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Abstract. In public transaction ledgers such as Bitcoin and Ethereum,
it is generally assumed that miners do not have any preference on the con-
tents of the transactions they include, such that miners eventually include
all transactions they receive. However, Daian et al. S&P’20 showed that
in practice this is not the case, and the so called miner extractable
value can dramatically increase miners’ profit by re-ordering, delaying
or even suppressing transactions. Consequently an “unpopular” transac-
tion might never be included in the ledger if miners decide to suppress
it, making, e.g., the standard liveness property of transaction ledgers
(Garay et al. Eurocrypt’15) impossible to be guaranteed in this setting.

In this work, we formally define the setting where miners of a trans-
action ledger are dictatorial, i.e., their transaction selection and ordering
process is driven by their individual preferences on the transaction’s con-
tents. To this end, we integrate dictatorial miners into the transaction
ledger model of Garay et al. by replacing honest miners with dictatorial
ones. Next, we introduce a new property for a transaction ledger protocol
that we call content preference robustness (CPR). This property ensures
rational liveness, which guarantees inclusion of transactions even when
miners are dictatorial, and it provides rational transaction order preser-
vation which ensures that no dictatorial miner can improve its utility
by altering the order of received candidate transactions. We show that
a transaction ledger protocol can achieve CPR if miners cannot obtain
a-priori knowledge of the content of the transactions. Finally, we provide
a generic compiler based on time-lock puzzles that transforms any robust
transaction ledger protocol into a CPR ledger.
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1 Introduction

In distributed transaction ledgers such as Bitcoin [26] and Ethereum [8], trans-
actions proposed by users are verified in a decentralized way and appended into
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a public ledger in an unalterable order. To this end, a set of network participants
called miners are responsible for the process of including and finalizing transac-
tions by running the consensus protocol. The liveness property of a consensus
protocol guarantees that a correctly generated transaction that is provided as
input to all the miners will eventually appear on the ledger. It has been formally
shown that this guarantee is achieved under the assumption of honest majority
(or supermajority) of miners [3,16,25]. Therefore, it is commonly assumed that
honest miners input all the transactions to the consensus protocol in the exact
same order they were received. In practice, transaction ledger protocols usually
establish incentive mechanisms (e.g., in the form of transaction fees) to justify
this fundamental assumption. A transaction ledger protocol therefore aims to
achieve self-enforced honest behavior by incentivizing parties to behave honestly
and penalizing deviation of the desired protocol behavior [4,21]. These mecha-
nisms yield profit for miners, e.g. for honestly including and appending transac-
tions into blocks. Nevertheless, when analyzing the incentive compatibleness of
honest behavior, the approach usually taken [2] is based on the assumption that
miners do not have any rational interest in the actual content of the transactions
they include. As it turns out, this assumption cannot be guaranteed in practice.
In fact, there are many works that show that rational miners indeed profit from
altering the order or even ignoring certain transactions entirely [10,15,30,31].
While forking on the underlying ledger to revert transactions could theoretically
lead to the same results, it requires at least 1/3rd or the majority of the resources
of the network (i.e., computation or stake) to be executed [7,22,24]. Additionally,
such an attack could lead to unforeseeable dynamics that might be undesirable
for rational adversaries [2,7]. Moreover, reordering, delaying or suppressing single
transactions during the inclusion in the block is a much more subtle deviation
from the honest behavior compared to forking, and more importantly can be
accomplished by any individual miner. Therefore, this type of behavior might
be considered as a viable and practical strategy by rational miners [10,27].

Daian et al. [10] generalizes this concept of content-depending utilities as
miner extractable value (MEV). MEV is a metric representing all kinds of
opportunities a rational miner can generate utility permissionlessly from e.g.,
re-ordering, delaying or censoring of transactions depending on the transaction’s
content. [10] shows that MEV is not just a theoretical concept, but rather a real-
world phenomenum that is already occurring at scale in today’s DeFi1 space, e.g.
in the form of transaction front-running, reaching its current spike with roughly
25000 ETH (4.1 million USD) available for arbitrage daily2. Overall, the actual
content preference of rational miners depends on on-chain dynamics within the
transaction ledger protocol, such as arbitrage opportunities, front running and
censorship, but also on utility sources outside the ledger. This might include
cross-chain dynamics where miners can generate profit on other chains by tak-

1 The term decentralized finance (DeFi) refers to an alternative financial infrastruc-
ture, that is built on top of open and permissionless protocols, such as the Ethereum
blockchain.

2 Flashbots. http://explore.flashbots.net/, as of July 09, 2022.

http://explore.flashbots.net/
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ing rational actions on their chain [24], but also off-chain dynamics where the
profit for taking rational actions is generated entirely off-chain [7]. Therefore, the
actual individual utility a rational miner can generate for taking actions against
candidate transactions is unknown to the public and the protocol designer.

Further, as illustrated by Daian et al. unclaimed MEV opportunities in a
branch of the blockchain can incentivize miners to support that branch and
abandon the longest chain, thus “rolling back” blocks and creating potential
forks. This harms the network and even poses a fundamental threat to the secu-
rity of the underlying consensus protocol.

To summarize, the inherent issue is that miners can use their a-priori knowl-
edge of the transaction content to alter the set of transactions they are supposed
to include. This information asymmetry provides miners with an advantage by
taking rational actions (e.g., altering order, delaying, suppressing) which may
be rewarded disproportionately in comparison to honest behavior [10,15]. More-
over, these rational actions are not a violation of the underlying transaction
ledger protocol, and thus not captured by existing security definitions. The min-
ers that are willing to take rational actions based on the transactions’ contents
are referred to as dictatorial miners.

Due to space limitations the related work section is presented in Appendix A.

1.1 Contributions

In this work we analyze the liveness and transaction order guarantee that can be
achieved against dictatorial miners. In this vein, we follow the Bitcoin backbone
model of Garay, Kiayias and Leonardos [16] with the twist that instead of hon-
est miners we assume a set of dictatorial miners with hidden3 preferences over
the contents of transactions. The dictatorial miners participate honestly in the
consensus protocol but may choose to take rational actions that do not violate
the properties of the ledger protocol, e.g. re-order, delay or suppress a partic-
ular set of transactions. In addition, dictatorial miners are allowed to collude
with each other if it is (individually) more profitable. Our contributions can be
summarized as follows:

– We introduce a new property for transaction ledger protocols that we call con-
tent preference robustness (CPR), which yields robustness against dictatorial
miners. A CPR-ledger provides the following guarantees:

• Rational liveness: It provides essentially the same guarantees as the orig-
inal liveness definition [16], but against dictatorial miners. To achieve
this we show that no dictatorial miner can increase its profit by selec-
tively suppressing transactions if (1) dictatorial miners gain no a-priori
knowledge of the transactions contents, (2) withholding transactions is
punishable by the ledger and (3) dictatorial miners expect to not lose
utility (on average) by honestly participating in the transaction ledger
protocol.

3 We call hidden the preferences that are individual to the miners, and not known to
the protocol designer.
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• Rational transaction order preservation: It ensures that no dictatorial
miner can improve its expected utility by altering the order of received
transactions. We show that rational transaction order preservation can
be achieved under essentially the same conditions as rational liveness.

