition t ∈ T is enabled at a marking M , denoted by M [t〉, if
∀p ∈ P : M(p) ≥ F (p, t). The firing of t (when enabled) leads from M to M ′,
denoted by M [t〉M ′, if M [t〉 and M ′(p) = M(p) − F (p, t) + F (t, p). This can be
extended, as usual, to M [σ〉M ′ for (firing) sequences σ ∈ T ∗, and [M〉 denotes
the set of markings reachable from M . The net is bounded if there is k ∈ N

such that ∀M ∈ [M0〉, p ∈ P : M(p) ≤ k. The reachability graph RG(N) of N
is the labelled transition system with the set of vertices [M0〉, initial state M0,
label set T , and set of edges {(M, t,M ′) | M,M ′ ∈ [M0〉 ∧ M [t〉M ′}. There is a
(non-trivial) cycle in this reachability graph if M [σ〉M for some M ∈ [M0〉 and
σ �= ε (the empty sequence).
If σ ∈ T ∗ is a firing sequence, its Parikh vector Ψ(σ) is the (column) vector
in N

T counting for each transition t ∈ T the number of its occurrences in σ.
The state equation says that, if M [σ〉M ′, i.e., if M ′ is reachable from M , then
M ′ = M +C ·Ψ(σ). Conversely, one says that a marking M ′ is potentially reach-
able from M if, for some column vector ν ∈ N

T , we have M ′ = M + C · ν. We
shall also say that a column vector ν ∈ N

T is fireable at a marking M if there is
a firing sequence M [σ〉 with Ψ(σ) = ν; the support of ν is the set of transitions
with a non-null component: sup(ν) = {t ∈ T |ν(t) > 0}; if2 C ·ν = 0 and ν �= 0, ν
is said to be a semiflow of N ; if a semiflow is fireable at some marking, it defines
a non-trivial cycle at M . A (line) vector µ ∈ N

S is said to be an S-invariant
(also called a P -invariant or a place-invariant in the literature) if µ · C = 0.

Moreover, we shall define maxexN ∈ (N ∪ {∞})T as the extended T-vector
satisfying: ∀t ∈ T , maxexN (t) is the maximal number of times t may be exe-
cuted in firing sequences of N from M0, allowing the case maxexN (t) = ∞ when
t may be executed an unbounded number of times in firing sequences.
N is persistent if for all reachable markings M,M ′,M ′′ ∈ [M0〉 and transitions
t′, t′′ ∈ T such that M [t′〉M ′ and M [t′′〉M ′′ with t′ �= t′′, there exists a (reach-
able) marking M ′′′ such that M ′[t′′〉M ′′′ and M ′′[t′〉M ′′′. It is backward persistent
if for all reachable markings M,M ′,M ′′ ∈ [M0〉 and transitions t′, t′′ ∈ T such
that M ′[t′〉M and M ′′[t′′〉M with t′ �= t′′, there exists a marking M ′′′ ∈ [M0〉
2 In general, 0 denotes a null vector of the adequate size and shape (line or column).

On the Reversibility of Circular Conservative Petri Nets 309

such that M ′′′[t′′〉M ′ and M ′′′[t′〉M ′′.
N is reversible if ∀M ∈ [M0〉 : M0 ∈ [M〉, i.e., whatever marking is reached from
the initial situation, it is always possible to go back to this initial situation. N
deadlocks in a marking M ∈ [M0〉 if �t ∈ T : M [t〉. It is trivially reversible if N
deadlocks in M0. It is live if ∀M ∈ [M0〉, t ∈ T : ∃M ′ ∈ [M〉 such that M ′[t〉.
A marking M is a home state if ∀M ′ ∈ [M0〉 : M ∈ [M ′〉 (M is always reachable).
Note that a net is reversible iff its initial state (marking) is a home state. �� 1

In the following, we shall assume that N does not deadlock in M0 (easy
to check), so that trivial reversibility is avoided. From the state equation, it
occurs that if µ is an S-invariant, for any reachable marking M ∈ [M0〉 we have
µ ·M = µ ·M0, i.e., the weighted number of tokens µ ·M is invariant. The same
is true if M is potentially reachable from M0.

Definition 2. Some subclasses
A P/T net N is a weighted marked graph [6] (WMG, also called weighted T-nets
in [16]) if ∀p ∈ P , |p•| ≤ 1 ∧ |•p| ≤ 1.
It is a weighted circuit [16] if it has the shape of a circle, i.e., (up to some renam-
ing) for some n ∈ N, P = {p1, p2, . . . , pn}, T = {t1, t2, . . . , tn}, ∀i ∈ [1, n] : t•i =
{pi} ∧ •ti = {pi�1} (with i � 1 = i − 1 if i > 1 and n if i = 1; symmetrically, we
shall define i ⊕ 1 = i + 1 if i < n and 1 if i = n).
It is moreover invariant (IWC for short) if ∀i ∈ [1, n] : F (ti, pi) = wi =
F (pi�1, ti). �� 2

Weighted circuits, and in particular the ones with an S-invariant, have been
examined in [2,14]. Here we shall concentrate on invariant ones (where the unit
vector µ = (1, . . . , 1) is an S-invariant), for which more specific results may be
obtained.

Corollary 1. Invariance property and persistence
In any IWC, whatever the initial marking, the total number of tokens in the
system remains constant: M ′ ∈ [M〉 ⇒ ∑n

i=0 M(pi) =
∑n

i=0 M ′(pi).
Any IWC, like any weighted circuit and any WMG, is persistent and backward
persistent, whatever the initial marking.
In any IWC (like in any weighted circuit and any WMG), if M [τ〉 ∧ M [σ〉, then
M [τ(σ−• τ)〉 and M [σ(τ−• σ)〉 are both enabled firing sequences (leading to the
same marking), where σ−• τ is the residue of σ by τ , i.e., the sequence σ where
one drops the first min(Ψ(τ)(t), Ψ(σ)(t)) occurrences of each transition t ∈ T
(Keller’s theorem [8]). �� 1

310 R. Devillers

An IWC is pictured in Fig. 1.

Fig. 1. An IWC with 9 places and transitions, and 92 tokens permanently in the system.

Since IWCs are WMGs, we may apply results from [6,16], for instance:

Proposition 1. Potential and effective reachability (Th 3 of [6])
If N is an IWC with incidence matrix C and M = M0 + C · ν ≥ 0 with ν ≤
maxexN , then there exists a firing sequence M0[σ〉M with Ψ(σ) = ν. �� 1

Proposition 2. Cycles imply reversibility (Lem 4(3) of [6])
If N is an IWC, it is neutral in the sense of [11,16]; it has a unique minimal
semiflow π, with support T , and each semiflow is a multiple of π.
If its reachability graph has a non-trivial cycle, then there is a cycle with Parikh
vector π around each arc of the reachability graph (hence also around each reach-
able marking) and the net is reversible. �� 2

Corollary 2. Reversibility and liveness
An IWC is live iff it is non-trivially reversible. �� 2

And since adding initial tokens may not destroy an existing cycle, we also
get:

Corollary 3. Monotonicity
If an IWC is (non-trivially) reversible, adding initial tokens preserves reversibil-
ity.
Reversely, if an IWC is not reversible, dropping initial tokens preserves non-
reversibility. �� 3

In the following, we shall consider IWCs with n > 1. Indeed, if n = 0 the
system disappears, and if n = 1, when M0(p1) < w1 the system is deadlocked
and thus trivially reversible, while if M0(p1) ≥ w1 we have M0[t1〉M0 and the
system is always reversible, so that the reversibility problem is not interesting.

On the Reversibility of Circular Conservative Petri Nets 311

3 Some Easy Algorithms

Let us first determine the minimal semiflow π of an IWC N (we shall usually
denote π(ti) by πi).

Lemma 1. Minimal semiflow
∀i : πi = lcm{w1, w2, . . . , wn}/wi.

Proof: By definition, π is a semiflow iff w1 · π1 = w2 · π2 = . . . = wn · πn,
hence the formula yields a semiflow. Moreover, since lcm is the smallest common
multiple of its arguments, it is known that, for each prime number p, if p occurs
in wi with a maximal exponent, it does not occur at all in πi. Hence there is no
sub-multiple of π, hence no smaller semiflow. �� 1

In order to determine if N is reversible, we must thus check if M0[π〉 (meaning
that there is a firing sequence M0[σ〉 such that Ψ(σ) = π, see Definition 1). To
do that, we simply have to check that, if M0[ν〉M with ν ≤ π and ν �= π, it
is possible to perform from M some transition in the support of π − ν, hence
elongating ν towards π. Indeed, from the fact that M0[0〉, if this is true we
shall be able to exhibit that M0[π〉; and from Keller’s theorem (see Cor 1), if
M0[π〉 ∧ M0[ν〉, it is possible to elongate ν to π.

This may be done by the following (non-deterministic) algorithm:
procedure Revers1(N)

if �i : M0(pi�1) ≥ wi then
return(trivial non-reversibility)

end if
compute π; M = M0

while ∃i : π(ti) > 0 ∧ M(pi�1) ≥ wi do
π(ti) = π(ti) − 1; M(pi�1) = M(pi�1) − wi; M(pi) = M(pi) + wi

end while
if π = 0 then

return(reversible)
else

return(not reversible)
end if

end procedure
The computation of π is quite simple, but its size may be huge and the worst

case complexity of the algorithm is exponential. Indeed, in case of reversibility,
the number of iterations of the while-loop is

∑
i π(ti) = lcm{w1, w2, . . . , wn} ·

(
∑

i 1/wi). For instance, if wi is the ith prime number, all the wi’s are pairwise
prime and lcm{w1, w2, . . . , wn} =

∏
i wi. Then, it is known that, asymptoti-

cally, wn ∼ n · log(n),
∑

i 1/wi ∼ log log(n),
∏

i wi ∼ en·log(n), hence the worst
case complexity of Revers1 is exponential. It should thus only be used when
lcm{w1, w2, . . . , wn} is not too high, or when there are very few tokens in the
system, leading to a quick deadlock.

312 R. Devillers

For instance, Revers1 shows that N1 in Fig. 1 is reversible, but the needed
number of steps is 334406399 and takes around 6 s on a standard processor.

It is possible to speed up algorithm Revers1 by scanning systematically the
transitions and firing them as much as possible in each update. This leads to the
following deterministic algorithm:
procedure Revers2(N)

if �i : M0(pi�1) ≥ wi then
return(trivial non-reversibility)

end if
compute π; M = M0; continue:=true
while continue do

continue:=false
for i ← 1 to n do

if π(ti) > 0 ∧ M(pi�1) ≥ wi then
continue:=true
k = min(π(ti), �M(pi�1)/wi�)
π(ti) = π(ti) − k
M(pi�1) = M(pi�1) − k · wi

M(pi) = M(pi) + k · wi

end if
end for

end while
if π = 0 then

return(reversible)
else

return(not reversible)
end if

end procedure
This may be especially efficient if there are many tokens circulating in the

system. For instance, if there are initially at least lcm{w1, w2, . . . , wn} tokens in
p1, a single scan of each place will lead to the conclusion that the given net is
reversible. By contrast, if there are few tokens, the speed up will be polynomial,
and the worst case remains exponential. For instance, Revers2 still shows that
N1 in Fig. 1 is reversible, but the number of needed steps in the while loop is
4738072 and it takes around 2 s on a standard processor.

4 Some Necessary and Sufficient Conditions

Instead of trying to build progressively a reproducing firing sequence, like in
the previous section, we may exploit the fact that the total number of tokens
is invariant for the special class of nets we consider (see Corollary 1). In the
following we shall denote by m =

∑
i M0(pi) this number: in the terminology

of [2,14], this is the weight of the initial, hence of each reachable, marking.

On the Reversibility of Circular Conservative Petri Nets 313

A first easy property says that, if m is large enough, the net is reversible,
whatever the distribution of the tokens in the various places:

Proposition 3. Large markings are reversible
If m > (

∑
i wi) − n, then the net is reversible.

Proof: If m > (
∑

i wi) − n =
∑

i(wi − 1), from the fact that for each reach-
able marking M we have

∑
i M(pi) = m, by the pigeon hole principle in each

reachable marking at least one place pi has at least wi⊕1 tokens, so that ti⊕1 is
enabled. As a consequence, no reachable marking is dead, it is always possible
to extend a firing sequence, and since the net is bounded, at some point we shall
form a cycle. But then we know that the net is reversible (see Proposition 2).
�� 3

We thus have an easy sufficient condition of reversibility, and its negation
yields a necessary condition for non-reversibility. Still with the terminology of [2,
14], (

∑
i wi) − n + 1 is the least live marking weight, i.e., the least marking

weight such that all markings with at least that weight are reversible (and live).
Indeed, from that weight all the markings are reversible from Proposition 3 and
the marking such that M(pi) = wi⊕1 − 1, with weight (

∑
i wi) − n immediately

deadlocks. With respect to [2,14], there is no need here (i.e., for the class of
IWCs) to solve a (non-easy) Frobenius diophantine equation to find the least
live marking weight.

For instance, this condition immediately tells us that the net N1 in Fig. 1
is reversible, without performing the long computation corresponding to the
algorithms in the previous section, since in this case

∑
i(wi − 1) = 1 + 2 + 4 +

6 + 10 + 12 + 16 + 18 + 22 = 91. In fact, we here have a “limit” initial marking
allowing to be able to apply this result, and indeed, with 91 tokens instead of 92
in the place p9, Algorithm Revers2 tells us that the net becomes non-reversible
(after 614322 executions of the while loop).

There is, symmetrically, an easy property saying that if we do not have
enough tokens, the net is non-reversible, whatever the distribution of the tokens
in the various places:

Proposition 4. Small markings are non-reversible

If (m+n−1)!
m!·(n−1)! < lcm{w1, w2, . . . , wn} · (

∑
1/wi), then the net is non-reversible.

Proof: Combinatory analysis tells us that (m+n−1)!
m!·(n−1)! yields the number of

ways to distribute m tokens between n places. Since a minimal cycle return-
ing to the initial state (like one returning to any other state) has a length
lcm{w1, w2, . . . , wn} · (

∑
1/wi) (see Lemma 1), we also need that number of

different markings to be visited during that cycle. Hence the property. �� 4

We thus have an easy sufficient condition of non-reversibility, and its nega-
tion yields a necessary condition for reversibility. These conditions characterise
situations which are or are not reversible whatever the initial distribution of the

314 R. Devillers

tokens. Between those bounds, in general (but not always) the reversibility will
rely on the initial marking (we shall soon see such examples). However, it is not
sure that some marking just above the limit case given by Proposition 4 is not
reversible, hence we know some weights such that no marking with that weight
is reversible, but not the largest one.

We may also mention an easy condition ensuring reversibility for specific
markings:

Proposition 5. Large markings in some place imply reversibility
If, for some place pi, M0(pi) ≥ lcm{w1, w2, . . . , wn}, then the net is reversible.

Proof: It is easy to see that, in this case, Algorithm Revers2 starting at place
pi will generate a reproducing firing sequence in one execution of the while loop.
�� 5

Very often, Proposition 3 will imply Proposition 5 (like for net N1 in Fig. 1),
but not always, as illustrated by Fig. 2: with 6 = lcm{2, 3} tokens in p9, Proposi-
tion 5 tells us that the net is reversible, while

∑
i(wi−1) = 10 so that Proposition

3 may not be applied. But distributing those tokens by putting 3 of them in p7
and a single one in p1, p2 and p3, yields non-reversibility, with the same total
number of tokens.

Fig. 2. An IWC with 9 places and transitions, and 6 tokens permanently in the system.

As mentioned in the proof of Proposition 5, instead of applying the latter,
we may perform Revers2 while limiting the number of executions of the while
loop to 2: one to gather tokens in a single place and one to observe that a
reproducing firing sequence was obtained (or that the system deadlocked before).
More generally, it may be interesting to perform Revers2 while limiting the
number of executions of the while loop to a polynomial number (in the size of
the net), like n: in practice, in many cases (but not all) we shall conclude the
reversibility or the non-reversibility of the given IWC net.

On the Reversibility of Circular Conservative Petri Nets 315

An important point to observe is that all the checks considered in this section
(as well as the trivial reversibility check) are clearly polynomial. However, they
do not cover all the cases. The next section will go a bit further.

5 Potential Reachability Checks

From the previous remark, we shall now assume that the considered IWC N is
not trivially reversible, and that no check from the previous section is conclusive.

An important point to observe for the class of IWC nets is the following:

Proposition 6. Potential and effective reachability In a reversible
IWC, if a marking is potentially reachable, it is effectively reachable.

Proof: If the net N is reversible, since π has support T , maxexN = ∞T so that,
from Proposition 1, any potentially reachable marking is effectively reachable.

�� 6

Corollary 4. Potential reachability and reversibility
If a deadlocking marking is potentially reachable in an IWC, the latter is non-
reversible. �� 4

Note, that this does not mean that the potentially reachable deadlocking
marking is effectively reachable, since it may happen that another deadlocking
marking is reached instead. But we cannot progress forever, otherwise at some
point we shall close a (non-empty) cycle, with support T , and by Keller’s theorem
the deadlocking sequence may be elongated, hence cannot be deadlocking.

5.1 The Limit Case

We shall here assume that m =
∑

i M0(pi) =
∑

i(wi − 1), so that Proposition 3
“just” fails. Since the number m of tokens in the system does not change, the
only deadlocking marking that could possibly be reached is MD such that ∀i :
MD(pi) = wi⊕1 − 1. A similar remark is that the only marking which cannot be
preceded by another one is MD such that ∀i : MD(pi) = wi −1, so that starting
from MD will lead to the longest firing sequences built by algorithms Revers1
and Revers2. From Corollary 4, we thus have:

Proposition 7. Potential reachability of MD

When
∑

i M0(pi) =
∑

i(wi − 1), an IWC is reversible if and only if MD is not
potentially reachable.

316 R. Devillers

Proof: If MD is not potentially reachable, it is not reachable either and any
firing sequence may be elongated, leading finally to a cycle (the IWC is bounded),
hence to reversibility (see Proposition 2).
If MD is potentially reachable, Corollary 4 applies. �� 7

We thus have to determine if the equation M0 + C · x = MD has a solution
x ∈ N

T . In fact, it is equivalent to determine if there is a solution in Z
T since it

is always possible to add any multiple of π to it. If we denote M = MD − M0,
we thus have to solve C · x = M in the integers, with

C =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

w1 −w2 0 . . . 0
0 w2 −w3 . . . 0

. . .

. . .
0 0 0 . . . −wn

−w1 0 0 . . . wn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

It is known that solving an integer linear system is polynomial, for instance
by constructing the Hermite normal form of the matrix [3], or by a direct exam-
ination of the system when it has a particular form. We shall here illustrate the
latter. Note first that C has rank n− 1, and that

∑
i M(pi) = 0, so that we only

have to solve n − 1 lines. Let us consider the n − 1 first ones.

1. w1 · x1 − w2 · x2 = M(p1) is a classical linear diophantine equation. It has
no solution if gcd(w1, w2) does not divide M(p1); then there is no solution
to the whole system of equations, MD is not potentially reachable, and the
given IWC is reversible; this may be checked in polynomial time. Otherwise
it has infinitely many solutions. Let us thus assume gcd(w1, w2) = g1,
w1 = g1·w′

1, w2 = g1·w′
2 and M(p1) = g1·m1. Then w′

1 and w′
2 are pairwise

prime and we may use the (polynomial) extended Euclide algorithm to find
the Bezout coefficients b1, b2 ∈ Z such that w′

1 · b1 − w′
2 · b2 = 1. Then the

solutions are x1 = m1 · b1 + w′
2 · z2 and x2 = m1 · b2 + w′

1 · z2, where z2 is
any integer in Z.

2. w2 · x2 − w3 · x3 = M(p2) is a similar linear diophantine equation. If
reversibility was not deduced in the previous step, from the previous rela-
tions, it may be rewritten as w2 · (m1 · b2 + w′

1 · z2) − w3 · x3 = M(p2), or
(w2 ·w′

1) ·z2 −w3 ·x3 = M(p2)−w2 ·m1 · b2, or (w2 ·w′
1) ·z2 −w3 ·x3 = m′

2,
with m′

2 = M(p2)−w2 ·m1 ·b2. It has no solution if gcd(w2 ·w′
1, w3) does not

divide m′
2, then there is no solution to the whole system of equations, MD

is not potentially reachable, and the given IWC is reversible; otherwise it
has infinitely many solutions. Let us thus assume gcd(w2 · w′

1, w3) = g2,
w2 · w′

1 = g2 · w′′
2 , w3 = g2 · w′

3 and m′
2 = g2 · m2. Then w′′

2 and w′
3 are

pairwise prime and we may use the extended Euclide algorithm to find
the Bezout coefficients b′

2, b3 ∈ Z such that w′′
2 · b′

2 − w′
3 · b3 = 1. Then the

solutions are z2 = m2 · b′
2 + w′

3 · z3 and x3 = m2 · b3 + w′′
2 · z3, where z3 is

any integer in Z.

On the Reversibility of Circular Conservative Petri Nets 317

3..n-2 We may then continue and, at each stage, there is a simple condition spec-
ifying if there is a solution. If not, we may stop with the answer that the
IWC is reversible. Otherwise we construct two linear expressions depend-
ing on a new integer variable: the first one yields the general form for
an auxiliary variable introduced in the previous stage and the second one
drives the general expression for a variable allowing to build the diophan-
tine equation to solve at the next stage.

n-1 When we arrive at the last stage, it is not necessary to build the gen-
eral form of the present diophantine equation: if it is solvable (otherwise,
as before we may deduce the given IWC is reversible), we may choose
any particular solution (for instance the one originating directly from the
Bezout coefficients) and go back to progressively build the components of
a possible solution x of M0 + C · x = MD. We may deduce that the given
IWC is non-reversible from Proposition 7.

Fig. 3. An IWC with 3 places and transitions, and 4 tokens permanently in the system.

For instance, in the limit system N3 of Fig. 3 (with 4 = 2 + 2 + 3 − 3, so that
we are indeed in the limit case), the constraint on p1 is 2 ·x1−2 ·x2 = w2−1 = 1
which is not solvable. Hence the system is reversible. On the contrary, with 3
tokens in p3 and one in p1, it is not.

Other cases may be solved rather quickly. We may observe that, adding con-
straints i to j (we allow j < i since the constraints may be considered circularly),
we get wi · xi − wj⊕1 · wj⊕1 =

∑j
k=i(wk − 1 − M0(pk)); hence, if gcd(wi, wj⊕1)

does not divide
∑j

k=i(wk − 1 − M0(pk)), we may conclude there is no solution,
hence the given IWC is reversible.

The Relatively Prime Subcase. Let us now consider the special subcase
where all the wi’s are pairwise prime (like in Fig. 1).
In the first step, g1 = 1, w′

1 = w1 and there is always a solution.
Then, in the second step, we have to solve the equation (w2 ·w1)·z2−w3 ·x3 = m′

2.
Since w3 is prime with both w1 and w2, it is known it is also prime with w1 · w2

(otherwise, there would be a prime divisor of w3 and w1 · w2, which then should
divide either w1 or w2, contradicting the pairwise prime hypothesis). Thus, g2 =
1, w′′

2 = w1 · w2 and there is always a solution.

318 R. Devillers

We may then proceed similarly for the next steps. For instance, in step i, we
shall get an equation of the form (wi · · · w2 ·w1) ·zi −wi+1 ·xi+1 = m′

i, and since
wi+1 is prime with (wi · · · w2 · w1), we shall get that gi = 1 and there is always
a solution.
Hence, the given IWC is non-reversible.
And since a deadlocking IWC remains deadlocking if we drop some initial tokens
(see Corollary 3), this amounts to a proof of the following:

Theorem 1. Pairwise prime case
If the weights wi of an IWC are pairwise prime, it is reversible iff its (constant)
number of tokens is greater than

∑
i(wi − 1). �� 1

5.2 The Non-limit Case

We shall here assume3 that 0 < m =
∑

i M0(pi) <
∑

i(wi − 1), and that the
weights are not pairwise prime. Since the number m of tokens in the system
does not change, the only deadlocking markings that could possible be reached
are characterised by the fact that they are between 0 and MD. In fact, those
limits are not included, but we shall not exploit this explicitly, because it will
be implied by the hypothesis on m and the preservation of the total number of
tokens. Corollary 4 may then be reformulated as:

Corollary 5. Linear expression of reversibility
An IWC is reversible if and only if the system of constraints 0 ≤ M0+C·x ≤ MD,
or equivalently −M0 ≤ C · x ≤ MD − M0, is not solvable in x ∈ N

T . �� 5

In fact, it is again equivalent to determine if there is a solution in Z
T since

it is always possible to add any multiple of π to it to reach N
T . This result also

shows that reversibility in our case is in co-NP since, if we are given a possible
solution x, we may check in polynomial time if 0 ≤ M0 + C · x ≤ MD, i.e., if the
IWC is not reversible. Moreover, if

∑
i(wi−1)−∑

i M0(pi) is not too high, there
is a limited number of possible solutions of the system M0 + C · x = M with
0 ≤ M ≤ MD and

∑
i M(pi) =

∑
i M0(pi) to be considered, and each of them

may be solved polynomially. For instance, if
∑

i(wi − 1) − ∑
i M0(pi) = 1, we

only have to check at most n vectors M (MD minus one token in some place).
But there is no certainty that we shall reach a conclusion in a polynomial time
that way in general.

Like for the limit case, let us consider each linear constraint in turn. A differ-
ence with the limit case is that here we shall need to consider all the lines, and not
only the first (n − 1) ones, since

∑
i M0(pi) �= 0 and

∑
i(MD(pi) − M0(pi)) �= 0

while ∀j :
∑

i Cj,i = 0.

3 The case 0 is excluded from Proposition 4, since we assumed the latter may not be
applied, and by the fact we assumed the initial marking does not deadlock.

On the Reversibility of Circular Conservative Petri Nets 319

For each i, the ith constraint is −M0(pi) ≤ wi · xi − wi⊕1 · xi⊕1 ≤ M(pi),
with as before M = MD − M0. Let gi = gcd(wi, wi⊕1). For any y ∈ Z, k ∈ N,
we shall denote by �y�k the largest multiple of k not greater than y, and by
�y�k the smallest multiple of k not smaller than y, i.e., �y�k = k · �y/k� and
�y�k = k · �y/k�. The constraint is then equivalent to

�−M0(pi)�gi = −�M0(pi)�gi ≤ wi · xi − wi⊕1 · xi⊕1 ≤ �M(pi)�gi . (1)

Adding all the constraints (1), we get

−
∑

i

�M0(pi)�gi ≤ 0 ≤
∑

i

�M(pi)�gi (2)

Since M0 ≥ 0, the first part of the constraint (2) is trivial, but the second one
may be more interesting.

Let us consider the net N1 from Fig. 2, but with only 4 token in p9 (and
none elsewhere). The first seven constraints are 0 ≤ 2 · xi − 2 · xi⊕1 ≤ �1�2 = 0,
since wi = 2 = wi⊕1, gi = 2, M0(pi) = 0 and MD(pi) = 1; the eighth one
is 0 ≤ 2 · x8 − 3 · x9 ≤ 2, since w8 = 2, w9 = 3, g8 = 1, M0(p8) = 0 and
MD(p8) = 2; the ninth one is −4 ≤ 3 · x9 − 2 · x1 ≤ −3, since w9 = 3, w1 = 2,
g9 = 1, M0(p9) = 4 and MD(p9) = 1. The sum yields −4 ≤ 0 ≤ −1, which means
there is no solution, hence the net is reversible; the same arises of course if one
adds tokens to the initial marking, either in p9 or elsewhere; on the contrary,
if we drop one initial token in p9, the sum-constraint is non-conclusive, and an
execution of Revers2 indeed shows we have non-reversibility; the same arises
with some redistributions of the 4 tokens between the various places.

Unfortunately, this does not cover all the cases. Let us consider for example
the system on Fig. 4, where the weights are the first prime numbers, but with
2’s added in between. The pivoting number of tokens is 38 and the gi’s are all
1, so that whenever we start with m ≤ 38 tokens, the summing constraint is
−m ≤ 0 ≤ 38 − m, which potentially allows a solution to the linear system
of constraints above. However, down to 36 tokens in place p9, the system is
reversible (after 85406 steps of Revers1, or 1776 scans of Revers2), i.e., there is
no solution.

It is however possible to refine the reasoning above to get more conclusive
cases. Let gi,j = gcd(wi, wj⊕1) (so that gi,i = gi). Since

∑j
k=i(wk · xk − wk⊕1 ·

xk⊕1) = wi · xi − wj⊕1 · xj⊕1, we have wi · xi − wj⊕1 · xj⊕1 ≤ ∑j
k=i M(pk), so

that if gi,j > 1, we must have wi · xi − wj⊕1 · xj⊕1 ≤ �∑j
k=i M(pk)�gi,j , i.e., we

may replace
∑j

k=i M(pk) by �∑j
k=i M(pk)�gi,j . We may do it for any interval

[i, j], even circularly (i.e., going from n to 1), as well as for disjoint intervals.
But also, if disjoint intervals are included in another one, we may do the same
while replacing the partial sums corresponding to included intervals by floor
expressions as done above. And finally, summing the constraints we shall get
that 0 must not be greater than the sum of all those partial floor expressions
(including for intervals [i, i], even if gi = 1): if this is not the case, we may
conclude there is no solution and the IWC is reversible.

320 R. Devillers

Fig. 4. An IWC with 9 places and transitions, and 6 tokens in permanence in the
system.

For instance, in Fig. 4, the interesting intervals are [3, 4], [5, 6], [7, 8] and [9, 2],
as well as [3, 6], [5, 8], [7, 2], [9, 4], [3, 8], [5, 2], [7, 4] (all with gcd = 2), and the
whole set (for instance [3, 2]). Since M = (2, 1, 4, 1, 6, 1, 10, 1,−24 = 12−36), we
may observe that M(p3) + M(p4) = 5 may be replaced by 4, M(p5) + M(p6) =
7 may be replaced by 6, M(p7) + M(p8) = 11 may be replaced by 10 and
M(p9)+M(p1)+M(p2) = −21 may be replaced by −22. No more reinforcement
may be applied, and for the whole set we thus obtain: 0 ≤ 4 + 6 + 10 − 22 = −2;
hence there is no solution and we may deduce the IWC is reversible without
relying to the algorithm Revers2 (or Revers1).

Unfortunately, we may not obtain certainty in all cases with this method.
Let us thus consider the various constraints individually.

For the individual constraint for place p1, we get:
−�M0(p1)�g1 ≤ w1 · x1 − w2 · x2 ≤ �M(p1)�g1 , or equivalently m1,1 ≤ w1,1 · x1 −
w1,2 · x2 ≤ m1,2, with m1,1 = −�M0(p1)/g1�, m1,2 = �(MD(p1) − M0(p1))/g1�,
w1,1 = w1/g1 and w1,2 = w2/g1. As before, let b1,1, b1,2 be the Bezout coefficients
of w1,1, w1,2, so that w1,1 · b1,1 − w1,2 · b1 2 = 1 (note that this also means that
w1,2 and b1,1 are relatively prime, as well as w1,2 and b1,1). The general form of
the solutions is then x1 = y1 · b1,1 + w1,2 · z1 and x2 = y1 · b1,2 + w1,1 · z1, with
z1 ∈ Z and y1 ∈ Z ∩ [m1,1,m1,2]. It may happen that m1,1 = m1,2, in which
case there is a single possible value for y1 and the general expression only relies
on a single variable z1 instead of two. It is not possible that m1,1 > m1,2 since
MD(p1) = w2 − 1 and g1 divides w2.

The individual constraint for place p2 is:
−�M0(p2)�g2 ≤ w2 · x2 − w3 · x3 ≤ �M(p2)�g2 . Replacing x2 by its expres-
sion above, this yields −�M0(p2)�g2 ≤ w2 · b1,2 · y1 + w2 · w1,1 · z1 − w3 · x3 ≤
�M(p2)�g2 . Since w1,1 and b1,2 are relatively prime, gcd{w2 ·b1,2, w2 ·w1,1, w3} =
gcd(w2, w3) = g2. Again, it may happen that −�M0(p2)�g2 = �M(p2)�g2 ,
but not −�M0(p2)�g2 > �M(p2)�g2 since MD(p3) = w3 − 1 and g2 divides
w3. The general solution may be written (in polynomial time) in the form
y1 = a2,1,1 · y2,1 + a2,1,2 · y2,2, z1 = a2,2,1 · y2,1 + a2,2,2 · y2,2 + a2,2,3 · y2,3,
x3 = a2,3,1 · y2,1 + a2,3,2 · y2,2 + a2,3,3 · y2,3, where all the coefficients are in Z (we
may even assume a2,1,2 ∈ N), y2,1 ∈ Z∩[−�M0(p2)/g2�, �(MD(p2)−M0(p2))/g2�]

On the Reversibility of Circular Conservative Petri Nets 321

and y2,2, y2,3 ∈ Z. But since y1 ∈ Z∩ [m1,1,m1,2], this introduces additional con-
straints on y2,1 and y2,2.

For instance, if w1 = 4, w2 = 3, w4 = 3, M0(p1) = 0 and M0(p2) = 3, we get
4·x1−3·x2 = d1 ∈ [0, 2] and 3·x2−4·x3 ∈ [−3, 0]. This leads to d1 = 3·d2+4·y in
general and to d1 = −d2 for d2 ∈ [−2, 0] if we take the constraints into account,
which is easy and reduces the range to explore to 3 consecutive values instead
of 4. But if M0(p2) = 0, we get the constraint d2 ∈ [0, 3], which leads to d1 = 0
or d1 = −d2 + 4 for d2 ∈ [2, 3], breaking the range for d2 into two small but
non-consecutive ranges, hence potentially leading to an exponential number of
ranges to explore later.

This does not mean there is no polynomial way to obtain the solution, but
presently we do not see how to do it, nor how to prove that the problem remains
NP-complete.

6 Largest Dead Number of Tokens

In the same way, we may be interested in the least live number of tokens, such
that all initial markings with at least this number of tokens are live, and we may
search for the largest dead number of tokens, such that all initial markings with
at most this number of tokens deadlock. However, while the least live number
of tokens is easy to obtain ((

∑
i wi) − n + 1) and only relies on the multi-set

of arc weights, not on their sequence, the same is not true for the largest dead
number of tokens.

Presently, we do not know an efficient way to compute this number. We
may for instance apply Algorithm Revers2 on all the initial markings with a
certain number of tokens and increase the latter until we find a live marking, or
decrease the latter until we find no live marking, or proceed by dichotomy. It is
however possible to reduce the number of markings to consider, for instance by
only considering the ones where all the places but one have less tokens than the
corresponding arc weights.

For instance, for the weights (10, 14, 15, 21), the largest dead number of tokens
is 42, while for the weights (14, 10, 15, 21), it is 41. The reason of this feature is
probably the fact that the graphs of the gcd-relationship between the successive
arc weights are rather different, as illustrated in Fig. 5.

This is in some sense a least counter-example, with 4 transitions and places,
since this phenomenon does not occur with 3 (or 2) transitions and places. To
see this we may observe the following.

Lemma 2. Invariance by rotation
If an IWC with arc weights w1, w2, . . . , wn is live for the marking m1,m2, . . . ,
mn, then the IWC with arc weights w2, . . . , wn, w1 is live for the marking m2, . . . ,
mn,m1.

322 R. Devillers

Fig. 5. On the left, the gcd-graph between the weights (10, 14, 15, 21), on the right the
same for the weights (14, 10, 15, 21).

Proof: Obvious: the enabled transition sequences are the same. �� 2

Lemma 3. Invariance by reflection
If an IWC with arc weights w1, w2, . . . , wn is live for the marking m1,m2, . . . ,
mn, then the IWC with arc weights wn, . . . , w2, w1 is live for the marking mn, . . . ,
m2,m1.

Proof: Obvious: a transition sequence M [t1t2 . . . tk〉M ′ is enabled in the first
IWC iff so is the sequence M ′[tk . . . t2t1〉M in the second one. As a consequence
M [t1t2 . . . tk〉M is enabled in the first IWC iff so is the sequence M [tk . . . t2t1〉M
in the second one. The cycles are thus the same. �� 3

Corollary 6. Invariance by isometry
If the sequence of weights of an IWC is the same as the sequence of another one
up to rotations and reflections, the live markings are the same up to the same
rotations and reflections. In particular there is a live marking of the first IWC
with m tokens iff the same is true for the second IWC. As a consequence, the
largest dead number of tokens is the same for these two IWCs. �� 6

Corollary 7. IWC with 2 or 3 transitions
The largest dead number of tokens of two IWCs with the same multisets of arc
weights are the same.

Proof: When the multisets of IWCs with two or three transitions are the same,
these IWCs are isometric. �� 7

7 Conclusions and Perspectives

We have shown that even for the very restricted family of IWC Petri nets, deter-
mining if a system is reversible (or live) remains hard to tackle, but that some
subcases may be handled more or less easily. It remains of course to determine
the exact worst case complexity of the general class IWC. It could also be inter-
esting to consider other subclasses of structurally persistent nets.

Acknowledgements. The author appreciated the remarks and encouragements of
the anonymous referees.

On the Reversibility of Circular Conservative Petri Nets 323

References

1. Best, E., Esparza, J.: Existence of home states in petri nets is decidable. Inf.
Process. Lett. 116(6), 423–427 (2016). https://doi.org/10.1016/j.ipl.2016.01.011

2. Chrzastowski-Wachtel, P., Raczunas, M.: Liveness of weighted circuits and the
Diophantine problem of Frobenius. In: Ésik, Z. (ed.) FCT 1993. LNCS, vol. 710,
pp. 171–180. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-57163-
9 13

3. Cohen, H.: A course in computational algebraic number theory. Graduate Texts in
Mathematics, vol. 138. Springer, Heidelberg (1993). https://doi.org/10.1007/978-
3-662-02945-9. http://www.worldcat.org/oclc/27810276

4. Czerwinski, W., Lasota, S., Lazic, R., Leroux, J., Mazowiecki, F.: The reachability
problem for petri nets is not elementary. J. ACM 68(1), 1–28 (2021). https://doi.
org/10.1145/3422822

5. Czerwinski, W., Orlikowski, L.: Reachability in vector addition systems is
Ackermann-complete. In: 62nd IEEE Annual Symposium on Foundations of Com-
puter Science, FOCS 2021, Denver, CO, USA, 7-10 February 2022, pp. 1229–1240
(2021). https://doi.org/10.1109/FOCS52979.2021.00120

6. Devillers, R., Hujsa, T.: Analysis and synthesis of weighted marked graph Petri
nets. In: Application and Theory of Petri Nets and Concurrency - 39th Inter-
national Conference, PETRI NETS 2018, Bratislava, Slovakia, 24–29 June 2018,
Proceedings, pp. 19–39 (2018)

7. de Frutos-Escrig, D., Johnen, C.: Decidability of home space property. Tech. Rep.
503, Laboratoire de Recherche en Informatique, Université de Paris-Sud (1989)

8. Keller, R.M.: A fundamental theorem of asynchronous parallel computation. In:
Sagamore Computer Conference, 20-23 August 1974, LNCS, vol. 24, pp. 102–112
(1975). https://doi.org/10.1007/3-540-07135-0 113

9. Kosaraju, S.R.: Decidability of reachability in vector addition systems (prelimi-
nary version). In: Proceedings of the 14th Annual ACM Symposium on Theory of
Computing, 5–7 May 1982, San Francisco, California, USA, pp. 267–281 (1982)

10. Lasota, S.: Improved Ackermannian lower bound for the petri nets reachability
problem. In: Berenbrink, P., Monmege, B. (eds.) 39th International Symposium
on Theoretical Aspects of Computer Science (STACS 2022). Leibniz International
Proceedings in Informatics (LIPIcs), vol. 219, pp. 1–15. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, Dagstuhl, Germany (2022). https://drops.dagstuhl.de/
opus/volltexte/2022/15856

11. Lien, Y.E.: Termination properties of generalized Petri nets. SIAM J. Comput.
5(2), 251–265 (1976)

12. Mayr, E.W.: An algorithm for the general Petri net reachability problem. In: Pro-
ceedings of the 13th Annual ACM Symposium on Theory of Computing, 11–13
May 1981, Milwaukee, Wisconsin, USA, pp. 238–246 (1981)

13. Mayr, E.W.: An algorithm for the general Petri net reachability problem. SIAM
J. Comput. 13(3), 441–460 (1984)

14. Raczunas, M., Chrzastowski-Wachtel, P.: A Diophantine problem of Frobenius in
terms of the least common multiple. Discrete Math. 150(1-3), 347–357 (1996).
https://doi.org/10.1016/0012-365X(95)00199-7

15. Reinhardt, K.: Reachability in Petri nets with inhibitor arcs. Electr. Notes Theor.
Comput. Sci. 223, 239–264 (2008)

16. Teruel, E., Chrzastowski-Wachtel, P., Colom, J.M., Silva, M.: On weighted T-
systems. In: Jensen, K. (ed.) ICATPN 1992. LNCS, vol. 616, pp. 348–367. Springer,
Heidelberg (1992). https://doi.org/10.1007/3-540-55676-1 20

https://doi.org/10.1016/j.ipl.2016.01.011
https://doi.org/10.1007/3-540-57163-9_13
https://doi.org/10.1007/3-540-57163-9_13
https://doi.org/10.1007/978-3-662-02945-9
https://doi.org/10.1007/978-3-662-02945-9
http://www.worldcat.org/oclc/27810276
https://doi.org/10.1145/3422822
https://doi.org/10.1145/3422822
https://doi.org/10.1109/FOCS52979.2021.00120
https://doi.org/10.1007/3-540-07135-0_113
https://drops.dagstuhl.de/opus/volltexte/2022/15856
https://drops.dagstuhl.de/opus/volltexte/2022/15856
https://doi.org/10.1016/0012-365X(95)00199-7
https://doi.org/10.1007/3-540-55676-1_20

Automated Polyhedral Abstraction
Proving

Nicolas Amat(B) , Silvano Dal Zilio , and Didier Le Botlan

LAAS-CNRS, Université de Toulouse, INSA, CNRS, Toulouse, France
nicolas.amat@laas.fr

Abstract. We propose an automated procedure to prove polyhedral
abstractions for Petri nets. Polyhedral abstraction is a new type of state-
space equivalence based on the use of linear integer constraints. Our
approach relies on an encoding into a set of SMT formulas whose satis-
faction implies that the equivalence holds. The difficulty, in this context,
arises from the fact that we need to handle infinite-state systems. For
completeness, we exploit a connection with a class of Petri nets that
have Presburger-definable reachability sets. We have implemented our
procedure, and we illustrate its use on several examples.

Keywords: Automated reasoning · Abstraction techniques ·
Reachability problems · Petri nets

1 Introduction

We describe a procedure to automatically prove polyhedral abstractions between
pairs of parametric Petri nets. Polyhedral abstraction [2,6] is a new type of
equivalence that can be used to establish a “linear relation” between the reachable
markings of two Petri nets. Basically, an abstraction is a triplet of the form
(N1, E,N2), where E is a system of linear constraints between the places of two
nets N1 and N2. The idea is to preserve enough information in E so that we
can rebuild the reachable markings of N1 knowing only the ones of N2, and vice
versa.

In this context, we use the term parametric to stress the fact that we manip-
ulate semilinear sets of markings, meaning sets that can be defined using a
Presburger arithmetic formula C. In particular, we reason about parametric
nets (N,C), instead of marked nets (N,m0), with the intended meaning that
all markings satisfying C are potential initial markings of N . We also define
an extended notion of polyhedral equivalence between parametric nets, denoted
(N1, C1) �E (N2, C2), whereas our original definition [1] was between marked
nets only (see Definition 1).

We show that given a valid equivalence statement (N1, C1) �E (N2, C2), it is
possible to derive a Presburger formula, in a constructive way, whose satisfaction
implies that the equivalence holds. We implemented this procedure on top of an

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Gomes and R. Lorenz (Eds.): PETRI NETS 2023, LNCS 13929, pp. 324–345, 2023.
https://doi.org/10.1007/978-3-031-33620-1_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33620-1_18&domain=pdf
http://orcid.org/0000-0002-5969-7346
http://orcid.org/0000-0002-6002-2696
http://orcid.org/0000-0002-6457-2740
https://doi.org/10.1007/978-3-031-33620-1_18

Automated Polyhedral Abstraction Proving 325

SMT-solver for Linear Integer Arithmetic (LIA) and show that our approach is
applicable in practice (Sect. 7). Our method is only a semi-procedure though,
since there are two possible outcomes when the equivalence does not hold: either
we can generate a formula that is unsound, or our procedure does not terminate,
and each of these outcomes provide useful information on why the equivalence
does not hold.

This decidability result is not surprising, since most equivalence problems on
Petri nets are undecidable [15,16]. If anything, it makes the fact that we may
often translate our problem into Presburger arithmetic quite remarkable. Indeed,
polyhedral abstraction is by essence related with the marking equivalence prob-
lem, which amounts to decide if two Petri nets with the same set of places have
the same reachable markings; a problem proved undecidable by Hack [17]. Also,
polyhedral equivalence entails trace equivalence, another well-known undecid-
able equivalence problem when we consider general Petri nets [17,18].

Description of Our Approach and Related Works. We introduced the
concept of polyhedral abstraction as a way to solve reachability problems more
efficiently. We applied this approach to several problems: originally for model-
counting, that is to count the number of reachable markings of a net [12,13]; then
to check reachability formulas and to find inductive invariants [1,2]; and finally
to speed-up the computation of concurrent places (places that can be marked
simultaneously in a reachable marking) [5,6]. We implemented our approach
in two symbolic model-checkers developed by our team: Tedd, a tool based on
Hierarchical Set Decision Diagrams (SDD) [25], part of the Tina toolbox [22]; and
SMPT [3,21], an SMT-based model-checker focused on reachability problems [4].

In each case our approach can be summarized as follows. We start from an
initial net (N1, C1) and derive a polyhedral abstraction (N1, C1) �E (N2, C2) by
applying a set of abstraction laws in an iterative and compositional way. Finally,
we solve a reachability problem about N1 by transforming it into a reachability
problem on net N2, which should hopefully be easier to check. A large number
of the laws we implement in our tools derive from structural reduction rules [11],
or are based on the elimination of redundant places and transitions, with the
goal to obtain a “reduced” net N2 that is smaller than N1.

We also implement several other kinds of abstraction rules—often subtler to
use and harder to prove correct—which explains why we want machine checkable
proofs of equivalence. For instance, some of our rules are based on the identifi-
cation of Petri nets subclasses in which the set of reachable markings equals the
set of potentially reachable ones, a property we call the PR-R equality in [19,20].
We use this kind of rules in the example of the “SwimmingPool” model of Fig. 8,
a classical example of Petri net often used in case studies (see e.g. [10]).

We give an example of a basic abstraction law in Fig. 1, with an instance of
rule (concat) that allows us to fuse two places connected by a direct, silent
transition. We give another example with (magic), in Fig. 2, which illustrates a
more complex agglomeration rule, and refer to other examples in Sect. 7.

The parametric net (N1, C1) (left of Fig. 1) has a condition which entails
that place y2 should be empty initially (y2 = 0), whereas net (N2, C2) has a

326 N. Amat et al.

y1

τ

y2

a b

cd

C1 � y2 = 0

�x = y1 + y2
x

a b

cd

C2 � True

Fig. 1. Equivalence rule (concat), (N1, C1) �E (N2, C2), between nets N1 (left) and
N2 (right), for the relation E � (x = y1 + y2).

trivial constraint, which can be interpreted as simply x � 0. We can show (see
Sect. 3) that nets N1 and N2 are E-equivalent, which amounts to prove that
any marking (y1 : k1, y2 : k2) of N1, reachable by firing a transition sequence σ,
can be associated with the marking (x : k1 + k2) of N2, also reachable by the
same firing sequence. Actually, we prove that this equivalence is sound when no
transition can input a token directly into place y2 of N1. This means that the
rule is correct in the absence of the dashed transition (with label d), but that
our procedure should flag the rule as unsound when transition d is present.

The results presented in this paper provide an automated technique for prov-
ing the correctness of polyhedral abstraction laws. This helps us gain more con-
fidence on the correctness of our tools and is also useful if we want to add new
abstraction rules. Indeed, up until now, all our rules where proven using “manual
theorem proving”, which can be tedious and error-prone.

Incidentally, the theory we developed for this paper also helped us gain a
better understanding of the constraints necessary when designing new abstrac-
tion laws. A critical part of our approach relies on the ability, given a Presburger
predicate C, to encode the set of markings reachable from C by firing only silent
transitions, that we denote τ�

C in the following. Our approach draws a connec-
tion with previous works [7,8,24] that study the class of Petri nets that have
Presburger-definable reachability sets; also called flat nets. We should also make
use of a tool implemented by the same authors, called FAST, which provides a
method for representing the reachable set of flat nets. Basically, we gain the
insight that polyhedral abstraction provides a way to abstract away (or col-
lapse) the sub-parts of a net that are flattable. Note that our approach may
work even though the reachability set of the whole net is not semilinear, since
only the part that is abstracted must be flattable. We also prove that when
(N1, C1) �E (N2, C2) then necessarily the sets τ�

C1
and τ�

C2
are semilinear.

Automated Polyhedral Abstraction Proving 327

y1

a b

τ

τ τ

y3

τ τ

y4

c

y2

c′

C1 � y2 + y3 + y4 = 0

�x = y1 + y2 + y3 + y4

x

a b

cc′

C2 � True

Fig. 2. Equivalence rule (magic).

Outline and Contributions. The paper is organized as follows. We define our
central notion of parametric polyhedral abstraction in Sect. 3 and prove several
of its properties in Sect. 6. In particular, we prove that polyhedral abstraction
is a congruence, and that it is preserved when “duplicating labeled transitions”.
These properties mean that every abstraction law we prove can be safely applied
in every context, and that each law can be used as a “rule schema”. Our definition
relies on a former notion of polyhedral equivalence, that we recall in Sect. 2,
together with a quick overview of our notations. We describe our proof procedure
in Sect. 4, which is defined as the construction of a set of four core requirements,
each expressed as separate quantified LIA formulas. A key ingredient in this
translation is to build a predicate, τ�

C , which encodes the markings reachable
by firing only the silent transitions of a net. We defer the definition of this
predicate until Sect. 5, where we show how it can be obtained using the output
of the FAST tool. We also describe a method for automatically certifying that
the resulting predicate is sound, which means that we do not have to trust the
soundness of any outside software component, except SMT solvers. We conclude
by presenting the results obtained with a new tool implementing our approach,
called Reductron, on some concrete examples.

2 Petri Nets and Polyhedral Abstraction

A Petri net is a tuple (P, T,Pre,Post), where P = p1, . . . , pn is a finite set
of places, T = t1, . . . , tk is a finite set of transitions (disjoint from P), and
Pre : T → (P → N) and Post : T → (P → N) are the pre- and post-condition
functions (also known as the flow functions of the net). A state of a net, also
called a marking, is a mapping m : P → N (also denoted N

P) that assigns a
number of tokens, m(p), to each place p in P . A marked net (N,m0) is a pair
consisting of a net, N , and an initial marking, m0. In the following, we will often

328 N. Amat et al.

consider that each transition is labeled with a symbol from an alphabet Σ. In this
case, we assume that a net is associated with a labeling function l : T → Σ∪{τ},
where τ is a special symbol for the silent action. Every net has a default labeling
function, lN , such that Σ = T and lN (t) = t for every transition t ∈ T .

A transition t ∈ T is enabled at a marking m ∈ N
P if m(p) � Pre(t, p) for all

places p ∈ P , which we also write m � Pre(t), where � represents component-
wise comparison of the markings. A marking m′ ∈ N

P is reachable from a mark-
ing m ∈ N

P by firing transition t, denoted (N,m) t−→ (N,m′) or simply m
t−→ m′

when N is obvious from the context, if: (1) transition t is enabled at m, and (2)
m′ = m − Pre(t) + Post(t). A firing sequence � = t1, . . . , tn ∈ T ∗ can be fired
from m, denoted (N,m)

�
=⇒ (N,m′) or simply m

�
=⇒ m′, if there exist markings

m0, . . . ,mn such that m = m0, m′ = mn, and mi
ti+1−−→ mi+1 for all i < n. We

denote R(N,m0) the set of markings reachable from m0 in N .
We can lift any labeling function l : T → Σ ∪ {τ} to a mapping of sequences

from T ∗ to Σ∗. Specifically, we define inductively l(�.t) = l(�) if l(t) = τ and
l(�.t) = l(�).l(t) otherwise, where . is the concatenation operator, and l(ε) = ε,
where ε is the empty sequence, verifying ε.σ = σ.ε = σ for any σ ∈ Σ∗. Given
a sequence of labels σ ∈ Σ∗, we write (N,m) σ=⇒ (N,m′) if there exists a firing
sequence � ∈ T ∗ such that (N,m)

�
=⇒ (N,m′) and σ = l(�). In this case, σ is

referred to as an observable sequence of the marked net (N,m). In some cases, we
have to consider firing sequences that must not finish with τ transitions. Hence,
we define a relation (N,m)

σ〉
=⇒ (N,m′), written simply m

σ〉
=⇒ m′, as follows:

– (N,m)
ε〉
=⇒ (N,m) holds for all marking m.

– (N,m)
σ.a〉
==⇒ (N,m′) holds for any markings m,m′ and a, σ ∈ Σ ×Σ∗, if there

exists a marking m′′ and a transition t such that l(t) = a and (N,m) σ=⇒
(N,m′′) t−→ (N,m′).

It is immediate that m
σ〉
=⇒ m′ implies m

σ=⇒ m′. Note the difference between
m

ε=⇒ m′, which stands for any sequence of τ transitions, and m
ε〉
=⇒ m′, which

implies m = m′ (the sequence is empty).
We use the standard graphical notation for nets, where places are depicted

as circles and transitions as squares such as the nets displayed in Fig. 1.

