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Preface

This volume contains the proceedings of the 44th International Conference on Applica-
tion and Theory of Petri Nets and Concurrency (Petri Nets 2023). The aim of this series
of conferences is to create an annual opportunity to discuss and disseminate the latest
results in the field of Petri nets and related models of concurrency, including their tools,
applications, and theoretical progress.

The 44th conference and affiliated events were organized by the R&D Group on
Reconfigurable and Embedded Systems (GRES) at School of Science and Technology
of NOVA University Lisbon (Campus of Caparica), during June 25-30, 2023. The con-
ference was organized for the third time in Portugal, twenty-five years after the first visit,
also organized at Costa da Caparica, in Lisbon region.

This year, 47 papers were submitted to Petri Nets 2023. Each paper was single-blind
reviewed by at least four reviewers. The discussion phase and final selection process
by the Program Committee (PC) were supported by the EasyChair conference system.
From 38 regular papers and 9 tool papers, the PC selected 21 papers for presentation:
17 regular papers and 4 tool papers. After the conference, some of these authors were
invited to submit an extended version of their contribution for consideration in a special
issue of a journal.

We thank the PC members and other reviewers for their careful and timely evaluation
of the submissions and the fruitful constructive discussions that resulted in the final
selection of papers. The Springer LNCS team provided excellent and welcome support
in the preparation of this volume.

The keynote presentations were given by

— Stefanie Rinderle-Ma, Technical University of Munich, on “Process Mining and
Process Automation in Manufacturing and Transportation”,

— Valeriy Vyatkin, Aalto University and Lulea University of Technology, on “Formal
Modelling, Analysis, and Synthesis of Modular Industrial Systems inspired by Net
Condition/Event Systems”, and

— Boudewijn van Dongen, Eindhoven University of Technology, on “Challenges in
Conformance Checking: Where Process Mining meets Petri Net Theory”.

The conference series is coordinated by a steering committee with the follow-
ing members: W. van der Aalst (Germany), G. Ciardo (USA), J. Desel (Germany),
S. Donatelli (Italy), S. Haddad (France), K. Hiraishi (Japan), J. Kleijn (The Nether-
lands), F. Kordon (France), M. Koutny (UK) (chair), L. M. Kristensen (Norway), C. Lin
(China), W. Penczek (Poland), L. Pomello (Italy), W. Reisig (Germany), G. Rozenberg
(The Netherlands), A. Valmari (Finland), and A. Yakovlev (UK).

Alongside Petri Nets 2023, the following workshops took place:

— Algorithms and Theories for the Analysis of Event Data (ATAED 2023),
— International Workshop on Petri Nets and Software Engineering (PNSE 2023),
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— International Workshop on Petri Nets for Twin Transition (PN4TT 2023), and
— Petri Net games, examples, and quizzes for education, contest, and fun (PENGE
2023).

Other colocated events included the Petri Net Course and Tutorials, coordinated by
Jorg Desel and Jetty Kleijn, as well as a Tool Exhibition, coordinated by Filipe Moutinho
and Fernando Pereira.

We greatly appreciate the efforts of all members of the Local Organizing Committee,
chaired by Aniké Costa and Isabel Sofia Brito, and including Filipe Moutinho, Fernando
Pereira, Carolina Lagartinho-Oliveira, José Ribeiro, and Rogério Campos-Rebelo, for
their time spent in the organization of this event.

We hope you enjoy reading the contributions in this LNCS volume.

June 2023 Luis Gomes
Robert Lorenz
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Challenges in Conformance Checking: Where Process
Mining Meets Petri Net Theory (Extended Abstract)

Boudewijn van Dongen

Department of Mathematics and Computer Science, Eindhoven University
of Technology, Eindhoven, The Netherlands
b.f.v.dongen@tue.nl

1 Conformance Checking

Over the past 20 years, process mining has developed as a research area focusing on the
analysis of data to create insights into processes. Processes are typically expressed in
the form of control-flow models using languages such as Petri nets and data is available
in the form of collections of events referring to discrete state changes of objects in the
environment.

In practice, all processes share the property that their day to day operations differ
from what is described in models and conformance checking [6] has become a significant
field in process mining dealing with the question how process models, data and reality
relate to each other.

Various types of conformance checking techniques exist for control flow only [1,
4,7, 13]. More advanced techniques also consider data and resources [3, 11, 12] In
this keynote, we focus on the techniques based on synchronous product nets, as first
introduced for this purpose by Adriansyah et al. [2]. These synchronous products were
developed in a setting where the Petri net is a workflow net and the data consists of
sequences of events for a specific instance of that workflow (the case). Conformance is
then determined using an A* based search strategy on the statespace of a synchronous
product net [1, 7], or by means of logic programming [5] or planning [10]. Furthermore,
techniques exist to compute representations of classes of alignments [8] while other
techniques focus on approximations of alignments [9, 16]. However, all these techniques
have one fundamental property in common, namely that in the end, they all reason over
the synchronous product (although the techniques are not always instantiating this net).

2 Synchronous Products

In Petri net terms, a synchronous product Petri net is a low-level Petri net combining a
process model with a sequence of events. The question: “how well does this sequence fit
the given (process) model?” can be answered by solving a reachability question in this
synchronous product, with the additional challenge to minimize a cost function over the
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transition firings. The witness solution for this question provides the so-called alignment
and since reachability is typically guaranteed by the properties of the model, the challenge
is to find the witness minimizing the cost, not so much to establish reachability itself.
More formally, let PN = ((P, T, F), m;, my) be a marked Petri net, with an initial
and final marking and let ¢ : T — 2" be a cost function assigning non-negative cost to
each transition 7. If PN is a synchronous product of a model M and a sequence o, then

an alignment y € T is a firing sequence in PN, such that m; RN my, i.e. my is reached
by firing y from m;. An optimal alignment y°"" is an alignment such that there does not
exist another alignment y with ¢(y) < c(y?"), where c is lifted to sequences by simply
summing over the transitions in the sequence.

It is easy to see that finding an alignment is at least as complex as reachability as the
question for a given Petri net PN = (P, T, F) whether my is reachable from m; is the
same as looking for an alignment in PN = ((P, T, F), m;, my) with for all # € T holds
that c(¢) = 0, making every alignment optimal by definition.

The problem of finding an alignment with specific cost C can also be translated to
reachability, provided that the cost function assigns integer (or rational) costs to each
transition. The intuition here is that you let each transition produce a number of tokens in
a cost place p and you try to reach the marking m; U [p€]. If this is possible, the witness
sequence is an alignment with cost C. An optimal alignment can then be found by first
finding an alignment with a cost function assigning O cost to all transitions. The witness
of this reachability problem provides an upperbound for C and hence a binary search
can be conducted to find C™™" i.e. the minimal cost with which my U [pc] is reachable.

While alignments for specific, isolated cases in a process are interesting, the more
challenging problem is to find alignments for entire event logs, taking into account
multiple perspectives, such as data and resources, as well as inter-case dependencies
introduced by these perspectives or by process properties such as batching.

In this keynote, we introduce the relation between conformance checking and reach-
ability and we see look at the scenario where the process model becomes a system model,
explicitly modeling inter-case dependencies in the form of v-nets [14, 15]. We consider
the case where the event data is no longer a sequence representing a single case and how
this impacts the complexity of the conformance checking problem. We conclude with
a challenge for the Petri net community: To develop reachability techniques tailored
towards the problem of finding alignments between event data and system models.
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From Process-Agnostic to Process-Aware
Automation, Mining, and Prediction

Stefanie Rinderle-Ma®™)@®, Janik-Vasily Benzin®, and Juergen Mangler

Technical University of Munich,
TUM School of Computation, Information and Technology,
Boltzmannstrasse 3, 85748 Garching, Germany
{stefanie.rinderle-ma, janik.benzin, juergen.mangler }@tum.de

Abstract. The entire research area of (business) process management
has experienced a tremendous push with the advent of process mining,
robotic process automation, and predictive process monitoring. While
this development is highly appreciated, the current process-agnostic
pipelines for process mining, robotic process automation, and predictive
process monitoring have several limitations. Taking a system perspective,
this keynote elaborates the limitations of process-agnostic automation.
Then, it shows how a shift towards process-aware automation and pre-
dictive compliance monitoring can be achieved and how process-aware
pipelines contribute to overcome the limitations of process-agnostic
automation. Finally, research implications with a focus on Petri nets
are derived.

Keywords: Process Automation + Process Mining - Predictive Process
Monitoring - Predictive Compliance Monitoring

1 Introduction

Process mining and robotic process automation are two mega trends. “The global
process mining software market is projected to grow from $933.1 million in 2022
to $15,546.4 million by 2029, at a CAGR of 49.5% in the forecast period.”!.
The combination of both technologies is expected to even increase their market
penetration [6].

Process mining comprises a set of techniques for the discovery and analysis
of process models and their executions based on process event logs [1] and the
expectations in practice are high [35]. Robotic process automation refers to the
automation of single process tasks by replacing human-task interaction with a
software bot [2]. The currently applied mine and automate pipeline (e.g., [14])
is depicted in Fig. 1a). Process mining is applied to discover process models, and
within these models tasks with the potential for automation are detected. As
an intermediate step between process mining and the automation of tasks, [14]

! https://www.fortunebusinessinsights.com/process-mining-software-market- 104792.
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advocate to standardize the process models by removing variations in the pro-
cess that might result due to, e.g., product variants. Once tasks are automated,
process mining can be used to continuously monitor their performance.

Process Mining |<\ | Process Automation
| |

e Continuous Collection of Continuous monitoring
Identification of tasks L . .
l monitoring contextualized data and analysis
Robotic Process -/ | Proces!Minin |'/
Automation g
a) Mine and automate b) Automate and mine

Fig. 1. Pipelines: a) Mine and automate; b) Automate and mine

However, the mine and automate pipeline as depicted in Fig. 1a) has several

limitations:

1.

Task-oriented automation: Robot process automation aims at the automa-
tion of single, often simple and repetitive interactions of humans with soft-
ware. However, a process is a task-overarching, orchestrating concept. Real
performance gains and analysis insights can only be achieved by taking an
orchestration point of view for process automation.

Data acquisition and preparation: Process mining relies on process event logs
emitted or extracted from information systems, e.g., ERP systems. If the
underlying system is not process-aware or a black box (e.g., legacy systems),
mechanisms for extraction and preparation of data are to be defined and
employed. Moreover, if the data is spread over multiple and possibly hetero-
geneous information systems [18,27], mechanisms for integrating the data are
to be defined and employed. Existing commercial systems support a range of
adaptors to different systems and data sources, e.g., data connections as sup-
ported in Celonis?. Using an object-centric approach offers the opportunity
to capture objects and their life cycles in the process event logs [8] and can
be used even if no case id is available or can be extracted form the underlying
data. However, data connections are not robust towards changes in the data
structures, i.e., data structure changes possibly require the adaptation of one,
several, or all of the established data connections.

Ex-post point of view: Most of the process mining analysis tasks are conducted
in an ex-post manner, i.e., based on process event logs that reflect already
finished process executions. This holds true for all three pillars of process min-
ing, i.e., process discovery, conformance checking, and process enhancement.
However, the monitoring and analysis of process executions during runtime
(online) based on process event streams provides current insights into the

2 https://docs.celonis.com/en /data-connections.html.
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process, e.g., detecting exceptions when they are actually happening, and
hence enabling a quicker reaction to potential problems such as compliance
violations [9,19,36]. Moreover, in practice, many analysis questions refer to
the monitoring of the process perspectives time, resources, and data, e.g., a
temperature sensor exceeding a certain threshold or temporal deviations that
“are mostly caused by humans, e.g., someone stepping into the safety area
of a machine causing a delay, and hint to problems with work organization”
[34]. Even predictive process monitoring, though suggesting to be applied
in an online manner due to the term “monitoring”, is mostly applied in an
ex-post way. More precisely, a process event log is split into training and
test data. One or several prediction models are learned based on the training
data. These prediction models are then applied to the test data, i.e., prefixes
from the test data are used to reflect a process event stream. Prediction goals
comprise, for example, the remaining time of cases, the next activity, and the
outcome of a process [13].

4. Dealing with uncertainty and concept drift: Ex-post mining allows to obtain
a picture of the past. However, an ever changing process environment and
uncertainties force processes to adapt constantly [5,9]. In the manufacturing
domain, for example, if new processes are set up, several adaptation cycles
are necessary until a process runs in a robust way. In health care, due to
unforeseen situations, ad-hoc changes of process instances can be frequently
required, e.g., the blood pressure exceeds a threshold such that the surgery has
to be delayed. “This uncertainty often manifests itself in significant changes
in the executed processes” [5]. Process changes, in turn, manifest as concept
drifts in process event logs [5] and as unseen behavior in process event streams
[23]. A selection of use cases for process changes from different domains can
be found in [17].

Limitations 1. and 2. refer to the system and data perspective and Limita-
tions 3. and 4. to the mining and analysis perspective of a process. In order to
address Limitations 1. and 2., we advocate an inversion of the mine and auto-
mate pipeline into an automate and mine pipeline as depicted in Fig. 1b). The
automate and mine pipeline starts with automated and orchestrated processes,
driven and managed by process engines or process-aware information systems.
These systems can be exploited to collect data in an integrated, orchestrated,
and contextualized manner at arbitrary granularity which, in turn, offers novel
process mining insights [29], for example, the combined analysis process event
logs/streams and sensors streams [11,37].

Limitations 3. and 4. emphasize the need to move towards approaches applied
during runtime when mining and monitoring processes. Most promising here are
approaches for online process mining such as [9] and predictive process monitor-
ing (cf., e.g., survey in [13]). One of the most crucial (business) goals of predictive
process monitoring is the prediction of possible compliance violations [26]. For
this, in existing approaches, the compliance constraint of interest, for example,
service level agreement “90% of the orders must be processed within 2h”, is
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encoded as prediction goal in a prediction model (referred to as predicate pre-
diction [21]). Predicate prediction is illustrated through the comply and predict
pipeline depicted in Fig.2a): compliance constraints are encoded as prediction
goals (comply) into a prediction model each, based on which violations of the
constraint are predicted (predict). The comply and predict pipeline for predicate
prediction comes with the following limitations (ctd.):

| Comply | | Predict

Predicate encoding Mapping of prediction goals ~ Continuous monitoring

to compliance constraints and analysis
] 3
| Predict | | Comply
a) Predicate prediction b) Predictive compliance monitoring

Fig. 2. Pipelines: a) Predicate prediction; b) Predictive compliance monitoring

5. Performance: In literature, predicate prediction, is mostly applied in the con-
text of simple scenarios. Simple here refers to i) compliance constraints of
limited complexity such as service level agreements and ii) a limited number
of predicates. The reason is that the encoding of i) is more manageable for
simple compliance constraints and ii) keeps the number of prediction models
limited that are necessary for predicate prediction (recall that for n compli-
ance constraints, n prediction models are to be created). However, real-world
scenarios can look very different [32]: contrary to i), compliance constraints
that stem from regulatory documents such as the GDPR are complex and
refer to multiple process perspectives. Contrary to ii) there might be several
hundred compliance constraints that are imposed on one process [28]. Sup-
porting predicate prediction for full-blown real-world scenarios would possibly
lead to a large number of complex prediction models, resulting in performance
issues.

6. Transparency: Predicate prediction yields a binary answer, i.e., either “the
predicate is violated” (possibly with a counterexample) or ”the predicate is
not violated”. Though this constitutes an essential information, in particular
in the case of violations, often some sort of reaction is required. At least, it
should become transparent why a violation occurred and for which instance(s)
(root cause). Without this information, it is difficult for users to decide on
remedy actions.

7. Maintainability: In predicate and compliance prediction in general, two
sources of change might occur. First of all, changes of the process and its
instances might become necessary, reflected by concept drift in the pro-
cess event log. Secondly, changes in the set of compliance constraints might
be performed by adding, deleting, and updating compliance constraints.
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Compliance constraint changes can occur frequently, e.g.: “Bank regulations
change about every 12min”3. For predicate prediction, a compliance con-
straint change requires the adaptation of the associated prediction model,
i.e., m compliance constraint changes result in the adaptation of m predic-
tion models.

In order to tackle Limitations 5.— 7., again, we advocate an inversion of the
comply and predict pipeline shown in Fig. 2a). Instead of encoding compliance
constraints and predicting their violations afterwards, we suggest the predict and
comply pipeline denoted as predictive compliance monitoring [32], depicted in
Fig.2b): at first, predicting takes places through process monitoring approaches
with different prediction goals such as next activity, remaining time, outcome,
and other key performance indicators are applied (predict), followed by a map-
ping to the set of compliance constraints (comply).

In the following, we will contrast the different pipelines and approaches. For
this, we take the perspective of a holistic system and generalize the pipelines into
process-agnostic and process-aware automation (cf. Sect.2). Finally, research
implications with a focus on Petri nets will be provided in Sect. 3.

2 Process-Agnostic and Process-Aware Automation

In the introduction, pipelines for process automation and mining as well as
prediction and compliance are shown, i.e., the current mine and automate and
the inverted automate and mine pipeline as well as the current comply and
predict and the inverted predict and comply pipeline. From a system perspective,
the two pipelines are not separated from each other, i.e., a holistic system can
support both. Figure3 shows the system perspective realizing the mine and
automate and comply and predict pipelines on the left side and the system
perspective realizing the automate and mine and predict and comply pipelines on
the right side. Due to the fact, that the system perspective on the right side takes
an explicit process-aware point of view by employing a process engine or process-
aware information system, we refer to it as PAWA: process-aware automation.
Symmetrically, we refer to the system on the left side, where automation is
restricted to single tasks, as PAGA: process-agnostic automation.

In current PAGA systems, the event and data stream is extracted by ETL
pipelines from logs of the machine, ERP systems, and further systems as depicted
in Fig. 3. A multi-perspective process model is mined through process discovery,
conformance checking, and enriching the process model with additional perspec-
tives using further mining methods, e.g., decision and organizational mining [12].
The machine, ERP systems and further systems are then enhanced through pro-
cess analysts, domain experts, and/or developers as a result of insights gained
from analysing the multi-perspective process model. Enhancing refines robotic
process automation as shown for the mine and automate pipeline depicted in

3 https://thefinanser.com/2017/01/bank-regulations-change-every-12-minutes  (last
accessed 2023-04-03).
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Fig.1 by additionally optimizing existing automatic activities in the process
model, ad-hoc activities to mitigate possible problems that conformance check-
ing has unveiled, or circumventing bottlenecks by assigning further resources to
an activity.

The current state is dominated by the relational perspective of ERP sys-
tems that comes with major drawbacks. First, directly connecting to ERP and
further relational information systems necessitates sophisticated ETL pipelines
that emphasize ex-post over ex-ante views. Second, the lack of the process per-
spective in relational systems nudges the analysis to choose the traditional mine
and automate line of action (cf. Sect. 1 and Fig. 1) such that the corresponding
disadvantages apply.

PAWA - Process Aware [l not necessary for PAWA

PAGA - Process Agnostic

Automation YS' Automation [ PAWA: enacted by humans
PAGA: enactab\eﬁy machines
[ generic
Machine [0 dependant on constraints
= input

System | output

Historic
Streams

—>Event Stream|

Data Stream
> Event Stream
Data Stream

VFuture Event Stream
Future Data Stream

Constraints —|
Classification |/

W
Classification
necks

E

Compliance State
Classifier

Mine Mine Predict

| Comply / Classify |

Predicate Predict

%
Conformance|

Bottlg —>Constraints

Constraints |

Binary Classifiers

L

Pros : Pros

+ No infrastructural changes required

+ Easy to implement

Cons

« Task-oriented enhancements, e.g., change task to RPA
* ETL logic separate from business logic

* Ex-post POV - ETL collected logs are always outdated

.+ Automate: ETL is not necessary, data/event stream is prepared automatically

-+ Performance: future event/data streams can be cached/reused

: + Transparency: state classifiers rely on common input, each produce one
set of states

.+ Actionable: mitigations are to be enforced automatically, instead of through

+ humans/notification

- Cons

* Hard-to-solve concept drifts - ETL dela :
P Y -+ Automation has to be in place - BUT is not much harder to implement than
o ETL

Fig. 3. System View Comparison

PAWA systems serve as an orchestration and automation environment that
integrates the machine, ERP, and the system views (cf. Fig.3). This enables
the implementation and execution of arbitrary processes (— Limitation 1). To
illustrate this, in [29], we provide a classification of process automation scenarios
in manufacturing along the two dimensions of “human involvement” and “green
field — brown field”. This results in four automation classes that we have found
and realized across 16 real-world process scenarios. More precisely, the process
scenarios were modeled, implemented, and hence automated using the cloud pro-
cess execution engine cpee.org [25]. The scenarios comprise i) a robotic process
automation scenario (low human involvement, brown field), ii) fully automated
process orchestration (low human involvement, green field), iii) process-oriented
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user support (high human involvement, brown field), and iv) interactive process
automation (high human involvement, green field). i) was chosen to automate
a task due to a black box application system to be invoked. ii) orchestrates the
tasks of a robot, a machine, and measurement equipment. A video of the execu-
tion of the process orchestration can be found here?. iii) includes the automat-
ically generated instructions to be shown at work stations for staff in a process
with more than 20.000 variants. iv) features the on the fly creation and rout-
ing in process models based on interactions between human users and physical
devices such as machines [22] or other utilities, e.g., in the care domain [33]. Such
process scenarios are not only prevalent for the manufacturing domain, but also
for other domains such as health care and logistics which integrate “physical”
aspects (machines, vehicles) and human work. The variety of scenarios underpins
that robotic process automation can be supported by a PAWA system, but is
only one piece. PAWA systems are able to support any process orchestration and
integrate different systems, human work, and physical devices along the process
logic.

Moreover, PAWA systems can be employed to collect data in a systematic,
integrated, and contextualized manner (— Limitation 2), i.e., they log every
event emitted during process execution and on top of that, PAWA systems can
collect and log process context data, e.g., IoT data in domains such as produc-
tion, health care, and logistics. The combined collection of process and IoT data
has gained interest lately, resulting in an extension of the process event log stan-
dard eXtensible event stream (XES)°, i.e., the XES Sensor Stream extension
[24]. This way, process engines and process-aware information systems serve as
systems for the process-oriented and contextualized collection of process data at
an arbitrary granularity (as defined in the process models) and a trusted, high
quality level (****(*) star level according to the L* data quality model for pro-
cess mining [3]) [30]. Using, for example, cpee.org as process collection system,
we collected and published three real-world process event logs with additional
context datal. Two data sets comprise data from public transport, augmented
with context data on weather, traffic, etc. and one data set stems from the
production domain on producing a chess piece.

In addition, PAWA systems collect and log data at an time, i.e., in an ex-post
manner as process event logs and during runtime as process event streams (—
Limitation 3). This also includes the runtime collection of context data such as
sensor streams. In particular, the online collection of event streams facilitates
the early detection of concept drifts [35] (— Limitation 4).

Up to this point, we discussed how PAGA and PAWA systems realize the
mine and automate and automate and mine pipelines shown in Fig.1. PAGA
and PAWA systems can also realize the comply and predict and predict and

* https://lehre.bpm.in.tum.de/~mangler/.Slides/media/medial.mp4, last accessed
2023-04-04.

www.xes-standard.org.

5 https://zenodo.org/communities /processmining.
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comply pipelines shown in Fig. 2, i.e., on the PAGA side by predicate prediction
and on the PAWA side as predictive compliance monitoring components.

We conducted a comprehensive literature review covering the research areas
of predictive process monitoring and compliance monitoring (see, e.g., [20]) with
respect to functionalities required for building a predictive compliance moni-
toring system [31]. A system that supports predictive compliance monitoring
employs the predict and comply pipeline (cf. Fig.2b) to predict the future
progress of the monitored system and to monitor compliance on top of the
predictions and interprets them from a systems perspective. An abstract view
on how to integrate predictive compliance monitoring into a PAWA system is
depicted in Fig. 3, contrasted by the current state of how predicate prediction is
conceptualized and implemented in a PAGA system.

In PAGA systems, due to the current lack of the process perspective in the
monitored system and in the prediction models, the results of predicting com-
pliance violations have to be manually transformed into actions that can be
executed on an ERP system by notifying the respective employee (enhance).

In PAWA systems, the goal of predictive compliance monitoring centers
around the process perspective (cf. Fig.3). By automating existing ERP sys-
tems or substituting existing systems through a PAWA system, ETL pipelines
are replaced by a simple connection to the logging service of PAWA system. The
optional mine and the compulsory predict separately consume the event and
data stream from the logging services. While mine is concerned with discovering
process models, analysing structural and behavioral properties of process models
and checking conformance, predict focuses on a single prediction model trained
to predict the future event and data stream of the overall process, i.e., the pre-
diction goal is a stream prediction (— Limitations 3. and 4.). The prediction
model can additionally take the mined process model as input such that the
prediction of the event and data stream is based on the respective execution
states of running instances in the process model. Overall, the prediction goal
consists of future events and, in particular, data attributes. If required for very
important compliance constraints, the inverted, specialized comply and predict
pipeline (predicate prediction) can be added to the predictive compliance mon-
itoring system such that an independent prediction model for the very impor-
tant compliance constraint is trained. Stream predictions of the process are the
input to comply, while predicted violations of independent prediction models
can directly trigger mitigation actions in the monitored system. Given a stream
prediction, comply checks compliance of the compliance constraints resulting in
various compliance states. Due to the process perspective inherent in PAWA sys-
tems, predicted compliance states can automatically trigger mitigation actions,
e.g., by adding ad-hoc activities to an ongoing process instance.

Note that predictive compliance monitoring could also be integrated into the
PAGA system, inheriting its limitations due to enhance and the data collec-
tion. More importantly, note that the distinction into predicate prediction and
predictive compliance monitoring does not only apply to the domain of process
mining and automation, but also to the more general area of event prediction [7].
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At this point, we have to say that there is no solution for predictive compliance
monitoring yet and the “sweet spot” between predicate prediction and predic-
tive compliance monitoring w.r.t. prediction quality and limitations has to be
investigated [32].

Due to its process centricity, the PAWA system comes with the following
advantages regarding predictive compliance monitoring:

— Performance and maintainability of the prediction model (— Limitations 5.
and 7.): If the set of compliance constraints is updated, no retraining of the
prediction model is necessary due to the clear separation of the prediction
model and the compliance checking. Furthermore, no new prediction models
have to be trained for new or updated constraints.

— Transparency and explainability of the predictve process monitoring system
(— Limitation 6.): As the prediction model predicts the future event and data
streams, violations of compliance states can be pinpointed to their respective
events or data attributes in the stream. Hence, the predicted violation is
transparent and explainable.

— Actionable mitigations: Due to the process centricity of the PAGA system,
compliance states can directly trigger actions in the process engine, e.g.,
through adding ad-hoc activities, or spawning instances of specialized miti-
gation processes.

3 Implications on Research

In the introduction, we raise seven limitations with current mine and automate as
well as comply and predict pipelines which are integrated and analyzed through
the systems perspective (PAGA vs. PAWA in Fig. 3). In the following, we will
derive research implications with a focus on Petri net based research.

Soundness Verification for Automatic Changes to Automation. The
system view comparison in Fig.3 shows the two extreme sides of a continu-
ous automation scale supported by process mining. A company on the move
to process-aware automation can exhibit both automation systems, i.e., PAGA
and PAWA, at the same time, as not all parts of the company are yet shifted
to PAWA. During the transition, companies can benefit from support on how to
shift from the manual enhance to the machine-enactable automate (cf. Fig. 3).

Petri Nets for Process-Aware Automation. Although Petri nets have been
proposed and applied for process execution in the past (cmp. FUNSOFT Nets
[10] in 1998), it remains not fully clear which Petri net class is sufficient to be
used as execution model in PAWA. Recent candidates include object-centric Petri
nets [4], Petri nets with identifiers [38], and colored Petri nets [16]. The main
question is to keep the balance between expressive power to model all process
perspectives and preventing problems such as checking soundness from becoming
undecidable. Hence, research on Petri nets classes such as object-centric Petri
nets or Petri nets with identifiers is ongoing.
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Conformance Checking on Petri Net Process Models of Collaborative
Systems. Conformance checking techniques for object-centric Petri nets and
Petri nets with identifiers comparable to alignment-based conformance checking
for sound workflow nets are missing. Also, replay-based techniques are yet miss-
ing, as the only existing object-centric Petri net implementation in PM4PY”
does not feature replay.

Rescheduling Processes Execution - Checking and Balancing Resource
Utilization. Whenever automatic changes are made, resource utilization may
be affected. As multiple processes may share the same resources, optimization
regarding resource utilization leads to better throughput. Scheduling of resource
allocation with timed Petri nets (cmp. [15]) based on process models, can allow
for simple, automatic and explainable solutions.

Instance and Process Spanning Constraints. Research on predicting and
checking compliance has focused on intra-instance constraints so far. Predicting
compliance states for instance and process spanning constraints remains an open
research problem [31].

Provision of Mitigation Actions. Automatically providing mitigation actions
for compliance violations, in particular at different granularity levels, and ana-
lyzing and visualizing their effects is relevant for both, predicate prediction and
predictive process monitoring, but yet to be solved [31].

Visualization and explanation of predictions and violations. Visual-
ization approaches for prediction results and future compliance violations are
mostly missing. Moreover, root cause analysis has to be extended in order to
deal with predicting violations of real-world compliance constraints [31].

Online Predictive Process Monitoring and Updating Compliance
States. Since predictive process monitoring predicts future event and data
streams given current event and data streams, prediction methods such as deep
learning cannot be applied for cases with frequent process adaptations. It is not
clear for which process environments existing prediction methods are capable
of updating the prediction model after each incoming event with data or which
batching methods are required such that existing prediction methods exhibit
a sufficient performance. Continuous update of prediction models and predic-
tions also results in continuous update of compliance states. It is open which
granularity levels for compliance states, i.e., event-level, instance-level, process-
level, multi-process-level, and multi-organisation-level, are supporting the users
in understanding the current system state. Moreover, it is unclear how compli-
ance states can be transformed between different granularity levels [31].

7 https://pmdpy.fit.fraunhofer.de/.
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Data Properties and Quality. Exploiting data properties and quality is an
emerging research topic. Considering data quality, data values of low quality may
point to a compliance violation, e.g., redundant sensors fail quickly after each
other. The relation of data quality with compliance violation that goes beyond
merely removing low quality data points or imputating data values may reveal
further insights.
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Abstract. This paper summarises recent developments in the appli-
cation of modular formalisms to model-based verification of industrial
automation systems. The paper is a tribute to the legacy of Profes-
sor Hans-Michael Hanisch who invented Net Condition/Event Systems
(NCES) and passionately promoted the closed-loop modelling approach
to modelling and analysis of automation systems. The paper surveys the
related works and highlights the impact NCES has made on the current
progress of modular automation systems verification.

1 Introduction

Modularity is a fundamental feature of technical systems, in particular in indus-
trial automation and cyber-physical systems. On the other hand, modular sys-
tems is a good example of distributed systems. Petri nets (PN) have been known
as a formal language specifically focused on modelling of distributed state sys-
tems. That suggests a clear overlap and the need to address modularity in formal
modelling. Petri nets inspired an uncountable number of derivatives.

Modularity in the context of PN has been discussed for a long time. According
to [6], the concept of Modular Petri Nets has been through four generations of
development.

On the other hand, the concept of Condition/Event Systems (C/ES) [31] was
invented to model modular systems composed of communicating modules and
study their generic properties.

Net Condition/Event Systems (NCES) [29] is a particular case of C/ES where
modules are defined as (extended) Petri nets. It was proposed to model more
efficiently distributed systems that are modular.
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One should note that computational analysis of NCES is in general undecid-
able as shown by Starke and Hanisch [32]. Nevertheless, the formalism fits very
well with the emerging engineering concepts for CPS such as service-oriented
architecture (SOA) and IEC 61499 function blocks due to the properly addressed
event-driven semantics. The initial effort of NCES application to IEC 61499 mod-
elling is summarised in [14].

In this paper, we attempt to observe the developments related to the mod-
elling and analysis of distributed modular industrial automation systems from
the particular perspective of how the modular derivatives of Petri nets influence
them.

The rest of the paper is structured as follows. In Sect. 2 the necessary def-
initions of NCES are provided. It is followed by a brief illustration of some
features NCES provide for modelling distributed modular systems in Sect. 3.
Section4 contains some observations of similarities between IEC 61499 and
NCES. Section5 attempts to overview the related research works on the mod-
elling of modular systems. The recently developed modelling framework for mod-
ular systems based on IEC 61499 and influenced by the Condition/Event Systems
paradigm is described in Sect. 6. The paper is concluded with a short summary
and outlook in Sect.7 and acknowledgements.

2 Some Definitions

Net Condition/Event Systems (NCES) is a finite state formalism that preserves
the graphical notation and the non-interleaving semantics of Petri nets [27],
and extends them with a clear and concise notion of signal inputs and outputs.
The formalism was introduced in [28] in 1995 and has been used in dozens of
applications, especially in embedded industrial automation systems.

| condition input
4 __—condition input arc

condition
output arc

A module

condition
output

O €— event output

h—— event output arc

module .
boundary

— —transition

\

\ T = flow arc
‘event input

event input arc token

place

Fig. 1. Graphical notation of an NCES module.

Given a place/transition net N = (P, T, F,mg), the Net Condition/Event
System (NCES) is defined as a tuple N' = (N,0n,%y,Gr), where 0y is an
internal structure of signal arcs, ¥y is an input/output structure, and Gr C T
is a set of so-called “obliged” transitions that fires as soon as it is enabled.
Figure 1 illustrates an example of an NCES module. The structure ¥y consists of
condition and event inputs and outputs (ci, ez, eo, co). The structure 8 is formed
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from two types of signal arcs. Condition arcs lead from places and condition
inputs to transitions and condition outputs. They provide additional enableness
conditions of the recipient transitions. Event arcs from transitions and event
inputs to transitions and event outputs provide one-sided synchronization of the
recipient transitions: firing of the source transition forces firing of the recipient
if the latter is enabled by the marking and conditions.

The NCES modules can be interconnected by the condition and event arcs,
forming thus distributed and hierarchical models as illustrated in Fig. 2. NCES
having no inputs can be analyzed without any additional information about its
external environment.

A module Another module

Fig. 2. Composition of NCES modules.

The semantics of NCES cover both asynchronous and synchronous behaviour
(required to model plants and controllers respectively). NCES are supported by
a family of model-developing and model-checking tools, such as a graphic editor,
SESA and ViVe [2].

The state of an NCES module is completely determined by the current mark-
ing m : P — Ny of places and values of inputs. A state transition is determined
by the subset 7 C T of simultaneously fired transitions, called step. The transi-
tions having no incoming event arcs are called spontaneous, otherwise forced. The
step fully determines the values of event outputs of the module. In the original
NCES version the step is formed by choosing some' of the enabled spontaneous
transitions, and all the enabled transitions forced by the transitions already
included in the step.

A state of NCES is fully described by the marking of all its places (in the
timed version also by clocks). A transition step specifies a state transition. When
used for system analysis, a set of all reachable states (complete or partial) of
NCES model is generated and then analyzed.

! This means the step in NCES is non-deterministic.
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For describing the execution model of function blocks we use a deterministic
dialect of NCES and the modeling approach that guarantee certain properties
of the models as follows:

1. In the chosen dialect a step is formed from all enabled spontaneous transitions
and all forced transitions;

2. The models are designed so that there is no conflicts (i.e., deficient marking
in some places) leading to non-deterministic choice of some of the enabled
transitions;

3. The models also guarantee bounded marking in all places.

3 Modelling Distributed Systems with NCES

To illustrate the key features of NCES modelling for distributed systems, let us
consider an example of a simple distributed control system. In the system of two
cylinders in Fig. 3 each cylinder pushes a workpiece to the destination hole. The
process starts when the workpiece appears in front of the corresponding cylinder
as indicated by sensors P1 and P2 respectively. As it is clear from the Figure,
cylinders can collide in the middle point, therefore the goal of controller design
is to avoid such a situation.

FWD1> f
---(Omip2

‘1 viece

ations
@)

HOME1 MID1 END1

Fig. 3. Two cylinders example of a distributed system.

There are many possible ways to achieve the desired behaviour, which can be
done by designing a “central” controller of both cylinders, or a protocol ensuring
that distributed controllers collaborate correctly. Distributed control is of inter-
est for many practical reasons, for example, for the case when control logic is
“embedded” in each cylinder, so they can start working as soon as powered on.

NCES model of the two cylinders system with distributed control is presented
in Fig. 5.

An abstract model of two processes interacting with each other with the help
of buffer is presented in Fig. 4. Here Process 1 adds a token to the Buffer, and
Process 2 sees it and removes it from the buffer.
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Fig. 4. NCES model of the two cylinders system.

A more sophisticated synchronous communication mechanism between clock-
driven processes through a rendezvous channel is modelled by means of NCES
formalism in Fig. 6. The example represents a part of the previously considered
system (Fig.4), where the Position Control is a component inside the Robot,
and the input channel Position connects it to the Coordinator block.

To verify the correctness of the channel’s operation the model-checking tool
ViVe can be applied. The reachability graph of the model is presented in Fig. 4.

Process 1 Process 2

Fig. 5. NCES model of interprocess communication.

4 TEC 61499 Based Modular Engineering of Automation
Systems

The IEC 61499 architecture [1]| is getting increasingly recognised as a power-
ful mechanism for engineering cyber-physical systems. In TEC 61499, the basic
design construct is called function block (FB). Each FB consists of a graphi-
cal event-data interface and a set of executable functional specifications (algo-
rithms), represented as a state machine (in basic FB), as a network of other FB
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Fig. 7. Reachability graph of the model (left) and the behaviour along the S1—52—.54
trace (right), where the rendezvous occurs at the state transition S2—54.
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instances (composite FB), or as a set of services (service interface FB). FBs can
be interconnected into a network using event and data connections to specify
the entire control application. The execution of an individual FB in the network
is triggered by the events it receives. This well-defined event-data interface and
the encapsulation of local data and control algorithms make each FB a reusable
functional unit of software (Fig. 7).

A basic Function Block (FB) consists of a signal interface (left-hand side)
and an Execution Control Chart (ECC) state machine (right-hand side). The
algorithms executed in the ECC states determine the behavior of the FB in
response to changes in its inputs and its internal state.

A function block application is a network of FBs connected by event and
data links as illustrated in the upper part of Fig.8, which illustrates models
of the same one pneumatic cylinder system with IEC 61499 (top) and NCES
(bottom). The structural similarity is supported by the semantic similarity since
both modelling languages are event-based. Connections between modules in both
modelling languages are passing events and data. This simplifies the modelling of
TEC 61499 with NCES and several modelling and analysis tools were developed
to explore it.

HOME_SENSOR

Position
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E_PERMIT ENDp) i
PERMIT ENDm)
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Fig. 8. Similarity of IEC 61499 and NCES models.

In 1998, way before the IEC 61499 was formally accepted as a standard by
IEC, using an early draft, Hans-Michael Hanisch observed this stunning sim-
ilarity and wrote a research proposal together with Peter Starke, supported
by the German Research Council (DFG), on formal verification of IEC 61499
applications by means of NCES. That gave rise to a number of developments
summarised in [14].
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In particular, in 2001, Vyatkin and Hanisch developed a software pack-
age called “Verification Environment for Distributed Applications” (VEDA) for
model-based simulation and verification [33]. NCES is used for modelling and
IEC 61499 function blocks are automatically converted with the help of VEDA
for efficient simulation and verification.

But, surprisingly, the NCES-TEC 61499 similarity helped develop a modelling
approach in which TEC 61499 itself was directly used as a modelling language
as it will be illustrated in Sect. 6.

5 Survey of Works on Modular Engineering
and Modelling

To put the above-referenced developments on NCES and IEC 61499 to the
broader context, in this section we present a brief survey of other related works
on formal modelling and analysis of modular automation systems.

5.1 Modelling of Flexible Reconfigurable Systems

Reconfigurable Manufacturing Systems (RMS) are flexible and adaptable to
manufacture various products to meet changing market demands. Meng et al.
explain how complex RMS can be hierarchically modularized for modelling
reconfigurability using coloured Object Oriented Petri nets [16]. The RMS model
is developed with the help of the macro-level Petri net and the changes in RMS
drive the change in Petri net.

Later, Wu et al. introduced Intelligent Token Petri Net (ITPN) for modelling
reconfigurable Automated Manufacturing Systems (AMS) [35]. The ITPN model
captures dynamic changes in the system and the deadlock-free policy makes the
model always deadlock-free and reversible. The change in configuration modifies
only changed part of the current model and the deadlock-free policy remains the
same.

In real-time systems temporal constants are inevitable and these systems
need to be modelled to ensure that it satisfies functional and non-functional
requirements. Recently, Kaid et al. developed Intelligent Colored Token Petri Net
(ICTPN) and it models dynamic changes in a modular manner and produces a
compact model which ensures PN behavioural properties like boundness, liveness
and reversibility but the ITCPN model lacks a conversion method to industrial
control languages.

Reconfigurable Discrete Event System (RDES) such as reconfigurable manu-
facturing systems (RMS) has the ability to change the configuration of the sys-
tem to adapt to changes in conditions and requirements. Reconfigurable discrete
event control systems (RDECS) are an important part of RDESs. Reconfigura-
tion done at the run time is called Dynamic reconfiguration and it should occur
without influencing the working environment and with no deadlock. Zhang et al.
introduced the reconfiguration based on the Timed Net Condition/Event system
(R-TNCES) and it is a formalism for the modelling and verification of RDECSs.
SESA model checker does the layer-by-layer verification of R-TNCES [43].
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Modern manufacturing systems switch energy-intensive machines between
working and idle mode with the help of dynamic reconfiguration to save energy.
The later works of Zhang et al. developed how formal modelling and verification
of reconfigurable and energy-efficient manufacturing systems can be done using
R-TNCES formalism and SESA tool is applied to check functional, temporal
and energy efficient properties [42,45].

