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Abstract 

L-type Ca2+ channels (LTCC) are voltage-
gated Ca2+ channels with particular impor-
tance for cardiac function. They mediate 
Ca2+-induced Ca2+ release from the sarcoplas-
mic reticulum and thus are essential for 
excitation–contraction coupling. Furthermore, 
LTCCs play a key role in pacemaker and con-
ductive tissue. Taken together, it is not 
surprising that LTCCs are associated with car-
diac arrhythmias. The members of the family 
of voltage-gated Ca2+ channels differ in cod-
ing genes, expression pattern, and physiologi-
cal as well as pharmacological properties. 
Cardiac LTCCs are defined by the pore-
forming subunits CaV1.2 and CaV1.3, respec-
tively. The expression and function of LTCCs 
is modulated by auxiliary CaVβ and CaVα2-δ 
subunits, which are also encoded by several 
genes. Furthermore, LTCC subunits are sub-
ject to splicing, cleavage, various protein–pro-
tein interactions (e.g., with calmodulin), and 
modulation by phosphorylation (e.g., by pro-
tein kinase A). This chapter focuses on the role 
of LTCCs in congenital and acquired cardiac 
arrhythmias. We review LTCC mutations 
associated with rhythm disturbances and 
LTCC dysregulations caused by pathologic 

immune system activation. Furthermore, we 
address the dysfunction of LTCCs involved 
in the pathogenesis of atrial fibrillation, 
rhythm disturbances associated with heart fail-
ure, and age-related alterations of the 
heartbeat. 
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Abbreviations 

ACHB Autoimmune congenital heart block 
AF Atrial fibrillation 
AID Alpha-interaction domain 
AP Action potential 
APD Action potential duration 
AV Atrioventricular 
BrS Brugada syndrome 
CaM Calmodulin 
CC-
AAb 

Agonistic CaV1.2 autoantibody 

CDI Ca2+-dependent inactivation 
CICR Ca2+-induced Ca2+ release 
CPVT Catecholaminergic polymorphic 

ventricular tachycardia 
DCM Dilated cardiomyopathy
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EAD Early after depolarization 
ERS Early repolarization syndrome 
HF Heart failure 
HVA High-voltage activated 
LQTS Long QT syndrome 
LTCC L-type Ca2+ channel 
LVA Low-voltage activated 
miR MicroRNA 
NaV Voltage-gated Na+ channel 
NCX Na+ /Ca2+ exchanger 
RyR Ryanodine receptor 
SA Sinoatrial 
SAN Sinoatrial node 
SANDD SAN Dysfunction and deafness 
SCD Sudden cardiac death 
SQTS Short QT syndrome 
SR Sarcoplasmic reticulum 
TS Timothy syndrome 
VDI Voltage-dependent inactivation 
VF Ventricular fibrillation 
VGCC Voltage-gated Ca2+ channel 
VT Ventricular tachycardia 
VWA von Willebrand factor A 

10.1 Introduction 

L-type voltage-gated Ca2+ channels (LTCCs) are 
voltage-gated Ca2+ channels (VGCCs) ubiqui-
tously expressed in cardiac tissue, but also in 
smooth muscle, pancreas, adrenal gland, or brain 
tissue. LTCCs mediate entry of calcium ions 
(Ca2+ ) into cardiomyocytes, by this initiating 
excitation–contraction coupling. Furthermore, 
LTCCs are critically involved in shaping cardiac 
action potentials (AP) [1]. In sinoatrial and atrio-
ventricular nodes, LTCCs are involved in dia-
stolic depolarization, thereby participating in the 
AP firing and regulating automaticity 
[2, 3]. Accordingly, loss-of-function mutations 
in LTCCs can lead to sinus bradycardia, sick 
sinus syndrome, and dysfunction of atrioventric-
ular conduction [4–7]. In the working myocar-
dium and Purkinje system, depolarizing L-type 
Ca2+ currents determine the amplitude of the AP 
plateau, counterbalanced by repolarizing K+ 

currents. Overlapping with an increase of K+ 

outward-currents, inactivation of LTCCs drives 
the AP into the repolarizing phase and, thus, 
affects its duration (APD) [3]. A disturbed inter-
play of depolarizing and repolarizing currents and 
its influence on APD may result in susceptibility 
for life-threatening ventricular [8] and atrial [9] 
arrhythmias. Correspondingly, mutations in 
LTCCs are associated with arrhythmic disorders 
such as long QT, short QT, Brugada, and early-
repolarization syndromes [10]. Furthermore, 
LTCCs are subject to pro-arrhythmic remodeling 
in diseased and/or aged hearts [11, 12]. 

This chapter focuses on the role of LTCCs in 
congenital and acquired cardiac arrhythmias. We 
review LTCC mutations associated with rhythm 
disturbances, LTCC dysregulations caused by 
pathologic immune system activation and dys-
function of LTCCs involved in the pathogenesis 
of atrial fibrillation (AF), rhythm disturbances 
associated with heart failure (HF), and 
age-related alterations of the heart beat 
(Table 10.1, Fig. 10.1). 

10.2 Molecular Properties of LTCCs 

VGCCs conduct Ca2+ upon surface-membrane 
depolarization. VGCCs are divided into high-
voltage activated (HVA) and low-voltage 
activated (LVA) channels according to their acti-
vation potential thresholds [13]. Furthermore, 
HVA VGCCs are characterized by higher channel 
conductance and slower channel inactivation 
compared to LVA VGCCs [13]. Based on their 
biophysical and pharmacological properties, 
HVA VGCCs are further divided into L-, P/Q-, 
N,- and R-type channels. LTCCs are sensitive to 
antagonistic drugs classified as 
1,4-dihydropyridines (e.g., amlodipine), 
phenylalkylamines (e.g., verapamil), and 
1,5-benzothiazepines (e.g., diltiazem) [13]. LVA 
VGCCs consist of the subfamily of T-type Ca2+ 

channels, which can pharmacologically be 
discriminated against LTCCs by the specific 
LTCC agonist (S)-(–)-Bay K 8644 and the 
T-type preferring antagonist mibefradil [14]. In 
cardiomyocytes, both L- and T-type VGCCs are



Table 10.1 Synopsis of rhythm disturbances and channelopathies related to L-type Ca channels

Gene/protein Pathophysiological effects
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expressed at significant levels [15–19]. LTCCs 
are the predominant VGCCs in the adult human 
heart [16–19], whereas T-type VGCCs seem to 

prevail in the early stages of the heart develop-
ment [16, 19]. Expression of T-type VGCCs in 
the adult myocardium depends on the species and
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2+ 

Phenotype/ 
channelopathy 

Exemplifying 
references 

Genetics 

CACNA1C (CaV1.2) LQT8 (including TS) Gain-of-function, ICaL [86, 91, 92, 
293] 

BrS3, BrS3/SQT4 Loss-of-function, ICaL [129, 130] 
SQT4 Loss-of-function, ICaL [138] 
ERS2 Loss-of-function, ICaL 

a [130] 
SAN dysfunction Loss-of-function, ICaL 

a,b [7] 
CACNA1D (CaV1.3) SANDD syndrome Loss-of-function, ICaL [6] 
CACNB2b (CaVβ2b) BrS4, BrS4/SQT5 Loss-of-function, ICaL [129, 130] 

ERS3 Loss-of-function, ICaL 
a [130] 

SNPs in addition to 
BrS3, BrS4, ERS3 
mutations 

Gain-of-function, ICaL 
c [130] 

CACNA2D1 
(CaVα2δ-1) 

BrS9 Loss-of-function, ICaL 
a [130] 

SQTS6 Loss-of-function, ICaL [145] 
ERS4 Loss-of-function, ICaL 

a [130] 
CALM1–3 (CaM) LQT14–16 Loss-of-function of CaM, reduced CDI of ICaL [68, 123] 
Autoimmunity 

CaV1.2 VT, SCD in DCM Agonistic antibodies, ICaL [156, 157] 
Idiopathic cardiac arrest Antagonistic antibodies, ICaL [180] 

CaV1.2 and CaV1.3 ACHB Ro/SSA antibodies, ICaL [154, 174] 
Inflammation 

CaV1.2 LQTSd IL-1, ICaL [190] 
AFd IL-1, ICaL [193, 194] 
LQTSd IL-6, CaV1.2 phosphorylation, ICaL [187] 
AFd TNFα, ICaL [195] 
AFd MIF, ICaL [196] 