– We present a generic compiler based on time-lock puzzles that compiles any
robust transaction ledger protocol (according to [16]) into a transaction ledger
protocol that is CPR. On a technical level, the compiled protocol maintains
two (logically) separate chains; the “control chain” that contains only time-
lock puzzles of the transactions, and the “sanitized chain” that contains the
actual contents of the transactions from (the common prefix of) the control
chain. The intuition is that the control chain provides a global ordering of
the transactions for all miners, and once that ordering is fixed, the sanitized
chain can be built with the actual contents of all valid transactions from the
control chain. Finally, we show that the compiled protocol is CPR.

2 Transaction Ledger Model

In this work we extend the transaction ledger model of Garay et al. [16] to
the setting where dictatorial miners may use their a-priori knowledge of the
transaction content in order to generate MEV. To this end, we first state the
fundamentals of the transaction ledger model by Garay et al. [16] and then
continue to explain how we adapt their model.

2.1 Ledger Backbone Model

According to Garay et al. [16] a transaction ledger is represented as a vector of
blocks l = (B1, ...,Bd), where each block Bi = (tx1, ..., txn) is a vector of trans-
actions tx ∈ T . T denotes the set of valid transactions. Appending a transaction
tx to a vector l is denoted by l||tx. Also, appending a vector of transactions B
to another vector l is denoted as l||B. txi,j denotes transaction txj in block Bi.
As a ledger is a vector of transactions, we simply denote it as l = (tx1, ..., txm)
omitting the block numbers when clear from the context.

The transaction ledger protocol is executed by a set of miners M in the
presence of a PPT adversary S, and driven by a PPT environment Z. Each
honest miner Mi maintains its own local copy of the chain li. Further, an honest
miner Mi process a local buffer Xi := (tx1, . . . , txe), that are candidate trans-
actions to be incorporated into the ledger li provided by the environment Z.4

In [16], a transaction ledger protocol is defined by the transaction generation
oracle TxGen that issues transactions on behalf of the users and the set of valid
ledgers L. Upon receiving a message (IssueTx, γ, P ), TxGen generates a unique
transaction tx[γ] ∈ T on behalf of P , where tx[γ] denotes a transaction tx that
contains an encoding of content γ. Further, a ledger is defined by the three inter-
face functions V(·), I(·),R(·). Where V(·) is the chain validity function, I(·) is the
4 Note that honest miners operate Xi as provided by the environment and do not

change any ordering to maximize fees.
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input contribution function that is executed to provide new blocks, and R(·) is
the chain reading function that returns a semantic interpretation of the ledger.

Moreover, a transaction ledger protocol is called robust if it provides per-
sistence and liveness. Persistence means that a transaction that appears’deep
enough’ into the chain will appear at the same position for all honest miners.
On the other hand, liveness means that if a transaction is input to the honest
miners for at least v rounds it will appear k blocks deep into the chain of those
miners.

In our work we assume the existence of a robust transactions ledger protocol
Π = (I,V,R,TxGen,L) for some liveness parameter v. For more details on the
ledger backbone protocol protocol we refer the reader to the Appendix B.

2.2 Dictatorial Miners

In our model, the transaction ledger protocol is executed by miners in the pres-
ence of a PPT adversary S, and driven by a PPT environment Z. The adversary
S can fully corrupt a minority of the miners (as in [16]). In contrast to the model
of [16], every miner that is not fully corrupt will automatically be dictatorial,
leaving no honest miner in the protocol. The difference between an honest miner
and a dictatorial miner is that a dictatorial miner has preferences over the con-
tent of transactions and might therefore re-order, delay, or suppress transactions
it receives from the environment.

Formally, a dictatorial miner Mi receives, at the beginning of each round, in
its transaction buffer Xi candidate transactions provided by the environment Z,
just as honest miners would. However, Mi may execute the input contribution
function I(·) on a modified X′

i instead. At the beginning of each round Mi may
choose X′

i depending on the received transaction buffer Xi and the current ledger
l. For every transaction tx ∈ Xi, Mi decides whether to include tx in X′

i, to
suppress it, or to delay it to a later round.

When deciding on how to treat a candidate transaction tx[γ] a dictatorial
miner is assumed to maximize its expected utility with respect to its private
utility function ui : l × Γ �→ R. The utility function ui(l, γ) computes the utility
of Mi for including a transaction tx[γ] into the ledger l5. If a miner Mi includes
a transaction tx without knowing its content the expected utility for including
this transaction is denoted as ui(l, tx). The miner’s expectation is taken over the
distribution on the transaction’s contents supplied by the environment Z which
is assumed to be common prior for all miners6.
5 The utility function covers all kinds of revenues a miner might expect including fees,

extractable values, bribes. Since, estimating this utility is rather complex we assume
the function only to be known to the respective miner itself.

6 For the simplicity of our model we assume that all dictatorial miners share a common
believe on the contents of transactions the environment Z will provide. In practice,
this belief might be different for the miners considering the information available
to the miners. However, aligning the believes might be part of the collaboration
between the miners.
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We say that a miner prefers to include a transaction tx0[γ0] over transaction
tx1[γ1] in some ledger l if ui(l, γ0) > ui(l, γ1). The preference is denoted as
tx0[γ0] � tx1[γ1] if the ledger l is evident from the content. A miner is indifferent
between tx0[γ0] and tx1[γ1], denoted as tx0[γ0] ∼ tx1[γ1], if ui(l, γ0) = ui(l, γ1).
Appending a new transaction results in a new ledger, therefore the utility for
appending tx0[γ0] and then appending tx1[γ1] is ui(l, γ0) + ui(l||γ0, γ1). Finally,
we denote an empty content of a transaction as ⊥. The expected utility for
including an empty or neutral content ⊥ is assumed to be ui(l,⊥) = 0, since
including an empty transaction results semantically in the same ledger.7

Miner’s Coalition. Dictatorial miners may collude with each other if forming a
coalition yields a higher individual utility. In fact, [10] shows that even if min-
ers have concurrent preferences, e.g., they are concurring for the same MEV
opportunity, collaborative behavior is not just stable but in fact yields a higher
individual utility. Therefore, it is assumed (and observed in practice) that dic-
tatorial miners will eventually collude if it is individually more profitable [10].
Our model allows dictatorial miners to coordinate their actions against single
transactions, thus whenever there exists an individually profitable coalition of
dictatorial miners, one could see it as a single entity.8 Note that this may include
the grand coalition of all miners.

Forking. We stress, that dictatorial miners execute the same input contribution
function as honest miners (with potentially different inputs), thus only creating
valid blocks and extending the current chain. While a sufficiently large coalition
of malicious miners could fork the the longest chain, the simple reorder, delay
or suppression of transactions that can be performed by dictatorial miners is a
much more subtle deviation from the honest behavior compared, thus allowing
for a positive result even against a coalition of all dictatorial miners.

3 Content Preference Robustness

In this section we formalize the concept of content preference robustness, that
yields liveness and transaction order guarantee against dictatorial miners. To this
end, we define the properties rational liveness and rational transaction ordering.
Further, we explain the rational of restricting dictatorial miners beliefs in order
to exclude trivial cases from our model.

