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Preface

ACNS 2023, the 21st International Conference on Applied Cryptography and Network
Security, was held in Kyoto, Japan on June 19–22, 2023. The conference covered
all technical aspects of applied cryptography, cyber security (including network and
computer security) and privacy, representing both academic research works as well as
developments in industrial and technical frontiers.

We received a total of 263 submissions from all over the world, among which the
Program Committee (PC) selected 53 papers for publication in the proceedings of the
conference. The two program chairs were supported by a PC consisting of 74 leading
experts in all aspects of applied cryptography and security. Each submission received
around 4 reviews from the committee. Strong conflict of interest rules ensured that papers
were not handled by PCmembers with a close personal or professional relationship with
the authors. The two program chairs were not allowed to submit a paper. There were
approximately 180 external reviewers, whose inputwas critical to the selection of papers.

The review process was conducted using double-blind peer review. The conference
had two possible submission deadlines, in September and January respectively. The
authors of some submissions rejected from the September deadline, considered promis-
ing nonetheless, were encouraged to resubmit to the January deadline after appropriate
revisions. Most of these revised papers were eventually accepted.

Alongside the presentations of the accepted papers, the program of ACNS 2023
featured two excellent invited talks by Shuichi Katsumata and Michalis Polychronakis.

The two volumes of the conference proceedings contain the revised versions of the
53 papers that were selected, together with the abstracts of the two invited talks. The
final revised versions of papers were not reviewed again and the authors are responsible
for their contents.

Following a long tradition, ACNS gives a best student paper award to encourage
promising students to publish their best results at the conference. This year, the award
was shared between two papers, one on the applied cryptography side and another on the
security and systems side. The full-time students who received the awards were Agathe
Cheriere for her paper “BIKE Key-Recovery: Combining Power Consumption Analysis
and Information-Set Decoding” (co-authoredwithNicolas Aragon, Tania Richmond and
Benoît Gérard) and Ping-Lun Wang and Kai-Hsiang Chou for their paper “Capturing
Antique Browsers in Modern Devices: A Security Analysis of Captive Portal Mini-
Browsers” (co-authored with Shou-Ching Hsiao, Ann Tene Low, Tiffany Hyun-Jin Kim
and Hsu-Chun Hsiao). The recipients shared a monetary prize of 1,500 EUR generously
sponsored by Springer.

Many people contributed to the success of ACNS 2023. We would like to thank the
authors for submitting their research results to the conference.We are very grateful to the
PC members and external reviewers for contributing their knowledge and expertise, and
for the tremendous amount of work involved in reviewing papers and contributing to the
discussions. We are greatly indebted to Chunhua Su and Kazumasa Omote, the General
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Chairs, for their efforts and overall organization. We thank the steering committee for
their direction and valuable advice throughout the preparation of the conference.We also
thank the team at Springer for handling the publication of these conference proceedings,
as well as Siyuan Tang for helping with the preparation of the proceedings volumes.

June 2023 Mehdi Tibouchi
XiaoFeng Wang
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Abstract. Good randomness is needed for most cryptographic appli-
cations. In practice pseudo-random number generators (PRNGs) are
employed. CTR_DRBG is a popular choice and among the recommended
PRNGs by NIST. It is defined for use with primitives like AES or TDEA,
which are not always suited for lightweight applications.

In this work we propose FCRNG, a new PRNG, similar to CTR_DRBG, that
is optimized for the lightweight setting (e.g. the Internet of Things). Our
FCRNG construction utilizes the expanding and tweakable forkcipher prim-
itive instantiated with ForkSkinny, which was introduced by Andreeva et
al. at ASIACRYPT 2019. FCRNG employs internally a forkcipher-based
counter-style mode FCTR. We propose two FCTR variants: FCTR-c for opti-
mized speed and FCTR-T for optimized security. We then show that FCRNG
with ForkSkinny can be 33% faster than CTR_DRBG when instantiated with
the AES blockcipher. FCRNG achieves also a better security bound in the
robustness security game - first introduced by Dodis et al. at CCS’13 and
now the standard security goal for PRNGs. Contrary to the CRYPTO
2020 security bound by Hoang and Shen established for CTR_DRBG, the
security of our construction with FCTR-T does not degrade with the length
of the random inputs, nor the amount of requested output pseudoran-
dom bits. FCRNG passes all tests of the NIST test suite for pseudorandom
number generators.

1 Introduction

Randomness in Cryptography. Sampling random values is a ubiquitous necessity
in cryptography. It is used for a plethora of cryptographic purposes like gener-
ating keys, initialization vectors, nonces, challenges, shuffling, among others. On
the other hand, the proofs of most cryptographic protocols simply assume that
all parties are able to generate uniformly random values. It hence makes sense
to separate the proof of the protocol in question from the way the underlying
randomness is sampled. Since many cryptographic systems do not have access to
truly random sources, it is therefore important to formally study the process of
randomness sampling for which pseudo-random number generators (PRNG) are
used. If the resulting pseudo-random numbers only possess weak randomness,
many cryptographic protocols become insecure [15].

PRNGs have been recognized as an important tool in cryptography for a
long time. As early as 1984, Santha and Vazirani [26] describe how to extract
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Tibouchi and X. Wang (Eds.): ACNS 2023, LNCS 13906, pp. 3–31, 2023.
https://doi.org/10.1007/978-3-031-33491-7_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33491-7_1&domain=pdf
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indistinguishable-from-random bitstrings from bitstrings with low entropy. As a
possible application they propose PRNGs. In 1986, Blum, Blum and Shub [9]
present a pseudo-random number generator based on a computationally hard
problem. In 2002, Desai, Hevia and Yin [13] studied PRNGs and gave a security
framework. They analyze the ANSI X9.17 PRNG and the FIPS 183 PRNG.

In 2005, Barak and Halevi [7] proposed a formal security model for PRNG.
It allows the adversary to corrupt the state. To the best of our knowledge, it
is the first work that formalizes the notion that a PRNG should recover when
given good randomness in the so-called refresh algorithm.

In 2013, Dodis et al. [14] extended the model of Barak and Halevi by not
requiring the PRNG to fully recover in a single call to the refresh algorithm.
Instead they formalize the property that a PRNG can slowly accumulate ran-
domness over the course of many calls to the refresh algorithm. In 2019, Woodage
and Shumow [30] investigated the security properties of the three PRNG con-
structions, that are recommended by NIST in their standard SP 800-90A. They
put a particular focus on HASH-DRBG and HMAC-DRBG.

In 2020, Hoang and Shen [17] focused on the other NIST standardized PRNG
construction, CTR_DRBG, which is the most used PRNG among the NIST recom-
mendations1. Hoang and Shen [17] showed that CTR_DRBG is also provably secure.
CTR_DRBG is specified only based on the AES or Triple-DES (TDEA) blockci-
phers. Both of these ciphers can be rather costly for small devices (e.g. in the
IoT), in particular in terms of area or speed. Furthermore, the reseeding algo-
rithm of CTR_DRBG appears to be inefficient due to the internal algorithm, which
Hoang and Shen [17] called CtE and is classified as a condenser. The required
number of primitive calls by CtE is more than 3 times the block length of the
input.

Lightweight Applications. While CTR_DRBG is instantiated with AES or TDEA
according to the NIST standard SP 800-90A, its design is generic and can hence
also be used with other blockciphers. Indeed, the security proof of Hoang and Shen
[17] for CTR_DRBG does not rely on the concrete instantiation with AES or TDEA.
Given the wide-spread use of CTR_DRBG, the goals in our work are to at least pre-
serve the security soundness of CTR_DRBG and to further adapt it to a more efficient
and lightweight-friendly PRNG. Lightweight in this context refers to designing
an optimized cryptographic algorithm for resource-constrained devices that offers
high-throughput processing, and/or compact implementation, and/or using a low
amount of energy, among others. Such algorithmic optimizations enable practi-
cal applications with less powerful devices in the context of pervasive computing
(e.g. RFID tags, microprocessors in small devices, IoT, etc.).

A natural first step towards obtaining a lightweight CTR_DRBG variant is to
replace generically its NIST recommended underlying primitive (AES or TDEA)
with a lightweight one. As of 2022, SKINNY [8] has been standardized as a

1 Cohney et al. [12] noted that 67.8% of all certified implementations from NIST’s
Cryptographic Module Validation Program (CMVP) in 2019 supported CTR_DRBG,
making it the most popular design among these certifications.
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lightweight tweakable blockcipher in the ISO (ISO/IEC 18033-7:2022) standard,
which makes it a suitable replacement primitive. A tweakable blockcipher differs
from (a regular) blockcipher in that, in addition to the key and the message, it
also takes a public tweak value as an input. A tweakable blockcipher is a col-
lection of independent blockciphers, that is indexed by the tweak. Tweakability
allows for designing more secure provable modes of operation when compared
to regular blockciphers. As a lightweight primitive, the biggest advantage of
SKINNY is its low area cost, in particular compared to AES (e.g. for thresh-
old implementations, SKINNY-128-128 only requires 3780 GE compared to the
8119 GE of AES-128 [8]). At the same time, SKINNY maintains a high level of
security and has been extensively cryptanalysed [4,5,25,28,31,32]. When com-
pared to other lightweight blockciphers like LED [16], PRESENT [10], and PIC-
COLO [27], among others, SKINNY performs similarly or better in terms of area,
throughput and security, and is a good choice for a well-rounded lightweight (sat-
isfying multiple criteria) primitive [8].

Forkciphers. While CTR_DRBG can be generically upgraded with SKINNY as an
underlying primitive, we investigate further to show that forkciphers, and partic-
ularly their SKINNY-based ForkSkinny instantiation, allows us to achieve better
efficiency (than CTR_DRBG with SKINNY) and security results via our new PRNG
FCRNG design. Forkciphers were first introduced in [2]. They can output a cipher-
text of length twice the input block length. The two output blocks can be seen
as the result of two calls to two independent tweakable blockciphers at a cheaper
cost (than two independent calls). Forkciphers were shown suitable for achieving
beyond-birthday (above n/2 bit security level with an n-bit input block) security
and efficient in authenticated encryption for short messages [2] and CTR-mode
style encryption [1].

Fig. 1. The construction CTR_DRBG. The figure is a modified version of Fig. 5 in the work
of Hoang and Shen [17]. The three diagrams show (from left to right) the algorithms
setup(I), refresh(S, I), next(S, �). In this construction S = (K, V ) represents the state.
CTR denotes counter mode encryption. CtE is an algorithm that takes a random but
non-uniform bitstring I of arbitrary size and returns an unpredictable bitstring of fixed
length.
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Contributions. In this work we present our construction FCRNG (ForkCipher
Random Number Generator), which is based on the CTR_DRBG (Fig. 1), the most
widely used PRNG from the NIST standard SP 800-90A. We make several
improvements. First, we describe our PRNG generically based on a condenser.
For the purpose we redefine the condenser security notion to explicitly support
first block guessing. The condenser extracts an unpredictable fixed-size bitstring
from an arbitrary length input bitstring that is random, but not uniform. We
then propose a new condenser FCTRCond (depicted later in Fig. 4) which, as
we show in Sect. 6, is approximately 60% faster than CtE, the condenser which
was used in CTR_DRBG. Our efficiency improvement was achieved by employing
a forkcipher as an underlying primitive. On the one hand, the forkcipher gives
us more “packing” capability than a blockcipher since its tweak can also absorb
additional input values. On the other hand, it requires less expansion primitive
calls for the extracted value, since the forkcipher output length is twice as much
as the output length of the blockcipher. In addition to the performance benefits,
FCTRCond also comes with better security guarantees (i.e. the adversary has a
lower chance to guess its outputs).

Next, the original CTR_DRBG is using CTR-mode encryption internally to
compute the pseudorandom output bits and the next state of the PRNG. In
our PRNG FCRNG we replace the CTR-mode with a forkcipher-based CTR vari-
ation called FCTR. We propose two FCTR instantiations, FCTR-c (later depicted
in Fig. 5) and FCTR-T (later depicted in Fig. 6). For optimized speed we rec-
ommend the use of FCTR-c, whereas FCTR-T is better in terms of security, in
particular when large pseudorandom data blocks are requested at once. FCTR-T
bears similarities to GCTR-13 in [1] but does not use a nonce and instead uses
a tweak that is the XOR result between the counter and a random value. Even
though in their work Andreeva et al. concluded that GCTR-3 and GCTR-7 are
the optimal variants for CTR with forkciphers, our FCTR-T construction comes
closer to GCTR-13 due to the specificity of our PRNG setting where we do not
have access to uniformly random values and because we also do not have easy
access to nonces (especially since our security model allows the adversary to set
the state i.e. they can force any number of nonce reuses). Still, we cannot apply
the GCTR-13 security results generically, since the CTR variant is not used in a
blackbox fashion in our proof. The efficiency improvement of FCTR compared to
CTR-mode encryption with a SKINNY instantiation is 22% which is the result
of replacing 2 tweakable blockcipher calls with 1 ForkSkinny call, equivalent to
around 1.6 SKINNY calls altogether.

Our security analysis for the general construction FCRNG uses the analysis of
CTR_DRBG by Hoang and Shen [17] as a reference due to their similar generic
structure. As common, our security model considers the adversary and the dis-
tribution sampler, which is supposed to provide random inputs to our PRNG, as
potentially malicious actors outside of the control of our construction. However,
the distribution sampler must correctly specify the amount of entropy that is
in the random bitstrings it produces. Like in the work of Hoang and Shen, the
distribution sampler does not have access to the construction’s underlying prim-
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itive, which is modeled as an ideal (fork)cipher. Our target security notion is
robustness of PRNG, which was first introduced by Dodis et al. [14] and is now
the standard security goal of PRNGs. It formalizes that even from a fully known
state, the PRNG is able to go into an unpredictable state if enough entropy is
supplied through reseeding. It implies backtracking and prediction resistance.

Our final FCRNG security bound drops several constant factors and entirely
avoids two summands that are present in the security bound for CTR_DRBG [17],
namely 48(

√
q+1)·√L+2·(σ+2p)

2n (where L and σ are related to the length of the
random inputs) and 2(B+3)(s+3p)

2n (where B and s are related to the amount
of pseudorandom output). This means the security of FCRNG with FCTR-T does
not degrade with the length of the random inputs nor the amount of requested
output pseudorandom bits.

In terms of overall efficiency, our construction FCRNG (instantiated with
ForkSkinny and FCTR-c) is 28% faster than CTR_DRBG (with AES) for generat-
ing random bits, due to using FCTR instead of CTR-mode encryption and using
ForkSkinny instead of AES. The usage of our condenser FCTRCond furthermore
improves the efficiency of the initial setup and the reseeding algorithm refresh by
approx. 72%. When an application reseeds once every 2000 bytes of requested
pseudo-random output then we have an overall speedup of around 33%. This is
discussed in detail in Sect. 6. FCRNG passes all tests of the NIST test suite for
pseudorandom number generators, which can be found at [20].

2 Preliminaries

2.1 Notation

Let a + b, a ∗ b denote regular integer addition and multiplication. By a ⊕ b we
denote bitwise XOR of two (equal length) bitstrings a, b. Let �r� denote the
smallest integer i s.t. i ≥ r for the real number r. |a| denotes the length of
bitstring a. By [x]y we denote encoding the value x as a bitstring of length y.
X[a : b] denotes the bitstring, that is obtained by taking bits a, a + 1, ..., b of
bitstring X. a||b denotes the concatenation of bitstrings a, b. Let M1, ...,Mm ←n

M denote splitting a bitstring M , with |M | being a multiple of n, into the blocks
M1, ...,Mm (∀1 ≤ i ≤ m : |Mi| = n, hence m = |M |/n). Perm(n) denotes the set
of all permutations with range and domain {0, 1}n.

Blockciphers and Forkciphers. A blockcipher E is defined as the pair of
algorithms (E, E−1), where E,E−1 : {0, 1}k × {0, 1}n → {0, 1}n and it holds
that ∀K ∈ {0, 1}k,M ∈ {0, 1}n : E−1(K,E(K,M)) = M . We denote by k
the key size and n the block size. By BC(k, n) we denote the set of all such
blockciphers.

Following [2], a forkcipher is a pair of deterministic algorithms, the forward
encrypting and inverse algorithms, respectively:

F : {0, 1}k × {0, 1}t × {0, 1}n × {0, 1, b} → {0, 1}n ∪ {0, 1}n × {0, 1}n
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F−1 : {0, 1}k × {0, 1}t × {0, 1}n × {0, 1} × {i, o, b} → {0, 1}n ∪ {0, 1}n × {0, 1}n

Note that we use ∪ in the definitions since the output can be a single n-bit
string or a pair of such strings, depending on the chosen mode, as we define
below. A forkcipher uses an additional tweak of size t. By FC(k, t, n) we denote
the set of all such forkciphers. A tweakable forkcipher F meets the correctness
condition, if for every K ∈ {0, 1}k,T ∈ {0, 1}t,M ∈ {0, 1}n and β ∈ {0, 1} all of
the following conditions are met:

1. F−1(K,T,F(K,T,M, β), β, i) = M
2. F−1(K,T,F(K,T,M, β), β, o) = F(K,T,M, β ⊕ 1)
3. (F(K,T,M, 0),F(K,T,M, 1)) = F(K,T,M, b)
4.

(
F−1(K,T, C, β, i),F−1(K,T, C, β, o)

)
= F−1(K,T, C, β, b)

For each pair of key and tweak, the forkcipher applies two independent permu-
tations to the input to produce the two output blocks. We use the shorthand
FT,s

K (m) := F (K,T,m, s). Since most of our algorithms only use s = b we also
use FT

K(m) := FT,b
K (m). Furthermore denote (F−1)T,β,s

K (c) := F−1(K,T, c, β, s).

Almost Universal (AU) Hash. Let H : Seed × Dom → {0, 1}n be a (keyed)
hash function. For each string X, define its block length to be max{1, |X|/n}.
For a function δ : N → [1,∞), we say that H is a δ-almost universal hash if for
every distinct strings X1,X2 whose block lengths are at most l, we have

Pr
seed←$Seed

[H(seed,X1) = H(seed,X2)] ≤ δ(l)
2n

Conditional Min-Entropy and Statistical Distance. For two random vari-
ables X and Y , the (average-case) conditional min-entropy of X given Y is

H∞(X|Y ) = − log(
∑

y

Pr[Y = y] ∗ max
x

Pr[X = x|Y = y])

The statistical distance between two random variables X and Y is defined as

SD(X,Y ) =
1
2

∑

z

|Pr[X = z] − Pr[Y = z]|

SD(X,Y ) is the best possible advantage of an (even computationally
unbounded) adversary in distinguishing X and Y .

2.2 Systems, Transcripts and the H-coefficient Proof Technique

Following [17,18] we consider the interactions of a distinguisher A with an
abstract system S which answers A’s queries. The resulting interaction then
generates a transcript τ = ((X1, Y1), ..., (Xq, Yq)) of query-answer pairs. S is
entirely described by the probabilities ps(τ) that correspond to the system S
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responding with answers as indicated by τ when queries in τ are made. We
will generally describe systems informally, or more formally in terms of a set
of oracles they provide, and only use the fact that they define corresponding
probabilities ps(τ) without explicitly giving these probabilities. We say that a
transcript is valid for system S if ps(τ) > 0.

For any systems S1 and S0, let ΔA(S1, S0) denote the distinguishing advantage
of the adversary A against the “real” system S1 and the “ideal” system S0.

Following [17], we now describe the H-coefficient technique of Patarin [11,21].
Generically, it considers a deterministic distinguisher A that tries to distinguish
a “real” system S1 from an “ideal” system S0. The adversary’s interactions with
those systems define transcripts X1 and X0, respectively, and a bound on the
distinguishing advantage of A is given by the statistical distance SD(X1,X0).

Lemma 1 (see [11,21]). Suppose we can partition the set of valid transcripts
for the ideal system into good and bad ones. Further, suppose that there exists
ε ≥ 0 such that 1 − ps1(τ)

ps0(τ)
≤ ε for every good transcript τ . Then,

SD(X1,X0) ≤ ε + Pr[X0 is bad]

3 Security Model

In this section we describe the syntax and security notions related to our con-
struction its building blocks. We introduce the ideal forkcipher model, analo-
gously to the ideal cipher model and recall the notions of a condenser and a
pseudorandom number generator.

Ideal (Fork)Cipher. In the ideal cipher model, a block cipher E is chosen from
BC(k, n) uniformly at random. It allows for two types of oracle queries E(K,m)
and E−1(K, c) for m, c ∈ {0, 1}n and K ∈ {0, 1}k. The response to an inverse
query E−1(K, c) is m ∈ {0, 1}n s.t. E(K,m) = c.

In the ideal forkcipher model, a forkcipher F is chosen from FC(k, t, n)
uniformly at random. The ideal primitive also provides oracle access to F
and F−1, allowing the adversary to query F (K,T,m, s) and F−1(K,T, c, β, s′)
for m, c ∈ {0, 1}n, T ∈ {0, 1}t, s ∈ {0, 1, b}, s′ ∈ {i, o, b}, β ∈ {0, 1} and
K ∈ {0, 1}k. The adversary queries the ideal primitive with full control over
all parameters.

PRNG. A Pseudorandom Number Generator (PRNG) with input I with state
space State and seed space Seed is a tuple of deterministic algorithms G =
(setup, refresh, next).

– setup(seed, I) takes a seed seed ∈ Seed and a string I as input, to then output
an initial state S ∈ State.

– refresh(seed, S, I) takes as input seed ∈ Seed, S ∈ State and string I and then
outputs a new state.
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– next(seed, S, l) takes as input seed ∈ Seed, S ∈ State and a number l ∈ N to
then output a new state and an l-bit output string.

Informally, the input I gives the necessary randomness to the otherwise deter-
ministic algorithms. For our construction, the seed can be seen as a proof artifact
that is not actually part of the construction. Indeed, as we discuss later, we will
treat the seed as the full description of the ideal ciphers E and F .

Condensers. A condenser Cond [24] takes a bitstring that has low entropy (i.e.
is not uniformly random) and outputs a value that is hard to predict. We fol-
low [17] for the subsequent definitions. Let S be a λ-source, meaning a stateless,
probabilistic algorithm that outputs a random input I and some side informa-
tion z, such that H∞(I|z) ≥ λ. For any adversary A, we define the guessing
advantage of A against condenser Cond with a source S as

AdvguessCond (A, S) = Pr[Gguess
Cond (A, S)]

The corresponding game is described in Fig. 2.

Fig. 2. Security games for a condenser Cond

We introduce a modified notion about guessing the first block. The motiva-
tion for creating this new notion is that for the later security proofs, we require
the first output block of Cond to be hard to guess. One could then show that
for a Cond, when the output is truncated to n bits, it constitutes a secure con-
denser with respect to the Gguess

Cond (A, S) notion. This was in fact implicitly used
by Hoang and Shen in [17]. However, here we prove a property for a different
component used in the overall construction. This becomes an issue when defining
a generic construction that uses a condenser as building block, as is the case in
this work. In this scenario, one wants a concise way to describe what is required
of the condenser. Hence, for any adversary A, we define the 1-block-guessing
advantage of A against condenser Cond with a source S as

Adv1-blk-guessCond (A, S) = Pr[G1-blk-guess
Cond (A, S)]

The corresponding security game is also described Fig. 2.
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Distribution Samplers. Distribution samplers are similar to λ-sources, but
are stateful and give an estimate of how much entropy they provide. A distri-
bution sampler D is a stateful, probabilistic algorithm. Given the current state
s, it will output a tuple (s′, I, γ, z) in which s′ is the updated state and I is the
next randomness input for the PRNG G. γ ≥ 0 is a real number that, informally
speaking, will tell us the amount of entropy in I. z is some side information
of I given to an adversary attacking G. Let p be an upper bound of the num-
ber of calls to D in our security games. Let s0 be the empty string, and let
(si, Ii, γi, zi)←$D(si−1) for every i ∈ {1, ..., p}. For each i ≤ p, let

Ip,i = (I1, ..., Ii−1, Ii+1, ..., Ip, γ1, ..., γp, z1, ..., zp)

We say that sampler D is legitimate if H∞(Ii|Ip,i) ≥ γi for every i ∈ {1, ..., p}.
A legitimate sampler is λ-simple if γi ≥ λ for every i. Following [17], in this
work we will only consider simple samplers for a sufficiently large min-entropy
threshold λ. As they noted, this is somewhat limiting as it fails to show that
the PRNG can slowly accumulate randomness by absorbing many low entropy
inputs. However, the results are still meaningful and is the setting that was
considered in the NIST SP 800-90A standard.

Robustness. The game Grob
G,λ(A,D) is defined in Fig. 3. It is played for a PRNG

G = (setup, refresh, next), an adversary A and a distribution sampler D, with
respect to an entropy threshold λ. The internal variable c counts the current
amount of entropy. While it is too low, the oracle RoR is designed to be useless
to the adversary. Define

Advrob
G,λ(A,D) = 2 ∗ Pr[Grob

G,λ(A,D)] − 1

4 Our Constructions

In this section we describe our condenser FCTRCond and our PRNG FCRNG.

4.1 A Forkcipher-Based Condenser

Our Construction. FCTRCond is described with respect to a constant v, which
must be chosen s.t. 0 ≤ v ≤ t − 2. Let pad∗ : {0, 1}∗ → ({0, 1}n+k+v)+ be
the padding scheme that appends the byte 0x59 and then appends 0’s until the
length is a multiple of k + n + v. Note that pad∗(X) �= pad∗(Y ) for any X �= Y .
We describe FCTRCond based on a forkcipher F in Fig. 4.

Tweak Packing Constant v. The constant v determines how many bits of the
tweak of the internal forkcipher are used to absorb data. Large values of v
increase the efficiency of FCTRCond, but decrease the amount of input data
that can be processed at once, as it reduces the available bits to encode the
block index. Specifically, FCTRCond can process inputs I with maximum length
up to 2t−v−1 · (k + n + v). As a general purpose value one may set v = �t/2�.
For our efficiency estimation we assume that this is the case.
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Fig. 3. Robustness game (see Fig. 1 in [17])

Fig. 4. The forkcipher-based condenser FCTRCond.
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4.2 Our FCRNG PRNG Construction

In the following section we formally introduce the protocol FCRNG = (setup,
refresh, next) which conforms to the notion of a robust PRNG. It is based on
a secure condenser Cond which takes low entropy random inputs I and outputs
unpredictable values. We will prove the security of FCRNG generically, and later
provide concrete instantiation with FCTRCond for our efficiency evaluation.

– setup takes some random input I and applies Cond to it in order to initialize
the state.

– refresh takes some random input I and applies Cond to it in order to update
the state. Even if the state was fully known before, calling refresh (with suf-
ficient entropy) makes the state unpredictable for the adversary.

– next outputs a pseudo-random value based on the current state. Afterwards
the state is updated.

In all functions (setup, refresh, next) we use our algorithm FCTR to set the
next state and also produce the pseudo-random output in next. It effectively
creates an XOR-mask based on the current state and applies it to the output of
Cond (or 0 in the case of next). FCTR was designed in 2 variations from which
one can be chosen. Figure 5 shows FCTR-c, which is the variation with a higher
throughput. Figure 6 shows FCTR-T, which is more secure.

Fig. 5. Algorithm FCTR-c (Forkcipher CounTeR Classic). F denotes a forkcipher. The
tweak starts with the 0 bit to ensure that it never occurs in FCTRCond.

Our construction FCRNG is shown in Fig. 7. It uses a forkcipher F : {0, 1}k ×
{0, 1}t×{0, 1}n×{0, 1, b} → {0, 1}n∪{0, 1}n×{0, 1}n. In FCRNG = (setup, refresh,
next), the state consists of the cipher key K ∈ {0, 1}k and the value V ∈ {0, 1}w

(w is defined below), which is used as an IV (initialization vector) for counter
mode encryption. The construction does not rely on a seed, but instead on the
forkcipher F . In the later proofs we will view F as an idealized primitive. As is
common in the literature [17,30], the seed will be treated as the full description
of the ideal forkcipher F .



14 E. Andreeva and A. Weninger

Fig. 6. Algorithm FCTR-T (Forkcipher CounTeR in Tweak). The tweak is set to the 0
bit string to ensure that it never reoccurs in FCTRCond.

Let pad : {0, 1}∗ → ({0, 1}n)+ be the padding scheme that appends the
byte 0x08 and then appends 0’s until the length is a multiple of n. Note that
pad(X) �= pad(Y ) for any X �= Y .

The Constant w: We use w = min{n, t} − 1. It is required that w + 1 ≤ t in
order to use V together with the prefix bit 0 as tweak, as is done in FCTR-T. We
restrict w + 1 ≤ n since larger values are not supported by our security bound
(see Sect. 5) but would also result in a worse efficiency (see Sect. 6).

Note that w limits the maximum block length of requested pseudo-random
bits. The reason is that next (specifically FCTR-T) XORs a counter, that increases
every second block, into the tweak. Hence we will assume that when calling
next(S, l) it holds that l ≤ 2w+1 · n − k − w.

5 Security Proofs

In this section we will give the security proofs of the condenser FCTRCond and the
PRNG FCRNG, which generically uses a condenser and can hence use FCTRCond.
For the condenser CtE (used in CTR_DRBG) as well as its security proof, refer to
the analysis of Hoang and Shen [17] and our discussion in the full version of this
paper.

5.1 Security of FCTRCond

In this section we will prove the following theorem that formalizes the security
of FCTRCond.
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Fig. 7. The construction FCRNG. Cond denotes a condenser, F denotes a forkcipher.
FCTR should be instantiated with FCTR-c (Fig. 5) or FCTR-T (Fig. 6). Depending on this
instantiation we also refer to the construction as FCRNG-c or FCRNG-T, respectively.

Theorem 1. Let F be a forkcipher that we model as an ideal forkcipher. Let
FCTRCond be as described above. Let S be a λ-source that does not have access
to F . Then for any adversary A against FCTRCond in the 1-block-guessing game
making at most q guesses has advantage at most

Adv1-blk-guessFCTRCond (A, S) ≤ 3q

2n
+

√
q

2λ/2

We start by proving some intermediate lemmas. First we give a bound on
the probability of the first block coinciding, when two different inputs are fed to
FCTRCond. For more convenient notation in the following proofs, let FCTRCond∗

denote the algorithm that runs FCTRCond but only returns the first block, i.e.
FCTRCond∗(I) := FCTRCond(I)[1 : n].

Lemma 2. Let F be a forkcipher that we model as an an ideal forkcipher. Let
FCTRCond∗ be as described above. Let I1, I2 be arbitrary strings s.t. I1 �= I2.
Then Pr[FCTRCond∗(I1) = FCTRCond∗(I2)] ≤ 1

2n−1 where the randomness is
taken over the choices of F .

Proof. Let M = pad∗(I1), M ′ = pad∗(I2). According to the second line of
FCTRCond, let M1, ...,Ma and M ′

1, ...,M
′
b be the result of splitting M and M ′,

respectively. Let B, B′ be the output of FCTRCond∗(I1) and FCTRCond∗(I2),
respectively.
Case 1: a �= b. Without loss of generality, assume a > b. Let X := FW,b

K (V )[1 : n]
with K ← Ma[1 : k], V ← Ma[k + 1 : k + n],W ← 1 || [a]t−v−1 || Ma[k + n + 1 :
k + n + v] (i.e. X is the a-th XOR-summand of B). Since no other call to F by
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FCTRCond∗(I1) or FCTRCond∗(I2) uses this tweak, X is a uniformly random and
independent variable. As a result, B, which XOR-sums over X, is also uniformly
random and independent of B′. Hence Pr[B = B′] ≤ 1

2n < 1
2n−1 .

Case 2: a = b. Here Pr[B = B′] ≤ 1
2n−1 . This is easy to see, since this is a

special case of Lemma 6 (see Appendix A) where a′ = a and d = 0n. ��

As was done in previous works, we treat the full description of the ideal F
as the equivalent to a seed. Therefore, Lemma 2 means that FCTRCond∗ can be

viewed as an δ-almost universal hash function. Since 1
2n−1 =

2n
2n−1
2n , δ(l) = 2n

2n−1
for all l ∈ N.

Lemma 3 (Generalized Leftover Hash Lemma). [17] Let Cond : Seed ×
Dom → {0, 1}n be a δ-AU hash function, and let λ > 0 be a real number. Let S
be a λ-source whose random input I has at most l blocks. For any adversary A
making at most q guesses,

AdvguessCond (A, S) ≤ q

2n
+

√
q

2λ
+

q · (δ(l) − 1)
2n

The above formulation of Lemma 3 stems from Hoang and Shen [17] and was
originally proven by Barak et al. [6]. Since we use the same security game
Gguess

Cond (A, S) as [17] we can apply this notation.

Lemma 4. Let F be a forkcipher that we model as an ideal forkcipher. Let
FCTRCond∗ be as described above. Let S be a λ-source that does not have access
to F . Then for any adversary A against FCTRCond∗ in the guessing game making
at most q guesses has advantage at most

AdvguessFCTRCond∗(A, S) ≤ 3q

2n
+

√
q

2λ/2

Proof. We use Lemma 3 and apply the result of Lemma 2.

AdvguessFCTRCond∗(A, S) ≤ q

2n
+

√
q

2λ/2
+

√
q · ( 2n

2n−1 − 1)
2n

≤ q

2n
+

√
q

2λ/2
+

√
q

2n − 1
≤ 2q

2n − 1
+

√
q

2λ/2
≤ 3q

2n
+

√
q

2λ/2
(since n > 1)

��

The above lemma about FCTRCond∗ immediately implies Theorem 1.

Discussion. When comparing this security bound to that of CtE (the condenser
in the original CTR_DRBG, for the details refer to the the analysis by Hoang and
Shen [17] or our discussion in the full version of this paper), we can see that
FCTRCond is more secure, as the last summand of the security bound of CtE,
8
√

q(l+2)3

2n , was avoided. This means that the security of FCTRCond does not
degrade through the blocklength of the random inputs.



A Forkcipher-Based Pseudo-Random Number Generator 17

5.2 Security of FCRNG

We will prove that FCRNG-c and FCRNG-T are robust PRNGs. We consider an
adversary A that makes at most q oracle queries (including ideal-cipher queries).
To be specific, the oracles are REF, RoR, Get, Set (see Fig. 3) and furthermore
the adversary can make arbitrary calls to the ideal forkcipher F and any other
ideals that are used by Cond (e.g. the ideal blockcipher E in the case of CtE from
CTR_DRBG). Let D be a λ-simple distribution sampler. Let p be the maximum
number of random inputs I that are produced by D. (This is implicitly also
a restriction on A calling REF.) li denotes the maximum block length of the
i-th random input produced by D. L = max{l1, ..., lp} be the maximum block
length of the random inputs, and let σ = l1 + ... + lp be their maximum total
block length. We call a pair of blocks (a, b), with a, b ∈ {0, 1}n a doubleblock. In
particular, forkciphers take a (regular) block as input and output a doubleblock.
Let B be the maximum number of doubleblocks requested from each individual
next query (i.e. when l is the maximum number of requested bits, B = �l/2n�).

Theorem 2. Let F be a forkcipher, that we model as an ideal forkcipher. Let
Cond be a condenser that does not have access to F and let Adv1-blk-guessCond (q′, l′)
denote the maximum advantage against Cond of any adversary making at most q′

queries, where l′ is the maximum block length of the random inputs to Cond. Let
the construction FCRNG-c be as described above. Let D be a λ-simple distribution
sampler and A be an adversary attacking G whose accounting of queries is given
above. Then

Advrob
FCRNG-c,λ(A,D) ≤ 2q(B + 2)2

22n+1
+

4q2

2k
+ 4

p∑

j=1

Adv1-blk-guessCond (q, lj)

Proof. Since our construction FCRNG is very similar to CTR_DRBG, our proof fol-
lows a similar argument to the CTR_DRBG proof in [17].