System reconfiguration in run-time is inevitable and a discrete event system
with dynamic reconfigurability is called (DRDES). NCES is widely applied in
DRDES:s in the past decade. NCES are a modular extension of PN and it is used
for modelling, analysis and control of DRDES. Many researchers worked on the
modelling, analysis and verification of reconfigurable RMS.

The system reconfiguration should be completed before the permissible recon-
figuration delay. Whenever a reconfiguration event is triggered then DRDES
should be able to go to the target state within the permissible reconfiguration
delay otherwise it should reject the reconfiguration requirement. Zhang et al.
developed to compute a shortest legal firing sequence (SLFS) of an NCES using
Integer Linear Programming (ILP) under a given maximum permissible recon-
figuration delay [44].

Interpreted time Petri net (ITPN) is used to model real-time systems, which
helps to increase the modelling power and expressiveness compared to (Timed
Petri net) TPN’s. Hadjidj et al. proposed RT-studio (Real-time studio) for mod-
elling, simulation and automatic verification. [13]. RT-studio tries to tighten the
gap with the UPPAAL model checker by modularizing the ITPN model.

Dehnert et al. introduced a new probabilistic model checker [7,15] called
Storm that can analyze both discrete- and continuous-time variants of Markov
chains and Markov decision processes (MDPs), using the Prism and JANT mod-
elling languages, probabilistic programs, dynamic fault trees and generalized
stochastic Petri nets. It has a flexible design that allows for easy exchange of
solvers and symbolic engines, and it offers a Python API for rapid prototyping.
Benchmark experiments have shown that Storm has competitive performance.

5.2 Modelling of IEC 61499

Another approach to verify the application of IEC 61499 was presented by
Schnakenhourg et al. , who explained the method to verify TEC 61499 function
blocks by converting to the SIGNAL model [30]. The specification also converts
to a SIGNAL model and verifies using SILDEX from the TNI society.

In order to formally model function blocks in IEC 61499, it is necessary to
first define their complete execution semantics. The semantic ambiguities in IEC
61499, can lead to different interpretations of function blocks. To address this,
the Sequential Hypothesis can be used, which defines a more intuitive and clear
sequential execution model of function blocks. Pang et al. [21], developed IEC
61499 basic function blocks using the sequential hypothesis, which assumes that
blocks within a network are activated sequentially. They used NCES and ver-
ified the behaviour of the model using model-checking tools such as iMATCH
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and SESA. They later proposed a model generator [22] that automatically trans-
lates TEC 61499 function blocks into the NCES formal model for the purpose
of verification. The function blocks developed using the FBDK (Function Block
Development Kit) are translated into functionally and semantically equivalent
NCES models following the sequential execution model. This NCES model can
be opened in ViEd and properties are verified using the ViVe tool.

Cengic et al. [5] introduced a new runtime environment called Fuber, which
uses a formal execution model to make the behaviour of IEC 61499 applications
deterministic and predictable. They developed a tool to translate IEC 61499
function blocks into a set of finite-state automata and used the Supremica tool for
supervisor verification and synthesis. After that, they introduced a software tool
to automatically generate formal closed-loop system models between control code
and process models expressed as IEC 61499 function blocks, using extended finite
automata (EFA) and Supremica for formal verification [3]. They further extended
this by defining the buffered sequential execution model (BSEM) and its formal
verification using Supremica by analyzing the EFA model [4]. In another study,
Yoong et al. developed a tool to translate IEC 61499 function blocks to Esterel
for verification [41]. Existing verification tools for Esterel help to analyze the
safety properties of IEC 61499 function block programs.

Formal verification of embedded control systems using closed-loop plant-
controller models is becoming more popular. However, the use of non-
determinism in the model of the plant can lead to the complexity explosion
in the model-checking process and make it difficult to verify the correctness of
the plant model itself before it can be used in the closed-loop verification pro-
cess. The paper [23] describes the integration of modelling principles into the
Veridemo toolchain, and it also explains the implementation of controlled non-
determinism in NCES systems. The controlled non-determinism limits the state
space and eventually results in better verification times. This approach provides
better model-checking performance with ViVe and SESA compared to NuSMV
and UPPA AL model checkers with fully deterministic state machines. Later they
introduced [26] a framework for model checking and counter-example playback
in simulation models used to verify the system. The control logic and dynamics
of the plant are modelled using Net Condition/Event Systems formalism and
ViVe/SESA toolchain is used for model checking. The counter examples for fail-
ures during model checking are played back in simulation models for a better
understanding of the failures.

The TEC 61499 standard is used for the development of distributed control
systems, but it has limited support for reconfigurable architectures. To address
this limitation, Guellouz et al. proposed a new model called reconfigurable func-
tion blocks (RFBs) in their study [11]. They use GR-TNCES, a derivative of
NCES, to model the system and applied the proposed approach to a medical
platform called BROS. Further studies [10,12] proposed translating RFBs to
GR-TNCES in order to verify their correctness and alleviate state space explo-
sion in model checking. Additionally, the latter paper aimed to analyze proba-
bilistic properties and used a smart-grid system as a case study to demonstrate
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the approach. The study also developed a visual environment called ZiZo v3 for
modelling reconfigurable distributed systems.

The formal verification technique is a reliable approach to ensure the cor-
rectness of instrumentation and control (I&C) systems. It mentions that model-
checking is widely used in avionics, the automotive industry, and nuclear power
plants but has some difficulties in locating errors in the model. The Oeritte tool,
presented in the first study of Ovsiannikova et al. [19], is a solution for assist-
ing analysts in the debugging process of formal models of instrumentation and
control systems. It uses a method for automatic visual counterexample explana-
tion and includes reasoning for both the falsified LTL formula and the NuSMV
function block diagram of the formal model of the system. The tool addresses
the challenges of counterexample visualization, LTL formulae, and counterex-
ample explanation by providing methods, visual elements, and user interface.
The second study, [20], presents the development of a model-checking plugin
for IEC 61499 systems in the FBME graphical development environment. The
plugin automates the process of converting the system to a formal model, model-
checking, and providing a visual explanation of counterexamples.

The next step to verification is the formal synthesis of correct-by-design sys-
tems with ensured safe operation. Missal and Hanisch [17,18] present a modular
synthesis approach. It is based on the modular backward search in order to
avoid the complexity of generating all states and state transitions of the plant
model. It uses modular backward steps that describe the trajectories leading to
forbidden states. The generation of these trajectories is stopped as soon as a
preventable step is found. From this information, the models of the controllers
are generated. Each controller has decision functions and communications func-
tions. Together they establish a network of local, interacting controllers with
communication. It is assumed that the plant is completely observable, i.e. the
local controllers have complete information about the local states of the par-
tial plants they are supposed to control. The paper also contributes with the
definition of the behaviour of the plant without its complete composition. This
means that the behaviour can be studied by means of modular steps within the
modules and their interaction across module boundaries.

Dubinin et al. in [9] demonstrate safety controller synthesis using the descrip-
tion of the plant and forbidden behaviour, proposing a method of synthesis of
adaptive safety controller models for distributed control systems based on reverse
safe Net Condition/Event Systems (RsNCES). The method allows for the gen-
eration of prohibiting rules to prevent the movement of closed-loop systems to
forbidden states. The method is based on a backward search in the state space
of the model.

6 Use IEC 61499 for Condition/Event Modelling: A
Comprehensive Tool Chain

The works on formal modelling and verification of IEC 61499 systems by means
of NCES and its analysis tools have confirmed the benefits of exploring their
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structural and semantic similarities. On the other hand, applying the verification
to systems of industrial scale has raised several questions:

— Model-checking tools for NCES require constant support and improvement,
which was lacking. A bridge to industrially supported powerful tools was
desirable.

— Verification should be a part of the regular engineering and testing process
that includes testing by simulation, and analysis of results.

Towards the first goal, Patil et al. [25] introduce a method for formally mod-
elling and verifying IEC 61499 function blocks, a component model used in
distributed embedded control system design, using the Abstract State Machines
(ASM) as an intermediate model and the SMV model checker. The ASM model
is translated into the input format of the SMV model checker, which is used to
formally verify the properties. The proposed verification framework enables the
formal verification of the IEC 61499 control systems, and also highlights other
uses of verification such as the portability of IEC 61499-based control applica-
tions across different implementation platforms compliant with the IEC 61499
standard. Their other work [24] proposes a general approach for neutralizing
semantic ambiguities in the IEC 61499 standard by the formal description of the
standard in ASM.

Another study [25], highlights the importance of formally verifying function
block applications in different execution semantics and the benefits of verifying
the portability of component-based control applications across different plat-
forms compliant with the IEC 61499 standard. The paper applies the formal
model to an example IEC 61499 application and compares the verification results
of the two-stage synchronous execution model with the earlier cyclic execution
model, to verify the portability of the IEC 61499 applications across different
platforms.

After that, they addressed the SMV modelling of the IEC 61499 specific
timer function block types, particularly in hierarchical function block systems
with timers located at different levels of hierarchy [8]. The paper also introduces
plant abstraction techniques to reduce the complexity of cyber-physical systems
models using discrete-timed state machine models implemented in UPPAAL.
The approach is demonstrated with an example of formal verification of a mod-
ular mechatronic automated system and is shown to extend the abilities in the
validation of real cyber-physical automation systems. A toolchain was developed
to support the described modelling method, including an automatic FB-to-SMV
converter for the transformation of IEC 61499 FB applications to the control
part of SMV models. This approach can be used for the verification of newly
developing industrial safety-critical systems such as smart grids.

Addressing the second goal, the road map on the creation of a tool-chain
connecting engineering with verification seamlessly was outlined in [34]. A
problem-oriented notation within the TEC 61499 syntax for creating formal
closed-loop models of cyber-physical automation systems [40] is proposed. The
notation enables the creation of a comprehensive toolchain for the design, simu-
lation, formal verification, and distributed deployment of automation software.
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The toolchain includes an TEC 61499-compliant engineering environment, a con-
verter for functions blocks to SMV code, the NuSMV model-checker and utilities
for interpreting counterexamples. The proposed method aims to overcome the
hurdle of verifying and analyzing function blocks implemented in IEC 61499
standard by providing a toolchain for continuous development and testing of
distributed control systems.

Fig. 9. Visualisation of the Two Cylinder system produced by the model of the plant
implemented in IEC 61499.

The two-cylinder system consists of two orthogonal pneumatic cylinders con-
trolled by a switch button shown in Fig.9. It is built using five basic function
blocks, including a controller function block (Button FB) that triggers the move-
ment of the cylinders when pressed, plant function blocks (HorCyl and VerCyl
FBs) that model the physical device of each cylinder, and controller function
blocks (HorCTL FB and VerCTL FB) that control the plant by analyzing sen-
sor signals and triggering actuator signals. These blocks receive information from
the switch FB and send orders to the plant FB.

HOME

a) —f{NEESNTD b)—effT —wmo
o REQ CHG REQ CHG
(=] TRUE NDT
LinearDDtrA
g FD HOME (EoSTGH)
4 BACK END o o -
» y

NOTFWDAL.

Fig. 10. a) Deterministic discrete state linear motion process model without NDT, b)
Discrete state linear motion process model with NDT.

To implement the closed-loop approach to system modelling, the model of
the plant needs also to be modelled using function blocks. A discrete state linear
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motion of a cylinder for a linear motion, for example, a linear axis, can be
represented by a LinearDDtrA function block with two states (SHOME and
sEND) that transition between them based on input signals (BACK or FWD)
Fig. 10, a. However, this minimal approach may not capture all possible errors
that can occur during transitions between states.

By using NDT (Non-deterministic transition), a more comprehensive model
can be created by adding two dynamic states (ddMOVETO and ddRETURN)
to capture potential errors during transitions Fig. 10,b.

The axis moves from the stHOME state to the stEND state via the motion
state ddMOVETO when the FWD signal is TRUE. The use of NDT (Non-
Deterministic Transition) in the transition from the ddMOVETO state to the
stEND state models the unknown duration of the motion from one state to
another. The NDT event input of the LinearDA function block, which was unas-
signed in the application, is reserved for non-deterministic transitions in the
proposed modelling notation. This approach can provide a more detailed and
accurate representation of the system, allowing for more thorough formal verifi-
cation.

The (multi-) closed-loop model of the two cylinders system using this exten-
sion of the IEC 61499 language is shown in Fig. 11. This is nothing else, but a
Condition/Event discrete-state model represented by means of IEC 61499.

T T —
< INIT INITO r
REQ CHG |

: NDT
s
LinearDA

< FWD  HOME p
< BACK  ENDp

[CINT > INIT >
~ REQ CHG |
o NDT

——

Dns VerCyl
Buttonl TR
'INT INTO |
| REQ CHG

o NDT

(=]
LinearDA
JdFWD  HOME
d eack

Fig. 11. Complete two cylinders model in the modified FB language.

The fb2smv tool is a model generator that is used to generate SMV (Symbolic
Model Verifier) models of function block systems in IEC 61499. It is part of a
formal verification tool-chain that includes the model checker NuSMV and a
tool for analyzing counterexamples in terms of the original FB system. The tool
uses the Abstract State Machine (ASM) as an intermediate model to convert
IEC 61499 function blocks expressed in XML format into a formal model. The
generated SMV code has a structure that consists of a declaration part and
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an ASM rules part. The tool can convert both basic and composite function
blocks, and also includes additional features such as limiting variable boundaries
to reduce the state space, changing the execution order of FBs, and deciding
the input event priority by changing its order. Additionally, the tool has been
updated to include a proposed non-deterministic transitions notation.

Closed-loop modelling is a powerful approach for the verification of dis-
tributed industrial automation systems, as it allows for a comprehensive evalua-
tion of the system’s behaviour. However, it requires the creation of a model of the
plant, which can be a complex and resource-intensive task, typically done man-
ually. In these papers [36-39], authors show how to generate the plant and con-
troller models automatically using a data-driven approach. The above-mentioned
toolchain has been effectively used in these experiments to verify, simulate and
analyse counterexamples.

7 Summary and Open Problems

Systems with dynamically created and terminated modules or dynamic connec-
tions between modules cannot be efficiently and naturally modelled within the
C/ES paradigm and require complicated workarounds.

The idea of modular analysis of NCES has not been developed although the
absence of token flow between the NCES modules could potentially facilitate it
(Fig. 12).

Fig. 12. Hans-Michael Hanisch (1957-2022).
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Abstract. A process discovery algorithm aims to construct a model
from data generated by historical system executions such that the model
describes the system well. Consequently, one desired property of a pro-
cess discovery algorithm is rediscoverability, which ensures that the algo-
rithm can construct a model that is behaviorally equivalent to the orig-
inal system. A system often simultaneously executes multiple processes
that interact through object manipulations. This paper presents a frame-
work for developing process discovery algorithms for constructing models
that describe interacting processes based on typed Jackson Nets that use
identifiers to refer to the objects they manipulate. Typed Jackson Nets
enjoy the reconstructability property which states that the composition
of the processes and the interactions of a decomposed typed Jackson Net
yields a model that is bisimilar to the original system. We exploit this
property to demonstrate that if a process discovery algorithm ensures
rediscoverability, the system of interacting processes is rediscoverable.

1 Introduction

Business processes are fundamental to a wide range of systems. A business pro-
cess is a collection of activities that, when performed, aims to achieve a business
objective at an organization. Examples of business processes are an order-to-cash
process at a retailer, a medical assessment process at a hospital, or a credit check
process at a bank. Business processes are modeled using process modeling lan-
guages, such as Petri nets, and used for communication and analysis purposes [1].
Petri nets provide a graphical representation of the flow of activities within a
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Fig. 1. A retailer system of three interacting processes.

process and can be used to model various types of concurrent and sequential
behavior [18].

A process discovery algorithm aims to automatically construct a model from
data generated by historical process executions captured in an event log of the
system, such that the model describes the system well. A desired property of a
discovery algorithm is rediscoverability. This property states that if a system 5,
expressed as a model M, generates an event log L, then a discovery algorithm
with the rediscoverability property should construct M from L. In other words,
the algorithm can reverse engineer the model of the system from the data the
model has generated. Only a few existing algorithms guarantee this property.
For example, if the model is a block-structured workflow net, and the event log
is directly-follows complete, then the a-Miner algorithm [22] can rediscover the
net that generated the event log. Similarly, again under the assumption that
the event log is directly-follows complete, Inductive Miner [16] can rediscover
process trees without duplicate transitions, self-loops, or silent transitions.

Most existing process discovery algorithms assume that a system executes
a single process [4]. Consequently, an event log is defined as a collection of
sequences where a sequence describes the execution of a single process instance.
However, many information systems, such as enterprise resource planning sys-
tems, do not satisfy this assumption. A system often executes multiple interact-
ing processes [11,23]. For example, consider a retailer system that executes three
processes: an order, product, and customer management process, as depicted
in Fig. 1. These processes are intertwined. Specifically, only available products
may be ordered, and customers can only have one order at a time. Consequently,
events do not belong to a single process but relate to several processes. For
instance, consider an event e in some event log that occurred as transition G
was executed for some customer ¢ and created a new order o in the system. Event
e relates to the customer process instance ¢ and the order process instance o.
Traditional process discovery techniques require event e to be stored in multiple
event logs and generate multiple models, one for each process [7].

A different approach is taken in artifact or object-centric process dis-
covery [5,17] and agent system discovery [20,21]. In object-centric process
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Fig. 2. The framework for rediscoverability of systems of interacting processes.

discovery, instead of linking each event to a single object, events can be linked
to multiple objects stored in object-centric event logs [9]. Existing object-centric
discovery algorithms project the input event log on each object type to create
a set of “flattened” event logs. For each event log, a model is discovered, after
which these models are combined into a single model [5]. In general, flattening is
lossy [7], as in this step, events can disappear [5], be duplicated (convergence) [3],
or lead to wrong event orders (divergence) [3]. In agent system discovery, instead
of interacting objects, a system is viewed as composed of multiple autonomous
agents, each driving its processes that interact to achieve an overall objective of
the system [20]. An agent system discovery algorithm proceeds by decomposing
the input event log into multiple event logs, each composed of events performed
by one agent (type) and an event log of interactions, and then discovering agent
and interaction models and composing them into the resulting system [21].

In this paper, we study under what conditions projections in event logs can
guarantee rediscoverability for interacting processes, represented as typed Jack-
son Nets, a subclass of typed Petri nets with identifiers [19,23]. The class of typed
Jackson Nets is inspired by Box Algebra [10] and Jackson Nets [14], which are
(representations of) block-structured workflow nets that are sound [2] by con-
struction [16]. As we demonstrate, typed Jackson Nets exhibit a special property:
they are reconstructable. Composing the projections of each type is insufficient
for reconstructing a typed Jackson Net. Instead, if the subset-closed set of all
type combinations is considered, the composition returns the original model of
the system. We show how the reconstructability property can be used to develop
a framework for rediscoverability of typed Jackson Nets using traditional process
discovery algorithms. The framework builds upon a divide and conquer strategy,
as depicted in Fig. 2. The principle idea of this strategy is to project an event
log L generated by some model M of the system onto logs Li,...,L,. Then,
if these projected event logs satisfy the conditions of a process discovery algo-
rithm, composition of the resulting models D1, ..., D, into model D’ should
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rediscover the original model of the system. In this framework, we show that
every projected event log is also an event log of the corresponding projected
model. Consequently, if a process discovery algorithm guarantees the rediscov-
erability of projected models, then the composition operator for typed Jackson
Nets can be used to ensure the rediscoverability of the original system.

The next section presents the basic notions. In Sect. 3, we introduce typed
Jackson Nets, which, as shown in Sect. 4, are reconstructable. We define a frame-
work for developing discovery algorithms that guarantee rediscoverability in
Sect. 5. We conclude the paper in Sect. 6. Full proofs of the lemmata and theo-
rems can be found in [8].

2 Preliminaries

Let S and T be two possibly infinite sets. The powerset of S is denoted by
P(S)={S"| S C S} and |S| denotes the cardinality of S. Two sets S and T are
disjoint if SNT = (), with (§ denoting the empty set. The cartesian product of
two sets S and T, is defined by S x T = {(a,b) | a € S,b € T}. The generalized
cartesian product for some set S and and sets T for s € S is defined as I3 sTs =
{f:5—U,esTs|Vs€S: f(s) € T,}. Given a relation R C S x T, its range
is defined by RNG(R) = {y € T'| 3z € S : (z,y) € R}. Similarly, the domain of
R is defined by DOM(R) = {z € S| Jy € T : (z,y) € R}. Restricting the domain
of a relation to a set U is defined by Ry = {(a,b) € R|a € U}.

A multiset m over S is a mapping of the form m : S — N, where N =
{0,1,2,...} denotes the set of natural numbers. For s € S, m(s) € N denotes
the number of times s appears in multiset m. We write s™ if m(s) = n. For
x &S, m(z) =0. We use SP to denote the set of all finite multisets over S and
overload () to also denote the empty multiset. The size of a multiset is defined
by |m| =3 cqm(s). The support of m € S% is the set of elements that appear
in m at least once: supp (m) = {s € S | m(s) > 0}. Given two multisets m; and
mg over S: (i) m1 C mo iff mq(s) < ma(s) for each s € S; (i) (m1 + mo)(s) =
my(s)+ma(s) for each s € S;and (i) if my C ma, (Mma—mq)(s) = ma(s)—ma(s)
for each s € S.

A sequence over S of length n € N is a function o : {1,...,n} = S. Ifn >0
and o (i) = a;, for 1 <i < n, we write o = (ay,...,an). The length of a sequence
o is denoted by |o|. The sequence of length 0 is called the empty sequence, and
is denoted by €. The set of all finite sequences over S is denoted by S*. We write
a € o if there is 1 <4 < |o| such that o(i) = a and supp (0) ={a € S |31 <i <
lo| : 0(i) = a}. Concatenation of two sequences v,y € S*, denoted by 0 = v -+,
is a sequence defined by o : {1,...,|v| + |y|} — S, such that o(i) = v(i) for
1 <i< |y, and o(i) = (i — |v|) for [v]|+1 < i < |v| + |y|. Projection of
sequences on a set 7' is defined inductively by e =€, ({a) - 0) 7 = (a) - o7 if
a € T and ((a) - 0);p = o) otherwise. Renaming a sequence with an injective
function r : S — T is defined inductively by p.(€) = ¢, and p,.((a) - o)
(r(a)) - pr(o). Renaming is extended to multisets of sequences as follows: given a
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multiset m € (S*)¥, we define p,.(m) = > esupp(m) (M) - pr(0). For example,
3 3
p{x»—»a,yo—»b}(<xay> ) = <a7 b> :

A directed graph is a pair (V, A) where V is the set of vertices, and A C V xV
the set of arcs. Two graphs G; = (V1, A1) and Go = (Va, Ay) are isomorphic,
denoted by Gy «~ Ga, if a bijection b : Vi — V5 exists, such that (vi,v9) € A3
iff (b(Ul), b(’Ug)) S AQ.

Given a finite set A of (action) labels, a (labeled) transition system (LTS)
over A is a tuple T'y = (S, A, s9,—), where S is the (possibly infinite) set of
states, so is the initial state and — C (S x (AU {r}) x S) is the transition
relation, where 7 ¢ A denotes the silent action [13]. In what follows, we write
s = &' for (s,a,s') €—. Let r: A — (A’ U {r}) be an injective, total function.
Renaming I" with r is defined as p,(I') = (S, A\ A’, so, —') with (s,r(a),s’) €=’
iff (s,a,s’) €—. Given a set T, hiding is defined as Hp(I') = pp,(T") with A :
A — AU{r} such that h(t) = 7 if t € T and h(t) = t otherwise. Given a € A,
p -2> q denotes a weak transition relation that is defined as follows: (i) p -%» ¢
iff p(5) g1 2 qo( =) q; (i) p -T» q iff p(5)*q. Here, (55)* denotes the reflexive
and transitive closure of .

Let T'y = (S1, A, s01, —1) and T'y = (Sa, A, sp2, —2) be two LTSs. A relation
R C (S1 x S9) is called a strong simulation, denoted as I'y <p T'g, if for every
pair (p,q) € R and a € AU {7}, it holds that if p %, p’, then there exists
q' € Sy such that ¢ %5 ¢’ and (p,¢') € R. Relation R is a weak simulation,
denoted by T'; <g I's, iff for every pair (p,q) € R and a € AU {7} it holds that
if p %1 p/, then a = 7 and (p/, q) € R, or there exists ¢ € So such that ¢ -%>5 ¢
and (p',¢’) € R. Relation R is called a strong (weak) bisimulation, denoted by
I'y ~p Iy (Fl ~R FQ) if both 't <TI's (Fl <R FQ) and I'y <Rp-1 Iy (FQ <p-1 Fl)
Given a strong (weak) (bi)simulation R, we say that a state p € Sy is strongly
(weakly) rooted (bi)similar to ¢ € S, written p ~% ¢ (correspondingly, p ~% q),
if (p,q) € R. The relation is called rooted iff (sg1,802) € R. A rooted relation is
indicated with a superscript ".

A weighted Petri net is a 4-tuple (P, T, F, W) where P and T are two disjoint
sets of places and transitions, respectively, F' C ((P x T) U (T x P)) is the flow
relation, and W : F — N7t is a weight function. For x € P U T, we write
*z = {y| (y,z) € F} to denote the preset of x and 2* = {y| (x,y) € F} to
denote the postset of x. We lift the notation of preset and postset to sets element-
wise. If for a Petri net no weight function is defined, we assume W (f) = 1 for
all f € F. A marking of N is a multiset m € P®, where m(p) denotes the
number of tokens in place p € P. If m(p) > 0, place p is called marked in
marking m. A marked Petri net is a tuple (N, m) with N a weighted Petri net
with marking m. A transition ¢ € T is enabled in (N, m), denoted by (N, m) [t)
ifft W((p,t)) < m(p) for all p € *t. An enabled transition can fire, resulting
in marking m’ iff m/(p) + W((p,¢t)) = m(p) + W((¢,p)), for all p € P, and
is denoted by (N,m)[t) (N,m’). We lift the notation of firings to sequences.
A sequence o € T* is a firing sequence iff 0 = €, or markings mg,...,my,
exist such that (N,m;_1)[o(?))(N,m;) for 1 < i < |o| = n, and is denoted
by (N, mg)[o)(N,m,). If the context is clear, we omit the weighted Petri net
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Fig. 3. An example block-structured WF-net. Each block corresponds to a node in
the Jackson type (p1; (t1; (((p2; ((t2 + t3) ;p3)) #ta) ; (ts5;p4)))). As example, the choice
between transitions ¢2 and t3 corresponds to the node (p2; ((t2 + t3);p3)) -

N. The set of reachable markings of (N, m) is defined by R(N,m) = {m' |
Jdo € T* : m[o)m'}. The set of all possible finite firing sequences of (N, m) is
denoted by L(N, mg) = {o € T* | m[o)m'}. The semantics of a marked Petri net
(N,m) with N = (P, T, F,W) is defined by the LTS T'y ,,, = (P®, T, mo, —) with
(m,t,m’) €— iff mt)m’. A Petri net N = (P,T,F,W) has underlying graph
(PUT, F). Two Petri nets N and N’ are isomorphic, denoted using N e~ N’,
if their underlying graphs are.

A workflow net (WF-net for short) is a tuple N = (P, T, F, W, in, out) such
that: (4) (P, T, F,W) is a weighted Petri net; (%) in, out € P are the source and
sink place, respectively, with ®*in = out® = 0; (iii) every node in PUT is on a
directed path from in to out. N is called k-sound for some k € N iff (i) it is
proper completing, i.e., for all reachable markings m € R(N, [in*]), if [out*] C m,
then m = [out*]; (i) it is weakly terminating, i.e., for any reachable marking
m € R(N, [in*]), the final marking is reachable, i.e., [out*] € R(N,m); and (iii)
it is quasi-live, i.e., for all transitions ¢ € T', there is a marking m € R(N, [in])
such that m[t). The net is called sound if it is 1-sound.

3 Typed Jackson Nets to Model Interacting Processes

In this section, we introduce typed Jackson Nets as subclass of typed Petri nets
with identifiers. We show that this class is a natural extension to Jackson Nets,
which are representations of block-structured workflow nets. Typed Jackson Nets
are identifier sound and live by construction.

3.1 Jackson Nets

Whereas WF-nets do not put any restriction on the control flow of activities,
block-structured WF-nets divide the control flow in logical blocks [15]. Each
“block” represents a single unit of work that can be performed, where this unit of
work is either atomic (single transition), or one involving multiple steps (multiple
transitions). An example block-structured WF-net is shown in Fig. 3. The main
advantage of block-structured WF-nets, is that the block-structure ensures that
the WF-net is sound by definition [14-16|. In this paper, we consider Jackson
Types and Jackson Nets [14]. A Jackson Type is a data structure used to capture
all information involved in a single execution of a WF-net.
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Definition 1 (Jackson Type [14]). The set of Jackson Types J is recursively
defined by the following grammar:

J =7 | (ﬂp;(jtb‘z{p))
Tt et | (75 (70 | (T + T
TP =P (Jp;(jt;jp)) | (TP TP) | (jp#jt)

where o = AP U ' = {a,b,c,...} denotes two disjoint sets of atomic types
for places and transitions, resp., and symbols ; ||, +,# stand for sequence, par-
allelism, choices, and loops. N

A Jackson Net is a Petri net where each place has an assigned Jackson Type.
The class of Jackson Nets is obtained by recursively applying generation rules,
starting from a singleton net with only one place. These generation rules are
similar to those defined by Murata [18] and preserve soundness [14]. Thus, any
Jackson Net is sound by construction.

Definition 2 (Jackson Net [14]). A WF-net N = (P, T, F,in, out) is called a
Jackson Net if it can be generated from a single place p by applying the following
five generation rules recursively:

J1:p < (p1; (tp2)) J4:p = (p1 | p2)
J2: 1 (t1;(p1;ta)) Jo:t < (61 + t2)
J3: p — (p#t)

We say that N is generated by p. <

As shown in [14], Jackson Nets are completely determined by Jackson Types,
and vice versa.

3.2 Petri Nets with Identifiers

Whereas WF-nets describe all possible executions for a single case, systems typ-
ically consist of many interacting processes. The latter can be modeled using
typed Petri nets with identifiers (t-PNIDs for short) [23]. In this formalism, each
object is typed and has a unique identifier to be able to refer to it. Tokens carry
vectors of identifiers, which are used to relate objects. Variables on the arcs are
used to manipulate the identifiers.

Definition 3 (Identifiers, Types and Variables). LetZ , A, and V denote
countably infinite sets of identifiers, type labels, and variables, respectively. We
define:

— the domain assignment function I : A — P(Z), such that (A1) is an infinite
set, and I(A\1) N I(A2) # O implies Ay = Ag for all Ay, Aa € A;

- the id typing function types : T — A s.t. if types(id) = A, then id € I(X);

— a variable typing function type,, : V — A, prescribing that x € V can be
substituted only by values from I(typey,(z)).
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When clear from the context, we omit the subscripts of type. We lift the type
functions to sets, vectors, and sequences by applying the function on each of its
constituents. <

In a t-PNID, each place is annotated with a label, called the place type. A
place type is a vector of types, indicating types of identifier tokens the place can
carry. Similar to Jackson Types, we use [p, A] to denote that place p has type
a(p) = A Each arc is inscribed with a multiset of vectors of identifiers, such
that the type of each variable coincides with the place types. If the inscription
is empty or contains a single element, we omit the brackets.

Definition 4 (Typed Petri net with identifiers). A typed Petri net with
identifiers (t-PNID) N is a tuple (P, T, F,«, 3), where:

- (P,T,F) is a classical Petri net;

- a: P — A* is the place typing function;

-8 : F — (V)% defines for each arc a multiset of variable vectors s.t.
a(p) = type(x) for any x € supp (B((p,t))) and type(y) = a(p’) for any
y € supp (B((t,p’))) wheret € T, p € *t, p' €t°. <

A marking of a t-PNID is the configuration of tokens over the set of places.
Each token in a place should be of the correct type, i.e., the vector of identifiers
carried by a token in a place should match the corresponding place type. The
set C(p) defines all possible vectors of identifiers a place p may carry.

Definition 5 (Marking). Given a t-PNID N = (P,T,F,«,[3), and place p €
P, its id set is C(p) = [li<;<ja(p) L(@(p)(i)). A marking is a function m €
M (N), withM (N) = P — (A*)®, such that m(p) € C(p)®, for each place p € P.
The set of identifiers used in m is denoted by Id(m) = |, p RNG(supp (m(p)))
The pair (N, m) is called a marked t-PNID. q

To define the semantics of a t-PNID, the variables need to be valuated with
identifiers.

Definition 6 (Variable sets [23]). Given a t-PNID N = (P,T,F,a,3),t €T
and X € A, we define the following sets of variables:

~ input variables as In(t) = U,cp((p.e)),peer RNG(supp (2));

~ output variables as Out(t) = U,cp((1,p)),pere RNG(supp ());

— variables as Var(t) = In(t) U Out(t);

— emitting variables as Emit(t) = Out(t) \ In(t);

- collecting variables as Collect(t) = In(t) \ Out(t);

- emitting transitions as Ex(X) = {t | 3z € Emit(t) A type(x) = A};

— collecting transitions as Cn(A) = {t | Iz € Collect(t) A type(r) = A};

~ types in N as type(N) = {X|Ip e P: X € alp)}. q

A valuation of variables to identifiers is called a binding. Bindings are used
to inject new fresh data into the net via variables that emit identifiers, i.e., via
variables that appear only on the output arcs of that transition. Note that in
this definition, freshness of identifiers is local to the marking, i.e., disappeared
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identifiers (those fully removed from the net through collecting transitions) may
be reused, as it does not hamper the semantics of the t-PNID.

Definition 7 (Firing rule for t-PNIDs). Given a marked t-PNID (N, m)
with N = (P,T,F,«,3), a binding for transition t € T is an injective function
¥V — T such that type(v) = type(¢(v)) and ¥(v) € Id(m) iff v € Emit(t).
Transition t is enabled in (N, m) under binding v, denoted by (N,m)[t,¥) iff
py(B(p,t)) < m(p) for all p € *t. Its firing results in marking m’, denoted by
(N, m)ft, )(N, m'), such that m'(p) + py(8(p, 1) = m(p) + po(B(t,p)). <

The firing rule is inductively extended to sequences. A marking m’ is reachable
from m if there exists n € (T x (V — I))* such that (N, m)[n)(N,m’). We
denote with R(N,m) the set of all markings reachable from m for (N, m). We
use L (N, m) to denote all possible firing sequences of (N, m), i.e., L(N,m) =
{n [ (N,m)[n)} and Id(n) = U e, RNG(1) for the set of identifiers used in 7.
The execution semantics of a t-PNID is defined as an LTS that accounts for all
possible executions starting from a given initial marking. We say two t-PNIDs
are bisimilar if their induced transition systems are.

Definition 8. Given a marked t-PNID (N,mg) with N = (P,T,F,«,f3), its
induced transition system is Inpmy = M(N), (T x (V — I)),mo,—) with
m Lt i (N m) [t ) (N, ), 4

Soundness properties for WF-nets typically consist of proper completion,
weak termination, and quasi-liveness [6]. Extending soundness to t-PNIDs gives
identifier soundness [23]. In t-PNIDs, each object of a given type “enters” the
system through an emitting transition, binding it to a unique identifier. Identifier
soundness intuitively states that it should always be possible to remove objects
(weak type termination), and that once a collecting transition fires for an object,
there should be no remaining tokens referring to the removed object (proper type
completion).

Definition 9 (Identifier Soundness [23|). Let (N, mq) a marked t-PNID and
X € A some type. (N, mg) is A-sound iff it is

— Proper A-completing, i.e., for all t € Cy(X), bindings ¥ : V — T and
markings m,m’ € R(N,myg), if m[t,))m’, then for all identifiers id €
RNG( V| copiect(r)) N Id(m) and type(id) = A, it holds that id ¢ Id(m')!;

— Weakly A\-terminating, i.e., for every m € R(N,mq) and identifier id € I(\)
such that id € Id(m), there exists a markingm’ € R(N, m) with id ¢ Id(m').

If it is A-sound for all A € type(N), then it is identifier sound. N

3.3 Typed Jackson Nets

In general, identifier soundness is undecidable for t-PNIDs [23]. Similar as Jack-
son Nets restrict WF-nets to blocks, typed Jackson Nets (t-JNs) restrict t-PNIDs

! Here, we constrain 1 only to objects of type A that are only consumed.
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to blocks, while guaranteeing identifier soundness and liveness. For t-JNs, we dis-
allow multiplicity on arcs and variables, i.e., 8(f)(v) < 1forall f € Fandv €V,
and imply a bijection on variables and identifier types. This prevents place types
like A = (z, z). Assuming a Godel-like number on types (cf. [14]), place types and
arc inscriptions can be represented as sets. Similar as Jackson Types describe
Jackson Nets, we apply a notation based on Jackson Types to denote typed
Jackson Nets.

Definition 10 (Typed Jackson Net). A t-PNID N is a typed Jackson Net if
it can be generated from a set of transitions T' by applying any of the following siz
generation rules recursively. If N is generated from a singleton set of transitions
(i.e., [T'| =1), N is called atomic.

R1 Place Ezxpansion: [p,\] < ([p1, ] ; (t1; [p2, A]))

14 v 4 1%
I I
v v <—‘>
p 1 p2
R2 Transition Ezpansion: t < (t1; ([p, \];t2)), with Var(t) C A
1Z1 V3 41 V3

I 1
Vo vy <+ vy . vy
p

R8& Place Duplication: (t1; ([p, \];t2)) < (t1; (([p, A] || [P/, N]) ;t2)),
with X' N Emit(p®) = 0

V1 V3

R4 Transition Duplication: t « (t +t)

41 v
el o

R5 Self Loop Addition: [p, \] < ([p, \] #t)
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R6 Identifier Introduction: t < (t< (N, [p, ], N2)), with (N1;([p,A];N2)) a
t-JN and AN Var(t) =0

vy (&)

<

An example t-JN is given in Fig. 1. Starting with the product process, tran-
sitions C' and D can be reduced using rule R2. The resulting transition is
a self-loop transition, and can be reduced using R5, resulting in the block
(E < (A, product, B)). This block can be reduced using RG6, leaving transition
E. Transition E is again a self-loop, and can be reduced using R5. The block
containing transitions H, J, L O, N and K can be reduced to a single place by
applying rules R1, R2 and R5 repeatedly. The remaining place is a duplicate
place with respect to place p, and can be reduced using R3. Applying R2 on G
and Z results in the block (G < (T, customer,V')), which can be reduced to the
transition GG. Hence, the net in Fig. 1 is an atomic t-JN.

Theorem 1 (Identifier Soundness of typed Jackson Nets [23]). Given a
t-JN N, then N is identifier sound and live. N

4 Decomposability of t-JNs

t-PNIDs specify a class of nets with explicitly defined interactions between
objects of different types within one system. However, sometimes one may want
to focus only on some behaviors exhibited by a given set of object types, by
extracting a corresponding net from the original t-PNID model. We formalize
this idea below.

Definition 11 (Type projection). Let N = (Py,Tn,Fn,«, ) be a t-PNID
and T C A be a set of identifier types. The type projection of T on N is a
t-PNID 7y (N) = (P'r,TT7 Fr, Ck'r,ﬂ'r), where:

- Pr={pecP|YTCap};

~Ty={teT|(tut)n Py #0};

~ Py =Fn((Py x Ty) U (Tx x Pr));

— ax(p) =7, for each p € Py;

= Be(F) = B(Dleypes(r)» for each f € (Pr x Tr) U (Tr x Pr)). )

With the next lemma we explore a property of typed Jackson nets that,
in a nutshell, shows that t-JNs are closed under the type projection. This also
indirectly witnesses that t-JNs provide a suitable formalism for specifying and
manipulating systems with multiple communicating components.

Lemma 1. If N = (Py,Tn, Fn,, ) is a t-JN, then 7y (N) is a t-JN as well,
for any T C type, (N). N
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(c) t-PNID N & M

Fig. 4. Although both N and M are t-JNs, their composition is not

Proof. (sketch) Let us assume for simplicity that N is atomic. Then, using rules
from Definition 10, N can be reduced to a single transition. Starting from this
transition, one can construct a t-JN following the net graph construction from
Definition 11 using the same rules (but the identifier introduction one), proviso
that arc inscriptions are always of type Y. Then, it is easy to check that the
constructed net is indeed the type projection of T on N. |

We define next how t-PNIDs can be composed and show that t-JNs are not
closed under the composition.

Definition 12 (Composition). Let N = (Py,Tn,Fn,an,On) and
M = (Par, Tor, Far, g, Bar) be two t-PNIDs. Their composition is defined by:

NWM = (PyUPy, Ty UTy, FN U Fy,any Uan, By U Bar)

It is easy to see that the composition of two t-JNs does not automatically
result in a t-JN. Consider nets in Fig.4. It is easy to see that both N and M
can be obtained by applying R2 from Definition 10. However, their composition
cannot be reduced to a single transition by consecutively applying rules from
Definition 10.

A more surprising observation is that composing type projections of a t-
JN may not result in a t-JN. Take for example the net from Fig.5. Both its
projections on {A;} and {A\2} are t-JNs. However, bringing them together using
the composition operator results in a t-PNID that is not t-JN: indeed, since the
“copies” of place p appear in three places, and all such copies have same pre-
and post-sets (and only differ by their respective types), it is impossible to apply
identifier elimination rule R6 from Definition 10.

