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Preface

This volume contains papers presented at the 20th International Conference onModeling
Decisions for Artificial Intelligence (MDAI 2023), celebrated at Umeå, Sweden, June
19th–22th, 2023.

This conference followed MDAI 2004 (Barcelona), MDAI 2005 (Tsukuba), MDAI
2006 (Tarragona), MDAI 2007 (Kitakyushu), MDAI 2008 (Sabadell), MDAI 2009
(Awaji Island), MDAI 2010 (Perpinyà), MDAI 2011 (Changsha), MDAI 2012 (Girona),
MDAI 2013 (Barcelona), MDAI 2014 (Tokyo), MDAI 2015 (Skövde), MDAI 2016
(Sant Julià de Lòria), MDAI 2017 (Kitakyushu), MDAI 2018 (Mallorca), MDAI 2019
(Milano), MDAI 2020, MDAI 2021 (Umeå), and MDAI 2022 (Sant Cugat).

The aim of MDAI is to provide a forum for researchers to discuss different facets
of decision processes in a broad sense. This includes model building and all kinds of
mathematical tools for data aggregation, information fusion, and decision-making; tools
to help make decisions related to data science problems (including, e.g., statistical and
machine learning algorithms as well as data visualization tools); and algorithms for
data privacy and transparency-aware methods so that data processing procedures and
the decisions made from them are fair, transparent, and avoid unnecessary disclosure of
sensitive information.

The MDAI 2023 conference included tracks on the topics of (a) data science,
(b) machine learning, (c) data privacy, (d) aggregation functions, (e) human decision-
making, and (f) graphs and (social) networks.

The organizers received 28 papers, 17 of which are published in this volume. Each
submission received at least three Single-blind reviews from the Program Committee
and a few external reviewers. We would like to express our gratitude to them for their
work.

The conference celebrates this year the 50th anniversary of graded logic, introduced
by Jozo Dujmović in a paper in 1973. In this paper, he also introduced the concept
of andness, a key concept to define adjustable aggregators with a variable conjunction
degree. TheseMDAI2023proceedings include a paper by JozoDujmović,which has also
been approvedby the programcommittee, on logic aggregators and their implementation.
The paper presents the necessary properties of these aggregators and compares major
implementations (including means and the weighted power mean, t-norms and conorms,
OWA, and fuzzy integrals).

The conference was supported by Umeå University, the European Society for Fuzzy
Logic and Technology (EUSFLAT), the Catalan Association for Artificial Intelligence
(ACIA), the Japan Society for Fuzzy Theory and Intelligent Informatics (SOFT), and
the UNESCO Chair in Data Privacy.

April 2023 Vicenç Torra
Yasuo Narukawa
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Partially Observing Graphs - When Can We Infer
Underlying Community Structure?

Fiona Skerman

Uppsala University, Sweden

Abstract. Suppose edges in an underlying graph G appear independently
with some probability in our observed graph G′ - or alternately that we
can query uniformly random edges. We describe how high a sampling
probability we need to infer the modularity of the underlying graph.

Modularity is a function on graphs which is ubiquitous in algorithms
for community detection. For a given graph G, each partition of the ver-
tices has a modularity score, with higher values indicating that the par-
tition better captures community structure in G. The (max) modularity
q ∗ (G) of the graph G is defined to be the maximum over all vertex
partitions of the modularity score, and satisfies 0 ≥ q ∗ (G) ≥ 1.

It was noted when analysing ecological networks that under-sampled
networks tended to over-estimate modularity - we indicate how the asym-
metry of our results gives some theoretical backing for this phenomenon
- but questions remain. In the seminar I will spend time on intuition for
the behaviour of modularity, how it can be approximated, links to other
graph parameters and to present some open problems.

Joint work with Colin McDiarmid.



AI for the Public Good - Reflections on Ethics, Decision
Making and Work

Robyn Schimmer

Department of Psychology, Umeå University, Sweden

Abstract. We are seeing increasing interest in AI in all parts of society,
including the public sector. Although there are still few examples of AI
applications being implemented in the public sector, there is no doubt
that it will be, and that we are facing a radical change in how work
is organized. In the Swedish context, AI is mentioned as a potentially
beneficial technology in governmental policies. Also, networks have been
set up connecting actors in the public sector with the aim of strengthening
knowledge of AI and exchanging experiences. Given these ambitions to
implement, paired with the rapid technical development wewill probably
see a fast increase in AI-enhanced work processes in the public sector.
The disruptive potential of AI is however also raising many questions,
especially about how it might affect workplaces and people using these
systems. It is therefore important to discuss various ethical implications
in order to foresee and react to the transformational power of AI, to make
us aware of possible outcomes, and also to decide if they are wanted or
not.

In this presentation, we will look into the status of AI in the public
sector, with an emphasis on the Swedish context. The main focus will be
on ethics, in a broad sense, and to reflect on how AI will impact the way
we do work, make decisions, and how work is organized. Issues such as
trust and accountability will be discussed, especially in relation to AI-
based decision-making. Implications for workers and citizens will also be
brought up, highlighting both potential advantages as well as challenges.
At the end of the presentation, wewill also attempt to sketch out a number
of principles that could act as guidance in AI for the public good.



Imprecise Probability in Formal Argumentation

Juan Carlos Nieves

Department of Computing Science, Umeå University, Sweden

Abstract. Formal argumentation has been revealed as a powerful con-
ceptual tool for exploring the theoretical foundations of reasoning and
interaction in autonomous systems andmultiagent systems. FormalArgu-
mentation usually is modeled by considering argument graphs that are
composed of a set of arguments and a binary relation encoding attacks
between arguments. Some recent approaches of formal argumentation
assign uncertainty values to the elements of the argument graphs to rep-
resent the degree of belief in arguments or attacks. Some of these works
assign the uncertainty values to the arguments, others to the attacks, and
others to both arguments and attacks. These works use precise probability
approaches to model the uncertainty values. However, precise probabil-
ity approaches have some limitations to quantify epistemic uncertainty,
for example, to represent group disagreeing opinions. These can be bet-
ter represented by means of imprecise probabilities, which can use lower
and upper bounds instead of exact values to model the uncertainty values.
During this talk, we will present some recent results on how to model
the degree of belief in arguments with imprecise probability values by
means of credal sets. We will show how to use credal networks theory
for modeling causality relations between arguments. Some applications
of imprecise probability in Formal Argumentation will be also discussed.
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Logic Aggregators and Their Implementations

Jozo Dujmović1(B) and Vicenç Torra2

1 Department of Computer Science, San Francisco State University, San Francisco, CA, USA
jozo@sfsu.edu

2 Department of Computer Sciences, Umeå University, Umeå, Sweden
vtorra@ieee.org

Abstract. In this paper we present necessary properties of logic aggregators and
compare their major implementations. If decision making includes the identifica-
tion of a set of alternatives followed by the evaluation of alternatives and selection
of the best alternative, then evaluation must be based on graded logic aggregation.
The resulting analytic framework is a graded logic which is a seamless general-
ization of Boolean logic, based on analytic models of graded simultaneity (vari-
ous forms of conjunction), graded substitutability (various forms of disjunction)
and complementing (negation). These basic logic operations can be implemented
in various ways, including means, t-norms/conorms, OWA, and fuzzy integrals.
Such mathematical models must be applicable in all regions of the unit hypercube
[0, 1]n. In order to be applicable in various areas of decision making, the logic
aggregators must be consistent with observable patterns of human reasoning, sup-
porting both formal logic and semantic aspects of human reasoning. That creates a
comprehensive set of logic requirements that logic aggregators must satisfy. Var-
ious popular aggregators satisfy these requirements to the extent investigated in
this paper. The results of our investigation clearly show the limits of applicability
of the analyzed aggregators in the area of decision making.

1 Introduction

In mathematical literature [1–3] aggregators are defined as functions A : In → I , I =
[0, 1] that satisfy nondecreasing monotonicity in all arguments and idempotency in
extreme points: A(0, . . . , 0) = 0 and A(1, . . . , 1) = 1. The arguments are anonymous
real numbers, i.e. they are not restricted by any particular semantic identity. This mini-
mally restrictive definition creates a huge family of aggregation functionswhich includes
many functions that are not observable in human reasoning. Unsurprisingly, the appli-
cability of aggregators in decision support systems depends on their concordance with
observable properties of human reasoning. For example, aggregators that have discon-
tinuities and/or oscillatory properties of first derivatives are not observable in human
evaluation logic and not used in intuitive decision making [4].

In this paper we are interested in graded logic aggregators, i.e., aggregators that
aggregate degrees of truth. Such aggregators are present in most decision problems.
We assume that decision making commonly consists of three steps: (1) identification of
stakeholder/decision maker which has goals and interests, (2) identification of one or
more alternatives that make possible or contribute to the achievement of stakeholder’s

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Torra and Y. Narukawa (Eds.): MDAI 2023, LNAI 13890, pp. 3–42, 2023.
https://doi.org/10.1007/978-3-031-33498-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33498-6_1&domain=pdf
https://doi.org/10.1007/978-3-031-33498-6_1


4 J. Dujmović and V. Torra

goals, and (3) evaluation of alternatives and selection of the most suitable alternative.
Stakeholders can be organizations or individuals. Alternatives can be arbitrary objects,
candidates, or courses of action. We assume that selection of the best alternative is not a
pairwise comparison problem because the number of alternatives can be one (selecting or
rejecting a single candidate), and obviously, that is not a pairwise comparison problem.
In the case of a single candidate, we have the evaluation problem of computing an overall
degree of suitability of the evaluated candidate [5, 6], based on goals and requirements
of specific stakeholder/decision maker.

To provide consistency with the case of a single candidate, the evaluation and
comparison of two or more candidates must also be based on individual evaluation
of each candidate. The LSP evaluation process [4] is based on suitability attributes
(a1, . . . , an) ∈ R

n, defined as those attributes of evaluated objects that affect their
suitability for a specific stakeholder (decision maker). Suitability attributes a1, . . . , an
are individually evaluated using attribute criteria gi : R → I , i = 1, . . . , n that
reflect stakeholder’s needs. The resulting attribute suitability degrees (x1, . . . , xn) =
(g1(a1), . . . , gn(an)) ∈ In are interpreted as degrees of truth of attribute value statements
(assertions that the suitability attributes completely satisfy stakeholder’s requirements).
The attribute suitability degrees are then aggregated to generate the overall suitability
degree X = A(x1, . . . , xn) ∈ I . The overall suitability X is interpreted either as a degree
of truth of the statement that the evaluated object completely satisfies all stakeholder’s
requirements, or (alternatively and equivalently) as the degree of fuzzy membership
in a fuzzy set of objects that completely satisfy stakeholder’s goals and requirements
[7–9]. Thus, A(x1, . . . , xn) is a logic function, i.e., a compound logic aggregator of
arguments that have clearly defined semantic identity. Obviously, degrees of truth (or, in
the evaluation context, suitability degrees) are not anonymous real numbers. Degrees of
truth are always generated and interpreted by a stakeholder/decision maker and derived
from clearly defined value statements which they represent. By definition, each value
statement is an assertion that a specific stakeholder’s requirement is fully satisfied. Such
statements are regularly only partially true. Consequently, degrees of truth are graded
logic variables that have semantic identity derived from the meaning, role, interpreta-
tion, and importance of value statements for specific decision maker. The aggregation
of individual degrees of truth is necessary to compute the overall suitability of eval-
uated object/alternative. The overall suitability is interpreted as the degree of truth of
the value statement claiming that the evaluated object/alternative completely satisfies
all requirements of stakeholder/decision maker. The aggregation of degrees of truth is
performed using a graded propositional calculus which belongs to the area of graded
logic (GL). Consequently, GL is a soft computing mathematical infrastructure necessary
for building aggregation models for decision making [4, 21, 40, 41].

Logic aggregation of degrees of truth has conditions and restrictions not encountered
when aggregating anonymous real numbers. Aggregation of suitability degrees is a
logic process and the role of graded logic is to provide logic aggregators supporting
various properties observable in humanevaluation reasoning.Ourmaingoal is to identify,
analyze and compare various mathematical models of logic aggregators.

This paper is organized as follows. In Sect. 2 we introduce and geometrically char-
acterize a set of border logic aggregators. The semantic aspects of logic aggregation
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are presented in Sect. 3. In Sect. 4 we present a detailed classification of GL functions.
The requirements that logic aggregators must satisfy are presented in Sect. 5. In Sect. 6
we propose benchmark problems for comparison of logic aggregators. Sections 7, 8, 9,
and 10 present four characteristic implementations of logic aggregators (GCD/ADIA,
OWA, fuzzy integrals, t-norms, and various means). Section 11 presents the evaluation
and comparison of all implementations of logic aggregators. The conclusions of this
study are summarized in Sects. 12 and 13.

2 Geometric Characterization of Logic Aggregators and the Set
of Border Aggregators

Let us aggregate n degrees of truth X = (x1, . . . , xn), n > 1, xi ∈ I , i =
1, . . . , n. A general logic aggregator A : In → I is defined as a continuous function
that is nondecreasing in all components of X and satisfies the boundary conditions:
A(0) = 0, A(1) = 1. In many evaluation problems [4, 10] it is useful to define basic
logic aggregators using additional restrictive conditions X > 0 ⇒ A(X) > 0, and
X < 1 ⇒ A(X) < 1. The condition X > 0 ⇒ A(X) > 0 is called the sensitivity to
positive truth: if all input arguments of the aggregator are to some extent true the result
of aggregation cannot be false. Similarly, the condition X < 1 ⇒ A(X) < 1 is called
the sensitivity to incomplete truth: if none of input arguments is completely true, then
the result of aggregation cannot be completely true. These two conditions are dual, and
hold in all cases where basic logic aggregators can be modeled using means.

All logic aggregators are models of simultaneity (various forms of conjunction) and
substitutability (various forms of disjunction), and GL is a seamless soft computing
generalization of classical Boolean logic [4]. Similarly to Boolean logic, in GL all
compound logic aggregators can be created as superposition of conjunctive aggregators,
disjunctive aggregators, and negation (regularly modeled as a complement x �→ 1− x).
Consequently, in this paper we will focus on modeling conjunctive and disjunctive
aggregators.

To geometrically characterize conjunctive or disjunctive logic aggregators A(X), we
assume that all arguments have the same degree of importance. The overall properties
of such aggregators can be geometrically characterized using the volume under their
surface inside the unit hypercube In: V = ∫

In
A(X)dx1 . . . dxn. Since the volume of In is

1, it follows that 0 ≤ V ≤ 1. This volume is used to define the continuously adjustable
conjunction degree, or the global andness α, and its complement, the continuously
adjustable disjunction degree, or the global orness ω, as follows [11]:

α = n − (n + 1)V

n − 1
, ω = (n + 1)V − 1

n − 1
, α + ω = 1. (1)

The global andness α denotes the degree of simultaneity, and the global orness
ω denotes the degree of substitutability of a logic aggregator A(X). As we will see
later, this definition is adjusted so that the minimum function (conjunction) has and-
ness α = 1 and the maximum function (disjunction) has orness ω = 1. Andness and
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orness depend on the volume V under the surface of aggregator and can be called the
volume-based andness/orness. For any given andness/orness we can compute the cor-
responding volume under the surface of aggregator: V = [n − (n − 1)α]/(n + 1) =
[(n − 1)ω + 1]/(n + 1). Thus, the volume, andness, and orness can be interpreted as
global geometric properties of conjunctive and disjunctive aggregators.

In the range 0 ≤ V ≤ 1, there are regions inside In where all aggregators have
the same general logic properties (idempotency, annihilator support, simultaneity, and
substitutability, described in Sect. 4 and Fig. 1); in such regions we use the adjustable
andness/orness for additional fine tuning of logic properties. In the points of transition
from region to region we have border aggregators. The following is a short description
of all important border aggregators.

Drastic Conjunction (V = 0) and Drastic Disjunction (V = 1). The minimum pos-
sible orness corresponds to the minimum volume V = 0, and from (1) it follows ωmin =
−1/(n − 1). The minimum volume denotes the maximum andness αmax = n/(n − 1).
So, the minimum orness corresponds to the maximum andness and vice versa. The
maximum orness for the maximum volume V = 1 is ωmax = n/(n − 1), and it cor-
responds to the minimum andness αmin = −1/(n − 1). Since αmin ≤ α ≤ αmax and
ωmin ≤ ω ≤ ωmax, the range of andness and orness is [−1/(n − 1), n/(n − 1)]. The
largest range is obtained in the case of two variables: −1 ≤ α ≤ 2 and −1 ≤ ω ≤ 2. As
the number of variables increases, the ranges of andness and orness reduce, approaching
0 ≤ α ≤ 1 and 0 ≤ ω ≤ 1.

The next obvious question is to identify logic functions that correspond to mini-
mum volume V = 0 and the maximum volume V = 1. In [4], these two functions
are identified as the drastic conjunction Ĉ(X) = �x1 · · · xn	 and the drastic disjunction
D̂(X) = �x1 · · · xn	 = 1 − �(1 − x1) · · · (1 − xn)	. In other words, Ĉ(X) = 1 if and
only if x1 = · · · = xn = 1, and D̂(X) = 0 if and only if x1 = · · · = xn = 0. The drastic
conjunction and the drastic disjunction are two dual functions: D̂(X) = 1 − Ĉ(1 − X),
and Ĉ(X) = 1 − D̂(1 − X). The drastic conjunction specifies the ultimate conjunc-
tive requirement: we accept only candidates that perfectly (fully) satisfy all require-
ments; everybody else is rejected. The meaning of drastic disjunction is the ultimate
disjunctive requirement: we reject only candidates that completely fail to satisfy all
requirements; everybody else is accepted. According to the definition of (basic and gen-
eral) logic aggregators, neither Ĉ(X) nor D̂(X) are basic logic aggregators because they
are insensitive to positive and incomplete truth. However, the product-power functions
Ch(X) = �n

i=1x
p
i , p ≥ 1 and Dh(X) = 1 − �n

i=1(1 − xi)p are basic logic aggregators
and they can be used to approximate the drastic functions:

Ĉ(X) = �x1 · · · xn	 = lim
p→+∞ �n

i=1x
p
i ;

D̂(X) = �x1 · · · xn	 = 1 − lim
p→+∞ �n

i=1(1 − xi)
p.

Therefore, the drastic conjunction and the drastic disjunction are two extreme logic
functions, flanking an infinite number of logic aggregators that are located between them.
In human logic reasoning it is observable that all variables and parameters are graded
and continuously adjustable. This also holds for andness and orness; consequently, there
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must be a continuous transition from the drastic conjunction to the drastic disjunction.
This transition is either andness-directed (or andness-parameterized) or, what is equiva-
lent, orness-directed (or orness-parameterized). In human logic reasoning, andness and
orness are the inputs and not the outputs. In the mental process of creating evaluation
criteria each stakeholder/decision maker specifies the desired degree of simultaneity or
substitutability of suitability attributes, and then rewards alternatives that can provide
desired simultaneity or substitutability and penalizes alternatives that cannot satisfy these
logic requirements; this is called andness/orness-directedness. The same must be done
when creating mathematical models of evaluation criteria and the methods for achieving
andness-directedness and orness-directedness can be found in [39–44]. Therefore, all
aggregators of degrees of truth or fuzzy membership must provide the full spectrum
of logic properties in the range from the drastic conjunction to the drastic disjunction.
Some aggregators can provide and some cannot provide these properties, and our goal
is to investigate the most popular aggregators from this point of view.

Full Conjunction (V = 1/(n + 1)) and Full Disjunction (V = n/(n + 1)). The
drastic conjunction and the drastic disjunction are much stronger operations (i.e. more
conjunctive or more disjunctive) than the classical aggregators of full conjunction
Ccon(X) = min(x1, . . . , xn) and full disjunctionDdis(X) = max(x1, . . . , xn). According
to [12],

Vcon =
∫

In
min(x1, ..., xn)dx1 . . . dxn = 1/(n + 1) ⇒ αcon = 1, ωcon = 0 ;

Vdis =
∫

In
max(x1, ..., xn)dx1 . . . dxn = n/(n + 1) ⇒ αcon = 0, ωcon = 1.

Full conjunction and disjunction are extreme idempotent aggregators bordering an
infinite number of idempotent aggregators located between them and implemented as
means. Indeed, if min(x1, . . . , xn) ≤ A(x1, . . . , xn) ≤ max(x1, . . . , xn), then for x1 =
· · · = xn = xwehaveA(x, ..., x) = x. In otherwords,A(X) is amean and it is idempotent.
The definition of global andness/orness (1) is selected so that for any number of variables
the range of andness and orness of idempotent aggregators is 0 ≤ α ≤ 1 and 0 ≤ ω ≤ 1.

It is useful to note that idempotent aggregators are usually modeled using means,
and among means the most useful is the weighted power mean y = (∑n

i=1Wixri
)1/r ,

Wi > 0, i = 1, . . . , n, −∞ ≤ r ≤ +∞, because its special cases are the most impor-
tant arithmetic, geometric, and harmonic means. Obviously, the idempotency condition
x = (∑n

i=1Wixr
)1/r is equivalent to the request that weights must be normalized:∑n

i=1Wi = 1.

Logic Neutrality (V = 1/2). The central point in the spectrum of conjunctive and dis-
junctive aggregators is characterized by α = ω and from this condition and (1) it follows
α = ω = V = 1/2. The arithmetic mean Aari(X) = (x1 + · · · + xn)/n is the aggregator
that satisfies this condition. The central location inside the unit hypercube corresponds
to the arithmetic mean which cuts the unit hypercube in two equal halves: Vari = 1/2.
Thus, αari = ωari = 1/2. The arithmetic mean is the only idempotent logic aggre-
gator with this property (it is linear, continuous, and commutative – all inputs have
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the same importance). The arithmetic mean is the border between conjunctive and dis-
junctive aggregators: it is the central point of the universe of conjunctive and disjunctive
aggregators and therefore it has the important role of the centroid of all logic aggregators.

Threshold Partial Conjunction (V = Vθ) with Default Andness αθ= 3/4. The fun-
damental property of conjunctive aggregators is the selective support for annihilator
0, and the fundamental property of disjunctive aggregators is the selective support for
annihilator 1. If aggregators support the annihilators, they are called hard and if they
do not support annihilators, they are called soft. Both hard and soft aggregators are per-
manently present and clearly visible in human reasoning [4]. Thus, they are necessary
in analytic models of aggregators and designers of logic aggregators must decide about
the ranges of andness reserved for hard and soft aggregators. The threshold andness
1/2 < αθ < 1 is defined as the smallest andness of hard conjunctive aggregators, and
if α ≥ αθ the corresponding aggregator is hard. Soft conjunctive aggregators are in
the range 1/2 < α < αθ . The selected threshold andness determines the conjunctive
threshold volume Vθ = [n − (n − 1)αθ ]/(n + 1).

The region of aggregators between the arithmeticmean and the full conjunction is the
area of idempotent simultaneity (or partial conjunction).Generally, the threshold andness
can be selected anywhere inside the range ]1/2, 1[. The central point in that range is
characterized by andness αθ = αuni = 3/4. This point is important because it creates
the uniform distribution of the soft/low partial conjunction (1/2 < α < 3/4) which
does not support the annihilator 0, and the hard/high partial conjunction (3/4 ≤ α < 1)
which supports the annihilator 0. From [n − (n + 1)Vuni]/(n − 1) = 3/4 it follows
Vuni = (1/4)(n + 3)/(n + 1) = (Vari + Vcon)/2.

If designers of aggregators have reasons why the region of hard aggregators should
be greater than or less than the region of soft aggregators, then αθ can take any value
inside ]1/2, 1[. If such reasons cannot be provided, then it is reasonable to use the
default value αθ = αuni, offering equal opportunities for hard and soft aggregators. In
this case the threshold simultaneity can be called medium idempotent simultaneity.

The graded logic supports duality: any conjunctive aggregator C(X) has a dual
disjunctive aggregatorD(X) = 1−C(1 − X), and vice versaC(X) = 1−D(1 − X). For
example, in the case of unweighted harmonic mean, we have C(X) = 2x1x2/(x1 + x2)
and its dual isD(X) = 1−2(1 − x1)(1 − x2)/(2 − x1 − x2); the annihilator ofC(X) is 0,
and the annihilator ofD(X) is 1. Both the harmonic mean and its disjunctive dual are the
hard aggregators. The threshold orness 1/2 < ωθ < 1 is defined as the smallest orness
of hard disjunctive aggregators. If ω ≥ ωθ the corresponding disjunctive aggregator is
hard and supports the annihilator 1, and for 1/2 < ω < ωθ the corresponding partial
disjunction is soft and the annihilator 1 is not supported. To preserve the duality of
conjunctive and disjunctive aggregators, we always assume that ωθ = αθ , and most
frequently ωθ = αθ = 3/4.

Medium Hyperconjunction (V = 1/2n). An important hyperconjunctive aggregator
located approximately halfway between the full conjunction and the drastic conjunc-
tion is the product t-norm Ct(X) = x1 · · · xn. Following are the andness and orness of
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Ct(X):

Vt = ∫
In
x1 · · · xndx1 . . . dxn = 1/2n ⇒ αt = n−(n+1)/2n

n−1 > 1,

ωt = (n+1)/2n−1
n−1 < 0, 1 < αt < n/(n − 1), −1/(n − 1) < ωt < 0.

(2)

A hyperconjunctive aggregator located halfway between the full conjunction
and the drastic conjunction should have the andness αh = [1 + n/(n − 1)]/2 =
(2n − 1)/(2n − 2). From αt = αh it follows n = 3 (of course, if n �= 3 then αt �= αh).
So, in the case of three variables the product t-norm is volume-wise located exactly
in the middle between the full conjunction and the drastic conjunction, justifying the
status of the product t-norm as “the medium hyperconjunction.” That is a strategic posi-
tion, suitable for interpolative implementations of hyperconjunctive aggregators, and for
interpreting aggregators between the full conjunction and the product t-norm as “low
hyperconjunction,” and aggregators between the product t-norm and the drastic conjunc-
tion as “high hyperconjunction.” In addition, the product t-norm is also the model of
probability of n independent events, indicating the equivalence of logic and probabilistic
interpretations of the same aggregator.

3 Semantic Identity and Noncommutativity

All degrees of truth have semantic identity, expressed as the role, meaning, importance,
and relation to goals and interests of specific stakeholder/decision maker [13]. Since the
arguments of aggregators are semantically differentiated degrees of truth and not anony-
mous real numbers, the fixed commutativity of aggregators is not a desired GL property.
In a special case, all inputs can be equally important, and the notation of aggregator A(X)

assumes that x1, . . . , xn have exactly the same role and importance. Equal importance can
be a provable property, or an acceptable simplification, or (most frequently) an unaccept-
able oversimplification. In a general case, equal importance is not acceptable, because
the degrees of truth x1, . . . , xn have different importance for a decision maker. The
degrees of importance are quantified using “importance weights” w1, . . . ,wn. In such
cases, the aggregation process is based on graded concepts of suitability and importance,
and it combines formal logic and semantic components. The corresponding aggregators
are denoted A(X;W) where W = (w1, . . . ,wn). Depending on the type of aggregator,
the weights are usually normalized. Three most frequent normalization techniques are
w1+· · ·+wn = 1 (sum-normalized weights) ormax(w1, . . . ,wn) = 1 (max-normalized
weights [20]) or w1 + · · · + wn = n (count-normalized weights). An analysis of their
applicability can be found in [4].

We assume that weights denote the degrees of relative importance of inputs. Con-
sequently, the weights must be positive: 0 < wi < 1, i = 1, . . . , n. Indeed, wi = 0
would denote a completely insignificant input, and such inputs are justifiably omitted.
Similarly, in the case of sum-normalized weights wi = 1 yields n = 1 what is not
possible in aggregation.

Noncommutativity of aggregators based on weights is the prerequisite for modeling
the semantic identity of degrees of truth that are arguments of all logic aggregators. There-
fore, all logic aggregators must be weighted, and those aggregators that are not weighted
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cannot be directly used in GL. However, in the case of idempotent aggregators, all
commutative aggregators can be transformed to weighted aggregators using the method
of binary aggregation trees, but that method increases algorithmic and computational
complexity [4, 14].

Both importance and andness/orness affect the human percept of the overall impor-
tance of logic arguments. At high levels of andness (or orness) the impact of each argu-
ment becomes very strong, enhancing (and equalizing) the human percept of the overall
importance of each individual argument. For example, for α ≥ 1 all arguments are
mandatory and requested to be sufficiently satisfied, equalizing their individual degrees
of importance that are now much less exposed than at the lower levels of andness.
According to [4], that phenomenon can be used for accepting the full conjunction as
a strictly commutative aggregator and extending such reasoning to all hyperconjunc-
tive (and hyperdisjunctive) aggregators. The phenomenon of equalization of weights at
high andness/orness can be frequently used as the justification for commutativity of
hyperconjunctive aggregators.

In some special cases, however, we can find examples of noncommutative hypercon-
junction. E.g., a candidate for a position of computational biologist might be evaluated
using the product t-norm Q = CB, C ∈ I , B ∈ I , where C and B denote separately
evaluated candidate’s competence in the areas of computing and biology, respectively.
The product can have a probabilistic interpretation, assuming that the quality of candidate
Q is decided as a probability that the candidate can solve computational biology prob-
lems where computational and biological components are equally present. It is obvious
that many problems require unequal presence of computational and biologic component,
and in such cases the right criterion would be both highly conjunctive and weighted:
Q = CγB2−γ , 0 < γ < 2.

The concept ofweighted hyperconjunction and the concept of equalization ofweights
at high andness can be properly justified and do not exclude each other. The cases where
at high andness the weights should have a low impact seem to be considerably more
frequent than the cases where the weights must be different and have significant impact.

4 Classification of Graded Logic Functions
and Andness-Directedness of Logic Aggregators

The selection of logic properties of an aggregator by specifying its desired andness is
called andness-directedness. Since andness/orness specifies a desired degree of simul-
taneity or substitutability, it follows that andness/orness represents the most important
input in the process of creating a logic aggregator. Most logic aggregators are not nat-
urally andness-directed, but they have adjustable parameters that affect andness/orness.
Andness-directedness is realized by computing aggregator parameters as functions of
the desired andness.

Our concept of logic aggregation is based on logic, and it is different from the
concept of aggregation used in mathematical literature. For example, in [3], the drastic
conjunction is identified as the “smallest conjunctive aggregation function” and denoted
A⊥(X), while min(X) is identified as the “greatest conjunctive aggregation function.”
The reason for this difference is that in mathematical literature conjunctive functions are
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not related to andness, are not developed as models of human reasoning, and contrary to
GL, aggregation structures are not interpreted as models of logic propositional calculus.
In graded logic, conjunctive functions are functions that have andness greater than orness,
and functions that have andness greater than 1 are called hyperconjunction (and similarly,
for andness less than 0, hyperdisjunction). According to definition (1), we interpret
andness and orness as overall geometric properties related to the volume under the
surface of aggregator inside the unit hypercube.

Basic graded logic functions can be conjunctive, disjunctive, or neutral. Conjunctive
functions have andness greater than orness (α > ω). Similarly, disjunctive functions
have orness greater than andness (α < ω), and neutral is only the arithmetic mean
where α = ω = 1/2. Between the drastic conjunction and the drastic disjunction, we
have andness-directed logic aggregators that are special cases of a fundamental logic
function called graded conjunction/disjunction (GCD) [4, 15]. GCD has the status of a
logic aggregator, and it can be idempotent or nonidempotent, as well as hard (supporting
annihilators) or soft (not supporting annihilators). The annihilator of hard conjunctive
aggregators is 0, and the annihilator of hard disjunctive aggregators is 1.

Thewhole range of conjunctive aggregators is presented in Fig. 1. The range of idem-
potent aggregators extends from the logic neutrality to the full conjunction. Between the
full conjunction and the drastic conjunction, we have a range of nonidempotent aggrega-
tors. The group of five border aggregators, presented in Sect. 2, creates four aggregation
segments between them. Each segment includes an infinite number of andness-directed
aggregators that have the same fundamental properties (idempotency and annihilators)
but differ in andness.

Based on De Morgan duality, the range of disjunctive aggregators is a mirror image
of the range of conjunctive aggregators. Therefore, the problem of creating all graded
logic functions from drastic disjunction to drastic conjunction consists of two steps: (1)
creating nine border aggregators (drastic conjunction, medium hyperconjunction, full
conjunction, threshold partial conjunction, logic neutrality, threshold partial disjunction,
full disjunction, medium hyperdisjunction, and drastic disjunction), and (2) creating
eight aggregation segments between the border aggregators (high hyperconjunction,
low hyperconjunction, hard partial conjunction, soft partial conjunction, soft partial
disjunction, hard partial disjunction, low hyperdisjunction, and high hyperdisjunction).

Idempotent aggregators have the property A
(
X;W) = x, X = (x, . . . , x), x ∈ I .

If 0 < x < 1 then the nonidempotent conjunctive aggregators satisfy A
(
X;W)

< x,
and nonidempotent disjunctive aggregators satisfy A

(
X;W)

> x. Hard conjunctive
aggregators (either idempotent or nonidempotent) satisfy ∀i ∈ {1, . . . , n}, xi =
0 ⇒ A(X;W) = 0. Similarly, all hard disjunctive aggregators satisfy ∀i ∈
{1, . . . , n}, xi = 1 ⇒ A(X;W) = 1. Soft conjunctive aggregators have the property
∀i ∈ {1, . . . , n}, ∀j �= i, xi > 0 , xj = 0 ⇒ A(X;W) > 0. Similarly, for
soft disjunctive aggregators we have ∀i ∈ {1, . . . , n}, ∀j �= i, xi < 1 , xj = 1 ⇒
A(X;W) < 1.
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Fig. 1. The range of conjunctive aggregators: border aggregators and aggregation segments.

Table 1. Classification of andness-directed graded logic functions and aggregators.

 Logic func-
�on/aggregator I T A Global andness (α) 

G
R
A
D
E
D

L
O
G
I
C

F
U
N
C
T
I
O
N
S

C
O
N
J
U
N
C
T
I
V
E

Drastic conjunction N H 0 = = /( − 1)

High hyperconjunction N H 0 < <  
B
A
S
I
C

G
L

A
G
G
R
E
G
A
T
O
R
S

Medium hyperconjunction N H 0 = = ( 2 − − 1)/( − 1)2

Low hyperconjunction N H 0 1 < <  

Full conjunction Y H 0 = 1

Hard partial conjunction Y H 0 ≤ <  1 ;     ½ < <  1

Soft partial conjunction Y S - ½ < <

Neutrality Y S - = ½

D
I
S
J
U
N
C
T
I
V
E

Soft partial disjunction Y S - 1 −  < < ½

Hard partial disjunction Y H 1 0 < ≤ 1 −

Full disjunction Y H 1 = 0

Low hyperdisjunction N H 1 1 − < <  0 

Medium hyperdisjunction N H 1 = 1 −

High hyperdisjunction N H 1 < < 1 −

Drastic disjunction N H 1 = = −1/( − 1)

Columns:  I=idempotent, Y/N=yes/no; T=type, H/S=hard/soft; A=annihilator

A detailed classification of GCD aggregators, based on combinations conjunc-
tive/ disjunctive, idempotent/nonidempotent, and hard/soft aggregators is presented in
Table 1. The presented classification reflects the graded logic conjecture [4] that specifies
that all graded logic functions can be created using ten necessary and sufficient funda-
mental types of logic operations: the “magnificent seven” idempotent functions (the full
conjunction, hard partial conjunction, soft partial conjunction, neutrality, soft partial dis-
junction, hard partial disjunction and the full disjunction), two nonidempotent functions
(hyperconjunction and hyperdisjunction), and standard negation. It is important to note
that this set of fundamental logic functions is observable and provably present in intuitive
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human reasoning. Therefore, all aggregation functions can be evaluated from the stand-
point of their ability to model the necessary ten types of basic logic operations. Decision
support systems cannot be incompatible with observable human reasoning and the basic
level of compatibility is the support for aggregators that can realize andness-directed
continuous transition from drastic conjunction to drastic disjunction.

All disjunctive aggregators can be realized as DeMorgan duals of conjunctive aggre-
gators:D(X;W) = 1−C(1 − X;W); so, it is sufficient to analyze only the conjunctive
aggregators. Seven functions in Table 1 have the fixed andness, and eight aggregators
have a range of andness: users first select the type of function and then adjust the desired
degree of andness. The adjustability of andness in the whole range [αmin, αmax] is the
necessary property of all functions that aspire to play the role of logic aggregators.

One of themost important properties of logic aggregators is the nonincreasingmono-
tonicity in andness (or the nondecreasing monotonicity in orness). Indeed, by increasing
the conjunction degree we increase the severity of requirements for simultaneous satis-
faction of several inputs and therefore the results of aggregation must decrease when the
andness increases. The only exception is the case of idempotency, for those aggregators
that are based on means. In all other cases logic aggregators must be strictly decreasing
in andness and strictly increasing in orness. These properties must be supported by all
implementations of andness-directed (or orness-directed) logic aggregators.

5 Specification of Requirements for Logic Aggregators

In all applications of logic aggregators, decision makers first specify requirements that
a desired aggregator must satisfy, and then search for a mathematical model that has the
required properties. Most aggregation structures are based on superposition of two fun-
damental types of aggregators: GCD and partial absorption. The partial absorption can
be conjunctive (mandatory/optional) or disjunctive (sufficient/optional) and its parame-
ters are computed using a desired penalty/reward pair as inputs [4]. All partial absorption
aggregators are constructed using the superposition of hard and soft GCD aggregators.
Consequently, in this studywe have reasons to omit an explicit investigation of the partial
absorption aggregators.

In the case of fundamental GCD aggregator, the specification of requirements
consists of providing justified answers to the following questions:

Step 1. Idempotent or nonidempotent? Idempotent aggregators are implemented as
means and can be either hard or soft. Nonidempotent aggregators are always hard and
(according to Table 1) can be a hyperconjunction or a hyperdisjunction. In cases where
all inputs are equal x, (0 < x < 1) and the expected aggregated value is less than x, the
aggregator is a hyperconjunction.

Step 2. Simultaneity or substitutability? Basic logic aggregator (GCD) can be a
model of simultaneity (various forms of conjunction) or substitutability (various forms
of disjunction). De Morgan duality, which is valid in graded logic, permits the study of
only one of these two options; let us arbitrarily select simultaneity (conjunction). In a
special case, an aggregator can be neutral, i.e., providing equal support for simultaneity
and substitutability. Such an aggregator is the (weighted) arithmetic mean, which must
be supported by all models of logic aggregators.
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Step 3. Hard or soft? Generally, in GL annihilators can be either indispensable, or
unacceptable. If all inputs are mandatory (any zero input causes zero output) the corre-
sponding conjunctive GCD aggregator must be hard. If that is not the case, the aggrega-
tor must be soft. All idempotent GCD aggregators must provide hard/soft adjustability
(nonidempotent aggregators are always hard).

Step 4. What is the desired strength of simultaneity/substitutability? All decision
makers always know the desired degree of conjunction (andness) or disjunction (orness)
that reflects their goals and requirements. Since the andness must be continuously
adjustable, that is the reason why we need andness-directed aggregators that provide
a continuous transition from drastic conjunction to drastic disjunction. The requested
andness is the most important input for the design of GCD aggregators.

Step 5. What are the degrees of importance? Strict commutativity is not a desired
property of logic aggregators. Generally, we assume that noncommutativity is a neces-
sary property of all aggregators: only in special cases all inputs can be equally important.
Therefore, strictly commutative aggregators deserve separate attention only in unlikely
cases where they have some unique and particularly attractive properties, and in such
cases, we can use the binary treemethod [4, 14] to provide the desired noncommutativity.
Generally, we assume that all inputs of all aggregators have different degrees of impor-
tance and consequently all logic aggregators must be weighted. We assume that decision
makers explicitly specify (or use a method to compute [46]) the necessary importance
weights. Thus, logic aggregators must provide a way to implement the desired values of
importance weights.

Based on known semantic identity of inputs, in real life applications of conjunctive
(or disjunctive) GCD aggregators, the presented five steps are reduced to only three
fundamental questions that can be given in arbitrary order: (1) specification of the desired
conjunction degree (the strength of simultaneity or substitutability expressed as andness),
(2) specification of the relative importance of inputs, expressed as importance weights,
and (3) specification of the use of annihilators (any GCD aggregator must be either hard
or soft). Therefore, any method for creating logic aggregators can be evaluated from the
standpoint of its ability to create aggregators with desired andness, desired importance
of inputs, and desired use of annihilators.

6 Benchmark Problems for Logic Aggregators

Evaluation of methods for design of logic aggregators can include benchmark problems,
selected as typical representatives of logic aggregation that frequently occur in evaluation
criteria. Let us consider a realistic case where we have n = 4 inputs x1 = 0.8, x2 =
0.4, x3 = 1, x4 = 0.6 with increasing importance weights w1 = 0.1, w2 =
0.2,w3 = 0.3, w4 = 0.4. For inputs with these levels of importance we must create
three benchmark aggregators with the following properties:

S benchmark:A soft partial conjunctionwith andness α = 0.625 (no annihilators).

H benchmark:A hard partial conjunction with andness α = 0.875 (annihilator 0).

C benchmark:A hyperconjunctive aggregator with andness α = 1.25 (annihilator
0).
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These benchmark problems are realistic examples of aggregator requirement speci-
fications. Each method for creating logic aggregators can be evaluated from the stand-
point of the capability to solve problems S, H, and C. The S benchmark is a popular
and frequently used weak partial conjunction, and the H benchmark is equally popular
and frequently used strong partial conjunction. The C benchmark is a hyperconjunctive
aggregator close to medium hyperconjunction.

All logic aggregators that support the selectability of weights, annihilators, and and-
ness are not equally suitable. In addition to these mandatory requirements, they must
also be analytically and computationally simple. The expected computational complex-
ity of logic aggregators with n arguments is O(n). Benchmark problems are useful as
tools for evaluation and comparison of computational complexity of competitive logic
aggregators.

7 Implementation of Logic Aggregators Using GCD
and Andness-Directed Interpolative Aggregation

The andness-directed interpolative method for implementing GCD consists of imple-
menting the border aggregators shown in Fig. 1 and then using interpolative aggregators
in the range of andness between them. This method can be used to implement all logic
GCD aggregators shown in Table 1. Taking into account that simplicity is the fun-
damental requirement for all aggregators, we use the weighted power mean (WPM)
y = (w1xr1 + · · · + w1xr1)

1/r, −∞ ≤ r ≤ +∞,w1 + · · · + w1 = 1 as the main compo-
nent for building idempotent logic aggregators. The desired andness of this aggregator
is easily adjusted by selecting the appropriate value of exponent r, and the degrees of
importance of attributes are selected using the normalized positive weights.

7.1 Andness-Directed Interpolative Aggregation (ADIA)

ADIA is the interpolative method derived from the mean andness theorem [13]. Suppose
that we have two aggregators, A1(X;W, α1) and A2(X;W, α2), α1 < α2, and we need
the aggregator A(X;W, α) for the range of andness α ∈ [α1, α2]. So, α = (1 − q)α1 +
qα2, 0 ≤ q ≤ 1, and the volume under this aggregator is V = [n − α(n − 1)]/(n + 1).
From α − α1 = q(α2 − α1) we have parameters q = (α − α1)/(α2 − α1) and 1 − q =
(α2 − α)/(α2 − α1). The interpolative aggregators in the andness range [α1, α2] can be
derived from the fact that the volume V can be obtained using a linear interpolation
between volumes of boundary aggregators as follows [13]:

V1 = ∫
In
A1

(
X;W, α1

)
dx1 . . . dxn, V2 = ∫

In
A2

(
X;W, α2

)
dx1 . . . dxn,

W = (1/n, . . . , 1/n)

α = (1 − q)α1 + qα2 = (1 − q)
n − (n + 1)V1

n − 1
+ q

n − (n + 1)V2

n − 1

= n − (n + 1)
[
(1 − q)V1 + qV2

]
n − 1

= n − (n + 1)V

n − 1
.
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Therefore,

V = (1 − q)V1 + qV2 =
∫
In
A
(
X;W, α

)
dx1 . . . dxn

= ∫
In

[
(1 − q)A1

(
X;W, α1

) + qA2
(
X;W, α2

)]
dx1 . . . dxn.

The linear interpolation of volumes can be achieved if the resulting interpolative
aggregators forW = W have the following form:

A
(
X;W, α

) = (1 − q)A1
(
X;W, α1

) + qA2
(
X;W, α2

)

= (α2 − α)A1
(
X;W, α1

) + (α − α1)A2
(
X;W, α2

)
α2 − α1

, α ∈ [α1, α2].

As a summary, in a general case of weighted border aggregators A1(X;W, α1) and
A2(X;W, α2), the weighted andness-directed interpolative aggregators, for arbitrary
weights W, are the following:

A(X;W, α) = (α2 − α)A1(X;W, α1) + (α − α1)A2(X;W, α2)

α2 − α1
. (3)

7.2 Five Conjunctive Border Aggregators

Conjunctive border aggregators (Fig. 1) include neutrality, threshold partial conjunction,
full conjunction, medium hyperconjunction, and drastic conjunction. Disjunctive border
aggregators are simply obtained as De Morgan duals of conjunctive border aggregators.

Neutrality. This aggregator is the traditional weighted arithmetic mean obtained from
WPM for r = 1:

Aari(X;W, 1/2) = w1x1 + · · · + wnxn , 0 < wi < 1, i = 1, . . . , n,
w1 + · · · + wn = 1, n > 1.

Threshold Partial Conjunction. This aggregator is a hard partial conjunction with the
threshold andness α = αθ and the default value αθ = 3/4. It is implemented as the
following WPM:

Atpc(X;W, αθ ) =
(∑n

i=1
Wix

rwpm(αθ ,n)
i

)1/rwpm(αθ ,n)
.

The WPM exponent depends on the desired andness α. However, the function
α �→ rwpm(α, n) is known only numerically, either as a table, or as the following
approximation:

rwpm(α, n) = 0.25 + an(1/2 − α) + bn(1/2 − α)2 + cn(1/2 − α)3 + dn(1/2 − α)4

α(1 − α)
.

The rwpm(α, n) tables and the numerical values of parameters an, bn, cn, dn depend
on the number of variables n and can be found in [4]. If αθ = 3/4 and n = 4 then
R = rwpm(3/4, 4) = −0.7205. We assume that αθ is selected so that rwpm(αθ , n) ≤ 0
and consequently Ahpc(X;W, αθ ) is a hard conjunctive aggregator.
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Full Conjunction. This is the only commutative idempotent aggregator:

Acon
(
X;W, 1

) = min(x1, . . . , xn) = x1 ∧ · · · ∧ xn.

It satisfies commutativity, monotonicity, associativity, neutral element, and the anni-
hilator 0. The full conjunction is the end of the range of idempotent aggregators and the
beginning of the range of t-norms. The commutativity of full conjunction can be logi-
cally explained as the consequence of high andness: since all inputs are indispensable,
in the case of zero input each of them has equal power to affect the output. To avoid the
problems of weight domination [4, 20], the full conjunction should not be weighted in
logic aggregation and evaluation models.

Medium Hyperconjunction. The product t-norm seems to be the best candidate for
the medium hyperconjunction. This aggregator that has the fixed andness α = αt :

Amhc
(
X ;W, αt

) =
∏n

i=1
xi

Again, an interesting question is whether the hyperconjunction should be weighted
or not weighted. If we adopt the view that high andness implies commutativity, then
the use of the product t-norm is fully justified. The product is also the probability of
simultaneous occurrence of independent events. So, if we want to make decisions based
on the likelihood of simultaneous satisfaction of multiple independent criteria, then the
product is an appropriate model. However, if all attributes are provably not equally
important, then it is right to use a weighted medium hyperconjunction:

Amhc(X ;W, αt) =
∏n

i=1
xpii , p1 + · · · + pn = nw1 + · · · + nwn = n.

Drastic Conjunction. This ultimate form of conjunction, Adrc(X) = �x1 · · · xn	, is a
general logic aggregator; it is important as the highest andness border of all conjunctive
aggregators.

7.3 Four Families of Conjunctive Interpolative Aggregators

According to Fig. 1, there are four families (andness regions) of conjunctive ADIA
aggregators: the soft and hard partial conjunction, followed by the low and high hyper-
conjunction. Since we know the sequence of five conjunctive border aggregation func-
tions, all families of conjunctive interpolative aggregators can be based on the same
interpolative model (3).

Soft Partial Conjunction. This family of ADIA aggregators is sometimes called “nice-
to-have,” as opposed to the hard partial conjunction family which can be called “must-
have.” This aggregator is necessary in all cases where the inputs x1, . . . , xn are desirable,
but none of them is mandatory. So, the soft partial conjunction tolerates the situation
where some of desired inputs are false (absent, or not satisfied). The andnessα is selected
from the interval 1/2 < α < αθ , where most frequently αθ = 3/4. The value of andness



18 J. Dujmović and V. Torra

depends on the degree of penalty we want to have in cases where the inputs x1, ..., xn
are not simultaneously satisfied.

The soft partial conjunctionADIAaggregators are interpolated between theweighted
arithmetic mean and the threshold partial conjunction, using (3) as follows:

Aspc(X;W, α) = (αθ − α)Aari(X;W, 1/2) + (α − 1/2)Atpc(X;W, αθ )

αθ − 1/2
,

1/2 < α < αθ . (4)

If αθ = 3/4, then the range of soft partial conjunction is the same as the range of hard
partial conjunction, and the corresponding GCD is called the uniform GCD or UGCD.

Hard Partial Conjunction. This is a “must-have” family of andness-directed aggre-
gators where we need simultaneous satisfaction of all inputs x1, . . . , xn without any
exception. If any input true value is 0 then Ahpc(X;W, α) = 0. Therefore, the hard par-
tial conjunctions are models of mandatory requirements The hard partial conjunctions
are among the most frequently used models in evaluation criteria used in decision sup-
port systems. The simplest andness-directed analytic model of hard partial conjunction
is directly the WPM:

Ahpc(X;W, α) =
(∑n

i=1
Wix

rwpm(α,n)
i

) 1
rwpm(α,n)

, αθ ≤ α < 1, n > 1. (5)

Theweighted geometric mean and the weighted harmonicmean are themost popular
special cases of this aggregator. If α = 1 then rwpm(1, n) = −∞ and we get the full
conjunction.

Low Hyperconjunction. This family of ADIA aggregators is interpolated between the
full conjunction and the medium hyperconjunction, using (3) as follows:

Alhc(X;W, α) = (αt − α)Acon
(
X;W, 1

) + (α − 1)Amhc(X;W, αt)

αt − 1
, 1 < α < αt

Because of interpolation, this aggregator inherits some properties of the full con-
junction, including the generally undesirable discontinuity of the first derivative. Since
Amhc(X;W, αt) can be weighted or not weighted, Alhc(X;W, α) can also be weighted
or not weighted.

High Hyperconjunction. The product t-norm is a suitable base for building the family
of commutative highest andness aggregators, using an adjustable exponent p, as follows:

Ahhc(X;α) =
(∏n

i=1
xi

)p
, 1 < p < +∞, αt < α < αmax;

Ahhc(X;αmax) =
⌊∏n

i=1
xi

⌋
.
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The volume-based andness and the exponent p as a function of andness are the
following:

V =
∫
In
xp1 · · · xpndx1 . . . dxn = 1/(p + 1)n ⇒ α = n − (n + 1)/(p + 1)n

n − 1
,

p =
[

n + 1

n − (n − 1)α

]1/n
− 1. (6)

Thus, the weighted version of the andness-directed high hyperconjunction is based
on exponential weights, as follows:

Ahhc(X;W, α) =
(∏n

i=1
xpii

){(n+1)/[n−(n−1)α]}1/n−1
,

p1 + · · · + pn = n, pi = nwi, i = 1, . . . , n, αt < α < αmax. (7)

Both the hard partial conjunction and the high hyperconjunction aggregators can be
defined using the interpolative form (3). However, the presented models (5) and (7) offer
simpler implementations of andness-directed aggregation.

7.4 Solutions of Benchmark Problems

If the S benchmark is realized in the context of UGCD, then αθ = 3/4 and the
corresponding soft partial conjunction aggregators based on (4) are the following:

Aspc(X;W, α) = (3 − 4α)(0.1x1 + 0.2x2 + 0.3x3 + 0.4x4)

+ (4α − 2)(0.1x−0.7205
1 + 0.2x−0.7205

2 + 0.3x−0.7205
3

+ 0.4x−0.7205
4 )−1/0.7205, 1/2 < α < 3/4.

So, the desired S benchmark aggregator can be obtained from the above formula
as Aspc(X;W, 0.625) = 0.669. However, there is also a simpler solution. The desired
aggregator can be obtained directly from WPM. According to andness tables for WPM
[4], the andness of 0.625 is obtained for exponent 0.1561 and the desired aggregator is
the following:

Aspc(X;W, 0.625) =
(
0.1x0.15611 + 0.2x0.15612 + 0.3x0.15613 + 0.4x0.15614

)1/0.1561
= 0.669.

If the H benchmark is realized in the context of UGCD, then α = 0.875 > αθ = 3/4
and the hard partial conjunction aggregators can be modeled directly as WPM, using (5)
as follows:

Ahpc(X;W, α) =
(
0.1x

rwpm(α,4)
1 + 0.2x

rwpm(α,4)
2 + 0.3x

rwpm(α,4)
3

+0.4x
rwpm(α,4)
4

) 1
rwpm(α,4)

, 3/4 ≤ α < 1.
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Ahpc(X;W, 0.875) =
(
0.1x−2.8233

1 + 0.2x−2.8233
2 + 0.3x−2.8233

3

+0.4x−2.8233
4

)− 1
2.8233 = 0.572.

In the case of C benchmark, according to (2), for n = 4 we have αt =
59/48 = 1.2292. Since a = 1.25 > αt we are slightly inside the high hypercon-
junction area. In the case of commutative hyperconjunction, according to (6), we have

= √204 − 1 = 1.1147 and therefore,

Ahhc(X; 1.25) = (x1x2x3x4)
1.1147 = 0.159.

In the case of weighted hyperconjunction, from (7) we have

Ahhc(X;W, 1.25) =
(
x0.41 x0.82 x1.23 x1.64

)1.1147 = 0.161.

ADIA can be compared with other methods for creating weighted logic aggregators,
as summarized in Table 5.

7.5 Implementation of Hyperconjunction Using Andness-Directed t-norms

Any t-norm T is a hyperconjunctive function located between theminimum function and
the drastic intersection (Tdr(a, 1) = a,Tdr(1, b) = b, and in all other cases Tdr(a, b) =
0, yielding α = n/(n − 1)). Therefore, for n = 2, the andness of T satisfies 1 ≤ α ≤ 2.
For parameterized families of t-norms, the parameter permits the function to range
between the drastic intersection and the minimum. An example is Yager’s family of
t-norms [48]:

TY (a, b;w) = 1 − min

(
1,

[
(1 − a)w + (1 − b)w

] 1
w

)
, 0 ≤ w ≤ +∞.

Theparameterw permitsTY (a, b;w) to range between the drastic intersection and the
minimum: when w converges to 0, Yager’s t-norm converges to the drastic intersection;
when w = 1, we have TY (a, b; 1) = max(0, a + b − 1); and when w converges to +∞,
then TY tends to min(a, b).

Other examples of families of t-norms, including those introduced by Dombi’s [49]
and by Schweizer and Sklar [50], can be found in [51]. As another example, one of the
families by Schweizer and Sklar is the following:

TSS(a, b; p) = e−(|ln a|p+|ln b|p)
1
p
, p > 0.

When p converges to zero, TSS converges to the drastic intersection; when p = 1, it
converges to ab; and when p converges to +∞, it converges to min(a, b).

We can implement the andness-directed hyperconjunction using these parameterized
t-norms. For each parameter value in the range [0,+∞], we can compute the correspond-
ing andness, and vice versa, for each desired value of andness in the hyperconjunction
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range, we can compute the corresponding value of the t-norm parameter. For example,
for a t-norm with two arguments and a desired andness α = 1.5, the corresponding
Yager’s norm is obtained for w = 1 (the volume under max(0, a + b − 1) is 1/6, and
α = 2 − 3V = 1.5).

We can construct andness-directed t-norm for each family of this type. This is
reported in [44]. The paper also reports the maximum difference between pairs of t-
norms of the above-mentioned families (Yager, Dombi and Schweizer and Sklar). For
any andness level, this maximum difference is at most 0.09, and for most pairs and a
given andness, the difference is well below 0.05. TSS(a, b; p) seems a quite average
t-norm in the sense that the maximum difference with other t-norms is small.

8 Implementations of Logic Aggregators Using OWA Family
of Aggregators

OWA is a popular family of idempotent aggregators that cover the range of andness from
full conjunction to full disjunction. The initial operator OWA(X;α) defined by Yager in
1988 [16] is a commutative aggregator. It is similar to the weighted arithmetic mean,
but it uses logic weights to express andness and not importance weights to express the
relative importance of inputs. OWA assigns weights to input arguments after ordering
them in decreasing order. The motivation for using logic weights is to emphasize the
impact of low values (in the case of conjunctive polarization) or high values (in the
case of disjunctive polarization). Let σ(i) correspond to the index of the ith largest
element. Then, for the “andness weight” vector v = (v1, . . . , vn) with 0 ≤ vi ≤ 1 and
normalization v1 + · · · + vn = 1, we have

OWA(X;α) = v1xσ(1) + . . . + vnxσ(n), xσ(1) ≥ · · · ≥ xσ(n),

xσ(1) = max(X) = disjunction, xσ(n) = min(X) = conjunction,

α = 1 − ω = 1 − [
(n − 1)v1 + (n − 2)v2 + · · · + vn−1

]
/(n − 1). (8)

It is important to note that definitions of andness (1) and (8) are equivalent. For
example, for n = 4, v1 = 0.1, v2 = 0.2, v3 = 0.3, v4 = 0.4 and A(X) = 0.1xσ(1) +
0.2xσ(2) + 0.3xσ(3) + 0.4xσ(4) the resulting andness is

α = 1 −
(
v1 + 2v2

3
+ v3

3

)
= 2

3
= 1

3

(
4 − 5

∫ 1

0
dx1

∫ 1

0
dx2

∫ 1

0
dx3

∫ 1

0
A(X)dx4

)
.

Therefore, A(X) has andness close to the geometric mean
(
αgeo

∣∣
n=4 = 0.65

)
, but

the geometric mean is hard, and A(X) is soft. The idea of OWA aggregator is clearly
visible for n = 2, where

ω = v1 = 1 − α ⇒ OWA(X;α) = v1 max(x1, x2) + (1 − v1) min(x1, x2)

= ω max(x1, x2) + α min(x1, x2).

The neutrality is achieved for the OWA aggregator when v1 = · · · = vn = 1/n.
In this case the andness is α = 1 − [(n − 1) + (n − 2) + · · · + 1]/n(n − 1) = 1 −
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[n(n − 1)/2]/n(n − 1) = 1/2. The full disjunction is obtained for weights v1 = 1, v2 =
· · · = vn = 0, α = 0 and the full conjunction for weights v1 = · · · = vn−1 = 0, vn = 1,
α = 1.

From the standpoint of GL, the initial version of OWA had the following drawbacks:

(1) No importance weights: the weights are used to adjust andness and cannot be used
as parameters that directly describe the desired relative importance of arguments.

(2) No simple andness-directedness: OWA andness is not an input and the computation
of n weights from the desired value of andness/orness is not straightforward and
simple [17, 23].

(3) OWA uncertainty property: for n > 2 a desired degree of simultaneity does not
produce a unique aggregated value (a given andness α ∈ ]0, 1[ in (8) corresponds
to an infinite number of distributions of weights and each of them can generate a
different value OWA(X;α)).

(4) No annihilators: using the arithmetic mean, the original OWA becomes a strictly
soft aggregator without capability to support annihilators.

All the above drawbacks can be mitigated or eliminated as shown in subsequent
sections. Consequently, the modern OWA is a family of aggregators that provide most
features necessary for applicability in GL.

The OWA family of aggregators also includes the iterative OWA (ItOWA) initially
proposed in [45] and numerically transformed into andness-directed aggregator in [42].
The idea of ItOWA aggregation is to iteratively apply the elementary bivariate additive
form y = c(x1 ∧ x2)+d(x1 ∨ x2) to various pairs of arguments, so that in each iteration
the dispersion of the set of n arguments reduces, and after several iterations converges
to the resulting aggregated value. In this process the given conjunction degree c and the
disjunction degree d = 1 − c penetrate into the aggregation process and characterize
its logic properties. ItOWA can also be weighted and expanded to support soft/hard
aggregators.

8.1 WOWA: OWA with Importance Weights

TheWeighted OWA (WOWA), as it was proposed in [22], was defined with the objective
of introducing importance weights into OWA. In this case there are two vectors of
weights: w are the importance weights (wi is the degree of importance of the ith input
xi, i = 1, . . . , n and users specify normalized weights w1 + · · · + wn = 1), and v are
the logic weights as in the ordinary OWA operator (vi is the weight of the ith input in
the decreasingly sorted list of inputs (8)). The definition, which makes the WOWA a
non-commutative version of the OWA, is as follows:

WOWA(X; v,w) =
∑n

i=1
pixσ(i),

pi =
{
v̂
(
wσ(1)

)
, i = 1

v̂
(∑i

j=1 wσ(j)

)
−v̂

(∑i−1
j=1 wσ(j)

)
, 1 < i ≤ n.

(9)

A nondecreasing function v̂ interpolates the points

{(0, 0)} ∪ {
(
i/n,

∑i
j=1 vj

)
}i=1,...,n. In the special case of the arithmetic mean we have
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v1 = · · · = vn = 1/n and consequently the points {(0, 0)} ∪ {(i/n, i/n)}i=1,...,n are
interpolated by the line v̂(x) = x. In all cases, v̂(1) = 1.

Since WOWA is a mean, it satisfies both
∑n

i=1 pi = 1 and
∑n

j=1 wσ(j) = 1. If

we insert i = n in (9) we have pn = v̂(1)−v̂
(∑n−1

j=1 wσ(j)

)
= 1 − ∑n−1

i=1 pi and

v̂
(∑n−1

j=1 wσ(j)

)
= ∑n−1

i=1 pi. Therefore, the WOWA (9) can be written as follows:

WOWA(X; v,w) =
n∑

i=1

pixσ(i); pi = v̂

⎛
⎝ i∑

j=1

wσ(j)

⎞
⎠−

i−1∑
j=1

pj, 1 < i ≤ n.

It is useful to note that the computation of parameters of the aggregator occurs
dynamically at the run time, and not statically at the criterion design time.

The function v̂ : [0, 1] → [0, 1] can be interpreted as a fuzzy quantifier. The domain
[0,1] corresponds to the fraction of arguments that satisfy a property, and v̂(c) is the
degree of truth that the property specified by the quantifier is satisfied for all x ≤ c. For
example, the quantifier for all is defined as 1 for all x > 0, the quantifier more than 50%
as 1 for all x > 0.5, and the quantifier there exists is defined as 1 only when x = 1.
Then, v̂(x) = x2 is a fuzzy quantifier of a few, while v̂(x) = √

x can be seen as a fuzzy
quantifier of almost all.

Based on the interpretation of fuzzy quantifier we can consider two equivalent
definitions of OWA with importance.

• WOWA(X ; v,w): WOWA based on logical weights v and importance weights w, as
defined in (9).

• WOWA
(
X ; v̂,w)

: WOWA based on a fuzzy quantifier v̂ and importance weights w.
This approach was proposed by Yager [30, 31] and Torra [22]. The fuzzy quantifier
v̂ : [0, 1] → [0, 1] is such that v̂(0) = 0, v̂(1) = 1 and increasing. We will use this
approach as it has advantages later for andness-directedness.

The selected approach is used as follows. If the importance of the input at the ith

position (i.e., xσ(i)) is w, then its weight is pi = v̂
(
sσ(i−1) + w

) − v̂
(
sσ(i−1)

)
, where

sσ(i−1) denotes the sum of importance weights of its predecessors in the decreasingly
sorted list of importance weights. Of course, the largest input has no predecessors and,
in that case, p1 = v̂(w). For example, in the case of our benchmarks, the decreasingly
sorted inputs are 1, 0.8, 0.6, 0.4, and their corresponding importance weights are 0.3, 0.1,
0.4, 0.2. The 3rd largest input has importance w = 0.4, and the accumulated importance
of its predecessors is s2 = 0.3 + 0.1 = 0.4. So, the weight of the 3rd largest input
is p3 = v̂(0.4 + 0.4) − v̂(0.4). Using the quantifier v̂(x) = x2 the resulting weight is
p3 = 0.82 − 0.42 = 0.48.

It is easy to see thatWOWAgeneralizes theweighted arithmeticmeanwhen vi = 1/n
or when v̂(x) = x (as in this case pi = wσ(i)), and generalizes the OWA when wi = 1/n
(as pi = vi).



24 J. Dujmović and V. Torra

8.2 Distribution of OWAWeights

Definition (8) gives the andness of OWA for a weighting vector v. The determination
of OWA weighting vector given the andness is not straightforward. Except for and-
ness/orness equal to 0 and 1, for n > 2 there are infinite weighting vectors with the
same andness. One of them is assigning weights to the largest and smallest elements,
v1 = 1 − α, vn = α, and zero to all others: v2 = . . . = vn−1 = 0. By definition, in
this case the andness is 1 − (n−1)(1−α)+0+...+0

n−1 = α, and the resulting OWA is a linear
combination of minimum and maximum while all other arguments are ignored.