Remodeling 

CaV1.2 and CaV1.3 Age-related SSS miR-1976 , ICaL [200] 
CaV1.2 and CaV1.3, 
CaVβ1, CaVβ2, 
CaVα2δ-1 

AF ICaL [207, 218] 

CaV1.2, CaVβ2a HF 
occurrence of rhythm 
disturbances 

Single LTCC activity ", channel hyper-
phosphorylation, reduced number of functional 
channels 

[253, 255, 
267, 273] 

Data are compiled from human and animal studies 
" indicates increase/upregulation; #, decrease/downregulation; ACHB, autoimmune congenital heart block; AF, atrial 
fibrillation; BrS, Brugada syndrome; CaM, calmodulin; CDI, Ca2+-dependent inactivation; DCM, dilated cardiomyopa-
thy; ERS, early-repolarization syndrome; HF, heart failure; ICaL, whole-cell L-type Ca

2+ current/current density; LQT, 
long QT syndrome (in the disease names); LQTS, long QT syndrome; LTCC, L-type Ca2+ channels; miR, microRNA; 
SAN, sinoatrial node; SANDD, sinoatrial node dysfunction and deafness; SCD, sudden cardiac death; SNP, single-
nucleotide polymorphism; SQT, short QT syndrome (in the disease names); SQTS, short QT syndrome; SSS, sick sinus 
syndrome; TS, Timothy syndrome; VT, ventricular tachycardia 
a Proposed mechanism, no experimental measurements 
b Accompanied by a titin mutation 
c Probably counteracted by a concomitant HERG channel mutation 
d Proposed related disorder, no/little experimental evidence



s

strongly decreases with increasing body size in 
mammals [20]. In diseased hearts, however, 
T-type VGCCs can be re-expressed [21].
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Fig. 10.1 Schematic 
overview of mechanisms 
underlying rhythm 
disturbances associated 
with L-type Ca2+ channel 
(LTCC) dysfunction. From 
left to right: LTCC 
mutations, either de novo 
or hereditary, aging and 
age-related diseases such 
as heart failure or atrial 
fibrillation, inflammatory 
diseases, or (auto-) 
antibodies can affect 
LTCC expression and/or 
function and lead to 
alterations in electrical 
activity of the heart or even 
to cardiac arrhythmia 

LTCCs are defined by their transmembrane 
pore-forming subunit, CaVα1 (CaV1.X), which 
determines most properties of the ion channel 
complex, which consists of the pore and up to 
three auxiliary subunits, CaVα2-δ, CaVβ, and 
CaVγ [13, 22]. Auxiliary CaVα2-δ and CaVβ 
subunits are constitutively bound to the CaVα1 
subunit, although different CaVβ isoforms can 
dynamically alternate in a competitive manner 
[23, 24]. CaVα2-δ and CaVβ modulate channel 
trafficking, gating properties, and interaction 
with other proteins. Cardiac LTCCs can also 
associate with CaVγ subunits in heterologous 
expression systems, but the role of this interaction 
in native heart tissues remains to be investigated 
[25]. Multiple genes encoding LTCC subunits 
and their alternative splicing provide molecular 
diversity of LTCCs [26]. In addition, the ubiqui-
tous Ca2+ sensor protein calmodulin (CaM) can 
be considered essential for LTCCs [27, 28]. CaM 
associates with the CaVα1 subunit with high 

affinity and regulates channel activity and Ca2+-
dependent feedback, e.g., Ca2+-dependent inacti-
vation (CDI). 

10.2.1 CaVa1 Subunit 

The CaVα1 subunit is the primary subunit of 
VGCCs (Fig. 10.2), which encompasses an 
ion-conducting pore with a selectivity filter and 
voltage sensor, as well as activation and inactiva-
tion machineries. It provides sites for regulatory 
interactions and drug binding [1, 29]. Ten 
phylogenetically related genes encode different 
CaVα1 subunits [1, 29]. Four of them, CACNA1S, 
CACNA1C, CACNA1D, and CACNA1F, encode 
the LTCC CaVα1 subunits, CaV1.1–CaV1.4, 
respectively. While CaV1.1 (CaVα1S) is specific 
for skeletal muscle cells, CaV1.4 (CaVα1F)  i  
essential for retinal photoreceptor function. 
CaV1.2 (CaVα1C) and CaV1.3 (CaVα1D) are the 
only LTCCs expressed in cardiac tissue and of 
particular functional relevance here.
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Fig. 10.2 Schematic structure of a CaVα1 subunit with 
associated CaVβ, CaVα2-δ, and calmodulin. CaVα1 
consists of four domains (DI–DIV), each comprised of 
six transmembrane segments (S1–S6). S4 segments are 
positively charged and serve as voltage sensors. S5 and 
S6 segments together with S5–S6 loops form the channel’s 
conducting pore. DI–DII loop contains the alpha-
interaction domain (AID) enabling high-affinity interac-
tion with CaVβ subunit. The C-terminus of CaVα1 can be 
either post-translationally cleaved (CaV1.2 channels) or 
truncated due to alternative splicing (CaV1.3 channels), 

as symbolized by the scissors. The proximal part of the 
full-length C-terminus binds calmodulin (CaM). CaM 
consists of two lobes, each having two Ca2+-binding 
sites. The distal part of the full-length C-terminus interacts 
with the proximal C-terminus and competes with CaM. Of 
note, the cleaved distal C-terminus of CaV1.2 can also 
non-covalently bind to the channel’s proximal 
C-terminus. CaVα2-δ subunit is anchored to the membrane 
through its δ portion and interacts with extracellular loops 
of CaVα1 

The CaVα1 subunit belongs to the family of 
four-domain cation channels, which also includes 
pore-forming subunits of voltage-gated Na+ 

channels (NaVs) [30]. CaVα1 protein with a length 
of approximately 2000 amino acids consists of 
four homologous domains (DI–DIV) connected 
by intracellular loops and having intracellular N-
and C-termini [1]. Each domain contains six 
transmembrane segments (S1–S6). S5 and S6 
are connected at their extracellular ends by the 
reentrant pore loops. Together, S5, S6, and the 
pore loops of DI to DIV form the ion-conducting 
pore of CaVα1 [1, 31–33]. The lower (intracellu-
lar) thirds of S6, which are rich in hydrophobic 
amino acids, interact with each other, sealing the 
pore in the non-conducting (closed) state of the 
channel. The positively charged S4 segments 
serve as voltage sensors. Their outward move-
ment in response to membrane depolarization 

allows S6 segments to diverge thus opening the 
channel [34]. The intracellular DI–DII loop forms 
the inactivation gate, which docks to the cytoplas-
mic ends of S6 segments upon channel opening, 
leading to voltage-dependent inactivation (VDI) 
[35]. Furthermore, this DI–DII loop of HVA 
VGCCs contains the alpha-interaction domain 
(AID) (Fig. 10.2), which enables interaction 
with CaVβ subunits [36]. The co-localization of 
AID and the inactivation gate in the DI–DII loop 
provides structural basis for profound regulation 
of VDI by CaVβ subunits (see Sect. 10.2.2)  [35]. 

The cytoplasmic C-terminus of CaVα1 allows 
channel regulation by numerous protein–protein 
interactions [37, 38]. Particularly, it binds CaM 
and thus permits Ca2+-dependent channel 
autoregulation [28]. Besides, distal C-termini of 
LTCC CaVα1 contain auto-inhibitory domains 
[39–42]. However, LTCC CaVα1 can exist in the



full-length form or in truncated forms, which lack 
the distal C-terminus. In CaV1.1 and CaV1.2 
channels, the distal C-terminus can be post-
translationally cleaved but remains 
non-covalently associated with the channel 
[39, 40]. A dissociated distal C-terminus of 
CaV1.2 channels can translocate into the nucleus 
and regulate transcription [37]. In CaV1.3 and 
CaV1.4 channels, short and long C-termini arise 
from alternative splicing [42–45]. 
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As mentioned above, from the family of 
LTCCs, only CaV1.2 and CaV1.3 were found in 
the heart. While CaV1.2 is ubiquitously expressed 
in all cardiac tissues, CaV1.3 is preferentially 
expressed in sinoatrial (SA) and atrioventricular 
(AV) nodes, can be found in atria and Purkinje 
fibers, and is practically absent in ventricles [17– 
19, 46, 47]. CaV1.2 and CaV1.3 channels are often 
expressed in the same tissues but can have distinct 
functions due to differences in their gating 
properties. CaV1.3 channels activate at more neg-
ative potentials than CaV1.2: the activation 
threshold of CaV1.3 channels is at about – 
50 mV, whereas CaV1.2 channels open at 
voltages above –30 mV [13, 46, 48, 49]. The 
low activation threshold of CaV1.3 channels, 
which is slightly more positive than the activation 
threshold of T-type VGCCs, makes CaV1.3 
channels suitable to support slow conduction 
and pace-making activity and this correlates 
with CaV1.3 expression patterns. 