Setup. We consider computationally unbounded adversaries and hence, without
loss of generality, assume that A is deterministic. Let Sideal and Sreal be the
systems that model the oracles accessed by A in Grob

G,λ(A,D) with challenge bit
b = 0 and b = 1, respectively.

For this proof we will create a third system Shybrid. It implements Sreal, but
when it is asked to run FCTR-c, instead of using the underlying forkcipher F ,
it produces uniformly random bitstring of length 2n (i.e. the output length of
F ). As a consequence the output of this modified FCTR-c is uniformly random.
In order to prevent trivial attacks, Shybrid will run the original FCTR-c when
the min-entropy level c is lower than the threshold λ. Furthermore we update
FCTR-c in both Sreal and Shybrid to maintain two ordered lists Keys and Queries.
The resulting algorithms are shown in Fig. 8. We write Keys(S) and Queries(S)
with S ∈ {Sreal,Shybrid} to denote the corresponding list of system S.

Note that Shybrid and Sideal are not necessarily indistinguishable, even though
it might seem that way at first glance. Indeed, Sideal only idealizes the output of
next through the RoR oracle. Shybrid on the other hand also influences the other
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algorithms of the PRNG as well, such as the setup algorithm. Since the adversary
is able to get the current state using the Get oracle, the adversary might be able
to distinguish the output of the real setup algorithm (in Sideal) from the one in
Shybrid which has access to uniformly random strings from the modified FCTR-c.

Fig. 8. Updated FCTR-c Algorithm in security proof of FCRNG-c

Proof Argument. This proof is structured into the following 4 steps.

1. There is an adversary A∗ s.t.

ΔA∗(Sreal,Shybrid) = ΔA(Sideal,Shybrid)

2.

ΔA(Sreal,Shybrid) ≤ 2q2

2k
+ 2

p∑

j=1

Adv1-blk-guessCond (q, lj) +
q(B + 2)2

22n+1

3.

ΔA∗(Sreal,Shybrid) ≤ 2q2

2k
+ 2

p∑

j=1

Adv1-blk-guessCond (q, lj) +
q(B + 2)2

22n+1

4.
AdvrobFCRNG-c,λ(A,D) ≤ ΔA(Sreal,Shybrid) + ΔA∗(Sreal,Shybrid) (1)

From the above arguments it follows that

AdvrobFCRNG-c,λ(A,D) ≤ 2q(B + 2)2

22n+1
+

4q2

2k
+ 4

p∑

j=1

Adv1-blk-guessCond (q, lj)
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Proof of Item 1. To see this, define A∗ as follows. A∗ runs A and uses its own
oracles to answer A’s oracle queries. However when A queries RoR, A∗ answers
with a uniformly random string if c ≥ λ. When A outputs its final guess b′, A∗

also outputs b′. Note that if A∗ is in the real world then it perfectly simulates
Sideal for A. On the other hand, if A∗ interacts with Shybrid, then A∗ perfectly
simulates Shybrid for A.

Proof of bound on ΔA(Sreal,Shybrid) (Item 2): Defining bad transcripts. We will
now prove Item 2 of the above enumeration by using the H-coefficient technique.

First of all we define the bad transcripts. A transcript is called bad if one of
the following conditions happens:

1. The transcript contains a query of A to F or F−1 using some key K ∈ Keys(S).
In other words A was able to guess or derive K.

2. There are two identical keys in Keys(S).
3. Queries contains a tuple (K,T, P ) twice from the same call to FCTR-c (i.e. two

different counter values resulted in the same ciphertext P ). This can happen
in Shybrid but not in Sreal.

Note that there is no Bad event that relates keys used in FCTR-c with keys
used by Cond, since Cond is required to be independent of F .

If a transcript is not bad then we say that it is good. Let Treal and Thybrid be
the random variable of the transcript for Sreal and Shybrid respectively.

Proof of bound on ΔA(Sreal,Shybrid): Probability of bad transcripts. We now give
a bound on the chance that Thybrid is bad. Let Badi be the event that Thybrid

violates the i-th condition. By the union bound,

Pr[Thybrid is bad] = Pr[Bad1 ∪ Bad2 ∪ Bad3] ≤ Pr[Bad1] + Pr[Bad2] + Pr[Bad3]

We will start by giving a bound on Pr[Bad1]. The keys in Keys(Shybrid) were
put there during a call to FCTR. They can be categorized as follows:

– Idealized Keys: The key was picked uniformly at random. (This is the case
if there was enough entropy c during the previous call to FCTR.)

– Normal Keys: This key is the result of

Ki ← FCTR
Vi−1
Ki−1

[F ](Cond(I))

(Indeed, all keys in Keys(Shybrid) that are not idealized keys must have been
derived as described. Since Ki ∈ Keys(Shybrid), we know that c ≥ λ in the
FCTR call that had Ki as key. Furthermore we know that in the FCTR call
before that c < λ, since Ki is not uniformly random. Because of the fact that
c increased, there must have been a call to REF and hence Cond.)

There can be at most q idealized keys, hence with each guess, the adversary
has a probability of q/2k to guess a key. Furthermore the adversary guessed at
most q times, leading to a probability of q2/2k at best for the adversary to guess
an idealized key.
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For each j ≤ p, let Hit1(j) be the event that the key derived from the random
input Ij is a normal key, and causes Bad1 to happen. From the union bound

Pr[Bad1] ≤ q2

2k
+ Pr[Hit1(1) ∪ ... ∪ Hit1(p)] ≤ q2

2k
+

p∑

j=1

Pr[Hit1(j)]

We will now give a bound for all Hit1(j). We know Kj was derived during
a REF query, which does not output any information to the adversary besides
γ and z from D. At that point the adversary has the following options for the
next query: (a) corrupt the state using Get or Set, or (b) use REF or RoR. If (a)
is used, then c ← 0. We can rule out this possibility since Kj is only added to
Keys if c ≥ λ. Attempting to use REF to increase c also overrides Kj before it is
added to the list. In case (b), note that c ≥ λ during this next query since we
only consider λ-simple distribution samplers. Hence Kj is not being used at all
and immediately replaced with a new uniformly random key.

As a consequence the adversary only can only use (γ, z) to guess Kj . This
also implies guessing the first block of Kj , which is exactly the setting of
G1-blk-guess

Cond (A, S). Thus we have

Pr[Hit1(j)] ≤ Adv1-blk-guessCond (q, lj)

Therefore, by summing up over all Hit1(j) we derive

Pr[Bad1] ≤ q2

2k
+

p∑

j=1

Adv1-blk-guessCond (q, lj)

We now bound the probability of Bad2. For any idealized key the probability
to collide with any of the other q keys in the system is at most q/2k. Since there
are at most q such keys, the probability of this happening is at most q2/2k.
On the other hand for any normal key, the probability that another normal key
coincides is bounded by Adv1-blk-guessCond (A, S), similar to the argument regarding
Bad1. The only difference is that instead of the adversary directly guessing the
outcome of Cond(I), now the environment “guesses” the outcome. This results
in the same bound;

Pr[Bad2] ≤ q2

2k
+

p∑

j=1

Adv1-blk-guessCond (q, lj)

We now bound the probability of Bad3. Since the adversary has q queries
and asks for at most B doubleblocks from next with each query, FCTR might
produce up to B + 2 doubleblocks (also counting the blocks needed to set the
next state). Note that each doubleblock leads to one forkcipher call, as it outputs
two blocks. The situation resembles the classical birthday attack situation: Each
call to FCTR, causes up to B + 2 independent, random doubleblocks (in Shybrid).
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If any of these collide, Bad3 occurs. Hence for a single FCTR call this can occur
with the probability of the birthday bound, i.e. approximately (B + 2)2/22n+1.
In total this means

Pr[Bad3] ≤ q(B + 2)2

22n+1

Summing up we have

Pr[Thybrid is bad] ≤ 2q2

2k
+ 2

p∑

j=1

Adv1-blk-guessCond (q, lj) +
q(B + 2)2

22n+1
(2)

Proof of Bound on ΔA(Sreal,Shybrid): Transcript ratio. Let τ be a good transcript
s.t. Pr[Thybrid = τ ] ≥ 0. We now prove that

1 − Pr[Treal = τ ]
Pr[Thybrid = τ ]

≤ 0 (3)

Since the adversary A and the original game environment are deterministic,
all randomness of the transcript is determined by the randomness of the distri-
bution sampler D, the random instantiation of F and the random values that
Shybrid produces in the modified FCTR-c instead of querying F .

Therefore we can specify the probabilities as follows:

Pr[Treal = τ ] = Pr[Inputs] · Pr[Prim] · Pr[Collreal]
Pr[Thybrid = τ ] = Pr[Inputs] · Pr[Prim] · Pr[Collhybrid]

(4)

where

– Inputs denotes the event that the distribution sampler samples the same values
as was done for τ .

– Prim denotes the event that the primitive F agrees with the result of any
granted query (be it a direct query to F by the adversary or through the
experiment), where the used key is not in Keys.

– Collreal denotes the event that, in Sreal, the randomly chosen F complies with
the queries in Queries.

– Collhybrid denotes the event that, in Shybrid, the randomly chosen values in the
modified FCTR comply with the queries in Queries.

Note that indeed Shybrid only behaves differently than Sreal for queries in
Queries (i.e. queries with the key in Keys). From Eq. (4) follows

Pr[Treal = τ ]
Pr[Thybrid = τ ]

=
Pr[Collreal]

Pr[Collhybrid]

Let Q = |Queries|. In Shybrid the relevant queries are answered in a uniformly
(and independently) random way. Hence

Pr[Collhybrid] =
1

(22n)Q
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Next we examine the situation in Sreal. We bound the probability that the
i-th element in Q is the same as what the randomly chosen F outputs. Due
to the definition of a good transcript, we know that either the key or the input
message (i.e. counter value) is different for each call. If the key is the same as for,
say, t previous calls, then F will take the specific value with probability 1

(22n−t .
Otherwise the output will take the specific value with probability 1

(22n) , which
is smaller. Hence over all queries

Pr[Collreal] ≤ 1
(22n)Q

This proves Eq. (3).

Wrapping it Up. Finally, from Lemma 1 together with Eqs. (2) and (3) follows

ΔA(Sreal,Shybrid) ≤ 2q2

2k
+ 2

p∑

j=1

Adv1-blk-guessCond (q, lj)

Proof of Item 3. This follows immediately from Item 2, since the latter applies
to all adversaries and hence it applies to adversary A∗ as well.

Proof of Item 4. By the triangle inequality,

AdvrobFCRNG-c,λ(A,D) = ΔA(Sreal,Sideal)

≤ ΔA(Sreal,Shybrid) + ΔA(Shybrid,Sideal)
= ΔA(Sreal,Shybrid) + ΔA∗(Sreal,Shybrid)

(5)

��

5.3 Security of FCRNG-T

Theorem 3. Let F be a forkcipher, that we model as an ideal forkcipher. Let
Cond be a condenser that does not have access to F and let Adv1-blk-guessCond (q′, l′)
denote the maximum advantage against Cond of any adversary making at most
q′ queries, where l′ is the maximum block length of the random inputs to Cond.
Let FCRNG-T be as described above. Let D be a λ-simple distribution sampler and
A be an adversary attacking G whose accounting of queries is given above. Then

AdvrobFCRNG-T,λ(A,D) ≤ 4q2

2k
+ 4

p∑

j=1

Adv1-blk-guessCond (q, lj)

We omit a detailed proof, as it is follows the same argument as the proof of
Theorem 2, with the exception that Bad3 is removed.



A Forkcipher-Based Pseudo-Random Number Generator 23

Theorem 4. Let F be a forkcipher, that we model as an ideal forkcipher. Let
the constructions (FCRNG-c,FCTRCond) and (FCRNG-T,FCTRCond) be FCRNG-c
and FCRNG-T, respectively, where Cond is instantiated with FCTRCond. Let D
be a λ-simple distribution sampler and A be an adversary attacking G whose
accounting of queries is given above. Then

Advrob(FCRNG-c,FCTRCond),λ(A,D) ≤ 2q(B + 2)2

22n+1
+

4q2

2k
+

12pq

2n
+

4p
√

q

2λ/2

Advrob(FCRNG-T,FCTRCond),λ(A,D) ≤ 4q2

2k
+

12pq

2n
+

4p
√

q

2λ/2

Proof Sketch. We omit the full proof as it simply follows the same strategy as
Theorem 2 and Theorem 3. The only difference here is that instead of requiring
some condenser Cond without access to F , we now fixed it to FCTRCond (which
uses F ). This is possible since we separated the domains, to be specific FCTRCond
prepends each tweak with 1 and both FCTR variants prepend each tweak with
0. Thus, we arrive at the same bound here as for Theorem 3, and filled in the
bound of Theorem 1.

Comparison to CTR_DRBG. Hoang and Shen [17] analyzed the security of the
original CTR_DRBG, and called its internal condenser CtE. To slightly modify their
notation, B′ is the maximum number of output blocks in any next-query (similar
to B, which denotes the number of doubleblocks in this work). s is the total block
length of those outputs. They proved the following security bound for CTR_DRBG:

AdvrobGCTR_DRBG,λ(A,D) ≤ 2(B′ + 3)(s + 3p)
2n

+
6q(q + 1)

2k
+

6p(q + 1)
2n

+

12p
√

q

2λ/2
+

48(
√

q + 1) ·
√

L + 2 · (σ + 2p)
2n

First we compare FCRNG-T when used with CtE to CTR_DRBG.

Corollary 1. In the same setting as Theorem 3, let (FCRNG-T,CtE) be the con-
struction FCRNG-T with CtE being the instantiation of Cond. Then

Advrob(FCRNG-T,CtE),λ(A,D) ≤ 4q2

2k
+

4pq

2n
+

4p
√

q

2λ/2
+

32
√

q(L + 2)(σ + 2p)
2n

Corollary 1 follows from Theorem 3 by instantiating Cond with CtE and
applying the CtE security bound in Theorem 1 of Hoang and Shen [17], which
remains the same when viewing CtE in G1-blk-guess

Cond (A, S). It shows that we were
able to eliminate the security bound’s dependency on the number of output
pseudorandom blocks.

Now we compare FCRNG-T with FCTRCond (see Theorem 4) to CTR_DRBG. We
were able to eliminate both the summand 2(B+3)(s+3p)

2n and 48(
√

q+1)·√L+2·(σ+2p)

2n .
This means the security of FCRNG-T with FCTRCond is not impacted by the length
of the random inputs nor from the amount of requested output bits.
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6 Discussion

We first give a performance estimation measured independently of the concrete
implementation or hardware platform. Then we provide a C-implementation that
we benchmark and compare with our estimation.

Efficiency Estimations. The full details are described in Sect. 7. We com-
pare CTR_DRBG (instantiated with e.g. SKINNY-128-256 instead of AES) with
FCRNG (using FCTRCond and e.g. ForkSkinny-128-256). We utilize the fact that
ForkSkinny-128-256 is applying f = 21+27+27 = 75 SKINNY rounds. For com-
parison SKINNY-128-256 runs e = 48 rounds. FCRNG outperforms CTR_DRBG for
all internal algorithms. The expected efficiency gain is more than 21% for next
and 60% for setup and refresh.

Overall this means that FCRNG is expected to run 21% to 57% faster than
CTR_DRBG with SKINNY, depending on how often the reseeding happens. We
illustrate this in Fig. 9.

Fig. 9. Estimated efficiency gain of FCRNG with FCTRCond over CTR_DRBG. α denotes
the ratio between the length of the random input data and output pseudo-random
data.

Benchmark Setup. In order to validate our above estimations, we created a
benchmark for the different PRNGs. The benchmarks were performed on a 64-
bit machine with 4 CPUs (AMD EPYC 7713 64-Core Processor) and 4 GB of
memory that runs Ubuntu 22.04 LTS. We implemented our construction FCRNG
as well as CTR_DRBG, where the latter was implemented once with SKINNY as
the internal cipher and once in its original form (i.e. with AES). The results are
shown in Table 1.

We used the SKINNY implementation by Rhys Weatherley [29] and the AES
implementation TinyAES [19]. For ForkSkinny we used an implementation by
Erik Pohle [22] that is based on the previously mentioned SKINNY implemen-
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Table 1. Runtimes of different PRNG implementations in CPU cycles.

setup refresh next

FCRNG-T 43640 33609 881930

FCRNG-c 43640 33609 784252

CTR DRBG (SKINNY) 105588 95557 987852

CTR DRBG (AES) 153411 121998 1091351

tation. setup and refresh were called with 24 bytes of input, next was used to
request 2000 bytes of pseudo-random output. The benchmarks were performed
for ForkSkinny-128-256, SKINNY-128-256 and AES-128.

Benchmark Results. As shown in Table 1, the refresh function of FCRNG is the
fastest by a large margin (65% faster than CTR_DRBG with SKINNY), as the
previous efficiency estimations predicted. For setup the relative impact is slightly
smaller (59%), since it performs some initializations. next of FCRNG-c is 21% faster
than that of CTR_DRBG with SKINNY, as expected from the estimations of the last
section. On the other hand next of FCRNG-T is only 11% faster than CTR_DRBG
with SKINNY, even though it uses the same number of primitive rounds as
FCRNG-c. This is due to the fact that here the key schedule has to be (partially)
recomputed to accommodate for the tweak changes.

Overall FCRNG, especially FCRNG-c, outperforms the NIST standardized
CTR_DRBG (i.e. using AES): next of FCRNG-c is 28% faster, setup and refresh are
72% faster. If in an exemplary scenario refresh is called once every 2000 bytes of
requested next output, then FCRNG will be 33% faster.

7 Efficiency Estimations

For the estimation, we utilize the fact that ForkSkinny [2] uses the SKINNY round
function. Therefore we can compare algorithms that use a forkcipher with ones
that use a blockcipher. Hence we compare FCRNG (where ForkSkinny is used as
the forkcipher F ) with CTR_DRBG (where SKINNY is used as the blockcipher).
We do not need to differentiate between FCRNG-c and FCRNG-T since they use the
same number of primitive calls. We instantiate the condenser Cond in FCRNG with
FCTRCond. Let f be the number of SKINNY rounds used in a specific ForkSkinny
instance. Let e be the number of rounds in a comparable SKINNY instance.

– ForkSkinny-128-256 runs a total of f = 21 + 27 + 27 = 75 SKINNY rounds.
For comparison SKINNY-128-256 runs e = 48 rounds.2

Below we give the round complexity of the internal algorithms used in
CTR_DRBG and FCRNG.
2 We look at the SKINNY instance with the same blocksize and tweakey size, since we

want the round function in both cases to operate on the same input sizes.
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– CTR_DRBG related algorithms:
• CtE[E,m] runs E a total of (3�(|I| + 64)/n� + 6) times. This results in

3e�(|I| + 64)/n� + 6e SKINNY rounds.
• CTR runs E a total of � |M |

n � times. This results in e� |M |
n � SKINNY rounds.

– FCRNG related algorithms:
• FCTRCond runs F a total of � |I|

k+n+v � times.

• FCTRV
K(M) runs F a total of � |M |

2n � times. This results in f� |M |
2n � SKINNY

rounds.

First we focus on pseudorandom bit generation.

– next with r requested bits
(in CTR_DRBG:) runs CTR with |M | = k + n + r.
(in FCRNG:) runs FCTR with |M | = k + n + r (since w = n for our instances).
For simplicity, assume |M | is a multiple of 2n. Then the number of rounds in
FCRNG divided by the number of rounds in CTR_DRBG is:

f� |M |
2n �

e� |M |
n �

=
f

2e
= 75/96 ≈ 0.78

This means we have an improvement of 22%.

We did the same efficiency estimation with ForkSkinny-64-192 (63 rounds)
and SKINNY-64-192 (40 rounds). The result is an efficiency improvement of 21%
for next. For ForkSkinny-128-384 (87 rounds) and SKINNY-128-384 (56 rounds)
we reach an efficiency improvement 22% for next.

Now we will additionally consider the other two methods, i.e. setup and
refresh, which are based on the condenser. Since we instantiated Cond in FCRNG
with FCTRCond, we gain a significant efficiency improvement over the original
CTR_DRBG (with CtE). The expected performance increase for setup and refresh is
more than 60%. In order to give an efficiency comparison for the overall construc-
tion, we must make assumptions about how it is used. These are related to how
often refresh and next are called, and how much random input data is used and
how much pseudorandom data is requested. Also, the parameter v that is used in
FCTRCond is relevant, as it controls how much data can be absorbed by a single
call to the forkcipher F . However, in all settings we expect an improved perfor-
mance. In order to capture different settings, we created the diagram in Fig. 9. It
shows the efficiency gain of FCRNG with FCTRCond compared to CTR_DRBG. We
chose v = t/2 and, in order to simplify calculations, assume refresh to be called
once with k + n + v bits of input data. The variable α in the diagram denotes
the ratio between the length of the random input data fed to refresh and the
length of the output pseudo-random data requested from next. Calculating the
efficiency gain based on different values of α therefore gives an overview over
different use cases, from refresh not being used at all to refresh being used for a
lot of data. This means for α = 0.01, we might call refresh once with 2 blocks of
data and next with a total of 200 blocks. In that setting we have an efficiency
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improvement of approximately 25%. Since we assume no application uses more
random inputs than it requests pseudo-random outputs, we chose α = 1 as max-
imum. With α = 1 the setting is that refresh is called every time next is called,
and the length of the random input is equal the amount of requested output
bits. Here we have an efficiency improvement of approx. 57%.

8 Conclusion and Open Problems

In this work we presented our new PRNG FCRNG. It is similar to CTR_DRBG but
optimized for lightweight applications through the use of a forkcipher and allow-
ing lightweight primitives such as SKINNY and ForkSkinny. FCRNG is designed as
a generic construction. It has two components, a counter-mode encryption FCTR
and a condenser Cond.

For FCTR we propose the two instantiations FCTR-c (which is more perfor-
mant) and FCTR-T (which is more secure, in particular when large chunks of
pseudorandom data are requested at once). As for the condenser, while it could
be instantiated with CtE (the condenser from CTR_DRBG, described by Hoang
and Shen [17]), we also created a new forkcipher-based condenser FCTRCond
that has better security and efficiency.

Our PRNG FCRNG-T (i.e. FCRNG with FCTR-T) has a better security bound
than CTR_DRBG, since the security of FCRNG is not impacted by the length of
the random inputs nor from the amount of requested output bits. FCRNG-c
(FCRNG with FCTR-c) also has better security than CTR_DRBG, but its security
does depend on the amount of requested output bits, similar to CTR_DRBG. Fur-
thermore, as our benchmarks show, our constructions are faster than CTR_DRBG.
FCRNG-c is faster by 28% or more, depending on how often one reseeds (i.e. calls
refresh). The improved security and efficiency mean that FCRNG has benefits even
when used in regular (non-lightweight) applications.

To prove the security of our construction we specified the equivalent of the
ideal cipher model for forkciphers. We utilize the H-coefficient technique to prove
our security bound.

As an open problem for future research is confirming the tightness of our
security bound. Furthermore, novel forkciphers [3] could be used to improve this
construction. Another direction is designing a multiforkcipher, which is a gener-
alization of a forkcipher that was introduced in [1]. It can expand an input block
to more than 2 output blocks. This can easily be integrated into the algorithms
of this work (specifically FCTR-c and FCTR-T) to further optimize the efficiency.

A Security of FCTRCond

Algorithm Related Notation. Let FCTRCond∗ denote the algorithm that
runs FCTRCond (as defined in Fig. 4) but only returns the first block, i.e.
FCTRCond∗(I) := FCTRCond(I)[1 : n]. Let M = pad∗(I1), M ′ = pad∗(I2).
According to the second line of FCTRCond, let M1, ...,Ma and M ′

1, ...,M
′
b be the

result of splitting M and M ′, respectively, into blocks of length k + n + v. Let
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B, B′ be the output of FCTRCond∗(I1) and FCTRCond∗(I2), respectively. For
all i ∈ {1, ..., a}, let Xi := FW,b

K (V )[1 : n] with K ← Mi[1 : k], V ← Mi[k + 1 :
k+n],W ← 1 || [i]t−v−1 || Mi[k+n+1 : k+n+v] (i.e. X is the i-th XOR-summand
of B). We define Yi accordingly: For all i ∈ {1, ..., b}, let Yi := FW,b

K (V )[1 : n] with
K ← M ′

i [1 : k], V ← M ′
i [k+1 : k+n],W ← 1 || [i]t−v−1 || M ′

i [k+n+1 : k+n+v].

Simplifications. For the proofs in this section, we will only consider the case
where a = b (i.e. M and M ′ have the same length), as is stated in the following
lemmas. The final goal is to give an upper bound on Pr[B = B′]. For any
i, if Mi = M ′

i then Xi = Yi, which means that Xi, Yi have no influence on
Pr[B = B′], and could be removed. Since I1 �= I2, there will be at least one
index u at which Mu �= M ′

u. Hence, without loss of generality, we will always
assume that Mi �= M ′

i for all i, 1 ≤ i ≤ a.

Probability Theory. For a proper probability theoretic treatment, we define the
event space Ω = {(x1, ..., xa, y1, ..., ya)|∀i : xi, yi ∈ {0, 1}n}. In the tuple, the
bitstring xi should relate to the value of the random variable Xi (for yi, Yi

accordingly).

Lemmas. As mentioned we assume that Mi �= M ′
i for all i, 1 ≤ i ≤ a. Observe

that the difference might either (a) cause a difference in the tweak or key portion
of the F -call of Xi and Yi, i.e. a difference in W or K, or (b) cause no difference
in the tweak or key portion. In case (b) the difference must lie in the message
portion V .

Lemma 5. For any i ∈ {1, ..., a} and any x, y ∈ {0, 1}n, x �= y, If Mi �= M ′
i

then

Pr[Xi = Yi = x] =

{
1
2n

1
2n if case (a) applies

0 else (i.e. case (b) applies)
(6)

Pr[Xi = x, Yi = y] =

{
1
2n

1
2n if case (a) applies

1
2n

1
2n−1 else (i.e. case (b) applies)

(7)

Proof. In case (a), Xi and Yi were produced using different keys or tweaks, which
means they are independent in the ideal forkcipher model. Hence the probability
of any pair of values is 1

2n
1
2n . On the other hand in case (b), the F -calls were

performed with the same tweak and key, but with different messages. Hence the
outputs must be different, and there are in total 2n(2n − 1) possible values for
the pair (Xi, Yi), each of which have the same probability. ��

Lemma 6. For all a′, 1 ≤ a′ ≤ a, let Ba′ = X1 ⊕ ... ⊕ Xa′ , B′
a′ = Y1 ⊕ ... ⊕ Ya′ .

If Mi �= M ′
i , for all i ∈ {1, ..., a}, then

∀a′, 1 ≤ a′ ≤ a,∀d ∈ {0, 1}n : Pr[Ba′ ⊕ B′
a′ = d] ≤ 1

2n − 1
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Proof. We will use induction on the number a′.
Induction base (a′ = 1). We need to show that

∀d ∈ {0, 1}n : Pr[X1 ⊕ Y1 = d] ≤ 1
2n − 1

Let d be arbitrary but fixed.

Pr[X1 ⊕ Y1 = d] =
∑

x∈{0,1}n

Pr[X1 = x, Y1 = x ⊕ d]

We can use Lemma 5 to bound the probability of Pr[X1 = x, Y1 = x⊕d]. In any
case, Pr[X1 = x, Y1 = x ⊕ d] ≤ 1

2n
1

2n−1 .

Pr[X1 ⊕ Y1 = d] ≤
∑

x∈{0,1}n

1
2n

1
2n − 1

=
1

2n − 1

Induction step. We assume as the induction hypothesis that

∀d ∈ {0, 1}n : Pr[Ba′ ⊕ B′
a′ = d] ≤ 1

2n − 1

We need to prove that for Ba′+1 ⊕ B′
a′+1 the statement holds as well. Let d ∈

{0, 1}n be arbitrary but fixed. Let Ex,y be a shorthand for the event (Xa′+1 =
x, Ya′+1 = y).

Pr[Ba′+1 ⊕ B′
a′+1 = d]

=
∑

x,y∈{0,1}n

Pr[Ba′+1 ⊕ B′
a′+1 = d | Ex,y] · Pr[Ex,y]

=
∑

x,y∈{0,1}n

Pr[Ba′ ⊕ B′
a′ = d ⊕ x ⊕ y] · Pr[Ex,y]

=
∑

x,y∈{0,1}n

1
2n − 1

· Pr[Ex,y]

=
1

2n − 1

∑

x,y∈{0,1}n

Pr[Ex,y]

=
1

2n − 1

��



30 E. Andreeva and A. Weninger

References

1. Andreeva, E., Bhati, A.S., Preneel, B., Vizár, D.: 1, 2, 3, fork: counter mode vari-
ants based on a generalized Forkcipher. IACR Trans. Symm. Cryptol. 2021(3),
1–35 (2021). https://doi.org/10.46586/tosc.v2021.i3.1-35

2. Andreeva, E., Lallemand, V., Purnal, A., Reyhanitabar, R., Roy, A., Vizár, D.:
Forkcipher: a new primitive for authenticated encryption of very short messages.
In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11922, pp.
153–182. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34621-8 6

3. Andreeva, E., Reyhanitabar, R., Varici, K., Vizár, D.: Forking a blockcipher
for authenticated encryption of very short messages. Cryptology ePrint Archive,
Report 2018/916 (2018). https://eprint.iacr.org/2018/916

4. Ankele, R., et al.: Related-key impossible-differential attack on reduced-round
Skinny. In: Gollmann, D., Miyaji, A., Kikuchi, H. (eds.) ACNS 2017. LNCS, vol.
10355, pp. 208–228. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
61204-1 11

5. Ankele, R., Kölbl, S.: Mind the gap - A closer look at the security of block ciphers
against differential cryptanalysis. In: Cid, C., Jacobson Jr., M. (eds.) Selected Areas
in Cryptography – SAC 2018. SAC 2018. LNCS, vol. 11349, pp. 163–190. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-10970-7 8

6. Barak, B., et al.: Leftover hash lemma, revisited. In: Rogaway, P. (ed.) CRYPTO
2011. LNCS, vol. 6841, pp. 1–20. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22792-9 1

7. Barak, B., Halevi, S.: A model and architecture for pseudo-random generation with
applications to /dev/random. In: Atluri, V., Meadows, C., Juels, A. (eds.) ACM
CCS 2005. pp. 203–212. ACM Press, Alexandria, Virginia, USA (7–11 November
2005). https://doi.org/10.1145/1102120.1102148

8. Beierle, C., et al.: The SKINNY family of block ciphers and its low-latency variant
MANTIS. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp.
123–153. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-
5 5

9. Blum, L., Blum, M., Shub, M.: A simple unpredictable pseudo-random number
generator. SIAM J. Comput. 15(2), 364–383 (1986)

10. Bogdanov, A., et al.: PRESENT: an ultra-lightweight block cipher. In: Paillier,
P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-74735-2 31

11. Chen, S., Steinberger, J.: Tight security bounds for key-alternating ciphers. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 327–
350. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5 19

12. Cohney, S., et al.: Pseudorandom black swans: Cache attacks on ctr drbg. In: 2020
IEEE Symposium on Security and Privacy (SP), pp. 1241–1258. IEEE (2020)

13. Desai, A., Hevia, A., Yin, Y.L.: A practice-oriented treatment of pseudorandom
number generators. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332,
pp. 368–383. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-
7 24

14. Dodis, Y., Pointcheval, D., Ruhault, S., Vergnaud, D., Wichs, D.: Security analysis
of pseudo-random number generators with input: /dev/random is not robust. In:
Sadeghi, A.R., Gligor, V.D., Yung, M. (eds.) ACM CCS 2013. pp. 647–658. ACM
Press, Berlin, Germany (4–8 November 2013). https://doi.org/10.1145/2508859.
2516653

https://doi.org/10.46586/tosc.v2021.i3.1-35
https://doi.org/10.1007/978-3-030-34621-8_6
https://eprint.iacr.org/2018/916
https://doi.org/10.1007/978-3-319-61204-1_11
https://doi.org/10.1007/978-3-319-61204-1_11
https://doi.org/10.1007/978-3-030-10970-7_8
https://doi.org/10.1007/978-3-642-22792-9_1
https://doi.org/10.1007/978-3-642-22792-9_1
https://doi.org/10.1145/1102120.1102148
https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/978-3-540-74735-2_31
https://doi.org/10.1007/978-3-642-55220-5_19
https://doi.org/10.1007/3-540-46035-7_24
https://doi.org/10.1007/3-540-46035-7_24
https://doi.org/10.1145/2508859.2516653
https://doi.org/10.1145/2508859.2516653


A Forkcipher-Based Pseudo-Random Number Generator 31

15. Goldberg, I., Wagner, D.: Randomness and the Netscape browser. Dobb’s J.-Softw.
Tools Profess. Program. 21.1 66–71 (1996). Redwood City, CA: M&T Pub., (1989–
1996)

16. Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.J.B.: The LED block cipher. In:
Preneel and Takagi [23], pp. 326–341. https://doi.org/10.1007/978-3-642-23951-
9 22

17. Hoang, V.T., Shen, Y.: Security analysis of NIST CTR-DRBG. In: Micciancio, D.,
Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12170, pp. 218–247. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-56784-2 8

18. Hoang, V.T., Tessaro, S.: Key-alternating ciphers and key-length extension: exact
bounds and multi-user security. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016.
LNCS, vol. 9814, pp. 3–32. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-53018-4 1

19. kokke: TinyAES. https://github.com/kokke/tiny-AES-c. Accessed 22 June 2022
20. NIST: NIST SP 800–22: Documentation and Software. https://csrc.nist.gov/

projects/random-bit-generation/documentation-and-software. Accessed 23 Nov
2022

21. Patarin, J.: The “Coefficients H” technique. In: Avanzi, R.M., Keliher, L., Sica,
F. (eds.) SAC 2008. LNCS, vol. 5381, pp. 328–345. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-04159-4 21

22. Pohle, E.: ForkSkinny-C by Erik Pohle. https://github.com/ErikP0/forkskinny-c.
Accessed 08 Sept 2022

23. Preneel, B., Takagi, T. (eds.): CHES 2011. LNCS, vol. 6917. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-23951-9

24. Raz, R., Reingold, O.: On recycling the randomness of states in space bounded
computation. In: 31st ACM STOC, pp. 159–168. ACM Press, Atlanta, GA, USA
(1–4 May 1999). https://doi.org/10.1145/301250.301294

25. Sadeghi, S., Mohammadi, T., Bagheri, N.: Cryptanalysis of reduced round SKINNY
block cipher. IACR Trans. Symm. Cryptol. 2018(3), 124–162 (2018). https://doi.
org/10.13154/tosc.v2018.i3.124-162

26. Santha, M., Vazirani, U.V.: Generating quasi-random sequences from slightly-
random sources (extended abstract). In: 25th FOCS, pp. 434–440. IEEE Com-
puter Society Press, Singer Island, Florida (24–26 October 1984). https://doi.org/
10.1109/SFCS.1984.715945

27. Shibutani, K., Isobe, T., Hiwatari, H., Mitsuda, A., Akishita, T., Shirai, T.: Piccolo:
an ultra-lightweight blockcipher. In: Preneel and Takagi [23], pp. 342–357. https://
doi.org/10.1007/978-3-642-23951-9 23

28. Tolba, M., Abdelkhalek, A., Youssef, A.M.: Impossible differential cryptanalysis
of reduced-round SKINNY. In: Joye, M., Nitaj, A. (eds.) AFRICACRYPT 2017.
LNCS, vol. 10239, pp. 117–134. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-57339-7 7

29. Weatherley, R.: Skinny-C by Rhys Weatherley. https://github.com/rweather/
skinny-c. Accessed 22 June 2022

30. Woodage, J., Shumow, D.: An analysis of NIST SP 800-90A. In: Ishai, Y., Rijmen,
V. (eds.) EUROCRYPT 2019. LNCS, vol. 11477, pp. 151–180. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-17656-3 6

31. Zhang, P., Zhang, W.: Differential cryptanalysis on block cipher skinny with MILP
program. Security and Communication Networks 2018 (2018)

32. Zhang, W., Rijmen, V.: Division cryptanalysis of block ciphers with a binary dif-
fusion layer. IET Inf. Secur. 13(2), 87–95 (2019)

https://doi.org/10.1007/978-3-642-23951-9_22
https://doi.org/10.1007/978-3-642-23951-9_22
https://doi.org/10.1007/978-3-030-56784-2_8
https://doi.org/10.1007/978-3-662-53018-4_1
https://doi.org/10.1007/978-3-662-53018-4_1
https://github.com/kokke/tiny-AES-c
https://csrc.nist.gov/projects/random-bit-generation/documentation-and-software
https://csrc.nist.gov/projects/random-bit-generation/documentation-and-software
https://doi.org/10.1007/978-3-642-04159-4_21
https://github.com/ErikP0/forkskinny-c
https://doi.org/10.1007/978-3-642-23951-9
https://doi.org/10.1145/301250.301294
https://doi.org/10.13154/tosc.v2018.i3.124-162
https://doi.org/10.13154/tosc.v2018.i3.124-162
https://doi.org/10.1109/SFCS.1984.715945
https://doi.org/10.1109/SFCS.1984.715945
https://doi.org/10.1007/978-3-642-23951-9_23
https://doi.org/10.1007/978-3-642-23951-9_23
https://doi.org/10.1007/978-3-319-57339-7_7
https://doi.org/10.1007/978-3-319-57339-7_7
https://github.com/rweather/skinny-c
https://github.com/rweather/skinny-c
https://doi.org/10.1007/978-3-030-17656-3_6


DMA’n’Play: Practical Remote
Attestation Based on Direct Memory

Access

Sebastian Surminski1(B), Christian Niesler1, Lucas Davi1,
and Ahmad-Reza Sadeghi2

1 University of Duisburg-Essen, Essen, Germany
{sebastian.surminski,christian.niesler,lucas.davi}@uni-due.de

2 Technical University Darmstadt, Darmstadt, Germany
ahmad.sadeghi@trust.tu-darmstadt.de

Abstract. Remote attestation allows validating the trustworthiness of
a remote device. Existing attestation schemes either require hardware
changes, trusted computing components, or rely on strict timing con-
straints. In this paper, we present a novel remote attestation app-
roach, called DMA’n’Play, that tackles these practical limitations by
leveraging DMA (direct memory access). Since DMA does not require
CPU time, DMA’n’Play even allows attestation of devices with real-
time constraints. To prevent the exploitation of side-channels which
potentially could determine if the attestation is running, we developed
DMA’n’Play To-Go, a small, mobile attestation device that can be
plugged into the attested device. We evaluated DMA’n’Play on two
real-world devices, namely a syringe pump and a drone. Our evaluation
shows that DMA’n’Play adds negligible performance overhead and pre-
vents data-only attacks, by validating critical data in memory.