3.1 Rational Liveness

Rational liveness says that a transaction that is input to all dictatorial miners
will eventually appear in the ledger. Consider a transaction ledger protocol Π =
(I,V,R,TxGen,L). Rational liveness is defined as:
7 Appending an empty transaction does not change, e.g., any balances nor account

states.
8 Practically, this means that dictatorial miners might even exchange secret informa-

tion, e.g. if a transaction content is secret shared amongst the miners.
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Definition 1 (Rational liveness). If a transaction tx[γ] ∈ T issued by TxGen
is input for all dictatorial miners for at least v consecutive rounds, then all
dictatorial miners will report this transaction at least k blocks deep into the
ledger, for some k, v ∈ N.

Intuitively, rational liveness provides the same guarantees as the liveness defini-
tion of [16], but extended to dictatorial miners. In order to show that a robust
transaction ledger protocol Π achieves this property one has to show that it is
in the dictatorial miners best interest to behave as an honest miner, such that
the transactions provided by the environment are forwarded unchanged to the
input contribution function.

3.2 Rational Transaction Ordering

The original model of [16] does not formalize the concept of transaction order-
ing. However, as practically demonstrated by [10] dictatorial miners can extract
significant utility by rearranging transactions in different ways. Therefore, trans-
action ordering is of major relevance when considering dictatorial behavior of
the miners. To this end we define rational transaction ordering preservation as
follows:

Definition 2 (Rational transaction ordering). A transaction ledger proto-
col Π = (I,V,R,TxGen,L) preserves rational transaction ordering if for all pairs
of transactions (tx0, tx1) issued by TxGen, for all ledgers l ∈ L and for all miners
Mi ∈ M, we have that ui(l||tx0, tx1) = ui(l||tx1, tx0).

Intuitively, rational transaction order preservation means that a dictatorial miner
receives the same expected utility for including transaction tx0 before transaction
tx1 into a ledger l for all pairs (tx0, tx1) and all ledgers l ∈ L. In particular this
means that a dictatorial miner does not improve its expected utility by altering
the order of transactions received by the environment, and hence has no incentive
to do so.

3.3 Restrictions on the Environment

Since we allow the miner’s utility function to depend on off-chain dynamics,
it is possible that the utility of a miner is always negative. Thus, this miner
would do strictly better by always suppressing all transactions, independently
of their content (or the current ledger). This might be induced, e.g., by some
utility source that offers a large compensation for mining empty blocks. Since
this kind of utility source would make the rational decision independently of the
transaction’s contents or the ledger state, we explicitly exclude them from our
model.

For this, we limit the expectations of the miners about the environment Z
such that all transactions sent to the miners are expected to yield at least a pos-
itive utility, as otherwise the miners are not incentivized to include transactions.
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Definition 3 (Expected incentive compatible environment). An envi-
ronment Z providing transactions to a set of miners M executing the ledger
protocol Π is expected incentive compatible if for all miners Mi ∈ M, for all
ledgers l ∈ L, and for all tx ∈ T we have that ui(l, tx) > 0.

Note, that this does not restrict the environment itself but rather the believe
of the dictatorial miners about the environment. Intuitively, this means that
the miners expect the environment to provide transactions that yield a posi-
tive utility on average, where the expectation is taken over the distribution of
transaction contents the environment provides. This assumption is essential to
ensure that dictatorial miners will eventually improve their expected utility by
including transactions. Note that miners expecting to lose utility for including
transactions provided by the environment would trivially not include it. In prac-
tice, this is usually accomplished by transaction fee mechanisms.9 Note however
that this assumption does not trivialise the problem, as even with an expected
incentive compatible environment, dictatorial miners could still increase their
profits by, e.g., suppressing or reordering selected transactions from the ledger.

Content Preference Robustness. Putting all together, we now define the notion of
content preference robustness (CPR) for a transaction ledger protocol executed
in the presence of dictatorial miners.

Definition 4 (content preference robustness). A transaction ledger proto-
col Π = (I,V,R,TxGen,L) executed by a set of dictatorial miners M driven by
some expected incentive compatible environment Z in presence of a PPT adver-
sary S is called CPR if Π achieves rational liveness and rational transaction
ordering.

4 Compiling a Robust Ledger into a CPR Ledger

In this section we show how to get content preference robustness for a transac-
tion ledger protocol. In particular, we show how to generically compile a robust
transaction ledger protocol into a CPR transaction ledger protocol.

4.1 CPR Compiler

A CPR compiler for a robust transaction ledger protocol Π is defined as follows.

Definition 5 (CPR Compiler). Let Π = (I,V,R,TxGen,L) be a robust trans-
action ledger protocol. A CPR compiler Φ is a PPT algorithm Π ′ ← Φ(Π) such
that Π ′ = (I′,V′,R′,TxGen′,L′) achieves CPR.

In the following we provide an overview of our CPR compiler, followed by a
detailed description of how our CPR-compiler Φ transforms each component of
a robust transaction ledger protocol Π to build the CPR ledger protocol Π ′.
9 Note, that in practice it would be sufficient for the dictatorial miners to believe

that the environment is incentive compatible for themselves. However, for the sake
of simplicity of our model we assume that miners believe that the environment is
expected incentive compatible for every miner.
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4.2 Compiler Overview

The CPR compiler modifies the transaction generation oracle TxGen into a
“time-lock transaction generation oracle”, that issues transactions inside time-
lock puzzles [5,28] that can be opened after some specified time has passed.
The idea is to let the miners commit to a set and order of time-locked transac-
tions before their content gets revealed. This forces the miners to make decisions
about incoming transactions before knowing the actual content of the transac-
tions. However, the miners might try to delay transactions until their content
gets revealed before making their final decision. Therefore, the protocol Π ′ has to
ensure that delaying transactions is not expected to br profitable for the miners.

The compiled transaction ledger protocol Π ′ maintains two separate chains;
the “control” chain l′c that contains a ledger consisting of time-locked trans-
actions, and the “sanitized” chain l′m that contains the actual contents of the
transactions that are final in the control chain. The mining of new blocks follows
the rules of the underlying robust ledger protocol Π (e.g., Proof-of-Work), and it
occurs in the control chain first. To extend the ledger, miners first gather all the
new (time-locked) transactions from their input buffer and build a block. The
miner that wins the right to append a block to the control chain is also respon-
sible for extending the sanitized chain by providing solutions to the time-lock
puzzles that are in the common-prefix of the control chain.

To illustrate with a concrete example, consider a robust ledger protocol with
liveness parameter v of 2 rounds, i.e., after 2 rounds a transaction is considered
final in the ledger, e.g. being k = 2 blocks deep into the chain. Assume a time-lock
puzzle instantiation that can only be opened 2 rounds after its creation. Hence,
for the first 2 rounds of the protocol only the control chain will be extended,
as no solution to puzzles is yet available. At round 3 the miner that creates the
new block on the control chain must also create a new block on the sanitized
chain by providing solutions to all the puzzles that are included in the block
created at round 1 in the control chain; the solution to the puzzles are in fact
the contents of the transactions. From round 3 onwards, every new round will
extend both chains, and the sanitized chain at round r will contain the contents of
the transactions included at round r −2 in the control chain. As all transactions
that are at least 2 blocks deep in the ledger are final, then the blocks in the
sanitized chain only includes contents that are already final.The structure of the
build ledger is illustrated in Fig. 1.