10.2.2 CaVb Subunit 

CaVβ subunits are cytosolic auxiliary subunits of 
HVA VGCCs (Fig. 10.2) and the main modulator 
of activation, inactivation, and membrane 
targeting of these channels [36]. Structurally, 
CaVβ subunits consist of the so-called functional 
core flanked by variable N- and C-termini 
[36]. The CaVβ core comprises conserved SH3 
and GK domains, which are linked by a flexible, 
weakly conserved HOOK region. SH3 and GK 
domains evolved as interaction sites for protein– 
protein interactions [50, 51]. The SH3 domain of 
CaVβs can bind dynamin, promoting channel 
endocytosis [52]. The GK domain of CaVβs 

interacts with the family of RGK proteins (Rem, 
Gem/kir, and Rad), which are strong inhibitors of 
HVA VGCCs [53]. It also contains a tiny hydro-
phobic groove, termed α-binding pocket, which 
interacts with the AID of CaVα1 [54]. Both SH3 
and GK domains are required to reproduce multi-
ple functional effects of CaVβ, with the HOOK 
region being important for the modulation of VDI 
of HVA VGCCs [36]. 

Four CaVβ subfamilies are known, each 
encoded by a distinct gene (CACNB1– 
CACNB4), but due to alternative splicing several 
variants of each CaVβ isoform exist [36]. All 
CaVβ subunits have been found in the mammalian 
heart, while CaVβ2 is the most prominent. Among 
these, CaVβ2b,c are the most abundant, while 
CaVβ2d,e are only robust in young animals, and 
the expression levels of CaVβ2a seem to be the 
lowest [55–57]. CaVβ2 isoforms differ in their 
non-conserved N-terminal region and differen-
tially affect channel activity and inactivation 
[57]. Besides, cardiac CaVβ subunits can diverge 
in their subcellular localization: e.g., whereas 
CaVβ1b, CaVβ2 and CaVβ3 were detected in the 
T-tubule sarcolemma, CaVβ1a and CaVβ4 were 
found in the surface sarcolemma [58]. 

10.2.3 CaVa2-d Subunit 

CaVα2-δ subunits (Fig. 10.2) promote plasma 
membrane expression of HVA VGCCs, increase 
Ca2+ currents, shift activation to more 
hyperpolarized potentials, and accelerate inacti-
vation [59–61]. There are four genetic variants, 
CaVα2-δ1–4, encoded by CACNA2D1–4 genes, 
respectively [61]. A precursor protein, translated 
from CACNA2D, is cleaved to yield two 
polypeptides, α2 and δ, which, however, remain 
connected by disulfide bridges. CaVα2-δ is an 
extracellularly glycosylated subunit anchored to 
the plasma membrane by a 
glycosylphosphatidylinositol attached to the 
C-terminus of δ. The α2 portion contains multiple 
domains, e.g., von Willebrand factor A (VWA) 
domain, commonly involved in extracellular 
protein–protein interactions. VWA domain is 
important for the physical interaction with



extracellular loops of LTCCs and the modulation 
of their biophysical properties [33, 59, 60]. 
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All isoforms CaVα2-δ1–4 were found in the 
heart but only CaVα2-δ1 is abundantly expressed 
in human ventricles [17, 18, 62–64]. In atria, 
CaVα2-δ1 and CaVα2-δ2 were found to be 
expressed at similarly high levels [17, 64]. 

10.2.4 CaVg Subunit 

CaVγ subunits are transmembrane proteins 
encoded by eight CACNG genes. They build a 
functionally heterogeneous family and can regu-
late other proteins besides VGCCs [65]. CaVγ1 
was identified as a part of the skeletal muscle 
LTCCs. CaVγ4, CaVγ6, CaVγ7, and CaVγ8 were 
found in the human heart and they were able to 
associate with CaV1.2 and differentially modulate 
its properties in a heterologous expression system 
[25]. However, whether CaVγ regulates native 
cardiac LTCCs requires further studies. So far, 
there is no direct evidence of interaction between 
LTCCs and CaVγ in cardiomyocytes. 

10.2.5 Calmodulin (CaM) 

CaM is a universal Ca2+-sensing protein 
regulating a vast number of proteins [27, 66]. It 
can be considered as an auxiliary subunit of vari-
ous ion channels including LTCCs (Fig. 10.2) 
[27, 28]. In humans, CaM is encoded by three 
genes, CALM1–3, with divergent nucleotide but 
identical protein sequences [67]. All CaM genes 
are expressed in the heart, showing expression 
levels in the rank order CALM3 > CALM2 > 
CALM1 [68]. CaM consists of two lobes, each 
composed of two EF hands with high affinity to 
Ca2+ [28]. In LTCCs, CaM is bound to the 
channel’s proximal C-terminus but can be com-
petitively displaced by the distal part of the 
C-terminus of the channel [41, 69–73]. The com-
petition between CaM and the distal C-terminus 
is further regulated, e.g., by PKA phosphorylation 
in response to β-adrenergic stimulation [74]. CaM 
strongly enhances channel activity in its (Ca2+-
free) apo form and is responsible for CDI of the 
channel upon Ca2+ conduction [28]. Furthermore, 

Ca2+ binding to the channels’ CaM is involved in 
internalization of the channels in response to their 
high activity [75]. 

10.3 LTCCs and AP 

Interplay of various ion currents through the 
cardiomyocyte membrane regulates generation 
of cardiac APs [3]. LTCCs open upon membrane 
depolarization giving rise to inward, depolarizing 
currents. Activation of LTCCs is slow compared 
to that of NaVs; therefore, LTCCs contribute little 
to the upstroke (phase 0) of the AP in ventricular, 
Purkinje, and atrial myocytes [3]. Instead, long-
lasting LTCC currents together with opposing 
outward K+ currents shape the AP plateau 
(phase 2) in these cells. In the working myocar-
dium, Ca2+ influx through LTCCs activates 
ryanodine receptors (RyRs) leading to Ca2+ 

release from the sarcoplasmic reticulum (SR). 
This process is called Ca2+-induced Ca2+ release 
(CICR), and it underlies cardiac excitation–con-
traction coupling [76, 77]. Subsequent VDI and 
CDI of LTCCs result in accelerated membrane 
repolarization (phase 3). Regeneration of 
depolarizing currents in the case of insufficient 
repolarization reserve [78] can lead to a new 
membrane depolarization (early after depolariza-
tion, EAD) and thus trigger a premature AP 
[79, 80]. EADs are associated with fatal 
arrhythmias, such as Torsades de Pointes tachy-
cardia, a specific form of polymorphic ventricular 
tachycardia with a high risk of sudden cardiac 
death (SCD) [79]. Overlap of LTCC activation 
and inactivation curves results in steady-state 
currents (so-called window currents, Fig. 10.3). 
Thus, LTCCs can reactivate and contribute to an 
increasing (late) inward current [79, 81]. Accord-
ingly, increased LTCC window currents can 
increase the risk of EADs, while reduced window 
currents can decrease it. 

