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Abstract. In the paper, we introduce a novel method of estimating
label frequency and parameters of the logistic model for positive and
unlabeled (PU) data. Our approach is based on Gibbs sampler that uses
Pólya-Gamma latent variables for Bayesian logistic model. In the paper,
we focus on estimating label frequency, but the proposed method also
provides estimated probabilities of being positive observation among the
unlabeled ones.
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1 Introduction

In standard binary classification, the data consists of positive and negative exam-
ples. However, in many applications, the assumption that the class is known for
all observations might not be realistic. Consider e.g. medical data, in which usu-
ally one has information about patients with the diagnosed disease and the rest
of patients might either be healthy or have a disease and remain undiagnosed.
In positive and unlabeled (PU) learning we model that situation by assuming
that we have access to some positive examples (diagnosed patients), and we
do not know the true class of the others (undiagnosed) - they might be either
positive or negative. Another example is a survey with sensitive questions e.g.
about illegal behavior. Some people who broke the law would answer to that
question truthfully, but among those, who would answer “no”, there might be a
group that actually broke the law but would not admit that in the survey. The
next example considers advertisements e.g. the ads that appear on the visited
websites. Positive and labeled examples in that scenario are clicks on the ads.
However, the remaining ads also might be interesting to the user even though
the user has not clicked on them. In the paper we focus on estimating the fre-
quency of such events that the user clicks on the ad, thus we estimate how many
of the positive examples are labeled. As a by-product of the proposed method,
we obtain probabilities indicating which of the unlabeled observations might be
positive.
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The main contribution of this paper is to adapt the model introduced in [8]
in such a way that it can be applied to PU data. In [8] the authors propose a
framework for Bayesian inference for the logistic model using the idea of data
augmentation. Since the vector of classes is not observed in PU setting, the model
proposed in [8] cannot be used directly, thus we extend it with new variables so
the new model can cope with data censored as described above. That approach
allows for estimating label frequency with high accuracy.

1.1 Notation and Assumptions in PU Learning

In PU learning, we consider a triple of variables (X,Y, S), where X ∈ R
p is a

random variable corresponding to a feature vector, Y ∈ {0, 1} is a true class and
S ∈ {0, 1} is an indicator, whether the observation is positive or unlabeled. In PU
setting all labeled observations are positive. In this article, we consider single-case
scenario, in which we assume that there is a common distribution of (X,Y, S) and
the sample (xi, yi, si)ni=1 consists of independently drawn observations from that
distribution. In standard classification the available data is (xi, yi)ni=1, whereas
in PU learning we observe only (xi, si)ni=1. Notice that some values of the vector
y = (y1, y2, . . . , yn) are known as when si = 1 then yi = 1, but when si = 0 then
yi can be either 0 or 1.

A common assumption in PU learning is the Selected Completely At Ran-
dom (SCAR) assumption, which states that the labeled examples are selected
randomly from a set of positive examples independently of X, i.e.

P (S = 1|Y = 1,X = x) = P (S = 1|Y = 1). (1)

Constant c := P (S = 1|Y = 1) is called label frequency. Note that the condition
(1) is equivalent to conditional independence of S and X given Y . A common
task in PU learning under SCAR assumption is estimation of the parameter c
and in this paper we also focus on that problem. We briefly describe some of the
existing methods of estimation of c in Sect. 1.3.

1.2 Logistic Model Assumption for PU Data

In logistic model, in which we observe a class indicator Y , we assume that proba-
bility of the event Y = 1 is logit function in a linear combination of the variables
X, namely

P (Y = 1|X = x) =
ex′β

1 + ex′β =: σ(x′β), (2)

where σ(t) = et/(1 + et) is a standard logistic function and a symbol ′ denotes
transposition. In PU learning assuming SCAR we have

P (S = 1|X = x) = cP (Y = 1|X = x) (3)

as LHS equals

P (S = 1|Y = 1,X = x)P (Y = 1|X = x) = P (S = 1, Y = 1|X = x)
= P (S = 1|X = x).
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Hence, using (2) we obtain that

P (S = 1|X = x) = c × σ(x′β), (4)

where c is label frequency. The model for PU data has an additional parameter
c in comparison to the standard logistic regression. The parameters (c, β) are
identifiable in view of Theorem 1 in [12], which is not true for c in general setting
for PU learning without some additional assumptions. In the proposed method
we use an assumption that (Y,X) follow the logistic model as in (2). Other
methods of estimation of parameters (c, β) are discussed in Sect. 1.3.