As one may observe from the above example, the only difference between
[Day, (A1, A2)] and its copies p, and p, is in their respective types, whereas the
identifiers carried by p, and p, are always contained in p,,, and thus both p, and
py can be seen as subsidiary with respect to p,,. We formalize this observation
using the notion of minor places: a place p is minor to some place ¢ if both p
and g have identical pre- and post-sets, and the type of ¢ subsumes the one of p.
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Fig. 5. Composition of the projections on {A1}, {A2} and {Ai,A2} on the t-JN
(a; [p, (=, y)]; (Bl|c); [g, (z,v)]; d). Here, type assignments are as follows: a(pz) = a(gz) =
A1, a(py) = a(gy) = A2 and a(p) = a(q) = A1 de.

Definition 13 (Minor places). Let N = (Py,Tn, Fn,, ) be a t-PNID. A
place p € P is minor to a place q € P iff the following holds:

—*p="1q, p* =q* and a(p) C a(q);
= (L‘ q))‘type_l(a )7 for each t € *p;
)‘type Ha(p))’ for each t € p°®.

N

We show next that minor places can be added or removed without altering
the overall behavior of the net.

Lemma 2. Let N = (P,T,F,«,3) be a t-PNID with initial marking mq s.t.
mo(p) = mo(q) = 0, for p,q € P, where p is minor to q. Let N' = (P\{p},T, F'\
{(p,t)|t € p*} U{(t,p)|t € *p}), o, B) be a t-PNID obtained by eliminating from
N place p. Then I'nmg ~" '’ g - N

Proof. (sketch) It is enough to define a relation @ C R(N,mqg) x R(N',myp) s.t.
(m,m’') € Qiff m(r) = m/(r), for r € P\ {p}, and m(p)(id) = m’'(q)(id), for all
id € C(p), and |m(p)| = |m/(¢)|. Then the lemma statement directly follows from
the firing rule of t-PNIDs and that pre- and post-sets of p and ¢ coincide. |

Let us now address the reconstructability property. In a nutshell, a net is
reconstructable if composing all of its type projections returns the same net.
This property is not that trivial to obtain. For example, let us consider singleton
projections (that is, projections 7y (V) obtained for each A € type,(V)) of
the net in Fig.6. It is easy to see that such projections “ignore” interactions
between objects (or system components). Thus, the composition of the singleton
projections 7¢y,y (V) and 7y, (V) from Fig. 6 does not result in a model that
merges p, and p, in one place as the composition operator cannot recognize
component interactions between such projections. This is reflected in Fig. 6d.

To be able to reconstruct the original model from its projections (or at least
do it approximately well), one needs to consider a projection reflecting compo-
nent interactions. In the case of the net from Fig. 6a, its non-singleton projection
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v

] O O
(a) t-PNID N with type(z) = A1 (b) The projection of {\1} (c¢) The projection of {\2}
and type(y) = A2 on N on N

(d) The composition of wyx,1 (N) and 7,1 (V)

Fig. 6. t-PNID N (6a), its singleton projections and their composition

(a) The projection of {A1, A2} on (b) The composition myy,} (N)Wry,y (V)W
N from Figure 6a Tiar, e} (V) for N from Figure 6a

Fig.7. Adding the projection 7y, x,} (IV) reflecting interactions to the composition
results in the original net N modulo places minor to p (such as p, and py).

T e} (IV) is depicted in Fig. 7a. Now, using this projection we can obtain a
composition (see Fig.7b) that closely resembles N. Notice that, in this compo-
sition, copies of the interaction place p appear three times as places p;, py and
Dzy, Tespectively. It is also easy to see that places p, and p, are minor to pg,,
and a(p) = a(psy) witnesses that m¢y, x,3 (V) is the maximal projection defined
over types of N s.t. the correct type of p is “reconstructed”. This leads us to
the following result stipulating the reconstructability property of typed Jackson
nets.

Theorem 2. Let N = (P,T,F,«,f3) be a t-JN. Then T'n g ~" T'nv g, where
N’ = O] 7y (N). <
DCYCtype, (N)

Proof. (sketch) The proof immediately follows from the next observation. Among
all possible projections, for each place p € P there exists a projection 7y (V)
such that a(p) = Y. This also means that 7y (N) contains p and that all other
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projections my/ (N) with Y C T will at most include the minors of p. Following
Definition 12, it is easy to see that the composition of all the projections yields
a t-JN identical to N modulo additional place minors introduced by some of
the projections. Showing that the obtained net is bisimilar to N can be done by
analogy with Lemma 2. [ ]

Notice that the above result can be made stronger if all the additional minors
(i.e., minors that were not present originally in V) are removed using reduction
rules from Definition 10. For simplicity, given a t-PNID NV with the set of places
P, we denote by | P] the set of its minor places.

Corollary 1. Let N be a t-JN and N’ is as in Theorem 2. Then (N,() «~
(N',0), if | P] = | P'], where P and P’ are respectively the sets of places of N
and N'. <

The above result can be obtained by complementing the proof of Theorem 2 with
a step that applies finitely many t-JN reduction rules to all the minor places that
are in N’ and not in N.

5 A Framework for Rediscoverability

In the previous section, we showed that t-JNs enjoy the reconstructability prop-
erty: given a t-JN, a composition of all its (proper) type projections yields a
t-JN that is strongly bisimilar to the original one.?

In this section, we propose a framework to rediscover systems of interacting
processes that rely on this property. The framework builds upon a divide and
conquer strategy [21]. The first step of the approach is to divide the event logs
over all possible projections. For this, we translate the notion of event logs to
event logs of interacting systems, and show that if these event logs are generated
by a t-JN, projections on these event logs have a special property: the projected
event log can be replayed by the projected net. In other words, there is no distinc-
tion between the projection on the event log, or that the projected net generated
the event log. This observation forms the basis of the proposed framework for
rediscoverability. In the second step, we conquer the discoverability problem of
the system of interacting processes by first discovering a model for each of the
projections, and then composing these projections into the original system. If the
event log and discovery algorithm guarantee the defined properties, composition
yields rediscoverability.

5.1 Event Logs and Execution Traces

In process discovery, an event log is represented as a (multi)set of sequences of
events (called traces), where each sequence represents an execution history of a

2 Such nets are also isomorphic if minor places of the composition are removed by
consecutively applying the reduction rules from Definition 10.
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Table 1. Firing sequence for the t-PNID in Fig. 1

transition | x |y | z transition | x |y | z transition | x |y | z
A pl T c2 D pl

A p2 H ol \% c2
T cl L ol K ol

G ol|cl J ol Z ol |cl
C pl B p2 |4 cl
E p2 | ol @] ol B pl

process instance. Traditional process discovery assumes the process to be a WF-
net. Consequently, each trace in an event log should correspond to a sequence of
transition firings of the workflow net. If this is the case, the event log is said to
be generated by the WF-net. We generalize this notion to marked Petri nets.

Definition 14 (Event Log). Given a set of transitions T, a set of traces L C
T* is called an event log. An event log L is generated by a marked Petri net
(N,m) if (N,m)[o) for allo € L, i.e., L C L(N,myg). q

Each sequence in a single process event log assumes to start from the initial
marking of the WF-net. A marked t-PNID, instead, represents a continuously
executing system, for which, given a concrete identifier, exists a single observable
execution that can be recorder in an event log. Thus, event logs are partial
observations of a larger execution within the system: an event log for a certain
type captures only the relevant events that contain identifiers of that type, and
stores these in order of their execution. Since each transition firing consists of a
transition and a binding, a t-PNID firing sequence induces an event log for each
set of types Y. Intuitively, this induced event log is constructed by a filtering
process. For each possible identifier vector for T we keep a firing sequence. Each
transition firing is inspected, and if its binding satisfies an identifier vector of T,
it is added to the corresponding sequence.

Definition 15 (Induced Event Log). Let (N,mq) be a marked t-PNID.
Given a non-empty set of types T C type, (N), the T-induced event log of a fir-
ing sequence n € L(N,mq) is defined by: Log(n) = {n; | i € (Id(n)NI(Y))I*},
where 1); 1s inductively defined by (1) €; =€, (2) (((t,¥)) -n);; = (& ¥)) - my if
supp (i) € RNG(¥), and (3) (((t,¥)) - n);; = nj otherwise. <

Different event logs can be induced from a firing sequence. Consider, for
example, the firing sequence of the net from Fig.1 represented as table in
Table1. As we cannot deduce the types for each of the variables from the
firing sequences in Table 1, we assume that there is a bijection between vari-
ables and types, i.e., that each variable is uniquely identified by its type,
and vice-versa. Like that, we can create an induced log for each variable, as
the type and variable name are interchangeable. For example, the z-induced
event log is Logy,y = {(A,E,B),(A,C,D,B)}, and the z-induced event log is
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Logy., = {T,G,Z, V) ,(T,V)}. Similarly, event logs can be also induced for
combinations of types. In this example, the only non-empty induced event logs
on combined types are Logy, ., = {(G,Z)} and Logy, ,, = {(E)}.

As the firing sequence in Table1 shows, transition firings (and thus also
events) only show bindings of variables to identifiers. For example, for firing G
with binding y — ol and z — cl, it is not possible to derive the token types of
the consumed and produced tokens directly from the table. Therefore, we make
the following assumptions for process discovery on t-PNIDs:

1. There are no “black” tokens: all places carry tokens with at least one type,
and all types occur at most once in a place type, i.e., all places refer to at
least one process instance.

2. There is a bijection between variables and types, i.e., for each type exactly
one variable is used.

3. A Godel-like number ¥ is used to order the types in place types, i.e., for any
place p, we have ¥ (a(p)(i)) < Y (a(p)(y)) for 1 <i< j < |a(p)| and p € P.

5.2 Rediscoverability of Typed Jackson Nets

Whereas traditional process discovery approaches relate events in an event log
to a single object: the process instance, object-centric approaches can relate
events to many objects [12]. Most object-centric process discovery algorithms
(e.g., [5,17]) use a divide and conquer approach, where “flattening” is the default
implementation to divide the event data in smaller event logs. The flattening
operation creates a trace for each object in the data set, and combines the traces
of objects of the same type in an event log. As we have shown in Sect. 4, single-
ton projections, i.e., those just considering types in isolation, are insufficient to
reconstruct the t-JN that induced the object-centric event log. A similar observa-
tion is made for object-centric process discovery (cf. [3,5,7]): flattening the event
data into event logs generates inaccurate models. Instead, reconstructability can
only be achieved if all possible combinations of types are considered. Hence, for
a divide and conquer strategy, the divide step should involve all possible combi-
nations of types, i.e., each interaction between processes requires their own event
log. In the remainder of this section, we show that if all combinations of types are
considered, flattening is possible, and traditional process discovery algorithms
can be used to rediscover a system of interacting processes.

For a system of interacting processes, we consider execution traces, i.e., a
firing sequence from the initial marking. Like that, event logs for specific types
or combinations of types are induced from the firing sequence. The projection of
the system on a type or combinations of types, results again in a t-JN. Similarly,
if we project a firing sequence of a t-JN N on a set of types T, then this projection
is a firing sequence of the Y-projection on N. The property follows directly from
the result that t-JN N is weakly simulated by its T-projection.

Lemma 3. Let N be a t-JN, and let T C type,(N). Then I:IU(FN,(Z)) <"
Crr ()0, with U =Ty \ Tx. 4
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Fig. 8. Framework for rediscoverability of typed Jackson Nets. Model M generates an
event log L. Log projections L ... L, are generated from projected nets M; ... M,.
Discovery algorithm disc results in nets Dy ... D,, isomorphic to M; ... M,,, which can
be composed in D’. D’ is isomorphic to M’ and thus to M.

Proof. (sketch) Let Ny = Y|y = (Py, Ty, Fr,ay,fr). We can define a rela-
tion @ C M(N) x M (mr (N)) s.t. Qm)(p)ascr)) = m(p)(a) if p € Py and
Q(m)(p) = m(p) otherwise. The rooted weak bisimulation of @ follows directly
from the firing rule of t-PNIDs. ]

As the lemma shows, projecting a firing sequence yields a firing sequence for
the projected net. A direct consequence of the simulation relation is that, no
matter whether we induce an event log from a firing sequence on the original
net, or induce it from the projected firing sequence, the resulting event logs are
the same.

Corollary 2. Let (N,mg) be a marked t-PNID. Given a set of types T C
type,(N). Then Logy(n) = Logy(mr (1)) <

Hence, it is not possible to observe whether an induced event log stems from
the original model, or from its projection. Note that the projection may exhibit
more behavior, so the reverse does not hold. In general, not any induced event
log from the projection can be induced from the original model.

In general, a projection does not need to be an atomic t-JN (that is, a t-JN
that can be reduced by applying rules from Definition 10 to a single transition).
However, if the projection is atomic, then its structure is a transition-bordered
WEF-net: a WF-net that, instead of having source and sink places, has a set of
start and finish transitions, such that pre-sets (resp., post-sets) of start (resp.,
finish) transitions are empty. The closure of a transition-bordered WF-net is
constructed by adding a new source place i so that each start transition consumes
from 4, and a new sink place f so that each finish transition produces in f.

Lemma 4. Let N be a t-JN and ny (N) = (Py, Ty, Fr,ax, 8y) for some T C
type,(N) such that wy (N) is atomic. Let n € L(N,() be a firing sequence.
Then Log~(n) is generated by (Nv,0) with Ny = (Py U {4, f},Tr, Fx{(i,t) |
St=0yuU{(t, f)|t*=0}). <
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Proof. (sketch) Let ¢ € Logy(n). By construction, each firing sequence in
Log~(n) has some corresponding identifier vector that generated the sequence.
Assume ¥ € Z!7! is such a vector for o.

Observe that for any transition ¢ € T if *¢t = 0, Emit(t) N Y # (), and
similarly, if t* = @, Collect(t) N'Y # (. As N is identifier sound, only *c(1) = ()
and o(|o])® = 0. Define relation R = {(M,m) | Vp € P : M(p)(v) = m(p)} and
U={(t,9¢)|v<ZRNG()}, i.e., U contains all transitions that do not belong to
o. Then R is a weak simulation, i.e., Hy(I'y g) <% Iy g and thus (Ny, 0)[c). B

Given a set of types Y, if its projection is atomic, the projection can be
transformed into a workflow net, and for any firing sequence of the original net,
this WF-net can generate the T-induced event log. Suppose we have a discovery
algorithm disc that can rediscover models, i.e., given an event log L that was gen-
erated by some model M, then disc returns the original model. Rediscoverability
of an algorithm requires some property Pys.(M) on the generating model M,
and some property Q g;sc(L, M) on the quality of event log L with respect to the
generating model M. In other words, P(M) and Q(L, M) are premises to con-
clude rediscoverability for discovery algorithm disc. For example, a-miner [22]
requires for P(M) that model M is well-structured, and for Q(L, M) that event
log L is directly-follows complete with respect to model M. Similarly, Inductive
Miner [16] requires the generating model M to be a process tree without silent
actions or self-loops (P(M)), and that event log L is directly-follows complete
with respect to the original model M (Q(L, M)).

Definition 16 (Rediscovery). An algorithm disc can rediscover WF-net W =
(P, T,F,in,out) from event log L C T* if Pyisc(W) and Qaisc(L, W) imply
disc(L) e~ W. <

Thus, suppose there exists a discovery algorithm disc that is — under con-
ditions P and @) — able to reconstruct a workflow model given an event log. In
other words, given an event log L generated by some model M, disc returns
a model that is isomorphic to the generating model. Now, suppose we have a
firing sequence 7 of some t-JN N, and some projection Y. Then, if P(wy (N)),
and Q(Log~(n), 7y (IV)), then disc returns a model that is isomorphic to the
closure of my (N), as disc only returns WF-nets. With disc we denote the model
where the source and sink places are removed, i.e., disc e~ Ty (N). Then, as
shown in Fig. 8, if we discover for every possible combination of types, i.e., the
subset-closed set of all type combinations, a model that is isomorphic to the
type-projected model, then the composition results in a model that is bisimilar
to the original model.

Theorem 3 (Rediscoverability of typed Jackson Nets). Let N be a
t-JN, and let n € L(N,0) without minor places. Let disc be a discov-
ery algorithm with properties P and @Q that satisfy Definition 16. If for
all € T C type,(N) the Y-projection is atomic and satisfies condi-
tions P(my (N)) and Q(Logy(n)),my (N)), then T'ng e~ Tnig with N =

H@CTgtypeA(N) %(LOQT(U))
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Proof. (sketch) Let § C T C type, (V) be a set of types in N. Since P(7y (N))
and Q(Log~(n)), 7y (N))the closure of 7y (N) and disc(Log~(n)) are isomor-
phic. From the closure, places in and out exist with ®*in = 0 = out®. As the
nets are isomorphic, we have Y|y «v disc(Logy(n)). Combining the results

gives &J@CTgtypeA(N) disc(Logy(n)) e~ ijchypeA(N) 7y (N). The statement
then follows directly from Corollary 1. |

6 Conclusion

In this paper, we studied typed Jackson Nets to model systems of interacting
processes, a class of well-structured process models describing manipulations
of object identifiers. As we show, this class of nets has an important property
of reconstructability. In other words, the composition of the projections on all
possible type combinations returns the model of the original system. Ignoring the
interactions between processes results in less accurate, or even wrong, models.
Similar problems occur in the discovery of systems of interacting processes, such
as object-centric process discovery, where event logs are flattened for each object.

This paper provides a formal foundation for the composition of block-
structured nets, and uses this to develop a framework for the discovery of systems
of interacting processes. We link the notion of event logs used for process discov-
ery to system executions, and show that it is not possible to observe whether an
event log is generated by a system of interacting processes, or by a projection of
the system. These properties form the key ingredients of the framework. We show
under what conditions a process discovery algorithm (that guarantees rediscov-
erability) can be used to discover the individual processes and their interactions,
and how these can be combined to rediscover a model of interacting processes
that is bisimilar to the original system that generated the event logs.

Although typed Jackson Nets have less expressive power than formalisms like
Object-centric Petri nets [5], proclets [11] or interacting artifacts [17], this paper
shows the limitations and potential pitfalls of discovering interacting processes.
This work aims to lay formal foundations for object-centric process discovery.
As a next step, we plan to implement the framework and tune our algorithms
to discover useful models from industrial datasets.
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References

1. Aalst, W.M.P.: Workflow verification: finding control-flow errors using petri-net-
based techniques. In: van der Aalst, W., Desel, J., Oberweis, A. (eds.) Business
Process Management. LNCS, vol. 1806, pp. 161-183. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-45594-9 11

2. Aalst, W.M.P.: Verification of workflow nets. In: Azéma, P., Balbo, G. (eds.)
ICATPN 1997. LNCS, vol. 1248, pp. 407-426. Springer, Heidelberg (1997). https://
doi.org/10.1007/3-540-63139-9 48


https://doi.org/10.1007/3-540-45594-9_11
https://doi.org/10.1007/3-540-63139-9_48
https://doi.org/10.1007/3-540-63139-9_48

10.

11.

12.

13.

14.

15.

16.

17.

18.

There and Back Again 57

Aalst, W.M.P.: Object-centric process mining: dealing with divergence and con-
vergence in event data. In: Olveczky, P.C., Salaiin, G. (eds.) SEFM 2019. LNCS,
vol. 11724, pp. 3-25. Springer, Cham (2019). https://doi.org,/10.1007/978-3-030-
30446-1_1

van der Aalst, W.M.P.: Foundations of process discovery. In: van der Aalst,
W.M.P., Carmona, J. (eds.) Process Mining Handbook. LNBIP, vol. 448, pp. 37-75.
Springer, Cham (2022). https://doi.org/10.1007/978-3-031-08848-3 2

van der Aalst, W.M.P., Berti, A.: Discovering object-centric petri nets. Fund.
Inform. 1-4(175), 1-40 (2020)

van der Aalst, W.M.P., et al.: Soundness of workflow nets: classification, decidabil-
ity, and analysis. Formal Asp. Comput. 23(3), 333-363 (2011)

Adams, J.N., Park, G., Levich, S., Schuster, D., van der Aalst, W.M.P.: A frame-
work for extracting and encoding features from object-centric event data. In: Troya,
J., Medjahed, B., Piattini, M., Yao, L., Ferndindez, P., Ruiz-Cortés, A. (eds.)
ICSOC 2022. LNCS, vol. 13740, pp. 36-53. Springer, Cham (2022). https://doi.
org/10.1007/978-3-031-20984-0 3

Barenholz, D., Montali, M., Polyvyanyy, A., Reijers, H.A., Rivkin, A., van der
Werf, J.M.E.M.: On the reconstructability and rediscoverability of typed Jack-
son nets (extended version) (2023). https://doi.org/10.48550/ARXIV.2303.10039,
https://arxiv.org/abs/2303.10039

Berti, A., van der Aalst, W.M.P.: OC-PM: analyzing object-centric event logs and
process models. Int. J. Softw. Tools Technol. Transf. (2022). https://doi.org/10.
1007/s10009-022-00668-w

Best, E., Devillers, R., Koutny, M.: The box algebra=petri nets+process expres-
sions. Inf. Comput. 178(1), 44-100 (2002). https://doi.org/10.1006 /inco.2002.3117
Fahland, D.: Describing behavior of processes with many-to-many interactions. In:
Donatelli, S., Haar, S. (eds.) PETRI NETS 2019. LNCS, vol. 11522, pp. 3-24.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21571-2 1
Ghahfarokhi, A.F., Park, G., Berti, A., van der Aalst, W.M.P.: OCEL: a standard
for object-centric event logs. In: Bellatreche, L., et al. (eds.) ADBIS 2021. CCIS,
vol. 1450, pp. 169-175. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
85082-1 16

Glabbeek, R.J.: The linear time—branching time spectrum II. In: Best, E. (ed.)
CONCUR 1993. LNCS, vol. 715, pp. 66-81. Springer, Heidelberg (1993). https://
doi.org/10.1007/3-540-57208-2 6

van Hee, K.M., Hidders, J., Houben, G.J., Paredaens, J., Thiran, P.: On the rela-
tionship between workflow models and document types. Inf. Syst. 34(1), 178-208
(2009). https://doi.org/10.1016/j.is.2008.06.003

Kopp, O., Martin, D., Wutke, D., Leyman, F.: The difference between graph-based
and block-structured business process modelling languages. EMISAJ 4(1), 3-13
(2009)

Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured
process models from event logs - a constructive approach. In: Colom, J.-M., Desel,
J. (eds.) PETRI NETS 2013. LNCS, vol. 7927, pp. 311-329. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-38697-8 17

Lu, X., Nagelkerke, M., van de Wiel, D., Fahland, D.: Discovering interacting
artifacts from ERP systems. IEEE Trans. Serv. Comput. 8(6), 861-873 (2015)
Murata, T.: Petri nets: properties, analysis and applications. Proc. IEEE 77(4),
541-580 (1989). https://doi.org/10.1109/5.24143


https://doi.org/10.1007/978-3-030-30446-1_1
https://doi.org/10.1007/978-3-030-30446-1_1
https://doi.org/10.1007/978-3-031-08848-3_2
https://doi.org/10.1007/978-3-031-20984-0_3
https://doi.org/10.1007/978-3-031-20984-0_3
https://doi.org/10.48550/ARXIV.2303.10039
https://arxiv.org/abs/2303.10039
https://doi.org/10.1007/s10009-022-00668-w
https://doi.org/10.1007/s10009-022-00668-w
https://doi.org/10.1006/inco.2002.3117
https://doi.org/10.1007/978-3-030-21571-2_1
https://doi.org/10.1007/978-3-030-85082-1_16
https://doi.org/10.1007/978-3-030-85082-1_16
https://doi.org/10.1007/3-540-57208-2_6
https://doi.org/10.1007/3-540-57208-2_6
https://doi.org/10.1016/j.is.2008.06.003
https://doi.org/10.1007/978-3-642-38697-8_17
https://doi.org/10.1109/5.24143

58

19.

20.

21.

22.

23.

D. Barenholz et al.

Polyvyanyy, A., van der Werf, J.M.E.M., Overbeek, S., Brouwers, R.: Information
systems modeling: language, verification, and tool support. In: Giorgini, P., Weber,
B. (eds.) CAiSE 2019. LNCS, vol. 11483, pp. 194-212. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-21290-2 13

Tour, A., Polyvyanyy, A., Kalenkova, A.A.: Agent system mining: vision, benefits,
and challenges. IEEE Access 9, 99480-99494 (2021)

Tour, A., Polyvyanyy, A., Kalenkova, A.A., Senderovich, A.: Agent miner: an algo-
rithm for discovering agent systems from event data. CoRR abs,/2212.01454 (2022)
van der Aalst, W., Weijters, T., Maruster, L..: Workflow mining: discovering process
models from event logs. Knowl. Data Eng. 16(9), 1128-1142 (2004)

van der Werf, J.M.E.M., Rivkin, A., Polyvyanyy, A., Montali, M.: Data and process
resonance. In: Bernardinello, L., Petrucci, L. (eds.) PETRI NETS 2022. LNCS,
vol. 13288, pp. 369-392. Springer, Cham (2022). https://doi.org/10.1007/978-3-
031-06653-5 19


https://doi.org/10.1007/978-3-030-21290-2_13
https://doi.org/10.1007/978-3-031-06653-5_19
https://doi.org/10.1007/978-3-031-06653-5_19

ILP? Miner —

Process Discovery for Partially Ordered Event Logs

Using Integer Linear Programming

Sabine Folz-Weinsteinl(%), Robin Bergenthumz, Jorg Desel!, and Jakub Kovai®

! FernUniversitit in Hagen, Lehrgebiet Softwaretechnik und Theorie der
Programmierung, Hagen, Germany
{sabine. folz-weinstein, joerg.desel}@fernuni-hagen. de
2 FernUniversitit in Hagen, Fakultdt fiir Mathematik und Informatik,
Hagen, Germany
robin. bergenthum@fernuni-hagen. de
3 FernUniversitit in Hagen, Lehrgebiet Programmiersysteme, Hagen, Germany
jakub. kovar@fernuni-hagen. de

Abstract. Process mining is based on event logs. Traditionally, an event log is
a sequence of events. Yet, there is a growing amount of work in the literature
that suggests we should extend the notion of an event log and use partially
ordered logs as a basis for process mining. Thus, the need for algorithms able to
handle these partially ordered logs will grow in the upcoming years. In this
paper, we adapt an existing, classical process discovery algorithm to be able to
handle partially ordered logs. We use the ILP Miner [1] as a basis and replace its
region theory part by compact tokenflow regions [2] to introduce the ILP?
Miner. This ILP?> Miner handles sequential event logs just like the ILP Miner
but, in addition, is able to directly process partially ordered logs. We prove that
the ILP?> Miner provides the same guarantees regarding structural and behavioral
properties of the discovered process models as the ILP Miner. We implement the
ILP? Miner and show experimental results of its runtime using three well-known
example log files from the process mining community literature.

Keywords: Process mining - Process discovery - Synthesis + ILP Miner *
Partially ordered event log - Compact tokenflow - Integer linear programming

1 Introduction

)

Check for
updates

Process mining aims to identify business processes and to gain insight into their per-
formance and conformance by analyzing recorded behavior [3, 4]. Over time, a wide
variety of process mining algorithms and methods have been introduced as well as many
tools, contests, and case studies. In this paper, we focus on process discovery, which is
often said to be the most interesting, but at the same time the most challenging part of
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process mining [5]. The goal of process discovery is to automatically create a process
model that adequately describes the underlying process, based on recorded behavior.

Process discovery algorithms are based on two formalisms: event logs as the basis
and workflow models as the result. A workflow model is an executable, often Petri net-
like, model of a business process. An event log is a sequence of events, where every
event is an observed execution of an activity of a business process. Traditionally, an
event log is a total order on the activity instances. More recently, event logs are also
represented as partially ordered sequences of events. At the moment, it is not yet
common to directly record partially ordered event logs, but partially ordered repre-
sentations are derived from sequential logs in a pre-processing step using attributes
stored in the event data like timestamps, activity life-cycle information, resources or
other domain knowledge [6, 7].

The advantage is that partially ordered sets of events can directly express con-
currency and are able to model specific properties of the underlying activities like non-
zero duration, start and end point in time, inherent uncertainty in process data logging
etc., which are not supported by a total order assumption. Therefore, Marlon Dumas
and Luciano Garcia-Bafiuelos suggest recasting all process mining operations based on
partially ordered event structures [6]. Furthermore, Leemans, van Zelst, and Lu
advocate partial order-based process mining, at least using partial orders as an inter-
mediary data representation [7]. Altogether, we expect the need for algorithms designed
to handle partially ordered logs to grow in the upcoming years.

Paper [7] presents a survey and outlook concerning partial order-based process
mining. Although several new types of approaches have evolved in this area recently,
the number of new publications which in one way or another work with partial orders is
still limited compared to traditional, total order-based approaches. Concerning the field
of process discovery, most partial order-based work refers to synthesis. One example is
the process discovery approach called Prime Miner [8], which can handle partially
ordered logs, but has a slightly different goal and does not yet offer the same guarantees
and results as the established classical discovery algorithms.

In this paper, instead of developing a new and even more fancy discovery algorithm
able to handle partially ordered logs, we extend an existing, classical process discovery
algorithm, the ILP Miner [1]. The ILP Miner is well-established and part of every
process discovery tutorial and textbook. It works best in applications where the log is of
moderate size and of good quality. The main disadvantages are a high runtime com-
plexity and a tendency to produce over-fitting models. This is widely discussed in the
literature. By extending the ILP Miner, we obviously inherit all benefits and short-
comings. The goal of this paper, however, is to adapt the classical ILP Miner so that it
is able to handle partially ordered input and keep all other characteristics unchanged.

The ILP Miner algorithm has been implemented and is available in the HybridILP-
Miner package in the ProM (http://promtools.org) and RapidProM (http://rapidprom.
org) toolkits. As a typical process discovery algorithm, the ILP Miner expects
sequential event logs as input. The ILP Miner guarantees to discover relaxed sound
workflow nets. It uses an integer linear programming (ILP) formulation, i.e., an


http://promtools.org
http://rapidprom.org
http://rapidprom.org

ILP? Miner — Discovery for Partially Ordered Event Logs 61

objective function over a system of inequalities representing the constraints for a
region, which is then solved for every causal relation in the event log to find the places
of the resulting net.

In the new ILP? Miner, we use the algorithm structure and framework of the
classical ILP Miner but replace the region part of the integer linear program by compact
tokenflow (CTF) regions [2]. The CTF synthesis algorithm, which introduces this type
of regions, is the approach which currently offers the best runtime for partial order-
based synthesis. It uses labeled Hasse diagrams to represent the partially ordered input.
Just like the ILP Miner, the CTF synthesis algorithm uses a region theory-based system
of inequalities which is solved for every wrong continuation of the input to find places
of the resulting net. Thus, this is a very good fit.

We prove that if we integrate and use the compact region inequality system of the
CTF synthesis algorithm within slightly adapted formulations of the ILP Miner, we get
a new miner that: (1) generates the same results as the classical ILP Miner if we apply
the miner to a sequentially ordered event log, and (2) can perfectly handle partially
ordered event logs. We conduct experiments to show that if we have two kinds of event
logs, one totally ordered and the other partially ordered, both recording the same
business process, the ILP* Miner, using the partially ordered event log, outperforms the
ILP Miner, using the totally ordered event log.

The remainder of this paper is organized as follows: Since the ILP Miner serves as
the basis for the new ILP? Miner, we recall the main characteristics of the classical ILP
Miner in Sect. 2. There, we also present the core functional aspects of the CTF syn-
thesis algorithm and its compact region formulation. In Sect. 3, we introduce the
extended ILP? Miner algorithm and prove that the systems of (in)equalities used for
finding the regions in the ILP Miner and the ILP? Miner produce equivalent sets of
places when processing sequential orders. Therefore, the ILP> Miner extends but does
not alter the classical ILP formulation. Finally, in Sect. 4 we present the implemen-
tation and runtime analysis for the extended ILP? Miner compared to the classical ILP
Miner. We use three example event logs to illustrate benefits of the new approach.
Section 5 concludes the paper.

2 Preliminaries

Let N be the set of non-negative integers and R the set of real numbers. Let f be a
function and B a subset of the domain of f. We write f|5 to denote the restriction of f to
B. We denote the transitive closure of an acyclic and finite relation < by < ™. We
denote the skeleton of < by <. The skeleton of < is the smallest relation < so that
a4t = < holds.

X = {x1,x,...,x,} denotes a set. B(X) denotes the powerset of X.

A sequence w of length k relates positions to elements x € X, ie., w: 1,
2, ..., k — X. An empty sequence is denoted as ¢. We denote a non-empty sequence as
(x1,X2,...,x). The set of all possible sequences over a set X is denoted as X*.
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We write a concatenation of sequences w; and w; as wiwp, e.g.,
{(a,b){c,d) = (a,b,c,d). Let Y € X* be a set of sequences. The prefix-closure of Y is
defined as: ¥ = {w; € X*|3w, € X*(wywp € Y)}.

We assume the reader is familiar with the use of vectors, and all vectors to be
column vectors. We write 1 to denote the 1-vector and 0 to denote the O-vector.

A Parikh vector 2 represents the number of occurrences of an element within a
sequence, ie. p: X* - NI with p(w) = (#x,(w), #x,(W), ..., #x,(W)) and
#xi(w) = |{i' e {1,2,..,|w|} | w(@) = x:}].

A multiset m over a set A is a function m : A — N. We denote the empty multiset as
(). Let m be a multiset, we write m = >, m(a) - a to denote all multiplicities of m.
We extend all set operations to multisets.

Let T be a set of activities. An event records the execution of an activity. A se-
quence of events over T is a case. A sequence over 7. is a trace. An event log is a
multiset of traces.

In this paper, we model distributed systems by Petri nets also allowing for arc
weights [9—-11].

Definition 1 (Petri net): A Petri net is a tuple (P, T, W) where P is a finite set of
places, T is a finite set of transitions such that PN T = () holds, and W :
(PxT)U(T x P) — N is a multiset of arcs. A marking of (P,T, W) is a multiset
m : P — N. Let mg be a marking. We call the tuple N = (P, T, W, my) a marked Petri
net and my the initial marking of N.

Repair
Complex)|

Restart
Repair

Repair
(simple)

O Register

O

Inform Archive

User Repair

Fig. 1. Petri net of the repair example.

Figure 1 depicts an example Petri net modeling the business process of the so-
called repair example, well-known from the ProM Tools tutorial (http:/promtools.org).
We show transitions as rectangles, places as circles, the multiset of arcs as weighted
arcs, and the initial marking as black dots called tokens. This Petri net serves as a
running example in this paper and will be discussed in more detail in the experimental
results section.
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2.1 ILP Miner

The ILP Miner [1, 12] is one of the corner stones of discovery algorithms and thus, part
of every textbook on process discovery. The following definitions and descriptions are
based on [1]. The algorithm uses integer linear programming to generate places of a
Petri net. Every solution of the program, also called a region, is a set of values of binary
variables encoding incoming and outgoing arcs of a valid place, as well as its initial
marking.

Definition 2 (ILP Miner region): Let L be an event log over a set of activities 7, then a
region is a triple r = (m,x,y) with x,y € {0, l}m,m € {0, 1} that satisfies:

VteET, w=wt€eL m+pW) -x — pw)T-y=>0.

Paper [1] uses these regions to define the integer linear program of the ILP Miner.

Definition 3 (ILP Miner process discovery program): Let L be an event log over a set
of activities T, let L be the prefix-closure of the set of traces of L, let m € {0, 1} and let
x, y €0, l}m. Let M and M’ be two |Z\{s}‘ x |T| matrices with M(w,t) = p(w)(t)
and M’(w)(t) = p(W)(t) where w = w't € L. Let My be a |L| x |T| matrix with
M, (w, t) = pw)(t) forw € L, i.e., the equivalent of M for all complete traces in the
event log. Let ¢,, € R and ¢y, ¢y € R!"!. The ILP Miner process discovery program is:

(1) minimize Z = ¢cpym + ¢, X+ ¢,y objective function

(2) such that m-1+M -x—M-y>0 theory of regions
and

GB.1) m-14+M,-(x—y) =0 place is empty after each trace

B2 1Tx+17-y > 1 at least one arc connected

33 0<x<1 arc weight restricted to {0,1}
B4 0<y<1 arc weight restricted to {0,1}
35 0<m<1 initial marking restricted to {0,1}

The inequalities (2), marked above as “theory of regions”, are the inequalities
defined in Definition 2. Roughly speaking, they guarantee that every solution relates to
a place which can execute all traces of the input event log. The objective function
z selects the most expressive region considering the existing constraints. For example,
paper [12] proposes an objective function minimizing x values and maximizing y
values. Thus, the ILP Miner program minimizes the number of incoming arcs and
maximizes the number of outgoing arcs of all the generated places. Other objective
functions may be used. The other inequalities guarantee additional properties of the
resulting net so that the resulting net is a so-called workflow net.
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Finally, to find a finite number of places for the resulting workflow net, the ILP
Miner uses the so-called causal relations heuristics [1]. Roughly speaking, it solves the
integer linear program for each causal pair of activities of the event log. Two activities
a and b are a causal pair if and only if ab is a subsequence of a trace of the event log
and there is no trace so that ba is a subsequence. Paper [12] proves that for complete
logs, causal dependencies directly relate to places and hence provide a good guide for
finding a finite number of solutions.

To construct a net, we add a transition for every activity. A region r translates to a
Petri net place p as follows: we add an arc leading from transition # to p if x(¢) = 1, and
an arc from p to transition # if y(z) = 1.

2.2 Compact Tokenflow Synthesis

In this section, we present the algorithm for synthesizing Petri nets from Hasse dia-
grams [2]. We refer to this algorithm as compact tokenflow (CTF) synthesis algorithm.
This algorithm applies region theory to partially ordered sets of events. We will use this
definition to replace the region theory part of the ILP Miner later. The approach
requires a complete specification of the desired behavior as a set of Hasse diagrams.

Definition 4 (labeled Hasse diagram): Let T be a set of labels. A labeled partial order
(Ipo) is a triple Ipo = (V, <, ) where V is a finite set of events, < CV x V is a
transitive and irreflexive relation, and the labeling function / : V — T assigns a label to
every event. A triple run = (V, <, [) is a labeled Hasse diagram if (V, <™, [) is an
Ipoand <¢ = < holds. We denote the set of all possible labeled Hasse diagrams over
a set of labels T as T<.

The CTF synthesis algorithm uses compact regions based on compact tokenflows to
build a Petri net from a specification. A compact tokenflow is a distribution of tokens
on the arcs of a Hasse diagram. We only distribute tokens over arcs because an event
can only consume tokens from its preset to ensure that these are available. If an event
produces tokens, it can pass these tokens to its postset. Tokens of the initial marking are
free for all, i.e., any event can consume tokens from the initial marking. Such a
distribution of tokens is valid if and only if (4) every event receives enough tokens, (5)
an event must not pass too many tokens, and (6) the initial marking is not exceeded.
A compact region is an abstract representation of a place together with a valid
tokenflow. Thus, every region defines a valid place.

Definition 5 (compact region):LetS = (Vy, <1,11), (Va, <2,b),. .., (Va, <u,ln) CT<
be a set of labeled Hasse diagrams and p be a place. A function
r(U;(Viu <)u(T x {pHU({p} xT)U{p}) = N is a compact region for
S if and only if

@ Vi:WweVie )+ >, r(vV,v)>r(p, L(v),

(5) Vi:Vve Vi 3, r(n V) <r(v)+ 3, o, r(vV,v) = rp, i(v)) + r(li(v), p),
(6) Vi:) oy r(v)<r(p) holds.
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In Definition 5, a region r is a place together with a valid compact tokenflow for
every Hasse diagram. The region has one value for every event and every arc of the
Hasse diagrams, as well as values for incoming and outgoing arcs for every transition,
and one value for the initial marking. The region satisfies the defined set of inequalities.
Here, we have one inequality of type (4) per event to ensure that every transition
receives enough tokens, one of type (5) per event to ensure that no event has to pass too
many tokens, and additionally one inequality of type (6) per Hasse diagram to ensure
that the initial marking is not exceeded. Altogether, the place defined by the region is
able to execute all input Hasse diagrams.

3 ILP? Miner

In this section, we introduce our new ILP? Miner. This miner adapts and extends the
classical ILP Miner presented in Sect. 2.1. Like the ILP Miner, we use integer linear
programming to generate places of a workflow net. We use the compact region for-
mulation of Definition 5 instead of the sequence based ILP regions of Definition 2 to
get a mining algorithm that also supports partially ordered event logs as input.

To replace the region part of the ILP Miner, we need to adapt the compact region
inequality system because using (5) and (6) directly, we would not be able to define
whether a final marking is empty or not. In contrast to Definition 2, tokens in Definition
5 can disappear from the inequality system. This is because (5) and (6) are formulated
as inequalities. The reason for this is that compact tokenflows only produce tokens if
they are needed by later events. This has a positive effect on the runtime of a related
compact tokenflow verification algorithm [2]. To guarantee the same properties as the
ILP Miner, we extend every Hasse diagram by an initial event s and a final event f.
Furthermore, we transform inequality (5) into an equality so that superfluous tokens
must be passed to the final node. Thus, the resulting equality (8) enforces that no tokens
are lost and the tokenflow at the final event f is the final marking. Similarly, we
transform inequality (6) into equality (9) so that all the initial tokens are produced by
the initial event s, and every initial token is counted.