In SA and AV nodes, LTCCs are essential 
drivers of the membrane depolarization during 
pace-making [82]. In the SA node, spontaneous 
APs are initiated by coupled “membrane-” and 
“Ca2+-clock” mechanisms, which include 
depolarizing currents mediated by HCN channels 
(“funny” currents) and T-type VGCCs as well as



Na+ /Ca2+ exchanger (NCX) activation in 
response to the spontaneous Ca2+ release through 
RyRs [82, 83] (see also Chaps. 4 and 6). 
Subsequent activation of CaV1.3 channels further 
promotes membrane auto-depolarization. After 
the membrane potential reaches the activation 
threshold of CaV1.2 channels, these LTCCs con-
tribute to the upstroke of the AP. Besides its Ca2+-
conducting function, CaV1.3 channels are an 
essential molecular determinant of the 
depolarizing, dihydropyridine-sensitive sustained 
Na+ currents in the SA node [84]. CaV1.3 strongly 
co-localizes with RyRs in SA node cells 
[85]. Thus, CaV1.3 opening here can stimulate 
RyRs-mediated Ca2+ release and further activate 
depolarizing NCX currents. 
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Fig. 10.3 Schematic drawing of a so-called window cur-
rent. The two curves depict steady-state inactivation (solid 
line) and activation (dashed line) of Ca2+ currents 
depending on the respective membrane potential. Within 
the potential range marked in gray (“permissive window of 

voltage”), a large proportion of the Ca2+ channels is in the 
inactivated state, i.e., non-conducting, while another pro-
portion is just activated. L-type Ca2+ channels may reacti-
vate within this voltage range 

10.4 LTCC Mutations Associated 
with Cardiac Rhythm 
Disturbance 

Ion channel mutations in general account for a 
variety of hereditary cardiac arrhythmias. For 
example, a large fraction of sudden unexplained 
deaths in the young are postmortem attributed to 
ion-channel mutations which led to cardiac 

arrhythmias [86]. Primary channelopathies 
predisposing to sudden cardiac death include 
long QT syndrome (LQTS), short QT syndrome 
(SQTS), the Brugada Syndrome (BrS), and the 
catecholaminergic polymorphic ventricular 
tachycardia (CPVT) [87]. As discussed below, 
some LTCC mutations are associated with 
rhythm disturbances, although the major suscep-
tibility genes revealed so far are KCNQ1 (KV7.1), 
KCNH2 (KV11.1/hERG), SCN5A (NaV1.5), and 
RYR2 (ryanodine receptor 2) [86, 87]. 

The report of LTCC mutations causing the 
Timothy Syndrome (TS) by Splawski et al. in 
2004 has highlighted the role of LTCCs for 
hereditary cardiac arrhythmias and up to now 
the number of identified mutations in LTCCs 
affecting cardiac rhythm strongly increased 
[10, 88–90]. Cardiac LTCC channelopathies can 
be conditionally classified as gain- or loss-of-
function mutations [89]. LQTS mutations in 
CaV1.2 channels typically show gain-of-function 
features, whereas loss-of-function CaV1.2 
mutations were found in BrS, SQTS, and early-
repolarization syndrome (ERS) [10, 89]. Further-
more, loss of CaV1.3 or CaV1.2 function can lead 
to sinus node malfunction from bradycardia to 
sick sinus syndrome [6, 7].

https://doi.org/10.1007/978-3-031-33588-4_4
https://doi.org/10.1007/978-3-031-33588-4_6
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10.4.1 Long QT Syndromes (LQTS) 

On the cellular level, LQTS results from a 
prolongation of the ventricular AP due to an 
increase of depolarizing Na+ and Ca2+ currents 
or a decrease of repolarizing K+ currents 
[91]. This favors EADs, which can lead to 
Torsades de Pointes arrhythmia [79]. Three 
major and at least 14 minor susceptibility genes 
were identified for congenital LQTS [92]. 

LQTS caused by mutations in the pore-
forming subunit of CaV1.2 channels 
(CACNA1C-LQTS) is historically termed LQT8. 
Given the strong expression of CaV1.2 in various 
tissues, gain-of-function CaV1.2 channelopathies 
can result in multi-organ pathologies. LQT8 was 
thus subdivided into the multisystem Timothy 
syndrome (TS) and LQT8 without extra-cardiac 
symptoms as more and more CACNA1C 
mutations and associated effects became 
known [10]. 

TS is a rare multisystem disorder characterized 
by QT prolongation, cardiac arrhythmias (brady-
cardia, AV block, ventricular tachyarrhythmia), 
congenital heart defects, and extra-cardiac 
manifestations such as syndactyly, facial 
abnormalities, immune system dysfunction, inter-
mittent hypoglycemia, and neuropsychiatric 
disorders [88, 93, 94]. TS patients are at high 
risk of SCD and often die during childhood 
[88, 93, 95]. TS is a dominant genetic disorder, 
resulting from de novo CACNA1C mutations. 
However, it can also be inherited from an asymp-
tomatic parent who carries a mosaic CACNA1C 
mutation [88, 96]. The particular phenotype 
depends on the respective CACNA1C mutation 
and can vary among patients with the same muta-
tion [88, 93–95, 97, 98]. Classical TS (TS-1) is 
most commonly caused by a recurrent missense 
mutation (G406R) in the alternatively spliced 
exon 8a, which is widely expressed and 
represents approx. 20% of CaV1.2 transcripts in 
cardiac and neuronal tissue [88]. The analogous 
mutation in the mutually exclusive exon 
8, responsible for nearly 80% of cardiac CaV1.2 
channels, leads to an atypical TS (TS-2) without 

syndactyly but a more severe cardiac 
phenotype [93]. 

The G406R mutation alters CaV1.2 activity at 
various levels: it drastically inhibits channel inac-
tivation (particularly VDI), shifts channel activa-
tion to more negative potentials, and promotes a 
channel gating mode with very long openings 
[88, 93, 99, 100]. The mutation occurs at the 
cytoplasmic end of the sixth transmembrane seg-
ment of the channel’s domain I (DI/S6), which is 
involved in the voltage-dependent regulation of 
the channel activation and inactivation and is 
conserved in VGCCs across various species 
[34, 35, 93, 101]. Moreover, G406R introduces 
a new consensus site for CaMKII enabling phos-
phorylation of S409, which could promote long 
channel openings ([99]; but: [102]). Furthermore, 
G406R leads to enhancement of coupled channel 
gating, by altering the interaction with the scaf-
folding protein AKAP150 [103, 104]. 

Some TS cases were reported to be caused by 
mutations other than the typical G406R mutation. 
Interestingly, many of them are also located at the 
cytoplasmic end of an S6 segment similar to 
G406R, e.g., G402S, G402R, S405R, E407A in 
DI [93, 95, 105], I1166T in DIII [106, 107], or 
A1473G in DIV [108]. Besides, a TS-associated 
mutation was reported in a DII/S4–S5 linker, 
S643F [109]. Of note, S4–S5 linkers appear to 
interact with S6 segments [34]. Electrophysiologi-
cally, gain of CaV1.2 function was confirmed for 
G402S (impairment of inactivation) [93] and 
I1166T (increased window current due to shifted 
activation potentials) [106, 107]. S643F mutation 
showed mixed loss- and gain-of-function 
features: a reduction of peak current density was 
opposed by shifting the activation toward more 
depolarized potentials and increasing late currents 
due to the drastic reduction of VDI [109]. 

Although initially LQT8 was equated to TS, 
later studies expanded the spectrum of 
phenotypes associated with LQT8 [110– 
113]. For example, one patient with idiopathic 
QT prolongation, bradycardia, and autism spec-
trum disorder carried an E1115K mutation in the 
selectivity filter in the DIII/S5-S6 loop 
[113]. When expressed in a recombinant system 
the mutation caused AP prolongation and turned



the LTCC into a dihydropyridine-sensitive but 
nonselective cation channel. 
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Some CACNA1C mutations result in LQTS 
without obvious extra-cardiac attributes [10, 90, 
107, 110]. A whole-exome sequencing of 
102 unrelated “genotype-negative/phenotype-
positive” LQTS patients suggested that 
CACNA1C mutations may be responsible for 1% 
of LQTS cases [110]. CACNA1C mutations lead-
ing to isolated LQTS were found at various cyto-
plasmic linkers and both N- and C-terminus and 
showed gain-of-function features like reduced 
channel inactivation, increased current density, 
increased window current, or negative shift of 
activation potential range [10]. Interestingly, 
many of the CaV1.2 mutations concentrate in the 
DII–DIII linker at a PEST sequence, which serves 
as a signal for protein degradation 
[110, 114]. Genetic analyses of several families 
with multiple cardiac abnormalities, such as 
LQTS, hypertrophic cardiomyopathy, or congen-
ital heart defects, identified recurrent R581C/H 
mutations in CaV1.2 channels [111, 115, 
116]. R581C/H mutations lie within the intracel-
lular DI–DII loop, which is responsible for VDI 
regulation and binding of CaVβ subunits. These 
mutations show an increase of window and late 
currents indicating gain of function [111, 117]. 