Fig. 1. High-level architecture of a CPR ledger with liveness parameter v = 2.
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Note that the control chain is the only chain that needs consensus, as the
state of the sanitized chain can be deterministically retrieved from the control
chain. However, miners can still freely choose the time-locked transactions to be
included in the control chain, and therefore try to delay a time-locked transaction
until learning its content before deciding to either include it or suppress it. To
this end, our construction implements a mechanism that invalidates transactions
that are “too old”. Thus, dictatorial miners face the dilemma of either including
a time-locked transaction without knowing its content, or delaying it, which leads
to the invalidation of the transaction and loss of utility. To solve the dilemma,
rational miners must rely on their expectation on the transactions’ content.

4.3 Time-Lock Transaction Generation Oracle

Here we describe how our CPR compiler Φ builds the time-lock transaction gen-
eration oracle TxGen′ for the compiled protocol Π ′. A natural way to model a
time-lock transaction generation oracle TxGen′ is by describing it as a function-
ality. The functionality we need from such an oracle is that transactions can be
created on behalf of users and the miners are merely notified that a transaction
has been created. Moreover, published transactions should be associated with a
fresh ledger account. The content corresponding to the transaction can only be
retrieved after some predetermined number of rounds.

More formally, the Ftl-TxGen functionality encapsulates the content γ of a
transaction into a randomly generated transaction tag t̃x that is delivered to
every miner. A miner can learn the content associated with a transaction tag at
least δ rounds after the transaction has been issued by sending at least δ solve
requests for the same transaction tag to Ftl-TxGen. Once, the correct amount
of requests is issued the functionality returns the associated solution tag sid.
Further, the functionality allows to verify if a content belongs to a transaction
tag by returning the corresponding content. To this end, on receiving a solution
tag sid at any time the functionality Ftl-TxGen returns the associated content γ.
By separating, solving the puzzle from revealing the message it is ensured that
a message can be revealed at any time if sid is known, even without solving the
puzzle. Note that in our functionality, the issuing round of a transaction as well
as a fresh ledger account are also associated with the transaction tag.

Practically, this means that users sign the time-locked transaction using a
freshly generated ledger account and include a time stamp of the creation time,
which relates to the current round.10 The first can be used for practical reasons to
deter malicious users from flooding the ledger with time-locked transactions, as
we will discuss later on in Sect. 5. The latter is used by the protocol to determine
whether a transaction is “too old”. The Ftl-TxGen functionality is described next.

10 According to Garay et al. this would practically relate to the block number. Therefore
this “timestamping” of the creation round is practically achieved by including the
latest known block number.
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Functionality Ftl-TxGen

The Ftl-TxGen functionality is parameterized by a delay parameter δ that
represents how many rounds the transaction content stays hidden, a set of
transaction tags T̃ , a set of ledger accounts A, and space of solution tags
Sid. It is executed by a set of users P, a set of miners M, and an adversary
S. Ftl-TxGen maintains initially empty lists O and Q.

– On message (IssueTx, txid, γ) from Pi ∈ P in some round r the func-
tionality samples t̃x ←$ T̃ , sid ←$ Sid, and the account A ←$ A. Then,
it records the tuple (txid, t̃x, sid, γ, r, A, Pi) in O and sends it to Pi. Fur-
ther, send the message (Issued, txid, t̃x, r, A) to every M ∈ M and S.

– On message (Solve, txid, t̃x) from Mi ∈ M in some round r the func-
tionality does the following: If no record (txid, t̃x, r,Mi) exists in Q
append (txid, t̃x, r,Mi) to Q. Let L be the set of records of the form
(txid, t̃x, ·,Mi) in Q and (txid, t̃x, sid, γ, r′, A, Pj) a record in O. If |L| ≥ δ
send the message (txid, t̃x, sid, r,Mi) to Mi and S. Otherwise send mes-
sage (txid, t̃x,⊥, r,Mi).

– On message (RevealMsg, txid, t̃x, sid) from Mi ∈ M in
some round r the functionality does the following: If there
is a record (txid, t̃x, sid, γ, r′, A, Pj) in O send the message
(txid, t̃x, sid, γ, r′, A, Pj , r,Mi) to Mi and S. Otherwise send mes-
sage (txid, t̃x, sid,⊥,⊥,⊥,⊥, r,Mi).

Note that we intentionally separate the set of users (that only post transac-
tions) and miners (that process the transactions) in the Ftl-TxGen functionality.
This is to better illustrate that our results only concern the case where miners
do not send transactions. It is easy to see that whenever a miner itself generates
transactions it is not possible to prevent this miner from learning the content
of its own transaction. Therefore, we restrict the functionality to only accept
IssueTx commands from users.

In order to instantiate the transaction generation oracle TxGen′ of the com-
piled protocol Π ′ the functionality Ftl-TxGen should be parameterized with a delay
parameter δ = v, where v is the liveness parameter of Π. Further, the content
space Γ ′ for the protocol Π ′ corresponds to the transaction space T in the sup-
port of the transaction generation oracle TxGen of the underlying transaction
ledger protocol Π. Intuitively, this means that the environment Z samples trans-
actions in the support of TxGen that are provided as content to Ftl-TxGen when
issuing a transaction.11

Realizing the Ftl-TxGen Functionality. Our Ftl-TxGen functionality is a simplified
version of the time-lock puzzle functionality of [5, Fig. 3], where we simply cast it
as a transaction generation oracle. In particular, the original functionality sam-

11 Nevertheless, the functionality Ftl-TxGen is not restricted to a specific content space.
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ples a consecutive sequence of puzzle states, while sending a solve request returns
the next state in the sequence. For the sake of simplicity of our functionality we
omit the intermediary states. Instead in our functionality a puzzle tag is queried
multiple times to solve the puzzle until the functionality returns a solution tag.
This solution tag corresponds to the last puzzle state from the original function-
ality and can be used to reveal the massage at any time as in [5]. Note, that this
simplification does not interfere with the security since no additional information
is leaked. Additionally, our functionality samples a new account that is associ-
ated with the transaction tag. Since this tag is sampled uniformly at random it
does not leak any information about the content or solution tag associated with
the transaction tag and therefore does not have any impact on the security.

In [5], it was shown that (a version of) the well known time-lock puzzle
construction by Rivest, Shamir and Wagner [28] realizes the time-lock puzzle
functionality of [5] in the Universal Composition (UC) model [9]. The time-lock
puzzle construction of [28] is based on the assumption that it is hard to compute
repeated squarings of an element of (Z/NZ)× with large N in less time than it
would take to compute each of the squarings sequentially, unless the factorization
of N is known. Therefore, in order to solve a time lock puzzle a miner has to
perform a predefined amount sequential squarings.

Hence, by the composition property of the UC framework, we can simply use
the time-lock puzzle protocol of [5] as a plug-in replacement for our functionality.