1 Introduction

Embedded devices are crucial components deployed in smart factories, cars, med-
ical devices, and critical infrastructures. They serve countless safety-critical tasks
making their security of utmost importance. Despite their criticality embedded
devices suffer from various security vulnerabilities [6,26,27,68], including indus-
trial robots [69], vehicles [49], and drones [7]. A well-known example of such
a stealth attack on industrial control systems is Stuxnet [39], which targeted
a uranium enrichment plant, remaining undetected for a long time and alter-
ing the configuration of centrifuges. Eventually, this attack not only physically
damaged centrifuges in a long-term process by altering the power supply of the
centrifuges [40], but also caused about 100,000 infections worldwide [52]. In a
recent study, 48% of companies reported that they are unable to detect whether
an IoT device on their network suffers from a breach, e.g., is part of a botnet [43].
This implies that attacks remain undetected for a long time and shows the urge
for new security solutions to monitor critical IoT devices.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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This problem is further amplified as embedded devices often lack basic secu-
rity mechanisms that are common in most other types of systems [6]. For exam-
ple, more than 80% of the embedded devices do not feature standard security
mitigations such as ASLR, nonexecutable memory, and stack canaries [88].

Integrating new security mechanisms into such embedded devices is a chal-
lenging task: embedded devices are deeply integrated into other devices, hinder-
ing their replacement or the application of upgrades. Furthermore, these devices
often have a long lifetime. Hence, there are many legacy devices operating for a
long time. For instance, cars in the US are on average 12.1 years old [22], indus-
trial robots have a lifetime of ten years [5,17], and airplanes have a design life-
time of more than 30 years [4]. Both hardware and software of embedded devices
are specifically tailored towards their use case. Furthermore, the hardware is
deeply integrated into devices, such as machines, control units, and custom cir-
cuit boards (PCB). These circumstances hinder hardware replacements. Many of
these devices also perform safety-critical or real-time tasks. During development,
the correctness of functionality and timing behavior has been ensured [28,86].
Altering such systems requires repeating these extensive testing routines.

Given these constraints, offloading detection of malware injection and data
manipulation is the only feasible option. One way to do so is remote attestation
as it allows an external entity to monitor and attest the internal behavior and
state of a remote device [25]. Remote attestation enables a device, the so-called
verifier, to check the integrity of another device, the prover. The main challenge
in remote attestation is to perform trustworthy self-measurement of an untrusted
device: even on a fully compromised system, an attacker may not be able to
alter the attestation self-measurement. Many different remote attestation schemes
have been proposed to tackle this problem [1,2,21,23,62,74,81]. These approaches
have different complex demands that hinder their practical usage: hardware-based
approaches require trusted computing modules like ARM TrustZone to perform
secure measurements of the attested device [1,2], which are often not available on
small and embedded devices. Software-based approaches rely on precise measure-
ments of execution time and therefore have strict requirements toward their imple-
mentation and communication, limiting their practical applicability [23,74,81].
Hybrid approaches need custom hardware extensions, that are expensive for initial
implementation, and are not available on legacy devices [21,62].

Contributions. In this paper, we present DMA’n’Play, a new remote attes-
tation framework that leverages DMA (Direct Memory Access) to observe the
operation of embedded devices. It allows the integrity of the device to be verified
during operation without requiring any trusted computing modules, hardware
modification, or changes to the software of embedded applications. The general
idea of DMA’n’Play is to enable the verifier to directly monitor the memory of
the attested device using DMA. In traditional attestation schemes, trusted com-
puting components or custom hardware extensions are used to perform a secure
self-measurement. However, in case of legacy embedded systems that do not fea-
ture such components, integrating these attestation schemes implies replacing
the components of the embedded system, a costly and impractical process, as
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eluded earlier. Here, DMA’n’Play is a viable solution: Instead of replacing the
hardware components, we add a tiny and low-cost device to perform the attesta-
tion. In addition, this also has a second advantage: DMA allows direct access to
a system’s memory without the involvement of the processor. DMA is typically
used to speed up memory access of external devices and reduce the utilization of
the processor. As the DMA controller is independent of the attested device, DMA
enables trustworthy self-reports even on compromised systems. It is a standard
feature of microcontrollers and is widely available in embedded devices as used
in industry; supported by all major vendors such as STMicroelectronics [79],
NXP [66], and Infineon [45].

In contrast to traditional pure software-based attestation [74], integrating
the DMA’n’Play framework into existing applications is straightforward, as
no complex runtime requirements have to be considered and no extensive exe-
cution time thresholds have to be provided. Moreover, DMA’n’Play is also
suitable for timing-critical devices, e.g., real-time or medical devices, where any
change in hardware or software implies re-validation of the timing behavior. The
implementation of DMA’n’Play does not change the software on the attested
device. This makes the DMA’n’Play attestation framework also suitable for
legacy devices as neither hardware modifications nor source code of the attested
devices are required.

In DMA’n’Play, we use DMA to give an external device direct access to
the main memory. This way, the external device can examine the main memory
of another device during run-time. Using this direct access to main memory,
the actual data in memory can be monitored, e.g., variables and data struc-
tures. This enables DMA’n’Play to detect malicious manipulations on data
in memory, detecting data-only attacks that cannot be covered by traditional
security techniques like control-flow integrity. We present a format for config-
uration that allows specifying the data structures to monitor and define con-
straints for valid states. The attested device cannot influence this investigation,
as the memory access is completely handled by the DMA controller. In contrast
to traditional remote attestation schemes, DMA’n’Play requires the verifier
to be directly connected to the attested device. In practice, depending on the
setting, the verifier can either be a standard computer system, e.g., a personal
computer, smartphone, tablet, or an embedded device like a diagnostics terminal
in a repair workshop. Additionally, we propose a tiny embedded device, dubbed
DMA’n’Play To-Go, that can be used to relay the attestation measurements
to a remote verifier or that can also be used directly as a verifier. For instance,
DMA’n’Play To-Go can forward attestation measurements to an external ver-
ifier, for example via a wireless transmission. This way, also mobile devices like
drones or vehicles can be attested during operation.

In summary, we provide the following contributions:

– We propose DMA’n’Play, a novel remote attestation framework that uses
DMA to monitor the attested device and specifically the content of its mem-
ory, thereby detecting manipulations and illegal states without requiring
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changes to either hardware or software, e.g., reprogramming or instrumen-
tation of the attested device.

– We show how the DMA’n’Play attestation framework uses a binary file
of the attested device and a configuration file to define benign states of
the attested device, allowing integration into both new and existing legacy
devices.

– With DMA’n’Play To-Go, we present an external verification device that
can be attached to attested devices to continuously check their integrity.

– We provide integration guidelines and show the necessary steps to implement
attestation into devices.

– To show its applicability, we integrated DMA’n’Play into two real-world
systems, a medical device, and a drone. In a case study, we use DMA’n’Play
to detect attacks on these devices: a manipulation of the injection rate of a
syringe pump and modifications to the drone control system.

2 Background

In this section, we explain direct memory access (DMA) and give background
on standard serial communications protocols used for DMA’n’Play.

2.1 U(S)ART and SPI

Microcontrollers usually interact with external peripherals such as sensors, dis-
plays, and control units. Hence, they need standardized interfaces such as UART
(universal asynchronous receiver-transmitter) [54] and SPI (Serial Peripheral
Interface) [29] to exchange data. The UART interface has two communication
lines: one for transmitting data (TX) and one for receiving data (RX). UART
is asynchronous, i.e., it operates on a fixed clock cycle, which the receiver needs
to be aware of to correctly interpret the data. USART (Universal synchronous
and asynchronous receiver-transmitter) offers an additional clock signal, which
is used to synchronize the transmitter and receiver. UART and USART commu-
nication is designed for direct bilateral device communication [29]. In contrast,
SPI is designed for the communication of one single device (master) to multiple
peripherals (slaves) like displays or sensors. SPI allows full duplex and syn-
chronous communication using four lines: a serial clock provided by the master,
data output from the master (MOSI), data output from the slave (MISO), and
slave select (SS) to indicate the master and slave configuration [61].

2.2 Direct-Memory-Access (DMA)

Direct-Memory-Access (DMA) is a common feature of microcontrollers that
allows to directly copy memory contents from or to external peripherals. With
DMA, the CPU does not need to manage the copying of data between RAM
and peripherals. The purpose of DMA is to unburden the processor of the time-
consuming task of moving data over the memory bus between places. The CPU
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Fig. 1. The adversary can fully compromise the attested device, but cannot attack the
verifier.

does not need to actively poll for incoming or outgoing data transfers, and the
CPU is not frequently interrupted (i.e., by CPU interrupts) to move small bits
of data [67]. DMA is a common and widespread feature on standard micro-
controllers as used in the industry, supported by all major vendors including
STMicroelectronics [79], NXP [66], and Infineon [45]. The DMA module can be
configured to directly copy data from or to an external peripheral like UART.
The CPU now only needs to be notified, e.g., by an interrupt once the copy
routine has terminated. Note that a memory controller typically features multi-
ple parallel DMA streams and offers precise predictability of execution times for
real-time applications.

3 Assumptions and Attacker Model

Figure 1 shows our threat model and trust assumptions. The attacker can fully
compromise the attested device. However, the attacker cannot compromise the
external verifier or the DMA’n’Play To-Go and cannot alter the configuration
of the DMA controller.

Assumptions. We assume an embedded device that features a DMA controller
that allows copying memory content to an external bus, e.g., a serial bus like
UART or SPI. This is a common feature of DMA controllers deployed on differ-
ent embedded devices [45,66,79]. Furthermore, we assume that the configuration
of the DMA controller can be locked, e.g., by utilizing a memory protection unit
(MPU) preventing the DMA configuration from being changed even when the
entire system is compromised. This is also a widespread feature on existing micro-
controllers [46,47,77]. We describe in detail how this can be achieved in Sect. 5.4.
Second, as in any remote attestation scheme, we require a trusted verifier. During
attestation, the verifier must be attached to the serial bus. The verifier device does
not have to be connected all the time but is only required during attestation time.
The role of the verifier can be taken over by a commodity computer system, e.g.,
a notebook or workstation. The verifier can also be integrated into a diagnostics
system typically used for repair and maintenance in the automobile space. Alterna-
tively, we developed DMA’n’Play To-Go, a dedicated, small, low-cost embed-
ded device to take over the role of the verifier and either perform the verification
directly or relay the information to a remote verifier. Figure 1 shows this scenario:
DMA’n’PlayTo-Go is directly attached to the attested device and transmits the
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measurements to the external verifier via a wireless communication channel. This
communication can be encrypted, for example using TLS (Transport Layer Secu-
rity). Both devices, the verifier and DMA’n’Play To-Go are trusted. The third
requirement is the knowledge of the firmware of the attested device and its benign
states. For this, the verifier needs to access the firmware in the ELF (Executable
and Linkable Format) binary format. Note that DMA’n’Play does not require
source code. When compiled with debugging symbols, the verifier can identify the
addresses of variables and data in memory by their names in the source code. To
check the content of variables and identify illegal states, the verifier requires infor-
mation about benign states, e.g., valid ranges of variables. We provide a configu-
ration file format in which this information can be provided along with integration
guidelines that describe how to integrateDMA’n’Play into new or existing appli-
cations, see Sect. 6.4.

Attacker Model. We assume a remote adversary. The adversary can compro-
mise the attested device at any point in time and is able to modify program
data or configuration data, e.g., by means of typical software vulnerabilities like
memory errors or insecure or insufficiently protected interfaces. However, high-
privileged operations like changes to the MPU (Memory Protection Unit) are not
possible. In Sect. 5.4 we show how this can be achieved on standard commodity
microcontrollers.

Similar to other remote attestation approaches, we exclude physical attacks
on the devices [1,2,62,74]. Thus, the attested device and particularly its hardware
cannot be tampered with, including the serial connection between the prover and
the external verification device. Furthermore, also along with other remote attes-
tation approaches, we assume that attacks on the verifier are out of scope.

4 Challenges

Assuring the integrity of a remote system is a challenging task. The attested
system itself is untrusted, so obtaining trustworthy reports from such a system
is a complex problem.

In particular, a secure attestation scheme needs to tackle the following chal-
lenges:

Challenge 1: Secure Self-measurement. The attestation scheme must guar-
antee that the attested device is not able to manipulate or delay the self-
measurement.

Challenge 2: Detectability. When using an attestation approach that is not
constantly running it is important that the attacker cannot detect whether the
device is currently being attested. Otherwise, the attacker could hide or stop
any attacks while the attestation is being executed. This includes both direct
observations as well as side-channels, e.g., monitoring other events that indicate
an attestation.

Challenge 3: Root of Trust. In software-based remote attestation, any secret
key on the attested device can be obtained upon full system compromise.
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Fig. 2. The DMA controller sends all relevant memory sections to the verifier in a
circular process.

The lack of a root of trust results in the problem, that the verifier cannot dis-
tinguish between the genuine device, other devices, or simulations.

Challenge 4: Side-Effects and Real-Time Operation. Attestation may not
negatively influence the normal operation of the attested system, especially when
performing tasks with real-time constraints. This is especially important when
integrating attestation into existing legacy devices, whose timing behavior has
already been validated and hence may not be altered.

Challenge 5: Efficient Verification. Implementing an efficient and effective
verifier is a challenging task. Typical attestation protocols send hashes of the
system’s current state, from which the actual state cannot be reconstructed
directly. The verifier requires a full lookup table of all benign states. Generating
such a table is a complex task and requires a large amount of memory.

In the following, we will show how DMA’n’Play allows remote attestation
while addressing these challenges by utilizing a standard DMA interface.

5 Concept

Our concept of DMA’n’Play is to use Direct Memory Access (DMA) to enable
an external device, called verifier, to observe the memory of the attested device.
Figure 2 shows the high-level idea of our approach. In an infinite loop, the DMA
controller sends relevant memory content to the verifier, allowing the verifier to
monitor memory contents such as configuration data, measurements, and other
static and variable memory content. We use a one-way serial connection to send
the data of the attested device to the verifier, so there are no interdependencies
between these devices. Furthermore, since there is no feedback from the verifier,
the attested device cannot determine whether the verifier device is present.

5.1 Using DMA for Attestation

For DMA’n’Play, we configure the DMA controller in such a way that it shifts
memory contents for attestation to an external peripheral via a serial connection,
e.g., UART.The verifier receives the rawmemory contents from the attested device
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and verifies its integrity. Serial communications like UART use two separate lines
for sending and receiving (see Sect. 2.1). By only connecting the pins for sending on
the attested device with the receiving pin of the verifier, a one-way transmission
is ensured. This gives two security benefits in contrast to traditional attestation
schemes. First, the attested device does not get any feedback from the verifier.
Hence, the attested device cannot determine whether it is currently being attested.
Second, in case of implementation flaws in the verifier, the attested device faces
significant limitations to exploit these flaws as there is no feedback from the verifier.

DMA tasks are usually configured once on set up and are typically not
required to change during run-time. We set up the DMA controller to frequently
push memory contents (SRAM, configuration data, content of variables) over
UART for attestation. Since DMA does not need to be reconfigured, access to
the DMA controller can be blocked by the memory protection unit (MPU). Con-
sequently, the external device will always receive untampered memory contents.
As the DMA controller is independent of the processor and the software operat-
ing on the device, this does not influence the normal operation of the attested
system. This makes DMA’n’Play also suitable for attesting devices with real-
time requirements, i.e., where the correct operation also requires maintaining
strict timing thresholds.

5.2 DMA’N’PLAY Attestation

The DMA’n’Play attestation scheme takes advantage of its full memory access to
ensure run-time constraints on specific variables. This is unlike traditional attes-
tation schemes, in which memory is being hashed and then sent to the verifier
for verification, which makes reconstructing the original content a challenging
and complex task. For instance, in these schemes, the verifier compares the hash
values to a list of known hash values of benign states, requiring a database of
hash values of all valid states. This approach has several drawbacks. It requires
a pre-computation of valid states, an extensive task, leading to the well-known
state explosion problem [85]. Changes to the attested device require updates
of these states, even upon small changes such as modifications of individual
parameters or updates to the attested application. Furthermore, the database of
valid states requires significant memory on the verifier’s side. On the contrary, in
DMA’n’Play attestation, the verifier has access to the raw data in the memory
of the attested device. By mapping the memory content to relevant information
like data or control variables, the verifier can monitor the attested device’s inter-
nal state. With DMA’n’Play, we recommend a model-based approach to avoid
the state explosion. That is, the behavior of a model of the attested device is
compared to its actual behavior. Direct access to the raw memory content allows
the verifier to perform complex checks on state data, e.g., assuring that variables
are within specific ranges or validating specific dependencies between variables.

To attest a device, the verifier solely requires the binary of the attested device
and a configuration file that specifies benign states (see Sect. 6.2). If the attested
device is modified or updated, only the binary has to be replaced. If the configu-
ration changes, only the rules in the configuration file have to be adapted. This
allows simple updates of the attestation rules, when the attested system changes,
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Fig. 3. The verifier uses the compiled binary and a configuration file to attest the
device. The verifier can either be directly connected to the attested device (Case 1), or
communicate via DMA’n’Play To-Go (Case 2).

for example, due to a new software version. By mapping the memory content to
relevant information like sensor or control variables, the verifier can reconstruct
the state and behavior of the attested device. Relations between sensor infor-
mation and output variables allow detecting compromises and manipulations,
creating a deviation between the actual and expected behavior. However, creat-
ing such a behavior model is challenging without source code and deep knowledge
of the device. Reverse engineering is helpful, but often requires significant effort
as states and interdependencies are hard to reconstruct.

However, when the binary is enhanced with debugging symbols or even the
full source code is available, the verifier can identify variables and data structures
by their names. With DMA’n’Play and application knowledge, it is then also
possible to implement sophisticated verification logic and rules for device behav-
ior. Furthermore, the verifier can also monitor changes over time or access sensor
input. In embedded devices, communication with external peripherals, such as
sensors, typically takes place through special memory areas, which can also be
covered by DMA’n’Play. In addition, the verifier can use sensor information
from other attested devices, e.g., drones in a swarm, and compare it with the
currently attested device. Summing up, the complete availability of the attested
system’s memory and unrestricted access to it allow straightforward implemen-
tation of checks of the attested system to verify its integrity and detect manipu-
lations. While DMA’n’Play does not necessarily require the source code of the
attested system, developing sophisticated rules for the verifier requires insight
into the precise functionality of the attested system, which is typically only given
via source code.

5.3 Verifier

The verifier checks the correctness of the attested device based on the raw mem-
ory content data provided via DMA. This data is automatically sent in a circular
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process by the memory controller of the attested device. For the attestation, the
verifier needs to interpret these raw values. To do so, the verifier takes the com-
piled binary ELF file and analyzes it to obtain the memory regions to be attested.
Note that DMA’n’Play does not need the source code of the firmware of the
attested device. Embedded devices typically have a static memory configura-
tion. Therefore, the exact memory layout can be initially determined using the
binary firmware. If the binary is compiled with debugging symbols, the verifier
can identify variables and data in memory by their respective names, find their
location in the data stream, and reconstruct the content of the memory in the
attested device. This makes it possible to perform complex checks on the mem-
ory of the attested device. DMA’n’Play requires the verifier device to be close
to the attested device due to the communication channel. The verifier can be
implemented on any commodity computer system as long as it can be equipped
with a serial interface, e.g., personal computers, mobile devices such as smart-
phones or tablets, or specialized systems like a diagnostics terminal for cars or
planes.

For the attested device, it does not matter whether a verifier is attached or
not. As there is no input from the receiving verifier device, the attested device is
unable to ascertain whether a verifier is present. Therefore, the attacker cannot
determine whether the device is being attested or identify the memory loca-
tions that are currently being transmitted. However, an attacker could use other
information on the device to determine if it is likely that the device is being
attested: For example, in the case of a plane or a car, if it is flying or driving,
it is unlikely that an external verifier integrated in a diagnostics system that is
usually used in a garage is attached. To counter this, we developed a verification
solution called DMA’n’Play To-Go that can be integrated into other devices
to continuously attest devices also during operation. DMA’n’Play To-Go is
a small embedded device that is being connected to the serial interface and can
either directly perform the verifier task or relay the data via a wireless interface,
e.g., Bluetooth or Wi-Fi, to a remote verifier. In practice, DMA’n’Play To-Go
will be used to forward the attestation measurement to an external verifier, as
this allows the integration of more complex attestation tasks and also the usage
of configuration files for verifier, which a small embedded device is not able to
process. Figure 3 shows the general architecture of DMA’n’Play and its two
operating modes: The verifier can either be directly connected to the attested
device (Case 1) or communicate via DMA’n’Play To-Go (Case 2). In the lat-
ter case, DMA’n’Play To-Go is directly connected to the attested device and
relays the data to the verifier, e.g., over Wi-Fi or Bluetooth. The attested device
in Fig. 3 is represented by a drone. In Sect. 7.1 we provide a case study on a
syringe pump and a drone.

5.4 Locking of DMA-Controllers

The DMA controller sends the content of the attested memory to the verifier.
The security of DMA’n’Play attestation is based on the assumption that the
attacker cannot change the configuration of the DMA controller. Otherwise, the
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attacker could alter the DMA controller such that critical memory areas are not
being reported, thereby hiding modifications and attacks.

Embedded devices in general feature a memory controller, which allows
restricting access to arbitrary memory regions. The most basic form of such a
controller is the Memory Protection Unit (MPU). It is a common and widespread
feature on standard controllers [46,47,77]. A properly configured MPU will define
protected memory areas and block unprivileged access. It is possible to lock the
DMA configuration, by restricting unprivileged access to the memory section
that contains it.

Devices with an MPU should provide at least two privilege modes. The
basic configuration has one privileged mode with access to all resources, and
one unprivileged mode with limited capability. In order to ensure the memory
access rights, the code is run either in privileged or unprivileged mode. Within
the unprivileged mode, all memory restrictions defined in the MPU are strictly
enforced. Once the processor operates in unprivileged mode, switching back to
privileged access is only possible through a Super Visor Call (SVC). This trig-
gers an interrupt that checks the legitimacy of the request and either allows or
denies the mode switch. Since MPU restrictions are only enforced in unprivi-
leged modes, it is important to avoid critical bugs in privileged code. Therefore,
firmware analysis [58] and fuzzing [41] are performed. Furthermore, the amount
of privileged code is minimized by separating tasks based on their required per-
mission level. This is often implemented in software, e.g., by the operating system
of the microcontroller. TockOS [55], for example, divides the OS kernel into a
trusted core for critical tasks and untrusted capsules for peripheral drivers and
other noncritical tasks. EPOXY [24] uses the MPU to provide two domains and
requires manual annotations by the developer. Sometimes ISA properties, such
as unprivileged memory instructions, are used to enable execute-only memory
protection schemes (uXOM [51]).

While privilege separation has been neglected in the past it is now a critical
task for the software developer. Recently, frameworks such as EPOXY [24] have
emerged in academic research, applying a technique called privilege overlaying
to only execute the necessary operations in privileged mode. This considerably
advances the protection of hardware configurations including the DMA con-
troller. Some frameworks such as D-Box [59] explicitly address the topic of DMA
locking and DMA security. D-Box [59] allows the compartmentalization of the
DMA controller on embedded devices like ARMv7-M boards, using a software
reference architecture and the capability of the MPU. Thus, the DMA configu-
ration can be sufficiently protected from a potential attacker. EPOXY [24] and
D-Box [59] enable us to provide a secure channel over DMA to the external veri-
fier. Thus, we are able to add remote attestation to devices, that had no feasible
attestation option until now (either due to hardware or system limitations).

Some microcontrollers even feature more sophisticated protection solutions,
such as a complete memory management unit (MMU), e.g., the ARM Cortex-A
family [13], up to a full trusted execution environment (TEE) such as TrustZone.
TEEs guarantee authenticity of the executed code, integrity of runtime states,
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and confidentiality of code and data [73]. For example, TrustZone is an optional,
but common extension of the new and more sophisticated ARMv8-M [12] and
ARMv8-A [14] microcontroller architecture. Unfortunately, as of now, TrustZone
has very limited availability on existing microcontrollers [59]. In the RISC-V
architecture such memory restrictions are enabled using the Physical Memory
Protection (PMP) features included in the RISC-V instruction set [71]. Further-
more, for RISC-V there exist TEE solutions such as Keystone [53]. However,
as of now, Keystone requires the privilege modes S, U, and M [53]. Unfortu-
nately, these privilege modes are also optional. For example, the new and pop-
ular ESP32-C3 only implements the unprivileged U (user) and privileged M
(machine) mode [37].

5.5 Hardware Requirements and Target Platforms

In summary, DMA’n’Play requires three hardware properties: (1) A DMA
controller with a peripheral such as SPI or UART to directly output memory
contents to the external attestation device. (2) An MPU, which locks the DMA
configuration. (3) Privilege separation with at least two modes to prevent recon-
figuration of the DMA controller by the attacker.

These requirements are fulfilled by numerous hardware platforms. We focus
on the ARMv7-M architecture, which we also use in our case study in Sect. 7.1.
This architecture is in widespread use in the industry with many legacy devices.
The successor ARMv8-M is also suitable for DMA’n’Play. It even has optional
support for TrustZone [73]. However, TrustZone support is purely optional and
there will be new boards without TEE. Recently, the RISC-V architecture
became popular, especially in the embedded domain. As discussed in Sect. 5.4,
DMA’n’Play can also be used on RISC-V devices.

5.6 Devices Without Source Code

The DMA’n’Play framework can also be used on applications where there is
no source code, but only the compiled binary is available. For example, the
source code of legacy devices is often either missing, incomplete, or unavailable.
In particular, there is a huge amount of legacy devices in machinery designed
for a long service life, e.g., in power plants, factories, professional equipment,
and vehicles. In these environments, there are often embedded devices with dis-
continued software support, leading to critical security risks [49,69]. If no source
code is available, DMA’n’Play can be integrated with the help of binary rewrit-
ing. Binary rewriting describes the modification of a given compiled and possibly
(dynamically) linked binary in such a way that it remains executable [87]. Binary
rewriting can either be done dynamically (during execution) or statically (on a
binary that is not currently being executed) [87]. Due to the added complexity
of run-time execution, dynamic rewriting is more challenging than static rewrit-
ing. In static rewriting, all binary transformation steps can be executed in a row,
while dynamic rewriting requires an iterative algorithm [87]. Furthermore, a per-
sistent dynamic binary transformation will induce time and memory overhead
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during run-time [87]. For most IoT devices static rewriting will be sufficient to
integrate DMA’n’Play, as devices can be usually re-flashed with a new binary
during maintenance.

In order to integrate DMA’n’Play into a binary the following steps are
required: (1) Integrate a DMA configuration into the binary, to output the entire
memory through DMA. (2) Integrate an MPU-based lock. (3) Set up the verifier
with information on the memory content and data of interest for the attesta-
tion process. Depending on the amount of information available regarding the
memory structure and the variables of interest, the verifier can be configured
appropriately. The integration guidelines described in Sect. 6.4 apply. The only
difference is that the DMA output and MPU lock on the attested device are
integrated and configured with the help of binary rewriting techniques, rather
than directly added to the source code and recompiled.

The integration of the DMA output (Step 1) and MPU-based locking (Step
2) are straightforward on the binary level. Both steps represent a reconfigu-
ration of the hardware. On the software side, this reconfiguration is equiva-
lent to privileged write operations on registers and memory positions (Memory
Mapped I/O [70]). DMA’n’Play performs this configuration step once during
device startup and drops all privileges afterward. Thus, steps (1) and (2) can be
achieved by adding a static code block to the part of the binary executed at the
end of the device startup.

6 Implementation

To show the applicability of DMA’n’Play for different computing architectures,
we integrated DMA’n’Play into a syringe pump and a drone. A syringe pump
is a medical device that automatically injects medicine into a patient’s body.
Drones are manually controlled or autonomous flying devices. First, the attested
device (syringe pump or drone) needs to be modified such that its memory
contents are sent to the verifier. Second, the verifier has to be provided with
information on the benign states of the attested device. Next, the verifier needs
to check the validity of the received data and report manipulations. In Sect. 6.4
we provide detailed integration guidelines that describe how DMA’n’Play can
be integrated into devices.

6.1 Attested Device

To implement DMA’n’Play on the attested device, we first determine the rel-
evant memory content. These memory contents typically include variables that
represent the state and configuration of the device. To reduce the amount of
transmitted data, we modify the linker file to create a dedicated memory section
containing all the data to be included in the attestation. We call this section
the attestation section. This is an optional step, it is also possible to attest the
complete memory of the attested device. We use the built-in source code anno-
tation capability of the GCC compiler, called attributes [44], to assign variables
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Fig. 4. The verifier uses the attestation header to identify the position in the data
stream.

to the attestation section. Such functionality is also available in other compilers
such as CLANG [84]. In Sect. 5.1, we briefly describe the DMA feature that we
use to transfer memory content to an external device. We configure the DMA
controller on the chip to output the contents of the attestation section over a
peripheral interface. We set the DMA controller to circular mode and configure a
direct DMA stream from memory to peripheral. Thus, the attested device sends
the memory content in an endless loop.

To enable the verifier to determine the current position in memory, the
attested memory features a so-called attestation header, which is a static string
at a known position in the attested memory. Using the attestation header as a
reference point, the content of all variables and data structures in the attesta-
tion section can be identified. This is especially relevant as the verifier can be
attached at any time. Thus, the data stream of the attested device can be at
any random position. Figure 4 illustrates this scenario.

To secure the DMA controller from malicious access, we utilize the Memory
Protection Unit (MPU) as described in Sect. 5.4. Since the configuration of the
DMA is handled through memory-mapped I/O, we restrict access to the memory
area that contains the DMA configuration. We drop the privilege level that is
required to reconfigure DMA after startup. Thus, a remote attacker cannot alter
or influence the data transmitted to the external verifier via DMA. Even if the
remote attacker gains arbitrary code execution on the device, the attacker is still
missing the required privilege level to alter the DMA configuration.

Typically, the source code of the attested device is available and can be recom-
piled with our modifications, i.e., the dedicated attestation memory section,
modified DMA configuration, and MPU-based lock. However, for some legacy
devices source code is not available for various reasons. In case the source code
is not available, we output the entire memory content for attestation and lever-
age binary rewriting techniques. We provide further details on this in Sect. 5.6.
In the integration guidelines in Sect. 6.4 we explain all the steps necessary to
integrate DMA’n’Play.

6.2 Verifier

The verifier receives and validates the data from the attested device. To do so,
the verifier requires an ELF file of the software running on the attested device.
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With this file, the verifier automatically reconstructs the memory layout of the
attested device, i.e., the locations of variables and data structures. Using this
information, the verifier determines the location and values of these variables
in the data stream from the attested device. When compiled with debugging
symbols, the verifier can identify the addresses of variables and data in mem-
ory by their names in the source code. Otherwise, manual mapping of variable
names to memory addresses is required. We implemented the verifier in Python
with pySerial1 for serial communication and the pyelftools2 to handle the ELF
file. There are two possibilities for the verifier to validate the received informa-
tion. First, the configuration file format can be used to define constraints and
rules that are checked. This allows for straightforward implementation of the
verifier. Alternatively, complex checks can be manually implemented into the
DMA’n’Play framework.

In a configuration file, the developer can provide constraints for these vari-
ables. With this configuration file and the ELF file of the attested device, the
verifier automatically checks the received data stream. No further manual imple-
mentation steps are required. The format of the configuration is simple: Variables
are identified by their name in the source code. Furthermore, the developer has
to provide the variable type and the constraints to be checked. Listing 1.1 shows
an example of such a configuration that describes the data structure of the
attested memory. In Listing 1.2, restrictions and logical constraints are defined.
DMA’n’Play supports the following checks: (1) Static checks that have to be
fulfilled, i.e., values that may not change, (2) lists of alternatives i.e., different
valid values, (3) arbitrary values, i.e., any value is valid, and (4) ranges, i.e., spec-
ify ranges of valid values. This functionality can be flexibly adapted to further
use cases and checks.

Alternatively, complex checks can also be implemented. As the verifier is
developed in Python it is simple to add further checks or develop more complex
rules. Even integration into other systems, e.g., back-end and management sys-
tems or web services is possible. In contrast to traditional attestation schemes,
no preliminary exploration of possible states is required, easing implementation
and modifications to existing systems. In remote attestation schemes that use
a precomputed list of valid states as hashes, this list has to be recomputed on
every change of the attested system. The usage of a memory-safe language like
Python for the verifier prevents a compromise of the verifier due to memory
corruption. Note that the input provided by the attested device should be con-
sidered untrusted during development.