Definition 6 (ILP’ Miner compact region): Let S = {(Vi, <1,1y), V2, <2,b2),...,
(Va, <u,ln)} be a specification, T be its set of labels, p be a place, and s, f two events.
A function r: (|U; (<iU{s} x V))u (Vi x {f}))U(T x{p}) U({p} xT) U
{p}) — N is a compact region with a final marking for S if and only if
(7 Vi:WweViir(s,v)+ >, ., r(vV,v)>r(p,Li(v)),
@® Vi:WweV: > _,rvV)+r(vf) =

V(S,V) + ZV/<VF(V/,V) - V( 7li(v)) + r(l,-(v),p),
) Vi:) ey r(s,v) =r(p) holds.
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A totally ordered event log is a multiset of traces. Now, we define a partially ordered
event log as a multiset of Hasse diagrams and apply Definition 6 to define the integer
linear program for the ILP* Miner.

Definition 7 (ILP? Miner process discovery program): Let L be a partially ordered
event log over a set of activities 7, let {(Vy, <1,01), (V2, <2,L), .oy (Va, <n,1n)} be
the set of labeled Hasse diagrams of L, p be a place, s and f two events, and r a function
r (U <iU ({sy x V) U (T x {p}) U ({p} x T) U{p}) — N. The ILP* Miner
process discovery program is:

(10)  minimize z = ), ZeGU_(<,-U({S}><V,-)) r(e)  objective function

such that theory of regions
(A1) Vi:WveViir(s,v)+ >, ., r(vV,v)>r(p, Li(v)),
(12) Vi:We Vi 3o yrvV) =r(s,v)+ >, r(V,v) = r(p, i(v)) + r(li(v), ),
(13) Vi: Zve\/i r(s,v) = r(p),

and
14.1) (-) place is empty after each trace
(142) 37> ey, <, (€)= at least one token consumed / arc connected

(14.3) VreT:0<r(t,p) S 1 arc weight restricted to {0,1}
(14.4) VeeT:0<r(p,1)<1, arc weight restricted to {0,1}
(1435) 0<r(p)<1, initial marking restricted to {0,1}

In Definition 7, condition (14.1) is empty. Just like the ILP Miner, we want to
guarantee that the place is empty after each trace. Therefore, we must ensure that there
is no tokenflow from any event v to the final event f. For the ILP*> Miner, this translates
to the restriction Vi: ) .y r(v,f) = 0. Thus, we delete all variables r(v,f) from
equation (8) of Definition 6 to get to equation (12) of Definition 7, so that there can be
no tokenflow to the final event, and the place is empty after each trace.

Every solution of the ILP? Miner integer linear program is a region defining a place.
r(p) is the initial marking and r(p,I(v)) and r(I(v),p) are ingoing and outgoing arcs.
To generate a finite set of places, we use the same heuristics as the ILP Miner, the so-
called causal relations, and solve the integer linear program for every causal pair of the
partially ordered log.

Altogether, both the ILP Miner and the ILP? Miner use region theory-based sys-
tems of (in)equalities to generate places of the workflow net. In our ILP? Miner, we still
use the same algorithm framework as the classical ILP Miner and guarantee the same
structural properties of the resulting net, but we replace the region theory part, i.e., the
region-matrix-form ILP-constraints, with the compact region inequality system based
on CTF synthesis to be able to process partial orders.

In the remainder of this section, we prove that the ILP? Miner is in fact an extension
of the ILP Miner. Introducing the ILP? Miner, we do not ruin already established
features. Roughly speaking, we still satisfy the same formal guarantees as the original.
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We show that if we apply both miners to a totally ordered event log, the region theory
parts (2) of Definition 3 and (11)—(13) of Definition 7 produce the same set of feasible
places.

As a first step, we look at lines (11), (12), and (13). Inequality (11) ensures every
event receives enough tokenflow and equation (12) ensures every event passes the
correct number of tokens. In a partially ordered event log one event can obviously have
multiple predecessors and multiple successors, thus, the number of ingoing and out-
going tokens is a sum of tokenflows. In a totally ordered event log, every event has at
most one predecessor and at most one successor, so that there is no need to sum up.

Figure 2 depicts an example of a totally ordered trace with at most one incoming
and outgoing arc, and Figure 3 an example of a partially ordered trace with multiple
incoming and outgoing arcs.

> Analyze > Inform > Repair Test > Archive
Defect User (Complex) Repair Repair

Register

Fig. 2. One trace of the repair example.

Repair Test
(Complex) Repair

Analyze Archive

Defect
\ Inform

User

Register

Repair

Fig. 3. The most frequent partially ordered trace of the repair example.

Let e be an event of a totally ordered event log, we denote °e the predecessor and e*
the successor of e. Thus, we simplify (11) and (12) for totally ordered event logs as
follows:

(11) Vi: Ve € Vi: r(s,e) +r(%e,e) > r(p,li(e)),
(12') Vi:Ve € Vi : r(e,e®) = r(s,e) +r(%e,e) — r(p,li(e)) + r(li(e), p)-

Equation (13) ensures that all tokens from the initial marking are distributed over
all events of the Hasse diagram. In a partially ordered event log, one Hasse diagram can
have multiple initial events as well as several alternative, concurrent paths (see Fig-
ure 3), thus, we need to be able to distribute initial tokens. In a totally ordered event
log, every trace has one initial event and tokens distributed to this event can reach every
other event in a straight line (see Figure 2). There is no need to distribute initial tokens
anymore.
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Let e be an event of a totally ordered event log. If ®e is empty, i.e., e has no
predecessor, we can simplify the inequality system so that this event is the only event
receiving all the tokens from the initial marking. Obviously, this event does not get
tokens from any other event so that in this case we also write r('e, e) to denote the
variable r(s,e). Thus, we simplify the compact region ILP? Miner program for totally
ordered event logs even further:

(11%) Vi : Ve € V; : r(%e,e) > r(p, li(e)),
(12%) Vi: Ve € Vi : r(e,e®) = r(*e,e) — r(p,li(e)) +r(li(e),p), and
(13*) Vi:Ve € Vi,*e =0 : r(*e,e) = r(p).

Please note that these simplifications alter the inequalities as well as the variables of
the ILP*> Miner (in)equalities. Thus, they also alter the set of ILP* Miner regions
concerning tokenflow variables but, obviously, they do not alter the set of places
related to all regions.

Using these simplifications, we prove that the set of places defined by the ILP
Miner is the set of places defined by the ILP> Miner for totally ordered event logs.

Theorem 1: Let L be a totally ordered event log. The set of places defined by the ILP
Miner integer linear program for L is the set of places defined by the ILP* Miner integer
linear program for L.

Proof. In a first step, we assume both systems of (in)equalities define the same set of
places for L. We now prove that by adding one event to some trace of L, we add the
same restrictions to both systems of (in)equalities so that both sets of related places
remain equal.

Choose an arbitrary trace w = (t;,t,...,t,) € L, let ¢ be an action, and let
L':=L—w+wt. Using ILP Miner notations, wt is a trace in L. Obviously, all
inequalities for w in L are still in the ILP Miner system for wz in L' because Definition 2
adds inequalities for every prefix of a trace.

Using the ILP? Miner notations, let there be a trace of sequentially ordered events
e1e;...e, in L so that I(e;) = t; holds. We append a new event e with I(¢) = ¢ to e, by
adding an arc (e,,e) to construct the new trace wt = eje;. . .e,e of L'. Obviously, all
(in)equalities for w in L are still in the ILP* Miner system for wr in L' because
Definition 7 adds inequalities for every event of a trace.

Adding wt to L, the ILP Miner system of inequalities changes as stated in Definition
2. If w = ¢ holds, the system for L’ is obtained from the system for L by adding the
following inequality:

m+pUeN)T-x —p{(tHT-y=20 &
m—yt)=>0¢e
m = y(t).

That is, the initial marking must be greater or equal to the arc-weight of the arc
starting at the place to be constructed and leading to transition ¢.
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If w # ¢ holds, the system for L' is obtained from the system for L by adding the
following inequality:

m+pw)T-x—pwt)T-y=>20¢&
m+ Y x(t) — X y(t) —y(t) = 0.

That is, the initial marking of the place to be constructed plus the accumulated
changes caused by firing all # of w, is greater or equal to the arc-weight of the arc
starting at the place to be constructed and leading to transition ¢.

Adding wr to L, the ILP* Miner system of (in)equalities changes as stated in Def-
inition 7. L' is totally ordered, thus, (11), (12), and (13) are equivalent to (119, (125,
and (13").

If w = ¢ holds, the system for L' is obtained from the system for L by adding the
following inequality and equations:

r(s,e) = r(p,t),
r(e,f) =r(s,e) —r(p,t) +r(t,p),
r(s,e) = r(p).
o
r(p) = r(p,t),
r(e,f) =r(p) —r(pt) +r(t,p).

Like for Definition 2, the initial marking must be greater or equal to the arc-weight
of the arc starting at the place to be constructed and leading to transition ¢. The
additional condition which defines r(e,f), i.e., the number of tokens remaining after
firing ¢, is a new, not yet bound variable; this does not restrict the solution space.

If w # ¢ holds, the system for L’ is obtained from the system for L by replacing the
equality

r(en.f) = r(en-1,ex) — r(p,l(en)) + r(l(en),p)
by
r(en,e) = r(en1,e,) —r(p,l(en)) +r(l(en),p),
and adding the following inequality and equation:
r(eq, e) >r(p,1),
r(e.f) = r(en €) = r(p,t) +r(t,p),

We replace the equation to detach the final event and append it to the new last event
of the sequence. Again, the second equation does not restrict the solution space because
r(e,f) is new and unbound.

The prefix w of wr is in L and in L’ so that we have the following equations in both
systems:
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}"(6,,, e) = 7(6”71, en) - V( al(en)) + r(l(en)ap)
r(en-1, e,,) = r(eq-2, e,,,l) - r(Pv l(enfl)) + r(l(en,l),p),

res,e3) = rlense2) — r(p, I(ex)) + r{l(e2),p),
r(er,e2) = r(s,er) —r(p,l(e1)) +r(l(er),p),
(s.1) = r(p).

Thus, if we recursively replace the variables r(e;_1, ;) in the new inequality above
by the right sides of their equations, we get:

r(es, e) >r(p,t) &
> (r(i(e),p) — r(p, l(e:)) +1(p) = r(p,1).

Like for Definition 2, that is, the initial marking of the place to be constructed, plus
the accumulated changes caused by firing all #; of w, is greater or equal to the arc-
weight of the arc starting at the place to be constructed and leading to transition ¢.

Altogether, whenever we add an event to a trace of an event log, we add the same
restrictions to the set of places related to the solution space of the ILP Miner and to the set
of places related to the solution space of the ILP? Miner. Finally, we add the recursive
argument that we can build every event log by adding events to the empty log. |

The ILP Miner and ILP* Miner define the same set of places for totally ordered
logs. We add inequalities (3.1)—(3.5) of Definition 3 and inequalities (14.2)-(14.5) of
Definition 7, so that both algorithms guarantee the same additional properties of the
resulting net. Furthermore, both miners apply heuristics based on causal relations to
find a finite set of places. Thus, the ILP? Miner generates the same results as the ILP
Miner on regular event logs. Obviously, in contrast to the ILP Miner, the ILP* Miner
can process partially ordered logs.

Another important advantage of the ILP* Miner is its objective function. The ILP
Miner selects optimal regions by maximizing the expressiveness of places by, roughly
speaking, counting and weighing connected arcs and the initial marking. The ILP?
Miner can now count tokens of the tokenflow directly because the variables are
available. Thus, we minimize tokens present in the sum of every reachable marking.

4 Experimental Results

The goal of this paper is to extend the well-known ILP Miner, working on totally
ordered inputs, to a new miner, able to process partially ordered inputs. Consequently,
we inherit all its benefits and shortcomings. These benefits and shortcomings, as well as
various comparisons of region-based miners to other discovery algorithms, are
extensively discussed in the literature. Thus, since the ILP Miner and the ILP* Miner
produce similar results, there is no point in comparing the quality of these results to
other approaches again. Therefore, in this section, we only compare the runtime of our
new ILP? Miner to the runtime of the ILP Miner.
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As stated in the introduction, partially ordered logs, in contrast to totally ordered
logs, are increasingly recommended as an expressive data representation and their
benefits are undisputed.

If we have a totally ordered log, we can apply a so-called concurrency oracle to
construct a partially ordered log. A concurrency oracle uses information like times-
tamps, life-cycle information, localities, resources or even user input to derive causal
and concurrency information. For more information on different approaches for partial
order extraction, we refer the reader to [7].

A partially ordered log is a much more compact representation of the observed
behavior if the oracle faithfully mines the underlying concurrency relation.

Assuming a partially ordered log as the basis for discovery, the existing classical
process discovery algorithms must construct a totally ordered log in a pre-processing
step. Here, every single partially ordered trace can induce a high number of totally
ordered traces. The number of traces is exponential in the length and factorial in the
breadth of the partially ordered trace. Thus, directly working on partial orders has a
significant positive effect on the runtime of a discovery procedure.

Altogether, we can go from totally ordered logs to partially ordered logs and the
other way around. But for the purpose of runtime experiments, starting with one or the
other would be unfair to one of the mining algorithms. Thus, in the remainder of this
section, we assume there are two versions of every event log: one totally ordered event
log and one partially ordered event log, both faithfully modeling the underlying
workflow process.

To illustrate the benefits of using partially ordered logs, we have a look at a well-
known example: the repair example included in the ProM framework tutorial [13, 14].
In the totally ordered version of the repair example, the event log records 11855 events,
1104 cases, and 39 different totally ordered traces. In the partially ordered version of
the repair example, the event log records the same set of events and cases, but only 9
partially ordered traces (Hasse diagrams) [8]. Figure 3 depicts the Hasse diagram of the
most frequent trace of the partially ordered log of the repair example. This trace alone
represents 524 of the 1104 cases, which means half of the observed behavior.

For the following experiments, we have implemented the ILP Miner and the ILP?
Miner as modules of the I ¥ Petri Nets website. The website is available at www.
fernuni-hagen.de/ilovepetrinets/. The ) module implements the ILP Miner, the §J
module implements the ILP? Miner.

In this section, we compare the runtime of both algorithms using three example log
files quite famous in the process mining community. We consider the reviewing
example [15, 16], the already mentioned repair example [13, 14], and the teleclaims
example [15, 16]. We construct the partially ordered versions of these three totally
ordered event logs by an implementation of the so-called alpha oracle. This oracle
exploits the directly-follows-relation of activities to determine a concurrency relation
[8, 17]. All .xes-files of the logs used in the experiments are available on our website.
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Figure 4 depicts the ILP> Miner module. We start the ILP*> Miner by dragging an.
xes-file to the * symbol. We download the synthesized model by clicking the ¥ button.
We can visualize the result using the “show a Petri net” module of the website.
Clicking the § button downloads a report of the mining procedure.

I ¥ Petri Nets

Mining a Petri net from an event log using the ILP? miner - This algorithm is
submitted as
— Process Discovery for Partially Ordersd Event L
gramming by S. Folz-Weinstein, R. Bergenthum, J. D
to PETRI NETS 2023.
Here, we generate a place for every directly follows pair and use minimal
regions as the objective function.

download examples

Experiment 1 Experiment 2
. T ie . he repair example from the
i i in C] roM ol utori [2]

]

Experiment 3 Experiment 4
The 4 most frequent Hasse The teleclaims example

diagrams of the repa introduced in Chapter 8 of
example from the ProM Tcols the Process Mining: Data
tutorial [2] Science in Action book [1]

Fig. 4. The ILP?> Miner module in the I ¥ Petri Nets toolkit.

We performed all the experiments on an Intel Core i5-8350U 1.70 GHz (4 CPUs)
machine with 16 GB RAM running a Linux Mint 20.2 operating system. The source
code of all modules is available on GitHub [18, 19].

In the ILP Miner, we use a simple objective function. We minimize 30 times the
initial marking plus 10 times the sum of ingoing arc-weights minus the sum of outgoing
arc-weights of possible solutions. Please note that the ProM tool (http://promtools.org)
offers different implementations of the ILP Miner using a large selection of objective
functions and additional heuristics that may provide better looking results in more
complex examples. However, for the sake of runtime comparison, we choose a simple
objective function and compute one region for every causal pair of the event log.
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In the ILP? Miner, we could use the same objective function as in the ILP Miner to
obtain identical results. But every region produced by the ILP? Miner also contains
variables describing the related compact tokenflow. Thus, we minimize the sum of
these variables to directly get minimal regions, and therefore very good-looking results.
These results are equivalent to the results obtained by the ILP Miner implementations
in ProM which use more sophisticated functions and heuristics. Again, we compute one
region for every causal relation.

Experiment 1: The reviewing example contains 100 cases. These relate to 96 totally
ordered traces or to 93 partially ordered traces. Thus, there is very limited concurrency,
and we consider this to be the worst-case scenario for the ILP? Miner. The ILP Miner
constructs an integer linear program containing 863 equations and inequalities and uses
27 variables. The average runtime to construct and solve the integer linear program for
all causal pairs is round about 1100 ms. The ILP? Miner constructs an integer linear
program containing 2378 equations and inequalities and introduces 1236 variables. It is
important to note that although the system is about triple the size, the individual
equations and inequalities are much simpler. The average runtime of the ILP? Miner is
round about 750 ms. This is an improvement of 30%.

Figure 5 depicts the Petri net generated by the ILP? Miner using the minimal regions
objective function.

..

p7

time-out_1

- time-out_X
' get_review_3 .
: . pg

time-out 3

Fig. 5. Petri net for the reviewing example (ILP* Miner).

Experiment 2: The repair example contains 1104 cases. These relate to 39 different
totally ordered traces, or 9 partially ordered traces. The ILP Miner constructs an integer
linear program containing 57 equations and inequalities and uses 16 variables. The
average runtime of the ILP Miner is round about 110 ms. The ILP? Miner constructs an
integer linear program containing 90 equations and inequalities and introduces 66
variables. The average runtime of the ILP® Miner is round about 70 ms. This is an
improvement of 36%.
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Experiment 3: In the repair example, the four most frequent Hasse diagrams are
sufficient to mine a model representing the behavior of the complete log. These four
diagrams represent 913 cases of the original log file and 26 different totally ordered
traces. Here, we use this reduced repair example. The ILP Miner constructs an integer
linear program containing 33 equations and inequalities and uses 16 variables. The
average runtime of the ILP Miner is round about 47 ms. The ILP® Miner constructs an
integer linear program containing 44 equations and inequalities and introduces 43
variables. Filtering based on frequencies of Hasse diagrams is easy. Please note that in
comparison to Experiment 2, both miners benefit from a reduction of the number of
inequalities but the ILP? Miner also benefits from a reduction of the number of vari-
ables. The average runtime of the ILP> Miner is round about 26 ms. This is an
improvement of 44%.

Figure 1 depicts the workflow net discovered by the ProM implementation of the
ILP Miner using the totally ordered repair example. The same net is discovered by the
ILP? Miner using the partially ordered repair example in Experiments 2 and 3.

Experiment 4: The teleclaims example contains 3512 cases. These relate to 12 totally
ordered traces, or 8 partially ordered traces. The ILP Miner constructs an integer linear
program containing 31 equations and inequalities and uses 22 variables. The average
runtime of the ILP Miner is round about 93 ms. The ILP? Miner constructs an integer
linear program containing 62 equations and inequalities and introduces 58 variables.
The average runtime of the ILP? Miner is round about 45 ms. This is an improvement
of 51%.

In our experiments, the ILP> Miner outperforms the ILP Miner in every example.
The more concurrency in the example, the bigger the speed-up. However, it is
important to note that the input for the ILP Miner is the totally ordered event log, and
the input for the ILP? Miner is the set of Hasse diagrams after pre-processing the event
log using a concurrency oracle. This pre-processing obviously takes extra time and
resources. But assuming the input for the discovery algorithm is already a partially
ordered event log is the main point of developing the ILP? Miner and the main reason
to write this paper. If we consider a partially ordered event log, we can feed this to the
ILP? Miner directly and would have to pre-process it to feed all interleavings to the ILP
Miner.

5 Conclusion

The use of partially ordered event logs is increasingly recommended within process
mining and thus, in process discovery. The need for algorithms which can directly
process partial orders is expected to grow. However, the amount of such tools and
algorithms currently available is still limited, and the existing new approaches are not
yet comparable to the classical, well-known approaches based on regular, totally
ordered event logs. Classical approaches can only process sequential decompositions of
partially ordered data representations which contradicts the intentions and benefits of
these representations.
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Instead of developing an entirely new algorithm for process discovery, the goal of
this paper was to adapt and extend an established classical process discovery algorithm
so that it can directly process partially ordered inputs. In this paper, we focused on the
ILP Miner and showed that it is indeed possible to adapt and extend the algorithm to
partially ordered inputs by replacing the region theory core of its integer linear pro-
gram. We proved that the resulting ILP> Miner can provide the same guarantees
concerning structural and behavioral properties of the discovered process models as the
classical ILP Miner, and that they find equivalent sets of places when applied to an
ordinary, totally ordered event log. On top of that, as we now have the tokenflow
variables available, it is possible to use an improved objective function in the ILP?
Miner which finds minimal regions without employing additional heuristics or post-
processing of the resulting net.

We implemented the ILP Miner and the ILP*> Miner and conducted four experi-
ments with well-established standard logs. The experiments show that there is a con-
siderable improvement concerning runtime. The more concurrency in the event log, the
bigger the speed-up using the ILP? Miner.

In future work, we plan to further fold identical prefixes and suffixes of the Hasse
diagrams so that identical subgraphs are represented by fewer variables. Obviously, just
like the ILP Miner, the ILP? Miner tends to over-fitting and has runtime issues for very
large event logs. This is another aspect we would like to address in future work. As
suggested in [7], we also hope that the process mining community will publish more
partially ordered event logs and will extend their algorithms, contests, and case studies
to partially ordered logs. Using these, we would further optimize and compare the ILP?
Miner to other partial order-based approaches.
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Abstract. Process mining aims to analyse business process behaviour
by discovering process models such as Petri nets from process execu-
tions recorded as sequential traces in event logs. Such discovered Petri
nets capture the process behaviour observed in a log but do not pro-
vide insights on the likelihood of behaviour: the stochastic perspective.
A stochastic Petri net extends a Petri net to explicitly encode the occur-
rence probabilities of transitions. However, in a real-life processes, the
probability of a trace may depend on data variables: e.g., a higher
requested loan amount will trigger additional checks. Such dependen-
cies are not described by current stochastic Petri nets and correspond-
ing stochastic process mining techniques. We extend stochastic Petri
nets with data-dependent transition weights and provide a technique for
learning them from event logs. We discuss how to evaluate the quality
of these discovered models by deriving a stochastic data-aware confor-
mance checking technique. The implementations are available in ProM,
and we show on real-life event logs that the discovery technique is com-
petitive with existing stochastic process discovery approaches, and that
new types of stochastic data-based insights can be derived.

Keywords: Stochastic labelled data Petri nets + Process mining -
stochastic data-aware process discovery - stochastic data-aware
conformance checking

1 Introduction

The largest portion of research in Process Mining has focused on the discovery,
conformance checking and enhancement of processes that do not consider the
likelihood of the behavior allowed by the process model. In other words, when
multiple activities are enabled according to the current state of the process
model, they are assumed to have the same probability to occur. This is often
unrealistic: even if multiple steps are possible as next, some are more common
than others. As an example, in a loan application, when the model allows the
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notification of the application’s acceptance or rejection as next activities, they
cannot be associated with the same probability to occur.

These considerations motivate the importance of stochastic process mining,
which little research has been carried on. Existing works on stochastic process
discovery [3,9,21] and stochastic conformance checking [16] take the frequencies
of the event log, which are a sample of the full process behaviour, into account
and enable several analysis tasks, e.g., computing the occurrence probability for
a trace or obtaining the probability that a marking can be reached [18].

These and other works on stochastic process mining have only focused on
mining the activity occurrence probabilities on the basis of the sequence of
activities that have happened beforehand. This is certainly valuable. However, in
reality, the computation of the probability of an activity to occur as next within
a set of enabled ones depends on the current state of the process data variables,
as well. For instance, the probability to execute the activity of acceptable noti-
fication of a loan applicant will likely depend on the amount requested by the
applicants, and on the his/her wealthiness.

We address this shortcoming and enable the discovery of models that,
stochastically, fit better to the underlying distribution of the actual process. In
particular, the methods rely on process models that are implemented as stochas-
tic Data Petri nets, which are a variation on Data Petri nets [23] to encode
the occurrence probabilities of transitions. This requires new methods for both
process discovery and conformance checking. Our proposed discovery method
learns data-dependant weight functions by building a set of regression problems
that are fitted on the observed transition occurrences and the observed data
values. To determine the quality of the resulting discovered Stochastic Labelled
Data Petri nets (SLDPN), we design a new conformance checking technique that
allows to compare the learned process behavior expressed by an SLDPN with
that observed in an event log.

In contrast to existing work our methods leverage the information encoded
in data attributes from the event log. In particular, our conformance checking
technique overcomes the problem of stochastically comparing potentially infinite
behaviour defined by an SLDPN with finite and sparse behaviour observed in
an event log. The technique has been implemented as plug-ins of ProM, the
largest open-source process mining framework. The evaluation has been carried
out via a large set of publicly available event logs. For conformance checking,
we illustrate that the technique follows the intuition of stochastic conformance
and is a proper generalization of existing measures. For discovery of SLDPNs,
the inclusion of the data variables for the computation of the activity occurrence
probability is shown to improve the stochastic fitness for event logs. Of course,
this holds for event logs that include data variables.

Section 2 discusses related work on stochastic process mining. Section 3
reports on the notation and concepts used in the paper. Section4 introduces
SLDPN. Sections5 and 6 illustrates the techniques proposed for discovery and
conformance checking methods of SLDPN. Section 7 reports on the evaluation
with many real-life process event logs, while Sect. 8 concludes this paper, sum-
marizing the paper’s contributions and delineating potential future work.
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2 Related Work

A large body of work exists on the discovery of data-dependent guards for activi-
ties of business process models, including transitions. This research field is often
referred to as Decision Mining, starting from the seminal work by Rozinat et
al. [31]. Batoulis et al. [5] focus on extracting guards for the outgoing arcs of
XOR splits of BPMN models, while Bazhenova et al. [6] aims to discover Decision
Model and Notation tables. The discovery of guards for causal nets is discussed
n [24]. All of these approaches focus on ensuring that exactly one transition
is enabled when a decision point (i.e., an XOR split) is reached. Mannhardt
et al. [23] is the only approach that attempts to discover overlapping guards
for Petri Nets, namely such that multiple transitions may be enabled in certain
data states. However, this work does not provide a probability for transitions,
such that the most reasonable assumption is that every enabled transition has
the same probability to occur, whereas this paper aims to discover probabilities
of transitions to fire when being given a data state. Thus, this paper does not
consider guards, but generalisations of guards.

Within the realm of conformance checking, a few research works aim to check
the conformance of process executions with respect to a process model repre-
sented as a Data Petri Net [13,22], but the conformance of each event-log trace
is computed in isolation. This contrasts the notion of stochastic conformance
checking that this paper tackles: the determination of the suitability of the over-
all stochastic behaviour requires the consideration of all traces together.

Stochastic process discovery aims to find a stochastic model such as a stochas-
tic Petri net from an event log. Approaches include those that take a Petri net
and estimate their weights, using alignments or frequencies [8], or based on
time [29]. Our discovery technique falls into this category, but adds data aware-
ness. Another approach starts from a model with the stochastic behaviour of the
log, and reduces this into a smaller model repeatedly [9].

Examples of stochastic conformance checking techniques include the Earth
Movers’ Stochastic Conformance [20], Entropic Relevance [28] and Probabilistic
Trace Alignments [7]. It would be challenging to adapt these to data-aware set-
tings, as our models do not exhibit a stochastic language without data sequences
as input. Stochastic models that are declarative have been proposed in [3]; these
models express families of stochastic languages.

Key differentiators between stochastic process models and existing Markov-
based stochastic models are concurrency, silent transitions and arc-based labels,
the combination of which is not the focus of the latter [4,30]. Even though
stochastic model checkers such as [15] do not typically consider these three
aspects, they could still be applicable after appropriate translations.

Stochastic process discovery also relates to building a model that can compute
the firing probability of each enabled transition, as a function of the sequence
of fired transitions and data variables. This falls into the realm of predictive
process monitoring (cf. [12,25,27]), and several techniques can be leveraged to
compute the transition weights. However, the predictive monitoring techniques
rely on the typical evaluation of machine-learning techniques, which looks at
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each transition in isolation and cannot be used for conformance checking against
stochastic process models, which is conversely a global property that looks at
traces as whole.

3 Preliminaries

In this section, we introduce required existing concepts.

A multiset is a function mapping its elements to the natural numbers. For
a set A, M(A) denotes the set of all multisets over A. For instance, [a?,b] is a
multiset containing two as and one b. Let X and Y be multisets, then X & Y if
and only if V, X (a) < Y (a). The multiset union is V4 (X WY)(a) = X (a) + Y (a).
The multiset difference is V4 (X \ Y)(a) = max(0, X(a) — Y (a)). The set view
X ={a| X(a) > 0}.

Let X be an alphabet of activities, i.e. process tasks, such that 7 ¢ X. A data
state is an assignment to numeric! variables; let A be the set of all data states.

An event denotes the occurrence of an activity in a process, and a trace
denotes the sequence of events that were executed for a particular case. A
stochastic language is a weighted set of traces, such that their weights sum up
to 1.

A data event is an event annotated with a data state, which indicates the data
state after the event happened. A data trace denotes all data events belonging to
a particular case. Formally, let aq,...,a, € X and dy,...,d, € A, then a data
trace is a pair of lists ({a1,...,an), {do,...,d,)), in which each a, indicates that
event i involved activity a;, and in which dy indicates the data state at the start
of the trace, while subsequent d;~q indicate data states after occurrence of event
i. Given a data trace o = ({(a1,...,ay),{do,-..,dn)), we refer to the sequence
(a1,...,a,) as the activity sequence (ox) and to the sequence (do,...,d,) as
the data sequence (o). We refer to the multisets of activity sequences and data
sequences of a log L as Ly and L.

For instance, ({a,b,c), (x = 10,2 = 15,2 = 20,z = 0)) indicates a data trace
with three activities (a, b and ¢), where the variable z is 10 before a, 15 after a,
20 after b and 0 after c.

A labelled Petri net (LPN) is a tuple (P, T, F, X\, Sp), in which P is a set of
places, T is a set of transitions such that PNT =0, F € M(PxTUT x P)
is a flow relation, A : T'— X U {7} is a labelling function, and Sy € M(P) is
an initial marking. For a node n € PUT, we denote *n = [0/ | (n/,n) € F]
and n® = [0/ | (n,n') € F|. We assume the standard semantics of Petri nets
here: a marking consisting of tokens on places indicates the state of the net. A
transition ¢ € T is enabled in a marking S if *¢t @ S. Let E(S) be the set of all
enabled transitions in a marking S. An enabled transition ¢ can fire in a marking
S, which changes the marking to S’ = SW¢® \ *t. The firing of a transition such
that A(t) # 7 indicates the execution of the mapped activity. A path of the net

! Note that our technique only considers numeric variables. Other types of variables
can be mapped using a suitable encoding, such as one-hot-encoding.
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is a sequence of transitions that brings the marking from Sy to a marking in
which no transition is enabled. The corresponding activity sequence is obtained
by mapping the path using A, while removing all transitions mapped to 7:

() ifn<1
(tr,oootn) Ia= QA1) - (tas oo tn) I BE A1) # 7
(tay ..o ytn) I otherwise

A stochastic labelled Petri net (SLPN) is a tuple (P, T, F, A, Sp, w) such that
(P, T,F,\,Sg) is an LPN and w : T — R7T is a weight function. In a marking

e . w(t) . i~
S, the probability to fire t € E(S) is S o) W) Note that this probabil

ity depends on all other enabled transitions, and as such also expresses likeli-
hoods on the order of transitions, even when they are concurrent. The probabil-
ity of a path (t1,...,t,) is, due to the independence of subsequent transitions,

[T, % Note that the silent transitions make this a little-studied class
t'eE
of models [18].

In order to validate the quality of a stochastic model, a useful measure is
the overlap in probability mass between the stochastic language of an event
log and the stochastic language of the model. For stochastic process models,
such a measure has been defined as the Unit Earth Movers’ Stochastic Confor-
mance (WUEMSC) measure [20]. uEMSC measures the overlap in probability mass
between a log and a stochastic language, by, for each trace o of the log L, taking
the positive difference between the probability of that trace in the log and the
probability of that trace in the SLPN M [20]:

uEMSC(L, M) =1 - Y max(L(c) — M(c),0) (1)
o€l

This rather simple formula uses the probability of a trace ¢ in a stochas-
tic process model (M (o)), which is not trivial to compute. M (o) indicates the
sum of all paths through the model that yield the trace o, however in case of
silent transitions labelled 7 there may be infinitely many such paths. A solution
proposed in [18] — for bounded SLPNs — is to explicitly construct a state space
of paths, and compute the trace probability using standard Markov reduction
techniques.

The Earth Movers’ Distance (EMD) is also known as the Wasserstein dis-
tance (W7) of order 1. For the present special case where we consider unit
distances, the EMD is also equivalent to the total variation distance (TV). A
proof of the coupling between EMD and TV is for example shown in [14]. Thus,
uEMSC(L, M) =1—-TV(L, M).

4 SLDPN

In this section, we extend SLPNs with data-based weight functions to Stochastic
Labelled Data Petri nets (SLDPN). Syntactically, SLDPNs are similar to SLPNs,
but utilise a weight function that is dependent on a data state.
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Definition 1 (Stochastic Labelled Data Petri Net - syntax). A stochas-
tic labelled data Petri net (SLDPN) is a tuple (P,T,F,\, So,t0), such that
(P, T,F,\,Sy) is a Petri net and w : T x A — RT is a weight function.

The state of an SLDPN is the combination of a marking and a data state
(d € A). The marking determines which transitions are enabled, while the data
state influences the probabilities of transitions.

Definition 2 (Stochastic Labelled Data Petri Net - semantics). Let
(P, T, F,\, Sg,0) be an SLDPN, and let (dy,d1,...) be a data sequence. The
SLDPN starts in state (So,do). Suppose the SLDPN is in state (S;,d;). The
probability to fire t € E(S;) is:

Dven(s,) Ot di)

When a transition t fires, then the new state is (Six+1, diy1) with S;x1 = S;Wt*\*t.

An SLDPN is not executable without further data modelling: the data state
influences the likelihood of decisions, but the model does neither describe how
the data state is initialised, nor how it changes with the execution of transitions.
Thus, an SLDPN potentially has infinitely many stochastic languages.

Furthermore, these definitions do not specify when the data state is consid-
ered. In a real-life process, the data state may change in between the executions of
visible transitions; for instance based on temperature, blood pressure or weather
events, time, etc. Our semantics abstracts from the timing of such a decision
point, however assumes that a stochastic decision between transitions is made
given a data state that does not change at the moment of choice. In future work,
this could be extended to choices at arbitrary moments.

Example. Figurel shows an example of an SLDPN. The control flow of this
SLDPN consists of a choice between a and b, followed by a choice between ¢ and
d. The transitions are annotated with weight functions: the weight of a and b
depend on the continuous variable X, while ¢ and d depend on the categorical
variable Y.

1
X 0.2+ (0.6 if Y = k)

0.2+ (0.6if Y =1)

1
X

Fig. 1. Example of an SLDPN.
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4.1 Trace-Based Execution Semantics & XES Logs

In order to use SLDPNs in a process mining setting, we need to further oper-
ationalise the execution semantics. To this end, in this section, we draw links
with event logs of the XES standard [2] explicitly. Notice that we assume that
the log fits the LPN underlying the SLDPN.

An XES log (XLog) consists of XES traces (XTraces), which are sequences of
XES events (XEvents). All XLogs, XTraces and XEvents are annotated with key-
value pairs of data attributes. One of the attributes of an XEvent — typically
concept:name — is designated as the activity. There are also other attributes
indicating the time of occurrence and the identifier of the process case.

The activity sequences A and data sequences D of a trace o can be directly
obtained from XES traces. The initial data state dy is obtained from the
attributes of the XTrace. Note that in the context of our work typically a selec-
tion of considered attributes will need to be made. Only attributes that can be
assumed to be available at the start of the process case should be considered;
however, XTraces of real-life logs may also contain attributes that are the result
of the process case executing (e.g., a decision or outcome of the case).

Subsequent data states d;~( are obtained by updating the previous data state
with the values from the numeric attributes of that each of the XEvents provides.
The activities a;~q are obtained from the designed activity attribute, which is not
used for the data state. In our operationalisation, we assume that this data state
represents the data directly after the event happened. This is not limiting as the
mapping could be adapted for other interpretations. Finally, silent transitions
are not observed in event logs; thus, there is no information about the data state
at the moment of their execution. Therefore, in our operationalisation, silent
transitions do not change the data state.

Ezxample. Table1 shows an example of an event log. In this log, the attribute
X is continuously uniform distributed between 1 and 10, and Y is a categorical
attribute of {k,l} with equal likelihood. Their distribution is shown in Fig. 3a.
The complete log has 10000 traces.

Table 1. Running example of an event log with two attributes.

event #1, Event #2)

Trace attributes
qX=5381523,Y =l [ jX=5.381523,Y =l

X =5.381523
X — 8214670 X=8.214670,Y =l | X=8.214670,Y =]

(
< )
{ )
X — 2463189 <bX=2.463189,Y=l7 dX:2A463189,Y=l>
< )
{ )
< )

e

X = 6.361540 X:6<361540,Y:k7 X=6.361540,Y =k

X = 3.125406
X =4.099525

a C

X=3.125406,Y =1 dX:3.125406,Y:l
a )

pX=4.000525,Y =k | X=4.009525,Y =k
b
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Aligned Observation
event log instances
Event Log Alignment Extraction Regression
Labelled (1] (5.1) (5.2)
Petri net

Weight function

!

Discovered SLDPN

Fig. 2. The proposed method uses an alignment between a Petri net and an event log
to extract observation instances for inferring a weight function through regression. This
weight function extend the input Petri net to an SLDPN.

5 Data-Based Stochastic Discovery

In this section, we define a method to discover an SLDPN: Data-Based Stochastic
Discovery (DSD). DSD takes as input an LPN N = (P, T, F, A, Sp) as well as
an event log L, as indicated in Fig.2. Our discovery method learns the weight
function tw from the activity and data traces observed in the log and yields an
SLDPN = (P, T, F, \, Sy, ).

The weight function needs to be learned based on the data values and tran-
sition occurrences observed in the log, i.e., the data sequences o4 and their
corresponding activity sequences oy, for each trace o € L. For a transition ¢, the
learned function w(t) should return a higher weight for those data states d € A
for which t is more likely to occur compared to other transitions that may be
enabled in the same marking.

As shown in Fig. 2, we transform this problem to a regression problem. The
first step is to build a set of observation instances (a training set) for each
transition ¢, where each instance is an observation in the log of ¢ being enabled
in the LPN, with the corresponding data state. The second step is to fit a
regression model to each of the sets observations, and to combine the learned
regression models to the weight function of the SLDPN. Both steps are detailed
in the remainder of this section.

5.1 Extracting Observation Instances

To extract observation instances for the data traces in a log L and the transitions
of an LPN N we firstly relate the observed activity sequences Ly to paths of N.
Secondly, we relate the observed data states in the data traces L to sequences
of transition firings.

An activity sequence A € Ly has no direct correspondence to a path of the
LPN: there may be steps required in NV that are not present in A, N may contain
silent transitions, or there may be activities in A that cannot be mapped to a
transition in N. Therefore, we use alignments [1] to establish a mapping between
Ly and N. That is, each activity a € A is either mapped to a transition t € N
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Table 2. Example of an alignment computed for a data trace and our example LPN
(Fig. 1)

(a) Alignment notation. (b) Matrix notation.
model (transitions)|a c a ¢
log (activity) a > T= a >
log (data) X=10,Y =k> X=10Y =k>

such that a = A(t), or to a log move >>. The thus-mapped transitions must form
a path of N, and may need intermediate transitions that are not represented in
A (model moves >>). An alignment is such a mapping, such that the number of
log and model moves is minimised. We provide an example in Table2, but do
not further detail the computation of the alignments; please refer to [1] for more
details. Please note that we index the matrix notation starting from 1.

Without loss of generality, we may assume that the alignment ~ does not
contain column vectors in which only the log has an activity, without the model
having a corresponding transition (V;y(i,1) = > = ~(4,2) # >). That is, that
the alignment contains no log moves. From such an alignment v, we construct a
data sequence that corresponds to the followed path, by taking a previous data
state if none is present:

D(’Y? O) = 0A0

= ~(4,3) otherwise

Then, we build observation instances for each transition. For a transition
t € T, we collect all observations (d, ") of transition ¢’ firing while ¢ was enabled,
with the corresponding data state d. That is, here d € A is the observed data
state before transition ¢’ fired. Note that ¢’ may be the same as t. To collect
observations, we define an observation instance builder Or(¢) that provides a
multiset of instances from a collection of alignments I

oI t) = ) [(D(y,i—1),t)]
YEI'AY(i,1)=tAt' €E(S;)
with
Si if 7 (i,0) = >
Sor= {0 6D )
Si—1 Wy(i,1)*\ *y(i,1)  otherwise

This gives us a multiset of data states with positive and negative samples
concerning transition ¢ — that is, ¢ was enabled and fired (positive) or ¢ was
enabled but another transition fired (negative). The multiset frequencies also
inform on the occurrences of transitions.

Ezample. From our running example (Fig. 1 and Table 1), consider the data trace
o = ((a,d), ({X = 5.381523}, {X = 5.381523,Y = I}, {X = 5.381523,Y = I})).
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The observation points derived from this data trace are ({X = 5.381523},a)
and ({X = 5.381523},b) for a; and ({X = 5.381523,Y = I},¢) and ({X =
5.381523,Y = 1}, d) for d.