Polyhedral Abstraction. We define an equivalence relation that can be used
to describe a linear dependence between the markings of two different nets, N1

and N2. Assume V is a set of places p1, . . . , pn, considered as variables, and let
m be a mapping in V → N. We define m as a linear formula, whose unique
model in N

V is m, defined as m �
∧{x = m(x) | x ∈ V }. By extension,

given a Presburger formula E, we say that m is a (partial) solution of E if the
formula E ∧ m is consistent. Equivalently, we can view m as a substitution,
where each variable x ∈ V is substituted by m(x). Indeed, the formula F{m}
(the substitution m applied to F) and F ∧ m admit the same models. Given
two mappings m1 ∈ N

V1 and m2 ∈ N
V2 , we say that m1 and m2 are compatible

when they have equal values on their shared domain: m1(x) = m2(x) for all x
in V1 ∩ V2. This is a necessary and sufficient condition for the system m1 ∧ m2

to be consistent. Finally, if V is the set of free variables of m1, m2, and the free

Automated Polyhedral Abstraction Proving 329

variables of E are included in V , we say that m1 and m2 are related up-to E,
denoted m1 ≡E m2, when E ∧ m1 ∧ m2 is consistent.

m1 ≡E m2 ⇔ ∃m ∈ N
V . m |= E ∧ m1 ∧ m2 (1)

This relation defines an equivalence between markings of two different nets
(≡E ⊆ N

P1 × N
P2) and, by extension, can be used to define an equivalence

between nets themselves, that is called polyhedral equivalence in [2,5], where all
reachable markings of N1 are related to reachable markings of N2 (and con-
versely), as explained next.

Definition 1 (E-abstraction). Assume N1 = (P1, T1,Pre1,Post1) and N2 =
(P2, T2,Pre2,Post2) are two Petri nets, and E a Presburger formula whose free
variables are included in P1 ∪ P2. We say that the marked net (N2,m2) is an
E-abstraction of (N1,m1), denoted (N1,m1) �E (N2,m2), if and only if:

(A1) The initial markings are compatible with E, meaning m1 ≡E m2.
(A2) For all observable sequences (N1,m1)

σ=⇒ (N1,m
′
1) in N1, there is at least

one marking m′
2 over P2 such that m′

1 ≡E m′
2, and for all markings m′

2 over
P2 such that m′

1 ≡E m′
2 we have (N2,m2)

σ=⇒ (N2,m
′
2).

We say that (N1,m1) is E-equivalent to (N2,m2), denoted (N1,m1) ≡E

(N2,m2), when we have both (N1,m1) �E (N2,m2) and (N2,m2) �E (N1,m1).

By definition, given an equivalence statement (N1,m1) ≡E (N2,m2), then
for every marking m′

2 reachable in N2, the set of markings of N1 consistent with
E ∧ m′

2 is non-empty (condition (A2)). This defines a partition of the reachable
markings of (N1,m1) into a union of “convex sets”—hence the name polyhedral
abstraction—each associated to one (at least) reachable marking in N2.

Although E-abstraction looks like a simulation, it is not, since the pair of
reachable markings m′

1,m
′
2 from the definition does not satisfy (N1,m

′
1) �E

(N2,m
′
2) in general. This relation �E is therefore broader than a simulation, but

suffices for our primary goal, that is Petri net reduction. Of course, ≡E is not a
bisimulation either. It is also quite simple to show that checking E-abstraction
equivalence is undecidable in general.

Theorem 1 (Undecidability of E-equivalence). The problem of checking
whether a statement (N1,m1) ≡E (N2,m2) is valid is undecidable.

Proof. Assume that N1 and N2 are two nets with the same set of places, such
that all transitions are silent. Then (N1,m1) ≡True (N2,m2), an E-abstraction
for the trivial constraint E � True, entails that (N1,m1) and (N2,m2) must
have the same reachability set. This property is known as marking equivalence
and is undecidable [17]. �

3 Parametric Reduction Rules and Equivalence

E-abstraction is defined on marked nets (Definition 1), thus the reduction rules
defined in [1,2], which are E-abstraction equivalences, mention marked nets as
well. Their soundness was proven manually, using constrained parameters for
initial markings. Such constraints on markings are called coherency constraints.

330 N. Amat et al.

Coherency Constraints. We define a notion of coherency constraint, C, that
must hold not only in the initial state, but also in a sufficiently large subset
of reachable markings. We have already seen an example with the constraint
C1 � y2 = 0 used in rule (concat). Without the use of C1, rule (concat)
would be unsound since net N2 (right of Fig. 1) could fire transition b more often
than its counterpart, N1.

Since C is a predicate on markings, we equivalently consider it as a subset
of markings or as a logic formula, so that we may equivalently write m |= C or
m ∈ C to indicate that C(m) is true.

Definition 2 (Coherent Net). Given a Petri net N and a predicate C on
markings, we say that N satisfies the coherency constraint C, or equivalently,
that (N,C) is a coherent net, if and only if for all firing sequences m

σ=⇒m′ with
m ∈ C, we have

∃m′′ ∈ C . m
σ〉
=⇒ m′′ ∧ m′′ ε=⇒ m′

Intuitively, if we consider that all τ transitions are irreversible choices, then
we can define a partial order on markings with m < m′ whenever m

τ−→m′ holds.
Then, markings satisfying the coherency constraint C must be minimal with
respect to this partial order.

In this paper, we wish to prove automatically the soundness of a given reduc-
tion rule. A reduction rule basically consists of two nets with their coherency
constraints, and a Presburger relation between markings.

Definition 3 (Parametric Reduction Rule). A parametric reduction rule
is written (N1, C1) >E (N2, C2), where (N1, C1) and (N2, C2) are both coherent
nets, and C1, C2, and E are Presburger formulas whose free variables are in
P1 ∪ P2.

A given reduction rule (N1, C1) >E (N2, C2) is a candidate, which we will
analyze to prove its soundness: is it an E-abstraction equivalence?

Our analysis relies on a richer definition of E-abstraction, namely paramet-
ric E-abstraction (Definition 4, next), which includes the coherency constraints
C1, C2. Parametric E-abstraction entails E-abstraction for each instance of its
parameters (Theorem 2, below). Essentially, for any sequence m1

σ=⇒ m′
1 with

m1 ∈ C1, there exists a marking m′
2 such that m′

1 ≡E m′
2; and for every marking

m2 ∈ C2 compatible with m1, i.e., m1 ≡E m2, all markings m′
2 compatible with

m′
1 (i.e., m′

1 ≡E m′
2) can be reached from m2 by the same observable sequence σ.

To ease the presentation, we define the notation

m1 〈C1EC2〉 m2 � m1 |= C1 ∧ m1 ≡E m2 ∧ m2 |= C2 (2)

Definition 4 (Parametric E-abstraction). Assume (N1, C1) >E (N2, C2) is
a parametric reduction rule. We say that (N2, C2) is a parametric E-abstraction
of (N1, C1), denoted (N1, C1) �E (N2, C2) if and only if:

Automated Polyhedral Abstraction Proving 331

(S1) For all markings m1 satisfying C1 there exists a marking m2 such that
m1 〈C1EC2〉 m2.

(S2) For all firing sequences m1
ε=⇒m′

1 and all markings m2, we have m1 ≡E m2

implies m′
1 ≡E m2.

(S3) For all firing sequences m1
σ=⇒ m′

1 and all marking pairs m2, m′
2, if

m1 〈C1EC2〉 m2 and m′
1 ≡E m′

2 then we have m2
σ=⇒ m′

2.

We say that (N1, C1) and (N2, C2) are in parametric E-equivalence, denoted
(N1, C1) �E (N2, C2), when we have both (N1, C1) �E (N2, C2) and (N2, C2) �E

(N1, C1).

Condition (S1) corresponds to the solvability of the Presburger formula E
with respect to the marking predicates C1 and C2. Condition (S2) ensures that
silent transitions of N1 are abstracted away by the formula E, and are therefore
invisible to N2. Condition (S3) follows closely condition (A2) of the standard
E-abstraction equivalence.

Note that equivalence � is not a bisimulation, in the same way that ≡ from
Definition 1. It is defined only for observable sequences starting from states
satisfying the coherency constraint C1 of N1 or C2 of N2, and so this relation is
usually not true on every pair of equivalent markings m1 ≡E m2.

Instantiation Law. Parametric E-abstraction implies E-abstraction for every
instance pair satisfying the coherency constraints C1, C2.

Theorem 2 (Parametric E-abstraction Instantiation). Assume (N1, C1)
�E (N2, C2) is a parametric E-abstraction. Then for every pair of markings
m1,m2, m1 〈C1EC2〉 m2 implies (N1,m1) �E (N2,m2).

Proof. Consider (N1, C1) �E (N2, C2), a parametric E-abstraction, and m1, m2

such that m1 〈C1EC2〉 m2 holds. By definition of m1 〈C1EC2〉 m2, see Eq. (2),
condition (A1) of Definition 1 is immediately satisfied. We show (A2) by con-
sidering an observable sequence (N1,m1)

σ=⇒ (N1,m
′
1). Since m1 satisfies the

coherency constraint C1, we get from Definition 2 a marking m′′
1 ∈ C1 such that

m1
σ〉
=⇒ m′′

1
ε=⇒ m′

1 holds. By applying (S1) to m′′
1 , we get a marking m′

2 such
that m′′

1 〈C1EC2〉 m′
2 holds, which implies m′′

1 ≡E m′
2. Then, by applying (S2)

to m′′
1

ε=⇒ m′
1, we obtain the expected result m′

1 ≡E m′
2. Finally, for all markings

m′
2 such that m′

1 ≡E m′
2, we conclude m2

σ=⇒ m′
2 from (S3). Condition (A2) is

proved, hence (N1,m1) �E (N2,m2) holds. �

4 Automated Proof Procedure

Our automated proof procedure receives a candidate reduction rule (Definition 3)
as input, and has three possible outcomes: (i) the candidate is proven sound, con-
gratulations you have established a new parametric E-abstraction equivalence;
(ii) the candidate is proven unsound, try to understand why and fix it; or (iii)
we cannot conclude, because part of our procedure relies on a semi-algorithm

332 N. Amat et al.

Fig. 3. Detailed dependency relations.

(see Sect. 5) for expressing the set of reachable markings of a flat subnet as a
linear constraint.

Given the candidate reduction rule, the procedure generates SMT queries,
which we call core requirements (defined in Sect. 4.2) that are solvable if and only
if the candidate is a parametric E-abstraction (Theorems 3 and 4, Sect. 4.3). We
express these constraints into Presburger predicates, so it is enough to use solvers
for the theory of formulas on Linear Integer Arithmetic, what is known as LIA
in SMT-LIB [9]. We illustrate the results given in this section using a diagram
(Fig. 3) that describe the dependency relations between conditions (S1), (S2),
(S3) and their encoding as core requirements.

4.1 Presburger Encoding of Petri Net Semantics

We start by defining a few formulas that ease the subsequent expression of
core requirements. This will help with the most delicate point of our encoding,
which relies on how to encode sequences of transitions. Note that the coherency
constraints of reduction rules are already defined as such.

In the following, we use x for the vector of variables (x1, . . . , xn), correspond-
ing to the places p1, . . . , pn of P , and F (x) for a formula whose variables are
included in x. We say that a mapping m of N

P is a model of F , denoted m |= F ,
if the ground formula F (m) = F (m(p1), . . . , m(pn)) is true. Hence, we can also
interpret F as a predicate over markings. Finally, we define the semantics of
F as the set �F � = {m ∈ N

P | m |= F}. As usual, we say that a predicate
F is valid, denoted |= F , when all its interpretations are true (�F � = N

P). In
order to keep track of fired transitions in our encoding, and without any loss of
generality we assume that our alphabet of labels Σ is a subset of the natural
numbers (Σ ⊂ N

∗), except 0 that is reserved for τ .
We define next a few Presburger formulas that express properties on markings

of a net N . For instance, Equation (3) below defines the predicate ENBLt, for

Automated Polyhedral Abstraction Proving 333

a given transition t, which corresponds exactly to the markings that enable t.
We also define a linear predicate T(x,x′, a) that describes the relation between
the markings before (x) and after (x′) firing a transition with label a. With
this convention, formula T(m,m′, a) holds if and only if m

t−→ m′ holds for some
transition t such that l(t) = a (which implies a �= 0).

ENBLt(x) �
∧

i∈1..n(xi � Pre(t, pi)) (3)

Δt(x,x′) �
∧

i∈1..n(x
′
i = xi + Post(t, pi) − Pre(t, pi)) (4)

T(x,x′, a) �
∨

t∈T (ENBLt(x) ∧ Δt(x,x′) ∧ a = l(t)) (5)

We admit the following, for all markings m, m′ and label a:

|= T (m,m′, a) ⇐⇒ ∃t . m
t−→ m′ ∧ l(t) = a (6)

In order to define the core requirements, we additionally require a predicate
τ∗
C(x,x′) encoding the markings reachable by firing any sequence of silent tran-

sitions from a state satisfying the coherency constraint C. And so, the following
constraint must hold:

|= m ∈ C =⇒ (τ∗
C(m,m′) ⇐⇒ m

ε=⇒ m′) (7)

Since m
ε=⇒m′ may fire an arbitrary number of silent transitions τ , the predi-

cate τC is not guaranteed to be expressible as a Presburger formula in the general
case. Yet, in Sect. 5, we characterize the Petri nets for which τC can be expressed
in Presburger logic, which include all the polyhedral reductions that we meet in
practice (we explain why).

Thanks to this predicate, we define the formula T́C(x,x′, a) encoding the
reachable markings from a marking satisfying the coherency constraint C, by
firing any number of silent transitions, followed by a transition labeled with a.
Then, we define T̂ which extends T́ with any number of silent transitions after
a and also allows for only silent transitions (no transition a).

T́C(x,x′, a) � ∃x′′ . τ∗
C(x,x′′) ∧ T (x′′,x′, a) (8)

T̂C(x,x′, a) �
(
∃x1 . T́C(x,x1, a) ∧ C(x1) ∧ τ∗

C(x1,x
′))

)
(9)

∨ (a = 0 ∧ τ∗
C(x,x′)) (10)

Lemma 1. For any markings m,m′ and label a such that m ∈ C, we have
|= T́C(m,m′, a) if and only if m

a〉
=⇒ m′ holds.

Proof. We show both directions separately.

– Assume m
a〉
=⇒ m′. By definition, this implies that there exists m′′ and a

transition t such that l(t) = a and m
ε=⇒ m′′ t−→ m′. Therefore, τ∗

C(m,m′′)
is valid by (7), and T (m′′,m′, a) is valid by (6), hence the expected result
|= T́C(m,m′, a).

334 N. Amat et al.

– Conversely, assume T́C(m,m′, a) is valid. Then, by (8) there exists a marking
m′′ such that both τ∗

C(m,m′′) and T (m′′,m′, a) are valid. From (7), we get
m

ε=⇒ m′′, and (6) implies ∃t . m′′ t−→ m′ ∧ l(t) = a. Thus, m
ε=⇒ m′′ t−→ m′, that

is the expected result m
a〉
=⇒ m′. �

Lemma 2. Given a coherent net (N,C), for any markings m,m′ such that m ∈
C and a ∈ Σ ∪ {0}, we have |= T̂C(m,m′, a) if and only if either m

ε=⇒ m′ and
a = 0, or m

a=⇒ m′.

Proof. We show both directions separately.

– Assume m
ε=⇒m′ and a = 0, then τ∗

C(m,m′) is valid by (7), hence the expected
result |= T̂C(m,m′, a) from (10).

– Assume m
a=⇒ m′. From Definition 2 (coherent net), there exists m′′ ∈ C

such that m
a〉
=⇒ m′′ ε=⇒ m′. Then, we get |= T́C(m,m′′, a) from Lemma 1, and

|= τ∗
C(m

′′,m′) from (7). Consequently, T̂C(m,m′, a) is valid from (9).
– Conversely, assume T̂C(m,m′, a) holds by (10), then a = 0 and |= τ∗

C(m,m′),
which implies m

ε=⇒ m′ by (7). This is the expected result.
– Finally, assume T̂C(m,m′, a) holds by (9), then there exists a marking m′′ ∈ C

such that |= T́C(m,m′′, a) and |= τ∗
C(m

′′,m′). This implies m
a〉
=⇒ m′′ ε=⇒ m′

from Lemma 1 and (7). This implies the expected result m
a=⇒ m′. �

Finally, we denote Ẽ(x,y) the formula obtained from E where free variables
are substituted as follows: place names in N1 are replaced with variables in x,
and place names in N2 are replaced with variables in y (making sure that bound
variables of E are renamed to avoid interference). When the same place occurs
in both nets, say p1i = p2j , we also add the equality constraint (xi = yj) to Ẽ in
order to preserve this equality constraint.

4.2 Core Requirements: Parametric E-abstraction Encoding

In order to check conditions (S1)–(S3) of parametric E-abstraction (Defini-
tion 4), we define a set of Presburger formulas, called core requirements, to
be verified using an external SMT solver ((Core 1) to (Core 3)). You will find an
illustration of these requirements in Figs. 4–7. The satisfaction of these require-
ments entail the parametric E-abstraction relation. We have deliberately stressed
the notations to prove that (N2, C2) is a parametric E-abstraction of (N1, C1).
Of course, each constraint must be checked in both directions to obtain the
equivalence. Also, to not overload the notations, we assume that the transition
relations are clear in the context if they belong to N1 or N2.

Verifying that a Net is Coherent. The first step consists in verifying
that both nets N1 and N2 satisfy their coherency constraints C1 and C2 (the
coherency constraint is depicted in Fig. 4). We recall Definition 2:

Definition (Coherent Net). For all firing sequence m
σ=⇒ m′ with m ∈ C,

there exists a marking m′′ satisfying C such that m
σ〉
=⇒ m′′ and m′′ ε=⇒ m′.

Automated Polyhedral Abstraction Proving 335

We encode a simpler relation, below, with sequences σ of size 1. This relies
on the following result:

Lemma 3. (N,C) is coherent if and only if for all firing sequence m
a〉
=⇒m′ with

m ∈ C and a ∈ Σ, we have ∃m′′ ∈ C . m
a〉
=⇒ m′′ ∧ m′′ ε=⇒ m′.

We deliberately consider a firing sequence m
a〉
=⇒ m′ (and not m

a=⇒ m′), since
the encoding relies only on T́C (that is,

a〉
=⇒), not on T̂C (that is, a=⇒).

Proof. The “only if” part is immediate, as a particular case of Definition 2 and
noting that m

a〉
=⇒m′ implies m

a=⇒m′. Conversely, assume the property stated in
the lemma is true. Then, we show by induction on the size of σ, that Definition 2
holds for any σ. Note that the base case σ = ε always holds, for any net, by taking
m′′ = m. Now, consider a non-empty sequence σ = σ′.a and m

σ′.a==⇒ m′ with
m ∈ C. By definition, there exists m1 and m2 such that m

σ′
=⇒ m1

a〉
=⇒ m2

ε=⇒ m′.
By induction hypothesis, on m

σ′
=⇒ m1, there exists m3 ∈ C such that m

σ′〉
==⇒

m3
ε=⇒ m1. Therefore, we have m

σ′〉
==⇒ m3

ε=⇒ m1
a〉
=⇒ m2

ε=⇒ m′, which can simply
be written m

σ′〉
==⇒ m3

a〉
=⇒ m2

ε=⇒ m′. Using the property stated in the lemma
on m3

a〉
=⇒ m2, we get a marking m4 ∈ C such that m3

a〉
=⇒ m4

ε=⇒ m2. Hence,
m

σ′〉
==⇒m3

a〉
=⇒m4

ε=⇒m2
ε=⇒m′ holds, which can be simplified as m

σ′.a〉
===⇒m4

ε=⇒m′.
This is the expected result. �

Therefore, we can encode Definition 2 using the following formula:

∀p,p′, a . C(p) ∧ T́C(p,p′, a)

=⇒ ∃p′′ . C(p′′) ∧ T́C(p,p′′, a) ∧ τ∗
C(p

′′,p′)
(Core 0)

Lemma 4. Given a Petri net N , the constraint (Core 0) is valid if and only if
the net satisfies the coherency constraint C.

Proof. Constraint (Core 0) is an immediate translation of the property stated
in Lemma 3. �

Given a net N , a constraint C expressed as a Presburger formula, and a
formula τ∗

C that captures ε=⇒ transitions (as obtained in Sect. 5), we are now able
to check automatically that a net (N,C) is coherent. Thus, from now on, we
assume that the considered nets (N1, C1) and (N2, C2) are indeed coherent.

Coherent Solvability. The first requirement of the parametric E-abstraction
relates to the solvability of formula E with regard to the coherency constraint
C1, and is encoded by (Core 1). This requirement ensures that every marking of
N1 satisfying C1 can be associated to at least one marking of N2 satisfying C2.
Let us recall (S1), taken from Definition 4:

Definition (S1). For all markings m1 satisfying C1 there exists a marking m2

such that m1 〈C1EC2〉 m2.

336 N. Amat et al.

R(N1, C1)C1

m1
m′

1
a

m′′
1

a〉
ε

Fig. 4. Illustration of (Core 0).

R(N1, C1)C1

R(N2, C2)C2

m1

m2

E

Fig. 5. Illustration of (Core 1).

Condition (S1) is depicted in Fig. 5. We propose to encode it by the following
Presburger formula:

∀x . C1(x) =⇒ ∃y . Ẽ(x,y) ∧ C2(y) (Core 1)

Since the encoding is immediate, we admit this proposition:

Proposition 1. The constraint (Core 1) is valid if and only if (S1) holds.

Silent Constraints. So far, we have focused on the specific case of coherent
nets, which refers to intermediate coherent markings. Another notable feature of
parametric E-abstractions is the ability to fire any number of silent transitions
without altering the solutions of E. In other words, if two markings, m1 and m2,
are solutions of E, then firing any silent sequence from m1 (or m2) will always
lead to a solution of E ∧m2 (or E ∧m1). This means that silent transitions must
be invisible to the other net.

Let us recall (S2), taken from Definition 4:

Definition (S2). For all firing sequences m1
ε=⇒ m′

1 and all markings m2, we
have m1 ≡E m2 implies m′

1 ≡E m2.

It actually suffices to show the result for each silent transition t ∈ T1 taken
separately:

Lemma 5. Condition (S2) holds if and only if, for all markings m1, m2 such
that m1 ≡E m2, and for all t1 ∈ T1 such that l1(t1) = τ , we have m1

t1−→m′
1 =⇒

m′
1 ≡E m2.

Proof. The “only if” way is only a particular case of (S2) with a single silent
transition t1. For the “if” way, (S2) is shown from the given property by
transitivity. �

Automated Polyhedral Abstraction Proving 337

R(N1, C1)C1

R(N2, C2)C2

m1 m′
1ε

m2

E E

Fig. 6. Illustration of (Core 2).

R(N1, C1)C1

R(N2, C2)C2

m1 m′
1a

m2

E

m′
2

a

E

Fig. 7. Illustration of (Core 3).

Thanks to this result, we encode (S2) by the following core requirement:

∀p1,p2,p′
1 . Ẽ(p1,p2) ∧ τ(p1,p′

1) =⇒ Ẽ(p′
1,p2) (Core 2)

where τ(x,x′) is defined as τ(x,x′) �
∨

t∈T |l(t)=τ (ENBLt(x) ∧ Δt(x,x′))
(Fig. 6)

Reachability. Let us recall the definition of (S3), taken from Definition 4:

Definition (S3). For all firing sequences m1
σ=⇒ m′

1 and all marking pairs m2,
m′

2, if m1 〈C1EC2〉 m2 and m′
1 ≡E m′

2 then we have m2
σ=⇒ m′

2.

Condition (S3) mentions sequences σ of arbitrary length. We encode it with a
formula dealing only with sequences of length at most 1, thanks to the following
result:

Lemma 6. Given a parametric reduction rule (N1, C1) >E (N2, C2) which sat-
isfies condition (S1), then condition (S3) holds if and only if for all firing
sequence m1

σ=⇒ m′
1 with σ = ε or σ = a with a ∈ Σ, and all markings m2,m

′
2,

we have m1 〈C1EC2〉 m2 ∧ m′
1 ≡E m′

2 =⇒ m2
σ=⇒ m′

2.

Proof. The given property is necessary as a particular case of (S3) taking σ = a
or σ = ε. Conversely, assume the given property holds. We show by induction
on the size of σ that (S3) holds for any sequence σ. The base cases σ = a and
σ = ε are ensured by hypothesis. Now, consider a non-empty sequence σ = σ′.a,
and m1

σ=⇒ m′
1 (i), as well as markings m2, m′

2 such that m1 〈C1EC2〉 m2 and
m′

1 ≡E m′
2 holds. We have to show m2

σ=⇒ m′
2. From (i), we have m1

σ′.a==⇒ m′
1,

that is, there exists a marking u1 such that m1
σ′
=⇒u1

a=⇒m′
1 (ii). By Definition 2,

there exists u′
1 ∈ C1 such that m1

σ′〉
==⇒u′

1
ε=⇒u1 (iii). Also, by condition (S1), there

exists a marking u′
2 of N2 such that u′

1 〈C1EC2〉 u′
2, which implies u′

1 ≡E u′
2 (iv).

Hence, by induction hypothesis on m1
σ′
=⇒ u′

1, we have m2
σ′
=⇒ u′

2 (α) From (iii)
and (ii), we get u′

1
a=⇒ m′

1 (v). Applying the property of the lemma on (iv) and
(v), we get u′

2
a=⇒ m′

2 (β). Combining (α) and (β) leads to m2
σ′.a==⇒ m′

2, that is
the expected result m2

σ=⇒ m′
2. �

338 N. Amat et al.

Thanks to Lemma 6, we can encode (S3) by the following formula:

∀p1,p2, a,p′
1,p′

2 . 〈C1EC2〉(p1,p2) ∧ T̂C1(p1,p′
1) ∧ Ẽ(p′

1,p′
2)

=⇒ T̂C2(p2,p
′
2)

(Core 3)

4.3 Global Procedure

In this section, we consider the full process for proving parametric E-abstraction.
We demonstrate that verifying requirements (Core 0) to (Core 3) is sufficient for
obtaining a sound abstraction (Theorem 3). We also prove that these conditions
are necessary (Theorem 4).

Theorem 3 (Soundness). Given two nets N1, N2 and constraints C1, C2

expressed as Presburger formulas, if core requirement (Core 0) holds for both
(N1, C1) and (N2, C2), and if core requirements (Core 1), (Core 2), and (Core 3)
are valid, then the rule is a parametric E-abstraction: (N1, C1) �E (N2, C2).

Proof. If (Core 0) holds for (N1, C1), then (N1, C1) is a coherent net by Lemma 4.
Similarly for (N2, C2). Hence, (N1, C1) >E (N2, C2) is a parametric reduction
rule. By Proposition 1, and since (Core 1) is valid, we get (S1) from Definition 4.
Similarly, by Lemma 5, and since (Core 2) is valid, we get (S2). Finally, (S3)
holds by Lemma 6 since (Core 3) is valid and since (S1) is known to hold. (S1),
(S2), (S3) entail (N1, C1) �E (N2, C2) by Definition 4. �

The converse also holds:

Theorem 4 (Completeness). Given a parametric E-abstraction (N1, C1) �E

(N2, C2), then core requirements (Core 1), (Core 2), and (Core 3) are valid, and
(Core 0) holds for both (N1, C1) and (N2, C2).

Proof. By hypothesis, conditions (S1), (S2) and (S3) hold and (N1, C1) and
(N2, C2) are coherent nets. Then, Lemma 4 implies that (Core 0) holds for both
nets. Besides, Proposition 1 and Lemmas 5 and 6 ensure that (Core 1), (Core 2),
and (Core 3) are valid. �

Consequently, checking E-abstraction equivalence, i.e., (N1, C1) �E

(N2, C2), amounts to check that SMT formulas (Core 0)-(Core 3) are valid on
both nets.

Our approach relies on our ability to express (arbitrarily long) sequences
m

ε=⇒ m′ thanks to a formula τ∗
C(x,x′). This is addressed in the next section.

5 Silent Transition Relation Acceleration

The previous results, including Theorems 3 and 4, rely on our ability to express
the reachability set of silent transitions as a Presburger predicate, denoted τ∗

C .
Finding a finite formula τ∗

C that captures an infinite state-space is not granted,
since τ -sequences may be of arbitrary length. However, we now show that, since

Automated Polyhedral Abstraction Proving 339

τ transitions must be abstracted away by E in order to define a valid parametric
E-equivalence (condition (S2)), and since E is itself a Presburger formula, this
implies that τ∗

C corresponds to the reachability set of a flattable subnet [24],
which is expressible as a Presburger formula too.

We define the silent reachability set of a net N from a coherent constraint
C as Rτ (N,C) � {m′ | m |= C ∧ m

ε=⇒ m′}. We now want to find a predicate
τ∗
C(x,x′) that satisfies the relation:

Rτ (N,C) = {m′ | m′ |= ∃x . C(x) ∧ τ∗
C(x,x′)} (7)

In order to express the formula τ∗
C , we first use the tool FAST [7], designed

for the analysis of infinite systems, and that permits to compute the reachability
set of a given Vector Addition System with States (VASS). Note that a Petri
net can be transformed to an equivalent VASS with the same reachability set,
so the formal presentation of VASS can be skipped. The algorithm implemented
in FAST is a semi-procedure, for which we have some termination guarantees
whenever the net is flattable [8], i.e. its corresponding VASS can be unfolded
into a VASS without nested cycles, called a flat VASS. Equivalently, a net N
is flattable for some coherent constraint C if its language is flat, that is, there
exists some finite sequence �1 . . . �k ∈ T ∗ such that for every initial marking
m |= C and reachable marking m′ there is a sequence � ∈ �∗

1 . . . �∗
k such that

m
�
=⇒ m′. In short, all reachable markings can be reached by simple sequences,

belonging to the language: �∗
1 . . . �∗

k. Last but not least, the authors stated in
Theorem 5 from [24] that a net is flattable if and only if its reachability set is
Presburger-definable:

Theorem 5 ([24]). For every VASS V , for every Presburger set Cin of con-
figurations, the reachability set ReachV(Cin) is Presburger if, and only if, V is
flattable from Cin.

As a consequence, FAST’s algorithm terminates when its input is Presburger-
definable. We show in Theorem 6 that given a parametric E-abstraction equiv-
alence (N1, C1) �E (N2, C2), the silent reachability sets for both nets N1 and
N2 with their coherency constraints C1 and C2 are indeed Presburger-definable
– we can even provide the expected formulas. Yet, our computation is complete
only if the candidate reduction rule is a parametric E-abstraction equivalence
(then, we are able to compute the τ∗

C relation), otherwise FAST, and therefore
our procedure too, may not terminate.

Theorem 6. Given a parametric E-abstraction equivalence (N1, C1) �E

(N2, C2), the silent reachability set Rτ (N1, C1) is Presburger-definable.

Proof. We prove only the result for (N1, C1), the proof for (N2, C2) is similar
since � is a symmetric relation. We first propose an expression that computes
Rτ (N1,m1) for any marking m1 satisfying C1. Consider an initial marking m1

in C1. From condition (S1) (solvability of E), there exists a compatible marking
m2 satisfying C2, meaning m1 〈C1EC2〉 m2 holds. Now, take a silent sequence

340 N. Amat et al.

m1
ε=⇒ m′

1. From condition (S2) (silent stability), we have m′
1 ≡E m2. Hence,

Rτ (N1,m1) ⊆ {m′
1 | ∃m2 . Ẽ(m1,m2)∧Ẽ(m′

1,m2)}. Conversely, we show that all
m′

1 solution of Ẽ(m′
1,m2) are reachable from m1. Take m′

1 such that m′
1 ≡E m2.

Since we have m2
ε=⇒ m2, by condition (S3) we must have m1

ε=⇒ m′
1. And finally

we obtain Rτ (N1,m1) = {m′
1 | m′

1 |= ∃p1,p2 . m1(p1)∧ Ẽ(p1,p2)∧ Ẽ(p′
1,p2)}.

We can generalize this reachability set for all coherent markings satisfying
C1. We first recall its definition, Rτ (N1, C1) = {m′

1 | ∃m1 . m1 |= C1∧m1
ε=⇒m′

1}.
From condition (S1), we can rewrite this set as {m′

1 | ∃m1,m2 . m1 〈C1EC2〉 m2∧
m1

ε=⇒ m′
1} without losing any marking. Finally, thanks to the previous result

we get Rτ (N1, C1) = {m′
1 | m′

1 |= P} with P = ∃p1,p2 . 〈C1EC2〉(p1,p2) ∧
Ẽ(p′

1,p2) a Presburger formula. Because of the E-abstraction equivalence, (S1)
holds in both directions, which gives ∀p2 . C2(p2) =⇒ ∃p1 . Ẽ(p1,p2)∧C1(p1).
Hence, P can be simplified into ∃p2 . C2(p2) ∧ Ẽ(p′

1,p2).
Note that this expression of Rτ (N,C) relies on the fact that the equivalence

(N1, C1) �E (N2, C2) already holds. Thus, we cannot conclude that a candidate
rule is an E-abstraction equivalence by using this formula at once, without the
extra validation of FAST. �

Verifying FAST Results. We have shown that FAST terminates in case of a
correct parametric E-abstraction. We now show that it is possible to check that
the predicates τ∗

C1
and τ∗

C2
, computed from the result of FAST (see Theorem 6)

are indeed correct.
Assume τ∗

C is, according to FAST, equivalent to the language �∗
1 . . . �∗

n with
�i ∈ T ∗. We encode this language with the following Presburger predicate (sim-
ilar to the one presented in [4]), which uses the formulas H(σki) and Δ(σki)
defined later:

τ∗
C(p

1,pn+1) � ∃k1...kn,p2 . . .pn−1 .∧
i∈1..n

(
(pi � H(σki)) ∧ Δ(σki)(pi ,pi+1

) (11)

This definition introduces acceleration variables ki, encoding the number of times
we fire the sequence �i. The hurdle and delta of the sequence of transitions �k

i ,
which depends on k, are written H(σki) and Δ(σki), respectively. Their formulas
are given in equations (14) and (15) below. Let us explain how we obtain them.

First, we define the notion of hurdle H(�) and delta Δ(�) of an arbitrary
sequence �, such that m

�
=⇒m′ holds if and only if (1) m � H(�) (the sequence �

is fireable), and (2) m′ = m+Δ(�). This is an extension of the hurdle and delta
of a single transition t, already used in formulas (3) and (4). The definition of
H and Δ is inductive:

H(ε) = 0, H(t) = Pre(t) and H(�1.�2) = max (H(�1),H(�2) − Δ(�1)) (12)
Δ(ε) = 0, Δ(t) = Post(t) − Pre(t) and Δ(�1.�2) = Δ(�1) + Δ(�2) (13)

where max is the component-wise max operator. The careful reader will check
by herself that the definitions of H(�1.�2) and Δ(�1.�2) do not depend on the
way the sequence �1.�2 is split.

Automated Polyhedral Abstraction Proving 341

From these, we are able to characterize a necessary and sufficient condition
for firing the sequence �k, meaning firing the same sequence k times. Given
Δ(�), a place p with a negative displacement (say −d) means that d tokens are
consumed each time we fire �. Hence, we should budget d tokens in p for each
new iteration, and this suffices to enable the k − 1 more iterations following the
first transition �. Therefore, we have m

�k

=⇒ m′ if and only if (1) m |= m �
1>0(k)×(H(�)+(k−1)×max(0,−Δ(�))), with 1>0(k) = 1 if and only if k > 0,
and 0 otherwise, and (2) m′ = m+k×Δ(�). Concerning the token displacement
of this sequence �k, it is k times the one of the non-accelerated sequence �.
Equivalently, if we denote by m+ the “positive” part of a mapping m, such that
m+(p) = 0 when m(p) � 0 and m+(p) = m(p) when m(p) > 0, we get:

H(�k) = 1>0(k) × (H(�) + (k − 1) × (−Δ(�))+) (14)

Δ(�k) = k × Δ(�) (15)

Finally, given a parametric rule (N1, C1) >E (N2, C2) we can now check
that the reachability expression τ∗

C1
provided by FAST, and encoded as explained

above, corresponds to the solutions of ∃p2 . Ẽ(p1, p2) using the following addi-
tional SMT query:

∀p1,p
′
1 . C1(p1) =⇒ (∃p2 . Ẽ(p1,p2) ∧ Ẽ(p′

1,p2) ⇐⇒ τ∗
C1

(p1,p
′
1)) (16)

(and similarly for τ∗
C2

).
Once the equivalence (16) above has been validated by a solver, it is in

practice way more efficient to use the formula (∃p2 . Ẽ(p1,p2) ∧ Ẽ(p′
1,p2))

inside the core requirements, rather than the formula τ∗
C1

(p1,p′
1) given by FAST,

since the latter introduces many new acceleration variables.

6 Generalizing Equivalence Rules

Before looking at our implementation, we discuss some results related with
the genericity and generalisability of our abstraction rules. We consider sev-
eral “dimensions” in which a rule can be generalized. A first dimension is related
with the parametricity of the initial marking, which is taken into account by our
use of a parametric equivalence, � instead of ≡, see Theorem 2. Next, we show
that we can infer an infinite number of equivalences from a single abstraction
rule using compositionality, transitivity, and structural modifications involving
labels. Therefore, each abstraction law can be interpreted as a schema for several
equivalence rules.

Definition 5 (Transition Operations). Given a Petri net N = (P, T,Pre,
Post) and its labeling function l : T → Σ ∪ {τ}, we define two operations: T−,
for removing, and T+, for duplicating transitions. Let a and b be labels in Σ.

– T−(a) is a net (P, T ′,Pre′,Post′), where T ′ � T \ l−1(a), and Pre′ (resp.
Post′) is the projection of Pre (resp. Post) to the domain T ′.

342 N. Amat et al.

– T+(a, b) is a net (P, T ′,Pre′,Post′), where T ′ is a subset of T ×{0, 1} defined
by T ′ � T ×{0}∪ l−1(a)×{1}. Additionally, we define Pre′(t, i) � Pre(t) and
Post′(t, i) � Post(t) for all t ∈ T and i ∈ {0, 1}. Finally, the labeling function
l′ is defined with l′(t, 0) � l(t) and l′(t, 1) = b for all t ∈ T .

The operation T−(a) removes transitions labeled by a, while T+(a, b) dupli-
cates all transitions labeled by a and labels the copies with b. We illustrated T+ in
the nets of rule (magic), in Fig. 2, where the “dashed” transition c′ can be inter-
preted has the result of applying operation T+(c, c′). Note that these operations
only involve labeled transitions. Silent transitions are kept untouched—up-to
some injection.

Theorem 7 (Preservation by Transition Operations). Assume we have
a parametric E-abstraction equivalence (N1, C1) �E (N2, C2), a and b are labels
in Σ. Then,

– T−
i (a) and T+

i (a, b) satisfy the coherency constraint Ci, for i = 1, 2.
– (T−

1 (a), C1) �E (T−
2 (a), C2).

– (T+
1 (a, b), C1) �E (T+

2 (a, b), C2).

where T−
i , T+

i is (respectively) the operation T−, T+ on Ni.

Finally, we recall a previous result from [1,2] (Theorem 8), which states
that equivalence rules can be combined together using synchronous composi-
tion, relabeling, and chaining. Note that, in order to avoid inconsistencies that
could emerge if we inadvertently reuse the same variable in different reduc-
tion equations (variable escaping its scope), we require that conditions can
be safely composed: the equivalence statements (N1,m1) ≡E (N2,m2) and
(N2,m2) ≡E′ (N3,m3) are compatible if and only if P1 ∩ P3 = P2 ∩ P3. We
also rely on classical operations for relabeling a net, and for synchronous prod-
uct, N1 ‖ N2, which are defined in [2] for instance.

Theorem 8 (E-equivalence is a Congruence [1,2]). Assume we have two
compatible equivalence statements (N1,m1) ≡E (N2,m2) and (N2,m2) ≡E′

(N3,m3), and that M is a Petri net such that N1 ‖ M and N2 ‖ M are defined,
then

– (N1,m1) ‖(M,m) ≡E (N2,m2) ‖(M,m).
– (N1,m1) ≡E,E′ (N3,m3).
– (N1[a/b],m1) ≡E (N2[a/b],m2) for any a ∈ Σ and b ∈ Σ ∪ {τ}.

7 Validation and Conclusion

We have implemented our automated procedure in a new tool called Reductron.
The tool is open-source, under the GPLv3 license, and is freely available on
GitHub [23]. The repository contains a subdirectory, rules, that provides exam-
ples of equivalence rules that can be checked using our approach. Each test con-
tains two Petri nets, one for N1 (called initial.net) and another for N2 (called

Automated Polyhedral Abstraction Proving 343

τ

WaitBag

τ

Undress

τ

InBath

τ

Dress

τ

Dressed

Bags

τ

τ

Cabins

OutEntered

N1

C1 � Cabins = 10 ∧ Out = 20 ∧ Bags = 15 ∧
Entered+WaitingBag + Undress+Dresse+ Inbath+Dressed = 0

E �

⎧⎨
⎩

Cabins+Dress+Dressed+ Undress+WaitBag = 10
Dress+Dressed+ Entered+ InBath+Out+ Undress+WaitBag = 20
Bags+Dress+ InBath+ Undress = 15

Fig. 8. A Petri net modeling users in a swimming pool, see e.g. [10].

reduced.net), defined using the syntax of Tina. These nets also include dec-
larations for constraints, C1 and C2, and for the equation system E. Our list
contains examples of laws that are implemented in Tedd and SMPT, such as rule
(concat) depicted in Fig. 1, but also some examples of unsound equivalences
rules. For instance, we provide example (fake_concat), which corresponds to
the example of Fig. 1 with transition d added.

An interesting feature of Reductron, when a rule is unsound, is to return
which core requirement failed. For instance, with (fake_concat), we learn
that (N1, C1) is not coherent because of d (we cannot reach a coherent marking
after firing d using only silent transitions). We can also detect many cases in
which there is an error in the specification of either C or E.

We performed some experimentation using z3 [14] (version 4.8) as our target
SMT solver, and FAST (version 2.1). All the examples given in our repository
can be solved in a few seconds. Although we focus on the automatic verification
of abstraction laws, we have also tested our tool on moderate-sized nets, such as
the swimming pool example given in Fig. 8. In this context, we use the fact that
an equivalence of the form (N,C) �E (∅,True), between N and a net containing
an empty set of places, entails that the reachability set of (N,C) must be equal
to the solution set of E. In this case, also, results are almost immediate.

These very good results depend largely on the continuous improvements made
by SMT solvers. Indeed, we generate very large LIA formulas, with sometimes
hundreds of quantified variables, and a moderate amount of quantifier alter-
nation (formulas of the form ∀∃∀). For instance, experiments performed with
older versions of z3 (such as 4.4.1, October 2015) exhibit significantly degraded

344 N. Amat et al.

performances. We also rely on the very good performances exhibited by the tool
FAST, which is essential in the implementation of Reductron.

Acknowledgements. We would like to thanks Jérôme Leroux for his support during
our experimentation with FAST.

References

1. Amat, N., Berthomieu, B., Dal Zilio, S.: On the combination of polyhedral abstrac-
tion and SMT-based model checking for petri nets. In: Buchs, D., Carmona, J.
(eds.) PETRI NETS 2021. LNCS, vol. 12734, pp. 164–185. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-76983-3_9

2. Amat, N., Berthomieu, B., Dal Zilio, S.: A polyhedral abstraction for Petri nets and
its application to SMT-based model checking. Fundamenta Informaticae 187(2–4)
(2022). https://doi.org/10.3233/FI-222134

3. Amat, N., Dal Zilio, S.: SMPT: A testbed for reachabilty methods in generalized
Petri nets. In: Formal Methods (FM). LNCS, Springer (2023). https://doi.org/10.
1007/978-3-031-27481-7_25

4. Amat, N., Zilio, S.D., Hujsa, T.: Property Directed Reachability for Generalized
Petri Nets. In: TACAS 2022. LNCS, vol. 13243, pp. 505–523. Springer, Cham
(2022). https://doi.org/10.1007/978-3-030-99524-9_28

5. Amat, N., Dal Zilio, S., Le Botlan, D.: Accelerating the computation of dead and
concurrent places using reductions. In: Laarman, A., Sokolova, A. (eds.) SPIN
2021. LNCS, vol. 12864, pp. 45–62. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-84629-9_3

6. Amat, N., Dal Zilio, S., Le Botlan, D.: Leveraging polyhedral reductions for solv-
ing Petri net reachability problems. Int. J. Softw. Tools Technol. Transfer (2022).
https://doi.org/10.1007/s10009-022-00694-8

7. Bardin, S., Finkel, A., Leroux, J., Petrucci, L.: FAST: fast acceleration of sym-
bolic transition systems. In: Hunt, W.A., Somenzi, F. (eds.) CAV 2003. LNCS,
vol. 2725, pp. 118–121. Springer, Heidelberg (2003). https://doi.org/10.1007/978-
3-540-45069-6_12

8. Bardin, S., Finkel, A., Leroux, J., Petrucci, L.: FAST: acceleration from theory
to practice. Int. J. Softw. Tools Technol. Transf. 10(5) (2008). https://doi.org/10.
1007/s10009-008-0064-3

9. Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB Standard: Version 2.6. Tech.
rep., Department of Computer Science, The University of Iowa (2017). http://
www.smt-lib.org/

10. Bérard, B., Fribourg, L.: Reachability analysis of (timed) petri nets using real
arithmetic. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664,
pp. 178–193. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48320-
9_14

11. Berthelot, G.: Transformations and decompositions of nets. In: Brauer, W., Reisig,
W., Rozenberg, G. (eds.) ACPN 1986. LNCS, vol. 254, pp. 359–376. Springer,
Heidelberg (1987). https://doi.org/10.1007/978-3-540-47919-2_13

12. Berthomieu, B., Le Botlan, D., Dal Zilio, S.: Petri net reductions for counting
markings. In: Gallardo, M.M., Merino, P. (eds.) SPIN 2018. LNCS, vol. 10869, pp.
65–84. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94111-0_4

https://doi.org/10.1007/978-3-030-76983-3_9
https://doi.org/10.3233/FI-222134
https://doi.org/10.1007/978-3-031-27481-7_25
https://doi.org/10.1007/978-3-031-27481-7_25
https://doi.org/10.1007/978-3-030-99524-9_28
https://doi.org/10.1007/978-3-030-84629-9_3
https://doi.org/10.1007/978-3-030-84629-9_3
https://doi.org/10.1007/s10009-022-00694-8
https://doi.org/10.1007/978-3-540-45069-6_12
https://doi.org/10.1007/978-3-540-45069-6_12
https://doi.org/10.1007/s10009-008-0064-3
https://doi.org/10.1007/s10009-008-0064-3
http://www.smt-lib.org/
http://www.smt-lib.org/
https://doi.org/10.1007/3-540-48320-9_14
https://doi.org/10.1007/3-540-48320-9_14
https://doi.org/10.1007/978-3-540-47919-2_13
https://doi.org/10.1007/978-3-319-94111-0_4

Automated Polyhedral Abstraction Proving 345

13. Berthomieu, B., Le Botlan, D., Dal Zilio, S.: Counting Petri net markings from
reduction equations. Int. J. Softw. Tools Technol. Transfer 22(2), 163–181 (2019).
https://doi.org/10.1007/s10009-019-00519-1

14. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3_24

15. Esparza, J.: Decidability and complexity of Petri net problems — an introduction.
In: Reisig, W., Rozenberg, G. (eds.) ACPN 1996. LNCS, vol. 1491, pp. 374–428.
Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-65306-6_20

16. Esparza, J., Nielsen, M.: Decidability issues for Petri nets. BRICS Report Series
1(8) (1994)

17. Hack, M.H.T.: Decidability questions for Petri Nets. Ph.D. thesis, Massachusetts
Institute of Technology (1976)

18. Hirshfeld, Y.: Petri nets and the equivalence problem. In: Börger, E., Gurevich, Y.,
Meinke, K. (eds.) CSL 1993. LNCS, vol. 832, pp. 165–174. Springer, Heidelberg
(1994). https://doi.org/10.1007/BFb0049331

19. Hujsa, T., Berthomieu, B., Dal Zilio, S., Le Botlan, D.: Checking marking reacha-
bility with the state equation in Petri net subclasses. CoRR abs/2006.05600 (2020)

20. Hujsa, T., Berthomieu, B., Dal Zilio, S., Le Botlan, D.: On the Petri nets with a
single shared place and beyond. CoRR abs/2005.04818 (2020)

21. LAAS-CNRS: SMPT (2020). https://github.com/nicolasAmat/SMPT/
22. LAAS-CNRS: Tina Toolbox (2020). http://projects.laas.fr/tina
23. LAAS-CNRS: Reductron (2023). https://github.com/nicolasAmat/Reductron/
24. Leroux, J.: Presburger vector addition systems. In: 2013 28th Annual ACM/IEEE

Symposium on Logic in Computer Science (2013). https://doi.org/10.1109/LICS.
2013.7

25. Thierry-Mieg, Y., Poitrenaud, D., Hamez, A., Kordon, F.: Hierarchical Hierarchical
Set Decision Diagrams and regular models. In: Kowalewski, S., Philippou, A. (eds.)
TACAS 2009. LNCS, vol. 5505. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-00768-2

https://doi.org/10.1007/s10009-019-00519-1
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/3-540-65306-6_20
https://doi.org/10.1007/BFb0049331
https://github.com/nicolasAmat/SMPT/
http://projects.laas.fr/tina
https://github.com/nicolasAmat/Reductron/
https://doi.org/10.1109/LICS.2013.7
https://doi.org/10.1109/LICS.2013.7
https://doi.org/10.1007/978-3-642-00768-2
https://doi.org/10.1007/978-3-642-00768-2

Experimenting with Stubborn Sets on Petri Nets

Sami Evangelista(B)

LIPN, CNRS UMR 7030, Université Paris 13, Sorbonne Paris Cité,
99, av. J.-B. Clément, 93430 Villetaneuse, France
sami.evangelista@lipn.univ-paris13.fr

Abstract. The implementation of model checking algorithms on real life sys-
tems usually suffers from the well known state explosion problem. Partial order
reduction addresses this issue in the context of asynchronous systems. We review
in this article algorithms developped by the Petri nets community and contribute
with simple heuristics and variations of these. We also report on a large set of
experiments performed on the models of a Model Checking Contest hosted by
the Petri Nets conference since 2011. Our study targets the verification of dead-
lock freeness and liveness properties.

1 Introduction

System verification based on an exhaustive simulation suffers from the well known state
explosion problem: the system state space often grows exponentially with respect to the
system structure, making it hard if not impossible to apply it to real life systems. One
major source of this problem lies in the concurrent execution of system components
that often leads to a blowup of possible interleavings.

When dealing with asynchronous systems, it is often the case that the execution
order of system transitions is irrelevant because their occurences can be swapped with-
out consequences on the observed system. This observation has led to the development
of some partial order reduction algorithms [10,15,18] that exploit this independence
relation between transitions. Although they differ in their implementation of this gen-
eral principle, they rely on a selective search within the state space: when considering
a system state only a subset of allowed transitions are considered to pursue the explo-
ration while the execution of other allowed transitions is postponed to a future state.
Such a subset is called stubborn [18], persistent [10] or ample [15] in the literature.

Ignoring some transitions has the consequence of ruling out some system states
and building a reduced state space that is more suitable for verification purposes. The
filtering mechanism must however fulfill some conditions for the reduced state space to
be of any use. Hence, several variations of the method have been designed depending
on the property being investigated.

We focus in this article on deadlock freeness and liveness properties for which we
review several algorithms. For deadlock freeness we consider Petri nets tailored algo-
rithms while for liveness properties the algorithms usually operate on the underlying
reduced state space and are thus language independent.

The contribution of this article is twofold. First, we introduce several simple heuris-
tics and optimisations for existing algorithms. Second, in order to evaluate some of these
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023

L. Gomes and R. Lorenz (Eds.): PETRI NETS 2023, LNCS 13929, pp. 346–365, 2023.
https://doi.org/10.1007/978-3-031-33620-1_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33620-1_19&domain=pdf
http://orcid.org/0000-0002-7666-583X
https://doi.org/10.1007/978-3-031-33620-1_19

Experimenting with Stubborn Sets on Petri Nets 347

algorithms, in particular the benefits of our contributions, we report on a large series of
experiments performed on the Petri net models of the Model Checking Contest [] which
resulted in approximately 150,000 runs.

The rest of this paper is organised as follows. Background on Petri nets and partial
order reduction is given in Sect. 2. Section 3 recalls the elements of the stubborn set the-
ory for deadlock detection, reviews some algorithms developped for that purpose, and
presents our experimental evaluation of these. Likewise, in Sect. 4 we review partial
order reduction algorithms for liveness verification and present experimental observa-
tions on these. Section 5 concludes our work and introduces some perspectives.

2 Background

This section introduces notations and definitions used in the remainder of the paper.

Definition 1. A Petri net is a tuple (P,T,W), where P is a set of places ; T is a set of
transitions such that T ∩P= /0 ; andW : (P×T)∪(T ×P)→N is a weighting function.

From now on, we assume a Petri net N = (P,T,W). For any n ∈ P∪T , •n and n•
respectively denote the sets {o ∈ P∪T |W (o,n) > 0} and {o ∈ P∪T |W (n,o) > 0}.

Definition 2. The set M = {m ∈ P → N} is the set of markings of N. Let m ∈ M and
t ∈ T . IfW (p, t)≥m(p),∀p∈ P then t is firable at m (m[t〉 for short). The firing of t at m
leads to m′ ∈M (m[t〉m′ for short) defined by m′(p)=m(p)−W (p, t)+W (t, p),∀p∈P.
The set en(m) = {t ∈ T | m[t〉} is the set of firable (or enabled) transitions at m. A
deadlock is a marking m such that en(m) = /0.

The firing rule is extended to sequences of transitions (i.e., elements of T ∗). Let
m ∈M and σ ∈ T ∗. σ is firable at m, (m[σ〉 for short) if σ = ε or if σ = t.σ′, m[t〉m′ and
m′[σ′〉 where t.σ′ is the concatenation of t ∈ T and σ′ ∈ S∗ ; and ε the empty sequence.

Definition 3. The state space of (N,m0) (with m0 ∈ M an initial marking) is a couple
(R,A) such that R and A are the smallest sets respecting: m0 ∈ R and if m ∈ R and
m[t〉m′ for some t ∈ T then m′ ∈ R and (m, t,m′) ∈ A.