6.3 DMA’N’PLAY TO-GO

The verifier is an external device that has to be directly connected to the attested
device. To compensate for limitations induced by this design, we developed an
external device called DMA’n’Play To-Go that can relay attestation data to a

1 https://github.com/pyserial/pyserial.
2 https://github.com/eliben/pyelftools.

https://github.com/pyserial/pyserial
https://github.com/eliben/pyelftools
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Listing 1.1. Example configuration file for verifier

1 layout = cstruct.Struct(
2 "p_settings" / p_settings,
3 "dosage_ml" / cstruct.Int16ul,
4 "bolus_steps_ml" / cstruct.Array(9, cstruct.Float32l),
5 "attestation_header" / cstruct.Array(3, cstruct.Int8ul)
6 )

Listing 1.2. Example for valid ranges of variables for verifier

1 varmap = {
2 "p_settings:syringe_volume_ml":(DataModel.VarType.STATIC,DataModel.VarStatic(30)),
3 "dosage_ml":(DataModel.VarType.RANGE,DataModel.VarRange(0,6)),
4 "bolus_step_index":(DataModel.VarType.ALTERNATIVES,DataModel.VarAlternatives

([0,1,2,3,4,5,6,7,8])),
5 "attestation_header" : (DataModel.VarType.ANY, DataModel.VarAny(None))
6 }

different verifier. DMA’n’Play To-Go is an embedded device with a small form
factor, little power consumption, and is available at a low price so that it can
be integrated into the attested systems. In particular, we used an ATmega328P
8-Bit microcontroller with 16 MHz clock frequency and 2 kB of SRAM [15]. It
consumes 2 to 10 mA at full load depending on frequency [60]. By only con-
necting the attested device with the receiving pin (RX) on the microcontroller,
leaving the transmission pin (TX) of the microcontroller unconnected, a one-way
connection is ensured.

In our implementation, Bluetooth Low Energy (LE) was used to transmit the
data stream. Bluetooth LE is well-suited for this use case as it has a low power
consumption and a reach of up to 100 m. Alternatively, also a microcontroller
with Wi-Fi functionality such as the ESP8266 [38] or the ESP32 [36] can be used
to send the attestation data to a remote server or cloud service. Alternatively,
these microcontrollers can also be used as a verifier, even though they do not
have enough computational capabilities to analyze the binary of the attested
device. Therefore, the verification logic has to be manually implemented on these
microcontrollers.

6.4 Integration Guidelines

In this section, we show the steps required to integrate DMA’n’Play into a new
application and set up the corresponding verifier.

(1) Identify the memory areas to be attested. When compiling the attested
application, all relevant memory areas can be moved into a dedicated memory
section. In case no source code is available, also the complete memory can be
attested. (2) Integrate an attestation header, i.e., a unique, identifiable string
of bits, into the attested memory, e.g., the attested memory section. Note that
the attestation header does not need to be placed in a specific position as long
as it is inside the attested memory region. In case no source code is available,
choose an existing and unique bit string within the attested memory to serve as
the attestation header. (3) Configure the DMA controller so that it outputs the
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attested memory to the bus used for the attestation, e.g., the serial bus. Take
care of the respective bus configuration, e.g., transmission speeds. (4) Define
valid states of the attested device and develop a configuration file containing
a rule set. When using a binary with debug symbols, the verifier can identify
variables by their names. For more information on how to build a configuration
file, see Sect. 6.2. (5) Set up the verifier. This includes configuring the bus used
for the attestation and providing the binary of the attested device along with
the configuration file.

These steps allow integrating DMA’n’Play into new as well as legacy devices.
Note that no source code of the attested device is required. Changing the configu-
ration or updating the binary requires only a subset of these steps, e.g., replacing
the binary, or modifying or updating rules in the configuration file.

7 Evaluation

We implement DMA’n’Play into the syringe pump and a drone and attest
numerous variables of different types to show the capabilities of the verifier.
For each device, we design and execute a typical practical attack to show that
DMA’n’Play is able to detect the compromise of configuration data. We per-
formed timing measurements to show that DMA’n’Play has no timing influence
on normal operation.

7.1 Case Study

For the evaluation, we integrated the DMA’n’Play attestation into two real-
world devices, a syringe pump, and a drone, using our integration guidelines.
Both devices perform safety-critical tasks and operate under real-time con-
straints. We then developed full end-to-end examples and integrated a typical
vulnerability in each device. We created a configuration file, defining valid states
and ranges for both devices. Upon exploiting the vulnerabilities and applying the
respective attack, these were immediately detected. There are different methods
to respond to a detected compromise. In the case of DMA’n’Play, the verifier
could also interact directly with the attested device. For example, the verifier
can power off the syringe and alert a doctor, and the drone can be excluded from
an autonomous swarm.

Syringe Pump. A syringe pump is a medical device that injects medicine into
the body of a patient. We enhanced an open-source syringe [89] with DMA’n’-
Play and implemented it using a Nucleo-F446RE development board that fea-
tures an ARM Cortex-M4 processor. DMA’n’Play is continuously monitoring
the devices’ configuration so that any illegal operations are detected. To do so, we
wrote the corresponding configurations for DMA’n’Play. Then, we integrated
a common vulnerability into the syringe pump: an insecure configuration inter-
face. This configuration interface allows changing the amount of medicine being
injected. The attack can have potentially lethal consequences for the patient if
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too much or too little medicine is being injected. Such an attack vector is typ-
ical for IoT devices: the most common vulnerabilities are weak, guessable, or
hard-coded passwords, as well as insecure network interfaces and services [68].

Drone. We integrated DMA’n’Play into a Bitcraze Crazyflie 2.1 drone [19].
Drones feature many safety-critical components that are crucial for correct oper-
ation. A malfunction or compromise of one of these components can have severe
consequences. For the attack, we use the remote control channel of the drone that
is used to send new commands and fly the drone directly. For a remote adver-
sary, this is the primary attack vector. Using this channel, we compromised the
device and changed multiple critical values: The configuration of the state esti-
mator determines the flight position and stabilization of the drone. This critical
component processes the sensor data from the drone and provides the position
and movement of the drone. Changing the parameters of the estimator directly
influences the flight behavior of the drone. Moreover, as the control and naviga-
tional system of the drone are dependent on this system, these modifications allow
controlling the drone without directly interfering with its navigational system. In
the case of autonomous drones, this attack will be undetected as the autonomous
control system remains unmodified. However, this is only an example of an attack:
any flight parameters or configurations could be manipulated, resulting in arbi-
trary attacker-controlled behavior. It would also be possible to directly control
the drone by altering its navigational and way-finding system, or compromising
the collision warning system so that the drone will collide and crash.

We integrated the DMA’n’Play framework into both devices and configured
it to monitor critical components and data. To do so, we defined valid states and
ranges for variables in a configuration file. We provided this configuration file
to the verifier together with the binary of the software running on the attested
device. Then, we monitored the normal operation of the device. Upon exploiting
the vulnerabilities and applying the respective attack, these were immediately
detected by the verifier by raising an alarm. In practice, there are different
methods to respond to a detected compromise, e.g., by raising an alert, or, in
autonomous settings with multiple devices, isolating a compromised device. In
the case of DMA’n’Play, the verifier can also interact directly with the attested
device, for example by powering it off in the case of the syringe pump or excluding
a drone from a swarm in the case of autonomous drones.

7.2 Real-Time Capabilities

By using DMA and an external verification device, which are both independent of
the normal operation of the processor, DMA’n’Play can even be applied to hard
real-time applications. Such systems have strict responsiveness requirements that
limit the integration of new security techniques. The data transmission on the
DMA controller does not consume any CPU time, because DMA is a dedicated
hardware unit with its own access to the memory bus and peripheral interfaces.
In general, the CPU and the DMA controller both act as master devices on
the memory bus [78,79]. Since the DMA and the CPU potentially could com-
pete for the usage of the memory bus, round-robin arbitration mechanisms are
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implemented in hardware [78,79]. Memory buses can be optimized for either
bandwidth or low latency in sharing. For microcontrollers, such as the ARM
Cortex-M family, memory buses are optimized for low latency in sharing [78].
Low sharing latency means that very fast switches occur between memory access
tasks. In addition, DMA latencies can be precisely predicted [79]. Since periph-
eral interfaces are relatively slow compared to the speed of the memory bus, the
additional operations on the memory bus are negligible. Due to the low latency
sharing (round-robin arbitration on the memory bus) implemented between CPU
and DMA, as well as the relatively low speed of peripheral interfaces, there is
negligible impact on the operations performed by the processor.

7.3 System Performance View

The attestation mechanism via DMA can potentially compete for memory band-
width with the CPU. As mentioned in Sect. 7.2, the hardware implements round-
robin arbitration: Thus, DMA can only occupy up to 50% of the memory band-
width, but would not starve the CPU on memory accesses. The overall utilization
of the memory bandwidth varies from application to application. However, the
memory usage of DMA’n’Play will be far below the maximum bandwidth usage
of 50% as the transmission speeds of typical peripheral buses such as UART or
SPI are much less than the memory bus speed. Figure 5 shows the transmission
speed of standard UART and SPI configurations.

A typical UART data rate of 115,200 baud is approximately 11.25 kB/s, and
an SPI connection clocked with 40 MHz can transfer up to 5000 kB/s. The total
capacity of the memory bus is much higher than those achievable over peripherals
such as UART and SPI. The Cortex M4 core used in our case study in Sect. 7.1
features a 32-bit AHB Lite Bus for the memory interface [10]. According to the
bus specification [9] the transfer consists of one address cycle and at least one or
multiple data cycles. Due to the 32-bit bus width, 4 B (32 bit) can be transferred
per cycle.

In contrast, SPI is only capable of a single-bit transfer per clock cycle. The
SPI peripheral is usually not clocked at full processor speed, but rather at 1

2 or
1
4 of the processor clock. Assuming the drone use case from Sect. 7.1 we used a
processor clock of 160 MHz on the Cortex M4, the AHB bus clocked at 160 MHz
is capable of transmitting 640MB/s. The 40 MHz SPI connection (5 MB) would
only take 1

128 and UART at 115,200 baud would only take 1
56888 of the available

memory bandwidth. Therefore, the memory impact of DMA’n’Play is limited
and can be configured by selecting adequate transmission speeds.

7.4 Feasibility of Full Memory Attestation

Full memory attestation is feasible, but the attested memory portion and trans-
fer speed always need to be carefully chosen to avoid the well-known time-
of-check/time-of-use problem (TOCTOU, see also Sect. 8). Attesting 128 kB of
memory with 40 MHz SPI takes about 25 ms. On embedded flash memory chips,
there is typically a huge speed difference between reads, which are fast, and
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writes, which are very slow. Since flash memory has to be written sector-wise, to
write any data, at least one entire sector needs to be erased first and re-written.
Erasing a sector of a common chip requires around 50 ms [35]. Slower flash chips
even take up to 100 ms [34]. In practice, this circumstance eases attestation as
it effectively mitigates the TOCTOU problem.

7.5 Power Consumption

Especially in embedded systems, which are often battery-operated, power con-
sumption is an important aspect. We measured the power consumption of our
two prototype implementations for 7 min and measured the total energy con-
sumption. The drone consumed 50 mWh, the syringe pump 46 mWh, adding
up to 10 mAh and 9.2 mAh respectively. In summary, we could not measure an
increase in the power consumption of the devices running DMA’n’Play com-
pared to the default implementation. Hence, DMA’n’Play is suitable for mobile
applications and small embedded devices. However, integration of DMA’n’Play
can slightly increase the power consumption of a system due to the influence on
the deep-sleep behavior of the processor [83].

Although the integration of DMA’n’Play does not influence the power con-
sumption of the attested device, the verifier also requires power. Depending on
the processor frequency DMA’n’Play To-Go consumes between 2 and 10 mA
at full load [60]. While in absolute numbers this seems low, depending on the
attested device, the power consumption can be significant. However, the actual
power consumption of the verifier depends on the actual implementation, the
microcontroller used, and transmission technologies.

7.6 Summary

This evaluation showed the applicability of DMA’n’Play using two real-world
examples, a syringe pump, and a drone. In our practical evaluation, we showed
how DMA’n’Play is able to detect attacks. We showed that DMA’n’Play does
neither increase power consumption nor influence the runtime behavior of the
attested device. This allows a wide usage of DMA’n’Play, including devices
with real-time constraints.

8 Security Discussion

The novel approach of DMA’n’Play to remote attestation has several advan-
tages in practicability compared to traditional remote attestation schemes. But
several security aspects have to be considered when using DMA’n’Play.

Attack Model. For a successful attack, the adversary has to modify memory
content, such as variables, without being detected. The DMA controller, which
is independent of the software running on the attested device, sends the mem-
ory content to the external verifier in a circular process. The verifier continu-
ously monitors this memory content. As discussed in Sect. 3, the attacker cannot
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Fig. 5. Trade-off between bus speed, amount of attested data, and transmission time.

influence which memory is being monitored, interrupt this process, or falsify
the reported data. Therefore, it is crucial that the adversary cannot change or
influence the configuration of the DMA controller. In the following, we discuss
possible attacks on attestation and show how DMA’n’Play circumvents these.

Time-of-Check/Time-of-Use. The time-of-check/time-of-use problem (TOC-
TOU) describes the circumstance that in remote attestation schemes there is a
delay between the attestation time, when the integrity of the device is checked,
and execution later on. An attacker can exploit this time span to carry out
an attack without detection. Also, DMA’n’Play suffers from this problem: The
memory is copied in a circular process to the verifier, leaving a time span between
each time a specific memory location is copied. The length of this interval is
dependent on two variables: The amount of data that is being verified and the
bus transmission speed. Figure 5 shows this dependency for typical bus speeds
of serial interfaces. The faster the transmission speed, the shorter the interval
between two attestation runs. Note that the graph does not start at 0 B. For
DMA’n’Play an attestation header is required to identify the memory layout
in the data stream. In our implementation, this attestation header takes 3 B.
While this time span between two attestation runs can be exploited in theory,
in practice the attacker does not know which memory parts are currently being
attested. As eluded in Sect. 5 the transmission of the memory content to the
verifier is performed by the DMA controller which is completely independent of
the processor and the software running on it.

Device Authenticity and Offloading. The DMA’n’Play device is physi-
cally connected to the attested device, therefore the attacker is not able to trick
DMA’n’Play into attesting a different device (offloading). In order to change
the input data to the DMA’n’Play device, the attacker has to reconfigure the
DMA controller which is not possible according to our Threat model (c.f. Sect. 3).
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Limitations. DMA’n’Play does only detect deviations from predefined behav-
ior. Therefore, modifications to static code in flash will not be discovered. To
ensure integrity of static code, secure boot mechanisms can be used. Secure boot
mechanisms are widely used and also available in many microcontrollers.

Presence of Attestation. The attested device and the verifier are connected
via a one-way serial connection, i.e., there is no feedback channel from the verifier
to the attested device. To change this, a new physical connection between the
attested device and the verifier has to be established, a task that has to be
performed manually. According to our threat model, physical attacks are out of
scope. Therefore, the attested device cannot get any response from the verifier.
It makes no difference to the attested device whether a verifier is connected or
not. Thus, the attested device cannot check if it is currently being attested or
not.

Side-Channels. However, the attested device could use heuristics to determine
if it is attested: Due to the necessity for an external verifier device, in many
application areas an attacker can use side-channels or heuristics to determine
whether it is likely that a verifier is present. For example, in the case of a
vehicle, the integrity is probably being checked in a garage during maintenance.
A drone is unlikely being attested during flight with a large verifier. Therefore, we
developed DMA’n’Play To-Go, a small, embedded device that can be used as
an external verifier and be integrated in case a larger external verifier cannot be
used. More details on DMA’n’Play To-Go can be found in Sects. 5.3 and 6.3.

Security of DMA-Controllers. The security of DMA’n’Play attestation
is based on the assumption that the attacker cannot alter the data that the
DMA controller sends as eluded in Sect. 5.4. Therefore, we must ensure the
integrity configuration of the DMA controller. Protection mechanisms for DMA
are different with respect to the targeted platform, and the use case of DMA. In
servers and workstations, DMA is used for fast communication across peripher-
als such as network and graphic cards, usually over PCI(E). Thus, servers and
workstations feature specific protections like the input-output memory manage-
ment unit (IOMMU) [3,8]. However, such protections are not present on MCUs.
MCUs have different architectures and requirements. MCUs are used for embed-
ded applications (e.g., vehicles such as cars and trains, industrial facilities, or
IoT deployments) and require lower communication speeds between peripherals
than servers or workstations. The DMA controller in embedded contexts unbur-
dens the CPU from wasting scarce CPU time on managing data transfers (e.g.,
UART or SPI data transmissions). For example, a heavy CPU load can limit the
system in its ability to meet scheduled deadlines, important in the embedded
context. We extensively elaborate on how to securely lock DMA controllers in
Sect. 5.4. We also sum up all requirements and targeted platforms in Sect. 5.5.

Manipulations of the Attestation Header. The attestation header is a cru-
cial component in identifying the components of the attested memory region.
This attestation header is controllable by the attacker. This means the attacker
can fully manipulate and shift the attestation header. However, the attacker
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cannot change the location and amount of the memory being attested as this
requires modifying the configuration of the DMA controller. If the attestation
header is changed, then it is not recognized by the verifier, resulting in a failed
attestation. If the attestation header is moved, this is detected during attestation
as the positions in the data stream change. Furthermore, changes to the position
of the attestation header cause a misalignment of the attested data, which also
causes the attestation to fail.

Attacks on the Verifier. The security of the verifier is crucial for DMA’n’Play
attestation. Although attacks on the verifier are out of scope, we will briefly dis-
cuss security aspects of the verifier. Successful attacks from the attested device
to the verifier are unlikely: The attested device and verifier are connected using a
one-way serial connection as eluded before. Interrupting this connection or send-
ing modified content will make the attestation fail. The verifier receives a known
amount of memory content at a constant rate in a circular process. In this constant
process, no complex data structures have to be parsed, and no new memory areas
have to be allocated. This makes typical runtime errors highly improbable. The
verification process consists of simple comparisons against known information. As
the data rate of the serial connection is fixed at a constant rate, denial-of-service
(DoS) attacks that jam the verifier are impossible. As explained in Sect. 5 there
exists no feedback channel from the DMA’n’Play To-Go to the attested device.
Hence, the attacker cannot exfiltrate any information from the verifier, e.g., cryp-
tographic keys or configurations.

Security of DMA’n’Play To-Go. DMA’n’Play To-Go is a low-end embed-
ded device, that receives data from the attested device and relays it to the exter-
nal verifier. This simple process offers little to no attack surface as the input
data is not processed. The fixed transmission rate of the serial connection pre-
vents denial-of-service attacks (DoS) on DMA’n’Play To-Go. If the attacker
increases the transmission speed unilaterally, not only will data be incorrectly
received by DMA’n’Play To-Go, but the amount of data received will also
not increase. Similar to the verifier, there exists no feedback channel from the
DMA’n’Play To-Go to the attested device, making the exfiltration of data
impossible.

9 Related Work

In the related work, we investigate the security of DMA, as this is a crucial com-
ponent of DMA’n’Play attestation, and give an overview of remote attestation.

9.1 Remote Attestation

In remote attestation, a verifier checks the integrity of a remote, untrusted device.
As eluded in Sect. 1 there are different approaches for integrating remote attes-
tation: software-based, hardware-based, and hybrid. Software-based approaches,
while being well-suited for legacy devices as they do not have special hardware
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requirements, have severe limitations. Their security solely relies on the timing
of the responses of the attested device [74]. This induces a complex implementa-
tion and strict requirement towards the communication between the prover and
the verifier [23]. Moreover, software-based attestation schemes inherently have
the problem of a missing root of trust, as the prover does not feature a secret
key: So, the verifier cannot identify the attested device, enabling an attacker
to relay attestation requests or replace the attested device [23,74,81]. Hybrid
schemes are popular for embedded and IoT devices, as they address the limi-
tations induced by pure software-based attestation schemes while maintaining
less complexity than full hardware-based approaches. Remote attestation can
guarantee different security properties. Static attestation schemes ensure the
integrity of a device’s software and detect manipulations [62]. These attestation
schemes cannot detect more sophisticated runtime attacks that do not alter the
software, like control-flow [1] or data-flow [2] attacks. In the following, we focus
on hybrid attestation schemes.

VRASED is a formally verified attestation framework to perform static attes-
tation [62]. This framework has been extended to cover further security proper-
ties. APEX can ensure that specific code has been executed [63]. RATA addresses
the well-known time-of-check/time-of-use problem, i.e., the time gap between
execution of actual functionality and an attestation run [30]. TinyCFA is a
control-flow attestation scheme that is based on VRASED, allowing to attest
the correctness of the control flow and detect control-flow attacks [65]. DIALED
combines these techniques to perform data-flow attestation and detect data-only
attacks [64]. In contrast, LO-FAT performs control-flow attestation completely
in hardware, trading higher performance for more hardware complexity [32].
While LO-FAT does not detect non-control-data attacks, the LiteHAX attesta-
tion scheme can also cover non-control data-only attacks that do not alter the
control flow of the attested application [31]. LiteHAX achieves this by monitoring
the execution pipeline of a RISC-V processor.

C-FLAT uses ARM TrustZone to perform control-flow attestation of embed-
ded devices. However, its hash-based approach suffers from the state-space explo-
sion problem and requires dedicated loop handling [1]. OAT also uses Trust-
Zone and introduces the concept of operation execution integrity. In OAT, both
control-flow and data-flow of critical parts of a system can be attested, thereby
allowing a compromise between security and performance, addressing the prob-
lems of efficient verification and state-space explosion [80].

9.2 DMA Security

DMA allows direct access to memory by external devices without involving the
main processor, thereby increasing the overall system performance. On the down-
side, this also facilitates a wide range of attacks, compromising the integrity of a
system or reading critical parts of main memory [57]. Well-known examples are
attacks via Firewire [18,33], PCIe [42], and Thunderbolt [72]. This attack vector
can, for example, be used to obtain the key of the full disk encryption [20,33].
DMA controllers can also host malware [76]. Furthermore, external devices
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can be untrusted or contain bugs. To counter attacks with external peripheral
devices, IOMMU has been introduced [3,8,11], enabling memory management
for such external devices. However, this has not been proved sufficient [57]. To
find vulnerabilities in devices connected via DMA, both, fuzzing [75] and static
analysis methods [16] have been proposed.

In addition to direct exploitation, this access can also be used for indirect
attacks. Network interfaces are a worthwhile target as they enable remote access.
Research found that this enables remote Rowhammer-style attacks [82], which,
in contrast to normal Rowhammer attacks, do not need local code execution
on the victim [48]. On Intel processors, network cards can even manipulate and
observe the processor’s last level cache (LLC), allowing remote Prime+Probe [56]
attacks to leak critical information [50].

10 Conclusion

In this paper, we present the DMA’n’Play framework, that leverages direct
memory access (DMA) to directly monitor the memory of the attested device.
In contrast to traditional remote attestation schemes, DMA’n’Play is capable
of directly monitoring the attested device instead of comparing hash values of
known benign states. This has multiple advantages: A preliminary investigation
of all valid states is not needed, and more complex checks are possible, e.g.,
bounds checks. Furthermore, the DMA’n’Play framework is also suitable for
existing legacy devices as neither specialized hardware components nor source
code of the attested application is required. We implemented DMA’n’Play
in two real-world examples, a medical device and a drone, and showed in full
end-to-end examples how DMA’n’Play can be used to detect compromises of
configurations. Furthermore, we provide integration guidelines that explain how
DMA’n’Play can be integrated into new or existing devices and how to develop
configuration files for the verifier to define benign states.
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Abstract. Embedded systems are a cornerstone of the ongoing digiti-
zation of our society, ranging from expanding markets around IoT and
smart-X devices over to sensors in autonomous driving, medical equip-
ment or critical infrastructures. Since a vast amount of embedded sys-
tems are safety-critical (e.g., due to their operation site), security is
a necessity for their operation. However, unlike mobile, desktop, and
server systems, where adversaries typically only act have remote access,
embedded systems typically face attackers with physical access. Thus
embedded system require an additional set of defense techniques, prefer-
ably leveraging hardware acceleration to minimize the impact on their
stringent operation constraints. Over the last decade numerous defenses
have been explored, however, they have often been analyzed in isola-
tion. In this work, we first systematically analyze the state of the art in
defenses for both software exploitation and fault attacks on embedded
systems. We then carefully design a holistic instruction set extension to
augment the RISC-V instruction set architecture with instructions to
deter against th e threats analyzed in this work. Moreover we implement
our design using the gem5 simulator system and a binary translation
approach to arm software with our instruction set extension. Finally, we
evaluate performance overhead on the MiBench2 benchmark suite. Our
evaluation demonstrates a ROM overhead increase of 20% to defeat the
aforementioned attacks.

Keywords: Embedded Security · Physical Attacks · ISA Extension

1 Introduction

With the ubiquitously expanding Internet of Things (IoT), the demand for
embedded devices continuously increases. However, such an ubiquitous presence
of embedded systems in also security-relevant appliances inevitably increases
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the potential for attacks. Through physical access, adversaries can particu-
larly attack digital devices and security-critical systems through implementation
attacks, such as Side-Channel Analysis (SCA), Fault Injection Attack (FIA).
Along with (limited) software-induced attacks, the range of threats that modern
embedded devices face is broad and multifaceted. Physical access allows adver-
saries to perform glitching attacks, which may lead to bit flips in the fetched
instructions. These faulty bits may cause erroneous instructions to be executed
or may even change the semantics to a No-Operation (NOP), effectively skipping
an instruction [2]. Especially in the context of cryptography, such glitches can
have severe consequences such as key leakage via Differential Fault Attack (DFA)
[24]. Furthermore, glitch-induced NOPs by physical adversary may violate the
control-flow of the program, which in term can leak secrets. On the software
side, adversaries can mount software-based attacks to manipulate the control
flow of the program, for example, by overwriting the return address. Over the
last decades, many countermeasures [3,11,15,22,33,34] to these threats have
been developed, but have mostly been studied in isolation. However, as seen
above, in the case of embedded systems, the adversary can mount an attack
using many different techniques. Therefore, an embedded system has to employ
a combination of defenses to deter these adversaries. Simply stacking different
approaches on top of each other may give rise to inefficiencies, as they may
reimplement similar primitives instead of sharing a common base. Instead it
is preferable to determine an efficient set of instructions which can achieve a
maximum of security by reusing primitives.

Goal and Contributions. In this work, we focus on a embedded system
defenses to protect against both software-based exploitation and glitching
attacks simultaneously. Our goal is to design an instruction set extension with
a particular focus on RISC-V to minimize performance impacts. To this end,
we first systematically analyze the state of the art for both aforementioned
attack strategies. Based on elaborated insights, we then carefully design our
instruction set extension to leverage synergies between different defenses, i.e.
employing a glitching defense to facilitate higher-level defenses. By hashing the
current instruction stream, we create a label-based Control Flow Integrity (CFI)
scheme to protect forward-edges as well as a pointer protection scheme to defend
backward-edges against Return-Oriented Programming (ROP) attacks. Finally,
we implement and evaluate our instruction set extension using binary translation
and demonstrate an average memory overhead of 20% and average performance
overhead of 28%. In summary our contributions are:

– Systematic Analysis. We carefully analyze state-of-the-art hardware-
accelerated defenses against instruction glitching attacks and memory cor-
ruption vulnerabilities. Based on our analysis, we then work out defense com-
binations to leverage their advantages to maximize security guarantees, while
minimizing potential performance impact.

– Novel Hardware Extension. Based on our systematic analysis, we design
a novel instruction set extension for RISC-V that defeats the aforementioned
attacks and induces minimal overhead. In particular, our extension leverages
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an anti-glitching defense that ensures basic block instruction stream integrity.
Each basic block hash is then used to implement a label-based CFI defense to
protect forward control-flow edges. Furthermore, we use a pointer protection
to secure backward control-flow edges.

– Evaluation. We evaluate our recommendation using the gem5 simulator and
the MiBench2 benchmark suite. We then compare our solution to existing
works, which aim to secure embedded systems against similar threats, and
find that our solution has a 39% lower memory overhead while having a 81%
higher performance overhead.

2 Technical Background

In the following, we provide a concise background on most prominent attack vec-
tors for embedded systems, namely (1) software-based attacks via code injection
and re-use, and (2) fault attacks via glitching.

2.1 Code Injection & Reuse Attacks

Even though processing technology made significant progress, embedded sys-
tems are still typically constrained in both resources and features. Moreover,
C and C++ are still the predominant languages and they do not provide any
memory safety features and thus improper use of memory allocations leads to
catastrophic exploits (e.g., buffer overflows on both the stack and heap can be
used to mount code injection attacks). Advances in the last 20 years, such as
DEP and Stack Canaries, made this type of attack more challenging to perform.
Nowadays, these countermeasures can also be found in embedded CPUs, which
usually offer basic memory protection in form of non-executable memory regions.
This restricts attackers to leverage so-called code reuse attacks, f.i., ROP-based
exploitation [9].

2.2 Glitching Attacks

Adversaries are especially powerful when granted physical access to the target
device as this enables to challenges various assumptions (e.g., the integrity of
the instruction stream). By performing a fault attack, for example, via glitching
the clock source or via electromagnetic pulse, an adversary can disturb instruc-
tion stream integrity. Bitflips caused by glitches manipulate the data embedded
into instructions or change instruction semantics entirely. For example, under
certain conditions an instruction can be changed to an NOP instruction. Note
that this has severe impacts on the control flow of the program if the skipped
instruction is a branch or a comparison [26]. In cryptographic algorithms, such
glitches can induce exploitable weaknesses to break all security guarantees. For
example, flipping bits during the key addition step may allow attackers to per-
form a DFA. The possibility of glitching attacks and their effects on program
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execution have been studied extensively times in literature. Most recently, Spen-
sky et al. [26] analyzed physical attacks under simulated and real conditions. For
already existing hardware architectures, special programming techniques are use
to prevent such vulnerabilities. Defensive programming techniques were previ-
ously analyzed by Wittemann et al. [30]. Furthermore, compiler modifications
such as presented by Barry et al. [3] deter glitching, for example, via instruction
duplication. Spensky et al. [26] combined different methods to defend against
glitches as a LLVM extension, including the previously mentioned techniques of
code redundancy. A major problem of these approaches is the induced overhead
both in the code size and time domain.

3 Preliminaries

We now introduce the fundamentals for the scope of our work, including the
assumed system model and adversary model. Based on the models, we then
define the security goals that should be achieved by a holistic Instruction Set
Architecture (ISA) extension in the context of embedded systems.

3.1 System Model

As outlined before, we focus on a common embedded system model (e.g., typi-
cal for many IoT applications): a resource-constrained System-on-a-Chip (SoC)
including a processor and other important peripherals such as Random-access
memory (RAM) and Read-only memory (ROM), f.i. with memory in the sub one
megabyte range and processing speeds of up to 200 MHz. Moreover we assume
a system with an Memory Protection Units (MPUs) to offer basic memory pro-
tection. Examples of such systems are the Cortex-M range by ARM and many
RISC-V based products. Throughout this work, we assume that the software
runs in a bare-metal fashion on the embedded systems, i.e. no real-time operat-
ing system is available for the sake of simplicity. However, we want to emphasize
that the with a context switch, the real-time operating system support can be
added as well.

3.2 Adversary Model

We assume an attacker with physical access to the target system, i.e. to analyze
the Printed Circuit Board (PCB) and peripherals. Moreover, we assume that
the attacker is able to mount physical attacks by means of fault injection via
glitching. However, attacks on the microarchitecture itself and fault injection
via laser are out-of-scope of our work. Consequently, we assume the integrity of
the integrated RAM/ROM. Exploitation is thus only possible by manipulating
signals or sending malicious inputs to the device, i.e. to leverage a software bug
for exploitation. The high-level goal of the adversary is to exploit a given device
because of private or economic incentive (e.g., forcefully unlock (unintended)
features).
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3.3 Security Goals

The nature of our adversary model implies protection against various attacks
vectors that can be leveraged for exploitation.

Anti-Glitching. Firstly, the integrity of executing instructions should be guaran-
teed. Otherwise, an adversary can introduce disturbances via glitching to affect
the execution. Note that in the context of embedded systems, anti-glitching tech-
niques should be tightly coupled to other defenses, such as CFI, as glitches itself
are able to lead to an invalid control flow.

Control Flow Integrity. Secondly (arbitrary) attacker-controlled code execu-
tion should be prevented. Note that a properly configured Physical Memory
Protection(PMP) on RISC-V processors can already stop basic code injection
attacks by disallowing execution in certain regions, such as the stack. However,
code-reuse attacks, such as ROP, are still possible. Thus, CFI is a vital require-
ment for system security. Especially on resource constrained devices, hardware-
accelerated CFI on the ISA level may be viable, as code instrumentation creates
significant performance impact.

Memory Safety. Lastly, memory corruption should be prevented. Memory unsafe
languages such as C facilitate exploitation of software bugs (e.g., to overflow
memory buffers or write to unwanted memory locations). Note this leads to
control-flow changes that may not be detectable by a CFI scheme. Under our
adversary model, memory safety has to be combined with other defenses, since
perfect memory safety does not eliminate CFI violations as instruction-skips
may also be used to mount attacks.

4 Literature Study

We now provide a concise summary of the state of the art of various defenses
that have been proposed over the years. Based on our summary, we then discuss
which defenses achieve best synergy effects in our system and adversary model.

4.1 Glitching Defenses

The increasing reliance on embedded systems in, for example, IoT appliances
or critical infrastructure also prompts for increased security measures in these
devices. Considering the potentially severe consequences of glitching attacks as
mentioned in Sect. 2.2, several hardware accelerated countermeasures have been
developed. In the context of embedded systems, defenses against fault attacks
are often combined with other techniques to facilitate CFI. This stems from the
fact that skipping control flow instructions can cause control flow violations. In
this section, we exclude CFI and focus on instruction stream integrity. Note that
we discuss how these primitives may facilitate CFI in detail in Sect. 4.2.
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In general, we divide glitching attack defenses into three groups based on their
underlying mechanism: anomaly detection, instruction chaining and instruction
hashing. As noted before, we focus especially on instruction skips caused by
glitching.

Anomaly detection. This defense techniques aims to alert the processor about a
possible glitch attack by observing its environment and scanning it for potential
indicators of an attack, such as voltage drops. Yuce et al. [33] demonstrated
FAME, a co-processor which triggers a software handler upon detecting a fault.
The co-processor is composed of a fault detection unit, which monitors several
aspects of the Central Processing Unit (CPU),, such as the clock signal. After
detecting a fault, FAME stops the execution of the main processor. It enters a
safe mode, where a trap handler can recover the fault. A major advantage of
this approach is its low footprint in code size and execution time. The original
program does not have to be recompiled and only a fault handler has to be
added.

Instruction chaining. Bitflips manifest themselves in a changed instruction word,
for example, changing a branch to a NOP. These changes usually only have a
limited impact on the surrounding instructions, as each instruction is essentially
executed in isolation. Therefore, making instructions depend on each other can
spread the effects of glitching attacks out, which usually leads to unrecoverable
corruption of the instruction stream and thus deter a possible attack. This app-
roach is used by Werner et al. [27] to protect processors from physical attacks.
They describe a mechanism based on authenticated encryption, which accu-
mulates a state based on the execution history and is used to decrypt each
instruction as it enters the pipeline. A fault will be detected when an invalid
instruction is decoded. Alternatively, an integrity verification may be performed
to stop randomly decrypted instructions from executing. Similarly the works by
Savry et al. [22] and de Clercq et al. [8] use a mask to decrypt instructions. The
first approach uses a static mask, which changes based on a permutation during
the execution, the latter work uses a mask based on several values such as the
previous program counter location. Notably, the masks employed by Savry et
al. are not depending on the execution history, which may allow for malicious
modifications using dedicated managing instructions. However, the integrity of
the initial mask is secured via a Message Authentication Code (MAC).