For given andness and given values of input arguments, the infinite number of logic
weighting vectors yields an infinite number of aggregated degrees of truth. In order to
realize a deterministic mapping [0, 1]n → [0, 1], the OWA approach to aggregation
needs a restrictive condition that for each desired andness selects a single logic weight
distribution.MEOWA, introduced in [36], consists of selecting the logicweighting vector
withweights asmuch dispersed as possible, in order to give all inputs equal opportunities
to affect the output. MEOWA is defined in terms of an optimization problem (see [29]
and [23]). In the case of OWA/WOWA definitions based on fuzzy quantifiers (instead
of on logic weights) we face the same problem, as multiple quantifiers yield the same
andness. Note that the same difficulties and approach apply to WOWA as importance
weights are not relevant when computing global andness.

In order to make the problem tractable, we constrain WOWA
(
X ; v̂,w)

to use a
selected family of quantifiers so that there is a unique quantifier for a given andness. To
support a spectrum of properties, we use the family of functions Qa(x) = xa. If a → 0
then the quantifierQa tends to the quantifier for all, WOWA becomes the maximum, and
andness is 0. If a = 1 we have Qa(x) = x, WOWA is the weighted mean and andness
is 0.5. If a → +∞ then Qa tends to the quantifier there exists, WOWA becomes the
minimum, and andness is one. Details on these properties are presented in [7]. In [39]
we provide an analysis of andness using alternative families of quantifiers. We can see
that different families provide quite similar results for a given andness.

8.3 Annihilators for OWA: GOWA and OWG

Neither OWA nor WOWA allow for annihilators. In contrast, the geometric OWA or
ordered weighted geometric mean (OWG [17, 28]) has zero as annihilator, and it is
derived as a special case of the Generalized OWA aggregator (GOWA) [17]:

GOWA(X ; r, v) =
(∑n

i=1
vix

r
σ(i)

)1/r
, −∞ ≤ r ≤ ∞,

∑n

i=1
vi = 1. (10)

GOWA is a very general aggregator, because for weights equal to 1/n GOWA
becomes the power mean (xr1/n + · · · + xrn/n)

1/r providing the possibility of contin-
uous transition from the full conjunction to the full disjunction. For example, when
r → +∞ the GOWA becomes the maximum (the full disjunction) and when r → −∞
the GOWA becomes the minimum (the full conjunction). When r → 0 the GOWA (10)
becomes the following geometric OWA or ordered weighted geometric mean (OWG):

OWG(X ; v,w) =
∏n

i=1
xviσ(i),

∑n

i=1
vi = 1.
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The geometric OWA has the annihilator zero in the same way as the geometric mean.
In addition, GOWA supports the annihilator 0 for any value r ≤ 0.

It is easy to generalize GOWA(X ; v) and OWG(X ; v) to incorporate importance
weights. This can be done in the sameway as we didwith theWOWA. So, again, we have
two options: using either the logical weights v, or a fuzzy quantifier v̂ : [0, 1] → [0, 1].
We introduce the second approach and expand the GOWA as follows:

GWOWA
(
X ; r, v̂, w

) =
(∑n

i=1
pix

r
σ(i)

)1/r
, −∞ ≤ r ≤ ∞,

where pi = v̂
(∑i

j=1 wσ(j)

)
− v̂

(∑i−1
j=1 wσ(j)

)
. Any fuzzy quantifier can be used here,

but we will restrict our analysis to v̂(x) = Qa(x) = xa.

8.4 Andness-Directed OWA with Annihilators

There are no closed forms for the volume-based global andness and orness of
OWG or GOWA. The same applies to GWOWA as its andness does not depend
on the importance weights. In [17], Yager introduced the indicator ωGOWA =(∑n

i=1 vi((n − i)/(n − 1))r
)1/r , called “the attitudinal character of aggregator” and sim-

ilar to orness.However, for r �= 1,ωGOWA �= ω, and the global andnessmust be computed
numerically using Eq. (1). This is the approach we use here.

For an OWA-like aggregator that supports uniform distribution of soft and hard
properties we need the annihilator 0 for α ≥ 0.75 and no annihilators for 0.25 < α <

0.75. For α < 0.5 we use DeMorgan’s duality to provide the annihilator 1 for α ≤ 0.25.
For α = 0.5 our approach reduces to WOWA with v̂(x) = x, and the application of De
Morgan’s rule is valid because autoduality 1−WOWA

(
X ; v̂,w) = WOWA

(
1 − X ; v̂,w)

,
and continuity at α = 0.5.

Our approach is to use GWOWA with a family of fuzzy quantifiers that depend on
r. In the case of four inputs, we will use the following family of quantifiers:

v̂r(x) = xe
1−r
2.6

, −∞ ≤ r ≤ ∞.

This family of functions and the constant 2.6 are selected to provide a convenient form
ofmapping between the parameter r and the desiredGWOWAandness, shown inTable 2.
First, GWOWA with this quantifier only depends on the parameter r, the importance
weights w and the input data X: GWOWA

(
X ; r, v̂r,w

)
. Next, the fuzzy quantifiers are

defined so that for r → −∞GWOWAbecomes theminimum (that is, v̂−∞(x) = xa with
a → ∞). For r → 0 the GWOWA becomes a geometric-like OWA with v̂0(x) = x1.469

and andness equal to 0.75 (so that for values of α smaller than 0.75 GWOWA has zero
as annihilator). For r = 1 GWOWA is equivalent to WOWA (because v̂1(x) = x), and
for r → +∞ GWOWA becomes the maximum (v̂+∞(x) = xa with a → 0).
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Table 2. Andness for GWOWA
(
X ; r, v̂r,w

)
for different values of the parameter r.

Parameter r for GWOWA
(
X ; r, v̂r,w

)
Andness of GWOWA

(
X ; r, v̂r,w

)
−8.00 0.999

−1.00 0.894

−0.80 0.876

−0.70 0.865

0.00 0.751

0.50 0.627

0.55 0.614

1.00 0.500

We need to point out that for each number of inputs we need to define a slightly
different family of fuzzy quantifiers so that for r = 0 andness is 0.75.

Now we can numerically compute the global andness for each r. The andness is by
definition computed for equal importance weights. Its range is [0,1] because we can
represent both maximum and minimum, and there is a smooth transition between them.
In fact, andness is monotonic with respect to the parameter r. Table 2 shows the andness
for different values of r (this table is a summary of a working table with much higher
precision). Then, we can use interpolation and the information in this table, to find r
for desired andness degree. For example, if we require an andness equal to 0.625, we
need to use r = 0.508. In this way we can compute any andness-directed GWOWA (see
Sect. 8.6).

In [39] we discuss a similar approach for other quantifiers. In addition, we show how
to find the GOWA and quantifier for a given andness α and a given αθ . Therefore, it is
possible to use threshold andness different from αθ = 0.75.

8.5 The OWA Family for GCD

With the OWA family we can implement most GCD requirements (see also [42,
43]). We consider the different conjunctive functions discussed in Sect. 4 and sum-
marized in Table 1. Recall that disjunctive operators can be defined by duality. Neu-
trality can be implemented with OWA and equal weights, and, thus, corresponds to
GWOWA

(
X ; r, v̂r,w

)
with r = 1. Soft partial conjunction can be modeled with OWA

for any andness level smaller than 0.75. GWOWA
(
X ; r, v̂r,w

)
for any r > 1 becomes

a soft partial disjunction. Hard partial conjunction can be implemented with OWG, for
any andness level. Hard partial disjunction is created as a dual of hard partial conjunc-
tion. GOWA functions for any r ≤ 0 have annihilators zero. Full conjunction can be
achieved by OWA, OWG, and GOWA when we assign weights to the lowest element
and the operators are equal to the minimum. For the full disjunction we select the highest
of sorted arguments. Neither low hyperconjunction, medium hyperconjunction nor high
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hyperconjunction can be modeled by OWA, OWG or GOWA, because these functions
are defined as idempotent means.

8.6 Solutions of Benchmark Problems

Benchmark S. We use GWOWA with andness α = 0.625 and importance weights
w1 = 0.1, w2 = 0.2, w3 = 0.3 and w4 = 0.4. A numerical approximation based on
Table 2, for andness of 0.625 yields r = 0.508. Therefore, we use GWOWA with the
following fuzzy quantifier:

v̂r(x) = xe
(1−r)/2.6 = xt, t = 1.208526.

Actual weights can be computed only after the variables x1, x2, x3, x4 are known,
because the weights depend on the ordering of inputs. These weights are computed as
follows:

pi =
(∑i

j=1
wσ(j)

)t

−
(∑i−1

j=1
wσ(j)

)t

=
(∑i

j=1
wσ(j)

)t

−
∑i−1

j=1
pj, i = 1, . . . , n.

So, we need to decreasingly sort the input values (i.e., 1, 0.8, 0.6, 0.4) and arrange
accordingly the importance (i.e., 0.3, 0.1, 0.4, 0.2). Then, we compute the following
weights:

p1 = (0.3)t = 0.234
p2 = (0.3 + 0.1)t − (0.3)t = (0.3 + 0.1)t − p1 = 0.097
p3 = (0.3 + 0.1 + 0.4)t − (0.3 + 0.1)t = (0.3 + 0.1 + 0.4)t − p2 − p1 = 0.433
p4 = (0.3 + 0.1 + 0.4 + 0.2)t − (0.3 + 0.1 + 0.4)t = 1 − p3 − p2 − p1 = 0.236.

Assuming r = 0.508, we can now compute the aggregated degree of truth:

GWOWA
(
X ; r, v̂r,w

) =
(∑n

i=1
pix

r
σ(i)

)1/r

= (
0.234 · 1r + 0.097 · 0.8r + 0.433 · 0.6r + 0.236 · 0.4r)1/r = 0.649.

Benchmark H. In this case, in addition to the importance weights w1 = 0.1, w2 = 0.2,
w3 = 0.3 and w4 = 0.4 and andness α = 0.875, we have the requirement to support the
annihilator zero. As GWOWAwith α > 0.75 results in an operator with annihilator zero,
the process is the same as for Benchmark S. Using a numerical approximation based on
Table 2, it follows that andness of 0.875 corresponds to r = −0.795. Therefore, we use
GWOWA with the following fuzzy quantifier:

v̂r(x) = xe
(1−r)/2.6 = xt, t = 1.994.

Using the same procedure as in the case of the S benchmark we have the following
results:

p1 = 0.091, p2 = 0.070, p3 = 0.480, p4 = 0.359
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GWOWA
(
X ; r, v̂r,w

) = (0.091 · 1−0.795 + 0.070 · 0.8−0.795+
+ 0.480 · 0.6−0.795 + 0.359 · 0.4−0.795)−1/0.795 = 0.537.

Benchmark C. This problem cannot be solved neither with the OWA nor with GOWA.

9 Implementations of Logic Aggregators Using Fuzzy Integrals

Fuzzy integrals (FI, see [7]) can be interpreted as aggregators. If an aggregator has n
inputs, then there are 2n subsets of inputs. FIs offer the possibility to separately define
specific aggregation properties for each subset of inputs. That can describe specific
interactions between inputs in a way that is more general than the cases of aggregation
based on OWA or WPM aggregators where we assume independence of arguments. Of
course, the price of generality is very high, because adding a single argument doubles
the complexity (in terms of the number of required parameters) and effort in using fuzzy
integrals.

Choquet and Sugeno integrals [35, 37] are the two most used FIs. They generalize
the weighted mean, OWA, WOWA and both weighted minimum and maximum. Con-
straining the parameters of the integrals in appropriate ways, the FIs reduce to some
of well-known aggregation operators (e.g. the weighted means). In this way, we can
implement all kind of weighted means, and, particularly, to provide a way to represent
importance weights.

If our requirements for logic aggregators are about the use of annihilators, importance
weights and a given andness degree, the use of operators from the OWA family and
the WPM-based aggregators as described in the two previous section seems sufficient,
as they already provide these capabilities. In this case, the advantage of using the FI
armamentarium is unclear.

In the literature, FIs are regularly exemplified using aggregators with small number
of interdependent inputs. Most professional evaluation problems have aggregators with
independent inputs, large number of aggregators and aggregatorswithmore than 3 inputs,
where the use of FIs frequently becomes rather difficult and unjustified. In addition,
there are open questions related to using FIs in aggregation structures. First, there is
a possibility that some FI aggregators with more than 2 inputs can be approximated
with simple logic aggregation structures that use 2 or more GCD aggregators. Second,
there is a possibility that some of interdependencies of inputs can be modeled using
nonstationaryWPMaggregators [4]whereweights and andness are appropriate functions
of input arguments. Therefore, we see the comparison of FIs and nonstationary GCD
aggregators as a topic for future research.

FIs can be built to generalize the members of the OWA family. Consequently, it is
justifiable to consider that FIs provide the capability to solve benchmark problems that
is equivalent to the capabilities of the OWA family.

10 Implementations of Logic Aggregators Using Means

Idempotent logic aggregators are based on means. Of course, the number of candidate
means is very large, and a natural question is how to select the most appropriate mean.
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The criterion for comparison and selection of means is based on the following five basic
requirements that the candidate means must satisfy:

• Support for aggregation of any number of arguments (n ≥ 2)
• Nondecreasingmonotonicity in all arguments (i.e. the analyzedmean is an aggregator)
• Continuous parameterized transition from conjunction to disjunction using a single
parameter (andness-directedness)

• Support for hard and soft aggregation (selectability of annihilators)
• Support for importance-weighted aggregation (noncommutativity)

Weighted power means naturally support all the above requirements. Regarding
other means, if they are aggregators, they can be analyzed from the standpoint of their
comparison withWPM, or with interpolative aggregators based onWPM (GCD/ADIA).
More precisely, for each idempotent aggregator we can ask a critical question “what is
the characteristic property and distinctive difference between the analyzed mean and the
WPM?”The basic analysis can be reduced to the case of two variables and equal weights.
Indeed, all unweighted bivariate means can be transformed to weighted idempotent
means of n variables using the method of binary aggregation trees [4, 14]. If a specific
mean has no advantages with respect toWPM in the simplest case of two variables, there
is no reason to believe that the situation will be more favorable in the case of more than
two variables.

The analysis and comparison of means can be exemplified using the case of Bonfer-
roni means [19] that attracted attention of many researchers [18, 32–34]. In the case of
two variables let us consider the following Bonferroni mean:

Bp,q
2 (x, y) = (

0.5xpyq + 0.5xqyp
) 1
p+q , p ≥ 0, q ≥ 0, p + q > 0.

If p = q = r > 0 then Br,r
2 (x, y) = (xryr)1/2r = √

xy, i.e. Br,r
2 reduces to the

geometric mean. If p = 0, q = r > 0, then B0,r
2 (x, y) = (0.5xr + 0.5yr)1/r and again

B0,r
2 reduces to the power mean aggregator. So, let us see a Bonferroni mean that has

some properties different from power means, e.g. p = 0.5, q = 1.5. Now we have

B0.5,1.5
2 (x, y) =

(
0.5x0.5y1.5 + 0.5x1.5y0.5p

)1/2 = (
(0.5y + 0.5x)

√
xy

)1/2
.

This Bonferronimean is again a combination of powermeans (the geometricmean of
the arithmetic and geometric means). So, let us now compare B0.5,1.5

2 with the original
power mean M [α](x, y) = (0.5xr(α) + 0.5xr(α))1/r(α), 0 ≤ α ≤ 1. To analyze the
differences between the Bonferroni mean and the power mean let us define the following
mean and maximum differences between an arbitrary mean F(x, y) and the adjusted
power mean M [αopt](x, y) which is the closest approximation of F(x, y):

Dave = min
0≤α≤1

1

(n + 1)2

n∑
i=0

n∑
j=0

∣∣∣∣F
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n
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j

n
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− M [α]
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Dmax = min
0≤α≤1

max
i,j

∣∣∣∣F
(
i

n
,
j

n

)
− M [α]

(
i

n
,
j

n

)∣∣∣∣ = max
i,j

∣∣∣∣F
(
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n
,
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)
− M

[
αmax
opt

](
i

n
,
j

n

)∣∣∣∣.
So, αave

opt and αmax
opt are the values of andness that correspond to the power means

that are closest (most similar) to the analyzed mean F(x, y). In the unit hypercube, the
values of Dave and Dmax must be less than 1. If they are significantly less than 1, that
indicates that the analyzed mean F(x, y) is very similar to the power mean. In the case
of Bp,q

2 (x, y), if p = 0.5, q = 1.5, then for αave
opt = 0.5937 we have the smallest average

difference Dave = 0.004, and for αmax
opt = 0.6296 we have the smallest maximum

difference Dmax = 0.0529. Obviously, from the practical applicability standpoint, in
many cases these differences are negligible. For bigger values of p and q the differences
are slightly bigger: e.g., in the case p = 1, q = 3, for αave

opt = 0.5457 we have the
smallest average difference Dave = 0.011 and for αmax

opt = 0.6202 we have the smallest
maximum difference Dmax = 0.0928. These results indicate that for the analyzed cases
of Bonferroni mean there is always a power mean that can be adjusted to behave in a very
similar way. So, we cannot offer an answer to the critical question “what is a distinctive
advantage of the Bonferroni mean with respect to the power mean for applications in
GL?”.

Generalized logarithmic mean (GLM) is one of rare means that provide andness-
directedness based on adjustment of the parameter r, as follows:

GLM (x, y) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

min(x, y) , r = −∞ (conjunction)
(x − y)/(log x − log y), r = −1 (logarithmic)(

yr+1−xr+1

(r+1)(y−x)

)1/r
, r /∈ {−∞,−1, 0,+∞} (general)

e−1(xx/yy)1/(x−y), r = 0 (identric)
max(x, y) , r = +∞ (disjunction)

In addition to Bonferroni mean, in Table 3 we present the results of the same anal-
ysis of differences between the power mean for the following characteristic cases of
means/aggregators: OWA, OWG, GOWA, exponential mean, Heronian mean, general-
ized logarithmic mean, centroidal mean, and the counter-harmonic mean (in the range
of exponents where the counter-harmonic mean is monotonically nondecreasing). Gen-
erally, the resulting values of Dave and Dmax are small. The average difference between
the analyzed aggregators and the power mean are typically less than 2%, and the maxi-
mum differences are frequently less than 5%. The reasons for the small differences are
the following: (1) all analyzed functions and the power mean are idempotent and the
differences along the line z = x = y are zero, (2) the power mean can be hard or soft
and therefore the differences along the coordinate axes (x = 0 and y = 0) are either zero
or small, and (3) both the power means and the analyzed functions are monotonically
nondecreasing (i.e. aggregators) and this property enhances the similarity. Small differ-
ences prove the expressive power of WPM and ADIA to adapt to variety of aggregation
forms provided by a spectrum of popular means/aggregators.
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Table 3. Differences between selected means and the weighted power mean.

Analyzed mean of two variables Closest power mean

Name F(x, y) Parameters Andness αaveopt Dave αmaxopt Dmax

OWA a min(x, y) + (1 − a)max(x, y) a = 0.125 0.125 S 0.136 0.016 0.146 0.0412

OWA a min(x, y) + (1 − a)max(x, y) a = 0.25 0.250 S 0.2748 0.020 0.292 0.0505

OWG min(x, y)amax(x, y)(1−a) a = 0.6 0.750 H 0.7358 0.0117 0.722 0.0290

GOWA
(
0.5 min(x, y)r + 0.5 max(x, y)r

)1/r r = −1 0.773 H 0.773 0 0.773 0

GOWA
(
0.5 min(x, y)r + 0.5 max(x, y)r

)1/r r = 3.93 0.250 S 0.250 0 0.250 0

GLM
((

yr+1 − xr+1
)
/(r + 1)(y − x)

)1/r
r = −4.525 0.750 H 0.7517 0.002 0.742 0.0100

Log (x − y)/(log x − log y) r = −1 0.614 H 0.614 0.0014 0.633 0.0410

GLM
((

yr+1 − xr+1
)
/(r + 1)(y − x)

)1/r
r = −0.95 0.611 S 0.611 0.0011 0.625 0.0297

Identric e−1(xx/yy)1/(x−y) r = 0 0.553 S 0.554 0.0003 0.551 0.0035

GLM
((

yr+1 − xr+1
)
/(r + 1)(y − x)

)1/r
r = 12.9 0.250 S 0.253 0.005 0.260 0.0144

C-harm
(
xr + yr

)
/
(
xr−1 + yr−1

)
, 0 ≤ r ≤ 1 r = 0.7 0.607 H 0.606 0.0027 0.633 0.0412

Expo r−1log(0.5 exp(rx) + 0.5 exp(ry)) r = −1 0.561 S 0.557 0.0067 0.549 0.0331

Expo r−1log(0.5 exp(rx) + 0.5 exp(ry)) r = 1 0.439 S 0.438 0.0050 0.444 0.0240

Heron
(
x + √

xy + y
)
/3 n/a 0.555 S 0.5555 0.0004 0.559 0.0051

Centroid 2
(
x2 + xy + y2

)
/3(x + y) n/a 0.409 S 0.409 0 0.408 0.0016

Bonferroni
(
0.5xpyq + 0.5xqyp

)1/(p+q) p = 0.5
q = 1.5

0.595 H 0.5937 0.0040 0.630 0.0529

Note: S = soft aggregator (no annihilator), H = hard aggregator (conjunctive annihilator 0)

Table 4. Basic properties of selected important means.

Aggregator Number of
arguments

Nondecreasing
monotonicity

Andness
directedness

Hard Soft Importance
weights

OWA n Yes Yes No Yes No

OWG n Yes No Yes No No

GOWA n Yes Yes Yes Yes No

ItOWA n Yes Yes Yes Yes Yes

GLM 2 Yes Yes Yes Yes No

Expo n Yes Yes No Yes Yes

WPM n Yes Yes Yes Yes Yes

Considering that imprecision and uncertainty in human reasoning easily cause vari-
ations of degrees of truth that are of the order of 10% or more, it follows that differences
between an adjusted WPM and various other aggregators based on means are less than
the imprecision of arguments generated by decision makers [43]. The comparison of



32 J. Dujmović and V. Torra

basic properties of selected important means is shown in Table 4. Therefore, we have
a reason to believe that GCD/ADIA provides simplicity and flexibility that are suffi-
cient for modeling logic aggregators in GL and to create decision models based on
interpretable and explainable criterion functions [38].

11 Evaluation and Comparison of Logic Aggregators

Whenever there are alternative ways to solve a problem, it is natural to ask for evaluation
and comparison of alternatives. In the case of logic aggregators and their implementa-
tions, the evaluation process can be based on the following main suitability attributes (a
more detailed analysis can be found in [40, 41]):

• Consistency with human reasoning
• Functionality and generality
• Readability and usability (simplicity of use)
• Performance and computational complexity

Consistency with human reasoning is the fundamental requirement for all logic
aggregation structures. Indeed, logic aggregators are defined and developed with explicit
and justifiable intention to model humanmental activities in the area of decisionmaking.
In humancentric graded logic, all aggregators are based on GCD and serve as functional
components of a soft computing propositional calculus. Properties such as nondecreasing
monotonicity, noncommutativity, sensitivity to positive and incomplete truth, absence
of discontinuities in aggregation functions and their derivatives, semantic interpretation
of arguments and importance weights, parameterized continuous transition from dras-
tic conjunction to drastic disjunction, adjustability of simultaneity and substitutability,
andness-directedness, selectability of annihilators, nonincreasing monotonicity in and-
ness, etc. are all derived from observation of human reasoning [4]. These properties also
support interpretability and explainability of evaluation results [39].

Consistency with human reasoning is an important area that requires delicate exper-
iments with human subjects [47]. Among the earliest research results, the minimum
function (conjunction) and the product (hyperconjunctive t-norm) were analyzed from
the standpoint of correct fitting of an empirically defined conjunctive aggregator [24].
Insufficient success in those experiments indicated that means could be useful conjunc-
tive aggregators, and was the motivation for creating a compensative Gamma aggregator
that implements a continuous transition between conjunctive and disjunctive aggre-
gation: X = (�n

i=1xi)
1−γ (1 − �n

i=1(1 − xi))γ [25]. The parameter γ plays the role
similar to the disjunction degree (orness). This aggregator is nonidempotent and strictly
hard, but provided a sufficiently good fit of selected experimental data. It was subse-
quently successfully investigated in [26] and expanded with an additive disjunctive form
X = (1 − γ )

(
�n

i=1xi
) + γ

(
1 − �n

i=1(1 − xi)
)
. A similar experimental analysis was

provided in [27]. A comparison of Gamma aggregator and GCD can be found in [4],
and it shows that GCD fits the Gamma aggregator experimental data slightly better than
the Gamma aggregator itself, while fully supporting the humancentric concepts of GL,
which is not the case with the Gamma aggregator. This result indicates the consistency
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of idempotent GCD with human reasoning, as well as a need for empirical investigation
of the suitability of ADIA in the area of hyperconjunction and hyperdisjunction.

Table 5. Comparison of methods for realization of logic aggregators.

Logic function GCD / 
ADIA OWA OWG WOWA ItOWA FI Means

Drastic 

conjunction
Yes No No No No No No

High hyper- con-

junction
Yes:W No No No No No No

Medium hyper-

conjunction
Yes:W No No No No No No

Low hyper-

conjunction
Yes: W No No No No No No

Full 

conjunction
Yes Yes Yes Yes Yes Yes Yes

Hard partial con-

junction
Yes: W No Yes No: G No: G No: G Y/N

Soft partial conjunc-

tion
Yes: W Yes No Yes: W Yes: W

Yes:

W
Y/N

Neutrality Yes: W Yes No Yes: W Yes: W
Yes:

W
Yes

Soft partial disjunc-

tion
Yes: W Yes No Yes: W Yes: W

Yes:

W
Y/N

Hard partial dis-

junction
Yes: W No No No: G No: G No: G Y/N

Full 

disjunction
Yes Yes No Yes Yes Yes Yes

Low hyper-

disjunction
Yes: W No No No No No No

Medium hyper-

disjunction
Yes: W No No No No No No

High hyper-

disjunction
Yes: W No No No No No No

Drastic 

disjunction
Yes No No No No No No

Notes: W denotes the availability of importance weights. Y/N denotes variations between various types 

of weighted, unweighted, parameterized and non-parameterized means. G denotes that the logic function 

can only be supported using the variants of OWA, WOWA, ItOWA and FI based on product (OWG, 

GOWA, and similar operators).

Functionality and generality are the primary criteria for evaluation of suitability of
logic aggregators. The comparison of functionality can be organized as shown in Table 5.
While some of the selected aggregators do not satisfy the whole GL functionality range,
they are certainly applicable in the area of their primary definition. For example, in
the area of soft aggregation OWA and WOWA can be equally applicable as ADIA. In
addition, while most of aggregators shown in Table 5 are not originally defined in the
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areas of hyperconjunction and hyperdisjunction they can be extended in these areas using
the same interpolative expansion that is used for GCD/ADIA.

Table 6. Idempotent aggregator selection query.

Q1 Is the aggregator symmetric or asymmetric?

A1 Symmetric (GCD) Asymmetric (partial absorption, PA)

Q2 Is the GCD conjunctive or disjunctive? Is the PA conjunctive or disjunctive?
Q3 Is the aggregator hard or soft? Conjunctive Disjunctive
Q4 Select the desired andness Select the desired mean penalty
Q5 Select the desired importance weights Select the desired mean reward

Readability and usability are two related properties that affect the simplicity of use
of aggregators. Unsurprisingly, from the standpoint of decision engineering practice,
the simplicity of use is an extremely important criterion for the evaluation of logic
aggregators. It is clearly visible in professional evaluation projects. Complex evaluation
criteria, e.g. those based on the LSPmethod [4], are developed aggregator by aggregator,
and the number of aggregators can be large. The idempotent aggregators are selected
according to the selection query summarized in Table 6, and the andness of GCD is
selected according to a verbalized process discussed below.

The design of an aggregator consists of using (Q1, ...,Q5) to derive the corre-
sponding analytical form of the aggregator, A(x1, ..., xn). This process can be sym-
bolically denoted as (Q1,Q2,Q3,Q4,Q5) ⇒ A(x1, ..., xn). The readability of aggre-
gators is defined as the possibility to easily perform the opposite transformation,
A(x1, ..., xn) ⇒ (Q1,Q2,Q3,Q4,Q5), i.e. to quickly read the vital parameters of an
aggregator from its analytic form. Consequently, the concept of usability can be based
on bidirectional relation A(x1, ..., xn) ⇔ (Q1,Q2,Q3,Q4,Q5): usability of logic aggre-
gators is high if the effort necessary to go in both directions of the bidirectional relation
is low.

The first question is the selection between GCD and partial absorption (PA, models
of mandatory/optional, and sufficient/optional requirements). If the desired aggregator
is the symmetric GCD then the next question is to select conjunctive, disjunctive, or
neutral variant of GCD. The third question, hard or soft, is very easy to answer: in the
case of conjunctive GCD, the stakeholder decides whether the absence of one of inputs
can be tolerated (soft aggregator, “nice-to-have”) or cannot be tolerated (hard aggregator,
“must-have”). If the selected option is hard, then it is necessary to select the conjunction
degree or andness. The andness is the most natural input because it reflects the desired
strength of hard simultaneity. This easiest way to select the andness is to use a verbalized
scale like the scale shown in Table 7 where for each of hard and soft, conjunctive and
disjunctive segments, we have three simple levels: low,medium, and high. The last step is
to directly specify importance weights. Because of independence of relative importance
and andness, the weights can be selected before or after the selection of andness.
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Table 7. Selection of andness in the case of UGCD15.

Conjunctive GCD Neu-

tral

GCD

Disjunctive GCD

Hard conjunction Soft conjunction Soft disjunction Hard disjunction

min High Med Low High Med Low Low Med High Low Med High max

C HC+ HC HC- SC+ SC SC- A SD- SD SD+ HD- HD HD+ D

1 0.93 0.86 0.79 0.71 0.64 0.57 0.5 0.43 0.36 0.29 0.21 0.14 0.07 0

Andness with step 1/14

The presented procedure is simple, natural, and fully consistent with human logic
reasoning. The question is how this intuitive procedure translates to creating aggregators
with GCD/ADIA, OWA, OWG, WOWA, means, and FI. For example, let the number
of inputs be n = 3. The decision maker thinks that the first input is more important
than the second input, which is more important than the third input. If the first input
is equally important as the remaining two inputs together, the appropriate importance
weights might be 0.5, 0.3, and 0.2. Suppose now that the decision maker feels that the
aggregator must be a hard partial conjunction, and its level is medium, yielding (from
Table 7) the andness of 0.86. Therefore, the simple procedure [Q1 → Q2 → Q3 → Q4
→ Q5] = [GCD → conjunctive → hard → medium → w] creates the desired input
parameters α = 0.86, w1 = 0.5, w2 = 0.3, w3 = 0.2. From this specification of desired
parameters, we now have to create the aggregator.

An important aspect of readability and simplicity of aggregators is related to the
difference between two forms of aggregators: stationary and nonstationary. The sta-
tionary form is the definitional form with constant parameters that is obtained when the
desired andness, annihilators, and importance weights are selected, and it is independent
of the values of input arguments. The nonstationary form is the form where parameters
are functions of input arguments. For example, all versions of OWA aggregators cannot
aggregate arguments unless the arguments are sorted. Parameters of the aggregator (e.g.
logic weights) must be separately computed for each specific set of arguments. So, all
OWA aggregators don’t have the stationary form. Obviously, nonstationary aggregators
are less readable and more computationally demanding than stationary aggregators.

In the case of GCD/ADIA we use r = rwpm(0.86, 3) = −2.62 and the resulting
stationary aggregator is y = (0.5x−2.62

1 +0.3x−2.62
2 +0.2x−2.62

3 )−1/2.62. This aggregator
is readable, and it uses fixed parameters independent of input values. In the case of other
aggregators, the production of this functionality would be much more complex.

For GWOWA
(
X ; r, v̂r,w

)
, we follow the approach in Sect. 8 and use v̂r(x) = xa

for a = (
e−r+1

)1/2.91 = 1.792 and r = −0.697. The expression of the quantifier is
computed from the fact that we have three inputs and we want an andness equal to 0.86.
Then,wehave to computeweights in the y = (p1x

−0.697
1 +p2x

−0.697
2 +p3x

−0.697
3 )−1/0.697.

Note that this aggregator does not have constant parameters: the weights p1, p2, p3
depend on the values of input arguments. Consequently, the readability of the aggregator
is rather low.

If we try to use other means, only GLM offers continuous and parameterized transi-
tion from conjunction to disjunction. Unfortunately, GLM supports only two variables
and is not weighted. We would have to use a binary tree of such aggregators to transform
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it to a corresponding logarithmic aggregator with three inputs and equal weights. For that
aggregator we would need to numerically compute the andness for a sequence of values
of exponent r, i.e. to create the function α = flog(r, n). Then it would be necessary to
numerically create the inverse function r = rlog(α, n). From this function we could com-
pute r3 = rlog(0.86, 3). The next step would be to use r3 and once again create the binary
tree of unweighted logarithmic aggregators [(yr3+1 − xr3+1

)
/(r3 + 1)(y − x)]1/r3 and

adjust it to create the final aggregator with desired weights 0.5, 0.3, and 0.2.
What would be the result obtained at the end of this painful acrobatics? Most likely,

the result would be an aggregator that is very similar to the WPM aggregator that can
be obtained in no time. In addition, we would not be able to explain what the distinctive
properties of the resulting logarithmic aggregator are, and to justify the reasons of using
it instead of WPM.

Comparable situations regarding the similarity with WPM would be encountered
with other investigated aggregators in the families of OWA and fuzzy integrals. In the
latter case, only when information about more complex relationships between attributes
(e.g., explicit interactions between attributes) is available the use of fuzzy integralswould
be appropriate, but at the cost of an increased number of parameters (i.e., 2n parameters).

Performance and computational complexity are two related aspects, where perfor-
mance reflects the consumption of computing resources and computational complexity
reflects the algorithmic complexitywhich affects both the performance and the necessary
human effort in building logic aggregators and GL aggregation structures. In the case of
aggregation structures that haveN input arguments the largest number of individual logic
aggregators (for the case of binary aggregation tree) is N-1. In the case of professional
evaluation criteria the value of N is between a few dozen and a few hundred.

Differences in performance and computational complexity are visible in the previous
example of three inputs, desired andness equal to 0.86, and importance weights 0.5, 0.3,
0.2 where the stationary GCD aggregator needs only the computation of WPM. For
the same problem, the computation of GWOWA consists of six steps (1) sorting of
arguments, (2) selection of the fuzzy quantifier, (3) computation of Table 2 (performed
only once, at the definition time), (4) computation of exponent r, (5) computation of
weights p1, p2, p3, and (6) computation of WPM. Therefore, the first five steps are the
GWOWA overhead, which is significant both as a human effort and as consumption of
computing resources.

12 Aggregation as a Graded Propositional Calculus

The history of graded logic and logic aggregation, from its first components (andness-
directed transition from conjunction to disjunction introduced in 1973) to its current
status, is the history of an effort to interpret aggregation as a soft computing propositional
calculus (for historical details see [4]). It is rather amazing that the key elements of that
interpretation are always in plain view, but almost all research in the aggregation area is
either ignoring or denying the logic aspects of aggregation. First, means have been used
for centuries, and they are located between the min and max functions. Of course, min
is conjunction, and max is disjunction, and it is obvious that means can (and should) be
interpreted as logic functions. Aggregation should be focused on arguments that have
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semantic identity (e.g., degrees of truth of precisely defined statements), and not on
anonymous real numbers.

Boolean logic is defined in vertices {0, 1}n, and once we accept that truth belongs
to [0, 1], it is obvious that the soft computing graded logic aggregation must be defined
in the whole volume of [0, 1]n and must be a generalization of Boolean logic. So, the
conjunction must become partial conjunction and model adjustable simultaneity, the
disjunction must become partial disjunction and model adjustable substitutability, and
theBoolean total absorptionmust becomepartial absorption andmodel logic relationship
between mandatory/optional and sufficient/optional requirements. Consequently, there
must be a path of continuous transition from conjunction to disjunction, and along that
path there must be a measure of distance (or difference) between an aggregator and
the pure conjunction or the pure disjunction. In other words, we need andness and
orness as geometric properties because aggregation happens inside the unit hypercube.
There must be andness-directedness, and andness/orness is themain input of each GCD
aggregator. Both Boolean logic and graded logic must share the same concept of duality
(in De Morgan sense). All that was introduced in 1973 but for many authors it stayed
invisible for almost half a century. For example, in mathematical aggregation literature,
aggregators that are means are still called “averaging functions” with implicit statistical
connotation. So, means are denied the status of andness-directed logic aggregators.
Aggregators are considered conjunctive (but not characterized by andness) only if they
are less than or equal to min (and not when andness > orness). They are considered
disjunctive (but not characterized by orness) only if they are greater than or equal to
max (and not when orness > andness). Except for min and max, such conjunctive and
disjunctive functions are not idempotent. Annihilators of such aggregators are fixed and
not freely selectable. A simple common sense tells us that if min is the logic function
conjunction, then all functions in its neighborhood should naturally be both “conjunctive”
and “logic functions.” That holds for both those that are for ε below min and those that
are for ε above min. All such functions have not only the right, but also the obligation
to be “conjunctive logic functions,” same as min. The same reasoning applies for max.
These natural rights are unjustifiably denied by the theoretical aggregation literature.

In the huge majority of applications, primarily in decision-support systems, aggre-
gators are models of observable human reasoning. Such reasoning always has semantic
components and uses noncommutative weighted aggregation. Real life requires aggre-
gators to be defined as noncommutative functions. However, in the aggregation literature
that accumulated thousands of references, many respectable aggregators are without any
excuse defined as commutative; in addition, as far as we know, the number of papers
that tried to empirically investigate relationships between aggregation models and actual
recorded human reasoning is around 5 and all of them are related to [26]. Obviously,
most authors see aggregation as a theoretical discipline.

Our presentation of the GCD aggregator based on ADIA technique interprets aggre-
gation as a graded propositional logic calculus. It is easy to see that this is the correct
approach. Means can be easily interpreted as logic functions. OWA aggregators have
logic properties, and each of their updates was logic-inspired. Fuzzy integrals can also be
interpreted as generalizations of logic functions, and primarily used in decision-support
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systems. Indeed, in almost all soft computing applications, aggregation is a graded
propositional calculus.

13 Conclusions

In the area of aggregation functions, we regularly face a number of strategic questions. Is
aggregation a part of logic? Should all aggregation be defined as a logic aggregation? Is
decisionmakingbased on logic aggregation?Are existing aggregators sufficiently related
to observable properties of human reasoning? What fraction of existing aggregators is
applicable in real life problems, and what are distinctive properties of such aggregators?
What fraction of existing aggregators is not applicable in real life problems and what are
distinctive properties of such aggregators? What fraction of applicable aggregators is
the group of logic aggregators used in decision engineering?What fraction of applicable
aggregators are aggregators used in areas different from decision engineering? Since
fuzzy membership can be interpreted as a degree of truth, what is the role of logic
aggregation in fuzzy logic? What are differences between logic aggregators and other
types of aggregators? What are methods for systematic evaluation and comparison of
aggregators? In what direction should the current aggregator research move? Are the
above questions legitimate questions, and is there any legitimate interest in providing
answers to these questions?

We strongly believe that the presented questions are not only legitimate, but also
fundamental and crucial for the whole area of aggregation. The goal of this study is to
contribute to the search for answers to the above questions, and both implicit and explicit
answers are included in our presentation.

Logic aggregators are practical models of observable human reasoning [46, 47], and
consequently they belong to logic that is graded and defined as a strict generalization
of classic Boolean logic. All aggregators that are related to human reasoning must be
capable to model ten fundamental graded logic functions: (1) hyperconjunction, (2) con-
junction, (3) hard partial conjunction, (4) soft partial conjunction, (5) logic neutrality,
(6) soft partial disjunction, (7) hard partial disjunction, (8) disjunction, (9) hyperdisjunc-
tion, and (10) negation. These functions are observable and provably present in human
reasoning; the graded logic conjecture [4] claims that they are both necessary and suf-
ficient. Except for negation, all of them are special cases of the GCD aggregator which
is a model of simultaneity and substitutability in graded logic. GCD and negation are
observable in human intuitive reasoning, and necessary and sufficient to form a graded
propositional calculus.

To be certified as a basic logic aggregator, an aggregator must satisfy a spectrum of
conditions [40, 41]. Ten core conditions include the following: (1) two or more input
logic arguments that are degrees of truth and have clearly defined semantic identity,
(2) the capability to cover the complete range of andness, making continuous transition
from drastic conjunction to drastic disjunction, (3) nondecreasing monotonicity in all
arguments, and nonincreasing monotonicity in andness, (4) andness-directedness in the
full range from drastic conjunction to drastic disjunction, and parameter-directedness for
penalty and reward in the case of partial absorption aggregators, (5) importance weight-
ing of inputs, (6) selectivity of conjunctive and disjunctive annihilators (0 and 1), (7)
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adjustability of threshold andness/orness, (8) sensitivity to positive and incomplete truth,
(9) absence of discontinuities and oscillatory properties, and (10) simplicity, readability,
performance, and the suitability for building compound aggregators. The requirement
(10) specifies the efficient applicability as a justifiable fundamental property of logic
aggregators: if aggregators are developed to model human reasoning, they must be eas-
ily applicable, because their only purpose is to help real people in solving real decision
problems.

GCD aggregator based on andness-directed interpolative aggregation (GCD/ADIA)
is developed with explicit goal to serve as a basic logic aggregator and consequently it
fully satisfies all requirements of basic logic aggregators. It exploits natural properties
of WPM and uses techniques of interpolation and regression to combine and integrate
the areas of means and t-norms, unifying logic and probabilistic reasoning.

Unsurprisingly (or unfortunately), many aggregators are not developed as basic logic
aggregators. That is expected, because the aggregation theory is not explicitly related
either to humans or to logic, andmany aggregators are rightfully developed asmathemat-
ical objects, without any interest in applicability. The only requirements of such aggre-
gators are nondecreasing monotonicity in all arguments and idempotency in extreme
points (0,…,0) and (1,…,1). The ultimate permissiveness of these conditions creates a
huge family of aggregation functions. Some of these functions are either basic logic
aggregators, or functions similar to them (e.g., the Gamma aggregators [25, 26]).

The family of graded logic functions and similar aggregators, investigated inSects. 7–
10, includes GCD (introduced in 1973), various OWA aggregators (introduced in
1988), Gamma aggregators (introduced in 1979), aggregators based on fuzzy inte-
grals (introduced in 1974), and various means (introduced more than 2000 years ago).
Except for GCD, these aggregators were not introduced with intention to create a com-
plete system of logic functions with necessary human-centric logic properties, such as
andness-directedness, andness-monotonicity, the selectability of annihilators, adjustabil-
ity of threshold andness/orness, and explicit support for semantic identity of arguments
expressed through noncommutativity and importance weights. Regardless being logic
functions, such aggregators were neither designed nor used as general fundamental com-
ponents of some kind of graded logic, consistent with a specific logic framework, such
as Boolean logic. Except for GCD and Gamma aggregator, they were always introduced
as independent mathematical objects and not as the infrastructure for logic modeling of
observable human reasoning. E.g., according to Sect. 8, the popular OWA aggregator
was introduced as a dot product of logic weights and sorted arguments; the result is a
strictly soft and commutative aggregator without explicit andness-directedness. Subse-
quently, OWAwas upgraded multiple times to come closer to necessary logic properties.
Andness-directedness was proposed as one of upgrades, and explicitly introduced in the
ItOWA (an iterative version of OWA [42]), as well as in parameterized t-norms [44].
The next OWA upgrade was the introduction of importance weights [22] which was
not simple since the natural OWA weights were used for other purposes (adjustment of
andness). The additive nature of OWA prevents hard aggregation based on annihilators;
so, the subsequent upgrade was to make OWG and GOWA as hard aggregators. Each
of these upgrades added an increment of algorithmic and computational complexity and
eventually made OWA aggregators similar to the WPM. However, in the case of WPM,



40 J. Dujmović and V. Torra

the importance weights, andness-directedness, and support for annihilators comes auto-
matically without any upgrades, as native properties of the initial WPM aggregator.
Regardless the efforts to upgrade logic properties, OWA was never interpreted as the
fundamental graded logic function intended to support a graded propositional calculus
and suitable to produce compound asymmetric aggregators such as partial absorption
and other compound functions needed in a graded logic.

Generalization does notmean simplification. Inmost cases, eachgeneralization intro-
duces an added layer of logic and computational complexity. For example, all versions
of OWA aggregators cannot aggregate arguments unless the arguments are sorted. So,
all OWA aggregators don’t have the stationary form (the form with constant parameters,
independent of arguments): all members of the OWA family are nonstationary aggre-
gators. In contrast, GCD/ADIA and various means are stationary aggregators, simpler
than OWA.

Fuzzy integrals can be interpreted as a generalization of OWA and weighted means.
Consequently, they contribute an additional layer of logic and computational complexity,
including exponential growth of complexity, where adding a single input argument can
sometimes double the necessary effort. They are mostly used in cases where the number
of inputs is very small and there are specific interacting conditions that subsets of input
arguments must satisfy.

Graded logic aggregators are indispensable components of most decision mod-
els. They must support ten fundamental types of basic logic functions and satisfy ten
core requirements. The main families of logic aggregators, GCD/ADIA, OWA, OWG,
GOWA, WOWA, GWOWA, ItOWA, Gamma aggregators, fuzzy integrals, t-norms, and
weighted means have similarities and do not exclude each other. Each of these aggre-
gators can be used if we have conditions for which the specific aggregator was devel-
oped. Of course, in a general case, aggregators can be compared from the standpoint
of consistency with properties of human reasoning, generality, functionality, usability,
performance, and complexity. This study shows that, in the areas of logic aggregation
and decision engineering, these properties are best satisfied by the GCD/ADIA. Indeed,
in most practical aggregation problems, GCD and negation create aggregation structures
that efficiently implement expressions of a graded propositional calculus.

References

1. Beliakov, G., Pradera, A., Calvo, T.: Aggregation Functions: A Guide for Practitioners.
Springer, New York (2007). https://doi.org/10.1007/978-3-540-73721-6

2. Beliakov, G., Bustince Sola, H., Calvo Sanchez, T.: A Practical Guide toAveraging Functions.
Studies in Fuzziness and Soft Computing, vol. 329. Springer, New York (2016). https://doi.
org/10.1007/978-3-319-24753-3

3. Grabisch, M., Marichal, J.-L., Mesiar, R., Pap, E.: Aggregation Functions. Cambridge
University Press, Cambridge (2009)
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Abstract. The quality of consequences in a decision making problem
under (severe) uncertainty must often be compared among different tar-
gets (goals, objectives) simultaneously. In addition, the evaluations of a
consequence’s performance under the various targets often differ in their
scale of measurement, classically being either purely ordinal or perfectly
cardinal. In this paper, we transfer recent developments from abstract
decision theory with incomplete preferential and probabilistic informa-
tion to this multi-target setting and show how – by exploiting the (poten-
tially) partial cardinal and partial probabilistic information – more infor-
mative orders for comparing decisions can be given than the Pareto order.
We discuss some interesting properties of the proposed orders between
decision options and show how they can be concretely computed by linear
optimization. We conclude the paper by demonstrating our framework in
an artificial (but quite real-world) example in the context of comparing
algorithms under different performance measures.

Keywords: Incomplete preferences · Multi-target decision making ·
Preference systems · Imprecise probabilities · Stochastic dominance

1 Introduction

The basic model of decision making under uncertainty is as simple as it is expres-
sive: an agent is asked to choose between different available actions X from a
known set of actions G. The challenge is that the consequence of choosing an
action X is not deterministic, but rather depends on which state of nature from
a known set S of such states turns out to be the true one. Formally, each action
is a mapping X : S → A, where A is the set of all possible consequences. The
decision problem G is then simply a subset of the set of all possible actions, i.e.,
the set AS = {X : S → A}.1 The agent’s goal here is to select an optimal action.
This goal is formalized by specifying a choice function ch : 2G → 2G satisfy-
ing ch(D) ⊆ D for all D ∈ 2G . The sets ch(D) are called choice sets and have a
slightly different interpretation depending on the quality of the information used
to construct the choice function: The strong view interprets ch(D) as the set of

1 For an original source, see [16].
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optimal actions from D. The weak view, on the other hand, interprets ch(D) as
the set of actions from D that cannot be rejected based on the information.2

To construct choice functions, one mainly uses information from two different
sources: The first source I1 is the information about the process that generates the
states of nature. The second source I2 is the information about the agent’s pref-
erences over the consequence set A. In decision theory, it is classically assumed
that I1 has sufficient structure to be expressed in terms of a single probability
measure over the states from S (see, e.g., [3]), whereas I2 is assumed to provide
enough information to be characterized by a cardinally interpretable utility func-
tion (see, e.g., [13]). Under these two structural assumptions, a suitable choice
function is quickly found: One selects from each set D those actions which max-
imize the – then well-defined – expected utility. Obviously, the choice sets of the
choice function based on expected utility comparison can then also be given the
strong interpretation.

However, in many realistic applications it turns out that the classical assump-
tions are systematically too restrictive and should be replaced by relaxed uncer-
tainty assumptions and preference assumptions in order to meet the requirement
of a useful theory for practice. A prominent and much discussed such applica-
tion is multi-target decision problems:3 By considering multiple targets simul-
taneously, the consequence set becomes multidimensional and generally only
partially ordered, and (in general) there is no hope for a partial ordering to be
adequately described by a unique cardinal utility function.

In this paper, we aim to contribute a new perspective to the lively discus-
sion on multi-target decision making under severe uncertainty. To this end, we
transfer recent developments from decision theory under weakly structured infor-
mation – based on both complexly structured preferences and imprecise proba-
bilistic models – to the multi-target situation and show how they can be used in
a flexible and information-efficient way to generalize classical concepts of multi-
target decision making. This transfer allows us to preserve the appeal of the
classical approach while simultaneously utilizing all available information in a
perfect manner in order to pursue more informative decision theory.

Our paper is organized as follows: In Sect. 2, we first recall the modeling
approaches for weakly structured information (Sects. 2.1 and 2.2), then define
two types of choice functions in this framework (Sect. 2.3) and, finally, give an
algorithm for computing the associated choice sets (Sect. 2.4). In Sect. 3, we
introduce our version of multi-target decision problems (Sect. 3.1) and transfer
the concepts from before to this setting (Sect. 3.2). In Sect. 4 we illustrate our
framework in a (synthetic) application example. Section 5 concludes.

2 For more details on the choice function approach to decision making see, e.g., [2].
3 See, e.g., [9] for a classic source and [19] for recent work. It seems important to us to

emphasize the difference to the (related) theory of multicriteria decision making (see,
e.g., [1] for a survey): While – roughly speaking – in multi-criteria decision making
the same utility function is evaluated with respect to different criteria, in the multi-
target setting different utility functions are evaluated under the same criterion.
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2 Decision Making Under Weakly Structured Information

The decisive advantage of a generalized decision theory also capturing relaxations
of the assumptions on I1 and I2, is that it is also applicable in many situations
in which classical decision theory fails. It is information efficient, as it manages
to include every piece of information, no matter how weakly structured. In the
following, we present the most important concepts for formally describing the
relaxations of I1 and I2 and a corresponding decision criterion.

2.1 Weakly Structured Probabilistic Information

We now turn to the relaxation of I1, i.e., the information about the process that
generates the states of nature. It is classically assumed to be describable by a sin-
gle probability measure. Often, however, imperfect probabilistic information will
be present, rather than perfect, e.g., in the form of constraints on the probabil-
ities of certain events or, more generally, on the expectations of certain random
variables. To describe this kind of generalized uncertainty, the theory of impre-
cise probabilities as developed in [11,14,21,22] is perfectly suitable. It should be
noted here that the term imprecise probabilities is actually an umbrella term for
many different generalized uncertainty theories. We restrict ourselves here to a
specific one among them, namely convex finitely generated credal sets.

Definition 1. A finitely-generated credal set on a measurable space (S, σ(S)) is
a set

M =
{

π ∈ P : b� ≤ Eπ(f�) ≤ b� for � = 1, . . . , r
}

with P the set of all probabilities on (S, σ(S)), f1, . . . , fr : S → R bounded and
measurable, and b� ≤ b� their lower and upper expectation bounds.

It is useful that such credal sets – at least for finite S – have only finitely many
extreme points. If so, we denote the set of these by E(M) = {π(1), . . . , π(K)}.

2.2 Weakly Structured Preferences

The information source I2 is classically assumed to be structured enough to be
described by a cardinally interpretable utility function. Relaxing this assump-
tion, it makes sense – comparable to the situation of relaxing the uncertainty
model – to work with the set of all utility functions which are consistent with cer-
tain preference restrictions. In order to be able to formalize even very complexly
structured restrictions, we use so-called preference systems.4

Definition 2. Let A denote a set of consequences. Let further R1 ⊆ A × A
be a pre-order5 on A, and R2 ⊆ R1 × R1 be a pre-order on R1. The triplet
A = [A,R1, R2] is called a preference system on A. The preference system
A′ = [A′, R′

1, R
′
2] is called subsystem of A if A′ ⊆ A, R′

1 ⊆ R1, and R′
2 ⊆ R2.

4 The following Definitions 2, 3, and 4 are (essentially) taken from [8] and [5], to which
we also refer for their concrete interpretation. General representation results for the
formally related concept of a difference preorder can be found in [15].

5 That is, reflexive and transitive.
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We rely on the following rationality criterion for preference systems. Here, for
a pre-order R ⊆ M × M , we denote by PR ⊆ M × M its strict part and by
IR ⊆ M × M its indifference part.

Definition 3. The preference system A = [A,R1, R2] is consistent if there
exists a function u : A → [0, 1] such that for all a, b, c, d ∈ A it holds:

i) If (a, b) ∈ R1, then u(a) ≥ u(b), where equality holds iff (a, b) ∈ IR1 .
ii) If ((a, b), (c, d)) ∈ R2, then u(a) − u(b) ≥ u(c) − u(d), where equality holds

iff ((a, b), (c, d)) ∈ IR2 .

The set of all such representations u satisfying i) and ii) is denoted by UA.

For our later decision rule, it is necessary to consider the set of all normalized
representations that account for utility differences only above some threshold δ.

Definition 4. Let A = [A,R1, R2] be a consistent preference system containing
a∗, a∗ ∈ A such that (a∗, a) ∈ R1 and (a, a∗) ∈ R1 for all a ∈ A. Then

NA :=
{

u ∈ UA : u(a∗) = 0 ∧ u(a∗) = 1
}

is called the normalized representation set of A. Further, for a number
δ ∈ [0, 1), N δ

A denotes the set of all u ∈ NA satisfying

u(a) − u(b) ≥ δ ∧ u(c) − u(d) − u(e) + u(f) ≥ δ

for all (a, b) ∈ PR1 and all ((c, d), (e, f)) ∈ PR2 . Call A δ-consistent if N δ
A �= ∅.

2.3 A Criterion for Decision Making

Naturally, a generalization of the structural assumptions to the information
sources I1 and I2 also requires a generalization of the decision theory based
on these information sources and the associated choice functions. Much work
has been done in the literature on the case where the information source I1 was
replaced by an imprecise probabilistic model,6 while the information source I2
was typically left untouched. A recent work on choice functions under general-
ization of both information sources simultaneously is given by [8]. We focus here
on only one choice function, which is a generalization of the one induced by the
relation R∀∀ discussed in [8, p. 123].

Definition 5. Let A = [A,R1, R2] be a δ-consistent preference system, let M
be a credal set on (S, σ(S)), and let

F(A,S) :=
{

X ∈ AS : u ◦ X is σ(S)-BR([0, 1])-measurable for all u ∈ UA
}

.

6 See, e.g., [17] for a survey or [4,14,21] for original sources. Note that there is also
quite an amount of literature on computation for that case, see, e.g., [7,10,18,20].
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For X,Y ∈ F(A,S), the variable Y is called (A,M, δ)-dominated by X if

Eπ(u ◦ X) ≥ Eπ(u ◦ Y )

for all u ∈ N δ
A and π ∈ M. Denote the induced relation by ≥(A,M,δ).

The relation ≥(A,M,δ) induces two choice functions in a perfectly natural way
(see Definition 6). The first allows the strong view and selects those actions
that dominate all other actions for any compatible combination of utility and
probability in expectation. The second allows only the weak view and selects
those actions that are not strictly dominated by any other action.

Definition 6. Consider the situation of Definition 5 and let D ⊆ G ⊆ F(A,S).
Define the following two sets associated with the relation ≥(A,M,δ):

i) The set of ≥(A,M,δ)-maximal acts from D ⊆ G is given by

max(D,A,M, δ) :=
{

X ∈ D : (X,Y ) ∈≥(A,M,δ) for all Y ∈ D
}

.

ii) The set of ≥(A,M,δ)-undominated acts from D ⊆ G is given by

und(D,A,M, δ) :=
{

X ∈ D : �Y ∈ D such that (Y,X) ∈ P≥(A,M,δ)

}
.

The next proposition establishes a relationship between the choice sets of our
two choice functions for different values of the regularization parameter δ.

Proposition 1. Consider the situation of Definition 5 and let D ⊆ G ⊆ F(A,S).
For 0 ≤ δ1 ≤ δ2 ≤ δ < 1 it then holds:

i) max(D,A,M, δ1) ⊆ max(D,A,M, δ2)
ii) und(D,A,M, δ2) ⊆ und(D,A,M, δ1)

Proof. Both parts of the Proposition straightforwardly follow by observing that
the condition 0 ≤ δ1 ≤ δ2 ≤ δ < 1 together with δ-consistency implies the
property N δ2

A ⊆ N δ1
A by definition. Specifically, in case i) this property implies

that if X dominates all Y ∈ D in expectation w.r.t. all pairs (u, π) ∈ N δ1
A × M,

then the same holds true for all pairs (u, π) ∈ N δ2
A ×M. Contrarily, in case ii) the

property implies that if there is no Y ∈ D which strictly expectation-dominates
X for some pair (u0, π0) ∈ N δ2

A × M and weakly expectation-dominates X for
all pairs (u, π) ∈ N δ2

A × M, then it clearly does not exist such Y if expectation-
domination must be satisfied over the larger set of pairs N δ1

A × M. �

Proposition 1 nicely illustrates the role of δ in the choice functions from Def-
inition 6: by coarsening the granularity at which the utility of consequences is
measured, i.e., by increasing δ, clearer choices can be made. Specifically, in the
case of maximal actions, the choice sets increase with increasing δ, which means
that maximal actions can be found at all (the smaller δ, the more likely the choice
sets are empty). In the case of undominated actions, the choice sets decrease with
increasing δ and fewer actions cannot be rejected given the information.
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2.4 Computation

If the sets A and S are finite, we now show – generalizing existing results as a
preparation for the multi-target setting – that checking two actions for ≥(A,M,δ)-
dominance can be done by solving a series of linear programs. By repeatedly
applying this procedure, the choice sets of the choice functions from Definition 6
can also be computed. An important part is that the property of being a repre-
sentation of a preference system can be expressed by a set of linear inequalities.

Definition 7. Let A = [A,R1, R2] be δ-consistent, where A = {a1, . . . , an},
S = {s1, . . . , sm}, and ak1 , ak2 ∈ A are such that (ak1 , a) ∈ R1 and (a, ak2) ∈ R1

for all a ∈ A. Denote by ∇δ
A the set of all (v1, . . . , vn) ∈ [0, 1]n satisfying the

following (in)equalities:

· vk1 = 1 and vk2 = 0,
· vi = vj for every pair (ai, aj) ∈ IR1 ,
· vi − vj ≥ δ for every pair (ai, aj) ∈ PR1 ,
· vk − vl = vp − vq for every pair of pairs ((ak, al), (ap, aq)) ∈ IR2 and
· vk − vl − vp + vq ≥ δ for every pair of pairs ((ak, al), (ap, aq)) ∈ PR2 .

Equipped with this, we have the following Theorem regarding the computation.

Theorem 1. Consider the same situation as described above. For Xi,Xj ∈ G
and t ∈ {1, . . . ,K}, define the linear program

n∑
�=1

v� · [π(t)(X−1
i ({a�})) − π(t)(X−1

j ({a�}))] −→ min
(v1,...,vn)∈Rn

(1)

with constraints (v1, . . . , vn) ∈ ∇δ
A. Denote by optij(t) the optimal value of this

programming problem. It then holds:

Xi ≥(A,M,δ) Xj ⇔ min{optij(t) : t = 1, . . . , K} ≥ 0.

Proof. The proof for the case M = {π} is a straightforward generalization of
the one of Proposition 3 in [6]. For the case of a general convex and finitely
generated credal set M with extreme points E(M) = {π(1), . . . , π(K)}, we first
observe that the following holds:

Xi ≥(A,M,δ) Xj ⇔ ∀t = 1, . . . , K : Xi ≥(A,{π(t)},δ) Xj (2)

Here, the direction ⇒ follows by definition and the direction ⇐ is an immediate
consequence of the fact that the concave function π �→ infu Eπ(u◦Xi)−Eπ(u◦Xj)
must attain its minimum on E(M). Since we already observed that the Theorem
is true for the case M = {π} for arbitrary π ∈ M, the right hand side of (2)
is equivalent to saying ∀t = 1, . . . , T : optij(t) ≥ 0, which itself is equivalent to
saying min{optij(t) : t = 1, . . . ,K} ≥ 0. This completes the proof. �
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3 Adaptation to Multi-target Decision Making

We now show how the framework for decision making under weakly structured
information can be applied to the situation of multi-target decision making.

3.1 Multi-target Decision Making

We now turn to the following situation: We again consider a decision problem G
with actions X : S → A mapping from a state space S to a consequence space
A. More specifically than before, however, we now assume that the agent can
evaluate the different consequences a ∈ A with different scores that reflect their
compatibility with different targets. The goal is then to determine actions that
provide the most balanced good performance under all targets simultaneously.

Definition 8. Let G be a decision problem with A as its consequence set. A
target evaluation is a function φ : A → [0, 1].

For a given target evaluation φ, the number φ(a) is interpreted as a measure for
a’s performance under the underlying target (higher is better). In what follows,
we allow each target to be either of cardinal or of ordinal scale: While for a car-
dinal target evaluation we may also compare extents of target improvement,7 an
ordinal target evaluation forbids such comparisons and is restricted to only com-
paring the ranks of consequences induced by it. We now give the definition of a
multi-target decision problem and introduce two important associated sets.

Definition 9. Let φ1, . . . , φr be distinct target evaluations for G. Then:

i) M = (G, (φj)j=1,...,r) is called multi-target decision problem (MTDP).
ii) X ∈ G is uniformly optimal if φj(X(s)) ≥ φj(Y (s)) for every Y ∈ G,

s ∈ S and j ∈ {1, . . . , r}. Denote the set of all such X by uno(M).
iii) X ∈ G is undominated if there is no Y ∈ G such that for all s ∈ S and

j ∈ {1, . . . , r} it holds φj(Y (s)) ≥ φj(X(s)) and for some j0 ∈ {1, . . . , r}
and s0 ∈ S it holds φj0(Y (s0)) > φj0(X(s0)). The set of all such X is
denoted by par(M) and called the Pareto front of the MTDP.

3.2 Transferring the Concepts

In a MTDP as just described, the goodness of actions must be evaluated in a
multidimensional space, namely the [0, 1]r, with the additional restriction that
not all targets may be interpreted on a cardinal scale of measurement. Instead
of restricting oneself here exclusively to the consideration of the Pareto front of
the component-wise order, one can use the available information more efficiently
by defining beforehand a suitable preference system on [0, 1]r, which can also
include the information in the cardinal dimensions.

7 In the sense that φ(a)−φ(b) ≥ φ(c)−φ(d) allows us to conclude that the improvement
from exchanging b by a is at least as high as the one from exchanging d by c.
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To do so, we assume – w.l.o.g. – that the first 0 ≤ z ≤ r target evaluations
φ1, . . . , φz are of cardinal scale, while the remaining ones are purely ordinal.
Concretely, we then consider subsystems of the consistent preference system8

pref([0, 1]r) = [[0, 1]r, R∗
1, R

∗
2] (3)

where

R∗
1 =

{
(x, y) ∈ [0, 1]r × [0, 1]r : xj ≥ yj for all j = 1, . . . , r

}
, and

R∗
2 =

{
((x, y), (x′, y′)) ∈ R∗

1 × R∗
1 :

xj − yj ≥ x′
j − y′

j for all j = 1, . . . , z ∧
xj ≥ x′

j ≥ y′
j ≥ yj for all j = z + 1, . . . , r

}
.

While R∗
1 can directly be interpreted as a componentwise dominance decision, the

construction of the relation R∗
2 deserves a few additional words of explanation:

One pair of consequences is preferred to another such pair if it is ensured in
the ordinal dimensions that the exchange associated with the first pair is not a
deterioration to the exchange associated with the second pair and, in addition,
there is component-wise dominance of the differences of the cardinal dimensions.