4.4 Chain Validity Function

A ledger l′ of the compiled transaction ledger protocol Π ′ consists of the con-
trol chain l′c and the sanitized chain l′m. The control chain is a ledger of tuples
tx′ = (txid, t̃x, A) providing time-locked transaction tags t̃x from the tag space
T̃ , an associated ledger account A from the the ledger account space A, and
unique transaction identifiers txid. The sanitized chain l′m is a ledger of trans-
action contents containing tuples of the form γ′ = (sid, γ, r, P ). A transaction
ledger l′ consists of blocks (Br1

1 , ...,Brn
n ) where for each block Bri

i , ri denotes
the round the block is created in. Each block extends the control chain l′c
and the sanitized chain l′m. Therefore, each block is a tuple Bri

i = (Bri
c,i,Bri

c,i),
with Bri

c,i = (tx′
i,1, ..., tx

′
i,y) and Bri

c,i = (γ′
i,1, ..., γ

′
i,q). For simplicity we denote

l′ = (l′c, l
′
m) = ((tx′

1, ..., tx
′
p), (γ

′
1, ..., γ

′
q)) when referring to the concatenation of

all blocks. A ledger l′ is in the set of valid ledgers L′ if the chain validation
function V′ returns true on l′. Intuitively, V′(·) checks for every content in the
sanitized chain if it corresponds to the transaction tag at the same position in
the control chain. The formal algorithm for checking if a ledger l′ is a valid ledger
for the transaction ledger protocol Π ′ is provided in Algorithm 1.

4.5 Input Contribution Function

The input contribution function I′(·) is executed in order to generate an
updated ledger. It receives as input a current transaction ledger l′ = (l′c, l

′
m) =

((tx′
1, ..., tx

′
p), (γ

′
1, ..., γ

′
q)), a buffer of not included transactions X. Further, I′(·)



Revisiting Transaction Ledger Robustness 687

Algorithm 1. V′(l′)

1: parse (l′c, l
′
m) ← l′

2: parse (tx′
1, ..., tx

′
p) ← l′c

3: parse (γ′
1), ..., (γ

′
q)) ← l′m

4: for i = 1, ..., q do
5: parse (txidi, t̃xi, A) ← tx′

i

6: parse (sidi, γi, ri, Pi) ← γ′
i

7: send (RevealMsg, txidi, t̃xi, sidi) to
Fδ

tl-TxGen to receive (txidi, t̃xi, sidi, γ̃i, r̃i,
P̃i)

8: if γ̃i �= γi ∨ r̃i �= ri ∨ P̃i �= Pi then:
9: return false

10: end if
11: end for
12: return true

is stateful by maintaining a buffer of time-lock puzzle solutions C. Intuitively, I(·)
starts with solving all transaction tags from the control chain that are not solved
yet. All found solutions are stored in the solution buffer. Then, in order to extend
the ledger l′ the function I′(·) extends the sanitized chain with the contents of
transaction tags from the block that is k blocks deep into the control chain.
Further, I′(·) extends the control chain by selecting a set of new time-lock trans-
action tags from X. Finally, I′(·) includes for all selected time-locked transactions
the current round number.12 The formal algorithm is shown in Algorithm 2.

Algorithm 2. I′(l′,X, r)

1: parse (l′c, l
′
m) ← l′

2: parse (tx′
1, ..., tx

′
p) ← l′c

3: parse (γ′
1), ..., (γ

′
q)) ← l′m

4: for i = q + 1, ..., p do
5: parse (txidi, t̃xi, A) ← tx′

i

6: send (Solve, txidi, t̃xi) to Fδ
tl-TxGen

to receive message (txidi, t̃xi, sidi)
7: if sidi �= ⊥ then:
8: send (RevealMsg, txidi, t̃xi, sidi)

to Fδ
tl-TxGen to receive (txidi, t̃xi, sidi, γi,

ri, A, Pi)
9: append (txidi, t̃xi, sidi, γi, ri, A,

Pi) to C
10: end if
11: end for

12: parse (Br1
c,1, ..., Brn

c,n) ← l′c
13: j ← n + 1 − k
14: parse (tx′

q+1, ..., tx
′
q+y) ← Brj

c,j

15: Br
m,n+1 = ⊥

16: for i = q + 1, ..., q + y do
17: get (txidi, t̃xi, sidi, γi, ri, A, Pi)

from C
18: γ′ ← (sidi, γi, ri, Pi)
19: Br

m,n+1 = Br
m,n+1||γ′

20: end for
21: get (tx′

p, ..., tx′
p+j) from X

22: Br
c,n+1 ← (tx′

p, ..., tx′
p+j)

23: Br
n+1 = (Br

c,n+1, Br
m,n+1)

24: return l′ = l′||Br
n+1

Remark. One could also separate the tasks of solving time-lock puzzles and
extending the chain into different functions. However, since extending the ledger
depends on solving the puzzles we simply incorporate solving the puzzles into
I(·). By doing so, we additionally stick closer to the model of [16].

12 According to Garay et al. this “timestamping” of the inclusion round is practically
achieved by giving a block number to the selected transactions.
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4.6 Chain Reading Function

The chain reading function R′(·) returns a semantic interpretation of a ledger
l′ ∈ L′. It receives as input a transaction ledger l′ and internally calls the chain
validation function V(·) and chain reading function R(·) of the underlying trans-
action ledger protocol Π. The intuition is that the revealed contents in the
sanitized chain contain transactions in the support of TxGen from the protocol
Π. Therefore, R′(·) can determine the longest chain that is a valid ledger with
respect to V(·). This longest chain can then be interpreted by R(·). Additionally,
R′(·) checks for every transaction content in the sanitized chain if the correspond-
ing time-locked transaction tag was included “too late” in the control chain by
comparing the revealed round number of the transaction tag generation with the
round number of the block that included the transaction tag. If the difference
between block creation round and transaction creation round is more than the
liveness parameter v the content gets ignored. The function R′(·) ensures that
transaction contents that are considered as “too old” are not interpreted by R(·)
and are therefore not considered for the semantic interpretation of the ledger l′.
The algorithm for R′ is shown in Algorithm 3.

Algorithm 3. R′(l′)

1: if V′(l′) = false then:
2: return ⊥
3: end if
4: (l′c, l

′
m) ← l′

5: parse (Br1
c,1, ..., Brn

c,n) ← l′c
6: parse (Br1

m,1, ..., Brn
m,n) ← l′m

7: l̃ ← ⊥
8: for i = 1, ..., n do
9: (γ′

i,1, ..., γ
′
i,y) ← Bri

m,i

10: for j = 1, ..., y do
11: parse (sidj , γj , rj , Pj) ← γ′

j

12: parse tx[γ̃j ] ← γj

13: if V(l̃||tx[γ̃j ]) = true ∧ ri ≤
rj + v then:

14: l̃ ← l̃||tx[γ̃j ]
15: end if
16: end for
17: end for
18: return R(l̃)

4.7 Security Analysis

Now we state our main theorem and show that the compiled transaction ledger
protocol Π ′ compiled by our CPR-compiler Φ is indeed CPR if the underlying
protocol Π is robust.

Theorem 1. Let Π be a robust transaction ledger protocol. Then, for all
expected incentive compatible environments Z, the compiled transaction ledger
protocol Π ′ ← Φ(Π) achieves CPR.
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The intuition of the proof is to show that dictatorial miners maximize their
utility by behaving honestly in all expected incentive compatible environments.
If all dictatorial miners behave as honest miners we can conclude that Π ′ is CPR.
The intention is that no single miner nor coalition of miners is able to gain any
a-priori knowledge of the transaction content by the time they can decide about
including the transactions. Additionally, the construction deincentivizes delaying
transactions until the miners can learn the content, due to the invalidation of
’too old’ transactions. Therefore, dictatorial miners fear of missing out on the
transactions and the associated expected profit if they try to learn the content
first. The full analysis is deferred to Appendix C.