Instruction hashing. Hashes are commonly used to check the integrity of data.
Thus, hashing instructions is a straightforward method to monitor the integrity
of the instruction stream. Fei et al. [13] employ a standalone hardware monitor,
which accumulates a hash during the execution of a single basic block. At the
end of each block, the hash is compared to an internal table storing the expected
hash. In case of a mismatch, an exception is raised. The authors mention the
use of MD5 or SHA-1, however, their demonstration uses a simple XOR hash.
Rodriguez et al. [21] developed an architecture, which stores the expected hash



68 F. Stolz et al.

and further attributes in the instruction stream. Similarly to the previous solu-
tion, the computed hash is compared to the expected hash. The block length is
encoded into the attributes to prevent attackers from skipping the hash com-
parison. The authors suggest a XOR or Linear-Feedback Shift Register (LFSR)
as the hash function. A similar approach was used by Ohlsson et al. [19], who
use a Cyclic Redundancy Check (CRC) as the hashing function. Werner et al.
[28] systematically evaluated the requirements for an appropriate hash function
and found that a CRC is best suited for instruction hashing. A major problem
of these approaches compared to the other fault defenses, is their latency. As
the hash is only checked at the end of a block, the fault goes unnoticed for the
remainder of the basic block. This can be accounted for by embedding a small
hash into each instruction, which is checked during the execution of each instruc-
tion, as proposed by Wilken et al. [29]. However, this approach either requires
a complete ISA redesign or some kind of hardware unit with access to each
hash. The latter was implemented by Werner et al. [28] as a memory-mapped
peripheral on a ARM processor.

Discussion. Compared to software-only solutions, ISA and hardware-level can
offer considerable overhead reductions. Nevertheless, not all of the previously
mentioned techniques may be combined intuitively with other solutions or come
with other downsides. Standalone hardware monitors such as FAME [33] or the
proposal by Fei et al. [13] have the advantage that they do not require mod-
ification to the ISA itself. However, these monitors have to constantly detect
basic blocks, for example, by scanning for branch instructions. It would thus
be preferable to give the processor built-in capabilities to differentiate between
basic blocks. Furthermore, internal storage required by these solutions is limited
and needs managing and data swapping, as described by Fei et al.. In contrast to
this, integrated instruction chaining or hashing avoid these problems and come
with the advantage of being building blocks for other structures. Many of the
previously proposed schemes are used to implement protection mechanisms such
as CFI. They are thus ideal candidates for a holistic security extension. The main
differences between chaining and hashing lie in their latency. Compared to hash-
ing, chaining inhibits low latency as a bitflip will immediately result in randomly
decrypted instructions. Yet this behavior may not always be desirable, especially
if the processor may be in an elevated execution state. Therefore, further mod-
ifications are required to prevent random instruction execution. Furthermore,
chaining is often based on encryption, which by itself usually results in major
performance degradation or hardware overhead. Instruction hashing avoids these
specific problems by leaving the individual instructions intact and performing
the hashing operating in parallel. Additionally, the hashing function may be
more compact in hardware than an encryption scheme. The latency problems of
instruction hashing may be solved by using continuous hashing at the cost of a
major ISA redesign.
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4.2 CFI

Not only physical attacks pose a serious threat to embedded devices, but also
more conventional software-based attacks. Whereas straight-forward code injec-
tion attacks are stopped by using technologies such as the MPU, more complex
attacks like like Code Reuse Attack (CRA) require additional defenses. CFI has
been thoroughly explored as a countermeasure against such CRAs. This tech-
nique aims to enforce the Control Flow Graph (CFG) of a program by checking
the forward edges, created by jumps, and the backward edges, caused by returns.
A fine-grained approach strictly enforces the CFG, but usually creates a large
performance overhead, whereas coarse-grained CFI relaxes the rules to gain per-
formance at the cost of security [9].

We divide existing hardware accelerated solutions into three categories: State-
based, Policy-based and Heuristics-based. However, in practice many solutions
combine techniques from two or all categories.

Policy-based. During its normal execution, a program usually follows some pre-
dictable patterns. For example, by definition, a branch targets the entry of a basic
block. This rule is broken by CRAs, which execute small code snippets within
basic blocks. Thus, enforcing this rule thwarts some control-flow attacks and is
used in many solutions like Intel CET [25], which uses the ENDBRANCH instruc-
tion to terminate an indirect branch. Alternative solutions prohibit arbitrary
branches between functions, for example, via a label, which is placed at each
call/return site and is checked during each control-flow transfer. If the expected
label does not match, a control-flow violation occurs. This approach is used by
Christoulakis et al. [7] who employ the branch-delay slot to efficiently load the
expected label during a branch. The label can also be generated implicitly using
the Instruction hashing explained in Sect. 4.1 based on the execution history.

State-based. If an attack follows the rules outlined above, it will stay undetected
degrading the security of the system. This may happen if two functions have
the same label, which allows for two legit backward edges. To overcome this
problem many CFI solutions include a state, which is checked on a regular basis.
The most popular solution is a Shadow Call Stack (SCS) [6]. Every call pushes
the return address to the regular stack as well as to the SCS. Upon a return,
the addresses on the stack and SCS are compared. If they do not match, an
exception is thrown. The SCS may be implemented as a hardware stack or
as a second stack located in RAM. Davi et al. [11] introduced an alternative
approach by forcing the function to return to an active call site. Each function is
assigned a label, which is activated by an instruction at the start of the function.
When returning from a callee it is checked if the label is still active. If not, an
adversary changed the return address to a function which was not previously
active. Alternatively, the instruction chaining approaches from Sect. 4.1 can be
used to implement CFI. Encrypting instructions and making them dependent
on the previous instructions stops the attacker from arbitrary executing existing
code.
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Heuristics-based. Lastly, hardware monitors can be employed, which screen the
execution history for unusual behaviour, such as short instruction sequences
followed by returns indicating a ROP attack. A major problem however is the
correct selection of the underlying heuristic. Solutions such as by Kayaalp et
al. [15] use multiple thresholds to allow for variable gadget length, which lowers
the false positive rate.

Discussion. A good CFI solution should provide some form of forward as well
as backward-edge protection. Heuristic-based solutions cannot provide such a
protection as they detect attacks based on the execution characteristics. Fur-
thermore, it has been shown that monitors which aim to detect short instruction
sequences between branches, which are typical for short gadgets, can be circum-
vented. Thus, heuristics do not seem to be a viable candidate for general-purpose
microcontrollers. Most CFI solutions use a mixture of different techniques to
achieve both backward- and forward-edge protection. The most promising can-
didates for backward-edge protection are SCSs as well as HAFIX [11]. However,
both require special attention to support common programming paradigms such
as recursion and, in the case of SCSs, exceptions. Ideally, SCS data should be
placed in processor internal memory, which however is limited, in term requiring
some kind of on-demand loading. Therefore, to minimize overhead, a label-based
policy seems viable for embedded systems. This also allows us to reuse instruc-
tion hashing. Notably, this only protects forward edges. Backward-edge violations
occur when overwriting the return address, thus requiring a memory protection
as discussed below.

4.3 Memory Integrity

In case of a remote attacker in a IoT scenario, a memory vulnerability, such as
a buffer overflow, may be used to overwrite data like return addresses on which
the control-flow depends. In this paper we refer defenses which guard against
such memory attacks as memory integrity. As before, we divide existing work
into three categories: detection, pointer protection and tagging.

Detection. Buffer overflows actively change the data surrounding the original
buffer. Many solutions aim to detect such overflows by placing control values in
front of important data like the return address. These are commonly referred
to as stack canaries. Before each return, the control value is compared to its
expected value. If the values do not match an exception is raised [10].

De et al. [12] developed a RISC-V extension, which employs a Physically
Unclonable Function (PUF) and a binary secret to generate canaries which are
placed at each buffer. Thus, their detection method can detect buffer overflows
even if they do not overwrite the return address, which is usually the only the
checked location.
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Pointer Protection. Alternatively, pointers may be protected so that they can-
not be simply overwritten by the attacker. In 2016 ARM introduced Pointer
Authentication as an ISA extension to ARMv8.3-A [23]. It is based on the real-
ization that the upper bytes of a 64-bit pointer are essentially unused and can
store additional information. They place a short MAC, also referred to as Pointer
Authentication Code (PAC) into the upper bits of the pointer, which is com-
puted using the current context, such as the stack pointer, and domain specific
keys. Before using the pointer, an authentication instruction verifies the PAC and
makes the pointer invalid if the process fails. On the contrary, Pointer Encryp-
tion modifies the whole pointer by encrypting it before placing it into memory.
The approach by Zhu et al. [34], uses a GCC extension which automatically pro-
tects relevant pointers by applying a XOR-encryption with a key derived from
the memory location and a dynamic runtime key. A downside of this approach
is the random execution which is inevitably caused by any kind of corruption
or manipulation of the encrypted pointer, as the plaintext pointer will be ran-
dom. Lastly, Pointer Capabilities add specific access rights and constraints to
each pointer, so that out of bounds writes become impossible. The CHERI ISA
[32] represents a major project which uses a 256-bit pointer format to encode
various information about each pointer, such as the base address, length and
permissions.

Isolation. In the following, we briefly describe approaches which isolate memory
regions from each other, so that they cannot interfere. Most microcontrollers
already offer basic functionality for memory isolation through a MPU on ARM
or the PMP on RISC-V. However, the amount of memory regions as well as
available access (e.g., user-mode and supervisor-mode) are limited. Furthermore,
even in the presence of unique process identifiers, process internal memory iso-
lation remains a problem. The ARM MTE extensions [1] introduced in ARMv8
provide memory tagging by assigning a 4-bit tag to every 16 bytes in memory.
Additionally, each 64-bit pointer stores a corresponding tag in its most signif-
icant byte. Only if the tags match, a read or write are possible. This can not
only protect against buffer overflows, but also against use-after-free attacks. The
approach by Bradbury et al. [5], implements tagging for RISC-V and uses 2-bit
tags for every 8 bytes in memory. Unlike ARM’s solution, the tags do not corre-
spond to a key, but to access permissions such as read- or write-only. Kim et al.
[16] presented RIMI, which extends upon RISC-V’s PMP and add instructions
which only allow control-transfers and load/stores inside one of two domains.
All relevant instructions are duplicated for domain0 and domain1. This app-
roach is especially viable on embedded systems with limited resources, as no
additional tag bits are required. Instead, the isolation is achieved through spe-
cialized instructions as well as existing and added hardware units.

Discussion. Many memory protection schemes are built with larger systems in
mind, which becomes a problem in the context of resource-constrained embedded
systems. Capability-based systems can offer a fine-grained protection at the cost



72 F. Stolz et al.

of increasing the necessary space required for a single pointer and increased
complexity. Even compressed capability formats such as CHERI Concentrate
[31] take up 64 bits for 32-bit architectures. A similar problem applies to ARM
PAC as well as ARM MTE as they abuse the fact, that the upper bytes of
64-bit pointers are typically unused. On embedded 32-bit platforms placing a
sufficiently secure MACs becomes impossible. Most of the time, the whole 32-bit
space is used with only a few bits being available. Isolation through mechanisms
such as RIMI are suitable for embedded systems, but require a general rewrite of
the software. Memory Tagging in general seems to be a good fit for embedded
systems but comes with some downsides such as limited tag space. Naturally,
a trade-off must be made between available tag bits, which allows for more
fine-grained control, and the acceptable memory overhead. For example, ARM’s
solution using 4 bits for every 16 bytes necessarily occupies 8 kB out of a 256 kB
RAM module. Furthermore, a software or hardware component is required to
manage the tags and schedule them accordingly. Therefore, to keep the original
pointer size on 32-bit systems only pointer encryption and overflow detection are
viable. Both solutions can be made context dependent, which is easily possible
by using, for example, the current CFI state creating a strong synergy between
previously discussed defense components. However, as the attacker can deduce
the current CFI state, it necessary to introduce some kind of processor secret, so
that the attacker cannot guess the canary or decrypt the pointer. An advantage
of pointer encryption is that no memory overhead is created, as long as the
cipher has the same block size as the pointer.

5 Our Recommendation

Based on the results of our literature study we now present our recommendation
for a holistic ISA extension. We explain our approach by dividing programs into
their individual levels mainly the basic block level, the functional level and the
global level. For each level we name the main threat and show how it can be
countered using our extension. Using a bottom-up approach, we show how we
can reuse primitives from lower levels to facilitate other higher-level protection
mechanisms.

5.1 Basic Block Level

We start by analyzing a single basic block, which on its own, consists only of
sequence of instructions. On this level, an adversary may be interested in either
changing the semantics of one or multiple instructions or skipping them entirely
using glitches. In Sect. 4.1 we showed several defenses against glitch attacks.

In accordance with our discussion in Sect. 4.1, we propose the usage of
instruction hashing as a countermeasure on this level. Compared to the other
proposed solutions, hashing allows us to keep the original instructions unchanged
and only add the operations necessary for the hashing process. Furthermore, the
hash does not only give us information about the integrity of a basic block, but
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also a value which characterizes the execution history, albeit in a limited form.
This can later be used for different protection mechanisms. Thus, several addi-
tions have to be made to the processor: Firstly, we have to provide a hardware
unit that is closely connected to the processor pipeline which is responsible for
the hashing. Secondly, each basic block has to augmented with a CHECK instruc-
tion, which embeds an expected hash which is compared to the actual computed
hash. If they do not match, an error will be raised. The CHECK instruction can
theoretically be placed arbitrarily, however, in this context only two positions
make sense. Either the hash is checked at the end of a basic block or at the start.
A position between the start and the end of a basic block would not cover the
whole instruction sequence. We placed the CHECK instruction at the beginning of
each block as shown in Fig. 1, so that it can be later used as a CFI mechanism.
Therefore, in practice the integrity of basic block BBt is checked in the following
block BBt+1. A straightforward approach for the hashing itself would be a sim-
ple XOR function, however, as pointed out by Werner et al. [28], a CRC function
can provide better security by increasing the complexity for the attacker to mask
his glitch attempt.

Fig. 1. The CHECK instruction provides a simple interface to determine the correctness
of the previous basic block.

5.2 Function Level

A function is comprised of several basic blocks, however the execution path
between them may not be linear but consist of more complex paths created,
which may cause some blocks not to be executed. Here, an attacker can try to
manipulate the intra-functional control flow, for example, by skipping branch
instructions and causing a fall-through.

The CHECK instruction introduced in the previous section already implicitly
provides a protection mechanism against intra-functional control flow violations.
However, typical functions do usually not consist of a pure linear execution path
but incorporate branches and loops. In this case, a simple scheme consisting of
CHECK instructions is not sufficient, because the execution history differs for each
side of a branch resulting in two different hashes. Thus, once the execution rejoins
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the common path of the function, the CHECK instruction will fail. Consequently,
we need to be able to synchronize the hashes. Therefore, if we identify a basic
block with multiple predecessors, we select the hash of one predecessor as the
expected hash and add a CORRECT instruction to each other predecessor, which
synchronizes the hash to match the expected one. Similarly to other proposal,
we may use the XOR function to correct the hash. An overview is given in Fig. 2.

Fig. 2. Example of a CORRECT instruction being issued to synchronize the hashes. Note
that BB2 and BB3 have inverted hashes to prevent a simple branch target change.

The above approach exhibits several weaknesses, which have to be addressed
to make it suitable as an effective defense method. First, in case of a branch both
successors of the basic block will necessarily have the same hash. Therefore, it
may be possible to glitch the processor state and execute, for example, the not
taken path instead the taken path. However, it is possible to diversify the hash
by taking the taken / not taken decision into account when generating the hash.
We want to note, that this may make hash synchronization more complicated
in case of a complex control flow. This problem may be resolved by the com-
piler by inserting small trampolines including additional CORRECT instructions to
properly synchronize the hash. Second, if the attacker can cause the execution of
CORRECT instructions, he can change the hash state arbitrarily. In consequence,
the placement of these instructions should be limited. The processor can be aug-
mented with a Finite State Machine (FSM), which only allows corrections when
in a specific state. From the previous description it is clear, that a correction
should only be issued before a basic block ends. A basic block either ends in a
fall-through, in which case the following instruction is a CHECK, or in a branch,
which then it term is also followed by a CHECK. Enforcing these rules via a FSM
restricts the attacker from freely executing corrections. However, there are sev-
eral other attack vectors which can be closed by enforcing additional rules. As an
example, an adversary can attempt to skip the branch at the end of a basic block
and the following CHECK instruction, thus creating a linear control flow. This can
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be counteracted by making the processor aware of the basic block length and
throwing an exception if it does not encounter a CHECK after the specified length
similarly to ISIS [20]. Here, a trade-off has to be made. Encoding the length into
the CHECK instruction leads to a shorter hash length or scarifies other informa-
tion bits, which potentially makes it easier to cause hash collisions. Instead, we
propose to add an internal counter to the processor, which counts the instruc-
tions of each basic block and specifies a maximum amount. If the basic block
does not reach its end before hitting the specified threshold, we assume that a
manipulation took place and throw an error. This has the advantage, that we
do not sacrifice encoding space and furthermore, the counter may be accessible
to the programmer via fuse-bits to allow for device-specific modifications.

5.3 Global Level

On a global level a program consists of multiple functions. Here, well-known
software-based attacks may take place, such as CRAs or code-injection attacks.
Additionally, control-flow bending may be used to divert the execution along an
alternative but valid path along the CFG. Thus, CFI as well as memory integrity
as described in Sect. 4.2 and Sect. 4.3 are of most importance on this level.

Fig. 3. Structure of a protected pointer exploiting the aligned property to store addi-
tional information.

The included CHECK and CORRECT instructions already provide an CFI pro-
tection mechanism. Each hash can be treated as the label of a specific basic
block or function. The coarseness of this CFI protection is dependent on the
hash length. For example, an 8-bit hash only allows for 256 values. It is safe
to assume, that complex embedded software consists of more than 256 basic
blocks, which will inevitably lead to some form of CFG relaxation. This means,
that multiple blocks will be assigned the same label. Therefore, the control flow
can be diverted to any basic block which shares the label of the original desti-
nation. Even with larger hash sizes, this can become problematic. According to
our previously explained mechanism, a synchronization has to take place at the
source locations and/or at the end of the target function. Therefore, all source
locations create the same target label using corrections and the function creates
one label which is shared between all return destinations. To protect against this
threat we propose the introduction of a pointer encryption scheme to hinder the
attacker from injection valid return addresses. Pointer Authentication akin to
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ARM’s PACs are only feasible on systems with unused address bits. On embed-
ded systems, the predominate architecture is however 32-bits of which almost all
bits are required. However, we can combine elements of both approaches to facil-
itate a mechanism which can be used in the same way as ARM’s PAC. Whenever
a function is entered, we encrypt the return address in the link register using a
key comprised of the expected hash at the usage location and an internal secret,
which may be a random number generated during the boot process of the micro-
controller. Then, at the intended usage location, e.g. the end of the function, we
decrypt the return address using the hash of the current location and the inter-
nal secret. Only if the hashes match, the correct decryption key is generated.
Therefore, the attacker has no direct control over pointer. Under the assumption
of an architecture which only allows word-aligned accesses, this mechanism can
be enhanced even further. In this case, the two least significant bits are always
zero. Therefore, we can encode further information into the pointer as shown
in Fig. 3. One bit can be used to indicate whether the pointer refers to code
or data and the other bit can be used to perform a simple parity check. This
allows programs to differentiate between pointer types and create secured data
and code pointers which are only usable at their intended locations similar to
ARM PAC. The protection mechanism can be seen in Fig. 4.

Fig. 4. Overview of the pointer protection process.

Furthermore, we can enforce some stricter CFI rules using our FSM and
additional information in each CHECK instruction as seen in Fig. 5. We can use one
bit each to encode whether the basic block is an function entry, which prevents
targeting arbitrary basic blocks using a call, and we can mark all basic blocks
which are a return target. Thus, disallowing arbitrary returns to basic blocks
which are not actual return locations.

6 Proof-of-concept

We now demonstrate the practicability of our approach by implementing the
proposed instruction set extension design for RISC-V and evaluate it using the
cycle-accurate gem5 simulator [17].
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Fig. 5. Internals of the CHECK instruction showing the hash as well as bitfields specifying
basic block specifics.

Table 1. Instructions required to implement our recommendation.

Instruction Operands Description

CHECK 20-bit hash, 5-bit properties Checks hash and defines properties of current block

CORRECT 20-bit value Performs a correction to synchronize hash

ENCCPTR 20-bit hash, register Generates a code pointer out of aligned pointer and encrypts it

ENCDPTR 20-bit hash, register Generates a data pointer out of aligned pointer and encrypts it

DECCPTR register Decrypts pointer and strips code pointer data

DECDPTR register Decrypts pointer and strips data pointer data

6.1 ISA Implementation and Simulation

We chose the RISC-V 32-bit standard as our target ISA because of its built-in
support for user-defined instructions and its rising popularity in embedded sys-
tems. In total, we require six new instructions: two instructions to implement
anti-glitching and CFI as well as four instructions to handle the pointer protec-
tion. Furthermore two new registers are added which hold the current hash state
and the processor secret, see Table 1 for an overview of the additional instruc-
tions. The hash length was set to 20 bits, so that the CHECK instruction is able
to hold the hash as well as state information for each basic block. We added
support for these custom instructions and registers to the gem5 simulator. Note
that at the time of writing, gem5 only supports the 64-bit RISC-V standard,
however, all 32-bit opcodes stay valid, thus allowing us to simulate 32-bit code.
Furthermore, we also added the required FSM and encryption/decryption mod-
ule to the simulated processor to enforce the rules outlined in Sect. 5.2 as well
as Sect. 5.3 and to enable support for the pointer encryption. As we operate on
32-bit pointers, we chose the hardware-optimized SIMON cipher [4] with a block
length of 32 bits and a key length of 64 bits. The encryption uses a connotation
of the expected hash with a 44-bit processor secret to form the 64-bit key.

6.2 Code Transformation

Our ISA extension can be implemented as a compiler extension or via a binary
translation approach. For this work, we chose the latter approach. We achieve
this by using a proprietary binary transformation framework that is capable of
analyzing and manipulating existing binaries. The framework first lifts the code
into an intermediate language. On this abstraction level, we analyze the control
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flow of the program. Furthermore, we are able to add instructions without being
constrained by the basic block placement in the memory layout. During code
generation, the intermediate language instructions are resolved into a memory
layout and adapted to the updated basic block locations. The transformation
itself takes place in 3 passes. In the first pass, we add an empty CHECK instruc-
tion to each basic block. During this pass we identify functions for the return
address protection. However, other code or data pointers are not automatically
protected and have to be secured manually by the programmer. The second pass
simulates the hashing process and identifies possible conflicts, i.e. a basic block
is targeting another block which already has an assigned hash resolves them
by adding corrections. The third pass performs the actual hashing and inserts
the expected values and correction values in the empty placeholder instructions
thus creates the finalized program. During this process it may happen, that the
framework requires a yet not computed hash, for example, during the pointer
encryption and decryption process. Therefore, the framework picks a random
known hash for the target location and issues a correction before the decryption
takes place. We modified the FSM to cover this case.

Our chosen approach naturally exhibits some weaknesses. For example, dur-
ing automated program analysis it may not be possible to extract all targets
of an indirect call. However, we assume that the benign user wants to protect
software. Therefore, the call graph information can be provided as an additional
input to the binary transformation framework to resolve such issues. Note that
for general-purpose software and a benign user, this problem does not occur if a
compiler-based approach is chosen to arm the software with our instruction set
extension.

6.3 Software and Hardware Considerations

Until now, we only considered the protection of a single program. However, a
complex embedded system may execute multiple processes with shared libraries
and interrupts. Therefore, some modifications would have to be done to the
software and hardware. In case a (real-time) operating system is used, the context
switch has to be altered to include the internal hash register, as the hash state
differs for each program. To increase the security, the processor secret may also
be different for each process, which would require saving the key register as well.
On the hardware side, the unit responsible for saving the execution state when
entering an interrupt also has to store the internal hash register (and key register
if desired). Additionally, an encryption and hash unit have to be integrated into
the processor. To achieve a high throughput both should include an unrolled
implementation, which trades space overhead for a shorter execution time. It
should be noted, that the hashing can be performed in parallel instead of being
a pipeline stage.
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6.4 Security Evaluation

In the following section, we systematically evaluate the security of our proposed
solution by discussing each potential attack vector and how our design defends
against it.

Glitching Attacks. Our hashing approach decreases the success probability of a
glitching attack by introducing regular checks into the instruction stream. As it
is improbable that the hash will still match the expected value when skipping or
glitching a single instruction, the glitch will be detected with a latency of t − i
where t is the length of the basic block and i the index of the glitched instruction
within the block. To circumvent the detection, the attacker is forced to perform
multiple glitches. Additionally, the choice of the hash function can restrict the
attacker even further as shown by Werner et al. [28], because the subsequent
bitflips required to hide a fault may be located far apart making it likely that a
check happens before a correction is possible.

Control-Flow Attacks. The proposed solution can deter glitching-based control-
flow attacks as well as traditional software-based attacks. In the first case, the
attacker may try to change the target of a branch by forcing a fall through by
glitching the processor state. However, by letting the branch result influence the
expected state and by introducing a counter, these kind of attacks are severely
hampered. For software-based attacks, the gadget-space is drastically reduced, as
the return target must be a basic block entry point. Chaining such relatively long
instruction sequences together will induce various side-effects. Furthermore, the
hash state must match and is influenced by the executed basic blocks. RISC-V
specific ROP attacks demonstrated by Jaloyan et al. [14] which abuse the mixing
of compressed and uncompressed instructions are also unfeasible, as they alter
the hash state. Control-flow bending stays possible, as the hash space is limited.
However, by employing our pointer protection, the attacker cannot arbitrar-
ily change the return address. Under the assumption that a encryption gadget
does not exist, the attacker cannot create his own protected pointers. Instead,
he would require an information leak and a write gadget to possibly exchange
the return address for another valid return address. Table jumps form a special
case, because all targets share the same hash and our pointer protection cannot
applied. Here, special precautions have to be made by the programmer in soft-
ware. However, arbitrary jumps stay impossible as the target must be designated
as a jump target.

Memory Attacks. Our extension only partially covers memory attacks, as we
do not prevent writing or reading from memory. Instead, by using our pointer
protection scheme we can stop buffer overflows from being an attack vector. On
its own a buffer overflow or any other writing gadget only present a risk, if the
attacker is able to overwrite control-flow critical data.
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Table 2. Size and runtime overhead created by our recommendation when compiling
with -Os.

Benchmark Size Overhead Execution Overhead

Adcpm encode 37.50% 43.64%

Aes 19.86% 21.87%

Blowfish 18.18% 11.60%

Crc 30.51% 45.60%

Fft 26.32% 21.45%

Rsa 21.71% 26.89%

Sha 19.12% 24.94%

Average 20.13% 28.00%

6.5 Evaluation

To evaluate our solution, we chose the MiBench2 [18] benchmark suite, which
contains various workloads that are commonly found on embedded devices. We
compiled them using the -Os compile flag to creates space efficient code. As we
are only interested in overhead produced both in the binary and during the exe-
cution, we chose to run our gem5 implementation using the Atomic-SimpleCPU
model, which simulates a rudimentary single-issue processor, and the System
Emulation mode to easily load and execute binaries. The results of our evalu-
ation can be seen in Table 2. On average we observe a size overhead of 20.13%
and an execution overhead of 28.00%. We note that the overhead created is
highly dependent on the size of the basic blocks, as one instruction is added at
least for each basic block with the possibility of an additional correction instruc-
tion. Small basic blocks will lead to a high amount of additional instructions,
whereas large basic blocks only require few additional instructions but may give
the attacker the possibility to mask his glitch attempt. Therefore, a trade-off
must be found. We measured the average basic block length of the aes bench-
mark using different compiler optimizations and found that -O1, -O2 and -Os
produce smaller basic blocks with an overage length of 8 instructions. On the
contrary, -O0, so no optimization, as well as -O3 produce larger basic blocks with
an average size of 17 instructions. Consequently, protecting the aes benchmark
compiled using -O3 only results in an size overhead of 9.15% and a execution
overhead of 2.72%.

Several works exist which implement some parts of our solution. For example,
the authors of ISIS [20] add to a control word to each basic block, state a memory
overhead of 12% to 15%. However, ISIS misses some protection mechanisms
such as the pointer protection and can also not cover all possible branches.
The work by Werner et al. [27], is the only work at the time of writing, which
tries to achieve a holistic protection against faults. However, their protection is
based on multiple approaches which do not build upon each other. A mixture
of instruction encryption, branch encoding as well as pointer protection is used
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to protect against glitches. The authors state an average size overhead of 19.8%
for the instruction encryption and an average runtime overhead of 9.1%. The
branch encoding occurs an additional size overhead of 2.5%. Lastly the pointer
protection costs on average 9.99% in binary size and 6.34% in runtime. Thus, a
combination of their approaches results in a higher size overhead compared to our
solution, whereas our extension increases the amount of executed instructions.
Furthermore, a downside of their approach is the encryption process, which
is costly and may lead to unpredictable behaviour in case of a glitch, as the
decryption may result in a valid but random instruction.

7 Future Work

In this work, we focused on developing a holistic secure ISA extension and imple-
mented it in a simulated environment to determine its overhead. Future work
may explore how to implement our recommendation in hardware and analyze
its effectiveness by performing clock and voltage glitches. We want to emphasize
that this research direction is especially relevant in the context of silicon root-
of-trust where a glitch-induced instruction skip can have severe consequences,
i.e. to manipulate a secure boot verification check.

8 Conclusion

The rising popularity of resource-constrained embedded devices in security-
relevant areas increases the necessity for efficient and effective countermeasures,
in particular to protect against attackers with physical access. In this work, we
systematically analyzed the state-of-the-art for fault attacks and software-based
attacks on embedded systems. We then discussed defense technique combinations
and designed a novel approach to form a small instruction set extension that
exhibits effective security against the aforementioned threats. We then imple-
mented our approach using binary translation to arm software with our instruc-
tion set extension and then evaluated our approach using gem5 and MiBench2.
In summary, our results showed that our extension is a competitive candidate
for a holistic secure embedded ISA extension.
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Abstract. ISO 15118 enables charging and billing of Electric Vehicles
(EVs) without user interaction by using locally installed cryptographic
credentials that must be secure over the long lifetime of vehicles. In
the dawn of quantum computers, Post-Quantum Cryptography (PQC)
needs to be integrated into the EV charging infrastructure. In this paper,
we propose QuantumCharge, a PQC extension for ISO 15118, which
includes concepts for migration, crypto-agility, verifiable security, and
the use of PQC-enabled hardware security modules. Our prototypical
implementation and the practical evaluation demonstrate the feasibility,
and our formal analysis shows the security of QuantumCharge, which
thus paves the way for secure EV charging infrastructures of the future.

Keywords: Post-Quantum Cryptography · Electric Vehicle Charging ·
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1 Introduction

One of the driving technologies of the 21st century is going to be quantum
computing. However, while quantum computing promises great impact, e.g., in
the fields of chemical and biological engineering, artificial intelligence, financial
services, and complex manufacturing [15], it also poses a severe threat to our
current IT security. While current prototypes of quantum computers are not yet
large and stable enough to pose an immediate threat, experts predict that in the
upcoming years practical attacks are becoming more and more likely [48]. For
instance, Shor’s algorithm [58] provided that it is executed on a sufficiently large
and stable quantum computer, can break the asymmetric cryptography that is
currently in wide use — RSA, DSA, DH, and ECC. This will affect all of our
current IT infrastructures including automotive protocols.
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In recent years, the term Post-Quantum Cryptography (PQC) has been
established for the next generation of cryptography providing protection against
crypt-analytic attacks aided by large quantum computers. Much effort is taken
to develop and integrate PQC [3], the most prominent of which is the ongoing
standardization effort [50] of the National Institute of Standards and Technol-
ogy (NIST) where the first candidates for standardization were stipulated in
July 2022. However, PQC’s requirements regarding computational power, stor-
age, and memory pose challenges for its use in resource-restricted devices [9].

With the long lifespan of entities in the e-mobility context, such as 10+ years
for Charge Points (CPs) [60] or up to 35 years for Electric Vehicles (EVs) [37],
considerations of PQC and crypto-agility are critical in order to maintain secu-
rity. One of the most important e-mobility standards is ISO 15118 [36,37], which
defines a Plug-and-Charge (PnC) protocol enabling charging and billing of EVs
based on cryptographic credentials installed directly in the car making RFID
cards or apps obsolete. An integration of PQC schemes into ISO 15118, how-
ever, is not straightforward. First, several entities defined in this standard are
embedded devices and as such subject to strict resource restrictions hampering
the integration of PQC. Second, ISO 15118 is not crypto-agile, i.e., it does not
provide a mechanism to add and agree upon new cryptographic schemes, which
requires changes to the standard when introducing PQC. Instead, it specifies
hard requirements for the used cryptography (such as specific algorithms and
parameters or limited execution times and data sizes) due to interoperability
reasons.

Related Work. An overview of the challenges and the current state of migrating
applications and communication protocols to PQC is provided in [3]. Differ-
ent platforms and use cases impose different requirements w.r.t. the choice of a
suitable PQC scheme and parameters as discussed in [9,53]. PQC schemes are
benchmarked and tailored to specific hardware and software platforms in [12,21].
Other works focus on special requirements for embedded/resource-constrained
devices [5,44] or integrating PQC in micro-controllers [31,52]. Efforts for inte-
grating PQC in prominent protocols include IKEv2 [61] and VPN [33,45]. There
is also work on integration/migration strategies [9,23] and crypto-agility [2,43].
The integration into the industrial protocol Open Platform Communications
Unified Architecture (OPC UA) has been discussed in [55] for cyber-physical
systems.

A major focus has been given to PQC for Transport Layer Security (TLS):
Several experiments and approaches are presented in the literature for integrat-
ing PQC into TLS including benchmarks [54,59], hybrid approaches [20,62], and
investigations for embedded systems [16,18]. The Open Quantum Safe (OQS)
project provides a collection of implementations of several PQC schemes in the
library liboqs and integration into several popular Internet protocols including
forks of the BoringSSL and OpenSSL libraries with the integration of PQC using
liboqs [63].

The suitability of NIST candidates for Vehicle to Vehicle communication is
assessed in [13] and [30] provides a light-weight identity-based two-party Authen-
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ticated Key Exchange for the Internet of vehicles. A case study of PQC for secure
communication within a vehicle is given in [17] and a concrete implementation is
evaluated for the protocol Lightweight Authentication for Secure Automotive Net-
works (LASAN) in [56]. Optimizations for PQC in automotive systems are pro-
vided in [25]. [67] provides an analysis of NIST PQC candidates for usage in Hard-
ware Security Modules (HSMs) and proposes new sets of hardware accelerators for
the future generation of the automotive HSMs.

To the best of our knowledge, no related work focuses on PQC security in
EV charging protocols. However, some papers investigate the use of HSMs with
ISO 15118. In [27], an approach is presented that secures an EV’s PnC creden-
tials, which are per ISO 15118 definition generated in the backend, by importing
them into the EV’s HSM (specifically a Trusted Platform Module (TPM) 2.0).
Notably, the approach of [27] has been integrated into the current draft of the
upcoming second edition of the standard, ISO 15118-20 [37]. However, the gen-
eration of private credentials in the backend results in a needlessly high risk of
backend leaks. This issue is addressed in [26,28], where private keys are gener-
ated within the EV’s HSM (specifically a TPM 2.0) and the EV only request
a corresponding certificate from the backend. Critical aspects that are not con-
sidered in this context include: (i) crypto-agility, (ii) PQC-support including
migration, and (iii) formal security proofs.