The introduction of a suitable preference system now allows us to transfer
the relation ≥(A,M,δ) from Definition 5 from general decision problems to multi-
target decision problems. Here, if M = (G, (φj)j=1,...,r) is a MTDP, we denote
by sub(M) the subsystem of pref([0, 1]r) obtained by restricting R∗

1 and R∗
2 to

φ(G) := {φ ◦ Z(s) : Z ∈ G ∧ s ∈ S} ∪ {0,1}
where φ ◦ Z := (φ1 ◦ Z, . . . , φr ◦ Z) for Z ∈ G and 0,1 ∈ [0, 1]r are the vectors
containing only 0 and 1. Further, we define G∗ := {φ ◦ Z : Z ∈ G}.

Definition 10. Let M = (G, (φj)j=1,...,r) be a MTDP such that the function
φ ◦ Z ∈ F(sub(M),S) for all Z ∈ G and let M denote a credal set on (S, σ(S)).
For X,Y ∈ G, say that Y is δ-dominated by X, if

φ ◦ X ≥(sub(M),M,δ) φ ◦ Y.

The induced binary relation on G is denoted by �δ.

It is immediate that X ∈ G is maximal resp. undominated w.r.t. �δ if and
only if X ∈ max(G∗, sub(M),M, δ) resp. X ∈ und(G∗, sub(M),M, δ). Given this
observation, the following Proposition demonstrates that �δ is (in general) more
informative than a simple Pareto-analysis.

Proposition 2. Consider the situation of Definition 10. If S is (at most) count-
able and π({s}) > 0 for all π ∈ M and s ∈ S,9 the following properties hold:

i) max(G∗, sub(M),M, δ) ⊇ uno(M)
8 A representation is given by u : [0, 1]r → [0, 1] with u(x) = 1

r

∑r
i=1 xi for x ∈ [0, 1]r.

Even if pref([0, 1]r) is not δ-consistent for δ > 0, its subsystems might very well be.
9 These conditions are only needed for property ii), whereas i) holds in full generality.
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ii) und(G∗, sub(M),M, δ) ⊆ par(M)

Moreover, there is equality in i) and ii) if the restriction of R∗
2 is empty, δ = 0

and M is the set of all probability measures.

Proof. i) If X ∈ uno(M), then for all Y ∈ G and s ∈ S we have component-wise
dominance of φ◦X(s) over φ◦Y (s). Thus, (φ◦X(s), φ◦Y (s)) is in the restriction
of R∗

1 for all s ∈ S. If we choose u ∈ N δ
sub(M) and π ∈ M arbitrarily, this implies

Eπ(u ◦ φ ◦ X) ≥ Eπ(u ◦ φ ◦ Y ), since u is isotone w.r.t. the restriction of R∗
1 and

the expectation operator respects isotone transformations.
ii) Let X ∈ und(G, sub(M),M, δ) and assume X /∈ par(M). Then, there is

Y ∈ G s.t. for all s ∈ S and j ∈ {1, . . . , r} it holds φj(Y (s)) ≥ φj(X(s)) and
for some for some j0 ∈ {1, . . . , r} and s0 ∈ S it holds φj0(Y (s0)) > φj0(X(s0)).
This implies (φ ◦ Y (s), φ ◦ X(s)) is in the restriction of R∗

1 for all s ∈ S and
(φ◦X(s0), φ◦Y (s0)) is in the restriction of PR∗

1
. Choose π ∈ M and u ∈ N δ

sub(M)

arbitrary and define f := u ◦ φ ◦ Y − u ◦ φ ◦ X. Then, we can compute

Eπ0(u0 ◦ φ ◦ Y ) − Eπ0(u0 ◦ φ ◦ X) = f(s0) · π({s0}) +
∑

s∈S\{s0}
f(s) · π({s})

≥ f(s0) · π({s0}) > 0

Here, ≥ follows since f ≥ 0 and > follows since f(s0) > 0 and π({s0}) > 0. This
is a contradiction to X ∈ und(G, sub(M),M, δ). �

We conclude the section with an immediate consequence of Theorem 1, which
allows to check for δ-dominance in finite MTDPs.

Corollary 1. Consider the situation of Definition 10. If φ(G) is finite, checking
if (Xi,Xj) ∈�δ can be done by the linear program (1) from Theorem1 with Xi,
Xj replaced by φ ◦ Xi, φ ◦ Xj, A replaced by φ(G), and A replaced by sub(M).

4 Example: Comparison of Algorithms

To illustrate the framework just discussed, we will now take a (synthetic, but
potentially realistic) data example: the comparison of algorithms with respect
to several targets simultaneously. We assume that six different algorithms
A1, . . . , A6 are to be compared with respect to three different targets, more
precisely:

φ1 Running Time: Cardinal target evaluating a score for the algorithms running
time for a specific situation on a [0, 1]-scale (higher is better).

φ2 Performance: Cardinal target measuring the goodness of performance of the
algorithm for a specific situation on a [0, 1]-scale (higher is better).

φ3 Scenario Specific Explainability: Ordinal target assigning each consequence a
purely ordinally interpreted label of explainability in {0, 0.1, . . . , 0.9, 1}, where
0 corresponds to “not” and 1 corresponds to “perfect”.
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Further, suppose that the algorithms are to be compared under five different
scenarios collected in S = {s1, s2, s3, s4, s5} that can potentially affect the dif-
ferent targets and for which we assume we can rank them according to their
probability of occurring. This can be formalized by the credal set

M =
{

π : π({s1}) ≥ π({s2}) ≥ π({s3}) ≥ π({s4}) ≥ π({s5})
}

(4)

whose extreme points are given by E(M) = {π(1), . . . , π(5)} induced by the
formula π(k)({sj}) = 1

k · 1{s1,...,sk}(sj), where j, k ∈ {1, . . . , 5} (see, e.g., [12]).
In this situation, we assume the target evaluations are given as in Table 1,

where – as already described – the first two targets are cardinal and the third one
is purely ordinal (i.e., in construction (3) we have z = 2 and r = 3). Applying the
(series of) linear program(s) described in Corollary 1 to every pair of algorithms
(Ai, Aj) separately then allows us to specify the full order �δ for this specific
situation. The Hasse diagrams of the partial order for three different values of
δ are visualized in Fig. 1.10 The choice sets of the choice functions with weak
interpretation (par(·) and und(·)) are given in Table 2, the ones of the choice
functions with strong interpretation (uno(·) and max(·)) are given in Table 3.

The results show that, among the weakly interpretable choice functions, par(·)
is the least decisive one, not rejecting a single one of the available algorithms.
In contrast, the choice function und(·) can already exclude half of the available
algorithms for a minimum threshold of δ = 0. For increasing threshold values,
more and more algorithms can be excluded: While for δmed the algorithms A1

and A4 are still possible, for δmax only A1 is potentially acceptable. Among
the choice functions with strong interpretation, only max(·) under the maximum
threshold δmax produces a non-empty choice set: Here A1 is uniquely chosen.

As a conclusion we can say that it can be worthwhile – at least in our syn-
thetic application – to include available partial knowledge about probabilities
and preferences in the decision process: We obtain more informative choice and
rejection sets because we can perfectly exploit the available information and do
not have to ignore – as under a pure Pareto analysis, for example – available
partial knowledge about probabilities and preferences.

10 For choosing the three δ-values, we first computed the maximal value δmax for which
the considered preference system is still δmax-consistent. We did this computation
by running the linear program from [8, Proposition 1]. Then, we picked the values
δmin = 0 and δmed = 0.5 · δmax and δmax.
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Table 1. Synthetic data for the three different targets.

φ1 s1 s2 s3 s4 s5

A1 0.81 0.86 0.68 0.72 0.56

A2 0.64 0.82 0.62 0.93 0.68

A3 0.60 0.66 0.62 0.73 0.58

A4 0.75 0.66 0.97 0.83 0.64

A5 0.33 0.30 0.53 0.38 0.44

A6 0.00 0.21 0.56 0.12 0.72

φ2 s1 s2 s3 s4 s5

A1 0.71 0.88 0.82 0.90 0.91

A2 0.52 0.67 0.68 0.72 0.88

A3 0.56 0.45 0.81 0.83 0.47

A4 0.36 0.12 0.54 0.60 0.17

A5 0.79 0.30 0.47 0.68 0.46

A6 0.14 0.58 0.30 0.66 0.29

φ3 s1 s2 s3 s4 s5

A1 0.70 1.00 0.80 0.60 0.90

A2 0.50 0.80 0.60 0.50 0.80

A3 0.50 0.40 0.60 0.40 0.70

A4 0.70 0.40 0.70 0.70 0.30

A5 0.60 0.20 0.20 0.30 0.30

A6 0.10 0.20 0.40 0.30 0.20

A 1

A 2 A 3

A 4

A 5

A 6

A 1

A 2 A 3

A 4

A 5

A 6

A 1

A 2

A 3

A 4

A 5

A 6

Fig. 1. Hasse diagrams of �δ for δ = 0 (left), δmed (middle) and δmax (right).

Table 2. Choice sets of the choice functions with weak interpretation.

par(M) und(G∗, sub(M), M, 0) und(G∗, sub(M), M, δmed) und(G∗, sub(M), M, δmax)

{A1, . . . , A6} {A1, A2, A4} {A1, A4} {A1}

Table 3. Choice sets of the choice functions with strong interpretation.

uno(M) max(G∗, sub(M), M, 0) max(G∗, sub(M), M, δmed) max(G∗, sub(M), M, δmax)

∅ ∅ ∅ {A1}

5 Concluding Remarks

In this paper, we have further developed recent insights from decision theory
under weakly structured information and transferred them to multi-target deci-
sion making problems. It has been shown that within this formal framework all
the available information can be exploited in the best possible way and thus
– compared to a classical Pareto analysis – a much more informative decision
theory can be pursued. Since this initially theoretical finding has also been con-
firmed in our synthetic data example, a next natural step for further research is
applications of our approach to real data situations. Since for larger applications
also very large linear programs arise when checking the proposed dominance
criterion, it should also be explored to what extent the constraint sets of the lin-
ear programs can still be purged of redundancies (e.g., by explicitly exploiting
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transitivity) or to what extent the optimal values can be approximated by less
complex linear programs.
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Abstract. We define a constructive non-additive set function as a gen-
eralization of a constructively k-additive set function (k ∈ N). First, we
prove that a distortion measure is a constructive set function if the dis-
tortion function is analytic.

A signed measure on the extraction space represents a constructive
set function. This space is the family of all finite subsets of the origi-
nal space. In the case where the support of the measure is included in
the subfamily whose element’s cardinality is not more than k, the corre-
sponding set function is constructively k-additive (k ∈ N). For a general
constructive set function μ, we define the k-dimensional element of μ,
which is a set function, by restricting the corresponding measure on the
extraction space to the above subfamily. We extract this k-dimensional
element by using the generalized Möbius transform under the condition
that σ-algebra is countably generated,

Keywords: fuzzy measure · nonadditive measure · k-order additivity ·
Möbius transform · distorted measure

1 Introduction

k-additivity of a set function on a finite set was introduced by M. Grabisch [1,2].
This reduces some complexities andwasused in several situations (see, for example,
[3,4]). The Möbius transform of a set function μ is a set function, which gives a one-
to-one correspondence between the original set function μ and the transformed
set function {τB}B⊂X . (In this study, we assume that each set function μ satisfies
μ(∅) = 0.) A set function μ is k-additive (k ∈ N) if its Möbius transform {τA}A⊂X

satisfies τA = 0 when the cardinality of A is greater than k.
Next, we consider a measurable space (X,B), where X is not discrete in

general, and B is a σ-algebra over X. The k-additivity of a set function on (X,B)
was proposed by R. Mesiar [5]. A signed measure on the product space of the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Torra and Y. Narukawa (Eds.): MDAI 2023, LNAI 13890, pp. 58–69, 2023.
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original space represented a generalized k-additive set function. A generalized
Möbius transform was defined, and formulaic k-additivity was defined in [7]. We
call the former k-additivity constructive k-additivity.

We consider the family of all finite subsets of X whose element’s cardinality
is not more than k, which we call the extraction space with order k. This space is
denoted by X [≤k], and for each A ∈ B, A[≤k] denotes the family of all elements of
X [≤k] which are included in A. The constructive k-additivity was reformulated
using X [≤k], then μ is constructively k-additive if there is a signed (σ-additive)
measure μ[≤k] on X [≤k] which satisfies μ(A) = μ[≤k](A[≤k]) for any A ∈ B. We
call the measure μ[≤k] the constructing measure. The measure μ[≤k] is uniquely
determined in this formulation [8]. On the other hand, for a set function μ on
(X,B), the Möbius transform was generalized as a function on the correction of
all finite disjoint B-measurable set families D [8]. μ is formulaic k-additive iff
τ(D) = 0 for any D ∈ D satisfying |D| > k, where |D| denotes the number of
finite sets in D ∈ D. A constructively k-additive set function is always formulaic
k-additive, and under certain conditions, a formulaic k-additive set function is
constructively k-additive [8]. The existence of the constructing measure is an
advantage of a constructively k-additive set function, in various arguments. For
example, the monotone decreasing convergence theorem for a Pan integral was
proved when the corresponding fuzzy measure is constructively k-additive [6].

In this study, we define a constructive set function as a generalized construc-
tively k-additive set function(k → ∞). A distorted measure is a set function μ
described by μ(A) = f(ν(A)) using some finite measure ν and a function on R

+

vanishing at 0. In Sect. 3, we will prove that a distorted measure is constructive
if the distortion function is analytic and satisfies certain additional conditions.
Consider the case where f is a polynomial with degree k, then μ is construc-
tively k-additive. In general, a constructively k-additive set function is formulaic
k-additive, and in the case where a distorted measure is formulaic k-additive,
the distortion function must be a polynomial with degree k if the corresponding
finite measure satisfies “strong Darboux property” [7].

The constructing measure μ[∗] concerning a constructive set function μ is
defined on X [∗], which space is a set of all finite subsets of the original space.
Then, logically, we can define the constructively k-additive set function by
restricting the constructing measure to X [k], which is the subfamily of X [∗] whose
element’s cardinality is k. We call this restriction the k-dimensional element of
a set function. We propose a numerical extraction method for the k-dimensional
element using the generalized Möbius transform of a constructive set function.

2 Constructive Set Function

Let (X,B) be a measurable space, X is a set and B is a σ-algebra over X. We
assume that each set function μ defined on B satisfies μ(∅) = 0. First, we define
the space of finite subsets of X.
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Definition 1. Consider the space of all finite subsets of X and denote the space
as follows.

X [∗] =
{

{xj}n
j=1 : n ∈ N, xj ∈ X, j ≤ n

}
,

and for each A ∈ B we define

A[∗] =
{

{xj}n
j=1 : n ∈ N, xj ∈ A, j ≤ n

}
⊂ X [∗].

We call the space X [∗] an extraction space.
Let k ∈ N be an integer. Then we define the extraction space with order k

X [≤k] and its subsets A[≤k] (A ∈ B) as follows.

X [≤k] =
{

{xj}n
j=1 : n ≤ k, xj ∈ X, j ≤ n

}
,

A[≤k] =
{

{xj}n
j=1 : n ≤ k, xj ∈ A, j ≤ n

}
⊂ X [≤k].

We also define a space X [k]. We use this concept to define a k-dimensional
element of a set function.

X [k] =
{

{xj}k
j=1 : xj ∈ X, j ≤ k

}
, (n = k).

A[k] =
{

{xj}k
j=1 : xj ∈ A, j ≤ k

}
⊂ X [k].

Remark that {xj}k
j=1 is a set and xj �= x� if j �= �.

Using the above X [≤k], constructive k additivity of a set function μ was defined
[6] and we define constructive set function by generalizing k → ∞.

Definition 2. Let (X,B) be a measurable space, we define σ-algebras B[∗] and
B[≤k] (k ∈ N) as follows.

B[∗] = σ
{

A[∗] : A ∈ B
}

,

B[≤k] = σ
{

A[≤k] : A ∈ B
}

.

Then a set function μ on B is constructively k-additive if there exists a signed
measure μ[≤k] on (X [≤k],B[≤k]) such that

μ(A) = μ[≤k](A[≤k]). ∀A ∈ B,

and similarly, μ is constructive if there exists a signed measure μ[∗] on (X [∗],B[∗])
such that

μ(A) = μ[∗](A[∗]). ∀A ∈ B.

We call the measure μ[≤k] or μ[∗] the constructing measure.

Next, we define a generalized Möbius transform.
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Definition 3. Let (X,B) be a measurable space. We define a family of extrac-
tion bases D on (X,B) as follows.

D = {D = {Dj}n
j=1 : n ∈ N,Dj ∈ B, j ≤ n,Dj ∩ Dk = ∅ (j �= k).}

The size of each extraction basis D ∈ D is defined by

|D| = |{D1, . . . , Dn}| = n,

and set

∪D =
n⋃

j=1

Dj .

For a set function μ, we define a generalized Möbius transform τ of μ by induc-
tion. τ is a function on D.

(a) τ(D) = τ({D1}) = μ(D1) (|D| = 1).
(b) Assume that τ(D′) are defined for all D

′ satisfying |D′| < n (n ∈ N).
Then, for D ∈ D with |D| = n

τ(D) = μ(∪D) −
∑

D′�D

τ(D′).

Note that the inclusion D
′

� D implies that D
′ is a strict subfamily of D as a

family of disjoint measurable sets (|D′| < |D|).
Fix an element D(= {D

(n)
j }N

j=1) ∈ D, and consider a subfamily DD = {D
′ ⊂

D, D′ ∈ D}. We consider a set function μ, and set μD as follows.

μD(D′) = μ(∪D
′).

Let τ be the generalized Möbius transform of μ, τD be its restriction to DD. Then
μD is a set function defined on a finite set, and τD is its classical Möbius trans-
form. Thus, τ provides the classical Möbius transform for each finitely divided
subfamily D′. In this point of view, we call an element of D an extraction basis.

Next, we consider some subsets of the extraction space. This is a critical
concept in the proof of the uniqueness of the constructing measure [8].

Definition 4. Let D = {D1, . . . , Dn} be an element of D. Denote

Γ (D) = {{xj}m
j=1 ∈ X [∗] : xj ∈ ∪D, j ≤ m, Dk ∩ {xj}n

j=1 �= ∅, k ≤ n}

We call the set Γ (D) the limited extraction concerning the extraction basis

D ∈ D. This set consists of finite sets U included in ∪D =
n⋃

k=1

Dk, and for each

k ≤ n, U ∩ Dk �= ∅. Therefore, m(the cardinality of {xj}m
j=1) must not be less

than n = |D|.
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Proposition 1. Let μ be a constructive set function (or a constructively k-
additive set function for some fixed k ∈ N), μ[∗] (resp. μ[≤k]) be the corresponding
constructing measure, and τ be the corresponding Möbius transform. Then, for
any D ∈ D, we have

τ(D) = μ[∗](Γ (D)) (resp. = μ[≤k](Γ (D))).

Let A be the family of a disjoint finite union of Γ (D) (D ∈ D). Then, A is an
algebra over X [∗] (resp. X [≤k]) and this implies that μ[∗] (resp. μ[≤k]) is uniquely
defined on (X [∗],B[∗]) (resp. (X [k],B[k])).

Proof. For a constructively k-additive set function, the proposition was shown
in [8], and we can prove it similarly for a constructive set function. �
Remark. A set function μ is formulaic k-additive (k ∈ N) iff τ(D) = 0 for any
D with |D| > k [7]. Then, by using Proposition 1, the constructive k-additivity
implies the formulaic k-additivity, because Γ (D) ⊂ X [k]c if |D| > k.

3 Distortion Measures and Constructive Set Functions

A set function μ on (X,B) is a distorted set function iff there exist a finite non-
negative measure ν on (X,B) and a function f on R

+ satisfying f(0) = 0, such
that μ(A) = f(ν(A)) for each A ∈ B. We call the function f a distortion func-
tion. Monotonicity of the distortion function is often included in the definition of
“distorted measure”. In such case, μ is a finite monotone measure. A distorted
set function is bounded if the distortion function is continuous.

The following properties are relations between (formulaic and constructive)
k-additivities and a distorted measure. These are described in [5,7,8].

Proposition 2. Let (X,B) be a measurable space, μ be a distorted set function
on (X,B), f be the corresponding distortion function, and ν be the corresponding
finite σ-additive measure.

(a) [5,7]
If f is a polynomial of degree k, then μ is formulaic and constructively k-
additive.

(b) [7]
Assume that, for any t, s ∈ {ν(A) : A ∈ B} (s < t) and A ∈ B with ν(A) = t,
there exists B ⊂ A such that ν(B) = s (this property is called “strong
Darboux property”). Then, if μ is formulaic k-additive (or constructively
k-additive), the degree of f must not be more than k.

As an extension of Proposition 2 (a), we have:

Theorem 1. Let (X,B) be a measurable space, μ be a distorted set function,
f be the corresponding distortion function, and ν be the corresponding finite
σ-additive measure. Assume that f is an analytic function described by

f(t) =
∞∑

j=1

ajt
j , aj ∈ R,
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and that ∞∑
j=1

|aj | ν(X)j < ∞.

Then μ is constructive.

Proof. We define a measure values of μ[≤k]

μ[≤k](A[≤k]) =
k∑

j=1

ajν(A)j

for any A ∈ B. This defines the set function μ[≤k] on A because each generalized
Möbius transform is determined uniquely by using the above values. Let νj be
the j-th product measure on Xj , and we restrict this set function on B[≤j] ⊂ Bj .
Then, we consider a finite sum of signed measures:

μ[≤k] =
k∑

j=1

ajν
j .

By the assumption of the theorem, the following limit always exists.

μ[∗](A[∗]) = lim
k→∞

μ[≤k](A[≤k]).

Its finite additivity is clear. Then, we have only to prove, for any set sequence
{Dm}m∈N ⊂ A satisfying Dm ↘ as m → ∞, μ[∗](Dm) ↘ 0 as m → ∞.

Let ε > 0 be an arbitrarily small positive number. There exists N such that

n ≥ N ⇒
∣∣∣μ[∗](D) − μ[≤k](D ∩ X [≤k])

∣∣∣ < ε

for any D ∈ A, since the above value can not exceed
∞∑

j=N+1

|aj |ν(X)j . Using the

fact that μ[≤k] is a finite measure, we have

lim
m→∞ μ[≤k](D ∩ X [≤k]) = 0.

Therefore, we have
lim sup
m→∞

∣∣∣μ[≤k](D ∩ X [≤k])
∣∣∣ ≤ ε.

Using the Carathéodory’s extension theorem (see for example [9]) we obtain the
claim. �

4 Extraction of k-dimensional Elements

Let μ be a constructive set function, and μ[∗] be its constructing measure. We
define the k-dimensional element μk (k ∈ N) of μ as

μk(A) = μ[k](A[∗]) := μ[∗](A[∗] ∩ X [k]).
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In numerical analyses, only the values of set functions may be available, then we
consider some methods to extract a k-dimensional element by using the values
of the set function μ.

The following proposition may be elementary. However, we give its proof
since this describes some important aspects of our assertions.

Proposition 3. Let (X,B) be a measurable space, and we assume that B is
countably generated. Then the following (1)–(3) are equivalent.

(1) Each one point set {x} (x ∈ X) is measurable.
(2) For any pair x, y ∈ X (x �= y), there exists A ∈ B such that x ∈ A and

y �∈ A.
(3) There exists a sequence of finite partitions

{Dn}n∈N
=

{
{D

(n)
j }N(n)

j=1

}
n∈N

such that
(3-1) Dn+1 is a refinement of Dn for any n ∈ N.

(3-2) B = σ

( ⋃
n∈N

Dn

)
.

(3-3) For each pair x, y ∈ X with x �= y, there exist n0 ∈ N such that,
for any n ≥ n0, there exist j, k ≤ N(n) (j �= k) satisfying x ∈ Dj, and
y ∈ Dk.

Proof. (1) ⇒ (2) Set A = {x} ∈ B, then x ∈ A and y �∈ A.
(3) ⇒ (1) Fix x ∈ X. For each n ∈ N there exists j(n) ≤ N(n) such that

x ∈ D
(n)
j(n). Then, using the assumption (3.3), for each y �= x, y �∈ D

(n)
j(n) for large

enough n ∈ N. This implies that

{x} =
⋂
n∈N

D
(n)
j(n),

And the right-hand side set is measurable.
(2) ⇒ (3) Using the assumption that B is countably generated, there exist

a countable set family {An}n∈N
satisfying B = σ

({An}n∈N

)
. Define A

(0)
n = A

and A
(1)
n = Ac, and set a partition Δn as follows.

Δn =

⎧
⎨
⎩

n⋂
j=1

Aij : (ij)
n
j=1 ∈ {0, 1}n

⎫
⎬
⎭

Several elements in Δn may be empty according to the above definition. We may
assume that there are no empty sets in Δn by removing empty sets. In any case,
{Δn}n∈N

satisfies (3-1) and (3-2).
Assume that (3-3) is not true, that is, there exists a pair {x, y} (x �= y)

satisfying that there exists A ∈ Δn with {x, y} ⊂ A for any n ∈ N. Then, we
consider a set X̃ = X \{x, y}∪{α}, where α = {x, y} is defined as a single point.
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We replace an element A ∈ Δn (n ∈ N) with Ã = A \ {x, y} ∪ {α} if {x, y} ⊂ A.
By the assumption, we have {x, y} ⊂ A or {x, y} ∩ A = ∅. Therefore,

{
Δ̃n

}
n∈N

is a sequence of partition of X̃ satisfying (3.1). Let B̃ = σ

({
Δ̃n

}
n∈N

)
and set

B′ =
{

Ã : Ã ∈ B̃, Ã = Ã \ α ∪ {x, y} if α ∈ Ã, otherwise Ã = Ã.
}

Then, B′ is a σ-algebra including {Δn}n∈N
. This implies B ⊂ B′ and that

{x, y} ⊂ A or {x, y} ∩ A = ∅ for any A ∈ B. This contradicts the condition
of (2). �
We have the following extraction theorem using the above proposition.

Theorem 2. Let (X,B) be a countably generated measurable space, μ be a con-
structive set function on (X,B), μ[≤∗] be the corresponding constructing measure,

and
{

Δn =
{

D
(n)
j j

}N(n)

j=1

}

n∈N

be a sequence of partitions given in Proposition 3.

Assume that {x} ∈ B for any x ∈ X. Then we have

μ[1](A[∗]) = μ[∗](A[≤∗] ∩ X [1]) = lim
n→∞

N(n)∑
j=1

μ(D(n)
j ∩ A)

Proof. Set

En =
n⋃

j=1

(A ∩ D
(n)
j )

[∗]
.

Let us consider a sequence of functions {fn}∞
n=1 on X [∗] defined by

fn(U) = 1En
(U).

Let U = {x�}L
�=1 ∈

(
A ∩ D

(n)
j

)[∗]
with |U | > 1. There exist N ∈ N satisfying

n ≥ N ⇒ {x1, x2} �⊂ D
(n)
j , j ≤ N(n).

This implies U �∈ En for any n ≥ N . Clearly {x} ∈
⋃

j≤N(n)

(
A ∩ D

(n)
j

)[∗]
for any

n ∈ N if x ∈ A. Thus, we have

lim
n→∞ 1En

(U) = 1A∩X[1](U),

for any U ∈ X [∗]. On the other hand,

∫
1En

(U)μ[∗](dU) =
N(n)∑
j=1

μ[∗](A ∩ D
(n)
j ) =

N(n)∑
j=1

μ(A ∩ D
(n)
j ),
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and ∫
1A∩X[≤1](U)μ[≤∗](dU) = μ[1](A[1]).

All functions are bounded since these are the finite sum of characteristic functions
concerning the partition. The bounded convergence theorem, therefore, implies

lim
n→∞

N(n)∑
j=1

μ(A ∩ D
(n)
j ) = μ[1](A[1]),

And this concludes the proof. �
Example 1. Set X = [0, 1) and let λ be the Lebesgue measure on X. We consider
the Borel σ-algebra B on X. Define μ(A) = λ(A)2 + λ(A) then μ is a distorted
measure, and this is constructive (constructively 2-additive).

Consider the following sequence of partitions.

{Δn} =

{{[
j − 1
2n

,
j

2n

)}2n

j=1

}
.

This satisfies the conditions (3-1)–(3-3) in Proposition 3.
Let A be an arbitrary measurable set in (X,B).

2n∑
j=1

μ

([
j − 1
2n

,
j

2n

]
∩ A

)

=
2n∑

j=1

(
λ

([
j − 1
2n

,
j

2n

]
∩ A

)
+ λ

([
j − 1
2n

,
j

2n

]
∩ A

)2
)

= λ(A) +
2n∑

j=1

λ

([
j − 1
2n

,
j

2n

]
∩ A

)2

.

0 ≤
2n∑

j=1

λ

([
j − 1
2n

,
j

2n

]
∩ A

)2

≤
2n∑

j=1

λ

([
j − 1
2n

,
j

2n

])2

=
2n∑

j=1

1
(2n)2

=
1
2n

→ 0, as n → ∞.

Then, we have

lim
n→∞

2n∑
j=1

μ

([
j − 1
2n

,
j

2n

]
∩ A

)
= λ(A)

This example describes one important aspect of Theorem 2.
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We can also prove the higher dimensional extractions as follows.

Theorem 3. Assume the same conditions and set the same notations with The-
orem2. Remark that a finite partition D belongs to D, and D

′ ⊂ D implies D
′ is

included in D as a finite set family. We define, for D = {Dj}N
j=1 ∈ D and A ∈ B

A ∩ D = {A ∩ Dj}N
j=1 .

Then we have, for any k ∈ N,

μ[k](A[∗]) = μ[∗](A[≤∗] ∩ X [k]) = lim
n→∞

∑
D⊂Dn,|D|=k

τ(A ∩ D).

Proof. We will give a similar proof with Theorem 2. The critical point is to
construct an adequate approximating sequence for 1A[∗]∩X[k] . We define

fn(U) =
∑

D⊂Dn,|D|=k

1Γ (A∩D)(U).

First, we prove the pointwise convergence of the above sequence.
Assume that D ∈ D satisfies |D| = k, then |A ∩ D| = k, (A ∩ D =

{A ∩ D1, . . . , A ∩ Dk}) if A ∩ D �= ∅. Then |U | < k implies U �∈ Γ (A ∩ D)
because U ∩ (A ∩ Dj) �= ∅ for any j ≤ k if U ∈ Γ (A ∩ D). Therefore, fn(U) = 0
for any n ∈ N.

Let us consider the case |U | > k (U = {u1, . . . , uk′}, k′ > k). Fix a pair (i, j)
(1 ≤ i < j ≤ k′), there exists Ni,j ∈ N satisfying

n ≥ Ni,j , D ∈ Dn ⇒ {ui, uj} �⊂ D.

This implies that, if n ≥ max
1≤i<j≤k′

Ni,j ,

U ∈ D ⊂ Dn ⇒ |D| ≥ k′ > k.

and
D ⊂ Dn, |D| > k ⇒ U �∈ Γ (A ∩ D).

Assume that |U | = k (U = {u1, . . . , uk}) and U ∩Ac �= ∅ . By a similar argument
to the above, there exists N ∈ N such that.

n ≥ N,D ∈ Dn ⇒ |D| ≥ k.

Then, if |D| = k (D = {D1, . . . , Dk} and D ⊂ Dn (n ≥ N), there is one-to-one
correspondence with the elements of U and the subsets in D. Therefore, sort the
elements of U if necessary, we have

uj ∈ Dj , for each j = 1, . . . , k.

By the assumption U ∩Ac �= ∅, uj �∈ A∩Dj for some j ≤ k. Hence, U �∈ Γ (A∩D),
that is, fn(U) = 0 for any n ≥ N .
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Remark that {Γ (D) : D ⊂ Dn, |D| = k} is a partition of X [k]. Then, for each
n ∈ N and any U ∈ A[∗] ∩ X [k], there exist D ⊂ Dn satisfying

U ∈ Γ (A ∩ D).

That is
fn(U) = 1, for any n ∈ N.

Summing up the above arguments, we have

1A[∗]∩X[k](U) = lim
n→∞ fn(U).

Using Proposition 1, we have
∫

X[∗]
fn(U)μ[∗](dU) =

∑
D⊂Dn, |D|=k

μ (Γ (D)) . =
∑

D⊂Dn, |D|=k

τ(D).

and ∫

X[∗]
1A[∗]∩X[k]dμ[∗] = μ[k](A[k]).

Then the bounded convergence theorem concludes the proof. �

5 Conclusion

We defined a constructive set function as an extension of a constructively k-
additive set function. A distorted measure is constructive if the distortion func-
tion is analytic and satisfies some additional conditions. We introduced the con-
cept of an extraction space, which is the family of all finite subsets of the original
space. A signed measure on the extraction space represents a constructive set
function. A k-dimensional element of a set function on the extraction space was
defined, and we gave some methods to calculate the values of k-dimensional ele-
ment using generalized Möbius transform. Restriction to k-additive set functions
is a valuable method to reduce complexity in numerical analysis. Our theorems
will give some checking methods to evaluate the influence of higher dimensional
sets.

Some equivalent conditions to be constructive for a distortion measure, to
consider the α-dimensional element for a set function for non-integer α, these
are future problems.
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for the last improvement of our manuscript.
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Abstract. A mathematical model of coherent upper conditional previsions
defined by fractal outer measures is proposed to represent the unconscious activ-
ity of human brain in AI. By adopting this specific Bayesian approach to human
behaviour and reasoning we aim to provide a mathematical representation of
fundamental functions of the human brain - usually considered as biased and
detrimental to an account of normative rationality - without incurring the usual
inconsistencies. In particular, it is proven that the model of the bias of selective
attention described in the so-called Invisible Gorilla experiment, is often taken as
a typical example of the limitations of human perception.

Keywords: Coherent upper conditional previsions · Fractal measures ·
Unexpected events · Unconscious activity · Selective attention

1 Introduction

Experiments show how human brain is characterized by an unconscious activity of
which human beings are not aware and of which they have no decision-making power.
In particular, we refer to the selective attention [23], which consists of the ability to
select only some of the numerous pieces of information that reach the sense organs
when focused on a particular objective. The neglected information is not important
to the goal. Unexpected events with respect to the objective are not perceived. More-
over, results described in [24] suggest that cortical functional connectivity networks
display fractal character and that this is associated with the level of consciousness in
a clinically relevant population, with higher fractal dimensions (i.e. more complex)
networks being associated with higher levels of consciousness. In [15] studies indi-
cate that the fractal dimension of functional brain networks is diminished in patients
diagnosed with disorders of consciousness arising from severe brain injury. The math-
ematical model of coherent upper conditional previsions, based on Hausdorff inner and
outer measures, [2–6,8,9] has been proposed to represent the preference orderings and
the equivalences, respectively assigned by the conscious and unconscious thought in
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human decision making under uncertainty. Complexity of partial information is rep-
resented by the Hausdorff dimension of the conditioning event. When the events, that
describe the decision problem, are measurable with respect to the s-dimensional Haus-
dorff outer measure, where s is the Hausdorff dimension of the conditioning event,
an optimal decision can be reached. The model is applied and discussed in Linda′s
Problem and the conjunction fallacy is resolved [7,8]. The model explains mathemat-
ically the bias of selective attention [10] described in the so-called Invisible Gorilla
experiment [22], which is often taken as a characteristic example of the inescapable
limitations of human perception. In a nutshell, once people are concentrated on doing
a specific action, they do not notice unexpected events (having 0 probability) occurring
in the meantime. Unexpected events are represented in the model as sets with a Haus-
dorff dimension less than the Hausdorff dimension of the conditioning event, which
represents the specific action that people are concentrated on doing. When applying
the model, selective attention is no longer a bias since it is able to explain this func-
tion of the human brain mathematically and without incoherencies. In this paper, we
recall the coherent upper conditional previsions model based on Hausdorff outer mea-
sures and introduce new fractal outer measures, such as packing outer measures and
ϕ-Hewitt-Stromberg measures, to define coherent upper conditional previsions and to
investigate the mathematical representation of unexpected events. In particular, the new
fractal measures, defined in the same metric space, allow describing the participant’s
reactions to unexpected events in the Invisible Gorilla experiment. The reaction of peo-
ple who see the Gorilla can be represented by the packing measure which assesses a
positive measure of the unexpected event while the reaction of people who did not see
the Gorilla is represented by an event with zero Hausdorff measure. In previous papers
[10,11] the reaction of people who see the Gorilla in the experiment has been repre-
sented in another metric space with a metric which is not bi-Lipschitz with respect the
metric of the initial metric space; so the conditional probabilities defined in the two
metric spaces are not absolutely continuous and they do not share the same null sets.
When information is presented in the form of frequencies; the model works in a differ-
ent way. The definition of s-dimensional Hausdorff outer measure, for s > 0, involves
infinite sets. Finite sets have Hausdorff dimension equal to 0 and so coherent upper
conditional probabilities, according to Theorem 1, are defined by the 0-dimensional
Hausdorff measure, which is the counting measure. So if the model based on Hausdorff
outer measures is applied when information is presented in the form of frequencies and
the conditioning event is a finite set then a different situation can be represented; the
Hausdorff dimension of the conditioning event is 0 and the conditional probability is
defined, by the 0-dimensional Hausdorff measure, which is the counting measure. In
this case the conditional probability of the intersection between two events is zero if
and only if the events are incompatible, i.e. the intersection between the sets which rep-
resent the events is the empty set. For a comparison between the model proposed based
on fractal measures and other conditioning rules proposed in literature the reader can
see Sect. 9 of [11].



72 S. Doria and B. Selmi

2 The Model Based on Hausdorff Outer Measures
and the Selective Attention

Let (Ω, d) be a metric space and let B be a partition of Ω. A bounded random variable is
a function X : hΩ → R = (−∞,+∞) such that there exists M ∈ R with X(ω) ≤ M
∀ω ∈ Ω and L(Ω) is the class of all bounded random variables defined on Ω; for every
B ∈ B denote by X|B the restriction of X to B and by sup(X|B) the supremum value
that X assumes on B. Let L(B) be the class of all bounded random variables X|B.
Denote by IA the indicator function of any event A ∈ ℘(B), i.e. IA(ω) = 1 if ω ∈ A
and IA(ω) = 0 if ω ∈ Ac.

For every B ∈ B coherent upper conditional expectations or previsions P (·|B) are
functionals defined on L(B) [26].

Definition 1. Coherent upper conditional previsions are functionals P (·|B) defined on
L(B), such that the following axioms of coherence hold for every X|B and Y |B in
L(B) and every strictly positive constant λ:

1) P (X|B) ≤ sup(X|B);
2) P (λX|B) = λP (X|B) (positive homogeneity);
3) P (X + Y |B) ≤ P (X|B) + P (Y |B) (subadditivity).

Suppose that P (X|B) is a coherent upper conditional expectation on L(B). Then
its conjugate coherent lower conditional expectation is defined by

P (X|B) = −P (−X|B).

Let K be a linear space contained in L(B); if for every X belonging to K we have
P (X|B) = P (X|B) = P (X|B) then P (X|B) is called a coherent linear conditional
expectation (de Finetti (1972), de Finetti (1974), Dubins (1975), Regazzini (1985),
Regazzini (1987)) and it is a linear, positive and positively homogeneous functional
on K (Corollary 2.8.5 Walley (1991)). The unconditional coherent upper expectation
P = P (·|Ω) is obtained as a particular case when the conditioning event is Ω. Coherent
upper conditional probabilities are obtained when only 0–1 valued random variables are
considered. From axioms 1)-3) and by the conjugacy property we have that

1 ≤ P (IB |B) ≤ P (IB |B) ≤ 1, so that P (IB |B) = P (IB |B) = 1.

In the model, proposed in [3] and recalled in Theorem 1, coherent upper conditional
probability is defined by the Hausdorff measure of order s, or s-dimensional Hausdorff
measure, if the conditioning event has a Hausdorff dimension equal to s. Let (Ω, d) be a
metric space. The diameter of a non empty set U of Ω is defined as |U | = sup{d(x, y) :
x, y ∈ U} and if a subset A of Ω is such that A ⊂ ⋃

i Ui and 0< |Ui| < δ for each i,
the class {Ui} is called a δ-cover of A. Let s be a non-negative real number. For δ > 0
we define hs,δ(A) = inf

∑∞
i=1 |Ui|s , where the infimum is over all countable δ-covers

{Ui}. The Hausdorff s-dimensional outer measure of A [12,18] denoted by hs(A), is
defined as

hs(A) = lim
δ→0

hs,δ(A).
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This limit exists, but may be infinite, since hs,δ(A) increases as δ decreases. The Haus-
dorff dimension of a set A, dimH(A), is defined as the unique value, such that

hs(A) = ∞ if 0 ≤ s < dimH(A),
hs(A) = 0 if dimH(A) < s < ∞.

Theorem 1. Let (Ω, d) be a metric space and let B be a partition of Ω. For every
B ∈ B denote by s the Hausdorff dimension of the conditioning event B and by hs the
Hausdorff s-dimensional outer measure. Let mB be a 0–1 valued finitely additive, but
not countably additive, probability on ℘(B). Thus, for each B ∈ B, the function defined
on ℘(B) by

P (A|B) =

⎧
⎪⎪⎨

⎪⎪⎩

hs(A ∩ B)
hs(B)

if 0 < hs(B) < +∞,

mB if hs(B) ∈ {0,+∞}
is a coherent upper conditional probability.

If B ∈ B is a set with positive and finite Hausdorff outer measure in its Hausdorff
dimension s the monotone set function μ∗

B defined for every A ∈ ℘(B) by μ∗
B(A) =

hs(A∩B)
hs(B) is a coherent upper conditional probability, which is submodular, continuous

from below and such that its restriction to the σ-field of all μ∗
B-measurable sets is a

Borel regular countably additive probability. If the conditioning event B is a fractal set,
i.e. a set with non-integer Hausdorff dimension s, then by Theorem 1 we obtain

P (X|B) =
hs(A ∩ B)

hs(B)
if 0 < hs(B) < +∞.

In the following theorem, proven in [3], the coherent upper conditional probability
defined in Theorem 1 is extended to the class of all bounded random variables and,
when the conditioning event B has positive and finite Hausdorff outer measure in its
Hausdorff dimension, the coherent upper prevision is define by the Choquet integral.
The subadditivity of the Choquet integral is assured because it is calculated with respect
to Hausdorff outer measures which are submodular.

Theorem 2. [3] Let (Ω, d) be a metric space and let B be a partition of Ω. For every
B ∈ B denote by s the Hausdorff dimension of the conditioning event B and by hs

the Hausdorff s-dimensional outer measure. Let mB be a 0–1 valued finitely additive,
but not countably additive, probability on ℘(B). Then for each B ∈ B the functional
P (X|B) defined on L(B) by

P (X|B) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
hs(B)

∫

B

Xdhs if 0 < hs(B) < +∞,

∫

B

XdmB if hs(B) ∈ {0,+∞}

is a coherent upper conditional prevision.
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In the Invisible Gorilla, experiment participants are asked to watch a short video, in
which six people-three in white shirts and three in black shirts-pass basketballs around.
While they watch, they must keep a silent count of the number of passes made by the
people in white shirts. At some point, a gorilla strolls into the middle of the action,
faces the camera and thumps its chest, and then leaves, spending nine seconds on
screen. Then, study participants are asked, “But did you see the gorilla?” More than half
the time, subjects miss the gorilla entirely. It was as though the gorilla was invisible.
More than that, even after the participants are told about the gorilla, they’re certain they
couldn’t have missed it. The experiment can be described in terms of coherent upper
and lower conditional probabilities defined by Hausdorff’s outer and inner measures.
Consider the events

E: “You see the Gorilla in the video.”
B: “You count the number of passes made by the people in white shirts.”

According to the model of the conditional upper conditional probability of Theorem 1
the fact that the event E is unexpected given the event B can be represented by the fact
that the Hausdorff dimension of the event E is less than the Hausdorff dimension s of
the event B so that

P (E|B) =
hs(E ∩ B)

hs(B)
= 0.

The model described in Theorem 1 permits us to represent also the situation where we
become aware that we can miss seeing the unexpected when we are concentrating to do
something.

Let B1: “I miss the Gorilla when I watch the video”.
This is an unexpected event for us if we do not know the selective attention. When

it occurs we become aware of this capacity of the human brain so we update our knowl-
edge. From a mathematical point of view, we can describe the situation in the following
way by means of conditional probabilities defined by Hausdorff measures.

Let Ω = [0, 1]2, B1 =
{
(x, y) ∈ [0, 1]2 : x = 1

2 , y ∈ [0, 1]
}
. Then the Hausdorff

dimension of Ω is 2 and the Hausdorff dimension of B1 is 1 so that B1 is an unexpected
event with respect to the 2-dimensional Hausdorff measure h2, that is

P (B1|Ω) =
h2(B1)
h2(Ω)

= 0.

IfB1 occurs, by Theorem 1 we update our knowledge by using the 1-dimensional Haus-
dorff measure instead of the 2-dimensional Hausdorff measure so that

P (B1|B1) =
h1(B1)
h1(B1)

= 1

and for any other event A ∈ ℘(Ω)

P (A|B1) =
h1(A ∩ B1)

h1(B1)
.
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We can observe that, even if B1 occurs, other unexpected events can be mathemati-
cally represented, for instance by finite sets and we can describe the situation that even
if we will see the Gorilla in the video next time we will miss other unexpected events
when concentrated in doing something.

3 Fractal Measures and Dimensions

In this section, we introduce other fractal outer measures which allow distinguishing
among sets of zero dimensions. Moreover when a conditioning event has a Hausdorff
measure in its Hausdorff dimension equal to zero then we can analyze if there exists a
different fractal measure that assesses positive and finite outer measure to that event.

3.1 Examples and Motivations

This short section discusses more motivations and examples related to these concepts.

• Let L denote the set of Liouville numbers, i.e.

L =

{

x ∈ R\Q | ∀ n ∈ N, ∃ p, q ∈ N with q > 1 such that
∣
∣
∣x − p

q

∣
∣
∣ < 1

qn

}

.

It is well known from [16] that the Hausdorff dimension of L is 0 and h(L) = 0.
• It is well-known that each x ∈ (0, 1) apossesses a unique continued fraction expan-
sion of the form

x =
1

a1(x) +
1

a2(x) +
1

a3(x) +
. . .

,

where ak(x) ∈ N := {1, 2, 3, · · · } is the k-th partial quotient of x. This expansion
is usually denoted by x = [a1(x), a2(x), a3(x), · · · ]. Let τ(x) be the convergence
exponent of the sequence of partial quotients of x which is defined by

τ(x) = inf

⎧
⎨

⎩
s ≥ 0 :

∑

n≥1

an(x)−s < ∞
⎫
⎬

⎭
.

Now, for α ∈ [0,+∞] we define the following sets

X(α) =
{

x ∈ (0, 1) : τ(x) = α

}

,

X =
{

x ∈ (0, 1) : an(x) ≤ an+1(x), ∀n ≥ 1
}

and E(α) = X(α) ∩ X.

It follows from [13] that the set E(α) is uncountable for all α ∈ (1,+∞] and

dimH(E(α)) = 0.
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• In this example, we are concerned with the exponent of convergence of the digit
sequence of the Engel series. Let T : [0, 1) → [0, 1) be the Engel series map defined
as follows

T (0) := 0 and T (x) := x

⌈
1
x

⌉

− 1, ∀x ∈ (0, 1),

where �y� denotes the least integer not less than y. For x ∈ (0, 1), if T k(x) = 0 for
all k ≥ 1, let

d1(x) := �1/x� and dn+1(x) := d1 (Tn(x)) for n ≥ 1,

which implies that x admits an infinite Engel series expansion of the form

x =
1

d1(x)
+

1
d1(x)d2(x)

+ · · · + 1
d1(x) · · · dn(x)

+ · · ·

If Tn(x) = 0 for some n and T k(x) = 0 for all 1 ≤ k < n, we can still define
d1(x), · · · , dn(x) in the same way, and then x admits a finite Engel series expansion:

x =
1

d1(x)
+

1
d1(x)d2(x)

+ · · · + 1
d1(x) · · · dn(x)

.

We call {dn(x)} the digit sequence of the Engel series expansion of x. It was shown
that x ∈ (0, 1) is irrational if and only if its Engel series expansion is infinite, and

2 ≤ d1(x) ≤ . . . ≤ dn−1(x) ≤ dn(x) ≤ . . . ,

with dn(x) → ∞ as n → ∞ for any irrational number x ∈ (0, 1). Let f(x) be the
exponent of convergence of the digit sequence of the Engel series expansion of x
which is defined as follows

f(x) := inf

⎧
⎨

⎩
s ≥ 0 :

∑

n≥1

dn(x)−s < +∞
⎫
⎬

⎭
.

We see that f(x) takes values in [0,∞], f(x) = 0 for all rational numbers x ∈ (0, 1),
and f(e − 2) = 1. The set F = {x ∈ (0, 1) : f(x) = 0} has full Lebesgue
measure and the level set F (α) = {x ∈ (0, 1) : f(x) = α} is uncountable and of
Lebesgue measure zero for allα ∈ (0,+∞].We have from [21] that dimH(F (α)) =
0, for all α ∈ (0,+∞] and

dimH

{

x ∈ (0, 1) : lim
n→∞

log dn(x)
log n

= α

}

= 0 for all 0 ≤ α < 1.

3.2 A General Hausdorff Measure, Packing Measure and Dimensions

While the definitions of the general Hausdorff and packing measures and the gen-
eral Hausdorff and packing dimensions are well-known [17], we have, nevertheless,
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decided to briefly recall the definitions below. Let (Ω, d) be a metric space, E ⊆ Ω
and s ≥ 0. Let also ϕ : R+ → R be such that ϕ is non-decreasing and ϕ(r) <
0 for r small enough. Throughout this paper, B(x, r) stands for the open ball

B(x, r) =
{
y ∈ Ω

∣
∣ d(x, y) < r

}
.

For δ > 0, we define the ϕ-Hausdorff measure as follows

H s
ϕ,δ(E) = inf

{
∑

i

esϕ(ri)
∣
∣
∣ E ⊆

⋃

i

B(xi, ri), 2ri < δ

}

.

This allows defining first the s-dimensional ϕ-Hausdorff measure H s
ϕ (E) of E by

H s
ϕ (E) = sup

δ>0
H s

ϕ,δ(E).

Finally, we define the Hausdorff dimension dimϕ
H(E) by

dimϕ
H(E) = inf

{
s ≥ 0

∣
∣ H s

ϕ (E) = 0
}
= sup

{
s ≥ 0

∣
∣ H s

ϕ (E) = +∞
}
.

Now, we define the ϕ-packing measure, for δ > 0, by

P
s

ϕ,δ(E) = sup
{

esϕ(ri)
}

,

where the supremum is taken over all open balls
(
Bi = B(xi, ri)

)

i
such that ri ≤

δ and with xi ∈ E and Bi ∩ Bj = ∅ for all i = j. The s-dimensional ϕ-packing
pre-measure P

s

ϕ(E) of E is now given by

P
s

ϕ(E) = inf
δ>0

P
s

ϕ,δ(E).

This makes us able to define the s-dimensional ϕ-packing measure Ps
ϕ(E) of E as

Ps
ϕ(E) = inf

{
∑

i

P
s

ϕ(Ei)
∣
∣
∣ E ⊆

⋃

i

Ei

}

,

and we define the packing dimension dimϕ
P (E) by

dimϕ
P (E) = inf

{
s ≥ 0

∣
∣ Ps

ϕ(E) = 0
}
= sup

{
s ≥ 0

∣
∣ Ps

ϕ(E) = +∞
}
.

It follows from the above definitions that

H s
ϕ (E) ≤ Ps

ϕ(E) and dimϕ
H(E) ≤ dimϕ

P (E).

The reader is referred to as Peyrière’s classical text [17] for an excellent and systematic
discussion of the generalized Hausdorff and packing measures and dimensions. Remark
that the log function ϕ(r) = log(r), we come back to the classical definitions of the
Hausdorff and packing measures and dimensions in their original forms (see [12]).
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3.3 General Hewitt-Stromberg Measures and Dimensions

We give the definitions of the ϕ-Hewitt-Stromberg measures to make it easier for
the reader to compare and contrast the Hausdorff and packing measures with the less
well-known Hewitt-Stromberg measures and to provide a motivation for the ϕ-Hewitt-
Stromberg measures which are therefore extensions of the classical Hewitt-Stromberg
measures in [14]. The less known Hewitt-Stromberg measures play an important part
in this paper and make it easier for the reader to compare and contrast the definitions
of the ϕ-Hewitt-Stromberg measures and the definitions of the Hausdorff and packing
measures it is useful to recall the definitions of the latter measures. Let Ω be a metric
space and E be a bounded subset of Ω. For s ≥ 0, we define the ϕ-Hewitt-Stromberg
pre-measures as follows,

L s
ϕ(E) = lim inf

r→0
Nr(E) esϕ(r) and U

s

ϕ(E) = sup
F⊆E

L s
ϕ(F ),

and
V

s

ϕ(E) = lim sup
r→0

Mr(E) esϕ(r),

where the covering number Nr(E) of E and the packing number Mr(E) of E are given
by

Nr(E) = inf

{

�{I}
∣
∣
∣
(
B(xi, r)

)

i∈I
is a family of open balls with

xi ∈ E and E ⊆ ⋃
i B(xi, r)

}

and

Mr(E) = sup

{

�{I}
∣
∣
∣
(
Bi = B(xi, r)

)

i∈I
is a family of open balls with

xi ∈ E and Bi ∩ Bj = ∅ for i = j

}

.

The lower and upper s-dimensional ϕ-Hewitt-Stromberg measures are now defined,
which are denoted respectively by U s

ϕ (E) and V s
ϕ (E), as follows

U s
ϕ (E) = inf

{
∑

i

U
s

ϕ(Ei)
∣
∣
∣ E ⊆

⋃

i

Ei

}

and

V s
ϕ (E) = inf

{
∑

i

V
s

ϕ(Ei)
∣
∣
∣ E ⊆

⋃

i

Ei

}

.

We have some basic inequalities satisfied by the ϕ-Hewitt-Stromberg, the ϕ-
Hausdorff and the ϕ-packing measure

H s
ϕ (E) ≤ U s

ϕ (E) ≤ ξV s
ϕ (E) ≤ ξPs

ϕ(E),
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where ξ is the constant that appears in Besicovitch’s covering theorem (see [12]). It
follows from [18] that the functions H s

ϕ ,U s
ϕ and Ps

ϕ are outer metric measures on
Ω and thus measures on the family of Borel subsets of Ω but the function V s

ϕ is not a
Borel metric outer measure. Now, we define the lower and upper ϕ-Hewitt-Stromberg
dimension dimϕ

MB(E) and dim
ϕ

MB(E) as follows

dimϕ
MB(E) = inf

{
s ≥ 0

∣
∣
∣ U s

ϕ (E) = 0
}
= sup

{
s ≥ 0

∣
∣
∣ U s

ϕ (E) = +∞
}

and

dim
ϕ

MB(E) = inf
{

s ≥ 0
∣
∣ V s

ϕ (E) = 0
}
= sup

{
s ≥ 0

∣
∣ V s

ϕ (E) = +∞
}

.

These dimensions satisfy the following inequalities,

dimϕ
H(E) ≤ dimϕ

MB(E) ≤ dim
ϕ

MB(E) ≤ dimϕ
P (E).

It is clear that by taking the log function ϕ(r) = log(r), we come back to the classical
definitions of the Hewitt-Stromberg measures and dimensions in their original forms in
[1,14,19,20]. When the conditioning event has Hausdorff outer measure equal to zero
in its Hausdorff dimension, instead of defining coherent conditional prevision as the
Choquet integral with respect to a 0–1-valued finitely, but not countably, additive prob-
ability we can consider a different fractal measure according to the following theorem.

Theorem 3. Let (Ω, d) be a metric space and let B be a partition of Ω. For s ≥ 0 let

(νs,dim) ∈
{
(H s

ϕ ,dimϕ
H), (U s

ϕ ,dimϕ
MB), (V s

ϕ ,dim
ϕ

MB), (Ps
ϕ,dimϕ

P )
}
. For every

B ∈ B denote by s the dimension dim of the conditioning event B and by νs the
s-dimensional outer measure.

1. Let mB be a 0–1 valued finitely additive, but not countably additive, probability on
℘(B). Then for each B ∈ B the functional P (X|B) defined on L(B) by

P (X|B) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
νs(B)

∫

B

Xdνs if 0 < νs(B) < +∞,

∫

B

XdmB if νs(B) ∈ {0,+∞}

is a coherent upper conditional prevision.
2. Let mB be a 0–1 valued finitely additive, but not countably additive, probability on

℘(B). Thus, for each B ∈ B, the function defined on ℘(B) by

P (A|B) =

⎧
⎪⎪⎨

⎪⎪⎩

νs(A ∩ B)
νs(B)

if 0 < νs(B) < +∞,

mB if νs(B) ∈ {0,+∞}
is a coherent upper conditional probability.
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4 Mathematical Representation of Unexpected Events

As shown in the previous sections a fundamental tool to mathematically represent the
unconscious activity of the human brain is the notion of null sets, which represent unex-
pected events. The notion of null sets, i.e. sets with zero probability, is involved in the
concept of the support of a probability measure, which is the closure of the set of events
with a positive measure. A normalized regular Borel measure on a completely compact
Hausdorff space can have empty support ([25, Example 4.33]); moreover, the support
may not exist if the topological space is not second countable.

Definition 2. A topological spaceT is second-countable if there exists some countable
collection U = {Ui}∞

i=1 of open subsets of T such that any open subset of T can be
written as a union of elements of some subfamily of U .

A separable metric space, i.e. a space which has a countable dense subset, is second
countable. In general topological space or in metric space the support of a measure may
not exist. The advantage to define coherent upper conditional probability in ametric space
by fractal outer measures is that if the metric space is separable the support always exists
and if the metric space is not separable then the Hausdorff outer measure of any sets is
infinity.

5 Conclusions

Coherent upper conditional previsions are defined with respect to different fractal outer
measures,whichdonotsharethesamenullsets.Sothegivenmodelscanbeusedtodescribe
thedifferentunconsciousreactions tostimulias itoccurs in theexperimentsaboutselective
attention and to represent different reactions of people to unexpected events.
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Abstract. Using the setting of chains in the power set of subsets of
a finite set, we propose new discrete Choquet-like operators. Our app-
roach is based on aggregating values of a considered vector on consecutive
sets of the chain and monotone measures of the sets. By means of appro-
priate binary operations, we define two types of operators and exemplify
them. Several basic properties and the comparison with known classes
of operators are given.

Keywords: Choquet-like operator · chain integral · IOWA ·
nonadditive integral · monotone measure · conditional aggregation
operator

1 Introduction

The Choquet and the Sugeno integrals are two of the most well-known integrals
with respect to monotone measure. There are several approaches in order to
unify both integrals in a single framework. In 1991, Murofushi and Sugeno [9]
proposed the fuzzy t-conorm integral which is based on the definition of a t-
conorm system for integration that generalizes the pairs of operations: the prod-
uct and sum (used in the Choquet integral) and the minimum and maximum
(used in the Sugeno integral). The twofold integral [10] is an alternative general-
ization building the new integral in terms of operators generalizing both (· and
min) and (+ and max) as well as considering two monotone measures (the one
used in the Sugeno integral and the one in the Choquet integral). An axiomatic
approach to integration called a universal integral is given in [8] where the uni-
versality of this approach consists in the possibility to define it on arbitrary
measurable spaces. Recently, in [3] authors introduced a Choquet-Sugeno-like
operator which is based on concepts of dependence relation between conditional
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sets and conditional aggregation operators introduced in [2]. Conditions under
which the Choquet-Sugeno-like operator coincides with some Choquet-like inte-
grals defined on finite spaces and appeared recently in the literature are studied
in [3,4].

The aim of this paper is to propose new types of operators based on chains.
Starting from the generalized Choquet-Sugeno-like operator, we introduce two
types of chain-based Choquet-like operators and relate them with the chain
integrals and the IOWA operators.

2 Preliminaries

We employ the following notation throughout the paper: Σn = 2[n] is the power
set of subsets of X = [n] = {1, . . . , n} with n ∈ N = {1, 2, . . . } and Σ0

n =
Σn \ {∅}. A monotone measure on Σn is a nondecreasing set function μ : Σn →
[0,∞), i.e., μ(B) � μ(C) whenever B ⊂ C for B,C ∈ Σn with μ(∅) = 0,
and μ([n]) > 0, where “⊂” means the proper inclusion. We denote the class
of all monotone measures on Σn by Mn. Moreover, a capacity is a normalized
monotone measure on Σn (i.e., μ([n]) = 1). The weakest capacity μ∗ and the
strongest capacity μ∗ are given by, respectively,

μ∗(E) =

{
1, E = X,

0, otherwise,
μ∗(E) =

{
0, E = ∅,

1, otherwise.

By Fn we denote the set of all nonnegative functions on [n], i.e., n-
dimensional vectors x = (x1, . . . , xn) with nonnegative entries xi for i ∈ [n].
For any K ⊆ [n], we let 1K : [n] → {0, 1} denote the characteristic vector of K,
that is the n-tuple whose ith coordinate is 1 if i ∈ K, and 0 otherwise. Also we
often write 0 and 1 instead of 1∅ and 1[n], respectively. Finally, for any x ∈ Fn

and E ⊆ [n], the vector x · 1E = (y1, . . . , yn) is an n-tuple with yi = xi if i ∈ E
and yi = 0 otherwise. If c ∈ [0,∞), then the ith coordinate of c · 1E is equal to
c whenever i ∈ E and 0, otherwise. Hereafter (a)+ = max{a, 0}.

Let us fix E ∈ Σ0
n. The operator A(·|E) : Fn → [0,∞) satisfying

(C1) A(x|E) � A(y|E) for any x,y ∈ Fn such that xi � yi for all i ∈ E;
(C2) A(1Ec |E) = 0

is called a conditional aggregation operator (CAO, for short) w.r.t. E ∈ Σ0
n. The

set E is called a conditional set. In order to consider arbitrary sets, we denote by
A = {A(·|E) : E ∈ Σn} a family of conditional aggregation operators (FCA, for
short). Note that for E = ∅ we usually have to make some conventions depending
on the context. However, in this paper we need not consider the emptyset, see
the reasoning after Definition 2, but for the sake of consistency with [2,3] we use
the same setting, i.e., A(·|∅) = 0.

Example 1. We will frequently use the following families of CAOs with super-
script notation:
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– A sum = {Asum(·|E) : E ∈ Σn} with Asum(x|E) =
∑

i∈E xi for E ∈ Σ0
n;

– A prod = {Aprod(·|E) : E ∈ Σn} with Aprod(x|E) =
∏

i∈E xi for E ∈ Σ0
n;

– A AM = {AAM(·|E) : E ∈ Σn} with AAM(x|E) being the arithmetic mean of
x whose indices belong to E ∈ Σ0

n;
– A min = {Amin(·|E) : E ∈ Σn} with Amin(x|E) = mini∈E xi for E ∈ Σ0

n;
– A max = {Amax(·|E) : E ∈ Σn} with Amax(x|E) = maxi∈E xi for E ∈ Σ0

n.

For more examples and properties of CAOs we refer to [2]. Each FCA in
Example 1 consists of the same CAOs w.r.t. any set E ∈ Σ0

n. In general, the
CAOs in family can differ on sets from Σ0

n. For instance, if X = [3], then the
FCA A = {A(·|E) : E ∈ Σn} can take the form

A =

⎧⎪⎨
⎪⎩
ASuν (·|E) if |E| = 1;
AChν (·|E) if |E| = 2;
Asum(·|E) if |E| = 3;

(1)

where ν ∈ Mn, AChν (·|E) = Ch(x · 1E , ν) and ASuν (·|E) = Su(x · 1E , ν) are the
Choquet and the Sugeno integrals of x restricted to E, see [5]. Such family is
dealt with in Example 3.

Finally, we highlight several properties of CAOs. We say that a CAO A(·|E)
is:

(i) homogeneous of degree θ if A(λθx|E) = λθA(x|E) for any λ > 0 and any
x ∈ Fn;

(ii) idempotent if A(λ · 1|E) = λ for any λ ≥ 0.

A FCA A = {A(·|E) : E ∈ Σn} is said to have a property P if for any
E ∈ Σ0

n, the operator A(·|E) ∈ A has the property P .

In various parts of the paper we use some properties of a binary operation
⊗ : [0,∞)2 → [0,∞) summarised below:

(nD1) ⊗ is nondecreasing in the first coordinate if x ⊗ z � y ⊗ z for any x, y, z
such that x � y;

(H1) ⊗ is homogeneous in the first coordinate if (α ·x)⊗ y = α · (x⊗ y) for any
x, y, α;

(H2) ⊗ is homogeneous in the second coordinate if x ⊗ (β · y) = β · (x ⊗ y) for
any x, y, β;

(RD) ⊗ is right distributive over + if (x + y) ⊗ z = (x ⊗ z) + (y ⊗ z) for any
x, y, z;

(LD) ⊗ is left distributive over + if x ⊗ (y + z) = (x ⊗ y) + (x ⊗ z) for any
x, y, z;

(RN) 1 is the right neutral element of ⊗ if x ⊗ 1 = x for any x;
(LN) 1 is the left neutral element of ⊗ if 1 ⊗ x = x for any x;
(RA) 0 is the right annihilator of ⊗ if x ⊗ 0 = 0 for any x;
(LA) 0 is the left annihilator of ⊗ if 0 ⊗ x = 0 for any x.