1.3 Methods of Label Frequency Estimation

In this section, we introduce methods of label frequency estimation, some of
which will be used in Sect. 3.2. For a comprehensive survey, we refer to [6].

Elkan-Noto and TIcE Estimator. In a method proposed by Elkan and Noto
[4] we divide the dataset into two subsets: a training set, on which the classifier
P̂ (S = 1|x) is trained and a validation set used to compute an estimator of c.
The estimator of c is defined as

ĉEN =
1

|A|
∑

i∈A
P̂ (S = 1|Xi),

where A is a set of indices of observations in the validation set that are labeled.
The method uses the fact, that

c =
P (S = 1|X = x)
P (Y = 1|X = x)

, (5)

and thus if the classes are separable and we compute the denominator for a
labeled example, then it equals 1. The method introduced in [1] is based on
similar observation, namely that

c = P (S = 1|Y = 1) = P (S = 1|Y = 1,X ∈ A)

=
P (S = 1, Y = 1,X ∈ A)

P (Y = 1,X ∈ A)
=

P (S = 1|X ∈ A)
P (Y = 1|X ∈ A)

.

Next, we look for a so-called anchor set A, for which P (Y = 1|X ∈ A) ≈ 1 using
induction trees on a training set and on a test set we estimate P (S = 1|X ∈ A).

KM Estimators. The estimators proposed in [10] are based on representing
the distribution of unlabeled observations as a mixture of the distributions cor-
responding to S = 0, Y = 1 and S = 0, Y = 0. In [10] the authors estimate
mixing proportion of the latter two distributions. Then, after the mixing pro-
portion is estimated, the class frequency P (Y = 1) can be easily computed, and
as P (Y = 1) = P (S = 1)/c we also obtain the estimator of c. Two ways of esti-
mating mixing proportion are proposed, thus two estimators ĉKM1 and ĉKM2

are obtained.
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JOINT and CD+MM Estimators. In view of (4), in order to obtain esti-
mators of (c, β) the following log-likelihood function is maximised

l(c, b) =
n∑

i=1

(si log(cσ(x′
iβ) + (1 − si) log(1 − cσ(x′

iβ))

with respect to c and β simultaneously. JOINT method [11] optimize l(c, b)
using simple gradient algorithm. CD+MM accounts for the fact that l(c, b) is
not a concave function and thus it may have multiple local minima. CD+MM
algorithm [12] consists of two steps in each iteration i: first, using the fact that
l(c, b) is concave with respect to c, finds a maximizer ĉi of l(c, b̂i−1). Next, using
Minorization-Maximization algorithm (see [7]) maximizes l(ĉi, b) with respect to
b. The optimization algorithm is run until it converges to the local minimum.

MLR Estimator. [5] Note that from (5) it follows that c ≤ maxx P (S =
1|X = x) and if maxx P (Y = 1|X = x) = 1, then we obtain equality. In MLR
the following model is fitted

g(x, b, γ) =
1

1 + b2 + exp(γ′x)
,

where b > 0 and γ ∈ R
p. By noting that c can be estimated as maxx P̂ (S =

1|X = x) and maxx g(x, b, γ) = 1
1+b2 , we obtain ĉ = 1

1+b̂2
.

2 Gibbs Sampler for Estimation of Label Frequency

First, we give a brief description of Gibbs sampler and Bayesian logistic regres-
sion introduced in [8], and then in Sect. 2.3 we present our adaptation to PU
setting.

2.1 Gibbs Sampling

Gibbs sampling is a Markov chain Monte Carlo algorithm for obtaining a
sequence of observations from a multivariate joint probability distribution. The
algorithm is especially useful in the cases when direct sampling from the joint
distribution of variables (X1,X2, . . . , Xp) is difficult, whereas sampling from con-
ditional distributions Xi|X−i = x−i, where X−i = (X1, . . . , Xi−1,Xi+1, . . . , Xp)
is relatively simple. The output of the algorithm, among other applications, can
be used to approximate marginal distribution of a chosen subset of variables or
to compute their expected value. The variables (X1,X2, . . . , Xp) might represent
latent variables of the model we want to sample from or parameters in Bayesian
approach. Below we give a brief description of the algorithm.