Our Contribution. We propose QuantumCharge, an ISO 15118 protocol exten-
sion which integrates crypto-agility and the support of PQC into the EV charging
and billing process. This paper has the following eight main contributions: (i) We
analyze the cryptographic algorithms used in the standards w.r.t. their security
against attacks from quantum computers and propose alternatives following the
NIST standardization. (ii) We propose the QuantumCharge architecture includ-
ing a crypto-agility concept which supports multiple cryptographic algorithms
(including PQC) and extends the ISO 15118 process to support algorithm nego-
tiation. This enables switching to other algorithms if an algorithm proves to be
insecure. (iii) We support migration to address the issue of using existing legacy
PnC entities that cannot be updated to support QuantumCharge. (iv) We have
designed QuantumCharge in such a way that the desired strong security proper-
ties can be shown with symbolic proofs. (v) We propose a concept for integrating
PQC-enabled HSMs to ensure secure key generation, storage, and usage as well as
other security services such as secure boot. (vi) We provide an implementation and
performance evaluation showing the feasibility of our approach and compliance
with ISO 15118 limitations such as timeouts. (vii) We perform a formal analysis of
the central aspects of our protocol extension using the Tamarin prover to show the
security of QuantumCharge. (viii) We release the adapted ISO 15118 implemen-
tation and Tamarin models as open source (cf. Sects. 6 and 7).

Structure of the Paper. The remainder of the paper is structured as follows.
Section 2 provides background on e-mobility and PQC on embedded systems.
Section 3 introduces our assumed system and attacker model and Sect. 4 the
requirements for QuantumCharge. Section 5 describes our QuantumCharge con-
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Fig. 1. E-mobility architecture.

cept. Our formal security evaluation is described in Sect. 6 and the implementa-
tion and practical evaluation in Sect. 7. Finally, we conclude the paper in Sect.
8.

2 Background

In this section, we introduce background on e-mobility and relevant standards
as well as PQC and its performance on embedded systems.

2.1 E-Mobility Architecture

Figure 1 shows a simplified e-mobility architecture. It adopts the definitions of
the ISO 15118 standard [35,36] for entities and processes related to PnC authen-
tication for EV charging. The entities include the EV, the CP, and several PnC
backend systems. For credential management, only the EV’s Original Equipment
Manufacturer (OEM), the e-Mobility Service Provider (eMSP) backend, and the
Certificate Provisioning Service (CPS) are relevant. The EV user has a contract
with the eMSP, which enables PnC authorization and billing based on crypto-
graphic credentials. The CPS establishes trust in the credentials provided by an
eMSP for an EV. The EV stores the required credentials and establishes a PnC
session with the CP. The CP (managed by a Charge Point Operator; not shown)
enables data transfer to the backend and authorizes the EV to use the charging
service.

The ISO 15118 communication between EV and CP uses a TLS channel with
unilateral authentication of the CP. The EV authenticates itself inside the TLS
channel using a challenge-response protocol. In the upcoming second edition,
ISO 15118-20 [37], TLS uses mutual authentication with a vehicle certificate
installed by the OEM in addition to the challenge-response-based EV authen-
tication within the TLS channel. ISO 15118-20 further includes more modern
TLS cipher suites, the option for TPM-based credential protection, and back-
ward compatibility. The communication between CPs and the backend uses dif-
ferent protocols, e.g., Open Charge Point Protocol (OCPP) [51], and is usually
secured with TLS. We omit the details for the sake of simplicity. In the follow-
ing, we describe the relevant steps for using PnC with a focus on the related
application-layer security mechanisms.
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EV Preparation. During production, the OEM generates the EV’s provisioning
credentials (Step 1 in Fig. 1) in the OEM backend and installs them in the
EV. The credentials consist of a unique long-term identity called Provisioning
Certificate Identifier (PCID), the key pair {PCpk;PCsk},1 and the respective
X.509 OEM Provisioning Certificate PCCert (which includes PCID and PCpk).
The key pair {PCpk;PCsk} is later used for cryptographic signatures (signature
generation with PCsk and verification with PCpk) and for Elliptic Curve Diffie
Hellman (ECDH)-based key exchange (using PCsk on the EV’s side and PCpk

on a secondary actor). In case the second edition of ISO 15118 is supported, the
vehicle certificate and the corresponding private key are additionally generated
and installed in the EV.

Generation of Contract Credentials. To enroll the EV for PnC charging ser-
vices, the owner hands over the PCID to the eMSP when concluding a charging
contract. The eMSP then generates contract credentials to enable the EV to
authenticate itself against the CP. The eMSP generates a key pair {CCpk;CCsk}
and the X.509 Contract Certificate CCCert that contains a unique e-Mobility
Account Identifier (eMAID) linked to the charging contract. The contract cre-
dential key pair {CCpk;CCsk} can later be used by the EV for authentication
via cryptographic signatures (signature generation with CCsk and verification
with CCpk).

Contract Credentials Installation/Update. An EV’s contract certificate CCCert

and the respective key pair are installed when connecting the EV to a CP for the
first time. First, a TLS channel is established (not shown in Fig. 1). In Edition 1
of ISO 15118, only the CP authenticates itself in the TLS handshake by using
the private key corresponding to the Supply Equipment Communication Con-
troller (SECC) certificate. The additional EV authentication is only supported
in Edition 2 based on the vehicle certificate. After the TLS channel has been
established, the EV sends a request to the CP to install the contract credentials
(Step 2). The request contains PCCert and is signed with PCsk. The CP for-
wards the request over the CPS to the eMSP (Step 3). The eMSP encrypts the
private key CCsk with PCpk (from PCCert).2 The CPS appends its certificate
chain to the response data, signs the response, and sends it (Step 4) over the
CP to the EV (Step 5). The EV first verifies the authenticity of the received
data by validating the CPS’ chain up to a locally installed root certificate and
verifying the CPS’ signature. Afterwards, the EV decrypts CCsk and stores the
credentials for later use. Credential updates use a similar process, except that old
contract credentials are used for signing/encryption instead of the provisioning
credentials.
1 Note regarding notation: in the key pair {Xpk;Xsk} we use Xpk to denote the public

part of the key pair and Xsk for the secret part of the key pair.
2 The encryption is done symmetrically using Advanced Encryption Standard (AES)

for which a symmetric session key is generated with an ephemeral-static ECDH key
exchange using PCpk as the static part on the eMSP’s side (and PCsk as the static
part on the EV’s side).
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Contract Credentials Usage. To start charging, the customers plug the charging
cable of their EV into a CP, and the charging process is automatically handled
with ISO 15118 without further customer interaction. Again, a TLS channel is
established first. Then, the EV uses the contract credentials to authenticate its
concluded contract against the CP, which authorizes the charging session (Step
6). The EV provides its eMAID and contract certificate CCCert to the CP. The
CP verifies the validity of the credentials and sends a random nonce to the
EV, which in turn signs the nonce with the private key CCsk and returns the
signature to the CP. If the authentication succeeds, the CP activates charging.
Afterwards, the EV can periodically sign meter readings with its private key
CCsk to confirm the status of the charging session (see [36], Sect. 8.4.3.13). Before
billing, signatures regarding the metering may be verified by eMSPs.

2.2 Post-Quantum Cryptography on Embedded Systems

In 2016, NIST started a PQC standardization process [50] that aims to stan-
dardize schemes for key encapsulation and signing, which were selected from five
main families of PQC algorithms: code-based, hash-based, isogeny-based, lattice-
based, and multivariate schemes. We focus on signatures (with key generation
in the HSM, cf. Sect. 5). After several rounds, three signature-scheme candi-
dates were selected for standardization in July 2022 [49]: The two lattice-based
schemes CRYSTALS-Dilithium [7] and FALCON [24] as well as the hash-based
scheme SPHINCS+ [6].

Notably, IETF already has standardized the “stateful” hash-based PQC sig-
nature schemes XMSS [32] and LMS [46]. Compared to the “stateless” algorithm
SPHINCS+, handling of the state in XMSS and LMS requires additional pre-
cautions along with existing key-handling practices. While in a vehicle equipped
with a TPM the handling of a state can be realized fairly safely and easily
(e.g., using a monotonic counter in the TPM), more effort may be required for
backend servers without TPM or HSM — e.g., backup and workload-sharing
strategies need to be adapted to take state management into account. Due to
these additional requirements specific to stateful schemes, we do not investigate
XMSS and LMS in further detail. However, since SPHINCS+ generally requires
more computational resources and has larger signatures than XMSS and LMS,
SPHINCS+ is a “worst case” hash-based signature scheme and the results for
SPHINCS+ also apply as an upper limit to XMSS and LMS.3

3 In addition, XMSS and LMS require the selection of parameters that define the
maximum number of signatures per public-private key pair. These parameters can
be chosen large enough to support the total number of expected charging operations
during the lifetime of a vehicle. Given a maximum lifespan of 35 years for an electric
vehicle and at most two charging operations per day, a maximum of 220 signatures
would provide a significant margin. Nevertheless, procedures for re-keying must be
put in place when using XMSS and LMS for this application.
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Performance benchmarks on an embedded Arm Cortex-A53 platform4 indi-
cate that, in general, Dilithium stands out for its efficient key generation, signing,
and verification [44]. FALCON is less efficient for signing and verification, yet
still acceptable; however, key generation times are rather long. SPHINCS+ is
considered the least efficient, with acceptable key generation and verification but
extremely long signing times. Benchmarks of the pqm4 project [38,39], targeting
a 32-bit Arm Cortex-M4 micro-controller, confirm the findings in [44] on the suit-
ability of said PQC candidates. These results show that there are PQC schemes
that can be used on embedded platforms and hence are promising candidates
for the integration into EV charging protocols.

3 System and Attacker Model

Our system model assumes the e-mobility architecture with the entities and
communication relations shown in Fig. 1. We require that EVs supporting Quan-
tumCharge are equipped with an HSM supporting the required PQC algorithms
(cf. the analysis in [67]) which can be used to locally generate keys in the EV
(similar to [26,28]). Legacy EVs do not support QuantumCharge. Similarly, CPs
and backend systems may or may not support PQC and QuantumCharge. Thus,
we have several use cases ranging from all entities supporting QuantumCharge
to no one supporting QuantumCharge.

The security of the PnC communication is of high importance as a successful
attack can cause financial damages and may even harm power grid stability (cf.
[1,40,69]). Thus, there are high incentives for attackers to compromise the secu-
rity of the charging process [8]. In our attacker model, we distinguish attackers
based on their area of influence. We consider the following four kinds of attackers
with access to quantum computers. Moreover, we consider that cryptographic
algorithms might become insecure during the lifecycle of vehicles and charging
infrastructure, requiring cryptographic agility to be in place.

Compromised EV. We consider that the attacker has complete control over the
charging vehicle. This encompasses remote attackers compromising the car as
well as physical attacks. For example, the attacker could be the car owner or
someone with temporary access in a car-sharing scenario. Moreover, car owners
might be incentivized to manipulate the billing information to conduct charging
fraud. Such an attacker might replace components of the car or temper with the
firmware of ECUs, but does not have the capabilities to perform physical attacks
on HSMs.

Compromised CP. We consider an attacker with complete control over the CP.
As the billing information is generated by the CP, manipulating this data is
difficult to prevent in case of a compromised CP. However, the attacker might

4 Arm Cortex-A53 platforms are increasingly used in more powerful automotive Elec-
tronic Control Units (ECUs), e.g., see Renesas product range [57].
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try to manipulate, replay, or forge any data that a CP receives/forwards (e.g.,
metering confirmations generated by vehicles5).

Compromised Network. A network attacker has complete control over a network
node between the CP and backend systems or between the CP and the EV. For
example, a malicious device could have been installed within the charging cable
or plug or directly behind the CP, allowing for manipulation of the sent and
received communication. However, the attacker has no control over EV, CP, or
backend components. As we aim for backward compatibility, downgrade attacks
have to be considered with regard to this attacker (cf. Sect. 6).

Leaked Backend Data. An attacker might be able to extract information from
backend systems. We assume that top-level secret keys, such as certificate signing
keys, are sufficiently protected, but individual EV keys might not. Thus, private
keys of EVs should not be stored in the backend.

4 Requirements

We define the requirements for security (RS) and feasibility (RF ) as follows:

RS1 Secure key storage: Private keys must be stored in a protected and secure
environment to prevent their leakage.

RS2 Secure cryptographic operations: Cryptographic algorithms must be exe-
cuted within a secure, tamper-resistant, and separated environment.

RS3 Key usage authorization: Key usage must be limited to authenticated and
trusted software to prevent unauthorized access.

RS4 Secure key provisioning: Private keys must be generated in a secure envi-
ronment and must never leave it.

RS5 PQC support: Cryptographic algorithms used for security-critical functions
must resist attacks by quantum computers.

RS6 Crypto-agility: The system must provide a mechanism to update or replace
outdated or broken cryptographic algorithms securely.

RS7 Secure Credential Installation: Bilateral authentication of the data sent
between CPS and EV for credential installation must be guaranteed.

RS8 Secure Charge Authorization: The authenticity of charge authorization
requests received by the CP must be guaranteed.

RS9 Charge Data Authenticity : The authenticity of received charge data as
attested by the EV must be guaranteed towards the eMSP.

RF1 Minimal overhead. The system should keep extra communication and com-
putational overhead within the constraints of existing standards.

RF2 Easy integration. The system should not alter the message flow of existing
protocols and only introduce minor changes to message content.

RF3 Continued operation. The system should offer backward compatibility with
regard to actors that do not support PQC.

5 While ISO 15118 allows an EV to confirm meter values via a signature (called meter
receipt), using this signature for billing purposes is subject to local regulation [36].
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5 Security Concept

In this section, we describe our analysis of cryptographic algorithms which need
to be replaced with PQC algorithms, the general approach of QuantumCharge,
and detail the integration of QuantumCharge into the PnC architecture.

5.1 Analysis of PnC Cryptographic Algorithms

We focus our analysis of the specified cryptographic algorithms on both editions
of ISO 15118 and relevant processes as described in Sect. 2.1. The application-
specific protocols of ISO 15118 (discussed in the following) operate inside a TLS
channel between the EV and the CP as well as the CP and the backend. Since
there already exists exhaustive work on the migration of TLS to PQC (e.g.,
[16,18,20,54,59,62]) and prototype PQC-TLS libraries (e.g., [63]), we consider
TLS out of scope for this paper and assume a post-quantum secure underlying
TLS channel in the following. Instead, we focus on application-layer security
mechanisms, which need to be post-quantum secure independently of the indi-
vidual TLS channels (e.g., credential installation between EV and the backend).

PKI and Signatures. ISO 15118 defines a (rather complex) Public Key Infras-
tructure (PKI) as the basis for credential installation and charge authorization.
Public/private key pairs are used in the OEM provisioning and contract creden-
tials. In addition, eMSPs, CPSs, and CPs are also equipped with public/private
key pairs and corresponding certificates. All certificates and key pairs use Elliptic
Curve Cryptography (ECC). Edition 1 uses the secp256r1 curve and ECDSA
with SHA-256 as the hash function. Edition 2 uses secp521r1 and ECDSA with
SHA-512 or Curve448 and EdDSA with SHAKE256. The key pairs are used in
the TLS handshake and on the application layer for signature generation. Any
ECC keys and signature algorithms must be replaced with PQC alternatives.

The current NIST PQC API for signature algorithms assumes that com-
plete messages and not message digests are signed. For simpler integration with
XML signatures, we nevertheless keep the current approach of signing message
digests also when using PQC algorithms, which introduces minor overhead but
is directly interoperable with the existing protocols. Notably, while the XML sig-
nature specification includes a list of supported algorithms, it explicitly supports
extensibility via application defined (in our case PQC) algorithms [10].

Key Establishment and Symmetric Encryption. The contract credentials instal-
lation process as standardized in ISO 15118 is based on an ephemeral-static
ECDH key agreement for establishing a symmetric key (cf. Footnote 2) with the
above-mentioned ECC curves for the respective editions. The hash function for
the Key Derivation Function (KDF) is SHA-256 in Edition 1 and SHA-512 in
Edition 2. The symmetric key is then used to encrypt the private contract key
with AES-CBC-128 in Edition 1 and AES-GCM-256 in Edition 2. This classi-
cal ISO 15118 contract credentials installation process would require a suitable
replacement for Diffie-Hellmann. For example, one could change the protocol to
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use PQC algorithms instead of ECC and a PQC Key Encapsulation Mechanism
(KEM) for key establishment. The key length for AES should be 256 bits and
the length of the hash functions should be at least 512 bits. However, since we
additionally integrate the approach from [26,28] in QuantumCharge and gener-
ate keys securely in the EV’s HSM (cf. Sect. 5.2), we do not require (PQC) key
establishment and symmetric encryption in QuantumCharge anymore (except
for the underlying TLS channels).

5.2 General Approach

QuantumCharge’s general approach is to update ISO 15118 (and accordingly
other PnC standards) to support PQC with minimal protocol changes while
providing a high level of security. This is intended to enable easy adoption by
the industry. QuantumCharge has five central parts as described in the following.

First, QuantumCharge integrates PQC algorithms based on our analysis
described in Sect. 5.1. For signatures in TLS and at the application layer, we pro-
pose to use the PQC algorithms selected by NIST for standardization [49], i.e.,
the two lattice algorithms Dilithium [7] and FALCON [24] and the hash-based
algorithm SPHINCS+ [6]. The idea is to provide a proof of concept with NIST-
approved algorithms of different families to be able to switch between algorithms
in case of compromise. On the application layer, we only need signatures since
the encryption of private contact keys for transfer is replaced by a secure key
generation in the EV’s HSM. For TLS, we propose to replace Diffie-Hellmann
with the KEM Kyber [14] (which is currently the only KEM selected by NIST),
SHA-512 as hash function, and AES-GCM-256 for encryption. Dilithium, FAL-
CON, and SPHINCS+ as well as Kyber are currently the only schemes that are
being standardized by NIST; more schemes will likely follow in the future and
then will be relevant in this context as well.

Second, QuantumCharge integrates a migration concept to address the issue
of existing legacy PnC entities that cannot be updated to support PQC. Hereby
we assume that only EVs and CPs are affected, but all backend systems can be
updated. In addition to the PQC algorithms, the classical ECC algorithms, as
standardized in both editions of ISO 15118 remain supported. At the beginning
of an ISO 15118 charging session, EV and CP agree on the protocol version
to be used, i.e., conventional ECC-based ISO 15118 or QuantumCharge. This
protocol negotiation allows legacy ECC algorithms to remain supported. Note
that negotiation may fail if EV or CP are configured to only accept PQC-secured
connections.

Third, QuantumCharge provides crypto-agility by supporting multiple PQC
algorithms and extending the ISO 15118 process with an algorithm negotiation
(which is out of scope in the standard, cf. [V2G20-2320] in [37]). Algorithm
negotiation is only performed if QuantumCharge was selected for this session
and is extensible with any arbitrary (PQC) algorithms, e.g., in case the existing
algorithms are broken or new more secure/efficient ones are developed. Again,
negotiation may fail if EV and CP cannot agree on common algorithms.
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Fourth, QuantumCharge generates all keys of the EV securely in an HSM in
the EV. Keys for the EV are no longer generated in backend systems. Follow-
ing the TPM-approach from [26,28] we assume that a generic HSM with PQC
support is used. The HSM is used for secure key generation, secure storage of
(private) keys, and for secure execution of cryptographic operations. Further,
the HSM provides additional features for restricting the usage of keys to a trust-
worthy system state (e.g., based on secure/authenticated boot).

Fifth, QuantumCharge includes changes to the credential installation and
PnC authorization processes of ISO 15118 to allow for formal security proofs.
Specifically, we enable the verification of strong formal authentication properties
to meet the respective security requirements from Sect. 4.

5.3 Extending ISO 15118 with QuantumCharge

To enable the use of QuantumCharge, it must be supported by all involved enti-
ties (cf. Fig. 1). However, it is still possible for QuantumCharge-enabled EVs to
use legacy CPs with classic ECC according to the original ISO 15118 standards.
For security reasons, though, EVs can also be configured not to charge at such
CPs. In the following, we describe QuantumCharge in more detail by describing
the components and the integration into the ISO 15118 Edition 1 protocol flow,
as Edition 1 is still the prominent edition of the protocol today. However, as the
adoption of Edition 2 is expected to increase, we already explicitly consider the
integration of QuantumCharge into ISO 15118-20 at the end of this section. The
descriptions assume an error-free process. In the case of an error, the respective
process may be aborted (e.g., as described above, if EV and CP fail to agree on
an algorithm).

EV Manufacturing. In the EV production, an HSM supporting ECC and PQC
algorithms is installed. We assume the HSM ensures that keys are generated in
the HSM (and not imported) and that private key export is not allowed.

During customization, multiple key pairs {PCai

pk, PCai

sk} are generated by
the HSM and the OEM creates the corresponding OEM provisioning certificates
PCai

Cert, where ai denotes the respective cryptographic algorithm of the set of
supported algorithms {a1, . . . , an}. In addition to the classic ECC algorithms
EC-/EdDSA (for use with legacy systems), we support the PQC algorithms as
mentioned in Sect. 5.2 with their different parameter sets. Key usage can be
restricted to specific policies, e.g., access is only possible after a secure boot. We
omit details on this aspect and refer to the TPM-based approach in [26,28].

Contract Credential Usage. Figure 2 shows the PnC authorization process using
the contract credential. First, the TLS channel between EV and CP is estab-
lished (not shown)6. When a communication session is initiated by an EV, a
6 Since PQC for TLS is addressed in other work (see Sect. 1), we omit the details

on TLS in the following and discuss only the application layer of ISO 15118. In
our current design, the choice of algorithms is done independently for TLS and
application layer but could also easily be coordinated.
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Fig. 2. Usage procedures of contract credentials (changes in bold).

handshake is performed to negotiate the used application protocol and version.
More specifically, the standard defines a major and a minor version number.
The major number is used for the protocol version of either Edition 1 or 2.
The minor number can indicate minor changes of the protocol (e.g., additional
data elements). The EV sends a prioritized list of supported application layer
protocols/versions to the CP, which responds with its selection.

To enable QuantumCharge and support backwards compatibility, we extend
this initial application protocol/version negotiation. Notably, the minor version
number cannot be used to indicate the use of PQC since with ISO 15118-20
a divergence in minor numbers is not indicated to the EV by the CP (if the
major number matches and the minor number is lower, the CP simply responds
with an OK; cf. [37] [V2G20-170]). To detect that the backwards compatibility
mode is needed, however, the EV would require this indication. Hence, we show
QuantumCharge support via the definition of new major numbers such that
there are now four rather than two valid flags for the major number (for Edition
1 or 2, each with or without PQC). The major and minor numbers are used in
the prioritized list sent by the EV (Step 1 in Fig. 2). The CP selects the protocol
version and replies with an OK (Step 2).

If both sides support QuantumCharge, an additional handshake is performed
to negotiate the signature algorithm using modified service detail messages (for
the “ChargeService”; Steps 3-5). The EV sends a prioritized list of supported
algorithms to the CP. The CP responds with its selection. At this point, the EV
may start a contract credential installation as detailed later in this section.
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Fig. 3. Installation procedure of a contract credential (changes in bold).

If the EV possesses contract credentials using the chosen algorithm (from
Step 5), it can start the PnC authorization process by sending its corresponding
contract certificate chain to the CP (Step 6). The CP validates the chain7 based
on a locally installed eMSP root and responds with its unique ID and a fresh
nonce na (Step 7-8). Afterwards, the EV uses its HSM to sign8 its authorization
request data (including eMAID and the CP’s ID to identify the sender/recipient
of this signature, which is essential for the verification of formal authentication
properties) and sends the signed data to the CP (Steps 9-10). The CP verifies the
signature using the public key from the previously (in Step 6) received CCai

Cert

and if the signature is valid, the EV is cleared to charge (Steps 11-12).
Similar to authorization request signing, an EV can use its PQC contract

credentials to sign meter receipts (Step 13). The signed data again includes the
eMAID and an ID of the recipient (i.e., the eMSP for, e.g., billing purposes) and
is sent to the CP, which may verify the signature using the EV’s public contract
key (Steps 14-16). The meter receipt is later forwarded to the eMSP, along with

7 Note regarding notation: in Fig. 2 and Fig. 3 we use ValidateCertRoot(CertChain) to
denote the validation of the certificate chain CertChain based on the root certificate
CertRoot using the default certificate chain validation algorithm from [19].

8 Note regarding notation: in Fig. 2 and Fig. 3 we use Sig = SignXsk(Data) to denote
the generation of a cryptographic signature Sig over Data using the private key
Xsk. We use VrfyXpk(Data, Sig) to denote the corresponding signature verification
with the public key Xpk. Additionally, we use XCert.pk to denote the extraction of
a public key from a certificate.
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other billing-relevant data, and the eMSP verifies the signature (not shown in
Fig. 2).

Contract Credential Installation/Update. After the application protocol and sig-
nature algorithm negotiations between EV and CP are completed, the EV may
choose to install new contract credentials (e.g., if it does not possess valid cre-
dential with the chosen algorithm). For this, the HSM generates the key pairs
{CCai

pk, CCai

sk} and the EV requests the eMSP to issue the corresponding contract
certificates CCai

Cert for the public keys CCai

pk.
Figure 3 shows the process for installing contract credentials using the modi-

fied CertInstallReq message. The process again starts with an algorithm nego-
tiation using modified service detail messages (for the “CertInstall”; Steps 1-3).
The EV sends (via the CP) a prioritized list of supported algorithms to the CPS,
which acts as a middleman between EVs and eMSPs in the installation process
(Fig. 3 combines CPS and eMSP for simplicity). The CPS responds with a selec-
tion of accepted algorithms and a fresh nonce ni. The EV uses its HSM to gener-
ate the contract credential key pair {CCai

pk, CCai

sk}, create a Proof-of-Possession
(PoP) signature over ni and CCai

pk with CCai

sk, and sign the certificate request
data using PCai

sk (Step 4). The credential update process is similar except that
an old CCai

sk is used for signing instead of PCai

sk (not shown).
The signed certificate request data, which includes the selected algorithm,

an ID of the recipient, the PCai

Cert, ni, CCai

pk, and the PoP signature, is sent
(via the CP) to the CPS (Step 5). The CPS verifies the PoP signature based on
CCai

pk, validates the provisioning certificate PCai

Cert based on a locally installed
OEM root, verifies the certificate request data signature based on PCai

Cert, and
forwards the request to the eMSP (Step 6). Afterwards, the eMSP responds with
a contract certificate CCai

Cert for CCai

pk based on which the CPS can build and
sign the certificate response data (Step 6). The signed response data is sent to
the EV, which verifies the CPS signature based on a locally installed root and
stores the contract credential for later use (Steps 7-8).

Integration into ISO 15118-20. In case Edition 2 of ISO 15118 is supported,
minor changes to the different processes are required. Firstly, the EV manu-
facturing process now also requires that the EV’s key pairs and corresponding
vehicle certificates are generated for usage in the TLS handshake. Key pairs are
again generated in the EV’s HSM and the OEM reads out the public keys and
generates the certificates.

Secondly, compared to Edition 1, ISO 15118-20 slightly changes the con-
tract credential usage message flow. The most important change is that Ser-
viceDetail messages are sent after authorization and thus cannot be used for
algorithm negotiation. Instead, we propose the use of the new Authorization-
Setup messages for this purpose, whereby the EV’s request (usually empty)
contains EV.Algs and the CP’s response (usually only na and some information
about the offered services) additionally contains AuthAlgs and CPID. Further-
more, ISO 15118-20 defines no PaymentDetails messages as the CP’s nonce na is
included in the AuthorizationSetupRes message and the EV’s contract certificate
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chain is included in its AuthorizationReq. Respectively, QuantumCharge would
also include the EV’s contract certificate chain in its AuthorizationReq.

Finally, the contract credential installation process requires minor adjust-
ments. In ISO 15118-20, ServiceDetail messages are sent after authorization
and, thus, after credential installation. Additionally, the installation of multi-
ple credentials from different eMSPs is supported, whereby multiple CertInstall
message pairs are exchanged. We thus propose the use of CertInstall messages
for algorithm negotiation, whereby the first CertInstall message pair contains the
data of the ServiceDetail message pair in Fig. 3. Following CertInstall message
pairs contain the proposed installation data with no further changes needed.

6 Formal Security Verification

In our formal analysis, we focus on the changes made to the authorization proto-
col. Verifying the security of HSMs or backend infrastructure is outside the scope
of this paper. Thus, we formally verify RS6 to RS9 below. For our other security
requirements, please note that RS1, RS2, and RS3 are addressed by the usage
of an HSM with PQC support. Hereby, private keys are stored and used in a
secure area of the HSM (addressing RS1 and RS2). In addition, we assume that
the HSM enforces key usage authorization, e.g., using a policy that enables key
access only after a secure boot process (addressing RS3). We assume that keys
stored within the backend, especially Certificate Authority (CA) keys, will be
processed at least as securely, for example, using a server HSM and additional
physical access control to the processing hardware. Moreover, RS4 is enabled
by our changes to the credential installation process, as private credential keys
are no longer generated in the backend but in the EV’s HSM instead. Possible
downgrade attacks should be addressed by timely disabling insecure algorithms
by policies, especially the backwards compatibility with non-PQC algorithms
should be disabled when quantum computer-based attacks become feasible for
malicious actors. This will require close negotiation between the OEMs, eMSPs,
and Charge Point Operators to determine the best security/operability trade-off
for the specific ecosystem. We abstract from the used algorithms and assume
they satisfy RS5.

We formally verify our protocol in the symbolic model, also called the Dolev-
Yao model [22]. In this model, cryptographic primitives are represented by sym-
bolic functions and assumed to be perfectly secure. Instead, the security of the
composition of these primitives is analyzed. Usually, the attacker has complete
control over the network (cf. the Compromised Network adversary in Sect. 3).
However, restrictions of this control, for example, by assuming secure or authen-
ticated channels, are possible. In addition, we allow the presence of multiple
dishonest parties, i.e., the attacker can corrupt multiple parties that are not
directly involved in the transaction under proof. For example, if Alice sends a
message to Bob, this message has to remain secure even if there is a compromised
Charlie that also sends messages to Alice and Bob.

We use the Tamarin prover [47] to verify the security of our model, a state-of-
the-art tool for automated symbolic protocol verification. In Tamarin, a model
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is specified as a set of rules that define a protocol’s communication and data-
processing steps. Security properties that are required to hold over all possible
execution traces of the model are specified in first-order logic and called lemmas.
Tamarin starts with a state where the property has been violated and performs
a backward search over the possible rule executions to determine whether there
is a valid path that leads to this state. If there is, the property does not hold,
and Tamarin has found a counterexample. If there is no possible execution path
that can lead to a violation of the property, this proves that the property holds.

Our complete Tamarin model files for QuantumCharge are provided in an
online repository.9 The files contain lemmas to verify the desired security prop-
erties and additional lemmas that verify the correctness of the Tamarin specifi-
cation of our model. The repository also includes instructions on how to run the
model and reproduce and verify the results of our formal analysis and details on
the verification times.

We model the authentication requirements from RS7 to RS9 with the notion
of injective agreement. Injective agreement is a well-established and strong
authentication property originally defined by Lowe [42] and commonly used in
current research (e.g. [11,29,41,68]). It encompasses verification of the identity
of the communication partners, the integrity of the exchanged messages, and
protection against replay attacks.

Definition 1 (Injective agreement). A protocol guarantees injective agree-
ment to an honest initiator A with an honest responder B on a set of data
items ds if, whenever A, acting as initiator, completes a run with the protocol,
apparently with responder B, then B has previously been running the protocol,
apparently with A, and B was acting as a responder in this run. Moreover, each
run of A corresponds to a unique run of B and both agents agree on the values
of the variables in ds [42].

To encompass crypto-agility (RS6), cryptographic operations in our model
always reference an algorithm under which they are computed. Algorithms can
become insecure at any time during the protocol run, which is modeled by a rule
that exposes the secret key of a party, allowing the attacker to forge signatures
freely. Moreover, parties can revoke support for algorithms they consider inse-
cure, aborting all pending operations using this algorithm. Ideally, we would like
to show that injective agreement holds for all transactions in our model, given
that each insecure algorithm has been revoked before becoming insecure by at
least one of the involved parties before being broken by the attacker. However,
this property is unrealistically strong since an attack would always be possible
against an entity using insecure algorithms. For example, the EV could send a
message to the CPS, then the used algorithm becomes insecure and is revoked
by the EV but not by the CPS. The message would then be accepted by the
CPS regardless. We argue that the actual risk of such an attack is limited, as
its possible timeframe is small. However, we can only show a slightly weaker
property, requiring that injective agreement holds for parties that revoked the

9 https://code.fbi.h-da.de/seacop/quantumcharge-source

https://code.fbi.h-da.de/seacop/quantumcharge-source
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algorithm before it became insecure, but not necessarily for their communication
partner.

Definition 2 (Injective agreement under insecure algorithms). Honest
A with honest B injectively agree (cf. Def. 1) on ds and all cryptographic algo-
rithms used in this protocol run, either directly by A and B or within the setup
of credentials they use during this protocol run, either remain secure during the
entire protocol run or are revoked by A prior to becoming insecure.

Using Def. 2, we formally verify that QuantumCharge provides RS7, RS8,
and RS9 with the Tamarin prover, under consideration of RS6 by modeling
crypto-agility as previously discussed. For this, all communication of CPs is
assumed to be under the control of the adversary (cf. Compromised CP in Sect.
3). Entities that are directly involved in a specific protocol run (EV, CPS, or
eMSP) are assumed to be honest, i.e., we assume that their cryptographic cre-
dentials have not been revealed to the adversary. This assumption is reasonable
due to the use of HSMs (cf. RS1, RS1, and RS3). However, in order to keep the
needed assumptions as weak as possible, other entities of the same types that are
not directly involved in the protocol run can be compromised (cf. Compromised
EV and Leaked Backend Data in Sect. 3). Thus, our model can verify that, even
if the key storage/usage of some entities is subject to an attack (e.g., due to an
implementation error in some HSMs), the security of all other entities remains
intact.

The execution of Tamarin with our model9 shows that QuantumCharge sat-
isfies the security properties, as no counterexamples are found. As the proof
generation is fully automated, the following description summarizes the verified
properties instead of going into proof details.

Secure Credential Installation. For the security of the credential installation
process (RS7), we consider a compromised CP and network. Note that, as we
always allow for the presence of additional dishonest parties, the presence of
compromised EVs trying to impersonate a different EV during the process is
also considered. Using our Tamarin model, we verify that injective agreement
under insecure algorithms holds for credential installation transactions in our
protocol between EV and CPS in both directions. That is, the CPS (as initia-
tor) injectively agrees with the EV (as responder) on the certificate installation
request (Step 5 in Fig. 3 and the EV (as initiator) injectively agrees with the CPS
(as responder) on the certificate installation response message (Step 7 in Fig. 3).
As an example, we look at the first of these properties in detail in Appendix A.1.

Secure PnC Authorization Process. We verify that the CP and the EV injectively
agree under insecure algorithms on authorization requests from the EV. That is,
the Tamarin analysis shows that QuantumCharge provides strong security for
charge authorizations (RS8). Note that the algorithms used during the setup of
the used credentials are assumed to have remained secure during their setup.
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Fig. 4. Proof-of-Concept Setup

Charge Data Authenticity. As charge measurements originate from the CP’s
meter, it is difficult to prevent the CP from providing false meter data to the
eMSP for billing. In ISO 15118, this is addressed by optional metering receipts.
The EV may compare the CP’s meter data with its own measurements before
signing receipts. Our analysis shows that for metering receipts verified by the
eMSP, injectiv agreement under insecure algorithms on the included data (RS9)
is satisfied between the eMSP and the EV. Thus, the data cannot be manipulated
by the CP or a network attacker.