LQTS can also be associated with gain of 
LTCC function due to mutations in the CaM 
genes CALM1–3 (LQT14–16, respectively) 
[68, 118–123]. These CaM mutations led to a 
reduction of Ca2+ affinity to the EF hands in the 
C-lobe of CaM, resulting in the loss of CDI of 
CaV1.2 channels [68, 118, 120, 122, 124, 
125]. Crystallographic and NMR investigations 
suggest that altered interaction between CaM 
and CaV1.2 may also be involved [126]. 

10.4.2 Brugada, Early-Repolarization, 
and Short QT Syndromes 

BrS and ERS belong to the continuous spectrum 
of so-called J-wave syndromes. They are 
diagnosed based on the ECG patterns in structur-
ally normal hearts and are associated with an 
increased risk of SCD due to polymorphic 

ventricular tachycardia (VT) and ventricular 
fibrillation (VF) [127]. The mechanisms underly-
ing BrS and ERS are not fully understood 
[127, 128]. Besides, BrS and ERS appear to be 
multifactorial rather than pure Mendelian 
disorders [129]. 

LTCCs came into focus, when it was observed 
that the Ca2+ channel antagonist verapamil can 
induce BrS-like patterns in APs and ECGs of 
canine right ventricular wedges [130]. Subsequent 
studies revealed that mutations in CACNA1C 
(CaV1.2), CACNB2b (CaVβ2b), and CACNA2D1 
(CaVα2δ-1) account for a significant fraction of 
BrS and ERS cases and are often accompanied by 
shortening of the QT interval [89, 131, 132]. 

The latter observation led to reassessment of 
CaV1.2 subunit genes as candidate susceptibility 
genes for SQTS [133]. SQTS is a rare inherited 
cardiac disease, characterized by a high risk of 
developing AF and VT leading to syncope or 
SCD [134, 135]. The short QT interval results 
from a shortening of APD due to accelerated 
membrane depolarization. Reduced effective 
refractory period and increased transmural disper-
sion predispose to re-entry arrhythmias [91, 136]. 

In BrS patients, at least eleven CACNA1C 
mutations were identified of which four lead to 
concomitant BrS/SQTS [131, 132, 137, 
138]. Additionally, two ERS-, one SQTS-, and 
one ERS/SQTS-associated mutations were 
identified in CACNA1C [132, 133, 139, 
140]. The majority of the mutations were located 
in cytoplasmic regions of the channel, particularly 
in the distal C-terminus. Nine mutations were 
studied in heterologous expression systems and 
showed a decrease of Ca2+ current density 
[131, 132, 138–141]. In particular, the splicing-
error mutation R632R could be a subject to 
nonsense-mediated mRNA decay [142]. One 
BrS patient was shown to carry the missense 
mutation E1115K [132] converting CaV1.2 into 
a nonselective monovalent cation channel 
associated with LQTS, as discussed above 
[113]. This BrS patient, however, additionally 
showed a HERG channel mutation known to be 
associated with BrS and thus probably compen-
sating for the CaV1.2 LQTS mutation 
[132]. CACNA1C genetic variants present at low



frequencies in the general population may also 
predispose to BrS and ERS [132, 143]. A 
T1787M variant, found in 0.8% of an African 
population, was identified in three unrelated 
patients with BrS, ERS, or idiopathic VF. 
T1787M is located in the distal C-terminus and 
strongly increased its auto-inhibitory effect [143]. 
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Auxiliary CaVβ and CaVα2-δ subunits, which 
modulate surface expression and gating 
properties of CaV1.2 channels, are also associated 
with malignant ventricular arrhythmias. Genetic 
testing identified nine BrS-related and three 
ERS-related distinct amino acid changes in the 
CaVβ2b subunit [131, 132, 144–146]. Among 
these, one BrS mutation led to concomitant 
SQTS [131, 132]. Two BrS mutations in the 
CaVβ2b subunit were studied in whole-cell 
patch-clamp experiments and showed loss-of-
function features such as decreased current den-
sity or increased rates of channel inactivation 
[132, 146]. In the CACNA2D1 gene, four BrS-, 
one ERS-, and one SQTS-associated mutations 
were reported [132, 146, 147]. The SQTS muta-
tion showed reduced current density in patch-
clamp experiments [147]. 

10.4.3 SA and AV Node Dysfunctions 

LTCCs are involved in the slow auto-
depolarization (CaV1.3) and in the generation of 
the upstroke (CaV1.2 and CaV1.3) of APs in SA 
and AV nodes [82]. CACNA1D (CaV1.3)-defi-
cient mice showed SA node (SAN) bradycardia 
with irregular cellular cycles, disturbed AV con-
duction, and congenital deafness [4, 5, 46, 
148]. Later, a similar phenotype was observed in 
two consanguineous inbred Pakistani families 
[6]. The disorder, termed sinoatrial node dysfunc-
tion and deafness (SANDD) syndrome, is 
characterized by severe hearing loss, bradycardia, 
increased heart-rate variability, and variable 
degree of AV block [6]. SANDD patients were 
homozygous carriers of a 3 base pairs insertion in 
the alternatively spliced exon 8b of CACNA1D. 
The 8b isoform of CaV1.3 channels is predomi-
nant in the SAN [6]. This mutation leads to a 
glycine insertion (403_404insGly) at the 

cytoplasmic end of the inner-pore lining helix 
DI/S6. This region is conserved in human 
LTCCs, and associated with pathological gain-
of-function mutations at homologous position 
not only in CaV1.3 (G403R and G403D) but 
also in CaV1.2 (G402S known from TS) and 
CaV1.4 (G359R) [93, 149, 150]. In contrast, the 
403_404insGly mutation results in 
non-conducting CaV1.3 channels, although the 
channels are expressed in the surface membrane 
and exhibit ON-gating currents, indicating mobil-
ity of the voltage sensor [6]. The glycine insertion 
occurs at the cytoplasmic end of the pore, at the 
interaction site with S4–S5 linkers, which trans-
mit movements of voltage-sensing S4 segments 
to the pore-forming S6 segments 
[34]. Measurements of CaV1.3 gating currents 
suggested that the 403_404insGly mutation can 
disturb this interaction by uncoupling S4 
movements from the channel opening [6]. How-
ever, it is also possible that the mutation obstructs 
ion permeation. Recent studies of five supposedly 
unrelated Pakistani families with SANDD syn-
drome revealed that four of them were carriers 
of the 403_404insGly mutation, which was likely 
inherited from a common distant ancestor 
[151]. In the fifth family, SANDD syndrome 
was associated with a homozygous A376V muta-
tion in the exon 8b of CACNA1D. A376V is 
located in the pore loop (DI/S5–S6 linker). The 
alanine at this position is conserved across 
LTCCs in various tissues. It was proposed that 
the substitution by valine could affect the shape of 
the inner part of the pore and thus affect Ca2+ 

conduction. 
CaV1.2 channels could be involved in familial 

SAN dysfunction as well [7]. Genetic analysis of 
a Korean family with sinus bradycardia, early 
repolarization, and AF revealed compound het-
erozygosity of CACNA1C and titin mutations, 
predicted to be deleterious and perhaps increasing 
the severity of early repolarization [7]. Additional 
age-dependent loss of CaV1.2 channels in the 
SAN (see Sect. 10.5.2.1 for more details) imposes 
a risk of the affected family members to develop 
sick sinus syndrome [7, 152].
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10.5 LTCCs in Acquired Arrhythmias 

10.5.1 Autoimmune and Inflammatory 
LTCC Channelopathies 
and Cardiac Arrhythmias 

The immune system plays an important role in the 
pathogenesis of cardiac arrhythmias [153– 
155]. An exemplary mechanism is the production 
of autoantibodies and inflammatory cytokines 
which can affect ion channels involved in the 
generation of cardiac APs [153, 154]. 