5 Discussions

In this section we discuss several aspects of our results.

Coercion Resistance in CPR Transaction Ledger Protocols. As shown in our
analysis, rational liveness can be achieved if the dictatorial miners gain no a-
priori information about the content of candidate transactions. However, miners
may try to coerce users in order to make them reveal the content of their trans-
actions a-priori. By doing so, the miners would again be able to enforce their
preferences on the transactions. While coercion resistance is to the best of our
knowledge a new issue in transaction ledger protocols, it is quite well known in
voting protocols [11,18]. However, the techniques from the voting literature does
not seem to apply in our setting. The inability of a user to prove the content of
its transaction to a miner would not solve the problem of coercion. Recall that
all transactions are eventually opened in the sanitized chain. Thus, a miner could
simply establish a contract where a user commits to the content that it discloses
before hand, and gets punished if the time-locked transaction opens to something
else later on. This coercion attack is possible in this context since in transaction
ledger protocol it is very unlikely that another user sends a transaction with the
same content. In voting on the other hand it is very much possible that there
is another ballot with the same vote. We believe that coercion-resistance in the
setting of transaction ledger protocols is an interesting open problem left for
future work.

Performance Considerations. In our compiler, every transaction is included as a
time-lock puzzle in the control chain, while the solution must be provided later
in the sanitized chain, once the puzzle is deep enough in the control chain. This
requires miners to solve time-lock puzzles for every transaction. While this addi-
tional computational effort burdens the miners, we note that the computational
cost per transaction is constant (unlike, e.g. PoW). Nevertheless, it is possible
to improve the efficiency significantly in practice. For example, one could allow
the issuer of the transaction to reveal the puzzle solution once the puzzle is deep
enough in the control chain, such that the miners only have to solve the puzzles
for non responsive users. Alternatively, recent advancements in time-lock puzzles
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yield promising results. In particular, Abadi and Kiayias [1] recently proposed
a construction for “chained time-lock puzzles” that allows to compose multiple
puzzles into a single one, hence dramatically reducing the computational effort
of solving multiple the puzzles.

Invalid and Conflicting Transactions. Naturally, it is hard to decide if a time-
lock puzzle contains a transaction that does not contradict any other transaction
already in the chain. However, we stress that this is not an issue for the safety
and correctness of the ledger since it is still possible to deterministically con-
sider only valid transactions in the sanitized chain. Nevertheless, the inclusion
of inconsistent transactions in the control chain might be undesirable in prac-
tice. Therefore, flooding the ledger with time-lock puzzles of invalid transactions
should be deincentivized. Flooding attacks are usually deincentivized by a fee
paid by the sender of a transaction [8,26]. To this end, in our construction,
a time-locked transaction is associated with a ledger account. This associated
ledger account can be charged fees for including the time-locked transaction
in the control chain, independently of the content hidden inside the time-lock
puzzle. Note, that this fee does not necessarily replace any fees for executing
the transactions’ contents hidden inside the time-lock puzzle. This assumes that
users have access to unlinkable ledger accounts, such that the associate ledger
account does not reveal any information about the content hidden inside the
time-lock puzzle. This can usually be achieved using anonymization and mixing
techniques [6,29]. However, as in Garay et al. [16], the design of a concrete fee
mechanism is outside the scope of this work.

Targeted Censorship. We stress that in this work we are not concerned with
censorship targeted at individuals, but we only consider preferences over the
contents of the transactions. We note that the full anonymization of transactions
requires not only protocol level anonymization but also network level anonymiza-
tion, what is known to be a hard problem in practice. Dictatorial miners, might
be able to gain some information about the transaction content form the net-
work layer of the protocol, for example learning the sender node of a transaction
in the underlying network. However, to protect against some level of censorship
against individuals, one can still run the CPR protocol over TOR [13].

Alternative Approaches. A different approach to achieve CPR could be by lever-
aging threshold cryptography or multi-party computation [25]. However, even
if threshold cryptography is clearly capable of preventing an unqualified set
of miners from taking rational actions, it also inherently defines a coalition of
miners that can. As pointed out by Daian et al. [10], any coalition that yields
higher utility should be expected to be formed eventually. Hence, we rely on
time-lock puzzles which are inherently coalition resistant by design. Choosing
time-lock parameters in a way that no miner can learn the content a-priori while
on the same hand guaranteeing that every miner can be expected to provide the
solutions is practically challenging. In particular, due to hardware differences,
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some miners may perform the required sequential computation faster than oth-
ers. Also, aligning the delay parameter of the time-lock puzzle with the desired
block creation time of the underlying transaction ledger protocol might be chal-
lenging, especially for probabilistic block creation times [8,26]. Therefore, a prac-
tical instantiation should reflect this by considering a gap in which miners are
expected to provide the solutions for time-lock puzzles. Another approach to the
computational time-lock puzzle is proposed by Liu et al. [23]. They propose a
construction of a “time-release encryption” relative to a reference clock using
witness encryption. With their construction it is possible to encrypt a transac-
tion such that its plaintext is released, e.g., at a predefined blockdepth of the
ledger. While this solves the challenge of choosing time-lock puzzle parameters,
the implementation of such scheme would be rather impractical, since the size of
the witness used for decryption is approximately the size of the entire blockchain.

6 Conclusion

In this work we investigate the setting where “dictatorial miners” can use their
a-priori knowledge of transactions’ content to alter the set and order of candidate
transactions in their most favorable way to improve their utility. To this end, we
introduce the model of dictatorial miners that may deviate from honest behavior
by suppressing or reordering transactions selectively depending on their content.
We incorporate dictatorial miners in the transaction ledger protocol modeled by
Garay et al. [16] by replacing honest miners with dictatorial ones. In that vein, we
show that a transaction ledger protocol can achieve content preference robustness
by guaranteeing rational liveness and rational transaction order preservation. We
show that this can be achieved if dictatorial miners cannot learn the contents of
transactions before they are in the common-prefix of the chain. In particular, we
provide a construction for a CPR compiler that can transform any generic robust
transaction ledger protocol into a CPR ledger protocol by leveraging time-lock
puzzles.
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A Related Work

In this section we discuss some related works and compare them with our results.

Bitcoin Incentive Compatibility. Badertscher et al. [2] showed that Bitcoin sat-
isfies the properties of persistence and liveness (as defined in [16]) in presence of
a rational majority. However, in their work the utilities of the rational partici-
pants are restricted to a natural class of incentives for the miners, such as fees
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and block rewards, explicitly excluding preferences over transaction contents.
In this work we extend their results and explicitly focus on utilities based on
transaction contents.

Order-Fairness for Byzantine Consensus. Kelkar et al. [19] deal with the issue
of order fairness in transaction ledger protocols. They point out that consistency
and liveness do not protect against malicious manipulation of the received order
of transactions. This implies that the resulting ordering of transactions does not
necessarily reflect the received ordering. Their proposed solution provides block
order fairness, which says that if sufficiently many miners receive a transaction
tx before tx′ then no honest miner can report tx′ in a block before tx. Further,
they show that it is not possible to guarantee received order fairness, consistency
and liveness at the same time.