Stubborn, ample, or persistent sets reductions rely on the use of a reduction function
that filters transitions to be used to generate the successors of a marking, leading to the
construction of a reduced state space.

Definition 4. A reduction function is a mapping f from M to 2T . The reduced state
space of (N,m0) with respect to f is a couple (Rf ,Af) such that R f and Af are the
smallest sets respecting: m0 ∈ Rf and if m ∈ Rf and m[t〉m′ for some t ∈ f (m) then
m′ ∈ Rf and (m, t,m′) ∈ Af . If m[t〉 and t ∈ f (m) then we note m[t〉 f . Likewise, m[t〉 f m′
denotes that m[t〉 f and m[t〉m′.

If a marking m is such that en(m)∩ f (m)⊂ en(m), then it is said to be reduced. Oth-
erwise, it is said to be fully expanded. An exhaustive state space construction algorithm
can be modified to build a reduced state space, simply by considering en(m)∩ f (m)
instead of en(m) when processing a marking m.

348 S. Evangelista

Obviously, a reduction function must respect some conditions for the reduced state
space to be of any use. We review in subsequent sections sufficient conditions to pre-
serve deadlocks and liveness properties.

3 Stubborn Sets for Deadlock State Detection

We recall in this section the theoretical background of the stubborn set theory for dead-
lock detection. We then review different algorithms that can be used in that context
before presenting our experimental results.

3.1 Stubborn Set Theory for Deadlock Detection

Dynamic stubborness is a key concept in the stubborn sets theory. Whatever the property
being investigated, it is used as the starting point to define reduction functions.

Definition 5. Let m ∈ M . S ⊆ T is dynamically stubborn at m [20] if conditions D1
and D2 hold, where:

D1 ∀σ ∈ (T \S)∗, t ∈ S: m[σ.t〉 ⇒ m[t.σ〉
D2 if en(m) �= /0 then ∃k ∈ S | ∀σ ∈ (T \S)∗: m[σ〉 ⇒ m[σ.k〉
A transition k in condition D2 is called a key transition. If all transitions of S are

key transitions, then S is strongly dynamically stubborn at m. A reduction function
producing dynamically stubborn sets preserves all deadlocks [19] in the reduced state
space. Such a reduction function is also characterised as dynamically stubborn.

The two conditions of Definition 5 rely on a notion of dependency as defined below.

Definition 6. A dependency relation D is a symmetric and reflexive relation over T ×T
such that (t,u) /∈D implies that for all m ∈ R: m[t〉m′ ∧m[u〉 ⇒ m′[u〉.

Given a dependency relation D , we will note D(t) the set {t ′ ∈ T | (t, t ′) ∈D}.
Generally speaking, it is also required for D that t and u commute (that their execu-

tion order is irrelevant) but we have left out this condition, as it is obviously superfluous
in the case of Petri nets.

We will use the following proposition to serve as a basis for the implementation of
the stubborn set computation algorithms that we will experiment with.

Proposition 1. Let D be a dependency relation, m ∈M and S ⊆ T be such that:

1. if en(m) �= /0 then S∩ en(m) �= /0 ;
2. if t ∈ S∩ en(m) then D(t) ⊆ S ;
3. if t ∈ S\ en(m) then ∃p ∈ P | m(p) <W (p, t) and {t ∈ T |W (t, p) >W (p, t)} ⊆ S.

Then S is strongly dynamically stubborn at m.

Experimenting with Stubborn Sets on Petri Nets 349

According to Item 1 a non deadlock marking may not have an empty stubborn set.
If an enabled transition is stubborn then so are all its dependent transitions (Item 2).
Last, Item 3 states that if a disabled transition is stubborn then there is a place that
disables its firing and such that all transitions that could increase its marking are also
stubborn. It is easy to prove that the firing of any transition outside S cannot alter the
firability of transitions of S and conversely. Hence, stubborn sets respecting conditions
of Proposition 1 are indeed strongly dynamically stubborn sets. Note however, that
conditions could be relaxed to ensure dynamic stubborness, see [20].

Proposition 1 is parametrized by D . We define below two such dependency rela-
tions.

Definition 7. The exact dependency relation De is such that (t,u) ∈ De if and only
if ∃m ∈ R such that m[t〉m′ ∧ m[u〉 ∧ ¬m′[u〉. The static dependency relation Ds

is such that (t,u) ∈ Ds if and only if ∃p ∈ P such that min(W (t, p),W (u, p)) <
min(W (p, t),W (p,u)).

t1

t2

u1

u2

ct

cu

Fig. 1. De ⊂Ds for this net

It is straightforward to show that De and Ds

are dependency relations (as defined by Defini-
tion 6) and that De ⊆ Ds. Relation De is the
smallest dependency relation as its definition is
based on the state space. It is however useless in
practice since our goal is precisely to avoid the
construction of this state space. Nevertheless, we
will use it in our experiments (as first done in [9])
for comparison purposes in situations where the
full state space can be computed with available
resources. Relation Ds (from [19,20]) might be
larger and may thus have a smaller reduction power but it has the advantage to only rely
on the structure of the net and can therefore be the basis of a practical implementation
of the stubborn set reduction.

It is noted in [9] that Definition 5 actually considers for a marking m only its possible
futures rather than the full state space. It is thus possible to refine De and define a
context-dependent relation (see [9], Sec. 3.1, page 44). We have not considered such a
possibility and leave it for future experiments.

The net depicted on Fig. 1 shows a simple example net for which De and Ds differ.
Places ct and cu force an alternation between transitions t1.t2 and transitions u1.u2. So
there actually is no conflict between t1 and u1 whereas the structure of the net tells us a
different story. Therefore, we have De = /0 and Ds = {(t1,u1),(u1, t1)}.

3.2 Stubborn Set Algorithms for Deadlock Detection

We chose to introduce and experiment with three algorithms: the closure algorithm, the
deletion algorithm and a combination of these two. The first one has been chosen for its
simplicity and because one of our contributions is to introduce a simple optimisation to
this one that occurs to be quite helpful for some models. The second algorithm has been
chosen for its ability to produce minimal sets (with respect to inclusion and according
to the conditions of Proposition 1) despite its quadratic complexity.

350 S. Evangelista

Algorithm 1.clo, the closure algorithm
1: S := { pick from en(m) } ; Q := S
2: while Q �= /0 do
3: t := pick from Q ; Q := Q\{t}
4: if t ∈ en(m) then
5: U := D(t)
6: else
7: C := {p ∈ P | m(p) <W (p, t)}
8: s := pick from C
9: U := {t ∈ T |W (t,s) >W (s, t)}

10: Q := Q∪ (U \S) ; S := S∪U
11: return S

The Closure Algorithm This first algo-
rithm (see Algorithm 1) is a straightfor-
ward implementation of Proposition 1. It
initiates the stubborn set (S) construction
by picking an enabled transition (condi-
tion 1). Based on conditions 2 and 3, it
then inserts new transitions in S until all
transitions of S have been treated.

When examining a disabled transi-
tion t, Algorithm 1 chooses a place that
disables its firing. Such a place is called a
scapegoat place in the literature because
it is considered as responsible of t being
disabled. The choice of this scapegoat largely impacts the construction of the stubborn
set. To limit as much as possible the choices of undesirable scapegoats (in the sense that
it may produce unnecessary large sets), we introduce a modification of this algorithm
that exploits the past of the construction (see Algorithm 2). A counter I is associated
with each place. For any p ∈ P, I[p] is initialised with the number of transitions that
increase the marking of p (lines 1–2). During the construction, each time a transition t
is put in the stubborn set, we decrement the counter of any place p of which the mark-
ing is increased by t (lines 25–26). When the counter reaches 0 for some p ∈ P, then
we know that p cannot gain any token without a transition of S occurring first. Conse-
quently, all output transitions of p that are disabled by p can be put in S (lines 27–30).
However, a transition u put in S by this way does not need to be further considered
by the algorithm (this is the purpose of the enqueue parameter of procedure new stub)
since we know that p is already a valid scapegoat place for t: all transitions that may
increase its marking are already stubborn.

Algorithm 2.clo�, an optimised closure algorithm
1: for p in P do
2: I[p] := |{t ∈ T |W (t, p) >W (p, t)}|
3: init stub()
4: while Q �= /0 do
5: t := pick from Q
6: Q := Q\{t}
7: if t ∈ en(m) then
8: U := D(t)
9: else

10: C := {p ∈ P | m(p) <W (p, t)}
11: s := pick from C
12: U := {t ∈ T |W (t,s) >W (s, t)}
13: for u inU \S do
14: new stub(u, true)
15: return S

16: procedure init stub() is
17: t0 := pick from en(m)
18: S := /0
19: Q := /0
20: new stub(t0, true)
21: procedure new stub(t,enqueue) is
22: S := S∪{t}
23: if enqueue then
24: Q := Q∪{t}
25: for p in {p ∈ P |W (t, p) >W (p, t)} do
26: I[p] := I[p]−1
27: if I[p] = 0 then
28: for u in p• \S do
29: ifW (p,u) > m(p) then
30: new stub(u, false)

Experimenting with Stubborn Sets on Petri Nets 351

p q

t

s

u

r

v

Fig. 2. An example net illustrat-
ing Algorithm 2

We illustrate the principle of our modification with
the help of Fig. 2. Let us first see how the basic algo-
rithm proceeds. Suppose that the algorithm is instanti-
ated with Ds = {(t,u),(u, t)} and that the stubborn set
construction is initiated with t. Since u ∈ Ds(t), u must
also be put in the stubborn set. When processing u, the
algorithm has to choose among two scapegoats: r and
s. Choosing r causes the insertion of v while choosing s
does not cause any new transition to be put in the stub-
born set and halts the construction. Hence, the algorithm
may produce either {t,u,v} or either {t,u} depending on
the scapegoat choice.

With our modification, if the construction is initiated
with t, the insertion of t in the stubborn sets causes I[s]
to reach 0. This causes the insertion of u to S without u being put in Q, and immediately
stops the construction. Hence, with the same starting transition, our modified algorithm
can only produce {t,u} as a resulting set.

Note that, as illustrated by our example, our modification does not improve on the
basic closure algorithm as any set produced by the former can also be produced by the
latter. Our modification must therefore be thought as a way to equip the basic algorithm
with a mechanism that can avoid the choice of inappropriate scapegoat places.

The nondeterminism of the closure algorithm stems from the two choices done for
the transition picked to initiate the construction of the set at l. 1 of Algorithm 1; and for
the scapegoat place picked at l. 8 of Algorithm 1.

We considered 4 strategies to choose the starting transition t to compute a stubborn
set S. They rely on a bijective mapping ord : P∪T → {1, . . . , |P∪T |} and two heuristics
het and h f

t where het (t) and h f
t (t) are respectively the number of enabled transitions and

the number of forward transitions (i.e., enabled transitions for which the firing leads to
an undiscovered marking) in S if t is chosen to initiate S. These 4 strategies are:

– rndt — Pick t randomly.
– fstt — Pick t st. ord(t) is minimal.
– minet — Pick t st. (het (t),ord(t)) is minimal.
– min f

t — Pick t st. (h f
t (t),het (t),ord(t)) is minimal.

Note that, using strategies minet , min
f
t we trade the linear complexity of the algorithm

for a quadratic complexity since the closure algorithm is now invoked on every possible
starting transition.

For the choice of a scapegoat place s we considered 8 strategies. They rely on 3
heuristics hts, h

e
s and h f

s where hts(s), h
e
s(s) and h f

s (s) are respectively the number of
transitions, the number of enabled transitions and the number of forward transitions
inserted in S if s is chosen as a scapegoat. These 8 strategies are:

– rnds — Pick s randomly.
– fsts — Pick s st. ord(s) is minimal.
– mints and maxts — Pick s st. (hts(s),ord(s)) is minimal (maximal).
– mines and maxes — Pick s st. (hes(s),h

t
s(s),ord(s)) is minimal (maximal).

– min f
s and max fs — Pick s st. (h f

s (s),hes(s),h
t
s(s),ord(s)) is minimal (maximal).

352 S. Evangelista

In the following, clo(t,s) and clo�(t,s) denote algorithms Algorithm 1 and Algo-
rithm 2 respectively, instanciated with strategies t and s for choosing the starting tran-
sition and scapegoat places respectively.

The Deletion Algorithm. This second algorithm avoids the necessity of choosing
scapegoats. It relies on the construction of a graph capturing transition dependencies.

Definition 8. Let D be a dependency relation, and m ∈M . A dependency graph for m
is a directed graph (V,E) with V = P∪T and E = E1 ∪E2 ∪E3 where:

E1 = (en(m)×T)∩D
E2 = {(t, p) ∈ (T \ en(m))×P | m(p) <W (p, t)}
E3 = {(p, t) ∈ P×T |W (t, p) >W (p, t)}

A dependency graph is nothing more than a reformulation of Proposition 1 as a
graph structure. The deletion algorithm iteratively tries to delete enabled transitions
from this graph. When a node is deleted then so are its immediate predecessors that are
places or enabled transitions. Disabled transitions are deleted when they do not have any
successor remaining inV . If, after a deletion step, the graph does not contain an enabled
transition anymore, then the deletion is undone and the algorithm tries to delete another
transition. Termination occurs when no transition can be further deleted. Set V ∩T is
then a valid stubborn set. Indeed, after a successful deletion, edges of E1 ensure that,
for any t ∈ en(m)∩V , all its dependent transitions are still in V ; and edges of E2 ensure
that, for any t ∈ (T \en(m))∩V , there is at least one p∈P∩V such that m(p)<W (p, t),
and, due to E3, all transitions that increase the marking of p are also in V .

The only source of nondeterminism of the deletion algorithm is in the choice of the
transition t to delete at each step. We considered 6 strategies to make that choice. They
rely on two heuristics hed and h f

d where hed(t) and h f
d(t) are respectively the number of

enabled transitions and the number of forward transitons deleted by the algorithm if t is
picked as the transition to be deleted from the graph. These 6 strategies are:

– rndt — Pick t randomly.
– fstt — Pick t st. ord(t) is minimal.
– minet and maxet — Pick t st. (hed(t),ord(t)) is minimal (maximal).

– min f
t and max ft — Pick t st. (h f

d(t),h
e
d(t),ord(t)) is minimal (maximal).

For the four last strategies, the algorithm has to simulate the deletion of all enabled
transitions remaining in the graph before picking one. This however does not impact the
algorithm complexity since in the worst case every transition has to be checked anyway.

In the following, del(t) denotes the deletion algorithm instanciated with strategy t
for choosing the transition to be deleted at each iteration.

The Clodel Algorithm. It is also possible to chain both algorithms: a stubborn set is
first computed using the closure algorithm; then the deletion algorithm is used on the
resulting set to try to further eliminate transitions. We call this combination the clodel
algorithm. Its principle has been given by Valmari and Hansen [21] (Sect. 7, page 58).

Experimenting with Stubborn Sets on Petri Nets 353

The clodel algorithm can be instanciated as the closure algorithm is. We could also
consider in the instanciation the strategy followed by the deletion algorithm to pick
transitions to delete but, to avoid a blowup of experimented configurations, we only
considered the fstt strategy.

In the following, clodel(t,s) denotes the stubborn set construction algorithm that
first invokes clo�(t,s) and then tries to reduce it with del(fstt).

3.3 Experimentation Context

We have implemented the algorithms introduced in the previous section in the
Helena [6] tool and we have performed experiments on models of the MCC model
database. We also experimented with the Prod [23] tool that implements the deletion
algorithm and the incremental algorithm based on strongly connected components and
that is parametrised as is the closure algorithm. In the following, inc(t,s) denotes the
incremental algorithm instanciated with strategies t and s for choosing starting transi-
tions and scapegoat places respectively.

All our experimental data are available on the following web page:
https://www.lipn.univ-paris13.fr/∼evangelista/recherche/por-xp

Input Models. The MCC model database1 comprises 128 Petri net models ranging
from simple ones used for educational purposes to complex models corresponding to
real life systems. Most of these are obtained from parametrised higher level descrip-
tions (e.g., colored Petri nets) and can be instanciated. Although we have experimented
with instances of 130 models (all models of the MCC database as well as two models
of our own) we have voluntarily left out some of these. Several reasons can explain
this: inability of partial order reduction to reduce the state space, timeout in the state
space exploration, timeout in the model compilation, The reader may find on the
aforementioned web page the details on our selection process. As a result, our report
deals with 76 models. For each of these we considered two of its instances, or a single
one for non parametrized models. This resulted in 140 instances.

Algorithmic Configurations. With Helena, we have experimented with all algorithm
instances considered in Sect. 3.2: 32 instances for algorithms clo, clodel and clo� and
6 instances for algorithm del. Moreover, we have experimented with the Ds and, when
available, the De dependency relations. Since the computation of De required to first
perform a full state space exploration to store the state space on disk (as done in [9]) we
could not experiment with De on instances for which this operation was not feasible.

With Prod, we experimented with the 8 algorithmic configurations it provides:
del(d), ∀d ∈ {fstt ,rndt}, and inc(t,s), ∀(t,s) ∈ {fstt ,rndt ,minet }×{fsts,rnds}.

Randomness and Static Node Ordering. All algorithm instances rely either on a random
selection of nodes, or either on a static ordering of nodes computed prior to the explo-
ration (even strategies based on, e.g., a minimisation process, rely on a static ordering

1 See https://mcc.lip6.fr/models.php for the list of models. All models from 2011 to 2022
(included) have been considered.

https://www.lipn.univ-paris13.fr/~evangelista/recherche/por-xp
https://mcc.lip6.fr/models.php

354 S. Evangelista

when several sets of minimal size are available). It is therefore relevant to explore to
which extent these mechanisms alter the reduced state space size. Thus, for each model
instance, we randomly shuffled the net description 5 times to generate as many different
static orderings of nodes and launched each algorithm instance with these 5 settings.

Considering all parameters, our experiments resulted in 114780 runs. We checked
that all runs on the same model instance produced the same number of deadlock states.

3.4 Experimental Observations

We start by general observations before presenting a sample of our results. We only
consider for now, the static dependency relation Ds. The comparison with the exact
relation De will be addressed later in this section.

First, strategies based on a random selection process perform generally worse. For
the deletion algorithm, the rndt strategy outperformed others for three instances only
(airplane(20), airplane(50) and erk(100)). Likewise, for the three variants of the closure
algorithm, selecting the starting transition randomly was the best strategy for only one
instance (erk(100)). On all other instances it performed (sometimes significantly) worse.
The same remark applies to the choice of the scapegoat place. It is somehow surprising
that, all things being equal, choosing the first node according to some static ordering is
generally preferable to choosing the node randomly. We conjecture that, unlike random
strategies, choosing the first node leads to compute similar stubborn sets when process-
ing similar markings (i.e., whose marking differs on a small number of places) which
is probably preferable.

Algorithm clo� outperforms clo on several non trivial instances while we did not
find out any instance for which the converse holds. Moreover, the scapegoat choice
strategy has a lesser impact with algorithm clo�, which is not surprising considering that
the goal of clo� is precisely to restrict the number of scapegoat candidates. Nevertheless,
when both perform comparably, clo can be significantly faster than clo�.

For the clo and clo� algorithms strategy fstt (and rndt as said above) for choos-
ing the starting transition is largely outperformed by strategies based on a minimi-
sation process. We only found out one model instance for which always choosing
the first candidate transition to build the stubborn set produced a smaller state space
(qcertifprotocol(6)). Nevertheless when a run based on that strategy could terminate with
a number of markings in the same order of magnitude as those based on strategies minet
or min f

t , it was usually much faster due to its linear complexity.
For the closure algorithm and its variants, minimisation based strategies (mints, min

e
s

and min f
s) are clearly preferable for the choice of the scapegoat. They exhibit simi-

lar performances. As one could expect maximisation based strategies (maxts, max
e
s and

max fs) perform the worse. As noted above, the strategy used to pick a scapegoat place
has clearly a lesser impact with algorithm clo�.

Identifying forward transitions and using this information generally has a small
impact. Moreover, this identification has a non-negligible cost as it requires to exe-
cute all enabled transitions and check for the existence of successors in the state space.
Hence, algorithmic instances relying on that process are generally slower by approxi-
mately 20% compared to strategies that only require to count enabled transitions. On

Experimenting with Stubborn Sets on Petri Nets 355

four model instances (those of models di usion2d and neighborgrid) they significantly
outperformed other algorithmic instances, even guaranteeing the success of the run in
two cases.

For the deletion algorithm, strategies maxet and max ft are clearly the best. On only
13 instances (over 140) did none of these two perform the best (compared to the four
other strategies). Moreover, when this occured, the differences observed were negli-
gible whereas strategies maxet and max ft often significantly outperformed their rivals,
sometimes making the run successful.

Sadly, clodel does not bring an improvement with respect to clo�. For the models
for which clodel built smaller state spaces (e.g., aslink, lamport, shieldrvt) the gain was
very negligible in terms of reduction (typically less than 10% w.r.t. clo�) and it often
led to an important increase of the search time (remember that clodel first invokes clo�

then tries to reduce the stubborn set with del). This seems to indicate that clo� already
often produces stubborn sets that are minimal (w.r.t. inclusion).

The way nodes are ordered can have a large impact on the reduction. In a few patho-
logical situations, we observed that an unfortunate ordering could lead to a state explo-
sion. However, this observation seems more valid for “toy” examples, although there
still are real life models (tagged as industrial on the MCC webpage) for which signif-
icant differences could be observed according to the ordering (e.g., gpufp or shieldrvt)
whatever the algorithm used.

Algorithms clo� (using strategies minet or min f
t) and del (using strategies maxet or

max ft) have, on the average, comparable performances regarding both the reduction
power and the search time. Nevertheless, significant differences can be observed when
using both algorithms on the same instance.

We conclude our observations with a comparison of relations Ds and De. We could
compute the exact relation De for 73 model instances (over 140). For most of these 73
instances the use of De was useless or of very little help (with an additional reduction
typically less than 5%). Table 1 gives, for the 12 instances for which relation De per-
formed the best (w.r.t. Ds) the minimal numbers of states in the reduced state space over
all runs using the static (column min(Ds)) and exact relations (column min(De)). Table

is sorted according to the ratio min(De)
min(Ds)

. This observation is somehow disappointing as
it seems to indicate that there is not much thing that can be expected from refining
the dependency relation. Data reported in [9] (see Table 2, p. 49) exhibit better perfor-
mances of relations based on the analysis of the full state space. We believe the differ-
ence with respect to our results can be explained by the DVE modelling language used
in [9]. DVE processes synchronise through shared variables or rendez-vous and it is
hard, in contrast to Petri nets, to perform a precise static analysis of such models which
can in turn explain why semantic based relations space can fill that gap. Moreover
algorithms in [9] are parametrized by two relations: the dependency and precedence
relations while we only considered the first one here.

3.5 Experimental Results Sample

To back up our observations, we present in this section a sample of our experimen-
tal results. We only consider here the static dependency relation Ds. For comparison

356 S. Evangelista

purposes, we computed a state score (or more simply score) defined for an algorithm
alg ∈ A (A being the set of all algorithmic instances) and a model instance inst as:

score(alg, inst) = ∑
i∈{1,...,5}

20 · Smin(inst)
S(alg, inst, i)

(1)

where S(alg, inst, i) is the number of states in the reduced state space built by algorithm
alg on model instance inst during run i ∈ {1, . . . ,5} if the run terminated within our
time limit (30 min.), or ∞ otherwise; and Smin(inst) = minalg∈A ,i∈{1,...,5} S(alg, inst, i).
Thus a score ranges from 0 if the algorithm did not terminate on the instance for any of
the 5 runs to 100 if the algorithm performed the best on all its 5 runs.

Table 2 provides scores for 15 non trivial model instances as well as the average over
the 140 model instances we experimented with. The bottom row gives the number of
successful runs of an algorithmic instance over all model instances, which is at most 700
(5 runs × 140 model instances). On the basis of our previous observations and to lighten
the table, we voluntarily ruled out several algorithmic configurations. We provide next
to each model name, the minimal number of visited states over all algorithms (Smin).

In general, Prod’s implementation of algorithm del performs better than Helena’s as
evidenced by a comparison of columns del(fstt) of the two tools. We conjecture that this
may be due to a finer implementation of the dependency graph (see, e.g., [22], Def. 3.5,
page 136) that permits the computation of smaller sets. Instance smhome(8) is an inter-
esting case from that perspective as Prod, using del(fstt), significantly outperforms all
its competitors. Nevertheless, using the maxet and max ft strategies, Helena’s deletion
algorithm usually performs better than Prod’s. It could be worthwhile experimenting
with these two strategies on a refined dependency graph as computed by Prod.

Instance ibmb2s565s3960 is one the few for which the simplest algorithm (clo with
strategy fstt) is competitive with other algorithmic instances. Moreover it naturally sig-
nificantly outperforms these regarding the execution time due to its linear complexity.

Instances aslink(1,a), deploy(3,a), or lamport(4) illustrate that clo� can significantly
outperform clo reducing further the state space by a factor of approximately 2.

Instance aslink(1,a) illustrates the impact of the scapegoat choice strategy with algo-
rithm clo and its lesser importance with algorithm clo�. With the former, using the same
starting transition choice strategy, strategy fsts performs clearly worse that mines and
min f

s while this observation is less valid when using algorithm clo�.

Table 1. Comparison of relations and Ds and De

Model instance min(Ds) min(De)

hexagonalgrid(1,2,6) 111,684 901

triangulargrid(1,50,0) 81,198 764

triangulargrid(1,20,0) 13,563 288

hexagonalgrid(1,1,0) 6,708 196

robot(5) 196 10

mapk(8) 3,483 619

Model instance min(Ds) min(De)

anderson(5) 219,420 104,406

anderson(4) 12,519 6,753

safebus(3) 3,052 2,784

egfr(20,1,0) 162 159

shieldsppp(1,a) 5,453 5,423

deploy(4,a) 571,200 568,234

Experimenting with Stubborn Sets on Petri Nets 357

Table 2. Scores (according to Eq. (1)) of selected algorithmic instances on 15 model instances
and average scores over all experimented model instances

Helena Prod

clo clo� del del inc

fstt minet min f
t fstt minet min f

t fstt maxet max ft fstt fstt minet
fsts mines min f

s fsts mines min f
s fsts mines min f

s fsts mines min f
s fsts mines min f

s fsts mines min f
s fsts fsts

Model instance aslink(1,a), Smin = 960,868 states
1.6 14.1 14.8 7.8 46.8 50.2 6.8 46.9 51.3 18.4 36.5 32.3 79.2 93.8 93.3 80.3 94.6 94.9 74.0 97.9 99.0 80.9 5.2 5.3

Model instance deploy(3,a), Smin = 28,510 states

16.9 16.8 17.3 32.5 34.8 38.8 32.9 35.4 39.9 24.3 30.7 25.7 58.3 55.9 56.5 60.9 57.4 57.6 77.6 87.0 98.1 76.0 25.9 26.2

Model instance des(5,a), Smin = 1,752,989 states

0.6 1.9 2.7 51.2 63.7 68.2 55.1 70.0 75.2 9.9 9.9 6.2 80.2 79.1 79.4 85.1 83.8 84.4 72.0 78.8 84.7 66.9 22.3 45.3

Model instance exbar(4,b), Smin = 2,017,473 states

0.6 0.6 0.0 70.1 82.1 84.0 70.9 83.2 85.2 0.8 0.8 0.0 85.2 86.7 86.8 86.1 87.9 87.9 60.7 85.2 87.0 82.2 59.2 70.5

Model instance gpufp(08,a), Smin = 47,410 states

25.9 25.9 25.9 82.2 82.2 82.2 70.9 70.2 70.3 26.0 25.9 25.9 82.2 82.2 82.2 70.2 70.3 70.3 82.0 96.2 90.5 83.6 71.4 84.4

Model instance ibmb2s565s3960, Smin = 1,500,964 states

63.7 63.7 63.7 68.1 68.1 68.1 67.2 67.2 67.2 63.7 63.7 63.7 68.1 68.1 68.1 67.2 67.2 67.2 54.9 66.4 65.4 79.2 54.3 67.1

Model instance lamport(4), Smin = 206,527 states

15.4 17.3 19.5 23.7 26.6 31.2 23.7 27.4 32.9 27.6 31.1 31.2 76.2 85.2 85.8 78.2 88.4 88.3 81.4 97.0 99.4 88.9 23.1 23.1

Model instance peterson(3), Smin = 102,371 states
11.2 14.2 14.5 82.9 89.1 90.0 82.9 89.2 90.0 13.1 14.1 14.3 87.7 90.5 91.4 88.7 91.2 91.5 94.9 99.6 100.0 96.7 39.5 39.5

Model instance raft(3), Smin = 7,262,240 states
27.6 28.2 17.9 65.1 74.9 76.2 65.1 75.1 76.5 28.2 28.4 17.9 73.7 75.5 76.4 73.9 75.7 76.6 73.5 76.4 76.6 90.9 70.4 72.8

Model instance satmem(1000,32), Smin = 1,880,803 states
36.8 36.8 36.8 50.2 50.2 50.2 50.2 50.2 50.2 36.8 36.8 36.8 50.2 50.2 50.2 50.2 50.2 50.2 50.1 50.1 50.1 68.9 50.2 50.2

Model instance shieldsrv(3,a), Smin = 386,893 states
32.6 36.3 40.7 50.5 68.8 72.4 50.7 73.2 77.0 38.4 44.7 45.1 76.8 84.1 84.0 88.9 97.2 97.0 72.7 86.4 95.7 82.5 38.0 40.3

Model instance smhome(8), Smin = 14,434 states
0.0 0.0 0.0 19.8 18.3 18.3 20.4 18.8 18.8 0.0 0.0 0.0 18.3 18.3 18.3 18.8 18.8 18.8 7.5 18.4 18.6 76.0 13.0 19.0

Model instance stigcomm(2,b), Smin = 165,682 states
0.5 0.6 0.6 34.1 34.1 34.2 34.1 34.1 34.2 2.2 1.3 1.8 53.1 38.3 79.7 53.1 38.4 79.8 40.3 95.3 92.2 40.8 28.2 34.2

Model instance stigelec(4,b), Smin = 133,892 states
0.0 0.0 0.0 12.5 12.7 14.0 12.5 12.8 14.1 0.5 0.5 0.5 19.5 17.2 26.0 19.5 17.2 26.2 31.2 83.9 63.7 54.4 9.4 12.5

Model instance tcp(5), Smin = 601,458 states
29.2 30.1 29.9 90.3 92.4 92.5 93.9 97.4 97.4 29.6 30.2 30.0 93.1 93.4 93.4 97.7 98.2 98.2 60.2 87.8 91.9 69.5 42.1 87.3

Average scores and total number of successful runs over 140 instances
22.1 23.4 23.7 59.8 67.2 68.4 62.8 70.3 72.0 24.6 25.5 25.3 70.8 72.9 73.8 74.4 76.4 77.4 51.7 72.1 75.1 61.5 39.2 59.6

605 613 594 684 688 688 681 685 691 622 625 598 698 698 698 700 699 700 681 687 685 675 663 691

4 Stubborn Sets for Liveness Verification

The principle of state space reduction based on stubborn set reduction is somehow to
reorder transitions in such a way that only stubborn transitions are considered to gener-
ate the successors of a marking while the firing of non stubborn transitions is postponed
to a future marking. However, such a marking may never occur due to the so called
ignoring problem. To illustrate this situation, let us assume a net having a transition t
disconnected from the rest of the net (i.e., ∀p ∈ P,W (p, t) =W (t, p) = 0). Then, since
Ds(t) = /0 and m0[t〉m0, a dynamically stubborn reduction function may build a reduced
state with a single self loop marking. In other words, t hides the dynamics of the rest of
the net. The reduced state space is therefore of very little use besides the one of proving
that the system does not halt.

As in the previous section, we first recall in this section the theoretical background
of the stubborn set theory for liveness verification. We then review different algorithms
that can be used in that context and introduce two variations of previous algorithms
before presenting our experimental results. Algorithms considered here are not specific
to Petri nets. Therefore we will often use here more generic terms, such as state instead
of marking, or action instead of transition.

358 S. Evangelista

4.1 Stubborn Set Theory for Liveness Verification

The above example has shown that dynamic stubborness is not sufficient for the ver-
ification of several properties, including liveness properties, because of the ignoring
problem. Formally, transition ignoring occurs when a transition is enabled for some
state of a cycle but never executed along that cycle. Otherwise, the reduced state space
fullfils the strong cycle proviso defined below:

Definition 9. Let f be a reduction function. The reduced state space has the strong
cycle proviso property if, for any m1[t1〉 f m2[t2〉 f . . .mn[tn〉 f m1, the following holds for
any t ∈ T: (∃i ∈ {1, . . . ,n} such that mi[t〉) ⇒ (∃ j ∈ {1, . . . ,n} such that mj[t〉 f).

To verify linear time temporal logic properties, an addition condition linked to the
visibility of transitions is required [15,18] but this is out of the scope of our study.

A sufficient condition for a reduction function to ensure the strong cycle proviso is
that along any cycle of the reduced state space, there is at least one fully expanded state:

Proposition 2. Let f be a reduction function. If, for any m1[t1〉 f m2[t2〉 f . . .mn[tn〉 f m1,
there is i ∈ {1, . . .n} such that en(mi) ⊆ f (mi) then the reduced state space has the
strong cycle proviso property.

Hereafter, we refer to the condition of Proposition 2 as the weak cycle proviso or
more simply cycle proviso. Checking that each cycle contains a fully expanded state is
easier and can be done on-the-fly, i.e., during the construction of the reduced state space.
Hence, while it is a stronger condition that may bring less reduction, this proposition
serves as a basis for all the algorithms we review in the following.

4.2 Stubborn Set Algorithms for Liveness Verification

State of the Art. Most algorithms operate on-the-fly: they address the cycle proviso
as they generate the state space. Therefore they are tightly linked to a specific search
order.

For DFS, a sufficient condition to ensure the cycle proviso is to forbid a cycle-
closing edge (i.e., an edge of which the destination is in the DFS stack) outgoing from
a reduced state [15]. An alternate implementation for DFS has also been introduced in
[7]. For BFS, a dual sufficient condition is that a reduced state only has successors in
the BFS queue [2]. This principle has been generalised in [3] to any search order.

Several optimisations and variations for DFS (including Tarjan algorithm) have
been proposed in [5] that lead to an improvement over [7,15] in practice. A lesson
that can be drawned from the experimentation is that the full expansion of the destina-
tion state of a cycle-closing edge should be preferred in practice (rather than the full
expansion of the source state, as done in [7,15]). Indeed, the destination state needs to
be fully expanded when leaving the stack and at that moment, the algorithm may have
discovered that the full expansion is no more required (e.g., if all its successors have
been fully expanded). This can save useless full state expansions.

The algorithm of [1] alternates expansion phases, during which states are expanded
without taking care of the cycle proviso, with topological sorts (efficiently performed

Experimenting with Stubborn Sets on Petri Nets 359

in a distributed way) of the resulting reduced state space to detect states to be fully
expanded to prevent action ignoring. The full expansion of these states may then lead
to new states used to initiate a new expansion phase. The algorithm stops when the
topological sort does not produce any new states.

We finally mention the static algorithm of [12] and the two-phase algorithm of [14].

New Algorithms Ensuring the Cycle Proviso

A BFS Based on Destination State Revisit. The principle of the dst proviso of [5] can be
combined with the proviso of [2] for BFS (see Algorithm 3). S denotes in the algorithm
a set of safe destination states, in the sense that any reduced state may have successors
in S without endangering the cycle condition. S consists of all fully expanded states (see
line 6). An invalid cycle may be closed each time the algorithm discovers an edge from
an unsafe state to another state that is neither safe, neither in the queue. In that case,
the destination state s′ of the edge is reinserted in the queue to be fully reexpanded (see
lines 15–16). This is the purpose of the second component of items put in Q: if set to
true, the state must be fully expanded. Otherwise it can be reduced using function stub
that can be any dynamically stubborn function (see line 5).

This proviso is especially suited for distributed model checking based on state space
partitioning (as done in [17]). In that context, whenever a process p generates a state
s′ it puts s′ in the queue of the owner process p′ of s′. Ownership is determined using
typically the hash value of the state. If the generating process is not the owner process,
a communication is needed. With the proviso of [2], a round trip between the two pro-
cesses would be necessary for p′ to notify p whether s′ is in its queue (or unvisited)
which makes it unusable in that context. With a proviso based on the full expansion of
the destination state, p now delegates the responsability of checking the cycle proviso
to p′. Hence, it does not require additional communications.

Algorithm 3.Algorithm BFSdst ensuring the cycle proviso

1: R := {m0} ; Q := {(m0, false)} ; S := /0
2: while Q �= /0 do
3: (m, fexp) := pick from Q
4: Q := Q\{(m, fexp)}
5: U := if fexp then en(m) else stub(m)
6: ifU = en(m) then S := S∪{m}
7: expand marking(m,U)
8: return S

9: procedure expand marking(m,U) is
10: for t ∈U ∩ en(m) do
11: let m′ be such that m[t〉m′
12: if m′ /∈ R then
13: R := R∪{m′}
14: Q := Q∪{(m′, false)}
15: else if ¬(m ∈ S∨m′ ∈ S∪Q) then
16: Q := Q∪{(m′, true)}

New Offline Optimal Provisos. We propose two algorithms that perform optimally in
the sense that they do not uselessly (fully) re-expand reduced states to verify the cycle
proviso: if the algorithm fully re-expands a state, then it is because it is part of a cycle of
reduced states. Such an algorithm will be characterised as WCP-optimal (Weak Cycle
Proviso-optimal) hereafter. It is easy to find counter examples showing that all algo-
rithms we previously reviewed are not WCP-optimal. Likewise, an algorithm is SCP-
optimal (Strong Cycle Proviso-optimal) if it does not uselessly visit new transitions to

360 S. Evangelista

verify the strong cycle proviso: if the algorithm forces the execution of some transition
t at a state s, then it is necessarily because s is part of a cycle that ignores t.

The two algorithms have very little practical use as they operate offline and consume
a significant additional amount of memory per state (the adjacency list) but can be used
experimentally to evaluate how other algorithms perform. Both are a variation of the
topological sort based algorithm [1] and rely on an alternation of an expansion phasis
with a cycle proviso checking phasis.

s0

(a)

x

x

x x

(b)

x

x

x

s

x

s10 s20

(c)

x

x

x x

s10 s20

(d)

x

x

x

x

x

x

x

x x

x

x

(e)

Fig. 3. Expansion and checking phases of our WCP-optimal algorithm. (a): after a 1st expansion
step; (b): after a 1st checking step; (c): full expansion of s; (d): after a 2nd expansion step; (e):
after a 2nd checking step.

Our WCP-optimal algorithm can be illustrated with the example depicted on Fig. 3.
In a first step, the state space is generated starting from the initial state s0 using a dynam-
ically stubborn reduction function, (i.e., without taking care of transition ignoring). The
reduced state space obtained after this first expansion step is depicted on Fig. 3(a) where
states with double circles are fully expanded states. The second step, the checking step,
consists of marking fully expanded states as safe meaning that these cannot be part of
a cycle of reduced states. States of which all successors or all predecessors are safe are
also marked as such and this procedure is repeated until no more state can be marked.
This leads us to the configuration of Fig. 3(b) where safe states are green (and marked
with a cross). The outcome of the checking step is to pick an unsafe state (s in our
example) and fully expand it (see Fig. 3(c)). This may generate new states which are
then used as initial states for a new expansion step (s1

0 and s2
0 in our example). After this

one (see Fig. 3(d)) a new checking step is triggered and the algorithm may terminate if
all states are safe (see Fig. 3(e)).

It is easy to see to that this algorithm is WCP-optimal. Indeed, if after an expansion
step the reduced state space already has the weak cycle proviso property then all states
will be marked as safe and the algorithm will immediately terminate whereas if it fully
expands an unsafe state then it is because this state belongs to a cycle of reduced states.

Experimenting with Stubborn Sets on Petri Nets 361

For the strong proviso, this algorithm can be adapted by repeating the checking
step for each transition. A state s is marked as safe for some transition t (denoted by
t-safe hereafter) if either t is disabled at s, or either t has been executed at s (i.e., it
is enabled and stubborn at s). The checking step then proceeds similarly: any state
of which all the successors or all the predecessors are t-safe becomes t-safe. If some
state is detected as not being t-safe after this step, the algorithm picks such a state and
computes a stubborn set that includes t (both the closure and the deletion algorithms
can be easily modified to compute stubborn sets including a specific transition). As in
the WCP-optimal algorithm, new states that may be reached through this process are
used as initial states for a new expansion step. The algorithm may terminate if, after a
checking step, all states are marked as t-safe for each transition t.

4.3 Experimentation Context

We experimented with the following algorithms:

– DFSsrc([7]): DFS + full expansion of source states of cycle closing edges
– DFSdst([5]): DFS + full expansion of destination states of cycle closing edges 2

– BFSsrc([2]): BFS + full expansion of source states of backward edges
– BFSdst: BFS + full expansion of destination states of backward edges (i.e., Algo-

rithm 3)
– OPTwcp: the WCP-optimal algorithm presented above

All these algorithms have been integrated in Helena.
Based on the outcome of our first experiment, we selected the following dynam-

ically stubborn functions: clo�(t,s), ∀(t,s) ∈ {min f
t ,min

e
t } × {mints,min f

s ,mints}, and
del(t), ∀t ∈ {maxet ,max ft , fstt}. These were among the best strategies for algorithms
Clo� and Del.

We also included to this second experiment a few additional model instances that
were left out in our first experiment (for the reason that all dynamically stubborn func-
tion computed the exact same reductions for these) and removed some for which no
run could terminate within our time limit (set, as in our first experiment, to 30 min.).
Overall this second experiment was performed on 137 model instances of 75 models
(over 130) resulting in 32400 runs.

4.4 Experimental Observations

As in the previous section, we start with general observations before presenting some
selected results.

First, as noted elsewhere [2], BFS based provisos perform significantly worse than
DFS based provisos. On only one model instance (MAPK(20)) did a BFS based proviso
perform significantly better than its DFS analogous. BFS based provisos may however
still be useful for specific contexts such as distributed model checking which do not
allow a depth-first search order.

2 We implemented the ColoredDest variant of [5] which makes use of state tagging mechanisms
to avoid useless full expansions.

362 S. Evangelista

Our results confirm those of [5]: in DFS, the full expansion of destination states
of cycle closing edges (rather that source states) is preferable, i.e., DFSdst outperforms
DFSsrc in general. This also holds for BFS: BFSdst performs better than BFSsrc.

We observe that OPTwcp does not bring any improvement with respect to DFSdst.
When both algorithms could terminate, they performed comparably — DFSdst being
even slightly better. This seems to indicate that DFSdst is already close to optimal in the
sense that it never uselessly reexpands states. Moreover, when it does, it “picks” better
states (destinations of cycle closing edges) than OPTwcp, that picks them randomly.

4.5 Experimental Results Sample

Table 3 provides scores of the 5 search algorithms for 15 selected model instances and 4
selected dynamically stubborn functions. Average scores and total number of successful
runs (over 685) are also provided at the bottom of the table.

Instance deploy(3,a) illustrates that choosing stubborn sets reducing forward transi-
tions may be unappropriate for liveness properties as it tends to trigger more state reex-
pansions. Indeed, we observe that, regardless of the search algorithm used, del(maxet)
and clo�(minet ,min

e
s) perform better than del(max ft) and clo�(min f

t ,min
f
s) respectively.

A single run of the OPTwcp algorithm on instance ibmb2s565s3960 coupled with
reduction function del(fstt) (not shown on the table) could produce a reduced graph
with an order of magnitude smaller — which explains the low scores reported in the
table. We plan to further investigate the net structure and the conditions that made such
a drastic reduction feasible.

Instance shieldtppp(1,b) is one of the few instances for which DFSsrc competes
favorably against DFSdst.

As said above, algorithm OPTwcp does not improve on DFSdst. It performed slightly
better on 5 of the 15 model instances selected: aslink(1,a), eisenbergmcguire(4), lam-
port(4), raft(2) and shieldtppp(1,b). Note however that the average score computed over
all instances must be taken with care since, as witnessed by the last row, runs of algo-
rithm OPTwcp timed out more frequently. It is likely that with a higher time limit, the
average scores of OPTwcp and DFSdst would have been very close.

Experimenting with Stubborn Sets on Petri Nets 363

Table 3. Scores (according to Eq. (1)) of selected algorithmic instances on 15 model instances
and average scores over all experimented model instances

BFSsrc (from [2]) BFSdst (from Alg. 3) DFSsrc (from [7]) DFSdst (from [5]) OPTwcp (from Fig. 3)

clo� del clo� del clo� del clo� del clo� del

minet min f
t maxet max ft minet min f

t maxet max ft minet min f
t maxet max ft minet min f

t maxet max ft minet min f
t maxet max ft

mines min f
s mines min f

s mines min f
s mines min f

s mines min f
s

Model instance aslink(1,a), Smin = 975,971 states
0.0 0.0 0.0 0.0 51.0 40.5 43.2 39.7 93.4 94.5 97.5 98.9 92.7 93.9 96.2 97.5 93.0 94.5 97.2 98.5

Model instance deploy(3,a), Smin = 67,212 states
45.0 35.4 40.4 35.8 75.4 36.0 65.3 41.7 92.8 57.3 88.8 82.5 94.5 57.6 95.5 85.8 87.0 50.4 81.1 72.0

Model instance des(5,a), Smin = 1,900,083 states
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 76.4 82.0 75.2 80.5 77.8 83.4 75.5 80.6 0.0 0.0 0.0 0.0

Model instance eisenbergmcguire(4), Smin = 282,317 states
20.1 19.0 20.7 19.7 65.5 50.5 71.2 70.6 89.9 91.7 99.3 99.6 90.2 92.7 99.6 99.8 90.4 93.0 99.7 100.0

Model instance exbar(6,a), Smin = 148,514 states
5.0 5.0 5.0 5.0 10.1 5.4 8.2 6.4 14.8 15.1 14.7 22.5 66.2 30.8 67.4 65.3 57.2 32.7 60.0 68.1

Model instance gpufp(08,b), Smin = 500,514 states
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 66.0 66.2 66.6 67.1 66.9 66.9 68.2 68.2 60.7 60.7 62.1 62.1

Model instance ibmb2s565s3960, Smin = 1,567,329 states
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.7 8.4 14.8 17.5 6.5 9.1 15.6 16.5 0.0 0.0 0.0 0.0

Model instance lamport(4), Smin = 208,895 states

12.9 12.6 12.7 12.5 56.9 42.7 73.0 65.6 73.1 74.8 87.0 89.5 83.3 85.9 95.9 98.3 85.1 87.5 97.0 99.5

Model instance peterson(3), Smin = 125,748 states

6.6 5.3 6.6 5.8 54.5 28.5 58.6 53.0 87.3 87.5 93.8 94.1 92.5 92.6 99.7 100.0 84.8 84.5 90.8 91.1

Model instance raft(2), Smin = 3,116 states

60.9 59.6 50.8 59.1 82.9 68.7 80.5 80.4 93.3 78.1 92.2 94.4 98.7 79.6 97.8 98.7 98.8 80.0 99.3 99.7

Model instance shieldsrv(3,b), Smin = 1,832,300 states

0.0 0.0 0.0 0.0 1.7 0.0 0.7 0.0 83.0 93.8 75.6 80.5 87.5 97.2 81.7 86.5 0.0 0.0 0.0 0.0

Model instance shieldtppp(1,b), Smin = 7,450 states

0.0 0.1 0.0 0.1 0.5 0.2 0.2 0.1 77.6 78.9 51.6 54.9 56.4 56.3 39.5 41.0 63.2 63.3 42.0 43.1

Model instance smhome(8), Smin = 155,000 states

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 19.3 42.9 0.0 2.0 98.5 82.1 10.5 12.6 97.5 81.7 0.0 0.0

Model instance stigcomm(2,b), Smin = 468,130 states
0.0 0.0 0.0 0.0 4.7 1.5 5.0 0.5 33.8 55.1 55.5 66.5 35.8 59.1 61.2 62.6 20.0 28.0 43.1 37.1

Model instance tcp(5), Smin = 787,898 states
26.7 26.9 26.5 26.6 42.7 30.5 34.7 34.6 37.6 36.1 36.2 36.3 95.2 98.0 88.3 91.3 0.0 0.0 0.0 0.0

Average scores and total number of successful runs over 137 instances
23.4 22.8 22.4 22.4 37.1 31.8 35.1 34.7 69.2 69.5 65.0 69.1 82.5 79.6 76.4 79.1 70.8 65.9 65.2 65.6
509 512 492 485 573 537 543 526 665 664 643 645 671 660 656 653 553 541 531 538

5 Conclusion

We have contributed with this paper with a number of simple algorithmic variants and
heuristics for stubborn set construction algorithms. In the context of deadlock detection,
we introduced for the closure algorithm an optimisation used to avoid the selection of
unappropriate scapegoats and, for the deletion algorithm, we introduced very simple
heuristics to choose the transition to delete. For liveness properties we introduce a BFS
algorithm based on [2,5] and an offline algorithm that has the property to fully expand
states only when absolutely needed.

A second contribution of our work is a large experimentation of these algorithms
and variants on models of the MCC database resulting in approximately 150 000 runs
using both Prod and Helena tools. These showed that our algorithmic contributions,
despite their simplicity, can bring significant results on many instances.

We plan to pursue these experiments in several directions in order to identify room
for improvements or to design new heuristics.

364 S. Evangelista

First, we would like to experiment with other forms of dependence and precedence
relations (as done in [9]) based on the full state graph in order identify if there are still
room for improvement in that perspective.

We also plan to implement, for the deletion algorithm, a finer dependency graph, as
done by Prod, to study the impact of our heuristics (or others) on it.

Stubborn set construction algorithms may also exploit other informations than the
net structures, such as place invariants, or unit decomposition [8] and we plan to inves-
tigate how these can be used.

There also exists some algorithms based on integer linear programming techniques
[13]. Comparing them to algorithms discussed here is relevant.

For liveness properties, we have only considered the resolution of the ignoring prob-
lem, putting aside other conditions required for, e.g., LTL model checking, regarding
the visibility of transitions. It seems worth experimenting with such conditions.

Considering the ignoring problem, our experiments are somehow disappointing in
the sense that the DFSdst algorithm seems hard to outperform. Still we have not exper-
imented with algorithm OPTscp and plan to do so in order to check whether new algo-
rithms reasoning on the strong cycle proviso could be of practical use.

Last we have not considered safety properties in our study and we would like to
experiment with an algorithm tailored to these, e.g., [11,16], and compare them to gen-
eral purpose algorithms, i.e., stubborn sets construction algorithm coupled with a cycle
proviso and conditions on transition visibility.

Acknowledgments. We thank the organizers of the Model Checking Contest and all people
that contribute to its model database for providing such a database. Experiments presented in
this paper were carried out using the Grid’5000 [4] testbed, supported by a scientific interest
group hosted by Inria and including CNRS, RENATER and several Universities as well as other
organisations (see https://www.grid5000.fr). We thank Laure Petrucci for her comments on the
first version of this paper.