5.2 Learning Weight Functions

In this section, we use the multisets of observations to discover weight functions
for transitions. This involves two steps for each transition: 1) choosing a weight
function ro, and 2) estimating the parameters of the weight function. In prin-
ciple, any machine learning approach could be used, including regression and
classification, that eventually provides a numeric value. The positive or negative
cases with their attached data states can be used to learn the chosen weight
function. The choice for a weight function 1 also sets the types of variables in
the data states that can be supported: in principle, any data type up to images,
sound and even video can be supported, as long as there is a weight function
available that transforms a datum into a numeric weight.

We do not aim to cover a broad range of possible weight functions, however,
in order to illustrate SLDPNs, we consider numeric, categorical and boolean
variables, as such variables are typically found as attributes in event logs. As
weight function, we choose the simple logistic model with parameters 5y (the
intercept) and fi,..., B, (coefficients). Let x1,...,x, be the variables of the

data state, then
1

m(t) = 1+€—(ﬁ0+ﬁ111+~~+ﬁn1’n) (3)

As this weight function only supports numerical variables, categorical and
boolean variables are included using one-hot encoding. As such, in the remainder
of this paper, we only consider numerical variables. Variables that have not been
assigned a value, e.g., because they are only observed later in the process, are
handled in the learning procedure through mean imputation; to distinguish these
cases, an additional variable is recorded that indicates whether the variable has
been assigned in the data state.

The use of the simple logistic model also implies that there is no need to
consider all transitions together: global approaches could learn the entire weight
function for all transitions together. Instead, a local approach learns the weight
function for each transition in isolation, thereby limiting the search space con-
siderably.

To estimate the parameters of the simple logistic weight function — one for
each transition — we leverage the observation instances. For each observation
instance (d,t') € O(I',t) we obtain a data point in our training set as (d, ¢) with
the to-be predicted independent variable ¢ encoded as:

.o if ¢ £t
)1 ift=¢"

Using simple logistic regression, the intercept [y and a set of coeflicients
Bi,..., B, are fitted.
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4 5 7 10
X X

(a) Scatter plot of the example log. (b) Plot of the weight function of transi-
tions a and b in the discovered SLDPN.

Fig. 3. Distributions of our running example log and SLDPN.

There may be cases in which we cannot collect observation instances for either
the positive or the negative case, such as when no other transition is enabled
when ¢ is enabled, when ¢ was never observed, or when none of the variables
have been assigned (yet). In these case no sensible logistic weight function can
be learned from the data states and we resolve to setting w(t) to the support of
transition ¢, i.e., the relative frequency of occurrences of ¢ when it was enabled.

Ezample. For our running example of (Fig. 1 and Table 1), the regressed parame-
ters for transition a are as follows: The intercept Gy is —0.716, while the coefficient
on X (1 is 0.359. For b, this is 0.716 and —0.359, respectively. Figure 3b shows that
the weight of @ and b depend on X, e.g., the weight of b reduces with increasing
X. Note that we started the example with a function 1 — % for transition a, and
the fitted logistic function 1+e,(,047116+0_35sx) on it; this is the best-fitting logistic

function, however it may be possible to fit other functions as well.

6 Conformance Checking

In this section, we introduce a technique to check the conformance of an SLDPN
and an event log. If the SLDPN was discovered from an event log, preferably, a
test log that has not been used in the discovery of the SLDPN should be used
for conformance checking. To evaluate the agreement between an SLDPN and
a log, we need to compare their respective probability distributions: whereas a
trace has a certain probability in a log, an SLDPN expresses a trace having a
probability for a particular data sequence. In this section, we first derive condi-
tional probabilities for SLDPNs, then for logs, and we finish with a conformance
measure.

6.1 Conditional Probabilities in SLDPNs

Given an SLDPN M = (P, T, F, A, Sp,w) in a marking S, the probability of an
enabled transition ¢t € E(S) to fire can be determined from the weights of all
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enabled transitions given a data state d following Definition 2, i.e.,

pu(t] (S,d)) = Z ) :((;’ tc.lo)(t/ d).

Given a data sequence D = (dp,...,d,) and a path P = (t1,...,tx) of M
where k < n, the probability of that path is

k
par((tr, -5 te) | ((So, -+, Sk)s (do, - .-, di))) = Hp]%(ti | (Sic1,di—1))

Given a path and the initial marking Sy, the sequence of markings is determin-
istic (see Eq. (2)). Thus, we may omit the sequence of markings.

However, in conformance checking we need to compare activity sequences
rather than paths of transitions. Given an activity sequence A, the conditional
probability pys (A | D) of the activity sequence given the data sequence D equals
the sum of the probabilities of all paths P such that P|y = A. However, there
may be infinitely many corresponding paths for a given activity sequence A,
due to duplicate labels, silent transitions and loops. We use the same technique
as in [20] to compute the conditional trace probability pys(A | D), which — for
bounded SLDPNs — explicitly constructs a state space of the cross product of A
and M under assumption of D, and then computes the probability of reaching
a deadlock state using standard Markov techniques. Note that the computation
requires the data sequence to be at least as long as the longest path taken into
consideration, which is easily guaranteed by replicating the last data state in D
a sufficient number of times.

Ezample. From our running example (Fig.1 and Table1), consider again the
data trace o. = ((a,d),({X = 5.381523},{X = 5.381523,Y = [},{X =
5.381523,Y =1})). As {(a, d) is the only path in our SLDPN that corresponds to
o, we could directly compute pys(dex | 0en):

par((a,d) | ({[pol. [p1], [pal),e.0)) = par(a | ([pol, {X = 5.381523})
par(d | ([pa], {X = 5.381523,Y = 1})
BEES
"33

0.2+ (0.6if Y =1)
02+ (0.6ifY =k)+02+ (0.6if Y =1)
= 0.651

To compute this probability when multiple paths would be present, we com-
pute the cross product of the SLDPN and o, which is shown in Fig. 4. The proba-
bility of reaching the end state [ps] from the initial state [po] is 0.814-0.8 = 0.651.
Thus, the conditional probability pas(ces | 0en) is 0.651.
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Fig. 4. Cross product of the likelihood of o, in our running example.

6.2 Conditional Probabilities in Logs

A log can be seen as a multiset of pairs of an activity sequence A and a data
sequence D:
L =[(Ao,Do)*,...,(An, Dp)™].

From such a multiset, the probabilities we derive directly are conjunctive.
That is, each pair (A4, D) is observed a number of times, and the corresponding
joint probability concerns both A and D:

L((A,D
pu(An D) = A D)
L]

The probability of a data sequence is therefore:

[D | (A, D) € L]
L]

pr(D)= Y pL(AAD)=
A€Lx

Their ratio is the conditional probability of a trace o given a data sequence D:

- pL(A/\D)

Notice, however, that if D is unique in L, then py(A | D) = 1 for any A,
which makes direct comparisons with an SLDPN challenging.

Ezample. From our running example (Fig.1 and Table 1), consider again the
data trace o, = ({(a,d), ({X = 5.381523},{X = 5.381523,Y = [}, {X =
5.381523,Y = [})). As X is continuous, the data sequence oy is unique in
our example log. Then:

pr(0ess A Ten) = 1/10000
pr(0ea) = 1/10000

pL(UeZ‘ | GeA) =1
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6.3 A Conformance Measure

In this section, we adapt the uEMSC (Eq. (1)) stochastic similarity measure to
compare an event log L to an SLDPN M.

Since we need to account for the data sequences as well, the uEMSC measure
has to be extended to cope with the data-awareness of our approach. By adding
the data perspective as an additional dimension to the probability distributions
in the uEMSC measure, we directly obtain:

duEMSC(L,M)=1- " > max(p.(AAD) - py(AAD),0)
DeLa AEZ/\E/

We can rewrite the joint probabilities using conditional probabilities:
pu(AAD) =pu(A | D)pu (D)

In absence of a data distribution in M, py (D) is not defined. However,
intuitively, we compare the likelihood of the activity sequences in L (1:;2) with the
likelihoods of those activity sequences in M, under the same data distribution.
Henceforth, we can assume the data distribution of L (L) for M, and thus
prm (D) = pr(D). Then, the duEMSC measure results to

duEMSC(L, M) =1- %" " max(pr(AA D) = pu(A| D)pr(D),0) (4)
Dela gcly

Notice that if all data sequences in the log are equal, then du M SC' is equal
to uEMSC, and as such, duEMSC is a proper generalisation of uEMSC, and
can be used interchangeably.

Ezample. For our running example (Fig.1 and Table1), the overall value of
duEMSC is 0.997. This value is not precisely 1, which, given the large sample
size of the log (10000), indicates that a logistic formula is not able to capture
the distributions in the log perfectly.

7 Evaluation

In this section, we validate our approach threefold: we show its feasibility using
an implementation, we compare the discovered models with existing stochastic
process discovery techniques, and we illustrate the new types of insights that
can be obtained using SLDPNs.

7.1 Implementation

We implemented discovery and conformance checking methods for SLDPNs as
plug-ins of the ProM framework?, in the StochasticLabelledDataPetriNet

2 Available in the nightly builds at https://promtools.org/.
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package. Further functionality for SLDPNs provided by the package are plug-
ins to import, export, and visualise and interact with SLDPNs (see Sect.7.2).
The source code is available at http://svn.win.tue.nl/repos/prom/Packages/
StochasticLabelledDataPetriNet /Trunk.

The discovery plug-in first uses the alignments provided by ProM [1] to obtain
the observation instances, after which the logistic regression implementation
provided by Weka 3.8 [32] based on ridge regression [11] is leveraged for inferring
the weight function. A parameter adjusts the one-hot encoding for categorical
event log attributes: it sets a maximum on the number of categories that are
considered for one-hot encoding for a single variable. Another parameter avoids
using one-hot encoding altogether and only considers numerical variables. This
is useful to avoid attempting to create a model with a very large number of
variables which poses the risk of over-fitting and excessive run times.

The conformance checking plug-in implements duFE M SC, by extending the
EarthMoversStochasticConformance [20] implementation.

7.2 Insights

We illustrate the kind of insights provided by the data-dependant stochastic
perspective by presenting an example of a discovered SLDPN on a real-life event
log indicating a road fines handling process that is known to contain process
relevant data attributes [23]. Using the Directly Follows Model Miner (DFM),
an SLDPN was discovered using our ProM plug-in using only numeric attributes.

In the interactive visualisation of our ProM Package the discovered SLDPN
can explore influence of data variables on the likelihood of transitions. Figure 5a
shows the stochastic perspective for the variable points being 0, while Fig. 5b
shows the stochastic perspective for the variable points being 2 with all other
variables unchanged. This variable indicates the number of penalty points
deducted from the driving license. In total a driver has 20 points and a new
driving exam needs to be taken if all points are lost.

One can observe the difference in probability in the highlighted choice
between Payment and Send Fine. Here the occurrence of Send Fine indicates
that the fine was not directly paid [23]. In the SLDPN, we can observe that if a
fine corresponds to 2 penalty points deducted from the license, then it is much
less likely that the fine is paid on the spot without being sent out (1%) vs. if
the fine does not correspond to any points (36%). These types of insights can be
obtained with neither common process mining techniques, nor stochastic process
mining techniques, nor data-aware process mining techniques.

7.3 Quantitative

In this experiment, we compare the models of our technique with existing
stochastic discovery techniques. Figure 6 shows the set-up of this experiment:
from several of real-life logs, we first discover control-flow models. Second, on
a random 50% trace-based sample, we apply stochastic discovery techniques,
including ours. These stochastic process models are then measured with respect
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0.00 0.00

Insert Fine Notification Insert Fine Notification

1.00

Send for Credit Collection Send for Credit Collection

(a) Scenario 1: A fine with 0 points. (b) Scenario 2: A fine with 2 points.

Fig. 5. An SLDPN discovered by DFM from the road fines event log visualised inter-
actively in ProM. Variables are shown as yellow hexagon shaped nodes with their
assignment next to them. The assignment can be changed to investigate the impact
of a data state on the transition weights. Transitions are coloured according to their
weights. Note that to give a quick overview the marking is not considered. Nodes have
been repositioned for better legibility. (Color figure online)

to the remaining 50% of the log. The entire procedure is repeated 10 times to
nullify random effects. Table 3 shows the details of the set-up.

To study the impact of using more variables we not only use our technique
(DSD), but also include a variant (DSDwe) that does not use one-hot-encoding.
The stochastic discovery was bounded by a timeout of 6h, which was never
reached. The experiments were conducted on an AMD EPIC 2 GHz CPU with
100 GB RAM available; the logs were taken from https://data.4tu.nl/search?q=:
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[50% ]
log stochastic discovery
| 50% )

Fig. 6. Set-up of a single quantitative experiment.

Table 3. Details of the quantitative experiment’s set-up.

(a) Logs. (b) Discovery techniques.

Log traces events activities Directly Follows Model Miner [19] DFM
Inductive Miner - infrequent [17] (0.8) IMf

bpicl2-a 6562 30541 10 Flower model: a model that allows for any be- FM
bpicl3-incidents 3786 32825 13 haviour of the observed alphabet
bpicl3-open problems 412 1179 5
bpicl3-closed problems 748 3361 7
bpicl7-offer log 21455 96752 8 . . .
bpic20-domestic declarations 5228 28 108 16 (c) Stochastic discovery techniques.
bpic20-international declara- 3204 35815 34
tions
bpic20-prepaid travel cost 1052 9164 29 Baseline: uniform choices BUC
bpic20-request for payment 3447 18458 18 Alignment-based estimator ABE
sepsis 526 77615 16 Frequency-based estimator FBE
road fines 75167 280779 11 Data-based stochastic discovery without one- DSDwe

hot encoding (Section 5)
Data-based stochastic discovery (Section 5)  DSD

(d) Measures.

Number of transitions transitions
Number of transitions with non-1 weights weights
Number of transitions with data- data weights
dependent weights

unit Eerth Movers’ Stochastic Confor- uEMSC
mance [20]

Data-aware uEMSC (Section 6) duEMSC

keyword: %20%22real%20life%20event %20logs%22. We archived the code and
the full results at Zenodo®.

Results. Table4 summarises the full results that are available in the Zenodo
archive. The values obtained by uEMSC for BUC, ABE and FBE were equivalent
to the values obtained by duEMSC for these stochastic discovery techniques, as
shown in Sect. 6. Therefore, uEMSC is not shown or further discussed.

From these summarised results, it is clear that the data-aware stochastic pro-
cess discovery techniques can compete with existing stochastic discovery tech-
niques on model quality. In particular, they are — in most cases — able to better
represent the behaviour in real-life event logs than existing stochastic discov-
ery techniques. Out of 36 experiments DSD achieves most often the highest
duEMSC with 19 runs. Comparing to DSDwe it seems that considering cate-
gorical attributes is useful in two cases but has, overall, a limited impact. This
motivates future research on using categorical attributes. A potential pitfall is
that by adding more variables, or using other regression functions, the likeli-
hood of over-fitting increases, which would lead to lower scores in this experi-
ment. Unsurprisingly the state-of-the-art on non-data-aware discovery ABE is

3 https://dx.doi.org/10.5281/zenodo.7578655.
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Table 4. Summary of our quantitative results for 36 experimental runs.

Stochastic algorithm | Fastest | Highest duEMSC
BUC 36 6
FBE 0 9
ABE 0 12
DSDwe 0 17
DSD 0 19

the second best algorithm with several times achieving the same score. Note
that in contrast to typical application scenarios we did not investigate or man-
ually select particular attributes for their relevance. Neither did we select event
logs for the suitability to data-aware techniques. Thus, it is expected that DSD
cannot always achieve better results.

We discuss the Sepsis log in a bit more detail. For IMf, the model contains quite
some concurrency, which involves many potential traces, especially with local loops
within concurrent blocks. As alignment-based stochastic discovery techniques are
not sensitive to concurrent behaviour — they only consider how often transitions
are executed, not when —, all tested stochastic discovery techniques obtain low
duEMSC scores. For the DFM miner, the poor performance may be explained by
the repeated blood, leucocytes, lactic acid and CRP measurements are taken regu-
larly throughout the process, which makes control-flow without concurrency chal-
lenging. Furthermore, they are performed regularly, that is, they are not dependent
on data. For the flower model — in theory — any activity that is executed based on
data rather than other activities (control flow), should contribute to the stochas-
tic perspective. Hence, the low duEMSC score for all stochastic models shows that
the sepsis log describes a structured process.

Figure 7 shows the distribution of stochastic discovery run times in the exper-
iment. We observe that it takes more time to discover an SLDPN compared to
the non-data-aware approaches BUC, FBE and ABE. BUC does not consider
the log at all and simply assigns a weight of 1 to each transition, which takes
very little time. FBE traverses the log, and ABE creates an alignment. Thus,
DSD is expected to take at least as long as ABE. Still, all the SLDPNs could
be discovered within a maximum of 14 s, which is highly feasible. Please note
that for some logs, such as bpicll and bpicl5, alignments are hard to compute,
which keeps these logs out of reach for ABE and DSD.

Figure 8 shows the distribution of the stochastic conformance checking run
times in our experiment. In the worst case the conformance checking took 573 798
milliseconds for the bpic20-international declarations event log and discovered
SLDPN, which took into account 24 variables. Overall, conformance checking of
the models discovered by FM takes consistently much longer than their respec-
tive IMf and DFM counterparts. However, this difference can also be observed in
the non-data-aware approaches. With the exception of bpic20-international dec-
larations, the run times stay in most cases within a limit of 1 to 2 min. Notably,
up to 80 GB of RAM was required for these computations.
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Fig. 8. Run times of stochastic conformance checking for different algorithms.

8 Conclusion

Process models that are typically used in business process management and
mining do not incorporate stochasticity: when multiple activities are enabled,
no information is incorporated into the model that defines the likelihood of each
activity to fire. As a consequence, each activity has the same probability to fire.
This is oftentimes not realistic: some activities are more probable than others.
This paper is centered around stochastic process mining, and provides a
twofold contribution. On the one hand, it puts forward a technique to discover
stochastic models that incorporate a characterization of the probability of each
enabled activity to fire. On the other hand, it defines stochastic conformance
checking, which do not only aim to verify the compliance of each execution with
respect to a model, but also considers whether the distribution of traces in the
event log is consistent with the probability distribution of model executions.
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Conformance checking thus requires to consider the whole event log together,
and cannot analyse each event-log trace in isolation.

Some research also exists in stochastic process mining (cf. Sects. 1 and 2), and
aims to discover and check the conformance of stochastic models that correlate
the activity occurrence probability to the activities performed beforehand. This
is often limiting, because this probability might be influenced by the current
values of the data variables of which process executions change the values.

This paper overcomes this limitation and incorporates the data variables
into stochastic process models. In particular, this paper introduces the notion
of SLDPN, which is conceptually simple but yet fully equipped to model the
process’ behavior, in terms of activities and manipulation of data variables, and
transition firing probabilities. The paper contributes techniques for discovering
and conformance checking of SLDPNs. About discovery, the experiments shows
that by including relevant data variables into the computation of the firing prob-
ability of SLDPN’s transitions can yield a more accurate characterization of
transition firing probabilities. In conformance checking, the technique follows
the intuition of stochastic conformance that computes metrics at event-log level,
rather than considering single traces in isolation.

SLDPNs are very suited to model business simulation models [26]. Business
Process Simulation enables to generate an arbitrarily large number of potential
process executions. It also allows process analysts to implement various process’
modifications with the aim to assess their correlation with process performance.
By trying several process modifications without putting them in real production,
analysts can determine those that improve the process’ performance with little
or no consequences. As future work, we plan to exploit the technique to discover
transition firing probabilities to mine more accurate and realistic simulation
models, compared with the state of the art (cf., e.g., [10]). Indeed, more accurate
firing probabilities allow analysts to better model the run-time characterisation
of business simulation models.

The discovery of the transition firing probabilities builds on logistic regression
as an oracle to find the transition’s weights and consequently the transition’s
firing probabilities. This has shown to be beneficial to better compute weights.
Logistic regression also has the advantage to naturally explain how weights are
computed in each and every case. However, generally it is not the best regression
technique in several settings, especially when the variables are correlated. Here,
we intend to evaluate alternative regression techniques, including those based on
neural networks, with the goal to improve the weight accuracy.
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Abstract. The execution of different cases of a process is often restricted by
inter-case dependencies through e.g., queueing or shared resources. Various high-
level Petri net formalisms have been proposed that are able to model and ana-
lyze coevolving cases. In this paper, we focus on a formalism tailored to con-
formance checking through alignments, which introduces challenges related to
constraints the model should put on interacting process instances and on resource
instances and their roles. We formulate requirements for modeling and analyzing
resource-constrained processes, compare several Petri net extensions that allow
for incorporating inter-case constraints. We argue that the Resource Constrained
v-net is an appropriate formalism to be used the context of conformance check-
ing, which traditionally aligns cases individually failing to expose deviations
on inter-case dependencies. We provide formal mathematical foundations of the
globally aligned event log based on theory of partially ordered sets and propose an
approximation technique based on the composition of individually aligned cases
that resolves inter-case violations locally.

Keywords: Petri nets - Conformance checking - Inter-case dependencies *
Shared resources

1 Introduction

Event logs record which activity is executed at which moment of time, and additionally
they often include indications which resources were involved in which activity, men-
tioning the exact person(s) or machine(s). The availability of such event logs enables
the use of conformance checking for resource-constrained processes, analyzing not only
the single instance control-flow perspective, but also checking whether and where the
actual process behavior recorded in an event log deviates from the resource constraints
prescribed by a process model.

Process models, and specifically Petri nets with their precise semantics, are often
used to describe and reason about the execution of a process. In many approaches, a
process model considers a process instance (a case) in isolation from other cases [1]. In
practice, however, a process instance is usually subject to interaction with other cases
and/or resources, whose availability puts additional constraints on the process execu-
tion. In order to expose workflow deviations caused by inter-case dependencies, it is
crucial to use models considering multiple cases simultaneously.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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There are several approaches to modeling and analysis of processes with inter-case
dependencies. In [7] and [12], Petri nets are extended with resources to model availabil-
ity of durable resources, with multiple cases competing by claiming and releasing these
shared resources. To distinguish the cases, v-Petri nets [22] incorporate name creation
and management as a minimal extension to classical Petri nets, with the advantage
that coverability and termination are still decidable, opposed to more advanced Petri
net extensions. The functionality of v-Petri nets is inherited in other extensions such
as Catalog Petri nets [11], synchronizing proclet models [10], resource and instance-
aware workflow nets (RIAW-nets) [18], DB-nets [19] and resource constrained v-Petri
nets [24], all with the ability to handle multiple cases simultaneously. For the latter, the
cases are assumed to follow the same process, interacting via (abstract) shared resources
in a one-to-many relation, i.e., a resource instance can be claimed by one case at a time.
More sophisticated extensions allow for cases from various perspectives with many-
to-many interactions, via e.g., concepts from databases, shared resources and proclet
channels. This may impose, however, problems of undecidability during conformance
checking, which we discuss in this work.

Many conformance checking techniques use alignments to expose where the behav-
ior recorded in a log and the model agree, which activities prescribed by the model are
missing in the log and which log activities should not be performed according to the
model [3,8]. The usual focus is on the control flow of the process. In more advanced
techniques [6, 15—17], data and/or resource information is additionally incorporated in
the alignments by considering these perspective only after the control flow [15], by bal-
ancing the different perspectives in a customizable manner [16] or by considering all
perspectives at once [17]. These three types of techniques operate on a case-by-case
basis, which can lead to misleading results in case of shared resources, e.g., when mul-
tiple cases claim the same resource simultaneously.

In our previous work we considered the execution of all process instances by align-
ing the complete event log to a resource constrained v-Petri nets [24]. In this paper, we
present our further steps: (1) We compare how the existing Petri net extensions support
modeling and analysis of processes with inter-case dependencies by formulating the
requirements to such models, and we argue that v-nets are an appropriate formalism.
(2) We employ the poset theory to provide mathematical foundations for aligning the
complete event log and exposing deviations of inter-case dependencies; (3) We propose
an approximation method for computing optimal alignments in practice, which tackles
the limitation of the computational efficiency when computing the complete event log
alignment. The approximation method is based on composing alignments for isolated
cases first and then resolving inter-case conflicts and deviations in the log locally.

The paper is organized as follows. In Sect.2 we introduce basic concepts of the
poset theory, Petri nets and event logs. In Sect. 3 we compare different Petri net exten-
sions. We provide the mathematical foundations of the complete event log alignment
in Sect. 4. Section 5 presents the approximation method for computing alignments. We
discuss implications of our work in Sect. 6.
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2 Preliminaries

In this section, we introduce basic concepts related to Petri nets and event logs and
present the notations that we will use throughout the paper.

2.1 Multisets and Posets
We start with definitions and notation regarding multisets and partially ordered sets.

Definition 1 (Multiset). A multiset m over a set X is m : X — N. X® denotes the
set of all multisets over X. We define the support supp(m) of a multiset m as the set
{z € X | m(z) > 0}. We list elements of the multiset as [m(x) - © | x € X], and write
|| for m(x), when it is clear from context which multiset it concerns.

For two multisets my, ma over X, we write my < mg if Voexmi(xz) < mo(x),
and my < mz if my < ma Amy # ma. We define my +mso = [(mq(x) + ma(x)) - x
x € X|, and my — mo = [max(0, my(x) — ma(z)) -z | x € X]| for my > ma.

Furthermore, m1 U mo = [max(mi(x),ma(z)) -2 | x € X|, mi Mmy =
[min(m (z), ma(x)) -z |z € X].

In some cases, we consider multisets over a set X as vectors of length | X |, assuming
an arbitrary but fixed ordering of elements of X.

Definition 2 (Partial order, Partially ordered set, Antichains). A partially ordered set
(poset) X = (X, <x) is a pair of a set X and a partial order <xC X x X. We
overload the notation and write v € X if v € X. For x,y € X, we write x| xy if
cAYyNyAzandx S yifx <yVvVze=y.

Given <x, we define %} to be the smallest transitively closed relation containing
<x. Thus <} is a partial order with <X§<}.

We extend the standard set operations of union, intersection, difference and subsets
to posets: for any two posets X and Y, X oY = (X oY, (<x o <y)T), witho €
{U,N\}andY C X iff Y C X and <y==<x N(Y x Y).

A poset A is an antichain if no elements of A are comparable, i.e., Vg yc 4 x||y. For
poset X, A(X) denotes the set of all antichains A C X, and A" (X)) is the set of all
maximal antichains: A*(X) = {A| A€ A(X),Vpeax) BC A = B=A}

Two special maximal antichains are the minimum and maximum elements of X,
defined by min(X) = {z | x € X,Vyexy £ 2} € AT (X) and max(X) = {z |z €
X7vy€X$7éy}€~A+()_()' B _

We define X< = {(Y,<y) | Y = X, <xC=<y,Vapev,axb ¢ [lyb} to be the set
of totally ordered permutations of X that respect the partial order.

Definition 3 (Interval, prefix and postfix in a poset). With a poset X and two antichains
A, B € A(X), the closed jhkcbvinterval from A to B is the subposet defined as follows:
[A,B] = (AB,<x N(AB x AB)) with AB = {zv | v € X,A < v < B}, and
the half open and open intervals: (A,B] = [A,B]\ A, [A,B) = [A,B] \ B and
(A,B)=1[A4,B)\ A.

Artificial minimal and maximal elements are denoted as L and T respectively, i.e.,
Veoexl <o < T.(L,A], (L,A), [A,T) (A, T) denote the corresponding prefixes
and postfixes of an antichain A € A(X) in X.
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2.2 Petri Nets

Petri nets can be used as a tool for the representation, validation and verification of
workflow processes to provide insights in how a process behaves [21].

Definition 4 (Labeled Petri nets, Pre-set, Post-set). A labeled Petri net [20] is a tuple
N = (P, T, F,{), with sets of places and transitions P and T, respectively, such that
PNT =0, and a multiset of arcs F : (P x T) U (T x P) — N defining the flow of the
net. £ : T — X7 = X U {7} is a labeling function, assigning each transition t a label
L(t) from alphabet X or £(u) = T for silent transitions.

We assume that the intersection, union and subsets are only defined for two labeled
Petri nets N1, Ny where Vi, nr,01(t) = £2(t).

Given an element x € P U T, its pre- and post-set *z (x*) are multisets defined by
‘v =[F(y,z) - y|lye PUT]and z* = [F(x,y) -y |y € PUT] resp.

Definition 5 (Marking, Enabling and firing of transitions, Reachable markings). A
marking m € P® of a (labeled) Petri net N = (P, T, F, () assigns how many tokens
each place contains and defines the state of N.

With m and N, a transition t € T is enabled for firing iff m > *t. We denote the
firing of t by m L m!, where m’ is the resulting marking after firing t and is defined
by m' = m — *t +t*. For a transition sequence o = (t1, ..., t,) we write m <> m/ to
denote the consecutive firing of t; to t,,. We say that m’ is reachable from m and write
m = m/ if there is some o € T* such that m = m/.

M(N) = P® and it denotes the set of all markings in net N and R(N,m) the set
of markings reachable in net N from marking m.

Definition 6 (Place invariant). Let N = (P, T, F,{) be a Petri net. A place invariant
[14]is a row vector I : P — Q such that I-F = 0, with P and F vector representations
of P and F. We denote the set of all place invariants as Iy, which is a linear subspace

of QF.

The main property of a place invariant / in a net N with initial marking m, is that
vmhszR(Aﬂmi)I ~my =1 -ma.

Definition 7 (Net system, Execution poset and sequence, Language). A net system is
a tuple SN = (N, m;,my), where N is a (labeled) Petri net, and m; and my are
respectively the initial and final marking. An execution sequence in a net system SN =
(N, m;,my) is a firing sequence from m; to my. Additionally, an execution poset is a
poset of transition firings, where each totally ordered permutation is a firing sequence.
The language of a net system SN is the set of all execution sequences in SN.

2.3 Event Logs

An event log records activity executions as events including at least the occurred activ-
ity, the time of occurrence and the case identifier of the corresponding case. Often
resources are also recorded as event attributes, e.g., the actors executing the action. It is
generally known beforehand in which activities specific resource roles R are involved
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and which resource instances Id,. are involved in the process for each role » € R. We
assume that each resource has only one role (function) allowing to execute a predefined
number of tasks, and therefore define the set Idz of resource instances of all roles as the
disjoint union of resource instance sets of roles: Idg = W,cgld,. A resource instance
p € Idg withrole r € R is equipped with capacity, making Id,. and Idz both multisets.

Definition 8 (Event, Event log, Trace). An event e is a tuple (a,t,c,1dy), with an
activity @ = activity(e) € X, a timestamp ¢ = time(e) € R, a case identifier
c = case(e) € 1d. and a multiset of resource instances 1d, = Res(e) < Idg. Such
an event represents that activity a occurred at timestamp t for case c and is executed by
resource instances from 1d'y belonging to possibly different resource roles.

An event log L is a set of events with partial order <, that respects the chrono-
logical order of the events, i.e., Ve, c,crtime(e;) < time(es) => ex AL e1. An
event log can be partitioned into traces, defined as projections e.g., on the case iden-
tifiers or on the resources names. For every ¢ € 1d., L. denotes a trace projected
on the case identifier ¢ defined by L. = ({e | e € L,case(e) = c},<r,) with
<r.={(e,¢) | (e,e') €<, case(e) = case(e’) = c}.

Alternatively, we write (e, s, - - -) for an event log which is totally ordered, and

ald;2 and Iy for events where the case is identified by the activity color (and bar
position) and the time of occurrence is abstracted away from.

For a (labeled) Petri net modeling a process, the transitions’ names or labels corre-
spond to the activity names found in the recorded event log.

3 Modeling, Analysis and Simulation of Case Handling Systems
with Inter-case Dependencies

A classical Petri net models a process execution using transition firings and the cor-
responding changes of markings without making distinctions between different cases
on which the modeled system works simultaneously. To create a case view, Workflow
nets [2] model processes from the perspective of a single case. Systems in which cases
interact with each other, e.g., by queueing or sharing resources, need to be modeled
in a different way. We show from a modeling point how this boils down to multiple
cases competing over shared tokens representing resources in a Petri net, which requires
an extension on the formalism of the classical Petri nets. In Sect. 3.1, we motivate the
requirements by providing examples, after which, in Sect. 3.2, we discuss whether exist-
ing Petri net extensions satisfy these requirements. We end, in Sect. 3.3 by proposing a
minimal extension based on v-Petri nets [22] that meets each requirement for simulation
and analysis of resource-constrained processes.

3.1 Requirements Imposed by Inter-case Dependencies

When modeling systems with inter-case dependencies, i.e., shared resources, simulta-
neous cases can interfere in each other’s processing via the resources, causing inter-case
dependencies. To model, simulate and analyze such behavior, the cases and resources,
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Fig. 1. Example Petri net N, to argue the requirements, with token colors denoting different
instances.

represented as tokens in a Petri net, should be handled together and simultaneously in
the process model. This introduces the need for case (R1) and resource isolation (R2)
as well as durable resources (R3) and case-resource correlations (R4), which regular
Petri nets are not capable of. For analysis, like computing alignments (see Sect. 4), non-
invertible functions can cause state-space explosions (R5). We show for each require-
ment, when not satisfied, how simulation and/or analysis concerning multiple simulta-
neous cases fails:

R1

R2

R3

Distinguishable cases are required when dealing with multiple cases. Tokens
involved in a firing of a transition should not belong to different cases, unless case
batching is used. Mixing tokens from different cases, possible in classical Petri
nets, can potentially cause model behavior that is not possible in the modeled sys-
tem: Suppose we have a simple operation process modeled by Petri net N;, shown
in Fig. 1, where a patient undergoes an operation involving the activities of prepa-
ration (0,,), assistance (o, ), closed surgery (os.) and open surgery (0s,) which is
followed by closeup (o.). We assume case tokens to be indistinguishable. The lan-
guage of (N1, [pi, 2ps], [Py, 2ps]) is {{0p, 0a; 0sc)s (0p, Ose; 0a), (Ops 0as 050, Oc).
(0p 050, 04, 0c) } and the language of the same net processing two cases with suffi-
cient resources has to consist of all possible interleaving of two traces belonging to
single cases. However, {(0p, 0q, Os¢, 0, 05 020, Oc) } 18 included in the language of
(N1, [2pi, 2ps), [2pf, 2ps]), which is impossible to obtain by an interleaving of two
single cases, as o, is never enabled after o, fires. Here and later we use underlined
symbols when referring to the second case in examples. From now on, we assume
case tokens are distinguishable and we have m;(p;) = (¢, ¢);

Distinguishable resources are required when resource instances are uniquely iden-
tifiable. If the tokens in p, are indistinguishable, (..., oif }, {1}, oix}> belongs
to the language of (N1, [2p;, 2ps], [2ps, 2ps]). However, resource instance x can
only be claimed by the second case after it has been released by the first case (by
firing transition o..), hence it should not be included in the language. From now on,
we assume resource tokens are distinguishable and we have m;(p;) = (z,y);
Resources are required to be durable when having a variable number of cases in
the system simultaneously. In /N7, the resource instances in py are modeled to be
durable, since these instances are always released after being claimed. However,
were arc (0., ps) to be removed, problems arise when observed behavior concerns
more than two cases, since after transition o, fired twice, it is never enabled again,
causing a deadlock;
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R4 Capturing case-resource correlation is required when dealing with multiple dis-
tinguishable cases and resources in order to keep track of which resource handles
which case. Without it, the language of (N1, [2p;, 2ps], [2py, 2ps]) includes e.g.,
(..., oii}, 2Rt oi”}>, which is undesirable as resources x and y have
switched cases after transition oy, is fired twice. Case-resource correlation should
ensure, in this case, that transition o, can only be fired using the same resource as
was claimed by firing transition o04,;

R5 Operations on token values (e.g., guards, arc inscriptions) should be invertible and
computable when aligning observed and modeled behavior in order to keep the
problem decidable. Consider e.g., that patients enter the process by their name
and birthdate v, which is transformed to an identifier c in the first transition by an
operation f(v) on (0,). When activity o, is missing for a patient, it is undecidable
which value v should be inserted for the firing of 0, when f is not invertible.

3.2 Existing Petri Net Extensions

Several extensions on Petri nets have been proposed focusing on multi-case and/or
multi-resource processes able to handle (some) inter-case dependencies. We go over
each extension, describing how they satisfy (and violate) requirements listed in
Sect. 3.1. We propose an extension, which combines concepts of the described exten-
sions and satisfies all requirements.

Resource constrained workflow nets (RCWF-nets) [12] are Petri nets extended with
resource constraints, where resources are durable units: they are claimed and then
released again (R3). They define structural criteria for its correctness.

Definition 9 (Resource-constrained workflow net [12]). Let R be a set of resource
roles. A net system N = (P, & P,,T,F, W F,,m;,my) is a resource-constrained
workflow net (RCWF-net) with the set P, of production places and the set P, = {p, |
r € R} of resource places iff

~ Fy: (P, xT)U(T x P,) — Nand F, : (P, x T)U(T x P,) — N;
- N, = (P, T, Fp, [mi(p) -p | p € Byl,[ms(p) -p | p € Pp)) is anet system, called
the production net of N.

The semantics of Petri nets is extended by having colored tokens on production places
(R1) and as resources are shared across all cases, tokens on resource places are colorless
(=R2, —R4). A transition is enabled if and only if there are sufficient tokens on its
incoming places using tokens of the same color on production places.

v-Petri nets [22] are an extension of Petri nets with pure name creation and name
management, strictly surpassing the expressive power of regular Petri nets and they
essentially correspond to the minimal object-oriented Petri nets of [13]. In a v-Petri
net, names can be created, communicated and matched which can be used to deal with
authentication issues [23], correlation or instance isolation [9]. Name management is
formalized by replacing ordinary tokens by distinguishable ones, thus adding color the
Petri net.



106 D. Sommers et al.

Definition 10 (v-Petri net [22]). Let Var be a fixed set of variables. A v-Petri net is a
tuple v-N = (P, T, F), with a set of places P, a set of transitions T with PNT = (), and
aflow function F : (PxT)U(T x P) — Var® such thatVcr, TN = A t*\T C *t,
where *t = |J supp(F(p,t)) and t* = |J supp(F(t,p)). T C Var denotes a set of
peP peP

special variables ranged by v, 1, . .. to instantiate fresh names.

A marking of v-N is a function m : P — I1d®. Id(m) denotes the set of names in
m, i.e. Id(m) = |J supp(m(p)).

peP
A mode 1 of a transition t is an injection 1 : Var(t) — Id, that instantiates each

variable to an identifier.

For a firing of transition t with mode p, we write m LN m/. t is enabled with mode
wif W(F(p,t)) € m(P) forallp € Pand p(v) ¢ Id(m) forallv € T N Var(t) =
supp(UpepF (p,t)). The reached state after the firing of t with mode i is the marking
m/, given by:

m'(p) = m(p) — w(F(p,t)) + u(F(t,p)) forallp € P (1)

We denote T, to be the set of all possible transition firings.

v-Petri nets support instance isolation for cases and resources requiring the tokens
involved in a transition firing to have matching colors (R1, R2). Due to the tokens
having singular identifiers, correlation between cases and resources can not be captured
(—R4).

Resource and instance-aware workflow nets (RIAW-nets) [18], are Petri nets com-
bining the notions from above by defining similar structural criteria for handling
resource constraints on top of v-Petri nets. However, the resource places are assumed
to only carry black tokens, not allowing for resource isolation and properly capturing
the case-resource correlation.

Synchronizing proclets [10] are a type of Petri net that describe the behavior of pro-
cesses with many-to-many interactions: unbounded dynamic synchronization of transi-
tions, cardinality constraints limiting the size of the synchronization, and history-based
correlation of token identities (R1,R2). This correlation is captured by message-based
interaction, specifying attributes of a message as correlation attributes (R4). The corre-
lation constraints are i1, C ., and O, .., for initializing the attributes, partially
and fully matching them. v-Petri nets are at the basis of proclets handling multiple
objects by separating their respective subnets. While the proclet formalism is sufficient
for satisfying all requirements listed above, they extend to many-to-many relations,
which lifts the restriction that a resource can only be claimed by a single case.

Object-centric Petri nets [4], similarly to synchronizing proclets, describe the
behavior of processes with multiple perspectives and one-to-many and many-to-many
relations between the different object types. These nets are a restricted variant of colored
Petri nets where places are typed, tokens are identifiable referring to objects (R1,R2),
and transitions can consume and produce a variable number of tokens. Correlation can
be achieved with additional places of combined types (R4). Again, due to many-to-
many relations, our one-to-many restriction on resources is lifted.

Database Petri nets (DB-nets) [19] are extensions of v-Petri nets with multi-colored
tokens that allows for multiple types of objects and their correlation (R1,R2,R4). Addi-
tionally, they support underlying read-write persistent storage consisting of a relational
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database with full-fledged constraints. Special “view” places in the net are used to
inspect the content of the underlying data, while transitions are equipped with database
update operations. These are in the general sense not invertible causing undecidability
(—RS).

Catalog Petri nets (CLog-nets) [11] are similar to DB-nets, but without the “write”
operations (R1,R2,R4). The queries from view places in DB-nets have been relocated
to transition guards, relying solely on the “read-only” modality for a persistent stor-
age, however suffering from the same undecidability problem as these guards are not
invertible in the general sense (—R5).

3.3 Resource Constrained v-Petri Net with Fixed Color Types

We combine conceptual ideas from the extensions described above, by extending
RIAW-nets, which inherit the modeling restrictions from RCWF-nets and name man-
agement from v-Petri nets, using concepts from DB-nets and CLog-nets.