Suppose we want to sample from the distribution p(x1, x2, . . . , xp) and sam-
pling from conditional distribution p(xj |x−j) for j = 1, 2, . . . , p is feasible. Then
to obtain N observations from the distribution of p(x1, x2, . . . , xp), one can pro-
ceed as follows:
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(1) Set x(0) = (x(0)
1 , x

(0)
2 , . . . , x

(0)
p ) to a starting value.

(2) Sample x
(i)
j ∼ p

(
xj |x(i)

1 , . . . , x
(i)
j−1, x

(i−1)
j+1 , . . . , x

(i−1)
p

)
for j = 1, 2, . . . , p.

Repeat (2) for i = 1, 2, . . . , N , where N is a number of samples required.

Ideally, the initial value x(0) should be chosen from a region of high probabil-
ity p(x1, x2, . . . , xp), but as it is difficult, it is common to sample N +B samples
instead of N and discard B samples from the beginning.

Gibbs sampling is frequently used in Bayesian inference. In that approach,
prior distribution π(θ) of the vector of parameters θ = (θ1, θ2, . . . , θp) is given
and we assume that observations y come from the distribution p(y|θ), where
p is known. In this case, the aim is to sample from the posterior distribution
p(θ|y), as we are interested in the distribution of the parameters given the infor-
mation about θ from the observed sample. In each step i of (2) of the Gibbs
sampler we sample from the distribution p(θj |θ(i)1 , . . . , θ

(i)
j−1, θ

(i−1)
j+1 , θ

(i−1)
p , y) for

j ∈ 1, 2, . . . , p.

2.2 Gibbs Sampler for Bayesian Logistic Regression

We describe now an algorithm introduced in [8] for sampling from the posterior
distribution of the parameters β from the logistic model (cf. (2))

P (Y = y|β) = p(y|β) = (ex′β)y

1 + ex′β .

Gibbs sampler given in [8] uses latent variables following Pólya-Gamma distribu-
tion to enable efficient sampling from conditional distributions. The densities of
distributions in Pólya-Gamma family PG(1, a) with parameter a > 0 are defined
as

f(x|a) = cosh(a/2)e− a2x
2 g(x),

where g is a density of an infinite sum of properly scaled i.i.d. exponential vari-
ables (the definition of the density g is given in [8], p. 1340). We do not provide
the formula for g, as in the following only the terms containing a will be used.
For details see [2,8].

To construct a Gibbs sampler for Bayesian logistic regression, latent variables
ω are used, thus we estimate (β, ω). The step (2) of Gibbs algorithm has two
sub-steps:

– Sample ω(i) ∼ p(ω|β(i−1), y),
– Sample β(i) ∼ p(β|ω(i), y).

Using notation of the previous section we have (θ1, θ2) = (β, ω) (the first param-
eter is a p-dimensional vector, where p denotes the number of predictors and the
second parameter is n-dimensional, where n denotes the number of observations)
and y is observed. The dependence structure of variables (β, ω, Y ) is represented
by probabilistic graphical model shown in Fig. 1a, in which the vertices denote
random variables and the orientation of the edges determines the direction of
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ω Y

(a) Graphical model for Bayesian logistic
sampler

β

ω Y C

S

(b) Graphical model for Bayesian logistic
sampler for PU data

Fig. 1. Graphical models indicating dependence structure of the considered variables

dependence. The joint distribution corresponding to a graphical model is the
product of the conditional probabilities for every node given its parents, thus
the joint distribution of (β, ω, Y ) factorizes in the following way

p(β, ω, Y ) = π(β)p(ω|β)p(y|β). (6)

Note that from (6) it follows that ω and Y are independent given β. We also
assume that observations (ωi, Yi)ni=1 are independent given β, hence we have
p(ωi|β, y) = p(ωi|β) and p(ω|β) =

∏n
i=1 p(ωi|β). Moreover for a given β the

distribution of ωi is PG(1, |x′
iβ|) and the prior for β is N (bβ , Bβ), where bβ and