References

1. Barnat, J., Brim, L., Rockai, P.: Parallel partial order reduction with topological sort proviso.
In: SEFM’2010, pp. 222–231. IEEE Computer Society Press (2010)

2. Bošnački, D., Holzmann, G.J.: Improving spin’s partial-order reduction for breadth-first
search. In: Godefroid, P. (ed.) SPIN 2005. LNCS, vol. 3639, pp. 91–105. Springer, Hei-
delberg (2005). https://doi.org/10.1007/11537328 10

3. Bošnački, D., Leue, S., Lafuente, A.L.: Partial-order reduction for general state exploring
algorithms. In: Valmari, A. (ed.) SPIN 2006. LNCS, vol. 3925, pp. 271–287. Springer, Hei-
delberg (2006). https://doi.org/10.1007/11691617 16

4. Cappello, F., et al.: Grid’5000: A large scale and highly reconfigurable grid experimental
testbed. In SC’05: Proc. The 6th IEEE/ACM International Workshop on Grid Computing
CD, pp. 99–106, Seattle, Washington, USA, November 2005. IEEE/ACM

5. Duret-Lutz, A., Kordon, F., Poitrenaud, D., Renault, E.: Heuristics for checking liveness
properties with partial order reductions. In: Artho, C., Legay, A., Peled, D. (eds.) ATVA
2016. LNCS, vol. 9938, pp. 340–356. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-46520-3 22

https://www.grid5000.fr
https://doi.org/10.1007/11537328_10
https://doi.org/10.1007/11691617_16
https://doi.org/10.1007/978-3-319-46520-3_22
https://doi.org/10.1007/978-3-319-46520-3_22

Experimenting with Stubborn Sets on Petri Nets 365

6. Evangelista, S.: High level petri nets analysis with Helena. In: Ciardo, G., Darondeau, P.
(eds.) ICATPN 2005. LNCS, vol. 3536, pp. 455–464. Springer, Heidelberg (2005). https://
doi.org/10.1007/11494744 26

7. Evangelista, S., Pajault, C.: Solving the ignoring problem for partial order reduction. Int. J.
Softw. Tools Technol. Transfer (STTT) 12(2) (2010)

8. Garavel, H.: Nested-unit Petri nets. J. Log. Algebraic Methods Program. 104, 60–85 (2019)
9. Geldenhuys, J., Hansen, H., Valmari, A.: Exploring the scope for partial order reduction. In:

Liu, Z., Ravn, A.P. (eds.) ATVA 2009. LNCS, vol. 5799, pp. 39–53. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-04761-9 4

10. Godefroid, P. (ed.): Partial-Order Methods for the Verification of Concurrent Systems.
LNCS, vol. 1032, pp. 41–73. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-
60761-7 31

11. Kristensen, L.M., Valmari, A.: Improved question-guided stubborn set methods for state
properties. In: Nielsen, M., Simpson, D. (eds.) ICATPN 2000. LNCS, vol. 1825, pp. 282–
302. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44988-4 17

12. Kurshan, R., Levin, V., Minea, M., Peled, D., Yenigün, H.: Static partial order reduction. In:
Steffen, B. (ed.) TACAS 1998. LNCS, vol. 1384, pp. 345–357. Springer, Heidelberg (1998).
https://doi.org/10.1007/BFb0054182

13. Lehmann, A., Lohmann, N., Wolf, K.: Stubborn sets for simple linear time properties. In:
Haddad, S., Pomello, L. (eds.) PETRI NETS 2012. LNCS, vol. 7347, pp. 228–247. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-31131-4 13

14. Nalumasu, R., Gopalakrishnan, G.: An efficient partial order reduction algorithm with an
alternative proviso implementation. FMSD 20(3), 231–247 (2002)

15. Peled, D.: All from one, one for all: on model checking using representatives. In: Courcou-
betis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 409–423. Springer, Heidelberg (1993). https://
doi.org/10.1007/3-540-56922-7 34

16. Schmidt, K.: Stubborn sets for standard properties. In: Donatelli, S., Kleijn, J. (eds.) ICATPN
1999. LNCS, vol. 1639, pp. 46–65. Springer, Heidelberg (1999). https://doi.org/10.1007/3-
540-48745-X 4

17. Stern, U., Dill, D.L.: Parallelizing the MurΦ verifier. In: Grumberg, O. (ed.) CAV 1997.
LNCS, vol. 1254, pp. 256–267. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-
63166-6 26

18. Valmari, A.: A stubborn attack on state explosion. In: Clarke, E.M., Kurshan, R.P. (eds.)
CAV 1990. LNCS, vol. 531, pp. 156–165. Springer, Heidelberg (1991). https://doi.org/10.
1007/BFb0023729

19. Valmari, A.: Stubborn sets for reduced state space generation. In: Rozenberg, G. (ed.)
ICATPN 1989. LNCS, vol. 483, pp. 491–515. Springer, Heidelberg (1991). https://doi.org/
10.1007/3-540-53863-1 36

20. Valmari, A.: The state explosion problem. In: Reisig, W., Rozenberg, G. (eds.) ACPN 1996.
LNCS, vol. 1491, pp. 429–528. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-
65306-6 21

21. Valmari, A., Hansen, H.: Can stubborn sets be optimal? In: Lilius, J., Penczek, W. (eds.)
PETRI NETS 2010. LNCS, vol. 6128, pp. 43–62. Springer, Heidelberg (2010). https://doi.
org/10.1007/978-3-642-13675-7 5

22. Varpaaniemi, K.: Finding small stubborn sets automatically. In: Proceedings of the 11th
International Symposium on Computer and Information Sciences, pp. 133–142 (1996)

23. Varpaaniemi, K., Heljanko, K., Lilius, J.: Prod 3.2 an advanced tool for efficient reachabil-
ity analysis. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 472–475. Springer,
Heidelberg (1997). https://doi.org/10.1007/3-540-63166-6 51

https://doi.org/10.1007/11494744_26
https://doi.org/10.1007/11494744_26
https://doi.org/10.1007/978-3-642-04761-9_4
https://doi.org/10.1007/3-540-60761-7_31
https://doi.org/10.1007/3-540-60761-7_31
https://doi.org/10.1007/3-540-44988-4_17
https://doi.org/10.1007/BFb0054182
https://doi.org/10.1007/978-3-642-31131-4_13
https://doi.org/10.1007/3-540-56922-7_34
https://doi.org/10.1007/3-540-56922-7_34
https://doi.org/10.1007/3-540-48745-X_4
https://doi.org/10.1007/3-540-48745-X_4
https://doi.org/10.1007/3-540-63166-6_26
https://doi.org/10.1007/3-540-63166-6_26
https://doi.org/10.1007/BFb0023729
https://doi.org/10.1007/BFb0023729
https://doi.org/10.1007/3-540-53863-1_36
https://doi.org/10.1007/3-540-53863-1_36
https://doi.org/10.1007/3-540-65306-6_21
https://doi.org/10.1007/3-540-65306-6_21
https://doi.org/10.1007/978-3-642-13675-7_5
https://doi.org/10.1007/978-3-642-13675-7_5
https://doi.org/10.1007/3-540-63166-6_51

Timed Models

Symbolic Analysis and Parameter
Synthesis for Time Petri Nets Using

Maude and SMT Solving

Jaime Arias1 , Kyungmin Bae2 , Carlos Olarte1(B) ,
Peter Csaba Ölveczky3 , Laure Petrucci1 , and Fredrik Rømming4

1 LIPN, CNRS UMR 7030, Université Sorbonne Paris Nord, Villetaneuse, France
olarte@lipn.fr

2 Pohang University of Science and Technology, Pohang, South Korea
3 University of Oslo, Oslo, Norway

4 University of Cambridge, Cambridge, UK

Abstract. In this paper we present a concrete and a symbolic rewrit-
ing logic semantics for parametric time Petri nets with inhibitor arcs
(PITPNs). We show how this allows us to use Maude combined with SMT
solving to provide sound and complete formal analyses for PITPNs. We
develop a new general folding approach for symbolic reachability that ter-
minates whenever the parametric state-class graph of the PITPN is finite.
We explain how almost all formal analysis and parameter synthesis sup-
ported by the state-of-the-art PITPN tool Roméo can be done in Maude
with SMT. In addition, we also support analysis and parameter synthe-
sis from parametric initial markings, as well as full LTL model checking
and analysis with user-defined execution strategies. Experiments on three
benchmarks show that our methods outperform Roméo in some cases.

Keywords: parametric timed Petri nets · semantics · rewriting logic ·
Maude · SMT · parameter synthesis · symbolic reachability analysis

1 Introduction

System designers often do not know in advance the concrete values of key sys-
tem parameters, and want to find those values that make the system behave as
desired. Parametric time Petri nets with inhibitor arcs (PITPNs) [2,20,28,49]
extend the popular time(d) Petri nets [22,30,51] to the setting where bounds on
when transitions can fire are unknown or only partially known.

The formal analysis of PITPNs—including synthesizing the values of the
parameters which make the system satisfy desired properties—is supported by
the state-of-the-art tool Roméo [29], which has been applied to a number of
applications, e.g., [3,19,46]. Roméo supports the analysis and parameter synthesis
for reachability (is a certain marking reachable?), liveness (will a certain marking
be reached in all behaviors?), time-bounded “until,” and bounded response (will
each P -marking be followed by a Q-marking within time Δ?), all from concrete
initial markings. Roméo does not support a number of desired features, including:
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Gomes and R. Lorenz (Eds.): PETRI NETS 2023, LNCS 13929, pp. 369–392, 2023.
https://doi.org/10.1007/978-3-031-33620-1_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33620-1_20&domain=pdf
http://orcid.org/0000-0003-3019-4902
http://orcid.org/0000-0002-6430-5175
http://orcid.org/0000-0002-7264-7773
http://orcid.org/0000-0002-0708-3721
http://orcid.org/0000-0003-3154-5268
http://orcid.org/0000-0001-7545-4662
https://doi.org/10.1007/978-3-031-33620-1_20

370 J. Arias et al.

– Broader set of system properties, e.g., full (i.e., nested) temporal logic.
– Starting with parametric initial markings and synthesizing also the initial

markings that make the system satisfy desired properties.
– Analysis with user-defined execution strategies. For example, what happens

if I always choose to fire transition t instead of t′ when they are both enabled?
– Providing a “testbed” for PITPNs in which different analysis methods can

quickly be developed and evaluated. This is not supported by Roméo, which
is a high-performance tool with dedicated algorithms implemented in C++.

PITPNs do not support many features needed for large distributed sys-
tems, such as user-defined data types and functions. Rewriting logic [31,32]—
supported by the Maude language and tool [18], and by Real-Time Maude [37,43]
for real-time systems—is an expressive logic for distributed and real-time sys-
tems. In rewriting logic, any computable data type can be specified as an (alge-
braic) equational specification, and the dynamic behaviors of a system are speci-
fied by rewriting rules over terms (representing states). Because of its expressive-
ness, Real-Time Maude has been successfully applied to a number of large and
sophisticated real-time systems—including 50-page active networks and IETF
protocols [27,44], industrial cloud systems [13,21], scheduling algorithms with
unbounded queues [39], airplane turning algorithms [8], and so on—beyond the
scope of most popular formalisms for real-time systems. Its expressiveness has
also made Real-Time Maude a useful semantic framework and formal analysis
backend for industrial modeling languages [1,9,36,38].

This expressiveness comes at a price: most analysis problems are undecidable
in general. Real-Time Maude uses explicit-state analysis where only some points
in time are visited. All possible system behaviors are therefore not analyzed (for
dense time domains), and hence the analysis is unsound in many cases [41].

This paper exploits the recent integration of SMT solving into Maude to
address the first problem above (more features for PITPNs) and to take the sec-
ond step towards addressing the second problem (developing sound and complete
analysis methods for rewriting-logic-based real-time systems).

Maude combined with SMT solving, e.g., as implemented in the Maude-SE
tool [53], allows us to perform symbolic rewriting of “states” φ || t, where the
term t is a state pattern that contains variables, and φ is an SMT constraint
restricting the possible values of those variables.

Section 3 defines a (non-executable) “concrete” rewriting logic semantics for
(instantiated) PITPNs in “Real-Time Maude style” [42], and proves that this
semantics is bisimilar to the one for PITPNs in [49]. Section 4 transforms this
semantics into a Maude-with-SMT semantics for parametric PITPNs, and shows
how to perform sound symbolic analysis of such nets using Maude-with-SMT.
However, existing symbolic reachability analysis methods may fail to terminate
even when the state class graph of the PITPN is finite (and hence Roméo analysis
terminates). We therefore develop a new method for “folding” symbolic states,
and show that reachability analysis with such folding terminates whenever the
state class graph of the PITPN is finite.

In Sect. 5 we show how all analysis methods supported by Roméo—with
one small exception: the time bounds in some temporal formulas cannot be

Analysis Parameter Time Petri Nets Using Maude with SMT 371

parameters—also can be performed using Maude-with-SMT. In addition, we
support analysis and parameter synthesis for parametric initial markings, model
checking full temporal logic formulas, and analysis w.r.t. user-defined execution
strategies. Our methods are implemented in Maude, using its meta-programming
features. This makes it very easy to develop new analysis methods for PITPNs.

This work also constitutes the second step in our quest to develop sound
and complete analysis methods for dense-time real-time systems in Real-Time
Maude. We present both a Real-Time Maude-style semantics in Sect. 3 and the
symbolic semantics in Sect. 4 to explore how we can transform Real-Time Maude
models into Maude-with-SMT models for symbolic analysis. In our first step in
this quest, we studied symbolic rewrite methods for the much simpler parametric
timed automata [4]; see Sect. 7 for a comparison with that work.

In Sect. 6 we benchmark both Roméo and our Maude-with-SMT methods,
and find that in some cases our high-level prototype outperforms Roméo.

The longer report [6] has proofs of all results in this paper and much more
detail. All executable Maude files with analysis commands, tools for translating
Roméo files into Maude, and data from the benchmarking are available at [5].

2 Preliminaries

Transition Systems. A transition system A is a triple (A, a0,→A), where A is a
set of states, a0 ∈ A is the initial state, and →A ⊆ A×A is a transition relation.
We call A finite if the set of states reachable by →A from a0 is finite. A relation
∼⊆ A×B is a bisimulation [16] between A and B = (B, b0,→B) iff: (i) a0 ∼ b0;
and (ii) for all a, b s.t. a ∼ b: if a →A a′ then there is a b′ s.t. b →B b′ and a′ ∼ b′,
and, vice versa, if b →B b′′, then there is a a′′ s.t. a →A a′′ and a′′ ∼ b′′.

Parametric Time Petri Nets with Inhibitor Arcs (PITPN). N, Q+, and R+

denote, resp., the natural numbers, the non-negative rational numbers, and the
non-negative real numbers. We assume a finite set Λ = {λ1, . . . , λl} of time
parameters. A parameter valuation π is a function π : Λ → R+. A (linear)
inequality over Λ is an expression

∑
1≤i≤l aiλi ≺ b, where ≺∈ {<,≤,=,≥, >}

and ai, b ∈ R. A constraint is a conjunction of such inequalities. L(Λ) denotes
the set of all constraints over Λ. A parameter valuation π satisfies a constraint
K ∈ L(Λ), written π |= K, if the expression obtained by replacing each λ in K
with π(λ) evaluates to true. An interval I of R+ is a Q+-interval if its left
endpoint ↑I belongs to Q+ and its right endpoint I↑ belongs to Q+ ∪ {∞}. We
denote by I(Q+) the set of Q+-intervals. A parametric time interval is a function
I : Q+

Λ → I(Q+) that associates with each parameter valuation a Q+-interval.
The set of parametric time intervals over Λ is denoted I(Λ).

Definition 1. A parametric time Petri net with inhibitor arcs (PITPN) [49] is
a tuple N = 〈P, T, Λ, •(.), (.)•, ◦(.),M0, J,K0〉 where

– P = {p1, . . . , pm} is a non-empty finite set (of places),
– T = {t1, . . . , tn} is a non-empty finite set (of transitions), with P ∩ T = ∅,

372 J. Arias et al.

– Λ = {λ1, . . . , λl} is a finite set of parameters,
– •(.) ∈ [T → N

P] is the backward incidence function,
– (.)• ∈ [T → N

P] is the forward incidence function,
– ◦(.) ∈ [T → N

P] is the inhibition function,
– M0 ∈ N

P is the initial marking,
– J ∈ [T → I(Λ)] assigns a parametric time interval to each transition, and
– K0 ∈ L(Λ) is the initial constraint over Λ.

If Λ = ∅ then N is a (non-parametric) time Petri net with inhibitor arcs (ITPN).

A marking of N is an element M ∈ N
P , where M(p) is the number of tokens

in place p. π(N) denotes the ITPN where each occurrence of λi in the PITPN
N has been replaced by π(λi) for a parameter valuation π.

The concrete semantics of a PITPN N is defined in terms of concrete ITPNs
π(N) where π |= K0. A transition t is enabled in M if M ≥ •t (the number of
tokens in M in each input place of t is greater than or equal to the value on the
arc between this place and t). A transition t is inhibited if the place connected to
one of its inhibitor arcs is marked with at least as many tokens as the weight of
the inhibitor arc. A transition t is active if it is enabled and not inhibited. The
sets of enabled and inhibited transitions in marking M are denoted Enabled(M)
and Inhibited(M), respectively. Transition t is firable if it has been (continuously)
enabled for at least time ↑J(t), without counting the time it has been inhibited.
Transition t is newly enabled by the firing of transition tf in M if it is enabled
in the resulting marking M ′ = M − •tf + t•f but was not enabled in M − •tf :

NewlyEnabled(t,M, tf) = (•t ≤ M − •tf + t•f) ∧ ((t = tf) ∨ ¬(•t ≤ M − •tf)).

NewlyEnabled(M, tf) denotes the transitions newly enabled by firing tf in M .
The semantics of an ITPN is defined as a transition system with states (M, I),

where M is a marking and I is a function mapping each transition enabled in
M to a time interval, and two kinds of transitions: time transitions where time
elapses, and discrete transitions when a transition in the net is fired.

Definition 2 (ITPN Semantics [49]). The transition system for an ITPN
π(N) is Sπ(N) = (A, a0,→), where: A = N

P × [T → I(Q)], a0 = (M0, J) and
(M, I) → (M ′, I ′) if there exist δ ∈ R+, t ∈ T , and state (M ′′, I ′′) such that
(M, I) δ→ (M ′′, I ′′) and (M ′′, I ′′) t→ (M ′, I ′), for the following relations:

– the time transition relation, defined ∀δ ∈ R+ by: (M, I) δ→ (M, I ′) iff ∀t ∈ T :⎧
⎨

⎩

I ′(t) =
{

I(t) if t ∈ Enabled(M) and t ∈ Inhibited(M)
↑I ′(t) = max(0, ↑I(t) − δ) and I ′(t)↑ = I(t)↑ − δ otherwise

M ≥ •(t) =⇒ I ′(t)↑ ≥ 0

– the discrete transition relation, defined ∀tf ∈ T by: (M, I)
tf→ (M ′, I ′) iff⎧

⎨

⎩

tf ∈ Enabled(M) ∧ tf �∈ Inhibited(M) ∧ M ′ = M − •tf + t•f ∧ ↑I(tf) = 0

∀t ∈ T, I ′(t) =
{

J(t) if NewlyEnabled(t,M, tf)
I(t) otherwise

Analysis Parameter Time Petri Nets Using Maude with SMT 373

The symbolic semantics of PITPNs is given in [2] as a transition system
(NP × L(Λ), (M0,K0),⇒) on state classes, i.e., pairs c = (M,D) consisting of
a marking M and a constraint D over Λ. The firing of a transition leads to a
new marking as in the concrete semantics, and also captures the new constraints
induced by the time that has passed for the transition to fire. See [2] for details.

Rewrite Theories. A rewrite theory [31] is a tuple R = (Σ,E,L,R) where

– the signature Σ declares sorts, a subsort partial order, and function symbols;
– E is a set of equations of the form t = t′ if ψ, where t and t′ are Σ-terms of

the same sort, and ψ is a conjunction of equations;
– L is a set of labels; and
– R is a set of rewrite rules of the form l : q −→ r if ψ, where l ∈ L is a label,

q and r are Σ-terms of the same sort, and ψ is a conjunction of equations.

TΣ,s denotes the set of ground (i.e., variable-free) terms of sort s, and TΣ(X)s
the set of terms of sort s over a set of variables X. TΣ(X) and TΣ denote all
terms and ground terms, respectively. A substitution σ : X → TΣ(X) maps
each variable to a term of the same sort, and tσ denotes the term obtained by
simultaneously replacing each variable x in a term t with σ(x).

A one-step rewrite t −→R t′ holds if there is a rule l : q −→ r if ψ, a subterm
u of t, and a substitution σ such that u = qσ (modulo equations), t′ is the term
obtained from t by replacing u with rσ, and vσ = v′σ holds for each v = v′ in ψ.
We denote by −→∗

R the reflexive-transitive closure of −→R. A rewrite theory R
is topmost iff there is a sort State at the top of one of the connected components
of the subsort partial order such that for each rule, both sides have the top sort
State, and no operator has sort State or any of its subsorts as an argument sort.

Rewriting with SMT [47]. For a signature Σ and equations E, a built-in theory
E0 is a first-order theory with a signature Σ0 ⊆ Σ, where (1) each sort s in Σ0

is minimal in Σ; (2) s /∈ Σ0 for each operator f : s1 × · · · × sn → s in Σ \ Σ0;
and (3) f has no other subsort-overloaded typing in Σ0. The satisfiability of a
constraint in E0 is assumed decidable using the SMT theory TE0 .

A constrained term is a pair φ ‖ t of a constraint φ in E0 and a term t in
TΣ(X0) over variables X0 ⊆ X of the built-in sorts in E0 [11,47]. A constrained
term φ ‖ t symbolically represents all instances of the pattern t such that φ holds:
�φ ‖ t� = {t′ | t′ = tσ (modulo E) and TE0 |= φσ for ground σ : X0 → TΣ0}.

Let R be a topmost theory such that for each rule l : q −→ r if ψ, extra
variables not occurring in the left-hand side q are in X0, and ψ is a constraint
in a built-in theory E0. A one-step symbolic rewrite φ ‖ t �R φ′ ‖ t′ holds iff
there exist a rule l : q −→ r if ψ and a substitution σ : X → TΣ(X0) such that
(1) t = qσ and t′ = rσ (modulo equations), (2) TE0 |= (φ ∧ ψσ) ⇔ φ′, and (3) φ′

is TE0-satisfiable. We denote by �∗
R the reflexive-transitive closure of �R.

A symbolic rewrite on constrained terms symbolically represents a (possibly
infinite) set of system transitions. If φt ‖ t �∗ φu ‖ u is a symbolic rewrite, then
there exists a “concrete” rewrite t′ −→∗ u′ with t′ ∈ �φt ‖ t� and u′ ∈ �φu ‖ u�.
Conversely, for any concrete rewrite t′ −→∗ u′ with t′ ∈ �φt ‖ t�, there exists a
symbolic rewrite φt ‖ t �∗ φu ‖ u with u′ ∈ �φu ‖ u�.

374 J. Arias et al.

Maude. Maude [18] is a language and tool supporting the specification and
analysis of rewrite theories. We summarize its syntax below:

sorts S ... Sk . --- Declaration of sorts S1,..., Sk
subsort S1 < S2 . --- Subsort relation
vars X1 ... Xm : S . --- Logical variables of sort S
op f : S1 ... Sn -> S . --- Operator S1 x ... x Sn -> S
ceq t = t’ if c . --- Conditional equation
crl [l] : q => r if c . --- Conditional rewrite rule

Maude provides a number of analysis methods, including computing the normal
form of a term t (red t), simulation by rewriting (rew t), and rewriting following a
given strategy (srew t using str). Basic strategies include r[σ] (apply rule r once
with the optional ground substitution σ) and all (apply any of the rules once).
Compound strategies include concatenation (α ; β), α or-else β (execute β if
α fails), normalization α ! (execute α until it cannot be further applied), etc.

Maude also offers explicit-state reachability analysis from a ground term t
(search [n,m] t =>* t′ such that Φ) and model checking an LTL formula F
(red modelCheck(t, F)). For symbolic reachability analysis, the command

smt-search [n, m]: t =>* t′ such that Φ --- n and m are optional

symbolically searches for n states, reachable from t ∈ TΣ(X0) within m steps,
that match the pattern t′ ∈ TΣ(X) and satisfy the constraint Φ in E0.

Maude provides built-in sorts Boolean, Integer, and Real for the SMT the-
ories of booleans, integers, and reals. Rational constants of sort Real are written
n/m (e.g., 0/1). Maude-SE [53] extends Maude with additional functionality for
rewriting modulo SMT and bindings with different SMT solvers.

3 A Rewriting Logic Semantics for ITPNs

This section presents a rewriting logic semantics for (non-parametric) ITPNs,
using a (non-executable) rewrite theory R0. We provide a bisimulation relating
the concrete semantics of a net N and a rewrite relation in R0, and discuss vari-
ants of R0 to avoid consecutive tick steps and to enable time-bounded analysis.

3.1 Formalizing ITPNs in Maude: The Theory R0

We fix N to be the ITPN 〈P, T, ∅, •(.), (.)•, ◦(.),M0, J, true〉, and show how
ITPNs and markings of such nets can be represented as Maude terms.

The usual approach is to represent a transition ti and a place pj as
a constant of sort Label and Place, respectively (e.g., ops p1 p2 ... pm

: -> Place [ctor]). To use a single rewrite theory R0 to define the semantics
of all ITPNs, we instead assume that places and transition (labels) can be repre-
sented as strings; i.e., there is an injective naming function η : P ∪ T → String
which we usually do not mention explicitly.1

1 We do not show variable declarations, but follow the convention that variables are
written in (all) capital letters.

Analysis Parameter Time Petri Nets Using Maude with SMT 375

protecting STRING . protecting RAT .
sorts Label Place . --- identifiers for transitions and places
subsorts String < Label Place . --- we use strings for simplicity
sorts Time TimeInf . --- time values
subsort Zero PosRat < Time < TimeInf .
op inf : -> TimeInf [ctor] .
eq T <= inf = true .

The sort TimeInf adds an “infinity” value inf to the sort Time of time values,
which are the non-negative rational numbers (PosRat).

The “standard” way of formalizing Petri nets in rewriting logic [31,48] repre-
sents, e.g., a marking with two tokens in place p and three tokens in place q as
the Maude term p p q q q. This is crucial to support concurrent firings of tran-
sitions in a net. Since the semantics of PITPNs is an interleaving semantics, to
enable rewriting-with-SMT-based analysis from parametric initial markings, we
instead represent markings as maps from places to the number of tokens in that
place, so that the above marking is represented by the Maude term η(p) |-> 2
; η(q) |-> 3 of sort Marking. The Maude term η(t) : pre –> post inhibit
inhibit in interval represents a transition t ∈ T , where pre, post, and inhibit
are markings representing, respectively, •(t), (t)•, ◦(t); and interval represents
the interval J(t). A Net is represented as a ;-separated set of such transitions:

sort Marking . --- Markings
op empty : -> Marking [ctor] .
op _|->_ : Place Nat -> Marking [ctor] .
op _;_ : Marking Marking -> Marking [ctor assoc comm id: empty] .
sort Interval . --- Time intervals (upper bound can be infinite)
op ‘[_:_‘] : Time TimeInf -> Interval [ctor] .
sorts Net Transition . subsort Transition < Net .
op _‘:_-->_inhibit_in_ :

Label Marking Marking Marking Interval -> Transition [ctor] .
op emptyNet : -> Net [ctor] .
op _;_ : Net Net -> Net [ctor assoc comm id: emptyNet] .

Example 1. Assuming the obvious naming function η mapping A to "A", and so
on, the Maude term net3(a) represents the net in Fig. 1:

op net3 : Time -> Net .
eq net3(T) =

"t1" : "p5" |-> 1 --> "p1" |-> 1 inhibit empty in [2 : 6] ;
"t2" : "p1" |-> 1 --> "p2" |-> 1 ; "p5" |-> 1 inhibit empty in [2 : 4] ;
"t3" : "p2" |-> 1 ; "p4" |-> 1 --> "p3" |-> 1 inhibit empty in [T : T] ;
"t4" : "p3" |-> 1 --> "p4" |-> 1 inhibit empty in [0 : 0] .

It is very easy to define operations +, -, and <= on markings (see [6]); we can
then check whether a transition is active in a marking:

op active : Marking Transition -> Bool . --- Active transition
eq active(M, L : PRE --> POST inhibit INHIBIT in INTERVAL) =

(PRE <= M) and not inhibited(M, INHIBIT) .
op inhibited : Marking Marking -> Bool . --- Inhibited transition
eq inhibited(M, empty) = false .
eq inhibited((P |-> N2) ; M, (P |-> N) ; INHIBIT) =

((N > 0) and (N2 >= N)) or inhibited(M, INHIBIT) .

376 J. Arias et al.

p5

p1 p2 p3

p4

t1[2 : 6] t2[2 : 4] t3[a : a] t4[0 : 0]

Fig. 1. A simple production-consumption system taken from [52]

Dynamics. We define the dynamics of ITPNs as a Maude “interpreter” for such
nets. The definition of the semantics in [49] adjusts the “time intervals” of non-
inhibited transitions when time elapses, but seems slightly “inconsistent”: Time
interval end-points should be non-negative, and only enabled transitions have
intervals in the states; however, the definition of time and discrete transitions
in [49] mentions ∀t ∈ T, I ′(t) = ... and M ≥ •(t) =⇒ I ′(t)↑ ≥ 0. Taking the
definition of time and transition steps in [49] leads us to time intervals where
the right end-points of disabled transitions could have arbitrarily large negative
values. To have a simple and well-defined semantics, we use “clocks” instead of
“decreasing intervals”; a clock denotes how long the corresponding transition has
been enabled (but not inhibited). Our semantics is equivalent to the (natural
interpretation of the) one in [49] in a way made precise in Theorem 1.

The sort ClockValues (see [6]) denotes sets of ;-separated terms η(t) -> τ ,
where t is the (label of the) transition and τ represents the current value of
t’s “clock.” The states in R0 are terms m : clocks :net of sort State, where m
represents the current marking, clocks the current values of the transition clocks,
and net the representation of the Petri net:

sort State . op _:_:_ : Marking ClockValues Net -> State [ctor] .

The following rewrite rule models the application of a transition L. Since _;_
is associative and commutative, any transition L in the net can be applied:

crl [applyTransition] :
M : (L -> T) ; CLOCKS :
(L : PRE –-> POST inhibit INHIBIT in INTERVAL) ; NET

=> (M - PRE) + POST : L -> 0 ; updateClocks(CLOCKS, M - PRE, NET) :
(L : PRE –-> POST inhibit INHIBIT in INTERVAL) ; NET’

if active(M, L : PRE –-> POST inhibit INHIBIT in INTERVAL)
and (T in INTERVAL) .

The transition L is active in the marking M and its clock value T is in the
INTERVAL. After performing the transition, the marking is (M - PRE) + POST, the
clock of L is reset and the other clocks are updated using the following function:

eq updateClocks((L’ -> T’) ; CLOCKS, INTERM-M,
(L’ : PRE –-> POST inhibit INHIBIT in INTERVAL) ; NET)

= if PRE <= INTERM-M then (L’ -> T’) else (L’ -> 0) fi ;
updateClocks(CLOCKS, INTERM-M, NET) .

eq updateClocks(empty, INTERM-M, NET) = empty .

The second rewrite rule in R0 specifies how time advances. Time can advance
by any value T, as long as time does not advance beyond the time when an active

Analysis Parameter Time Petri Nets Using Maude with SMT 377

transition must be taken. The clocks are updated according to the elapsed time
T, except for those transitions that are disabled or inhibited:

crl [tick] : M : CLOCKS : NET => M : increaseClocks(M, CLOCKS, NET, T) : NET
if T <= mte(M, CLOCKS, NET) [nonexec] .

This rule is not executable ([nonexec]), since the variable T, which denotes how
much time advances, only occurs in the right-hand side of the rule. T is therefore
not assigned any value by the substitution matching the rule with the state
being rewritten. This time advance T must be less or equal to the minimum of
the upper bounds of the enabled transitions in the marking M:2

op mte : Marking ClockValues Net -> TimeInf .
eq mte(M, (L -> T) ; CLOCKS, (L : PRE --> POST ... in [T1 : inf]) ; NET)
= mte(M, CLOCKS, NET) .

eq mte(M, (L -> T) ; CLOCKS, (L : PRE --> ... in [T1 : T2]) ; NET)
= if active(M, L : PRE --> ...) then min(T2 - T, mte(M, CLOCKS, NET))

else mte(M, CLOCKS, NET) fi .
eq mte(M, empty, NET) = inf .

The function increaseClocks increases the transitions clocks according to
the elapsed time, except for those transitions that are disabled or inhibited:

op increaseClocks : Marking ClockValues Net Time -> ClockValues .
eq increaseClocks(M, (L -> T1) ; CLOCKS, (L : PRE --> ...) ; NET, T)
= if active(M, L : PRE --> ...)

then (L -> T1 + T) else (L -> T1) fi ; increaseClocks(M, CLOCKS,NET,T) .
eq increaseClocks(M, empty, NET, T) = empty .

The function [[_]]R0 (see [6] for its formal definition) formalizes how markings
and nets are represented as terms in rewriting logic.3

To show that R0 correctly simulates any ITPN N , we provide a bisimulation
relating behaviors from a0 = (M0, J) in N with behaviors in R0 starting from
initial state [[M0]]R0 : initClocks([[N]]R0) : [[N]]R0 , where initClocks(net) is
a clock valuation which assigns the value 0 to each transition (label) η(t) in net .

Since a transition in N consists of a delay followed by a discrete transi-
tion, we define a corresponding rewrite relation �→ combining the tick and
applyTransition rules, and prove (in [6]) the bisimulation for this relation. The
following relation relates our clock-based states with the interval-based states:

Definition 3. Let N be an ITPN and SN = (A, a0,→) its concrete semantics.
We define a relation ≈⊆ A × TΣ,State, relating states in the concrete semantics
of N to states in R0, where for all states (M, I) ∈ A, (M, I) ≈ m : clocks : net
if and only if m = [[M]]R0 and net = [[N]]R0 and for each transition t ∈ T ,

– the value of η(t) in clocks is 0 if t is not enabled in M ;
– otherwise:

• if J(t)↑ �= ∞ then the value of clock η(t) in clocks is J(t)↑ − I(t)↑;
• otherwise, if ↑I(t) > 0 then η(t) has the value ↑J(t) − ↑I(t) in clocks;

otherwise, the value of η(t) in clocks could be any value τ ≥ ↑J(t).
2 Parts of Maude specification will be replaced by ‘...’ throughout the paper.
3 [[_]]R0 is parametrized by the naming function η, not shown explicitly here.

378 J. Arias et al.

Theorem 1. ≈ is a bisimulation between transition systems SN = (A, a0,→)
and (TΣ,State, ([[M0]]R0 : initClocks([[N]]R0) : [[N]]R0), �→).

3.2 Some Variations of R0

The theory R1 avoids consecutive applications of the tick rule by adding a new
component—with value tickOk or tickNotOk—to the global state. The tick rule
can only be applied when this component is tickOk. We add a new constructor
::_:_ for these global states, a new sort TickState with values tickOk and
tickNotOk, and add two rewrite rules:

sort TickState . ops tickOk tickNotOk : -> TickState [ctor] .
op _:_:_:_ : TickState Marking ClockValues Net -> State [ctor] .
crl [applyTransition] :

TS : M : ((L -> T) ; CLOCKS) : (L : PRE --> ...) ; NET) =>
tickOk : ((M - PRE) + POST) : ... if active(...) and (T in INTERVAL) .

crl [tick] : tickOk : M : ... => tickNotOk : M : increaseClocks(...) ...
if T <= mte(M, CLOCKS, NET) [nonexec] .

We prove in [6] that m : cs : net −→∗
R0

m′ : cs ′ : net iff tickOk :m : cs : net
−→∗

R1
tickNotOk : m′ : cs ′ : net . While reachability is preserved, a tick rule

application in R1, where time does not advance far enough for a transition to
be taken, could lead to a deadlock in R1 which cannot happen in R0.

The theory R2 adds a “global clock”, denoting how much time has elapsed in
the system, to answer questions such as whether a certain state can be reached
in a certain time interval, and to enable time-bounded analysis where behaviors
beyond the time bound are not explored. R2 adds the “global time,” to the state:

op _:_:_:_@_ : TickState Marking ClockValues Net Time -> State [ctor] .

The rewrite rules are modified as expected. For instance, the rule tick becomes:

crl [tick] : tickOk : M : CLOCKS : NET @ GT
=> tickNotOk : M : increaseClocks(..., T) : NET @ GT + T

if T <= mte(M, CLOCKS, NET) [nonexec] .

where GT is a variable of sort Time. For a time bound Δ, we can add a conjunct
GT + T <= Δ in the condition of this rule to stop executing beyond the time bound.

3.3 Explicit-state Analysis of ITPNs in Maude

The theories R0–R2 cannot be directly executed in Maude, since the tick rule
introduces a new variable T in its right-hand side. Following the Real-Time
Maude methodology, we can “sample” system execution at some time points, e.g.,
by changing the tick rule to increase time by one time unit in each application:

crl [tickOne] : M : CLOCKS : NET => M : increaseClocks(M, CLOCKS, NET, 1) : NET
if 1 <= mte(M, CLOCKS, NET) .

Such time sampling analysis is in general not sound and complete, since it does
not cover all possible system behaviors for dense time domains. Nevertheless, if
all interval bounds are natural numbers, then “all behaviors” should be covered.

Analysis Parameter Time Petri Nets Using Maude with SMT 379

We can quickly experiment with different parameter values for our model,
before applying the sound and complete symbolic methods developed in Sects. 4
and 5. Our report [6] describes a wealth of such analyses, including LTL model
checking and time-bounded analysis. Here we just check whether the net in Fig. 1
is 1000-safe when a = 5, where the term init3 denotes the initial marking in
Fig. 1. We define a function k-safe, where k-safe(n,m) holds iff the marking
m does not have any place with more than n tokens:

op k-safe : Nat Marking -> Bool .
eq k-safe(N, empty) = true .
eq k-safe(N1, P |-> N2 ; M) = N2 <= N1 and k-safe(N1, M) .

We can then quickly check whether the net is 1000-safe when a = 5:

Maude> search [1] init3 : initClocks(net3(5)) : net3(5) =>*
M : CLOCKS : NET such that not k-safe(1000, M) .

Solution 1 (state 83924)
M -->"p1" |-> 0 ; "p2" |-> 1001 ; "p3" |-> 0 ; "p4" |-> 1 ; "p5" |-> 1

The net is not 1000-safe: we reached a state with 1001 tokens in place p2. Similar
searches show that the net is 2-safe (but not 1-safe) if a = 4 and 1-safe if a = 3.

4 Parameters and Symbolic Executions

Standard explicit-state Maude analysis of R0–R2 cannot be used to analyze all
behaviors of PITPNs for two reasons: (1)The rule tick introduces a newvariable T
in its right-hand side, reflecting that time can advance by any value T <= mte(...);
and (2) analyzing nets with uninitialized parameters is impossible with explicit-
state Maude analysis of concrete states. (For example, the condition T in INTERVAL
in rule applyTransition does not evaluate to true if INTERVAL is not a concrete
interval, and hence the rule will never be applied.) Maude-SE analysis of symbolic
states with SMT variables can solve both issues, by symbolically representing the
time advances T and the uninitialized parameters.

This section defines a rewrite theory RS
1 that faithfully models PITPNs and

that can be symbolically executed using Maude-SE. We prove that (concrete)
executions in R1 are captured by (symbolic) executions in RS

1 , and vice versa.
We also show that standard folding techniques [33] in rewriting modulo SMT
are not sufficient for collapsing equivalent symbolic states in RS

1 . We therefore
propose a new folding technique that guarantees termination of the reachability
analyses of RS

1 when the state-class graph of the encoded PITPN is finite.

4.1 The Symbolic Rewriting Logic Semantics

We define the “symbolic” semantics of PITPNs using the rewrite theory RS
1 ,

which is the symbolic counterpart of R1, instead of basing it on R0, since a
symbolic “tick” step represents all possible tick steps from a symbolic state. We
therefore do not introduce deadlocks not possible in the corresponding PITPN.

380 J. Arias et al.

RS
1 is obtained from R1 by replacing the sort Nat in markings and the

sort PosRat for clock values with the corresponding SMT sorts Integer and
Real. (The former is only needed to enable reasoning with symbolic initial states
where the number of tokens in a location is unknown). Conditions in rules (e.g.,
M1 <= M2) are replaced with the corresponding SMT expressions of sort Boolean.
The symbolic execution of RS

1 in Maude-SE will accumulate and check the sat-
isfiability of the constraints needed for a parametric transition to happen.

We start by declaring the sort Time as follows:

sorts Time TimeInf . subsort Real < Time < TimeInf .
op inf : -> TimeInf [ctor] .

where Real is the sort for SMT reals (constraints in rewrite rules guarantee
that only non-negative numbers are considered). Intervals are defined as in R0.
Since Real is a subsort of Time, a parametric interval [a, b] in a PITPN can be
represented in RS

1 as the term [a:Real : b:Real], where a and b are variables
of sort Real. The definition and operations on markings, nets, and clock values
are similar to those in Sect. 3.1, albeit with the appropriate SMT sorts.

The rewrite rules in RS
1 act on symbolic states that may contain SMT vari-

ables. Although these rules are similar to those in R1, their symbolic execution
is completely different. Maude-SE defines a theory transformation to implement
symbolic rewriting. In the resulting theory R̂S

1 , when a rule is applied, the vari-
ables occurring in the right-hand side but not in the left-hand side are replaced
by fresh variables. Moreover, rules in R̂S

1 act on constrained terms of the form
φ ‖ t, where t in this case is a term of sort State and φ is a satisfiable SMT
boolean expression. The constraint φ is obtained by accumulating the conditions
in rules, thereby restricting the possible values of the variables in t.

The tick rewrite rule in RS
1 is

crl [tick] : tickOk : M : CLOCKS : NET
=> tickNotOk : M : increaseClocks(M, CLOCKS, NET, T) : NET

if (T >= 0/1 and mte(M, CLOCKS, NET, T)) = true .

The variable T is restricted to be a non-negative real number and to satisfy
the following predicate mte, which gathers the constraints to ensure that time
cannot advance beyond the point in time when an enabled transition must fire:

op mte : Marking ClockValues Net Real -> Boolean .
eq mte(M, empty, NET, T) = true .
eq mte(M, (L -> R1) ; CLOCKS, (L : PRE --> ... in [T1 : inf]) ; NET, T)
= mte(M, CLOCKS, NET, T) .

eq mte(M, (L -> R1) ; CLOCKS, (L : PRE --> ... in [T1 : T2]) ; NET, T)
= (active(M, L : ...) ? T <= T2 - R1 : true) and mte(M, CLOCKS, NET, T) .

This means that, for every transition L, if the upper bound of the interval in
L is inf, no restriction on T is added. Otherwise, if L is active at marking M, the
SMT ternary operator C ? E1 : E2 (checking C to choose either E1 or E2) further
constrains T to be less than T2 - R1. The definition of increaseClocks also uses
this SMT operator to represent the new values of the clocks:

eq increaseClocks(M, (L -> R1) ; CLOCKS, (L : PRE --> ...) ; NET, T)

Analysis Parameter Time Petri Nets Using Maude with SMT 381

= (L -> (active(M, L : PRE ...) ? R1 + T : R1)) ;
increaseClocks(M, CLOCKS, NET, T) .

The rule for applying a transition is defined as follows:

crl [applyTransition] :
TS : M : ((L -> T) ; CLOCKS) : (L : PRE --> ...) ; NET)

=> tickOk : ((M - PRE) + POST) : updateClocks(...) :
(L : PRE --> ... ; NET) if (active(...) and (T in INTERVAL)) = true .

When applied, this rule adds new constraints asserting that the transition L
can be fired (predicates active and _in_) and updates the state of the clocks:

eq updateClocks((L’ -> R1) ; CLOCKS, INTERM-M, (L’ : PRE --> ...); NET)
= (L -> PRE <= INTERM-M ? R1 : 0/1) ; updateClocks(...) .

Example 2. Let net and m0 be the Maude terms representing, respectively, the
PITPN and the initial marking shown in Fig. 1. The term net includes a variable
a:Real representing the parameter a. The command

smt-search tickOk : m0 : initClocks(net) : net =>* TICK : M : CLOCKS : NET
such that (a:Real >= 0/1 and not k-safe(1, M)) = true .

checks whether it is possible to reach a non-1-safe marking. Maude positively
answers this question, with resulting accumulated constraint telling us that such
a state is reachable (with 2 tokens in p2) if a:Real >= 4/1.

Terms of sort Marking in RS
1 may contain expressions with parameters (i.e.,

variables) of sort Integer. Let Λm denote the set of such parameters and πm :
Λm → N a valuation function for them. We use ms to denote a mapping from
places to Integer expressions including parameter variables. Similarly, clockss

denotes a mapping from transitions to Real expressions (including variables).
We write πm(ms) to denote the ground term where the parameters in markings
are replaced by the corresponding values πm(λi). Similarly for π(clockss). We
use [[N]]RS

1
to denotes the above rewriting logic representation of nets in RS

1 .
Recall that t ∈ [[φ ‖ ts]] is a ground instance, with a suitable ground sub-

stitution σ, of the constrained term φ ‖ ts. By construction, in RS
1 , if for all

t ∈ [[φ ‖ ts]] all markings (sort Integer), clocks and parameters (Real) are non-
negative numbers, then this is also the case for all reachable states from φ ‖ ts.
Hence, there is a one-to-one correspondence for ground terms in RS

1 satisfying
that condition with terms in R1. We use t ≈∈ [[φ ‖ ts]] to denote that there
exists a RS

1 -term t′ ∈ [[φ ‖ ts]] and t is its corresponding term in R1. Note that
the ground substitution σ (t′ = tsσ) determines a parameter (π) and a marking
(πm) valuation consistent with the constraint φ (TE0 |= φσ).

The following theorem states that the symbolic semantics matches all the
behaviors resulting from a concrete execution of R1 with arbitrary parameter
valuations π and πm. Furthermore, for all symbolic executions with parame-
ters, there exists a corresponding concrete execution where the parameters are
instantiated with values consistent with the resulting accumulated constraint.

Theorem 2 (Soundness and Completeness). Let N be a PITPN and φ be
the constraint

∧
J(t),t∈T (0 ≤ ↑J(t) ≤ J(t)↑)∧

∧
λi∈Λm

(0 ≤ λi). (1) If φ ‖ ts �∗
RS

1

382 J. Arias et al.

φ′ ‖ t′s then, there exist t′ and t ≈∈ [[φ ‖ ts]] (and the corresponding valuations π
and πm) such that t −→∗

R1
t′ and t′ ≈∈ [[φ′ ‖ t′s]].

(2) If t −→∗
R1

t′ with t ≈∈ [[φ ‖ ts]], then there exists φ′ ‖ t′s such that t′ ≈∈
[[φ′ ‖ t′s]] and φ ‖ ts �∗

RS

1
φ′ ‖ t′s.

The symbolic counterpart RS
2 of the theory R2 can be defined similarly.

4.2 A New Folding Method for Symbolic Reachability

Reachability analysis should terminate for both positive and negative queries
for nets with finite parametric state-class graphs. However, this is not the case
in analysis with RS

1 : the symbolic state space generated by smt-search is infi-
nite even for such nets. The problem is that smt-search stops exploring from a
symbolic state only if it has already visited the same state. Moreover, due to
the fresh variables created in RS

1 , symbolic states representing the same set of
concrete states are not the same, even though they are logically equivalent. For
instance, if we use smt-search to try to show that the PITPN in Fig. 1 is 1-safe
if 0 ≤ a < 4, such a command does not terminate. In fact, the command

smt-search tickOk : m0 : 0-clock(net) : net =>* TICK : M : CLOCKS : NET
such that (a:Real >= 0/1 and a:Real < 4 and M <= m0 and m0 <= M) = true .

searching for reachable states where M = m0 will produce infinitely many equiv-
alent solutions, where the state of the system is represented by different (new)
variables but subject to equivalent constraints.

The usual approach for collapsing equivalent symbolic states in rewriting
modulo SMT is subsumption [33]. Essentially, we stop searching from a sym-
bolic state if, during the search, we have already encountered another state that
subsumes (“contains”) it. Let U = φu ‖ tu and V = φv ‖ tv be constrained terms.
Then U � V if there is a substitution σ such that tu = tvσ and the implication
φu ⇒ φvσ holds. In that case, �U� ⊆ �V � and U does not need to be further
explored if V has already been encountered.

Reachability analysis with folding is sound [7] but not necessarily complete
(since �U� ⊆ �V � does not imply U � V) [33]. In fact, if we take two solutions
U and V from the above smt-search command and use the Maude’s command
match to find the needed substitution σ, the SMT solver determines that the
formula ¬(φu ⇒ φvσ) is satisfiable (and therefore φu ⇒ φvσ is not valid). Hence,
a procedure based on checking this implication will fail to determine that U � V .

The satisfiability witnesses of ¬(φu ⇒ φvσ) show that the values for markings
and clocks in the current time instant are equally constrained in φu and φv

(and hence, they represent the same set of concrete states). However, since the
variables representing the current state are different, the implication is falsifiable.

In the following, we propose a subsumption relation that solves the afore-
mentioned problems. Let φ ‖ t be a constrained term where t is a term of sort
State. Consider an abstraction of built-ins (t◦, σ◦) for t [47], where t◦ is as t but
it replaces the expression ei in markings (pi �→ ei) and clocks (li → ei) with new
fresh variables. The substitution σ◦ is defined accordingly in such a way that

Analysis Parameter Time Petri Nets Using Maude with SMT 383

t = t◦σ◦. Let Ψσ◦ =
∧

x∈dom(σ◦) x = xσ◦, where dom(σ) = {x ∈ X | σ(x) �= x}.
We use (φ ‖ t) ⇓now to denote the constrained term φ ∧ Ψσ◦ ‖ t◦. Intuitively,
(φ ‖ t) ⇓now replaces the clock values and markings with fresh variables, and the
boolean expression Ψσ◦ constrains those variables to take the values of clocks
and the marking in t. From [47] we can show that [[φ ‖ t]] = [[(φ ‖ t) ⇓now]].

Note that the only variables occurring in (φ ‖ t) ⇓now are those for parameters
(if any) and the fresh variables in dom(σ◦) (representing the symbolic state of
clocks and markings). For a constrained term φ ‖ t, we use ∃(φ ‖ t) to denote
the formula (∃X)φ where X = vars(φ) \ vars(t).

Definition 4 (Relation �). Let U = φu ‖ tu and V = φv ‖ tv be constrained
terms where tu and tv are terms of sort State. Moreover, let U ⇓now= φ′

u ‖ t′u
and V ⇓now= φ′

v ‖ t′v, where vars(t′u) ∩ vars(t′v) = ∅. We define the relation �
on constrained terms so that U � V whenever there exists a substitution σ such
that t′u = t′vσ and the formula ∃(U ⇓now) ⇒ ∃(V ⇓now)σ is valid.

The formula ∃(U ⇓now) hides the information about all the tick variables as
well as the information about the clocks and markings in previous time instants.
What we obtain is the information about the parameters, clocks and markings
“now”. Moreover, if tu and tv above are both tickOk states (or both tickNotOk
states), and they represent two symbolic states of the same PITPN, then t′u and
t′v always match (σ being the identity on the variables representing parameters
and mapping the corresponding variables created in V ⇓now and U ⇓now).

Theorem 3 (Soundness and Completeness) Let U and V be constrained
terms for two symbolic states of the same PITPN. Then, [[U]] ⊆ [[V]] iff U � V .

We have implemented a new symbolic reachability analysis using the folding
relation in Definition 4. Building on the theory transformation [47] implemented
in Maude-SE, we transform RS

1 into a rewrite theory RfS
1 that rewrites terms

of the form S : φ ‖ t where S is a set of constrained terms (the already visited
states). Theory RfS

1 defines an operator subsumed(φ ‖ t , S) that reduces to
true—by a call to the SMT solver Z3 for quantifier elimination and satisfiability
checking—iff there exists φ′ ‖ t′ ∈ S s.t φ ‖ t � φ′ ‖ t′. Rules in RS

1 are
systematically transformed to add a further constraint: the new state on the
right-hand side of the rule is not subsumed by a state in the set S.

In RfS
1 , for an initial constraint φ on the parameters, the Maude com-

mand search [n,m] empty : φ ‖ t =>* S : φ′ ‖ t′ such that smtCheck(φ′ and Φ)d
answers the question whether it is possible to reach a symbolic state that matches
t′ and satisfies the condition Φ. In the following, we use init(net,m0, φ) to
denote the term empty : φ ‖ tickOk : m0 :initClocks(net) : net.

Example 3. Consider the PITPN in Fig. 1. Let m0 be the marking in the figure
and φ = 0 ≤ a < 4. The command

search init(net, m0, φ) =>* S : φ′ ‖ (TICK : M : CLOCKS : NET)
such that smtCheck(φ′ and not k-safe(1,M)) .

384 J. Arias et al.

terminates returning No solution, showing that the net is 1-safe if 0 ≤ a < 4.

If the set of reachable state classes in the symbolic semantics of N in [2] is finite,
then so is the set of reachable symbolic states with the new folding method:

Corollary 1. For any PITPN N and state class (M,D), if the transition system
(C, (M,D),⇒) is finite, then so is

(
TΣ,State, init(N ,M,D),�RfS

1

)
.

The new folding relation is applicable to any rewrite theory R that satisfies
the requirements for rewriting with SMT [47], briefly explained in Sect. 2.

5 Parameter Synthesis and Symbolic Model Checking

This section shows how Maude-SE can be used for solving parameter synthesis
problems, model checking the non-nested timed temporal logic properties sup-
ported by Roméo (in addition to LTL model checking), reasoning with parametric
initial states, and analyzing nets with user-defined execution strategies.

5.1 Parameter Synthesis

A state predicate is a boolean expression on markings (e.g., k-safe(1,m)) and
clocks (e.g., c1 < c2). EF-synthesis (resp. safety synthesis (AG¬φ)) is the problem
of computing parameter values π such that some (resp. no) run of π(N) reaches
a state satisfying a given state predicate φ.

search in RfS
1 provides semi-decision procedures for solving these parameter

synthesis problems (which are undecidable in general). As illustrated below, the
resulting constraint computed by search can be used to synthesize the parameter
values that allow such behaviors. The safety synthesis problem AG¬φ can be
solved by finding all solutions for EFφ and negating the resulting constraint.

Example 4. The following command solves the EF-synthesis problem of finding
values for a in Fig. 2 such that the net is not 1-safe, where φ = 0 ≤ a:

search [1] init(net, m0, φ) =>* S : PHI’ ‖ (TICK : M : CLOCKS : NET)
such that smtCheck(PHI’ and not k-safe(1,M)) .

It returns one solution, and the resulting constraint φ′, instantiating the pattern
PHI’, can be used to extract the parameter values as follows. Let X be the set
of SMT variables in φ′ not representing parameters. A call to the quantifier
elimination procedure (qe) of the SMT solver Z3 on the formula ∃X.φ′ reduces
to a:Real >= 4/1, giving us the desired values for the parameter a.

To solve the safety synthesis problem AG¬φ, we have used Maude’s meta-
programming facilities [18] to implement a command safety-syn(net,m0,φ0,φ)
where m0 is a marking, φ0 a constraint on the parameters and φ a constraint
involving the variables M and CLOCKS as in the search command in Example 4.
This command iteratively calls search to find a state reachable from m0, with

Analysis Parameter Time Petri Nets Using Maude with SMT 385

initial constraint φ0, where φ does not hold. If such state is found, with accumu-
lated constraint φ′, the search command is invoked again with initial constraint
φ0 ∧ ¬φ′. This process stops when no more reachable states where φ does not
hold are found, thus solving the AG¬φ synthesis problem.

Example 5. The following command synthesizes the values of the parameter a,
so that 30 ≤ a ≤ 70, that make the scheduling system in [6,50] 1-safe:

safety-syn(net, m0, a:Real >= 30/1 and a:Real <= 70/1, k-safe(1,M)) .

The first counterexample found assumes that a ≤ 48. If a > 48, search does not
find any counterexample. This is the same answer that Roméo found.

Since we can have Integer variables in initial markings, we can use Maude-
SE to synthesize the initial markings that, e.g., make the net k-safe or alive:

Example 6. Consider a parametric initial marking ms for the net in Fig. 1,
with parameters x1, x2, and x3 denoting the number of tokens in places p1,
p2, and p3, respectively, and the initial constraint φ0 stating that a ≥ 0
and 0 ≤ xi ≤ 1. The execution of the command execution of the com-
mandsafety-syn(net,ms, φ0, k-safe(1,M)) determines that the net is 1-safe
when x1 = x3 = 0 and 0 ≤ x2 ≤ 1.