The resource places from RCWF-nets model the availability of resource instances
by tokens, which is insufficient to capture correlation of cases by which they are claimed
and released. We propose a minimal extension resource constrained v-Petri nets (RC v-
net) which additionally contain busy places P, = {p, | » € R} for each resource role.
Token moves from p,- to p,- show that the resource gets occupied, and moves from p,. to
p, show that the resource becomes available. Also tests whether there are free/occupied
resources can be modeled. A structural condition is imposed on the net to guarantee
that resources are durable, meaning that resources can neither be created nor destroyed.
This also implies that in the corresponding net system with initial and final marking m;
and my, m;(p,) = mys(p,) and m;(p,) = my(p,), for any resource role r € R.

Furthermore, similar to DB-nets and CLog-nets, we extend the tokens from carry-
ing single data values to multiple. Where DB-nets and CLog-nets allow for a variable
number of predefined color types, we restrict ourselves to two which are strictly typed,
to distinguish between both cases and resources.

Definition 11 (Resource-constrained v-Petri net). Let C¢ be the set of case ids 1d,
extended with ordinary tokens, i.e., € € 1d., and 1d%, be the set of resource ids extended
with ordinary tokens. A resource-constrained v-Petri net N = (P, T, F,m;,my) is a
Petrinet system with F : (P x T) U (T x P) — (Vars x Var:)®, where Var, denote
case variables and Var, denote resource variables, allowing for two colored tokens.
P=(P,yYP W P,), with production places P, and resource availability and busy
places P. = {p, | r € R} and P, = {p, | r € R}. The following modeling restrictions
are imposed on N for eachr € R:

]' .pr + .p’f' = p: +ﬁ7.r i~e~) vtET ]:(pﬂt) + f(ﬁﬂt) = ]:(tvp’r) + .7:(75,]57.),'
2. mi(pr) = mg(pr) and mi(py) = ms(pr) = 0;

A marking of N is a function m : P — (C¢ x R®)® with case ids C and resources
R, which is a mapping from places to multisets of colored tokens.

A mode of a transition t is an injection p : (Vart x Vari)(t) — (C¢ x R®), that
instantiates each variable to an identifier.
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Proposition 1. The resource-constrained v-Petri nets as defined in Definition 11 satisfy
requirements RI-R5, i.e., they allow to distinguish cases and resource instances which
are durable, and capture case-resource correlation while restricting to operations that
are invertible.

Proof. The two-colored strictly typed tokens distinguish both the cases (R1) and
resource instances (R2) in the system. The modeling restrictions imposed on the RC
v-net enforce that for each resource role r € R, tokens can only move between p,. and
Dr, .., we have the place invariant (1, 1) on p, and p, implying that m(p,) + m(p,) =
m;(p,) for any reachable marking m, and that all resource tokens are returned to p,.
when the net reaches its final marking, ensuring that resources are durable (R3). The
two colors on tokens residing in p capture correlation between cases and resources
instances (R4), denoting by which case a resource instance is claimed throughout their
interaction. As the transition firing’s modes are bijective functions, each operation on
N is invertible (R5). O

Note that the RC v-net formalism is a restricted version of DB-nets, CLog-net and
synchronizing proclets, as all three can capture the behavior that can be modeled by
RC v-nets. DB-nets and CLog-nets additionally have database operations which we
deem not relevant for our purposes. Synchronizing proclets allow for many-to-many
interactions, while we assume that a resource instance cannot be shared by several cases
at the same time.

4 Complete Event Logs Alignments

Several state-of-the-art techniques in conformance checking use alignments to relate the
recorded executions of a process with a model of this process [5]. An alignment shows
how a log or trace can be replayed in a process model, which can expose deviations
explaining either how the process model does not fit reality or how the reality differs
from what should have happened.

Traditionally, this is computed for individual traces, however, as we show in pre-
vious work [24], this fails to expose deviations on a multi-case and -resource level in
processes with inter-case dependencies as described in Sect. 3.3. In this section, we go
over the foundations of alignments in Sect. 4.1 and show how we extend this to compute
alignments of complete event logs in Sect. 4.2.

4.1 Foundations of Alignments

At the core of alignments are three types of moves: log, model, and synchronous moves
(cf. Definition 12), indicating, respectively, that an activity from the log can not be mim-
icked in the process model, that the model requires the execution of some activity not
observed in the log, and that observed and modeled behavior of an activity agree.

Definition 12 (Log, model and synchronous moves). Let L be an event log and N =
(P, T, F,L,m;, my) be a labeled v-Petri net with T), the set of all possible firings in N.
We define the set of log moves It = {(e,>>) | e € L}, the set of model moves I, =
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{C>,t,) | ty € Ty} and the set of synchronous moves I's = {(e,t,) | e € L,t, €
T, activity(e) = €(t)}. As abbreviations, we write I3 = I7 U Is, Iy, = I U Iy,
Ly =1, Ul and Iy,,s = 17 U1, UT.

Log moves and model moves can expose deviations of the real behavior from the
model, by an alignment (cf. Definition 13) on a net (N, m;, m) and event log L (possi-
bly a single trace) which is a poset of moves from Definition 12 incorporating the event
log and execution sequences in N from m; to my:

Definition 13 (Alignment). An alignment v = align(N, L) of an event log L = (L, <p,
) and a labeled Petri net N = (P, T,F,¢,m;, my) is a poset v = (¥, <), where
4 C (ITU Iy U LD, having the following properties:

m
1. v, = L and <LC=y1,
Yir . o
2. m; —— my, Le., Voe(er)<ami — my

with alignment projections on the log events | and on the transition firings FTM :

v = ({el (ety) € yN L}, {(e€) | ((e,tu), (€' 1) €<y N(Lis X [15)}) 2
Vi = ({tu [ (e,tn) € YN Ions}, {(ts 1) | ((e580), (€', £)) €<y N(Lims X Tims)}) (3)

Note the slight difference in the definition of an alignment as opposed to our pre-
vious work in [24], where the alignment is simplified from a distributed run to a poset
of moves. The process’s history of states (markings) as it has supposedly happened
in reality can be extracted from the alignment. For the general case, we introduce the
pseudo-firing of transitions from corresponding alignment’s non-log moves in the pro-
cess model, to obtain a pseudo-marking, which can be unreachable or contain a negative
number of tokens:

Definition 14 (Pseudo-markings). A pseudo-marking m of a Petri net N = (P, T, F)
is a multiset P — 7, i.e., the assigned number of tokens a place contains can be
negative. M(N) denotes the set of all pseudo-markings in N.

Definition 15 (Pseudo-firing of posets). Let N = (P, T, F, m;, my) be a RC v-net and
~ be an alignment on N. We define a function m : P(y) — M (N), with powerset P,
to obtain the model pseudo-marking of every subposet of . For every subposet ' C 7,
we have for every p € P:

m(Y)p)=mip)+ >, (w(FEp) - p(Fp,1) )

(€1tu ) G'Y/:tu,;ée

i.e., the pseudo-marking is obtained by firing all the transitions of v’ with corresponding
modes. Note that it is not necessarily reachable.

An antichain in an alignment denotes a possible point in time, and therefore a state
of the process. By pseudo-firing the respective (open) prefix of the antichain, we obtain
the corresponding pre- (or post-)antichain marking:

Definition 16 (Pre- and post-antichain marking). Let y be an alignment and G € A(7)
an antichain in vy. The pre- (post-)antichain marking defines the marking reached after
the pseudo-firing of (L, G) ((L,G)), i.e., m((L,G)) (m((L,G])).
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4.2 Alignments Extended to Include Inter-case Dependencies

The foundational work on constructing alignments is presented in [5] and it relies on the
synchronous product of the Petri net N = (P, T, F,{, m;, my) modeling a process and
a trace Petri net N, = (P(@) 7(0) F(o) glo) mﬁf’), m}g)) (a Petri net representation
of a trace in the event log). The synchronous product consists of the union of N and N,
and a transition ¢, for each pair of transitions (¢,,,t;) € T X T() with *ts = *t,, + *1;
and t§ =ty +17,iff t,,, and ¢; share the same label and variables on the incoming arcs,

ie., U(ty,) = £9)(t;) and Var(t,,) = Var(t;). The alignment is then computed by a

depth-first search on the synchronous product net from m; + m( 7 tom rt+ m( o) using

the A* algorithm, with the firings of transition from 7°°), T and T'(*) corresponding to
the log, model and synchronous moves from Definition 12 [5].

With ¢ : I}, — R a cost function, usually defined for each (e,t,) € s as
follows:
0 (e, t#)
1 (e, eﬂm/\ﬁ();& (5)
e ()

The optimal alignment is an alignment -y such that 3° . c(g) < > ., c(g) holds
for any alignment ~’, which prefers synchronous moves over model and log moves.
In terms of conformance checking and exposing realistic deviations, the optimal align-
ment provides the “best” explanation for the relation between observed and modeled
behavior.

In Sect. 3.3, we have shown how a RC v-net is a Petri net formalism with capabil-
ity of modeling inter-case dependencies and suitability for conformance checking. We
extend the alignment problem in order to expose inter-case deviations by adapting the
synchronous product net to v-nets: an RC v-net and the log v-net:

c((e 1)) =

Definition 17 (Log v-Petri net). Given an event log L, a log v-Petri net N(X) =
(P(L),T(L),f(L),K(L),mEL),m;L)) is a labeled v-net constructed as follows. For
every e € L, we make a transition t, € T with ((F)(t) = activity(e), and for
each resource instance p, € supp(Res(e)) we make a place p € P) with *p = ),

p=[lpr| - t], FE(p,t) = [|p.| - (¢,7)] and mEL)(p)((s, p)) = |p|- Further, for every
pair (e1, e3) €<1, we make a place p € P with *p = [t.,], p* = [t.,] and

FO(t0,.p) = FOp,t,,) = |05 coseler) = caseles) ©)
[(e,e)] otherwise
For every e~ € min(L), we make a place p~ € P with *p~ =0, p=° = [t.-] and
(L)

m; ' (p~)((case(e™),e)) = 1. Slmllarly, for every et € max(L), we make a place
pt € PO with *pt = [t,+], p** = D and mgc ) (pH) ((case(et),e)) = 1.

Computing the complete event log alignment is again a matter of finding a path
from the initial to the final marking in the synchronous product net, i.e., from m; +

mEL) to my + mch), for which we can use any of the existing methods as described
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before. The optimal alignment is again the one with lowest cost. In terms of complexity,
the alignment problem with an empty event log and an all-zero cost function can be
reduced to the reachability problem for bounded Petri nets from m; to m, which has
exponential worst-case complexity [20]. Adding event to the log v-Petri net and a non-
zero costs on moves makes the problem strictly more complex.

Note that while v-Petri nets are inherently unbounded in general due to the genera-
tion of fresh tokens, we can retain boundedness in the context of alignments, since the
bound is predicated by the event log and we can get this information by preprocessing
it.

For our running example, modeled in Fig. 2, we extend the small operation process
from Fig. | with an assistant resource during the operation, an intake subprocess (i, ip)
involving a general practitioner (GP), and a prescription subprocess with a FIFO waiting
room (py,, We, Wy, Pr-), Where the prescription can only be written by the GP involved in
the intake, if appropriate. Both the intake and operation subprocesses can be skipped via
silent transitions 7; and 73 respectively in N. Figure 3 shows the recorded event log L
of this process which concerns two patients. An optimal complete event log alignment
on N and L, computed by the method above is presented in Fig. 4.

5 Approximation by Composition and Local Realignments

Since multiple cases are executed in parallel, computing the alignment on the complete
event log L, as described in Sect. 4, is a computationally expensive task. At the same
time, one can see that the multi-case and -resource alignment only deviates from the
classical individual alignments when violations occur on the inter-case dependencies,
e.g., when a resource is claimed while it is already at maximal capacity.

We can approximate the alignment of a complete event log L and a Petri net NV by
using a composition of individually aligned cases. An overview of this method is illus-
trated in Fig. 7, which we subdivide into two parts, described respectively in Sects. 5.1
and 5.2.

1. L is decomposed into the individual cases (L., L..), which are aligned to N (., ..)
and composed using the event log’s partial order <, (7). The result is not necessarily
an alignment as inter-case deviations may be left unresolved;

2. We transform this composed alignment into a valid alignment by taking a permuta-
tion (7') and realigning parts ([A1, B1], [A2, Ba], [43, B3]) of the event log locally to
resolve the violations. The approximated alignment (v*) is obtained by substituting
the realignments (YaB,, YAB,, YAB,)-

The implementation of both the original method from [24] and the approx-
imation method for computing complete event log alignments is available at
gitlab.com/dominiquesommers/mira, including the examples used in this paper and
some additional examples.

5.1 Composing Individual Alignments

For every case ¢ € Id., we have the trace L. (cf. Definition 8) projected on the case
identifier c. As described in Sect. 4, the optimal complete event log alignment z, con-
sists of individual alignments v., on N and L. for every ¢ € Id., composed together


https://gitlab.com/dominiquesommers/mira

112 D. Sommers et al.

Arc labels:

(c:€)
(e, (r)

>

(e (r))

>

Fig. 2. Process model RC v-net N, with initial and final marking, annotated with circular and
square tokens respectively.

Fig. 4. Complete event log alignment -y, with the colors depicting the move types; green, purple,
and yellow for synchronous, model, and log moves respectively. (Color figure online)

Fig. 5. Composed alignment 7 with annotated permutation and realignment intervals.

respecting the event log’s partial order <, where each . is not necessarily optimal
with regard to L.

It is computationally less expensive to compute the optimal alignments v, =
align(N, L.) for each ¢ € Id. and then approximate ~;,. We create a composed
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Fig. 6. Approximated alignment ~*.

(N ; My, M )
L [A1, B1] ;> 748,
Ly A ¥ [, Bl 4 vam o
[A3, Bs] > 745,
Fig. 7. Overview of our approximation method.

alignment 7 with the optimal individual alignments and the event log’s partial order,
as defined in Definition 18. Figure 5 shows the composed alignment for the running
example with additional annotations (in red) which we cover later.

Definition 18 (Composed alignment). Given a Petri net N and an event log L with
traces L. for ¢ € 1d,, let v. = align(N, L.) be the corresponding optimal individual
alignments. The composed alignment ¥ = U.c1q_7. is the union of individual align-
ments with the extended partial order on the synchronous moves, defined as the transi-
tive closure of the union of partial orders from the individual alignments and the partial
order on moves imposed by the partial order <y, of the event log:

+
<5 = ( U =<.u <7L> (7)

celd.
with <, = {((e;t,), (¢, 1)) | e <L €, (e,t,), (¢, 1)) € (v N I1s)}.

Recall that for every sequence o € 7|, of an alignment ¥, we have m; — m fri.e.,0is
a firing sequence in V. This property is not guaranteed for a composed alignment, even
in the absence of inter-case deviations. In the presence thereof, we say that a composed
alignment is violating as there exists no such sequence.

Definition 19 (Violating composed alignment). Let p, € supp(Idr) be a resource
instance and ¥ = .14, a composed alignment. We define

SH) ={GF,=5) |7 =7, <5C=<5, <= (<5)", Voez9 £ g} (8)

as the set of transitively closed and acyclic antichain permutations of 7 that respect the
partial order <5.
v is in violation with any of the resource instances if and only if:

V:// ES(?)HGEAJr F) VIOI(G) (9)
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with violation criteria viol : AY(¥) — B defined for each maximal antichain G €
AT (7) as follows:

VIOI(G) = EIp,«Esupp(IdR) 'fﬁ((J_,G))( € pT Z ]:p?“v - ((57107‘)))

(e,tp)€EG
(10)
i.e., there is no way of firing all transitions in the alignment such that at all times enough
capacity is available.
In Fig. 5, antichains meeting the violation criteria are the single moves with an incom-
ing red arc. In Theorem 1 we show that for every sequence of transitions ¢ € Y[ in
violating composed alignment 7, we have m; 7Z> my, i.e., 7 is not firable.

Theorem 1. (A violating composed alignment is not firable) Let ¥ = U.cia, . be a
composed alignment on RC v-net N = (P, T, F, m;, my) and event log L, such that 5
is violating. Then there exists no firing sequence o in 3 such that m; — m Iz

Proof. 7 is violating, therefore, for every 7/ € S(5), there is a maximal antichain
G € AT (¥') and resource instance p, € supp(Idg), such that

(L @) pr)((e o) < Y. Flort) (' ((e,0r)) (1D)
(etn)€G

(L @) pr)((e o) — > Flom ) ((e,0r)) <0 (12)
(e, tu)eG

hence firing the transitions in G leads to a negative marking for (e, p,-) in place p;.,
which is invalid. O

With an antichain G C A(5), we show in Lemma 1 that m((L, G)) (and m(L, G]) is
reachable if an only if the prefix (L, G) ((L, G]) is not violating.

Lemma 1. (A pre- (and post-)antichain marking in a composed alignment is reachable
iff the corresponding prefix is not violating). Let ¥ = U.c14_7. be a composed alignment
onRCv-net N = (P, T, F,m;,my) and event log L and let G € A(%) be an antichain.
Then the pre- (and post-)antichain marking m((L, G)) (m((L, G])) is reachable if and
only if (L, G) ((L, G]) is not violating.

Proof. We prove the lemma by proving both sides of the bi-implication:

( = ) meg = m((L,G)) is reachable, hence there exists a sequence o €
(L,G)* with <(| ¢)C=, such that m; = mg. Let ¥ € S(3) be an antichain
permutation with <,C~<5/. Then by definition of reachable marking, for every max-
imal antichain G € A" (3') and every resource instance p, € supp(Idg), we have
(LGB () 2 Sponrec: Foes i (&, pr)). Thus (L, G) is not vio-
lating.

( <) (L, G] is not violating, hence there exists a7’ € S((L, G]), such that for
all G’ € AT(¥) and all p € supp(IdR) we have:

(LG (e, 00) = D Floet) (™ (e 00))) (13)
(e tu)€EG

o

m; — m((L, G]) with o respecting the partial order <. O
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5.2 Resolving Violations in the Composed Alignment

Let 3/ € S(v) be an antichain permutation of 5. Then, by Definition 19, we have a
set of violating maximal antichains (which is empty when 7 is not violating) where
the corresponding transitions are not enabled. Instead of needing to align the complete
event log, we show that we can resolve violations locally around such antichain. For
each violating antichain G, there exists an interval [A, B] C 7’ with A < G < B such
that [A, B] is alignable, formally defined in Definition 20.

Definition 20 (Alignable interval). Let v = W.e14,vV. be a composed alignment on RC
v-net N = (P, T, F,m;,my) and event log L, and let A, B € A(~y) be two antichains.
We say that the interval [A, B) is alignable if and only if mp = m((L, B]) is reachable
fromma = m((L,A)), e, ma = mp, assuming m 4 is reachable.

Note that [min(4’), max(y’)] is always an alignable interval. We use our running
example to show that it can be taken locally around G instead, e.g., [{/.}, {i,}] with
G = {i.} (cf. Fig. 5). Note how the violation can be resolved by substituting [A4, B] by
a subalignment from m4 = m((L, A)) tomp = m((L, B]).

In order to prove statements that do not depend on a chosen realignment mechanism,
we now assume that there exists a function f5 : A" (3) — P(7) that produces an
alignable interval [A, B] for an arbitrary G € AT (7).

W(?ﬂ/) = {[min(’yv)vmax(’yv)] | Yo 7(/7Vge%,g/e%\%9 |“7(,g,7 (14)

Ve, Jgern g /ﬂ%gl}

with 7, = Ugear &) [5/(G), denotes the set of alignable intervals covering every
violating antichain in 5/, and it is annotated in red for the running example in Fig. 5,
with the three intervals [{i.}, {i,}], [{0,}, {os}], and [{w. }, {7}] covering the violat-
ing antichains {i.}, {0, }, {0.,}, and {w,}.

We resolve the violations in 4’ by substituting every interval [A, B] € W (7;,) by
an alignment v45 on N and [A, B]|; fromm s = m((L, A)) tompg = m((L, B]).

Since, for now, we assume that every interval f(G) is alignable, a subalignment
~ap exists. The approximated alignment v* = (3*, <) is then defined as follows:

7= U U@\ (15)
[, BIEW (3},)
+
=y = U =vas U{(91,92) [ 91,92 € v\ A0, 91 <57 92} (16)
[4,Bl€W (3,)

~* for the running example is shown in Fig. 6 with substituted realignments for the
intervals annotated in red from Fig. 5. Note that v* is an approximation of the optimal
alignment ~ from Fig. 4 as ¢(vy*) > ¢(7), due to the local realignments. In Theorem 2
we show that v* is a valid alignment.

Theorem 2 (v* is an alignment). Let ¥ = U.c1a,7. be a composed alignment on RC
v-net N = (P,T,F,m;,mys) and event log L and let ¥/ € S(¥) be an antichain
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permutation of 7, with W (,) the set of alignable intervals covering every violating
antichain in v’

v = (7%, <4+), following Egs. 15 and 16, is a valid alignment, i.e., it has properties
(1), (2) and (3) from Definition 13.

Proof. We prove that v* is an alignment by induction on the size of W (7;,). For the
base case with [W (71,)| = 0, we have ¥* = 5 and <.~==5/. By definition, [, = L
and <7 C~<#;, . Furthermore, since |W (3{,)| = 0, we know that for all G € AT (¥'),

we have = viol(@), implying that m; —— m I

Let us assume that v* is an alignment for |W (7{,)| = w. We prove the statement for
W' (3,) = WA, )U{[A, B]} with W' (7,)| = w+1and [A, B] € min(W’(7{,)). For
every maximal antichain G € A1 ((L, A)) before A, i.e., G < A, we have - viol(G),
which we prove by contradiction. Assume viol(G), then by our assumption of the exis-
tence of f5/, there is an alignable interval [A’, B'] C 5" with A’ < G < B’, thus, by
G < A, we have [A’, B'] < [A, B], implying that [A, B] ¢ min(W’(7')) which is
a contradiction. By Lemma 1 and the assumption that f5/(G) is an alignable interval,
m; = ma — mp and [A, B] can be substituted by 4 without violations in (L, B],
completing the proof. O

5.3 Obtaining Minimal Local Alignable Intervals

We propose a method to find an antichain permutation of a composed alignment ~
together with the intervals W (5y,) such that all violations can be resolved by realigning
these intervals as described in Sect.5.2. For computational efficiency, we choose to
minimize the number of moves in the intervals that need to be realigned.

We formulate this as an Integer Linear Programming (ILP) problem. The objective
of the ILP problem is to adjust the partial order of 7, such that alignable intervals can
be identified around violating antichains, preferring intervals with fewer moves.

Let there be a (possibly arbitrary) fixed order in 4 and Idgr such that each element
has a unique index, i.e., for every 1 < i < ns, 3(i) and (e(i), ¢, (i)) both denote the
move in 7, with ny = |¥|. Furthermore, for every 1 < j < n,, Idr(j) denotes the 5
resource instance, with n,. = |supp(Idg)|.

Let R be a ny X ny matrix, with R defined for every two indices 1 < 4, j < nz such
that R;; is a binary value denoting (7(7),7(j)) €=<5. For each ¢ € Id., we introduce
the set 1. of indices corresponding to moves in [, . Furthermore, we use [1..n] =
{1,...,n} as an abbreviation for the set of all indices from 1 to n.

The set of minimal alignable intervals containing all violations, denoted by W (¥;,),
with 7{, given by

Ty = U 7). 3] (17)

i,5€[1..n5):X;; —Ryj=1

where X denotes the new partial order relation between alignment moves which
respects the resources capacities and provides the solution to

Minimize Z (1 — Rij)RjiXij +e€- (1 — Rij)(l — Rji)Xij (18)

1,j€[1..n5]
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subject to
Visel ne) X,; € {0,1} (19)
Veeld, Vi jel, Xi; = Ryj (20)
Vijell.ns) Rij+(1-X;;)—X;; <1 (21)
Vi jkell..ns] X+ X — X <1 (22)
Vie[t. ] (1-X)Cl-XILCT <k (23)

with C! and C' both ny X m, matrices counting how many resource instances are
claimed and released respectively for every alignment move. Both are defined for every
i € [1.n5] and k € [1..n,] with (e, t,) = ¥(¢) and p, = Idr(k):

C;Lk = f(pht)((& ,u_l(pr))) and Csz = ]—‘(t,pr)((g’u_l(pr))) (24)

and capacity vector k of length n,., defined as k;, = |Idg (k)| for every k € [1..n,].

X provides the solution of a new partial order of moves in 7 such that all violations
are resolved and the least number of partial order relations is removed. For the running
example, the additional arcs from the solution X are shown in red in Fig. 5.

We refer to App. A in [25] for the correctness proof of the ILP problem, where we
show (1) the effectiveness of each constraint, (2) that there always exists a solution,
(3) that the optimal solution has zero cost if and only if the composed alignment is not
violating, and (4) that each interval obtained in W (7{,) is alignable.

6 Conclusion

We have formulated the requirements for modeling and analyzing processes with inter-
case dependencies and argued that our previously proposed Petri net extension named
Resource Constrained v-Petri nets meets them. This paper continues on work presented
in [24], where we showed that the traditional methods of aligning observed behavior
with the modeled one fall short when dealing with coevolving cases, as they consider
isolated cases only. The technique we present here aligns multiple cases simultane-
ously, exposing violations on inter-case dependencies. We developed and implemented
an approximation technique based on a composition of individual alignments and local
resolution of violations, which is an important advancement for the use of the technique
in practice.

There can be ambiguity in the interpretation of the exposed violations, e.g., was the
activity executed but not recorded, executed by an “incorrect” resource instance, or not
executed at all? In [24], we briefly touched upon relaxations of the synchronous prod-
uct model as a means to improve the deviations’ interpretability. One such relaxation
helps to detect situations when a step required by the model was skipped in a process
execution, and the resources needed for the step were not available at the time when it
should have been executed. Adding “resource-free” model moves for transitions allows
to capture such deviations. Such special moves, when present in the alignment, reduce
the ambiguity and provide a better explanation, e.g., that the activity was not executed
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at all, rather than it might also have been executed but not recorded. For future work,
we plan to extend and formalize the relaxations, and evaluate the insights obtained with
the alignments based on a real-life case study.

Acknowledgments. This work is done within the project “Certification of production process
quality through Artificial Intelligence (CERTIF-AI)”, funded by NWO (project number: 17998).
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Abstract. Unfoldings are a well known partial-order semantics of P/T
Petri nets that can be applied to various model checking or verification
problems. For high-level Petri nets, the so-called symbolic unfolding gen-
eralizes this notion. A complete finite prefix of the unfolding of a P/T
Petri net contains all information to verify, e.g., reachability of markings.
We unite these two concepts and define complete finite prefixes of the
symbolic unfolding of high-level Petri nets. For a class of safe high-level
Petri nets, we generalize the well-known algorithm by Esparza et al. for
constructing small such prefixes. Additionally, we identify a more gen-
eral class of nets with infinitely many reachable markings, for which an
approach with an adapted cut-off criterion extends the complete prefix
methodology, in the sense that the original algorithm cannot be applied
to the P/T net represented by a high-level net.

1 Introduction

Petri nets [17], also called P/T (for Place/Transition) Petri nets or low-level Petri
nets, are a well-established formalism for describing distributed systems. High-
level Petri nets [12] (also called colored Petri nets) are a concise representation
of P/T Petri nets, allowing the places to carry tokens of different colors. Every
high-level Petri net represents a P/T Petri net, here called its ezpansion', where
the process of constructing this P/T net is called ezpanding the high-level net.
Unfoldings of P/T Petri nets are introduced by Nielsen et al. in [15]. Engel-
friet generalizes this concept in [9] by introducing the notion of branching pro-
cesses, and shows that the unfolding of a net is its maximal branching process.
In [14], McMillan gives an algorithm to compute a complete finite prefix of the
unfolding of a given Petri net. In a well-known paper [10], Esparza, Romer, and
Vogler improve this algorithm by defining and exploiting a total order on the set
of configurations in the unfolding. We call the improved algorithm the “ERV-
algorithm”. It leads to a comparably small complete finite prefix of the unfolding.

1 In the literature, the represented Petri net is often called the unfolding of the high-
level Petri net. To avoid a clash of notions, we use the term expansion as, e.g., in [4].
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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In [13], Khomenko and Koutny describe how to construct the unfolding of the
expansion of a high-level Petri net without first expanding it.

High-level representations on the one hand and processes (resp. unfoldings)
of P/T Petri nets on the other, at first glance seem to be conflicting concepts;
one being a more concise, the other a more detailed description of the net(’s
behavior). However, in [8], Ehrig et al. define processes of high-level Petri nets,
and in [5], Chatain and Jard define symbolic branching processes and unfoldings
of high-level Petri nets. The work on the latter is built upon in [4] by Chatain and
Fabre, where they consider so-called “puzzle nets”. Based on the construction
of a symbolic unfolding, in [6], complete finite prefixes of safe time Petri nets
are constructed, using time constraints associated with timed processes. In [3],
using a simple example, Chatain argues that in general there exists no complete
finite prefix of the symbolic unfolding of a high-level Petri net. However, this is
only true for high-level Petri nets with infinitely many reachable markings such
that the number of steps needed to reach them is unbounded, in which case the
same arguments work for P/T Petri nets.

In this paper, we lift the concepts of complete prefixes and adequate orders
to the level of symbolic unfoldings of high-level Petri nets. We consider the class
of safe high-level Petri nets (i.e., in all reachable markings, every place carries at
most one token) that have decidable guards and finitely many reachable mark-
ings. This class generalizes safe P/T Petri nets, and we obtain a generalized
version of the ERV-algorithm creating a complete finite prefix of the symbolic
unfolding of such a given high-level Petri net. Our results are a generalization
of [10] in the sense that if a P/T Petri net is viewed as a high-level Petri net,
the new definitions of adequate orders and completeness of prefixes on the sym-
bolic level, as well as the algorithm producing them, all coincide with their P/T
counterparts.

We proceed to identify an even more general class of so-called symbolically
compact high-level Petri nets; we drop the assumption of finitely many reachable
markings, and instead assume the existence of a bound on the number of steps
needed to reach all reachable markings. In such a case, the expansion is possibly
not finite, and the original ERV-algorithm from [10] therefore not applicable.
We adapt the generalized ERV-algorithm by weakening the cut-off criterion to
ensure finiteness of the resulting prefix. Still, in this cut-off criterion we have
to compare infinite sets of markings. We overcome this obstacle by symbolically
representing these sets, using the decidability of the guards to decide cut-offs.

Due to spatial limitations, we move some proofs to the full version [18] of
this paper.

2 High-Level Petri Nets and Symbolic Unfoldings

In [5], symbolic unfoldings for high-level Petri nets are introduced. We recall
definitions and formalism for high-level Petri nets and symbolic unfoldings.
Multi-sets. For a set X, we call a functions A : X — N a multi-set over X.
We denote x € A if A(x) > 1. For two multi-sets A, A’ over the same set X,
we write A < A" iff Vo € X : A(z) < A’'(z), and denote by A+ A" and A — A’
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the multi-sets over X given by (A + A")(z) = A(z) + A'(x) and (A — A")(z) =
min(A(x) — A’'(z),0). We use the notation {...[ as introduced in [13]: elements
in a multi-set can be listed explicitly as in {x1,z1,z2 [}, which describes the
multi-set A with A(z1) =2, A(zs) =1, and A(z) =0 for all z € X \ {z1,2z2}. A
multi-set A is finite if there are finitely many = € X such that A(z) > 0. In such
a case, { f(z) | = € A}, with f(z) being an object constructed from z € X,
denotes the multi-set A’ such that A" =3 _y A(x) - f(x), where the A(x) -y is
the multi-set containing exactly A(z) copies of y.

2.1 High-Level Petri Nets

We assume two given sets Col (colors) and Var (variables). A high-level net struc-
ture is a tuple N = (P, T, F, ), with disjoint sets of places P and transitions T
a flow function F : (P x Var xT)U (T x Var x P) — N, and a function ¢ mapping
eacht € T to a predicate (t) on Var(t) := {v € Var | (p,v,t) € FV(t,v,p) € F'},
called the guard of t. A marking in N is a multi-set M over P x Col, describing
how often each color ¢ € Col currently lies on each place p € P. A high-level Petri
net N = (N, My) is a net structure N together with a set My of initial markings,
where we assume VMg, M, € Mo : {p | {p,c) e Mo} ={p | (p,c) € Mj|}, ie.,
in all initial markings, the same places are marked with the same number of col-
ors.

For two nodes xz,y € PUT, we write x — y, if there exists a variable v
such that (x,v,y) € F. The reflexive and irreflexive transitive closures of —
are denoted respectively by < and <. For a transition ¢t € T, we denote by
pre(t) == {(p,v) | (p,v,t) € F} and post(t) := {{p,v) | (t,v,p) € F|[ the
preset and postset of t. A firing mode of t is a mapping o : Var(t) — Col
such that ¢(t) evaluates to true under the substitution given by o, denoted by
t(t)[o] = true. We then denote pre(t,o) := {(p,o(v)) | (p,v) € pre(t) [} and
post(t,o) = {(p,o(v)) | (p,v) € post(t)]}. The set of modes of ¢ is denoted
by X(t). t can fire in such a mode o from a marking M if M > pre(t, o), denoted
by M|[t, o). This firing leads to a new marking M’ = (M — pre(t,0)) + post (¢, o),
which is denoted by M[t,a)M’. We collect in the set R(N, M) the markings
reachable by firing a sequence of transitions in A from any marking in a set of
markings M. N resp. N is called finite if P, T and F are finite.

Let N = (P, T,F,.) and N' = (P',T',F",//) be two net structures. A func-
tion h: PUT — P'UT’ is called a high-level net homomorphism, if:

i) it maps places and transitions in A into the corresponding sets in A7, i.e.,
h(P) C P'ANWT)C T

ii) it is “compatible” with the preset, postset, and guard of transitions, i.e., for
all t € T we have pre(h(t)) = {(h(p),v) | (p,v) € pre(t) [}, post(h(t)) =
{ (h(p),v) | (p,v) € post(t) [}, and «(t) = o/ (h(t)).

For N = (N, My) and N’ = (N’, M), the homomorphisms between N and N’
are the homomorphisms between A/ and N’. Such a homomorphism A is called
initial if additionally {{ (h(p),c) | (p,c) € Mo |} | Mo € My} = M holds.

We define P/T Petri nets as high-level Petri nets with singletons Col = {e}
and Var = {ve} for colors and variables, i.e., in a marking, every place holds a
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number of tokens e, which is the only value ever assigned to the variable v, on
every arc. The guard of every transition in a P/T Petri net is true.

2.2 Symbolic Branching Processes and Unfoldings

We recall the definition of symbolic branching processes and unfoldings from [5].
It is a generalization of branching processes and unfoldings for P/T Petri nets.

A net structure N' = (P, T, F,.) is called ordinary if there is at most one
arc connecting any two nodes in NV, ie., Vz,y € PUT : > .. F(z,v,y) < 1.
For such an ordinary net structure, analogously to the low-level case described,
e.g., in [10], two nodes x,y € PUT are in structural conflict, denoted by zfy, if
JpePA Y eT:t# Ap—tAp—t'At<zAt <y

A high-level occurrence net is a high-level Petri net O = (B, E, G, ,Kq) with
an ordinary net structure (B, F, G, t), where B is a set of conditions (places), F
is a set of events (transitions), G is a flow relation, and Ky is the set of initial
cuts (markings), having the following properties:

i) No event is in structural self-conflict, i.e., Ve € F :—(efe).
ii) No node is its own causal predecessor, i.e., Vx € BUFE : -(z < z);
iii) The flow relation is well-founded, i.e., Ve € BUE : {y | y < 2}| < o0;
iv) For every b € B, exactly one of the following holds:
a) VKo € Ko @ Y cccoi Ko(b,c) = 0 and there exists a unique pair (e, v)
called pre(b) s.t. (e,v,b) € G, and for this pair we have G(e,v,b) = 1.
b) VKo € Ko : Y coo Ko(b,c) =1 and {e | e = b} = 0.
In this case we denote pre(b) := (L, v").

The properties i) — iii) are exactly as in the low-level case and concern solely the
net structure. Property iv) generalizes the requirement of low-level occurrence
nets that every condition has at most one event in its preset, and that the
conditions with empty preset constitute the initial cut.

In a crucial notation for what follows in later sections, we identify in case iv.a)
the event e by e(b) and the variable v by v(b), and in case w.b) we define
e(b) := L, and v(b) := v*. We abbreviate ve(b) := v(b)er). We denote by
By :={be€ B | 3Ky € Ko,c € Col : (b,c) € Ky} the conditions from 4v.b)
occupied in all initial cuts. | can be seen as a “special event” that fires only
once to initialize the net, and produces the initial cuts Ky € Ky by assigning
values to the variables v® on “special arcs” (L,v% b) towards the conditions
b € By.

For a high-level occurrence net, we define the mappings loc-pred and pred
equipping events with predicates. For any e € E, pred(e) is satisfiable iff e is
not dead, i.e., there are cuts Ky, ..., K, with Ky € Ky and events eq,...,e,, s.t.
Kole1) ... len)Kp[e). This predicate is obtained by building a conjunction over
all local predicates of events e’ with ¢’ < e (including the special event L). The
local predicate of e is, in its turn, a conjunction of two predicates expressing
that (i) the guard of the event e is satisfied, and (ii) that for any (b, v) € pre(e),
the value of the variable v coincides with the color that the event e(b) placed b.
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Fig. 1. A safe high-level Petri net N in (a), and (a prefix of) the infinite symbolic
unfolding U(N) in (b). We have Col = {0,...,m} and Var = {k,£,¢'}.

To realize this, the variables v € Var(e) are instantiated by the index e, so that
v, describes the value assigned to v by a mode of e. Formally, we have

loc-pred(e) = u(e)[v — Ve]vevare) A /\ Ve = Ve(b)
(b,v)epre(e)
pred(e) = pred(L) A /\ loc-pred(e’),
e'<e

where pred(L) ==V g cc, Np.oyers (v} = ¢) describes the set of initial cuts.

A symbolic branching process of a high-level Petri net N is a pair 5 = (O, h)
with an occurrence net O = (B, E, G, t,Ky) in which pred(e) is satisfiable for all
e € E, and an initial homomorphism h : O — N that is injective on events with
the same preset, i.e., Ve,e' € E: (pre(e) = pre(e’) Ah(e) = h(e')) = e=¢'.

For two symbolic branching processes f = (O,h) and 8’ = (O',h') of a
high-level Petri net, 3 is a prefiz of 5 if there exists an injective initial homo-
morphism ¢ from O into O, such that h' o ¢ = h. In [5] it is argued that for any
given high-level Petri net N there exists a unique maximal branching process
(maximal w.r.t. the prefix relation and unique up to isomorphism). This branch-
ing process is called the symbolic unfolding, and denoted by T'(N) = (U(N), w).

Ezample 1. Let Col ={0,...,m} for a fixed m, and Var = {k, £, ¢’} be the given
sets of colors and variables. In Fig. la, the running example N of a high-level
Petri net? is depicted. Places are drawn as circles, and transitions as squares. The
flow is described by labeled arrows, and the guards are written next to the respec-
tive transition. N has just one initial marking My = { (p1,0) [}, which is depicted
in the net. From Mj only ¢; can fire, and only in the mode [k «— 0,¢ < 1], tak-
ing 0 from p; and placing a token of color 1 on ps. From there, ¢ can fire

2 The structure of this example is taken from Figure D.4.5 in [2].
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arbitrarily often, always replacing the color ¢ currently residing on py by any
color 0 < ¢/ < m, until ¢3 fires, placing 0 on p3 and ending the execution.

The infinite occurrence net U(N) of the symbolic unfolding 7(N) in Fig. 1b
describes this behavior: we depict the prefix of the unfolding representing the
executions of the net in which ¢y fires up to three times. The values of the
homomorphism 7 (also called labels) are given by the subscript of a node’s
name, e.g., w(e;) = t; or w(b3) = p3. The guards of events are omitted, since
they have the same guards as their label. Instead, the local predicate of each
event is written next to it. The local predicate of €3, e.g., expresses that (i) the
assignment of colors to variables by a mode of €2 must satisfy the constraint
given by the guard of its label to (E’eg # 0), and that (ii) the color consumed

when firing €2 must be the one placed on b3 by e} (£e§ = (/). The red dotted
2
line marks the complete finite prefix obtained by Algorithm 1, as described later.

As we see in the definition of high-level occurrence nets, the notion of causal-
ity and structural conflict are the same as in the low-level case. However, a set
of events in an occurrence net can also be in what we call color conflict, meaning
that the conjunction of their predicates is not satisfiable. In a symbolic branch-
ing process, this means that the constraints on the values of the firing modes,
coming from the guards of the transitions, prevent joint occurrence of all events
from such a set in any one run of the net:

The nodes in a set X € F'U B and are in color conflict if \ .y pred(e) A
Nocxnp pred(e(b)) is not satisfiable. The nodes of X are concurrent if they are
not in color conflict, and for each z,2’ € X', neither x < 2’ , nor 2’ < x, nor
zfiz’ holds. A set of concurrent conditions is called a co-set.

Note that while a set of nodes is defined to be in structural conflict if and
only if two nodes in it are in structural conflict, the same does not hold for color
conflict: it is possible to have a set {x1, z2,23} of nodes that are in color conflict,
but for which every subset of cardinality 2 is not in color conflict.

Definition 1 (Configuration [5]). A (symbolic) configuration is a set of high-
level events that is free of structural conflict and color conflict, and causally
closed. The configurations in a symbolic branching process (3 are collected

in the set C(53).

For a configuration C, we define by cut(C) := (By U (C —)) \ (— C) the
high-level conditions that are occupied after any concurrent execution of C. Note
that cut(C) is a co-set, and that () is a configuration with cut(f)) = By.