Bβ are fixed and we show that conditional distribution of β is also normal. In the
following, we will use ∝ to denote equality up to multiplication by a constant.
We have

p(β|ω, y) ∝ p(β, ω, y) = π(β)p(ω|β)p(y|β)

= π(β)
n∏

i=1

(
cosh

( |x′
iβ|
2

)
e− (x′

iβ)2ωi
2 g(ωi)

) n∏

i=1

(
(ex′

iβ)yi

1 + ex′
iβ

)

∝ 2−nπ(β)
n∏

i=1

exp
(

yix
′
iβ − x′

iβ

2
− ωi(x′

iβ)
2

2

)

∝ π(β)
n∏

i=1

exp

(
−ωi

2

(
x′

iβ − yi − 1/2
ωi

)2
)

where in the third expression we omitted the terms g(ωi), as they do not
depend on β and we used the fact that cosh(x) = ex+e−x

2 . Thus, after further
transformations, we obtain that conditional distribution of β is N(μ(ω), Σ(ω)),
where Σ(ω) = (X ′Ω(ω)X + B−1

β )−1, μ(ω) = Σ(ω)(X ′(y − 1
21n) + B−1

β bβ),
Ω(ω) = diag(ω) and 1n is a n-dimensional vector of 1.

2.3 Gibbs Sampler for PU Data

In PU learning the true class Y is not always observed, thus the procedure
needs to be modified. We use two additional variables in the model for PU
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data: observed vector of labels S and unobserved label frequency C treated as a
random variable. We assume that the dependency structure is defined by Fig. 1b,
thus the joint density of all considered in the model variables can be factorized
in the following way (cf. (6))

p(ω, β, y, s, c) = π(β)p(ω|β)p(y|β)π(c)p(s|y, c). (7)

We now compute the conditional distributions of all the variables, which will
be sampled, given the remaining ones. The conditional distributions for β and
ω are described in Sect. 2. Below we compute conditional densities p(y|β, ω, c, s)
and p(c|β, ω, y, s).

Note, that from (7) it easily follows that p(y|β, ω, c, s) = p(y|β, c, s). We also
have

P (Yi = yi|S = s, β = b, C = c) ∝ P (Yi = yi|β = b)P (Si = s|Y = y, C = c). (8)

We assume that variables (Y,X) satisfy (2). On the other hand, from SCAR
assumption it follows that P (Si = 1|Yi = 1, C = c) = 1 − P (Si = 0|Yi = 1, C =
c) = c and if Yi = 0, we have P (Si = 0|Yi = 0, C = c) = P (Si = 0|Yi = 0) = 1.
Hence for Si = 1 we obtain

P (Yi = 1|Si = 1, β, C) ∝ c × σ(x′
iβ),

P (Yi = 0|Si = 1, β, C) = 0,
(9)

and for Si = 0 we have

P (Yi = 1|Si = 0, β, C) ∝ (1 − c)σ(x′
iβ),

P (Yi = 0|Si = 0, β, C) ∝ 1 − σ(x′
iβ).

(10)

Equations (9) and (10) lead to

P (Yi = 1|Si = s, β = b, C = c) =
(1 − c)σ(x′

iβ)
(1 − c)σ(x′

iβ) + (1 − s)(1 − σ(x′
iβ))

. (11)

Now we derive the formula for p(c|β, ω, y, s). Prior density π(c) of C is
Beta(αc, βc). From (7) we obtain that C is independent of β and ω given S
and Y . Thus we consider conditional distribution of C given only S and Y

p(c|Si = s, Yi = 1) ∝ π(c)P (Si = s|Yi = 1, C = c).

Hence, assuming that the pairs (Si, Yi)ni=1 are independent given C, we obtain

p(c|Si, Yi = 1, i = 1, . . . , n) ∝ π(c)c
∑n

i=1 I(Si=1,Yi=1)(1 − c)
∑n

i=1 I(Si=0,Yi=1),

thus C|S, Y ∼ Beta(αc +
∑n

i=1 I(Si = 1, Yi = 1), βc +
∑n

i=1 I(Si = 0, Yi = 1)).
Note that proposed prior distribution of C is conjugate for the likelihood which
is Bernoulli distribution (for success being Si = 1, Yi = 1 and the failure Si =
0, Yi = 1). Thus the posterior is also Beta distribution with modified parameters
according to the data.
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Below we summarise the above derivations. We use the following prior dis-
tributions for β and C with hyperparameters (bβ , Bβ) and (αc, βc)

β ∼ N (bβ , Bβ), C ∼ Beta(αc, βc).