7 Implementation and Practical Feasibility Evaluation

We implemented QuantumCharge as a proof-of-concept. The setup is shown
in Fig. 4 and the code is provided online.9 The EV and CP are implemented
on Raspberry Pi 3 Model B+ boards and connected via PLC stamp micro 2
EVBs to emulate Power Line Communication as per ISO 15118. The Pi boards
have an Arm-based Quad Core CPU at 1.4 GHz and 1 GB RAM. While there
is variance between manufacturers, this setup can nonetheless be argued to be
representative since: (i) w.r.t. the CP’s side, commercial controllers with compa-
rable performance exist, such as Vector’s vSECC [66] (using an Arm-based Quad
Core CPU at 1 GHz and 2 GB RAM) and (ii) w.r.t. the EV’s side, an option
that is discussed in the industry is the offloading of cryptographic functions for
PnC to one of the more capable vehicle ECUs such as the infotainment/head
unit, which is usually in the Arm Cortex-A performance class [4] (e.g., [64] with
a dual Arm Cortex-A15 at 1.2 GHz).

Our ISO 15118 implementation uses RISE V2G [65] in Java, with the changes
proposed in Sect. 5. For the PQC algorithms, we use the OQS implementations
in C, called from Java via JNI using the provided bindings. Certificates and keys
for the PKI are generated using OQS’ PQC OpenSSL prototype. Functions of the
e-mobility backend (CPS/eMSP) are implemented on the CP-Pi for simplicity.

For each PQC algorithm, all working parameter options supported by OQS
are included in our QuantumCharge implementation and evaluation. In the fol-
lowing, we only list the results of one parameter set per algorithm; the full results
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Table 1. Communication overhead (in byte).

Message Algorithm

ecdsa256 ecdsa521 eddsa448 dilithium2 falcon512 sphincssha256
128frobust

PaymentDetailsReq Total 1472 1880 1489 12262 5679 52371

eMSPChain‖CCCert 1435 1843 1452 12225 5642 52331

AuthorizationReq Total 383 452 426 2735 974 17417

SigAuth 71 139 114 2420 660 17088

CertInstallReq Total 1150 1536 1229 11868 5006 57781

CCpk 91 158 69 1312 897 32

SigPoP 72 139 114 2420 660 17088

PCCert 478 614 489 4080 1885 17449

SigReq 71 138 114 2420 659 17088

CertInstallRes Total 3313 4196 3406 27261 12327 122162

eMSPChain‖CCCert 1435 1843 1452 12225 5642 52331

CPSChain 1422 1828 1455 12228 5638 52335

SigReq 71 139 114 2420 660 17088

can be found online.9 Specifically, we include PQC parameter sets for NIST secu-
rity level 1, which is comparable to the current security of ISO 15118. The only
exception is Dilithium, where we use security level 2, since Dilithium does not
provide level 1 parameters.

We use the proof-of-concept implementation to measure the overhead of
QuantumCharge in comparison to the default ISO 15118 algorithms. W.r.t.
communication overhead, the most significant changes come from the inclusion
of PQC public keys and signatures in various messages. Table 1 provides an
overview of the resulting message sizes and the most significant element sizes.10

It shows only minor differences between the non-PQC algorithms. The vari-
ance between the PQC algorithms, however, is relatively high, with FALCON
offering the lowest overhead (closest to the non-PQC algorithms) due to its rel-
atively small public keys and signatures. Since ISO 15118 messages use a 4-byte
length field, their size is limited to 4,294,967,295 byte, which is not violated by
any of the evaluated algorithms.

The overhead for MeteringReceiptReq messages is comparable to that of the
AuthorizationReq since both cases involve the same cryptographic actions (a
signature with the private contract key) and is thus not explicitly listed. Addi-
tional minor overhead (not detailed in Table 1 but part of the totals) is caused
by: (i) The inclusion of algorithm IDs in different messages (e.g., a 2-byte ID per
algorithm similar to TLS). (ii) The addition of the CPID in PaymentDetailsRes
and AuthorizationReq messages (39-255 characters [37]). (iii) The addition of

10 Message size totals are slightly larger than the sum of element sizes since totals
represent the size of EXI-encoded XML messages (as sent between EV and CP) and
since element sizes that are independent of the algorithm are omitted for simplicity.
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Table 2. Storage overhead (in byte).

Message Algorithm

ecdsa256 ecdsa521 eddsa448 dilithium2 falcon512 sphincssha256
128frobust

EV Cryptographic Data Total 3558 4709 3538 36269 17569 122342

V2G Root Certificate 472 608 483 4074 1882 17443

Provisioning Cert. Chain 1429 1835 1461 12234 5649 52341

Provisioning Key Pair 121 223 73 3870 2202 115

Contract Certificate Chain 1415 1820 1448 12221 5634 52328

Contract Key Pair 121 223 73 3870 2202 115

CP Cryptographic Data Total 2480 3259 2486 24238 11589 87328

V2G Root Certificate 472 608 483 4074 1882 17443

eMSP Root Certificate 468 602 479 4070 1876 17439

CP TLS Certificate Chain 1419 1826 1451 12224 5629 52331

CP TLS Key Pair 121 223 73 3870 2202 115

the CPSID in specific ServiceDetailRes and CertInstallReq message (e.g., 2 char
country code plus 3 char operator ID similar to eMSP IDs [37]).

The storage overhead of QuantumCharge for EV and CP is shown in Table 2.
The reported sizes for all data elements are based on their DER encoded [34]
format. All certificate chains use two Sub-CAs, i.e., the chains are the maximum
allowed length of ISO 15118. Regarding storage overhead, our results again show
only minor differences between the non-PQC algorithms and a high variance
between the PQC ones with relations comparable to that of the communication
overhead. Notably, a potential compatibility issue of QuantumCharge is created
since ISO 15118, independently of its XML message definitions, limits the max-
imum size of DER-encoded certificates to 800 bytes. In ISO 15118-20, this limit
is increased to 1600 byte. Since none of the evaluated PQC algorithms can meet
this limit, any kind of PQC-ready ISO 15118 would need a further increase and
thus affect the storage requirements of involved systems.

W.r.t. computational overhead, the most significant changes of Quantum-
Charge are PQC key pair generation, signing, and signature verification. Tim-
ing measurements are repeated 100 times using Java’s System.nanoTime() and
Table 3 shows the resulting averages. We see that most PQC algorithms are
suited for the use case. Notably, Dilithium and FALCON are sometimes even
faster than the standard algorithms. However, signature generation with the
SPHINCS+ algorithm starting from security level 3 and using the small s-
parameter sets (not shown) was too slow to meet ISO 15118’s limits (fast f-
parameter sets showed no issues). Specifically, CertInstallReq generation was
with 49 s over the relevant ISO 15118 limit of 40 s.

The performance evaluation shows that QuantumCharge mostly maintains
compatibility with the current ISO 15118 limits and the only general (for all
algorithms) issue arises from the larger certificate sizes. Since the respective
limit, however, was already increased with ISO 15118-20, we argue that a fur-
ther increase for PQC support is reasonable. The evaluation shows that for
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Table 3. Computational overhead (in ms rounded to four significant figures).

Message
Algorithm

ecdsa256 ecdsa521 eddsa448 dilithium2 falcon512
sphincssha256
128frobust

PaymentDetailsReq Handling (CP) 102.4 325.2 82.67 39.28 20.1 279.5
Validate Certificate Path 99.59 322.2 79.63 35.80 17.06 272.9

AuthorizationReq Generation (EV) 42.39 85.05 51.45 30.44 60.74 1,157
Generate XML Signature 31.23 73.50 39.61 21.39 52.11 1,147

AuthorizationReq Handling (CP) 52.97 129.2 45.80 27.75 22.35 100.7
Verify XML Signature 46.27 122.4 39.24 21.39 16.29 93.59

CertInstallReq Generation (EV) 2,508 2,767 1,113 507.6 693.3 2,192
Generate Key Pair 2,372 2,552 807.1 42.04 230.2 71.18
Generate PoP Signature 29.73 72.66 40.90 12.33 38.46 824.3
Generate XML Signature 41.53 78.44 50.32 29.46 51.41 786.0

CertInstallReq Handling (CP) 190.2 407.6 188.9 235.2 225.0 3,582
Verify PoP Signature 54.81 87.75 27.47 7.396 3.078 48.62
Verify XML Signature 29.11 74.08 30.37 18.07 15.84 64.76
Validate Provisioning Certificate 27.11 64.95 26.66 14.19 8.631 64.86
CertInstallRes Generation 69.94 172.9 94.59 175.4 183.3 3,373

Generate Contract Certificate 16.95 52.92 17.50 19.74 55.89 1,299
Generate XML Signature 18.24 70.70 18.07 16.46 51.59 1,340

CertInstallRes Handling (EV) 208.6 456.5 245.1 143.0 114.2 536.8
Verify XML Signature 60.06 119.9 71.90 41.56 35.54 117.0
Validate Certificate Path 102.7 288.6 123.1 58.57 38.33 316.8

SPHINCS+, it is preferable to use the f-parameter sets instead of the s-parameter
sets. Since a variety of PQC algorithms (for all security levels) are compatible
with existing time limits, we consider RF1 met. Further, as QuantumCharge is
compatible with ISO 15118’s current roles and data flows, we argue that RF2 is
met. Moreover, as our extension supports backwards compatibility, RF3 is met.

8 Conclusion

In this paper, we propose QuantumCharge, a PQC extension for ISO 15118. We
analyze the PnC standards and protocols and show where PQC algorithms are
required. QuantumCharge includes concepts for migration, crypto-agility, verifi-
able security, and the use of PQC-enabled HSMs. As baseline, QuantumCharge
implements Dilithium, FALCON, and SPHINCS+ and can be extended easily
with other PQC algorithms. With our prototype, we analyze the introduced com-
munication and computational overhead. Our results show that all PQC algo-
rithms require increasing the defined maximum certificate size in both editions
of ISO 15118 and that all algorithms can meet the defined timing requirements.
Hence, all PQC signature algorithms Dilithium, FALCON, and SPHINCS+
(using the fast f-parameter sets) selected by NIST for standardization can be
used in QuantumCharge. Our formal analysis using Tamarin shows the security
of our protocol changes. QuantumCharge provides strong security guarantees,
user-friendly performance, and high compatibility to ISO 15118 as well as legacy
systems, thus paving the way for PQC-secure charging.
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A Appendix

A.1 Tamarin Lemma for RS7

In Listing A.1, we give the Tamarin lemma for injective agreement under secure
algorithms for the CPS. The Commit CPS Install event in Line 3 denotes that
the CPS accepted a credential installation request by the client (identified by
its PCID). The CPS sends accepted requests to the eMSP who generates the
client’s certificate, including the client’s public key cc pub, and sent back to the
CPS. The CPS signs the response and sends it to the client (cf. Step 5 to 7
in Fig. 3). We require that for all such commit events, there is a corresponding
event Running EV Install, denoting that the EV identified by PCID previously
sent a certificate installation request (cf. Step 5 in Fig. 3) for the public contract
credential key cc pub (Line 4 to 6). In addition, there must not be an additional
commit event for the same public key cc pub by any certificate provisioning
service (Lines 7-9). This ensures that the Running EV Install event corresponds
to a unique Commit CPS Install event, i.e., that no replay attacks are possible.
We only require this property to hold if all algorithms used by the involved
parties either remain secure during the entire transaction or have been revoked
by the CPS before completing the transaction (Lines 10-14). This includes the
algorithm used for the provisioning certificate of the EV, as well as the signature
testifying its validity, the algorithm used for the contract credentials (cc pub),
and the algorithm used by the CPS’s certificate chain. Note that the CPS will
abort the transaction if it uses revoked algorithms. We model the insecurity of
an algorithm the same way as the corruption of an entity, that is, the private key
of a credential set for this algorithm and entity is given to the attacker, which
is denoted by a KeyReveal event.
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1 lemma au th i n s t a l l i n j a g r e emen t i n s e c a l g s CPS :
2 ” Al l CPS PCID cc pub #i .
3 Commit CPS Install (CPS,PCID, cc pub ) @i
4 ==> ( (Ex #j .
5 Running EV Insta l l (PCID,CPS, cc pub ) @j
6 & (#j<#i )
7 & not ( Ex CPS2 PCID2 #i2 .
8 Commit CPS Install (CPS2 ,PCID2 , cc pub ) @i2
9 & not(#i2=#i ) ) )

10 | (Ex en t i t y a lg #kr .
11 KeyReveal ( ent i ty , a l g ) @kr
12 & Honest ( ent i ty , a l g ) @i
13 & not (Ex #kr2 . E RevokedAlg (CPS, a lg ) @kr2
14 & kr2< i ) ) ) ”

Listing A.1. Injective Agreement under Insecure Algorithm Lemma in Tamarin.

References

1. Acharya, S., Dvorkin, Y., Karri, R.: Public plug-in electric vehicles+ grid data: Is a
new cyberattack vector viable? IEEE Trans. Smart Grid 11(6), 5099–5113 (2020)

2. Alnahawi, N., Schmitt, N., Wiesmaier, A., Heinemann, A., Graßmeyer, T.:
On the State of Crypto Agility. In: Tagungsband zum 18. Deutschen IT-
Sicherheitskongress, vol. 18, pp. 103–126. German Federal Office for Information
Security (BSI) (2022)

3. Alnahawi, N., et al.: On the state of post-quantum cryptography migration. In:
INFORMATIK 2021, pp. 907–941. Gesellschaft für Informatik, Bonn (2021)

4. Arm: a starter’s guide to arm processing power in automotive (2018). https://
community.arm.com/arm-community-blogs/b/embedded-blog/posts/a-starters-
guide-to-arm-processing-power-in-automotive

5. Atkins, D.: Requirements for Post-Quantum Cryptography on Embedded Devices
in the IoT (2021)

6. Aumasson, J.P., et al.: SPHINCS+ Submission to the NIST post-quantum project,
v.3 (2020)

7. Bai, S., et al.: CRYSTALS-Dilithium - Algorithm Specifications and Supporting
Documentation (2021)

8. Bao, K., Valev, H., Wagner, M., Schmeck, H.: A threat analysis of the vehicle-
to-grid charging protocol ISO 15118. Comput. Sci.-Res. Develop. 33(1–2), 3–12
(2018)

9. Barker, W., Polk, W., Souppaya, M.: Getting ready for post-quantum cryptogra-
phy: explore challenges associated with adoption and use of post-quantum cryp-
tographic algorithms. Tech. rep., NIST Publications (2020). https://doi.org/10.
6028/NIST.CSWP.05262020-draft

10. Bartel, M., Boyer, J., Fox, B., LaMacchia, B., Simon, E.: Signature Syntax and
Processing Version 1.1. W3C recommendation, World Wide Web Consortium
(W3C) (2013)

11. Basin, D., Sasse, R., Toro-Pozo, J.: Card brand mixup attack: bypassing the {PIN}
in {non-Visa} cards by using them for visa transactions. In: 30th USENIX Security
Symposium (USENIX Security 21), pp. 179–194 (2021)

https://community.arm.com/arm-community-blogs/b/embedded-blog/posts/a-starters-guide-to-arm-processing-power-in-automotive
https://community.arm.com/arm-community-blogs/b/embedded-blog/posts/a-starters-guide-to-arm-processing-power-in-automotive
https://community.arm.com/arm-community-blogs/b/embedded-blog/posts/a-starters-guide-to-arm-processing-power-in-automotive
https://csrc.nist.gov/CSRC/media/Events/third-pqc-standardization-conference/documents/accepted-papers/atkins-requirements-pqc-iot-pqc2021.pdf
https://csrc.nist.gov/CSRC/media/Events/third-pqc-standardization-conference/documents/accepted-papers/atkins-requirements-pqc-iot-pqc2021.pdf
https://sphincs.org/data/sphincs+-round3-specification.pdf
https://sphincs.org/data/sphincs+-round3-specification.pdf
https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf
https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf
https://doi.org/10.6028/NIST.CSWP.05262020-draft
https://doi.org/10.6028/NIST.CSWP.05262020-draft
https://www.w3.org/TR/xmldsig-core1/XML
https://www.w3.org/TR/xmldsig-core1/XML


108 D. Kern et al.

12. Basu, K., Soni, D., Nabeel, M., Karri, R.: Post-Quantum Cryptography - A
Hardware Evaluation Study. Cryptology ePrint Archive, Report 2019/047 (2019)

13. Bindel, N., McCarthy, S., Rahbari, H., Twardokus, G.: Suitability of 3rd Round
Signature Candidates for Vehicle-to-Vehicle Communication – Extended Abstract.
3rd PQC standardization conference, NIST (2021)

14. Bos, J., et al.: CRYSTALS – Kyber: A CCA-Secure Module-Lattice-Based KEM.
In: 2018 IEEE European Symposium on Security and Privacy (EuroS&P), pp.
353–367 (2018)

15. Bova, F., Goldfarb, A., Melko, R.G.: Commercial applications of quantum
computing. EPJ Quantum Technol. 8(1), 2(2021)

16. Bürstinghaus-Steinbach, K., Krauß, C., Niederhagen, R., Schneider, M.: Post-
Quantum TLS on Embedded Systems: Integrating and Evaluating Kyber and
SPHINCS+ with Mbed TLS. In: ACM Asia Conference on Computer and
Communications Security, pp. 841–852. ASIA CCS 2020, ACM (2020)

17. Campos, F., Meyer, M., Sanwald, S., Stöttinger, M., Wang, Y.:
cryptography for ECU security use cases. In: 17th escar Europe: embedded
security in cars (conference proceedings). Ruhr-Universität Bochum (2019)

18. Chang, Y.A., Chen, M.S., Wu, J.S., Yang, B.Y.: SSL/TLS for Embedded Systems.
In: IEEE Conference on Service-Oriented Computing and Applications, pp. 266-
270. IEEE (2014)

19. Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., Polk, T.: Internet
x.509 public key infrastructure certificate and certificate revocation list (CRL)
profile. RFC 5280, RFC Editor (5 2008). http://www.rfc-editor.org/rfc/rfc5280.
txt

20. Crockett, E., Paquin, C., Stebila, D.: post-quantum and hybrid key exchange and
authentication in TLS and SSH. Cryptology ePrint Archive, Report 2019/858
(2019)

21. Dang, V.B., Farahmand, F., Andrzejczak, M., Mohajerani, K., Nguyen, D.T.,
Gaj, K.: Implementation and Benchmarking of Round 2 Candidates in the NIST
Post-Quantum Cryptography Standardization Process Using Hardware and
Software/Hardware Co-design Approaches. Cryptology ePrint Archive, Report
2020/795 (2020)

22. Dolev, D., Yao, A.: On the security of public key protocols. IEEE Trans. Inf. The-
ory 29(2), 198–208 (1983)

23. European Telecommunications Standards Institute (ETSI): Migration strategies
and recommendations to quantum safe schemes. TR 103 619 V1.1.1 (2020)

24. Fouque, P.A., et al.: Fast-Fourier Lattice-based Compact Signatures over NTRU
Specification v1.2 (2020)
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Abstract. Private function evaluation (PFE) is a special case of secure
multiparty computation. In multiparty PFE, the party P1 holds its private
n-variable function f and private input x1, while other parties Pi (n ≥
i ≥ 2) hold their private input xi. All n participants can jointly eval-
uate the function f , and learn nothing from the interactions except the
result f(x1, ..., xn) (known to a subset or all of the parties). The exist-
ing multiparty PFE protocols (e.g., Mohassel et al. at Eurocrypt’13 and
Asiacrypt’14) are with round complexity O(g) (g is the circuit size) which
makes them extremely unpractical. In this work, we propose for the first
time constant-round multiparty PFE protocols that are secure against any
number of corrupted parties under the semi-honest security model. We
design our first construction from oblivious evaluation of switching net-
work (OSN) protocol (Mohassel et al. at Eurocrypt’13), which only needs
9 rounds of interaction and can achieve quasi-linear communication and
computation complexities (i.e., O(ng log(g))). Our second construction is
based on singly homomorphic encryption, which only needs 8 rounds of
interaction and can achieve linear complexities. The OSN-based construc-
tion also benefits from the design trick that it only relies on symmetric
operations (which makes it really efficient in actual executions). We fur-
ther optimize our constructions by half-gate technology.
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1 Introduction

SFE and PFE. Standard Secure Multiparty Computation, also known as Secure
FunctionEvaluation (SFE) [1,18], refers to the joint evaluation of a public function
f by n parties P1, ..., Pn using their private inputs xi, and at the end the parties
will learn nothing except the function output f(x1, ..., xn). Private Function Eval-
uation (PFE) is a special case of SFE [16]. In PFE, we assume that P1 has private
input data x1 and private function f (and the corresponding circuit Cf ). Other
parties Pi have private input data xi (i = 2, ..., n). Some public information on
the circuit is generally assumed, including its size, the lengths of its inputs and
outputs, etc. All parties can perform the joint evaluation of the function (i.e., the
circuit) and some of them (or all of them) would get the final outputs. No privacy
leakage shall occur in the interactions among the parties. Compared with SFE,
PFE provides more appealing privacy features, which might make it more mean-
ingful (than SFE) in real-world scenarios. For example, algorithm service providers
could use PFE to protect specific implementations of their algorithms from being
revealed to their users. In recent years, some special- or general-purpose PFE pro-
tocols have been designed or implemented [3,6,16,26]. The general-purpose PFE
protocols are mainly divided into two types.

UC-based PFE. A universal circuit [27] Ug takes as input a boolean circuit Cf

(containing at most g gates) and the party Pi takes private input xi, i = 1, ..., n.
The final output is f(x1, ..., xn). As universal circuit size is the main factor
that affects protocol efficiency, many attempts are made on optimizing the size
of the universal circuit [12,18,20]. Liu et al. [21] achieved at Crypto 2021 the
asymptotic circuit size 12g log(g), which is the current state-of-the-art.

Non-uc PFE: 2-party. The second type is to avoid the use of universal circuit.
In [16], Katz et al. constructed a constant-round 2-party PFE (2-PFE) protocol
with linear complexity under semi-honest security model based on garbled circuit
[33] and homomorphic encryption. In [13], Holz et al. partially optimized the 2-
PFE protocol [16] and implemented their protocol by using the ABY framework
[9]. In [23], Mohassel et al. proposed a PFE framework under semi-honest secu-
rity model, and constructed the oblivious evaluation of switching networks (OSN)
protocol to realize oblivious extended permutation (OEP). They got a constant-
round 2-PFE protocol based on the framework. The framework of [23] has later
been extended to the malicious security model in [24]. In [7], Bingöl et al. opti-
mized the 2-PFE protocol [23] by using half-gate technology [34] and removing
the extra overhead of the special OSN construction in the 2-PFE protocol, which
reduces the communication overhead by about 40%. Recently, Biçer et al. [6] pro-
posed a constant-round 2-PFE protocol under the semi-honest security model
based on asymmetric cryptographic primitives (i.e., Decisional Diffie-Hellman
assumption, DDH). Their approach introduces reusability feature, saying that
communication complexity could be significantly reduced from the second exe-
cution of the protocol. In [22], Liu et al. proposed the first constant-round 2-PFE
protocol under the malicious security model, which can be seen as a malicious
version of [6]. The protocol is also based on the DDH assumption and thereby
supports reusability feature.
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Non-uc PFE: multiparty. Compared with 2-party PFE (excluding the usage
of universal circuit), there are relatively few researches in multiparty PFE (n-
PFE). Most 2-party PFE protocols are based on standard garbled circuit [19]
which works only in the two-party setting. Although some work [23,24] proposed
PFE frameworks, they are constructed in a similar way to the GMW paradigm
[11], and if multiparty PFE protocols are constructed by using these frameworks,
multiple rounds of communication are required (linear in the size of the circuit).
This type of protocol usually has a good performance in the LAN settings,
but the performance in the WAN settings is usually relatively poor due to the
communication rounds. On the other hand, the communication on the wide area
network is closer to the real-world scenarios, and in [4] Beaver et al. pointed out
that the number of rounds is the most valuable resource. So it is valuable to
implement constant-round multiparty PFE protocols.

We observe that it seems possible to use distributed garbling technique in
PFE protocols. Some SFE protocols are constructed by using different dis-
tributed garbling fashion [4,5,8,30,31]. Note that the distributed garbling fash-
ion in these SFE protocols can not be directly used in PFE protocols. For exam-
ple, Ben-Efraim et al. constructed in [5] a constant-round multiparty SFE pro-
tocol based on the BMR protocol [4], where each party performs as both garbler
and evaluator. However, for PFE protocols based on garbled circuit, there exists
only one evaluator, i.e., the owner of the function f . In [8], Choi et al. pro-
posed a distributed garbling fashion under the semi-honest security model and
therein there is only one evaluator P1. The general idea is that all garblers Pi

(i = 2, ..., n) are responsible for jointly constructing the garbled circuit, and P1

only needs to evaluate the garbled circuit. This is secure in the SFE protocol
under the semi-honest security model. However, when we implement a similar
garbling fashion in a multiparty PFE protocol, we note that partial information
of the function f could be leaked once n−1 garblers were corrupted. We observe
that this problem can be solved as long as P1 also participates in constructing the
garbled circuit. In [30,31], Wang et al. proposed a similar distributed garbling
fashion under the malicious security model through the complex functionalities
FaAND and Fabit. In their protocols, the purpose of P1 participating in con-
structing the garbled circuit is to implement a malicious SFE protocol without
using the “cut-and-choose” technique, while in our protocol it is to ensure that
P1 can correctly evaluate the garbled circuit and the privacy of the function f .

Our Contribution. In this work, we mainly focus on the general-purpose n-
PFE protocols that are not based on universal circuit. We propose for the first
time constant-round multiparty PFE protocols under the semi-honest security
model that are secure for any number of corrupted parties based on the garbled
circuit in the distributed garbling fashion. We use OT protocols to achieve the
distributed garbling fashion which is a variant of the garbling scheme proposed
by Choi et al. in [8]. Our construction based on singly homomorphic encryption
only costs 8 rounds of communication and can achieve linear communication
and computation complexities. So the total communication overhead of this con-
struction is relatively small, but it will cost O(ng) asymmetric operations. Our
construction based on OSN protocol will cost 9 rounds of communication, and
the total communication overhead is relatively large, but it basically only relies
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on symmetric operations (faster in actual executions). Compared with other 2-
PFE protocols [23,34] that rely on symmetric operations, the communication
overhead of our OSN-based protocol is about 1.3× that of [23] and 2.3× that of
[34] at n = 3. In Sect. 4.2, we use a special half-gate technique to further optimize
our multiparty PFE protocols, the communication overhead at each non-output
gate and and each output gate is reduced by k bits and 2k bits respectively.
Section 5 will present detailed analysis of the concrete efficiency.

2 Notations and Preliminaries

We use k to denote computational security parameters, = to denote equality,
:= to denote assignment operator. lsb(s) represents the last bit of string s. We
use n to denote the number of participants, f the function, Cf the bool circuit
corresponding to f , g the number of gates in Cf , I the number of input wires
of Cf , O the number of output wires of Cf . [n] represents the set {1...n}, |S|
the size of set S, and C the set of all corrupted parties. H denotes the set of all
honest parties. H is a hash function modeled as a random oracle, l is a positive
integer. Usually in PFE protocols based on the garbled circuit, we assume that
the type of all bool gates in the circuit Cf is NAND to avoid the necessity of
hiding the gate functionality [6,7,16,22,23].

2.1 Outgoing Wires and Ingoing Wires

In the PFE protocols, all wires of the circuit are mainly divided into two sets
OW (outgoing wires) and IW (ingoing wires). The OW set contains all the input
wires of the circuit Cf and the output wires of non-output gates, and the IW
set contains the input wires of each gate in the circuit. We have M := |OW | =
I+g−O, N := |IW | = 2g. The mapping relationship π : {1, ...,M} → {1, ..., N}
between OW and IW can represent the topology of the entire circuit Cf . For
i ∈ OW and j ∈ IW , π(i) = j says that for “outgoing wire” OWi, there is
“ingoing wire” IWj connected to OWi. Note that since the fan-out of each gate
can be more than one, π is not a function. We have however that π−1 is a
function and π−1(j) = i says that for “ingoing wire” IWj , there is only one
“outgoing wire” OWi connected to it. Figure 1 demonstrates an example circuit
and its corresponding mapping.

2.2 Public Info

In PFE protocols, although the circuit Cf is the private data of P1, there do
exist some public information, including the following [6,16,23]:

(1) I, the number of input bits of the circuit Cf ;
(2) O, the number of output bits of the circuit Cf ;
(3) g, the number of gates in the circuit Cf ;
(4) the “ingoing wire” and “outgoing wire” indices that belong to each gate;
(5) the “outgoing wire” indices corresponding to each party’s input bits.
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Fig. 1. A circuit Cf of function f (left) and a mapping π of Cf (right)

For a gate i, we use IW2i−1 and IW2i to represent the “ingoing wire” correspond-
ing to its input wires, and OWI+i to represent the “outgoing wire” correspond-
ing to its output wire. {OW1, ..., OWI} is the “outgoing wire” set corresponding
to the input wires of the circuit. For convenience, we use (α, β, γ,NAND) to
represent a NAND gate in the SFE protocol. Herein, α and β represent the
indices of the input wires of the gate, and γ represents the index of the output
wire. (IWα, IWβ , OWγ , NAND) represents a NAND gate in the PFE protocol,
where IWα and IWβ represent the indices of the “ingoing wire” correspond-
ing to the input wires of the gate. OWγ represents the index of the “outgoing
wire” corresponding to the output wire of the gate, and also represents the
index of the “outgoing wire” which is connected to the “ingoing wire” IWγ , i.e.,
π−1(IWγ) = OWγ .

2.3 EP and OEP

A mapping π′ : {1, ..., N} → {1, ..., N} is a permutation if it is a bijection, while
for a mapping π : {1, ...,M} → {1, ..., N} (M ≤ N) is called an Extended per-
mutation (EP), and the specific definition of extended permutation is as follows.

Definition 1 (Extended Permutation). For positive integers M and N, we
call a mapping π : {1, ...,M} → {1, ..., N} (M ≤ N) an extended permutation
(EP) if for every j ∈ {1, ..., N}, there is exactly one i ∈ {1, ...,M} such that
π(i) = j. We often denote i by π−1(j).

The oblivious computation of an EP is oblivious extended computation
(OEP). The specific definition of a 2-OEP is as follows.

Definition 2 (2-OEP). P1 holds an extended permutation (EP) π :
{1, ...,M} → {1, ..., N} and a blinding vector �t = (t1, ..., tN ). P2 holds the input
vector �x = (x1, ..., xM ). Both parties perform the OEP protocol, and at the end
of the protocol P2 learns (xπ−1(1) ⊕ t1, ..., xπ−1(N) ⊕ tN ), P1 learns nothing. ti
and xi are both l-bit string.
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2.4 OSN

Here we briefly describe OSN protocol, and the Appendix A gives a detailed
description. In [23], Mohassel and Sadeghian implemented a constant-round 2-
OEP protocol called as oblivious evaluation of a switching network (OSN) proto-
col. The OSN protocol is mainly composed of two components: (1) use a switch-
ing network to implement extended permutation, and (2) apply OT protocols to
an oblivious evaluation of the switching network.

A switching network is a set of interconnected switches that takes N inputs
and a set of selection bits, and outputs N values. Each switch in the network
accepts two l-bit strings as inputs and outputs two l-bit strings. In order to imple-
ment the EP, the entire switching network is composed of (2N log(N) − N + 1)
switches. In order to obliviously evaluate the entire switching network, it needs
to cost a 1-out-of-2 OT at each switch. So the OSN protocol needs to cost
(2N log(N)− N + 1) OT and all OT protocols can be executed in parallel. The
protocol costs 3 rounds of communication. Figure 2(a) describes the correspond-
ing functionality F2−OSN . Executing the 2-OSN protocol n−1 times would lead
to n-OSN protocol (see Fig. 2(b)).

Fig. 2. Functionality F2−OSN and Functionality Fn−OSN

3 Overview

In this section, we will give a high-level overview of our constant-round multi-
party PFE protocols. Section 4 will say more details of our protocols.

In order to understand our protocols more clearly, we first review the con-
struction of garbled tables in the standard 2-party garbled circuit, similar to
the description in [29] by Wang et al. In a standard garbled circuit, each wire
α of the circuit is associated with a random “mask bit” λα known only to the
garbler P2. P2 generates a key label Lα,0 for each wire α that corresponds to
masked value “0” and Lα,1 = Lα,0 ⊕ Δ that corresponds to masked value “1”.
The masked value represents the result of the XOR operation between the truth
value and the mask bit on the wire, e.g., if the truth value on the wire α is
x, then the masked value Λα = x ⊕ λα. For a NAND gate (α, β, γ,NAND),
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the corresponding truth values and mask bits on the wires α, β, γ are x, y, z
and λα,λβ ,λγ respectively. When evaluating the gate, the evaluator P1 has the
masked value Λα = x ⊕ λα and the corresponding key label Lα,Λα

on wire α,
and the masked value Λβ = y ⊕ λβ and the corresponding key label Lβ,Λβ

on
wire β. P1 can not know the truth values x and y because P1 does not know
λα and λβ . P1 evaluates the row (2Λα + Λβ) of the garbled table and gets the
result (Λγ,ΛαΛβ

, Lγ,Λγ,ΛαΛβ
). Λγ,ΛαΛβ

= z ⊕ λγ where z = NAND(x, y), so P1

correctly evaluates the NAND gate and P1 does not know the truth value z on
the wire γ. Figure 3 gives the specific form of the garbled table.

Fig. 3. The garbled table of NAND gate in the standard garbled circuit.

Next we show how to construct the garbled table in distributed garbling
fashion. We only need to use OT protocols. Compared with [8], our implemen-
tation is clearer and easier to understand, and we also analyze the concrete
efficiency. Another difference is that P1 needs to participate in constructing the
garbled circuit, but P1 is not garbler which is also different from BMR cir-
cuit [5]. There are n participants, P1 is the evaluator and Pi (i = 2, ..., n) are
the garblers. All n parties must participate in constructing the garbled table
of each gate. The “mask bit” λα on each wire α in the circuit is no longer
held by the garbler P2 alone, but each of n parties holds a secret share of λα,

namely λi
α for Pi, where λα =

n⊕

i=1

λi
α. It can be realized by randomly select-

ing a bit by each participant. Each garbler Pi (i ≥ 2) generates for each
wire α a pair of key labels (Li

α,0, L
i
α,1) corresponding to the masked value

“0” and “1” and a random value Δi ∈ {0, 1}k, where Li
α,1 = Li

α,0 ⊕ Δi. For
Λγ,00 = (λα ∧ λβ) ⊕ 1 ⊕ λγ = (λ1

α ⊕ ... ⊕ λn
α)(λ

1
β ⊕ ... ⊕ λn

β) ⊕ 1 ⊕ λγ encrypted
by the garbled table, each garbler Pi only holds the secret shares of λα,λβ ,λγ .
Thus, Pi can not directly construct Λγ,00, but Pi can construct the secret share
of Λγ,00. For λα ∧ λβ = (λ1

α ⊕ ... ⊕ λn
α)(λ

1
β ⊕ ... ⊕ λn

β), Pi holds λi
αλi

β .
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For λi
α(λ

1
β ⊕ ... ⊕ λn

β), Pi can perform 1-out-of-2 OT protocol with each
party Pj (j ∈ [n], j �= i). The input of Pi in the OT protocol is λi

α and that
of Pj is (s, s ⊕ λj

β), where s is a random bit selected by Pj . Finally, Pi learns
s ⊕ λi

αλj
β , Pj learns s, and both parties get the secret shares of λi

αλj
β . The OT

implementing such function is called bitOT, and we describe the corresponding
functionality FbitOT in Fig. 4(a). So each of the n parties can learn a secret share
of λi

α(λ
1
β ⊕ ... ⊕ λn

β). For i, j ∈ [n], if each pair of parties (Pi, Pj) (i �= j) runs
the functionality FbitOT , each party can learn a secret share of λα ∧λβ and then
compute a secret share of Λγ,00. Λγ,00 Λγ,01,Λγ,10, and Λγ,11 have the following
relationship: Λγ,01 = Λγ,00 ⊕λα, Λγ,10 = Λγ,00 ⊕λβ , Λγ,11 = Λγ,00 ⊕λα ⊕λβ ⊕1.
For j ∈ [n], Pj can use the secret shares of λα ∧ λβ ,λα,λβ ,λγ to construct
the secret shares of Λγ,00,Λγ,01,Λγ,10,Λγ,11 locally. For the key label Li

γ,Λγ,00
=

Li
γ,0 ⊕ Λγ,00Δi encrypted by each garbler Pi (i ≥ 2) in its garbled table, where

Λγ,00Δi = (Λ1
γ,00 ⊕ ...⊕Λn

γ,00)Δi, each party can also construct a secret share of
Li

γ,Λγ,00
. After performing the functionality FbitOT , Pi holds Λi

γ,00 and computes
Λi

γ,00Δi.