Let e € E be a high-level event. We define the so-called cone configuration
[e] :={¢ € E | ¢ < e}. Additionally, we define the sets Vare := {ve | v €
Var(e)} and Var, := {v} | b € By} of indexed variables, and for a set E’ C
EU{L} we denote Varp: := J,cp Vare. Note that, for every event e, pred(e)
is a predicate over the variables Var(u(.y-

2.3 Properties of the Symbolic Unfolding

Having recalled the definitions and formal language from [5], we now delve into
the novel aspects of this paper. We state three analogues of well-known proper-
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ties of the Unfolding of P/T Petri nets for the symbolic unfolding of high-level
nets. These properties are: (i) the cuts in the unfolding represent precisely the
reachable markings in the net, (ii) for every transition that can occur in the net,
there is an event in the unfolding with corresponding label (and vice versa), and
(iii) the unfolding is complete in the sense that for any configuration, the part of
the unfolding that “lies after” that configuration is the unfolding of the original
net with the initial markings being the ones represented by the configurations
cut. The properties are stated in Proposition 1, 2, and 3, respectively. Their
proofs are moved to [18].

To express these properties, we introduce the notion of instantiations of
configurations C', choosing a mode for every event in C without creating color
conflicts. This is realized by assigning to each variable v, € Varcyq1y a value in
Col, such that the above defined predicates evaluate to true. For each e € C, the
assignment of values to the indexed variables in Var, corresponds to a mode of e.

Definition 2 (Instantiation). For a given configuration C, an instantiation
of C is a function 6 : Varcygiy — Col, such that Ve € C'U{L} : pred(e)[f] =
true, i.e., it satisfies all predicates in the configuration. The set of instantiations
of a given configurations C is denoted by O(C).

Note that, by definition, every configuration C' has an instantiation 6. We denote
by cut(C,0) := {{(b,c) | b € cut(C) A 8(ve(b)) = ¢} C B x Col the cut of
an “instantiated configuration”, and by mark(C,0) := {(h(b),c) | (b,c) €
cut(C.0) |} its marking. We collect both of these in K(C) := {cut(C,0) | 0 €
O(C)} and M(C) := {mark(C,0) | 6§ € ©(C)}. Note that in this notation, for
the empty configuration we have K(0) = Ky and M(0) = M.

Proposition 1. Let N be a high-level Petri net and T its symbolic unfolding.
Then R(N) = {mark(C.0) | C € C(Y),0 € ©(C)}.

Proposition 2. The symbolic unfolding Y = (U, w) with events E of a high-level
Petrinet N = (P, T, F,1, My) satisfiesVC € C(Y) V0 € O(C) Vt € T Vo € X(t) :

mark(C,0)[t,0) < Jee€ E:7(e) =tAcut(C,0)le, o).

Given a configuration C of a symbolic branching process 8 = (O, h), we define
{C' as the pair (O’, h'), where O’ is the unique subnet of O whose set of nodes is
{zr € BUE | z ¢ (CU— C)AVy € C : =(yfz)A(CU{z} is not in color conflict)}
with the set K(C') of initial cuts, and A’ is the restriction of h to the nodes of O’.
The branching process f}C is referred to as the future of C.

Proposition 3. If 8 is a symbolic branching process 0f< M()) and C is a
configuration of 3, then C is a branching process of (N, M(C)). Moreover, if
B is the unfolding of (N, My), then {+C is the unfolding 0f< ,M(C)).

3 Finite and Complete Prefixes of Symbolic Unfoldings

We combine ideas from [10] (computing small finite and complete prefixes of
unfoldings) with results from [5] (symbolic unfoldings of high-level Petri nets)
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to define and construct complete finite prefixes of symbolic unfoldings of high-
level Petri nets. We generalize the concepts and the ERV-algorithm from [10]
for safe P/T Petri nets to a class of safe high-level Petri nets, and compare this
generalization to the original. We will see that for P/T nets interpreted as high-
level nets, all generalized concepts (i.e., complete prefixes, adequate orders, cut-
off events), and, as a consequence, the result of the generalized ERV-algorithm
all coincide with their P/T counterparts.

We start by lifting the definition of completeness to the level of symbolic
unfoldings. Together with Propositions 1 and 2, this can be seen as a direct
translation from the low-level case described, e.g., in [10].

Definition 3 (Complete Prefix). Let 5 = (O, h) be a prefiz of the symbolic
unfolding of a high-level Petri net N, with events E'. Then (3 is called complete
if for every reachable marking M in N there exists C € C(8) and 8 € O(C) s.t.

i) M = mark(C,9), and
i) Vi€ TVo € X(t): M[t,o) = Jec E' :h(e)=t A cut(C.0)[e, o).

We now define the class Ny of high-level Petri nets for which we generalize
the construction of finite and complete prefixes of the unfolding of safe P/T
Petri nets from [10]. We discuss the properties defining this class, and describe
how it generalizes safe P/T nets.

Definition 4 (Class N¢). The class N¢ contains all finite high-level Petri nets
N = (P, T, F,1, My) satisfying the following three properties:

(1) The net is safe, i.e., in every reachable marking there lies at most 1 color
on every place (formally; VM € R(N)Vp € P: ) oo M(p,c) <1).

(2) Guards are written in o decidable first-order theory with the set Col as its
domain of discourse.

(8) The net has finitely many reachable markings (formally; |R(N)| < c0).

We require the safety property (1) for two reasons; on the one hand, to avoid
adding to the already heavy notation. On the other hand, while we think that
a generalization to bounded high-level Petri nets is possible, it comes with all
the troubles known from going from safe to k-bounded in the P/T case in [10],
plus the problems arising from the expressive power of the high-level formalism.
We therefore postpone this generalization to future work. Note that, under the
safety condition, we can w.l.o.g. assume N to be ordinary (i.e., Vz,y € PUT :
> ve var F(z,v,y) < 1), since transitions violating this property could never fire.
The finiteness of N implies that we can assume Var to be finite.

While property (2) seems very strong, the goal is an algorithm that generates
a complete finite prefix of the symbolic unfolding of a given high-level Petri
net. The definition of symbolic branching processes requires the predicate of
every event added to the prefix to be satisfiable, and the predicates are build
from the guards in the given net. Thus, satisfiability checks in the generation of
the prefix seem for now inevitable. An example for such a theory is Presburger
arithmetic [16], which is a first order theory of the natural numbers with addition.
The guards in the example from Fig. 1a are written in Presburger arithmetic.
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We need Property (3) to ensure that the generalized version of the cut-off
criterion from [10] yields a finite prefix constructed in the generalized ERV-
Algorithm. |R(N)| < oo can be ensured by having a finite set Col of colors. In
Sect. 4, we identify a class of high-level Petri nets with infinitely many reachable
markings for which the algorithm works with an adapted cut-off criterion.

Under these three assumptions we generalize the finite safe P/T Petri nets
considered in [10]: every such P/T net can be seen as a high-level Petri net with
Col = {e} and all guards being true, and thus satisfying the three properties
above. Replacing the safety property (1) by a respective “k-bounded property”
would result in a generalization of k-bounded P/T nets. In Sect. 3.3, we compare
the result of the generalized ERV-algorithm Algorithm 1 applied to a high-level
net to the result of the original ERV-algorithm from [10] applied to the nets
expansion.

For the rest of the section let N = (P, T, F,t, My) € N¢ with symbolic
unfolding ¥ = (U, ) = (B, E, G, 1, Ky, 7).

3.1 Generalizing Adequate Orders and Cut-Off Events

We lift the concept of adequate orders on the configurations of an occurrence net
to the level of symbolic unfoldings. A main property of adequate orders is the
preservation by finite extensions, which are defined as for P/T-nets (cp. [10]):

Given a configuration C', we denote by C®D the fact that C' U D is a config-
uration such that C' N D = (). We say that C®D is an extension of C, and that
D is a suffiz of C. Obviously, for a configuration C’, if C C C’ then there is a
nonempty suffix D of C such that C@&D = C’. For a configuration C@®D, denote
by O(C|D) = {cut(C) U —-D U D—,D,G’,K(C)) the occurrence net around D
from cut(C'), where G’ is the restriction of G to the nodes of O(C|D). Note that
for every finite configuration C' with an extension C@&D, we have that D is a
configuration of {C'.

For better readability, we abbreviate for a marking M the fact C[M]D &
30 € 6(C®D) : mark(C, 0| varc,,(,,) = M. Thus, C[M]D means that the tran-
sitions corresponding to the events in D can fire from M € M(C).

The now stated Proposition 4 is a weak version of the arguments in [10], where
Esparza et al. follow from the low-level version of Proposition 3 that if the cuts
of two low-level configurations represent the same marking in the low-level net,
then their futures are isomorphic, and the respective (unique) isomorphism maps
the suffixes of one configuration to the suffixes of the other.

Proposition 4. Let Cy and Cs be two finite configurations in T, and let D
be a suffic of Cy1. If there is a marking M € M(Cy) N M(Cs) s.t. C1[M]D,
then there is a unique monomorphism <piD : O(C1|D) — Cy that satisfies
@1 pleut(C)) = cut(Cy) and preserves the labeling .

For this monomorphism we have that @?’D(D) is a suffiz of Cs.

The proof is an induction over the size of D (cp. [18]).

Equipped with Proposition 4, we can now lift the concept of adequate order
to the level of symbolic branching processes. Compared to [10,14], the monomor-
phism ¢? ,, defined above replaces the isomorphism I7 between f+ C; and {} Cs
for two low-level configurations C4, Cy representing the same marking.
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Definition 5 (Adequate order). A partial order < on the finite configurations
of the symbolic unfolding of a high-level Petri net is an adequate order if:

i) < is well-founded,
’LZ) Cy, C Cy implies C1 < Csy, and
iii) < is preserved by finite extensions in the following way: if C1,Cy are two
finite configurations, and C1®D is a finite extension of C1 such that there
is a marking M € M(Cy) N M(Cs) satisfying C1[M]D, then the monomor-
phism @3 1, from above satisfies C1 < Cy = C1®D < Co®¢? p(D).

In the case of a P/T net interpreted as a high-level net, we have |M(C)| = 1
for every configuration C, and therefore, Definition 5 coincides with its P/T
version [10]. We could alternatively generalize the P/T case by replacing ‘AM €
M(C1)NM(Cq) s.t. C1[M]D’ by ‘M(C1) = M(C3)’, and use the isomorphism
I? between {}C; and #C5 to define preservation by finite extension. However, in
the upcoming generalization of the ERV-algorithm from [10], the generalized cut-
off criterion exploits property iii) of adequate orders. Using ‘M(C;) = M(Cs)’
would produce an exponential blowup of the generated prefix’s size. This is
circumvented by using ‘AM € M(Cy) N M(Cs) s.t. C1[M]D’, which however
leads to obtaining merely a monomorphism that depends on the considered suf-
fix, instead of an isomorphism between the futures. We now show that this
monomorphism sufficient:

The upcoming proof that the generalized ERV-algorithm is complete is struc-
turally analogous to the respective proof in [10]. It uses that, under the condi-
tions of Definition 5 4ii), we also have Cy < Cy = Cz@cpiD(D) < C1®D. This
result would directly be obtained if ¢? ;, was an isomorphism, as I? is in the
low-level case. However, a monomorphis}n is an isomorphism when its codomain
is restricted to its range. This idea is used in the proof (cp. App [18]) of the fol-
lowing proposition, which states that <p% p indeed satisfies the above property.

Proposition 5. Let < be an adequate order. Under the conditions of Defini-
tion 5 i) the monomorphism @%)D also satisfies Co < C1 = C’gEB(p%D(D) =<
Ci1eD.

In [10], Esparza et al. discuss three adequate orders on the configurations of
the low-level unfolding. In particular, they present a total adequate order that
uses the Foata mormal form of configurations. Using such a total order in the
algorithm limits the size of the resulting finite and complete prefix; It contains at
most |R(NN)| non cut-off events. All three adequate orders presented in [10] can
be directly lifted to the configurations of the symbolic unfolding by exchanging
every low-level term by its high-level counterpart. The lifted order using the
Foata normal form is still a total order. We include these discussions in [18].
We now define cut-off events in a symbolic unfolding. In the low-level case [10],
e is a cut-off event if there is another event €’ satisfying [¢'] < [e] and mark([e]) =
mark([e’]), which ensures that the future of e needs not be considered further. In
the high-level case, we generalize these conditions to high-level events e. However,
we do not require the existence of one other high-level event e’ with [¢/] < [e]
and M([e]) = M([¢/]). While this would still be a valid cut-off criterion and
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would lead to finite and complete prefixes, the upper bound on the size of such
a prefix would be exponential in the number of markings in the original net.
Instead, we check whether M([e]) is contained in the union of all M([e']) with
[€¢'] < [e]. This criterion expresses that we have already seen every marking in
M([e]) in the prefix 8 under construction, and therefore need not consider the
future of e any further. By this, we obtain the same upper bounds as in [10], as
discussed later.

Definition 6 (Cut-off event). Let < be an adequate order on the configura-
tions of the symbolic unfolding of a high-level Petri net. Let B be a prefix of the
symbolic unfolding containing a high-level event e. The high-level event e is a

cut-off event in 8 (w.r.t. <) if M([e]) € U< M[€'])-

When interpreting P/T nets as high-level nets, this definition corresponds to the
cut-off events defined in [10], since then |[M([e])| = 1 for all events e.

3.2 The Generalized ERV-Algorithm

We present the algorithm for constructing a finite and complete prefix of the
symbolic unfolding of a given high-level Petri net. It is a generalization of the
ERV-algorithm from [10], and is structurally equal (and therefore looks very
similar). However, the algorithm is contingent upon the previous section’s work
of generalizing adequate orders and cut-off events, which ultimately enables us
to adopt this structure.

A crucial concept of the ERV-algorithm is the notion of “possible extensions”,
i.e., the set of individual events that extend a given prefix of the unfolding. In
Definition 7, we lift this concept to the level of symbolic unfoldings. We do so
by isolating the procedure of adding high-level events in the algorithm from [5]
which generates the complete symbolic unfolding of a given high-level Petri net
(but does not terminate if the symbolic unfolding is infinite).

We define the data structures similarly to [10]. There, an event is given by a
tuple e = (t,B’) with h(e) =t € T and pre(e) = B’ C B, and a condition given
by a tuple b = (p,e) with h(b) = p € P and pre(b) = {e} C E. The finite and
complete prefix is a set of such events and transitions.

In the high-level case, we need more information inside the tuples. A high-
level event is given by a tuple e = (t, X, pred) described by h(e) = ¢, pre(e) =
X C B x Var, and pred(e) = pred. Analogously, a high-level condition is given
by a tuple b = (p, (e,v), pred), where h(b) = p, pre(b) = (e,v) € (E X Var)U
({L} x {v° | b€ By}), and pred(e(b)) = pred.

Definition 7 (Possible Extensions). Let 5 = (O,h) be a branching process
of a high-level Petri net N. The possible extensions PE(3) are the set of tuples
e = (t, X, pred) where t is a transition of N, and X C B x Var satisfying

- {b | (b,v) € X} is a co-set, and pre(t) = {(h(b),v) | (b,v) € X},
— pred = loc-pred A (/\<b7v>€X pred(e(b))) is satisfiable,

where loc-pred = 1(t)[v + Ve]ve var(e) N (/\<b7v>€X ve = ve(b)),
— Fin does not contain (t, X, pred).
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Since the notion of co-set in high-level occurrence nets is achieved by the direct
translation from low-level occurrence nets plus the “color conflict freedom” ; possi-
ble extensions in a prefix 3 can be found by searching first for sets of conditions
that are not in structural conflict as in the low-level case, and then checking
whether these sets are in color conflict.

Algorithm 1 is a generalization of the ERV-Algorithm in [10] for complete
finite prefixes of the low-level unfolding. The structure is taken from there, with
the only difference being the special initial transition L. It takes as input a
high-level Petri net N € Ny and assumes a given adequate order <.

Algorithm 1: Generalization of the ERV-Algorithm from [10] for complete
finite prefixes.

Data: High-level Petri net N = (P, T, F, ¢, Mo) € Ng.

Result: A complete finite prefix Fin of the symbolic unfolding of N.

Fin — {1};

pred(L) « VMOEMO /\<p,c>eM0 ”ﬁ_p =G

foreach p € P, do

Create a fresh condition b, = (p, (1, v°?), pred(L));
Fin — Fin U {b};

pe «— PE(Fin);

cut-off — 0;

while pe # () do
Pick e = (t, X, pred) from pe such that [e] is minimal w.r.t. <;
if [e] N cut-off = (0 then
Fin — Fin U {e};
foreach (p,v) € post(t) do

Create a fresh condition b = (p, (e, v), pred);

L Fin «— Fin U {b};
pe «— PE(Fin);
if e is a cut-off event of Fin then

L cut-off — cut-off U{e};

else

| pe — pe\{e}

We now prove correctness of Algorithm 1 analogously to [10], by stating two
propositions — one each to show that the prefix is finite and complete, respectively.
The proof structure is also as in [10], but adapted to the setting of high-level
Petri nets and symbolic unfoldings.

Proposition 6. Fin is finite.
Proof (Sketch). As in [10], we prove the following results (1) — (3):

(1) For every event e of Fin, d(e) < |R(N)|+ 1, where d is the depth of e.
(2) For every event e of Fin, the sets pre(e) and post(e) are finite, and
(3) For every k > 0, Fin contains only finitely many events e such that d(e) < k
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This works exactly as in [10], as shown in [18], with minor adaptations to the
generalization of cut-offs in the symbolic unfolding in (1). O

Proposition 7. Fin is complete.

The proof also has the same general structure as the respective proof in [10].
However, since here we use the generalizations of adequate order, possible exten-
sions, and the cut-off criterion to symbolic branching processes, we include the
complete proof in the body of the paper.

Notation. For functions f : X — Y and f': X' — Y with X N X’ = () we
define fW ' : XUX' — Y by mapping « to f(x) if x € X and to f'(x) if x € X'.

Proof of Proposition. 7 We first show that for every reachable marking in N
there exists a configuration in 7" satisfying a) from the definition of complete
prefixes, and then show that one of these configurations (a minimal one) also
satisfies b).

(1) Let M be an arbitrary reachable marking in N. Then by Proposition 1,
we have that there is a C; € C(Y) st. M € M(Cy). Let 6, € O(Cy)
s.t. M = mark(C;.61). If C is not a configuration in Fin, then it con-
tains a cut-off event ey, and so C; = [e1]®D for some set D of events.
Let M1 = mark([e1].01]var, ) ) € M([e1]). By the definition of cut-
off event, there exists an event e with [es] < [e1] and M; € M([e2]).
Since we have C1[M;]D, we get by Proposition 4 that the monomorphism
01 = @%ZTLD : O([e1]|D) — f]e2] exists and that ¢1(D) is a suffix of [eq].
By Proposition 5 we know

CQ = [62]@@1(D) =< [61]@D = Cl.

Let 6 € O([es]) s.t. My = mark([es],65). Define now 0y € ©(Cs) by 6y =
05 W 05, where 05 : Vary, (py — Col is given by 65 (v, (e)) = 01(ve). By this
construction we get M = mark(Cy, 02) € M(C3).

If C5 is not a configuration of Fin, then we can iterate the procedure and
find a configuration C3 such that C5 < Cy and M € M(Cj3). The procedure
cannot be iterated infinitely often because < is well-founded. Therefore, it
terminates in a configuration of Fin.

(2) Let now C be a minimal configuration w.r.t. < s.t. M € M(C),and let ¢t € T,
o € X(t) s.t. M[t,o). If C contains some cut-off event, then we can apply the
arguments of a) to conclude that Fin contains a configuration C’ < C such
that M € M(C’). This contradicts the minimality of C'. So C' contains no
cut-off events. Let 0 € O(C) s.t. M = mark(C, §). Since pre(t.c) C M, we
have that there is a co-set By, C cut(C) s.t. pre(t,0) = {(h(b),0(ve(D))) |
b€ B} Let now X := {(b,v) | b € By, (h(b),v) € pre(t)}. We then have
V{b,v) € X : o(v) = 0(ve(D)).

We now show that pred := +(t)[v + Ve]ve var(e) N (/\<b’v>€X ve = Ve(b)) A
Nv,vyex pred(e(b)) is satisfiable. Let 6" := 6 W (0 o [ve = v]ye var(e))- Then
- L(t)[v — ve]'ue Var(e) [9/] = L(t)[(f] = true, and

- (/\<b,v>€X Ve = Ve(b))[a’] = (/\<b,v>eX o(v) = H(Ve(b))) = true, and
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= Npoyex pred(e()[0'] = A, yex pred(e(b))[6] = true, since 6 € O(C).

Thus, pred[f'] = true. Therefore, e = (¢, X, pred) is a possible extension
and added in the execution of the algorithm. Then we directly have e ¢ C,
h(e) = t, and with the same arguments as in a), we get C U {e} € C(Fin)
and 0 W (0 o [ve — V]yevar(e)) € O(C U {e}), which means cut(C,0)[e, o).
Since we chose 6 independently of ¢ and o, this concludes the proof. O

Notice that by this construction, as described in [10], we get that if < is
a total order, then Fin contains at most |R(N)| non cut-off events. As already
discussed in Sect. 3.1, the total adequate order defined in [10] can be lifted to the
configurations in the symbolic unfolding, where it again is total (cp. App 77).
Thus, we generalized the possibility to construct such a small complete finite
prefix by application of Algorithm 1 with < being a total adequate order.

Running Exzample. For the example N from Fig la, the algorithm produces
the complete finite prefix marked by the red, dotted line in Fig 1b: starting with
the initial condition by, the event e; is the only possible extension and added to
Fin. Since e; is obviously not a cut-off event, e} and el are possible extensions
and also added. Now we have M([e3]) = {{ (p2,i) [} | 0 < i < m}, and M([e1]) =
{{(p2,1)}}, so e is also not a cut-off event, and the possible extensions e3 and
e3 are added. Now, however, we have that M([e3]) = {{ (p2,d) [} | 0 <i <m} =
M([ed]), and therefore, €3 is a cut-off event.

3.3 High-Level Versus P/T Expansion

Every high-level Petri net represents a P/T Petri net with the same behavior,
in which the places can only carry a number tokens with color e. Markings in a
P/T Petri net describe only how many tokens lie on each place. Each transitions
only has one possible firing mode that takes and/or lays a fixed number of tokens
from resp. onto each connected place.

In this section we state in Lemma 2 that the expansion of a finite complete
prefix of the unfolding of a high-level Petri net is a finite and complete prefix of
the unfolding of the expanded high-level Petri net. This means the generalization
of complete prefixes is “canonical”, and compatible with the established low-level
concepts. We then shortly compare the results of

— applying the generalized ERV-algorithm Algorithm 1 to obtain a complete
finite prefix of the symbolic unfolding of a given high-level Petri net, and

— first expanding a given high-level Petri net and then applying the ERV-
algorithm from [10] for a complete finite prefix of the (P/T) unfolding.

The procedure of constructing the represented P/T Petri net Exp(N) (called
the ezpansion) of a high-level Petri net N is well established (cp., e.g., Chap. 2.4
in [12]), and we describe it here only briefly; the places of Exp(IN) are given by
P={p.c| pe€ Pce Col}, and its transitions by T = {t.oc | t € T,o € X(¢)}.
There is an arc from p.c to t.o iff (p, c) € pre(t, o), and analogously for arcs from
transitions to places. Markings in Exp(/V) are functions M : P — N, describing
how often the only color e lies on each place p.c. Every such marking corresponds
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® v O—ke]
2.1°

p1.00
t3.11 M\
ta.(1,2)* t2.(1,3)"

Fig. 2. The expansion Exp(N) of the running example N from Fig.la for Col =
{0,1,2,3} in (a), and (a prefix of) the respective unfolding 7' (Exp(N)) in (b).

to a marking M in the high-level net N, with M (p,c) = M(p.c), and a transition
t can fire in mode o from M iff t.o can fire from M. Thus, we say that IV
and Exp(N) have the same behavior. For a finite high-level Petri net N, the
expansion Exp(N) is finite iff Col is finite.

For a high-level occurrence net O, we define the P/T net Expo(O) :=
U(Exp(0)). The operator Expo maps high-level occurrence nets to occurrence
nets, which is shown in [4]. We denote 7' (Exp(O)) = (Expo(O), o). Let now
G = (O, h) be a symbolic branching process of N. Then we can define the
expanded symbolic branching process Expo(8) = (Expo(0), ho) of Exp(N) with
the homomorphism ho : Expo(O) — Exp(N), defined by hp(e) = t.o <
mo(e) = e.c Ah(e) =t and ho(b) = p.c & wo(b) = e.c A h(b) = p for events e
resp. conditions b in Expp(O). The following result is shown in [4].

Lemma 1 ([4], Sec. 4.1). T(Exp(N)) ~ Expo(Y(N))
With this result, we state the following:

Lemma 2. Let N be a high-level Petri net and 3 be a prefix of T(N). Then ( is
finite and complete iff Expo(0) is a finite and complete prefix of T (Exp(V)).

The detailed proof is moved to [18]. It mainly uses the results from Propositions 1
and 2, since the definition of completeness on the symbolic level is a direct
translation from its P/T analogue.
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We can now compare the two complete finite prefixes resulting from the
original ERV-algorithm from [10] applied to Exp(NN) and the generalized ERV-
algorithm Algorithm 1 applied to N. From the definition of the generalized
cut-off criterion we get that both these prefixes have the same depth. However,
due to the high-level representation, the breadth of the symbolic prefix can be
substantially smaller.

Running Example. Consider again N € Ny from Fig. la and assume Col =
{0,1,2,3} (i.e., m = 3). The expansion Exp(N) is depicted in Fig.2a. The
(infinite) unfolding of Exp(N) is shown in Fig.2b. The prefix resulting from
applying the original ERV-algorithm from [10] is marked by the red dotted line.
We see that for this example and Col = {0, ..., m}, the low-level prefix obtained
by the original ERV-algorithm has O(m?) nodes. In contrast, the complete finite
prefix (cp. Fig. 1b) obtained by Algorithm 1 has 11 nodes for every m.

The structure of this running example can easily be generalized, resulting in
the following proposition.

Proposition 8. For every a € N there is a high-level net N € Ng¢ such that
for Col = {0,...,m} the complete finite prefix obtained by Algorithm 1 has
a constant number of nodes, while the number of nodes in the low-level prefix
obtained by the original ERV-algorithm is in O(m®).

4 Handling Infinitely Many Reachable Markings

Unfoldings of unbounded P/T Petri nets (i.e., with infinitely many markings)
have been investigated in [1,7], and in [11] concurrent well-structured transition
systems with infinite state space are unfolded. When applying the generalized
ERV-algorithm, Algorithm 1, to high-level Petri nets with infinitely many reach-
able markings (therefore violating (3) from the definition of N¢), the proof for
finiteness of the resulting prefix does not hold anymore: the proof of Proposi-
tion 6, step (1), is a generalization of the proof of the respective claim in [10]
(which uses the pigeonhole principle). It is argued that we cannot have |[R(NV)|+1
consecutive events s.t. their cone configurations each generate a marking in the
net not seen before, and we thus have a cut-off event. When we deal with infinitely
many markings, this argument cannot be made.

In this section, we introduce a class Ng. of safe high-level nets, called sym-
bolically compact, that have possibly infinitely many reachable markings (and
therefore an infinite expansion), generalizing the class N¢. We then proceed to
make adaptions to Algorithm 1 (i.e., to the used cut-off criterion), so that it gen-
erates a finite and complete prefix of the symbolic unfolding for any N € Ngc.

The following Lemma precisely describes the finite high-level Petri nets for
which a finite and complete prefix of the symbolic unfolding exists.

Lemma 3. For a finite high-level Petri net N = (N, My) there exists a finite
and complete prefix of T(N) if and only if there exists a bound n € N such that
every marking in R(N) is reachable from a marking in Mg by firing at most n
transitions.
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For the proof (cp. App ?7), we argue that in the case of such a bound, the
symbolic unfolding up to depth n+ 1 is a finite and complete prefix, and that in
the absence of such a bound no depth of a prefix is enough for it to be complete.

4.1 Symbolically Compact High-Level Petri Nets

We use the result of Lemma 3 to define the class Ng. of high-level nets for
which we adapt the algorithm for constructing finite and complete prefixes of
the symbolic unfolding.

Definition 8 (Class Ng.). A finite high-level Petri net N is called symbolically
compact if it satisfies (1) and (2) from Definition 4, and

(8%) There is a bound n € N on the number of transition firings needed to reach
all markings in R(N).

The class Ngc contains all symbolically compact high-level Petri nets.

Note that in the case of a (finite, safe) P/T net, property (3*) is equiv-
alent to (8) (ie., |[R(N)| < o0). However, this is not true for all high-level
nets N: while |R(N)| < oo still implies (3*) (meaning N¢ C Ng.), the reverse
implication does not hold, as our running example from Fig. la demonstrates
when we change the set of colors to Col = N: it still satisfies (1) and (2), with
R(N) = {{{p1,0) },{ (p3,0) fYU{{ (p2,0) } | £ € N}. So we have infinitely many
markings that can all be reached by firing at most two transitions, meaning the
net satisfies (3*) and is therefore symbolically compact.

Lemma 3 implies that the class Ngc of symbolically compact nets contains
exactly all high-level Petri nets satisfying (1) and (2) for which a finite and
complete prefix of the symbolic unfolding exists (independently of the number
of reachable markings). Since the reachable markings of a high-level Petri net
and its expansion correspond to each other, this observation leads to an inter-
esting subclass Ng. \ N¢ of symbolically compact high-level Petri nets that have
infinitely many reachable markings (such as our running example from Fig. la
with Col = N). For every net N in this subclass

— there exists a finite and complete prefix of T(N), but
— there does not exist a finite and complete prefix of 7' (Exp(V)).

In particular, the original ERV-algorithm cannot be applied to Exp(N), since
the expansion is an infinite net.

For the rest of the paper, let N = (P,T,F,1, Mo) € Ngc with symbolic
unfolding ¥ = (U, ) = (B, E, G, , Ko, 7).

4.2 The Finite Prefix Algorithm for Symbolically Compact Nets

As previously discussed, the argument that states the existence of one event in
a chain of |R(N)| + 1 consecutive events, such that every marking represented
by its cone configuration is contained in the union of all markings represented
by previous cone configurations, cannot be applied in the case of an infinite
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number of reachable markings. Consequently, Algorithm 1 may not terminate
when applied to a net in Ng. \ N¢. However, condition (3*) guarantees that every
marking reached by a cone configuration [e] with depth > n can be reached by
a configuration C containing no more than n events.

For the algorithm to terminate, we need to adjust the cut-off criterion since we
do not know whether C'is also a cone configuration, as demanded in Definition 6.
Therefore, we define cut-off* events, that generalize cut-off events. They only
require that every marking in M (Je]) has been observed in a set M(C) for any
configuration C < [e], rather than just considering cone configurations:

Definition 9 (Cut-off* event). Under the assumptions of Definition 6, the
high-level event e is a cut-oft* event (w.r.t. <) if M(le]) € Up M(C).

We additionally assume that the used adequate order satisfies |C;| < |Co| =
C1 < (s, so that every event with depth > n will be a cut-off event. Since all
adequate orders discussed in [10] satisfy this this property (cp. App ?7?), this is
a reasonable requirement. This adaption and assumption now lead to:

Theorem 1. Assume a given adequate order < to satisfy |C1| < |Co| =
C1 < Co. When replacing in Algorithm 1 the term “cut-off event” by “cut-off*
event”, it terminates for any input net N € Ngc, and generates a complete finite

prefiz of T(N).

Proof. The properties of symbolic unfoldings that we stated in Sect. 2.3 are inde-
pendent on the class of high-level nets. Definition 10 only uses that the considered
net is safe, and so do Propositions 4 and 5. We therefore only have to check that
the correctness proof for the algorithm still holds. In the proof of Proposition 6
(Fin is finite), the steps (2) and (3) are independent of the used cut-off criterion.
In step (1), however, it is shown that the depth of events never exceeds |[R(N)|+ 1.
This is not applicable when |R(N)| = oo, as argued above. Instead we show:

(1*) For every event e of Fin, d(e) < n+ 1, where n is the bound on the number
of transitions needed to reach all markings in R(N).

This is done in detail in [18] and proves that Fin is finite. In the proof of Propo-
sition 7, the cut-off criterion is used to show (by an infinite descent approach),
for any marking M € R(N) the existence of a minimal configuration C € Fin
with M € M(C). Due to the similarity of cut-off and cut-off*, this proof can
easily be adapted to work as before.

The only thing remaining to show is termination. In the case of nets in Ny¢,
every object is finite, which, together with Proposition 6, leads to termination of
the algorithm. For nets in Ny \ N¢, however, there is at least one event e in Fin
s.t. |[M([e])| = co. Thus, we have to show that we can check the cut-off* criterion
in finite time. This follows from Corollary 2 in the next section, which is dedicated
to symbolically representing markings generated by configurations. ad

4.3 Checking Cut-offs Symbolically

We show how to check whether a high-level event e is a cut-off* event in finite
time. By definition, this means checking whether M([e]) C Uc < M(C). How-
ever, since the cut of a configuration can represent infinitely many markings, we
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cannot simply store the set M(C) for every C € C(Fin). Instead, we now define

constraints that symbolically describe the markings represented by a configura-

tion’s cut. Checking the inclusion above then reduces to checking an implication

of these constraints. Since we consider high-level Petri nets with guards written

in a decidable first order theory, such implications can be checked in finite time.
We first define for every condition b a new predicate pred®(b) by

pred® (b) := pred(e(b)) A (b= ve(D)).

This predicate now has (in an abuse of notation) an extra variable, called b. The
remaining variables in pred(e(b)) are Varew)u(L}, and pred(e(b)) evaluates to
true under an assignment 6 : Varep)ugry — Col if and only if a concurrent
execution of [e(b)] with the assigned modes is possible (i.e., under every instan-
tiation of [e(b)]). In such an execution, 8(ve(b)) € Col is placed on b.

For a co-set B’ C B of high-level conditions, the constraint on B’ is an
expression over B’ describing which color combinations can lie on the high-level
conditions. We build the conjunction over all predicates pred®(b) for b € B’ and
quantify over all appearing variables v.: the constraint on B’ is defined by

K(B') =3, s Variawory /\ pred® (b),
beB'

where B’ serves as the set of free variables in x(B’).

We denote by Z(B’) the set of variable assignments o} : B’ — Col that satisfy
#(B")[V] = true. Note that for a configuration C', we have Uy uy(c) Variew) =
Varc, i.e., the bounded variables in «(cut(C')) are exactly the variables appearing
in predicates in C'. For every instantiation 6 of C' we define a variable assignment
Yo : cut(C) — Col by setting Vb € cut(C) : ¥g(b) = 0(ve(d)). Instantiations of a
configuration and the constraint on its cut are now related as follows.

Lemma 4. Let C € C(T). Then Z(cut(C)) = {9y | 8 € O(C)}.

The proof is moved to [18], and follows by construction of pred® and ¥g. From
the definition of (C') and M(C') we get:

Corollary 1. Let C € C(T). Then K(C) = {{{(b,9(b)) | b € cut(C)} | ¥ €
E(cut(C))} and M(C) = {{ (w(b),9(b)) | b€ cut(C) |} | ¥ € Z(cut(C))}.
We now show how to check whether an event is a cut-off* event via the constraints
defined above. For that, we first look at general configurations in Theorem 2, and
then explicitly apply this result to cone configurations [e] in Corollary 2.

Since we consider safe high-level Petri nets, we can relate two cuts represent-
ing the same marking in the following way:

Definition 10. Let C1,C5 € C(Y) with w(cut(Cy)) = w(cut(Cs)). Then there is
a unique bijection ¢ : cut(C1) — cut(Cs) preserving w. We call this mapping gbgf

Theorem 2. Let C,C4,...,C, be finite configurations in the symbolic unfolding
of a safe high-level Petri net s.t. V1 < i <n:w(cut(C)) = n(cut(C;)). Then

M(C) C U M(Cy) if and only if  k(cut(C)) = \/ k(cut(Cy))[og,]-

=1
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Proof. Denote ¢; := ¢ . Assume M(C) C |Ji~; M(C;) and let ¥ € Z(cut(C)).
By Corollary 1 we have that My := {(m(b),9(b)) | b € cut(C)} € M(C). Thus,
1 <i<n:Mye M(C;). This, again by Corollary 1, means 39; € Z(cut(C;)) :

My = {(x(t'),9;(t')) | V' € cut(Ci)} = {{m(¢; (b)), ¥i(¢7 ' (1)) | b€ cut(C)}
= {(m(b), (Wi 0 &7 )(B)) | b€ cut(C)}.

This shows that 19|Cm(c) = 191-0(;5;1. Thus, k(cut(C;))[¢:][9] = k(cut(C;))[Pog;] =
K(cut(C;))[9; 0 @7 o ¢i] = K(cut(C;))[¥;] = true, which proves the implication.
Assume on the other hand x(cut(C)) = \/i_, k(cut(C;))[¢:]. Let M € M(C).
Then 39 € E(cut(C)) : M = {{(n(b),3(b)) | b € cut(C)}. Thus, I1 <i<n :
K(cut(Cy))[@s][9] = true. Let 9; = ¥ o ¢;. Then 9; € Z(cut(C})), and My, :=
{m(¥),9:;(b")) | ¥/ € cut(C;)} € M(C;). Since

My, = {{m(¢; (), 00 ¢i(¢; (b)) | b€ cut(C)} = {{m(b),9(b)) | b€ cut(C)},
we have M = My, € M(C;), which completes the proof. O

The following Corollary now gives us a characterization of cut-off* events in a
symbolic branching process. It follows from Theorem 2 together with the facts
that M(C1) N M(Cs) # 0 = 7(cut(Cy)) = 7(cut(Cs)), and that <[e] is finite.

Corollary 2. Let 8 be a symbolic branching process and e an event in 3. Then
e is a cut-off* event in B if and only if

rlcut([e])) = V A(cut(0))[9¢).
C<e]
h(cut(C))=h(cut([e]))
Thus, we showed how to decide for any event e added to a prefix of the unfolding
whether it is a cut-off* event, namely, by checking the above implication in
Corollary 2. Note that we can also check whether e is a cut-off event (w.r.t.

Definition 6) by the implication in Corollary 2 when we replace all occurrences
Of LLC’? by “[e/]”

5 Conclusions and Outlook

We introduced the notion of complete finite prefixes of symbolic unfoldings of
high-level Petri nets. We identified a class of 1-safe high-level nets generalizing
1-safe P/T nets, for which we generalized the well-known algorithm by Esparza
et al. to compute such a finite and complete prefix. This constitutes a consolida-
tion and generalization of the concepts of [3-5,10]. While the resulting symbolic
prefix has the same depth as a finite and complete prefix of the unfolding of
the represented P/T net, it can be significantly smaller due to less branching.
In the case of infinitely many reachable markings (where the original algorithm
is not applicable) we identified the class of so-called symbolically compact nets
for which an adapted version of the generalized algorithm works. For that, we
showed how to check an adapted cut-off criterion by symbolically describing sets
of markings.

The next step is an implementation of the generalized algorithm. Future
works also include the generalization for k-bounded high-level Petri nets.
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Abstract. Interval traces can model sophisticated behaviours of concurrent sys-
tems under the assumptions that all observations/system runs are represented by
interval orders and simultaneity is not necessarily transitive. What they cannot
model is the case when a and b are considered independent, interleavings ab and
ba are deemed equivalent, but simultaneous execution of a and b is disallowed.
We introduce a new kind of interval traces, incorporating a mutex relation, that
can model these kind of cases. We discuss the soundness of this concept and show
how it can be applied in the domain of Petri nets.

Keywords: interval order - interval sequence * inhibitor net - mutex relation -
semantics

1 Introduction

In concurrency theory, traces are quotient equational monoids over various types of
sequences. The sequences represent observations or system runs and traces themselves
represent sets of sequences that are interpreted as equivalent, so only one sequence can
represent the entire trace. This approach was pioneered by Mazurkiewicz [27].
Mazurkiewicz traces (or traces) are partially commutative quotient monoids over
sequences [3,27,28]. They have been used to model various aspects of concurrency
theory and since the late 1970 s s their theory has been substantially developed [5,6].
Traces can be interpreted as partial orders and can model ‘true concurrency’, i.e., the
case where a simultaneous execution of events a and b, and the orders a followed by b,
and b followed by a, are all considered equivalent. As a model of concurrent behaviours,
traces correspond to vector firing sequences [38] that have been used to model concur-
rent behaviours in the path expressions model [17]. The theory of traces has been used
to tackle problems from diverse areas including combinatorics, graph theory, algebra
and logic [6]. However, not all important aspects of concurrency can be adequately
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modelled by the traces. For example, they can neither model ‘not later than’ relation-
ships nor the case when system runs are represented by interval orders, i.e., where
simultaneity is not transitive [14,15,21].

For the standard traces, the basic monoid is just a free monoid of sequences. This
means that generators, i.e., elements of a trace alphabet, have no visible internal struc-
ture that could be used to define appropriate equations. This is a limitation, as when
the generators have some internal structure (for example, if they are sets, or they are
divided into two distinct sets with different properties), this internal structure may be
used when defining the set of equations generating the quotient monoid.

One natural extension is to just assume that generators are sets, i.e., we have
some monoid of step sequences. An underlying assumption behind this approach is
that simultaneity is transitive and simultaneous executions are represented explicitly by
steps.

In trace theory, if the events a and b are independent, i.e., a-followed-by-b and
b-followed-by-a are equivalent in some trace, then the a and b are incomparable in
the partial order defined by this trace. Hence, simultaneity can be expressed, though
implicitly. Following this idea, the standard traces can be extended to step sequences in
a quite natural manner ( [29,41] and, implicitly, in [18, 19]). This extension is useful;
for example, it allows analyses of greedy maximal concurrency (cf. [18]), but it still
keeps the model within the standard ‘true concurrency paradigm’.