10.5.1.1 Antibodies Activating LTCCs 
Autoimmune LTCC channelopathies play an 
important role in ventricular arrhythmias in 
dilated cardiomyopathy (DCM) [156]. Agonistic 
autoantibodies directed against CaV1.2 channels 
(CC-AAbs, Ca2+ channel autoantibodies) were 
identified in up to 50% of patients with idiopathic 
DCM [157–160]. In the prospective studies, 
patients positive for CC-AAbs had a several-fold 
higher risk of ventricular tachycardia and SCD 
than patients without these antibodies 
[158, 160]. CC-AAbs can bind to the CaV1.2 
N-terminus and increase Ca2+ currents 
[159]. The arrhythmogenicity of CC-AAbs was 
confirmed in an animal model [158]: in isolated 
rat hearts, application of the purified CC-AAbs 
led to ventricular tachycardia and ventricular pre-
mature beats. Consistently, on the level of ven-
tricular myocytes, the antibodies led to AP 
prolongation and occurrence of EADs. Summing 
up, CC-AAbs are an independent predictor of 
SCD in DCM resulting from ventricular 
arrhythmias [158, 160]. CC-AAbs were found in 
patients with ischemic cardiomyopathy (ICM) at 
a similar frequency as in DCM patients [160]. In 
ICM patients, CC-AAbs were associated with a 
several-fold increased risk of both SCD and 
non-SCD. Binding of CC-AAbs to the intracellu-
lar part of CaV1.2 and similar prevalence of 
CC-AAbs in ICM and DCM suggest that 
CC-AAbs can develop secondary to myocyte 
damage [154, 158, 161]. 

Several autoantibodies with targets other than 
LTCCs have been shown to increase LTCC-

mediated currents in DCM. Autoantibodies 
against adenine nucleotide translocators cross-
react with LTCCs, increase Ca2+ influx, and lead 
to progressive cardiomyocyte damage 
[157]. Monoclonal antibodies against cardiac tro-
ponin I can strongly enhance LTCC currents in 
murine myocytes, likely by an indirect mecha-
nism [162]. However, this effect has not yet 
been reproduced with human samples 
[163]. Autoantibodies against β1 adrenoceptors 
from DCM patients prolonged APD by increasing 
LTCC currents via activation of cAMP/PKA 
signaling [164]. 

10.5.1.2 Antibodies Inhibiting LTCCs 
Inhibition of LTCCs by anti-Ro/SSA 
autoantibodies plays an important role in autoim-
mune congenital heart block (ACHB) 
[154, 156]. Of note, anti-Ro antibodies are pres-
ent in healthy people, too. Nonetheless, risk for 
ACHB is significantly enhanced in anti-Ro anti-
body positive individuals with an incidence of 
about 5% compared to 1:11,000 in general. 
ACHB is thought to be caused by transplacental 
transfer of maternal antibodies, leading to inflam-
mation and eventually fibrosis of the fetal AV 
node, but also of SAN and His bundle [165– 
167]. Ro/SSA and La/SSB antigens are intracel-
lular ribonucleoproteins, which become surface 
exposed in apoptotic cells [168]. Interaction 
with maternal anti-Ro and anti-La antibodies 
impairs clearance of fetal apoptotic 
cardiomyocytes by healthy proliferating 
cardiomyocytes and provokes inflammation and 
fibrosis, normally not elicited in physiological 
apoptosis [169, 170]. However, this hypothesis 
alone cannot explain many features of ACHB, 
such as targeting the conduction system 
[171, 172]. Furthermore, in vitro perfusion of 
animal or human fetal hearts with Ro/SSA 
antibodies, which are prevalent antibodies in 
ACHB, led to sinus bradycardia and AV block 
within minutes [173–175]. Ro/SSA antibodies 
directly inhibit L-type (CaV1.2 and CaV1.3) and 
T-type (CaV3.1 and CaV3.2) channels in isolated 
cardiac cells and heterologous expression systems 
[174–180]. Of note, a study in rabbit SAN cells 
supported antibody specificity toward VGCCs:



while human antibodies of mothers whose chil-
dren showed CHB inhibited L- and T-type Ca2+ 

currents, delayed rectifier K+ , and 
hyperpolarization-activated “funny” currents 
remained unaffected [177]. Since AP generation 
in AV and SA nodes depends on inward Ca2+ 

currents, VGCC inhibition explains the acute 
rhythm disturbances induced by Ro/SSA 
antibodies. While both CaV1.2 and CaV1.3 inhi-
bition may cause AVB, studies on expression 
patterns, electrophysiological properties, and cel-
lular functions suggest that SAN dysfunction is 
more likely due to an inhibition of CaV1.3 
channels [5, 156, 181]. The antibody recognition 
site was identified in the DI/S5-S6 extracellular 
loop of CaV1.3 and CaV3.1 channel pores, respec-
tively [179, 180]. Regarding chronic effects of 
Ro/SSA antibodies it was proposed that cross-
linkage of antibody–antigen complexes leads to 
channel internalization [156, 171]. As fetal hearts 
show lower expression of VGCCs and lower SR 
capacity, particularly here VGCC downregulation 
can lead to severe Ca2+ dysregulation and abnor-
mal apoptosis, initiating inflammation and fibro-
sis. Translocation of SSA/Ro and SSB/La 
antigens to the surface of affected cells may play 
an important role here. 
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Recently, an observational study identified a 
novel anti-CaV1.2 antibody in patients with idio-
pathic cardiac arrest [182]. The antibody was 
shown to target the ion selectivity and permeabil-
ity filter segment in the CaV1.2 domain DIII and 
to be pro-arrhythmic by shortening the APD due 
to Ca2+ current inhibition. Of note, it cannot be 
excluded that antibody generation may be sec-
ondary to cardiac arrest rather than being causal 
for this event. 

10.5.1.3 Inflammatory Cytokines 
and LTCCs 

Systemic and cardiac inflammation is associated 
with development of atrial and ventricular 
arrhythmias [153, 183, 184]. Higher levels of 
circulating inflammatory factors are associated 
with an increased AF risk in the general popula-
tion as well as in patients after cardiac surgery, 
AF ablation, or cardioversion [185, 186]. Of note, 
anti-inflammatory treatments can potentially 

decrease the risk of postoperative and post-
ablation AF [183]. It has also been shown that 
the risk of ventricular arrhythmias and SCD in 
apparently healthy subjects and in patients with 
either cardiac or systemic inflammatory disease 
correlates with higher serum cytokine levels 
[184]. Particularly, pro-inflammatory cytokine 
levels were related to a QT prolongation and 
cytokine inhibitors shortened QT intervals. 

Inflammation promotes structural and electri-
cal remodeling of cardiac tissue. On the cellular 
level, pro-inflammatory cytokines, such as TNFα, 
IL-1, and IL-6, can regulate ion channels and 
Ca2+-handling proteins [187]. For example, they 
can inhibit depolarizing K+ currents, thus 
prolonging ventricular AP [187, 188]. Reported 
effects of cytokines on LTCCs vary because of 
different experimental conditions and models. In 
murine ventricles, IL-6 augmented LTCC 
currents by SHP2/ERK-mediated phosphoryla-
tion of the distal CaV1.2 C-terminus, thus 
contributing to the observed APD prolongation 
[189]. However, no changes in the LTCC current 
were reported in ventricles of rats and guinea pigs 
[190, 191]. IL-1 was shown to be able to either 
stimulate or inhibit LTCC currents via different 
pathways. It increased LTCC currents by a 
lipoxygenase pathway in guinea pig ventricular 
myocytes, and here LTCC upregulation was con-
sistent with the measured prolongation of APD 
[192]. In other studies on rat and murine ventric-
ular myocytes, IL-1 inhibited LTCCs via 
G-proteins, NO- (but not cGMP), and ROS/ 
PKC-dependent pathways, respectively [193– 
195]. TNFα effects on ventricular LTCC currents 
were studied in various animal models and 
showed either no effect on LTCCs or current 
inhibition at TNFα concentrations exceeding 
those at pathophysiological conditions 
[187, 195]. Studies of cytokine effects on atrial 
LTCCs showed channel downregulation, which 
is consistent with AF pathogenesis (see Sect. 
10.5.2.2 for more details). In murine atrial 
myocytes, IL-1 reduced CaV1.2 protein levels 
by inhibiting expression of an mRNA-binding 
quaking protein [196]. In rabbit cardiomyocytes 
from pulmonary veins, which are critical in AF 
initiation, TNFα significantly reduced LTCC



currents [197]. Together with the upregulation of 
atrial K+ currents by TNFα, this could shorten 
APD in a pro-arrhythmogenic manner and con-
tribute to AF vulnerability [197]. Similarly, MIF 
(macrophage migration inhibitory factor), another 
cytokine associated with the pathogenesis of AF, 
decreased LTCC current density by lowered 
CaV1.2 protein expression, impaired LTCC func-
tion, and activation of c-Src kinases 
[198]. Recombinant MIF reduced LTCC currents 
in human atrial myocytes from patients with sinus 
rhythm but not in patients with AF. In contrast, 
application of an antibody against MIF increased 
LTCC currents in atrial myocytes from AF but 
not sinus rhythm patients. 
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In summary, although the effects of inflamma-
tion on LTCCs are poorly understood, it appears 
that inflammatory cytokines can alter LTCC 
currents through various mechanisms, so that 
ventricular (LQTS) and atrial (AF) arrhythmias 
are promoted. 