Remark 1. In the literature there is another concept related to the operator
depending on the set, the so-called interaction operator introduced in [6]. A dis-
cussion on the relation between CAOs and interaction operators is presented in
[3, Section 4.5].
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3 Discrete Chain-Based Choquet-Sugeno-Like Operators

In [3], the authors introduced a wide class of Choquet-Sugeno-like operators.
These operators are based on families of CAOs and a relation among the con-
ditional sets which are chosen from a collection D ⊆ Σ0

n. A nonempty fam-
ily H of collections is called a decomposition system, and for a fixed D ∈ H,
R ⊆ (D ∪ {∅})4 is said to be a quaternary relation on D ∪ {∅}. Although
the quaternary relation R depends on a collection D, we will not indicate this
dependence explicitly in the notation. For sets C1,D1, C2,D2 ∈ D ∪ {∅} being
in a quaternary relation R we write (C1,D1, C2,D2) ∈ R. The general definition
(rewritten in the context of a discrete basic set X = [n]) reads as follows, see [3,
Definition 6.1]. The set of all set functions μ̂ : Σn → (−∞,∞) with μ̂(∅) = 0 is
denoted by M̂n.

Definition 1. Let H be a decomposition system and R be a binary relation on
D ∪ {∅} for D ∈ H. For L: [0,∞]3 × (−∞,∞] → (−∞,∞), the generalized
Choquet-Sugeno-like operator of x ∈ Fn w.r.t. μ ∈ Mn and μ̂ ∈ M̂n is the
operator

gCSL
H,A , ̂A

(x, μ, μ̂) = sup
D∈H

∑
(C1,D1,C2,D2)∈R

L
(
A(x|C1), Â(x|D1), μ(C2), μ̂(D2)

)
,

where A = {A(·|E) : E ∈ Σn} and Â = {Â(·|E) : E ∈ Σn} are families of
CAOs.

3.1 ChainC-operator of Type 1

Put H = {Σ0
n}, A = Â and, μ = μ̂ in Definition 1. In this setup, we introduce

a new operator based on chains in Σn. Recall that a chain in Σn is a collection
C = {C0, C1, . . . , Cm} of sets Ci ∈ Σn for i = 0, 1, . . . ,m with m � 1 such that
∅ = C0 ⊂ C1 ⊂ · · · ⊂ Cm. Denote the set of all chains in Σn by Chain(Σn).
Now, taking the quaternary relation R = {(Ci \ Ci−1,X,Ci, Ci−1) : i ∈ [m]} on
Σn, and the function L(x, y, z, w) = x⊗(z−w)+ with ⊗ : [0,∞)2 → [0,∞) being
a binary operation, the generalized Choquet-Sugeno-like operator reduces to the
following operator.

Definition 2. Let (μ,x) ∈ Mn × Fn. The chain-based Choquet-like operator of
type 1 (shortly, (1)ChainC-operator) w.r.t. a chain C = {C0, C1, . . . , Cm} in Σn,
a FCA A and a binary operation ⊗ : [0,∞)2 → [0,∞) is defined by

(1)CC⊗
C,A (x, μ) =

m∑
i=1

A(x|Ci \ Ci−1) ⊗ Δμ(Ci),

where Δμ(Ci) = μ(Ci) − μ(Ci−1).
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In other words, the (1)ChainC-operator runs through the consecutive sets of
the chain C and aggregates the increment of monotone measure μ on these sets
with the aggregated value of x on their nonempty difference. More precisely, in
the kth step, the value A(x|Ck \ Ck−1) represents the aggregation of x on the
elements of the nonempty difference Ck \ Ck−1 only. Note that Ck \ Ck−1 
= ∅,
therefore we need not consider the value of A on the emptyset (compare with
the approach in [3]).

For the trivial chain C = {∅,X}, we have (1)CC⊗
C,A (x, μ) = A(x|X)⊗μ(X).

So, for a capacity μ and an operation ⊗ satisfying (RN), we always recover the
operator A on the whole set X. Further nontrivial examples are summarised
below.

Example 2. Let μ∗ be the weakest capacity, and ⊗ satisfies (RN) and (RA). Then
the value of the (1)ChainC-operator is zero whenever X /∈ C. If X ∈ C, then
(1)CC⊗

C,A (x, μ∗) = A(x|X \ Cm−1). Here the aggregation depends just on the
penultimate set of the chain C. On the other hand, for the strongest capacity μ∗

we get (1)CC⊗
C,A (x, μ∗) = A(x|C1), which depends only on the first (nonempty)

set of the chain.

Now, we exemplify the (1)ChainC-operator w.r.t. a family of CAOs consisting
of different CAOs.

Example 3. Consider the chain C = {∅, {1}, {1, 2, 3}} in X = [3], μ ∈ M3

and x = (x1, x2, x3) ∈ F3 such that x2 ≥ x3. Let A given by (1). Then the
(1)ChainC-operator w.r.t. C, A and ⊗ is of the form

(1)CC⊗
C,A (x, μ) = ASuν (x|{1}) ⊗ μ({1}) + AChν (x|{2, 3}) ⊗ (

μ(X) − μ({1})
)

= min{x1, ν({1})} ⊗ μ({1})

+
(
x2ν({2}) + x3(ν({2, 3}) − ν({2}))

) ⊗ (
μ(X) − μ({1})

)
.

A chain C is called maximal in Σn, if there is no other chain in Σn which
has C as a proper subset. The set of all maximal chains in Σn is denoted by
MaxChain(Σn).

Example 4. Define a FCA A = {A(·|E) : E ∈ Σn} such that

(C3) A(x|{i}) = xi for each x ∈ Fn and i ∈ [n].

Many families of CAOs satisfy the above condition, e.g., A prod, A sum, and
A min. For any x ∈ Fn with n � 2 and C = {C0, C1, . . . , Cm} ∈ Chain(Σn) such
that |Ci| = i for any i ∈ [m] and m � 2, the (1)ChainC-operator w.r.t. A takes
the form

(1)CC⊗
C,A (x, μ) = x1 ⊗ μ({1}) +

m∑
i=2

xi ⊗ (μ(Ci) − μ(Ci−1)). (2)

In particular, for μ(E) = i for |E| = i, we get

(1)CC⊗
C,A (x, μ) =

m∑
i=1

(xi ⊗ 1).
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Additionally, for a fixed x ∈ Fn there exists a maximal chain C =
{C0, C1, . . . , Cn} for which operator (2) is the Choquet integral.

We now show the relationship to the IOWA. Recall the definition of the
IOWA (see [1, Definition 8] or [12]):

Definition 3. Given a weighting vector w = (w1, . . . , wn) and an inducing vari-
able y = (y1, . . . , yn) the Induced Ordered Weighted Averaging (IOWA, for short)
function is

IOWA(y)(x,w) =
n∑

i=1

xη(i)wi (3)

for any x ∈ Fn, where the η(·) notation denotes the inputs (xi, yi) reordered such
that yη(1) � yη(2) � . . . � yη(n) and the convention that if q of the yη(i) are tied,
i.e., yη(i) = . . . = yη(i+q−1), then

xη(i) =
1
q

η(i+q−1)∑
j=η(i)

xj .

In the following example we show the calculation of the IOWA for the fixed
data and we compare it with the value of the (1)ChainC-operator.

Example 5. For X = [4], we firstly compute the value of IOWA operator of the
vector x = (5, 8, 9, 11) w.r.t. the weighting vector w = (0.4, 0.3, 0.2, 0.1) and
inducing vector y = (1, 1, 2, 5). Since y↓ = (5, 2, 1, 1), where y↓ denotes the
rearranged vector y in nonincreasing way, and there are two ties in the inducing
vector, we get

IOWA(y)(x,w) = 11 · w1 + 9 · w2 +
5 + 8

2
· (w3 + w4) = 9.05.

Let A = A AM, ⊗ = Prod and μw(E) =
∑|E|

i=1 wi for any E. Then for C1 =
{∅, {4}, {1, 2, 4},X}, the (1)ChainC-operator takes the form

(1)CCProd
C1,A AM(x, μw) = 11 · μw({4}) +

5 + 8
2

· (
μw({1, 2, 4}) − μw({4})

)
+ 9 · (

μw({1, 2, 3, 4}) − μw{1, 2, 4})
= 11 · w1 +

13
2

· (w2 + w3) + 9 · w4 = 8.55 
= IOWA(y)(x,w).

However, for the chain C2 = {∅, {4}, {3, 4},X}, the (1)ChainC-operator coin-
cides with IOWA, since

(1)CCProd
C2,A AM(x, μw) = 11 · μw({4}) + 9 · (μw({3, 4}) − μw({4})

)
+

5 + 8
2

· (
μw({1, 2, 3, 4}) − μw({3, 4})

)
= 11 · w1 + 9w2 +

13
2

(w3 + w4) = 9.05.
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Example 5 exemplifies a way how to construct the chain for which IOWA
takes the same value as the (1)ChainC-operator. We now describe the con-
struction of such a chain in general. Let y ∈ Fn and η : [n] → [n] be a per-
mutation such that yη(1) � . . . � yη(n). Let’s choose k unique values in the
sequence (yη(i))n

i=1 and form a k-element sequence (ai)k
i=1 in the following way:

a1 > . . . > ak with k � 1. Putting Cj = {η(i) : yη(i) � aj} for any j ∈ [k], we
have constructed a chain Cy = {C0, C1, . . . , Ck} with C0 = ∅. Note that the
sequence (Cj)k

j=1 is the same, it is independent on the choice of the permutation
η. For the data from Example 5 and permutation η = (4, 3, 2, 1), we get

C1 = {η(1)} = {4}, C2 = {η(1), η(2)} = {3, 4}, C3 = {η(1), η(2), η(3), η(4)} = X.

The same sets (Ci)k
i=1 can be obtained when using the second possible permu-

tation η = (4, 3, 1, 2). Now put Dj = Cj \ Cj−1 = {η(i) : aj � yη(i) < aj−1}
for j � 1 under the convention a0 = ∞. The set Dj consists of such indices i
for which the values of yi have the same value as yη(j), i.e., yi = yη(j) for any
i ∈ Dj . Thence, the value AAM(x|Di) corresponds to the arithmetic mean of all
ties. Then

(1)CCProd
Cy,A AM(x, μw) =

k∑
i=1

AAM(x|Ci \ Ci−1) · Δμw(Ci) = IOWA(y)(x,w).

Our consideration is summarised in the following proposition.

Proposition 1. For each x,y ∈ Fn and each weighting vector w, there exists
Cy ∈ Chain(Σn) such that

(1)CCProd
Cy,A AM(x, μw) = IOWA(y)(x,w),

where μw(E) =
∑|E|

i=1 wi.

3.2 ChainC-operator of Type 2

We now consider yet another special case of the generalized Choquet-Sugeno-
like operator, which enables us to cover the chain integral [11]. Let C =
{C0, C1, . . . , Cm} ∈ Chain(Σn). Putting H = {Σ0

n}, A = Â , μ =
μ̂, L(x, y, z, w) = x ⊗ (z − w)+ and the quaternary relation R =
{(Ci,X,Ci, Ci−1) : i ∈ [m]} on Σn in Definition 1, we get the chain-based Choquet-
like operator of type 2 (shortly, (2)ChainC-operator),

(2)CC⊗
C,A (x, μ) =

m∑
i=1

A(x|Ci) ⊗ Δμ(Ci).

Observe that the aggregation of vector x depends only on sets from the chain C.
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Example 6. Consider A = A min. For a chain C = {C0, C1, . . . , Cm}, the
(2)ChainC-operator takes the form

(2)CC⊗
C,A min(x, μ) =

m∑
i=1

min
j∈Ci

{xj} ⊗ Δμ(Ci). (4)

Regarding the product-based operator, by rearranging the terms of the sum, we
get the chain-integral defined in [11]

(2)CCProd
C,A min(x, μ) =

m∑
k=1

(
min
j∈Ck

{xj} − min
j∈Ck+1

{xj}
)
μ(Ck)

under the convention minj∈Cm+1 xj = 0.

3.3 Basic Properties of ChainC-operator of Type 1 and 2

Some elementary properties of the (j)ChainC-operator, j ∈ [2], are summarised
in the following proposition. Recall that for two families of CAOs A1 and A2

we write A1 � A2 if A1(x|E) � A2(x|E) for any A1 ∈ A1,A2 ∈ A2, any x ∈ Fn

and any E ∈ Σ0
n. Similarly, we write ⊗1 � ⊗2 whenever x ⊗1 y � x ⊗2 y for any

x, y ∈ [0,∞).

Notation. To shorten the notations, we will write

(j)CC⊗
C,A (x, μ) =

m∑
i=1

A(x|Di) ⊗ Δμ(Ci)

for j ∈ [2], where Di = Ci \ Ci−1 for j = 1 and Di = Ci for j = 2.

Proposition 2. Let j ∈ [2], C ∈ Chain(Σn), A ,Ai be families of CAOs,
μ, μi ∈ Mn, x,xi ∈ Fn and ⊗,⊗i : [0,∞)2 → [0,∞) for each i = 1, 2.

(i) If ⊗ satisfies (nD1), then (j)CC⊗
C,A (x1, μ) � (j)CC⊗

C,A (x2, μ) whenever
x1 � x2.

(ii) If ⊗ satisfies (nD1), then (j)CC⊗
C,A1

(x, μ) � (j)CC⊗
C,A2

(x, μ) whenever
A1 � A2.

(iii) If ⊗1 � ⊗2, then (j)CC⊗1
C,A (x, μ) � (j)CC⊗2

C,A (x, μ).
(iv) If A is homogeneous of degree θ and ⊗ satisfies (H1), then

(j)CC⊗
C,A (λθx, μ) = λθ · (j)CC⊗

C,A (x, μ) for each λ � 0.
(v) If ⊗ satisfies (LA), then (j)CC⊗

C,A (0, μ) = 0.
(vi) Let X ∈ C. If A min � A and ⊗ satisfies (nD1) and (LD), then

Amin(x|X) ⊗ μ(X) � (j)CC⊗
C,A (x, μ).

(vii) Let X ∈ C. If A � A max and ⊗ satisfies (nD1) and (LD), then
Amax(x|X) ⊗ μ(X) � (j)CC⊗

C,A (x, μ).
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Proof. Proofs of (i), (ii) and (iii) are immediate by definition, and therefore
omitted.

(iv) Under the assumptions of homogeneity of FCA A and (α · β) ⊗ γ =
α · (β ⊗ γ) for each α, β, γ ≥ 0, we get

(j)CC⊗
C,A (λθx, μ) =

m∑
i=1

(
λθ · A(x|Di)

) ⊗ Δμ(Ci) = λθ ·
m∑

i=1

A(x|Di) ⊗ Δμ(Ci)

= λθ · (j)CC⊗
C,A (x, μ).

(v) From the fact that 0 is the left annihilator of ⊗ and A(0|E) = 0 for any
E ∈ Σ0

n (see [2, Proposition 3.3 (c)]), we get the sum of zeros.
(vi) From the assumptions we immediately get

(j)CC⊗
C,A (x, μ) �

m∑
i=1

Amin(x|Di) ⊗ Δμ(Ci) �
m∑

i=1

Amin(x|X) ⊗ Δμ(Ci)

= Amin(x|X) ⊗
m∑

i=1

Δμ(Ci) = Amin(x|X) ⊗ μ(X).

(vii) Similarly as above we have

(j)CC⊗
C,A (x, μ) �

m∑
i=1

Amax(x|Di) ⊗ Δμ(Ci)

�
m∑

i=1

Amax(x|X) ⊗ Δμ(Ci) = Amax(x|X) ⊗ μ(X),

which gives the desired result. ��
Remark 2. – Let j = 1 in (i). Fixing a chain C, we can weaken the condition

x � y to compare the vectors only on differences of sets from C.
– Regarding the condition (H1) in (iv), for ⊗ = Prod the identity (α · β) ⊗ γ =

α · (β ⊗ γ) is nothing but the associativity of the standard product. The
next operation satisfying (H1) is any operation of the form x ⊗g y = x · g(y)
with g : [0,∞) → [0,∞). For g(t) = 1 we get the first canonical projection
Proj1(x, y) = x.

– Note also that in (vi) the condition (LD) can be weakened to left subdistribu-
tivity x ⊗ (y + z) � (x ⊗ y) + (x ⊗ z), and in (vii) to left superdistributivity
x ⊗ (y + z) � (x ⊗ y) + (x ⊗ z) for each x, y, z ∈ [0,∞).

As a corollary we get the mean behaviour of the (j)ChainC-operator. Since
the compensation property Amin � A � Amax is, in fact, equivalent to the idem-
potency1 of A, see [2, Proposition 3.10 and Remark 3.11], we get the following
consequence.

1 The CAO A(·|E) is idempotent if A(b · 1|E) = b for any b � 0.
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Corollary 1. Let C ∈ Chain(Σn), X ∈ C, A be an idempotent FCA and μ ∈
Mn be a capacity. If ⊗ satisfies (nD1), (LD) and (RN), then the (j)ChainC-
operator, j ∈ [2], is a mean, i.e.,

Amin(x|X) � (j)CC⊗
C,A (x, μ) � Amax(x|X).

3.4 Linearity Property

Linearity of nonadditive integrals usually holds under some restrictive conditions
on monotone measures or input vectors. However, the (j)ChainC-operator w.r.t.
a fixed chain is a linear functional (in vectors as well as monotone measures)
under some mild conditions. In what follows, F̂2

n ⊆ F2
n is a nonempty set.

Proposition 3. Let C = {C0, C1, . . . , Cm} ∈ Chain(Σn) and D =
{D1, . . . , Dm} be either Di = Ci \ Ci−1 for any i or Di = Ci for any i. Assume
that A is a FCA such that A(·|E) is homogeneous of degree 1 for any E ∈ D
and A(x|E) + A(y|E) = A(x + y|E) for any (x,y) ∈ F̂2

n and any E ∈ D. If ⊗
satisfies (RD) and (H1), then

(j)CC⊗
C,A (αx + βy, μ) = α · (j)CC⊗

C,A (x, μ) + β · (j)CC⊗
C,A (y, μ) (5)

for any j ∈ [2], any α, β ≥ 0, any (x,y) ∈ F̂2
n and any μ ∈ Mn.

Proof. Using the assumption of A , and then (RD) and (H1) we get

(j)CC⊗
C,A (αx + βy, μ) =

m∑
i=1

(
αA(x|Di) + βA(y|Di)

) ⊗ Δμ(Ci)

= α · (j)CC⊗
C,A (x, μ) + β · (j)CC⊗

C,A (y, μ),

which completes the proof. ��
Corollary 2. If C ∈ MaxChain(Σn), any CAO from A = {A(·|E) : E ∈ Σn}
satisfies (C3), ⊗ satisfies (RD) and (H1), then

(1)CC⊗
C,A (αx + βy, μ) = α · (1)CC⊗

C,A (x, μ) + β · (1)CC⊗
C,A (y, μ) (6)

for any α, β ≥ 0, any (x,y) ∈ F2
n and any μ ∈ Mn.

Recall that the Choquet integral is additive either for all vectors (if and only
if μ ∈ Mn is additive, cf. [5, Proposition 5.41], thus the terminology additivity of
the integral), or for all monotone measures (whenever x,y ∈ Fn are comonotone,
thus the terminology comonotone additivity, see [5, Proposition 5.36(ii)]). In
other words, according to Example 4, for ⊗ = Prod, arbitrary vectors x,y ∈ Fn

and monotone measure μ ∈ Mn, if the operator on the left-hand side of (6) is
the Choquet integral, the operators on the right-hand side of (6) need not be
the Choquet integrals.

From the fact that the FCA A min is additive for any comonotone vectors
(see [7, Theorem 2.7]), the following consequence is obtained.
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Corollary 3. Let C ∈ Chain(Σn). If ⊗ satisfies (RD) and (H1), then

(2)CC⊗
C,A min(αx + βy, μ) = α · (2)CC⊗

C,A min(x, μ) + β · (2)CC⊗
C,A min(y, μ)

for any α, β ≥ 0, any comonotone vectors x,y ∈ Fn and any μ ∈ Mn.

The linearity of (j)ChainC-operators (in monotone measures) is the result of
the next proposition.

Proposition 4. Let j ∈ [2] and C ∈ Chain(Σn). If ⊗ satisfies (LD) and (H2),
then

(j)CC⊗
C,A (x, αμ + βν) = α · (j)CC⊗

C,A (x, μ) + β · (j)CC⊗
C,A (x, ν)

for any α, β ≥ 0, any x ∈ Fn and any μ, ν ∈ Mn.

Proof. For C = {C0, C1, . . . , Cm} ∈ Chain(Σn), we immediately have the equal-
ities

(j)CC⊗
C,A (x, αμ + βν) =

m∑
i=1

A(x|Di) ⊗ (
α · Δμ(Ci) + β · Δν(Ci)

)
(LD)
=

m∑
i=1

(
A(x|Di) ⊗ (α · Δμ(Ci)) + A(x|Di) ⊗ (β · Δν(Ci)

)
(H2)
= α ·

m∑
i=1

A(x|Di) ⊗ Δμ(Ci) + β ·
m∑

i=1

A(x|Di) ⊗ Δν(Ci)

= α · (j)CC⊗
C,A (x, μ) + β · (j)CC⊗

C,A (x, ν),

which prove the result. ��

3.5 (j)ChainC-Operator as Monotone Measure Extension

Many important nonadditive integrals (e.g., Choquet, Shilkret, Sugeno, Imaoka,
Weber, etc.) return the values of monotone measure on Σn being an extension of
the underlying monotone measure. In this section we discuss this question w.r.t.
(j)ChainC-operator in details.

Proposition 5. Let C ∈ Chain(Σn) and A be an idempotent FCA.

(a) If ⊗ satisfies (LA) and (LD), then for each B ∈ C and c � 0 we have
(1)CC⊗

C,A (c · 1B , μ) = c ⊗ μ(B).
(b) If ⊗ satisfies (LA) and (LN), then for each B ∈ C we have

(1)CC⊗
C,A (1B , μ) = μ(B).

Proof. Since B ∈ C = {C0, C1, . . . , Cm}, there exists k ∈ [m] such that B =
Ck ∈ C. Clearly, for any i ∈ [m] with i ≤ k we have Ci \ Ci−1 ⊆ Ck, and
(Ci \ Ci−1) ∩ Ck = ∅ whenever i > k. Then, by [2, Proposition 3.3], we get
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A(c · 1Ck
|Ci \ Ci−1) = c for i � k, and 0 otherwise. So, by the idempotency of

A , we have

(1)CC⊗
C,A (c · 1B , μ) =

k∑
i=1

c ⊗ Δμ(Ci) +
m∑

i=k+1

0 ⊗ Δμ(Ci).

(a) By the left distributivity of ⊗ and (LA) we get

(1)CC⊗
C,A (c · 1B , μ) = c ⊗

k∑
i=1

Δμ(Ci) = c ⊗ μ(Ck) = c ⊗ μ(B).

(b) By (LA) and (LN) we obtain

(1)CC⊗
C,A (1B , μ) =

k∑
i=1

Δμ(Ci) = μ(Ck) = μ(B),

which completes the proof. ��
Remark 3. Observe that for B = [n] ∈ C the assumption (LA) in Proposi-
tion 5 (b) is superfluous. In the case of (1)ChainC-operator, we can reconstruct
only sets from the chain which the integral is related to. In general, it is not pos-
sible to get back the monotone measure of a set outside the chain. On the other
hand, as is well-known, the monotone measure reconstruction for the Choquet
integral is true for each set from Σn, see [5, Proposition 5.36(i)]. The reason is
that for the characteristic vector 1B of a set B ∈ Σn the chain C↓ (which cor-
responds to a permutation rearranging an input vector in nonincreasing way) is
constructed, in which the set B is included, and its reconstruction can be done
by Proposition 5 (b). If we change the set (in general, from Σn), we change the
chain and correspondingly we compute a different (1)ChainC-operator (which
need not be the Choquet one!).

Proposition 6. Let C = {C0, C1, . . . , Cm}, d � 0 and A be an idempotent FCA
such that A(c · 1Ck

|Ci) = d for i > k. If ⊗ satisfies (LD), then for each Ck ∈ C
with k < m and c � 0 we have (2)CC⊗

C,A (c ·1Ck
, μ) = c ⊗ μ(Ck) + d ⊗ (μ(Cm) −

μ(Ck)).

Proof. By the idempotency and [2, Proposition 3.3], we get A(c ·1Ck
|Ci) = c for

i � k. By (LD) and assumptions, we have

(2)CC⊗
C,A (c · 1Ck

, μ) =
k∑

i=1

c ⊗ Δμ(Ci) +
m∑

i=k+1

d ⊗ Δμ(Ci)

= c ⊗ μ(Ck) + d ⊗ (μ(Cm) − μ(Ck)),

which completes the proof. ��
Putting A min in Proposition 6, we get d = 0 and

(2)CC⊗
C,A min(1Ck

, μ) = μ(Ck)

whenever (LA) and (LN) holds.
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4 Conclusion

In this contribution, we have introduced two types of Choquet-like operators
based on a chain in the algebra of power sets of a finite set. Starting from the
generalized Choquet-Sugeno-like operator defined in [3] we were able to describe
broader frameworks including the IOWA operator and the chain integral dis-
cussed in [11,12], respectively. We have also proved several basic properties of
these operators. The most surprising property is the linearity of both operators
w.r.t. vectors. Furthermore, both operators have been studied in connection with
the monotone measure reconstruction.
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Abstract. In the few past years, decomposition integrals show a prolific
interest of researchers. Some modifications and generalizations of these
integrals were proposed, including the so-called minimax integrals. In the
presented work, we introduce a new generalization of decomposition inte-
grals based on set-based extended aggregation functions, which unifies
the classical decomposition integrals and the minimax integrals into one
framework of integrals called S-decomposition integrals. Some examples
are given and future research outlined.
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1 Introduction

Non-linear integrals are a special sub-class of aggregation functions which are
heavily used in decision making. A special class of non-linear integrals is the
class of decomposition integrals introduced by Even and Lehrer in [2] and fur-
ther examined in [14]. This framework of integrals includes some widely used
integrals in practice such as the Choquet integral [1], the Shilkret integral [18],
the concave integral [10] and the PAN integral [19,20]. Observe that some of
these integrals can be seen as universal integrals proposed in [9], such as the
Choquet and Shilkret integrals, but some of them are out of the universal inte-
grals framework, such as the concave and the PAN integrals. Another related
class of integrals proposed and examined by Honda and Okazaki [7] is formed
by inclusion-exclusion integrals, see also [6].

Since the introduction of decomposition integrals many modifications and
extensions of them were introduced. To note some: the super-decomposition inte-
grals [13], the modification of the product operator in the definition of decompo-
sition integrals [8]. An extension of decomposition integrals for interval-valued
functions was examined in [16]. Our contribution was inspired by a recent idea
of minimax integrals [17], where the supremum of collection integrals considered
for decomposition integrals is replaced by infimum.

In this contribution we introduce a new generalization of decomposition inte-
grals that unifies the classical decomposition integrals and minimax integrals.
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This generalization is based on set-based extended aggregation functions intro-
duced in [11].

The rest of the paper is organized as follows: In the second section we intro-
duce some basic notions, definitions and results used in the following. Section
three is devoted to the extension of decomposition integrals based on the set-
based extended aggregation functions and the examination of their proper-
ties. The last section remarks some conclusions and lays out a potential future
research of the topic.

2 Preliminaries

Let X = {1, 2, . . . , n} � N, where n ∈ N is some natural number, be a finite non-
empty set fixed throughout the paper and referred to as a space. A function is any
mapping f : X → [0,∞[ and a monotone measure is a mapping μ : 2X → [0,∞[
that is grounded and non-decreasing, i.e., μ(∅) = 0 and if A ⊆ B ⊆ X then
μ(A) ≤ μ(B). The set of all functions will be denoted by F and the set of all
monotone measures by M.

A k-ary aggregation function [5,12] is a mapping B : [0,∞[k→ [0,∞[ (with
k ∈ N being some natural number) respecting the boundary condition B(0) = 0
(where 0 denotes the k-dimensional zero vector) and B is non-decreasing with
respect to the partial order of k-dimensional vectors, i.e., if x,y ∈ [0,∞[k are such
that x ≤ y, then B(x) ≤ B(y). An aggregation function B is called idempotent
if and only if B(β1) = β for all β ≥ 0 (where 1 is the k-dimensional vector of
ones).

An extended aggregation function is a mapping

A :
⋃

k∈N

[0,∞[k→ [0,∞[

such that A(0) = 0 for all zero vectors 0 of any length and such that A is
non-decreasing with respect to the partial order of vectors of the same length,
i.e., if x,y ∈ [0,∞[k, where k ∈ N, are such that x ≤ y then A(x) ≤ A(y).
It is convenient to assume that A(x) = x if x = (x) is one-dimensional vector.
We will consider this convention in what follows. Evidently, A is an extended
aggregation function if and only if A�[0,∞[k is a k-ary aggregation function for
any k ∈ N.

A special sub-class of extended aggregation functions is the class of the set-
based extended aggregation functions [11]. Let us define a map

set :
⋃

k∈N

[0,∞[k→ {
E ⊆ [0,∞[ : E is finite

}
,

which assigns to a vector x the set of its pair-wise different elements. In other
words, if x ∈ [0,∞[k then x = (x1, x2, . . . , xk) is a k-tuple (with possibly
repeated numbers), and set(x) = {x1, x2, . . . , xk} is the set of its members with
cardinality between 1 and k. A set-based extended aggregation function is an
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extended aggregation function S satisfying the property that if set(x) = set(y)
then S(x) = S(y) for all x,y belonging to the domain of S. Note that every
set-based extended aggregation function is symmetric. It can be shown that any
set-based extended aggregation function S can be constructed using an appro-
priate idempotent binary aggregation function B : [0,∞[2→ [0,∞[ by

S(x) = B

(
k

min
i=1

xi,
k

max
i=1

xi

)
,

where x = (x1, x2, . . . , xk) ≥ 0.

Example 1. A classical example of a set-based extended aggregation function is
a statistical measure of central tendency called midrange, which is given by

midrng(x) =
1
2

(
k

min
i=1

xi +
k

max
i=1

xi

)

for all x = (x1, x2, . . . , xk) ≥ 0, where k ∈ N is arbitrary natural number.

Example 2. An α-median [3,4], where α ∈ [0,∞], is an idempotent binary aggre-
gation function given by

medα(x, y) = med(x, α, y),

where med is the standard median. Note that med0 = ∧ and med∞ = ∨ are min-
imum and maximum, respectively. This leads to the set-based extended aggre-
gation function Aα given by

Aα(x) =
(
α ∧ k

max
i=1

xi

)
∨

k
min
i=1

xi,

where x = (x1, x2, . . . , xk) ≥ 0.

A collection is any non-empty subset of 2X \{∅} and a decomposition system
is a non-empty set of collections. The set of all collections is denoted by D and
the set of all decomposition systems by H.

A decomposition integral [2,14] with respect to a decomposition system H ∈ H

is an operator decH : F × M → [0,∞[ given by

decH(f, μ) =
∨

D∈H

∨
{

∑

A∈D
βAμ(A) :

∑

A∈D
βA1A ≤ f, βA ≥ 0 for all A ∈ D

}
,

for all functions f ∈ F and all monotone measures μ ∈ M, where 1A denotes the
characteristic function of the set A, i.e.,

1A(x) =

{
1, if x ∈ A,

0, otherwise.
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3 Decomposition Integrals Generalized by Set-Based
Extended Aggregation Functions

Note that the definition of the decomposition integral with respect to a decompo-
sition system H ∈ H can be rewritten in the following form: For a given function
f ∈ F and a given monotone measure μ ∈ M we can construct a k-dimensional
vector d, where k = card(H), by

di =
∨

{
∑

A∈Di

βAμ(A) :
∑

A∈Di

βA1A ≤ f, βA ≥ 0 for all A ∈ Di

}
,

where {Di}k
i=1 is some enumeration of the decomposition system H. Then

decH(f, μ) = ∨(d) = k
max
i=1

di.

Noticing that ∨ is a set-based extended aggregation function, we propose the
following generalization of decomposition integrals.

Definition 1. Let S be a set-based extended aggregation function and H ∈ H be
a decomposition system. An S-decomposition integral with respect to the decom-
position system H is an operator SdecH : F × M → [0,∞[ given by

SdecH(f, μ) = S(df,μ),

where df,μ is a k-dimensional vector, with k = card(H), whose ith coordinate is
given by

df,μ
i =

∨
{

∑

A∈Di

βAμ(A) :
∑

A∈Di

βA1A ≤ f, βA ≥ 0 for all A ∈ Di

}
,

where {Di}k
i=1 is some enumeration of the decomposition system H.

Remark 1. Note that the S-decomposition integral is well-defined and the choice
of the enumeration of the decomposition system does not matter thanks to sym-
metry of set-based extended aggregation functions.

Remark 2. The coordinates of the vector df,μ are collection integrals introduced
in [15] of the function f and the monotone measure μ with respect to collections
belonging to the chosen decomposition system. Recall that, for a collection D ∈
D, f ∈ F and μ ∈ M, the related collection integral df,μ is given by

df,μ
D =

∨
{

∑

A∈D
βAμ(A) :

∑

A∈D
βA1A ≤ f, βA ≥ 0 for all A ∈ D

}
.

The S-decomposition integral is thus aggregation of these collections integrals
using the chosen set-based extended aggregation function S.
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Example 3. Choosing the maximum as the set-based extended aggregation func-
tion in the definition of S-decomposition integral, i.e., S = ∨, we recover the
original decomposition integral introduced in [2,14].

Example 4. The choice of S = ∧, i.e., the set-based extended aggregation func-
tion is minimum, we obtain a so-called minimax integral introduced in [17].

It is easy to notice that if the function f is the zero function, i.e., f(x) = 0 for
all x ∈ X (for future references denoted by f0), then df,μ = 0 and thus also the
S-decomposition integral of such function is always zero. If f and g are functions
such that f ≤ g, then also df,μ ≤ dg,μ which implies that the S-decomposition
integral of f is less or equal to the S-decomposition integral of g. We have just
shown the next important result.

Theorem 1. Let μ ∈ M be a monotone measure and let H ∈ H be a decom-
position system. Let S be an arbitrary set-based extended aggregation function.
Then

SdecH(f0, μ) = 0

and for all functions f, g ∈ F such that f ≤ g one has

SdecH(f, μ) ≤ SdecH(g, μ).

In other words, we can assign an n-ary vector f , where n = card(X), to
any function f ∈ F, whose coordinates are fi = f(i). Thus, the vectors of
[0,∞[n are in one-to-one correspondence with the functions from F. The previous
theorem thus says that the operator Sdec : [0,∞[n→ [0,∞[, defined by Sdec(f) =
SdecH(f, μ), is an aggregation function for all decomposition systems H ∈ H, all
monotone measures μ ∈ M and all set-based extended aggregation functions S.

Example 5. Consider a decomposition system H =
{{{1, 2}},

{{1}, {2}}
}

on
the space X = {1, 2}. Let μ ∈ M be a monotone measure given by μ(∅) = 0,
μ({1}) = 1/3, μ({2}) = 2/3 and μ(X) = 1. For an arbitrary function f ∈ F with
f(1) = x and f(2) = y, where x, y ≥ 0, we obtain that

SdecH(f, μ) = S

(
min{x, y},

x + 2y
3

)
,

where S is an arbitrary set-based extended aggregation function. In Fig. 1, the
graphs of SdecH are indicated for the choice S = med0 = ∧, S = med1/2 and
S = med∞ = ∨.

Example 6. If we consider the space X, the decomposition system H and the
function f ∈ F from the previous example, i.e., Example 5, with a set-based
extended aggregation function S = med1 and μ ∈ M is given by: (i) μ(∅) = 0,
μ({1}) = 1/4, μ({2}) = 1/2 and μ(X) = 1, i.e., μ is sub-additive monotone
measure, then we obtain

SdecH(f, μ) = med
(
min{x, y}, 1,

x + 2y
4

)
;
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Fig. 1. Graphs of the S-decomposition integral from Example 5. The choice S = ∧ is
visualized on the left, S = med0.5 is in the middle and S = ∨ is on the right.

(ii) if μ is given by μ(∅) = 0, μ({1}) = μ({2}) = 2/3, μ(X) = 1, i.e., μ is
super-additive and symmetric, then we obtain

SdecH(f, μ) = med
(
min{x, y}, 1,

2(x + y)
3

)
.

The graphs of these two functions can be found in Fig. 2.
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Fig. 2. Graphs of the S-decomposition integral from Example 6; (i) on the left and (ii)
on the right.

Note that for any function f ∈ F and a non-negative number β ≥ 0, one
obtains that dβf,μ = βdf,μ, in general, for any monotone measure μ ∈ M. Also,
the equality df,βμ = βdf,μ holds. This implies that if the underlying set-based
extended aggregation function S is positively homogeneous, then so is the S-
decomposition integral.

Theorem 2. If S is positively homogeneous set-based extended aggregation func-
tion, then the S-decomposition integral is also positively homogeneous operator.
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Example 7. The choice of the α-median as the underlying set-based extended
aggregation function, i.e., S = medα, implies that the S-decomposition integral
is positively homogeneous if and only if α ∈ {0,∞}. Also, if S is the midrange,
due to its positive homogeneity also the related S-decomposition integrals, for
all fixed monotone measures, are positively homogeneous.

If the function or the monotone measure changes continuously, then so does
the vector df,μ implying that if the underlying set-based extended aggregation
function is continuous then so is the S-decomposition integral.

Theorem 3. If S is continuous set-based extended aggregation function, then
the S-decomposition integral is also continuous, both in functions and in mono-
tone measures.

Example 8. Consider a set-based extended aggregation function S given by

S(x) =

{
0, if ∧(x) + ∨(x) ≤ 1,
∧(x), otherwise,

which is discontinuous along the line ∧(x) + ∨(x) = 1, i.e., in two dimensions,
if x = (x, y), along the line x + y = 1. Consider the space, the decomposition
system, the monotone measure, and the function from Example 5. The corre-
sponding S-decomposition integral is then given by

SdecH(f, μ) =

{
0, if x + 2y + 3min{x, y} ≤ 3,
min{x, y, (x + 2y)/3}, otherwise,

=

{
0, if x + 2y + 3min{x, y} ≤ 3,
min{x, y}, otherwise,

which is also not continuous at the piecewise line x+ 2y + 3min{x, y} = 3. The
graph of this function is depicted in Fig. 3.
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Fig. 3. Graph of the S-decomposition integral from Example 8.
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Remark 3. See that the choice of not positively homogeneous set-based extended
aggregation function can lead to a positively homogeneous S-decomposition inte-
gral and, analogously, a choice of discontinuous set-based extended aggregation
function can also lead to a continuous S-decomposition integral. This can be
seen, e.g., by choosing the zero monotone measure μ ≡ 0.

In general, S-decomposition integrals are not symmetric. However, if the con-
sidered monotone measure μ is symmetric (i.e., μ(G) = μ(H) for any G,H ⊆ X
such that card(G) = card(H)), then for any H ∈ H and any set-based extended
aggregation function S, the n-ary aggregation function Sdec is symmetric.

4 Concluding Remarks

In this work, we have proposed a generalization of the decomposition integrals
introduced by Even and Lehrer in [2]. This generalization is based on replacing
the outer maximum operator by an arbitrary set-based extended aggregation
function which unifies decomposition integrals and recently introduced minimax
integrals [17] into one framework of integrals, called S-decomposition integrals.

It was proved that the S-decomposition integral is again an aggregation func-
tion, i.e., it respects the boundary condition of aggregation functions and is
monotonic. If the underlying set-based extended aggregation function is posi-
tively homogeneous then so is the S-decomposition integral.

Some examples of S-decomposition integrals are given leading back to the
original decomposition integrals, the minimax integrals and to new integrals
based on the α-medians.

The properties of the S-decomposition integrals and their possible use in
practice are future topics of the research of the author. As a further generalization
of decomposition integrals we aim to consider symmetric extended aggregation
functions, following the spirit of Definition 1. In particular, one can consider
the quasi-arithmetic means, with a distinguished example AM (the arithmetic
mean). The related AM-decomposition integrals are given by

AMdecH(f, μ) =
1
k

k∑

i=1

df,μ
i .

More, our ideas from this contribution and those sketched above could be con-
sidered for the case of super-decomposition integrals, too. Note that there one
should not forget the infinity as a possible value of integrals, violating the pos-
sible duality of both types of integrals.
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Abstract. Mesiar et al. in 2020 introduced discrete bipolar OWA oper-
ators and in 2022 a further investigation on discrete bipolar OWA opera-
tors was published by the same authors. They introduced also the abbre-
viation BIOWA. In the paper, BIOWA operators with continuous input
functions are proposed and studied. Also the orness measure of continu-
ous BIOWA is introduced.

Keywords: Aggregation function · Bipolar OWA · Bipolar Choquet
integral · Orness measure

1 Introduction

Ordered weighted averaging (OWA) operators were introduced by Yager [20].
Since then they have proved their usefulness in several areas, see e.g., [8]. Gra-
bisch [6] has shown that OWA operators are Choquet integrals with respect to
symmetric capacities.

Grabisch and Labreuche introduced bi-capacities [9,10] as a tool for decision-
makers, where they can assign both, positive and negative score in multi-criteria
decision problems. Mesiar et al. [15,16] to treat the bipolar scales in multicriteria
decision-making problems, introduced BIOWA (bipolar OWA) operators in case
of finitely many criteria. For possible applications of bipolarity see, e.g., Grabish
et al. [7]. It is a natural generalization of the OWA operators introduced by
Yager.

If there are too many input values, it may be easier to model the situation
using continuous input functions. This situation is studied in Jin et al. [12] where
OWA operators for continuous input functions are proposed. The results in this
paper were further generalized by Kalina [13]. Some of the ideas in papers [12,13]
can be found in Torra [19] and also in the monograph Denneberg [3].

The papers [15,16] on one hand, and [12,13] on the other hand, were the
main motivation of the author for the research presented in this contribution.
Some of the ideas from [12,13] will be used also in this paper. However, handling
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bi-polarity of evaluations means facing a new problem. Namely, for positive and
negative evaluations different measures are used. This means the decreasing form
of an input function as defined in [12] (Definition 7), has to be modified.

The paper is organized as follows. Some necessary known notions and results
are provided in Sect. 2. Section 3 is devoted to BIOWA operators with continuous
input functions. Orness measures are introduced in Sect. 4. Finally, conclusions
are formulated in Sect. 5.

2 Basic Notations and Some Known Facts

To increase comfort for readers, in this section we provide some notions and
known facts which will be important for our considerations. The reader is
assumed to be familiar with basic properties of aggregation functions. To get
some information on aggregation functions, we recommend monographs [1,11].
Concerning measurability and measurable spaces, the reader is advised to read
monographs [17,18].

2.1 OWA Operators, Choquet Integral and Bipolar Capacities

As introduced in [20], for an n-dimensional input vector v = (v1, . . . , vn) and
an n-dimensional weighting vector w = (w1, . . . , wn), the OWA is given by
OWAw(v) =

∑n
i=1 wi · vπ(i) where π is a permutation of the set {1, 2, . . . , n}

such that vπ(1) ≥ vπ(2) ≥ · · · ≥ vπ(n).

Definition 1 ([17]). Let (X,S) be a measurable space and μ : S → [0, 1] be a
monotone set-function such that μ(∅) = 0 and μ(X) = 1. Further assume that
for arbitrary system of measurable sets A1 ⊂ A2 ⊂ · · · ⊂ Ai ⊂ . . . the following
holds

μ

( ∞⋃

i=1

Ai

)

= lim
i→∞

μ(Ai). (1)

Then μ is called a capacity.
If moreover for all A,B ∈ S if μ(B) = 0 then μ(A ∪ B) = μ(A) holds, then μ is
a null-additive capacity.

The triplet (X,S, μ) will be called a capacity space. Recall that for every
capacity μ, μd(A) = 1 − μ(Ac) (for A ∈ S) is the dual capacity.

Definition 2 (see, e.g., [18]). Let (X,S, μ) be a capacity space. Capacity μ is
said to be semi-continuous from above if for arbitrary system of measurable sets
A1 ⊃ A2 ⊃ · · · ⊃ Ai ⊃ . . . the following holds

μ

( ∞⋂

i=1

Ai

)

= lim
i→∞

μ(Ai). (2)
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Notation 1. For arbitrary function f : X → R we denote

f+(x) = f(x) ∨ 0 and f−(x) = (−f)+(x).

Definition 3 ([18]). Let f : X → R be a function and rng(f) be its range (called
also co-domain). If rng(f) is a finite set, then f is said to be a simple function.
If f is simple and moreover {x ∈ X; f(x) = a} ∈ S for all a ∈ rng(f), then
we say that f is a simple measurable function. The set of all simple measurable
functions on (X,S) will be denoted by SM(X,S).

Definition 4 ([18]). A function f : X → R is said to be measurable if there
exists a function F : N → SM(X,S) such that, for all x ∈ X,

F (x) = lim
i→∞

Fi(x),

where N denotes the set of all natural numbers and Fi denotes the function F (i).

Definition 5 (see, e.g., [2,3,17]). Let f : X → [0,∞[ be a measurable function
and μ be a capacity. The functional

(C)
∫

f dμ =
∫ ∞

0

μ({x ∈ X; f(x) ≥ t}) dt,

where the right-hand-side integral is the Riemann one, is called the Choquet
integral.

Remark 1. Since the function f in Definition 5 is measurable, function f̃ :
[0,∞[ → [0, 1] defined by f̃(t) = μ({x; f(x) ≥ t}) is well defined. Moreover,
it is decreasing and thus Riemann integrable. This justifies the definition of
Choquet integral. The Choquet integral can be expressed also by

(C)
∫

f dμ =
∫ ∞

0

μ({x ∈ X; f(x) > t}) dt,

see [17].

The paper [8] is a nice overview of applications of the Choquet integral in
decision-making under uncertainty.

2.2 OWA with Continuous Input Functions

In [12], the authors extended the theory of OWA operators to OWA with contin-
uous input functions. The mentioned paper is written in the language of measure
(capacity) spaces.

Definition 6 ([12]). Let (X,S) be a measurable space. Any bounded measurable
function f : X → R is said to be an input function. The set of all input functions
will be denoted by F(X,S).
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Definition 7 ([12]). Let M = (X,S, μ) be a capacity space and f ∈ F(X,S).
Function g(f,μ) ∈ F(X,S) is a decreasing form of f in M if the following con-
straints are fulfilled:

(a) g(f,μ)(x1) ≥ g(f,μ)(x2) whenever x1 ≥ x2 for all x1, x2 ∈ X,
(b) μ({z ∈ X; g(f,μ)(z) ≥ t}) = μ({z ∈ X; f(z) ≥ t}) for all t ∈ R.

Of course, in some cases the decreasing form g(f,μ) of an input function f
is not given uniquely. On the other hand, for some capacity spaces (X,S, μ),
there exist input functions with no decreasing form. The most important is the
question of the existence of a decreasing form.

Assumption 1 The triplet (X,S, μ) will denote a capacity space fulfilling

1. X ⊂ R, there exist xm = min(X), xM = max(X), xm, xM ∈ [0, 1],
2. S ⊂ 2X is a σ-algebra such that [xm, x] ∩ X ∈ S for all x ∈ X,
3. μ is a null-additive capacity such that for any disjoint A,B ∈ S

μ(A ∪ B) = μ(A) ⇔ μ(B) = 0. (3)

Proposition 1 ([12]). Let M = (X,S, μ) be a capacity space fulfilling Assump-
tion 1 and the capacity μ is semicontinuous from above. Then for every f ∈
F(X,S) there exists a decreasing form g(f,μ) in M if and only if for every E ∈ S
such that μ(E) = 0 there exist a1, a2 ∈ X such that

μ(E) = μ(X ∩ [xm, a1]) = μd(X ∩ [a2, xm]).

Moreover, if g1, g2 are two different decreasing forms of f in M then

(C)
∫

g1 dμ = (C)
∫

g2 dμ. (4)

Remark 2. The input function f in Proposition 1 may achieve both positive as
well as negative values. This is the reason why we need also the dual capacity
μd in equality (4). In case we know that the input function is non-negative, we
can skip the most right-hand-side (the part with μd) in equality (4).

2.3 Bipolar Capacity and Bipolar OWA (BIOWA) Operators

Grabisch and Labreuche introduced a bi-polar capacity (bicapacity) [9]. We will
slightly modify (generalize) their definition for the case of arbitrary measurable
space.

Definition 8. For a measurable space (X,S) denote L = {(A,B) ∈ S2;B ⊂
Ac}. A function h : L → [−1, 1] is said to be a bipolar capacity if

1. h(∅, ∅) = 0, h(X, ∅) = 1, h(∅,X) = −1,
2. h(·, ∅) is increasing and semicontinuous from above,
3. h(∅, ·) is decreasing and semicontinuous from above.
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The Choquet integral with respect to a bicapacity h is defined as follows [9].

(C)
∫

f dh =
∫ ∞

0

h(f+ > t, f− > t) dt.

Let X be a finite set. A bicapacity h : L → [−1, 1] is symmetric if

h(A,B) = χ(card(A), card(B)),

where χ is a function increasing in the first and decreasing in the second variable
and χ(0, 0) = 0, χ(1, 0) = 1 and χ(0, 1) = −1,
i.e., if the bicapacity is a function of the cardinalities of the input sets.

Definition 9 ([16]). Let X be a finite set and h be a symmetric bipolar capacity.
Then BIOWAh(f) = (C)

∫
f dh is the bipolar OWA (BIOWA) operator.

2.4 Orness Measures

Orness measure was originally introduced by Dujmović [4,5]. Now, we repeat
the definition of the measure of orness from [20]. For an OWA operator with a
weighting vector ω = {w1, . . . , wn} is its orness defined by (see [20])

ornessY(ω) =
n∑

i=1

n − i

n − 1
wi. (5)

Later the orness measure was studied by several authors and some other
orness measures were introduced. Just briefly, in [14] the orness measure was
axiomatized.

Definition 10 (see [14]). Let ω be a weighting vector corresponding to a dis-
crete OWA operator. An orness function, denoted by Aorness, satisfies the fol-
lowing properties.

(A1) Aorness(ω∗) = 1, where ω∗ = (1, 0, . . . , 0).
(A2) Aorness(ω∗) = 0, where ω∗ = (0, 0, . . . , 1).
(A3) Aorness(ωA) = 1

2 , where ωA = ( 1
n , 1

n , . . . , 1
n ).

(A4) Let ω = (w1, w2, . . . , wn) ωε = (w1, . . . , wj − ε, . . . , wk + ε, . . . , wn), for
ε > 0 and j < k, be weighting n-tuples. Then Aorness(ω) > Aorness(ωε).

Finally, we provide the definition of orness measure for OWA operators from
[12]. First, we recall the definition of absolute continuity of a capacity ν with
respect to μ.

Definition 11 ([18]). Let A be a measurable set. We say that ν is absolutely
continuous with respect to μ if μ(A) = 0 implies ν(A) = 0, notation ν � μ.

Definition 12. Let μ be a capacity fulfilling Assumption 1 with μ({x}) = 0 for
all x ∈ X and w � μ be a probability measure (weighting function). Denote

G(x) = μ([xm, x] ∩ X). (6)

Measure of orness of w with respect to G is given by

ornessG(w) = (C)
∫

(1 − G(x)) dw. (7)
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3 BIOWA with Continuous Input Functions

As we have already pointed out, this part is based on the papers [12,16]. We will
assume that (X,S) is a measurable space fulfilling Assumption 1 and such that
min(X) = 0, max(X) = 1.

Definition 13. For a measurable space (X,S) denote L = {(A,B) ∈ S2;B ⊂
Ac}. A function h : L → [−1, 1] is said to be a bipolar capacity if

1. h(∅, ∅) = 0, h(X, ∅) = 1, h(∅,X) = −1,
2. h(·, ∅) is increasing and semicontinuous from above,
3. h(∅, ·) is decreasing and semicontinuous from above.

Unlike the re-ordering of an input vector used in [16], we will construct a
decreasing form of f+ and an increasing form of f−. The reason for this is that
we want to keep capacities μ and ν as general as possible, where μ and ν are
capacities with respect to which we construct the monotone forms of f+ and f−

for an input function f , respectively. For this reason we modify Proposition 1
into the following form.

Proposition 2. Let (X,S) be a measurable space fulfilling Assumption 1 and
μ : S → [0, 1], ν : S → [0, 1] be two capacities semicontinuous from above. Let
f ∈ F(X,S) be arbitrarily chosen. Then there exists a decreasing form g(f+,μ)

of f+ and an increasing form g(f
−,ν) of f− if and only if for every disjoint

A,B ∈ S there exist a, b ∈ [0, 1], a ≤ b, such that

μ(A) = μ([0, a] ∩ X), ν(B) = ν([b, 1] ∩ X). (8)

Proof. The left-hand-side equality in formula (8) is due to Proposition 1. The
right-hand-side equality is in a sense dual to the left one.

Assumption 2 In what follows, we will assume that a pair of capacities (μ, ν)
fulfilling Assumption 1, fulfils the following

– for measurable A,B such that B ⊂ Ac there exist a, b ∈ [0, 1], a ≤ b such that
equalities (8) hold.

Proposition 3. Assume (μ, ν) is a pair of capacities fulfilling Assumption 1.
The pair (μ, ν) fulfils Assumption 2 if and only for arbitrary measurable sets
A,B, B ⊂ Ac, there exist numbers a, b1, b2 ∈ [0, 1] such that a ≤ b1 ≤ b2 with

μ(A) = μ([0, a] ∩ X), ν(B) = ν([b2, 1] ∩ X), μc(B) = μc([b1, 1] ∩ X). (9)

Proof. It is immediate that formula (8) implies formula (9).

The next example illustrates the role of the pair of capacities (μ, ν) that they
play in the design of decreasing/increasing form of f+ and f−, respectively.
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Example 1. Set X = [0, 1] and S = B∩[0, 1]. For simplicity reasons, we set capac-
ities μ1 and ν1 to be probability distributions given by distribution functions Φ1

and Ψ1, respectively, restricted to the unit interval:

Φ1(x) =

⎧
⎪⎨

⎪⎩

2x for x ∈ [0, 1
4 ],

1
2 for x ∈ ]

1
4 , 1

2

[
,

x for x ∈ [12 , 1],
Ψ1(x) =

{
0 for x ∈ [0, 1

2 ],
2x − 1 for x ∈ ]

1
2 , 1

]
.

We will consider yet another pair of probability distributions (μ2, ν2) given by
distribution functions Φ2 and Ψ2, respectively, restricted to the unit interval:

Φ2(x) =

⎧
⎪⎨

⎪⎩

2x for x ∈ [0, 1
8 ],

x + 1
8 for x ∈ ]

1
8 , 7

8

[
,

1 for x ∈ [78 , 1],
Ψ2(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 for x ∈ [
0, 1

4

]
,

2x − 1
2 for x ∈ ]

1
4 , 1

2

[
,

1
2 for x ∈ [

1
2 , 3

4

[
,

2x − 1 for x ∈ [34 , 1].

Let

f(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x for x ∈ [0, 1
4 ],

0 for x ∈ ]
1
4 , 1

2

[
,

−1 for x ∈ [
1
2 , 3

4

[
,

−x for x ∈ [34 , 1].

Now, we provide decreasing forms g(f+,μ1), g(f+,μ2) of f+ and increasing forms
g(f

−,ν1), g(f
−,ν2) of f−

g(f+,µ1)
(x) =

{
1
4

− x for x ∈ [0, 1
4
],

0 otherwise,
g(f+,µ2)

(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
4

− 2x for x ∈ [0, 1
16
],

3
16

− x for x ∈ ]
1
16
, 1
8

[
,

1
8

− 1
2
x for x ∈ [ 1

8
, 1
4
],

0 otherwise,

g(f
−,ν1)(x) =

⎧
⎪⎨

⎪⎩

1 for x ∈ [ 34 , 1],
x + 1

4 for x ∈ [
1
2 , 3

4

[
,

0 otherwise,
g(f

−,ν2)(x) =

{
x for x ∈ ]

3
4 , 1

]
,

0 otherwise.

Since ν2([12 , 3
4 ]) = 0, another option for g(f

−,ν2) is

ḡ(f
−,ν2)(x) =

{
x for x ∈ [ 12 , 1],
0 otherwise.

This means that the decreasing (increasing) forms of f+ (f−) are not given
uniquely. Particularly, it is possible to change the values of the corresponding
functions on a set of zero capacity, keeping in kind the monotonocity of those
modified decreasing (increasing) forms.
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Definition 14. Denote A = {(x, y) ∈ [0, 1]2;x + y ≤ 1}. A function χ : A →
[−1, 1] is said to be a bipolar distribution function if it is increasing in the first
and decreasing in the second variable and such that χ(0, 0) = 0, χ(1, 0) =
1, χ(0, 1) = −1.

Notation 2. For any bipolar distribution function χ and a pair of capacities
(μ, ν) we denote

H(χ,μ,ν)(A,B) = χ
(
μ(A), ν(B)

)
for (A,B) ∈ L. (10)

Lemma 1. For arbitrary bipolar distribution function χ and any pair of capac-
ities (μ, ν), the function H(χ,μ,ν) given by formula (10), is a bipolar capacity.

The proof of Lemma 1 is straightforward by properties of bipolar distribution
functions and by formula (10). That is why it is omitted.

Definition 15. Assume a measurable space (X,S) and capacities μ, ν fulfilling
Assumptions 1 and 2. Let h : L2 → [−1, 1] be a bipolar capacity. We say that h
is absolutely continuous with respect to the pair (μ, ν), notation h � (μ, ν), if for
arbitrary A ∈ S and B,C ∈ S such that C ⊂ (B ∪ A)c the following constraints
are satisfied:

(a) if μ(A) = 0 then h(B,C) = h(B ∪ A,C),
(b) if ν(A) = 0 then h(C,B) = h(C,B ∪ A).

Lemma 2. Assume χ is a bipolar distribution function. For a pair of capacities
(μ, ν) that satisfy Assumption 1 and 2, let function H(χ,μ,ν) be defined by formula
(10). Then H(χ,μ,ν) � (μ, ν).

Proof. Since H(χ,μ,ν) depends just on the values of the capacities μ and ν, and
not on the choice of particular pair of sets (A,B) ∈ L, the absolute continuity
of H(χ,μ,ν) is straightforward.

Proposition 4. Let f ∈ F(X,S) and assume there exists a decreasing form
g(f+,μ) of f+ in a capacity space M = (X,S, μ) and an increasing form g(f

−,ν)

of f− in a capacity space N = (X,S, ν). Denote g = g(f+,μ) + g(f
−,ν). Let χ be

a bipolar distribution function and H(χ,μ,ν) be given by formula (10). Then

(C)
∫

|f |dH(χ,μ,ν) = (C)
∫

g dH(χ,μ,ν).

Proof. The idea of the proof is based in the fact that all cuts of |f | as well as
of g have the same bipolar capacity H(χ,μ,ν). For this reason the corresponding
bipolar Choquet integrals coincide.

Remark 3. In Proposition 4 we use the bipolar capacity H(χ,μ,ν) to compute the
corresponding Choquet integrals. For a general bipolar capacity h we have no
guarantee that the bipolar capacities of cuts of |f | and g coincide.
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Definition 16. Assume (μ, ν) is a pair of capacities fulfilling Assumptions 1
and 2. We say that a bipolar capacity h is symmetric with respect to (μ, ν), if
for arbitrary A1, B1, A2, B2 ∈ S such that B1 ⊂ Ac

1 and B2 ⊂ Ac
2, we have that

for μ(A1) = μ(A2), ν(B1) = ν(B2) imply h(A1, B1) = h(A2, B2).

Proposition 5. Assume (μ, ν) is a pair of capacities fulfilling Assumptions 1
and 2, and χ is a bipolar distribution function. Then the bipolar capacity H(χ,μ,ν)

is symmetric with respect to (μ, ν).

Proof. The arguments are the same as those in the proof of Lemma 2.

Definition 17. Let (μ, ν) be a pair of capacities fulfilling Assumptions 1 and
2, and χ be a bipolar distribution function. For f ∈ F(X,S), the bipolar OWA
operator (BIOWA) is defined by

BIOWA(f) = (C)
∫

g dH(χ,μ,ν),

where g(f+,μ) is a decreasing form of f+ in the capacity space (X,S, μ), g(f
−,ν) is

an increasing form of f− in the capacity space (X,S, ν) and g = g(f+,μ)+g(f
−,ν).

Proposition 6. Let (μ, ν) be a pair of capacities fulfilling Assumptions 1 and
2, and χ be a bipolar distribution function. BIOWA is an idempotent monotone
operator. Moreover, if for f1, f2 ∈ F(X,S), for arbitrary t ≥ 0 we have

μ({x ∈ [0, 1]; f+
1 (x) ≥ t}) = μ({x ∈ [0, 1]; f+

2 (x) ≥ t}),

ν({x ∈ [0, 1]; f−
1 (x) ≥ t}) = ν({x ∈ [0, 1]; f−

2 (x) ≥ t}),

then BIOWA(f1) = BIOWA(f2).

Example 2. Denote χad(x, y) = x − y. Consider function f defined by

f(x) =

⎧
⎪⎨

⎪⎩

x − 1
4 for x ∈ [0, 1

2 ],
1
2 for x ∈ ]

1
2 , 3

4

[
,

− 1
4 for x ∈ [ 34 , 1].

We will consider the pairs of capacities (μ1, ν1) and (μ2, ν2) from Example 1.
Then we get

g(f+,μ1)(x) =

{
1
2 for x ∈ [0, 1

8 ],
0 otherwise,

g(f
−,ν1)(x) =

{
1
4 for x ∈ [ 34 , 1],
0 otherwise,

g(f+,μ2)(x) =

⎧
⎪⎨

⎪⎩

1
2 for x ∈ [0, 1

8 ],
3
8 − x for x ∈ ]

1
8 , 3

8

[
,

0 otherwise,
g(f

−,ν2)(x) =

{
1
4 for x ∈ [ 34 , 1],
0 otherwise.

For the bipolar distribution function χad and pairs of capacities (in fact, pairs
of probability distributions) (μ1, ν1) and (μ2, ν2), we can compute the BIOWA
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operators as a difference of Lebesgue integrals with respect to the corresponding
probability distributions. Then we get

BIOWA(χad,μ1,ν1)(f) =
1
2

· 1
4

− 1
4

· 1
2

= 0,

BIOWA(χad,μ2,ν2)(f) =
1
2

· 1
4

− 1
4

· 1
2

+
∫ 3

8

1
8

(
3
8

− x

)

φ2(dx) =
1
32

.

For

χ∗(x, y) =

⎧
⎪⎨

⎪⎩

0 for x = 0 and y < 1,

−1 for y = 1,

1 otherwise,

we get

BIOWA(χ∗,μ1,ν1)(f) = BIOWA(χ∗,μ1,ν1)(f) =
1
2
.

For

χ∗(x, y) =

⎧
⎪⎨

⎪⎩

0 for y = 0 and x < 1,

1 for x = 1,

−1 otherwise,

we get

BIOWA(χ∗,μ1,ν1)(f) = BIOWA(χ∗,μ1,ν1)(f) = −1
4
.

For

χ0(x, y) =

⎧
⎪⎨

⎪⎩

1 for x = 1,

−1 for y = 1,

0 otherwise,

we have
BIOWA(χ0,μ1,ν1)(f) = BIOWA(χ0,μ1,ν1)(f) = 0.

Remark 4. For a better illustration of BIOWA operators with continuous input
functions we have transformed some of the BIOWA operators used in [16] using
the notation from that paper. As we may see, for χ∗ the BIOWA operator gives
sup f as result, for χ∗ the result is inf f . For χ0 the result is 0 unless f has only
positive or only negative values.

4 Orness Measure for BIOWA

Yager [20] introduced orness measures for OWA operators to express, in a sense,
a grade of ‘or-like’ property of OWA operators. Particularly, the higher weights
have the greatest inputs, the higher is the measure of orness. In [12], we proposed
measures of orness for OWA operators with continuous input functions. Now, we
are going to propose an orness measure for BIOWA operators with continuous
input functions.

By Γ we denote the set of all bipolar distribution functions. We will use the
notation from Example 8.
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Lemma 3. et (μ, ν) be a pair of capacities fulfilling Assumption 1. Then

(C)
∫ ∫

χ0 dν dμ = 0, (C)
∫ ∫

χ∗ dν dμ =
1
2
, (C)

∫ ∫

χ∗ dν dμ = −1
2
.

Moreover, supΓ = χ∗ and inf Γ = χ∗.

Due to Lemma 3, we introduce the following definition.

Definition 18. The orness measure of the BIOWA operator defined via the
triple (χ, μ, ν), where χ is a bipolar distribution function and (μ, ν) is a pair
of capacities fulfilling Assumptions 1 and 2, is defined by

orness
(
BIOWA(χ,μ,ν)

)
= (C)

∫ ∫

χ dν dμ +
1
2
.

Example 3. Lemma 3 implies that regardless of the choice of (μ, ν) we have

orness
(
BIOWA(χ∗,μ,ν)

)
= 1, orness

(
BIOWA(χ∗,μ,ν)

)
= 0,

orness
(
BIOWA(χ0,μ,ν)

)
= 0.