Analysis with Strategies. Maude’s strategy facilities [17] allow us to analyze
PITPNs whose executions follow some user-defined strategy:

Example 7. We execute the net in Fig. 1 with the following strategy t3-first:
whenever transition t3 and some other transition are enabled at the same time,
then t3 fires first. The following strategy definition (sd) specifies this strategy:

sd t3-first := (applyTransition[L <- "t3"] or-else all)!

Running srew init(net, m0, a ≥ 0) using t3-first in RfS
1 finds all symbolic

states reachable with this strategy, and all of them are 1-safe. Therefore, all param-
eter values a ≥ 0 guarantee the desired property with this execution strategy.

5.2 Analyzing Temporal Properties

This section shows how Maude-SE can be used to analyze the temporal proper-
ties supported by Roméo [29], albeit in a few cases without parametric bounds
in the temporal formulas. Roméo can analyze the following temporal properties:

QφUJ ψ | QFJ φ | QGJ φ | φ �≤b ψ

where Q ∈ {∃,∀}, φ and ψ are state predicates on markings, and J is a time
interval [a, b], where a and/or b can be parameters and b can be ∞. For example,
∀F[a,b] φ says that in each path from the initial state, a marking satisfying φ is
reachable in some time in [a, b]. The bounded response φ �≤b ψ says that each
φ-marking must be followed by a ψ-marking within time b.

Since queries include time bounds, we use RfS
2 , and init(net,m0, φ) will

denote the term empty : φ ‖ tickOk : m0 : initClocks(net) : net @ 0/1.
State predicates, including inequalities on markings and clocks, and also a

test whether the global clock is in a given interval are defined as follows:

386 J. Arias et al.

ops _>=_ _>_ _<_ _<=_ _==_ : Place Integer -> Prop .
ops _>=_ _>_ _<_ _<=_ _==_ : Clock Real -> Prop .
op in-time : Interval -> Prop .
eq S : C || (TICK : M ; (P |-> N1) : CLOCKS : NET) @ G-CLOCK |= P >= N1’
= smtCheck(C and N1 >= N1’) . --- similarly for >, <=, < and ==

eq S : C || (TICK : M : CLOCKS : NET) @ G-CLOCK |= in-time INTERVAL
= smtCheck(C and (G-CLOCK in INTERVAL)) .

Atomic propositions (Prop) are evaluated (|=) on symbolic states represented as
constrained terms S : φ ‖ t. Since they may contain variables, a call to the SMT
solver (smtCheck) is needed to determine whether φ entails the proposition.

Some of the temporal formulas supported by Roméo can be easily verified
using the reachability commands presented in the previous section. The property
∃F[a,b] ψ can be verified using the command:

search [1] init(net, m0, φ) =>* S : PHI’ ‖ TICK : M : CLOCKS : NET @ G-CLOCK
such that (STATE ′ |= ψ) and G-CLOCK in [a : b] .

where φ states that all parameters are non-negative numbers and STATE ′ is the
expression to the right of =>*. a and b can be variables representing parameters
to be synthesized; and ψ can be an expression involving CLOCKS. For example,

search [1] init(net, m0, φ) =>*
S’ : PHI’ ‖ TICK : (M ; "p1" |-> P1) : (CLOCKS ; "t2" -> C2) : NET @ G-CLOCK
such that (STATE ′ |= P1 > 1 /\ C2 < 2/1) and G-CLOCK in [a : b] .

checks whether it is possible to reach a marking, in some time in [a, b], with more
than one token in place p1, when the value of the clock of transition t2 is < 2.

The dual property ∀G[a,b] φ can be checked by analyzing ∃F[a,b] ¬φ.

Example 8. Consider the PITPN in Example 5 with (interval) parameter φ =
30 ≤ a ≤ 70. The property ∃F[b,b](¬1 -safe) can be verified with the following
command, which determines that the parameter b satisfies 60 ≤ b ≤ 96.

search [1] init(net, m0, φ) =>* S : PHI’ ‖ TICK : M : CLOCKS : NET @ G-CLOCK
such that STATE ′ |= b:Real >= 0/1 and (G-CLOCK in [b:Real : b:Real])

and not (k-safe(1,M)) .

φ �≤b ψ can be verified using a simple theory transformation on RS
0 followed

by reachability analysis. The theory transformation adds a new “clock,” which
is either noClock or clock(τ), to the state. The latter represents the time
(τ) since a φ-state was visited without having been followed by a ψ-state. The
applyTransition rule is modified as follows: when the clock is noClock and
the new marking satisfies φ ∧ ¬ψ, this clock is set to clock(0), and when a ψ-
marking is reached, the clock is set to noClock. The tick rule updates clock(T1)
to clock(T1 + T) and leaves noClock unchanged. φ �≤b ψ can be checked by
searching for a “bad” state with “clock” clock(T) where T > b. See [6] for details.

Reachability analysis cannot be used to analyze the other properties sup-
ported by Roméo (QφUJ ψ, and ∀FJ φ and its dual ∃GJ φ). We combine Maude’s
explicit-state model checker and SMT solving to solve these (and other) queries.

The timed temporal operators can be defined on top of the (untimed) LTL
temporal operators in Maude (<>, [] and U) :

Analysis Parameter Time Petri Nets Using Maude with SMT 387

ops <_>_ [_]_ : Interval Prop -> Formula . --- FJφ and GJφ
op _U__ : Prop Interval Prop -> Formula . --- φUjψ
eq < INTERVAL > PR1 = <> (PR1 /\ in-time INTERVAL) .
eq [INTERVAL] PR1 = ~ (< INTERVAL > (~ PR1)) .
eq PR1 U INTERVAL PR2 = PR1 U (PR2 /\ in-time INTERVAL) .

For this fragment of non-nested timed temporal logic formulas, universally
quantified properties can be model checked directly by Maude; for ∃Φ it is enough
to model check ¬Φ: any counterexample to this is a witness for ∃Φ, and vice versa.

6 Benchmarking

We have compared the performance of Maude-with-SMT analysis with that of
Roméo on three case studies: the producer-consumer [52] system in Fig. 1, the
scheduling system in [50], and the tutorial system taken from the Roméo
website. We modified tutorial to produce two tokens in the loop-back, which
leads to infinite behaviors. We compared the performance of solving the synthesis
problem EF(p > n) (place p holds more than n tokens), for different p and
n, and of checking whether the net is 1-safe. In each experiment, Maude was
executed with two different SMT solvers: Yices and Z3. The benchmarking data
are available in the repository [5] and in the technical report [6].

The results show that using Maude with Yices is faster than using it with
Z3. For negative queries, as expected, RS

0 and RS
1 time out (set to 10minutes),

while RfS
1 (which uses folding) completes the analysis before the timeout.

Maude-SE outperforms Roméo in some reachability queries, and sometimes
our analysis terminates when Roméo does not, which may happen when the search
order leads Roméo to explore an infinite branch with an unbounded marking.

7 Related Work

Tool Support for Parametric Time Petri Nets. We are not aware of any tool for
analyzing parametric time(d) Petri nets other than Roméo [29].

Petri Nets in Rewriting Logic. Formalizing Petri nets algebraically [34] partly
inspired rewriting logic. Different kinds of Petri nets are given a rewriting logic
semantics in [48], and in [40] for timed nets. In contrast to our paper, these papers
focus on the semantics of such nets, and do not consider execution and analysis
(or inhibitor arcs or parameters). Capra [14,15], Padberg and Schultz [45], and
Barbosa et al. [12] use Maude to formalize dynamically reconfigurable Petri
nets and I/O Petri nets. In contrast to our work, these papers target untimed
and non-parametric nets, and do not focus on formal analysis, but only show
examples of standard (explicit-state) search and LTL model checking.

Symbolic Methods for Real-Time Systems in Maude. We develop symbolic anal-
ysis methods for parametric time automata (PTA) in [4]. The differences with
the current paper include: PTAs are very simple structures compared to PITPNs
(with inhibitor arcs, no bounds on the number of tokens in a state), so the

388 J. Arias et al.

semantics of PITPNs is more sophisticated than the one for PTAs, which does
not use “structured” states, equations, or user-defined functions; defining a new
rewrite theory for each PTA in [4] compared to having a single rewrite the-
ory for all nets in this work; obtaining desired symbolic reachability properties
using “standard” folding methods for PTAs compared to having to develop a new
folding mechanism for PITPNs; analysis in [4] does not include temporal logic
model checking; and so on. In addition, a number of real-time systems have been
formally analyzed using rewriting with SMT, including PLC ST programs [26],
virtually synchronous cyber-physical systems [23–25], and soft agents [35]. These
papers differ from our work in that they use guarded terms [10,11] for state-space
reduction instead of folding, and do not consider parameter synthesis problems.

8 Concluding Remarks

We have provided a “concrete” rewriting logic semantics for PITPNs, and proved
that this semantics is bisimilar to the semantics of such nets in [49]. We then
systematically transformed this non-executable “Real-Time Maude-style” model
into a “symbolic” rewrite model which is amenable to sound and complete sym-
bolic analysis for dense-time systems using Maude combined with SMT solving.

We have shown how almost all analysis and parameter synthesis supported by
the PITPN tool Roméo can be done using Maude-with-SMT. We have also shown
how Maude-with-SMT can provide additional capabilities for PITPNs, including
synthesizing initial markings (and not just firing bounds) from parametric initial
markings so that desired properties are satisfied, full LTL model checking, and
analysis with user-defined execution strategies. We developed a new “folding”
method for symbolic states, so that symbolic reachability analysis using Maude-
with-SMT terminates whenever the corresponding Roméo analysis terminates.

Our benchmarking shows that our symbolic methods using Maude combined
with the SMT solver Yices in some cases outperforms Roméo, whereas Maude
with Z3 is significantly slower.

This paper has not only provided new features for PITPNs. It has also shown
that even a model like our Real-Time Maude-inspired PITPN interpreter—with
functions, equations, and unbounded markings—can easily be turned into a sym-
bolic rewrite theory for which Maude-with-SMT provides very useful sound and
complete analyses even for dense-time systems.

Acknowledgments. We thank the anonymous reviewers for their insightful com-
ments. Arias, Olarte, Ölveczky, Petrucci, and Rømming acknowledge support from
CNRS INS2I project ESPRiTS and the PHC project Aurora AESIR. Bae was sup-
ported by the NRF grants funded by the Korea government (No. 2021R1A5A1021944
and No. 2022R1F1A1074550).

Analysis Parameter Time Petri Nets Using Maude with SMT 389

References

1. AlTurki, M., Dhurjati, D., Yu, D., Chander, A., Inamura, H.: Formal specification
and analysis of timing properties in software systems. In: Chechik, M., Wirsing,
M. (eds.) FASE 2009. LNCS, vol. 5503, pp. 262–277. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-00593-0_18

2. André, É., Pellegrino, G., Petrucci, L.: Precise robustness analysis of time Petri
nets with inhibitor arcs. In: Braberman, V., Fribourg, L. (eds.) FORMATS 2013.
LNCS, vol. 8053, pp. 1–15. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-40229-6_1

3. Andreychenko, A., Magnin, M., Inoue, K.: Analyzing resilience properties in oscil-
latory biological systems using parametric model checking. Biosystems 149, 50–58
(2016)

4. Arias, J., Bae, K., Olarte, C., Ölveczky, P.C., Petrucci, L., Rømming, F.: Rewriting
logic semantics and symbolic analysis for parametric timed automata. In: Proceed-
ings of the 8th ACM SIGPLAN International Workshop on Formal Techniques for
Safety-Critical Systems (FTSCS 2022), pp. 3–15. ACM (2022)

5. Arias, J., Bae, K., Olarte, C., Ölveczky, P.C., Petrucci, L., Rømming, F.:
PITPN2Maude (2023). https://depot.lipn.univ-paris13.fr/arias/pitpn2maude

6. Arias, J., Bae, K., Olarte, C., Ölveczky, P.C., Petrucci, L., Rømming, F.: Symbolic
analysis and parameter synthesis for time Petri nets using Maude and SMT solving
(2023). https://doi.org/10.48550/ARXIV.2303.08929

7. Bae, K., Escobar, S., Meseguer, J.: Abstract logical model checking of infinite-
state systems using narrowing. In: Rewriting Techniques and Applications (RTA
2013). LIPIcs, vol. 21, pp. 81–96. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik (2013)

8. Bae, K., Krisiloff, J., Meseguer, J., Ölveczky, P.C.: Designing and verifying dis-
tributed cyber-physical systems using Multirate PALS: an airplane turning control
system case study. Sci. Comput. Program. 103, 13–50 (2015). https://doi.org/10.
1016/j.scico.2014.09.011

9. Bae, K., Ölveczky, P.C., Feng, T.H., Lee, E.A., Tripakis, S.: Verifying hierarchical
Ptolemy II discrete-event models using Real-Time Maude. Sci. Comput. Program.
77(12), 1235–1271 (2012)

10. Bae, K., Rocha, C.: Guarded terms for rewriting modulo SMT. In: Proença, J.,
Lumpe, M. (eds.) FACS 2017. LNCS, vol. 10487, pp. 78–97. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-68034-7_5

11. Bae, K., Rocha, C.: Symbolic state space reduction with guarded terms for rewrit-
ing modulo SMT. Sci. Comput. Program. 178, 20–42 (2019)

12. Barbosa, P., et al.: SysVeritas: a framework for verifying IOPT nets and execu-
tion semantics within embedded systems design. In: Camarinha-Matos, L.M. (ed.)
DoCEIS 2011. IAICT, vol. 349, pp. 256–265. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-19170-1_28

13. Bobba, R., et al.: Survivability: design, formal modeling, and validation of cloud
storage systems using Maude. In: Assured Cloud Computing, Chap. 2, pp. 10–48.
Wiley (2018)

14. Capra, L.: Canonization of reconfigurable PT nets in Maude. In: Lin, A.W., Zet-
zsche, G., Potapov, I. (eds.) Reachability Problems. RP 2022. LNCS, vol. 13608, pp.
160–177. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19135-0_11

https://doi.org/10.1007/978-3-642-00593-0_18
https://doi.org/10.1007/978-3-642-40229-6_1
https://doi.org/10.1007/978-3-642-40229-6_1
https://depot.lipn.univ-paris13.fr/arias/pitpn2maude
https://doi.org/10.48550/ARXIV.2303.08929
https://doi.org/10.1016/j.scico.2014.09.011
https://doi.org/10.1016/j.scico.2014.09.011
https://doi.org/10.1007/978-3-319-68034-7_5
https://doi.org/10.1007/978-3-642-19170-1_28
https://doi.org/10.1007/978-3-642-19170-1_28
https://doi.org/10.1007/978-3-031-19135-0_11

390 J. Arias et al.

15. Capra, L.: Rewriting logic and Petri nets: a natural model for reconfigurable dis-
tributed systems. In: Bapi, R., Kulkarni, S., Mohalik, S., Peri, S. (eds.) ICDCIT
2022. LNCS, vol. 13145, pp. 140–156. Springer, Cham (2022). https://doi.org/10.
1007/978-3-030-94876-4_9

16. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Amster-
dam/Cambridge (2001)

17. Clavel, M., et al.: Maude Manual (Version 3.2.1). SRI International (2022). http://
maude.cs.illinois.edu

18. Clavel, M., et al.: All About Maude - A High-Performance Logical Framework.
LNCS, vol. 4350. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-
71999-1

19. Coullon, H., Jard, C., Lime, D.: Integrated model-checking for the design of safe
and efficient distributed software commissioning. In: Ahrendt, W., Tapia Tarifa,
S.L. (eds.) IFM 2019. LNCS, vol. 11918, pp. 120–137. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-34968-4_7

20. Grabiec, B., Traonouez, L.-M., Jard, C., Lime, D., Roux, O.H.: Diagnosis using
unfoldings of parametric time Petri nets. In: Chatterjee, K., Henzinger, T.A. (eds.)
FORMATS 2010. LNCS, vol. 6246, pp. 137–151. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-15297-9_12

21. Grov, J., Ölveczky, P.C.: Formal modeling and analysis of Google’s Megastore
in Real-Time Maude. In: Iida, S., Meseguer, J., Ogata, K. (eds.) Specification,
Algebra, and Software. LNCS, vol. 8373, pp. 494–519. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-642-54624-2_25

22. Jensen, K., Kristensen, L.M.: Coloured Petri Nets - Modelling and Validation of
Concurrent Systems. Springer, Heidelberg (2009). https://doi.org/10.1007/b95112

23. Lee, J., Bae, K., Ölveczky, P.C.: An extension of HybridSynchAADL and its appli-
cation to collaborating autonomous UAVs. In: Margaria, T., Steffen, B. (eds.)
Leveraging Applications of Formal Methods, Verification and Validation. Adap-
tation and Learning (ISoLA 2022). LNCS, vol. 13703, pp. 47–64. Springer, Cham
(2022). https://doi.org/10.1007/978-3-031-19759-8_4

24. Lee, J., Bae, K., Ölveczky, P.C., Kim, S., Kang, M.: Modeling and formal analysis
of virtually synchronous cyber-physical systems in AADL. Int. J. Software Tools
Technol. Transf. 24(6), 911–948 (2022)

25. Lee, J., Kim, S., Bae, K., Ölveczky, P.C.: HybridSynchAADL: modeling and for-
mal analysis of virtually synchronous CPSs in AADL. In: Silva, A., Leino, K.R.M.
(eds.) CAV 2021. LNCS, vol. 12759, pp. 491–504. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-81685-8_23

26. Lee, J., Kim, S., Bae, K.: Bounded model checking of PLC ST programs using
rewriting modulo SMT. In: Proceedings of the 8th ACM SIGPLAN International
Workshop on Formal Techniques for Safety-Critical Systems (FTSCS 2022), pp.
56–67. ACM (2022)

27. Lien, E., Ölveczky, P.C.: Formal modeling and analysis of an IETF multicast pro-
tocol. In: Seventh IEEE International Conference on Software Engineering and
Formal Methods (SEFM 2009), pp. 273–282. IEEE Computer Society (2009)

28. Lime, D., Roux, O.H., Seidner, C.: Cost problems for parametric time Petri nets.
Fundam. Informaticae 183(1-2), 97–123 (2021). https://doi.org/10.3233/FI-2021-
2083

29. Lime, D., Roux, O.H., Seidner, C., Traonouez, L.-M.: Romeo: a parametric model-
checker for Petri nets with stopwatches. In: Kowalewski, S., Philippou, A. (eds.)
TACAS 2009. LNCS, vol. 5505, pp. 54–57. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-00768-2_6

https://doi.org/10.1007/978-3-030-94876-4_9
https://doi.org/10.1007/978-3-030-94876-4_9
http://maude.cs.illinois.edu
http://maude.cs.illinois.edu
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/978-3-030-34968-4_7
https://doi.org/10.1007/978-3-642-15297-9_12
https://doi.org/10.1007/978-3-642-54624-2_25
https://doi.org/10.1007/b95112
https://doi.org/10.1007/978-3-031-19759-8_4
https://doi.org/10.1007/978-3-030-81685-8_23
https://doi.org/10.1007/978-3-030-81685-8_23
https://doi.org/10.3233/FI-2021-2083
https://doi.org/10.3233/FI-2021-2083
https://doi.org/10.1007/978-3-642-00768-2_6
https://doi.org/10.1007/978-3-642-00768-2_6

Analysis Parameter Time Petri Nets Using Maude with SMT 391

30. Merlin, P.M.: A study of the recoverability of computing systems. Ph.D. thesis,
University of California, Irvine, CA, USA (1974)

31. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theor.
Comput. Sci. 96(1), 73–155 (1992)

32. Meseguer, J.: Twenty years of rewriting logic. J. Log. Algebraic Methods Program.
81(7–8), 721–781 (2012)

33. Meseguer, J.: Generalized rewrite theories, coherence completion, and symbolic
methods. J. Log. Algebraic Methods Program. 110 (2020)

34. Meseguer, J., Montanari, U.: Petri nets are monoids. Inform. Comput. 88(2), 105–
155 (1990)

35. Nigam, V., Talcott, C.L.: Automating safety proofs about cyber-physical systems
using rewriting modulo SMT. In: Bae, K. (ed.) Rewriting Logic and Its Appli-
cations (WRLA 2022). LNCS, vol. 13252, pp. 212–229. Springer, Cham (2022).
https://doi.org/10.1007/978-3-031-12441-9_11

36. Ölveczky, P.C.: Semantics, simulation, and formal analysis of modeling languages
for embedded systems in Real-Time Maude. In: Agha, G., Danvy, O., Meseguer, J.
(eds.) Formal Modeling: Actors, Open Systems, Biological Systems. LNCS, vol.
7000, pp. 368–402. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-24933-4_19

37. Ölveczky, P.C.: Real-Time Maude and its applications. In: Escobar, S. (ed.) WRLA
2014. LNCS, vol. 8663, pp. 42–79. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-12904-4_3

38. Ölveczky, P.C., Boronat, A., Meseguer, J.: Formal semantics and analysis of behav-
ioral AADL models in Real-Time Maude. In: Hatcliff, J., Zucca, E. (eds.) FMOOD-
S/FORTE -2010. LNCS, vol. 6117, pp. 47–62. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-13464-7_5

39. Ölveczky, P.C., Caccamo, M.: Formal simulation and analysis of the CASH schedul-
ing algorithm in Real-Time Maude. In: Baresi, L., Heckel, R. (eds.) FASE 2006.
LNCS, vol. 3922, pp. 357–372. Springer, Heidelberg (2006). https://doi.org/10.
1007/11693017_26

40. Ölveczky, P.C., Meseguer, J.: Specification of real-time and hybrid systems in
rewriting logic. Theor. Comput. Sci. 285(2), 359–405 (2002)

41. Ölveczky, P.C., Meseguer, J.: Abstraction and completeness for Real-Time Maude.
In: 6th International Workshop on Rewriting Logic and its Applications (WRLA
2006). Electronic Notes in Theoretical Computer Science, vol. 174, pp. 5–27. Else-
vier (2006)

42. Ölveczky, P.C., Meseguer, J.: Semantics and pragmatics of Real-Time Maude. High.
Order Symb. Comput. 20(1–2), 161–196 (2007)

43. Ölveczky, P.C., Meseguer, J.: The Real-Time Maude tool. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 332–336. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3_23

44. Ölveczky, P.C., Meseguer, J., Talcott, C.L.: Specification and analysis of the
AER/NCA active network protocol suite in Real-Time Maude. Formal Methods
Syst. Des. 29(3), 253–293 (2006)

45. Padberg, J., Schulz, A.: Model checking reconfigurable Petri nets with Maude. In:
Echahed, R., Minas, M. (eds.) ICGT 2016. LNCS, vol. 9761, pp. 54–70. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-40530-8_4

46. Parquier, B., et al.: Applying parametric model-checking techniques for reusing
real-time critical systems. In: Artho, C., Ölveczky, P.C. (eds.) FTSCS 2016. CCIS,
vol. 694, pp. 129–144. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
53946-1_8

https://doi.org/10.1007/978-3-031-12441-9_11
https://doi.org/10.1007/978-3-642-24933-4_19
https://doi.org/10.1007/978-3-642-24933-4_19
https://doi.org/10.1007/978-3-319-12904-4_3
https://doi.org/10.1007/978-3-319-12904-4_3
https://doi.org/10.1007/978-3-642-13464-7_5
https://doi.org/10.1007/978-3-642-13464-7_5
https://doi.org/10.1007/11693017_26
https://doi.org/10.1007/11693017_26
https://doi.org/10.1007/978-3-540-78800-3_23
https://doi.org/10.1007/978-3-319-40530-8_4
https://doi.org/10.1007/978-3-319-53946-1_8
https://doi.org/10.1007/978-3-319-53946-1_8

392 J. Arias et al.

47. Rocha, C., Meseguer, J., Muñoz, C.A.: Rewriting modulo SMT and open system
analysis. J. Log. Algebraic Methods Program. 86(1), 269–297 (2017)

48. Stehr, M.-O., Meseguer, J., Ölveczky, P.C.: Rewriting logic as a unifying framework
for Petri nets. In: Ehrig, H., Padberg, J., Juhás, G., Rozenberg, G. (eds.) Unifying
Petri Nets. LNCS, vol. 2128, pp. 250–303. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-45541-8_9

49. Traonouez, L.-M., Lime, D., Roux, O.H.: Parametric model-checking of time Petri
nets with stopwatches using the state-class graph. In: Cassez, F., Jard, C. (eds.)
FORMATS 2008. LNCS, vol. 5215, pp. 280–294. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-85778-5_20

50. Traonouez, L., Lime, D., Roux, O.H.: Parametric model-checking of stopwatch
Petri nets. J. Univers. Comput. Sci. 15(17), 3273–3304 (2009)

51. Vernadat, F., Berthomieu, B.: State space abstractions for time Petri nets. In: Son,
S.H., Lee, I., Leung, J.Y. (eds.) Handbook of Real-Time and Embedded Systems.
Chapman and Hall/CRC (2007)

52. Wang, J.: Time Petri nets. In: Timed Petri Nets: Theory and Application, pp.
63–123. Springer, Cham (1998)

53. Yu, G., Bae, K.: Maude-SE: a tight integration of Maude and SMT solvers. In:
Preliminary Proceedings of WRLA@ETAPS, pp. 220–232 (2020)

https://doi.org/10.1007/3-540-45541-8_9
https://doi.org/10.1007/3-540-45541-8_9
https://doi.org/10.1007/978-3-540-85778-5_20

A State Class Based Controller Synthesis
Approach for Time Petri Nets

Loriane Leclercq(B) , Didier Lime , and Olivier H. Roux

École Centrale de Nantes, CNRS, LS2N, Nantes, France
{Loriane.Leclercq,Didier.Lime,Olivier-h.Roux}@ec-nantes.fr

Abstract. We propose a new algorithm for reachability controller syn-
thesis with time Petri nets (TPN). We consider an unusual semantics of
time Petri nets in which the firing date of a transition is chosen in its
static firing interval when it becomes enabled. This semantics is moti-
vated i) by a practical concern: it aims at approaching the implementa-
tion of the controller on a real-time target; ii) by a theoretical concern:
it ensures that in the classical state class graph [6], every state in each
state class is an actual reachable state from the TPN, which is not the
case with the usual interval-based semantics. We define a new kind of
two-player timed game over the state class graph and we show how to effi-
ciently and symbolically compute the winning states using state classes.
The approach is implemented in the tool Roméo [23]. We illustrate it on
various examples including a case-study from [2].

Keywords: Time Petri nets · state classes · timed games · controller
synthesis

1 Introduction

Reactive systems allow multiple components to work and interact together and
with the environment. In order to ensure the correctness of such systems, we can
use controllers to restrict their behavior. Unlike the model-checking problem in
which systems are mainly represented as standalone (open-loop systems), the
control framework models the interaction between a controller and its environ-
ment by using controllable and non-controllable actions. The problem is to design
this controller (or a strategy for the controller) that ensures a given specification
is valid whatever the environment does (closed-loop system).

The theory of control was first defined over discrete event systems in [25]
and then extended to various models. The idea is to model the system and the
properties we are interested in, and to implement a controller that makes sure
the model behaves correctly w.r.t the properties. Some of the basic properties
are reachability and safety. Given a state of the system, the reachability problem
consists in deciding if this good state is reachable in every execution. Dually the

This work has been partially funded by ANR project ProMiS ANR-19-CE25-0015.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Gomes and R. Lorenz (Eds.): PETRI NETS 2023, LNCS 13929, pp. 393–414, 2023.
https://doi.org/10.1007/978-3-031-33620-1_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33620-1_21&domain=pdf
http://orcid.org/0000-0002-6254-8691
http://orcid.org/0000-0001-9429-7586
http://orcid.org/0000-0003-1665-0481
https://doi.org/10.1007/978-3-031-33620-1_21

394 L. Leclercq et al.

safety problem consists in deciding if we can stay in good states forever for every
execution. These control problems usually use controllable events, for example
transitions in our case, that will be handled by the controller.

Timed Games and Time Petri Nets for Control. Games on graphs [26] are a
classical and successful framework for controller synthesis in reactive systems.
Many such systems however have strong timing requirements and must therefore
be modelled using timed formalisms such as timed automata [1]. This leads to
the notion of timed games [24], that have been much studied theoretically, and
for which efficient clock based algorithms using the so-called zones [15] have been
devised [14] and implemented, e. g., in the state-of-the art tool Uppaal-Tiga [3].
The clock-zone based algorithm faces a termination problem that can be solved
with an extrapolation/approximation operation. This operation makes things
more complex by adding states that are actually not reachable but, in general,
do not interfere with the properties we are interested in. In [14], for instance,
the authors just assume the clocks to be bounded to avoid dealing with it. And
in some cases the added states do interfere with the property of interest [12,13].

Another classical formalism for timed models is time Petri nets (TPNs) [6]. It
is possible to apply to TPNs a semantics very close to the one of timed automata
by making clocks appear that measure the duration for which transitions have
been enabled and then a state-space computation can be done in a manner
similar to timed automata [18]. It thus no surprise that the algorithm of [14]
can be lifted to TPNs [17]. It is indeed implemented in the tool Roméo [23], and
even extended to account for timing parameters [22].

The classical semantics for TPNs is not the « explicit clocks » one of [18]
however, but rather the interval-based semantics of [6]. The latter semantics
leads naturally to a different kind of abstraction called state classes, which
has some advantages: in particular it does not require the use of an extrapo-
lation/approximation operation to ensure termination.

The control problem for time Petri nets has been studied in [2,19] with
forward approaches computing the reachable states over a modified state class
graph (SCG) in order to synthesize new constraints to reach winning states. In
[2], no constraints are back propagated but the time constraints of a transition
that remains enabled contain all its past and have the size of the path dur-
ing which it remains enabled. In [19], the new constraints are back-propagated
to previous classes, until the events when transitions were first newly enabled.
Only rectangular constraints are propagated without splitting the state classes,
making it impossible to synthesize a controller with a state where a controllable
action should be done in disjoint intervals.

Controller Implementation. Implementing a timed controller on a hardware tar-
get such as a microcontroller is not a trivial operation. If a controllable action
is to be performed after waiting for a duration within a time interval [a, b], it is
necessary to first choose a duration d within this interval and then to go into
a non-active wait which is usually achieved by using a timer of duration d that
will trigger an interrupt. The program associated with this interruption then

A State Class Based Controller Synthesis Approach for Time Petri Nets 395

executes the controllable action. If an action of the environment occurs in the
meantime that requires a change of the d duration, then the controller must have
the ability to change the timer value. This is implicitly considered in most of
the works on timed controller synthesis for time Petri nets and timed automata
whose computation is based on a backward clock-based algorithm [14,17,24].
This implicit re-evaluation of waiting durations makes the implementation of
the controller difficult (unless active waiting, i. e. polling, is used, which is not
acceptable in a real-time context) because it is not known a priori which actions
should cause the re-evaluation of durations.

Contribution. We propose an unusual semantics of time Petri nets in which the
firing date of a transition is chosen in its static firing interval when it becomes
enabled. This semantics is motivated by a practical concern: it aims at approach-
ing the implementation of the controller on a real-time target. The choice of the
timer value must be made as soon as the controllable transition is enabled. If
this value is to be re-evaluated then the Petri net must model it explicitly.

It is also motivated by a theoretical concern: there is a tight correspon-
dence between this semantics and the construction of the state class graph. It
ensures that in the classical state class graph [6], every state in each state class
is an actual reachable state from the TPN, which is not the case with the usual
interval-based semantics. This semantics was already used in [8], motivated by
the use of dynamic firing dates, that can be chosen again at every firing event.

We then leverage the state class abstraction to solve timed games. We define
a new kind of timed games based on TPNs and we show how to efficiently
and symbolically compute the winning states using state classes. Our method
computes backward winning states on the SCG using predecessor operators to
split the state classes. The approach, implemented in the tool Roméo [23] is
applied on two examples including a case-study from [2].

The rest of this article is organized as follows: Sect. 2 introduces our new
semantics nets and provides the necessary basic definitions of time Petri nets,
state classes and the two-player game over this graph, Sect. 3 describes the com-
putations of winning states for the controller leading to the strategy. Section 4
applies our approach to two case studies. We conclude in Sect. 5.

2 Definitions

2.1 Preliminaries

We denote the set of natural numbers (including 0) by N and the set of real
numbers by R. We note R≥0 the set of non-negative real numbers. For n ∈ N,
we let �0, n� denote the set {i ∈ N | i ≤ n}. For a finite set X, we denote its size
by |X|.

Given a set X, we denote by I(X), the set of non-empty, non necessarily
bounded, real intervals that have their finite end-points in X. We say that an
interval I is non-negative if I ⊆ R≥0.

396 L. Leclercq et al.

Given sets V and X, a V -valuation (or simply valuation when V is clear
from the context) of X is a mapping from X to V . We denote by V X the set
of V -valuations of X. When X is finite, given an arbitrary fixed order on X, we
often equivalently consider V -valuations as vectors of V |X|.

2.2 Time Petri Nets

A time Petri net is a Petri net with time intervals associated with each transition.
We propose a slightly different semantics than the one commonly used, in which
firing dates are decided at the moment transitions are newly enabled. We consider
that input tokens are consumed before the firing of a transition and produced
after, so transitions using one of these input tokens have their firing date chosen
again.

Definition 1 (Time Petri net). A time Petri net (TPN) is a tuple N =
(P, T, F, Is) where:

– P is a finite non-empty set of places,
– T is a finite set of transitions such that T ∩ P = ∅,
– F : (P × T) ∪ (T × P) is the flow function,
– Is : T → I(N) is the static firing interval function,

We assume T contains at least one transition tinit and P contains at least a
place p0 such that (p0, tinit) ∈ F , Is(tinit) = [0, 0], for all p ∈ P \{p0}, (p, tinit) 	∈ F
and for all t ∈ T , (p0, t) 	∈ F . We also assume that for all t ∈ T there exists
p ∈ P such that (p, t) ∈ F .

Places of a Petri net can contain tokens. A marking is then usually an N-
valuation of P giving the number of tokens in each place.

Remark 1. For the sake of simplicity, we consider only safe nets, i.e., nets in
which there is always at most 1 token in each place and where all arcs have
weight 1. All subsequent developments can be generalised without any difficulty
to more complex discrete dynamics provided the net remains bounded, i.e., there
is a constant K such that all places never contain more than K tokens. Bound-
edness is an appropriate restriction since the control problem is undecidable for
unbounded TPN. The proof of [21] extends directly to our semantics.

We therefore define a marking as the set of the places of P containing a token.
We say those places are marked.

Usually we define an initial marking for the net. Without loss of generality,
we consider here that all places are initially empty except p0 which is marked.
An immediate transition tinit sets the initial marking by firing. By construction,
while it has not fired, no other transition can fire.

Given a transition t, we define the sets of its input places Pre(t) = {p | (p, t) ∈
F} and of its output places Post(t) = {p | (t, p) ∈ F}.

A State Class Based Controller Synthesis Approach for Time Petri Nets 397

Definition 2 (Enabled and persistent transitions). A transition t is said
to be enabled by marking m if all its input places are marked: Pre(t) ⊆ m. A
transition t is said to be persistent by firing transition t′ from marking m if it
is not fired and still enabled when removing tokens from the input places of t′:
t 	= t′ and Pre(t) ⊆ m \ Pre(t′). We say that t is newly enabled by firing t′ from
m, if t is enabled before and after the firing of t′ but not persistent. We denote
by en(m), pers(m, t) and newen(m, t) respectively the sets of enabled, persistent
and newly enabled transitions.

Remark 2. The definition of newly enabled transitions uses a reset policy in
which every transition that is disabled by a token taken by Pre(t) is considered
newly enabled even if it is enabled again after putting back tokens from Post(t).
And in particular the fired transition itself is always considered newly enabled.
This is the usual memory policy called intermediate semantics, see [5] for details
and comparison with other semantics

Definition 3 (States and semantics of a TPN). A state of a TPN is a
pair s = (m, θ) with m ⊆ P a marking and θ : T → R≥0 ∪ {⊥} a function that
associates a firing date with every transition t enabled at marking m (t ∈ en(m))
and ⊥ to all other transitions. For any valuation on transitions θ, we denote by
tr(θ) the set of transitions t such that θ(t) 	= ⊥. We will use θi to denote θ(ti).

The semantics of a TPN is a Timed Transition System (S, s0, Σ,→) with:

– S the set of all possible states,
– an initial state s0 = ({p0}, θ0) ∈ S with θ0(tinit) = 0, and ∀t 	= tinit, θ0(t) = ⊥,
– a labelling alphabet Σ divided between two types of letters: tf ∈ T and d ∈

R≥0,
– the transition relation between states −→⊆ S×Σ×S and, (s, a, s′) ∈−→, denoted

by s
a−→ s′:

• either (m, θ)
tf−→ (m′, θ′) for tf ∈ T when:

1. tf ∈ en(m) and θf = 0
2. m′ = (m \ Pre(tf)) ∪ Post(tf)
3. ∀tk ∈ T, θ′

k ∈ Is(tk) if tk ∈ newen(m, tf), θ′
k = θk if tk ∈ pers(m, tf),

and θ′
k = ⊥ otherwise

• or (m, θ) d−→ (m, θ′) when: d ∈ R≥0 \ {0}, ∀tk 	∈ en(m), θk = ⊥, and
∀tk ∈ en(m), θk − d ≥ 0 and θ′

k = θk − d.

Remark 3. Had we not assumed a unique transition tinit enabled, with a time
interval reduced to [0, 0], we would have in general an infinity of initial states
corresponding to all possible choices of function θ0 with values in the static
firing intervals of enabled transitions, which is not a problem but is a small
inconvenience. Otherwise for the two-player game construction to follow, we
would have needed a first half turn to reach a correct state before even starting.

A run in the semantics of a TPN is a possibly infinite sequence
s0a0s1a1s2a2 · · · such for all i, si

ai−→ si+1. We denote by seq(ρ) the subsequence
of ρ containing exactly the transitions a0a1a2 · · · .

398 L. Leclercq et al.

In this semantics the choice of firing date occurs directly when the transition
is newly enabled whereas in the classical semantics of [6] this choice is post-
poned to the moment the transition fires. This is already used in [20] but with
probabilistic choices instead of non-deterministic one.

We have chosen this semantics because it will allow us to more precisely relate
states and state classes as defined in the next section. Such a close relation has
never been achieved with the semantics of [6], leading to further refinements into
so-called atomic state classes [7].

2.3 State Classes

The number of states from a TPN is not finite in general because of the density
of the static intervals. There are several finite representations abstracting the
state space of a TPN using various methods and one of them is the state class
graph. One of its benefits is to be finite as long as the TPN is bounded, i.e. the
number of tokens in each place is bounded (by 1 in the case of safe nets).

Definition 4 (State class). Let σ = t1...tn be a sequence of transitions. The
state class Kσ is the set of all states obtained by firing σ in order, with all
possible delays before each fired transition. Clearly, all states in Kσ share the
same marking m, and so we write Kσ = (m,D) where D, called the firing
domain, is the union of all possible firing date functions for those states.

The firing domain D is a set of valuations of transitions. With an arbitrary
order on transitions, and ignoring ⊥ values, such a valuation can be seen as a
point in R

|en(m)|
≥0 . We will therefore consider such sets of valuations as subsets of

R
|en(m)|
≥0 . And as we will see, firing domains are actually a special kind of convex

polyhedra in that space.
As a direct consequence of Definition 4, we have the following lemma:

Lemma 1. Let Kσ = (m,D). Let s = (m, θ); then θ ∈ D if and only if there
exists a run ρ from the initial state s0 to s, such that seq(ρ) = σ and either σ is
empty or ρ ends with a transition firing.

Remark 4. With the usual semantics of [6], only the if part holds [7], because the
timing part of states in that semantics assigns intervals to enabled transition and
an arbitrary interval taken from D does not necessarily correspond to a reachable
state. A state can contain an interval overlapping two adjacent intervals grouped
in a class, but that is not reachable.

We can naturally now extend the notions of enabled, persistent, and newly
enabled transitions to state classes: en((m,D)) = en(m), newen((m,D), t) =
newen(m, t), and pers((m,D), t) = pers(m, t).

We have the following lemma:

A State Class Based Controller Synthesis Approach for Time Petri Nets 399

Lemma 2. Let Kσ = (m,D) and Kσ.tf = (m′,D′), with tf ∈ en(m). We have:

θ′ ∈ D′ iff ∃θ ∈ D s. t.

⎧
⎨

⎩

∀i ∈ en(m), θi − θf ≥ 0
∀i ∈ pers(m, tf), θ′

i = θi − θf

∀i ∈ newen(m, tf), θ′
i ∈ Is(i)

Proof. By Lemma 1, for all states s′ = (m′, θ′) ∈ Kσ.tf there exists a run ρ′ that
goes from the initial state s0 to s′ such that seq(ρ′) = σ.tf . Also ρ ends with the
firing of tf .

Let s = (m, θ) and s′′ = (m, θ′′) be the states in ρ′ such that ∃d.s
d−→ s′′ tf−→ s′.

Possibly, we have s = s′′. Let ρ be the prefix of ρ′ ending in s, then seq(ρ) = σ
and ρ does not end with a delay, so s ∈ Kσ by Lemma 1. We thus have θ ∈ D
and Definition 4 directly implies the three expected conditions because, from
top to bottom, tf is firable, we must delay until θf is 0, and the firing dates for
newly enabled transitions are chosen in their static firing intervals. ��

From Lemma 2, D′ is not empty if and only if there exists θ in D such that
for all i ∈ en(m), θi ≥ θf . In that case we say that tf is firable from (m,D).

Algorithm 1 then follows straightforwardly from Lemma 1 to compute K ′ =
(m′,D′) from K = (m,D) by firing firable transition tf .

Algorithm 1. Successor (m′,D′) of (m,D) by firing firable transition tf

1: m′ ← (m \ Pre(tf)) ∪ Post(tf)
2: D′ ← D ∧ ∧

i�=f,i∈en(m) θf ≤ θi

3: for all i ∈ en(m \Pre(tf)), i �= f , add variable θ′
i to D′, constrained by θ′

i = θi − θf
4: eliminate (by existential projection) variables θi for all i from D′

5: for all i ∈ newen(m, tf), add variable θ′′
i to D′, constrained by θ′′

i ∈ Is(i)

The state class associated with the empty sequence ε contains the set of
initial states, here reduced to a singleton: Kε = (m0, {θ0}).

Algorithm 1 corresponds to the classical state class computation from [6]. The
initial class is also what we would obtain with that construction. It is well-known
that those state classes can be represented and computed using a special kind of
convex polyhedra encoded in the efficient data structure called difference bound
matrix (DBM) [6,16]. An efficient way to directly compute successor classes is
given in [10,11].

Definition 5. Starting from Kε, we can construct an infinite directed tree
(labeled by fired transitions) by inductively computing successors by firable tran-
sitions. The State class graph (SCG) G is the graph obtained by quotienting this
tree with the equality relation on state classes (same marking, and same firing
domain).

400 L. Leclercq et al.

2.4 Two-player Game on the State Class Graph

Since we are interested in controller synthesis, from now on, the set of transitions
is partitioned between two sets Tc and Tu which contain respectively controllable
and uncontrollable transitions. The controllable transitions are controlled by a
controller, in the sense that it can choose their firing dates, and the order of
firing but uncontrollable transitions can be fired in between.

For short, we define newenu(m, t) = Tu ∩ newen(m, t), newenc(m, t) = Tc ∩
newen(m, t), enu(m) = Tu ∩ en(m) and enc(m) = Tc ∩ en(m). We also extend
these notations to state classes as before.

We now define a game over the TPN N that simulates the behavior of con-
trollable and uncontrollable transitions in order to decide whether a set of states
is always reachable by choosing the right controllable firing dates or not. And if
this is the case, a strategy for the controller will be constructed.

A round in the game is in three steps:

1. the controller chooses a firable transition tc ∈ Tc that he wants to fire first;
2. the environment chooses either to fire a firable transition tu ∈ Tu or to let

the controller fire tc;
3. both choose independently the firing dates of their newly enabled transitions.

Definition 6. Let N = (P, T, F, Is), a time Petri net with T = Tc ∪ Tu and
Tc ∩ Tu = ∅ and (S, s0, Σ,→), its semantics, an arena is a tuple A = (S,→
, P l, (Movti)i∈Pl, (Movfi)i∈Pl,Trans) with:

– Pl = (Plu, P lc) the two players of the game: the environment (Plu) and the
controller (Plc). The controller plays over controllable transitions, whereas
the environment plays over uncontrollable transitions.

– Movtu : S × Tc → 2T and Movtc : S → 2T rule the choices of transitions:

Movtc(m, θ) = {ti | ti ∈ enc(m) ∧ θi = min
tk∈en(m)

θk}

Movtu((m, θ), tc) = {ti | ti ∈ enu(m) ∧ θi = min
tk∈en(m)

θk} ∪ {tc}

– Movfu : S × T → 2R
Tu
≥0 and Movfc : S × T → 2R

Tc
≥0 rule the choices of firing

dates:

Movfc((m, θ), ti) =

⎧
⎪⎨

⎪⎩
θc ∈ R

Tc

≥0

∣
∣
∣
∣
∣
∣
∣

θc
k ∈ Is(tk) if tk ∈ newen(m, ti)

θc
k = θk − θi if tk ∈ pers(m, ti)

θc
k = ⊥ otherwise

⎫
⎪⎬

⎪⎭

Movfu((m, θ), ti) =

⎧
⎪⎨

⎪⎩
θu ∈ R

Tu

≥0

∣
∣
∣
∣
∣
∣
∣

θu
k ∈ Is(tk) if tk ∈ newen(m, ti)

θu
k = θk − θi if tk ∈ pers(m, ti)

θu
k = ⊥ otherwise

⎫
⎪⎬

⎪⎭

A State Class Based Controller Synthesis Approach for Time Petri Nets 401

– finally, Trans : S × T × T × R
Tc

≥0,R
Tu

≥0 → S combines all the choices of the
players and gives the resulting state:

Trans(s, tc, tu, θc, θu) = ((m \ Pre(tu)) ∪ Post(tu), θc ∪ θu)

when tc ∈ Movtc(s), tu ∈ Movtu(s, tc), θ(tu) = mink(θ(tk)), tu ∈ Tu ∨tu = tc,
θc ∈ Movfc(s, tu) and θu ∈ Movfu(s, tu).
Note that θu ∪ θc is a disjoint union and is in R

T
≥0 because R

Tu

≥0 and R
Tc

≥0 are
disjoints and their union is R

T
≥0.

A reachability game R = (A,Goal) consists of an arena and a set Goal ⊆ S
of goal states. The objective of Plc, the controller, is to reach a state in Goal and
the objective of Plu, the environment, is to avoid these states.

Definition 7. A play in an arena is a finite or infinite word s0s1...sn over the
alphabet S such that

s0
t1−→ s1

t2−→ s2....
tn−→ sn

with ∀i,∃θu
i , θc

i , tci, tui.Trans(si, tci, tui, θ
c
i , θ

u
i) = si+1 and tci ∈ Movtc(si), tui ∈

Movtu(si, tci), θu
i ∈ Movfu(si, tui) and θc

i ∈ Movfc(si, tui).

Definition 8. A strategy for the environment Plu (resp. the controller Plc) is
a function σu : S × Tc → T × R

Tu

≥0 (resp. σc : S → Tc × R
Tc

≥0).
1

Definition 9. A play s0s1... conforms to strategy σc (resp. σu) if at each posi-
tion i (except the last in case of a finite play): ∃tci, tui, θ

c
i , θ

u
i s. t. σc(si) = (tci, θ

c
i)

(resp. σu(si, tci) = (tui, θ
u
i)) and Trans(si, tci, tui, θ

c, θu) = si+1.

Definition 10. A maximal play is a play that is either infinite or finite and
such that from the last state no new marking is reachable.

Definition 11. A maximal play is winning for the controller if there is a posi-
tion n such that sn ∈ Goal. Otherwise, the play is winning for the environment.

A strategy is winning for a player if and only if all plays conforming to this
strategy are winning for that player.

Remark 5. This game is a two-player determined concurrent game and we always
have either Plc wins or Plu wins, but not both.

3 Computing the Winning States

The construction of a strategy for the controller is based on the state class graph
G. To construct such a winning strategy over this graph, we will use a backward
process to recursively compute the controllable predecessors of the target states
until a fixed point is reached.

1 Usualy, strategies are defined with the whole trace as memory but we will see in
Subsect. 3.3 that by construction we only need memoryless strategies.

402 L. Leclercq et al.

A TPN N and its state class graph G are shown in Fig. 1a and 1b. We use
black squares to depict controllable transitions and white ones for uncontrollable
transitions. In G, dashed arrows are used for uncontrollable transitions. Goal
states are those with a token in place p5. To reach such a state from states in
ClassGt0a, we must fire transition c before b. This is the condition that we will
have to propagate during the backward process.

p0

p1

p2

p3

p4

p5

t0 [0, 0]

a [0, 4]

b [3, 4]

c [5, 6]

(1a) Time Petri net N

{p0}
0 ≤ t0 ≤ 0

Kε

{p1, p4}
0 ≤ a ≤ 4
5 ≤ c ≤ 6

Kt0

{p2, p4}
3 ≤ b ≤ 4
1 ≤ c ≤ 6

Kt0a

{p3}
∅ Kt0ab

{p5}
∅Kt0ac

t0

a

b c

(1b) State class graph G

Fig. 1. (a) Time Petri net N . (b) State class graph G

Definition 12. Let C
tf−→ C ′ be a transition in G and let B be a subset of the

class C ′.
We define the set of predecessors Pred

C
tf−→C′

(B) of B ⊆ C ′ in C by transi-

tion tf : Pred
C

tf−→C′
(B) = {s ∈ C | ∃s′.s

tf−→ s′ ∈ B}.

We further define two sets cPred
C

tf−→C′
(B) and uPred

C
tf−→C′

(B) for the con-

trollable and uncontrollable predecessors of a subset B of C ′ in class C and
by firing transition tf . The controllable predecessors correspond to states from
which the controller can force to reach B and the uncontrollable predecessors
correspond to states from which the controller can not force to avoid B.

Definition 13. Without loss of generality we suppose {t1, ..., tn} =
newenc(C, tf) and {tn+1, ..., tn+k} = newenu(C, tf). We define:

cPred
C

tf−→C′
(B) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(m, θ) ∈ C

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∀ti ∈ newenc(C, tf), ∃θ′
i ∈ Is(ti) s. t.

∀tn+j ∈ newenu(C, tf), ∀θ′
n+j ∈ Is(tn+j),

s
tf−→ s′ = (m′, θ′) ∈ B

where ∀i ∈ �1, n + k�, θ′(ti) = θ′
i

and ∀i ∈ �1, l�, θ′(tn+k+i) = θ(tn+k+i) − θ(tf)

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

A State Class Based Controller Synthesis Approach for Time Petri Nets 403

And:

uPred
C

tf−→C′
(B) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(m, θ) ∈ C

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∀ti ∈ newenc(C, tf), ∀θ′
i ∈ Is(ti) s. t.

∀tn+j ∈ newenu(C, tf), ∃θ′
n+j ∈ Is(tn+j),

s
tf−→ s′ = (m′, θ′) ∈ B

where ∀i ∈ �1, n + k�, θ′(ti) = θ′
i

and ∀i ∈ �1, l�, θ′(tn+k+i) = θ(tn+k+i) − θ(tf)

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

In order to symbolically compute these sets of states, we will need a few
operators on sets of valuations.

In the following, D and D′ are sets of valuations and we denote valuations
by the sequences of their non-⊥ values.

We first define the classical existential projection:

Definition 14. For any set of valuations D s. t. ∀θ ∈ D, tr(θ) = {t1, . . . , tn+k},

π∃
{t1,...,tn}(D) = {(θ1...θn) | ∃θn+1, ..., θn+k, (θ1...θn+k) ∈ D}

We also define a less usual universal projection of D′ inside D:

Definition 15. For any two sets of valuations D and D′ such that D′ ⊆ D and
∀θ ∈ D, tr(θ) = {t1, . . . , tn+k},

π∀
{t1,...,tn}(D,D′) =

⎧
⎪⎨

⎪⎩
(θ1...θn)

∣
∣
∣
∣
∣
∣
∣

∃θn+1, ..., θn+k, (θ1...θn+k) ∈ D

∧ ∀θn+1, ..., θn+k, (θ1...θn+k) ∈ D

=⇒ (θ1...θn+k) ∈ D′

⎫
⎪⎬

⎪⎭

We also need an extension operation:

Definition 16. For any set of valuations D s. t. ∀θ ∈ D, tr(θ) = {t1, . . . , tn},

π−1
{t1,...,tn+k}(D) = {(θ1...θn+k) | (θ1...θn) ∈ D and ∀i, θn+i ≥ 0}

Finally, we define a backward in time operator:

Definition 17. For any set of valuations D s. t. ∀θ ∈ D, tr(θ) = {t1, . . . , tn}
and for tf 	= ti for all i ∈ �1, n�,

D + tf = {(θ′
1 . . . θ′

nθ′
f) | (θ1 . . . θn) ∈ D, θ′

f ≥ 0 and ∀i, θ′
i = θi + θ′

f}

Remark 6. The universal projection is parameterized by two sets of valuations
unlike the existential projection. The reason for this choice is that we only want
states that after extension are correct regarding the semantics of the TPN .
And since in our construction we will use this projection with {tn+1, ...tn+k} ∈
newen(A, t) we can easily justify this choice

404 L. Leclercq et al.

because choosing a firing date θn+i outside of Is(tn+i) is not relevant for a
newly enabled transition. So it is natural to restrict projections inside a set of
valuations to those that can possibly be extended in some correct and reachable
states, namely states that are part of a class in the SCG.

Note that for now the extension operation gives us this kind of irrelevant
valuations, therefore we will need to intersect them with the domain of a state
class from the graph beforehand.

The universal projection is expressible with set complements and existential
projections only, as stated in the following proposition. We denote by D the
complement of D, i.e., D = {s | s 	∈ D}.

Proposition 1. Let τ = {t1, ..., tn} ∀τ ⊆ T, π∀
τ (D,D′) = π∃

τ (D) ∩ π∃
τ (D′ ∩ D).

Due to the lack of space we ommit the proof.

Example 1. A graphical way to see the intuition behind the universal projection
in two dimensions is given in Fig. 2. We use for this example the TPN in Fig. 1a,
with D′ being the part of the domain of the state class Kσ for the firing sequence
σ = t0.a, that allows to put a token in p5.