As long as it has some interpretation in concurrency theory, one might use freely
set theory operators in the equations that define equivalent generators. Exploiting this
idea has led to the concepts of comtraces [15], g-comtraces [19], and step traces [12,
13]. Here, step traces are the most advanced and general model. Although step traces
are quite a new notion, they have already been successfully utilized in computational
biology [33], digital graphics [32], and model checking [25]. Still, they can only be
used if event simultaneity is transitive, i.e., all observations of a concurrent system can
be represented by stratified orders.

It was argued by Wiener in 1914 [43] (and later, more formally, in [14]) that any
execution that can be observed by a single observer must be an interval order, and so
the most precise observational semantics is based on interval orders, where simultaneity
is often non-transitive. Trace generators are sequences and representing interval orders
by sequences is a little bit tricky; for example, one may use sequences of maximal
antichains, or sequences of beginnings and endings of events involved [9,14], and the
latter appears to be more suitable [16]. To model this with traces, we assume that gen-
erators are divided into two classes of objects, one interpreted as the beginnings and the
other as the endings (of events/actions, etc.). This has led to the concepts of interval
sequences and interval traces discussed in [21,22].

While each stratified order is interval, the relationship between comtraces [15], g-
comtraces [19], step traces [12] is more complex. Each comtrace can be represented by
an appropriate interval trace [21], but there are g-comtraces and step traces that cannot
be represented as any interval trace [20].

Interval traces cannot represent the case when a and b are considered independent,
interleavings ab and ba are deemed equivalent, but the simultaneous execution of a
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and b is not allowed!, for example, @ : x = x+ 1 and b : x = x + 2 (cf. [14,26]). Both g-
comtraces and step traces can easily model such cases. They both have a kind of explicit
mutex relation that always forbids simultaneity.

In this paper, we add a mutex relation to interval traces, based on the concept of this
relation for step traces [12,24]. We will prove validity of this concept, analyse its rela-
tionship to interval traces and show how it can be used to model the properties of Petri
nets with mutex relation (cf. [23]). Adding mutex relation required some modification
of interval traces of [21], and extensions of standard theory of interval orders.

2 Preliminaries

Throughout the paper we mainly use the standard notions of sets, relations and formal
languages, extended with a very few new notations.

A binary relation = over a set X is an equivalence relation if it is reflexive, symmet-
ric and transitive, i.e., for all a,b,c € X,a=a,a=b < b=a,anda=b=c =
a = c. An equivalence class containing a € X is denoted as [a]=.

A (strict) partial order is a pair po = (X, <) such that X is a set and < is a binary
relation over X which is irreflexive and transitive, i.e., for all a,b,c € X, a £ a and
a < b <c = a < c. We also define a binary incomparability relation on the elements
of X:a~bifaftbAa+#b.

Let po = (X, <) and po’ = (X, <') be partial orders. Then (cf. [9]):

— poistotal if ~=g,ie., foralla#beX,a<borb=<a.

— po is stratified if, for all a,b,c e X, a ~b ~c = a ~cora=c,i.e., ~Uidy is
an equivalence relation, where idxy = {(x,x) | x € X} is the identity relation on X.

— po' is an extension of po if < is a subset of <’.

Finite total orders are equivalent to finite sequences of elements without repeti-
tions: if po = (X, <) is a total order such that X = {ay,...,ax} and a; < --- < a; then
the corresponding sequence is seq(po) = aj ...ay. Similarly, finite stratified orders are
equivalent to finite sequences of mutually disjoint nonempty sets: if po = (X, <) is
a stratified order then the corresponding step sequence of po is sseq(po) = Aj ... A,
where Ay,..., Ay is a unique partition of X such that < is equal to U, jA; X A;.

The following result provides basis for various greedy canonical forms for concur-
rent behaviours.

Theorem 1 ([15]). Each partial order po = (X,<) has exactly one stratified order
extension spo such that sseq(spo) = Ay ... Ay and, for all i > 2 and b € A;, there is
a € A;_ satisfying a < b.

The unique stratified order spo is often interpreted as a greedy maximally concurrent
representation of po, and will be denoted by gmcr(po). Note that po is a stratified order
iff gmer(po) = po.

' Mazurkiewicz traces do not forbid simultaneous executions of a and b for independent a and
b, they just do not express it explicitly.
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Fig. 1. Partial orders represented as Hasse diagrams (cf. [9]). po; is total and uniquely repre-
sented by sequence v = abed, i.e., po; = sseq ! (v). Partial order po, is stratified and uniquely
represented by step sequence w = {a}{b,c}{d}, i.e., poy = sseq”!(w). pos is interval, but
does not have a corresponding sequence or step sequence. po4 is an interval order on enu-
merated events and has a corresponding (non-unique) sequence of begins and ends of events
x=ajacibbjaa|c|, i.e., pos = intord(x) (see Sect. 6 for details).

3 Interval Orders
A partial order (X, <) is interval if, for all a,b,c,d € X,
a<cANb<d = a<dVb<c.

Example 1. Fig. 1 shows different types of partial orders. Note that po, is an extension
of pos, and po; extends both po, and pos. Also, gmer(pos) = pos. S

The adjective ‘interval’ derives from the following Fishburn’s Theorem:

Theorem 2 (Fishburn [8]). A countable partial order (X, <) is interval iff there exists
a total order (Y, <1) and two injective mappings 3,€: X — Y such that B(X)Ne(X) =2
and, for all a,b € X, B(a)<€(a) anda < b < €(a) <P (D).

The mappings  and € are interpreted as the ‘beginning of” and ‘ending of” actions
represented by the elements of X.

The relevance of interval orders in concurrency theory follows from an observation,
credited to Wiener [43], that any execution of a physical system that can be observed by
a single observer is an interval order. Hence the most precise observational semantics
should be defined in terms of interval orders or their suitable representations (cf. [14]).

Example 2. The interval order pos from Fig. 1 can be represented by exactly four dif-
ferent ways of totally ordering the values of mappings f and €, as follows:

B(a) < e(a) < B(b) < B(c) <e(b) < B(d) <e(c) <e(d)
B(a) < e(a) < B(c) < B(b) <e(b) < B(d) < e(c) <e(d)
B(a) < e(a) < B(b) < B(c) < e(b) < B(d) < e(d) <e(c)
Bla) < e(a) < Bc) < B(b) < e(b) < B(d) < e(d) e(c).



Interval Traces with Mutex Relation 149

In the case of finite interval orders, the characterisation provided by Theorem 2 can
be modified as well as made more concrete so that there is essentially a unique way of
ordering the begins and ends of actions, which helps in some proofs.

Theorem 3. Let po = (X, <) be a finite partial order.

1. po is interval iff there exist two mappings B,e : X — {1,2,3,...,2-n—1,2-n}
(n > 0) such that

BH1),B71(3),....37'2-n—1) and 7' (2),e7(4),...,e ' (2-n)

are both partitions of X and, for all a,b € X,
(a) B(a) < €(a),
(b) a<b <> g(a) < B(b).
2. If po is interval then 3 and € as above are unique.

Proof. (1, =>) Let 8 and € be as in Theorem 2. Then, since po is finite and < total as
well as the two mappings are injective and have disjoint codomains, we have, for some
fiy-oos fm € {B,€} (m=2-|X]), the following:

filar) < falaz) Q- < fnlam)

where {f1(a1), f2(a2), ..., fm(am)} = B(X)Ue(X). Hence there are indices (indicating
places where we switch between 3 and € or vice versa)

l=h<bh<---<L<m

such that fj, = -+~ = fi,,,-1 # fi;,, (for j <k) and f; =--- = f,,. We then define
B'(a;) = j for odd j and I; <i <, and €'(a;) = j for even j and [; <i < lj4
(assuming that [, | = m+ 1). It is then straightforward to check that 8’ and €’ satisfy
the requirements.

(1, <=) It is straightforward to derive from 3 and € mappings satisfying the assump-
tions in Theorem 2. This can be done in

B[ @) BT 2 n =11 e (20 m)!

different ways.
(2) Follows directly from the definitions and the construction in part (1). a

We stress that the uniqueness of 8 and € in Theorem 3(2) was possible since the
two mappings are no longer required to be injective as in Theorem 2. We will denote
these unique mappings and the integer # in the formulation of Theorem 3 by B, €0
and 7n,,.

Example 3. For the interval order pos from Fig. 1 we have:

Bla) < &la) <B(b) = B(c) < &(b) < P(d) < &(c) = &(d)

1 <2 <3 <4 <5 <6

The mappings from Theorem 3 are related to the ordering of elements.
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Proposition 1. Letr po = (X, <) be a finite interval order and a,b € X.

Bpo(a) = Bpo(b) <= {c|c<a}={c|c<b}
& =¢&p(b) <= {cla<c}={c|b=<c}
Bpo(a) < Bpo(b) << a=<bV Ic:a—~c=<b
Epola) < €po(b) <= a<bVIcia<c~b.

Proof. Follows directly from the definitions. O
Proposition 2. Let po; = (X1, <1) and poy = (Xa, <2) be finite interval orders. Then:
po1 = por <= X1 =Xo A\ Bpo; = Bpoy N Epo, = Epo, -

Proof. From Theorem 3(2). O

Also, being a total or stratified order is directly represented by the two mappings.

Proposition 3. Ler po = (X, <) be a finite interval order.

1. poistotaliff fori=1,3,...,2-np,— 1,
[31;,1 (i) = 8;01 (i+1) are singleton sets .
2. pois stratified iff fori=1,3,...,2-np, — 1
Bro (1) =&, (i+1) .
Proof. Follows directly from the definitions. a

Note that finite interval orders do not have simple sequential representations in the
same way as the total and stratified orders do (cf. po3 from Fig. 1).

4 Sequences and Partial Orders

Let X be a nonempty set (of symbols). The set of all finite sequences over X, including
the empty sequence A (i.e., the sequence of length zero), is denoted by X*. We will use
the standard notions of concatenation of two sequences w and u, denoted by wu, as well
as the notions a prefix of w. A step sequence over X is a finite sequence of nonempty
subsets of X.

Associating sequential representations to finite total and stratified orders was
straightforward. The converse is not true for arbitrary finite (step) sequences, due to
the possibility of repeated occurrences of symbols. To address this problem, one usu-
ally proceeds by introducing individual occurrences of symbols, where a") represents
the i-th occurrence of a. We also denote X = {a) |a € X Ni > 1}.

The following are useful notions associated with a sequence w € X*:

— len(w) is the length of w.
— my(w) is the sequence obtained from w after deleting all the symbols in X \ Y.
— alph(w) is the set of the symbols occurring within w.
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— #,(w) is the number of occurrences of a € X within w.

- a/lﬁl(w) = {a | a € alph(w) A1 < i < #,(a)} is the set of symbol occurrences
associated with w. -

— pos,, (a')) =len(u) + 1 is the position of a symbol occurrence a'’) € alph(w), where
u is the longest prefix of w such that #,(a) =i — 1.

— w=pos,!(1)...pos, ' (len(w)) is the enumerated representation of w.

— totord(w) = (alph(w), {(a), b)) | pos;!(a)) < pos;! (b())}) is the total order
induced by w.

The definition of totord(w) is sound as we have seq(totord(w)) = w.

5 Mazurkiewicz Traces

Let ¥ be a nonempty alphabet of actions (symbols) fixed throughout the rest of this
paper. The finite sequences in X* will be called words, and the indexed actions in X
will be called events.

A concurrent alphabet is a pair ¥ = (X, ind), where ind C X x X is a reflexive and
symmetric independence relation on the actions in X. The corresponding dependence
relation is given by dep = (X x X) \ ind.

A concurrent alphabet ¥ defines an equivalence relation =y identifying words
which differ only by the ordering of independent actions. Two words, w,v € X*, sat-
isfy w =y v if there exists a finite sequence of commutations of adjacent independent
actions transforming w into v. More precisely, =y is a binary relation over £* which
is the reflexive and transitive closure of the relation ~y such that w ~y v if there are
u,z € X* and (a,b) € ind satisfying w = uabz and v = ubaz.

Equivalence classes of =y are called (Mazurkiewicz) traces (see [6,27,28]), and
the trace containing a given word w is denoted by [w]y. The set of all traces over W is
denoted by X*/—,,, and the pair (£*/=,,,0) is a (trace) monoid, where 7o 7' = [wn']y,
for any words w € T and w' € T/, is the concatenation operation for traces. Note that
trace concatenation is well-defined as [ww']y = [wW']y, for all w,v € T and W',V € 7.
Similarly, for every trace T = [w]y and every action a € X, we can define alph(t) =
alph(w) and #,(7) = #,(w).

Trace equivalence can be characterised in at least two different ways, given below:
(i) by considering projections onto binary dependent subalphabets (i.e., {a,b} such that
(a,b) € dep); and (ii) by considering positions of the occurrences of dependent actions.

Theorem 4. The following statements are equivalent for all u,w € X*:

1. u=ypw.
2. wap () = Ty py (W), for all (a,b) € dep.
3. alph(u) = alph(w) and, for all a¥), b)) € alph(w) satisfying (a,b) € dep:

pos, () < pos,(bV)) <= pos, (a) < pos,,(b7).

Proof. (1) < (2) follows from [39], and (1) <= (3) from [23]. O
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Let < be an arbitrary total order on X extended lexicographically to X*. A sequence
w € X* is in Foata canonical form w.r.t. the dependence relation dep and a lexicograph-
ical order < on X*, if w =w;...w, (n > 0), where:

— each w; is a nonempty word without multiple occurrences of actions such that the
actions of alph(w;) are pairwise independent and w; minimal w.r.t. lexicographical
order < among [w;]y, and

— for each i > 1 and a occurring in w;, there is b occurring in w;_; such that (a,b) €
dep.

The intuition behind the Foata canonical form is that it groups actions into greedy max-
imally concurrent steps.

Theorem 5 ([3]). Every Mazurkiewicz trace has a unique representation in the Foata
canonical form.

The above result is a simple consequence of Theorem 1; however, it was proven
independently and before Theorem 1.

6 Interval Sequences

Interval traces — introduced in [22] and substantially refined in [20,21] — have
their roots in Mazurkiewicz traces [6,27,28] and Fishburn’s representation of inter-
val orders [8]. The latter allows to represent interval orders by suitable sequences of
event beginnings and event endings that we call interval sequences. In principle, inter-
val traces are specialized Mazurkiewicz traces over the domain of interval sequences.

For each a € X (or a € X), we will use a; to denote the beginning of a, and a| to
denote the ending of a. Moreover, for every setA C X (or A C f), we denote A} = {a[ \
acA},Aj={a;|acA},andA; =A;UA|.

We would like to emphasise the difference between the notations f(a),&(a) and
ar,a|. The first notation is used for partial orders, so each (a),€(a) are unique, while
the second notation is for sequences, so both a; and a| may occur many times.

Definition 1. A sequence x over X is interval if i, 4, (x) € (aja))*, for everya € X.
We then denote by ev(x) the subset of £ such that ev(x) = zﬁﬁl(x). All interval sequences
are denoted by IntSeq.

Example 4. w = a;b\b|a|c;a)b;c|b|a|aa, is an interval sequence, but neither a|b;b|a;
nor bybac| is. Moreover, ev(w) = {aM) . a@ 4B p() p@ 1 o

Interval sequences are closed under concatenation.
Proposition 4 ([22]). For all x,y € IntSeq, xy € IntSeq.

Interval sequences provide a simple sequence representation of interval orders via
the Fishburn representation. They are conceptually close to ST-traces [40,42] proposed
earlier. The difference is that ST-traces were defined for Petri nets, whereas interval
sequences do not assume any system model.
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Every interval sequence x generates a total order totord(a/lﬁl(x)7 <) as defined at
the end of Sect. 4. For example, x = a;bja|b|aja| generates

a([l) <1Xb([1) qxaw < b(Ll) <1xa([2) qxa(f) .
Although an interval sequence generates a total order on the beginnings and ends of
events it represents, in general there is no similar representation for the events in X it
represents. To achieve the desired result, one needs to switch to interval orders.

Definition 2 ([21,22]). The interval order generated by an interval sequence x € IntSeq
is defined as intord(x) = (ev(x), «;), where, for all a¥),b1) € ev(x),

a4, bV = aEi) <1Xb([j> .

Note that, by Theorem 2, intord(x) is an interval order.

Example 5. In Fig. 1, pos = intord(aja c;bibjajaic;). In Fig.2, we have pos =
intord(aa|b;b|cidid|c|). Moreover, pos is generated by aja bcib dc|d| as well as
thirteen other interval sequences. o

A characterisation of interval orders generated by interval sequences is provided by
the next result.

IThgorem 6. intord(x) = (ev(x),{(a?,p)) | posx(a(t")) < posx(b(rj))}), for every x €
ntSeq.

Proof. Follows directly from the definitions. a

There is an alternative way of associating ‘position’ to an event of an interval
sequence x € IntSeq based on Theorem 3. More precisely, for all ), (/) ¢ ev(x):

p/O\SX(a(Ti)) = ﬁimord(x) (a(l)) and p/o\sx(b(lj)) = Sintord(x) (b(j)) .

For example, if x = a;bja b|a;a| then p’o\sx(a([z)) = 3 whereas posx(agz)) =5.

Interval sequences generating the same interval orders assign the same modified
positions to events, and they also form a (Mazurkiewicz) trace. To show the latter, let
Wiseq = (Z}|,indjseq) be a concurrent alphabet such that

indiseq = {(ar,b[) la#be Z}U{(a[,bt) la£beX}.
Theorem 7. The following statements are equivalent, for all x,y € IntSeq:

1. intord(x) = intord(y).

2. x=wy,, )

3. ev(x) = ev(y) and pos, = pos,.

Proof. (2) = (1) By the definition of ind., we have x ~y,, y = <4,=<, and
ev(x) =ev(y).

(1) = (2) Suppose that x Zy;, y and ev(x) = ev(y). From the definition of indj, it
follows that there are a'’), b)) € ev(x) = ev(y) such that a(ﬁ <y b(rj) or b<[j) <y a(j), so by
Definition 2, €,#<,.

(1) < (3) Itis a consequence of Proposition 2. O

That is, [x] comprises interval sequences generating the same interval order.

= LPz’seq
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7 Interval Traces

An interval trace alphabet is a tuple @ = (X, wind), where wind C X x X is an irreflex-
ive relation called weak independence. Intuitively, if (a,b) € wind then a and b may
occur simultaneously, or a may occur before b, with both executions being equivalent.
In general, wind is not symmetric.

Example 6. If (a,b) € wind then the interval sequences aa|b;b| (representing a before
b) as well as a;bja\b|, biaja|b|, a;bb|a|, bya;b|a| (all representing simultaneous exe-
cution of a and b), will be considered equivalent. o

The following rendering of wind as a relation over X leads directly to the concept
of interval traces.

Definition 3. Let @ = (X, wind) be an interval trace alphabet. Then ¢ = (X, indg) is
an internal interval trace alphabet, where ind¢ is a relation over X given by:

indp = {(ay,by),(a;,b)) |a#beZ}U{(a),by),(br,a)) | (a,b) € wind} .
The corresponding interval dependence relation is

depp = (21 x Zy)) \indo
= {(a}, b)), (br,a)) | (a,b) ¢ wind} U{(a},a}), (a},a)) |a € Z} .

We will skip ‘internal’ and just write ‘interval trace alphabet’ for ¢ = (X}, inde)
which is a well-defined concurrent alphabet. The first component in the formula for
indp follows from the generalisation of the observation that the interval sequences
aibya\b|, bya;a\b|, ayb;b|a|, and bya;bja| represent the same relationships between
events, namely that a(!) and b(") are simultaneous.

As interval traces are a class of Mazurkiewicz traces, we also adapt the standard
trace notation of the latter. Moreover, for the reminder of this section, we assume that
@ = (X,wind) and ¢ = (Z;|,indg) are fixed.

Definition 4 ([21,22]). A Mazurkiewicz trace [x]y over ¢ = (Z;,inde) is called an
interval trace if x|y C IntSeq.

The soundness of the above definition is due to the following result.

Proposition 5 ([21]). Let ¢ = (Zn,ind@) be an interval trace alphabet, and let x,y €
IntSeq.

1. [x]¢ C IntSeq.
2. [xJo Vg € [xylg C IntSeq.
3. intord(x) = intord(y) = x =4 y.

A result similar to Proposition 4 also holds for interval traces.
Theorem 8. The following statements are equivalent for all x,y € IntSeq:

1. x=4y.
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Fig.2. A weak independence relation wind, the interval independence relation ind derived from
wind (the default part given by Definition 3 is represented by dotted lines), and interval orders
generated by interval sequences from the interval trace [aa|b;b|cic|dd)]y.

2. Miay b} (X) = Togq 53 (), for all (a,b) ¢ wind.
3. ev(x) =ev(y) and, for all a'V,bY) € ev(x) such that (a,b) ¢ wind:

pos,(al”) < pos, (b)) <= pos,(al”) < pos,(b") .

Proof. (1) <= (2) follows from [20], and (1) <= (3) from Proposition 2. O

Since interval traces are a special case of Mazurkiewicz traces, the concept of
canonicity applies for them as well. Assuming that < is a total ordering of X, we
extend it to Xy as follows: a; < b; < @] < b| whenever a < b. This new order is
called the natural ordering of Xy, which is then extended to a lexicographical order on
X F‘[ in the standard fashion. Let y € [x]4 be an interval sequence in Foata canonical form
with respect to the dependence relation dep4 and the natural lexicographical order on
Eﬂ given above. Since any interval trace is also a Mazurkiewicz trace, there is exactly
one such a canonical sequence in [x]y.

While interval traces can model a broad range of concurrent behaviours where the
observations are represented by interval orders, there are cases that cannot be handled
by them. Consider the following example.

Example 7. Let E = {a,b,c} where a, b and c are three atomic operations defined as
follows (we assume simultaneous reading is allowed):

a: x—x+1, b: x—x+2, ¢c: y<—y+1.
It is reasonable to consider them all as ‘concurrent’ as any order of their executions,
yields exactly the same results. Note that while simultaneous execution of a and ¢, and
b and c are allowed, the simultaneous execution of a and b is not!. o

This case cannot be modelled by any interval trace. Had such trace exist, we would
have: aja|b;b| =¢ b;b|aja|, as ab and ba are equivalent executions, but (a;,b|) ¢ inde
and (by,a)) ¢ indg, as the simultaneous execution of a and b is not allowed, resulting
in a contradiction.

This case can easily be modelled by g-comtraces of [19] and powerful step traces
of [12], but these two models assume that observations are fully represented by step
sequences (i.e., stratified orders), a subclass of interval orders, so they still do not cover
the most general case.



156 R. Janicki et al.

8 Interval Traces with Mutex Relation

A solution to the problem discussed at the end of the last section is to add a new relation
called mutex. In principle the same idea was used for step traces [12].

Definition 5. A mutex interval trace alphabet (or Mi-trace alphabet) is a triple @ =
(X, wind,mut), where wind C X x X is an irreflexive relation called weak independence
and mut C X x X is an irreflexive and symmetric relation called mutual exclusion.

If (a,b) € mut then the executions orders a followed by b, and b followed by a are
equivalent. E.g., if (a,b) € mut then the interval sequences aja b;b| - which represents
a before b, and b;b|a;a| - which represents a after b, will be considered equivalent.

For the case from Example 7, we would have wind = {(a,c),(c,a), (b,c),(c,b)}
and mut = {(a,b), (b,a)}.

Definition 6. Let @ = (X,wind,mut) be a Mi-trace alphabet. Then ¢ = (X}, ind,
mutg) is an internal mutex interval trace alphabet (or Mi-trace alphabet), where indgp C
2y x Xy and mutgp C Xy x X X X) X X are relations given by:

indp = {(ar,by),(a,b)) [a#b e XyU{(a),b)),(br,a)) | (a,b) € wind}
mute = {(ay,ay,b,b)) | (a,b) € mut} .

We then introduce equivalences on sequences following ideas behind the original
traces model.

Definition 7. Let ¢ = (X}|,ind,mute) be a Mi-trace alphabet. We define binary rela-
HONS Rjng, Rimut, B¢, =¢ Over ZF*L’ as follows:

1 Forallx,yéZﬂ:
— X RV ifx=zefwandy = zfew, for some z,w € Zﬂ and (e, f) € indg.
— X Ry ¥ if X =zaya|bybw and y = zb\b|a,a\w, for some z,w € Ef‘l and
(ahaL,br,bL) € muty.

2. Ny = ~ind U = mut-

3. =¢ = (%(p)*

Clearly the relation =, is an equivalence relation and an equivalence class of =g,
TE 2/;¢ , will be called a mutex interval trace (or MI-trace) if T C IntSeq.

The trace containing an interval sequence w is denoted by [w]4, and the trace con-
catenation o is defined as 7o 7/ = [ww/], for any interval sequences w € T and w' € 7.
Clearly, we have [ww']y = [w']4, for all w,v € T and w',v € /. However, this is not
enough to prove that the definition of MiI-trace is sound. For this we need to show a
result similar to Proposition 5.

Proposition 6. Let ¢ = (X}, indo,mute) be a Mi-trace alphabet, and x,y € IntSeq.

1. [x]y C IntSeq.
2. [xlg[y]o € = [xy]p C IntSeq.
3. intord(x ) intord(x) = x = y.
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Fig.3. An example of relations wind, mut, inde and mutg for ¥ = {a,b,c,d,e}. The relation
wind is represented by an arrow, mut by dashed line, the part of indg from Definition 6 by solid
line, quadruples of mutg are connected by dashed lines, and the part of indg from Definition 6
is omitted (dotted lines in Fig. 2).

Proof. (1) From Definition 6 we know that a; and a| cannot commute for any
a € X. Similarly, from Definition 6, we have that mut also does not change the
orders between a; and a| for any a € X. Hence, if 7(, ,}(x) € (aja;)" then also
Ta;.a)}(s) € (aja)” for each s € [x]y.

(2) A consequence of Proposition 4 and (1) above.

(3) From Proposition 5(3), it follows intord(x) = intord(x) = x(~,4)*y and from
Definition 7(3), we have x(~juq)*y = x =4 y.

O

Note that if mut # & then there always exists an interval sequence x such that [x]=
is not a Mazurkiewicz trace. This follows from the fact that the set of interval sequences
{aja\bib|,bibjaja,} is not a Mazurkiewicz trace, for any ind. However, if wind = @
and mut = {(a,b), (b,a)}, then {a[atbrbt,b[bm[a[} = [a[aLb[bl]E, so it is a legal MI-
trace.

Example 8. Let @ = (X, wind,mut) be a Mi-trace alphabet, with ¥ = {a,b,c,d, e}
and wind,mut as defined in Fig. 3. Consider an interval sequence ajca b;c|b|ddee|
which generates the interval order po; in Fig.4. Let T = [ajcja\b;c|bjdd|eje||= for
the relations from Fig. 3. One can show by inspection that T comprises the following
sequences:

aiciaibicbidid\eje| ciajabicibididjere; ajcia|bibiciddere,
ciajaibibicdid\eje)  ajciabicibiejeidid, ajcia|bbiciere|dyd,
aiciabibiciejeidid|  ciajabibciejejdid;  ajabicibiciddere,
ajajcibibic|did\eje| aja\bicicibididjere;  ajajcibicbiddere)
ajajbicibicieje\did|  ajaicibibiciejeidid,  ayabicicbjereidd,
ajajcibieibiered;d,

The interval orders generated by the interval traces from 7 are exactly the partial orders
po7 — poyo presented on the right hand side of Fig. 4. o
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We will now prove the result similar (but weaker, one way only) to that of Theo-

rem 8, but for MiI-traces.

Proposition 7. Let x,y € IntSeq and x =4 y. Then:
1. n{abb[}(x) = n{al’b[}(y),for all (a,b) ¢ wind Umut.
2. ev(x) =ev(y) and, for all aEl),b(ﬁ) € ev(x) such that (a,b) ¢ wind Umut:

posx(a(p) < posx(b([j)) = posy(ap) < posy(b([j)) . (*)

Proof. (1) Since =4 equals (Ring U ~mur )™, it suffices to prove the result for ~2;,; and

(@)

Rur- FOr x =4 v it follows from Theorem 8. For x ~,,,; y, we have:
x =zaja\b;byw Ny = zbibjara\w A (ay,a),by, b)) € muty .

For all ¢,d such that {c,d} # {a,b} we have w4y (x) = Ty¢ 4,y (2) - e g} (W) =
e, d }(y) so we are done.

Agam it suffices to prove for ~;,,q U ~s. For x =4 y it follows from Theorem 8.
Consider x ~; y, 1.6. x = zaja\bybyw Ny = zbib|a w/\( ay,ay,by,b)) € muty .
For each o € ev(z) we have posx(a) = posy((x) = posz(oc), while for each o €
ev(w) we have pos, (o) = pos, () = len(z) +4 + pos,, (). This means the formula

(*) holds for all a|”, 6", a” b/ € ev(z) Uev(w). Assume u = zaa b;b| and it =

Fos T
2a([k)a<tk)b([l)bil), for some k,I. Clearly for every c(ll) € ev(z), we have pos, (¢ (ll)) <

posx(a([k)) and posy(cY)) < posx(aﬁk)). Similarly for b< ). Now consider c([ J)
we have posx(a(tk)) < posx(c([j)) and posy(a(Lk)) < posx(c([ﬂ)

cev(w),

, and similarly for b(L ),
O

Although MI-traces are no longer Mazurkiewicz traces, a version of Foata canon-

ical form can still be introduced, intuitively corresponding to some greedy maximally
concurrent representation.

order po there is its greedy maximally concurrent extension gmcr(po). Let SEpy

Consider a Mi-trace [x]s. From Theorem 1 it follows that for each interval

¢:

{gmer(intord(y)) | x =4 y} be the set of such extensions generated by the Mi-trace
[x]g, and let SSEQy,), = {sseq(gmer(intord(y))) | x =4 y} be an equivalent set of step
sequences.

For example, if we take x = ajcja|b;c|b|d,d eje| from Example 8, then SE[)% =

{pos, pos, poy, po1o} and SSE O ) comprises the following sequences:

aiciajc\bibdid\eje|  ciajac\bibididiere; ajcicia bibiddere,
ciaiciaibibdidere) ajciaic\bibiejeidid|  cajaic|bibjere|dd,
aicicia\bibeje|did)  ciajcia\bbiejeidid,  ajabicibiciddere)
ajaicibibicididiere) ajabicicibdidiere;  ajajcibicibididere,
ajaibicibiciejeidid|  ajajcibibciejejdid,  ayabicicbjere|dyd,
ajajcibieibiered;d,

A step sequence 0 = A ... Ay € SSEQ|y 0 is in greedy maximally concurrent form

if, for every By ...B,, € SSEQ[)%
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— either k =mand |A;| = |B;| fori=1,... k, or
— thereis j < k such that |A;| = |Bj| fori=1,...,j—1and |A;| > |Bj|.

We denote this by ¢ € SSE Q?;]";
Clearly, SSEQﬁC’]"; # &, though in general it may contain more than one step
sequence. For example for x = ajca bjc b\dd ee| from Example 8, SSEQ‘E:]"; com-

prises the following sequences:

a(c[aLclb(de[dLe[eL [a C b defdleTeL a[c[ Lalbfbld[dle[el
ciaicia\bb\d\djere; ajciac b 1bieje dd, bib
aycicia by b ere d d carcia; b 1beredd,

The first four interval sequences generate pos and the last four pog, which are both
stratified orders from Fig. 4.

Let < be an arbitrary total ordering of 2. We extend it to a natural ordering of X}
by a; < by < a| < b| whenever a < b, and then extend it to a lexicographical order
of X FFL' Then interval sequence x is in Foata canonical form if it is the smallest among
those generating step sequences in SSE Q‘[g;i; Note that not every interval trace has a

Foata normal form defined this way.

9 Mutex Interval Trace Semantics of Petri Nets

Inhibitor arcs, introduced in [10], allow a transition to check for an absence of a token.
In principle they allow ‘test for zero’, an operator the standard Petri nets do not have
(cf. [31]). In this paper, inhibitor nets are just elementary nets [37] with inhibitor arcs.

Formally, an inhibitor net is a tuple N = (P, T, F,I,my), where P is a set of places,
T is a set of transitions, P and T are disjoint, F C (P x T) U (T x P) is a flow relation,
I C P x T is aset of inhibitor arcs and mg C P is the initial marking. An inhibitor arc
(p,e) € I means that e can be enabled only if p is not marked. In diagrams (p,e) is
indicated by an edge with a small circle at the end. Any set of places m C P is called a
marking. The net N of Fig. 4 is an inhibitor net with / = {(s3,¢1),(b,cy),(d,ey), (e,d})}.

A mutex inhibitor net (or Ml-net) is a tuple N = (P,T,F,I,M,mp), where
(P,T,F,I,mp) is an inhibitor net and M C T x T is a symmetric mutex relation.
The mutex relation M can only be defined on transitions that can be interpreted as
independent, i.e., their neighbourhoods (unions of entries and exits) are disjoint in
(P7T7Falam0)'

The net N from Fig.4 is an example of MI-net, where I = {(s3,c¢)} and M =
{(d,e),(e,d)}. Consider this net N but withour M = {(d, ), (e,d)}. Assuming the stan-
dard step sequence semantics of inhibitor nets (cf. [1, 15]), we can get from the marking
{54,585} to {s6,s7} either by firing the step {e,d}, or by firing sequences of singleton
steps {e}{d} or {d}{e} (i.e., sequences ed or de). The relation M = {(d,e),(e,d)}
disallows simultaneous execution of d and e, leaving only sequences ed and de.

Inhibitor nets have been introduced in [11] to solve a synchronization problem not
expressible in classical Petri nets. Such nets allow ‘test for zero’, a feature that the stan-
dard Petri nets do not have (cf. [4,31]). Despite their simplicity, basic inhibitor nets [15]
can easily express complex behaviours involving weak causality [1,23,30], priorities,
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Fig. 4. N is the interval representation of Mi-net N. All runs start from {s1,52} and end at {s6, s7}.
poj — —pog on the right side represent runs of both N and N. N’ is an inhibitor net and N is its
interval representation. The interval border inside the dotted square is an observation in both N’
and N'.

various versions of simultaneity, etc. [15,42]. Inhibitor nets used in this paper are exten-
sions of the elementary net systems [37] (i.e., we always assume that (P, T, F,mg) form
an elementary net system). The mutex relation (arcs) were introduced in [24] and sub-
stantially influenced the development of step traces [12,13].

The mutex relation matters only if net operational semantics allows simultaneous
executions, e.g., it is step sequence semantics [1,15], ST-traces semantics [40,42], or
interval sequence semantics [16,21]. For the standard firing sequence semantics it is
irrelevant. On the other hand, interval sequence semantics for inhibitor nets has been
defined as firing sequence semantics of nets that are interpreted as their interval repre-
sentations. Consider the net N’ from Fig. 4 which is N after deleting s, 57, d, and e. The
net N’ — a subnet of N — is its interval representation.

The basic assumption behind interval executions and interval sequences is that each
transition has its beginning and end. In such a case, one cannot adequately describe
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system states by markings alone. We need to supplement markings with information
about transitions that have started, but have not finished yet.

The transformation of an inhibitor net into its interval representation is based on two
principles. If inhibitor arcs are not involved, to represent transitions by their beginnings
and ends we might just replace each transition by the net , as proposed
for example in [2] for nets with priorities, or in [44] for timed Petri nets. Each inhibitor
arc must be replaced by two when transformation is made, and this construction is
explained in detail in [21]. For the nets N’ and N’ of Fig. 4, the inhibitor arc (s3,c¢) in N’
is transformed into two inhibitor arcs, (s3,¢}) and (b,¢}), in N

Consider the net N’ in Fig. 4. Assuming that we can ‘hold tokens’ in executed tran-
sitions and holding a token in ¢ overlap with holding tokens in a and b, the net N can
generate the interval order from Fig. 4 that is inside dotted square. This interval order
can for example be represented by an interval sequence acya byb|c| which is a fir-
ing sequence of the net N'. Now consider the net N which includes the mutex relation
M = {(e,d),(d,e)}. It prevents ﬁring simultaneously e and d. In the net N, transition

is replaced by transition E is replaced by M

the simultaneous execution of e and d is modelled either by sequence e;d; or by d
(followed by e|d| or d|e)). Inhibitor arcs added by the translation, (e, ) and (d, [),
prevent such ﬁring sequences. All this leads to the following definition.

Definition 8. The interval representation of a Ml-net N = (P,T,F,I,M,my) is the
inhibitor net N = (P T F 1, ,mo) such that P=PUT, T = Ti|, I:Iiamulmm, where:

| (p,1) € FYUL(1,p)
: | pJ)EI}U{(rt)I
= 1017, (2,v7) | (2,v) € M} .

(t,p) € FYU{(11,0), (8,1)) [1 € T}
)

|
(p,t) €IN(p,r) € F}

The net N in Fig.4 is the interval representation of N from the same diagram. Note
also that initial markings of N and N are equal (meaning that all new places from P\ P
are initially empty). In a similar way we can capture states of N, where all initiated
transitions are also finalised.

We will use the standard black arrowhead notation for the flow arcs, and white
dot notation for the inhibitor arcs. Sometimes we write “°®> and ‘> instead of “°* to
indicate which kind of inhibitor arc is involved, i.e., arcs OF Lyur-

The interval representation of any MI-net is always an inhibitor net and we are inter-
ested in interval sequences’ (that represent interval orders) generated by this inhibitor
net. In other words, as for inhibitor nets [21], the interval sequence semantics of N is
the firing sequence semantics of N.

The standard firing sequence semantics for an inhibitor net NI = (P, T,F,I,myp) is
defined as follows:

— A transition 7 is enabled at marking m if *r C m and (r* Ut°) Nm = @.

2 Defining interval step sequences is mathematically possible but it does not make much sense
as ¢} and ¢, are interpreted as event beginning and its end, i.e., they are instantaneous, so their
simultaneous occurrence is not observable - when time is continuous, or it can entirely be
represented by interleaving - when time is discrete (see [22,34]).
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— An enabled ¢ can occur leading to a new marking m’ = (m\ *t) Ut*, which is denoted
by m[t)m’, or m[t)ym'.

— A firing sequence from marking m to marking m’ is a sequence of transitions f; .. .#;
(k > 0) for which there are markings m = my,...,m; = m’ such that m;_ [t;)m;, for
every 1 <i < k. This is denoted by m[r;...tx)m’" and t; ...t € FSy;(m ~» m'). In
other words, FSy;(m ~» m’) is the set of firing sequences of NI that lead from the
marking m to m’.

Definition 9. Let N and N be as in Definition 8, and m,m’ C P. We respectively define
the firing interval sequences of N from m to m’ and the firing interval orders of N from
mto m', as follows:

FISy(m ~>m') = FSg(m ~ m')
FIOy (m ~» m') = intord(FSg(m ~ m')) .

The following result validates the last definition.

Proposition 8. Ler N and N be as in Definition 8, and let m,m’ C P.

1. FISy(m ~ m') C IntSeq.
2. Forall x € FISy(m ~ m') and y € IntSeq,

intord(x) = intord(y) = y € FISy(m ~~>m').

Proof. (1) Letx € FISy(m ~ m'). We need to show that Ta; a)} () € (aja))”, for every
a € X. Let x = za;w and m[za;)m”. Since a} = {a}, we have a € m". We also have

that: (i) for any m, C ﬁ, if a € my, then a; is not enabled in m,, and (ii) the only way
to remove a from my, is to fire a| (as *a) = {a}). Hence we must have x = ya;w'a, v,
where 711, 4y (W') = A. As aresult, . 41 (x) € (a1a))".

(2) Assuming that ¥ = T, let ~ be a binary relation on IntSeq such that x ~ y if
x =zaibyw and y = zba;w, for some z,a,b,w. By Theorem 7, x ~* y <= intord(x) =
intord(y). Hence it suffices to show that if x € FISy(m ~» m’) and x ~ y, then y €
FISy (m ~ m').

Let x = za;byw and y = zbjayw. Suppose that m[z)m;[a;)my[b;)m3[w)m'. This
means that both a; and b; are enabled in m, so the statement m[z)m [by)m} [a;)m3[w)m’
is also true, i.e., y € FISy(m ~ n'). m|

In order to define trace semantics of MI-nets we need to construct suitable relations
wind and mut from a Mi-net N = (P, T,F,I,M,mg). While mut is just M, the relation
wind can only be derived from the structure of the interval representation N, similarly
as for the interval trace semantics of [21].

Definition 10. Let N and N be as in Definition 8. We define relations indg, windy,
muty, and mutg, as follows:

indy = {(ay,by),(a,b)) |a#beTU .
Harb) |a%be T A% *N°bt = °ita; b7 = b N*a? = &}
windy = {(a,b) | (b},a|) € mdN}
muty =M
muty = {(ay,a|,by,b)) | (a,b) € M}.



Interval Traces with Mutex Relation 163

Note that the formula for indy; is in the spirit of Mazurkiewicz’s original concept and
follows from a detailed discussion of similar relations in [21].

It is straightforward to check that (T, windy, muty ) is a Mi-trace alphabet. Let =y be
the MI-trace equivalence relation induced by it. The following result shows the sound-
ness of concepts discussed above.

Proposition 9. Let N and N be as in Definition 8, and m,m’ C P. Then:
x € FISy(m ~m') <= [x]=, CFISy(m~>m') .

Proof. (<=) Obvious.

(=) It suffices to consider the following two cases.

Case 1: x = za;b\w, y = zbja;w and (a},b|) € indg. Suppose that
m(z)m[a;)my b )m3[wym’ .

Since (ay,b)) € indg, both a; and b| are enabled at m, so we also have
mlz)my[by)m[ay)ms[wym' .

Hence y € FISy(m ~ ).
Case 2: x = zla[atbﬂﬂzz, y= Zlb[blara