For the pairs of capacities (μ1, ν1) and (μ2, ν2) from Example 1, we will com-
pute the corresponding orness measure choosing χad as the bipolar distribution
function.

orness
(
BIOWA(χad,μ1,ν1)

)
= (C)

∫ ∫

(x − y) dΨ1 dΦ1

=
∫ 1

4

0

∫ 1−x

1
2

(x − y) · 2 · 2 dy dx = − 7
32

,

orness
(
BIOWA(χad,μ2,ν2)

)
= (C)

∫ ∫

(x − y) dΦ2 dΨ2 = − 3
64

.

5 Conclusions

In this contribution, we have introduced BIOWA operators for continuous input
functions and exemplified the results. We have shown under which constraints put
on a pair of capacities (μ, ν), it is possible to construct a decreasing form of f+ and
an increasing form of f−, where f is the input function. Further, we have intro-
duced an orness measure for BIOWA operators with continuous input functions.
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Abstract. A problem of cost-constrained group feature selection in
supervised classification is considered. In this setting, the features are
grouped and each group is assigned a cost. The goal is to select a sub-
set of features that does not exceed a user-specified budget and simul-
taneously allows accurate prediction of the class variable. We propose
two sequential forward selection algorithms based on the information-
theoretic framework. In the first method, a single feature is added in
each step, whereas in the second one, we select the entire group of fea-
tures in each step. The choice of the candidate feature or group of fea-
tures is based on the novel score function that takes into account both
the informativeness of the added features in the context of previously
selected ones as well as the cost of the candidate group. The score is
based on the lower bound of the mutual information and thus can be
effectively computed even when the conditioning set is large. The exper-
iments were performed on a large clinical database containing groups
of features corresponding to various diagnostic tests and administrative
data. The results indicate that the proposed method allows achieving
higher accuracy than the traditional feature selection method, especially
when the budget is low.

Keywords: group feature selection · information theory · mutual
information · costly features

1 Introduction

We consider the problem of cost-constrained feature selection which aims to
select a subset of features relevant to the target variable while satisfying a user-
specific maximal admissible budget. In the cost-constrained methods, it is neces-
sary to find a trade-off between the relevancy of the feature subset and its cost.
Unlike previous papers on cost-constrained feature selection [1,6,17,22], which
assume that each feature is associated with the individual cost of acquiring its
value, we consider costs assigned to entire groups of features. The costly groups
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of features naturally appear in many research domains. In medical diagnostics,
groups may contain various parameters corresponding to a single diagnostic test.
Incurring the test cost, we get feature values for the entire group. For example, a
complete blood count (CBC) is a blood test providing various parameters (fea-
tures) about cells in a person’s blood. Moreover, the groups may consist of differ-
ent statistics (such as mean, median, or standard deviation) corresponding to one
medical parameter measured over a period of time, such as blood pressure during
the patient’s hospitalization. The costs can vary significantly between groups;
for example, obtaining administrative data is usually much cheaper than per-
forming advanced diagnostic tests. Costly groups also appear in other domains,
e.g., in image segmentation, groups may correspond to different characteristics
of an image [11], and the costs of the groups are associated with the difficulty
in obtaining the values of the features due to the necessity of computationally
intensive preprocessing.

In this paper, we consider the information-theoretic framework. The problem
can be formally stated as follows. Let X = (X1, . . . , Xp) be a vector of features,
Y be discrete target variable and F = {1, . . . , p}. We assume that there are K
disjoint groups of features G1, . . . , GK such that F = G1∪ . . .∪GK and the costs
c(G1), . . . , c(GK) are associated with the groups. If we acquire the value of one
feature from the group, then the values of the remaining features from the group
are obtained for free. The mutual information (MI) between the target variable
Y and the vector XS corresponding to the feature subset S ⊂ F is defined
as I(Y,XS) = H(Y ) − H(Y |XS), where H(Y ) and H(Y |XS) are entropy and
conditional entropy respectively [3]. MI quantifies how much uncertainty of Y
is removed by knowing XS , it measures the dependence strength between XS

and Y . The grouped cost-constrained problem of feature selection can be stated
using the information-theoretic framework as

Sopt = arg max
S:c(S)≤B

I(Y,XS), (1)

where B is a user specified maximal admissible budget and c(S) is the cost
associated with subset S ⊂ F . Since the costs are associated with the groups
and not single features, the cost of any subset S is defined as

c(S) =
K∑

k=1

c(Gk)1{∃j ∈ S : j ∈ Gk}, (2)

where 1 is the indicator function. Direct solving of the problem (1) is challenging,
and thus we propose two sequential forward selection algorithms. In the first
method, a single feature is added in each step, whereas in the second one, we
select the entire group of features in each step. The choice of the candidate
feature or group of features is based on the novel score function that is based
on the lower bound of the joint MI (JMI) and thus can be effectively computed
even when the set of already selected features is large. Subsequently, we apply the
methods to a large clinical database MIMIC [14], containing groups of features
corresponding to various medical tests and administrative data. The experiments
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indicate that, for low budgets, the proposed methods allow choosing a subset of
features for which the classification model achieves significantly better accuracy
when compared to the subsets selected by traditional methods.

2 Related Work

Feature selection in supervised classification is one of the central problems in
machine learning [4]. Among various approaches, methods based on information
theoretic quantities such as MI and conditional MI (CMI) have attracted signif-
icant attention in recent years, mainly due to their model-free nature and the
ability to detect interactions and non-linear dependencies. For a comprehensive
review, we refer to [2,18]. Most of the considered methods are based on the
sequential forward selection in which the candidate feature maximizing certain
score function is chosen in each step [9,19,20]. The score function reflects the
informativeness of the candidate feature in the context of already selected fea-
tures. The natural choice of the score function is CMI; however, its estimation is
challenging in practice [12]. Therefore, most score functions aim to approximate
the CMI. Unfortunately, traditional methods ignore the costs of features which
may lead to choosing the feature subset exceeding the assumed budget. Score
functions can be modified by introducing a penalty for the cost of the candi-
date feature. In such an approach, the trade-off between feature relevance and
its cost should be controlled by an additional parameter called the cost factor.
The above idea is used in [1] and in a recent paper [17], where an algorithm for
optimization of the cost factor is proposed. In addition to information-theoretic
approaches, there are other feature selection methods that take feature costs into
account. Examples include modifications of decision trees and Random Forests
[22], AIC criterion [5] and lasso [16]. The idea of selecting entire groups of fea-
tures has also attracted attention. The most extensively studied approach is
group lasso and its variants [13,21], but there are also information-theoretic
approaches [8]. Although these approaches use structural information among
features, they ignore the costs of the groups. The costs of the groups are consid-
ered in [11] in the context of the segmentation of backscatter images in product
analysis. The authors use the performance of a classifier on a validation set as a
score function to evaluate the informativeness of the groups. Although straight-
forward, the approach requires significant computational cost and fitting the
model several times, which can be prohibitive for large datasets. In our method,
we overcome this problem by using a computationally effective feature selection
score based on the lower bound of the JMI.

3 Proposed Methods

Since solving (1) requires the infeasible computational cost of an exhaustive
search on 2p of candidate feature subsets, most researchers use sequential for-
ward procedures that allow evaluating the relevance of the candidate feature,
given the set of already selected features. In such approaches, CMI I(Xk,
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Y |XS) = H(Y |XS)−H(Y |Xk,XS) is a natural score function that allows assess-
ing the informativeness of a candidate feature Xk in the context of already
selected features Xk. We adopt this approach, additionally taking into account
information about group costs.

3.1 Method 1: Single Feature Selection

The method is based on adding a single feature in each step. Assume that S is
a set of features selected in previous steps. We define the cost of the candidate
feature k ∈ F \ S in the context of S as

c(k, S) =

{
0 if k ∈ G and ∃j ∈ S : j ∈ G

c(G) if k ∈ G and �j ∈ S : j ∈ G.

If the candidate feature Xk belongs to the group G, from which some feature
has already been selected, then the cost of adding Xk is zero. Otherwise, we pay
the cost of the group G. We start from empty set S = ∅ and in each step we add
a candidate feature S ← S ∪ {k∗} such that

k∗ = arg max
k∈F\S

[I(Xk, Y |XS) − λc(k, S)], (3)

where λ > 0 is a parameter controlling the trade-off between feature relevance
and its cost. The candidate features are added until we exceed the budget, i.e.,
c(S) > B, where c(S) is defined in (2).

3.2 Method 2: Group Feature Selection

The method utilizes the group structure of the features and is based on adding
a whole group of features in each step instead of a single feature. We start from
empty set S = ∅ and in each step we add a candidate group S ← S ∪ {G∗} such
that

G∗ = argmax
G

[I(XG, Y |XS) − λc(G)], (4)

where λ > 0 is a parameter controlling the trade-off between the relevance of
the group of features and its cost. The candidate groups are added until we
exceed the budget, i.e., c(S) > B. Adding groups of features instead of single
features has both advantages and disadvantages. The main advantage is that we
can detect synergistic interactions among features belonging to one group. For
example, let us consider the group G = {1, 2}, such that Y = XOR(X1,X2). In
this case I(X1, Y ) = I(X2, Y ) = 0 and thus neither X1 nor X2 will be selected as
relevant by the first method (3). On the other hand, we have I(XG, Y ) > 0, and
therefore group G will be selected as relevant by the second method (4). Although
appealing, the group selection method also carries some risks. For example, the
group may contain only one relevant feature, whereas the rest are noisy features.
Moreover, including an entire group of features may result in the inclusion of
some redundant features, e.g., when the group contains features that are strongly
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correlated. Finally, some features from the candidate group may be strongly
correlated with the already selected features. Including too many redundant and
irrelevant features may result in the deterioration of model performance. In view
of this, it is necessary to add an elimination step to remove redundant features
from the set selected by (4). The natural approach is to remove from set S
feature r ∈ S such that

I(Xr, Y |XS\{r}) = 0, (5)

i.e., remove the feature that brings no additional information in the context of the
remaining features. Unfortunately, checking (5) is challenging for many reasons.
First, the true value of the CMI is unknown and has to be estimated, which
is challenging when S is large. Secondly, checking (5) requires using statistical
hypothesis testing which is also challenging, especially for small sample sizes and
large conditioning sets. The possible solution is to replace (5) with some simpler
condition that can be effectively computed. The simplest approach is to remove
feature r which is strongly associated with one of the remaining features, i.e.,
we remove r when

I(Xr,Xj)
H(Xr)

> τ, (6)

for some j ∈ S \ {r}, where τ ∈ [0, 1] is a threshold (we set τ = 0.8 in our
experiments). The following Lemma formally justifies using (6) as a surrogate
for (5).

Lemma 1. Let r ∈ S. Assume that I(Xr,Xj)/H(Xr) ≈ 1 for j ∈ S \ {r} and
H(Xr) > 0. Then I(Xr, Y |XS\{r}) ≈ 0.

Proof. Since conditioning on a smaller subset of features increases the entropy,
we have

I(Xr, Y |XS\{r}) = H(Xr|XS\{r}) − H(Xr|XS\{r}, Y )
≤ H(Xr|XS\{r}) ≤ H(Xr|Xj). (7)

Moreover, observe that

I(Xr,Xj)
H(Xr)

=
H(Xr) − H(Xr|Xj)

H(Xr)
= 1 − H(Xr|Xj)

H(Xr)

and thus I(Xr,Xj)/H(Xr) ≈ 1 is equivalent to H(Xr|Xj) ≈ 0, which combined
with (7) gives the assertion.

3.3 Approximating the Relevance Terms

Estimation of the CMI term I(XG, Y |XS) appearing in (4) is a challenging task
due to the dimensionality of both G and S. A possible solution is to replace
the CMI with the function of lower dimensional terms which are easier to esti-
mate. Observe that since I(XG, Y |XS) = I(XS∪G, Y )− I(XS , Y ), maximization
of I(XG, Y |XS) with respect to G is equivalent to maximization of I(XS∪G, Y )
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as the term I(XS , Y ) does not depend on candidate group G and thus can be
omitted. In this work, we use the lower bounds of the terms I(XS∪{k}, Y ) and
I(XS∪G, Y ), which are denoted as ILB(XS∪{k}, Y ) and ILB(XS∪G, Y ), respec-
tively.

The following Theorem shows that the lower bound ILB(XS∪G, Y ) is propor-
tional to the quantity, consisting of lower dimensional terms, which are relatively
easy to estimate.

Theorem 1. The following property holds

ILB(XS∪G, Y ) ∝
∑

i,j∈G:i<j

I(Y, (Xi,Xj)) +
∑

i∈G,j∈S

I(Y, (Xi,Xj)), (8)

where ∝ denotes equality after omitting the terms which are independent of can-
didate group G.

Proof. Using Theorem 2 from Appendix with |A| = 2 we can write

ILB(XG∪S , Y ) ∝
∑

i,j∈G∪S:i<j

I(Y, (Xi,Xj)) =
∑

i,j∈G:i<j

I(Y, (Xi,Xj))

+
∑

i∈G,j∈S

I(Y, (Xi,Xj)) +
∑

i,j∈S:i<j

I(Y, (Xi,Xj))

∝
∑

i,j∈G:i<j

I(Y, (Xi,Xj)) +
∑

i∈G,j∈S

I(Y, (Xi,Xj)), (9)

as the term
∑

i,j∈S:i<j I(Y, (Xi,Xj)) does not depend on the candidate group
G and thus can be treated as constant.

Corollary 1. The following property holds

ILB(XS∪{k}, Y ) ∝
∑

j∈S

I(Y,Xk|Xj) (10)

Proof. Note that I(XS∪{k}, Y ) is a special case of I(XG∪S , Y ), obtained
for G = {k}. Thus, using Theorem 1 we can write ILB(XS∪{k}, Y ) ∝∑

j∈S I(Y, (Xk,Xj)). Using the chain rule for mutual information we get∑
j∈S I(Y, (Xk,Xj)) =

∑
j∈S I(Y,Xk|Xj)+

∑
j∈S I(Y,Xj) ∝ ∑

j∈S I(Y,Xk|Xj)
as I(Y,Xj) does not depend on candidate feature Xk. This gives the assertion.

The score function given in Corollary (10) is well-known as joint MI criterion
[20], we refer to [7,15] where further theoretical properties of JMI are discussed.
The score function, given in (8) can be treated as a generalization of joint MI
to group feature selection. To the best of our knowledge, such generalization has
not yet been considered in previous papers.
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Algorithm 1: Cost-constrained single feature selection (CC-SFS)
Input : Y , X1, . . . , Xp, λ, B, c(G1), . . . , c(GK)
S = ∅
while c(S) ≤ B do

k∗ = argmaxk∈F\S [
∑

j∈S I(Xk, Y |Xj) − λc(k, S)],
S ← S ∪ {k∗}.

end
Output : S

Algorithm 2: Cost-constrained group feature selection (CC-GFS)
Input : Y , X1, . . . , Xp, λ, B, c(G1), . . . , c(GK), τ
S = ∅
while c(S) ≤ B do

Add optimal candidate group:
G∗ = argmaxG[

∑
i,j∈G:i<j I(Y, (Xi, Xj)) +

∑
i∈G,j∈S I(Y, (Xi, Xj))− λc(G)]

S ← S ∪ {G∗}.
Remove redundant features:
for r ∈ S do

for j ∈ S \ {r} do
if I(Xr, Xj)/H(Xr) > τ and I(Y, Xr) < I(Y, Xj) then

S ← S \ {r}
end

end
end

end
Output : S

3.4 Algorithms

Taking into account the issues discussed in the above sections leads to two feature
selection algorithms, called CC-SFS (cost-constrained single feature selection)
and CC-GFS (cost-constrained group feature selection), respectively. They are
based on (3) and (4) and use approximations described in Sect. 3.3. In Algorithm
1, the algorithm adds a single feature in each step. In Algorithm 2, the algorithm
adds the entire group of features in each step and also removes the redundant
features from the current set of features.

An important issue in both algorithms is the choice of parameter λ as it
controls the trade-off between the informativeness of the candidate features and
the costs of the groups. We first describe the procedure for Method 1. Note
that for λ = 0 the costs are not considered, whereas for a sufficiently large
value of λ only the costs will affect the order of selecting features. We denote
such value by λmax. To determine its value, we use the following approach. Let
c(1) ≤ c(2) ≤ . . . ≤ c(K) be the group costs sorted in ascending order and let
Imax = maxk I(Y,Xk) and Imin = mink I(Y,Xk). For λ = λmax, we should
select the feature belonging to the cheapest group in the first step, regardless
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Table 1. Selected feature groups and their costs.

Group Name Description Cost # Features

A Administrative data from the interview (e.g., age, gender) 1.0 9

NBP Non-invasive blood pressure 3.0 8

RL RLL & RUL lung sounds frequency 9.0 4

UN Urea nitrogen in serum or plasma 12.0 4

VR Verbal response 2.0 3

HR Heart rate 1.5 4

P Platalets in blood 2.0 4

of feature relevance. Therefore, when we consider the first step in Method 1,
value λmax should satisfy Imax − λc(2) ≤ Imin − λc(1) as the feature from the
cheapest group with cost c(1) should be selected regardless of its informativeness.
It is easy to see that λmax := (Imax − Imin)/(c(2) − c(1)) satisfies the above
inequality. Subsequently, we run Method 1 for different values of λ from the range
0, . . . , λmax and select the value for which the corresponding classification model
maximizes the accuracy calculated for the validation set. In the case of Method
2, we use Imax := maxG ILB(Y,XG), Imin := minG ILB(Y,XG) and perform the
same steps. The number of values in the grid 0, . . . , λmax depends on the user
preferences and computational resources. For a denser grid, the optimal value
can be chosen more precisely, although the computational cost of the procedure
increases. Let us also mention that the MI terms are estimated using plug-in
estimators in which the probabilities are estimated by fractions for discretized
features.

4 Experiments

The main goal of the experiments was to compare the performance of the pro-
posed cost-constrained methods CC-SFS and CC-GFS. As a baseline, we use the
traditional feature selection approach that does not take into account the costs
of the groups. As a representative of traditional methods, we use JMI criterion
[20], which directly corresponds to CC-SFS with λ = 0.

4.1 Data

We performed experiments on a large medical dataset MIMIC [14], contain-
ing information about the medical conditions of over 19, 773 patients from the
intensive care units (ICUs). Although the patients are diagnosed with multiple
diseases, we focus on predicting hypertension disease using p = 305 features in
this work, mostly corresponding to the results of diagnostic tests. The dataset
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Fig. 1. Feature selection for MIMIC-II dataset (hypertension).

was already used in related studies, we refer to [23], where more details about
feature extraction and data cleansing can be found. Importantly, the costs of the
original features have been assigned by the experts, and the complete list of the
features along with the costs is described in [16]. In the current work, we extend
this approach, and we group features having similar origins and assign costs to
the groups. Most groups consist of four different statistics (mean, median, stan-
dard deviation, and range) of one medical parameter measured over a period of
time, examples include creatinine or glucose in Serum or Plasma. The other nat-
ural group (administrative data) contains basic information such as age, gender,
or marital status that can be obtained during a medical interview. Group costs
assignment can be found in our GitHub repository1. The selected groups and
their costs are described in Table 1. Before running the algorithms, all costs are
normalized to [0, 1].

4.2 Results

To assess the quality of the selected subset of features we use a logistic regression
model. The feature selection methods and the model are launched on training
data (80%), and the ROC AUC evaluation metric is calculated on the test dataset
(20%). The 5-fold cross-validation was used to select the optimal value of λ.

1 MIMIC-II group costs: https://github.com/Kaketo/mimic-II-group-costs.

https://github.com/Kaketo/mimic-II-group-costs
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Table 2. Features selected in the first five steps.

Step 1 2 3 4 5

Traditional Num. of features 1 1 1 1 1
Cost 1.0 3.0 9.0 12.0 0.0

Group A NBP RL UN NBP
CC-SFS Num. of features 1 1 1 1 1

Cost 1.0 0.0 0.0 3.0 0.0

Group A A A NBP NBP
CC-GFS Num. of features 8 8 2 4 4

Cost 1.0 3.0 2.0 1.5 2.0

Group A NBP VR HR P

Figure 1 depicts the ROC AUC of a model trained on features selected for
various budgets B. For lower budgets (10% of total cost), the CC-GFS algorithm
achieves much better results than other methods, which is due to the fact that it
selects whole groups of features at each step. When considering a higher budget,
such as 25% of the total cost, we can see that the CC-SFS outperforms other
methods. For a budget of 50% of the total cost, cost-constrained methods even
out but still have a larger AUC than the traditional method. For the highest
considered budget (75%), all methods perform equally, which indicates that all
informative features have already been selected.

Table 2 presents features/groups selected in the first five steps for all three
algorithms. First, the experimental results indicate that all algorithms have
selected features from administrative and non-invasive blood pressure groups.
It is reasonable since hypertension is a disease usually correlated with age and
elevated blood pressure. In the next steps, the selected groups diverge signifi-
cantly; the traditional method selects informative, but at the same time, expen-
sive medical tests. The CC-SFS algorithm prefers features from already selected
groups, and hence the cumulative cost does not increase rapidly. In addition, the
CC-GFS method selects the whole group in each step; thus it consistently adds
multiple informative and usually cheap features.

We measured the computational time for all methods on a computer (AMD
Ryzen 7 3700X 8-Core 32GB RAM). With the budget set to 10% of the total cost,
the traditional method took 29 minutes to compute, the CC-SFS and the CC-
GFS methods took 1 hour 20 minutes and 2 hours and 30 minutes respectively.

5 Conclusions

The problem of feature selection with costs assigned to a group of features
was discussed. We proposed two methods called CC-SFS and CC-GFS that
are based on the sequential selection of candidate features or groups of fea-
tures. The results, performed on a large clinical database MIMIC indicate that
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both methods significantly outperform the traditional approach which ignores
the group structure of the features and the costs. The proposed methods can be
recommended when the budget is small, as in such cases their superiority is most
pronounced. The CC-GFS usually selects more features than CC-SFS and works
slightly better than CC-SFS when the budget is low. There are some interesting
issues left for future research. The discussed methods can be extended to solve
the multi-output tasks, where Y is a multi-dimensional vector. Moreover, apply-
ing Theorem 2 with different size of set A makes it possible to consider more
general relevance term, which takes into account higher-order terms and in this
way detect complex interactions among features. Finally, it would be interest-
ing to consider the relationships between the costs of the groups, e.g., when the
features from one group are acquired, the cost of the other group is reduced.

Acknowledgment. This research was supported by Institute of Information & com-
munications Technology Planning & Evaluation (IITP) grant funded by the Korea
government (MSIT) (2021-0-01341, Artificial Intelligence Graduate School Program
(Chung-Ang University)).

Appendix

The Theorem can be found in [10], but for completeness, we give the proof below.

Theorem 2. Let A ⊂ G. Then the following inequality holds
I(Y,XG) ≥ (|G|

|A|
)−1 ∑

(i,j)∈G I(Y,XA).

Proof. Since conditioning on a larger set can only decrease the entropy, we have
I(Y,XA) = H(Y ) − H(Y |XA) ≤ H(Y ) − H(Y |XG) = I(Y,XG). By averaging
over all subsets A, we get the assertion.
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Abstract. A standard classifier is forced to predict the label of every
test instance, even when confidence in the predictions is very low. In
many scenarios, it would, however, be better to avoid making these pre-
dictions, maybe leaving them to a human expert. A classifier with that
alternative is referred to as a classifier with reject option. In this paper,
we propose an algorithm that, for a particular data set, automatically
suggests a number of accuracy levels, which it will be able to meet per-
fectly, using a classifier with reject option. Since the basis of the sug-
gested algorithm is conformal prediction, it comes with strong validity
guarantees. The experimentation, using 25 publicly available two-class
data sets, confirms that the algorithm obtains empirical accuracies very
close to the requested levels. In addition, in an outright comparison with
probabilistic predictors, including models calibrated with Platt scaling,
the suggested algorithm clearly outperforms the alternatives.

1 Introduction

Classification is a well-established predictive task in data science, where the
objective is to approximate the function θ(x, y) from an input vector x to a
target variable y, which take its values from a predefined set C of class labels
{c0, c1, . . . , cm}. For C = {0, 1}, the task is called binary classification. Simple
as though this may seem, there are some noteworthy observations to make, from
a decision-support perspective. First of all, it must be noted that all predictions
are not equal – most notably they vary in difficulty, where some instances are
easy for the model and some are harder. The difficulty of predicting a particular
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instance is reflected in the probability estimates that most machine learning
models can output to accompany their predictions. Indeed, for most classifiers,
these probability estimates are the mechanism underlying the prediction. To
be useful, probability estimates should be well-calibrated, i.e., correspond to the
actual (true) probability of a particular instance belonging to the predicted class.

In the usual formulation of the classification task, models are forced to make
predictions, even on instances where the model is uncertain about the class label.
When the model is used for decision support, either by a human decision-maker,
or as part of an automated system, this poses problems. Normally, the perfor-
mance of the model is measured using some variant of accuracy across an entire
set of predictions, making it hard, or even impossible, for a user to identify
which instances the model is uncertain about. If the prediction probability is
made available to the user, this can somewhat alleviate the problem by giving
additional information about single predictions, provided of course that predic-
tion probabilities are well-calibrated. Chow, in [3], introduced the classification
with reject option framework, where a model is allowed to refrain from making
predictions. A typical scenario for using classification with reject option is to
refer instances rejected by the model to a human expert, for manual decisions,
possibly aided by the model and/or accompanying explanations. In these cases,
the trade-off between rejection rate and classification accuracy is a key issue,
since there can be costs associated both with mis-classification errors and with
human processing.

Conformal classifiers [18], which are built on top of machine learning models,
associate their predictions with statistically valid measures of confidence. In the
standard setting, the predictions are set predictions, i.e., for a test example xk+1,
the conformal predictor outputs a subset of the labels, Γε

k+1. Under exchange-
ability, which is a weaker assumption than the standard i.i.d., these label sets
contain the true label yk+1 with probability 1−ε, where ε ∈ (0, 1) is a predefined
(user-provided) significance level. Conformal classification can also produce so-
called confidence-credibility predictions [13]. In that setting, the predicted label
is accompanied by two values representing the belief in that prediction. This
confidence measure is similar to a probability estimate from a probabilistic pre-
dictor, but with a key difference; the probability estimates are guaranteed to be
well-calibrated not for the individual instance, but instead for all instances with
that confidence or higher.

In this paper, we build on the work of Linusson et al. [11], where conformal
prediction was suggested as a way of producing classifiers with reject option. In
that approach, a user would provide the acceptable number of errors, and then
classifierwould output asmanypredictions as possible, given that constraint.Here,
we suggest and evaluate a new algorithm that gives accuracy guarantees, which we
argue is more intuitive than requesting the number of acceptable errors. In fact, the
algorithm – which is only applicable to batch predictions – automatically suggests
a number of accuracy levels that it can meet perfectly by using the reject option.
One example could be that for a certain data set, the algorithm can guarantee
90% accuracy if rejecting 8.5% of the test instances, and 95% accuracy if rejecting
52.3%. The final selection of which accuracy level to use, would then be made by
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a user. Obviously, the algorithm operates without access to any test set labels.
In the experimental evaluation, we also compare the suggested methodology to
probabilistic prediction, using standard probability estimates (both uncalibrated
and calibrated) directly from the machine learning model.

2 Background

2.1 Probabilistic Prediction and Calibration

Probabilistic predictors output a probability distribution over the possible labels.
The probabilistic predictor is well-calibrated if:

p(cj | pcj ) = pcj . (1)

where pcj is the probability estimate for class j. In practice, the probability
estimate for the predicted label should correspond to the empirical accuracy. If
we, for example, make a number of predictions with the probability estimate 0.9,
we would expect 90% of these to be correct and 10% incorrect.

While almost all classifiers can accompany the predicted label with such prob-
ability estimates, these are normally not well-calibrated. In fact, techniques like
naive Bayes [12] and decision trees [16] are notorious for producing very poorly
calibrated models. In addition, more recent studies show that even modern (i.e.,
deep) neural networks [5] and traditional neural networks [9] are typically not
well-calibrated either. With this in mind, there is a need for external calibra-
tion methods that transform the scores outputted from the classifiers into better
calibrated probability estimates. The most well-know calibration technique is
arguably Platt scaling [15], which calibrates the underlying model by fitting a
sigmoid function to the scores, using a specific calibration set. The function is

p̂(c | s) =
1

1 + eAs+B
, (2)

where p̂(c | s) gives the probability that an example belongs to class c, given
that it has obtained the score s. A and B are found by a gradient descent search,
minimizing a specific loss function, for details see [15].

2.2 Conformal Classification

Conformal prediction utilizes nonconformity functions A : X × Y → R for mea-
suring the relative strangeness of an instance (x, y) compared to a set of instances
with known target values. In the standard conformal classification setting, a test
instance is tentatively labeled (xk+1, ỹ), and then a p-value statistic is calcu-
lated from the nonconformity scores to attempt to reject the hypothesis that ỹ
is the true label yk+1 at the significance level ε. This procedure is repeated for
all possible labels, resulting in the set of labels ỹ ⊆ Y that were not rejected.
This set, per construction and under exchangeability, contains the true target
yk+1 with a probability of 1 − ε.
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In classification, the nonconformity function is most often based on the pre-
diction error of an underlying machine learning model. One obvious option, also
used in this study, is the hinge loss function,

Δ [h (xi) , ỹ] = 1 − P̂h (ỹ | xi) , (3)

where P̂h (ỹ | x) is the probability estimate provided by the machine learning
model h that the instance xi has label ỹ.

While conformal classification was originally suggested in a transductive set-
ting, the inductive version is now more commonly used. An inductive conformal
classifier [13,14,18], is constructed using some machine learning algorithm and
a nonconformity measure, in the following way:

1. Divide the training data Z into two disjoint subsets: a proper training set Zt

and a calibration set Zc, where |Zc| = q.
2. Use the machine learning algorithm and the proper training set Zt, to induce

the underlying model h.
3. Use the chosen nonconformity function, e.g., Eq. 3, to calculate the nonconfor-

mity of the calibration examples in Zc to produce a list of calibration scores
α1, . . . , αq.

When predicting a test instance xk+1:

1. Obtain the prediction h(xk+1) from the underlying model.
2. Tentatively assign the label ỹ ∈ Y as the label for xk+1, and measure the

nonconformity of the resulting instance, (xk+1, ỹ).
3. Calculate the resulting p-value according to

pỹ
k+1 =

∣
∣
∣

{

zi ∈ Zc : αi ≥ αỹ
k+1

}∣
∣
∣ + 1

q + 1
. (4)

4. Repeat the steps 2–3 for each possible label ỹ ∈ Y .

In the standard setting, a set prediction would then be created by comparing
the p-values to a chosen significance level ε, rejecting all labels ỹ where pỹ

k+1 < ε.
Labels not rejected are included in the final predicted label set Γε

k+1.
We will, however, instead use confidence-credibility predictions, which are

also based on the p-values calculated as per above. Here, for each test instance
xj we get the following three values:

– The most likely class label ŷj , i.e., the label with the highest pỹ
j .

– The confidence, calculated as one minus the second largest p-value.
– The credibility, which is the largest p-value.

The connection to the set predictor is that the confidence represents the highest
significance level where we get a singleton prediction, and the credibility corre-
sponds to the significance level where all labels are rejected. More importantly
for the purpose of this paper, we can use the confidence measures to produce
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statistical guarantees for the predictions, as long as we have a set of test pre-
dictions, i.e., the suggested procedure can not be used in a streaming scenario.
To understand the guarantees provided, we give a synthetic example, for a tiny
test set, where we have sorted the ten predictions based on their confidence,
see Table 1 below. The correct way of interpreting these confidence scores is
that all predictions with a confidence of at least c will contain (on average)
n(1− c) errors, where n is the total number of predictions made, here ten. So, in
this example, we should expect approximately three errors in total, two errors
among the predictions for idx 2–9 and one error among the predictions for idx
5–9.

Table 1. Example of confidence predictions. Confidence values represent the expected
accuracy for instances with at least that confidence, over the entire test set.

idx 0 1 2 3 4 5 6 7 8 9

ŷ 0 0 1 1 0 1 0 1 0 1

confidence 0.70 0.75 0.80 0.83 0.87 0.90 0.93 0.95 0.97 0.99

2.3 Related Work

Since the framework for classification with reject option was introduced, in the
context of studying the trade-off between error rate and reject for binary classifi-
cation systems [3], multiple studies have both extended the theoretical framework
and applied it in different domains. For example, in [8], the statistical frame-
work is generalized and risk functions are included to further inform the trade-
off between errors and rejections. Applications of classification with reject are
mainly within the medical domain, see e.g. [4,6,7]. In [10] a methodology, called
confidence-based classifier design, is proposed and evaluated. This methodology
has the same approach as this study, i.e. to control the error rate of the classifier
via reject option, but does not employ conformal classification to achieve this.
Instead, a dynamic bin width allocation method is used to estimate probabili-
ties and an empirical cumulative density function estimates the error rate. This
approach does not yield any optimality guarantees, but is reported to perform
well in empirical tests. Similarly, [7] develops an approach where the user can set
the desired accuracy, and the classifier then tries to identify a minimal rejection
region in the feature space, whilst observing the bound on accuracy.

3 Method

As described in the introduction, the overall purpose is to investigate whether
conformal classification can be used as the basis for a classifier with reject option.
Specifically, we want the classifier to present a number of accuracy levels accom-
panied with the prediction rate, i.e., the proportion of all instances that it will
predict, with that accuracy requirement. For this to be useful, the accuracy levels
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suggested by the algorithm must be well-calibrated, i.e., close to the empirical
accuracy obtained. Given this, a decision-maker will be able to request an exact
accuracy level from the classifier, and know which proportion of instances the
model will then predict. In the experimentation, we compare the following three
setups:

– Conformal (C): Here a conformal classifier is generated and calibrated on a
calibration set, before predicting the test set and producing confidence scores,
as described above.

– Platt (P): The scores from the underlying model are calibrated using Platt
scaling. The calibration is done using the same calibration set as for (C).

– Uncalibrated (U): The scores from the underlying model are used without
external calibration.

When deciding which instances to reject, given the chosen accuracy level,
the P and U setups operate in an identical fashion; first all probability estimates
for the predicted class are sorted, before finding the lowest estimate where the
average probability of all instances with a higher probability is larger than the
chosen accuracy level. With well-calibrated probability estimates, this simple
procedure should lead to valid predictors.

For the C setup, the principle is the same, but it should again be noted that
the confidence values have a different meaning than the probability estimates.
Referring back to Table 1 and the example, the instance with idx 2 would be
picked as the threshold if the requested accuracy level is 75%; we would then
make eight predictions, and expect two of them to be incorrect. More generally, if
we have n predicted instances sorted on their confidences, and a is the requested
accuracy, we pick the instance with the lowest index i where:

1 − n · (1 − conf(i))
(n − i)

≥ a (5)

Every setup will try the following accuracy levels for all data sets: {0.7, 0.75, 0.8,
0.85, 0.9, 0.95, 0.99}, while predicting between 5% and 95% of all test instances.
Here it must be noted that the goal of the setups is to match the requested
accuracy as well as possible, while rejecting sufficiently many instances for this.
Specifically, the setups must also avoid a higher accuracy than requested. Con-
sequently, the setups will not make any predictions on a certain accuracy level
if the probability estimates or confidences do not allow this. Simply put, a setup
will not predict on a certain accuracy level if it cannot match it, either because
the top five percent of the instances are expected to have a lower accuracy, or
the top 95 percent are expected to have a higher accuracy.

For the modeling, decision trees and random forests [2] were used. Here, all
parameters were left at the default values in scikit-learn, with the exception of
having 300 trees in the random forest, and at least six instances in each leaf of the
decision trees. The testing protocol was 10 × 10-fold stratified cross-validation, so
all results are averaged over the 100 folds. For the calibrated models, the proper
training set consisted of 2/3 of the training instances, and the calibration set of
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1/3. For the non-calibrated models, all training data was used for inducing the
model. Accuracy and the area under the ROC curve (AUC) are used to measure
the predictive performance of the underlying models, whilst calibration quality
is measured using the expected calibration error (ECE) measure.

Table 2 below shows the 25 two-class benchmarking data sets used. All data
sets are publicly available from either the UCI repository [1] or the PROMISE
Software Engineering Repository [17].

Table 2. Benchmark data sets.

Data set Instances Attributes Source Data set Instances Attributes Source

colic 328 23 UCI kc2 522 22 Promise

creditA 690 16 UCI kc3 325 39 Promise

diabetes 768 9 UCI liver 345 7 UCI

german 1000 21 UCI pc1req 320 9 Promise

haberman 306 4 UCI pc4 1458 38 Promise

heartC 303 13 UCI sonar 208 61 UCI

heartH 270 12 UCI spect 218 22 UCI

heartS 270 14 UCI spectf 348 45 UCI

hepati 155 20 UCI transfusion 748 5 UCI

iono 351 35 UCI ttt 958 10 UCI

je4042 274 9 Promise vote 435 17 UCI

je4243 363 8 Promise wbc 699 10 UCI

kc1 2109 22 Promise

4 Results

Table 3 below summarizes the predictive performance of the underlying models
and the calibration. Due to space limitations, only averaged values over the
25 data sets are shown. First we notice that the random forests, as expected,
outperform the decision trees with regard to accuracy. Comparing the three
setups, there are, however, only small differences in the predictive performance.

Table 3. Predictive performance and calibration for the three setups using
(C)onformal, (P)latt scaling and (U)ncalibrated models.

Accuracy AUC ECE

C P U C P U C P U

Decision trees .760 .774 .763 .745 .734 .747 .146 .028 .154

Random forests .806 .809 .814 .824 .814 .833 .060 .028 .064
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Looking at the calibration results, we see that the decision trees are very
poorly calibrated off-the-shelf, but that using Platt scaling reduces the ECE sig-
nificantly. While the random forests are reasonably well-calibrated, Platt scaling
is again able to reduce the ECE substantially. Regarding the conformal setup, it
must be noted that it does not calibrate the probability estimates, but instead
uses the probability estimates from the underlying model. So, the ECE results
for the conformal setup are as expected, reflecting the probability estimate bias
of the underlying models.

The main results of the study are summarized in Table 4 below. Again, due to
space limitations, we only show the mean results over all data sets here. Detailed
results, i.e., on the data set level, are presented in Tables 5–6 last in the paper,
but only for random forests. Please note that if there are no results for a certain
setup on a specific accuracy level, this means that the algorithm was not able to
meet that accuracy level by rejecting between 5% and 95% of all test instances.

Table 4. Aggregated results presented for the three setups (C)onformal, (P)latt scaling
and (U)ncalibrated models on the different required accuracy levels. For each accuracy
level, data sets is the number of data sets predicted, mean acc is the average empirical
accuracy and mean pr is the proportion of all test instances predicted.

DT RF DT RF

0.7 C P U C P U 0.9 C P U C P U

data sets 7 3 4 2 1 data sets 5 12 8 14 14 20

mean acc .699 .667 .701 .689 .746 mean acc .900 .884 .699 .900 .886 .883

mean pr .597 .590 .820 .848 .941 mean pr .715 .454 .815 .637 .573 .549

0.75 C P U C P U 0.95 C P U C P U

data sets 8 9 7 6 3 data sets 1 7 16 13 13 22

mean acc .753 .723 .751 .738 .789 mean acc .956 .928 .766 .951 .957 .926

mean pr .765 .615 .677 .723 .796 mean pr .858 .224 .766 .503 .384 .392

0.8 C P U C P U 0.99 C P U C P U

data sets 9 13 10 9 10 data sets 24 3 5 18

mean acc .796 .769 .800 .792 .787 mean acc .820 .990 .993 .968

mean pr .662 .530 .537 .544 .800 mean pr .698 .781 .293 .234

0.85 C P U C P U

data sets 7 14 3 13 14 18

mean acc .849 .821 .671 .852 .833 .845

mean pr .697 .457 .853 .657 .576 .718

Starting with the decision trees, we see that the U setup is extremely over-
confident, while also rejecting very few instances, even when a high accuracy is
requested. Unfortunately, the actual accuracies obtained are much lower than
requested. As an example, when the U setup elects to predict sixteen data sets
on the 0.95 level, the average actual accuracy is only 0.766. The overconfidence
of uncalibrated decision trees also produces the effect that, for most data sets,
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no predictions are given for accuracy levels below 0.9. The P setup is clearly
better, but it is still systematically overconfident, as seen by the fact that the
mean actual accuracy is lower than the requested accuracy for all levels. The
mean accuracy of the C setup, on the other hand, is most often very close to
the requested accuracy. As an example, the mean empirical accuracies for the
levels 0.75, 0.8, 0.85, and 0.9 are 0.753, 0.796, 0.849, and 0.900. In a direct com-
parison, we see that the C setup is more conservative than P, often electing to
predict on the lower accuracy levels. When both setups predict a data set on
the same accuracy level, and with similar empirical accuracies, however, C does
not reject more instances. As an interesting side note, it could be noted that no
setup predicts the wbc data set on any accuracy level.

Summarizing the decision tree results, it is obvious that uncalibrated decision
trees cannot be used as probabilistic predictors. Most importantly, the C setup
clearly outperforms even P when it comes to matching the requested accuracy.

Turning to the random forest results in Tables 5–6, the overall picture is that
all three setups are able to make predictions on more accuracy levels.

Comparing empirical and requested accuracies, all setups are often reason-
ably close. U is overconfident for the lower accuracy levels, and underconfident
for the higher levels. P is better, but actually shows the opposite pattern to
U, overestimating the accuracy on the lower levels, and underestimating on the
higher. C does, however, again match the requested accuracy levels almost per-
fectly on average. In addition, empirical accuracies closely match the requested
accuracy for individual data sets, being within 1 percentage point on 59 of the 64
data sets and accuracy level combinations that predictions are made for. Look-
ing at the prediction rates, we find that all three setups often only need to reject
relatively few instances, even when the requested accuracy is very high. As an
example, on the 0.95-level, C rejects on average about half of the instances, on
the thirteen data sets predicted.

Turning to observations on some specific data sets, it is seen that when
using random forests, all three setups actually predict the wbc data set on the
0.99-level, matching the requested accuracy almost perfectly, see Tables 5–6. A
more general, and quite interesting result, can be found by comparing C to P
in these tables. Here, P is not able to match the requested accuracy levels 0.95
and 0.99, obtaining substantially higher mean empirical accuracies, 0.957 and
0.993, respectively. While this may appear to not be a problem, the consequence
is, of course, that significantly fewer instances are predicted. For the wbc data
set, C predicts 80.3% of the instances, compared to 32.1% for P, on the 99%
level. Similarly, for the pc4 data set, also on the 99% level, the corresponding
prediction rates are 65.0% for C and 9.2% for P. Indeed, for the 27 data sets
on accuracy levels of 90% and upwards, where both C and P predict, C has the
higher prediction rate on 22 data sets.

In summary then, the results show that the C setup, using conformal clas-
sification to produce well-calibrated confidence-credibility predictions, are able
to match requested accuracy levels to a much better degree than classifiers cali-
brated using Platt scaling. This holds both for decision tree models and random
forests, and for accuracy levels ranging from 70% up to 99%.
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5 Concluding Remarks

We have in this paper demonstrated how conformal classification can be used
to produce a perfectly calibrated classifier with reject option. Specifically, we
designed and evaluated an algorithm automatically suggesting a number of accu-
racy levels depending on the underlying model and how hard the data set is. The
empirical evaluation confirmed that the procedure, even for the relatively small
data sets used here, obtained empirical accuracies very close to the requested
levels. In an outright comparison with probabilistic predictors, the suggested
algorithm clearly outperformed the alternatives, including Platt scaling.
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Abstract. The most used technique for solving prediction tasks is
regression analysis which approximates the data at hand using a poly-
nomial function. To construct a regression model is necessary either to
have a deep knowledge of the domain or to use some attribute selection
method to select the appropriate variables that will form the model. In
the present paper, we introduce P-LID, a new predictive method based on
ideas coming from both lazy and inductive learning methods. P-LID takes
two ideas from inductive models: one is to select the relevant attributes
to classify new objects and the other is to justify the classification. A
technique for selecting relevant attributes is to use Gini’s index, but this
is only applicable when attributes have continuous values and the class
is categoric. In P-LID we propose an adaptation of the Gini’s index to
use it when the values of the classes are continuous.

Keywords: Machine Learning · Prediction · Gini’s index

1 Introduction

Nowadays there is an enormous quantity of data from which experts want to
extract knowledge. Many times the goal is to use all the available data to con-
struct models that allow making predictions (i.e., to predict temperatures, to
predict possible failures, etc.). Multivariate regression is the most used tech-
nique for predicting values. The idea of regression is to construct a polynomial
function using a (sub)set of variables, called independents, that approximate the
value of another variable, called dependent. Using all the variables at hand is use-
ful for approaching and analysing the database. In this situation, the obtained
regression model approaches well the known data, however, it is possible that
the models will not be good for prediction. For this reason, it is usual to select
a subset of relevant independent variables in a way that the regression model
approaches good enough the known data but is also will be capable to predict
the value of unseen data.

Regression models have the form of an equation with general form Y =
a + b1 ∗ X1 + b2 ∗ X2 + · · · + bn ∗ Xn, where Y is the variable to be predicted.
The regression model has a global error in the predictions that can be assessed
from an experimental procedure.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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In machine learning two kinds of predictions can be made: 1) the prediction
of the class to which an object belongs, and 2) the prediction of the value of
a variable. Problems of the first type are known as classification problems. The
goal is to predict values of categoric variables, called classes (for instance, the
animal X is a mammal).

The second type of problem is known as prediction problems. The goal is
to predict the value of continuous variables (for instance, the temperature for
tomorrow will be 30◦C). Classification problems can be seen as a special case of
prediction problems since the difference between both kinds of problems is the
type of variable of interest.

There are two main families of machine learning methods for classification
tasks. Lazy learning methods that, given an input object O, they retrieve a subset
S of similar objects and classify O according the classes of the objects in S [2,5].
Techniques included in this family of methods are similarity-based methods [7]
and case-based reasoning methods [1,4,10]. Inductive learning methods take a
set of objects (with known classification) and construct a general model that will
be used to classify unseen objects. The most used techniques of this family are
decision and regression trees [6,13,14].

In regression models, the only available knowledge is the equation and the
variables involved, but any deduction can be done from it. Instead, machine
learning methods can give a justification for the proposed classification. The
explanation given by the ’lazy’ method is the set of objects similar to the input
object since the user can explore them and evaluate the validity of the final
classification. Inductive learning methods, by construction, produce explana-
tions that are general and understandable. These explanations are based on the
attributes that have been considered the most relevant during the construction
of the domain model.

Feature selection techniques [11] are useful to determine a subset of relevant
attributes. These techniques are used as a preprocessing step in both regression
and machine learning methods. Its goal is the rejection of attributes that will
not be useful to construct the domain model. For instance, in regression is very
common to use some techniques such as regularization [9], LASSO [15] or Elastic
Net [17] to determine which are the independent variables that are more related
to the dependent variable (i.e., the one to be predicted). In addition to these
kinds of techniques, in machine learning and, particularly, in inductive learning
methods there are several criteria to select the most relevant attributes: Quinlan
Gain [14], López de Mántaras’ distance [12] and the Gini’s index [14]. Gini’s
index measures the impurity of a partition of the dataset with respect to the
correct class and it is useful when the values of the attributes are continuous
and the class is categoric.

The focus of this paper is prediction problems and we want to solve them
using machine learning techniques. We propose a new predictive method called P-
LID based on a lazy learning method called LID [3]. LID is useful for classification
tasks, and it handles attributes with categorical values. The selection of relevant
attributes in LID is made using the López de Mántaras’ distance although also
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the Gini’s index could be used. However, the result is a categorical class instead
of a continuous value. What we propose is to adapt Gini’s index to be able to
handle numerical classes instead of categoric ones.

P-LID is based on the ideas coming from both lazy and inductive learn-
ing methods. On one hand, P-LID, same as LID, predicts an object taking into
account the values of the attributes of the input examples. On the other hand, as
inductive learning methods do, during the process of prediction P-LID constructs
an explanation that justifies the prediction.

The paper is organized as follows. Section 2 introduces notation and some
basic concepts that are useful to understand the rest of the paper. Particularly,
Sect. 2.2 introduces the LID algorithm on which P-LID is based, and Sect. 2.3
introduces the algorithm to calculate the Gini’s index. Section 3 introduces the
new predictive method called P-LID, and Sect. 4 describes the experimentation
with P-LID comparing it with regression models. The last section is devoted to
conclusions and future work.

2 Preliminaries

Before explaining the approach introduced in the present paper, we will explain
some important basics on which our approach is based.

2.1 Notation

Let DB be a database with objects described by a set of attributes A =
{a1, ..., an} and let Cp be the class to be predicted. The values of all the attributes
can be categoric (i.e. labels) or numeric (i.e. continuous values).

Our approach focuses on prediction problems, however, it is based on LID,
which is a method useful for solving classification tasks.

To simplify the explanation, we will refer to the value v that the object
Ok takes on an attribute ah as Ok.ah. Alternatively, we will use the notation
(aj , vj) to indicate that the attribute aj takes the value vj in the object Ok.
Thus, descriptions of objects or similitude terms (see below the definition) will
be denoted as {(a1, v1), ..., (an, vn)}.

2.2 The Lazy Induction of Descriptions Method

Lazy Induction of Descriptions (LID) [3] is a lazy learning method for classifi-
cation tasks. Given an object O to be classified, LID determines which are the
most relevant attributes for classifying O and searches in the database for objects
sharing these relevant attributes. The new object O is classified when LID finds
a set of relevant attributes shared by a subset of cases SD all belonging to the
same class Ci. Then LID classifies O as belonging to Ci. We call similarity term
the description D formed by these relevant attributes and support set the set SD

of objects satisfying a similarity term. The values of all the attributes (including
the class) are categorical (i.e. labels).
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Function LID (O, SD, D, C)
SD := Discriminatory-set (D)
if stopping-condition(SD)

then return class(SD)
else ad := Select-attribute (O, SD, C)

D′ := Add-attribute(ad, D)
SD′ := Support-set (D′, SD)
LID (SD′ , p, D′, C)

end-if
end-function

Fig. 1. The LID algorithm: O is the object to be classified, D is the similarity term,
SD is the support set associated with D, C is the set of classes, class(SD) is the class
Ci ∈ C to which all elements in SD belong.

Figure 1 shows the LID algorithm (see a more detailed explanation of LID in
[3]). There are two key issues in the LID algorithm: 1) the selection of the most
relevant attribute; and 2) the similarity term.

The selection of the most relevant attribute is heuristically done using the
López de Mántaras’ distance [12] over the candidate attributes. The LM distance
assesses how similar two partitions are in the sense that the lesser the distance
the more similar they are. In LID the partitions to be compared are: 1) the
correct partition Pc; and, 2) each one of the partitions Pai

induced by ai ∈ A.
The correct partition Pc is the one where all the objects of a partition set belong
to the same class. The partition Pai

induced by the attribute ai is one where each
set of Pai

contains objects having the same categorical value in ai. Therefore,
there are n partitions of a database, one for each attribute. LID selects as the
most relevant the attribute ak such that the value of LM(Pak

, Pc) is minimum.
The attributes of the similarity term D are the ones considered as the relevant

ones during the process of classifying the object O. These attributes in D take
the same categorical value as the object O. This is important because using D,
LID can explain the classification of a new object. Because LID is a lazy learning
method, the explanation of the classification is different depending on the values
of the input object.

As an example, let us suppose that in classifying the object

O = {(a1, v1), (a2, v2), (a3, v3), (a4, v4), (a5, v5)}

LID has considered a2, a4, and a5 as the most relevant attributes, in such situa-
tion the similitude term justifying the classification is the following:

D = {(a2, v2), (a4, v4), (a5, v5)}
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2.3 The Gini’s Index

Gini’s index [6] is the most common technique for selecting relevant attributes
when their value is continuous and the class is categorical. The Gini’s index mea-
sures the impurity degree of a set where 0 means the set is pure (all the elements
belong to the same class); 1 is the maximum impurity (random distribution of
the elements among the classes); and 0.5 means an equal distribution of elements
over some classes. The best attribute is the one with a lower Gini’s index.

The formula to calculate the Gini’s index is the following:

G = 1 −
n∑

i=1

(PCi
)2

where PCi
is the probability of an object being classified as belonging to the

class Ci.
Let us explain in detail how to calculate the Gini’s index for an attribute aj .

For the sake of simplicity, we will consider that there are only two classes C1 and
C2. Let V = {v1, ..., vn} be the set of all the values that aj takes in the objects
of DB. The algorithm is the following:

1. Sort the values of V in ascending order.
2. Form the set M = {mh : mh = mean(vi, vi+1) ∀vi ∈V} (we will call cuts the

elements of M).
3. For each mh ∈ M :

(a) Let L be the subset OL of objects such that ot.aj ≤ mh ∀ot ∈ OL

(b) Let U be the subset OU of objects such that ot.aj ≥ mh ∀ot ∈ OU

(c) GL = 1 − P 2
C1

− P 2
C2

for elements in L
(d) GU = 1 − P 2

C1
− P 2

C2
for elements in U

(e) GT(aj,mh) = Card(L)
Card(V ) ∗ GL + Card(U)

Card(V ) ∗ GU (value of the Gini’s index for
the attribute aj)

Notice that for each attribute aj there is a value of the Gini’s index for each
cut mh ∈ M , therefore the best cut for an attribute will be the one having the
lowest value of the Gini’s index.

The procedure above has to be carried out for each one of the attributes in
A. In the end, we will have a value of Gini’s index associated with each attribute.
Therefore, the best attribute will be the one having the lowest index.

3 P-LID: Lazy Induction of Description for Prediction

Our goal is to modify LID to convert it from a classification method into a
prediction method that we call P-LID. To do such a transformation it is necessary
to make LID capable to handle continuous values of both the attributes and the
class. Focusing on classification tasks (i.e., the class is categorical), LID can easily
deal with continuous values of the attributes only by replacing the LM distance
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with the Gini’s index. Notice that in such a situation, the algorithm shown in
Fig. 1 is still valid, however, the similarity term will have a different format.

When the values of attributes are continuous it has no sense the expression
(ai, vi) meaning that the attribute ai takes exactly the value vi. In addition, the
Gini’s index gives cuts, i.e., a threshold that separates the (sub)set of objects in
two. For this reason, when the attributes have continuous values, LID produces
similitude terms that have inequalities instead of equalities. Taking the same
example used in Sect. 2.2, now the similitude term could have the following
aspect: D = {(a2 < v2), (a4 > v4), (a5 < v5)}.

Finally, to predict a number it is necessary to replace categorical classes with
numerical classes, since P-LID has to give as a solution an interval where the
predicted value belongs. Therefore, first of all, it is necessary to introduce a new
input parameter, namely ε, that is the error that the user is willing to accept.
Thus, if P-LID predicts a value p, the interval of acceptability is [p − ε, p + ε]
meaning that the correct value will be inside the such interval. How P-LID can
produce such an interval? The idea is to adapt Gini’s index to deal with contin-
uous classes. Let O be the object for which we want to predict the value of the
attribute Cp with error ε. Let us focus on the attribute aj . Let V = {v1, ..., vn} be
the set of all the values that aj takes in a set of objects S and let be V Ref = O.aj .
The algorithm we propose is the following one:

1. Sort the values of V in ascending order
2. Form the set M = {mh : mh = mean(vi, vi+1) ∀vi ∈V}
3. Select mh and mh+1 such that V Ref ∈ [mh,mh+1]
4. Let L be the subset of objects such that ot.aj ∈ [mh,mh+1]
5. Let U be the subset of objects such that ot.aj �∈ [mh,mh+1]
6. Let mt = mean(O.Cp) ∀O ∈ S.
7. InL = {obj ∈ L : obj.Cp ∈ [mt − ε,mt + ε]}
8. OutL = {obj ∈ L : obj.Cp �∈ [mt − ε,mt + ε]}
9. GL = 1 − P 2

InL
− P 2

OutL
10. InU = {obj ∈ U : obj.Cp ∈ [mt − ε,mt + ε]}
11. OutU = {obj ∈ U : obj.Cp �∈ [mt − ε,mt + ε]}
12. GU = 1 − P 2

InU
− P 2

OutU

13. GT(aj,mh) = Card(L)
Card(V ) ∗ GL + Card(U)

Card(V ) ∗ GU

Steps 1 and 2 of the algorithm above are the same that the one of the stan-
dard Gini’s index (see Sect. 2.3). We have introduced Step 3 for two reasons.
The first one is to conserve the lazy approach of LID, that is to say, we do not
want to construct a general model but the goal is to predict a value for a par-
ticular object O and the justification of such value has to be done according to
the characteristics of O. The second reason is the computational cost of Gini’s
index. The algorithm should be used for each attribute and each cut but in our
approach, we are only interested in those objects that are similar to O, i.e., those
having similar values in the attributes.

In Steps 4 and 5 the objects are separated according to their value in the
attribute aj . Thus, those objects having a value similar to V Ref (i.e., ot.aj ∈
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Table 1. Datasets from the UCI Repository used in the experiments. The value ε is
the maximum error that would be acceptable for the prediction.

Dataset Name Total Attributes ε

AirFoil AF 1503 6 7

Bias Correction Max BCmax 7750 25 3

Bias Correction Min BCmin 7750 25 3

Concrete Compressive CC 1030 9 13

QSAR Fish QF 908 7 2

QSAR Toxic QT 908 9 2

Superconduct SC 21263 81 17

Red Wine RW 1559 12 1.5

White Wine WW 4898 12 1.5

Yatch YA 308 7 14

[mh,mh+1]) will be included in the subset L, otherwise, they will be included
in the subset U . Step 6 calculates the mean value mt of the attribute Cp to be
predicted.

Steps 7 and 8 divide L in two subsets: InL, with objects Ok such that Ok.Cp ∈
[mt − ε,mt + ε]; and OutL with objects Ok such that Ok.Cp �∈ [mt − ε,mt + ε].
Notice that these two sets represent the two classes C1 and C2 we considered in
the explanation of the standard Gini’s index (see Sect. 2.3). Step 7 is equivalent
to step 3.c and step 8 is equivalent to step 3.d. Step 9 calculates the impurity of
L as in the standard procedure. Steps 10, 11 and 12 are the same as 7, 8 and 9
respectively but using the objects of the set U . Finally, Step 13 is the same as
Step 3.e.

What we do is construct the classes C1 and C2 considering those objects that
have a value around the mean of Cp (±ε). The rest of the algorithm is similar to
the standard one repeated two times: one for the objects with aj having a value
around V Ref and another for the remaining ones. This separation is necessary
to maintain the same meaning as in the original Gini’s index, where the whole
set of objects is separated into two subsets according to a cut c and both subsets
are taken into account to calculate the total Gini’s index.

With this modification on the calculus of the Gini’s index, P-LID is capable
to predict the value of an attribute Cp with a maximum error of ε using the
same algorithm as LID.

Concerning the justification of the prediction, the similitude term produced
by P-LID has the same format as the one produced by LID but, in this case, the
values of the attributes are numeric.

4 Experiments

We conducted several experiments to show the feasibility of P-LID. We have used
the datasets shown in Table 1, all of them coming from the UCI Repository [8].
For all the datasets we have constructed a Multivariate Regression Model taking
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Table 2. Comparison of accuracy (in %) of the regression model and P-LID.

Dataset Regression (%) P-LID (%) dif (%)

AF 79.05 77.40 1.65

BCmax 84.14 71.23 12.91

BCmin 73.59 89.06 15.47

CC 70.84 77.26 6.42

QF 95.38 84.80 10.58

QT 90.66 78.54 12.12

SC 57.78 82.63 24.85

RW 96.87 86.20 10.67

WW 95.04 86.21 8.83

YA 82.45 95.06 12.61

into account the subset of variables that have been considered relevant using
LASSO Regression [15,16]. In that way, we can compare the results of regression
and the ones of P-LID. We have taken for each dataset an acceptable error ε that
seems adequate according to our knowledge of the dataset. For instance, for the
datasets BCmax and BCmin the goal is to predict a temperature, therefore,
we think that a difference of three degrees (i.e., ε = 3) on the prediction is an
acceptable error. In any case, this does not influence the comparison between
methods since we have taken the same value of ε to evaluate the performance of
both the regression model and P-LID. Thus, we have considered that a prediction
p is correct when p ∈ [pc − ε, pc + ε] being pc the correct value.

We have evaluated both the regression prediction and the P-LID using one
trial of 10-fold cross-validation. We have randomly divided the dataset at hand
into 10 parts and such partition has been used for both methods. In that way,
both methods have been evaluated using the same objects. Table 2 shows the
results from the cross-validation. Columns Regression and P-LID show the accu-
racy of the methods. The column dif shows the mean difference in absolute value
between the predictions of both methods. This column gives us an idea of how
similar the predictions From 12 domains used in our experiments, the regression
model outperforms P-LID in 6 of them, with differences between 10%-12% mean-
ing that the predictions of both methods are quite different. For the remaining
four datasets P-LID outperforms regression, with differences ranging from 12%
to 24%. These differences are high and could be interpreted as that in these cases
the regression model is not a good predictor.

In AF the difference between the two methods is low, less than 2%, mean-
ing that in this case, both methods produce similar predictions. Globally, these
results suggest that P-LID is a good predictive method since their results that
can be compared with those of the regression models. It could be interesting
to analyze the domains to determine which situations are appropriate for each
method.

In observing the results, one could ask which could be the advantages of
using P-LID instead of a regression model. Both P-LID and the regression model
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Table 3. Three regression models for BCmax and their corresponding accuracy after
a trial of 10-fold cross-validation.

Model Attributes Accuracy

M1 LDAPS Tmax lapse, LDAPS WS, lon, LDAPS LH, Present Tmax 87.02

M2 Present Tmax, LDAPS Tmax lapse 84.14

M3 Present Tmax, Solar radiation, LDAPS PPT4, LDAPS CC4 73.60

share the necessity of having as much data as possible to produce more accurate
predictions. The main difference is that P-LID uses the data as they are given
in the dataset whereas the construction of a regression model usually needs
a previous step of attribute selection. In our case, we have used the LASSO
regression to detect the most relevant attributes. P-LID handles all the available
attributes, however, it is also possible to reject some of them if the user knows
that some particular attribute is irrelevant. Therefore, one advantage of P-LID
on the model regression model is that P-LID can be used directly on the available
dataset without any preprocessing.

The attributes selected to construct the regression model should be selected
carefully since the performance of the model can have different accuracy. As
an example, let us focus on the dataset BCmax. We have experimented with
several subsets of attributes to construct the regression model. Table 3 shows
the models and their mean accuracy of prediction after one trial of 10-fold cross-
validation. Notice that the difference in accuracy between M1 and M3 is high,
and this proves the sensitivity of regression models to the selection of attributes.
Conversely, P-LID does not depend on any selection and the accuracy is always
the same.

The prediction made by the regression model is based on the equation of
linear regression without any other justification. Instead, P-LID explains the
prediction. For instance, as already has been explained before, the BCmax
dataset is used to predict the maximum temperature for the next day. Objects
in this dataset are described using 25 attributes. From these attributes, only 5
of them (’station’, ’date’, ’Next Tmax’, and ’Next Tmin’) have not been taken
into account by P-LID and the remaining ones have been used to make the pre-
diction. For a particular object O1, P-LID has predicted the value of Nex Tmax
as belonging to the interval [30.0775, 36.0775], whereas the regression model M2
(see Table 3) has predicted a value of 30.61. For the object O1, the correct value
is 33.1. Notice that taking ε = 3 both methods predict an acceptable value of
Next Tmax. However, P-LID justifies the prediction with the following similitude
term:

[[’LDAPS PPT4’, [’inf’, 5 ∗ 10−5]], [’Present Tmin’, [25.25, 25.35]],
[’LDAPS PPT3’, [’inf’, 0.0013]]], 54]]

This means that there are 54 objects in the dataset with LDAPS PPT4 ≤
5 ∗ 10−5, Present Tmin ∈ [25.25, 25.35], and LDAPS PPT3 ≤ 0.0013, conditions
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that are also satisfied by the object O1, and this also means that all 54 objects
have a value for Next Tmax belonging to the interval [30.0775, 36.0775]. In that
way, the domain expert can assess the validity of the result because he can
analyze the attributes that have been used to make the prediction.

5 Conclusions

In the present paper, we have introduced P-LID, a predictive method that can
be a good alternative to regression methods when the domain has a high number
of attributes and it is difficult to select an appropriate subset to construct the
regression model. P-LID is based on a lazy learning method called LID and takes
two main ideas of learning methods. The first one is the idea of lazy, mean-
ing that no model is constructed from the known data, but a new prediction
is made taking into account the characteristics (values of the attributes) of the
input example (the one to be predicted). The second idea comes from induc-
tive learning methods such as decision trees, where the key issue is the selection
of the attribute that best partitions the known examples. In particular, when
the attributes have continuous values, the criteria used to select the attribute
is Gini’s index. In all these cases the class (the attribute to be predicted) is
categoric. We have proposed a modification of the Gini’s index allowing us to
deal with continuous classes. P-LID uses such modification to make predictions.
Results have proved that P-LID achieves an accuracy comparable to the regres-
sion models. However, the advantage of P-LID on regression models is that it is
not necessary to make a selection of the attributes (although it is possible) and
that, in addition to the value prediction, it also explains why such prediction
has been proposed.