0 1 2 3 4 5 6 7
0

1

2

3

4

5

c

b

(a) Set D′ in blue in the rectangle of Dt0a

0 1 2 3 4 5 6 7
0

1

2

3

4

5

c

b

(b) Dt0a ∩ D′

0 1 2 3 4 5 6 7
0

1

2

3

4

5

c

b

(c) π∃
{c}(Dt0a ∩ D′)

0 1 2 3 4 5 6 7
0

1

2

3

4

5

c

b

(d) π∃
{c}(Dt0a) ∩ π∃

{c}(Dt0a ∩ D′) =

π∀
{c}(Dt0a, D′)

Fig. 2. Example of universal projection

A State Class Based Controller Synthesis Approach for Time Petri Nets 405

3.1 Symbolic Computation for Pred ()

We now have the necessary operations on sets of valuations to be able to sym-
bolically compute the predecessors of a subset of a class. In the following we
always assume that B ⊆ C ′ and in particular we thus have en(C ′) = en(B).

We will use the projection operators as building blocks for the cPred() and
uPred() predecessor operators.

Proposition 2 (cPred
C

tf−→C′
(B) computation). Let C = (m,D) and C ′ =

(m′,D′). Consider B = (m′,D′′) ⊆ C ′, and let cPred
C

tf−→C′
(B) = (m,Dp).

Then:
Dp = D ∩ π−1

en(C)

(
π∃
pers(C,tf)

(
π∀
newenc(C,tf)
∪pers(C,tf)

(D′,D′′)
)
+ tf

)

Proof. As in the definition of cPred(), we have chosen without loss of gen-
erality that newenc(C, tf) = {t1, ..., tn}, newenu(C, tf) = {tn+1, ..., tn+k} and
pers(C, tf) = {tn+k+1, ..., tn+k+l}.

→: First suppose s = (m, θ) ∈ cPred
C

tf−→C′
(B). By Definition 13, we have

s ∈ C and ∀ti ∈ newenc(C, tf),∃θ′
i ∈ Is(ti) s. t. ∀tn+j ∈ newenu(C, tf),∀θ′

n+j ∈
Is(tn+j), s

tf−→ s′ = (m′, θ′) ∈ B where ∀i ∈ �1, n + k�, θ′(ti) = θ′
i and ∀i ∈

�1, l�, θ′
n+k+i = θn+k+i − θf .

Since B ⊆ C ′, we also have s′ ∈ C ′. Let θ1 be the valuation such that ∀i ∈
�1, n�, θ1i = θ′

i and ∀i ∈ �1, l�, θ1n+k+i = θn+k+i − θf and ∀i ∈ �1, k�, θ1n+i = ⊥,
i.e., we have removed uncontrollable newly enabled transitions from θ′′. Then
from Definition 15, θ1 ∈ π∀

newenc(C,tf)
∪pers(C,tf)

(D′,D′′) because the only way to assign val-

ues to newly enabled transitions within D′ is to take them in their static firing
interval, and because those intervals are all non-empty. Further define θ2 from θ1

by removing controllable newly enabled transitions: ∀ti ∈ newenc(C, tf), θ2i = ⊥
and ∀ti 	∈ newenc(C, tf), θ2i = θ1i . Then by construction, θ2 ∈ π∃

pers(C,tf)
({θ1}),

and hence θ2 ∈ π∃
pers(C,tf)

(π∀
newenc(C,tf)
∪pers(C,tf)

(D′,D′′)). In θ2, exactly all persistent

transitions have a value different from ⊥, so if we add θf to all of those,
we obtain a new valuation θ3, with θ3 = θ2i = (θi − θf) + θf = θi for
all persistent transition ti, and θ3i = ⊥ for all other transitions. By con-
struction, θ3 ∈ π∃

pers(C,tf)
(π∀

newenc(C,tf)
∪pers(C,tf)

(D′,D′′)) + tf . Finally, we can extend

θ3 with values for the transitions in en(m) \ pers(C, tf) in the following man-
ner: let θ4 defined by θ4i = θ3i for all persistent transitions ti, θ4i = θi for all
ti ∈ en(m) \ pers(C, tf) and θ4i = ⊥ for all other transitions. Then clearly,
θ4 ∈ π−1

en(C)

(
π∃
pers(C,tf)

(
π∀
newenc(C,tf)
∪pers(C,tf)

(D′,D′′)
)
+ tf

)
. But since θ4 has exactly all

the same values for transitions as θ, we have the expected result.
⇐: consider θ ∈ D ∩ π−1

en(C)

(
π∃
pers(C,tf)

(
π∀
newenc(C,tf)
∪pers(C,tf)

(D′,D′′)
)
+ tf

)
. Let s =

(m, θ). By definition of π−1, there exists a θ1 in π∃
pers(C,tf)

(π∀
newenc(C,tf)
∪pers(C,tf)

(D′,D′′))+

406 L. Leclercq et al.

tf such that for all persistent transitions ti, θ1i = θi, and θf 	= ⊥, and for all
other transitions ti, θ1i = ⊥. By definition of the extension operator, there exists
a valuation θ2 ∈ π∃

pers(C,tf)
(π∀

newenc(C,tf)
∪pers(C,tf)

(D′,D′′)), such that for all persistent

transitions ti, θ2i + θf = θi, and for all other transitions ti, θ2i = ⊥.
By definition of π∃, there exists a valuation θ3 ∈ π∀

newenc(C,tf)
∪pers(C,tf)

(D′,D′′) such

that for all persistent transitions ti, we still have θ3i = θ2i = θi − θf , and for all
newly enabled controllable transitions ti we have θ3i 	= ⊥.

By definition of π∀, there exists a valuation θ4 ∈ D′′ such that for all persis-
tent transitions ti, we still have θ4i = θi − θf , and for all newly enabled (control-
lable and uncontrollable) transitions ti we have θ4i 	= ⊥. In addition, we know
that for any other valuation θ5 ∈ D′ that equals θ4 on all but the newly enabled
uncontrollable transitions, we also have θ5 ∈ D′′.

By construction, we have tr(θ4) = en(m′) (persistent plus all newly enabled
transitions) and since θ4 ∈ D′′ ⊆ D′, we have for all newly enabled transitions ti,
θ4i ∈ Is(ti), and s = (m, θ)

tf−→ (m′, θ4) and we have the same properties for all θ5

as defined above. This, with θ5 ∈ D′′ implies that s = (m, θ) ∈ cPred
C

tf−→C′
(B).

��
Proposition 3 is similar to Proposition 2 and its proof follows the same steps

so we omit it.

Proposition 3 (uPred
C

tf−→C′
(B) computation). Let C = (m,D) and C ′ =

(m′,D′). Consider B = (m′,D′′) ⊆ C ′, and let uPred
C

tf−→C′
(B) = (m,Dp).

Then:

Dp = D ∩ π−1
en(C)

(
π∀
pers(C,tf)

(
π∃
newenu(C,tf)
∪pers(C,tf)

(D′), π∃
newenu(C,tf)
∪pers(C,tf)

(D′′)
)
+ tf

)

3.2 Predecessor Computations with DBMs

First recall that a DBM is a matrix in which coefficient (dij ,≺) in row i and
column j encodes a diagonal constraint θi − θj ≺ dij , with ≺∈ {≤, <}. Variable
θ0 is assumed to always be equal to 0 so this also encodes rectangular constraints
of the form θi ≺ di0 and −θi ≺ d0i. DBMs can be put in a canonical form so
that the DBM for a given set of valuations is unique [4].

The formulas we have given for cPred() and uPred() can be implemented
with DBM operations. Indeed, existential projection and intersection on DBMs
are classical operations and can be performed efficiently [4].

Universal projection is more complex. Most importantly, we need to com-
plement a DBM. This can be done easily by creating, for each (non-redundant)
constraint θi − θj ≺ dij of the DBM, a new DBM with only negated constraint
θj − θi ≺′ −dij , with ≺′ being strict if ≺ was weak and vice-versa. Then we take
the union of all those DBMs. The result is therefore not a single DBM but a
finite union of those. The rest of the operations is classical. This is kind of similar

A State Class Based Controller Synthesis Approach for Time Petri Nets 407

to subtraction between DBMs that are involved in computing the controllable
predecessors for timed automata [3].

The extension operator just consists in resizing the DBM and initializing the
new variables so they are not constrained.

Finally, the backward in time operator is more tricky: we need to add a new
variable θ′

f (the delay) and do changes of variables for all other variables θi as
follows: θ′

i = θi + θ′
f . Then we existentially project out the θi variables. This is

actually easier than it sounds because, assuming the DBM is in canonical form,
diagonal constraints θi − θj ≺ dij are left unchanged by the transformation, the
θ′

f cancelling each other, while rectangular constraints θi ≺ di0 or −θi ≺ d0i just
become diagonal constraints: θ′

i − θ′
f ≺ di0 or θ′

f − θ′
i ≺ d0i respectively.

All these operations are straightforwardly extended to finite unions of DBMs,
though at a price in terms of computation cost.

3.3 Winning States

The aim of this part is to define the set Win of winning states for the controller.
We will start by defining inductively Winn for strategies in less than n steps and
we then show that it admits a fixpoint that corresponds to the full set of winning
states.

Definition 18. We start by defining the following sets of states that we will
need in order to construct Wink+1 using Wink:

uGoodk(C) =
⋃

(C
tf−→C′)∈G,

tf∈enu(C)

(
cPred

C
tf−→C′

(Wink ∩ C ′)
)

cGoodk(C) =
⋃

(C
tf−→C′)∈G,

tf∈enc(C)

(
cPred

C
tf−→C′

(Wink ∩ C ′)
)

uBadk(C) =
⋃

(C
tf−→C′)∈G,

tf∈enu(C)

(
uPred

C
tf−→C′

(Wink ∩ C ′)
)

cBadk(C) =
⋃

(C
tf−→C′)∈G,

tf∈enc(C)

(
uPred

C
tf−→C′

(Wink ∩ C ′)
)

Intuitively, a state is in cGoodk(C) if there is a controllable transition that
can be fired, for which when arriving in C ′ we can choose a firing date for
newly enabled controllable transitions such that no matter what firing date the
environment chooses for its newly enabled uncontrollable transitions, we end up
in Wink. The set uGoodk(C) is the same except the transition that is fired is
uncontrollable.

408 L. Leclercq et al.

Conversely, a state is in uBadk(C) if there is an uncontrollable transition
that can be fired, for which when arriving in C ′, no matter what firing dates
for newly enabled controllable transitions we choose, we cannot be sure to end
up in Wink. The set cBadk(C) is the same except the transition that is fired is
controllable.

From those sets of states, we can inductively define the set Winn that contains
exactly the states from which the controller has a winning strategy in at most
n steps:

Win0 = Goal

Wink+1 = Wink ∪
⋃

C∈G

([(
uGoodk(C) \ cBadk(C)

) ∪ cGoodk(C)
]

\ uBadk(C)
)

Lemma 3. For all state s of N , s ∈ Winn if and only if from s the controller
has a strategy to reach Goal in at most n steps.

Proof. Proof by induction on n the number of steps.
The base case, n = 0, is straightforward, so we focus on the induction step.
Suppose that for some k we have ∀s′, s′ ∈ Wink if and only if the controller

has a strategy from s′ to reach Goal in at most k steps. Let s be a state of the
TPN.

⇒: Let s ∈ Wink+1. The case s ∈ Wink is trivially true by the induction
hypothesis. Assume therefore that s is in some class C and either s ∈ uGoodk(C)\
(cBadk(C) ∪ uBadk(C)) or s ∈ cGoodk(C) \ uBadk(C).

– In the first case, since s ∈ uGoodk(C), then Definition 13 ensures that
the controller can choose firing dates θc to force that all its successors
by an uncontrollable transition tu are in Wink. We also have that s 	∈
(cBadk(C) ∪ uBadk(C)), hence Definition 13 gives us that no other control-
lable or uncontrollable transition that could lead to Wink can be fired before
one of the above-mentioned favorable uncontrollable transitions.

– In the second case, s is in cGoodk(C) and not in uBadk(C). The same argu-
ments as before allows us to say that the controller has a way to choose firing
dates to force that all its successors by a controllable transition are in Wink

and that no unfavorable uncontrollable transition can be fired before. Note
that there is no need to guard against unfavorable controllable transition fir-
ing because we are in the case where the transition choice is made by the
controller.

Clearly in both cases from s the controller has a strategy to choose tc and θc

such that Trans(s, tc, tu, θc, θu) ∈ Wink,∀tu, θu. And so it has a strategy to reach
some s′ ∈ Wink in a single step. The induction hypothesis allows us to conclude
that from any state in Wink+1, the controller has a strategy to reach Goal in at
most k + 1 steps.

⇐: If there is a strategy to reach Goal in (strictly) less than k + 1 steps
from a state s, then there is a strategy in at most k steps and by the induction
hypothesis, s ∈ Wink ⊆ Wink+1.

A State Class Based Controller Synthesis Approach for Time Petri Nets 409

So we focus on the case in which the controller has a strategy to reach Goal
in exactly k + 1 steps from a state s. To begin with, the controller can choose
tc and θc such that from all states s′ ∈ Trans(s, tc, tu, θc, θu) it can still force to
reach Goal in at most k steps, for all permitted choices of tu and θu. These states
s′ are each in C ′ ∩ Wink for some class C ′ and not in C ′′ ∩ Wink for any class
C ′′. There is two main cases: either the environment lets the controller play tc
or it chooses to play some other tu ∈ Tu.

– If tu has been played, then the choices of firing dates in θc were such that
whatever the environment chooses for θu, the successor of s by firing of tu
with these firing dates for newly enabled transitions is in Wink. So using
Definition 13 we get that s ∈ uGoodk(C). And the environment had no way
to let another transition (uncontrollable or not) fire that would have led to
Wink and would thus have been unfavorable to the controller. Definition 13
ensures that s 	∈ (uBadk(C) ∪ cBadk(C)).

– If tc has been played, then the environment had no way to have a dis-
advantageous uncontrollable transition fire first, then using Definition 13,
s 	∈ uBadk(C). And since the resulting state s′ is in Wink regardless of the
environment choices, it follows from Definition 13 that s ∈ cGoodk(C).

Bringing all these sets together we have that all such states s are in:
([(

uGoodk(C) \ cBadk(C)
) ∪ cGoodk(C)

]
\ uBadk(C)

)

This leads us to conclude that s ∈ Wink+1. ��
Proposition 4. For all N such that G is finite (i.e. N is bounded as proved
in [9]), ∃n,Winn = Winn+l,∀l > 0

Proof. Let b ∈ N and M a DBM in canonical form. Let us call a b-DBM a DBM
in which all finite coefficients are smaller or equal to b in absolute value. We
have shown in Subect. 3.2, that all uPred() and cPred() computations done on
DBMs give finite unions of DBMs. And furthermore, these operations preserve b-
DBMs. It is well-known for the intersection because each coefficient of the result
is the minimum of the corresponding coefficients in the operands [4]. The other
operations are immediate using the constructions described above.

Now, let bmax be the greatest of the finite coefficients in the DBMs represent-
ing the domains of all classes in the state class graph. Since that graph is finite,
this maximum is well-defined. Then all those DBMs in the state class graph are
bmax-DBMs.

It follows that all uGoodk(C) and its three variants, which are computed from
them, are finite unions of bmax-DBMs, and so are then all the Wink’s. Clearly,
there is a finite number of bmax-DBMs because DBM coefficients are non-negative
integers. By enforcing that a given union does not contain twice the same DBM,
we also make sure that there are only a finite number of different finite unions
of bmax-DBMs.

410 L. Leclercq et al.

Since Wink is clearly non-decreasing with k, we can then conclude that there
must be an n such that Winn+1 = Winn and, by a simple induction, that all
subsequent Winn+l, for l ≥ 0, are also equal to Winn. ��

We can now define the set of winning states for the controller: Win = Winn

for the smallest n such that we have reached a fixpoint in the construction of
Winn (i.e. Winn = Winn+1).

Using this set of winning states, the controller has a winning strategy if and
only if the initial state in is Win. A strategy for the controller is then to choose
firing dates and transitions to fire in order to stay in the set Win. Therefore, if the
current state s is in some Wini+1 for i ≥ 0, the controller will choose a successor
of s that is in Wini \Wini+1 in order to avoid infinite loops. As long as s 	∈ Goal,
it is always possible by construction of Win. To make this choice deterministic,
we could assume states are ordered, e.g. in lexicographic order, and that the
controller will always choose the smaller one first. Successors by a controllable
transition tc will be given priority (in this order) because the controller has to
propose a transition first. Then the new valuation θc will be chosen depending
of the transition tu selected by the environment (tu might be the transition tc).
The current state is the only information used to make the choices. Hence the
strategy is memoryless since no information from the previous turns are needed.

4 Case Studies

In the two following examples, for the sake of readability, we omit the immediate
initialization transition and start the net directly in the initial marking.

Note that for these two examples, the classical clock-based method of [14,
17,24], does not provide a winning strategy since the firing of an uncontrollable
transition is needed to reach the goal state. A solution in this case is to add a
controllable transition with firing interval [b, b] in parallel of an uncontrollable
transition whose firing interval is [a, b].

4.1 Supply Chain

We consider the model of Fig. 3 of two production lines starting respectively in
p1 and p4 associated with a sorting and assembly cell. The two lines start by
bringing products to p2+ p3 and p5, respectively with transitions t1 and t6. The
products in p5 are either discharged through transition t7 or assembled with
the products in p2 or p3. The products in p5 assembled with the products in p3
are unloaded through transition t4. The products in p3 which are not assembled
with p5 are supplied through transition t3 to another line W3. The products in p5
assembled with the products in p2 are supplied through transition t5 to another
line W2. The products in p2 which are not assembled with p5 are supplied to
another line W1 through transition t2.

Transition t2 is the only controllable transition. We wish to synthesize a con-
troller that will enforce the products reaching places W1, W2 or W3, depending
on the case we consider.

A State Class Based Controller Synthesis Approach for Time Petri Nets 411

p1

p2

W1

p3

p4

p5

W2

W3

t1, [0, ∞)

t2, [5, 10]

t3, [2, 2]

t4, [0, 0]

t5, [1, 1]

t6, [12, 12]

t7, [2, 2]

3.a Petri Net model

p4p1

pw

t6, [6, 18]
t1 [0, ∞)

tw

[0, 0]

3.b Reinitializing the firing date of t1
when t6 is fired

Fig. 3. Production lines

Our approach is implemented in the tool Roméo [23]. We ask for a controller
to reach one of the goal states chosen successively among W1, W2 and W3, and
we obtain three winning strategies that consists in initializing the firing date of
t1 in the initial state. The results are as follows:

– If the goal is W1, initialize t1 such that: θ1 ∈ [0, 3) or θ1 ∈ (10,+∞)
– If the goal is W2, initialize t1 such that: θ1 ∈ (0, 3)
– If the goal is W3, initialize t1 such that: θ1 ∈ (10, 12) or θ1 ∈ (12, 14)

If we extend the firing interval of t6 to [6, 18] then there is no strategy for
obtaining a token in W3 with our method and our semantics because the choice
of the firing date of t1 has to be re-evaluated depending on what the environment
does.

Indeed, we are looking for controllers that can be implemented with classical
real-time methods and in particular with timer-triggered interrupts. We therefore
need to explicitly specify which action of the environment should cause the
controller to re-evaluate the firing dates of its transitions. This can be done
easily with a widget that allows to disable and then re-enable a given controllable
transition (here t1) when a given transition of the environment (here t6) is fired
as shown in Fig. 3b.

We then obtain a winning strategy to reach a marking with a token in W3

as follows:
In the initial state, initialize t1 such that: t1 ∈ (16,+∞)
After the firing of t6 (and then of tw), initialize t1 such that: t1 ∈ [0, 2).

4.2 AGV

We now consider the TPN proposed in [2] that models a materials handling
system with two Automated Guided Vehicle (AGV) systems and a workstation.
Places p1 and p10 are associated with the AGVs starting positions, and the other
places in each AGV subnet correspond to the presence of the AGV in a section.
Transitions t1 and t9 represent the start commands of the respective missions, t7

412 L. Leclercq et al.

is the start of a cycle of the workstation, and the other transitions of each AGV
subnet (except t5) correspond to the movement of the vehicle from one section
to another. Finally, transition t5 is the unloading of a part into the workstation
input buffer.

Transitions t1, t7 and t9 are controllable actions (commands can be activated
at any time), t6 is controllable since the speed of the AGV in this section can be
set so that the time spent in the section is within the interval [30, 40], while the
other transitions are uncontrollable, and their static intervals are given in [2].

Places p3 and p12 represent a shared zone between the two AGVs where only
one vehicle at a time can stay. We then add a transition bad that remove the
tokens in p3 and p12 when two vehicles are in this zone.

The goal of the control problem proposed in [2] is to first reach a state with
a marking {p5, p7, p10} in the time interval [30, 65] and then to reach the goal
state with {p1, p8, p13} or {p6, p9, p13} in the time interval [90, 135]. To express
this goal we can use an observer as defined in [27] such that there is a token in
a place WIN iff the goal is achieved within the constraints.

We then ask for a controller to reach a state with a token in the place WIN
and we obtain the following winning strategy:

– In the initial state, initialize t1, t7 and t9 such that: t1 ∈ [0, 5), t7 ∈ (45, 55),
t9 ∈ (50, 55), 45 < t7 − t1, 50 < t9 − t1 and 0 ≤ t9 − t7 < 5

– when the marking is p1 p8 p12, arriving with t6, initialize t1 such that: t1 ∈
(10,+∞) t8 ∈ [35, 55], t11 ∈ [10, 40], t8−t1 < 35, t11−t1 < 0, −35 ≤ t11−t8 <
0

5 Conclusion

We have defined a new kind of two-player reachability timed games over the
state class graph of time Petri nets. This allows to synthesize a controller that
chooses, as soon as a new transition is enabled, the date on which this transition
will be fired. The interest of this type of controller is that it can be implemented
in real-time context with interrupts triggered by timers whose durations are fixed
as soon as the associated actions are planned.

In our future work, we will study how well this semantics fits to the problem of
partial observation. Moreover we plan to study the controller synthesis problem
for safety and for ω-regular properties. We will also consider the question of joint
timing parameters and controller synthesis.

References

1. Alur, R., Dill, D.: A theory of timed automata. Theoret. Comput. Sci. 126(2),
183–235 (1994)

2. Basile, F., Cordone, R., Piroddi, L.: Supervisory control of timed discrete-event
systems with logical and temporal specifications. IEEE Trans. Autom. Control
67(6), 2800–2815 (2022). https://doi.org/10.1109/TAC.2021.3093618

https://doi.org/10.1109/TAC.2021.3093618

A State Class Based Controller Synthesis Approach for Time Petri Nets 413

3. Behrmann, G., Cougnard, A., David, A., Fleury, E., Larsen, K.G., Lime, D.:
UPPAAL-TIGA: time for playing games! In: 19th International Conference on
Computer Aided Verification (CAV 2007). Lecture Notes in Computer Science,
vol. 4590, pp. 121–125. Springer, Berlin (2007). https://doi.org/10.1007/978-3-
540-73368-3_14

4. Bengtsson, J., Yi, W.: Timed automata: semantics, algorithms and tools. In: Desel,
J., Reisig, W., Rozenberg, G. (eds.) ACPN 2003. LNCS, vol. 3098, pp. 87–124.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27755-2_3

5. Bérard, B., Cassez, F., Haddad, S., Lime, D., Roux, O.H.: Comparison of different
semantics for Time Petri Nets. In: Peled, D.A., Tsay, Y.-K. (eds.) ATVA 2005.
LNCS, vol. 3707, pp. 293–307. Springer, Heidelberg (2005). https://doi.org/10.
1007/11562948_23

6. Berthomieu, B., Diaz, M.: Modeling and verification of time dependent systems
using Time Petri Nets. IEEE Trans. Soft. Eng. 17(3), 259–273 (1991)

7. Berthomieu, B., Vernadat, F.: State class constructions for branching analysis of
Time Petri Nets. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619,
pp. 442–457. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36577-
X_33

8. Berthomieu, B., Dal Zilio, S., Fronc, Ł, Vernadat, F.: Time Petri Nets with dynamic
firing dates: semantics and applications. In: Legay, A., Bozga, M. (eds.) FORMATS
2014. LNCS, vol. 8711, pp. 85–99. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-10512-3_7

9. Berthomieu, B., Menasche, M.: An enumerative approach for analyzing Time Petri
Nets. In: Proceedings IFIP, pp. 41–46. Elsevier Science Publishers (1983)

10. Boucheneb, H., Mullins, J.: Analyse des réseaux temporels?: Calcul des classes en
O(n2) et des temps de chemin en O(m×n). TSI. Technique et science informatiques
22(4), 435–459 (2003)

11. Bourdil, P.A., Berthomieu, B., Dal Zilio, S., Vernadat, F.: Symmetry reduction for
Time Petri Net state classes. Sci. Comput. Program. 132, 209–225 (2016)

12. Bouyer, P.: Untameable timed automata! In: Alt, H., Habib, M. (eds.) STACS
2003. LNCS, vol. 2607, pp. 620–631. Springer, Heidelberg (2003). https://doi.org/
10.1007/3-540-36494-3_54

13. Bouyer, P., Colange, M., Markey, N.: Symbolic optimal reachability in weighted
timed automata. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9779,
pp. 513–530. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41528-
4_28

14. Cassez, F., David, A., Fleury, E., Larsen, K.G., Lime, D.: Efficient on-the-fly algo-
rithms for the analysis of timed games. In: Abadi, M., de Alfaro, L. (eds.) CONCUR
2005. LNCS, vol. 3653, pp. 66–80. Springer, Heidelberg (2005). https://doi.org/10.
1007/11539452_9

15. Daws, C., Tripakis, S.: Model checking of real-time reachability properties using
abstractions. In: Steffen, B. (ed.) TACAS 1998. LNCS, vol. 1384, pp. 313–329.
Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054180

16. Dill, D.L.: Timing assumptions and verification of finite-state concurrent systems.
In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407, pp. 197–212. Springer, Heidelberg
(1990). https://doi.org/10.1007/3-540-52148-8_17

17. Gardey, G., Roux, O.F., Roux, O.H.: Safety control synthesis for Time Petri Nets.
In: 8th International Workshop on Discrete Event Systems (WODES 2006), pp.
222–228. IEEE Computer Society Press, Ann Arbor, USA, July 2006

https://doi.org/10.1007/978-3-540-73368-3_14
https://doi.org/10.1007/978-3-540-73368-3_14
https://doi.org/10.1007/978-3-540-27755-2_3
https://doi.org/10.1007/11562948_23
https://doi.org/10.1007/11562948_23
https://doi.org/10.1007/3-540-36577-X_33
https://doi.org/10.1007/3-540-36577-X_33
https://doi.org/10.1007/978-3-319-10512-3_7
https://doi.org/10.1007/978-3-319-10512-3_7
https://doi.org/10.1007/3-540-36494-3_54
https://doi.org/10.1007/3-540-36494-3_54
https://doi.org/10.1007/978-3-319-41528-4_28
https://doi.org/10.1007/978-3-319-41528-4_28
https://doi.org/10.1007/11539452_9
https://doi.org/10.1007/11539452_9
https://doi.org/10.1007/BFb0054180
https://doi.org/10.1007/3-540-52148-8_17

414 L. Leclercq et al.

18. Gardey, G., Roux, O.H., Roux, O.F.: State space computation and analysis of
time Petri nets. Theory and Practice of Logic Programming (TPLP). Special Issue
Specif. Anal. Verif. React. Syst. 6(3), 301–320 (2006)

19. Heidari, P., Boucheneb, H.: Maximally permissive controller synthesis for time petri
nets. Int. J. Control 86 (2013). https://doi.org/10.1080/00207179.2012.743038

20. Horváth, A., Paolieri, M., Ridi, L., Vicario, E.: Transient analysis of non-
markovian models using stochastic state classes. Perform. Eval. 69(7), 315–335
(2012). https://doi.org/10.1016/j.peva.2011.11.002, https://www.sciencedirect.
com/science/article/pii/S0166531611001520, selected papers from QEST 2010

21. Jones, N.D., Landweber, L.H., Edmund Lien, Y.: Complexity of some problems
in petri nets. Theoret. Comput. Sci. 4(3), 277–299 (1977). https://doi.org/10.
1016/0304-3975(77)90014-7, https://www.sciencedirect.com/science/article/pii/
0304397577900147

22. Jovanović, A., Lime, D., Roux, O.H.: Control of real-time systems with integer
parameters. IEEE Trans. Autom. Control 67(1), 75–88 (2022). https://doi.org/10.
1109/TAC.2020.3046578

23. Lime, D., Roux, O.H., Seidner, C., Traonouez, L.-M.: Romeo: a parametric model-
checker for Petri Nets with stopwatches. In: Kowalewski, S., Philippou, A. (eds.)
TACAS 2009. LNCS, vol. 5505, pp. 54–57. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-00768-2_6

24. Maler, O., Pnueli, A., Sifakis, J.: On the synthesis of discrete controllers for timed
systems. In: Mayr, E.W., Puech, C. (eds.) STACS 1995. LNCS, vol. 900, pp. 229–
242. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-59042-0_76

25. Ramadge, P.J., Wonham, W.M.: Supervisory control of a class of discrete event pro-
cesses. SIAM J. Control Optim. 25(1), 206–230 (1987). https://doi.org/10.1137/
0325013

26. Thomas, W.: On the synthesis of strategies in infinite games. In: Mayr, E.W.,
Puech, C. (eds.) STACS 1995. LNCS, vol. 900, pp. 1–13. Springer, Heidelberg
(1995). https://doi.org/10.1007/3-540-59042-0_57

27. Toussaint, J., Simonot-Lion, F., Thomesse, J.P.: Time constraint verifications
methods based on time Petri nets. In: IEEE, Future Trends in Distributed Com-
puting Systems (FTDCS 1997), pp. 262–267 (1997)

https://doi.org/10.1080/00207179.2012.743038
https://doi.org/10.1016/j.peva.2011.11.002
https://www.sciencedirect.com/science/article/pii/S0166531611001520
https://www.sciencedirect.com/science/article/pii/S0166531611001520
https://doi.org/10.1016/0304-3975(77)90014-7
https://doi.org/10.1016/0304-3975(77)90014-7
https://www.sciencedirect.com/science/article/pii/0304397577900147
https://www.sciencedirect.com/science/article/pii/0304397577900147
https://doi.org/10.1109/TAC.2020.3046578
https://doi.org/10.1109/TAC.2020.3046578
https://doi.org/10.1007/978-3-642-00768-2_6
https://doi.org/10.1007/978-3-642-00768-2_6
https://doi.org/10.1007/3-540-59042-0_76
https://doi.org/10.1137/0325013
https://doi.org/10.1137/0325013
https://doi.org/10.1007/3-540-59042-0_57

Model Transformation

Transforming Dynamic Condition
Response Graphs to Safe Petri Nets

Vlad Paul Cosma1,2(B), Thomas T. Hildebrandt2, and Tijs Slaats2

1 KMD, Ballerup, Denmark
vco@kmd.dk

2 Computer Science Department, Copenhagen University, Copenhagen, Denmark
{vco,hilde,slaats}@di.ku.dk

Abstract. We present a transformation of the Dynamic Condition
Response (DCR) graph constraint based process specification language
to safe Petri Nets with inhibitor and read arcs, generalized with an accep-
tance criteria enabling the specification of the union of regular and ω-
regular languages. We prove that the DCR graph and the resulting Petri
Net are bisimilar and that the bisimulation respects the acceptance cri-
terium. The transformation enables the capturing of regular and omega-
regular process requirements from texts and event logs using existing
tools for DCR requirements mapping and process mining. A represen-
tation of DCR Graphs as Petri Nets advances the understanding of the
relationship between the two models and enables improved analysis and
model checking capabilities for DCR graph specifications through mature
Petri net tools. We provide a python script implementing the trans-
formation from the DCR XML export format to the PNML exchange
format extended with arc types. In the implementation, all read arcs
are replaced by a pair of standard input and output arcs. This directly
enables the simulation and analysis of the resulting Petri Nets in tools
such as TAPAAL, but means that the acceptance criterium for infinite
runs is not preserved.

Keywords: Petri Nets · DCR graphs · Bisimilarity

1 Introduction

Whereas process control-flow is traditionally captured using imperative nota-
tions such as Business Process Modelling Notation (BPMN), process require-
ments for information systems are typically presented as declarative rules,
describing the constraints (i.e. provisions and obligations) for the execution of
individual tasks in a process. For instance, a requirement for an e-shop applica-
tion may specify that payment information must be provided before a payment
can be made, and that a payment can be made and is required to eventually
happen, if an order has been made. The requirements are typically translated to
imperative code when the system is implemented.

In this paper we consider the transformation from process requirements pre-
sented in the declarative Dynamic Condition Response (DCR) graphs notation
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Gomes and R. Lorenz (Eds.): PETRI NETS 2023, LNCS 13929, pp. 417–439, 2023.
https://doi.org/10.1007/978-3-031-33620-1_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33620-1_22&domain=pdf
https://doi.org/10.1007/978-3-031-33620-1_22

418 V. P. Cosma et al.

to processes expressed in a variant of the well-known process notation of Petri
Nets [39]. The DCR graphs notation was introduced in [12,25] as a formal spec-
ification language for distributed workflows and further developed in a range of
papers, e.g. adding time, sub processes and data (see e.g. [13,14,27,32]).

In its core form, DCR graphs is a graph-based notation with a single kind of
node and a few basic relations. Nodes of the graph denote actions (or events) of
the process and four kinds of directed edges between nodes denoting constraints
and effects between actions, as will be explained below in our e-shop running
example. The core DCR graph notation can express all regular and ω-regular
languages [8] and in particular liveness properties, e.g. that some action must
eventually happen (not to be confused with the standard notion of live Petri
Nets). The fact that DCR graphs can express all ω-regular languages makes
the notation more expressive than the classical declarative process language
of Linear-time Temporal Logic (LTL) [28] that can only express the star-free
omega-regular languages. The DCR graph notation is also different from LTL in
that it has an operational execution semantics, similarly to Petri Nets expressed
as a marking on the nodes of the graph.

The declarative nature and operational semantics makes DCR graphs similar
to the model of Petri Nets, yet there are still notable differences. Firstly, DCR
graphs abstracts from the notion of places, which is prominent for Petri Nets.
Secondly, DCR graphs can directly express infinitary languages and liveness
properties. This makes DCR graphs closer to traditional declarative notations
such as LTL and textual representations of rules. Indeed, the highlighter tool [20]
supports the mapping back and forth between textual requirement specifications
and DCR graphs. On the other hand, Petri Nets with their notion of tokens,
branching and loops are closer to imperative notations such as BPMN processes.
Moreover, while DCR graphs are supported by design and specification tools and
process engines used by industry1, there are still no powerful model checking
tools as it is the case for Petri Nets, such as the TAPAAL tool [6].

Thus, the motivation for providing the transformation of DCR graphs to
safe Petri Nets with inhibitor and read arcs is threefold, as illustrated in Fig. 1:
Firstly, we provide a path for transforming declarative requirements supported
by industrial design tools to Petri Nets, which are closer to imperative pro-
cess models such as BPMN. Secondly, the transformation enables the use of
Petri Nets verification and analysis tools, notably the TAPAAL tool [6], for
DCR graph specifications. Finally, the transformation allows us to use the Dis-
CoveR miner [3] to mine Petri nets via an intermediate DCR graph representa-
tion. Hereby we get the high accuracy of DisCoveR in an imperative model and
maintain a higher degree of concurrency in the model than is usually the case
for block-structured approaches. This was already demonstrated with an early
(unsound) translation of DCR graphs to Petri Nets, which managed to win the
prize for best imperative miner in the 2021 Process Discovery Contest2.

1 Available freely for academic use at DCRSolutions.net.
2 https://icpmconference.org/2021/process-discovery-contest/.

https://icpmconference.org/2021/process-discovery-contest/

Transforming Dynamic Condition Response Graphs to Safe Petri Nets 419

Fig. 1. Motivation for contributions of the paper

The paper is structured as follows. After the related work in Sect. 2, we
give the definitions of core DCR graphs and Petri Nets with inhibitor arcs, read
arcs and pending places in Sect. 3. We then proceed in Sect. 4 to provide the
transformation of DCR graphs to Petri Nets, which is done by induction in the
number of relations of the DCR graph. We also provide a sketch proof of the
bisimilarity between the safe Petri Net and the DCR graph. Next we show how
we reduce the size of the mapping in Sect. 5. We exemplify the mapping with a
simple e-shop process. As usual we conclude and discuss future work in Sect. 6.

2 Related Work

Several notations for declarative process modelling have been developed. In addi-
tion to DCR graphs, the Declare [1] and Guard-Stage-Milestone (GSM) nota-
tions have also seen broad use in the business process management research
community.

Declare provides a set of templates for modelling business constraints that
are formalised as LTL formulae (parameterized by activities). A Declare model
is the conjunction of a set of instantiated formulae. Given the limited expressive-
ness of the templates, a mapping from DCR graphs to Declare is not possible.
Declare has been formalized in other languages such as coloured automata [21]
and SCIFF [22,23]. Mappings from Declare to Petri Nets and R/I-nets were
provided respectively in [30] and [7], however proofs of correctness are missing
from each of these.

The GSM notation [19] takes a declarative data-centric approach to mod-
elling processes, where stages of activities in the process are connected through
guards that need to be satisfied for their activation and milestones that repre-
sent their acceptance criteria. A mapping has been proposed from Petri Nets
to GSM [29], in particular with a focus on representing the output of pro-
cess discovery algorithms (which usually produce Petri Nets) as GSM models.

420 V. P. Cosma et al.

We are not aware of any direct mappings in the opposite direction. Similarly [10]
provides a mapping from DCR graphs to GSM models, an opposite mapping is
mentioned as future work but has not yet materialised.

In [14] a subset of the DCR relations and their equivalent Petri Net mapping
is presented, without inhibitor arcs without proof of correctness. [26] provides
an encoding of DCR graphs as Büchi automata.

Petri Nets are widely used, and therefore there are also many translations to
notations outside the declarative process modelling sphere, for example Ladder
Logic Diagrams [35], Timed Automata [5] and mCRL2 [31].

Similarly much work has gone into mapping other modelling notations into
Petri Nets, such as UML activity diagrams [34], UML sequence diagrams [38],
UML state charts [18], and BPMN [9,31].

The work in [22] presents logic-based approaches which formalize regulatory
models by relying on the deontic notions of obligations and permissions.

Different classes of ω-language Petri Nets have been introduced in [36] and
their complexity has been studied in [11]. The definition of acceptance criteria for
infinite words in [36] is based on markings being visited infinitely often, similar
to the acceptance criteria of Büchi-automata. This differs from the acceptance
criteria introduced in the present paper, which is based on pending places, for
which tokens cannot rest infinitely without being consumed by a transition being
fired.

3 Preliminaries

In this section we provide the running example and the formal definitions of
Dynamic Condition Response graphs and safe Petri Nets with inhibitor and
read arcs and pending places.

3.1 Running Example

We consider as running example a simple e-shop application that has the follow-
ing specification:

(i) If an order is added, a payment for the order must eventually be made.
(ii) Payment information (eg. credit card number) must be provided before a

payment can be executed.
(iii) The payment information can be edited any number of times.
(iv) A new order cannot be added before a subsequent payment has been made

and payment can only be made if an order has been added and is not yet
paid.

We can identify three actions in the system: Edit (or initially provide) Payment
Information, Add Order and Make Payment. Below we will see how to model
processes that fulfil these requirements as respectively DCR graphs and safe
Petri Nets with inhibitor and read arcs and pending places.

Transforming Dynamic Condition Response Graphs to Safe Petri Nets 421

3.2 Dynamic Condition Response Graphs

We give a formal definition of core Dynamic Condition Response (DCR) graphs
as attributed directed graphs.3 For a set A we write P(A) for the set of all
subsets of A, i.e. the powerset of A and Pne(A) for the set of all non-empty
subsets of A.

Definition 1. A DCR graph G is given by a tuple (E,M,R,@, L, l) where

(i) E is a finite set of events
(ii) M = (Ex,Re, In) ∈ P(E) × P(E) × P(E) is the marking
(iii) R ⊆ E × E is the set of relations between events
(iv) @ : R → Pne({•←, •→,→+,→%}) is the relation type assignment
(v) L is the set of action labels
(vi) l : E → L is the labelling function assigning an action label to each event

The marking M = (Ex,Re, In) describes the state of an event e in the fol-
lowing way. If e has been executed at least once then e ∈ Ex. If e is pending (i.e.
it must eventually be executed) then e ∈ Re. If e is included (i.e. it is currently
relevant) then e ∈ In.

Assume a relation r = (e, e′) ∈ R from event e to e′. If •←∈ @r we say r
is a constraining relation. If @r ∩ {•→,→+,→%} �= ∅ we say that r is an effect
relation. Note that r can be both a constraining and an effect relation at the
same time. We write e •← e′ (or e′ →• e) if •←∈ @r and say there is a condition
from e′ to e. We write e •→ e′ if •→∈ @r and say there is a response from e to
e′. We write e →+ e′ if →+∈ @r and say there is an include from e to e′. Finally,
we write e →% e′ if →%∈ @r and say there is an exclude from e to e′.

The behaviour of a DCR graph is given by a labelled transition system,
where the states are markings and the transitions are the execution of a labelled
event. Hereto comes a definition of when a finite or infinite execution sequence is
accepting or not. We first define when events are enabled, i.e. can be executed.

Definition 2 (Event enabling). Let (E,M,R,@, L, l) be a DCR graph. An
event e ∈ E is enabled for the marking M = (Ex,Re, In), writing enabled(M, e)
if and only if:

(i) e ∈ In
(ii) ∀e′ ∈ In. e′→•e =⇒ e′ ∈ Ex

The conditions for event enabling state that for an event e to be enabled, (i)
it must be included. (ii) Whenever e has a condition relation from an included
event e′, then this e′ was executed at least once.

We now define the effect of executing an event e for a given marking M .

3 The presentation deviates slightly from the original definition given in [12] to facili-
tate the definition of the mapping to Petri Nets, but defines the same graph struc-
tures.

422 V. P. Cosma et al.

Definition 3. Let G be a DCR graph with marking M = (Ex,Re, In). The effect
of executing an enabled event e is themarking effectG(M, e) = (Ex′, Re′, In′)where

Ex′ =Ex ∪ {e}
Re′ =(Re \ {e}) ∪ {e′ | e •→ e′}
In′ =(In \ {e′ | e →% e′})

∪ {e′ | e →+ e′}

We are now ready to define the labelled transition semantics for DCR graphs.

Definition 4. Let G = (E,M,R,@, L, l) be a DCR graph. Define a labelled
transition relation between markings by M

e→G effectG(M, e) if enabled(M, e),
where e ∈ E. Write M ⇒ M ′ for ∃e ∈ E.M

e→G M ′ and write ⇒∗ for the
reflexive and transitive closure of ⇒. Define MG = {M ′ | M ⇒∗ M ′}, i.e. the set
of all reachable markings from the initial marking M of G. The labelled transition
system for G is then defined as [[G]] = (MG,M,→G⊂ (MG × E × MG), L, l).

Finally, we define when a finite or infinite execution sequence of a DCR graph
is accepting. Intuitively, it is required that any included and pending event e in
some intermediate state must eventually be executed or no longer included or
pending in a later state. If one limits attention to finite execution sequences, the
acceptance criteria is that no pending event is included in the final state.

Definition 5. Let G = (E,M0, R,@, L, l) be a DCR graph. A finite or infinite
sequence of transitions M0

e0→G M1
e1→G . . . in [[G]] with Mi = (Exi, Rei, Ini),

is accepting if e ∈ Rei ∩ Ini implies ∃j ≥ i.(ej = e ∨ e �∈ Rej ∩ Inj).

A DCR graph modelling our running example is shown in Fig 2. Events
are depicted as boxes containing the action label of the event and relations as
arrows. A relation with multiple types is depicted as multiple arrows between
the same two events, one arrow for each type. Events that are included in the
initial marking are drawn as boxes with a solid border, events that are excluded
in the initial marking are drawn as boxes with a dashed border. Consequently,
the events labelled EditPaymentInfo and AddOrder are initially included and the
event labelled MakePayment is excluded in the initial marking of the graph.

The first requirement, “If an order is made, a payment for the order must
eventually be made” is modelled by a response relation (•→ in blue) and an
include relation (→+ in green) from the event labelled AddOrder to the event
labelled MakePayment. (The include relation is needed because of the interplay
with the fourth requirement described below).

The second requirement, “Payment information (eg. credit card number)
must be provided before a payment can be executed” is modelled by a condition
relation (→• or •← in orange) from the event labelled EditPaymentInfo to the
event labelled MakePayment.

The third requirement, “The payment information may be provided at any
time and any number of times.” is modelled by having no condition relations

Transforming Dynamic Condition Response Graphs to Safe Petri Nets 423

Fig. 2. DCR graph specification for the e-shop process

pointing to the event labelled EditPaymentInfo and making sure that it is included
in the initial marking and never excluded.

The forth requirement is in two parts. The first part, “a new order cannot be
made before a subsequent payment has been made” is modelled by an exclude
relation (→% in red) from AddOrder to itself and an include relation from Make-
Payment to AddOrder. The effect is that when AddOrder is executed, it excludes
itself and is thus no longer available, except if MakePayment is executed, which
will include AddOrder again. The second part, “payment can only be made if an
order has been made and is not yet paid” is similarly modelled by an exclusion
relation from MakePayment to itself and an inclusion relation from MakePayment
to AddOrder.

3.3 Petri Nets with Inhibitor Arcs, Read Arcs and Pending Places

There are numerous variants of Petri Nets with different expressive power. As
described in the introduction, we use safe Petri Nets with inhibitor and read
arcs and a notion of both finite and infinite acceptance criteria. Inhibitor arcs
(also called negative contextual arcs) are special arcs between places and tran-
sitions specifying the constraint that the transition is only enabled if all places
related to it by inhibitor arcs are empty. In general, the addition of inhibitor arcs
makes the model of Petri Nets Turing complete [2]. However, with the additional
requirement of safeness, which means that places can hold at most one token
(also known as the property of all the net places being 1-bounded), the notation
is restricted to finite state models.

424 V. P. Cosma et al.

Read arcs (also called test, activator or positive contextual arcs) [4] specify
the constraint that a transition is only enabled if all places related to it by read
arcs have a token. A key difference between having a read arc and a pair of
input and output arcs between a transition and a place, is that read arcs are
not consuming the token. This means that two transitions with read arcs to the
same place can occur concurrently [24]. However, if two transitions are connected
to the same place by a read arc and a standard input arc respectively, the two
transitions will still be in conflict.

The acceptance criteria we introduce is inspired by DCR graphs and allows
us to conveniently express the union of regular and ω-regular languages, with-
out needing to refer to explicit markings. The acceptance criteria is defined by
indicating a subset of the states to be so-called pending places, and then define
a finite or infinite execution sequence to be accepting if any token on a pending
place is eventually subsequently consumed (but possibly placed back) by the
execution of a transition. If one limits attention to finite execution sequences,
the acceptance criteria is that all pending places are empty at the end of the
execution. Note that the use of read arcs allows us to test, if there is a token on
a pending place without consuming it.

We define Petri Nets with inhibitor arcs, read arcs and pending places as
follows.

Definition 6. A Petri Net with inhibitor and read arcs and pending places
(PNirp) is a tuple N = (P, T,A, Inhib,Read,Act, λ, Pe),where

(i) P is a finite set of places,
(ii) T is a finite set of transitions s.t. P ∩ T = ∅,
(iii) A = IA � OA is a finite set of input and output arcs, where:
(a) IA ⊆ P × T is a finite set of input arcs,
(b) OA ⊆ T × P is a finite set of output arcs,

(iv) Inhib: IA −→ {true, false} is a function defining inhibitor arcs,
(v) Read: IA −→ {true, false} is a function defining read arcs,
(vi) Act is a set of labels (actions),
(vii) λ : T → Act is a labelling function,
(viii) Pe ⊆ P is the set of pending places,

and the constraint that if Inhib((p, t)) then ¬Read((p, t)) and if Read((p, t))
then ¬Inhib((p, t)) ∧ (t, p) �∈ OA. That is, an input arc cannot be both a read
arc and an inhibitor arc. And if there is a read arc from place p to transition t,
then there cannot be an output arc from transition t to p.

We only consider 1-bounded places in the present paper, which means that
markings can be defined as simply a subset of places (the places containing a
token).

Definition 7. (safe Marking). Let N = (P, T,A, Inhib,Read,Act, λ, Pe) be
a PNirp. A safe marking M on N is a subset M ⊆ P of places. We say there is
a token x at a place p ∈ P , written x ∈ M(p), if p ∈ M . The set of all markings
over N is denoted by M(N).

Transforming Dynamic Condition Response Graphs to Safe Petri Nets 425

We say that a Petri Net is safe if the execution of transitions preserves the
safeness of markings. In this paper we will work only with safe Petri Nets, in
particular we prove that the mapping from DCR graphs to Petri Nets provided
in the next section always yields a safe Petri Net.

Assuming the Petri Net to be safe simplifies the definition of enabledness of
transitions defined as follows.

Definition 8. (Enabledness). Let N = (P, T,A, Inhib,Read,Act, λ, Pe) be a
PNirp. We say that a transition t ∈ T is enabled in a marking M , if

(i) for t ∈ T we have {p ∈ P | (p, t) ∈ IA ∧ ¬Inhib((p, t)} ⊆ M , i.e. for all
input arcs except the inhibitor arcs there is a token in the input place,

(ii) for t ∈ T we have {p ∈ P | (p, t) ∈ IA ∧ Inhib((p, t)} ∩ M = ∅, i.e. for all
inhibitor arcs there is not a token in the input place,

We abuse notation and, just as for DCR graphs, let enabled(M, t) denote that
the transition t is enabled in marking M .

Next we formalise the effect of executing (or firing) a transition. Again it is
simplified by the assumption of safeness and we use the same notation as for
DCR graphs to denote the result of firing a transition.

Definition 9. (Firing rule). Let N = (P, T,A, Inhib,Read,Act, λ, Pe) be a
PNirp, M a marking on N and t ∈ T a transition. If enabled(M, t) with
Input(t) = {p ∈ P | (p, t) ∈ IA ∧ ¬Inhib((p, t)) ∧ ¬Read((p, t))} and
Output(t) = {p ∈ P | (t, p) ∈ OA} then t can fire, i.e. be executed, and produce
a marking effectG(M, t) = (M \ Input) ∪ Output.

For convenience in the construction, we include the marking M in the PNirp
tuple and we use N = (P,M, T,A, Inhib,Read,Act, λ, Pe) to refer to a safe
marked PNirp with marking M ⊆ P .

Similarly to how DCR graphs define labelled transition systems, the firing
rule defines a labelled transition system for a PNirp with markings as states
and the labelled Petri Net transitions as labels.

Definition 10. Let N = (P,M, T,A, Inhib,Read,Act, λ, Pe) be a PNirp with
safe marking M . Define a labelled transition relation between markings by
M

e→N effectG(M, t) if enabled(M, t), where t ∈ T . Write M ⇒ M ′ for
∃t ∈ T.M

t→N M ′ and write ⇒∗ for the reflexive and transitive closure of
⇒. Define MN = {M ′ | M ⇒∗ M ′}, i.e. the set of all reachable markings from
the initial marking M of N . The labelled transition system for N is then defined
as [[N]] = (MN ,M,→N⊂ (MN × T × MN), Act, λ).

Finally, we define when a finite or infinite execution sequence of a PNirp is
accepting.

Definition 11. Let N = (P,M, T,A, Inhib,Read,Act, λ, Pe) be a PNirp with
safe marking M . A finite or infinite sequence of transitions M0

t0→N M1
t1→N . . .

in [[N]] is accepting if p ∈ Mi ∩ Pe implies ∃j ≥ i.(p, tj) ∈ IA.

426 V. P. Cosma et al.

Figure 3 shows the safe Petri Net resulting from the implemented opti-
mized transformation of the running example DCR graph. The place pend-
ing included MakePayment is the only pending place. The arcs between the tran-
sition pend MakePayment and the place executed EditPaymentInfo are in fact a
read arc in the transformation, but represented as a pair of standard input and
output arcs in the implementation so we can simulate it in the TAPAAL tool.

Fig. 3. E-shop Petri Net resulting from the transformation implementation.

It is worth noting that in the Petri Net we need two transitions labelled with
the action EditPaymentInfo, namely a transition init EditPaymentInfo mapping
the initial execution (or the initial entry of the payment information) and a
transition event EditPaymentInfo mapping subsequent executions.

4 Mapping DCR Graphs to Petri Nets

In this section we provide the mapping from DCR graphs to marked safe Petri
Nets with inhibitor and read arcs and pending places and prove that the DCR
graph and the Petri Net have bisimilar transition semantics. The mapping has
been implemented as a python script, which can be found at: https://github.
com/paul-cvp/dcr-to-tapn.git, where we also provide some results of our map-
ping. We support the standard PNML [18] exchange format extended with arc
types [16]. A key difference in the code mapping is that read arcs are automati-
cally translated to a pair of input and output arcs. This was a design choice in
order to maintain compatibility with a greater number of Petri Net verification
tools and the difference only has consequences for the degree of concurrency and

https://github.com/paul-cvp/dcr-to-tapn.git
https://github.com/paul-cvp/dcr-to-tapn.git

Transforming Dynamic Condition Response Graphs to Safe Petri Nets 427

the acceptance criteria for infinite runs. In what follows we use the notation —
(a straight line) to refer to read arcs and use the notation <—> to refer to a
pair of input and output arcs.

The core part of the mapping is given as a function DP : DCR → PNirp,
defined inductively in the number of relations of the DCR graph. The Petri
Net DP (G) will have the events of G as labels (actions), since there will in
general be more than one transition representing each event of G. To get the
same observable behaviour as the DCR graph G, we then subsequently just need
to compose the labelling function of DP (G) with the event labelling function
of G. Due to the rich structure of DCR graph markings, the basic inductive
mapping in general produces a number of unused places and transitions. These
can subsequently be removed by searching for unreachable transitions and places
and merging places with the same arcs.