Moreover, [19] gives a positive result for a slightly weaker definition of order
fairness under the strict assumption that a fraction of the parties behave hon-
estly, i.e., the honest parties will not alter the order of transactions under any
circumstances. In comparison, our model does allow every miner to alter the
order of candidate transactions, or even suppress them, for the sake of individ-
ual profit. Our construction ensures that miners are indifferent between transac-
tions they are supposed to include into the ledger, and do therefore not expect
a higher utility for altering the transaction’s order. Note however that this does
not contradict the impossibility result of Kelkar et al. [19].

Censorship Resistant Consensus. Miner’s suppresion of transactions was already
addressed by Miller et al. [25]. In order to achieve censorship resilience they pro-
pose a BFT consensus protocol combined with threshold encryption. In the pro-
posed construction miners select transactions from their local buffer and encrypt
them under the common public key of the threshold encryption. Before decryp-
tion the miners exchange and agree on the encrypted transactions. As in [19]
the security of the construction is also based on the assumption of an honest
fraction of miners. We note that in our model, any qualified set of miners can
decrypt the threshold encrypted messages at any time and therefore can learn
the plaintext collaboratively for the sake of common and individual profit.

Time-lock Puzzle in Blockchains. Khalil et al. [20] provide an implementation of
a trustless centralized exchange based on an underlying blockchain that prevents
front-running attacks of the centralized operator and the miners of the blockchain
by using time-lock puzzle. The idea of their construction is that the set and the
ordering of bids and offers is determined before the plaintexts are revealed.

Deuber et al. [12] use time-lock puzzles to ensure opening of commitments.
In [12] they propose a minting mechanism based on waiting time auctions. In
order to ensure that the block creators actually include all the openings for the
commitments of bids in a block, it is required that all openings to the commit-
ments are encapsulated in a time-lock puzzle and sent together with the bid
transaction. In both works time-lock puzzles are used to ensure that commit-
ments can be opened even if the opening messages get “lost” in the way, e.g. by



Revisiting Transaction Ledger Robustness 693

a corrupted miner. While both of the previous works utilize time-lock puzzles
to ensure openings in their respective ledger application we leverage time-lock
puzzles to strengthen the ledger itself by improving its liveness guarantees.

Further, Doweck and Eyal [14] propose a construction for a multi-party timed
commitment. In their construction a set of N users engage in an interactive com-
mitment protocol with a single coordinator to commit to a list of messages by
the users that can be revealed by the coordinator at a later time. Their construc-
tion is based on El-gamal encryption with a randomly sampled public key of a
small group size, where the private key is revealed by the coordinator by brute
force. Additionally, they provide a construction for a transaction ledger protocol
that leverages their multi-party timed commitment. However, their construction
requires the users to engage in interactive commitment protocols with one or
even several miners leading to a significant communication overhead especially
for higher numbers of users. Moreover, the searching for an El-gamal private key
can be parallelized, offering no lower bound of operations under miners’ coali-
tion. Our construction on the other hand let users publish and propagate their
transactions as commonly done in transaction ledger protocols.

Bribery and MEV Attacks. There are various incentive based attacks utilizing
rational miners that intend to either revise, reorder or to exclude certain trans-
actions from the ledger. On a high level, all these attacks are dynamics that
might influence a rational miner’s preference over transaction content. In [22],
Liao and Katz show an attacker that incentivizes forking the main chain using
high transaction fees. Moreover, McCorry et al. [24] present a different bribery
contract that makes the miners change their mining strategy. In their work,
miners’ utility depends on the attackers bribe rather than on hidden content
preferences. For example, the goldfinger attack of [24] incetivizes miners to mine
empty blocks independent of the content of any available transaction.13

Bribery attacks that incentivize miners to suppress transactions based on
their content are proposed by Winzer et al. [31] and Tsabary et al. [30]. These
types of attacks can be prevented if the dictatorial miners are not able to choose
transactions based on their content.

Daian et al. [10] introduced Time-bandit attacks where adversarial miners
can fork the blockchain by utilizing MEV opportunities. The attack works by
leaving MEV opportunities in the main chain for other miners to claim, thus
incentivizing other rational miners to fork the chain to claim the MEV opportu-
nity. Similarly to [22], this subsidizes a 51% attack. Miners may be incentivized
to break consensus if the block rewards are not enough in comparison to the
MEV [10] opportunities. While our construction does not entirely prevent this
type of attack, it mitigates it by making the attack more costly for the miner
to pull off; the required fork would to claim the MEV would be considerably
deeper, making it less profitable.

13 Clearly, this attack can not be prevented by our construction and outlines the lim-
its we will elaborate in this work; dictatorial miners might suppress transactions
independent of the content if they expect to improve their utility by doing so.
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Sandwich attacks are a common predatory trading strategy in which a miner
or a trader “wraps” a victim’s transaction between two adversarial transac-
tions [10]. If the market price of an asset is expected to rise/fall after the execu-
tion of a large pending transaction, the adversary may extract value by inserting
its own transaction right before/after the spotted pending transaction. Our con-
struction prevents sandwich attacks since the attacker is not able to spot a target
transaction and sandwich it at the same time.

Finally, Judmayer et al. [17] showed that it is almost impossible to determine
the exact globally available MEV opportunities at a certain point in time, and
that a narrow definition of MEV fails to capture all extractable value occasions
of other actors, the emerging network dynamics, or the probabilistic nature of
permissionless cryptocurrencies. In that vein, we consider the complexity of MEV
by assuming the exact utility of miners for including transaction to be unknown.

B Transaction Ledger Protocol

According to Garay et al. [16] a transaction ledger aims at keeping a record
of monetary accounts and its associated balance; a transaction record in the
ledger is typically (but not limited to) an instruction to move balances between
accounts. A transaction ledger is represented as a vector of blocks l = (B1, ...
,Bd), where each block Bi = (tx1, ..., txn) is a vector of transactions tx ∈ T . T
denotes the set of valid transactions. Appending a transaction tx to a vector l
is denoted by l||tx. Also, appending a vector of transactions B to another vector
l is denoted as l||B. txi,j denotes transaction txj in block Bi. As a ledger is a
vector of transactions, we simply denote it as l = (tx1, ..., txm) omiting the block
numbers when clear from the context.

The transaction ledger protocol is executed by a set of miners M in the
presence of a PPT adversary S, and driven by a PPT environment Z. The
protocol execution takes place in rounds. The environment provides inputs to
all parties and receives outputs, while the attacker might fully corrupt some of
the miners. Each honest miner Mi maintains its own local copy of the chain li.
Further, an honest miner Mi process a local buffer Xi := (tx1, . . . , txe), that
are candidate transactions to be incorporated into the ledger li provided by the
environment Z. In [16], a transaction ledger protocol is defined by the transaction
generation oracle TxGen, the set of valid ledgers L and by the three interface
functions V(·), I(·),R(·).