10.5.2 LTCCs in Age- and Remodeling-
Related Arrhythmias 

10.5.2.1 SAN Aging and Dysfunction 
Decline of SAN function, reflected in the progres-
sive reduction of intrinsic pacemaker activity and 
maximum heart rates, is an inherent feature of 
cardiac aging, eventually leading to sinus node 
dysfunction in some individuals [199]. Besides 
vital loss of SAN cells and tissue remodeling, 
reduced excitability of SA myocytes is an intrin-
sic cause of age-dependent deterioration of SAN 
function. LTCC currents and subsequently trig-
gered local Ca2+ release regulate slow diastolic 
depolarization and upstroke of SAN AP [82, 181, 
200]. In SAN of aged mammals, LTCC expres-
sion and consecutive currents were reduced in 
comparison to younger adults [152, 201, 
202]; but: [203]. MicroRNAs (miRs) can post-
translationally regulate expression of ion 
channels. Significant upregulation of circulating 
miR-1976 was observed in patients with 
age-related sick sinus syndrome compared to 
age-matched healthy controls [202]. CaV1.2 and 
CaV1.3 channels were found to be direct targets of 

miR-1976. In transgenic mice, miR-1976 led to 
the inhibition of CaV1.2 and CaV1.3 expression in 
SAN and to slowed intrinsic cardiac rhythm. Fur-
thermore, miR-1976 level was progressively 
increased in blood plasma and SAN tissue of 
aging rabbits and negatively correlated with pro-
tein levels of CaV1.2 and CaV1.3 in SAN [202]. 

10.5.2.2 Atrial Fibrillation 
Prevalence of AF depends on age: compared to 
men aged 65–69 years the AF prevalence is two-
fold increased at an age of 75–79 years and more 
than fivefold compared to men aged 55–59 years 
[204]. While often cardiac diseases like coronary 
artery disease or heart failure increase the risk of 
developing AF, there are also genetic and heredi-
tary components [205–207]. Until 2018 over 
30 genetic loci have been identified as signifi-
cantly associated with AF, although none of 
them were related to genes coding for VGCCs 
[207]. With regard to aging, CaV1.2 LTCCs were 
found to be downregulated in atria of humans, 
dogs, and sheep, reflected by mRNA, protein, or 
peak current levels [12, 208]. In patients, 
downregulation is associated with AF [12, 209], 
atrial dilation, or other structural diseases 
predisposing to AF [210, 211]. In animal models 
of AF, atrial tachypacing reduces LTCC expres-
sion and currents in early stages of AF as well as 
in persistent AF [209]. Downregulation of 
LTCCs could be initially adaptive to oppose 
Ca2+ overload resulting from atrial tachycardia 
[212]. Indeed, the Ca2+ channel antagonist verap-
amil prevented atrial contractile dysfunction and 
attenuated electric remodeling caused by short-
term AF in patients and animal models [213– 
217]. Furthermore, verapamil and other drugs 
lowering intracellular Ca2+ load enhanced cardio-
version success in patients with persistent AF 
[218]. On the other hand, reduction of LTCC 
currents in AF can be pro-arrhythmic, because it 
is associated with shortened APD, abolished AP 
plateau, and attenuation of rate-dependent AP 
accommodation [219, 220]. A diminished effec-
tive refractory period due to shorter APD results 
in a decreased wavelength of conduction, which 
permits more re-entrant circuits and thus 
facilitates AF [221].
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Multiple mechanisms may be involved in the 
regulation of LTCCs in AF. In AF animal models, 
LTCC currents start to decline within several 
hours or days of atrial tachypacing, depending 
on the species [219, 222, 223]. Current reduction 
paralleled mRNA expression of the pore-forming 
subunit (CACNA1C) as well as CaVβ subunits 
(CACNB2a, CACNB2b, and  CACNB3). In 
human AF patients, reduced mRNA expression 
was reported for CaV1.2 [224–228]; but: [229], 
CaV1.3 [227], CaVβ1 [229], CaVβ2 [228], and 
CaVα2δ-1 [227, 229]. In cultured canine atrial 
myocytes, it was shown that tachypacing-induced 
Ca2+ load initiated LTCC downregulation by 
activating Ca2+-dependent calmodulin– 
calcineurin–NFAT signaling within a few hours 
of atrial tachypacing [230]. 

Several studies pointed to the role of miRs in 
the pathogenesis of AF [231]. MiR-328 was 
found to be upregulated in canine and murine 
AF models and human AF patients [232]. Induc-
tion of miR-328 expression promoted AF in dogs 
and mice, and this effect could be antagonized by 
a specific antisense inhibitor oligonucleotide 
(AMO-328). In murine atrial myocytes, 
miR-328 caused APD shortening and reduction 
of LTCC currents as observed in experimental 
and clinical AF before. Downregulation of 
CaV1.2 and CaVβ1 protein was seen in atria of 
AF patients, in dogs treated with tachypacing, as 
well as in murine and neonatal rat atria infected 
with miR-328. In rats, this effect could be 
reversed by AMO-328. Other miRs (miR-21 and 
miR-208b) were also found to be upregulated in 
AF and to decrease LTCC currents by targeting 
CACNA1C and CACNB2 expression [228, 233]. 

Activation of proteolytic mechanisms can 
decrease LTCC protein expression independent 
of mRNA reduction [226, 234]. The Ca2+-depen-
dent protease calpain can degrade surface LTCCs 
on the minute timescale, regulating channel turn-
over [235]. Expression and activity of atrial 
calpain was found to be upregulated in AF 
patients as well as AF animal models and nega-
tively correlated with LTCC protein levels 
[234, 236]. 

Phosphorylation of pore and auxiliary LTCC 
subunits can affect channel gating as well. The 

role of phosphorylation in chronic human AF, 
however, is controversial [237]. One group 
reported unchanged levels of CaV1.2 and CaVβ2a 
expression but a more than twofold reduction of 
LTCC currents, which was associated with the 
increased activity of protein phosphatases 
[238]. In contrast, another group observed a 
reduced CaV1.2 protein expression, which was 
accompanied by a compensatory increase in 
single-channel activity due to higher 
phosphorylation [239]. 

Besides CaV1.2, CaV1.3 channels may also be 
involved in AF pathogenesis. Reduction of 
CACNA1D mRNA was reported in atrial samples 
of patients with persistent AF [227]. CaV1.3-defi-
cient mice showed significant reduction of LTCC 
currents in atria but not ventricles and an 
increased vulnerability to atrial arrhythmias and 
AF [5, 148, 240]. Although still controversial, 
several clinical studies observed an association 
between PR interval prolongation and risk of AF 
[241]. CaV1.3-deficient mice showed PR 
prolongation, too [5, 240]. In atria of AF patients, 
reduced CaV1.3 expression was accompanied by 
decreased levels of ankyrin-B [242]. Using a 
murine model, the authors showed that ankyrin-
B mediates membrane targeting of atrial CaV1.3 
by interacting with its C-terminus and that 
ankyrin-B deficiency leads to reduced Ca2+ cur-
rent density and enhanced AF vulnerability. 