As part of the mapping DP : DCR → PNirp, we also define for every
G ∈ DCR a mapping DPMG : MG → MDP (G), i.e. from markings of G to the
markings of DP (G). For a DCR graph G = (E,M,R,@, L, l) and DP (G) =
(PDP (G),MDP (G), TDP (G), ADP (G), InhibDP (G), ReadDP (G), ActDP (G), λDP (G),
P eDP (G)) we then have MDP (G) = DPMG(M) and ActDP (G) = E.

The two mappings are defined so we get the following precise semantic cor-
respondence between the two process models. (Note we write ∃! to mean “there
exists a unique”).

Theorem 1. (Bisimilarity) For G ∈ DCR we have that the relation SimG =
{(M,DPMG(M)) | M ∈ MG} is a bisimulation relation between [[G]] and
[[DP (G)]], in the sense that (M0,DPMG(M0)) ∈ SimG, where M0 is the initial
marking of G and for all (M,DPMG(M)) ∈ Sim, we have

(i) M
e−→ M ′ implies ∃!t ∈ TDP (G).DPMG(M) t−→ DPMG(M ′) and λ(t) = e,

(ii) DPMG(M) t−→ M ′ and λ(t) = e implies M
e−→ M ′′ and DPMG(M ′′) = M ′.

That is, for every enabled event in a marking M of the DCR graph we have
a unique enabled transition in the corresponding marking DPMG(M) of the
Petri Net which is labelled by the event e and firing the transition changes the
marking of the Petri Net to the marking corresponding to the DCR marking
resulting from executing e - and vice versa. We will see below, that in addition
the bisimulation also pairs accepting runs.

We now proceed to define the mapping function and outline the proof of
Theorem 1 along the way. For each event e ∈ E of the DCR graph G, there will
be four places in DP (G), which we will write as PEx

e , P In
e , PRe

e , and PRex
e . The

first two places represent respectively if the event e has been executed and if it
has been included. The last two places record the pending response state of the
event e by a token in PRe

e if and only if the event e is pending and included, and
a token in PRex

e if and only if the event e is pending and excluded. The places
PRe

e will constitute the set PeDP (G) of pending places.

Definition 12. (Places mapping) Let G = (E,M,R,@, L, l) ∈ DCR. Define
the corresponding Petri Net places of DP (G) as PDP (G) = {P γ

e |e ∈ E, γ ∈

428 V. P. Cosma et al.

{Ex, In,Re,Rex}}. Define the corresponding pending places of DP (G) as
PeDP (G) = {PRe

e |e ∈ E}.
Definition 13. (Markings mapping) Let G = (E,M0, R,@, L, l) ∈ DCR
and MG be the reachable markings of G and MDP (G) = P(PDP (G)), i.e. all safe
markings of the places PDP (G) defined above. Define DPMG : MG → MDP (G)

as follows. For M = (Ex,Re, In) ∈ MG define DPMG(M) such that for any
event e ∈ E,

(i) PEx
e ∈ DPMG(M) ⇐⇒ e ∈ Ex

(ii) P In
e ∈ DPMG(M) ⇐⇒ e ∈ In

(iii) PRe
e ∈ DPMG(M) ⇐⇒ e ∈ Re ∧ e ∈ In

(iv) PRex
e ∈ DPMG(M) ⇐⇒ e ∈ Re ∧ e /∈ In

The events and relations of a DCR graph are represented by respectively
transitions and arcs in the Petri Net. Each event of the DCR graph will be rep-
resented by several transitions in the Petri Net. Indeed, the number of transitions
representing each event depends on the number of relations in the DCR graph.

We define the corresponding Petri Net transitions TPD(G), arcs APD(G) and
labelling function λPD(G) by induction in the number k = |R| of relations. We
will at the same time argue for the proof of Theorem 1, since it also follows from
the inductive construction.

In the base case, k = 0 i.e. a DCR graph G = G0 = (E,M, ∅,@, L, l) without
any relations, each event will be represented by a (sub) Petri Net as shown in
Fig. 4 (assuming a marking M , where the event is included, not executed and
not pending, i.e. e ∈ In, e �∈ Ex ∪ Re) which is completely independent of the
similar sub Petri Nets representing the other events. We have four transitions
for each event e ∈ E of the DCR graph and arcs as shown in Fig. 4. We use the
labelling function of the Petri Net to label all the transitions with the event e
and thereby record that the transitions represent this event in the DCR graph.
That is, we define the mapping formally as follows.

Fig. 4. Base case: Petri Net for a single included DCR event, which is not yet executed
nor pending.

Transforming Dynamic Condition Response Graphs to Safe Petri Nets 429

Definition 14. (Base case: Mapping a DCR graph with no relation)
Let G = (E,M, ∅,@, L, l) be a DCR Graph with no relations. Then PDP (G) ={
pδ

e|e ∈ E, δ ∈ {In,Ex,Re,Rex}}, TDP (G) =
{
tδe|e ∈ E, δ ∈ {event, init, pend,

initpend}} and λDP (G)(tδe) = e. The set of arcs ADP (G) = IADP (G) ∪ OADP (G)

and InhibDP (G) : IADP (G) → {true, false} are defined by Table 1. Each row in
the table corresponds to one of the four transitions, and each column to one of the
four places. Each entry is an arc in which the left arrow is an input arc and the right
arrow is an output arc. That is, the input and output arc pair <—> in the entry of
column pEx

e and row tevente in the table means that we have (pEx
e , tevente) ∈ IADP (G)

and (tevente , pEx
e) ∈ OADP (G). A table entry of o— in the entry of column pRe

e and
row tevente means we add an arc (pRe

e , tevente) ∈ IADP (G), which is an inhibitor
arc, i.e. Inhib((pRe

e , tevente)) = true, and we add no arc in OADP (G). The read arc
— between column pIne and row tevente is mapped as (pIne , tevente) ∈ IADP (G) and
Read((pIne , tevente)) = true.

Table 1. Arc patterns for an event in the base case

pIn
e pEx

e pRe
e pRex

e

tevente — <—> o—

tinite — o—> o—

tinitpende — o—> <—

tpende — <—> <—

Note that we have no arcs in any directions connected to the place pRex
e . This

means that this place is redundant, unless more relations are added to the DCR
graph, which will give rise to more transitions in the Petri Net. We will reuse
the same table notation style for arc pattern mappings throughout the paper.
Figure 4 is a visual representation of Table 1.

Proof sketch of Theorem 1: base case (1). It follows by a trivial inspection of
the event execution cases and the different initial markings that we have the
bisimulation property in Theorem 1 for the base case. If an event e is initially
included and not executed nor pending, then we have the marking in Fig. 4.
Observe that only the transition labelled init e can fire, which will read the
token at the place included e and put a token at the place executed e. This
corresponds to the execution semantics of DCR graphs. Subsequently, only the
transition labelled event e can fire and firing the transition will read the tokens at
the places included e and executed e. If the event e is initially pending, included
and not executed, it will fire first the transition initpend e after which only
the transition event e can fire. If the event e is initially pending, included and
executed, it will fire first the transition pend e after which only the transition
event e that can fire. Finally, if the event is not included in the initial DCR
marking, there will be no token in the inlcuded e place and consequently no
transition can fire. �

Now consider the induction step. Let G = (E,M,R,@, L, l) be a DCR Graph
with R = {r1, . . . , rk, rk+1} and assume we have defined the mapping and proven
Theorem 1 for Gk = (E,M, {r1, . . . , rk},@, L, l).

430 V. P. Cosma et al.

We proceed by cases of the type @rk+1 of the relation rk+1 = (e, e′). Effect
relations change the marking of e′ when e fires, and thus refines the transitions
for e and adds arcs connected to the places recording the marking for e′. Dually,
constraining relations requires a refinement of the transitions for e′, adding arcs
connected to the places recording the marking for e.

We first consider the cases where the relation rk+1 = (e, e′) is a single effect,
i.e. @rk+1 ∈ {{→+}, {→%}, {•→}} and e �= e′.

For @rk+1 = {→+} we replace each transition tδe representing the event e with
three new transitions t0,δ

e , t1,δ
e and t2,δ

e , which in addition to the arcs connected
to tδe also get the new arcs shown in Table 2a. More formally we say that we
apply the Definition 15 below for relation @rk+1 = {→+} and the arc pattern
table Table 2a.

Definition 15. (Inductive step: Mapping a DCR relation)
Let G = (E,M,R,@, L, l) be a DCR Graph, APT (@r) be the arc pattern

table for any given relation r ∈ @R and |APT (@r)r| be the number of rows
(transition copies) in the arc pattern table. Then TDP (Gk+1) = TDP (Gk)\{tδe |
tδe ∈ TDP (Gk) and λDP (Gk)(t

δ
e) = e} ∪ {ti,δe | i ∈ {0, 1, .., |APT (@r)r| − 1}}

and let (p, ti,δe) ∈ IADP (Gk+1) for i ∈ {0, 1.., |APT (@r)r| − 1} if and only if
(p, tδe) ∈ IADP (Gk) and let (ti,δe , p) ∈ OADP (Gk+1) for i ∈ {0, 1.., |APT (@r)r|−1}
if and only if (tδe, p) ∈ OADP (Gk) or (ti,δe , p) is one of the arcs in APT (@r).
Finally, for t ∈ ADP (Gk) such that λDP (Gk) �= e, let (p, t) ∈ IADP (Gk+1) and
(t, p) ∈ OADP (Gk+1) if and only if (p, t) ∈ IADP (Gk) or (t, p) ∈ OADP (Gk).

Table 2. Arc patterns for rk+1 = (e, e′) effect relations

→+ pIn
e′ pRe

e′ pRex
e′

t0,δ
e —

t1,δ
e o—> —> <—

t2,δ
e o—> o—

(a) Arc patterns for →+

→% pIn
e′ pRe

e′ pRex
e′

t0,δ
e o—

t1,δ
e <— o—

t2,δ
e <— <— —>

(b) Arc patterns for →%

•→ pIn
e′ pRe

e′ pRex
e′

t0,δ
e — o—>

t1,δ
e — —

t2,δ
e o— o—>

t3,δ
e o— —

(c) Arc patterns for •→

The cases for @rk+1 = {→%} and @rk+1 = {•→} follow the same approach,
by applying Definition 15. Observe that we need four copies for each existing
transition for e in the case of the response relation. The case for response is also
illustrated graphically in Fig. 5.

Example 1. (Mapping the response relation) Fig. 5 shows how the response rela-
tion e •→ e′ is mapped by replacing each existing transition tδe (t delta e) repre-
senting e by four new copies, connected to the places representing the marking
of the event e′.

Transforming Dynamic Condition Response Graphs to Safe Petri Nets 431

Fig. 5. Mapping (a) DCR response relation to a Petri Net notation (b)

Proof sketch of Theorem 1: single effect mapping(2). First note that adding an
effect relation from e to e′ to the DCR graph only changes the output transitions
representing e in DP (Gk). Here we need three transitions, covering the different
possibilities of the marking of e′. For the e →+ e′ , transition t0,δ

e handles the
case, where e′ is already included, transition t1,δ

e handles the case, where e′ is
not included, but pending and t2,δ

e handles the case, where e′ is not included and
not pending. We follow a similar reasoning for e →+ e′,e →% e′ and e •→ e′. �

We now consider the constraining relation consisting of a single condition,
i.e. @rk+1 = {•←} and e′rk+1e and e �= e′. For the condition relation we replace
all existing transitions of e′ with 3 new copies, again keeping the old arcs and
adding new arcs to the places of e according to Table 3. This is also illustrated
graphically in Fig. 6. Again we apply Definition 15.

Proof sketch of Theorem 1: single constraint mapping(3). The transition copy
t0,δ
e handles the case where e is included and already executed. The transition

t1,δ
e handles the case where e is excluded and not already executed. Finally, the

transition t2,δ
e handles the case where e is excluded and already executed. �

Example 2. (Mapping a condition relation). Figure 6 shows how a condition
relation is mapped between the transitions representing the DCR event e′ and
the places representing the execution and inclusion marking for the DCR event e.

Now we proceed to describe the cases of relations where the events e and
e′ are identical, and thereafter the cases of multiple relations between the same
two events.

432 V. P. Cosma et al.

Table 3. Arc patterns for •←

•← pIn
e′ pEx

e′

t0,δ
e — —

t1,δ
e o— o—

t2,δ
e o— —

Fig. 6. Mapping (a) DCR condition relation to a Petri Net notation (b)

Case e = e′ and a single relation: For single relations where the source and
target is the same, we do not get the same multiplication of transitions:

(i) @r = {→+}: Do nothing, since it can only take effect if e is already included.
(ii) @r = {→%}: Remove all output arcs from transitions tδe (i.e. transitions

with label e) to the place pIn
e , because the event can only be executed if

there is a token at pIn
e , and that token should not be put back.

(iii) @r = {•→}: Add output arcs from all transitions tδe to pRe
e and replace all

read arcs from pRe
e to transitions tδe with standard input arcs.

(iv) @r = {•←}: Remove the transitions {tinit
e , tinitpend

e } and all their associated
arcs.

We now consider the cases with multiple relations between the same two
events, i.e. |@rk+1| > 1. When we have both an include and exclude relation,
i.e. {→+,→%} ⊆ @rk+1 we only apply the include relation, as the DCR graph
semantics stipulate that first the exclusion takes place and then the inclusion.

Case e = e′ and @rk+1 = {•→,→%}: For all transitions t such that λDP (Gk)(t) =
e, add output arcs from t to pRex

e and remove all output arcs from t to pIn
e . Define

λDP (Gk+1) = λDP (Gk).

The remaining cases look at multiple relations |@rk+1| > 1 between differ-
ent events e �= e′. We again follow the same reasoning as in part 2 and 3 of
the proof, i.e. for a given e rk+1 e′ use its arc pattern table to make copies of
existing transitions and their arcs and create new arc mappings to the existing

Transforming Dynamic Condition Response Graphs to Safe Petri Nets 433

Table 4. Effect and constraint pair arc patterns

•← ∧ →+ pIn
e′ pEx

e′ pRe
e′ pRex

e′

t0,δ
e — —

t1,δ
e o—> o— —> <—

t2,δ
e o—> o— o—

t3,δ
e o—> — —> <—

t4,δ
e o—> — o—

(a) Arc patterns for e′ •← e ∧ e →+ e′

•← ∧ →% pIn
e′ pEx

e′ pRe
e′ pRex

e′

t0,δ
e <— — o—

t1,δ
e <— — <— —>

t2,δ
e o— o—

t3,δ
e o— —

(b) Arc patterns for e′ •← e ∧ e →% e′

•← ∧ •→ pIn
e′ pEx

e′ pRe
e′ pRex

e′

t0,δ
e — — o—>

t1,δ
e — — —

t2,δ
e o— o— o—>

t3,δ
e o— o— —

t4,δ
e o— — o—>

t5,δ
e o— — —

(c) Arc patterns for e′ •← e ∧ e •→ e′

places. Formally we apply Definition 15 for each relation and arc pattern table
mentioned.
Case e �= e′ and rk+1 is both constraining and effect: When an effect constraint
pair exists, i.e. •←∈ @rk+1 and @rk+1 ∩ {•→,→%,→+} �= ∅, their mapping pro-
duces arcs that both check the necessary places and also change their marking.
Given e rk+1 e′, we consider the different cases as follows:

(i) @rk+1 = {•←,→+}: The arc pattern is shown in Table 4a.
(ii) @rk+1 = {•←,→%} : The arc pattern is shown in Table 4b.
(iii) @rk+1 = {•←, •→}: The arc pattern is shown in Table 4c.

Note that brown arcs show the changes done to the arc patterns for the
condition relation from Table 3.

Table 5. Two effect relations arc patterns

•→ ∧ →+ pIn
e′ pRe

e′ pRex
e′

t0,δ
e — o—>

t1,δ
e — —

t2,δ
e o—> o—> o—

t3,δ
e o—> —> <—

(a) Arc pattern for e •→ e′ ∧ e →+ e′

•→ ∧ →% pIn
e′ pRe

e′ pRex
e′

t0,δ
e <— o— —>

t1,δ
e <— <— —>

t2,δ
e o— o—>

t3,δ
e o— —

(b) Arc pattern for e •→ e′ ∧ e →% e′

434 V. P. Cosma et al.

Case e �= e′, e rk+1 e′ and rk+1 is composed of 2 effect relations:

(i) @rk+1 = {→%,→+}: Is equivalent to only mapping the include relation.
(ii) @rk+1 = {•→,→+}: The arc pattern is shown in Table 5a.
(iii) @rk+1 = {•→,→%}: The arc pattern is shown in Table 5b.
(iv) @rk+1 = {•→,→+,→%}: Equivalent to the case @rk+1 = {•→,→+}.

Note that brown arcs show the changes done to the arc patterns for the response
relation from Table 2c.

Table 6. Two effect relations and a condition relation arc patterns

•← ∧ •→ ∧ →+ pIn
e pEx

e′ pRe
e′ pRex

e′

t0,δ
e — — o—>

t1,δ
e — — —

t2,δ
e o—> o— —> <—

t3,δ
e o—> o— o—> o—

t4,δ
e o—> — —> <—

t5,δ
e o—> — o—> o—

(a) Arc pattern for e′ •← e ∧ e •→ e′ ∧
e →+ e′

•← ∧ →% ∧ •→ pIn
e′ pEx

e′ pRe
e′ pRex

e′

t0,δ
e <— — o— —>

t1,δ
e <— — <— —>

t2,δ
e o— o— o—>

t3,δ
e o— o— —

t4,δ
e o— — o—>

t5,δ
e o— — —

(b) Arc pattern for e′ •← e ∧ e •→ e′ ∧
e →% e′

Case e �= e′, e rk+1 e′ and rk+1 is a composed of 2 effect relations and a condition
relation:

(i) @rk+1 = {•←,→+,→%}: Equivalent to the case @rk+1 = {•←,→+}.
(ii) @rk+1 = {•←,→+, •→}: The arc pattern is shown in Table 6a.
(iii) @rk+1 = {•←, •→,→%}: The arc pattern is shown in Table 6b.

Note that brown arcs show the changes done to the arc patterns for the
condition response relation mapping from Table 4c.

This completes the inductive definition of the mapping from DCR graphs to
safe Petri Nets with inhibitor arcs, read arcs and pending places as there are no
other exceptional cases.
Proof sketch of Theorem 1: exhaustive mapping of exceptional cases(4). We follow
the same reasoning as part 2 and 3 of the proof i.e. we take each case sub-point
and detail all the possible changes in marking of the DCR Graph in order to
show that there is a transition and arc pattern that handles this in the mapped
PNirp. �

Parts 1 to 4 of the proof of Theorem1 show how the strong bisimilarity
property is preserved by each induction step in the definition. We believe the
reader should be convinced of how the entire Petri Net is constructed by following
the inductive transformation.

What remains to show is that the accepting runs in the two models are the
same. This follows easily from the correspondence of markings in Definition 13,
which is maintained by the bisimulation relation.

Transforming Dynamic Condition Response Graphs to Safe Petri Nets 435

Proposition 1. For a DCR Graph DCR graph G = G0 = (E,M,R,@, L, l) it
holds that an execution sequence M → M1 → M2 → .. is accepting if and only
if DPMG(M) → DPMG(M1) → DPMG(M2) → .. is accepting.

5 Pruning and Reachability Analysis

We report the steps needed to reduce the size of the mapped PNirp. This is
achieved in two ways: pruning away transitions and places based on the DCR
Graph relations and marking; and based on a reachability analysis of the PNirp.

5.1 Pruning Based on the DCR Graph

Creating Places. Given a DCR Graph we follow these intuitions when creating
places. Only create an:

(i) Included Place for events that are included and may become excluded (have
an exclusion relation towards them) and events that are not included and
may become included (have an inclusion relation towards them);

(ii) Executed Place for events that have a condition from them;
(iii) Pending Place for events that have a response relation to them and events

that are initially pending;
(iv) Pending Excluded Place for events that need both an Included Place and a

Pending Place.

Creating Event Transitions. Given a DCR Graph and a PNirp we follow these
intuitions when creating transitions. Only create:

(i) init labelled transitions for events that need an Executed Place;
(ii) pend labelled transitions for events that need a Pending Place.

The pruning is done during the inductive construction of the Petri Net.4

5.2 Petri Net Reachability Analysis

Pruning Based on the Reachability Graph. Our mapping creates dead transitions
because it preemptively creates arc patterns for both the marked and unmarked
state of a place. Then at each induction step we expand the set of dead tran-
sitions, either because we need to copy the dead transition or if we create new
transitions and map arcs from a place the dead transition should have an effect
on.

Reachability analysis is done on the Petri Net reachability graph which is a
labelled transition system where the states are the set of places and the tran-
sitions represent the set of transitions fired to move from one state to another.
The optimization on the PNirp is done by removing all places and transitions
that are not part of the reachability graph.
4 We direct the reader to the Appendix in our repository https://github.com/paul-

cvp/dcr-to-tapn/blob/master/appendix/Appendix.pdf to see the simplified arc pat-
tern tables.

https://github.com/paul-cvp/dcr-to-tapn/blob/master/appendix/Appendix.pdf
https://github.com/paul-cvp/dcr-to-tapn/blob/master/appendix/Appendix.pdf

436 V. P. Cosma et al.

Merging Places. Finally it is possible to merge places that label the same state in
the reachability graph of the Petri Net. The merging also requires us to update
the set of pending places accordingly. Notice that in the e-shop example AddOrder
and MakePayment have the relation the r@ = {•→,→+} and the initial marking
of AddOrder is not included and not pending. Therefore we merged the pending
and included places of MakePayment. Notice that this would not have been
possible if the event AddOrder was initially included.

Definition 16. (Equivalent places) Let p, p′ ∈ P . We say that p ≡ p′ if the set
of input and output arcs is equal and also the arc type. We define a new place
p′′ with the merged ids of p and p′ and copy their input and output arcs and also
the arc type. (Updating Pe) If (p ∈ Pe ∨ p′ ∈ Pe) ∧ p ≡ p′ ⇐⇒ p′′ ∈ Pe.

5.3 Space Analysis on the Running Example

The unoptimized Petri Net of our e-shop has 12 places, 56 transitions and 488
arcs. The DCR analysis pruned one has 5 places, 10 transitions and 49 arcs.
Doing just the Petri Net reachability analysis yields 7 places, 6 transitions and
42 arcs. The full optimization, as show in Fig. 3 has 3 places, 4 transitions and
12 arcs.

6 Conclusion and Future Work

We presented a transformation from the Dynamic Condition Response (DCR)
graph constraint based process specification language to safe Petri Nets with
inhibitor arcs and read arcs, generalized with an acceptance crietria for the mod-
elling of ω-regular liveness properties. We outlined the proof for strong bisimilar-
ity between the transition system for the DCR graph and the transition system
for the resulting Petri Net, also preserving the acceptance criteria of finite and
infinite executions.

We believe the work in the present paper provides a plethora of research
avenues, which we aim to explore in future work. Concretely, we plan to extend
the transformation from the core DCR relations to include features of later
versions, in particular to cover Timed DCR graphs [14], thereby providing a
complete mapping from Timed DCR graphs to safe Timed Arc Petri Nets and
also extend the strong bisimulation correspondence to support this case. We
plan to evaluate the space complexity of the mapping and the complexity of
the resulting models by using the DisCoveR [3] miner to mine DCR Graphs
from well-known, real-life, public event logs and map these to their Petri Net
counter parts. We also aim to improve the optimization step by using DCR
Event-Reachability [17] and by detecting handmade rules such as in [37].

As seen by our running example, the mapping nicely captures concurrency
between independent events. This could potentially also be combined with a
mapping from Petri Nets to BPMN [9], to provide an output following an ISO
standard process notation. Finally we aim to integrate the existing mapping
from safe Timed Arc Petri Nets to Timed Automata [33] to provide a link from
DCR Graphs to Timed Automata.

Transforming Dynamic Condition Response Graphs to Safe Petri Nets 437

References

1. van der Aalst, W.M.P., Pesic, M.: DecSerFlow: towards a truly declarative service
flow language. In: Bravetti, M., Nunez, M., Zavattaro, G. (eds.) Proceedings of
Web Services and Formal Methods (WS-FM 2006), vol. 4184, pp. 1–23 (2006)

2. Agerwala, T.: A complete model for representing the coordination of asynchronous
processes. Hopkins Computer Research Report 32 (1974)

3. Back, C.O., Slaats, T., Hildebrandt, T.T., Marquard, M.: Discover: accurate and
efficient discovery of declarative process models. Int. J. Soft. Tools Technol. Trans-
fer 24, 563–587 (2022)

4. Baldan, P., Busi, N., Corradini, A., Michele Pinna, G.: Functional concurrent
semantics for Petri nets with read and inhibitor arcs. In: Palamidessi, C. (ed.) CON-
CUR 2000. LNCS, vol. 1877, pp. 442–457. Springer, Heidelberg (2000). https://
doi.org/10.1007/3-540-44618-4 32

5. Byg, J., Jørgensen, K.Y., Srba, J.: An efficient translation of timed-arc Petri nets
to networks of timed automata. In: Breitman, K., Cavalcanti, A. (eds.) ICFEM
2009. LNCS, vol. 5885, pp. 698–716. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-10373-5 36

6. Byg, J., Jørgensen, K.Y., Srba, J.: TAPAAL: editor, simulator and verifier of timed-
arc Petri nets. In: Liu, Z., Ravn, A.P. (eds.) ATVA 2009. LNCS, vol. 5799, pp.
84–89. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04761-9 7

7. De Smedt, J., Vanden Broucke, S., De Weerdt, J., Vanthienen, J.: A full r/i-net
construct lexicon for declare constraints. Available at SSRN 2572869 (2015)

8. Debois, S., Hildebrandt, T.T., Slaats, T.: Replication, refinement & reachability:
complexity in dynamic condition-response graphs. Acta Informatica 55(6), 489–
520 (2018)

9. Dijkman, R.M., Dumas, M., Ouyang, C.: Formal semantics and analysis of BPMN
process models using petri nets. Queensland University of Technology, Tech. Rep,
pp. 1–30 (2007)

10. Eshuis, R., Debois, S., Slaats, T., Hildebrandt, T.: Deriving consistent GSM
schemas from DCR graphs. In: Sheng, Q.Z., Stroulia, E., Tata, S., Bhiri, S. (eds.)
ICSOC 2016. LNCS, vol. 9936, pp. 467–482. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-46295-0 29

11. Finkel, O.: On the high complexity of Petri nets ω-languages. In: Janicki, R.,
Sidorova, N., Chatain, T. (eds.) PETRI NETS 2020. LNCS, vol. 12152, pp. 69–88.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51831-8 4

12. Hildebrandt, T.T., Mukkamala, R.R.: Declarative event-based workflow as dis-
tributed dynamic condition response graphs. In: PLACES, pp. 59–73 (2010)

13. Hildebrandt, T.T., Normann, H., Marquard, M., Debois, S., Slaats, T.: Decision
modelling in timed dynamic condition response graphs with data. In: Marrella, A.,
Weber, B. (eds.) BPM 2021. LNBIP, vol. 436, pp. 362–374. Springer, Cham (2022).
https://doi.org/10.1007/978-3-030-94343-1 28

14. Hildebrandt, T., Mukkamala, R.R., Slaats, T., Zanitti, F.: Contracts for cross-
organizational workflows as timed dynamic condition response graphs. J. Logic
Algebraic Programm. 82(5), 164–185 (2013). ISSN 1567–8326. https://doi.org/
10.1016/j.jlap.2013.05.005. https://www.sciencedirect.com/science/article/pii/
S1567832613000283. Formal Languages and Analysis of Contract-Oriented
Software (FLACOS2011)

https://doi.org/10.1007/3-540-44618-4_32
https://doi.org/10.1007/3-540-44618-4_32
https://doi.org/10.1007/978-3-642-10373-5_36
https://doi.org/10.1007/978-3-642-10373-5_36
https://doi.org/10.1007/978-3-642-04761-9_7
https://doi.org/10.1007/978-3-319-46295-0_29
https://doi.org/10.1007/978-3-319-46295-0_29
https://doi.org/10.1007/978-3-030-51831-8_4
https://doi.org/10.1007/978-3-030-94343-1_28
https://doi.org/10.1016/j.jlap.2013.05.005
https://doi.org/10.1016/j.jlap.2013.05.005
https://www.sciencedirect.com/science/article/pii/S1567832613000283
https://www.sciencedirect.com/science/article/pii/S1567832613000283

438 V. P. Cosma et al.

15. Hillah, L.M., Kordon, F., Petrucci, L., Trèves, N.: PNML framework: an extendable
reference implementation of the petri net markup language. In: Lilius, J., Penczek,
W. (eds.) PETRI NETS 2010. LNCS, vol. 6128, pp. 318–327. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-13675-7 20

16. Hillah, L.-M., Kordon, F., Lakos, C., Petrucci, L.: Extending pnml scope: a frame-
work to combine Petri nets types. In: Jensen, K., van der Aalst, W.M., Ajmone
Marsan, M., Franceschinis, G., Kleijn, J., Kristensen, L.M. (eds.) Transactions on
Petri Nets and Other Models of Concurrency VI. LNCS, vol. 7400, pp. 46–70.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35179-2 3

17. Høgnason, T., Debois, S.: DCR event-reachability via genetic algorithms. In:
Daniel, F., Sheng, Q.Z., Motahari, H. (eds.) BPM 2018. LNBIP, vol. 342, pp.
301–312. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11641-5 24

18. Hu, Z., Shatz, S.M.: Mapping UML diagrams to a petri net notation for system
simulation. In SEKE, pp. 213–219. CiteSeer (2004)

19. Hull, R., et al.: Introducing the guard-stage-milestone approach for specifying busi-
ness entity lifecycles. In: Bravetti, M., Bultan, T. (eds.) WS-FM 2010. LNCS, vol.
6551, pp. 1–24. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-
19589-1 1

20. López, H.A., Debois, S., Hildebrandt, T.T., Marquard, M.: The process highlighter:
from texts to declarative processes and back. In: Proceedings of the Disserta-
tion Award and Demonstration, Industrial Track at BPM 2018, vol. 2196 (2018).
https://CEUR-WS.org/VOL-2196/

21. Maggi, F.M., Montali, M., Westergaard, M., van der Aalst, W.M.P.: Monitor-
ing business constraints with linear temporal logic: an approach based on colored
automata. In: Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) BPM 2011. LNCS,
vol. 6896, pp. 132–147. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-23059-2 13

22. Montali, M.: Specification and Verification of Declarative Open Interaction Models.
LNBIP, vol. 56. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
14538-4

23. Montali, M., Pesic, M., van der Aalst, W.M.P., Chesani, F., Mello, P., Storari, S.:
Declarative specification and verification of service choreographies. ACM Trans.
Web, 4(1), 1658376 (2010). ISSN 1559–1131. https://doi.org/10.1145/1658373.
1658376. https://doi.org/10.1145/1658373.1658376

24. Montanari, U., Rossi, F.: Contextual nets. Acta Informatica 32, 545–596 (1995)
25. Mukkamala, R.R.: A formal model for declarative workflows: dynamic condition

response graphs, Ph. D. thesis, IT University of Copenhagen (2012)
26. Mukkamala, R.R., Hildebrandt, T.T.: From dynamic condition response struc-

tures to büchi automata. In: 2010 4th IEEE International Symposium on Theoret-
ical Aspects of Software Engineering, pp. 187–190, 2010. https://doi.org/10.1109/
TASE.2010.22

27. Normann, H., Debois, S., Slaats, T., Hildebrandt, T.T.: Zoom and enhance: action
refinement via subprocesses in timed declarative processes. In: Polyvyanyy, A.,
Wynn, M.T., Van Looy, A., Reichert, M. (eds.) BPM 2021. LNCS, vol. 12875, pp.
161–178. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85469-0 12

28. Pnueli, A.: The temporal logic of programs. In 18th Annual Symposium on Foun-
dations of Computer Science (SFCS1977), pp. 46–57 (1977). https://doi.org/10.
1109/SFCS.1977.32

29. Popova, V., Dumas, M.: From petri nets to guard-stage-milestone models. In: La
Rosa, M., Soffer, P. (eds.) BPM 2012. LNBIP, vol. 132, pp. 340–351. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-36285-9 38

https://doi.org/10.1007/978-3-642-13675-7_20
https://doi.org/10.1007/978-3-642-35179-2_3
https://doi.org/10.1007/978-3-030-11641-5_24
https://doi.org/10.1007/978-3-642-19589-1_1
https://doi.org/10.1007/978-3-642-19589-1_1
https://CEUR-WS.org/VOL-2196/
https://doi.org/10.1007/978-3-642-23059-2_13
https://doi.org/10.1007/978-3-642-23059-2_13
https://doi.org/10.1007/978-3-642-14538-4
https://doi.org/10.1007/978-3-642-14538-4
https://doi.org/10.1145/1658373.1658376
https://doi.org/10.1145/1658373.1658376
https://doi.org/10.1145/1658373.1658376
https://doi.org/10.1109/TASE.2010.22
https://doi.org/10.1109/TASE.2010.22
https://doi.org/10.1007/978-3-030-85469-0_12
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1007/978-3-642-36285-9_38

Transforming Dynamic Condition Response Graphs to Safe Petri Nets 439

30. Prescher, J., Di Ciccio, C., Mendling, J.: From declarative processes to imperative
models. SIMPDA 1293, 162–173 (2014)

31. Raedts, I., et al.: Transformation of BPMN models for behaviour analysis.
MSVVEIS 2007, 126–137 (2007)

32. Slaats, T.: Flexible process notations for cross-organizational case management
systems, Ph. D. thesis, IT University of Copenhagen (2015)

33. Srba, J.: Timed-arc Petri nets vs. networks of timed automata. In: Ciardo, G.,
Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp. 385–402. Springer, Hei-
delberg (2005). https://doi.org/10.1007/11494744 22

34. Staines, T.S.: Intuitive mapping of UML 2 activity diagrams into fundamental
modeling concept petri net diagrams and colored petri nets. In: 15th Annual IEEE
International Conference and Workshop on the Engineering of Computer Based
Systems (ECBS 2008), pp. 191–200 (2008). https://doi.org/10.1109/ECBS.2008.
12

35. Thapa, D., Dangol, S., Wang, G.-N.: Transformation from petri nets model to pro-
grammable logic controller using one-to-one mapping technique. In: International
Conference on Computational Intelligence for Modelling, Control and Automation
and International Conference on Intelligent Agents, Web Technologies and Internet
Commerce (CIMCA-IAWTIC’06), vol. 2, pp. 228–233 (2005). https://doi.org/10.
1109/CIMCA.2005.1631473

36. Valk, R.: Infinite behaviour of Petri nets. Theoret. Comput. Sci. 25(3), 311–341
(1983)

37. Verbeek, H.M.W., Wynn, M.T., van der Aalst, W.M., ter Hofstede, A.H.M.: Reduc-
tion rules for reset/inhibitor nets. J. Comput. Syst. Sci. 76(2), 125–143 (2010)

38. Yang, N., Yu, H., Sun, H., Qian, Z.: Modeling UML sequence diagrams using
extended Petri nets. In: 2010 International Conference on Information Science and
Applications, pp. 1–8 (2010). https://doi.org/10.1109/ICISA.2010.5480384

39. Zaitsev, D.A.: Toward the minimal universal petri net. IEEE Trans. Syst. Man
Cybern. Syst. 44(1), 47–58 (2014). https://doi.org/10.1109/TSMC.2012.2237549

https://doi.org/10.1007/11494744_22
https://doi.org/10.1109/ECBS.2008.12
https://doi.org/10.1109/ECBS.2008.12
https://doi.org/10.1109/CIMCA.2005.1631473
https://doi.org/10.1109/CIMCA.2005.1631473
https://doi.org/10.1109/ICISA.2010.5480384
https://doi.org/10.1109/TSMC.2012.2237549

Enriching Heraklit Modules by Agent
Interaction Diagrams

Daniel Moldt, Marcel Hansson, Lukas Seifert, Karl Ihlenfeldt,
Laif-Oke Clasen(B), Kjell Ehlers, and Matthias Feldmann

Department of Informatics, Faculty of Mathematics, Informatics and
Natural Sciences, University of Hamburg, Hamburg, Germany

laif-oke.clasen@uni-hamburg.de
http://www.paose.de

Abstract. Themodeling of systems in informatics has always been a chal-
lenge and the difficulty increases with the system’s scale and complexity.

Since there is no direct way to turn complex systems into executable
code, various modeling techniques are used to cover different perspectives
of a system with models. These models must then be turned into code cor-
rectly and consistently. But how to create, structure, and compose the var-
ious models throughout the development process?

As a formal basis, Reisig proposes netmodules, which inherit an associa-
tive calculus for composition. Practical modeling is addressed by the work
of Fettke and Reisig with the HERAKLIT approach, which adopts espe-
cially the net modules as a basis. Based on this, we combined the HER-
AKLIT approach with our Paose approach and its multi-agent system
elements.

As our main result we present HERAKLIT Interaction Diagrams
which we obtain by enriching HERAKLIT modules by Agent Interaction
Diagrams. We connect the concepts of reference nets and agents to HER-
AKLIT modules, and thereby construct Heraklit Agents.

Keywords: Petri Nets · Reference Nets · Modeling · Heraklit
Agents · HERAKLIT Modules · Modularization · Associative
Composition · Agent-oriented Petri Nets

1 Introduction

Informatics is always somehow involved in modeling. In [48] Thalheim empha-
sizes the importance of models and claims that on the level of Entity-Relationship
(ER) models, information systems and conceptual database modeling have
already been completely investigated. We are following his suggestion by inves-
tigating another branch of modeling: In this contribution, we are focussing on
domain-specific language sets (DSL), which can directly be transformed into
high-level Petri nets. Due to operational semantics, we follow a more process-
oriented view than Thalheim. In application modeling, we currently focus pri-
marily on software engineering, business informatics and distributed systems
development.

Supported by participants of our teaching project classes and many student theses.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Gomes and R. Lorenz (Eds.): PETRI NETS 2023, LNCS 13929, pp. 440–463, 2023.
https://doi.org/10.1007/978-3-031-33620-1_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33620-1_23&domain=pdf
https://doi.org/10.1007/978-3-031-33620-1_23

Heraklit Agents 441

In the context of software engineering Allen and Garlan made a similar pro-
posal (see [2]): They suggested to define architectural connectors as explicit
semantic entities, using a collection of protocols that characterize each of the
participant roles in an interaction and how these roles interact.

During the last years, Reisig has developed an associative composition app-
roach for Petri nets (see [43,44]) referring to [2]. He has extended his proposal of
net modules from [42] in a relevant modeling way. While it narrows the system
structures, it thereby provides a well-structured way to arrange system model
components.

Reisig offers the associative calculus for the composition of systems, which
is applicable in a wide range of system modeling and development. Working
together with Fettke, he developed the HERAKLIT approach1 (see http://
www.heraklit.org) to address business informatics models. While their approach
combines the Petri net composition calculus of Reisig without further restrictions
to the business modeling area, we propose a more rigorous way and restrict the
kinds of models even further.

Business models are nowadays often referred to as systems-of-systems or
ultra-large-scale systems [23]. A modeling technique that matches the model-
ing requirements can be found in nets as tokens in net systems. The concept
of nets-within-nets as defined by Valk in [50] can be found in several variants.
As our modeling, execution and validation tool we use Renew, which supports
(Java) reference nets as defined by Kummer in [29]. Besides the true concur-
rency semantics of Petri nets, reference nets inherit the concept of synchronous
channels and nets-within-nets paradigm.

Concerning application modeling, an adequate modeling paradigm is the use
of agents or multi-agent systems (MAS) (see e.g. [24] for a standard definition).
Agents and MAS extend the object-oriented concepts as they can incorporate
social concepts in their models. Dynamic behavior, relationships etc. are enriched
by the more abstract concept of interactions (e.g. speech acts), ontologies, belief-
desire-intention (BDI) architectures, intrinsic goals, mobility, etc. In our Paose-
approach (see [6,35]), we use reference nets as the basis of the units/agents that
compose the system (multi-agent system). Reference nets offer the possibility to
arbitrarily nested nets, by treating nets as a kind to objects in object-oriented
software development. They can even have self-references.

In the context of this approach, we developed, based on the speech act theory
of Austin [3] and Searle [47], our way of generating protocols for the commu-
nication of agents. As our modeling technique, we use Agent interaction
protocol diagrams (Aip) (see [11]), which can be seen as a specialized kind
of sequence diagram from UML. In [30] we showed how to verify such models
for the interaction of agents with workflow concepts [52].

In this contribution, we combine our former research results and the new
HERAKLIT approach of Fettke and Reisig [18,19]. This allows us to pick up
the original idea of Allen and Garlan [2], as it directly supports our way of

1 In the following, we use HERAKLIT in capital letters to refer to the work of Fettke
and Reisig. For our terms we use Heraklit Agents or Paose in lower case.

http://www.heraklit.org
http://www.heraklit.org

442 D. Moldt et al.

building Paose applications based on Aips. Reisig’s associative calculus is the
central background of the HERAKLIT modules. This calculus is a perfect fit for
our Aips. In this contribution, we therefore combine the Paose approach and
the HERAKLIT approach to provide Heraklit Agents. With Heraklit
Agents, our adapted Aips, called Heraklit Interaction Diagrams (Hids),
can be used to model the behavior of HERAKLIT modules in a similar way
as for Mulan agents in Paose. While the use of Hids limits the interaction
modeling of HERAKLIT, we have the advantage of systematic construction of
system models for which we have tool support.

In the following Sect. 2, we describe the context of our Paose-approach to
clarify which concepts are used for Heraklit Agents, and how these concepts
are applied. We introduce Fettke and Reisig’s HERAKLIT modules in Sect. 3.
Examples for modeling systems with the Paose approach can be found in Sect. 4.
In Sect. 5, we describe how we conceptually extend Mulan agents to Heraklit
Agents and how they can be generated. In Sect. 6 we explain the relationship
of the HERAKLIT and Paose approaches before we conclude in Sect. 7.

2 PAOSE Background

The context of our Petri net-based, Agent- and Organization-Oriented
Software Engineering approach (Paose, [6]) with its manyfold starting
points is explained briefly in the following.

As a basic concept we use agent-oriented Petri nets (see [4,32,38]). The key
idea is to encode classes and objects via a specific structure of Petri nets. Kum-
mer integrated this idea with the concepts of nets-within-nets [51] and syn-
chronous channels [12] to invent the reference net formalism [29]. Helpful expla-
nations can be found in [29], the Renew handbook (as Renew is the major tool
to build models of reference nets) and several publications, e.g. see [6,8,9,37]. In
this context the Mulan framework [28,45] with its main concept of the Mulan
agent was developed. These agent-oriented Petri nets allow for a mapping of
social metaphors of humans and social systems to our Petri net models.

2.1 Multi-agent System Modeling Paradigm

Paose is an approach for developing multi-agent systems. Cabac describes the
modeling techniques and the Mulan foundations used in the Paose approach,
which have been developed over the years, in [6].

Figure 1 shows a corresponding overview of the techniques and artifacts
of Paose. [6,9] present details of the techniques and tools. In this contribu-
tion, there is a particular focus on Agent interaction protocol diagrams
(Aips). Therefore, these are considered in the separate Subsect. 2.3.

According to the Paose approach, a multi-agent system can be divided into
three dimensions. The dimensions are:

Heraklit Agents 443

Fig. 1. Techniques and Artifacts of the Paose approach [6, p. 134]

1. Structure: Roles describe the structural aspects of a system. At runtime,
agents adopt one or more roles. A role can be adopted by any number of
agents. The agent-based modeling approach is an extension of object-oriented
software development.

2. Behavior: Interactions describe the behavior. An interaction always has
exactly one trigger, that starts a process within the system. A trigger can
have parameters as further input to the system. Triggers are defined accord-
ing to the size of the system, the application context and the capabilities of
the participants in such a way that concrete solutions can be developed for
them. One or more roles participate in an interaction. The participation of
the roles take place in an order specified by the interaction modeled as an
Aip.

3. Ontology: The ontology determines the common terminology of the agents,
e.g. common language concepts. The ontology is determined application-wise
for the system to be created.

The Paose approach applies some constraints on the net structures of indi-
vidual net instances to the now well-established concepts for high-level Petri nets
(via the underlying net template from which net instances are generated at run-
time). This follows the idea of agent-oriented architectures as indicated by FIPA
(see http://fipa.org/) for agent-oriented software engineering (AOSE) (see [24]
for a consolidating definition). In [4,38], the net structure was restricted to model
asynchronous communication of objects and agents. Synchronous communica-
tion was added as a structural gluing concept e.g. in [20,21,31,32]. Encapsula-
tion of internal components and separation of concern was the driving modeling
force, grounded by the true concurrency semantics of reference nets. A process

http://fipa.org/

444 D. Moldt et al.

Fig. 2. The Mulan Petri net model. [6]

and agent integrating perspective (see e.g. [1,30,53,54]) is complementing the
behavioral and structural modeling.

2.2 The MULAN Framework

For the structure of Paose models in general, the Mulan framework [45] is an
important contribution and has been improved in several ways over the years.
Figure 2 shows the general structure of the Mulan architecture. Mulan agents
use a nested net structure (dashed arrows in Fig. 2 indicate that a reference net
token points to the net instance). The use of references allows all net instances
to be held as first-order objects and thus have references to them. An important
advantage is that this allows for self-references. This implicitly opens up all Self-X
concepts to our agent modeling systems. The Mulan framework consists of some
key elements that allow each net to be used in several different environments,
since references can be used arbitrarily often:

1. Infrastructure: The infrastructure supports the communication structure
between platforms.

2. Agent Platform: An agent platform holds multiple agents and enables the
communication between them. An agent platform can in itself be considered
to be a special kind of agent.

3. Agent: The main part of Mulan is formed by the agents. They are the
acting parts of the system.

Heraklit Agents 445

4. Agent Components: An agent has a basic, specific structure. The tokens on
the places are nets. These nets are synchronized via synchronous channels and
the transitions of the agent structure. An agent can send and receive messages
over synchronous channels to and from other agents via the platform (orange
transitions in Fig. 2).
The net tokens used in the agent structure are (see left part of Fig. 2):
a) Factory: The factory is used to start instances of protocol nets or decision

components via the start transition.
b) Knowledge Base: The knowledge base (short KB) contains the infor-

mation an agent has. It is a net which has Strings of key-value pairs as
tokens. Persistent data is kept within the KB, while all protocol nets and
decision components cover transient data. A general perspective is that
the KB usually covers the persistent states of an agent. The interface of
the KB is accessed via the access transitions.

c) Decision Components: All decisions the agents take, based on their
knowledge, are done in the decision component (short DC). DCs are
arbitrary net structures that interact with the protocol nets and knowl-
edge base via the access transitions. Calculations and computations are
mainly done by decision component nets. Therefore DCs cover the func-
tionality of an agent.

d) Protocol: The protocol nets represent the interaction between agents.
Nets of these interactions in which an agent is participating are put in
the place protocols. Each agent that participates in a trigger-specific
communication adopts a part of the protocol net. Each protocol net part
of an agent covers a specific part of the communication between agents
defined for a trigger by an Aip.
The main structure of communication between agents is generated from
Aips (see Sect. 2.3 for details). Manually added inscriptions then repre-
sent the implementation part of protocol nets to make use of the agents’
internal functions and states. Protocol nets are usually structured like
branching processes or workflow nets with a finite number of repetitions.
Instances executed by an agent are created by the factory when the agent
receives a message for which it has not yet started a specific protocol net
instance. Based on the reference net formalism, multiple instances of a
single protocol net can be instantiated at the same time. The knowledge
base contains the information about which protocol net to instantiate for
which message as a key-value pair.

2.3 Agent Interaction Diagrams/Protocols

Sequence diagrams of UML model interactions between participants and show
the sequence of the exchanged messages, where a message is a method call or
signal. Agent interaction diagrams/protocols (Aips), as described in [6], extend
them with agent-oriented aspects, defined by the Foundation for Intelligent Phys-
ical Agents (FIPA, see http://fipa.org/) in the Agent Unified Modeling Language

http://fipa.org/

446 D. Moldt et al.

(a) Aip (b) Agent 1 (c) Agent 2

Fig. 3. Aip transformed into Petri nets

(AUML) [22]. An Aip describes a conversation between roles of agents. To rep-
resent an agent’s behavior for a given signal or message and its parameters,
more than one partial order of the actions (causal nets) might have to be mod-
eled. Therefore, control flow elements are introduced in Aips as an extension of
sequence diagrams of UML, through which alternatives and concurrency can be
expressed. These elements can be categorized as split and join operators. AND
splits and joins allow concurrency, XOR splits and joins allow explicit alternate
path handling. OR operators split and join paths, but usually the semantics is
not properly defined (see [5]). In Aips operators split the lifeline horizontally
and messages vertically. OR operators are not used in Aips. Compared to UML
not all kinds of messages can be drawn in Renew (e.g.: lost and found messages
are missing) as this usually requires a kind of global property of a system model.
Sequence diagrams are extended for implementation purposes by annotations for
KB and DC accesses.

The semantics of Aips can be expressed by Petri nets, which enables both
formal and operational semantics [10]. They can be transformed into Petri nets,
also referred to as protocol nets, with a pattern based approach as they are
mapped to reference net components as described in [5,6]. Protocol nets consist
of the basic tasks of agents [22] that occur in agent protocols [10]. Basic tasks
include, in particular, sending / receiving messages and the split / join operators.
Aips are better suited for our approach than extended UML sequence diagrams
as they are, beside the two operators, extended with the KB and DC annotations
to support an explicit design of the internal interfaces of a role already for
interaction modeling. In addition speech acts [3,47] are supported by detailed
message types with special semantics2.

Within Paose, Renew provides plugins that can model Aips and convert
them to protocol nets. Figure 3 a) shows a simple Aip modeled in Renew, also
with annotated lifelines and their conversion to Petri nets, to give an example
of what protocol net generation looks like. Figure 3 b) and c) show the two roles
involved for which the internal control flow structure is generated, here as a
2 http://fipa.org/.

http://fipa.org/

Heraklit Agents 447

reference net. The initiating agent (Agent0) is not modeled because it generates
the trigger of the process and is considered to be external to the process. Agent0
can be any kind of entity / unit inside the system or outside. In fact, it can be a
time event or an agent-internal decision of any agent in the entire system. The
$a1 and $a2 annotations indicate agent internal accesses to the KB of the agent.
$hello represents an example for an internal calculation / action of the agent,
performed as a necessary agent action during the conversation.

In addition to reference nets, Aips can also be converted into other forms
to serve other purposes such as P/T-nets for formal analyses [39]. A transfor-
mation into HERAKLIT modules with consistent semantics also allows for the
execution of the Aips and adds the aspect of composition as interaction. This is
being worked on in Renew and will be explained in Sect. 5.

3 HERAKLIT Background

In this section, we introduce the HERAKLIT modeling technique of Fettke
and Reisig [14,18] by explaining the concept of HERAKLIT modules and their
composition. Whilst Fettke and Reisig describe HERAKLIT in three dimensions
(architecture, static and dynamic), we are mainly interested in the architectural
side of HERAKLIT. The architecture of HERAKLIT is described by Fettke
and Reisig with three key components: modules, composition and refinements.
Each of them will be presented here.

3.1 HERAKLIT Module

Modeling systems in terms of Petri nets has many advantages, especially for dis-
tributed systems, but the expressiveness of Petri nets means that a model can
quickly become unwieldy as the size of the modeled system increases. Further-
more, changing small parts of the model can become quite complicated, as the
entire model may need to be adjusted. Therefore, modularization plays an essen-
tial role in modeling large systems. It allows different parts of the overall system
to be modeled as their own Petri nets or submodules. This reduces complexity
and increases comprehensibility. These modules can then be combined to form a
complete model of the system. Modularization can also aid in the validation of a
system, since validating several small nets is generally less costly than validating
their combination. Validation of such a submodule can be done via its interface,
separate from any implementation. This further reduces the cost of validation.
However, this requires a composition operation that preserves the properties of
the combined parts.

Fettke and Reisig [18] have defined such a composition operation with their
HERAKLIT modeling technique. They introduce HERAKLIT modules as
graphs with interfaces. For the scope of this paper, however, we will only use
Petri nets with interfaces and refer to them as net module.

Following [18], a net module, therefore, is a Petri net with a left and right
interface. Each interface is a (possibly empty) subset of the union of a net’s
place and transition sets. Fettke and Reisig do not require the interfaces to be

448 D. Moldt et al.

(a) producer net (b) mail service net (c) consumer net

Fig. 4. Three net modules, producer, mail service and consumer (Color figure online)

disjoint. In the general modeling we follow their semantics. For special context
this can be restricted. Therefore, interfaces are not necessarily disjoint. For a
given net module N , we will denote ∗N to refer to N ’s left interface, and N∗ to
refer to N ’s right interface. We will refer to all elements which are not part of
an interface as inner elements of a net module. Elements in an interface subset
have a label. Multiple elements can have the same label. Inner elements may
have a label, but are not required to.

Definition 1: A net module is a Petri net N = (P, T, F), with P a set of
places, T a set of transitions, and F ⊆ (T × P) ∪ (P × T) a set of arcs. A net
module N has two interfaces: A left interface ∗N ⊆ P ∪ T and a right interface
N∗ ⊆ P ∪ T . Every element e ∈ ∗N ∪ N∗ has a label.

As shown in Fig. 4, net modules are represented by a box. Transitions are
represented by rectangles, places as ellipses and tokens as [], as can be seen in
the resource place in the producer net. On the left and right side of the box,
the interfaces of the net are highlighted by thick black lines forming a bracket.
The elements that constitute the interface of a net are graphically placed on the
brackets and their labels are highlighted in blue.

3.2 Composition

Two net modules can be composed to yield a new net module by combining one
net module’s right interface with the other net module’s left interface. The fol-
lowing rules, analogous to those in [41], apply when composing two net modules
N1 • N2:

I Elements a ∈ N∗
1 and b ∈ ∗N2 are merged, if their label and type are the

same (meaning: both are places or both are transitions, and the labels are
the same). b is removed and all edges connected to it are connected to a
instead, preserving the structure of N2.