Then in step (2) of the Gibbs sampler we sample from the following distributions
(the definitions of μ(ω) and Σ(ω) are given at the end of Sect. 2.2):

ωi|β ∼ PG(1, |x′
iβ|) for i = 1, 2, . . . , n,

Yi|β, S,C ∼ Bern

(
(1 − C)σ(x′

iβ)
(1 − C)σ(x′

iβ) + (1 − Si)(1 − σ(x′
iβ))

)
for i = 1, 2, . . . , n,

β|ω, Y ∼ N (μ(ω), Σ(ω)),

C|Y, S ∼ Beta

(
αc +

n∑

i=1

I(Si = 1, Yi = 1), βc +
n∑

i=1

I(Si = 0, Yi = 1)

)
.

Algorithm 1. One step of Gibbs sampler for PU data
Input: X, S, bβ , Bβ , βold, αc, βc, cold
Output: βnew, cnew
1: for i ∈ {1, 2, . . . , n} do
2: ωi,new ← a sample from PG(1, |X ′

i·βold|)
3: σi ← σ(X ′

iβold)
4: pYi=1 ← (1 − cold)σi/[(1 − cold)σi + (1 − Si)(1 − σi)]
5: yi,new ← a sample from Bern(pYi=1)
6: end for
7: Ωnew ← diag(ωnew)
8: Σβ ← (X ′ΩnewX + B−1

β )−1

9: μβ ← Σβ(X
′(ynew − 1

2
1n) + B−1

β bβ)
10: βnew ← a sample from Np(μβ , Σβ)
11: npl ← ∑n

i=1 I(Si = 1, yi,new = 1)
12: npu ← ∑n

i=1 I(Si = 0, yi,new = 1)
13: cnew ← a sample from Beta(αc + npl, βc + npu)

3 Numerical Experiments

In this section, we first present an illustrative example showing how the proposed
method works. Next, we briefly describe methods of label frequency estimation
existing in the literature and at the end we compare the accuracy of our method
with other methods on real datasets. The R code is available on Github1.

In Algorithm 1 we present one step of Gibbs sampler for PU learning. The
input consists of a matrix of predictors X, a vector of labels S, hyperparameters
1 github.com/lazeckam/PU_BayesLogistic.
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of normal distribution bβ and Bβ , hyperparameters of Beta distribution αc and
βc and initial values or values from the previous step of β and c, namely βold
and cold.

3.1 Example

Let Xi = (Xi1,Xi2, . . . , Xip) for i ∈ {1, 2, . . . , n}. We sample observations
Xi,j independently from uniform U([0, 1]) distribution for i ∈ {1, 2, . . . , n},
j ∈ {1, 2, . . . , p} and let n = 1000, p = 6. For each row Xi,· = xi of the matrix
X we sample Yi according to the distribution P (Yi = 1|β̄, xi) = σ(x′

iβ̄) =: σ0,i,
where β̄ = (7.5, 4.5, 1.5,−1.5,−4.5,−7.5) with intercept being 0. We fix c = 0.8
and sample Si according to Bernoulli distribution with probability of success c
for positive observations (Yi = 1) and for the remaining ones Si = 0. To run the
simulations we use the following hyperparameters and initial values: bβ = 0p,
Bβ = 10 · Ip, αc = 1, βc = 1 and βstart = 0p, cstart = 0.5, where 0p denotes a
vector of p zeros and Ip is a p× p identity matrix. Next, we repeat B +N = 500
times the step of the Gibbs sampler algorithm described in Algorithm 1.

0.00
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1.00

0 100 200 300 400 500
N

c

Chain of sampled values of C

0

5

10

15

0.75 0.80 0.85 0.90
c

de
ns

ity

Histogram of sampled values of C

(a) The chain of sampled values of the vari-
able C. The true value is marked with the
horizontal line, the gray background shows
which values are used to compute the esti-
mator ĉ.