10.5.2.3 Heart Failure 
According to the European Society of 
Cardiology, heart failure (HF) is a clinical syn-
drome characterized by typical symptoms caused 
by a structural and/or functional cardiac abnor-
mality, resulting in a reduced cardiac output 
and/or elevated intracardiac pressures [243]. Of 
note, there is no agreed single classification of the 
causes of HF, and many patients have several 
different pathologies—cardiovascular and 
non-cardiovascular—underlying this disease. 
Among the various cardiovascular pathologies 
are coronary artery disease, myocardial infarc-
tion, hypertension, valve disease, AF, and DCM. 
Prevalence of HF is estimated to be 1–2% among 
adults in developed countries, but steeply rises 
with age, reaching 70% and more among persons



>70 years of age. Although treatment options 
clearly improved during the last few decades, 
HF is still associated with a high mortality 
[244]. Data collected in Europe between 2011 
and 2013 showed 12-month all-cause mortality 
rates for hospitalized (acute) and ambulatory 
(chronic) HF of 24% and 6%, respectively 
[245]. About a half of the deaths is sudden, with 
a large fraction of them presumably due to ven-
tricular arrhythmias [246, 247]. AF and HF often 
coexist, sharing risk factors and promoting devel-
opment and deterioration of each other [248]. In 
chronic HF, AF is an independent predictor of 
mortality [245]. 
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10.5.2.3.1 Alterations of Ventricular LTCCs 
in HF 

Electrophysiological remodeling promoting 
arrhythmias in HF is manifold, including 
ion-channel and Ca2+-handling alterations [249– 
252]. LTCC expression (detected as 
dihydropyridine binding sites, CACNA1C 
mRNA, or CaV1.2 protein level) and current den-
sity were mostly reported to be unchanged in 
human failing ventricular myocytes [253– 
259]. Nonetheless, some studies described reduc-
tion of currents or LTCC expression [260–263], 
although HF etiology and/or stage of HF may 
play a role [250, 253]. Furthermore, a shift in 
the expression of CaV1.2 splice variants was 
observed in human failing myocytes [264– 
266]. Expression of the auxiliary CaVα2-δ subunit 
was not altered in human HF [257, 267]. Studies 
on expression of CaVβ subunits in human HF 
have been conflicting and inconclusive [268]. In 
a comprehensive analysis of human specimens 
from failing ventricles, we found an increased 
expression of CaVβ2 subunits at both mRNA 
and protein level, while that of CaVβ1 and CaVβ3 
appeared to be unchanged or even reduced 
(CaVβ3 protein) [257]. Overexpression of CaVβ2 
subunits in adult mouse hearts over a period of 
6 weeks caused LTCC current alterations similar 
to those observed in human HF [269]. On the 
background of constitutive cardiac CaV1.2 
overexpression, this furthermore led to a signifi-
cantly increased occurrence of cardiac 
arrhythmias including supraventricular and 

ventricular extrasystoles and AV block. Expres-
sion of the RGK protein Rad was found to be 
decreased in failing human ventricles both at 
mRNA and protein levels [270, 271]. Of interest, 
overexpressing a dominant negative mutant of 
Rad caused ventricular arrhythmia in mice 
[272]. Given the inhibitory effect of Rad on 
CaV1.2, increased LTCC activity might have 
been pro-arrhythmic here [272, 273]. Very 
recently, a study found that Rad inhibits CaVβ2-
mediated stimulation of CaV1.2 [274]. Rad phos-
phorylation following β-adrenergic stimulation 
led to a decrease of its affinity for CaVβ2 subunits 
and by this relieved constitutive inhibition of 
CaV1.2. This study sheds new light on the role 
of β-adrenergic signaling and CaVβ2-CaV1.2 
interaction for LTCC stimulation and thus promo-
tion of probably pro-arrhythmic conditions. 

The group of Stefan Herzig found activity of 
single LTCCs to be significantly increased in 
human failing ventricular myocytes 
[275]. Although this was supported by later stud-
ies [255, 256], these data are in an apparent con-
tradiction to the abovementioned findings on 
reduced or rather unchanged CaV1.2 expression 
and whole-cell LTCC current density. However, 
there is loss and remodeling of the T-tubule sys-
tem, which plays an important role in the patho-
genesis and arrhythmogenesis in HF 
[252, 276]. T-tubule degradation in human and 
rat HF was accompanied by redistribution of 
LTCCs from their native positions in T-tubules 
to the sarcolemma crest [277, 278]. Targeting of 
LTCCs to T-tubules is controlled by the scaffold-
ing BIN-1 protein [279]. Its downregulation in 
HF leads to diminished abundance of CaV1.2 
channels in the periphery and, specifically, 
T-tubules of the failing myocytes despite 
unchanged overall cellular expression 
[258]. Besides, BIN-1 organizes dyads formed 
by LTCCs and RyRs [280]. In HF, the 
abovementioned microdomain remodeling of 
LTCCs is related to an increased occurrence of 
orphaned RyRs, i.e., RyRs not coupled to LTCCs 
[280–282]. Such RyRs can lead to spontaneous 
Ca2+ release promoting Ca2+-dependent 
arrhythmias [280]. Dislocated crest LTCCs 
showed increased single-channel activity in HF,
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whereas the activity of the remaining T-tubule 
LTCCs was not changed [275, 278]. The under-
lying mechanism was proposed to be channel 
hyper-phosphorylation due to dephosphorylation 
defects on the one hand and increased phosphor-
ylation on the other hand [255, 256, 275, 278]. An 
increased expression of CaVβ2a subunits, which 
are subject to PKA and CaMKII phosphorylation, 
can also play a role [257, 283, 284]. A channel’s 
basal hyper-phosphorylation is consistent with a 
compromised ability of β-adrenergic stimulation 
to (further) augment LTCC activity in HF 
[255, 256, 262, 275]. Switch to the high-activity 
gating mode and disorganization with RyRs can 
result in a slowed inactivation of LTCC currents 
and thus promote EADs [278]. Accordingly, 
whole-heart computer simulations demonstrated 
that this microdomain remodeling of LTCCs 
promotes EADs in endocardial myocytes, which 
can trigger reentrant arrhythmias. 
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So far, research has focused on CaV1.2 LTCCs 
in HF. However, recently re-expression of the 
fetal CaV1.3 subunit was reported in the human 
failing ventricles on both mRNA and protein 
level [263]. The putative role of CaV1.3 channels 
in HF and ventricular arrhythmias requires further 
studies. 

10.5.2.3.2 Alterations of Atrial LTCCs in HF 
Remodeling of atrial CaV1.2 LTCCs in HF is 
similar to that in AF [209]. In HF animal models, 
atrial LTCC current density was reported to be 
reduced [285–289]. In human HF, atrial LTCC 
currents were either decreased [211, 262] o  
showed no difference compared to control 
[259, 290, 291]. Besides, disruption of atrial 
T-tubules in HF can lead to a decreased number 
of functional LTCCs [292, 293]. Loss of 
T-tubules caused by HF was more dramatic in 
atria than in ventricles [292, 293]. Moreover, 
single-channel current amplitudes of T-tubular 
LTCCs were largely decreased in HF 
[294]. Taken together, animal models of HF indi-
cate reduction of functional LTCCs creating sub-
strate for AF [209], while human data are 
conflicting. 

10.6 Conclusion and Limitations 

LTCCs are critically involved in shaping cardiac 
action potentials. By this capability, dysfunction 
of LTCCs, either congenital or acquired, can lead 
to life-threatening cardiac rhythm disturbances 
(Table 10.1, Fig. 10.1). Though LTCC mutations 
are rare, a growing number of LTCC genetic 
variants are identified in and related to 
arrhythmogenic syndromes. While the associa-
tion between CACNA1C mutations and Timothy 
syndrome is well established, additional research 
is required to validate causality of arrhythmias by 
new LTCC mutations, many of them identified in 
single patients only. Functional studies with 
cultured cells allow for comparison of mutant 
and wild-type LTCCs, but limited by the fact 
that these cells cannot fully reconstitute the 
conditions in native cardiomyocytes. LTCCs are 
also involved in the pathogenesis of acquired 
cardiac diseases. Despite the fact that human 
data are not easy to obtain and that comparison 
with animal models is hampered by differences in 
ion channel expression patterns as well as struc-
tural and electrical properties of the myocardium, 
great progress has been made in understanding 
LTCC (dys-)regulation in atrial fibrillation, heart 
failure, and other arrhythmogenic conditions, 
including aging. 
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