II Unmatched elements in unmatched elements in ∗N2 become part of ∗(N1 •N2)
and N∗

1 become part of (N1 • N2)∗.
III ∗N1 becomes a subset of ∗(N1 •N2) and N∗

2 becomes a subset of (N1 •N2)∗.

Heraklit Agents 449

Fig. 5. The net module resulting from composing producer • mail service

When composing producer • mail service, the places labeled product and the
transitions labeled commission are merged together and become inner elements
of the newly composed module. The result can be seen in Fig. 5.

The composition operation presented so far is not well-defined and allows
for some ambiguity: For any element of N∗

1 , there might be multiple matching
elements in ∗N2. Following rule I, it is not clear which of the matching elements
in ∗N2 should be chosen. To eliminate this ambiguity and obtain a deterministic
composition operation, Reisig defined in [41], as the basis for [18], to order all
elements of an interface that have the same type and label by an index function.
If there is more than one matching candidate element, the element with the
lowest index is selected. Graphically, the order can be understood from top to
bottom, with the top element having the lowest index. In the following, it is
assumed that the elements of the interface are ordered and composition is used
as a deterministic operation.

As shown by Reisig in [41], theorem 1, the deterministic version of the com-
position operation is associative. When composing producer • mail service • con-
sumer, the order in which the composition operator is applied does not matter:
(producer • mail service) • consumer = producer • (mail service • consumer)

Fig. 5 shows the resulting net module of the composition (producer • mail ser-
vice). If the consumer net module is combined with it, the net module in Fig. 7
results. Figure 6 shows the result of applying the composition operator to the
mail service and consumer net modules first. Composing the producer net
module with this result, Fig. 7 results as well.

However, the composition operation is not commutative. This can be seen
clearly when comparing Fig. 7 with Fig. 8.

Refinement. The refinement and abstraction of modules are a core part of
HERAKLIT’s architectural view. Every module can be seen as the result of
composing smaller modules, thus these smaller modules are refinements of the
bigger module’s parts. Applying this view recursively, we come to the net struc-
tures defining the behavior of the module. Inversely, abstraction allows us to
view a module in a broader sense, separate from its concrete behavior. Multiple
composed modules can, therefore, be seen as one single module.

450 D. Moldt et al.

Fig. 6. The net module resulting from composing mail service • consumer

Fig. 7. The net module resulting from composing producer • mail service • consumer

4 Modularized Modeling Examples

After taking a brief look into Fettke and Reisig’s approach to modeling with
HERAKLIT, we will explore a classic example and Renew’s plugins using
the Paose approach. By this we motivate our modeling motivation and the
relation to multi-agent systems and software development, especially our Renew
modularization.

4.1 Modeling of Organizational Units

HERAKLIT concepts have already been taken up in the context of business
modeling in various case studies (see e.g. [15–17]). HERAKLIT addresses in
a constructive way the modeling of organizational units as can be found in
normal organizations. Based on Petri nets and the idea of partial order semantics,
causal nets are the backbone of the approach. Causal nets and scenarios, as
used in HERAKLIT, are defined in [42]. Examples of this can be found in [18,
Case studies], where Fettke and Reisig model different scenarios using causal
nets and HERAKLIT modules. Ideas to extend the agent-oriented approach of
Paose [6,9,36] can be found in [55]. Wester-Ebbinghaus describes how to model
organizational units based on reference nets and interpret multi-agent systems
as organizational units to reach a higher level of abstraction in system models.

Heraklit Agents 451

Fig. 8. The net module resulting from composing consumer • producer • mail service

Producer

store

Storage

Consumer

retrieve

getList

Fig. 9. Coarse Design Diagram (see [6, p. 264])

4.2 Software Engineering: Producer/Storage/Consumer Example

We’d like to broaden the context by introducing an example from the field
of software engineering: The Producer/Storage/Consumer example (PSC) that
Cabac proposes in [6, pp. 263–280] is a simple extended version of the clas-
sic Producer/Consumer problem. It consists of three roles (Producer, Storage,
Consumer) and their associated interactions (“store”, “getList”, “retrieve”). An
overview of these relationships is given in Fig. 9.

Using the Paose approach (see Sect. 2), Cabac utilized agent interaction
protocol diagrams for his model in [6], thereby explicating the interfaces. Devel-
opment of the example was conducted using Renew and Mulan, which allowed
for an agent-oriented implementation based on nets and Java code. Architectural
components of the transformed PSC in our Java prototype reflect the static and
the behavioral perspective in code. Roles cover states and functionality of the
participating units. Interaction between roles is covered mainly by Java inter-
faces, supporting, like motivated in [2], a separation of interfaces and implemen-
tations. Details of that architecture are beyond the scope of this paper.

452 D. Moldt et al.

4.3 RENEW’s Plugins

The agent approach of modeling systems is not only a theoretical concept, but
has also been employed in the development of Renew to some extend (see [37]).

Renew’s architecture is based on modularized plugins and was developed
based on the concurrency theory of Petri [40] with the agent approach of Mulan
in mind. Renew’s plugins, therefore, can be interpreted as agents (see [7]).
Renew as a whole can be seen as a multi-agent system [9].

Modeling techniques, as described in Fig. 1 are used. We currently focus on
how to follow the original idea of Reisig (see [41]) and use his formal basis for
our Aips. Aips, as used in Paose, directly inherit the associative composition,
enabling us to apply the results of Reisig [41] to our Java modules resp. plugins.
The here introduced Hids shall be further enhanced for this kind of application
area.

5 Heraklit Interaction Diagrams

Heraklit Interaction Diagrams (Hids) are restricted Aips (see Sect. 2.3),
that support the modeling of interactions of HERAKLIT modules. The restric-
tions result from our Paose approach. We associate a HERAKLIT module
with an agent and derive the internal structure of the generated net modules for
execution purposes. In the following first part we describe net modules, that are
already mentioned in Sect. 3, with reference net semantics as the implementation
of HERAKLIT modules. In the second part of this chapter we describe how
HERAKLIT modules and their interfaces are generated from Hids.

5.1 Extending Net Modules with Reference Nets

Using simple net modules to model the individual parts of a system has many
advantages, but composing these parts can still result in large, complex, and
difficult-to-understand nets. This can be solved by colored Petri nets, as Fettke
and Reisig [18,41] showed. Therefore, we use Petri nets in the form of higher level
reference nets. Due to Kummer’s definition of the high-level Petri net formalism
of reference nets [29] condition/event nets (C/E nets, see [46,49]) can also be
seen as a basis. Beside the normal inscription, like in e.g. Coloured Petri Nets
(see [25,26]), reference nets provide synchronous channels. Synchronous chan-
nels go back to the work of the Weltlinie of Minkowski [34] picked up by Petri in
his concurrency theory. Several authors have used the concept of synchroniza-
tion. Jessen and Valk used it in [27] and Christensen and Hansen extended the
definition of Coloured Petri Nets in [12].

In reference nets, synchronous channels are one of the core concepts. Refer-
ence nets do not have a page concept as in the original Coloured Petri Net
definition of Kurt Jensen [25]. However, as reference nets have been imple-
mented in Java, net templates can be seen as net classes and net instances
as net objects. References to objects are created at instantiation time and can

Heraklit Agents 453

be used as tokens. While in Java methods of objects are being used to communi-
cate between objects, we use synchronous channels to establish communication
between net objects in reference nets.

Synchronous channels as introduced by [12] and used in the reference net for-
malism of Kummer [29] allow to bind an arbitrary large number of transitions
to be synchronized via one or more synchronous channels. The underlying mech-
anisms are elaborated unification algorithms. These are used to realize several
formalisms especially for reference nets and P/T-nets. Synchronous channels are
defined by an uplink and a downlink. When a transition inscribed with a down-
link fires, it binds itself to a transition inscribed with its channel’s uplink and
causes this transition to fire as well.

In reference nets, the tokens can be references to other nets and can, there-
fore, be used as such. The combination of tokens to other net instances and
synchronous channels on transitions support dynamic net structures in a way
similar to object based systems. As synchronous channels attached to transitions
can be seen as method calls, values can be passed by parameters to and from
the called transition. The uplink can be interpreted as a method’s signature,
and a downlink as a method call. The number of defined parameters is part of
an uplink’s definition. All unbound variables need to be bound for the synchro-
nization. This mechanism allows us to execute arbitrarily complex algorithms
in a single step being distributed over any number of net instances and their
transitions with the pairwise bound synchronous channels.

We can combine the concepts of net modules and reference nets by extending
our previous net module semantics for colored nets, and defining the behavior
for merging transitions inscribed with synchronous channels. As shown by Reisig
in [41], Sect. 4.3, the coloring of a net does not affect the composition or its
properties. For colored nets N1, N2, we can sum up the tokens of to-be-merged
places at their joint place in N1 •N2 and thereby preserve associativity. For places
p1 ∈ N∗

1 , p2 ∈ ∗N2, transitions t1 ∈ N∗
1 , t2 ∈ ∗N2, and inscribed arcs between

p1, t1 and p2, t2, we can add the weights of the arcs together when merging p1, p2
and t1, t2, retaining associativity. Overall, we follow the same rules as in [18].

We use uplinks to model an agent’s reception of a message or signal, and
downlinks to model an agent sending a message or signal. Both of these actions
represent an agent’s interaction with its environment. Since we want the inner
workings of an agent to be clearly distinguishable from its interaction with
its environment. Only inter agent interaction is used for the composition, syn-
chronous channels used for intra net communication are retained.

Furthermore, the interactions in which an agent can participate in are deter-
mined by its interface. Communication between agents, therefore, is defined by
their composition. This is transferred directly to HERAKLIT modules, which
places the focus on the interaction of the modules.

Therefore, we have to amend rule I of the previous composition rules (see
Sect. 3.2), as we want the communication pattern of agents to be determined by
their respective interfaces and their composition:

I.T Transitions t1 ∈ N∗
1 and t2 ∈ ∗N2 are merged, iff their label is the same,

and either

454 D. Moldt et al.

a) t1 is inscribed with an uplink and t2 has its corresponding downlink, or
b) t2 is inscribed with an uplink and t1 has its corresponding downlink, or
c) neither has a synchronous channel inscription.
t2 is removed and all edges connected to it are instead connected to t1,
retaining N2’s structure. Both t1’s and t2’s inter module up- and downlinks
are removed, if they exist. All variables that need to be set as parameters
between the two transitions are bound consistently. We assume that the
respective internal module variables are bound locally and annotated con-
sistently at the now internal transition t1. If the variables of the parameters
are locally named differently (t1(x) vs. t2(y)), the corresponding variables
are renamed accordingly.

I.P Places p1 ∈ N∗
1 and p2 ∈ ∗N2 are merged, iff their labels are the same. p2 is

removed, and all edges connected to it are instead connected to p1, retaining
N2’s structure. Any token contained in p2 is added to p1.

As discussed in Sect. 3.2, we assume all interface elements to be ordered like
in [18]. This yields unambiguous communication patterns between the HERAK-
LIT modules, since the composition of HERAKLIT modules is well-defined by
this.

5.2 Generating HERAKLIT Modules

Our current goal is to enable an automatic translation of Aips, now called Hids
due to the HERAKLIT context, into net modules in Renew. For each HER-
AKLIT module in an Hid a (reference) net module shall be generated. The
modeling basis for this generation is the transfer of our agent modeling concepts
to the HERAKLIT approach.

In Sect. 2.3 we described how Petri nets/reference nets are generated from
Aips.3

For Mulan agents, there is a clear separation of the interfaces, the inter-
nal states, and the functionality by additional parts of the agent model. By
restricting HERAKLIT modules in a very similar way, we thereby decrease
the modeling capabilities of HERAKLIT modules and require more modules in
total. These additional modules, however, can easily be added, as Mulan/Paose
models already define a reference architecture. An example of a net module gen-
erated from the same Aip as the net in Fig. 3, is shown in Fig. 10. Internal parts
are omitted, but the a1 annotation shows how to access the internal parts of
an agent (the KB in this example), which could be any internal implementation
function of a module.

As one agent can be involved in multiple interactions for different triggers,
different parts of the agent would be translated into different net modules. The

3 Renew can be used to generate net modules also based on net components, as
described in [6]. The structure of the reference net components can be kept. Addi-
tional elements can be added to model inner parts of agents’ behaviors. In Aips these
were DCs and KBs.

Heraklit Agents 455

Fig. 10. Aip transformed into two net modules

Fig. 11. The union over the producer and mail service nets

composition of the modules would not be sufficient, as the automatically gener-
ated modules could have unintentionally matching elements in their interfaces.
We can, for example, interpret the producer and mail service modules from Fig. 4
as two interactions of one agent. Composing the two modules would result in
Fig. 5, which does represent the wanted behavior. The agent shouldn’t interact
with himself, but instead offer exactly those elements in its interface, as the pro-
ducer and mail service nets dictate. We can achieve this by performing a union
over the two nets. The result is shown in Fig. 11.

Hids specify the roles and interactions of Heraklit Agents without reveal-
ing the internal implementation. Following this modeling perspective, an Hid
does not only specify the interfaces, but also the different communication part-
ners and therefore the composition. One Hid models one interaction of a specific
set of roles, which together provide a service to the whole system. One role can

456 D. Moldt et al.

be part of several interactions. Interfaces between the roles directly result from
an interaction. The union of all interfaces allows a role to encapsulate its inter-
nal functions and states, as they do not have any connection to the environment
outside the role, respective to the agent that has this role.

6 Modeling HERAKLIT Modules with MULAN Concepts

The communication of agents is very flexible. Our agents have no limit on the
number of partners with which they may communicate. In principle, every agent
can communicate with any other agent. However, in a good system design the
communication is well-defined. This is covered by the definition of the possible
interactions within a system.

We model the communication flow with our interaction diagrams, the Aips
Sect. 2.3, but these do not restrict how agents may interact. Any kind of interac-
tion protocol can be designed. For a given system, the Paose approach defines
all possible triggers of interactions as starting points. Assuming a static struc-
ture for the Petri-net based agents, where the set of possible interactions for each
agent does not change, the cardinality of each agent’s interface is limited. A clear
definition of the allowed interaction and the interface of each agent exists.

However, Mulan agents, and thus our entities in Paose, are based on refer-
ence nets (see Sect. 2). By hierarchizing nets within nets and using synchronous
channels, they can generate new objects and structures and thereby learn new
interaction patterns. While constraints on communication channels and partners
are useful for modeling software systems with unique method calls as a form of
communication, general-purpose agents require a dynamic interface.

To some extent, this goes beyond the approach of HERAKLIT, where mod-
els aim for a static system interface. To remedy this, we propose to extend
HERAKLIT modules to Heraklit Agents in the spirit of Mulan agents
from Paose. In order to achieve this, we need to adapt the mechanisms built
into our Paose multi-agent systems: Besides introducing some kind of knowl-
edge base and decision component, a mechanism for starting new net instances
is necessary. The Hids can cover this if they are modeled by reference nets, for
example. In addition, agents need to provide a factory-like net component that
can instantiate nets based on received tokens (e.g. messages from other parts of
the system). However, these dynamic options are beyond the scope of this paper
and will be explained in further publications.

Therefore, in this paper, we restrict the Heraklit Agents to a static inter-
face. Due to this, Heraklit Agents have a clear separation into a) inter agent
communication represented by Hids and b) internal functionality and states,
modeled by further net models that are encapsulated inside the Heraklit
Agents.

Heraklit Agents are more specialized than HERAKLIT modules. Both
have graphs as a basis, but with Heraklit Agents we restrict the possible

Heraklit Agents 457

forms of the graph. In particular, we propose to model the internal structure as
an agent-oriented Petri net (see Sect. 2). In this contribution, we restrict even
every Heraklit Agent to a single role. We also consider every HERAKLIT
module to be its own agent. Even considering net atoms of HERAKLIT as
models, despite their very limited capabilities, they are nevertheless actors in an
environment.

In HERAKLIT, composition of HERAKLIT modules follows the ideas
of [41] in an elaborate way. This corresponds with our modeling of the inter-
action of Mulan agents by Aips. This is why we can apply our Aip/Hid mod-
eling to Heraklit Agents. In this way, a role aggregates the behaviors as Hids.
For each trigger and its corresponding process, each participating role covers its
part of a Hid. Since several Hids/processes exist for a system, roles aggregate
those partial interaction processes. Furthermore, roles (and hence Heraklit
Agents) contain the internal functionality and states, that are addressed by
the interaction.

In terms of a multi-agent system, we use the roles as structuring elements
and the Heraklit Agent as the executing elements. The question now is how
to compose whole systems with the HERAKLIT approach based on our way
of modeling. One interaction in one Hid describes a composition like A • B • C
(see Sect. 3). A second interaction can be E • F • G. In a special case where A
and E belong to the same module in the HERAKLIT modeling paradigm, this
can also be covered. However, it is necessary to have unique interface labels.
The result is to have AE as the new HERAKLIT module. If B,C, F and G
are independent, then the composition can be written as AE • B • C • F • G. The
ordering of B and C, as well as the ordering of F and G, must be kept, however,
the two sequences can be interleaved due to the disjunct labeling that we require
in our Hid.

Using reference nets for our Heraklit Agents also provides precise seman-
tics and allows dynamic net structures via synchronous channels and net
instances, which are not provided in HERAKLIT itself. This allows us to reuse
concepts of our agent approach directly without the need to alter these in drastic
ways. An examples is the internal functionality and the state of an agent, usu-
ally modeled as a knowledge base and decision component (see [6]). Noteworthy
is that functionality and state are encapsulated within a Heraklit Agent as
there is no intersection with the interface. Just as in our agent approach, they
support the concept that the behavior of an agent is influenced by its inter-
nal state. Overall, the internal structure of Heraklit Agent is given by our
agent-oriented Petri net, whose features are similar to our Mulan agent.

Our multi-agent system from Paose also follows the principle of agents resid-
ing in platforms to communicate, and the platform itself is considered an agent
as well. This form of hierarchization is similar to Heraklits’ concept of abstrac-
tion, where the composition of modules is in itself a module. We can also apply
this concept to our Heraklit Agents: The composition of different Heraklit
Agents results in a Heraklit Agent, which can be seen as a platform.

458 D. Moldt et al.

As can be seen, we have two forms of hierarchization: The composition of
multiple Heraklit Agents into one, and the division of a Heraklit Agent
into various net instances.

In a more detailed view, the HERAKLIT and Paose approaches are easily
integrated due to the underlying basis of Petri nets: Heraklit modules can be
modeled inside of other modules. The overall behavior is then internalized by
their composition. Only the interfaces remain accessible in the case that they
are not merged inside the module. This is the central property derived from the
associative composition calculus of Reisig [41] for Petri net models. Together,
Fettke and Reisig extend this to HERAKLIT models, which can, therefore,
also be composed in an associative way.

In Paose, agents are composed in a similar way. However, the way how a
modeler proceeds is different. The whole system is separated by different per-
spectives (see Fig. 1). In the practical modeling context, modelers start with the
idea to cover the reaction of a triggering event of a system.

One can start with a simple scenario and then add roles or interactions as
necessary from the application perspective. Indeed, the Hids start with a simple
trigger (initial marking) to model a scenario that can be covered by a causal net
model. Adding parameters to the trigger or taking different internal states of the
system into consideration, the model covers alternatives (leading to branching
processes as models [13]). The case of simple repetitions is covered by loops
inside the models, leading from a branching process to a workflow like net [52].
Such an example of a model can be seen in Fig. 12. This kind of net can be
tested in Paose by considering the initial marking of a net to be the messages
that are sent to an agent. In Mulan, the interface of an agent is modeled by
only two transitions. These in and out transitions (called receive msg and send
msg in Fig. 2) can be synchronized with the platform of an agent to handle the
communication with other agents. All possible markings coming from the in
transition are the possible initial markings of the respective agent net.

Fig. 12. System net with cycles, from [18, figure 20]

Heraklit Agents 459

In Paose, the internal structure of an agent is fixed. Flexibility comes from
the use of net instances that are used inside the agent. All these instances are
related in a special structure via synchronous channels. In this way, we can cover
a clear separation of the control flow (for which the associative calculus provides
the background), the functionality and states.

In the application areas of an organization, workflows are usually used to
cover the control flow. The execution of the real work is hidden in so called
internal functions. In the context of software architecture, the design of soft-
ware component interactions is normally modeled by static interfaces. Dynamic
aspects are covered e.g. by the contract model of Meyer [33]. In Paose this is
integrated into the design of the Aips, which can be considered as contracts. Hids
now transfer this idea to HERAKLIT modules. Restricting the HERAKLIT
modules further leads to the notion of Heraklit Agents.

7 Conclusion

Summary. In this paper we proposed a refinement of our Aips in the form
of HERAKLIT Interaction Diagrams (Hids). We use these to generate net
modules, which will form the basis of the interface components of our Heraklit
Agent. They specify the interactions a role is part of. All interactions merged
together form the interactions one agent is capable of. To do this, we take the
union over the net modules.

We introduced the Heraklit Agents as specialized HERAKLIT modules.
Heraklit Agents are a fusion of the concepts of HERAKLIT with our agent
concepts from Paose and Mulan. Internally, it contains all the aspects of an
agent, such as a knowledge base and a decision component, and on its interface,
it has components corresponding to the possible calls as given by the Hid.

Finally, we have shown the usefulness of our approach with modeling exam-
ples.

Outlook. Currently, we use a mapping of each agent having one role. In Paose,
an agent can also take on different roles. Currently, we restricted this for our
Heraklit Agents. In the future, we can imagine to combine different roles
into one Heraklit Agent via a union operation and thus cover this aspect
of Paose as well. The union operation would merge the interface elements and
other net structures. We considered using the composition for this, but we would,
for example, need to either relabel interface elements or to alter the agents to
be merged. This would be necessary, as two agents that are to be merged could
accidentally have matching gates due to being automatically generated. This
would cause unwanted behavior.

Currently, we more or less use and adapt the architectural dimension of
HERAKLIT. It could be interesting to see how the static dimension could fit
into our Paose approach. Here the intentions of [2] and our Paose approach
seem to fit very well to address the HERAKLIT approach.

460 D. Moldt et al.

References

1. van der Aalst, W., Moldt, D., Valk, R., Wienberg, F.: Enacting interorganiza-
tional workflows using nets in nets. In: Becker, J., Mühlen, M., Rosemann, M.
(eds.) Proceedings of the 1999 Workflow Management Conference Workflow-based
Applications, Münster, Nov. 9th 1999, pp. 117–136. Working Paper Series of the
Department of Information Systems, University of Münster, Department of Infor-
mation Systems, Steinfurter Str. 109, 48149 Münster (1999), working Paper No.
70

2. Allen, R., Garlan, D.: A formal basis for architectural connection. ACM Trans.
Softw. Eng. Methodol. 6(3), 213–249 (1997). https://doi.org/10.1145/258077.
258078

3. Austin, J.L.: How to do things with words. Harvard University Press (1962)
4. Becker, U., Moldt, D.: Objekt-orientierte Konzepte für gefärbte Petrinetze. In:

Scheschonk, G., Reisig, W. (eds.) Petri-Netze im Einsatz für Entwurf und Entwick-
lung von Informationssystemen, pp. 140–151. Gesellschaft für Informatik, Springer-
Verlag, Berlin Heidelberg New York, Informatik Aktuell (1993)

5. Cabac, L.: Modeling agent interaction protocols with AUML diagrams and petri
nets. Diploma thesis, University of Hamburg, Department of Computer Science,
Vogt-Kölln Str. 30, D-22527 Hamburg (2003)

6. Cabac, L.: Modeling petri net-based multi-agent applications. Dissertation, Univer-
sity of Hamburg, Department of Informatics, Vogt-Kölln Str. 30, D-22527 Hamburg
(2010). https://ediss.sub.uni-hamburg.de/handle/ediss/3691

7. Cabac, L., Duvigneau, M., Moldt, D., Rölke, H.: Applying multi-agent concepts
to dynamic plug-in architectures. In: Müller, J.P., Zambonelli, F. (eds.) AOSE
2005. LNCS, vol. 3950, pp. 190–204. Springer, Heidelberg (2006). https://doi.org/
10.1007/11752660_15

8. Cabac, L., Haustermann, M., Mosteller, D.: Renew 2.5 – towards a comprehensive
integrated development environment for Petri net-based applications. In: Kordon,
F., Moldt, D. (eds.) PETRI NETS 2016. LNCS, vol. 9698, pp. 101–112. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-39086-4_7

9. Cabac, L., Haustermann, M., Mosteller, D.: Software development with Petri nets
and agents: approach, frameworks and tool set. Sci. Comput. Program. 157, 56–70
(2018). https://doi.org/10.1016/j.scico.2017.12.003

10. Cabac, L., Moldt, D.: Formal semantics for AUML agent interaction protocol dia-
grams. In: Odell, J., Giorgini, P., Müller, J.P. (eds.) AOSE 2004. LNCS, vol. 3382,
pp. 47–61. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30578-
1_4

11. Cabac, L., Moldt, D., Rölke, H.: A proposal for structuring petri net-based agent
interaction protocols. In: van der Aalst, W.M.P., Best, E. (eds.) ICATPN 2003.
LNCS, vol. 2679, pp. 102–120. Springer, Heidelberg (2003). https://doi.org/10.
1007/3-540-44919-1_10

12. Christensen, S., Hansen, N.D.: Coloured Petri nets extended with channels for
synchronous communication. Tech. Rep. DAIMI PB-390, Aarhus University (1992)

13. Engelfriet, J.: Branching processes of Petri nets. Acta Informatica 28, 575–591
(1991)

14. Fettke, P., Reisig, W.: Modelling service-oriented systems and cloud services with
Heraklit. CoRR abs/2009.14040 (2020). https://arxiv.org/abs/2009.14040

15. Fettke, P., Reisig, W.: Heraklit case study: adder (2020). Heraklit working paper,
v1, 5 December 2020. https://www.heraklit.org

https://doi.org/10.1145/258077.258078
https://doi.org/10.1145/258077.258078
https://ediss.sub.uni-hamburg.de/handle/ediss/3691
https://doi.org/10.1007/11752660_15
https://doi.org/10.1007/11752660_15
https://doi.org/10.1007/978-3-319-39086-4_7
https://doi.org/10.1016/j.scico.2017.12.003
https://doi.org/10.1007/978-3-540-30578-1_4
https://doi.org/10.1007/978-3-540-30578-1_4
https://doi.org/10.1007/3-540-44919-1_10
https://doi.org/10.1007/3-540-44919-1_10
https://arxiv.org/abs/2009.14040
https://www.heraklit.org

Heraklit Agents 461

16. Fettke, P., Reisig, W.: Heraklit case study: parallel adder (2020). Heraklit working
paper, v1, 5 December 2020. https://www.heraklit.org

17. Fettke, P., Reisig, W.: Heraklit case study: retailer (2020). Heraklit working paper,
v1, 21 December 2020. https://www.heraklit.org

18. Fettke, P., Reisig, W.: Handbook of Heraklit (2021). Heraklit-working paper, v1.1,
10 September 2021. https://www.heraklit.org

19. Fettke, P., Reisig, W.: Modellieren mit Heraklit. In: Riebisch, M., Tropmann-Frick,
M. (eds.) Modellierung 2022, 27. Juni - 01. Juli 2022, Hamburg, Deutschland. LNI,
vol. P-324, pp. 77–92. Gesellschaft für Informatik e.V. (2022). https://doi.org/10.
18420/modellierung2022-005

20. Fix, J.: Emotionale Agenten: Darstellung der emotionstheoretischen Grundlagen
und Entwicklung eines Referenzmodells auf Basis einer petrinetz-basierten Model-
lierungstechnik. Dissertation, University of Hamburg, Department of Informatics,
Vogt-Kölln Str. 30, D-22527 Hamburg (2012). https://ediss.sub.uni-hamburg.de/
volltexte/2012/5968/

21. Fix, J., Duvigneau, M., Moldt, D.: Bereitstellung eines Synchronisationsmechanis-
mus für MULAN basierte Agenten. In: Bergenthum, R., Desel, J. (eds.) Algorith-
men und Werkzeuge für Petrinetze. 18. Workshop AWPN 2011, pp. 8–14. Hagen,
September 2011. Tagungsband (2011)

22. Foundation for Intelligent Physical Agents: FIPA interaction protocol library spec-
ification (2000). https://fipa.org/specs/fipa00025/PC00025C.html

23. Gabriel, R.P., Northrop, L.M., Schmidt, D.C., Sullivan, K.J.: Ultra-large-scale sys-
tems. In: Tarr, P.L., Cook, W.R. (eds.) Companion to the 21th Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications, pp. 632–634. OOPSLA 2006, 22–26 October 2006, Portland, Oregon,
USA. ACM (2006). https://doi.org/10.1145/1176617.1176645

24. Jennings, N.R.: On agent-based software engineering. Artif. Intell. 117(2), 277–296
(2000)

25. Brauer, W.., Reisig, W.., Rozenberg, G. (eds.).: Petri Nets: Central Models and
Their Properties: ACPN 1986, Part I Proceedings of an Advanced Course Bad Hon-
nef, 8–19 September 1986. LNCS, vol. 254. Springer, Heidelberg (1987). https://
doi.org/10.1007/978-3-540-47919-2

26. Jensen, K., Kristensen, L.M.: Colored petri nets: a graphical language for for-
mal modeling and validation of concurrent systems. Commun. ACM 58(6), 61–70
(2015)

27. Jessen, E., Valk, R.: Rechensysteme: Grundlagen der Modellbildung. Springer,
Heidelberg, Studienreihe Informatik (1987). https://doi.org/10.1007/978-3-642-
71120-6

28. Köhler, M., Moldt, D., Rölke, H.: Modelling Mobility and Mobile Agents Using
Nets within Nets. In: van der Aalst, W.M.P., Best, E. (eds.) ICATPN 2003. LNCS,
vol. 2679, pp. 121–139. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-44919-1_11

29. Kummer, O.: Referenznetze. Logos Verlag, Berlin (2002). https://www.logos-
verlag.de/cgi-bin/engbuchmid?isbn=0035&lng=eng&id=

30. Lehmann, K., Moldt, D.: Modelling and Analysis of Agent Protocols with Petri
Nets. In: Lindemann, G., Denzinger, J., Timm, I.J., Unland, R. (eds.) MATES
2004. LNCS (LNAI), vol. 3187, pp. 85–98. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-30082-3_7

31. Maier, C.: Objektorientierte Analyse mit gefärbten Petrinetzen. Diploma thesis,
University of Hamburg, Department of Computer Science (1997)

https://www.heraklit.org
https://www.heraklit.org
https://www.heraklit.org
https://doi.org/10.18420/modellierung2022-005
https://doi.org/10.18420/modellierung2022-005
https://ediss.sub.uni-hamburg.de/volltexte/2012/5968/
https://ediss.sub.uni-hamburg.de/volltexte/2012/5968/
https://fipa.org/specs/fipa00025/PC00025C.html
https://doi.org/10.1145/1176617.1176645
https://doi.org/10.1007/978-3-540-47919-2
https://doi.org/10.1007/978-3-540-47919-2
https://doi.org/10.1007/978-3-642-71120-6
https://doi.org/10.1007/978-3-642-71120-6
https://doi.org/10.1007/3-540-44919-1_11
https://doi.org/10.1007/3-540-44919-1_11
https://www.logos-verlag.de/cgi-bin/engbuchmid?isbn=0035& lng=eng&id=
https://www.logos-verlag.de/cgi-bin/engbuchmid?isbn=0035& lng=eng&id=
https://doi.org/10.1007/978-3-540-30082-3_7
https://doi.org/10.1007/978-3-540-30082-3_7

462 D. Moldt et al.

32. Maier, C., Moldt, D.: Object coloured petri nets - a formal technique for object
oriented modelling. In: Agha, G.A., De Cindio, F., Rozenberg, G. (eds.) Concur-
rent Object-Oriented Programming and Petri Nets. LNCS, vol. 2001, pp. 406–427.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45397-0_16

33. Meyer, B.: Object-Oriented Software Construction. Prentice Hall, London (1988)
34. Minkowski, H.: Raum und Zeit. Vortrag, gehalten auf der 80 Naturforscherver-

sammlung zu Köln am 21 September 1908. B. G. Teubner (1909)
35. Moldt, D.: Petrinetze als Denkzeug. In: Farwer, B., Moldt, D. (eds.) Object Petri

Nets, Processes, and Object Calculi, pp. 51–70. No. FBI-HH-B-265/05 in Report of
the Department of Informatics, University of Hamburg, Department of Computer
Science, Vogt-Kölln Str. 30, D-22527 Hamburg (2005)

36. Moldt, D.: PAOSE: A way to develop distributed software systems based on Petri
nets and agents. In: Barjis, J., Ultes-Nitsche, U., Augusto, J.C. (eds.) Proceedings
of The Fourth International Workshop on Modelling, Simulation, Verification and
Validation of Enterprise Information Systems (MSVVEIS2006), 23–24 May 2006 -
Paphos, Cyprus 2006, pp. 1–2 (2006)

37. Moldt, D., et al.: Renew: Modularized architecture and new features. In: Gomes,
L., Lorenz, R. (eds.) Application and Theory of Petri Nets and Concurrency - 44th
International Conference, PETRI NETS 2023, Lisboa, Portugal, 26–30 June 2023,
Proceedings. Lecture Notes in Computer Science, vol. this volume. Springer (2023)

38. Moldt, D., Wienberg, F.: Multi-agent-systems based on coloured petri nets. In:
Azéma, P., Balbo, G. (eds.) ICATPN 1997. LNCS, vol. 1248, pp. 82–101. Springer,
Heidelberg (1997). https://doi.org/10.1007/3-540-63139-9_31

39. Mosteller, D., Cabac, L., Haustermann, M.: Providing Petri net-based semantics
in model driven-development for the Renew meta-modeling framework. In: PNSE
@ Petri Nets. CEUR Workshop Proceedings, vol. 1372, pp. 99–114. CEUR-WS.org
(2015)

40. Petri, C.A.: Concurrency theory. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.)
ACPN 1986. LNCS, vol. 254, pp. 4–24. Springer, Heidelberg (1987). https://doi.
org/10.1007/978-3-540-47919-2_2

41. Reisig, W.: Simple composition of nets. In: Franceschinis, G., Wolf, K. (eds.)
PETRI NETS 2009. LNCS, vol. 5606, pp. 23–42. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-02424-5_4

42. Reisig, W.: Understanding petri nets - modeling techniques, analysis methods, case
studies. Springer (2013). https://doi.org/10.1007/978-3-642-33278-4

43. Reisig, W.: Associative composition of components with double-sided inter-
faces. Acta Informatica 56(3), 229–253 (2019). https://doi.org/10.1007/s00236-
018-0328-7

44. Reisig, W.: Composition of component models - a key to construct big systems.
In: Margaria, T., Steffen, B. (eds.) ISoLA 2020. LNCS, vol. 12477, pp. 171–188.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61470-6_11

45. Rölke, H.: Modellierung von Agenten und Multiagentensystemen - Grundlagen und
Anwendungen, Agent Technology - Theory and Applications, vol. 2. Logos Verlag,
Berlin (2004). https://logos-verlag.de/cgi-bin/engbuchmid?isbn=0768&lng=eng&
id=

46. Rozenberg, G.: Behaviour of elementary net systems. In: Brauer, W., Reisig, W.,
Rozenberg, G. (eds.) Petri Nets: Central Models and Their Properties, Advances in
Petri Nets 1986, Part I, Proceedings of an Advanced Course, Bad Honnef, Germany,
8–19 September 1986. LNCS, vol. 254, pp. 60–94. Springer, Heidelberg (1986).
https://doi.org/10.1007/BFb0046836

https://doi.org/10.1007/3-540-45397-0_16
https://doi.org/10.1007/3-540-63139-9_31
https://doi.org/10.1007/978-3-540-47919-2_2
https://doi.org/10.1007/978-3-540-47919-2_2
https://doi.org/10.1007/978-3-642-02424-5_4
https://doi.org/10.1007/978-3-642-33278-4
https://doi.org/10.1007/s00236-018-0328-7
https://doi.org/10.1007/s00236-018-0328-7
https://doi.org/10.1007/978-3-030-61470-6_11
https://logos-verlag.de/cgi-bin/engbuchmid?isbn=0768&lng=eng& id=
https://logos-verlag.de/cgi-bin/engbuchmid?isbn=0768&lng=eng& id=
https://doi.org/10.1007/BFb0046836

Heraklit Agents 463

47. Searle, J.R.: Speech acts: an essay in the philosophy of language. Cambridge Uni-
versity Press (1969). https://doi.org/10.1017/CBO9781139173438

48. Thalheim, B.: Models: the fourth dimension of computer science. Softw. Syst.
Model. 21(1), 9–18 (2022). Accessed 27 Aug 2022

49. Thiagarajan, P.S.: Elementary net systems. In: Brauer, W., Reisig, W., Rozenberg,
G. (eds.) Petri Nets: Central Models and Their Properties, Advances in Petri Nets
1986, Part I, Proceedings of an Advanced Course, Bad Honnef, Germany, 8–19
September 1986. LNCS, vol. 254, pp. 26–59. Springer (1986). https://doi.org/10.
1007/BFb0046835

50. Valk, R.: Modelling of task flow in systems of functional units. Tech. Rep. FBI-HH-
B-124/87, University of Hamburg, Department of Computer Science, Vogt-Kölln
Str. 30, D-22527 Hamburg (1987)

51. Valk, R.: Petri nets as token objects - an introduction to elementary object nets.
In: Desel, J., Silva, M. (eds.) 19th International Conference on Application and
Theory of Petri nets, Lisbon, Portugal, pp. 1–25. No. 1420 in Lecture Notes in
Computer Science, Springer-Verlag, Heidelberg (1998). https://doi.org/10.1007/3-
540-69108-1_1

52. Verbeek, H.M.W., Basten, T., van der Aalst, W.M.P.: Diagnosing workflow pro-
cesses using Woflan. Comput. J. 44(4), 246–279 (2001)

53. Wagner, T.: Petri net-based combination and integration of agents and workflows,
Ph. D. thesis, University of Hamburg, Department of Informatics, Vogt-Kölln Str.
30, D-22527 Hamburg (2018). https://ediss.sub.uni-hamburg.de/volltexte/2018/
8995/

54. Wagner, T., Schmitz, D., Moldt, D.: Paffin: implementing an integration of agents
and workflows. In: Criado Pacheco, N., Carrascosa, C., Osman, N., Julián Inglada,
V. (eds.) EUMAS/AT -2016. LNCS (LNAI), vol. 10207, pp. 67–75. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-59294-7_7

55. Wester-Ebbinghaus, M.: Von Multiagentensystemen zu Multiorganisationssyste-
men - Modellierung auf Basis von Petrinetzen. Dissertation, University of Ham-
burg, Department of Informatics, Vogt-Kölln Str. 30, D-22527 Hamburg (2010).
https://ediss.sub.uni-hamburg.de/handle/ediss/3920

https://doi.org/10.1017/CBO9781139173438
https://doi.org/10.1007/BFb0046835
https://doi.org/10.1007/BFb0046835
https://doi.org/10.1007/3-540-69108-1_1
https://doi.org/10.1007/3-540-69108-1_1
https://ediss.sub.uni-hamburg.de/volltexte/2018/8995/
https://ediss.sub.uni-hamburg.de/volltexte/2018/8995/
https://doi.org/10.1007/978-3-319-59294-7_7
https://ediss.sub.uni-hamburg.de/handle/ediss/3920

Author Index

A
Amat, Nicolas 324
Arias, Jaime 369

B
Bae, Kyungmin 369
Barenholz, Daniël 37
Bazydło, Grzegorz 191
Benzin, Janik-Vasily 3
Bergenthum, Robin 59, 286
Bernemann, Rebecca 264

C
Chatain, Thomas 123
Ciardo, Gianfranco 243
Clasen, Laif-Oke 217, 440
Cosma, Vlad Paul 417

D
Dal Zilio, Silvano 324
de Leoni, Massimiliano 77
Desel, Jörg 59
Devillers, Raymond 307
Dubinin, Victor 16

E
Ehlers, Kjell 440
Evangelista, Sami 346

F
Fahrenberg, Uli 167
Feldmann, Matthias 217, 440
Folz-Weinstein, Sabine 59, 286

H
Haar, Stefan 123
Hansson, Marcel 217, 440
Haustermann, Michael 217
Heckel, Reiko 264
Heindel, Tobias 264

Heinze, Alexander 217
Hélouët, Loïc 205
Hildebrandt, Thomas T. 417
Hosseini, Seyedehzahra 243

I
Ihlenfeldt, Karl 217, 440

J
Janicki, Ryszard 145
Johnsen, Jonte 217

K
König, Barbara 264
Koutny, Maciej 145
Kovář, Jakub 59, 286

L
Le Botlan, Didier 324
Leclercq, Loriane 393
Leemans, Sander J. J. 77
Lime, Didier 393

M
Mangler, Juergen 3
Mannhardt, Felix 77
Mikulski, Łukasz 145
Moldt, Daniel 217, 440
Montali, Marco 37

O
Olarte, Carlos 369
Ölveczky, Peter Csaba 369

P
Patil, Sandeep 16
Petrucci, Laure 369
Polyvyanyy, Artem 37
Popławski, Mateusz 191

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023
L. Gomes and R. Lorenz (Eds.): PETRI NETS 2023, LNCS 13929, pp. 465–466, 2023.
https://doi.org/10.1007/978-3-031-33620-1

https://doi.org/10.1007/978-3-031-33620-1

466 Author Index

R
Reijers, Hajo A. 37
Rinderle-Ma, Stefanie 3
Rivkin, Andrey 37
Rømming, Fredrik 369
Roux, Olivier H. 393

S
Schwanen, Christopher T. 77
Seifert, Lukas 440
Sidorova, Natalia 99
Slaats, Tijs 417
Sommers, Dominique 99
Streckenbach, Relana 217

T
Thébault, Antoine 205

V
van der Aalst, Wil M. P. 229
van der Werf, Jan Martijn E. M. 37
van Dongen, Boudewijn 99
Vyatkin, Valeriy 16

W
Wiśniewski, Remigiusz 191
Wittbold, Florian 264
Wojnakowski, Marcin 191
Würdemann, Nick 123

X
Xavier, Midhun 16

Z
Zhang, Yisong 229
Ziemiański, Krzysztof 167

	 Preface
	 Organisation
	 Challenges in Conformance Checking: Where Process Mining Meets Petri Net Theory (Extended Abstract)
	 Contents
	Invited Papers
	From Process-Agnostic to Process-Aware Automation, Mining, and Prediction
	1 Introduction
	2 Process-Agnostic and Process-Aware Automation
	3 Implications on Research
	References

	Formal Modelling, Analysis, and Synthesis of Modular Industrial Systems Inspired by Net Condition/Event Systems
	1 Introduction
	2 Some Definitions
	3 Modelling Distributed Systems with NCES
	4 IEC 61499 Based Modular Engineering of Automation Systems
	5 Survey of Works on Modular Engineering and Modelling
	5.1 Modelling of Flexible Reconfigurable Systems
	5.2 Modelling of IEC 61499

	6 Use IEC 61499 for Condition/Event Modelling: A Comprehensive Tool Chain
	7 Summary and Open Problems
	References

	Process Mining
	There and Back Again
	1 Introduction
	2 Preliminaries
	3 Typed Jackson Nets to Model Interacting Processes
	3.1 Jackson Nets
	3.2 Petri Nets with Identifiers
	3.3 Typed Jackson Nets

	4 Decomposability of t-JNs
	5 A Framework for Rediscoverability
	5.1 Event Logs and Execution Traces
	5.2 Rediscoverability of Typed Jackson Nets

	6 Conclusion
	References

	ILP2 Miner – Process Discovery for Partially Ordered Event Logs Using Integer Linear Programming
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 ILP Miner
	2.2 Compact Tokenflow Synthesis

	3 ILP2 Miner
	4 Experimental Results
	5 Conclusion
	References

	Modelling Data-Aware Stochastic Processes - Discovery and Conformance Checking*-12pt
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 SLDPN
	4.1 Trace-Based Execution Semantics & XES Logs

	5 Data-Based Stochastic Discovery
	5.1 Extracting Observation Instances
	5.2 Learning Weight Functions

	6 Conformance Checking
	6.1 Conditional Probabilities in SLDPNs
	6.2 Conditional Probabilities in Logs
	6.3 A Conformance Measure

	7 Evaluation
	7.1 Implementation
	7.2 Insights
	7.3 Quantitative

	8 Conclusion
	References

	Exact and Approximated Log Alignments for Processes with Inter-case Dependencies
	1 Introduction
	2 Preliminaries
	2.1 Multisets and Posets
	2.2 Petri Nets
	2.3 Event Logs

	3 Modeling, Analysis and Simulation of Case Handling Systems with Inter-case Dependencies
	3.1 Requirements Imposed by Inter-case Dependencies
	3.2 Existing Petri Net Extensions
	3.3 Resource Constrained -Petri Net with Fixed Color Types

	4 Complete Event Logs Alignments
	4.1 Foundations of Alignments
	4.2 Alignments Extended to Include Inter-case Dependencies

	5 Approximation by Composition and Local Realignments
	5.1 Composing Individual Alignments
	5.2 Resolving Violations in the Composed Alignment
	5.3 Obtaining Minimal Local Alignable Intervals

	6 Conclusion
	References

	Semantics
	Taking Complete Finite Prefixes to High Level, Symbolically
	1 Introduction
	2 High-Level Petri Nets and Symbolic Unfoldings
	2.1 High-Level Petri Nets
	2.2 Symbolic Branching Processes and Unfoldings
	2.3 Properties of the Symbolic Unfolding

	3 Finite and Complete Prefixes of Symbolic Unfoldings
	3.1 Generalizing Adequate Orders and Cut-Off Events
	3.2 The Generalized ERV-Algorithm
	3.3 High-Level Versus P/T Expansion

	4 Handling Infinitely Many Reachable Markings
	4.1 Symbolically Compact High-Level Petri Nets
	4.2 The Finite Prefix Algorithm for Symbolically Compact Nets
	4.3 Checking Cut-offs Symbolically

	5 Conclusions and Outlook
	References

	Interval Traces with Mutex Relation
	1 Introduction
	2 Preliminaries
	3 Interval Orders
	4 Sequences and Partial Orders
	5 Mazurkiewicz Traces
	6 Interval Sequences
	7 Interval Traces
	8 Interval Traces with Mutex Relation
	9 Mutex Interval Trace Semantics of Petri Nets
	10 Concluding Remarks
	References

	A Myhill-Nerode Theorem for Higher-Dimensional Automata*-12pt
	1 Introduction
	2 Pomsets with Interfaces
	3 HDAs and Their Languages
	4 Myhill-Nerode Theorem
	5 Determinism
	6 Conclusion and Further Work
	References

	Tools
	Hippo-CPS: A Tool for Verification and Analysis of Petri Net-Based Cyber-Physical Systems
	1 Introduction
	2 Hippo-CPS
	2.1 Architecture
	2.2 Classification of the Petri Net-Based System
	2.3 Reachability Tree Verification (Boundedness, Safeness, Liveness Analysis)
	2.4 Structural Concurrency Verification (Graph-Based Analysis)
	2.5 Concurrency Verification (Concurrency Hypergraph-Based Analysis)
	2.6 Structural Sequential Verification (Graph-Based Analysis)
	2.7 Sequentiality Verification (Sequentiality Hypergraph-Based Analysis)
	2.8 Sequentiality Verification (Linear Algebra Technique)
	2.9 Experimental Results
	2.10 A Case-Study Example

	3 Installation
	4 Comparison with Other Tools
	5 Conclusion
	References

	Mochy: A Tool for the Modeling of Concurrent Hybrid Systems
	1 Introduction
	2 Mochy Description
	2.1 Architecture
	2.2 Semantics
	2.3 Simulation
	2.4 Inputs-Outputs
	2.5 User Interface

	3 Case Studies
	4 Related Work
	5 Conclusion and Future Work
	References

	RENEW: Modularized Architecture and New Features
	1 Introduction
	2 Formalisms
	2.1 Reference Nets
	2.2 P/T-Nets with Synchronous Channels

	3 Objectives
	3.1 Developments after Renew 2.5
	3.2 Users

	4 Functionality
	4.1 Usability
	4.2 New Functionality
	4.3 Improvements

	5 Architecture
	6 Use Cases
	6.1 Mulan
	6.2 Settler

	7 Conclusion
	References

	Explorative Process Discovery Using Activity Projections
	1 Introduction
	2 Preliminaries
	3 Approach
	4 Implementation
	4.1 Full Version Discovering Pareto Optimal Models
	4.2 Lite Version for Guided Exploration

	5 Evaluation
	5.1 General Functions
	5.2 Scalability

	6 Conclusion
	References

	Verification
	Computing Under-approximations of Multivalued Decision Diagrams*-12pt
	1 Introduction
	2 Preliminaries
	3 Our under-approximation Algorithm
	3.1 Incoming-edge-count
	3.2 Above-state-count
	3.3 Below-state-count
	3.4 Highest-unique-below-set
	3.5 Lowest-unique-above-set
	3.6 Dominator and Post-dominator
	3.7 Under-approximation (one Node at a Time)

	4 Speeding up the under-approximation
	5 Application
	6 Results
	6.1 Experimental Results

	7 Conclusions and Future Work
	References

	Stochastic Decision Petri Nets*-12pt
	1 Introduction
	2 Preliminaries
	3 Stochastic Decision Petri Nets
	4 Stochastic Decision Petri Nets as Markov Decision Processes
	5 Complexity Analysis for Specific Classes of Petri Nets
	5.1 Complexity of Safe and Acyclic Free-Choice Decision Nets
	5.2 Complexity of Free-Choice Occurrence Decision Nets

	6 An Algorithm for SAFC Decision Nets
	7 Conclusion
	References

	Token Trail Semantics – Modeling Behavior of Petri Nets with Labeled Petri Nets
	Abstract
	1 Introduction
	2 Preliminaries
	3 Token Trails
	4 Token Trails for Transition Systems and Partial Languages
	5 Token Trails for Labeled Petri Nets
	6 Conclusion
	References

	On the Reversibility of Circular Conservative Petri Nets
	1 Introduction
	2 Invariant Weighted Circular Petri Nets
	3 Some Easy Algorithms
	4 Some Necessary and Sufficient Conditions
	5 Potential Reachability Checks
	5.1 The Limit Case
	5.2 The Non-limit Case

	6 Largest Dead Number of Tokens
	7 Conclusions and Perspectives
	References

	Automated Polyhedral Abstraction Proving
	1 Introduction
	2 Petri Nets and Polyhedral Abstraction
	3 Parametric Reduction Rules and Equivalence
	4 Automated Proof Procedure
	4.1 Presburger Encoding of Petri Net Semantics
	4.2 Core Requirements: Parametric E-abstraction Encoding
	4.3 Global Procedure

	5 Silent Transition Relation Acceleration
	6 Generalizing Equivalence Rules
	7 Validation and Conclusion
	References

	Experimenting with Stubborn Sets on Petri Nets
	1 Introduction
	2 Background
	3 Stubborn Sets for Deadlock State Detection
	3.1 Stubborn Set Theory for Deadlock Detection
	3.2 Stubborn Set Algorithms for Deadlock Detection
	3.3 Experimentation Context
	3.4 Experimental Observations
	3.5 Experimental Results Sample

	4 Stubborn Sets for Liveness Verification
	4.1 Stubborn Set Theory for Liveness Verification
	4.2 Stubborn Set Algorithms for Liveness Verification
	4.3 Experimentation Context
	4.4 Experimental Observations
	4.5 Experimental Results Sample

	5 Conclusion
	References

	Timed Models
	Symbolic Analysis and Parameter Synthesis for Time Petri Nets Using Maude and SMT Solving
	1 Introduction
	2 Preliminaries
	3 A Rewriting Logic Semantics for ITPNs
	3.1 Formalizing ITPNs in Maude: The Theory R0
	3.2 Some Variations of R0
	3.3 Explicit-state Analysis of ITPNs in Maude

	4 Parameters and Symbolic Executions
	4.1 The Symbolic Rewriting Logic Semantics
	4.2 A New Folding Method for Symbolic Reachability

	5 Parameter Synthesis and Symbolic Model Checking
	5.1 Parameter Synthesis
	5.2 Analyzing Temporal Properties

	6 Benchmarking
	7 Related Work
	8 Concluding Remarks
	References

	A State Class Based Controller Synthesis Approach for Time Petri Nets
	1 Introduction
	2 Definitions
	2.1 Preliminaries
	2.2 Time Petri Nets
	2.3 State Classes
	2.4 Two-player Game on the State Class Graph

	3 Computing the Winning States
	3.1 Symbolic Computation for Pred()
	3.2 Predecessor Computations with DBMs
	3.3 Winning States

	4 Case Studies
	4.1 Supply Chain
	4.2 AGV

	5 Conclusion
	References

	Model Transformation
	Transforming Dynamic Condition Response Graphs to Safe Petri Nets
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Running Example
	3.2 Dynamic Condition Response Graphs
	3.3 Petri Nets with Inhibitor Arcs, Read Arcs and Pending Places

	4 Mapping DCR Graphs to Petri Nets
	5 Pruning and Reachability Analysis
	5.1 Pruning Based on the DCR Graph
	5.2 Petri Net Reachability Analysis
	5.3 Space Analysis on the Running Example

	6 Conclusion and Future Work
	References

	Enriching Heraklit Modules by Agent Interaction Diagrams
	1 Introduction
	2 Paose Background
	2.1 Multi-agent System Modeling Paradigm
	2.2 The Mulan Framework
	2.3 Agent Interaction Diagrams/Protocols

	3 HERAKLIT Background
	3.1 HERAKLIT Module
	3.2 Composition

	4 Modularized Modeling Examples
	4.1 Modeling of Organizational Units
	4.2 Software Engineering: Producer/Storage/Consumer Example
	4.3 Renew's Plugins

	5 Heraklit Interaction Diagrams
	5.1 Extending Net Modules with Reference Nets
	5.2 Generating HERAKLIT Modules

	6 Modeling HERAKLIT Modules with Mulan Concepts
	7 Conclusion
	References

	Author Index