(b) The histogram of the values of C
for iterations 251-500, which approximates
marginal distribution of C and the point
estimate ĉ ≈ 0.836 marked with vertical
line.

Fig. 2. Estimation of label frequency c.

The obtained chains of values of C and β are shown in Figs. 2a and 3a.
We obtain a point estimate of c by discarding the first B = 250 values and
averaging the remaining ones. In Fig. 2b the histogram of the estimator ĉ is
presented for the last 250 samples. Figure 3b shows scatterplot of estimated
posterior values of probability of Y = 1, where posterior distribution of Yi|β,C, S

follows Bern
(

(1−C)σ(x′
iβ)

(1−C)σ(x′
iβ)+(1−Si)(1−σ(x′

iβ))

)
, which corresponds to pYi=1 from

line 4 in Algorithm 1 (the values from the 500th iteration of Algorithm 1 are
used) against σ0,i = σ(x′

iβ̄) values for i ∈ {1, 2, . . . , n}. Both Fig. 3b and Fig. 3a
indicating accurate estimation of β show, that the unlabeled observations with
high probability of being positive can be detected based on the proposed method
as they have also high values of pYi=1.
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Fig. 3. The chains of β parameters and posterior probabilities of positive class obtained
by the proposed method.

3.2 Real Data Simulations

In this section, we artificially created PU datasets using the labeled benchmark
11 datasets from UCI Machine Learning Repository [3] and one from the IJCNN
2001 competition [9]. Detailed information about datasets is in Table 1, in which
the number of observations and predictors is given as well as fraction of positive
observations α.

Table 1. Information about datasets

Dataset n p α

BreastCancer 683 9 0.35
diabetes 768 8 0.35
heart-c 303 19 0.46
ijcnn2001 35000 22 0.10
mushroom 8124 21 0.48
parkinsons 195 22 0.75

Dataset n p α

pop_failure 540 18 0.91
SPECTF 79 44 0.49
vote 435 32 0.39
wdbc 569 31 0.37
Wholesale 440 7 0.32
wpbc 198 33 0.24

We run simulations to compare the proposed method (PGPU) with the
existing ones listed in Sect. 1.3. Due to the lack of space, we present the
results only for some of the methods. Extended results are available on Github.
For each dataset, we select positive examples to be labeled with probability
c = 0.1, 0.2, . . . , 0.9 and for each c we repeat the experiment 100 times. All pre-
dictors are scaled to [0, 1] suggested in [1]. Due to the computational costs of
KM methods, for large dataset ijcnn2001 we subsampled the original dataset
5 times to obtain n = 2000 and we averaged results obtained on the subsam-
ples. In our method, we use the same hyperparameters and initial values as in
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Fig. 4. Comparison of label frequency estimation methods.

the example from Sect. 3.1. For ijcnn2001 PGPU uses the same subsampling
approach as for KM described above. PGPU is also computationally expensive
for large datasets as in each iteration we generate n samples from Pólya-Gamma
distribution and we take an inverse of p × p matrix to obtain Σβ .

Figure 4 shows the results of the experiments. Each point on the plot is an
average of 100 results of |ĉ − c| for fixed method, dataset and label frequency
c. The proposed method for all datasets except for ijcnn2001 and Wholesale
outperforms or is as accurate as other methods for almost all c values in terms of
the accuracy of c estimation. In the cases, when another method performs better
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for some limited range of c, then it works significantly worse for other values of
the label frequency (see e.g. diabetes and compare PGPU with KM2 for c = 0.2
and c = 0.9). We stress that achieving small errors over whole range c ∈ [0, 1] is
particularly important in that task and PGPU meets that requirement. PGPU
fails this criterion only on Wholesale and ijcnn2001 for small c values, but we
note that PGPU might perform better for a different choice of parameters.

4 Conclusions

We establish that the proposed method based on a simple graphical model and
Gibbs sampler works well in comparison to other methods. Parametric assump-
tion on the distribution of (Y,X) makes it possible to detect positive and unla-
beled observations. Using more elaborate graphical model the method can be
naturally extended to situations when the SCAR assumption fails. This is a
subject of ongoing research. The method also will be further developed to be
feasible for large datasets.
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