In the experimental part, we have detected that the prediction on some
domains is much better using regression and for some others, the P-LID pre-
dictions are better. In future work, we plan to analyze the characteristics of
several datasets to determine which of both methods, regression or P-LID, can
be the most appropriate for each one of them. In that way, we can have a set
of “rules” that will allow us to choose the most appropriate method for a given
dataset.
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12. López de Mántaras, R.: A distance-based attribute selection measure for decision

tree induction. Mach. Learn. 6, 81–92 (1991)
13. Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1(1), 81–106 (1986)
14. Rokach, L., Maimon., O.: Decision Trees, vol. 6, pp. 165–192. 01 (2005)
15. Santosa, F., Symes, W.W.: Linear inversion of band-limited reflection seismograms.

SIAM J. Sci. Statist. Comput. 7(4), 1307–1330 (1986)
16. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. Royal Statist.

Soc.: Ser. B (Methodol.) 58(1), 267–288 (1996)
17. Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J.

Royal Statist. Soc.: Ser. B (Statist. Methodol.) 67(2), 301–320 (2005)

https://doi.org/10.1007/3-540-45759-3
https://doi.org/10.1007/3-540-45759-3
https://doi.org/10.1007/978-0-387-21606-5
https://doi.org/10.1007/978-1-4614-6849-3


Bayesian Logistic Model for Positive
and Unlabeled Data

Małgorzata Łazȩcka1,2(B)
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Abstract. In the paper, we introduce a novel method of estimating
label frequency and parameters of the logistic model for positive and
unlabeled (PU) data. Our approach is based on Gibbs sampler that uses
Pólya-Gamma latent variables for Bayesian logistic model. In the paper,
we focus on estimating label frequency, but the proposed method also
provides estimated probabilities of being positive observation among the
unlabeled ones.

Keywords: positive and unlabeled data · Selected Completely At
Random · Bayesian logistic regression · Gibbs sampling · graphical
model

1 Introduction

In standard binary classification, the data consists of positive and negative exam-
ples. However, in many applications, the assumption that the class is known for
all observations might not be realistic. Consider e.g. medical data, in which usu-
ally one has information about patients with the diagnosed disease and the rest
of patients might either be healthy or have a disease and remain undiagnosed.
In positive and unlabeled (PU) learning we model that situation by assuming
that we have access to some positive examples (diagnosed patients), and we
do not know the true class of the others (undiagnosed) - they might be either
positive or negative. Another example is a survey with sensitive questions e.g.
about illegal behavior. Some people who broke the law would answer to that
question truthfully, but among those, who would answer “no”, there might be a
group that actually broke the law but would not admit that in the survey. The
next example considers advertisements e.g. the ads that appear on the visited
websites. Positive and labeled examples in that scenario are clicks on the ads.
However, the remaining ads also might be interesting to the user even though
the user has not clicked on them. In the paper we focus on estimating the fre-
quency of such events that the user clicks on the ad, thus we estimate how many
of the positive examples are labeled. As a by-product of the proposed method,
we obtain probabilities indicating which of the unlabeled observations might be
positive.
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The main contribution of this paper is to adapt the model introduced in [8]
in such a way that it can be applied to PU data. In [8] the authors propose a
framework for Bayesian inference for the logistic model using the idea of data
augmentation. Since the vector of classes is not observed in PU setting, the model
proposed in [8] cannot be used directly, thus we extend it with new variables so
the new model can cope with data censored as described above. That approach
allows for estimating label frequency with high accuracy.

1.1 Notation and Assumptions in PU Learning

In PU learning, we consider a triple of variables (X,Y, S), where X ∈ R
p is a

random variable corresponding to a feature vector, Y ∈ {0, 1} is a true class and
S ∈ {0, 1} is an indicator, whether the observation is positive or unlabeled. In PU
setting all labeled observations are positive. In this article, we consider single-case
scenario, in which we assume that there is a common distribution of (X,Y, S) and
the sample (xi, yi, si)ni=1 consists of independently drawn observations from that
distribution. In standard classification the available data is (xi, yi)ni=1, whereas
in PU learning we observe only (xi, si)ni=1. Notice that some values of the vector
y = (y1, y2, . . . , yn) are known as when si = 1 then yi = 1, but when si = 0 then
yi can be either 0 or 1.

A common assumption in PU learning is the Selected Completely At Ran-
dom (SCAR) assumption, which states that the labeled examples are selected
randomly from a set of positive examples independently of X, i.e.

P (S = 1|Y = 1,X = x) = P (S = 1|Y = 1). (1)

Constant c := P (S = 1|Y = 1) is called label frequency. Note that the condition
(1) is equivalent to conditional independence of S and X given Y . A common
task in PU learning under SCAR assumption is estimation of the parameter c
and in this paper we also focus on that problem. We briefly describe some of the
existing methods of estimation of c in Sect. 1.3.

1.2 Logistic Model Assumption for PU Data

In logistic model, in which we observe a class indicator Y , we assume that proba-
bility of the event Y = 1 is logit function in a linear combination of the variables
X, namely

P (Y = 1|X = x) =
ex′β

1 + ex′β =: σ(x′β), (2)

where σ(t) = et/(1 + et) is a standard logistic function and a symbol ′ denotes
transposition. In PU learning assuming SCAR we have

P (S = 1|X = x) = cP (Y = 1|X = x) (3)

as LHS equals

P (S = 1|Y = 1,X = x)P (Y = 1|X = x) = P (S = 1, Y = 1|X = x)
= P (S = 1|X = x).
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Hence, using (2) we obtain that

P (S = 1|X = x) = c × σ(x′β), (4)

where c is label frequency. The model for PU data has an additional parameter
c in comparison to the standard logistic regression. The parameters (c, β) are
identifiable in view of Theorem 1 in [12], which is not true for c in general setting
for PU learning without some additional assumptions. In the proposed method
we use an assumption that (Y,X) follow the logistic model as in (2). Other
methods of estimation of parameters (c, β) are discussed in Sect. 1.3.

1.3 Methods of Label Frequency Estimation

In this section, we introduce methods of label frequency estimation, some of
which will be used in Sect. 3.2. For a comprehensive survey, we refer to [6].

Elkan-Noto and TIcE Estimator. In a method proposed by Elkan and Noto
[4] we divide the dataset into two subsets: a training set, on which the classifier
P̂ (S = 1|x) is trained and a validation set used to compute an estimator of c.
The estimator of c is defined as

ĉEN =
1

|A|
∑

i∈A
P̂ (S = 1|Xi),

where A is a set of indices of observations in the validation set that are labeled.
The method uses the fact, that

c =
P (S = 1|X = x)
P (Y = 1|X = x)

, (5)

and thus if the classes are separable and we compute the denominator for a
labeled example, then it equals 1. The method introduced in [1] is based on
similar observation, namely that

c = P (S = 1|Y = 1) = P (S = 1|Y = 1,X ∈ A)

=
P (S = 1, Y = 1,X ∈ A)

P (Y = 1,X ∈ A)
=

P (S = 1|X ∈ A)
P (Y = 1|X ∈ A)

.

Next, we look for a so-called anchor set A, for which P (Y = 1|X ∈ A) ≈ 1 using
induction trees on a training set and on a test set we estimate P (S = 1|X ∈ A).

KM Estimators. The estimators proposed in [10] are based on representing
the distribution of unlabeled observations as a mixture of the distributions cor-
responding to S = 0, Y = 1 and S = 0, Y = 0. In [10] the authors estimate
mixing proportion of the latter two distributions. Then, after the mixing pro-
portion is estimated, the class frequency P (Y = 1) can be easily computed, and
as P (Y = 1) = P (S = 1)/c we also obtain the estimator of c. Two ways of esti-
mating mixing proportion are proposed, thus two estimators ĉKM1 and ĉKM2

are obtained.
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JOINT and CD+MM Estimators. In view of (4), in order to obtain esti-
mators of (c, β) the following log-likelihood function is maximised

l(c, b) =
n∑

i=1

(si log(cσ(x′
iβ) + (1 − si) log(1 − cσ(x′

iβ))

with respect to c and β simultaneously. JOINT method [11] optimize l(c, b)
using simple gradient algorithm. CD+MM accounts for the fact that l(c, b) is
not a concave function and thus it may have multiple local minima. CD+MM
algorithm [12] consists of two steps in each iteration i: first, using the fact that
l(c, b) is concave with respect to c, finds a maximizer ĉi of l(c, b̂i−1). Next, using
Minorization-Maximization algorithm (see [7]) maximizes l(ĉi, b) with respect to
b. The optimization algorithm is run until it converges to the local minimum.

MLR Estimator. [5] Note that from (5) it follows that c ≤ maxx P (S =
1|X = x) and if maxx P (Y = 1|X = x) = 1, then we obtain equality. In MLR
the following model is fitted

g(x, b, γ) =
1

1 + b2 + exp(γ′x)
,

where b > 0 and γ ∈ R
p. By noting that c can be estimated as maxx P̂ (S =

1|X = x) and maxx g(x, b, γ) = 1
1+b2 , we obtain ĉ = 1

1+b̂2
.

2 Gibbs Sampler for Estimation of Label Frequency

First, we give a brief description of Gibbs sampler and Bayesian logistic regres-
sion introduced in [8], and then in Sect. 2.3 we present our adaptation to PU
setting.

2.1 Gibbs Sampling

Gibbs sampling is a Markov chain Monte Carlo algorithm for obtaining a
sequence of observations from a multivariate joint probability distribution. The
algorithm is especially useful in the cases when direct sampling from the joint
distribution of variables (X1,X2, . . . , Xp) is difficult, whereas sampling from con-
ditional distributions Xi|X−i = x−i, where X−i = (X1, . . . , Xi−1,Xi+1, . . . , Xp)
is relatively simple. The output of the algorithm, among other applications, can
be used to approximate marginal distribution of a chosen subset of variables or
to compute their expected value. The variables (X1,X2, . . . , Xp) might represent
latent variables of the model we want to sample from or parameters in Bayesian
approach. Below we give a brief description of the algorithm.

Suppose we want to sample from the distribution p(x1, x2, . . . , xp) and sam-
pling from conditional distribution p(xj |x−j) for j = 1, 2, . . . , p is feasible. Then
to obtain N observations from the distribution of p(x1, x2, . . . , xp), one can pro-
ceed as follows:
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(1) Set x(0) = (x(0)
1 , x

(0)
2 , . . . , x

(0)
p ) to a starting value.

(2) Sample x
(i)
j ∼ p

(
xj |x(i)

1 , . . . , x
(i)
j−1, x

(i−1)
j+1 , . . . , x

(i−1)
p

)
for j = 1, 2, . . . , p.

Repeat (2) for i = 1, 2, . . . , N , where N is a number of samples required.

Ideally, the initial value x(0) should be chosen from a region of high probabil-
ity p(x1, x2, . . . , xp), but as it is difficult, it is common to sample N +B samples
instead of N and discard B samples from the beginning.

Gibbs sampling is frequently used in Bayesian inference. In that approach,
prior distribution π(θ) of the vector of parameters θ = (θ1, θ2, . . . , θp) is given
and we assume that observations y come from the distribution p(y|θ), where
p is known. In this case, the aim is to sample from the posterior distribution
p(θ|y), as we are interested in the distribution of the parameters given the infor-
mation about θ from the observed sample. In each step i of (2) of the Gibbs
sampler we sample from the distribution p(θj |θ(i)1 , . . . , θ

(i)
j−1, θ

(i−1)
j+1 , θ

(i−1)
p , y) for

j ∈ 1, 2, . . . , p.

2.2 Gibbs Sampler for Bayesian Logistic Regression

We describe now an algorithm introduced in [8] for sampling from the posterior
distribution of the parameters β from the logistic model (cf. (2))

P (Y = y|β) = p(y|β) = (ex′β)y

1 + ex′β .

Gibbs sampler given in [8] uses latent variables following Pólya-Gamma distribu-
tion to enable efficient sampling from conditional distributions. The densities of
distributions in Pólya-Gamma family PG(1, a) with parameter a > 0 are defined
as

f(x|a) = cosh(a/2)e− a2x
2 g(x),

where g is a density of an infinite sum of properly scaled i.i.d. exponential vari-
ables (the definition of the density g is given in [8], p. 1340). We do not provide
the formula for g, as in the following only the terms containing a will be used.
For details see [2,8].

To construct a Gibbs sampler for Bayesian logistic regression, latent variables
ω are used, thus we estimate (β, ω). The step (2) of Gibbs algorithm has two
sub-steps:

– Sample ω(i) ∼ p(ω|β(i−1), y),
– Sample β(i) ∼ p(β|ω(i), y).

Using notation of the previous section we have (θ1, θ2) = (β, ω) (the first param-
eter is a p-dimensional vector, where p denotes the number of predictors and the
second parameter is n-dimensional, where n denotes the number of observations)
and y is observed. The dependence structure of variables (β, ω, Y ) is represented
by probabilistic graphical model shown in Fig. 1a, in which the vertices denote
random variables and the orientation of the edges determines the direction of



162 M. Łazȩcka

β

ω Y

(a) Graphical model for Bayesian logistic
sampler

β

ω Y C

S

(b) Graphical model for Bayesian logistic
sampler for PU data

Fig. 1. Graphical models indicating dependence structure of the considered variables

dependence. The joint distribution corresponding to a graphical model is the
product of the conditional probabilities for every node given its parents, thus
the joint distribution of (β, ω, Y ) factorizes in the following way

p(β, ω, Y ) = π(β)p(ω|β)p(y|β). (6)

Note that from (6) it follows that ω and Y are independent given β. We also
assume that observations (ωi, Yi)ni=1 are independent given β, hence we have
p(ωi|β, y) = p(ωi|β) and p(ω|β) =

∏n
i=1 p(ωi|β). Moreover for a given β the

distribution of ωi is PG(1, |x′
iβ|) and the prior for β is N (bβ , Bβ), where bβ and

Bβ are fixed and we show that conditional distribution of β is also normal. In the
following, we will use ∝ to denote equality up to multiplication by a constant.
We have

p(β|ω, y) ∝ p(β, ω, y) = π(β)p(ω|β)p(y|β)

= π(β)
n∏

i=1

(
cosh

( |x′
iβ|
2

)
e− (x′

iβ)2ωi
2 g(ωi)

) n∏

i=1

(
(ex′

iβ)yi

1 + ex′
iβ

)

∝ 2−nπ(β)
n∏

i=1

exp
(

yix
′
iβ − x′

iβ

2
− ωi(x′

iβ)
2

2

)

∝ π(β)
n∏

i=1

exp

(
−ωi

2

(
x′

iβ − yi − 1/2
ωi

)2
)

where in the third expression we omitted the terms g(ωi), as they do not
depend on β and we used the fact that cosh(x) = ex+e−x

2 . Thus, after further
transformations, we obtain that conditional distribution of β is N(μ(ω), Σ(ω)),
where Σ(ω) = (X ′Ω(ω)X + B−1

β )−1, μ(ω) = Σ(ω)(X ′(y − 1
21n) + B−1

β bβ),
Ω(ω) = diag(ω) and 1n is a n-dimensional vector of 1.

2.3 Gibbs Sampler for PU Data

In PU learning the true class Y is not always observed, thus the procedure
needs to be modified. We use two additional variables in the model for PU
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data: observed vector of labels S and unobserved label frequency C treated as a
random variable. We assume that the dependency structure is defined by Fig. 1b,
thus the joint density of all considered in the model variables can be factorized
in the following way (cf. (6))

p(ω, β, y, s, c) = π(β)p(ω|β)p(y|β)π(c)p(s|y, c). (7)

We now compute the conditional distributions of all the variables, which will
be sampled, given the remaining ones. The conditional distributions for β and
ω are described in Sect. 2. Below we compute conditional densities p(y|β, ω, c, s)
and p(c|β, ω, y, s).

Note, that from (7) it easily follows that p(y|β, ω, c, s) = p(y|β, c, s). We also
have

P (Yi = yi|S = s, β = b, C = c) ∝ P (Yi = yi|β = b)P (Si = s|Y = y, C = c). (8)

We assume that variables (Y,X) satisfy (2). On the other hand, from SCAR
assumption it follows that P (Si = 1|Yi = 1, C = c) = 1 − P (Si = 0|Yi = 1, C =
c) = c and if Yi = 0, we have P (Si = 0|Yi = 0, C = c) = P (Si = 0|Yi = 0) = 1.
Hence for Si = 1 we obtain

P (Yi = 1|Si = 1, β, C) ∝ c × σ(x′
iβ),

P (Yi = 0|Si = 1, β, C) = 0,
(9)

and for Si = 0 we have

P (Yi = 1|Si = 0, β, C) ∝ (1 − c)σ(x′
iβ),

P (Yi = 0|Si = 0, β, C) ∝ 1 − σ(x′
iβ).

(10)

Equations (9) and (10) lead to

P (Yi = 1|Si = s, β = b, C = c) =
(1 − c)σ(x′

iβ)
(1 − c)σ(x′

iβ) + (1 − s)(1 − σ(x′
iβ))

. (11)

Now we derive the formula for p(c|β, ω, y, s). Prior density π(c) of C is
Beta(αc, βc). From (7) we obtain that C is independent of β and ω given S
and Y . Thus we consider conditional distribution of C given only S and Y

p(c|Si = s, Yi = 1) ∝ π(c)P (Si = s|Yi = 1, C = c).

Hence, assuming that the pairs (Si, Yi)ni=1 are independent given C, we obtain

p(c|Si, Yi = 1, i = 1, . . . , n) ∝ π(c)c
∑n

i=1 I(Si=1,Yi=1)(1 − c)
∑n

i=1 I(Si=0,Yi=1),

thus C|S, Y ∼ Beta(αc +
∑n

i=1 I(Si = 1, Yi = 1), βc +
∑n

i=1 I(Si = 0, Yi = 1)).
Note that proposed prior distribution of C is conjugate for the likelihood which
is Bernoulli distribution (for success being Si = 1, Yi = 1 and the failure Si =
0, Yi = 1). Thus the posterior is also Beta distribution with modified parameters
according to the data.
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Below we summarise the above derivations. We use the following prior dis-
tributions for β and C with hyperparameters (bβ , Bβ) and (αc, βc)

β ∼ N (bβ , Bβ), C ∼ Beta(αc, βc).

Then in step (2) of the Gibbs sampler we sample from the following distributions
(the definitions of μ(ω) and Σ(ω) are given at the end of Sect. 2.2):

ωi|β ∼ PG(1, |x′
iβ|) for i = 1, 2, . . . , n,

Yi|β, S,C ∼ Bern

(
(1 − C)σ(x′

iβ)
(1 − C)σ(x′

iβ) + (1 − Si)(1 − σ(x′
iβ))

)
for i = 1, 2, . . . , n,

β|ω, Y ∼ N (μ(ω), Σ(ω)),

C|Y, S ∼ Beta

(
αc +

n∑

i=1

I(Si = 1, Yi = 1), βc +
n∑

i=1

I(Si = 0, Yi = 1)

)
.

Algorithm 1. One step of Gibbs sampler for PU data
Input: X, S, bβ , Bβ , βold, αc, βc, cold
Output: βnew, cnew
1: for i ∈ {1, 2, . . . , n} do
2: ωi,new ← a sample from PG(1, |X ′

i·βold|)
3: σi ← σ(X ′

iβold)
4: pYi=1 ← (1 − cold)σi/[(1 − cold)σi + (1 − Si)(1 − σi)]
5: yi,new ← a sample from Bern(pYi=1)
6: end for
7: Ωnew ← diag(ωnew)
8: Σβ ← (X ′ΩnewX + B−1

β )−1

9: μβ ← Σβ(X ′(ynew − 1
2
1n) + B−1

β bβ)
10: βnew ← a sample from Np(μβ , Σβ)
11: npl ← ∑n

i=1 I(Si = 1, yi,new = 1)
12: npu ← ∑n

i=1 I(Si = 0, yi,new = 1)
13: cnew ← a sample from Beta(αc + npl, βc + npu)

3 Numerical Experiments

In this section, we first present an illustrative example showing how the proposed
method works. Next, we briefly describe methods of label frequency estimation
existing in the literature and at the end we compare the accuracy of our method
with other methods on real datasets. The R code is available on Github1.

In Algorithm 1 we present one step of Gibbs sampler for PU learning. The
input consists of a matrix of predictors X, a vector of labels S, hyperparameters
1 github.com/lazeckam/PU_BayesLogistic.
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of normal distribution bβ and Bβ , hyperparameters of Beta distribution αc and
βc and initial values or values from the previous step of β and c, namely βold
and cold.

3.1 Example

Let Xi = (Xi1,Xi2, . . . , Xip) for i ∈ {1, 2, . . . , n}. We sample observations
Xi,j independently from uniform U([0, 1]) distribution for i ∈ {1, 2, . . . , n},
j ∈ {1, 2, . . . , p} and let n = 1000, p = 6. For each row Xi,· = xi of the matrix
X we sample Yi according to the distribution P (Yi = 1|β̄, xi) = σ(x′

iβ̄) =: σ0,i,
where β̄ = (7.5, 4.5, 1.5,−1.5,−4.5,−7.5) with intercept being 0. We fix c = 0.8
and sample Si according to Bernoulli distribution with probability of success c
for positive observations (Yi = 1) and for the remaining ones Si = 0. To run the
simulations we use the following hyperparameters and initial values: bβ = 0p,
Bβ = 10 · Ip, αc = 1, βc = 1 and βstart = 0p, cstart = 0.5, where 0p denotes a
vector of p zeros and Ip is a p× p identity matrix. Next, we repeat B +N = 500
times the step of the Gibbs sampler algorithm described in Algorithm 1.

0.00

0.25

0.50

0.75

1.00

0 100 200 300 400 500
N

c

Chain of sampled values of C

0

5

10

15

0.75 0.80 0.85 0.90
c

de
ns

ity

Histogram of sampled values of C

(a) The chain of sampled values of the vari-
able C. The true value is marked with the
horizontal line, the gray background shows
which values are used to compute the esti-
mator ĉ.

(b) The histogram of the values of C
for iterations 251-500, which approximates
marginal distribution of C and the point
estimate ĉ ≈ 0.836 marked with vertical
line.

Fig. 2. Estimation of label frequency c.

The obtained chains of values of C and β are shown in Figs. 2a and 3a.
We obtain a point estimate of c by discarding the first B = 250 values and
averaging the remaining ones. In Fig. 2b the histogram of the estimator ĉ is
presented for the last 250 samples. Figure 3b shows scatterplot of estimated
posterior values of probability of Y = 1, where posterior distribution of Yi|β,C, S

follows Bern
(

(1−C)σ(x′
iβ)

(1−C)σ(x′
iβ)+(1−Si)(1−σ(x′

iβ))

)
, which corresponds to pYi=1 from

line 4 in Algorithm 1 (the values from the 500th iteration of Algorithm 1 are
used) against σ0,i = σ(x′

iβ̄) values for i ∈ {1, 2, . . . , n}. Both Fig. 3b and Fig. 3a
indicating accurate estimation of β show, that the unlabeled observations with
high probability of being positive can be detected based on the proposed method
as they have also high values of pYi=1.
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Fig. 3. The chains of β parameters and posterior probabilities of positive class obtained
by the proposed method.

3.2 Real Data Simulations

In this section, we artificially created PU datasets using the labeled benchmark
11 datasets from UCI Machine Learning Repository [3] and one from the IJCNN
2001 competition [9]. Detailed information about datasets is in Table 1, in which
the number of observations and predictors is given as well as fraction of positive
observations α.

Table 1. Information about datasets

Dataset n p α

BreastCancer 683 9 0.35
diabetes 768 8 0.35
heart-c 303 19 0.46
ijcnn2001 35000 22 0.10
mushroom 8124 21 0.48
parkinsons 195 22 0.75

Dataset n p α

pop_failure 540 18 0.91
SPECTF 79 44 0.49
vote 435 32 0.39
wdbc 569 31 0.37
Wholesale 440 7 0.32
wpbc 198 33 0.24

We run simulations to compare the proposed method (PGPU) with the
existing ones listed in Sect. 1.3. Due to the lack of space, we present the
results only for some of the methods. Extended results are available on Github.
For each dataset, we select positive examples to be labeled with probability
c = 0.1, 0.2, . . . , 0.9 and for each c we repeat the experiment 100 times. All pre-
dictors are scaled to [0, 1] suggested in [1]. Due to the computational costs of
KM methods, for large dataset ijcnn2001 we subsampled the original dataset
5 times to obtain n = 2000 and we averaged results obtained on the subsam-
ples. In our method, we use the same hyperparameters and initial values as in



Bayesian Logistic Model for Positive and Unlabeled Data 167

Fig. 4. Comparison of label frequency estimation methods.

the example from Sect. 3.1. For ijcnn2001 PGPU uses the same subsampling
approach as for KM described above. PGPU is also computationally expensive
for large datasets as in each iteration we generate n samples from Pólya-Gamma
distribution and we take an inverse of p × p matrix to obtain Σβ .

Figure 4 shows the results of the experiments. Each point on the plot is an
average of 100 results of |ĉ − c| for fixed method, dataset and label frequency
c. The proposed method for all datasets except for ijcnn2001 and Wholesale
outperforms or is as accurate as other methods for almost all c values in terms of
the accuracy of c estimation. In the cases, when another method performs better
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for some limited range of c, then it works significantly worse for other values of
the label frequency (see e.g. diabetes and compare PGPU with KM2 for c = 0.2
and c = 0.9). We stress that achieving small errors over whole range c ∈ [0, 1] is
particularly important in that task and PGPU meets that requirement. PGPU
fails this criterion only on Wholesale and ijcnn2001 for small c values, but we
note that PGPU might perform better for a different choice of parameters.

4 Conclusions

We establish that the proposed method based on a simple graphical model and
Gibbs sampler works well in comparison to other methods. Parametric assump-
tion on the distribution of (Y,X) makes it possible to detect positive and unla-
beled observations. Using more elaborate graphical model the method can be
naturally extended to situations when the SCAR assumption fails. This is a
subject of ongoing research. The method also will be further developed to be
feasible for large datasets.
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Abstract. The design of reinforcement learning (RL) agents is difficult,
especially in domains with complex and possibly conflicting objectives
such as autonomous driving. In addition to the formal nature of RL
with high technical barriers, the fragility of the reward signal results
in the common trial-and-error practice in the design of RL agents. We
propose a novel goal-oriented specification language that is tailored to
reinforcement learning but abstracts from technical details. To overcome
the problematic trial-and-error practice, our specification language pro-
vides the foundation for an easy and systematic design process in RL.

Keywords: goals · reinforcement learning · specification language

1 Introduction

Deep reinforcement learning (RL) is well suited for complex sequential tasks such
as autonomous driving. Often, solutions to these tasks are nontrivial because
of conflicting objectives, efficiency concerns and safety. In RL, objectives are
encoded in the reward function and algorithms aim at the maximization of this
reward. However, small adjustments to the reward yield significant impact on the
behavior of the agent. This leads to the common trial-and-error in the design
of RL agents that makes it very difficult to integrate multiple objectives. To
overcome this problematic practice, a systematic design process is needed. In this
paper, we propose our universal goal-based specification language that abstracts
from technical details of RL and provides the basis for such a process. Our three
main contributions are:

1. We define a partitioning of a Markov decision process (MDP) into environ-
ment and requirements to enable the separate definition of the requirements.
Our formal definition of both parts allows to reconstruct a MDP that can be
learned by existing RL algorithms.

2. We propose our universal language that enables the specification of require-
ments in form of a goal tree similar to goal-oriented requirements engineering
(GORE) [13]. We represent goals as subsets of the state space since it is a
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prevalent concept in GORE and in recent RL research. We enable goals to
be hierarchically structured through definable operators. To support multi-
faceted requirements, we enrich the plain goal tree with domain knowledge
and annotations such as safety and efficiency constraints.

3. Finally, we demonstrate how our specification language abstracts from tech-
nical details. We show how to construct the MDP with flexible rules that
integrate diverse RL techniques. If rules are well-defined, the construction
can be automated to unfold a simple and structured design process.

Our goal-oriented approach provides an intuitive and visual means for
requirements engineering for RL agents. The main purpose of GORE is to struc-
ture and analyze requirements in form of goals. By this, the designer can focus
on specifying the objectives instead of getting lost in technical details of the solu-
tion. To maintain this purpose, our universal specification language constructs
an abstraction layer between the specification of objectives and the underly-
ing design techniques of RL. Based on our partitioning, we are able to define a
MDP that integrates the goal-tree and the environment. This MDP can then be
learned by existing state-of-the-art RL algorithms.

The paper is structured as follows. We present related work in Sect. 2, and
give an introduction to reinforcement learning in Sect. 3. In Sect. 4, we describe
our case study that is the lunar lander simulation environment. Following in
Sect. 5, we define our partitioning of the MDP into the environment and require-
ments. Section 6 introduces our specification language in form of goals, operators
and annotations. We demonstrate how our specification language abstracts from
technical details in Sect. 7. Finally, we conclude in Sect. 8.

2 Related Work

Specification languages for reinforcement learning are rare and most of them are
based on temporal logic. Truncated Linear Temporal Logic [8] enables the gen-
eration of a scalar reward function from temporal logic requirements. Another
approach focuses on the specification based on reward machines [4]. Reward
machines are mealy automata that are constructed from a reward specification
in linear temporal logic. The approach focuses on a structure of reward that is
powerful but non-markovian. This makes it difficult to apply to standard RL
algorithms. A composable specification language based on a subset of temporal
logic is presented in [6]. It allows the specification of (reachability and avoidance)
objectives as elements of the state space that may be sequentially or disjunc-
tively decomposed. In contrast to our language, all three approaches focus on
the specification of reward rather than comprehensive requirements based on all
components of the MDP. The formal specification of requirements is based on
temporal logic. This has the advantage to guarantee behavior in safety-critical
applications through the definition of optimal policies. However, these guaran-
tees are weak if function approximation such as neural networks are used to
learn. We integrate constraints into goals similar to Constrained MDPs [1] that,
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e.g., allows us to penalize. In contrast to our goal-oriented specification, require-
ments in temporal logic are not as intuitive and their design needs experts. Two
of the approaches [4,6] develop RL algorithms specific to their needs. Therefore,
they cannot directly profit from the advancements in recent RL algorithms.

In [7], a goal model for self-adaptive systems is proposed that provides a dis-
tance metric to guide adaptation towards minimal goal violation. This approach
inspired us to use a similar concept for goal- and reward specification in RL.

3 Reinforcement Learning

Reinforcement learning (RL) aims at solving problems of sequential decision
making by maximizing a reward. The agent acts in an existing but often unknown
environment (model-free). In discrete time steps, the agent chooses actions
according to a learned policy based on its observations. It obtains a reward
from the environment that transitions to its next state. Formally, RL is modeled
as a Markov Decision Process (MDP) [12] with MDP = (S,A, P,R) and

– State space S is the set of all states that satisfy the Markov property.
– Action space A is the set of all available actions.
– The transition probability P describes how the process moves to the next

state s′ from state s with action a:
P (s, a, s′) = Pr[st+1 = s′|st = s, at = a]

– The reward signal R : S × A × S → R is the immediate reward that is the
target of the maximization.

The goal of RL is to find a policy π : S → A that maximizes the expected
time-discounted sum of rewards. The optimal policy chooses the highest expected
reward for all states. Deep RL allows to solve complex problems based on modern
function approximation such as deep neural networks. Often, the input to this
approximation (i.e. state s ∈ S) is a vector of features S : S1×...×Sn where each
feature Si describes a property of the environment. Sophisticated model-free RL
algorithms such as TRPO [11] and TD3 [5] maximize a single scalar reward.

Sparse reward gives feedback to the agent at few but determined state transi-
tions, e.g., if the agent solves the problem. This simplifies a correct reward speci-
fication but is especially difficult to learn in large state spaces. Dense reward con-
tinuously gives feedback to the agent to lead it into the right direction. However,
it raises the probability of unexpected behavior if it is not carefully crafted. A
popular technique to specify dense reward is potential-based reward shaping [9].
It is based on the idea to add a difference of potentials F (s, a, s′) = Φ(s′)−Φ(s)
to a reward. Thus, it preserves the original optimal policy.

4 Case Study - Lunar Lander

The lunar lander is a reinforcement learning environment from OpenAI Gym [3]
which is a standardized collection of RL benchmark problems. The environment
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provides all parts of the MDP such as the state and action space, the transition
probabilities and the reward described below in more detail. The objective of
the lunar lander (Fig. 1) is to land a space ship at the landing zone (goal).
The ship has three engines and the discrete action space contains four actions:
Alunar = {nothing, left, right, main}. The state space Slunar = R

8 contains eight
features: x and y position and velocity (x, y, xv, yv), lander angle and angular
velocity (α, αv), leg 1 and 2 grounded (binary l1, l2). The landing zone is at
(x, y) = (0, 0). The reward function combines several rewards and penalties:

– A cumulative reward of about 100 - 140 is given as a dense reward over time
to arrive at the landing zone with zero speed.

– A crash is penalized with −100 and the space ship at rest is rewarded with
100.

– Ground contact of each leg is rewarded by 10 and penalized with −10 if lost.
– Each time the main engine is fired, a penalty of −0.3 is given. For the side

engines, the penalty is −0.03.

The environment terminates if the lunar lander crashes or rests. The problem is
considered to be solved if the sum of rewards exceeds 200.
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Fig. 1. The lunar lander simulation with landing zone (0,0) and constraints

5 Environment and Requirements

We aim at the goal-oriented specification of requirements for RL in an existing
context. The formal concept behind RL are Markov decision processes. To be
able to specify requirements, we present our partitioning of MDPs into two
parts: the environment and the requirements. The environment contains the
context such as states, physics and actions. Requirements comprise all aspects
of MDPs that an engineer is able to define when designing an agent based on
an existing context. Together, the environment and requirements form the MDP
that can be learned by standard RL algorithms. Following, we formally describe
the environment, our requirements and their integration into a MDP.
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We define an environment through states (e.g. measured by sensors) and
actions (e.g. available through actuators) that follow a specific transition model
(e.g. physics). Formally, the environment Env = (S∗, A∗, P ∗) consists of:

1. The initial state space S∗ : S1 × ... × Sn contains all possible states of the
environment (e.g. physical and virtual sensors). It is composed of n features
xi ∈ Si. We require states from S∗ to satisfy the Markov property.

2. The initial action space A∗ describes all available actions of the environment.
3. The initial transition probability P ∗ describes the state transition model of

the environment similar to the transition probability P of MDPs from Sect. 3.
Note: The transition probability does not need to be known since learning is
based on samples from the environment in model-free RL.

Requirements comprise aspects of the MDP that are potentially definable by
an RL engineer: The observation OG and action space AG are similar but not
necessarily equal to the corresponding initial spaces S∗ and A∗ of Env. This
enables a requirement to abstract from the original components and is further
evaluated in Sect. 7. The transition probability P is specified in the environment.
However, it may be possible to stop sampling. We represent this adaption of the
transition probability through the termination set PT,G. Finally, objectives of
our requirement are specified in the reward RG. Formally, we define the four
components (OG, AG, PT,G, RG) of a requirement as follows:

1. The observation space OG : O1 × ... × Om is the basic input for all decisions.
2. The action space AG is the set of actions of the agent to reach the goal.
3. The termination set PT,G ⊆ A × O defines pairs at which sampling in an

episode terminates.
4. The reward RG : S × A × S → R is a single scalar signal.

Note: the indexed G in a requirement stands for goal that we introduce in our
goal-oriented specification in the next section.

Given an environment (S∗, A∗, P ∗) and a requirement (OG, AG, PT,G, RG),
we are able to construct a MDP = (S,A, P,R) as follows:

1. The state space is defined by S = OG. In order to transform a state s∗ ∈ S∗

from the environment, we require a mapping state : S∗ → OG that preserves
the Markov property from S∗ in order to define a MDP.

2. The action space is defined by A = AG. In order to execute an action from
the agent in the environment, we require a mapping execute : AG → A∗.

3. The transition probability P is based on P ∗ that we overwrite with 0 iff. the
action-state is in PT :

P (s, a, s′) =

⎧
⎪⎨

⎪⎩

0 , for (s, a) ∈ PT,G

P ∗(s∗, a∗, s′∗) , else with execute(a) = a∗,
state(s∗) = s, state(s′∗) = s′

4. The reward R is the reward RG defined in our requirement:
R(s, a, s′) = RG(s∗, a∗, s′∗) with execute(a) = a∗,

state(s∗) = s, state(s′∗) = s′
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The mappings state and execute enable a RL algorithm to learn the actions
from the action space A based on states from the state space S of the MDP .
However, state transitions are taken in the environment Env. The RL feed-
back loop at time step t starts at state s∗

t ∈ S∗ from Env that is converted
to st = execute(s∗

t ) ∈ OG. This state st is handed to the RL algorithm that
chooses an action at ∈ AG. This action is converted into a∗

t = execute(at) ∈ A∗

that is executed in the environment. The environment transitions to the next
state s∗

t+1 ∈ S∗ with st+1 = state(s∗
t+1). The RL algorithm receives the reward

R(st, at, st+1) and the next state st+1. Finally, the loop repeats.

At this point, we have introduced our partitioning of a MDP into an envi-
ronment and requirements. We have shown that we are able to reconstruct a
MDP from both these parts. Finally, we have demonstrated the application of
the standard RL feedback loop. In the following section, we use our notation of
requirements to create our novel goal-oriented specification language.

6 Goal-oriented Specification

Following, we introduce our graphical and formal notation of our novel goal-
based specification language for reinforcement learning. We combine the well-
known and intuitive concept from GORE [13] with our formal notation of require-
ments. The fundamental concept of our goal tree is that the requirements can
be directly inferred from the structure of the goal tree (operators), additional
information (annotations) and the related goal space G.

At first, we start with the definition of goals in Sect. 6.1. Then, we present
the refinement of goals through operators (Sect. 6.2) and define annotations
(Sect. 6.3) that allow the integration of constraints and domain knowledge. To
illustrate our specification language, we use the lunar lander from Sect. 4.

(a) Goal (b) Constraint (c) Domain knowl-
edge

Fig. 2. Goals and annotations
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6.1 Goals

Goals are objectives the agent has to satisfy in order to solve the given problem.
Similar to GORE, each goal is a single node in our tree (Fig. 2a) that we overload
with our formal notations of its goal space and requirements. We define goal
spaces in relation to the observation space:

G ⊆ OG

An agent satisfies a goal G iff. it reaches any state o ∈ G. The relation of goals
to states is also used in popular work [2,10].

For example, the goal of the lunar lander is to reach the platform with zero
velocity, zero angle, zero angular velocity and both legs on the ground. This can
be represented by the goal space Glunar (remember: (x, y, xv, yv, α, αv, l1, l2) ∈
Olunar) as follows :

Glunar ⊆ Olunar with Glunar = {(0, 0, 0, 0, 0, 0, 1, 1)}

6.2 Operators

...

Fig. 3. Our generic operator of goals

Operators enable us to structure goals into subgoals. To allow the application
of diverse techniques from RL, we define a generic operator. Figure 3 shows its
graphical notation. The definition of an operator comprises a definition for each
component of the requirements. Thus, the requirements of the parent goal are
generated as a combination of the requirements of its n subgoals Gi:

(OG, AG, PT,G, RG) =
n⊙

i

(Oi, Ai, PT,i, Ri)

As an example, the and-operator G =
⋂

i Gi enables refinement of goals into
subgoals similar to GORE [13]. According to the intersection, the goal G is sat-
isfied iff. all subgoals Gi are satisfied. This refinement allows to structure goals
into groups of features that belong together such as the dimensions of a position.
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Fig. 4. The and refinement for the lunar lander

Figure 4 illustrates the and-operator for the lunar lander. We refine the root
of our goal tree (introduced in Sect. 6.1) and obtain a separation of the features
that belong thematically together. These are the angular properties (α×αv), the
status of the legs (L1 × L2), the position (X × Y ) and the velocity (Xv × Yv).
Note: We use GPos : X ×Y as abbreviation for G = {(x, y, xv, yv, ...)|x = 0, y =
0, xv ∈ Xv, xv ∈ Yv, ...} even though it is still of type GPos : O .

6.3 Annotations

We enable the annotation of goals by additional information that are manda-
tory or helpful to find a viable solution from the requirements. We differentiate
between two types of annotations. Constraints limit the reachability of goals.
Domain knowledge gives further insights into the structure to improve learning.

Constraints. (Figure 2b) are objectives that need to be fulfilled at all times while
the agent aims to reach the goal. A constraint has its own state-action space C:

C ⊆ O × A with cntC(o, a) =
{

1 : (o, a) ∈ C
0 : (o, a) �∈ C

where cntC(o, a) = 1 specifies a constraint violation at a single time step. We
define constraints over the time of an episode T and identify three types: soft
safety, hard safety, efficiency. Soft safety constraints allow a specified number of
violations δ over a single episode

T∑

i=0

cntC(oi, ai) ≤ δ

with action ai executed at observation oi at time step i. Hard safety constraints
are a special case of soft safety constraints which do not allow any violations
through δ = 0. Note: Our notion of safety constraints is similar to the definition
used in Constrained MDPs [1]. More complex constraint objectives other than
our linear sum may also be promising options. In contrast to safety, efficiency
constraints minimize the occurrence of violations over an episode through

minimize
T∑

i=0

cntC(oi, ai) (1)
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with action ai executed at observation oi at time step i.

A soft constraint to the lunar lander restricts the x -deviation from a defined
central region, e.g. x < −1 (cf. Fig. 1). With δ = 100 and Cleft = {(o, a)|a ∈
A, o = (x, ...) ∈ O, x < −1} the agent is allowed to leave the central region
on the left side for a maximum of 100 time steps. A hard constraint prohibits
the action-state space of crashes (we assume crashes at y < 0 for simplicity)
as follows: Ccrash = {(o, a)|a ∈ A, o = (x, y, ...) ∈ O, y < 0} . The efficiency
constraint with Ceff = {(o, a)|o ∈ O, a = main} minimizes the choice of the
actionmain .

Domain Knowledge. (Figure 2c) induces insights into the agent. Additional infor-
mation about the environment may be available that is not integrated into the
initial state space. Knowledge such as the distance to a goal, heuristics or a cal-
culated path to a goal may exist. Often, this information is obvious to humans
but not to algorithms. We determine two classes of domain knowledge. Static
domain knowledge does not change over an episode. We define this as additional
information about the environment DKenv. Dynamic domain knowledge can
change over an episode. This can be e.g. the distance DKdist(ot) (e.g. distance
to a goal) or a heuristic DKheur(ot) (e.g. calculated path to follow) that both
depend on the current observation ot at time step t.

For example, static domain knowledge for the lunar lander could be the posi-
tion of the landing zone if it changes each episode. In contrast, dynamic domain
knowledge may be the distance DKdist

GPos
(x, y) =

√
x2 + y2 that is dependent on

the current position (x, y) of the lunar lander.
We have presented our goal-oriented specification language for reinforcement

learning that allows to concentrate on objectives rather than technical details. In
the following section, we evaluate how our goal tree is able to abstract from popu-
lar reinforcement learning techniques. For these techniques, we reveal similarities
to the original reward of the lunar lander and finally discuss the possibility of
an automatic generation of a MDP.

7 Abstraction of Technical Details

With our novel goal-oriented specification language, we aim at the abstraction
of technical details to facilitate the design process for RL. Following, we discuss
why this abstraction is possible and how we are able to construct a MDP based
on common RL design techniques. Finally, we specify an example goal tree for
the lunar lander and relate its reward specification to the goal tree.

The fundamental idea of our goal-oriented specification is to have a single
requirements tuple (OG, AG, TT,G, RG) at the root of a goal tree. According
to Sect. 5, this single tuple combined with the environment defines the MDP.
With our specification language, requirements engineers only specify the goal
tree including goal spaces for each goal. To construct a combined requirements
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tuple at the root, we propose to traverse the tree structure and progressively
generate and merge its goals. To achieve this, we require rules for the generation
of each part of our tree (i.e. goal spaces, operators and annotations). As methods
in RL advance and differ for specific domains, our approach is open to integrate
multifaceted techniques. Following, we draft our vision for rules and demonstrate
their flexible integration of diverse RL techniques.

The leafs of our goal tree define atomic objectives. Such objectives can be
rewarded by a sparse signal iff. an agent reaches the specified goal state G:

RG(o, a, o′) =

{
1 , for o′ ∈ G

0 , else.

Accordingly, PT,G = {(a, o)|a ∈ AG, o ∈ G} defines a simultaneous termination.
Other sparse rewards are also possible such as penalties when an agent leaves G.

Operators enable the refinement of goals from a top-down perspective. This
allows rules to enforce the conformance to higher level requirements. To illus-
trate, all actions of the action space Aleaf need to relate to an action from Aroot

that we are able to execute in the environment. From a bottom-up perspective,
goals grow in their complexity that peaks at the root of our tree. A rule for an
operator constructs requirements to combine lower level objectives. For example,
a popular technique for our and-operator is the weighted linear sum to combine
the rewards Ri of all children in the reward RG of the parent:

RG =
∑

i

ωi · Ri

It introduces the challenge of fair weights and normalization. However, non-linear
combinations are also possible.

To demonstrate the flexibility of operators, we shortly discuss a different use
case. An operator for temporal abstractions [12] can decompose a task (parent
goal) into sequential sub tasks (child goals). Each sub goal encodes its own
objectives in the sub goal tree. The reward of the parent goal can then be defined
by a combination of its children that also considers their sequential order.

Domain knowledge annotations enable rules for RL techniques that need
more information. In large state spaces, sparse rewards are difficult to learn.
Reward shaping techniques augment sparse rewards to obtain dense signals.
A popular choice is potential-based reward shaping (PBRS) that e.g. can be
realized by a distance metric annotated to a goal. However, with annotations it
is possible to define other rules that are tailored to the needs of specific domains.

Safety and efficiency constraints specify restrictions to goals. Restrictive
behavior is often realized through penalties in form of negative rewards. We
are able to penalize based on hard, soft and efficiency constraints that are trig-
gered by C ⊆ O × A. In contrast to penalties, complex rules are possible to
define the reward, e.g. max-min optimization based on Lagrange multipliers.
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Fig. 5. Goal tree for Lunar Lander

Figure 5 illustrates an example goal tree for the lunar lander. The and-
operator allows us to structure the observation space into features that seman-
tically belong together. The original lunar lander reward is defined as the sum
of rewards similar to our proposed rule for the reward of the and-operator. With
our DKdist annotations we enable the goals Gα , GPos and GV el to contain
distance metrics. Similar metrics are used by the lunar lander to construct a
potential-based reward shaping (i.e. the reward of 100 to 140 to arrive at the
landing zone with zero speed). The goal spaces of our goal tree enable the con-
struction of sparse rewards similar to the lunar lander (+10 for ground contact
of each leg and +100 for the space ship at rest). Finally, we are able to penalize
crashes through our safety constraint (i.e. −100 in the lunar lander) and the
firing of engines through our efficiency constraints (i.e. −0.3 and −0.03 in the
lunar lander).

We have shown how to construct the MDP from our goal tree based on rules.
With well-defined rules, it is possible to automate the construction and unfold
a simple and iterative design process for RL agents.

8 Conclusion

To overcome the problematic trial-and-error practice in the design of reinforce-
ment agents, we have introduced our goal-oriented specification language and
provide the foundation for a systematic design process. With our partitioning of
Markov decision processes into environment and requirements, we have defined
the formal basis for our specification language. Our goal tree enables the specifi-
cation of complex and possibly conflicting requirements for RL. Operators allow
to structure goals hierarchically and we annotate goals with domain knowledge,
safety constraints and efficiency constraints. We have shown how our specifica-
tion language abstracts from technical details and sketched the flexible rule-based
construction of a MDP that can be learned by existing state-of-the-art RL algo-
rithms. These rules can integrate popular RL design techniques and, if they are
well defined, it is possible to automate the construction.

In future work, we plan to automatically construct the MDP from our
goal trees and integrate popular RL techniques such as reward shaping and
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Lagrangian multipliers. Additionally, we want to enable the tracking of the pro-
portion of goals and annotations in the generated scalar reward. This proportions
can be used to explain the behavior of the agent by correlating it to specific parts
of the goal tree. Through a systematic design process, we envision the iterative
creation of consistent, reproducible and explainable RL agents.
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Abstract. We improve on a line of research that seeks to regularize the
spectral norm of the Jacobian of the input-output mapping for deep neu-
ral networks. While previous work rely on upper bounding techniques,
we propose a scheme that targets the exact spectral norm. We evaluate
this regularization method empirically with respect to its generalization
performance and robustness.

Our results demonstrate that this improved spectral regularization
scheme outperforms L2-regularization as well as the previously used
upper bounding technique. Moreover, our results suggest that exact spec-
tral norm regularization and exact Frobenius norm regularization have
comparable performance. We analyze these empirical findings in the light
of the mathematical relations that hold between the spectral and the
Frobenius norms. Lastly, in light of our evaluation we revisit an argu-
ment concerning the strong adversarial protection that Jacobian regu-
larization provides and show that it can be misleading.

In summary, we propose a new regularization method and contribute
to the practical and theoretical understanding of when one regularization
method should be preferred over another.

Keywords: Deep learning · Robustness · Jacobian regularization

1 Introduction

Ensuring that deep neural networks generalize can often be a question of applying
the right regularization scheme. While long-established regularization schemes
such as weight decay [17] can reduce the function complexity and prevent the
network from overfitting, it can at times do so in a crude manner, reducing the
complexity more than what is needed and inhibiting the overall performance
of the network. Another important consideration for real-world generalizability
that regularization schemes has to account for is robustness [26]. Robustness
will aid in ensuring that the model behaves as expected even when the input
is perturbed, e.g., by natural or adversarial noise specifically crafted to fool a
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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given model. With certain adversarial attack methods bridging the gap between
theoretical concern and practical considerations by fooling commercial road signs
detector with adversarial attacks [4,22], robustness is becoming a progressively
more important aspect of model deployment.

Previous work has demonstrated that regularizing the lp-norms of the Jaco-
bian of the network mapping can meet these two goals concurrently and different
techniques have thus been developed to target these quantities [28]. Although
obtaining the Jacobian is theoretically straightforward, it is computationally
expensive and thus most schemes only seek to approximate a given norm. For
example, the Frobenius norm has been approximated through sampling schemes
and layer-wise approximations [9,12] while the spectral norm has been targeted
by upper-bounding the spectral norm of each weight matrix in the network
[28,31].

In this work we extend on the schemes that target the spectral norm. While
penalizing an upper-bound of the spectral norm does improve generalization
and robustness, it is also crude in the sense that it does not directly target the
quantity of interest and might thus inhibit the performance more than necessary.
We instead provide an efficient algorithm that targets the exact spectral norm
of the Jacobian. Using this algorithm we demonstrate that targeting the exact
spectral norm yields an improved generalization performance while preserving a
healthy defence against natural and adversarial perturbations.

2 Background

We follow [31] and represent an L-layer neural network f : Rnin → R
nout recur-

sively as xl = f l(Gl(xl−1)+bl), l = 1, 2, ..., L where Gl is either a linear operator
(e.g., convolution) or a piecewise linear operator (e.g., max-pool), f l the corre-
sponding activation function, bl ∈ R

nl is the associated bias for layer l and we
set the input x = x0. Denoting the collection of all parameters of the network
as θ, and making the dependence of the network on the parameters explicit as
fθ, the full network function will be given as fθ(x) = xL.

Momentarily restricting ourselves to the classification setting, the task that
we are interested in is then the supervised learning problem of finding parame-
ters θ such that fθ can associate feature-values x ∈ R

nin with one-hot encoded
labels y ∈ R

nout obtained from an unknown distribution P . This is achieved by
collecting a training set Dt := {(xi, yi)}N

i=1 where (xi, yi) ∼ P and employing an
appropriate loss function l : Rnout × R

nout → R which encourages fθ to model
a probability distribution for the possible labels for a given feature-value. Min-
imizing the full loss lbare(θ,Dt) := 1/|Dt|

∑
(xi,yi)∈Dt

l(fθ(xi), yi) will thus align
the distribution of fθ(xi) with that of the ground-truth label yi. The minimiza-
tion is done through some variant of stochastic gradient descent (SGD) where
we split Dt into smaller disjoint random batches

⋃
i Bi = Dt and subsequently

minimize lbare(θ,Dt) by reducing the partial loss lbare(θ,Bi) for every batch Bi,
whereupon the training set is split into new batches and the process repeated.
We additionally utilize a validation set Dv := {(xi, yi)}M

i=1 with (xi, yi) ∼ P and
Dt ∩ Dv = ∅ to measure the performance of the model.
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2.1 Regularization

Although the sole minimization of lbare(θ,Dt) can yield networks that perform
adequately, the networks are often lacking in different regards such as generaliza-
tion and robustness. While there exists a wide variety of methods that attempt
to mitigate these deficiencies, for example by controlling the magnitude of the
weights as in weight decay, by utilizing knowledge distillation techniques [3,24]
or by augmenting the training data with adversarially perturbed examples [20],
here we focus on the regularization techniques obtained by penalizing with some
function h : R → R the norm of the Jacobian. This means that we seek to
minimize

ljac(θ,Dt, λ) :=lbare(θ,Dt) +
λ

|Dt|
∑

(xi,yi)∈Dt

h

(∣
∣
∣
∣

∣
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∣
dfθ(xi)

dx
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, (1)

where λ is a hyper-parameter that controls the trade-off between the two terms
and with typical choices for h being either h(x) = x or h(x) = x2.

For most norms the regularized loss (1) does not yield itself to any effec-
tive optimization schemes, requiring time-consuming operations to obtain the
Jacobian for each xi in every batch Bi. An exception to this is the Frobenius
norm where one can estimate the exact Frobenius norm either through a double-
backpropagation scheme [8] or by using a more efficient sampling scheme [12]
where one samples nproj vectors vj from the nout − 1 dimensional unit sphere
Snout−1 to approximate the squared Frobenius norm as
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d(vj · xL)
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, (2)

and thus minimizes the expression

lfrob(θ,Dt, λ) := lbare(θ,Dt) +
λnout

|Dt|nproj

∑

(xi,yi)∈Dt

nproj∑

j=1

[
d(vj · xL

i )
dx

]2

. (3)

We on the other hand are interested in penalizing the spectral norm of the
Jacobian at a point x, defined as
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= σmax, (4)

where σmax denotes the largest singular value of dfθ(x)/dx. A constraint on
(4) implies that we restrict the maximum rate at which fθ can change as the
input x is perturbed, thus promoting robustness of our model. While the spec-
tral norm does not immediately give itself to any viable method, [31] managed
to develop an efficient scheme by restricting themselves to the setting where all
activation functions are piecewise linear. Networks with piecewise linear acti-
vation functions are themselves piecewise linear functions and the input space
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can thus be decomposed into a partition R where for each R ∈ R there exists
WR ∈ R

nin×nout , bR ∈ R
nout such that fθ(x) = WRx + bR, ∀x ∈ R [10]. For

these piecewise linear networks, the Jacobian dfθ/dx is constant in each region
R ∈ R and given by WR. Calculating the spectral norm of the Jacobian at some
input x is thus reduced to calculating the spectral norm of WR associated with
R 	 x.

Although the regularization scheme is valid for all piecewise linear activation
functions, it is easiest to present for networks with only ReLU [23] activation
functions and we thus momentarily restrict ourselves to this setting. By restrict-
ing ourselves to these networks and by using the fact that all linear and piecewise
linear operators Gl can locally be represented as a matrix W l, one can obtain
the identity

WR = WLZL−1
R WL−1 · · · W 2Z1

RW 1 (5)

where Zi
R is a diagonal boolean matrix indicating which neurons in layer i that

have an output > 0 when passing x ∈ R through the network. Using this iden-
tity, an upper bound for ||WR||2 can be obtained as ||WR||2 ≤ ∏

l ||W l||2 and
subsequently [31] regularize the spectral norm by bounding the spectral norm of
each weight matrix. They thus minimize the expression

lspecUB(θ,Dt, λ) := lbare(θ,Dt) + λ

L∑

l=1

||W l||22, (6)

and additionally suggest to further effectivize the scheme by using power itera-
tion on the matrices W l as v ∼ Snl−1, u ← W lv, v ← (W l)T u to approximate
the spectral norm as ||W l||2 ≈ ||u||2/||v||2. While this scheme will penalize the
spectral norm of the Jacobian, it only does so through an upper bound, thus
potentially inhibiting the performance of the network more than necessary.

While previous work has mainly investigated the Spectral and Frobenius
norm penalization schemes in isolation from each other, one can argue that they
are strongly connected through the equivalence of all finite-dimensional norms
[14], with the specific relation given as

||W ||2 ≤ ||W ||F ≤ √
r||W ||2, (7)

where r is the rank of the matrix W .
While Eq. (7) allows for a large discrepancy between the norms of matrices of

large rank r, their distinction might not be that significant in practice, with the
consequence that the penalization schemes yield effectively equivalent models.
We are thus also interested in the empirical difference between networks trained
with regularization schemes targeting these two norms.

3 Method

Here we introduce our method which penalizes the spectral norm of the Jacobian
directly. Our scheme relies on power iteration as previous methods but targets
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||WR||2 directly. We will follow prior research and momentarily restrict ourselves
to piecewise linear networks without skip-connections since this provides a scheme
that is easy to present and implement, but keep in mind that the ensuing method-
ology is valid for networks with skip-connection and non-linear activation func-
tions as well at the cost of a more complex implementation scheme.

3.1 Exact Spectral Norm Regularization

To perform power iteration on WR we need a way to efficiently perform the
steps v ∼ Snin−1, u ← WRv, v ← WT

R u to subsequently approximate the norm
as ||WR||2 ≈ ||u||2/||v||2. Given that the main obstacle for an efficient scheme
is the construction of WR, our scheme circumvents the construction by directly
focusing on the matrix-vector products WRv and WT

R u. Returning to the identity
(5), we can see that, given the constituent weight matrices W l and boolean
matrices Zl

R, one can obtain the desired matrix-vector products as

WRv = WLZL−1
R WL−1 · · · W 2Z1

RW 1v, (8)

WT
R u = (W 1)T Z1

R(W 2)T · · · (WL−1)T ZL−1
R (WL)T u. (9)

While the matrices Zl
R can easily be obtained by recording which neurons that

have an output > 0 when passing x ∈ R through the network, the construction
of the matrices W l is inefficient for most network layers except for the very
simplest ones, making the direct application of (8)–(9) impractical.

While the direct application is impractical, we can obtain a practical scheme
by interpreting Eq. (8)–(9) in a particular manner. Equation (8) is nothing other
than the forward-pass of v through the network with all bias vectors set to 0
and the activation functions replaced with multiplication with boolean matrices
Zl

R, hereby referred to as the forward mode of the network. Similarly, Eq. (9)
is the output obtained by passing u backwards through the network, meaning
that we start at the final layer and transform u layer by layer with analogous
modifications to the bias vectors and activation functions as in the forward mode
until we reach the input layer. We will hereby refer to this reverse pass as the
backward mode1 of the network. This interpretation circumvents the formation
of the matrices W l and instead relies on forward and backward operators F l and
(FL)T that make use of the linear and piecewise linear operators Gl and their
corresponding transposed version (Gl)T that implicitly define W l and (W l)T ,
e.g., through convolution and transposed convolution operators. While for many
layers we have that the layer transformations Gl and the resulting forward oper-
ators F l coincide, meaning F l = Gl, there do exist some exceptions to this rule
where a little bit of extra care is needed to ensure that the forward and back-
ward modes correctly map to WRv and WT

R u respectively, e.g., max-pooling
layers where the max-indices of the forward-pass has to be utilized. The reader

1 Note that the backward mode can be obtained by a standard backward pass to
evaluate d(xL·u)/dx. We refer to it here as backward mode to highlight the symmetry
with the forward mode which does not have a standard equivalent counterpart.
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f1[C(W1, b1)] f2[C(W2, b2)] L(W3, b3) WRx + bRx

Z1C(W1, 0)

T (W1, 0)

Z2C(W2, 0)

Z1T (W2, 0)

L(W3, 0)

Z2L(WT
3 , 0)

WRv = uv

WT
Ru

Forward-pass

Forward mode

Backward mode

C(W, b) : Convolution with kernel W and bias b
T (W, b) : Transposed convolution with kernel W and bias b Zi

R : Boolean matrix
L(W, b) : Affine transform with weights W and bias bLegend:

(a)

(b)

Fig. 1. The difference between a regular forward-pass and the forward and backward
modes for a two hidden layer network. (a) A regular forward-pass of x through the
network. Each box showcases the operation that maps the input between the layers. The
black squares indicate the neurons mapped to zero by the ReLU activation functions
f i. (b) The forward and backward modes used to estimate ||WR||2. An input v is sent
through the network to yield u whereupon u is sent backwards through the network.
Note how each operation is now bias-free with the same weights as during the forward-
pass. The activation functions are replaced by multiplication with the Boolean matrices
designed to keep the activation pattern fixed, see Eq. (8)–(9). The backward mode is
achieved through transposed convolutions and linear transformations.

is referred to Appendix B to see the conversion between the operators Gl, F l

and (F l)T for some commonly used layers.
Thus we can target the exact spectral norm of WR by performing power iter-

ation with v ∼ Snin−1 and obtain the matrix-vector products WRv and (WR)T u
through the forward and backward mode respectively, thereupon estimating the
spectral norm as ||WR||2 ≈ ||u||2/||v||22. For a visualization of the difference
between a regular forward-pass, the forward and backward mode of the network
and the involved operators, see Fig. 1 where all of this is visualized for a simple
three layer convolutional network. The network only utilizes ReLU activation
functions so that f1 = f2 =ReLU and G1, G2 are given by convolutional layers
while G3 is a linear layer.

Making the association between R and an input x, x ∈ R, explicit as Rx, we
can formulate our exact spectral loss as

lspec(θ,Dt, λ) := lbare(θ,Dt) +
λ

|Dt|
∑

(xi,yi)∈Dt

||WRxi
||2. (10)

Further, converting the matrix multiplication with the Boolean matrices Zi
R to

component-wise Hadamard products  with vectors zi, we can formulate the
entire scheme on a batch level which can be seen in Algorithm 1 below.
2 It is possible to perform power iteration multiple times to get a better estimate but

we found that performing it once gave sufficiently accurate estimates.
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Algorithm 1. Forward-backward algorithm for a ReLU network.
1: Input: Mini-batch Bi of feature-value pairs (x, y), weight factor λ, number of power

iterations N
2: Output: Approximate gradient ∇θlspec(θ, Bi, λ)
3: x0 = x � Forward-pass start
4: for l = 1 to L do
5: xl = f l(Gl(xl−1) + bl)
6: if l < L then
7: zl = I{xl > 0}
8: u ∼ N (0, I) � u is of shape (|Bi|, nin)
9: for n = 1 to N do � Forward-mode start

10: v = u/||u||2
11: for l = 1 to L do
12: v = F l(v)
13: if l < L then
14: v = v � zl

15: u = v, u = u/||u||2
16: for l = L to 1 do � Backward-mode start
17: u = (F l)T (u)
18: if l > 1 then
19: u = u � zl−1

20: Rspec(θ) =
∑

(xi,yi)∈Bi
||WRxi

||2 �
∑

(xi,yi)∈Bi
||WRxi

||2 = sum(||u||2/||v||2)
21: ∇θlspec(θ, Bi, λ) = ∇θlbare(θ, Bi) + ∇θ

λ
|Bi|Rspec(θ)

3.2 Extension to Non-piecewise Linear Transforms

While the scheme detailed in Algorithm 1 is capable of regularizing the spectral
norm of the Jacobian, it is easiest to implement and most efficient in the piecewise
linear setting where all layer-wise transformations are given by piecewise linear
functions. Although this is a restriction, many well performing networks rely
solely on non-linearities given by piecewise linear activation functions with the
addition of batch-normalization layers, see for example VGG [27] and ResNet [11]
among others. Creating an easily implementable regularization scheme for this
well-performing setting thus only requires us to additionally ensure the validity
of the scheme when using batch-normalization.

Batch-normalization poses two issues which complicates the extension of the
regularization scheme.

1. Division by the variance of the input makes batch-normalization a non-
piecewise linear transformation during training.

2. Since the mean and variance are calculated per batch, batch-normalization
induces a relation between input xj and output fθ(xi) where xi, xj ∈ B, i �= j.
This induced relation adds multiple components dfθ(xi)/dxj to the Jacobian
which represents how an input xj affects an output fθ(xi). We believe these
components are not relevant in practice and effort should thus not be spent
controlling them.
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Since both of these issues are only present during training, we circumvent them
by penalizing the spectral norm of the Jacobian obtained by momentarily engag-
ing a pseudo-inference mode where we set the running mean and variance of
the batch-normalization layers to be fixed and given by the variance and mean
obtained from the batch.