The transaction generation oracle TxGen generates transactions on behalf of
the users P which are abstracted by the environment Z. It is defined with respect
to the set of valid transactions T , the set of valid contents Γ , (which denotes
the set of content information with semantic value for the ledger, e.g., “account
A increases its balance by 10 monetary units”) and the set of ledger accounts A.
Note that a user Pi might be associated with multiple ledger accounts. During
the execution of the transaction ledger protocol, TxGen can be accessed by the
environment Z and it generates transactions that are provided to the miners
and the adversary S. Upon receiving a message (IssueTx, γ, P ) from the environ-
ment Z, TxGen generates a unique transaction tx[γ] ∈ T , where tx[γ] denotes a
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transaction tx that contains an encoding of content γ. After that, TxGen sends
(Issued, tx[γ], A) for some ledger account A ∈ A to every miner and S.

On the other hand, the three interface functions V(·), I(·),R(·) are defined as
follows:

– V(l): The content validation predicate, upon input a sequences of transac-
tions (tx1[γi], ..., txm[γm]) checks whether all the transactions constitute a
semantically valid ledger. Formally, V(·) defines the set of valid ledgers L and
checks if l ∈ L, e.g. V(l) checks if there are no conflicting transactions in l.

– R(l): The chain reading function returns a semantic interpretation of the con-
tents (γ1, ..., γn), e.g. a list of account addresses and balances Upon receiving
a ledger l = (tx1[γ1], . . . , txn[γn]), and if V(l) = 1.

– I(l,X, r): Upon receiving a ledger and a buffer of local transactions in some
round r the input contribution function creates some new block B = (tx1[γ1],
. . . , txe[γe]), where txi ∈ X and returns l′ := l||B.

Moreover, a transaction ledger protocol is called robust if the following prop-
erties are satisfied:

– Persistence: If at any round r an honest miner Mi maintains a ledger that
contains a transaction tx ∈ T in a block more than k ∈ N blocks deep in the
chain, then tx occurs at the same position in the chain of all the other honest
miners.

– Liveness: If a transaction tx ∈ T issued by TxGen is input for all honest
miners in M for at least v consecutive rounds, then all honest miners will
report this transaction at least k blocks deep into the ledger, for some k, v ∈ N.

According to [16] a robust transaction ledger protocol can be build on top
of a blockchain backbone protocol that satisfies the properties common prefix,
chain quality and chain growth by defining the interfaces I,V,R,TxGen, and L.
In our work we assume the existence of a robust transactions ledger protocol
Π = (I,V,R,TxGen,L) for some liveness parameter v. Therefore, we can waive
details of the underlying backbone protocol that is used to implement Π. For
more details on the ledger backbone protocol protocol we refer the reader to the
paper of Garay et al. [16].

C Analysis of Theorem 1

Let Π = (I,V,R,TxGen,L) be a robust transaction ledger protocol executed
by a set of miners M in the presence of a PPT adversary S driven by some
environment Z, and let Π ′ = (I′,V′,R′,Ftl-TxGen,L′) be the compiled transaction
ledger protocol Π ′ ← Φ(Π) executed by a set of dictatorial miners M′ in the
presence of a PPT adversary S driven by some environment Z ′. Let δ = v be
the delay parameter of Ftl-TxGen.

At any round r a dictatorial miner Mi receives a transaction buffer Xi from
the environment Z ′ and provides an altered transaction buffer X′

i to the input
contribution function I′(·).
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In order to show that Π ′ achieves CPR it is necessary to show that Π ′

achieves rational liveness and rational transaction ordering. To this end, we show
that a dictatorial miner Mi can not improve its expected utility ui by deviating
from honest behavior. A dictatorial miner Mi behaves honest if X′

i = Xi at any
round r. If it is in the best interest of dictatorial miners to behave honest it can
be concluded that Π ′ achieves rational liveness if Π achieves liveness.

Let therefore Xi = (tx′
1, ..., tx

′
n) with tx′

j = (txidj , t̃xj , Aj) for all j ∈ [n] be a
transaction buffer that is provided to some dictatorial miner Mi in some round
ry for some current ledger l′ry ∈ L′ by the environment Z. Since, Z is expected
incentive compatible it holds that ui(l′, tx′

j) > 0 for every tx′
j ∈ Xi. Therefore, it

follows that Mi prefers to include tx′
j over suppressing it, if γ′

j = (sidj , γj , rj , Pj)
associated with tx′

j is sampled by Z from some common prior distribution over Γ
and Mi did not gain any additional information about γj . Therefore, a dictatorial
miner that is able to reduce its uncertainty about γj over the course of some
rounds might actually be able to improve its expected utility by suppressing
tx′

j . Consequently, it would be in a dictatorial miners best interest to learn the
content of transactions instead of relying on the common prior expectation.

Since Z provides transactions tx′
j issued using the functionality Ftl-TxGen any

dictatorial miner is able to learn the content γ′
j associated with tx′

j after at
least v rounds after it was issued.14. However, Ftl-TxGen does not allow any single
miner Mi nor an adversary S that corrupts any subset of miners to learn γ′

j

before v rounds. In particular this means that no single miner nor any coalition
of miners is able to reduce its uncertainty about γ′

j before v rounds. However,
a dictatorial miner Mi could still improve its expected utility by delaying every
transaction tx′

j it receives in some round ry for v rounds so it can learn its
contents. To this end, the chain reading function R′(·) checks for every transac-
tion tx′

j = (txidj , t̃xj , Aj) with associated content γ′
j = (sidj , γj , rj , Pj) included

in some block Bry
y created in round ry if ry ≤ rj + v. If not, γ′

j is ignored by
R′(·). Consequently, whenever a dictatorial miner Mi receives a transaction tx′

j

in some round ry for the first time and decides to delay this transaction for at
least 1 round, it knows that γ′

j associated tx′
j will be ignored by R′(·). Since any

content γ′
j that is ignored by R′(·) is treated as if the corresponding transaction

tx′
j was not included at al delaying a transaction yields the same expected utility

as suppressing it for every dictatorial miner Mi, every transaction tx′
j and every

ledger l′ry ∈ L′. Since, Z is expected incentive compatible it can be concluded
that every dictatorial miner Mi prefers to include any transaction tx′

j in the
round it received it first. Therefore, any miner Mi will include any transaction
tx′

j ∈ Xi into X′
i in any round. Therefore, Π ′ executed by a set of dictatorial

miners M in presence of an adversary S driven by an expected incentive com-
patible environment Z achieves rational liveness. Moreover, let X

ry
i be the set

of transactions in Xi that miner Mi received for the first time in that round ry.
Since for every transactions tx′

j ∈ X
ry
i the transaction tag t̃xi and the associated

account A are chosen uniformly at random and do not reveal any information

14 Note that, since Z is expected to provide the inputs to the dictatorial miners the
miner Mi is expected to receive any transaction tx′

j in the same round it is issued.
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about the associated content γ′
i any dictatorial miner Mi must be indifferent

between either including some transaction tx′
1 in some ledger l′roundy

||tx′
0 or

including some transaction tx′
0 in some l′roundy

||tx′
1 for every pair of transac-

tions (tx′
0, tx

′
1) ∈ X

ry
i and every ledger l′roundy

. Therefore, it can be concluded
that Π ′ also achieves rational transaction preservation.
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