Additionally, Algorithm 1 can be efficiently extended to networks employ-
ing non-piecewise linear transformations as well at the cost of a more compli-
cated implementation scheme. While not explicitly stated, Algorithm 1 can be
used for non-piecewise linear transformations, replacing the Boolean matrices
Zl with matrices given by df l/dxl−1. However, the calculations and storage of
these matrices is likely to be cumbersome and memory intensive for most naive
implementations and networks and we thus recommend that one instead utilizes
the internal computational graph present in most deep learning libraries. Calcu-
lating Eq. (9) is equivalent to calculating (df/dx)T u and can thus be obtained
by simply applying back-propagation to d(xL · u)/dx which is a valid scheme
for all networks, not only piecewise linear ones. Similarly we can obtain the
matrix-vector product (df/dx)v by utilizing the same computational graph used
to obtain d(xL ·u)/dx, but reverse the direction of all relevant constituent edges
and adding a fictitious node to represent the inner product with v, see Fig. 2
for a demonstration of this fact for a simple computational graph. We present a
proof of the validity of this extension scheme this in Appendix D.
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Fig. 2. Illustration of the extension scheme. (Top-left) The computational graph asso-
ciated with the forward-pass. Each node can perform any non-linear transformation of
the associated input. To obtain the i:th component of (dy/dx)T u we sum the product
of the edge elements along every path from the right-most node to xi. (Bottom-right)
The modified computational graph to obtain (dy/dx)v. The direction of all edges are
flipped, we remove the right-most node and we add a fictitious node to the computa-
tional graph (marked as a empty circle) with connecting edge elements being given by
components of v. All other relevant edge elements are preserved from the top graph.
The i:th component of (dy/dx)v can then be obtained by starting at the fictitious node
and summing the product of the edge elements along every path to yi
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For this work we choose not to focus on this possible implementation further
though since the piecewise linear setting already encompasses a large amount
of models and we believe that most will find the scheme in Algorithm 1 more
straightforward to implement than delving deep into the mechanics of compu-
tational graphs. Further adding on to this fact is that the internals of the com-
putational graphs of popular deep learning frameworks (such as PyTorch [25]
and TensorFlow [1]) are written in C++ and having to perform modifications
of the graph would thus potentially impede the Python-based workflow which
many practitioners operate with. However, if one wishes to utilize spectral reg-
ularization for networks that employ non-piecewise linear activation functions,
for example sigmoids which can be of relevance for attention mechanisms [29],
then the extension scheme provides a well-principled and efficient approach that
one can follow. In that case one would replace the Forward-mode and Backward-
mode in Algorithm 1 with the computational graph manipulation techniques to
obtain (df/dx)v and (df/dx)T u respectively.

4 Experiments

In this section we evaluate how targeting the exact spectral norm, hereby referred
to as the Spectral method, compares to other regularization methods, namely
the Frobenius method given by Eq. (3), the Spectral-Bound method given by
Eq. (6) and weight decay [17] (also referred to as L2-regularization). We compare
the generalization performance across different data sets and investigate the
robustness of the obtained networks.

4.1 Generalization

In-domain Generalization. The considered data sets where the generaliza-
tion performance is measured are MNIST [19], KMNIST [5], FashionMNIST
(which at times we will abbreviate as FMNIST) [30] and CIFAR10 [16]. The
generalization performance is measured by measuring the accuracy on the corre-
sponding validation set Dv for each data set. A variant of the LeNet architecture
[18] is used for the MNIST, KMNIST and FMNIST dataset while the VGG16
[27] architecture is used for CIFAR10. All four data sets are preprocessed so that
they have channelwise mean of 0 and a standard deviation of 1. We perform a
grid-search to find the optimal hyperparameters for each network and regular-
ization scheme, see Appendix A for more details regarding the training setup.
Each experiment is repeated five times and the model that has the lowest mean
loss over all hyperparameters over these five runs is chosen as the representative
of a given method. The results of this experiment can be seen in Table 1.

From these results we can see that penalizing the exact spectral norm yields
models with a higher mean accuracy than the Spectral-Bound method, demon-
strating that targeting the exact spectral norm yields an improved generalization
performance compared to working with an upper bound. Further, we can see that
the differences in accuracy between the Frobenius and the Spectral methods are
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Table 1. Mean test accuracy ± one standard deviation for the different regularization
methods on four data sets computed over 5 runs. Bold indicates best mean accuracy.

Method CIFAR10 KMNIST FMNIST MNIST

Spectral 90.04 ± 0.57 96.49 ± 0.15 90.94 ± 0.33 99.34 ± 0.03

Frobenius 90.15 ± 0.63 96.52 ± 0.11 90.92 ± 0.18 99.39 ± 0.04

Spectral-Bound 89.41 ± 0.66 95.86 ± 0.19 90.73 ± 0.10 99.26 ± 0.05

L2 89.92 ± 0.71 95.90 ± 0.19 90.66 ± 0.10 99.21 ± 0.02

None 88.62 ± 0.69 94.69 ± 0.52 90.51 ± 0.21 99.09 ± 0.09

slim, showcasing the small practical difference between training neural networks
with one of these methods over the other.

Out-of-Domain Generalization. To get a full picture of how well the models
trained with the different regularization schemes generalize we additionally mea-
sure their performance on a cross-domain generalization task, a situation which
practitioners can often encounter. To measure this generalization ability we use
our best performing models on the MNIST data set, and measure their perfor-
mance on the combined train and test data of the USPS data set [13]. These
results can be seen in Table 2 below. As can be seen from Table 2, we obtain
similar conclusions as in the in-domain generalization experiment. The Spectral
method obtains a higher mean accuracy than the Spectral-Bound method, while
the Frobenius and Spectral method give rise to virtually equally well performing
models.

Table 2. Mean test accuracy ± one standard deviation and loss for the different reg-
ularization methods on the USPS data set for the best performing models on MNIST.
Bold indicates best accuracy and loss.

Method Accuracy Loss

Spectral 83.76 ± 1.15 0.59 ± 0.06

Frobenius 83.76 ± 0.68 0.63 ± 0.05

Spectral-Bound 82.16 ± 1.80 0.66 ± 0.07

L2 83.02 ± 1.95 0.62 ± 0.07

None 83.56 ± 0.39 0.78 ± 0.10

4.2 Robustness

While generalization on a validation or test set gives an indication of model
performance in practice, data encountered in reality is often not as exemplary
as a curated benchmark data set and ensuring robustness against both natural
and adversarial noise can often be a precondition for model deployment.
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As previously mentioned, earlier research has indicated that controlling the
norm of the Jacobian is beneficial for robustness of our networks and we thus
follow the path of [12] and investigate how the robustness of the different schemes
compare.

Robustness Against White Noise. We measure the robustness against white
noise by creating a noisy validation set Dv,σ2 for FashionMNIST and KMNIST,
consisting of data points x̃ obtained by adding independent Gaussian distributed
noise to each individual pixel of validation points x ∈ Dv as

x̃ij = xij + ε, ε ∼ N (0, σ2) (11)

whereupon we clip the value of all pixels into the range [0,1] and perform the
aforementioned pre-processing. Further, to enable a fair comparison between
the different methods and to not have the result obscured by the initial baseline
accuracies, we measure the difference between the baseline accuracy on Dv and
the accuracy on Dv,σ2 . These results can be seen to the left in Fig. 3 where we see
that there is not a large difference in robustness between either of the training
schemes.

Robustness Against Adversarial Noise. The last decade has seen an
increased growth in the amount of research into adversarial noise, noise that
may be imperceptible to the human eye but which has a considerable impact on
the prediction of a deep learning model. Here we will work with the adversarial
noise technique known as projected gradient descent (PGD) method [20] and
related variants. PGD obtains the perturbation x̃ through a constrained gradi-
ent ascent, moving in a direction which increases the loss lbare(θ, {(x, y)}) while
simultaneously restricting the ascent to the ball Bδ = {z ∈ R

n0 : ||x− z||∞ ≤ δ}
which ensures that the perturbation x̃ is visually similar to x. Formally, PGD
obtains x̃ as

x̃ = ProjBδ

[

x + ηsign
(

dlbare

(
θ, {(x, y)})

dx

)]

, (12)

where Proj denotes the projection operator and η the step-size for the gradi-
ent ascent. The gradient ascent process can be repeated over several iterations
to yield perturbations x̃ indistinguishable from x but for which the network
predicts an incorrect label. After the ascent procedure we clip the pixel values
into the range [0,1] and perform the pre-processing as before. We will addition-
ally consider the adversarial attack methods TPGD [32] that performs PGD
on a Kullback-Leibler divergence of the softmax-scores, and the gradient-free
attack Square [2]. All attacks are implemented through the torchattacks library
[15] with default parameters except for the parameters δ, η which we set to be
32/255 and 2/255 respectively.
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Fig. 3. Robustness against perturbations. Each plot displays how the test accuracy
drops as the perturbations gets stronger. Each column corresponds to a perturbation
method and each row is associated with a given data set. The curves and intervals are
obtained as the mean and standard deviation over 5 different networks.

To control the strength of the adversarial noise we vary the number of iter-
ations for each attack. As before, to enable a fair comparison we compute the
difference between the baseline accuracy on FashionMNIST and KMNIST with
the adversarially perturbed validation sets. These results can be seen in Fig. 3
where we see that the Spectral regularization scheme is able to consistently
ensure stronger robustness for the PGD and TPGD attacks on KMNIST and
FMNIST compared to Spectral-Bound. Additionally, we can see that the differ-
ences between the Frobenius and Spectral methods are small and superior to
the other techniques, further showcasing the small practical difference between
these methods and that exact penalization of the Jacobian improves the safe-
guard against adversarial noise.

Distance to Decision Boundary. One way to attempt to understand how
penalizing the Jacobian strengthens the robustness is to analyze the distance to
the closest decision boundary. Previous research demonstrated that controlling
the Frobenius norm enlarged the decision cells and thus argued that this made
the network more robust to perturbations [12]. We extend their experiments and
perform an extensive investigation to measure the robustness where we measure
the distance to the decision boundary for all validation points in FashionMNIST
and KMNIST. To measure the distance to the decision boundary for a given
point we sample points uniformly on concentric spheres of different radii and
perform a binary search to find the smallest radii such that a sampled point
obtains a predicted class different from the validation point at the center of the
sphere. These results are summarized in Fig. 4.
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From these results we see that penalizing the Jacobian on KMNIST gives
rise to larger regions in general, as showcased by the large regions obtained
by the Spectral, Frobenius and Spectral-Bound method. On FashionMNIST we
can instead see that the Frobenius and Spectral-Bound method gives rise to
the largest regions on average. That the Spectral-Bound method achieves large
regions on average for FashionMNIST yet provides one of the weaker safeguards
against adversarial noise in Fig. 3 implies that the enlargening of the regions can-
not fully capture the nuances of robustness against adversarial attacks. Choosing
a model based on this intuition that larger regions provide a stronger safeguard
can even yield a subpar model in this case.

We hypothesize that one aspect of robustness that this intuition fails to take
into account is the structure of the loss landscape. Since a smooth loss landscape
with large gradients will facilitate the creation of adversarial examples through
gradient ascent we must also consider this aspect to get a holistic view of a
regularization methods robustness.

Fig. 4. Distance to the decision boundary. (Left) Distance to the nearest boundary for
validation points in KMNIST. (Right) Distance to the nearest boundary for validation
points in FashionMNIST.

5 Conclusion

We have demonstrated a method to improve spectral norm regularization for
neural networks. While previous methods relied on inexact upper bounding tech-
niques, our technique targets the exact spectral norm. In the piecewise linear set-
ting our method is easily implemented by performing power iteration through a
forward-backward scheme.

This scheme obtained an improved generalization performance as compared
to regularizing the spectral norm through the minimization of an upper bound
and we could additionally see an indication that our scheme and a scheme tar-
geting the exact Frobenius norm of the Jacobian gives rise to virtually equivalent
results in terms of robustness and accuracy. Further, we investigated the intu-
ition that Jacobian regularization provides a strong defence against adversarial
attacks by the enlargening of the decision cells and found that the size of the
regions is not necessarily indicative of the robustness of the network.
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Our work has built on and further solidified the body of research that demon-
strates the usefulness of Jacobian regularization. Future work should further
investigate both the practical and theoretical difference between the developed
schemes for penalizing the exact Jacobian on a larger variety of models and
data sets. Additionally, by implementing the extension scheme to enable the
algorithm for networks with general activation functions these differences can be
investigated in more generality and provide further insight into the exact relation
between these regularization schemes. Future practical applications also involve
investigating the potentially gain in robustness that our scheme can provide
in situations practitioners can often encounter, such as fine-tuning pre-trained
models [7] and working with data of varying quality [21].
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Appendix

A Experimental details

Network Architectures. We will follow [12] and denote a convolutional-max-
pool layer as a tuple (K, Cin → Cout, S, P,M) where K is the width of the kernel,
Cin is the number of in-channels, Cout the number of out-channels, S the stride, P
the padding of the layer and M the size of the kernel of the max-pool following the
convolutional layer. The case M = 1 can be seen as a convolutional layer followed
by an identity function. Linear layers we will denote as the tuple (Nin, Nout) where
Nin is the dimension of the input and Nout the size of the output. For KMNIST
and FashionMNIST we used the LeNet network which consist of a convolutional-
maxpool layer (5, 1 → 6, 1, 2, 2), convolutional-maxpool layer (5, 6 → 16, 1, 0,
2), linear layer (400, 120), linear layer (120, 84) and linear layer (84, 10).

We use the VGG16 network as is available from the torchvision package. For
this network we use batch-norm layers directly after every convolutional layers.
This network consist of the layers (3, 3 → 64, 1, 1, 1), (3, 64 → 64, 1, 1, 2), (3,
64 → 128, 1, 1, 1), (3, 128 → 128, 1, 1, 1), (3, 128 → 256, 1, 1, 2), (3, 256 → 256,
1, 1, 1), (3, 256 → 256, 1, 1, 1), (3, 256 → 512, 1, 1, 2), (3, 512 → 512, 1, 1, 1),
(3, 512 → 512, 1, 1, 1), (3, 512 → 512, 1, 1, 2), (512, 10).

Training Details. We train the LeNet networks for 50 epochs with SGD (with
momentum=0.8). For every regularization method we perform a hyperparameter
search over these three following parameters and values.

– Learning rate: [0.01, 0.001]
– Batch size: [16, 32]
– Weight factor λ: [0.0001, 0.001, 0.01, 0.1]
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For the VGG16 network we trained the network for 100 epochs with a batch size
of 128, SGD with momentum of 0.8 and performed a hyperparameter search
over these parameters and values

– Weight factor λ: [0.00001, 0.0001, 0.001, 0.01, 0.1]

For VGG16 we additionally used a cosine annealing learning rate scheduler with
an initial learning rate of 0.1 and the data augmentation techniques of random
cropping and horizontal flipping.

For each hyperparameter setting we repeat the training procedure 5 times to
be able to obtain mean and standard deviation. We pick the final representative
model for each regularization method as the one that achieves the lowest mean
validation loss over these 5 training runs.

For the Frobenius regularization we set nproj = 1 and for the Spectral-
Bound we estimate the spectral norm of the weight matrices through one power
iteration.

Details for Figures. Figure 4: The model for each regularization method was
chosen randomly among the 5 models from the hyperparameter setting that
obtained the best results in Table 1. The distance is only calculated for the
points in the validation set that all models predict correctly. In total the distance
is predicted for between 8000–9000 validation points on FashionMNIST and
KMNIST.

Figure 5 (left): The time for a batch was measured on a computer with NVIDIA
K80 GPU as available through Google Colab3. The analytical method works by
sequentially calculating d(xL · ei)/dx where ei is a basis-vector for R

nout for
i = 1, 2, ..., nout. This yields the full Jacobian matrix which we then calculate
the singular values of by using inbuilt functions in PyTorch.

Figure 5 (right): The upper bound was evaluated on a network trained with
the Spectral-Bound regularization scheme for all data points in the training set.
The curve for the spectral method was evaluated on a network trained with the
spectral method for all data points in the training set. For the spectral method
there was no significant difference in the shape of the curve when using a different
network or by working with data points in the validation set.

B Conversion Between Operators

In this section we detail how to convert between the forward F , backward FT

and regular operators G. These can be seen in Table 3 - 5. Other non-linearities
such as Dropout can be incorporated identically to ReLU by simply storing the
active neurons in a boolean matrix Z.

3 colab.research.google.com.
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Skip-Connections. Utilizing networks with skip-connections does not change
the forward and backward modes. Simple turn off the bias of all layer transfor-
mations and replace the activation functions with the matrices Zi

R instead. That
this is true follows from the definition of a network with skip-connections. For
simplicity of presentation, we will assume that the skip-connections only skip
one layer. Assume that we have a network with L layers and additionally have
skip-connections between layers with indices in the set S := {s1, s2, ..., sm}, 1 ≤
si ≤ L. Then the network fθ is given recursively as before with

xl =

{
f l(Gl(xl−1) + bl) if l ∈ SC ,

xl−1 + f l(Gl(xl−1) + bl) if l ∈ S.

Assuming that we are only working with piecewise linear or linear operators Gl,
then for x ∈ R we know that each operator can be represented as a matrix and
we can write the derivative of the two cases as

dxl

dxl−1
=

{
ZlW l if l ∈ SC ,

I + ZlW l if l ∈ S,

where I denotes a unit-matrix. The Jacobian-vector product WRv can thus be
obtained as

WRv =
( L∏

l=1

(I − I{l ∈ SC} + ZlW l)
)

v (13)

where I{l ∈ SC} is an indicator for the unit-matrix so that we can concisely
write the two cases. Thus we see that we can interpret this equation in the same
manner as we did for the networks without skip-connections. We simply pass the
input v through the network and turn off all the biases and replace the activation
functions with Zl. The same is true for the backward mode (Table 4).

Table 3. Conversion table for the linear operator.

Forward-pass (G) Forward-mode (F ) Backward-mode (F T )

Input: x, W, b
y = Linear(x, W, b)
return: y

Input: x, W
y = Linear(x, W, 0)
return: y

Input: x, W
y = Linear(x, W T , 0)
return: y

Table 4. Conversion table for the convolutional operator.

Forward-pass (G) Forward-mode (F ) Backward-mode (F T )

Input: x, W, b
y = Conv(x, W, b)
return: y

Input: x, W
y = Conv(x, W, 0)
return: y

Input: x, W
y = ConvTranspose(
x, W, 0)
return: y
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Table 5. Conversion table for the max-pool operator.

Forward-pass (G) Forward-mode (F ) Backward-mode (F T )

Input: x
y, indices = maxpool(x)
I = indices
S = x.shape
return: y, I, S

Input: x, I
y = x[I]
return: y

Input: x, I, S
y = maxunpool(x,
indices=I, shape = S)
return: y

C Time Efficiency and Relative Error

In this section we investigate the difference between targeting the exact spectral
norm of the Jacobian compared to working with an upper bound. From Table 1
we saw that this yields an improved generalization performance and from Fig. 3
we observed that the two methods provide a similar protection against noise, with
different strengths against different attacks on the two considered data sets.

While an improved generalization performance is beneficial, it cannot come
at a too large of a computational cost. Additionally, with approximate meth-
ods it is also important to measure the trade-off between computational speed
and accuracy of the approximated quantity. We thus analyze the computational
overhead that they add to the training routine and the relative error with the
analytical spectral norm.

In Fig. 5 (left) we can thus see the average time taken to optimize over a batch
for the Spectral method, the Spectral-Bound method, an analytical method that
calculates ||WR||2 exactly and a regular forward-pass. In Fig. 5 (right) the relative
error for the power iteration scheme is visible.

∏
l ||W l||2

Fig. 5. Time and error comparison between the Spectral and Spectral-Bound method
for the LeNet network. (Left) Time taken to pass over one batch of data points. The
Spectral method is slower than the Spectral-Bound method for larger batch sizes but
still around two orders of magnitude faster than calculating the exact spectral norm
analytically. (Right) The relative error as the number of power iterations is increased.
The relative error decreases quickly and is significantly closer to the exact quantity
compared to the upper bound

∏
l ||W l||2.
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From these plots we can see there is a small extra incurred cost of work-
ing with our method compared to regularizing with Spectral-Bound, but that
our method has a significantly lower relative error while still being orders of
magnitude faster than calculating the analytical spectral norm.

D Proof for Extension Scheme

We will denote the directed acyclic graph which when summing the product of
every edge element along every path from output to input yields (df/dx)T as G.

Theorem: Consider the graph F obtained by flipping the direction of all edges
of G and adding a node at the end of F with edge elements given by components
of v. Summing the product of every edge element along every path from output
to input of F yields (df/dx)v.

Proof: We will follow the notation of [6], Theorem 1 and denote the Jacobian
between variables y = fθ(x) and x as the sum of the product of all intermediate
Jacobians, meaning

dy

dx
=

∑

p∈P(x,y)

∏

(a,b)∈p

Ja→b(αb) (14)

where P(x, y) is the set of all directed paths between x and y and (a, b) is two
successive edges on a given path.

In our scheme we flip the direction of all relevant edges and add a fictitious
node at the end of the path the flipped paths. Since we preserve the edge ele-
ments, we can realize that flipping the direction of the edges simply transposes
the local Jacobian, meaning that Jb→a(αb) =

(
Ja→b(αb)

)T with our scheme.
Further, our added fictitious node has edge elements given by elements of v, and
the Jacobian between that node and the subsequent layer is thus given by vT .
For a path p = [(v1, v2), (v2, v3), ..., (vn−1, vn)] we define the flipped path with
the added fictitious node as pT as pT = [(vn, vn−1), ..., (v2, v1), (v1, vf )] and the
reverse-order path ¬p as ¬p = [(vn−1, vn), ..., (v2, v3), (v1, v2)]. For our modified
graph we thus have the Jacobian for a path as

∏

(a,b)∈pT

Ja→b(αb) =
∏

(a,b)∈pT

(
Jb→a(αb)

)T (15)

= vT

( ∏

(a,b)∈p

Ja→b(αb)
)T

(16)

= vT

( ∏

(a,b)∈¬p

Ja→b(αb)T

)

(17)
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Denoting the fictitious node as nf and summing over all paths we thus get
∑

pT ∈P(y,nf )

∏

(a,b)∈pt

Ja→b(αb) (18)

=
∑

pT ∈P(y,nf )

vT

( ∏

(a,b)∈¬p

Ja→b(αb)T

)

(19)

= vT
∑

pT ∈P(y,nf )

( ∏

(a,b)∈¬p

Ja→b(αb)T

)

(20)

= vT
(dy

dx

)T = (
dy

dx
v)T (21)

which proves that working with the modified graph will yield the desired matrix-
vector product dy

dxv �.
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Abstract. Improving fairness by manipulating the preprocessing stages
of classification pipelines is an active area of research, closely related
to AutoML. We propose a genetic optimisation algorithm, FairPipes,
which optimises for user-defined combinations of fairness and accu-
racy and for multiple definitions of fairness, providing flexibility in the
fairness-accuracy trade-off. FairPipes heuristically searches through a
large space of pipeline configurations, achieving near-optimality effi-
ciently, presenting the user with an estimate of the solutions’ Pareto
front. We also observe that the optimal pipelines differ for different
datasets, suggesting that no “universal best” pipeline exists and con-
firming that FairPipes fills a niche in the fairness-aware AutoML space.

Keywords: Algorithmic Fairness · AutoML · Data Preprocessing ·
Ethical AI · Genetic Algorithms · Preprocessing Pipelines

1 Introduction

The prevalence of decision-making mechanisms in life-impacting decisions, rang-
ing from bank loans to probation decisions, makes understanding and control-
ling the fairness of automated decisions indispensable, pushing fairness-aware
Machine Learning to the forefront of ML research. Many definitions of fairness
have been proposed [19] with no definitive agreement [12]. Regardless of the spe-
cific metric adopted to measure fairness, it is broadly accepted that the origins
of unfairness can be traced back to training data [9]; in this regard, the database
community ideally positioned to help fix this problem [29,30]. The focus of this
paper is on the data preprocessing steps that are deployed to transform the raw
input data into its final form as a training set, and on their effect on the fairness of
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Torra and Y. Narukawa (Eds.): MDAI 2023, LNAI 13890, pp. 202–213, 2023.
https://doi.org/10.1007/978-3-031-33498-6_14
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the resulting model. Several catalogues and classifications have been proposed for
data preprocessing operators, e.g., by ML Bazaar [28], Orange [10] and others [13].

A summary of the most common preprocessing steps is given in Table 1,
where the operators are grouped into five categories: encoders, imputers, scalers,
samplers, and feature selectors; the top row lists the strategies considered in
this paper. Some of these steps are required by the classification framework,
e.g., encoding categorical variables and imputing missing data, while others may
optionally be deployed to improve model performance, e.g., class balancing, scal-
ing and feature selection. These steps are generally selected and combined into
pipelines based on best practice considerations, with model performance as the
main objective [25]. While the effect of preprocessing on classification perfor-
mance has been analysed for individual operators [8,14,32], we study the effect
of such preprocessing on the fairness of the resulting classifier.

Table 1. Preprocessors offered by FairPipes and other AutoML packages.

Package Encoders Imputers Scalers Samplers Feature Selectors

FairPipes One-Hot,
LOO,
Target,
Count,
WoE,
Ordinal

Mean,
Median,
Most Frequent

Quantile,
Normalizer,
MinMax,
MaxAbs,
None

Over,
Under,
None

K-Best,
None

TPOT One-Hot Median Robust,
Standard,
MinMax,
MaxAbs,
None

None Polynomial, None

ML Bazaar Categorical,
Label

Mean MinMax,
MaxAbs,
Robust,
None

None SelectFromModel,
None

auto-sklearn One-Hot Mean Normalizer,
None

None PCA,
Polynomial,
Extra Trees,
None

H2O Target Mean,
Median,
Most Frequent

None Over,
Under,
None

None

1.1 Related Work

Fairness-aware preprocessing is usually attained by applying fairness-specific
methods, e.g., [4,7,15,18,26]. However, these are not always readily available,
and they may cause undesired side-effects such as loss of accuracy, since they
involve the introduction of synthetic data into the original dataset, e.g., by syn-
thetic oversampling [6] or by feature engineering [20]. It is important to note that
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FairPipes does not directly compete with these methods. Instead, FairPipes
can easily be adapted to incorporate them to its pipeline search-space.

Evolutionary optimisation algorithms have shown to work well in many real-
world applications, particularly on two-objective problems [17,22]. Specifically,
they have been used to optimise specific data preprocessing tasks, e.g., for fea-
ture selection [31] and data correction [1], as well as to build full preprocessing
pipelines, e.g., TPOT [24].

1.2 Fairness

In this work we focus on binary classification tasks with positive class 1 and
negative class 0, and a single binary protected attribute (PA). This is a user-
selected attribute that is considered sensitive and with respect to which fairness
is defined. The two values of the PA determine a two-way partition of the train-
ing set. For each of the two groups, their positive rate (PR) is the proportion of
positive instances found in the corresponding training subset. The group with
higher PR is denoted as favoured (F ), while the other is the unfavoured group
(U). If necessary, the single binary PA requirement may be relaxed to support
multiple multi-class PAs by considering a “combined” binary PA, which may
be obtained through a linear combination of each instance’s subgroup PRs, as
explained in [15]. While our approach is agnostic to several group-fairness met-
rics, in our experiments we focus on one of the most commonly seen in the
literature, demographic parity (DP), defined in [19] as:

DP(Ŷ ) := |P ( Ŷ = 1 | PA = F ) − P ( Ŷ = 1 | PA = U )|,

where small DP values indicate a “fairer” model.

1.3 Problem Formulation

It has been shown that preprocessing choices have an impact over the fairness
of a classifier, as they can cause side-effects such as an increase in the under-
representation of minority groups [35]. Our goal is to automatically generate
“fairness-aware” pipelines, where the data scientist has control over the well-
known trade-off between the fairness and the performance of a classifier [23]. We
formulate FairPipes as a multi-objective optimisation problem, working over
pre-processing pipelines, as follows.

Given a universe of configurable data processing operators (as in Table 1) and
a target performance–fairness objective (for some choice of fairness definition),
we want to find a sequence of configured operators that forms an optimal pipeline
with respect to the target.

For any decision problem involving two or more optimisation objectives, a
point in the solution space (i.e., a specific configured pipeline) is said to be
Pareto-efficient (or Pareto-optimal) if none of the individual objectives can be
improved without worsening at least one of the other objectives.
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The set of all Pareto-efficient solutions is called the Pareto front [36]. In
our setting, the Pareto front consists of all the pipelines such that fairness and
performance cannot improve at the same time.

A naive approach to addressing the problem is to consider each possible
pipeline as an ordered combination of operators, learn a classifier for each of
those, and calculate both its accuracy and its fairness (note that this is a vector
of values, one for each of the fairness metrics). This is a combinatorial problem,
however. For example, there are 3,240 such pipelines in our test bed, resulting
from five operator families with varying number of options: six encoders, three
imputers, five scalers, three re-samplers, two feature selectors and six possible
orderings. To address this complexity we take a heuristic approach.

1.4 Contributions and Overview of Results

We introduce FairPipes, a genetic algorithm producing fairness-aware prepro-
cessing pipelines that are optimised for any combination of fairness and accu-
racy, for three different exemplar definitions of fairness. FairPipes presents the
data scientist with an estimate of the pipeline space’s Pareto front, providing
them with performance–fairness trade-offs. We present an extensive experimen-
tal evaluation of the approach using four benchmark datasets: Adult Income
(Income) [11], COMPAS [21], German Credit (German) [11] and Titanic [5],
and a universe of 3,240 pipeline configurations. Using this test bed, we show
that pipelines that are measurably close to the Pareto front for the chosen multi-
objectives are discovered by exploring about 6% of the search space.

Our experimental results, presented in Sect. 3, show that (i) fairness and per-
formance stand in contrast with each other, as expected [18], and (ii) FairPipes
converges on pipelines that optimise for different objectives. In our setting, eval-
uating the performance of 200 out of 3,240 possible pipelines—roughly 6% of
them—lead to estimated Pareto fronts with the average instance in the estimate
less than 0.04 DP/ACC units away from a true Pareto instance.

2 FAIRPIPES

FairPipes performs a genetic-algorithm search [34] over the space of all pre-
processing pipelines1. In our experimental setting, pipelines are characterised by
six genes, the first five representing a choice for each of the preprocessor options
presented in the FairPipes row of Table 1, with the sixth one representing the
order in which the operators are applied over the data; this preprocessor set was
selected as a representative sample of they typical data preprocessing pipeline,
but by no means is FairPipes restricted to these, as it may easily be extended
with any preprocessor that adheres to scikit-learn’s fit-transform paradigm.

FairPipes optimises a linear combination of fairness and performance met-
rics to turn fairness and accuracy into a single objective. Single-objective metrics

1 FairPipes is available at https://github.com/vladoxNCL/fairPipes.

https://github.com/vladoxNCL/fairPipes
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are a particular case, e.g., DP = 1 × DP + 0 × ACC. It has four tunable param-
eters: n gen: the number of generations, n: the number of pipelines per genera-
tion, c: the proportion of crossed-over pipelines in the next generation and m:
the probability of a gene mutation.

2.1 The FAIRPIPES Algorithm

The FairPipes algorithm is now presented using the example in Fig. 1, with
reference to the corresponding methods in Algorithms 1, 2 and 3.

Gene Tag Values

Encoder enc one-hot, ordinal, target, leave one out (LOO), weight of evidence (WoE), count
Imputer imp mean, median, most frequent
Sampler samp none, under, over
Scaler scale none, maxabs, minmax, norm, quantile
Feature Selector sel none, k-best
Order (samp, scale, sel), (samp, sel, scale), . . .

Preprocessors and Ordering

id Random Pipelines

1 one-hot enc, mean imp, under samp, norm scale, k-best sel
2 ordinal enc, mean imp, under samp, k-best sel, norm scale
3 one-hot enc, median imp, k-best sel, norm scale, no samp
4 count enc, mean imp, over samp, no sel, norm scale

(a) Generate n random pipelines

id Sorted Pipelines Objective Pparent Psurvive

3 one-hot enc, median imp, k-best sel, norm scale, no samp 0.276 4/10 1
4 count enc, mean imp, over samp, no sel, norm scale 0.406 3/10 3/6
1 one-hot enc, mean imp, under samp, norm scale, k-best sel 0.689 2/10 2/6
2 ordinal enc, mean imp, under samp, k-best sel, norm scale 0.783 1/10 1/6

(b) Preprocess data, learn classifiers and sort pipelines by objective metric; top one becomes the elite [id 3]

id Parent Pipelines

3 one-hot enc, median imp, k-best sel, norm scale, no samp
4 count enc, mean imp, over samp, no sel, norm scale

(c) Choose parents with Pparent [ids 3, 4]

id Crossover Pipelines

5 one-hot enc, median imp, k-best sel, norm scale, over samp
6 count enc, mean imp, no samp, no sel, norm scale

(d) Choose a gene with uniform probability [Sampler]
and crossover the parents’ gene-values [ids 3, 4 → 5, 6]

id Mutable Pipelines

5 one-hot enc, median imp, k-best sel, norm scale, over samp
6 count enc, mean imp, no samp, no sel, norm scale
1 one-hot enc, mean imp, under samp, norm scale, k-best sel

(e) Append a non-elite pipeline with Psurvive [id 1]

id Mutated Pipelines

5 one-hot enc, median imp, k-best sel, norm scale, over samp
6 count enc, mean imp, no samp, no sel, norm scale
7 one-hot enc, mean imp, k-best sel, under samp, norm scale

(f) Each gene may mutate
with P (mutate) = m [Order in id 1 → 7]

id First Generation Pipelines Objective

5 one-hot enc, median imp, k-best sel, norm scale, over samp 0.458
6 count enc, mean imp, no samp, no sel, norm scale 0.232
7 one-hot enc, mean imp, k-best sel, under samp, norm scale 0.520
3 one-hot enc, median imp, k-best sel, norm scale, no samp 0.276

(g) Append the non-mutated elite [id 3]

For subsequent generations,
repeat from (b)

Fig. 1. A FairPipes run over Income, with population size n = 4, crossover rate
c = 0.5, mutation rate m = 0.4 and objective DP + (1 − ACC).

Step (a) — Initialisation: FairPipes generates n random pipelines by
choosing one option per gene for each pipeline (GenPipes in Algorithm 1).
Step (b) consists of two parts:
Evaluation: n copies of the raw dataset are separately processed through

each of these pipelines, with the resulting processed datasets train/test
split. Binary classifiers, e.g., logistic regression (LR), are learnt from each
of the training sets and the objective metrics are evaluated on the corre-
sponding test sets (GetMetrics in Algorithm 2).

Selection: Pipelines are ranked and sorted with respect to the objective.
The best-ranking pipeline becomes the elite, i.e., it will move onto the
next generation unmodified. The elite is kept in order to guarantee that
the next generation will be at least as good as the current one with
respect to its best individual.
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Rank in Algorithm 1 then assigns the i-th pipeline a probability of becom-
ing “parent” of a pair of next generation “children” pipelines

Pparent(i) =
n + 1 − i

n∑

k=1

k

for i ∈ {1, . . . n},

and a probability for the non-elites of “surviving” for the next generation
of

Psurvive(i) =
n + 1 − i

n−1∑

k=1

k

for i ∈ {2, . . . n}.

Algorithm 3 consists of steps (c), (d), (e), (f) and (g).
Steps (c) and (d) — Crossover: are repeated �c · n�/2 times. Each time
two parents are chosen without replacement with probability Pparent(). One
of the six genes, randomly selected, is swapped between the two parents, and
the resulting pipelines are appended to the next gen list. The main reason
for swapping over just one gene is to reduce the variability between par-
ents and children, given that there are only six genes to modify. In standard
genetic-algorithm terminology, this is a two-point crossover with consecutive
crossover points.
Step (e) — Selection: n−�c ·n�−1 different non-elite pipelines are chosen
with probability Psurvive() and appended to next gen. This second part of the
selection process again makes use of probabilities to allow for a small chance
of additional exploration, at the expense of exploitation [3].
Step (f) — Mutation: Each gene of every next gen pipeline may mutate
once with probability m into a different random option of the same kind, e.g.,
an encoder may mutate into another encoder, but not into an imputer.
Step (g) — Selection: The elite pipeline is appended to next gen unmodi-
fied, completing the next generation. The elite is added at the end to prevent
it from mutating.

This process is repeated from step (b) n gen times, using the previous gen-
eration’s next gen instead of a random pipeline list to continue after the first
generation.

3 Experimental Evaluation

As a baseline for the computational cost of using FairPipes, an exhaustive
search over Income, evaluating all 3,240 pipelines, takes an average of 25 min on a
Microsoft Azure d64as v4 VM with 64 vCPUs and 256 GB of RAM. An average
FairPipes run evaluates 200 pipelines—roughly 6% of the search space—in
less than 1.5 min under the same configuration. A comparison of the average
FairPipes run time using a single Azure vCPU with 220 replicates per dataset
over the four analysed datasets is presented in Table 2.
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Algorithm 1: The FairPipes algorithm.
input : D: dataset to process, with binary PA-and-label, pp options: dict of preprocessors and task order,

n gens: number of generations to run,
pop size: number of pipelines per generation,
clf: classifier,
policy: optimisation strategy to follow,
co rate: crossover rate,
mut rate: mutation rate

output: pareto front: Estimated front for the pp options space

/* Generate pipe pop, a pipeline list of size pop size. The pipelines are built by randomly choosing an element of each of

pp options: encoder, imputer, feat selector, sampler, scaler and permutation */

pipe pop ← GenPipes(pp options, pop size);
all metrics ← empty df; // Empty data frame to store pipeline metrics

for i ← 1 to n gens do
processed dsets ← {pipeline(D) | pipeline ∈ pipe pop};
metrics df ← GetMetrics(processed dsets, clf); // Algorithm 2

ranked ← Rank(pipe pop,metrics df, policy);
pipe pop ← GetNextGen(ranked, co rate,mut rate); // Algorithm 3

all metrics ← Append(all metrics,metrics df);

pareto front ← GetPareto(all metrics); // Locate non-dominated pipelines.

Algorithm 2: GetMetrics method.
input : processed dsets: list of preprocessed datasets,

clf: classifier,
k: number of cross-validation folds

output: metrics df: data frame of fairness and accuracy (ACC) metrics

metrics df ← empty df;
foreach D in processed dsets do

trains, tests ← KFoldSplit(D, k);
metrics list ← empty list;
for i ← 1 to k do

clf ← Fit(clf, trains[i]);
preds ← Predict(clf, tests[i]);
metrics fold ← GetFairnessPerformance(preds);
metrics list ← Append(metrics list,metrics fold);

metrics average ← Average(metrics list);
metrics df ← Append(metrics df,metrics average);

Algorithm 3: GetNextGen method.
input : ranked: ordered list of pipelines,

co rate: proportion of crossovers in next gen,
mut rate: probability of a gene mutation

output: next gen: pipeline list of length |ranked|
elite ← ranked[1]; // the best-ranked pipeline

next gen ← empty list; // stores next generation

n child ← Round to Integer(co rate ∗ |ranked|); // round to nearest integer

while |next gen| < n child do
{p1, p2} ← Parents(ranked); // select p1, p2 with rank-dependant probability

{c1, c2} ← Crossover(p1, p2); // select gene and swap values for p1, p2
/* prevents duplicate pipelines */

if c1 and c2 not in next gen then
next gen ← Append(next gen, c1);
next gen ← Append(next gen, c2);

/* −1 kept for elite space */

while |next gen| < |ranked| − 1 do
s ← Survive(ranked \ {elite}); // select s with rank-dependant probability

/* prevents duplicate pipelines */

if s not in next gen then
next gen ← Append(next gen, s);

foreach pipe in next gen do
foreach gene in pipe do

gene ← Mutate(gene,mut rate); // modify gene with probability mut rate

next gen ← Append(next gen, elite); // elite is kept for next generation
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Table 2. Size and average FairPipes run time for the analysed datasets.

Dataset Attributes Instances Avg FairPipes Run (s) Per 100 Datum (s)

Income 14 32561 2472.12 ± 2462.97 0.5424

COMPAS 27 11038 539.93 ± 246.94 0.1812

German 22 1000 93.07 ± 23.43 0.4230

Titanic 10 891 44.48 ± 12.29 0.4992

As may be seen, when normalised per 100 datum, the run times are simi-
lar across datasets. All experiments were conducted over the space of pipelines
obtained from all possible combinations of the preprocessors listed in the Fair-
Pipes row of Table 1, consisting of 3,240 data points. Although the most typically
used preprocessors have been included, FairPipes can be further extended to
include additional tasks, as long as they comply with the fit/transform interface
used by sci-kit learn.

3.1 Baseline Mapping of the Search Space

ACC and fairness values for all of the pipelines in the search space were com-
puted. LR was used throughout, owing to its fast training and ease of inter-
pretability. Each training instance included 4-fold cross-validation with a fixed
random seed. The crossover and mutation rates were based on the literature [16]
and further fine-tuned by running FairPipes 128 replicates, optimising for DP
+ ACC. Fairness and ACC metrics were collected for each pipeline and dataset,
replicating each training session 64 times using different random seeds for robust-
ness. The default parameters for FairPipes were used in all the experiments: 0.6
crossover rate, 0.4 mutation rate, populations of 10 individuals, 20 generations
per run, and 1-elitism.

DP/ACC Evolution. Figure 2 shows how the solutions approach optimality
(bottom left corner in the DP/ACC space) for different linear combinations of
the objective. Interestingly, for all datasets except Titanic, the initial random
pipelines lie on the top right of the space, indicating poor fairness as well as
poor ACC. FairPipes achieves a combination of both, when the objectives are
not initially in contrast with one another. Titanic shows that, under certain
circumstances, DP and ACC can become mutually exclusive: the “fairer” a model
gets (both sexes receive a similar predicted death-rate), the less accurate it will
become, as in reality most men died and most women lived.

4 Performance Evaluation

To the best of the authors’ knowledge, there are no other existing pipeline-
optimisation solutions that include fairness as a single or multi-goal objective.
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Fig. 2. Average DP and ACC per generation for different objective coefficients.

As a baseline to compare FairPipes’s performance, two performance metrics
were used:

Averaged Hausdorff Distance (AHD). A global metric defined in [2,27] as

AHD(X,Y ) :=
1
2

⎛

⎝ 1
|X|

∑

x∈X

min
y∈Y

d(x, y) +
1

|Y |
∑

y∈Y

min
x∈X

d(x, y)

⎞

⎠ ,

which measures the similarity of the estimated and true Pareto fronts.
Best to Best Distance (B2B). A local similarity metric, defined as

B2B(X,Y ) := min
x∈X

[kDPDP(x) + kACCACC(x)]

− min
y∈Y

[kDPDP(y) + kACCACC(y)] ,

comparing the best pipeline found by FairPipes against the overall best.

The similarity metrics were measured on random pipeline selections with a size
equivalent to 20 FairPipes generations, i.e., 210 pipelines. Eleven representative
DP/ACC linear combinations were used as objective values, and the resulting
metrics were averaged out for averaged Hausdorff distance (AHD) and best to
best distance (B2B). These measurements were replicated and averaged 128
times for every benchmark dataset, and a two-sample t-test was performed using
SciPy [33]. Table 3, shows that FairPipes outperforms random sampling for
AHD, albeit not significantly.
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In the case of B2B, the difference is significant for every dataset, as the
average B2B for FairPipes is 34–55% smaller than for random sampling. This
indicates that FairPipes did not only estimate the Pareto front adequately, but
estimated the optimal pipeline much better than random search. The computing-
time difference between running FairPipes and performing the equivalent ran-
dom search is negligible, as FairPipes’ genetic selection mechanism takes vir-
tually no time to be computed.

Table 3. Performance comparison between FairPipes after 20 generations and a ran-
dom pipeline sample without replacement of the same size (210 pipelines). For both
metrics, lower values are better.

FairPipes Random Sample Two-Sample t-Test

Metric Dataset Mean SD Mean SD t-value p-value

AHD COMPAS 0.0049 0.0050 0.0050 0.0048 −0.1666 .867

German 0.0053 0.0032 0.0059 0.0019 −2.3357 .019

Income 0.0030 0.0019 0.0032 0.0015 −0.8856 .376

Titanic 0.0048 0.0038 0.0042 0.0023 1.8093 .071

B2B COMPAS 0.0021 0.0132 0.0032 0.0154 −1.9686 .049

German 0.0699 0.1319 0.1070 0.1513 −6.9388 < .001

Income 0.0063 0.0204 0.0099 0.0210 −4.6448 < .001

Titanic 0.0121 0.0596 0.0270 0.0977 −4.8908 < .001

5 Conclusions

This work presents FairPipes, a genetic-algorithm approach for the discov-
ery of data preprocessing pipelines that are near-Pareto-optimal with respect
to both the fairness and performance of binary classifiers learnt from the data.
FairPipes can optimise user-defined objective metrics defined through both
linear combinations of fairness and accuracy, presenting its users with estimates
of the pipeline space’s Pareto front, allowing them to select an adequate fair-
ness/performance trade-off. Besides an adequate estimation of the Pareto front,
FairPipes significantly improves the estimation of the best pipeline for a given
objective metric over an equivalent random pipeline search with an insignificant
increase in computing time. In further work, additional preprocessing operators
may be introduced, as well as other types of classifiers, and higher-dimensional
Pareto fronts may be explored, e.g., optimising for several fairness and perfor-
mance metrics at once.
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Abstract. Trajectory prediction is a key task in the study of human
mobility. This task can be done by considering a sequence of GPS loca-
tions and using different mechanisms to predict the following point that
will be visited. The trajectory prediction is usually performed using
methods like Markov Chains or architectures that rely on Recurrent Neu-
ral Networks (RNN). However, the use of Transformers neural networks
has lately been adopted for sequential prediction tasks because of the
increased efficiency achieved in training. In this paper, we propose AP-
Traj (Attention and Possible directions for TRAJectory), which predicts
a user’s next location based on the self-attention mechanism of the trans-
formers encoding and a directed graph representing the road segments
of the area visited. Our method achieves results comparable to the state-
of-the-art model for this task but is up to 10 times faster.

Keywords: Trajectory prediction · Transformers · Node prediction ·
Self-attention · Neural Network

1 Introduction

Spatiotemporal data allow us to understand complex phenomena simultaneously
involving spatial and temporal dynamics. Specifically, several moving objects
equipped with GPS sensors broadcast accurate information about their move-
ments. The analysis of moving objects has gained much relevance in recent years,
and it has been successfully applied in tasks of predicting the following positions
of various moving objects, such as ships, animals and humans [2,8,10,12,13].
As many applications were developed, techniques for exploring moving objects’
trajectories are growing. Markov chain [5], RNN and LSTM models were usually
applied when the sequence of positions represented trajectories. Other techniques
were used to improve the quality of next-position predictions. Nevertheless, few
papers tackled the time consumption problem when generating the model for
predicting a moving object’s next position. Indeed, due to the nature of the phe-
nomena described by the study of moving objects, prediction tasks must be fast,
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for example, to avoid possible vehicle collisions. This paper proposes a new model
called Attention and Possible directions for TRAJectory prediction - AP-Traj.
This method predicts future trajectories based on the past street intersections
(nodes) visited by the user and a graph of the travelled area. This is achieved
using a node self-attention module, a possible directions module, and embedding
the input sequence’s last node. The first module takes the self-attention mecha-
nism in the transformer’s encoding to capture the dependencies between nodes.
The second uses a graph to determine the possible directions that can be taken
from an original node so the user can get to the adjacent one. Our results show
that our proposal has results comparable to the state-of-the-art model for this
task (superior for 3 out of 4 tested datasets) but is considerably faster (up to 10
times faster).

The remainder of this study is organised as follows. First, Sect. 2 shows sci-
entific studies about trajectory prediction. Section 3 detailed the methodology
used in this contribution. Then, Sect. 4 detailed the heart of our contribution.
Section 5 presents the experiments and results. This contribution ends with the
conclusions and future research directions detailed in Sect. 6.

2 State of the Art

Several studies for trajectory prediction were proposed in the literature. Trans-
formers were first used in the Natural Language Processing field. Vaswani et
al. [14] propose the Transformer, an attention mechanism to perform sequence
prediction for a machine-translation task. The authors use an encoder-decoder
structure that, instead of using recurrence and convolutions, is based only on
attention mechanisms. In order to preserve information regarding the order of the
sequence, positional encodings are added to the input embeddings. The authors
used the BLEU (bilingual evaluation understudy) metric to evaluate the perfor-
mance of Transformers in two datasets, an English-german one (4.5M sentence
pairs) and an English-french one (36M sentences). For the first dataset, a score
of 28.4 was obtained, outperforming previous models. For the second dataset, a
score of 41.0 was achieved. In addition, the model training step was four times
faster than architectures based on recurrent or convolutional layers.

Other papers concentrate on time series forecasting through the use of Trans-
formers. For instance, Grigsby, Wang, and Qi [6] propose Spacetimeformer, a
method that uses transformers for multivariate time series forecasting. Given
a sequence of multivariate vectors, the proposed model relies heavily on using
embeddings to pre-process the different variables (such as power produced in a
solar plant, weather, latitude, longitude and time) and produce a sequence that
can be fed into a transformers module. The Spacetimeformer was evaluated on
the weather dataset (6 variables, 569K timesteps), a solar energy production
dataset (137 variables, 52K timesteps) and two traffic forecasting datasets (207
and 325 variables, 34K and 52K timesteps). The baselines were methods based
on regression, LSTM and GNN. An MSE of 21.35 was obtained for the weather
dataset using Spacetimeformer, against an MSE of 22.11 when using LSTM.
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In the same spirit, [9] proposes NetTraj, a method that predicts the trajec-
tory of a vehicle based on its past trajectory, a graph of the city and context
information characterised by the week’s hour, vehicle or driver identifier and
weather conditions. For the prediction task, each trajectory is represented as
a sequence of nodes (street intersections) and associated movement directions
(eight possible directions to take from a node). Both inputs are encoded using
an embedding layer. Then, a spatial attention mechanism uses the city graph to
compute the importance score of each adjacent node. This information is fed into
a Long-Short Term Memory (LSTM) encoder-decoder module with a temporal
attention mechanism. Finally, the embeddings of the context features are con-
catenated with the output of the LSTM, followed by a linear layer to predict the
sequence of directions to obtain the output nodes. The proposal was evaluated
on the Beijing Taxi and the Shanghai Trajectories Data containing 15M and 4M
records, respectively. The authors compared their results with Markov Chains,
LSTM, Convolutional Sequence Embedding Recommendation Model (Caser),
Attentional LSTM Encoder-Decoder, Attentional Spatiotemporal LSTM, Self-
Attention Based Sequential Model and Geography-Aware Self-Attention Net-
work.

Feng et al. [4] proposes a multi-step methodology. First, trajectories were split
into the current and past trajectories. Later, the one-hot vectors of these fea-
tures are fed into a multimodal embedding module. In parallel, a context adapter
module uses the embeddings of the POI label, user text and dwell time to model
the semantic effects of the current location. The former trajectory’s information
is fed into a recurrent LSTM module. Finally, all these inputs are combined into
three independent linear layers that predict the next location, time and activity
of the user. The proposal was evaluated on four datasets: Foursquare check-in
data of NYC with 82K records, 10K locations) and Tokyo (537K records, 21K
locations), Mobile application location data (15M records, 31K locations), and
Call detail records (491K records, 17K locations). Finally, the proposal was com-
pared with five baseline algorithms: Markov, Periodic Mobility Model (PMM),
Factorizing personalized Markov chains (FPMC), Geo-teaser and SimpleRNN.

Similarly, in [3], the authors tackle problems such as the sequential transition
regularities and the heterogeneity and sparsity of data in the POI recommen-
dation task. So, the authors propose a 3-step algorithm called DeNavi (Deep
Navigator). Also, the authors integrated the Exponential Weight Moving Aver-
age EWMA model into the model learning process to capture the spatiotemporal
context in the prediction process. Two public LBSN datasets were used to test
the proposal: Gowalla and BrightKite, with 6.4 million and 4.5 million trajec-
tories, respectively. DeNavi was compared with nine state-of-the-art algorithms
through accuracy, precision, recall and F-measure.

Also, [15] describes the PreCLN (Pretrained-based Contrastive Learning Net-
work) transformer-based algorithm that embeds the input trajectory sequences
into fixed-length representations. The authors used three metrics to compare
it with five state-of-the-art algorithms. The proposal was tested on the Porto
taxi trajectory with 1.7 million complete trajectories and the T-drive trajectory
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dataset containing about 17 million trajectories. The authors conclude that Pre-
CLN tackled the problem of unlabeled trajectory data with contrastive learning
and pre-training techniques.

In the same vein, Ye, Martin and Raubal [7] predict the next location a
user will visit based on its past locations, time of visit and travel mode. First,
the embeddings of the location, time of the day (grouped into 15-minute bins),
day of the week, travel mode and user were calculated. Then, all the embed-
dings are added along a positional encoding. The resulting vector is fed into
the transformer decoder. Later, the output vector is concatenated with the user
embedding and fed into a fully-connected residual block. Finally, using two linear
layers, the aggregated vector is used to predict the next location and the next
travel mode. The model was tested against Markov models, Deepmove, LSTM,
MobTcast and LSTM with self-attention using the Green Class (GC) study and
the Yumuv study datasets. Both datasets contain the GPS trajectories of 139
and 498 participants, respectively, who also reported the activity labels in each
stay point (home, work, errand, leisure, etc.) and the travel mode.

As illustrated in the related-works section, several efforts were performed
in order to improve the performance of the trajectory prediction task. In this
work, we intend to improve the training time, maintaining the accuracy of the
predictions.

3 Methodology

In this section, we will describe the steps followed to obtain trajectories from
raw data, transform them into sequences of nodes based on graph information,
obtain the relative direction between nodes and use the obtained sequences to
predict the next nodes. In summary, the main objective of the current effort is
to predict a user’s next whereabouts based on previous locations. The following
paragraphs detail our methodology.

The first step is the point selection that are located within a specific bound-
ing box are selected. Each point has a latitude and longitude. With the remaining
points, sequences of coordinates Sc = {(lat1, lon1), (lat2, lon2), ..., (latn, lonn)}
are built for each user.

The next step is the trajectory identification using the Infostop algo-
rithm [1]. It takes as parameters the maximum roaming distance allowed for
two points within the same stay (r1), the typical distance between two stays
in the same destination (r2). Also, Infostop takes the minimum time difference
between two consecutive records for them to be considered within the same stay
(tmin) and the maximum time difference between two consecutive records to be
considered within the same stay (tmax). Infostop aims to tag the sequence of
points representing movement and stops, as shown in Eq. 1.

trajinitial = {traj1, stop1, traj2, stop2, ...} (1)

Then, the stops are removed using the information obtained, and the ini-
tial trajectories are split based on the inter-point distance. Thus, the distances
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of consecutive points within each trajectory are calculated using Euclidean dis-
tance. Then, the maximum inter-point distance in each trajectory is calculated.
A smaller distance between points means a better point-node match. Finally,
trajectories are discarded based on a maximum inter-point distance threshold
dthreshold.

Next, in the edge matching step, each sequence of coordinates Sc is trans-
formed into a sequence of road segments Se = {e1, e2, ..., en}, using Fast Map
Matching (FMM) [16] or ST-Matching [11] for small, middle and large scale
graphs, respectively. It is important to note that the directed graph representing
the road segments is obtained from OpenStreetMap (OSM).

Once the edges are matched, the direction calculation is performed. In
this step, the possible direction to follow from a node i to an adjacent node
i + 1 is discretised in k directions. Thus, inspired from [9], for each edge ei in
the directed graph, the node nodei and the direction taken to get to the next
node diri is obtained. Hence, for each node, a sequence of neighbors is built
nodei = {neighbor1 : dir1, neighbor2 : dir2, . . . , neighborM : dirM}. Where
diri ∈ [0,K]. For example, if K = 8, there are 8 possible directions, where 0
represents a direction between the north and the north-east.

All the information of a node’s neighbors and associated directions are
represented as the sequence of nodes Sn = {n1, n2, ..., nn} and directions
Sd = {d1, d2, ..., dn}.

Finally, the model training is performed. Using both Sn and Sd sequences
as input and use dn+1 to calculate the loss in the training process. In the next
section, we detail the proposed prediction model.

4 Attention and Possible Directions for TRAJectory

Fig. 1. Attention and Possible directions for TRAJectory schema.

The Attention and Possible directions for TRAJectory (AP-TRAJ) model is
depicted in Fig. 1. It consists of a Node self-attention and Possible directions
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modules, whose outputs are combined with the Embedding of the last node to
produce a single vector fed into a linear layer to predict the next direction a user
is going to take. Then, this direction is used to determine the specific node that
is going to be visited. The Node self-attention takes as input a sequence of nodes
to transform them into a vector capturing the relations between them (Subsect.
4.1). And the Possible directions takes the last node of the input sequence and
uses the graph related to it to find the possible directions that can be taken
in order to get to another node (Subsect. 4.2). The output of these modules is
concatenated to the last node embedding and passed through a linear layer in
order to predict the next direction to be taken from the last input node, which is
then used to predict the next node (Subsect. 4.3). In the following paragraphs,
we detail the different modules.

Fig. 2. Node self-attention and Possible directions modules

4.1 Node Self-attention Module

This module takes a sequence of nodes Sn = {n1, n2, ..., nn}, n ∈ N and produces
an output vector nattn ∈ R

1×d. First, the input sequence is transformed into a
sequence of embeddings Sen = {en1, en2 , ..., enN} ∈ R

N×d as shown in Fig. 2A.
Then, a linear layer is applied to Sen in order to adjust the magnitude of each
vector eni. Thus, they are not strongly affected by positional encoding. This
produces the vector sequence Sln = {ln1, ln2 , ..., lnN} ∈ R

N×d.
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Following the method proposed by Vaswani et al. [14], a positional encoder is
used to preserve the information on the order of the input sequence. This consists
of adding a vector that represents its position to each lni, producing the sequence
Spn

= {pn1, pn2 , ..., pnN} ∈ R
N×d. It is then fed into the transformer encoder

that transforms it into a different representation Stn = {tn1 , tn2 , ..., tnN
} ∈

R
N×d. Finally, the output of the transformer encoder is added and normalized

nattn = 1
max(tni)

∑N
i=1 tni

, nattn ∈ R
1×d.

4.2 Possible Directions Module

The present module takes the last node of the input sequence nN and produces
a vector with information on all possible directions that can be taken from the
node nN as illustrated in Fig. 2. First, the M possible directions from the node
nN are obtained using the graph associated with this node, which is retrieved
from Spd = {d1, d2, ..., dM} and Sed = {ed1 , ed2 , ..., edM

} ∈ R
M×d. Therefore, the

direction embeddings are added and normalized dP = 1
M

∑M
i=1 edi

, dP ∈ R
1×d

4.3 Prediction Module

The prediction of the next node nN+1 is achieved by obtaining the predicted
direction, which is the output of the node self-attention module. The output
of the possible directions module and the embedding of the last node from the
input sequence are concatenated dC = [nattn; dP ; enN ] dC ∈ R

1×(3d). Once this
vector is concatenated, this vector is fed into a linear layer, and the softmax
function is applied to obtain each direction’s probabilities. Finally, using the
last node nN , the predicted direction dn+1, and the graph associated with the
node, the predicted node nn+1 is obtained.

In order to predict O nodes instead of only one, a sliding window method
is applied. After predicting the node nN+1, using an input sequence Sn1 a new
input sequence Sn2 is constructed Sn2 = {n2, n3, ..., nN+1}. This sequence Sn2 is
then fed into the architecture described above and the node nN+2 is predicted.
This procedure is repeated O times. Using the before described methodology, we
present the performed experiments in the next subsection.

5 Experiments and Results

In this section, we will describe how AP-Traj was evaluated against the NetTraj
algorithm by using two different datasets. The first one is The Beijing Taxi
Trajectory Dataset [17,18], which contains the GPS trajectories of 10,357
taxis during the period of Feb. 2 to Feb. 8, 2008 within Beijing. It has a total of
15 million points. The second is The Geolife Dataset [19–21], which contains
the GPS trajectories of 182 users from April 2007 to August 2012. The majority
of the data was created in Beijing, China. It contains 17,621 trajectories.
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Table 1. Number of train, test and validation trajectories, as well as number of edges
per subset

name train test test num edges area (km2)

taxis-small 5314 295 295 206 2 × 2

taxis-large 322 164 17 898 17 898 3 803 10 × 10

geolife-small 2 170 121 121 7 989 15 × 15

geolife-large 60 998 3 389 3 389 41 765 50 × 50

The first step for obtaining the sequences of nodes and directions was the
point selection. For both datasets, the same bounding box used by [9] was
selected: [39.74, 40.05, 116.14, 116.60].

Then, the trajectory identification was performed using the Infostop [1]
tool. This was done for both datasets, sice the trajectories for each taxi had
no occupied tag, and the movement of each user in the Geolife dataset had no
information regarding whether the user was stopping at a POI or not.

For the Geolife dataset, the vast majority of trajectories (82.8%) generated
using the default Infostop configuration (r1 = 10, r2 = 10, mintime = 300,
maxtime = 86400) had a small maximum inter-point distance (< 100m). Hence,
the values of the parameters were not changed and no further filtering was done
in this dataset. However, since taxis tend to hover around the same area while
waiting for passengers and the stops tend to be smaller, the radius was increased
(r1 = 100, r2 = 100), and the minimum stay time decreased (mintime = 60) for
this dataset. Given the nature of the taxi’s movement, the trajectories produced
had a much larger maximum inter-point distance (61, 3% larger than 1 km). This
meant that the FMM could have problems when identifying the sequence of
edges, so all trajectories with a maximum inter-point distance larger than 10 km
were discarded. This value was chosen in order to keep as many trajectories as
possible after filtering (87, 6% were kept).

Next, Edge matching was performed. The routable network was down-
loaded using the bounding box [39.74, 40.05, 116.14, 116.60]. Then, the default
configuration for ST-Matching was used, except for the search radius (10 km)
and the gps error (1 km) for both datasets.

After that, the Direction calculation was executed using K = 8, which
means that there are 8 possible directions. Then, the trajectories were split into
sequences of length 15 (N = 10 for the input and O = 5 for the output).

Finally, the Train-test-validation split was done. Four smaller datasets
were produced by taking different subsets of the original ones. To generate taxis-
small the bounding box [39.886, 39.904, 116.361, 116.379] was used, which had
an area of 2 × 2 km2. The other generated datasets are taxis-large ([39.850,
39.940, 116.325, 116.415]), geolife-small ([39.827, 39.963, 116.302, 116.438]) and
geolife-large ([39.670, 40.120, 116.145, 116.595]).

The resulting train-test-val number of trajectories, as well as the number of
edges contained in each are shown in Table 1. Finally, all four datasets were
trained using both the NetTraj and AP-Traj.
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5.1 Hyperparameter Tuning

For NetTraj, we used the same hyperparameter values reported by the authors
(dim embedding = 256, hidden size = 512, num hidden layers = 2, dropout =
0.1, learning rate initial = 0.5, learning rate decay = 0.8 ). However, the type of
learning rate (LR) decay was not specified, so we experimented with both linear
and exponential decay. Also, the authors mentioned that scheduled sampling was
used. This consists of feeding the model with either the ground truth observation
with probability α (alpha) or the predicted result with probability 1 − α during
training, where α decreases gradually as the iteration increases. Since the sched-
uled sampling configuration is not known, we tested different combinations for
initial alpha values (0, 0.25, 0.5, 0.9, 1.0), decay types (linear, sigmoid, exponen-
tial) and decay rates (0.01 and 0.05 for linear; 10.0, 15.0, 20.0 for sigmoid; and
0.01, 0.95 for exponential). For taxis-small, the best configuration was a linear
LR with an initial alpha value of 0.9 and linear decay with a rate of 0.01. For
geolife-small, the best results were obtained with linear LR, alpha initial value
of 0.9 and exponential decay with a rate of 0.95.

On the other hand, six hyperparameters of AP-Traj needed tuning. The
first one is the embedding dimensions of nodes and directions (dim embedding
= [64,128,256]), which coincides with the number of expected features in the
input of the transformer encoder (d). Also, the hyperparameters related to the
transformers encoder were the dimension of the feedforward dimension (dim
feedforward = [256,512,1024] ), the number of heads of the multi-head attention
model used (num heads = [2,4]), the number of sub-encoder-layers in the encoder
(num layers = [2,4]) and the dropout rate used to prevent overtraining (dropout
= [0.1, 0.2]). Finally, to initialize the weights of the different layers, a uniform
distribution was used, where the highest possible value is init range, and the
lowest is -init range (tested values [0.1, 0.2]). For taxis-small, the best results
were obtained with dim embedding = 256, dim feedforward = 512, num heads =
2, num layers = 4, dropout = 0.1 and init range = 0.2. And for geolife-small,
the best configuration was dim embedding = 256, dim feedforward = 512, num
heads = 4, num layers = 2, dropout = 0.2 and init range = 0.2.

The training was done using an NVIDIA GeForce RTX 2080 Ti graphics
card (taxis-small, taxis-large, geolife-large) and NVIDIA GeForce RTX 2060
(geolife-small). We use a stochastic gradient descent optimizer with a batch size
= 20, maximum number of iterations = 100 and early stopping with patience
= 2, which means that the training stops the second time the validation loss
increases. The Cross-Entropy Loss was calculated by comparing the predicted
direction and the ground truth.

5.2 Preliminary Results

In order to measure the effectiveness of AP-Traj, the time per epoch and Average
Match Ratio (AMR) for the first 5 predicted nodes was measured. The second
is defined in Eq. 2:
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Table 2. Performance comparison of NetTraj and AP-Traj

dataset method AMR MR(1) time(s/iter) num iters

taxis-small transformers 0.624 0.825 28 12

netTraj 0.657 0.879 153 13

taxis-large transformers 0.680 0.855 3105 8

netTraj 0.627 0.840 9155 11

geolife-small transformers 0.418 0.692 10 55

netTraj 0.417 0.725 82 17

geolife-large transformers 0.527 0.749 324 20

netTraj 0.394 0.683 7001 8

Fig. 3. Match ratio for both large and small datasets.

AMR =
1
O

O∑

k=1

MR(k) MR(k) =
1
k

k∑

i=1

match(y, ŷ), (2)

where match(y, ŷ) is 1 if the predicted value matches the ground truth and
0 otherwise.

The AMR, MR(1) and time per epoch obtained for both datasets are shown
in Table 2, and the MR(k) is shown in Fig. 3. We can observe that the AMR is
higher for three of the four datasets but is considerably faster than the baseline.

Finally, an ablation study was done to determine whether all the proposed
modules for AP-Traj were necessary or not. Table 3 shows the average match
ratio depending on whether the last node embedding (LN), the node self-
attention module (NA) or the possible directions module (PD) were used. We
can observe that the best results are obtained when the three elements are used
and that the last node greatly influences the prediction quality.

In sum, AP-Traj shows an improvement in training time compared to Net-
Traj, and the results obtained are better for three of the four datasets generated.
Also, the ablation study shows that the three components used for generating
the prediction are necessary.
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Table 3. Ablation study results on taxis-large dataset

LN NA PD LN+NA LN+PD NA+PD LN+NA+PD

AMR 0.523 0.305 0.200 0.633 0.528 0.198 0.680

6 Conclusions and Future Works

This paper proposes a new model for the prediction of future trajectories based
on the past street intersections (nodes) visited by the user and a graph of the
travelled area. Our proposal, called Attention and Possible directions for TRA-
Jectory prediction (AP-Traj), uses a node self-attention module, a possible direc-
tions module, and the embedding of the input sequence’s last node. Experiments
conducted on two real datasets demonstrated that our proposal is comparable
with the state-of-the-art model for this task but is considerably faster, being up
to 10 times faster than the best of our near competitor.

We have several improvements for future works. First, we would like to per-
form more experiments considering not only the last node’s embedding, but the
previous ones by using different number of nodes and decay functions in order
to determine how this influences the results.

Also, we want to extend our experiment to other datasets (vessels, people,
animals, etc.). Additionally, in this work Infostop, was used with the default
values. We would like to parametrize it to analyze its impact on our final results.
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Abstract. This study constructs two general fuzzy clustering algo-
rithms with a cluster size controller. The first algorithm includes the
standard fuzzy c-means (SFCM), modified SFCM, and generalized fuzzy
c-means, and the second one includes the entropy-regularized fuzzy c-
means (EFCM), modified EFCM (mEFCM), and regularized fuzzy c-
means (RFCM). Furthermore, the results of this study demonstrate that
the behavior of the fuzzy classification functions of the first proposed
algorithm at points far from clusters are similar to that for mSFCM,
and those of the second one are similar to those for EFCM, mEFCM,
and RFCM. some conventional clustering algorithms.

Keywords: fuzzy c-means clustering · cluster size controller · fuzzy
classification function

1 Introduction

Fuzzy clustering algorithms yield object membership shared among all clus-
ters, rather than ones constrained to individual clusters. Fuzzy c-means (FCM),
proposed by Bezdek [2], is the most representative fuzzy clustering algorithm,
while Entropy-regularized FCM (EFCM), proposed by Miyamoto [3], is another
variant. The former is referred to as standard FCM (SFCM) to distinguish it
from EFCM. Besides the development of algorithms that yield correct cluster-
ing results, investigation of their properties is also an important research topic.
SFCM and EFCM exhibit different properties. Miyamoto [4] reported that the
features of fuzzy clustering methods can be clarified, at least theoretically, in
terms of the fuzzy classification function (FCF) of SFCM and EFCM. This yields
an allocation rule that classifies new objects into Voronoi cells, with Voronoi
seeds as the cluster centers. The FCF of SFCM approaches the reciprocal of the
given cluster number as the object approaches infinity, whereas that of EFCM
approaches one or zero as the object approaches infinity. While SFCM fuzzifies
the clustering by replacing the membership in the HCM objective function with
nonlinear expressions, EFCM does so by introducing a regularizer of entropy.
Thus, novel fuzzy clustering algorithms may be developed by adopting various
nonlinear functions that are different from those in SFCM or by adopting regu-
larizers different from those in EFCM. However, the features of these algorithms
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Torra and Y. Narukawa (Eds.): MDAI 2023, LNAI 13890, pp. 226–237, 2023.
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require clarification. Kanzawa and Miyamoto [5] generalized SFCM to yield
generalized FCM (GFCM), and proved theoretically that the FCF of GFCM
approaches the reciprocal of the given cluster number as the object approaches
infinity, as in the case of the FCF of SFCM. Further, Kanzawa and Miyamoto [6]
generalized EFCM to yield regularized FCM (RFCM), and theoretically proved
that the FCF of RFCM approaches one or zero as the object approaches infinity,
as in the case of the FCF of EFCM.

One disadvantage of the aforementioned algorithms is that they tend to pro-
duce clusters of equal size. Consequently, if the cluster sizes are unbalanced,
objects that ought to be assigned to a large cluster may be misclassified into
smaller clusters. To overcome this issue, some approaches have introduced the
cluster size controller [7,8] — the method derived from SFCM is referred to as
the modified SFCM (mSFCM) and that derived from EFCM is referred to as the
modified EFCM (mEFCM). Further, Komazaki and Miyamoto [9] theoretically
proved that the FCF of mSFCM approaches the value of cluster size controller as
the object approaches infinity, unlike those of SFCM and GFCM. They further
proved that the FCF of mEFCM approaches one or zero as the object approaches
infinity, as in the case of the FCFs of EFCM and RFCM. The current state of
research on fuzzy clustering algorithms engenders two questions: (1) Can fuzzy
clustering algorithms be constructed by generalizing mSFCM or mEFCM? In
other words, can a cluster size controller be introduced into GFCM or RFCM
using mSFCM or mEFCM? (2) If so, what are the properties of such algorithms?

In this study, we provide partial positive answers to these questions. In the
first part of the paper, mSFCM is generalized in three steps. First, an optimiza-
tion problem from modified GFCM clustering (mGFCM) is considered, where the
power of the membership and the cluster size controllers in the mSFCM objec-
tive function are replaced with a general nonlinear function. This optimization
problem is reduced to both mSFCM and GFCM. Second, an mGFCM algorithm
and its associated FCF are constructed by solving this optimization problem.
Third, it is experimentally demonstrated that the FCF of mGFCM approaches
the value of the cluster size controller as the object approaches infinity, as in the
case of mSFCM. Subsequently, mEFCM is generalized in three steps. First, an
optimization problem for modified RFCM (mRFCM) is considered by replacing
the Kullback-Leibler divergence of membership and cluster size controller in the
mEFCM objective function with a general nonlinear function. This optimization
problem is reduced to both mEFCM and RFCM. Second, an mRFCM algorithm
and its associated FCF are constructed by solving this optimization problem.
Third, it is experimentally demonstrated that the FCF of mRFCM approaches
one or zero as the object approaches infinity, as in the case of mEFCM.

The remainder of this paper is organized as follows. The notations used in
this study are introduced in Section 2 and the conventional methods are also
described. In Sect. 3, mGFCM and mRFCM are conceptually introduced and
their algorithms are derived. Finally, several numerical experiments are described
in Sect. 4, and the concluding remarks are presented in Sect. 5.
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2 Preliminaries

Let X = {xk ∈ R
M | k ∈ {1, · · · , N}} be a dataset of containing M -dimensional

points. We assume xk �= xk′ for k �= k′. Consider the problem of classifying
the objects in X into C separated subsets {Gi}C

i=1, which are termed ‘clusters’.
The membership degree of xk with respect to the i-th cluster is denoted by
ui,k (i ∈ {1, · · · , C}, k ∈ {1, · · · , N}), and the set of all ui,k is denoted by U ,
which is known as the partition matrix. The set of cluster centers is denoted by
V = {vi | vi ∈ R

M , i ∈ {1, · · · , C}}. The squared Euclidean distance between
the k-th object and the i-th cluster center is given by

di,k = ‖xk − vi‖22. (1)

The HCM algorithm iterates the following steps: (i) Calculate the memberships,
ui,k, and (ii) Calculate the cluster centers, vi [1]. These steps are obtained by
solving the following optimization problem:

minimize
U,V

C∑

i=1

N∑

k=1

ui,kdi,k, (2)

subject to
C∑

i=1

ui,k = 1. (3)

SFCM [2] and EFCM [4] representations are obtained by solving the opti-
mization problems

minimize
U,V

C∑

i=1

N∑

k=1

(ui,k)mdi,k, (4)

minimize
U,V

C∑

i=1

N∑

k=1

ui,kdi,k + λ−1
C∑

i=1

N∑

k=1

ui,k ln (ui,k) , (5)

respectively, subject to Eq. (3), where m > 1 and λ > 0 denote fuzzification
parameters. Further, we introduce a cluster size controller, denoted by A =
{αi ∈ (0, 1)}C

i=1, satisfying the constraint

C∑

i=1

αi = 1. (6)

The mSFCM and mEFCM representations are obtained by solving the optimiza-
tion problems

minimize
U,V,A

C∑

i=1

N∑

k=1

(ui,k)m
di,k, (7)

minimize
U,V,A

C∑

i=1

N∑

k=1

ui,kdi,k + λ−1
C∑

i=1

N∑

k=1

ui,k ln
(

ui,k

αi

)
, (8)
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respectively, which are based on Eqs. (3) and (6).
FCFs [4] describe the degree to which any point in object space is quintessen-

tially attached to a cluster by broadening the membership, ui,k, over the entire
space. The FCF, ui(x), with respect to a new object, x ∈ R

M , is defined to be
the solution to the following optimization problems for SFCM, EFCM, mSFCM,
and mEFCM, respectively:

minimize
U

C∑

i=1

(ui(x))mdi(x), (9)

minimize
U

C∑

i=1

ui(x)di(x) + λ−1
C∑

i=1

ui(x) ln (ui(x)) , (10)

minimize
U

C∑

i=1

(αi)1−m(ui(x))mdi(x), (11)

minimize
U

C∑

i=1

ui(x)di(x) + λ−1
C∑

i=1

ui(x) ln
(

ui(x)
αi

)
, (12)

subject to
C∑

i=1

ui(x) = 1, (13)

where

di(x) = ‖x − vi‖22, (14)

and {vi}C
i=1 denote the cluster centers obtained using the corresponding fuzzy

clustering algorithms. We define the crisp allocation rule [4] to classify R
M based

on the following:

x ∈ Gi
def≡ ui(x) > uj(x) for j �= i. (15)

It has been theoretically proved [4,9] that the subsets, {Gi}C
i=1 obtained from

SFCM and EFCM yield Voronoi sets, whereas those obtained from mSFCM yield
multiplicatively weighted Voronoi sets and those obtained from mEFCM yield
locally additively weighted Voronoi sets. Furthermore, [4,9] proved that ui(x) of
SFCM, EFCM, mSFCM, and mEFCM approach 1/C, “0 or 1”, αi, and “0 or
1”, respectively.

For a strictly convex, increasing, non-negative, and smooth function, fGFCM,
defined over [0, 1), the optimization problems for the GFCM and its FCF are
described below.

minimize
U,V

C∑

i=1

N∑

k=1

fGFCM(ui,k)di,k, (16)

minimize
U

C∑

i=1

fGFCM(ui(x))di(x) (17)
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subject to Eqs. (3) and (13), respectively. Theoretically, it has been shown [5]
that the subsets, {Gi}C

i=1, obtained from GFCM yield Voronoi sets and ui(x)
of GFCM approaches 1/C. For a convex smooth function, fRFCM, defined over
[0, 1], the optimization problems for the RFCM and its FCF are described as
follows:

minimize
U,V

C∑

i=1

N∑

k=1

ui,kdi,k + λ−1
C∑

i=1

N∑

k=1

fRFCM(ui,k) (18)

minimize
u

C∑

i=1

ui(x)di(x) + λ−1
C∑

i=1

fRFCM(ui(x)), (19)

subject to Eqs. (3) and (13), respectively. Finally, it has been shown [6] that the
subsets, {Gi}C

i=1, produced from RFCM yield Voronoi sets, and ui(x) of RFCM
approaches zero or one.

3 mGFCM: A Generalization of mSFCM and GFCM,
and mRFCM: A Generalization of mEFCM and RFCM

For fmGFCM : R+ → R, let us assume that afmGFCM(a/b) is non-negative,
smooth, and strictly convex for a ∈ (0, 1) and b ∈ (0, 1). Further, let us
assume that it is increasing with respect to a ∈ (0, 1). For an example, when
fmGFCM(a/b) = (a/b)m−1 (m > 1), afmGFCM(a/b) = amb1−m is non-negative,
smooth, and strictly convex for a ∈ (0, 1) and b ∈ (0, 1). For fmRFCM : R+ → R,
we assume that afmRFCM(a/b) is strictly convex and smooth both for a ∈ (0, 1)
and b ∈ (0, 1). For example, when fmRFCM(a/b) = ln(a/b), afmRFCM(a/b) =
a ln(a/b) is strictly convex with respect to both a ∈ (0, 1) and b ∈ (0, 1).

The mGFCM and mRFCM algorithms are obtained by solving the following
optimization problems

minimize
U,V,A

C∑

i=1

N∑

k=1

ui,kfmGFCM

(
ui,k

αi

)
di,k, (20)

minimize
U,V,A

C∑

i=1

N∑

k=1

ui,kdi,k +
C∑

i=1

N∑

k=1

ui,kfmRFCM

(
ui,k

αi

)
, (21)

respectively, subject to Eqs. (3) and (6). The mGFCM optimization prob-
lem is a generalizations of that of mSFCM because it reduces to Eq. (4),
with fmGFCM(ui,k/αi) = (ui,k/αi)m−1. Additionally, it is a generalization
of that of GFCM because it reduces to Eq. (16), with fmGFCM(ui,k/αi) =
fGFCM(ui,k/(1/C))/ui,k. This optimization problem is a generalization of
that for mEFCM because it reduces to Eq. (8), with fmRFCM(ui,k/αi) =
λ−1 ln(ui,k/αi). It is also a generalization of that for RFCM because it reduces
to Eq. (18), with fmRFCM(ui,k/αi) = fRFCM(ui,k/(1/C))/ui,k.
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We describe the Lagrangians, LmGFCM(U,A, γ, η) and LmRFCM(U,A, γ, η),
as follows:

LmGFCM(U,A, γ, η) =
C∑

i=1

N∑

k=1

fmGFCM

(
ui,k

αi

)
di,k +

N∑

k=1

γk

(
1 −

C∑

i=1

ui,k

)

= η

(
1 −

C∑

i=1

αi

)
, (22)

LmRFCM(U,A, γ, η) =
C∑

i=1

N∑

k=1

ui,kdi,k +
C∑

i=1

N∑

k=1

ui,kfmGFCM

(
ui,k

αi

)

+
N∑

k=1

γk

(
1 −

C∑

i=1

ui,k

)
+ η

(
1 −

C∑

i=1

αi

)
, (23)

with Lagrange multipliers, γ = (γ1, . . . , γN ) and η.
The membership value are obtained using the following algorithm if the opti-

mal value of γ is given (the derivation is omitted):

Algorithm 1.

Step 1. Set the lower and higher bounds for ui,k as (ui,k, ui,k) = (0, 1). Set
the threshold value δ > 0.

Step 2. Set ûi,k = (ui,k + ui,k)/2.
Step 3. If |ui,k − ui,k| < δ, then terminate the algorithm and set the optimal

value of ui,k as ûi,k.
Step 4. If

(
fmGFCM

(
ûi,k

αi

)
+

ûi,k

αi
f ′
mGFCM

(
ûi,k

αi

))
di,k > γk. (24)

for mGFCM, and

di,k + fmRFCM

(
ûi,k

αi

)
+

ûi,k

αi
f ′
mRFCM

(
ûi,k

αi

)
> γk, (25)

for mRFCM, ûi,k is higher than the optimal ui,k. In this case, set
ui,k ← ûi,k. Otherwise, ûi,k is lower than the optimal ui,k. In this
case, set ui,k ← ûi,k. Return to Step. 1.

The optimal value of γ is obtained using the following algorithm (the derivation
is omitted):

Algorithm 2.

Step 1. Set (γk, γk) to be

γk = min
1≤i′≤C

{(
fmGFCM

(
1/C

α′
i

)
+

1/C

α′
i

f ′
mGFCM

(
1/C

α′
i

))
di′,k

}
, (26)

γk = max
1≤i′≤C

{(
fmGFCM

(
1/C

α′
i

)
+

1/C

α′
i

f ′
mGFCM

(
1/C

α′
i

))
di′,k

}
, (27)
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for mGFCM, and

γk = min
1≤i′≤C

{
di′,k + fmRFCM

(
1/C

αi′

)
+

1/C

αi′
f ′
mRFCM

(
1/C

αi′

)}
, (28)

γk = max
1≤i′≤C

{
di′,k + fmRFCM

(
1/C

αi′

)
+

1/C

αi′
f ′
mRFCM

(
1/C

αi′

)}
. (29)

for mRFCM. We set the threshold value δ > 0.
Step 2. Set γ̂k = (γk + γk)/2.
Step 3. If we have |γk − γk| < δ, then terminate the algorithm and set the

optimal value of γk to be γ̂k.
Step 4. Obtain {ui,k}C

i=1 using Algorithm 1 for γ̂k.
Step 5. If

∑C
i=1 ui,k < 1, γ̂k is lower than the optimal γk. In this case, set

γk ← γ̂k. Otherwise, γ̂k is higher than the optimal γk. in this case,
set γk ← γ̂k. Return to Step. 2.

The optimal cluster size controller is obtained using the following algorithm
if the optimal value of η is given (the derivation is omitted):

Algorithm 3.

Step 1. Set the lower and higher bounds for αi to be (αi, αi) = (0, 1). Set the
threshold value δ > 0.

Step 2. Set α̂i = (αi + αi)/2.
Step 3. If |αi − αi| < δ, then terminate this algorithm, and set the optimal

value of αi to be α̂i.
Step 4. If

N∑

k=1

(
ui,k

α̂i

)2

f ′
mGFCM(

ui,k

α̂i
)di,k > η (30)

for mGFCM, and

−
N∑

k=1

(
ui,k

α̂i

)2

f ′
mRFCM

(
ui,k

α̂i

)
> η, (31)

for mRFCM, the value of α̂i is higher than the optimal αi. In this
case, set αi ← α̂i. Otherwise, the value of α̂i is lower than the optimal
αi. in this case, set αi ← α̂i. Return to Step. 3.

The optimal value of η is obtained using the following algorithm (the derivation
is omitted):
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Algorithm 4.

Step 1. Set (η, η) to be

η = min
1≤i≤C

{
N∑

k=1

(
ui′,k

1/C

)2

f ′
mGFCM

(
ui′,k

1/C

)
di′,k

}
def= ηmin, (32)

η = max
1≤i≤C

{
N∑

k=1

(
ui′,k

1/C

)2

f ′
mGFCM

(
ui′,k

1/C

)
di′,k

}
def= ηmax. (33)

for mGFCM, and

η = min
1≤i′≤C

{
−

N∑

k=1

(
ui′,k

1/C

)2

f ′
mRFCM

(
ui′,k

1/C

)}
, (34)

η = max
1≤i′≤C

{
−

N∑

k=1

(
ui′,k

1/C

)2

f ′
mRFCM

(
ui′,k

1/C

)}
. (35)

for mRFCM. Set the threshold δ > 0.
Step 2. Set η̂ = (η + η)/2.
Step 3. If |η − η| < δ, then terminate this algorithm, and set the optimal

value of αi to be η̂.
Step 4. Obtain the values of {αi}C

i=1 using Algorithm 3 with η̂k.
Step 5. If

∑C
i=1 αi < 1, the value of η̂ is lower than the optimal η. In this

case, set η ← η̂. Otherwise, the value of η̂ is higher than the optimal
η. In this case, set η ← η̂.

Then, we propose the mGFCM and mRFCM algorithms as follows:

Algorithm 5 (mGFCM and mRFCM).

Step 1. Specify the number of clusters, C. Set the initial membership, U , and
cluster size controller, A.

Step 2. Calculate V using

vi =
∑N

k=1 ui,kfmGFCM(ui,k/αi)xk∑N
k=1 ui,kfmGFCM(ui,k/αi)

( for mGFCM), (36)

vi =
∑N

k=1 ui,kxk∑N
k=1 ui,k

( for mRFCM). (37)

Step 3. Obtain η using Algorithms 4 and the cluster size controller A using
Algorithm 3.

Step 4. Obtain γ using Algorithms 2 and the membership U using Algo-
rithm 1.

Step 5. Check the termination criterion for (U, V,A). If the criterion is not
satisfied, return to Step 5.
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The FCFs of mGFCM and mRFCM are obtained by solving the optimization
problem

minimize
U

C∑

i=1

ui(x)fmGFCM

(
ui(x)
αi

)
di(x), (38)

minimize
U

C∑

i=1

ui(x)di(x),+
C∑

i=1

ui(x)fmGFCM

(
ui(x)
αi

)
, (39)

respectively, with
∑C

i=1 ui(x) = 1, where di(x) = ‖x − vi‖22. These are achieved
using the following algorithm:

Algorithm 6 (FCFs of mGFCM and mRFCM).

Step 1. Obtain V , and A from Algorithm 5, and set x ∈ R
p.

Step 2. Obtain γ(x) using Algorithm 2 along with {ui(x)}C
i=1 using Algo-

rithm 1, where γ̂k, γk, γk, and di,k are replaced with γ̂(x), γ(x), γ(x),
and di(x), respectively.

4 Numerical Experiment

This section describes numerical experiments performed to observe the proper-
ties of the mGFCM and mRFCM (Algorithms 5 and 6) proposed in the previous
sections. We consider the pairs of actual functions corresponding to mGFCM
and mRFCM for an artificial dataset.

The two functions for mGFCM are defined as follows:

f1

(
ui,k

αi

)
=

(
ui,k

αi

)
+

(
ui,k

αi

)0.6

, (40)

f2

(
ui,k

αi

)
=1.5ui,k/αi − 1 (41)

for all i ∈ |1, . . . , C, k ∈ {1, . . . , N}. Clearly, ui,kf1(ui,k/αi) and ui,kf2(ui,k/αi)
are defined over ui,k ∈ [0, 1] and αi ∈ (0, 1) and are strictly convex, increasing,
non-negative, and smooth. The two functions for mRFCM are defined as follows:

f3

(
ui,k

αi

)
=4

((
ui,k

αi

)2

+
(

ui,k

αi

))
, (42)

f4

(
ui,k

αi

)
=3 × 2(ui,k/αi) (43)

for all i ∈ {1, . . . , C}, k ∈ {1, . . . , N}. Obviously, ui,kf3(ui,k/αi) and
ui,kf4(ui,k/αi) are defined in ui,k ∈ [0, 1] and αi ∈ (0, 1) and are strictly convex
and smooth.
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Fig. 1. Artificial dataset.

The dataset, comprising three clusters, is depicted in Fig. 1. One comprises
180 objects distributed randomly in a circle of radius three. Another comprises
80 objects distributed randomly in a circle of radius two. The final cluster com-
prises 20 objects distributed randomly in a circle of radius one. This dataset is
partitioned into three clusters via mGFCM based on f1 and f2 and mRFCM
based on f3 and f4. The characteristics of the classification rule are elicited. The
top-left cluster is denoted by cluster #1, the bottom-left cluster is denoted by
cluster #2, and the right cluster is denoted by cluster #3. The derived FCFs are
illustrated in Fig. 2, where the red points represent the objects in cluster #1, the
purple points represent the objects in cluster #2, the blue points represent the
objects in cluster #3, the purple surface represent the FCF for cluster #1, the
blue surface represent the FCF for cluster #2, and the yellow surface represent
the FCF for cluster #3. It is evident from Fig. 2c and d that the values of FCFs
derived from mRFCM are one or zero at the points far away from the clusters.
This property is identical to those of RFCM and mEFCM. Thus, we hypothe-
size that mRFCM satisfies the same properties as RFCM and mEFCM. On the
other hand, Fig. 2a and b do not yield any conclusions. The FCFs derived from
mGFCM over a wider range are depicted in Fig. 3. Figure 3a and b correspond
to Fig. 2a and b. It is evident from Figs. 3 that the values of FCFs corresponding
to cluster #1 are greater than 0.6, those of FCFs corresponding to cluster #2
are nearly 0.3, and those of FCFs corresponding to cluster #3 are less than
0.1. These values, (0.6, 0.3, 0.1), are similar to the ratios of the cluster sizes,
(180/(180+80+20), 80/(180+80+20), 20/(180+80+20) � (0.642, 0.286, 0.071),
mSFCM also exhibits this property. Thus, we hypothesize that mGFCM inher-
its the properties of mSFCM. The results obtained from these experiments are
expected to serve as a useful basis for theoretically investigating the properties
of mGFCM and mRFCM based on actual functions of fmGFCM and fmRFCM in
future research.
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Fig. 2. FCFs

Fig. 3. FCFs for mGFCM: a wider view

5 Conclusion

In this study, we generalize both mSFCM and mEFCM into mGFCM and
mRFCM, respectively, construct corresponding algorithms, and experimentally
demonstrate that the FCFs of mGFCM and mRFCM inherit the properties of
mSFCM and mEFCM, respectively.

In future work, we intend to prove that the FCF of mGFCM approaches
the value of the cluster size controller values as the object approaches infinity,
and that the FCF of mRFCM approaches one or zero as the object approaches
infinity. Further, we intend to consider further generalization of mGFCM and
mRFCM while preserving their properties.
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Abstract. Local differential privacy is a technique for concealing a
user’s information from collectors by randomizing the information within
the user’s own device before sending it to unreliable collectors. Ye et al.
proposed PrivKV, a local differential privacy protocol for securely collect-
ing key–value data, which comprises two-dimensional data with discrete
and continuous values. However, such data is vulnerable to a “poison-
ing attack,” whereby a fake user sends data to manipulate the key-value
dataset. To address this issue, we propose an Expectation-Maximization
(EM) based algorithm, in conjunction with a cryptographical protocol for
ensuring secure random sampling. Our local differential privacy proto-
col, called emPrivKV, offers two main advantages. First, it is able to esti-
mate statistical information more accurately from randomized data. Sec-
ond, it is robust against manipulation attacks such as poisoning attacks,
whereby malicious users manipulate a set of analysis results by sending
altered information to the aggregator without being detected. In this
paper, we report on the improvement in the accuracy of statistical value
estimation and the strength of the robustness against poisoning attacks
achieved by applying the proposed method to open datasets.

Keywords: local differential privacy · key–value data · expectation
maximization

1 Introduction

Our personal data are being used by many services such as item recommenda-
tion for online shops, personalized medical assistance, and fake user detection.
For example, in a smartphone survey, users indicate their favorite apps such as
〈YouTube, 0.5〉, and 〈Instagram, 0.2〉, by stating the total time they used each of
the apps. These data were stored in a key–value database, whereby each “key”
is an app title and its associated “value” is the rating of that app by a particular
user. However, collecting this data poses a significant challenges.
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Local Differential Privacy (LDP) is one approach to addressing the challenge.
Here, each user locally perturbs their personal data before sending it to an
(untrusted) server. Many LDP protocols have been proposed for different types
of data, including Erlingsson et al. [7] proposed an LDP. Ye et al. [1] proposed
PrivKV, an LDP scheme that securely collects key–value data, two-dimensional
data with discrete and continuous values. Other LDP protocols [2] [3] for key–
value data have also been proposed.

However, because the perturbation is being performed locally, LDP protocols
are vulnerable to “poisoning attacks,” whereby an attacker injects fake users
who send fake data for a target key, aiming to manipulate the server’s analytical
results such as the frequency of particular keys or their mean reputation scores.
If a fake user sends fake key and value data without following the predetermined
LDP protocol, the server would not be able to detect these data because of
the privacy guarantee of LDP. Cao et al. [4] studied poisoning attacks on LDP
schemes. Wu et al. [5] identified three types of poisoning attacks for PrivKV and
demonstrated that PrivKV is vulnerable to these types of attacks. They also
proposed defense methods against poisoning attacks. However, these methods
require long-term observation of the collection of the data.

In this paper, we address the issues of poisoning attacks on the LDP proto-
col for key–value data. First, we use a cryptographical protocol called oblivious
transfer (OT) [6] to prevent fake users from choosing keys intentionally. Instead
of performing random sampling locally, our protocol ensures that the server
is involved jointly in the secure sampling process. Second, we claim that the
estimation algorithm used in PrivKV is the source of its vulnerability to poi-
soning. Because it is computed using a single frequency for a key, it is easily to
manipulated when the number of targeted keys is small. Instead, we address this
limitation by using an Expectation Maximization (EM) algorithm [8]. Because
EM estimates posterior probabilities iteratively, so that the estimated probabil-
ities are more consistent across all observed values, it can improve the accuracy
when the number of users is large and much observed data are available.

To investigate whether our proposed protocol is robust against various types
of poisoning attacks, we conducted experiments using both synthetic data and
open datasets. The results enable us to compare our proposed scheme with the
conventional schemes such as PrivKV and PrivKVM.

Our contributions are as follows.

– We propose a new LDP algorithm that is robust against some types of poison-
ing attacks. Our proposed algorithm improves the accuracy of estimates based
on the iterative process of Bayesian posterior probabilities and preserves the
statistics against poisoning data.

– We show the experimental results that show the robustness of the proposed
protocol using both synthetic data and open data. The results show that the
proposed method performs better than the PrivKV protocol in estimation
accuracy and in robustness against poisoning attacks.
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2 Local Differential Privacy

2.1 Fundamental Definition

Suppose that users periodically submit their location data to a service provider.
Differential privacy guarantees that the randomized data do not reveal any pri-
vacy disclosure from these data. By contrast, LDP needs no trusted party in
providing the guarantee. LDP is defined as follows.

Definition 1. A randomized algorithm Q satisfies ε-local differential privacy if
for all pairs of values v and v′ of domain V and for all subset S of range Z
(S ⊂ Z), and for ε ≥ 0, Pr[Q(v) ∈ S] ≤ eεPr[Q(v′) ∈ S].

2.2 PrivKV

PrivKV takes input data in the key–value from, a two-dimensional data struc-
ture of discrete (“key”) and continuous (“value”) variables, and estimates each
key’s frequency and its mean values. PrivKV’s approach idea combines two LDP
protocols, randomized response (RR) [13] for randomizing keys and value per-
turbation protocol (VPP) [12] for perturbing values. The dimension is restricted
to two, but the key–value is known as a primitive data structure commonly used
for several applications.

Sampling. Let Si be a set of key–value tuples 〈k, v〉 owned by the i-th user.
In PrivKV, the set of tuples is encoded as a d-dimensional vector, where d
is the cardinality of the domain of keys K and a missing key is represented as
〈k, v〉 = 〈0, 0〉. For instance, a set of key–values Si = {〈k1, v1〉, 〈k4, v4〉, 〈k5, v5〉} is
encoded as a d = 5 dimensional vector Si = (〈1, v1〉, 〈0, 0〉, 〈0, 0〉, 〈1, v4〉, 〈1, v5〉)
where keys k1, k4 and k5 are specified implicitly with 1 at the corresponding
location. PrivKV performs 1-out-of-d random sampling to choose one element
〈ka, va〉 from the d-dimensional vector Si of key–value data.

Perturbing. The process has two steps: perturbing values and perturbing keys.
It uses the VPP used in Harmony [12] for the chosen tuple. A value va in the

key–value pair is discretized as v′
a =

{
1 with probability (1 + va)/2,

−1 with probability (1 − va)/2.
The dis-

cretized value v′ of the tuple 〈1, va〉 is perturbed to give v+
a = V PP (va, ε2),

defined as v+
a =

{
v′

a w/p. p2 = eε2/(1 + eε2),
−v′

a w/p.q2 = 1/(1 + eε2), where ε2 is the privacy bud-

get for values. The value of the “missing” tuple 〈0, 0〉 is replaced by v+
a =

V PP (v′
a, ε2), where v′

a is chosen uniformly from [−1, 1].
A key is perturbed by the RR scheme [13] as

〈k∗
a, v+

a 〉 =
{ 〈1, v+

a 〉 w/p. p1 = eε1

1+eε1 ,

〈0, 0〉 w/p. q1 = 1
1+eε1 ,
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where v+
a is perturbed as described above. A “missing” tuple 〈0, 0〉 is randomized

as

〈k∗
a, v+

a 〉 =
{ 〈0, 0〉 w/p. p1 = eε1

1+eε1 ,

〈1, v+
a 〉 w/p. q1 = 1

1+eε1 .

Each user submits the perturbed tuple 〈k∗
a, v+

a 〉 together with the index a of the
tuple.

Estimating. Let fi be a true frequency of key ki and let f ′
i be the observed

key frequencies among the perturbed vectors, for which ki = 1. We can have
the maximum likelihood estimation (MLE) of the frequency as f̂i = n(p−1)+f ′

i

2p1−1 ,

where p1 = eε1

1+eε1 .
From the compositional theorem of differential privacy [9], the sequential

composition of randomized algorithms with privacy budgets ε1 (for keys) and ε2
(for values) is (ε1 + ε2, 0)-differential private.

2.3 Poisoning Attack

We assume that an attacker is able to inject m fake users into a system. The
attacker has access to open information about the target LDP scheme, such
as its privacy budget ε and perturbation procedure. With n genuine users, the
server estimates the frequencies and the mean values for r target keys among
the n + m users. The attacker aims to intentionally manipulate the estimated
frequency and mean value for the set of targeted keys. We assume that the
attacker targets r keys out of d, aiming maximize the manipulation in terms of
frequencies and mean values.

Wu et al. [5] proposed the following three types of poisoning attacks;

1. Maximal Gain Attack (M2GA). All fake users craft the optimal fake output of
perturbed message so that both the frequency and mean gains are maximized,
i.e., they choose a target key k (a random key out of r targeted keys) and
send 〈1, 1〉 to the server.

2. Random Message Attack (RMA). Each fake user picks a message uniformly
at random from the domain and sends 〈0, 0〉, 〈1,−1〉, 〈1, 1〉, with probabilities
1/2, 1/4, and 1/4, respectively.

3. Random Key–Value Pair Attack (RKVA). Each fake user picks a random key
k from a given set of target keys, with a designated value of 1, and perturbs
〈1, 1〉 according to the protocol.

Wu et al. [5] proposed two methods to detect fake users, (1) one-class
classifier-based detection, where observations of multiple rounds for each user
gives the feature vector used for outlier detection, which can distinguish between
genuine and fake groups. (2) anomaly score based detection, where the anoma-
lous behavior of sending the same key in multiple rounds is detected from the
frequencies of keys in multiple rounds for each user. They reported that these
defense methods are effective when the number of targeted keys is small. How-
ever, their methods assume that each user sends data in multiple rounds, imply-
ing that realtime detection would not be feasible.
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3 Proposed Algorithm

3.1 Idea

To prevent attacker from poisoning fake key–value data, we propose two defense
methods, a perturbation with OT (see Sect. 3.2) and an EM estimation for fre-
quency and mean values (see Sect. 3.3).

First, we note that a poisoning attempt to increase the frequencies of target
keys is performed by the intentional choice of keys without random sampling.
Therefore, if the server performs the random sampling on the behavior of fake
users, the poisoning attempt would fail. Even if the server chooses a random key,
no information of the key–value data is compromised. Note that privacy budgets
(ε1 and ε2) are spent only for perturbing keys and values. In this way, we ensure
a secure sampling using a cryptographical protocol (OT).

Second, we consider the reasons why the estimation might have been sub-
ject to a poisoning attack. We claim that the MLE used in PrivKV has low
estimate accuracy for a biased distribution because it is computed on the single
frequency for a key. It is therefore vulnerable when the number of targeted keys
is small. Instead, we attempt to address this limitation by using the EM algo-
rithm. Because EM estimates posterior probabilities iteratively, giving estimated
probabilities that are more consistent with all observed values, it can improve
the accuracy when the number of users n is large and much observed data are
available.

Table 1 summarizes our approach for each of the steps in PrivKV, that involve
sampling, perturbing, and estimating.

Table 1. Comparison of defenses approaches

step PrivKV [1] Our work

1 Pre-sampling 1-out-of-d sampling –

2 Perturbing Value VPP(v, ε2)

Key RR(k, ε1)

3 Post-sampling – 1-out-of-d OT

4 Estimating MLE EM

3.2 Oblivious Transfer

An OT is a two-party cryptographical protocol whereby a sender transfers one
of many pieces of information to a receiver, but remains oblivious as to which of
the pieces has been sent.

Naor and Pinkas [6] proposed an 1-out-of-N OT protocol using the 1-out-of-2
OT as a building blocks, as follows.
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1-out-of-N OT [6] Suppose A has N messages m0, . . . ,mN ∈ {0, 1}n, where
N = 2� − 1.

1. A generates 2� secret key pairs (K0
1 ,K1

1 ), . . . , (K0
� ,K1

� ).
2. A sends to B the ciphertexts C0, . . . , CN , where CI = mI ⊕ F

K
I1
1

(I) ⊕ · · · ⊕
F

K
I�
�

(I) and I is the �-bit string I1 . . . I� ∈ {0, 1}2 and FK is a pseudo-random
function.

3. A and B perform � 1-out-of-2 OT (K0
i ,K1

i ) so that B learns Kt1
1 , . . . ,Kt�

�

where t is the index that B chooses from N messages such that t = 11 . . . ti ∈
{0, 1}�.

4. B decrypts Ct using Kt1
1 , . . . ,Kt�

� to obtain mt.

We aim to prevent an M2GA attack where fake users intentionally choose a
target key (or set of keys) with aim of increasing the frequency and the mean
value of the particular targeted keys. Simply, we replace the 1-out-of-d random
sampling of PrivKV by an 1-out-of-d OT protocol performed between the user
(A in OT) with d key–value pairs and the server (B), which chooses one element
〈ka, va〉. However, the server cannot perform the subsequent perturbing steps
because it must learn neither whether the user has key ka nor the private value
va ∈ [0, 1]. Therefore, we change the order of steps so that users perturb the
keys and values before the server chooses randomly a key–value pair via OT.

Algorithm 1 describes the proposed perturbation process using OT protocol
for sampling. The perturbed key–value pairs will be used for estimating the
frequency and the mean for the keys. With the reordering of steps, users have to
perturb key–value pairs for all d keys, which will increase the computational cost
on the user side by a factor of d. We regard this increase in computation cost as
negligibly small because perturbation is a lightweight process in comparison with
the cryptographical cost of the 1-out-of-d OT. The algorithm is robust against
poisoning attacks.

Proposition 1. An M2GA poisoning attack against the PrivKV scheme with 1-
out-of-d OT for sampling key–value pairs has the frequency and the mean gains
as large as an RMA poisoning attack has.

Proof. Using an OT protocol, the fake users in the M2GA attack are not able to
intentionally select the targeted keys. They may craft an arbitrary value but the
server can detect invalid pairs other than the valid perturbed pairs 〈0, 0〉, 〈1,−1〉
and 〈1, 1〉. Therefore, they can prepare the valid perturbed pairs with arbitrary
fractions, which is equivalent to an RMA attack. Therefore, the frequency and
the mean gains will be less than or equal to those of an RMA attack.

3.3 EM Estimation for Key–Value Data

The EM algorithm performs an iterative process whereby posterior probabilities
are updated through Bayes’ theorem [8]. We propose using the EM algorithm
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Algorithm 1. Perturbation of key–value pairs with OT
S1, . . . , Sn ← key–value data for n users.
for all u ∈ {1, . . . , n} do perturbs all 〈ka, va〉 ∈ Su

v+
a ← V PP (v′

a, ε2) and k∗
a ← RR(k′

a, ε1)
u with 〈v+

1 , k∗
1〉, . . . , 〈v+

d , k∗
d〉 performs 1-out-of-d OT with a server.

end for return The server has n perturbed key–value pairs.

Algorithm 2. EM algorithm for PrivKV
〈v+, k∗〉 . . . ← the perturbed key–value pair for n users.
Θ(0) ← a uniform probability for X = {〈1, 1〉, 〈1, −1〉, 〈0, 1〉, 〈0, −1〉}.
repeat(E-step)

t ← 1
Estimate posterior probability θ̂

(t)
u,i ← Pr[xi|zu] = Pr[zu|xi]θi

(t−1)

∑|X|
s=1 Pr[zu|xs]θs

(t−1)
,

(M-step) Update marginal probability θ(t) ← 1
n

∑n
u=1 θ̂

(t−1)
u .

until |θ(t+1)
i − θ

(t)
i | ≤ η

for all a ∈ K do estimate

f̂a ← n(θ
(t)

〈1,1〉 + θ
(t)

〈1,−1〉) and m̂a ← θ
(t)
〈1,1〉−θ

(t)
〈1,−1〉

θ
(t)
〈1,1〉+θ

(t)
〈1,−1〉

end for return f̂1, m̂1, . . . , f̂d, m̂d

for estimating the frequency and mean values from key–value data perturbed in
PrivKV.

Algorithm 2 shows the overall process for the proposed EM algorithm for
estimating the frequency and means of key–value data. Given n perturbed values
z1, . . . , zn, we iterate the estimation of posterior probabilities for x1, . . . , xd as
Θ(t) = (θ1(t), θ2(t), . . . , θd

(t)) until convergence.

4 Evaluation

4.1 Data

Our synthetic data comprises a Key–value data for each of three distributions:
Gaussian (μ = 0, σ = 10), Power-law (F (x) = (1 + 0.1x)− 11

10 ), and Linear
(F (x) = x). Table 2 gives the means and variances of the synthetic data, where
d = 50 distinct keys are evaluated for n = 105 users. Table 3 shows the statistics
for the two open datasets used in our experiments.

4.2 Methodology

Accuracy Metrics. Given a set of key–value data provided by n users, we use
emPrivKV, PrivKV, and PrivKVM(c=3) to estimate the frequency of key k, f̂k,
and the mean value for k, m̂k. The Mean Square Error (MSE) for these estimates
are defined as MSEf = 1

|K|
∑|K|

i=1 (f̂i − fi)
2
,MSEm = 1

|K|
∑|K|

i=1 (m̂i − mi)
2
,

where fk and mk are the real frequency and mean for key k. After repeating
each estimation 10 times, we evaluate the estimation accuracy.
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Table 2. Synthetic Data (n = 105, d = 50)

distribution E(fk/n) Var(fk/n) E(mk) Var(mk)

Gaussian 0.49506 0.10926 −0.00987 0.43702

Power-law 0.20660 0.06290 −0.58681 0.25160

Linear 0.51 0.08330 0 0.34694

Table 3. Open datasets

item MoveiLens [10] Clothing [11]

# ratings 10,000,054 192,544

# users (n) 69,877 9,657

# items (d) 10,677 3,183

value range 0.5 – 5 1 – 10

Robustness Metrics. The estimation algorithm is robust against poisoning
attacks if a poisoning attack fails to alter the estimation results. We quantify the
robustness via frequency gain as the sum of the distance between the estimated
and the poisoned frequency for the key, i.e., the frequency gain is Gf (Y ) =∑

k∈T E[Δf̂k], where Δf̂k = f̃k − f̂k is the distance and f̃k is the estimated
frequency when key k is targeted by a poisoning attack. Similarly, the mean
gain is the sum of the distance between the estimated and the poisoned value,
defined as Gm(Y ) =

∑
k∈T E[Δm̂k] where Δm̂k = m̃k − m̂k, and m̃k is the

estimated mean value when key k is targeted by a poisoning attack.

4.3 Experimental Results

Accuracy with respect toε. Figs. 1a, 1b, 2a and 2b show the MSE distri-
butions of frequencies and mean values for the open datasets, MovieLens and
Clothing, respectively. Note that the MSE for emPrivKV are the minimum for
both datasets and all ε. The accuracies with respect to the conventional PrivKV
and PrivKVM are better by a factor of 100–1000 for small ε = 0.1.

Fig. 1. MSEf with respect to privacy
budget ε

Fig. 2. MSEm with respect to privacy
budget ε

Frequency Gain. Figures 3a, 3b, 3c show the distributions of frequency gain
with respect to the fraction of malicious users b, the privacy budget ε and the
number of target key r, respectively, for the three types of poisoning attacks
(M2GA, RMA and RKVA), when using the synthetic data (Gaussian distribu-
tion).
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Note that an M2GA (see Figs. 3a, and 3b) causes the greatest gains for the
three poisoning schemes. This is to be expected because it makes the strongest
assumption (i.e., that malicious users are able to control the output arbitrarily)
and therefore represents the greatest risk to LDP schemes.

The emPrivKV results show almost always the least gain for all types of
poisoning attack and all parameters b, ε and r. As the fraction of malicious users
b increases, the gains for PrivKV increase accordingly (see Fig. 3a). By contrast,
the gain of emPrivKV is stable at 0.5. The gain of emPrivKV for b = 0.2 is 70.3%
of PrivKV. Therefore, it is more robust against the worst type of poisoning attack
(M2GA).

(a) M2GA b (b) M2GA ε (c) M2GA r

Fig. 3. Frequency gain for poisoning attacks(Gaussian)

Figure 4 shows the frequency gains for the MovieLens dataset. The gains dis-
tributions are similar to those using the Gaussian synthetic data, except for the
effect the fraction-of-malicious-users parameter b (see Figs. 4a and 4g). The gain
does not depend on b for M2GA (Fig. 4a), and is unstable for RKVA (Fig. 4g).
The MovieLens data shows greater gains than the synthetic data (by a factor
of 2–5) because the keys are not distributed as for the Gaussian distribution
and there are many low-frequency keys (such as minor movie titles with very
small audiences). These low-frequency keys are more vulnerable to low-resource
poisoning attacks. With the same number of malicious users, the manipulated
keys were already saturated in the MovieLens dataset. Therefore, the gains are
greater in this case than for the synthetic-data case.

Mean Gain. The emPrivKV had always smaller gain than the PrivKV and
PrivKVM had. For example, the gain for emPrivKV at b = 0.2 is stable
around 1.0, which is 1/3 of that for PrivKV and 1/10 of that for PrivKVM. We
observe similar results for the three LDP schemes with the MovieLens dataset
(see Fig. 5a). Here, PrivKVM is seen as the most vulnerable against poisoning
attacks.

The emPrivKV has the smallest gain with respect to privacy budget ε, as
shown in Figs. 5b. The mean gains increase for PrivKV and PrivKVM as ε
decreases. By contrast, the gain for the emPrivKV stays low, i.e., showing only
minimal effects from poisoning attacks. This demonstrates the robustness of
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(a) M2GA b (b) M2GA ε (c) M2GA r

(d) RMA b (e) RMA ε (f ) RMA r

(g) RKVA b (h) RKVA ε (i) RKVA r

Fig. 4. Frequency gains for poisoning attacks (MovieLens)

emPrivKV. The gain increases linearly with number of targeted keys r. Fig-
ures 5c and 5i show the linear increase of the mean gains. Note that emPrivKV
has the least coefficient for all the LDP schemes.

The LDP schemes did not show the significant differences with respect to
RMA poisoning. Figure 5d shows that the differences in gain increase as the
fraction of malicious users b increases.

4.4 Discussion

The experimental results demonstrate that the emPrivKV scheme is more robust
than other LDP schemes. There are three possible reasons for this.

First, the PrivKV is based on the MLE, where the single-highest frequency
is regarded as the expected value of the perturbation. Therefore, the scheme
is likely to be affected by manipulating the highest frequency. By contrast, the
EM algorithm iteratively adjusts the probabilities based on all the observed
frequencies. Therefore, even if the highest frequency has been manipulated, the
other elements help to mitigate against the manipulation of frequency.
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(a) M2GA b (b) M2GA ε (c) M2GA r

(d) RMA b (e) RMA ε (f ) RMA r

(g) RKVA b (h) RKVA ε (i) RKVA r

Fig. 5. Mean gain of poisoning attacks (MovieLens)

Second, we estimate the mean value based not only on the positive statistics
(v′

k = 1) but also on both positive and negative statistics (v′
k = 1 and 0). This

makes the estimation more robust against poisoning attacks and is the reason
why the emPrivKV had a smaller mean gain.

Finally, based on our experimental results for gains, we can estimate the over-
all robustness of the proposed protocol. Following Proposition 1, M2GA is not
relevant if perturbation with the OT protocol is used. Therefore, the gains from
poisoning attacks on the proposed protocol can be estimated as the maximum
of the gains for RMA and RKVA attacks (see Figs 4 and 5), as summarized in
Table 4.

Table 4. Robustness against poisoning attacks (MovieLens, b = 0.1)

Attack PrivKV [1] Our work

Frequency gain 2.5 (M2GA) 0.7 (RKVA)

Mean gain 10 (M2GA) 3 (RKVA)



252 H. Horigome et al.

5 Conclusion

We have studied the privacy preservation of key–value data in the LDP algorithm
PrivKV. Our proposed emPrivKV scheme uses the OT protocol for preventing
intentional sampling of target keys and uses the EM algorithm for estimation.
This makes the frequency and mean for keys robust against fake-data poisoning
attacks. Our experiments using the MovieLens dataset, with the ratio of fake
users to genuine users being 1 to 10, demonstrated that the proposed emPrivKV
had a frequency gain of 0.7 and a mean gain of 3.0, which represent 28% (0.7/2.5)
and 30% (3/10) of the gains for the PrivKV (fake users are 0.1 of genuine users),
respectively. We conclude that the iterative approach works well for data per-
turbed via the LDP algorithm.

Acknowledgment. Part of this work was supported by JSPS KAKENHI Grant Num-
ber JP18H04099 and JST, CREST Grant Number JPMJCR21M1, Japan.
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Universidad Panamericana, Mexico, Mexico
cvgonzalez@up.edu.mx

3 Department of Computing Science, Ume̊a Universitet, Umea, Sweden
vicenc.torra@umu.se

Abstract. Differential privacy is commonly used for graph analysis in
the interactive setting, were a query of some graph statistic is answered
with additional noise to avoid leaking private information. In such set-
ting, only a statistic can be studied. However, in the non-interactive set-
ting, the data may be protected with differential privacy and then pub-
lished, allowing for all kinds of privacy preserving analyses. We present a
noise-graph addition method to publish graphs with differential privacy
guarantees. We show its relation to the probabilities in the randomized
response matrix and prove that such probabilities can be chosen in such
a way to preserve the sparseness of the original graph in the protected
graph. Thus, better preserving the utility for different tasks, such as link
prediction. Additionally, we show that the previous models of random
perturbation and random sparsification are differentially private, and
calculate the ε guarantees that they provide depending on their specifi-
cations.

Keywords: Local Differential Privacy · Noise Graph Addition ·
Randomized Response · Random Perturbation · Random Sparsification

1 Introduction and Related Work

For achieving Local Differential Privacy (LDP) on different graph statistics, the
randomized response mechanism (RR) is commonly used, e.g. in [9] for counting
the number of triangles or stars, in [11] for calculating graph modularity, clus-
tering and assortativity coefficient, in [10] it is used for graph clustering, in [15]
for data collection, while in [12] for data publication.

Most commonly, RR is defined as a flipping coin mechanism, e.g., in [5] define
RR as follows:

1. Flip a coin
2. If tails, then respond truthfully.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Torra and Y. Narukawa (Eds.): MDAI 2023, LNAI 13890, pp. 253–264, 2023.
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3. If heads, then flip a second coin and respond YES if heads and NO if tails.

This is known as Warner’s RR mechanism and was generally defined in [16],
here the probability of randomization is the same regardless of the input value. It
must equal 1

eε+1 to provide ε-LDP, and it was shown in [8] that such probability
minimizes the estimation error when randomized response is applied to privately
estimate the proportion of individuals having a sensitive attribute.

However, when applied to graphs or to their adjacency matrices it yields
dense graphs (or matrices). Thus, it may return matrices with huge amounts
of edges (equivalently, adjacency matrices with lots of 1’s). This implies a large
information loss and noise, that most of the times makes the protection algorithm
unsustainable since graph datasets that in most cases are sparse become dense
after protection.

Recently, [13] showed that different probabilities in the randomization matrix
can be chosen that provide LDP for the same value of ε, and thus they can be
tuned to improve the properties of the randomized data, e.g., fairness of privacy
guarantees.

In this paper, following the results in [13,14], we apply RR through the
Noise-Graph addition method and show that it provides ε-LDP. Further, we
show that the probabilities in the RR matrix can be defined in such a way
to preserve the sparseness of the original graph in the protected graph. Thus,
better preserving the utility and making the LDP algorithms through RR more
sustainable. Additionally, we show that the models of random perturbation and
random sparsification can be defined such that they are LDP, and calculate the
ε depending on their specifications.

2 Basic Definitions

In this section, we provide the main definitions of local differential privacy, ran-
domized response and noise-graph that are used through the following sections.

Definition 1 (Local Differential Privacy). A randomized algorithm A
satisfies ε-local differential privacy if for all inputs i, j and all outputs k ∈
Range(A):

Pr[A(i) = k] ≤ eεPr[A(j) = k], (1)

we say that A is ε-locally differentially private (ε-LDP).

Any LDP algorithm obtained through randomized response is uniquely deter-
mined by its design matrix.

Definition 2 (Design Matrix for Randomized Response). The design
matrix R for a binary randomized response mechanism is defined as follows:

R =
(

p00 p01
p10 p11

)

where the entry pjk = Pr[Xi = k|xi = j], and Xi is the random output for
original random variable xi ∈ {0, 1}.
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Therefore, p00 denotes the probability that the randomized value is 0 and the
original value is 0; p01 denotes the probability that the published value is 1 and
the original value 0; and so on.

Remark 1. For the probability mass functions of each Xi to sum to 1, it is
necessary that p00 + p01 = 1 and p10 + p11 = 1. The design matrix simplifies to:

P =
(

p00 1 − p00
1 − p11 p11

)
(2)

where p00, p11 ∈ [0, 1]. Hence, it is enough to define p00 and p11 to define P .

Remark 2. Warner’s randomized response mechanism may be represented by
the following design matrix:

Pw =
(

pw 1 − pw

1 − pw pw

)
(3)

In [10] follow the same logic of the flipping coin mechanism for RR in [5] but
consider the privacy parameter s ∈ (0, 1] and proceed as follows:

For each entry in the adjacency matrix, it is determined if preservation or
randomization should be performed. Preservation is chosen with probability (1−
s), whereas randomization is chosen with probability s, after randomization is
chosen, then 0 or 1 are chosen with probability 1

2 . Which is the same as the
parameter used for bit randomization in RAPPOR [6].

All these three RR mechanisms are represented by choosing pw = 1 − s
2 in

(3), and are represented by the following randomization matrix:

Ps =
(

1 − s
2

s
2

s
2 1 − s

2

)
(4)

It was shown in [8] that Pw (and thus Ps) should equal the following ran-
domization matrix Prr to provide ε-LDP and minimize the estimation error. This
result is used throughout all the LDP literature that uses RR.

Prr =

(
eε

eε+1
1

eε+1

1
eε+1

eε

eε+1

)
(5)

2.1 Noise-Graph Addition

We consider the same definition of noise-graph addition as in [12], that is, a
simplification from the original definition in [14], assuming that the original
graph and the noise-graph have the same sets of nodes.

We denote by G(V,E) the graph with the set of nodes V and set of edges E.
We denote the symmetric difference E1 � E2 := {e|e ∈ E1 and e /∈ E2} ∪

{e|e /∈ E1 and e ∈ E2}.
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Definition 3. Let G1(V,E1) and G2(V,E2) be two graphs with the same nodes
V ; then the addition of G1 and G2 is the graph G = (V,E) where:

E = E1 � E2

We denote G as
G = G1 ⊕ G2.

So, to add noise to a graph G, we will draw a random graph g from the
Gilbert model (i.e., g ∈ G(n, p)) and add it to G, to obtain G̃ = G ⊕ g.

In the Gilbert model, which is denoted by G(n, p), there are n nodes and each
edge is chosen with probability p. The Gilbert and the Erdös-Rényi random
graph models, are the most common and general in the literature. It has been
proved that they are asymptotically equivalent in [3].

Now, we can define the general noise-graph mechanism that we will use.

Definition 4 (Noise-Graph Mechanism). For any graph G with n nodes,
and two probabilities p0 and p1 We define the following noise-graph mechanism:

Ap0,p1(G) = G ⊕ g0 ⊕ g1. (6)

Such that:

g0 ∈ G(n, 1 − p0) ∩ Ḡ,

g1 ∈ G(n, 1 − p1) ∩ G.

3 Differential Privacy, Sparseness, Random Perturbation
and Sparsification

In this section we show that the noise-graph mechanism is differentially private,
we show that there are different possible randomizations that preserve the exact
density of the graph G, depending on the parameters p0, p1. Then, based on
the noise-graph mecanism we define differentially private versions of random
perturbation [7] and random sparsification [4] methods.

Lemma 1. The noise-graph mechanism Ap0,p1 is equivalent to applying the
matrix from (2) to the adjacency matrix of G. Hence, it is an edge-LDP mech-
anism, and the values of ε for which it is ε-LDP (obtained from [13]) are:

ε = ln max
{

p0
1 − p1

,
p1

1 − p0
,
1 − p1

p0
,
1 − p0

p1

}
(7)

On the other hand, for any given ε we obtain the values of p0 and p1 for
which Ap0,p1 is ε-tight from the following equations, cf. [13]:

(p0(z), p1(z)) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(eεz, 1 − z); or
(1 − z, eεz); or
(1 − eεz, z); or
(z, 1 − eεz)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

for 0 < z ≤ 1
1 + eε

(8)
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3.1 Sparseness of Randomized Graphs

We recall the results from [10], that use s
2 as the parameter for randomization

and consider that it provides DP for ε = log(2/s − 1). Then they calculate the
expected number of edges in the randomized graph that we denote as G̃. Which
in our notation are:

EG̃ = (1 − 1
2
)sq +

s

2
qḠ = (1 − s)q +

s

2
qḠ where qḠ =

(
n

2

)
− q

Then the expected density dG̃ of G̃ equals [10]:

dG̃ =
EG̃(
n
2

) = (1 − s)dG +
s

2

Combining both observations, we calculate the expected density for an ε-LDP
algorithm from [10], which equals:(

1 − 2
eε + 1

)
q(
n
2

) +
1

eε + 1
(9)

This yields dense randomized graphs for small ε values. For example, for
ε = 0.1 it is more than 0.47. In general, the density of the randomized graphs
through RR is determined by the probabilities of randomization.

Remark 3. The density of a randomized graph can be calculated by considering
the probabilities, p00, p11 as follows:

dG̃ =
(1 − p00)qḠ + p11q(

n
2

) (10)

In fact, there are several possible randomizations that preserve the exact
density of the graph G.

Remark 4. The randomizations that preserve the density (i.e., dG̃ = dG) are
expressed by the formula:

p00 = 1 − q

qḠ

(1 − p11) (11)

Hence, we will show that by parameterizing Ap0,p1 with (8) we may obtain
ε-LDP graphs, which are sparser.

Remark 5. The density of the randomized graphs G̃ for a given ε can be
calculated by the following formulas obtained by replacing the probabilities
p0(z), p1(z) from (8) in (10).

dG̃(z) =
1(
n
2

)
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
n
2

) − z(eεqḠ + q)
z(qḠ + eεq)
z(eεqḠ + q)(
n
2

) − z(qḠ + eεq)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

for 0 < z ≤ 1
1 + eε

(12)
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3.2 Random Perturbation and Random Sparsification

In [7] suggested a random perturbation method that consisted on adding m edges
and removing m edges from a graph. This method was later studied from an
information theoretic perspective in [4], were the random sparsification method
was proposed. In [14] it was shown that they can be defined through Noise-graph
addition. In this section we present two mechanisms that generalize each of these
methods to show that they are ε-LDP.

Definition 5 (m-Random Perturbation Mechanism). For given parame-
ters n, q and m we define the m-random perturbation mechanism A(m,n, q) as
follows:

Am,n,q = Ap0,p1 (13)

Such that:

p0 = 1 − m(
n
2

) − q

p1 = 1 − m

q

Theorem 1. The m-random perturbation mechanism Am,n,q applied to a graph
G with n nodes and q edges is equivalent to adding and removing m random
edges from G. And, it is ε-LDP. For:

ε = ln max
{

q

m

qḠ − m

qḠ

,
q − m

qm
qḠ,

m

q

qḠ

qḠ − m
,

m

q − m

1
qḠ

,

}
(14)

Proof. Note that p0 is such that qḠ(1 − p0) = m and p1 such that q(1 − p1) =
m. This implies that, the mechanism Ap0,p1 in expectation adds m edges and
removes m edges from G. Recall that in the m-random perturbation mechanism,
p0 = 1 − 2m

(n2−n)−2q and p1 = 1 − m
q , replacing them in the first two elements in

(7), we obtain:

ε = ln max
{

q

m
− 2q

(n2 − n) − 2q
,
(q − m)

m

(n2 − n) − 2q

2q
,

}

Observe that the last two elements in (7) are the reciprocal of the first two.
Finally, replacing 2qḠ = (n2 − n) − 2q we obtain (14).

For random sparsification, we recall that such method consists in performing
an independent Bernoulli trial with a given probability parameter p for each
edge in the graph, remove the edge in case of success and keep it otherwise. This
is equivalent to applying Ap0,p1 , with p0 = 1, and p1 = p. It is not ε-LDP for
any ε > 0, since replacing 1 − p0 = 0 in (7) gives ∞.

However, we may choose p0 close to 1 and such that we allow the mechanism
to add t-new edges (in expectation). This implies that (1 − p0)qḠ = t.
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Definition 6 (Threshold-Random Sparsification). Let G be a graph with
n nodes and q edges. For parameters p, t we define the threshold-random spar-
sification Ap,t as follows:

Ap,t = Ap0,p1 (15)

Such that:

p0 = 1 − t

qḠ

p1 = p

Theorem 2. For threshold-random sparsification to be ε-LDP, for given p fixed.
Then t is as follows:

t = max
{

qḠ(1 + peε − eε),
pqḠ

eε
,

1
qḠ(1 + peε − eε)

,
eε

pqḠ

}
(16)

Proof. We use the first two elements in (7) to obtain that:

ε = ln max

{
1 − t

qḠ

1 − p
,

p

t/qḠ

}

From this equation we can calculate the value for t.

4 Experimental Evaluation

For the experimental evaluation we use the following three datasets obtained
from SNAP https://snap.stanford.edu/data/. We only use the largest connected
component from the original graph. The statistics and dataset description are
as follows:

– soc-facebook : In the Facebook network, nodes represent users, and edges rep-
resent a friendship relation between any two users. The network has n = 4, 039
nodes, q = 88, 234 edges, and density d = 0.0054.

– ca-HepTh: High Energy Physics - Theory collaboration network, with n =
8, 638, q = 24, 827 and d = 0.0003. Each edge represents co-authorship
between two author nodes.

– ca-AstroPh: Astro Physics collaboration network, with n = 17, 903, q =
197, 031 and d = 0.0006. Each edge represents co-authorship between two
author nodes.

In Fig. 1 we show the densities obtained from (10) after protecting the soc-
facebook graph by tuning the p11 parameter while keeping the ε fixed. We note
that in the case of all previous RR mechanisms (e.g., [5,6,8,10,12,15]), the Den-
sity obtained is the highest of all the values for each line, and corresponds to
p11 = eε

eε+1 .

https://snap.stanford.edu/data/.
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Fig. 1. Densities obtained after protecting the soc-facebook graph by tuning the p11

parameter while keeping the ε fixed.

Fig. 2. ε values obtained for each dataset as a function of m randomized edges consid-
ered as a proportion of the total edges q.
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In Fig. 2 we show the ε values obtained as a function of m randomized edges
considered as a proportion of the total edges q. This figure shows that the pri-
vacy provided by the m-random perturbation mechanism is more related to the
proportion m/q than to the exact value m, the values of m that provide more
privacy are closer to q but do not reach it.

Fig. 3. ε values obtained for soc-facebook graph as a function of the threshold param-
eter t considered as a proportion of the total edges q, when varying the sparsification
parameter p.

In Fig. 3, we show for the soc-facebook graph, that allowing for adding t edges
provides more privacy to the sparsification mechanism than only removing edges
according to p. Also, that the sparsification parameter has a more direct effect
on the privacy provided.

Finally, to test the utility of the protected graphs we consider the task of link
prediction, for this we calculate the Singular Value Decomposition (SVD) of its
adjacency matrix. For this calculations we use the algorithms from [1], which
use the train-test splits from [2]. We consider the AUC to measure the quality
of the prediction, based on the SVD obtained from the adjacency matrix of the
protected graphs.

In Fig. 4 we show the ε and AUC values obtained as a function of each
probability p11, while preserving the density of the original graph, as in (11).
We note the trade-off between privacy and utility, and show that the probability
of keeping the original edges is closely related to the privacy and utility of the
noise-graph mechanism.
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Fig. 4. ε and AUC values obtained as a function of each probability p11, while preserv-
ing the density of the original graph.

5 Conclusions

In this paper we defined the Noise-graph mechanism with different probabilities
of randomization for the edges and for the non-edges in the graph. We showed
that there are several ways of choosing the probabilities for the randomization
matrix that provide the same ε values for differential privacy. Thus, such proba-
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bilities can be tuned to return a sparser graph than those obtained through the
most common randomized response mechanisms (e.g., Warner’s mechanisms).

We define differentially private versions of random perturbation [7] and ran-
dom sparsification [4] methods. We also showed that it is possible to choose
different probabilities of randomization that preserve the same density as the
protected graph, we study the relationship between such probabilities, the ε
values obtained and the utility measured in a link prediction task.
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