Fig. 4. bitOT and stringOT

For j �= i, Pi can also perform a 1-out-of-2 OT protocol with Pj to get the
secret share of Λj

γ,00Δi. The input of Pj in the OT protocol is Λj
γ,00 and that

of Pi is (S, S ⊕ Δi), where S is a random bit string selected by Pi. Finally,
Pj learns S ⊕ Λj

γ,00Δi, Pi learns S, and both parties get the secret share of
Λj

γ,00Δi. The OT that implements such a function is called stringOT, and we
describe the corresponding functionality FstringOT in Fig. 4(b). After performing
the functionality FstringOT , n parties can learn the secret shares of Λγ,00Δi, so
they can compute the secret shares of Li

γ,Λγ,00
locally:

– Pi holds (Li
γ,Λγ,00

)i = Li
γ,0 ⊕ (Λγ,00Δi)i;

– Pj (j �= i) holds (Li
γ,Λγ,00

)j = (Λγ,00Δi)j .
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The operations of constructing the secret shares of Li
γ,Λγ,01

,Li
γ,Λγ,10

,Li
γ,Λγ,11

are same as Li
γ,Λγ,00

. Thus, n parties can learn the relevant secret shares through
the functionalities FbitOT and FstringOT , and Fig. 5 shows the garbled table of
each gate constructed by any garbler Pi (i ≥ 2) and secret shares held by P1.

Fig. 5. The secret shares of garbled table in n parties

Through above analysis, we can know the OT overhead of each party (as
sender and receiver) in constructing garbled table of each bool gate.

Cost. P1 needs to perform 2(n − 1) bitOT (to construct secret shares of
λαλβ), and 4(n − 1) stringOT (to construct secret shares of {Lj

γ,Λγ,uv
}j �=1,

u, v ∈ {0, 1}). Each garbler Pi (i ≥ 2) needs to perform 2(n − 1) bitOT (to
construct secret shares of λαλβ), and 8n − 12 stringOT (to construct secret
shares of {Lj

γ,Λγ,uv
}j �=1, u, v ∈ {0, 1}). We also have the following observations.

1. Li
γ,Λγ,00

= Li
γ,0 ⊕Λγ,00Δi, all n parties can learn the secret shares of Λγ,00Δi

by performing stringOT and thereby the secret shares of Li
γ,Λγ,00

.
2. Li

γ,Λγ,01
= Li

γ,0 ⊕ Λγ,01Δi = Li
γ,0 ⊕ (Λγ,00 ⊕ λα)Δi, on the basis of holding

secret shares of Λγ,00Δi, all n parties only need to learn secret shares of λαΔi

by performing stringOT, and can thereby learn the secret shares of Li
γ,Λγ,01

.
3. Li

γ,Λγ,10
= Li

γ,0 ⊕Λγ,10Δi = Li
γ,0 ⊕ (Λγ,00 ⊕λβ)Δi, on the basis of holding the

secret shares of Λγ,00Δi, all n parties only need to learn the secret shares of
λβΔi by performing stringOT, thereby learning the secret shares of Li

γ,Λγ,10
.

4. Li
γ,Λγ,11

= Li
γ,0 ⊕ Λγ,11Δi = Li

γ,0 ⊕ (Λγ,00 ⊕ λα ⊕ λβ ⊕ 1)Δi, on the basis of
holding the secret shares of Λγ,00Δi, λαΔi, λβΔi, each party can construct a
secret share of Li

γ,Λγ,11
locally.

Therefore, there is no need to cost extra stringOT for constructing the secret
shares of Li

γ,Λγ,11
. So P1 only needs to cost 3(n−1) stringOT, and Pi only needs

to cost 6n − 9 stringOT.
Through the above analysis, we know how the parties cooperate to construct

the garbled table of each bool gate in the n-party case. But this is not enough to
construct our multiparty PFE protocols, as the circuit Cf in the PFE protocols
is the private data of P1, and each garbler Pi does not know the topology of
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Cf . Namely, each bool gate is isolated and irrelevant for Pi. Pi can not correctly
construct the garbled table for each gate in the circuit Cf .

In Sect. 2.1, we already define the “outgoing wire” and “ingoing wire”, and the
mapping relationship π : {1, ...,M} → {1, ..., N} between OW and IW which
represents the topology of the circuit Cf . P1 can learn π according to the circuit
Cf . In order for all garblers Pi (i ≥ 2) to construct garbled tables correctly,
P1 needs to use π to help Pi connect all isolated gates in the topological order
of Cf . But this process should be oblivious to Pi, ensuring that Pi can learn
the necessary information to construct the garbled tables correctly and that the
information of π will not be leaked. Now, the OEP protocol could be used to
achieve such a goal.

More precisely, each garbler Pi generates a key label and a secret share of
mask bit for each “outging wire”, i.e., (Li

1,0, ..., L
i
M,0), (λ

i
1, ..., λ

i
M ), and uses them

as the inputs of the OEP protocol. The inputs of P1 are π and the blind vectors−→
T = (T i

1, ..., T
i
N ), �t = (ti1, ..., t

i
N ). After the OEP protocol, Pi learns the key

labels (Li
π−1(1),0 ⊕ T i

1, ..., L
i
π−1(N),0 ⊕ T i

N ) and (λi
π−1(1) ⊕ ti1, ..., λ

i
π−1(N) ⊕ tiN ) on

all “ingoing wires”, and we simplify them to (Li′
1,0, ..., L

i′
N,0), (λ

i′
1 , ..., λi′

N ). Pi com-
putes Li′

j,1 = Li′
j,0 ⊕ Δi, j ∈ [N ]. In this way, for each NAND gate gatej , Pi has

the key labels and secret shares of mask bit on IW2j−1, IW2j , OWI+j to con-
struct its own garbled table (after performing FbitOT and FstringOT ), and all gar-
bled tables can be constructed correctly, because all “outgoing wire” and “ingoing
wire” have been obliviously connected in topological order of Cf through OEP
protocol. In the evaluation stage, for a gate (IWα, IWβ , OWγ , NAND) where
π−1(IWα) = OWα, π−1(IWβ) = OWβ , π−1(IWγ) = OWγ , P1 initially has
(ΛOWα

, {Li
OWα,ΛOWα

}i�=1) on OWα and (ΛOWβ
, {Li

OWβ ,ΛOWβ
}i�=1) on OWβ . P1

computes (Λ
′
IWα

, {Li′

IWα,Λ
′
IWα

}i�=1) and (Λ
′
IWβ

, {Li′

IWβ ,Λ
′
IWβ

}i�=1) by performing

XOR operation between the key labels on OWα, OWβ and corresponding blind
values T according to the information of π. In fact, we have ΛOWα

= Λ
′
IWα

and
ΛOWβ

= Λ
′
IWβ

(see the details in Sect. 4.1). P1 evaluates the row (2Λ
′
IWα

+Λ
′
IWβ

)
of n−1 garbled tables for this gate, and then reconstructs the masked value ΛOWγ

and key labels {Li
OWγ ,ΛOWγ

}i�=1 of the output wire OWγ . P1 repeats the above
operations to evaluate the complete circuit according to the topology of Cf .

4 Main Protocol

Now we are ready to describe our protocols in detail. Section 4.1 will implement
the constant-round multiparty PFE protocol based on Fn−OSN . Section 4.2 will
further optimize our PFE protocol by using half-gate technology. In Sect. 4.3,
we will implement OEP protocol using singly homomorphic encryption.
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4.1 Multiparty Constant-Round PFE

Our protocol is mainly divided into the preprocessing stage and the online stage.
The detailed protocol description is shown in Fig. 6. For the step 4 in Fig. 6,
in order to construct the garbled tables in distributed garbling, each party
also needs to learn the secret share of the mask bit on each “ingoing wire”.
And in order to evaluate the garbled circuit correctly, for each “ingoing wire”
IWα ∈ [N ], we need to ensure λOWα

= λ
′
IWα

where π−1(IWα) = OWα. If
λOWα

�= λ
′
IWα

, when P1 evaluates the gate (IWα, IWβ , OWγ , NAND), P1 holds
(ΛOWα

, {Li
OWα,ΛOWα

}i�=1), computes {Li
IWα,ΛOWα

= Li
OWα,ΛOWα

⊕ T i
IWα

}i�=1

and Λ
′
IWα

. If ΛOWα
= Λ

′
IWα

, it means that the truth value x on OWα is not
equal to that on IWα because λOWα

�= λ
′
IWα

. If ΛOWα
�= Λ

′
IWα

, Λ
′
IWα

and
{Li

IWα,ΛOWα
}i�=1 will conflict when P1 evaluates the gabled table. So P1 needs

to compute (λ1′
1 , ..., λ1′

N ) as in step 4. Any n − 1 parties can not learn λOWα
and

λ
′
IWα

, so the operations in step 4 also ensure the privacy of the circuit topol-
ogy. Next, we will use Λα to represent the masked value on IWα and OWα. If
we use the OT protocols in our protocol to directly implement the distributed
garbling fashion proposed by Choi et al. [8], it will be more efficient. Because it
is not necessary for P1 to participate in constructing the garbled circuit, P1 also
does not need to generate the secret share of mask bit on each “outgoing wire”,

i.e., λOWα
=

n⊕

i=2

λi
OWα

. However, in order to ensure λOWα
= λ

′
IWα

, P1 needs to

ensure (
⊕

i≥2

tij) = 0 in the step 4. When all n− 1 garblers are corrupted, they can

learn λ
′
IWα

and λOWα
, then they will learn part of the information of π.

In step 5, n parties can learn the secret shares of ΛOWγ ,00, ΛOWγ ,01, ΛOWγ ,10,
ΛOWγ ,11 by performing a series of FbitOT . The secret shares held by each party
are as follows.

Secret shares held by P1 Secret shares held by Pi

Λ1
γ,00 = (λ

′
IWα

λ
′
IWβ

)1 ⊕ 1 ⊕ λ1
OWγ

Λi
γ,00 = (λ

′
IWα

λ
′
IWβ

)i ⊕ λi
OWγ

Λ1
γ,01 = Λ1

γ,00 ⊕ λ1′
IWα

Λi
γ,01 = Λi

γ,00 ⊕ λi′
IWα

Λ1
γ,10 = Λ1

γ,00 ⊕ λ1′
IWβ

Λi
γ,10 = Λi

γ,00 ⊕ λi′
IWβ

Λ1
γ,11 = Λ1

γ,00 ⊕ λ1′
IWα

⊕ λ1′
IWβ

⊕ 1 Λi
γ,11 = Λi

γ,00 ⊕ λi′
IWα

⊕ λi′
IWβ

Now n parties can learn the secret shares of Li
OWγ ,Λγ,00

, Li
OWγ ,Λγ,01

, Li
OWγ ,Λγ,10

,
Li

OWγ ,Λγ,11
by performing a series of FstringOT on the basis that each party holds

the secret share of Λγ,00. Pj (j �= i) holds the following secret shares:

(Li
OWγ ,Λγ,00

)j = (Λγ,00Δi)j

(Li
OWγ ,Λγ,01

)j = (Λγ,01Δi)j = (Λγ,00Δi)j ⊕ (λ
′
IWα

Δi)j

(Li
OWγ ,Λγ,10

)j = (Λγ,10Δi)j = (Λγ,00Δi)j ⊕ (λ
′
IWβ

Δi)j

(Li
OWγ ,Λγ,11

)j = (Λγ,11Δi)j = (Λγ,00Δi)j ⊕ (λ
′
IWα

Δi)j ⊕ (λ
′
IWβ

Δi)j

(1)
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Fig. 6. The PFE protocol
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And Pi holds the secret shares below:

(Li
OWγ ,Λγ,00

)i = Li
OWγ ,0 ⊕ (Λγ,00Δi)i

(Li
OWγ ,Λγ,01

)i = Li
OWγ ,0 ⊕ (Λγ,00Δi)i ⊕ (λ

′
IWα

Δi)i

(Li
OWγ ,Λγ,10

)i = Li
OWγ ,0 ⊕ (Λγ,00Δi)i ⊕ (λ

′
IWβ

Δi)i

(Li
OWγ ,Λγ,11

)1 = Li
OWγ ,0 ⊕ (Λγ,00Δi)i ⊕ (λ

′
IWα

Δi)i ⊕ (λ
′
IWβ

Δi)i ⊕ Δi

(2)

4.2 Optimize

This subsection is mainly divided into three parts. In the first part, we will briefly
introduce how to use the half-gate technique in a 2-PFE protocol based on the
standard garbled circuit. In the second part, we will introduce how to use the
half-gate technique in our protocol. In the third part, we will introduce some
other small optimizations.

Table 1. The half-gate form of the standard garbled circuit, where a, b, c represent
the type of gate (a = 0, b = 0, c = 1 means NAND gate (α, β, γ, NAND)). xα, xβ

represent the truth values on the input wires α and β. λα, λβ represent the permutation
bits on the input wires α and β. Only garbler knows λα = lsb(Lα,0), λβ = lsb(Lβ,0).
Lα,0, Lβ,0 correspond to the truth value 0. TGc ,TEc represent the garbled table of the
garbler half-gate and the evaluator half-gate, respectively. WGc,0, WEc,0 represent the
key label of the truth value 0 corresponding to the output wire of the garbler half-gate
and the evaluator half-gate. Lγ,0, Lγ,1 represent the key labels on the output wire γ.

Garbler half gate(λβ known to the
garbler)

Evaluator half gate(λβ ⊕ xβ known
to the evaluator)

Defines the half gate: Defines the half gate
fG(xα, λβ) := (a ⊕ xα)(b ⊕ λβ) ⊕ c fE(xα, xβ ⊕ λβ) := (a ⊕ xα)(λβ ⊕ xβ)

Computes: Computes:
TGc ← H(Lα,0) ⊕ H(Lα,1) ⊕ (λβ ⊕ b)Δ TEc ← H(Lβ,0) ⊕ H(Lβ,1) ⊕ Lα,a

WGc,0 ← H(Lα,λα) ⊕ fG(λα, λβ)Δ WEc,0 ← H(Lβ,λβ )

Lγ,0 = WGc,0 ⊕ WEc,0

Lγ,1 = Lγ,0 ⊕ Δ

Half-gate in 2-PFE. Table 1 shows the specific form of half-gate in the stan-
dard garbled circuit. For a gate (α, β, γ,NAND), the garbler P2 needs to use
the key labels Lα,λα

on Wireα and Lβ,λβ
on Wireβ to construct WGc,0, WEc,0.

Then P2 computes the key labels Lγ,0 and Lγ,1 on Wireγ . Thus, the key labels
on Wireγ are related to the key labels of the input wires of the gate, and P2

should first determine the key labels on Wireα and Wireβ before determining
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the key label on Wireγ . But the situation is different in the PFE protocol based
on garbled circuit. For the gate (IWα, IWβ , OWγ , NAND), P2 must first deter-
mine the key label on OWγ for performing the OEP protocol. In order to use
the half-gate technology in the PFE protocol, P2 can still construct the half-gate
garbled table in the form of Table 1, but the key labels Lγ,0, Lγ,1 are not the
true key labels on OWγ , when P2 sends the half-gate garbled table to P1, an
additional message needs to be attached. And after P1 evaluates the half-gate
garbled table, P1 also needs to use the additional message which is sent by P2 to
convert the result to the true key label on the OWγ . In this way, P1 can correctly
evaluate the entire garbled circuit. This is a special half gate in the PFE protocol
that can reduce the communication overhead of k bits instead of 2k bits in each
garbled table (k bits additional message will be sent by P2). Note that there is
no need to send an additional message for output gates of the circuit, because
the output wires of the circuit are not the “outgoing wire” and don’t need to
generate the key labels in advance. In [7], Bingöl and Biçer used the above idea
to construct the half-gate in their 2-PFE protocol. The additional message sent
by P2 is ψγ = WGc,0 ⊕ WEc,0 ⊕ LOWγ ,0. After evaluating the half-gate garbled
table, if the result obtained by P1 is Lγ,0 (corresponding to the truth value 0),
then P1 computes LOWγ ,0 = Lγ,0 ⊕ ψγ (corresponding to the truth value 0).
If the result obtained by P1 is Lγ,1 (corresponding to the truth value 1), then
P1 computes LOWγ ,1 = Lγ,1 ⊕ ψγ (corresponding to the truth value 1). So the
conversion guarantees the correctness of the result.

Table 2. The half-gate form of standard garbled circuit. Main difference from Table 1 is
that Lα,0, Lβ,0, Lγ,0 represent the masked value “0” on the corresponding wires instead
of the truth value 0. λ represents the mask bit on the wire, but it is still determined
by the garbler in the standard garbled circuit. λγ1 , λγ2 represent the mask bits on the
output wires of the garbler half-gate and the evaluator half-gate, respectively.

Garbler half gate Evaluator half gate
Computes: Computes:
TGc ← H(Lα,0) ⊕ H(Lα,1) ⊕ λβΔ TEc ← H(Lβ,0) ⊕ H(Lβ,1) ⊕ Lα,0 ⊕ λαΔ

WGc,0 ← H(Lα,0) ⊕ (λαλβ ⊕ λγ1 ⊕ 1)Δ WEc,0 ← H(Lβ,0) ⊕ λγ2Δ

λγ = λγ1 ⊕ λγ2

Lγ,0 = WGc,0 ⊕ WEc,0 = H(Lα,0) ⊕ H(Lβ,0) ⊕ (λαλβ ⊕ λγ ⊕ 1)Δ

Half-gate in Our Protocol. The half-gate construction in the 2-PFE protocol
can not be directly applied to our constant-round multiparty PFE protocol. To
understand the difference more clearly, we first use the symbolic representation
in our protocol to describe the half-gate construction in Table 1, the specific form
is shown in Table 2 (the gate type is NAND). In our PFE protocol, for a gate
(IWα, IWβ , OWγ , NAND), Pi constructs the following garbled table, i ≥ 2:
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Λα, Λβ ∈ {0, 1}
H(Li′

IWα,Λα
, Li′

IWβ ,Λβ
, γ, ΛαΛβ) ⊕ (Λi

γ,ΛαΛβ
, (Li

γ,Λγ,ΛαΛβ
)i, {(Lj

γ,Λγ,ΛαΛβ
)i}j �=i,1)

At first, the garbled table constructed by Pi is not a standard garbled table
format. The encrypted content of each row is a triple instead of a key label on
the output wire of the gate. Recently, Yang et al. proposed the idea of Partial
Half-Gate in their malicious SFE protocol [32]. Similar to their trick, we first
split each row in the garbled table into two parts:

Ai
ΛαΛβ

:= H(Li′
IWα,Λα

, Li′
IWβ ,Λβ

, γ, ΛαΛβ) ⊕ (Li
γ,Λγ,ΛαΛβ

)i,

Bi
ΛαΛβ

:= H
′
(Li′

IWα,Λα
, Li′

IWβ ,Λβ
, γ, ΛαΛβ) ⊕ (Λi

γ,ΛαΛβ
, {(Lj

γ,Λγ,ΛαΛβ
)i}j �=i,1).

Ai
ΛαΛβ

conforms to the form of the garbled table in the standard garbled circuit,
so we can try to construct the half-gate on it. Since λ

′
IWα

, λ
′
IWβ

, λOWγ
are

no longer held by P2 but shared between n parties, each garbler Pi can not
construct TGc

, TEc
, Lγ,0 in Table 2. But Pi can use the secret shares generated

by performing the functionalities FbitOT and FstringOT to construct the following
half-gate garbled table:

T i
Gc

:= H(Li′
IWα,0) ⊕ H(Li′

IWα,1) ⊕ (λ
′
IWβ

Δi)i,

T i
Ec

:= H(Li′
IWβ ,0) ⊕ H(Li′

IWβ ,1) ⊕ Li′
IWα,0 ⊕ (λ

′
IWα

Δi)i,

Li
γ,0 := H(Li′

IWα,0) ⊕ H(Li′
IWβ ,0) ⊕ ((λ

′
IWα

λ
′
IWβ ⊕ λOWγ

⊕ 1)Δi)i.

Pi (i ≥ 2) sends T i
Gc

, T i
Ec

, {Bi
ΛαΛβ

}Λα,Λβ∈{0,1}, ψi
γ = Li

γ,0⊕Li
OWγ ,0 to P1. When

evaluating the gate (IWα, IWβ , OWγ , NAND), P1 has the masked values Λα,
Λβ and the corresponding key labels {Li′

IWα,Λα
, Li′

IWβ ,Λβ
}i�=1. For i ≥ 2, P1 first

evaluates the half-gate part (we refer readers to read [34] in detail to learn the
evaluation of half-gate):

Eval(Λα, Λβ , Li′
IWα,Λα

, Li′
IWβ ,Λβ

)

= H(Li′
IWα,Λα

) ⊕ H(Li′
IWβ ,Λβ

) ⊕ ΛαT i
Gc

⊕ Λβ(T i
Ec

⊕ Li′
IWα,Λα

)

= H(Li′
IWα,0) ⊕ H(Li′

IWβ ,0) ⊕ Λα(λ
′
IWβ

Δi)i ⊕ Λβ(λ
′
IWα

Δi)i ⊕ ΛαΛβΔi.

P1 evaluates the {Bi
ΛαΛβ

}Λα,Λβ∈{0,1} part:
(Λi

γ,ΛαΛβ
, {(Lj

γ,Λγ,ΛαΛβ
)i}j �=i,1) = H

′
(Li′

IWα,Λα
, Li′

IWβ ,Λβ
, Λα, Λβ) ⊕ Bi

Λα,Λβ
.

P1 holds Λ1
γ,ΛαΛβ

and {(Li
γ,Λγ,ΛαΛβ

)1}i�=1. After evaluating the two portions, for
i ≥ 2, P1 combines the results:
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Λγ = Λγ,ΛαΛβ
=

n⊕

j=1

Λj
γ,ΛαΛβ

Eval(Λα, Λβ , Li′
IWα,Λα

, Li′
IWβ ,Λβ

) ⊕ (
n⊕

j �=i

(Li
γ,Λγ

)j)

= H(Li′
IWα,0) ⊕ H(Li′

IWβ ,0) ⊕ ((λ
′
IWα

λ
′
IWβ ⊕ λOWγ

⊕ 1)Δi)i ⊕ ΛγΔi

= Li
γ,0 ⊕ ΛγΔi

= Li
γ,Λγ

.

(3)

Correctness. We verify the correctness of Eq. (3). In Eq. (1), we describe the
secret share of {Li

OWγ ,Λγ,ΛαΛβ
}Λα,Λβ∈{0,1} held by Pj (j �= i). We can simplify

the four equations in Eq. (1):

Λα, Λβ ∈ {0, 1}, (Li
OWγ ,Λγ,ΛαΛβ

)j = (Λγ,00Δi)
j ⊕ Λα(λ

′
IWβ

Δi)
j ⊕ Λβ(λ

′
IWα

Δi)
j ,

Λγ,00 = λ
′
IWα

λ
′
IWβ

⊕ λOWγ ⊕ 1.

To use half-gate technique, we need to replace Li
OWγ ,Λγ,ΛαΛβ

with Li
γ,Λγ,ΛαΛβ

.

We set Si := λ
′
IWα

Δi, Ri := λ
′
IWβ

Δi, Vi := Λγ,00Δi. The final result is as
follows:

(Li
γ,Λγ,ΛαΛβ

)j = V j
i ⊕ ΛαRj

i ⊕ ΛβSj
i .

For ΛγΔi, there is the following equation:

ΛγΔi

= ((Λα ⊕ λ
′
IWα

)(Λβ ⊕ λ
′
IWβ

) ⊕ λOWγ
⊕ 1)Δi

= ΛαΛβΔi ⊕ Λαλ
′
IWβ

Δi ⊕ Λβλ
′
IWα

Δi ⊕ Λγ,00Δi

= ΛαΛβΔi ⊕ ΛαRi
i ⊕ ΛβSi

i ⊕ V i
i ⊕

n⊕

j �=i

(ΛαRj
i ⊕ ΛβSj

i ⊕ V j
i )

= ΛαΛβΔi ⊕ ΛαRi
i ⊕ ΛβSi

i ⊕ V i
i ⊕

n⊕

j �=i

((Li
γ,Λγ

)j).

For
n⊕

j �=i

((Li
γ,Λγ

)j), there is the following equation:

n⊕

j �=i

((Li
γ,Λγ

)j) = ΛγΔi ⊕ ΛαΛβΔi ⊕ ΛαRi
i ⊕ ΛβSi

i ⊕ V i
i . (4)
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We can verify Eq. (3) by replacing
n⊕

j �=i

((Li
γ,Λγ

)j) in Eq. (3) with Eq. (4). Finally,

P1 learns the key label on “outgoing wire” OWγ by computing Li
OWγ ,Λγ

=
Li

γ,Λγ
⊕ ψi

γ .

Other Optimizations. For the mask bit on the input wire Ii, Pi can randomly
select the secret share λi

Ii
and Pj (j �= i) can set λj

Ii
= 0, so Pi can generate

masked value ΛIi
locally, thus saving 1 round of communication. In addition,

the garblers Pi (i ≥ 2) can make lsb(Δi) = 1, so that the parties do not need to
encrypt the secret share of the masked value in the garbled table, but send an
extra bit lsb(Li

γ,0) (see Fig. 7 for detailed description). A similar idea is used in
[17,31].

In Fig. 7, we describe the optimized protocol in detail. The final protocol
is also divided into the preprocessing stage and the online stage. Our proto-
col

∏
n−PFE is secure for any corrupted parties under the semi-honest security

model. In Appendix B, we prove the following theorem:

Theorem 1. If H is modeled as a random oracle, the n-PFE protocol in Fig. 7 is
secure in the (Fn−OSN ,FbitOT ,FstringOT )-hybrid model against an semi-honest
adversary corrupting up to n − 1 parties.

4.3 HE-OEP

In addition to using the OSN protocol to implement OEP (OSN-OEP), we can
also use singly homomorphic encryption [10,25] to implement OEP (HE-OEP).
The main difference is step 4 of Fig. 7. In the construction based on singly homo-
morphic encryption, Pi (i ≥ 2) needs to generate a public key pki, and then uses
pki to encrypt the inputs of the OEP protocol. For key labels, Pi sends the
following messages to P1:

pki, Encpki
(Li

1,0), ..., Encpki
(Li

M,0).

P1 uses the information π to perform extended permutation on the messages sent
by Pi. After performing extended permutation, P1 uses the property of singly
homomorphic encryption to blind the results and sends the blinded results to
Pi:

Encpki
(Li

π−1(1),0 + T i
1), ..., Encpki

(Li
π−1(N),0 + T i

N ).
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Fig. 7. The optimized PFE protocol
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Pi decrypts the ciphertexts sent by P1 to learn (Li′
1,0, ..., L

i′
N,0). This process

completes the OEP. For λi
j (j ∈ [M ]), the process is same as Li

j,0. In fact, Li
j,0

and λi
j can be concatenated into one element as they are being encrypted, hence

avoiding additional costs. Our protocol based on singly homomorphic encryption
can achieve linear communication and computation complexities. In the OEP
stage, HE-OEP only costs 2 rounds of communication, compared with the OSN-
OEP costs 3 rounds of communication.

5 Efficiency Analysis

In this section, we will analyze the concrete efficiency of the optimized protocol
in Fig. 7. We use OT (Pi, Pj) to represent the OT protocol where Pi is the sender
and Pj is the receiver, and all OT protocols in our protocol are optimized by
using OT extension [2,15,19]. The authors of [23] construct a n-PFE protocol
based on their framework which needs to use O(n2g+ g log g) invocations of OT
(O(g log g) for offline and O(n2g) for online) and the round complexity is O(g).
At online stage, their protocol needs to use 1-out-of-4 OT protocols, and the
OT protocols can not be optimized by using OT extension because they can not
execute in parallel. Our OSN-based protocol has a similar asymptotic complexity,
but actually the communication overhead is higher because the garbled tables
need to be sent. We also compare the 2-PFE protocols that rely on symmetric
operations with our OSN-based n-PFE protocol in Table 3. Table 4 shows the
comparison of specific communication overhead, and the overhead of our protocol
is about 1.3× that of [23] and 2.3× that of [7] for n = 3.

5.1 Communication Complexity

We omit the communication overhead of exchanging masked value among n
parties and that of Pi (i ≥ 2) sending the key labels of the input wires to P1.
We also omit the communication overhead of the seed OT in the OT extension.

Table 3. Complexities comparison with the 2-PFE protocols that basically only rely
on symmetric operations. We assume that Pi (i ≥ 2) needs to send ψi

γ at each gate
and omit the overhead of bit bi

γ in our protocol.

Protocols Communication Computation Rounds

MS13-2Party [23] (10N log(N) + 4N + 5)k (4N log(N) + 2.5N + 2)
Sym.+O(k) Asym.

6

BBKL19-2Party [7] (6N log(N)+ 0.5N +3)k (4N log(N) + N + 2)
Sym.+O(k) Asym.

6

Ours-OSN-nParty ((6N log(N)− N + 3)k+
4N log(N) + 2 + 2gn+
14gk(n − 1))(n − 1)

(4N log(N) + 2 + g +
8gn)(n − 1) Sym.
+O(k) Asym.

9
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Table 4. Comparison of specific communication overhead, k = 128 bits

Num of gates
Protocols 210 212 214 216 218 220

MS13-2Party [23] 3.56 MB 16.75 MB 77.00 MB 348.00 MB 1.52 GB 6.69 GB

BBKL19-2Party [7] 2.08 MB 9.81 MB 45.25 MB 205.00 MB 916.00 MB 3.95 GB

Ours-OSN (n = 3) 4.96 MB 22.86 MB 103.49 MB 462.22 MB 1.99 GB 8.73 GB

Fn−OSN stage. i ≥ 2, Pi → P1 : N(k + 1) bits. The inputs of Pi in the
functionality Fn−OSN contain N bit strings, and each string is of length k+1. For
OT (Pi, P1), P1 → Pi : (2N log(N)−N +1)k bits. Pi → P1 : (4N log(N)− 2N +
2)(k+1) bits. In the functionality Fn−OSN , the total OT overhead is 2N log(N)−
N + 1 bits. P1 → Pi : N(k + 1) bits. P1 sends the final output of the Fn−OSN

to Pi. The total communication overhead of our protocol is ((6N log(N) − N +
3)k + 4N log(N) + 2)(n − 1) bits. If we use the singly homomorphic encryption
to implement OEP, the communication complexity of this stage is O(ng).

FbitOT and FstringOT stage. In this stage, our protocol will cost gn(n − 1)
FbitOT and 3g(n−1)2 FstringOT . In addition to the OT extension, for FstringOT

we can also use a variant of OT (i.e., correlated OT [2,32]) for higher efficiency.

Garbled table. i ≥ 2, Pi → P1 : (4nk−5k+1)(g−O)+(4nk−6k+1)O bits. For
each non-output gate, Pi sends T i

Gc
, T i

Ec
, ψi

γ , bi
γ = lsb(Li

γ,0), {Bi
ΛαΛβ

}Λα,Λβ∈{0,1}
to P1 (in fact, only one garbler needs to send bγ). For each output gate, ψi

γ does
not need to be sent by Pi.

Note that the main communication overhead occurs in the Fn−OSN stage.
When the network bandwidth is the bottleneck, we can use singly homomorphic
encryption to implement OEP which will reduce the communication overhead,
but it needs to cost O(ng) asymmetric operations, the running time is not nec-
essarily faster than the construction based on OSN protocol [14,23].

5.2 Computation Complexity

For the OT extension, O(k) asymmetric operations need to be performed, and
each OT in the OT extension costs 2 symmetric operations.

Fn−OSN stage: (4N log(N)− 2N +2)(n− 1) symmetric operations. For each 2-
OSN, this stage needs to cost 2N log(N)−N +1 OTs. Note that if we implement
the OEP by using singly homomorphic encryption, this stage will cost O(ng)
asymmetric operations.

FbitOT and FstringOT stage: 2gn(n − 1) + 6g(n − 1)2 symmetric operations. In
this stage, our protocol will cost gn(n − 1) FbitOT and 3g(n − 1)2 FstringOT .

Garbled table: 8g(n − 1) symmetric operations. We can know from T i
Gc

, T i
Ec

,
Li

γ,0, {Bi
ΛαΛβ

}Λα,Λβ∈{0,1} that Pi needs to cost 8 symmetric operations at each
gate.
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Computation. P1 : 3(n− 1)g symmetric operations. P1 needs to evaluate n− 1
garbled tables when evaluating each gate, and the evaluation of each garbled
table needs to cost 3 symmetric operations.

5.3 Round Complexity

We will analyze the total number of rounds in the preprocessing stage and the
online stage separately. It cost 2 rounds of communication in the OT extension.

Round(pre): 6 or 7. The functionality Fn−OSN costs 3 rounds of communica-
tion. But if we implement the OEP by using singly homomorphic encryption, it
just costs 2 rounds of communication. A series of FbitOT can run in parallel, and
a series of FstringOT also can run in parallel. But FbitOT can not run in parallel
with FstringOT , because our n-PFE protocol needs to use the result of FbitOT

when running the functionality FstringOT . So FbitOT and FstringOT need cost 4
rounds of communication in total.

Round(online): 2. It takes 1 round of communication to exchange masked
value between n parties and Pi (i ≥ 2) sends the garbled tables and the secret
share λi

O to P1. It takes 1 round of communication for Pi (i ≥ 2) to send the
key labels Li

I,ΛI
to P1.

So our protocols cost 8 or 9 rounds of communication in total.
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A OSN Protocol

A.1 Switching Network and Permutation Network

A switching network SN is a set of interconnected switches that take N inputs
and a set of selection bits, and output N values. Each switch in the network
accepts two l-bit strings as inputs and outputs two l-bit strings. A switch with
two selection bits is called a 2-switch (2-SW), and with one selection bit is called
a 1-switch (1-SW). There are 4 exchange types in 2-switch. If the input of a 2-
switch is (x0, x1), and the selection bits are (s0, s1), then its outputs are y0 = xs0 ,
y1 = xs1 . In the OSN protocol, only one 1-switch (two exchange types) needs to
be used.

Definition 3 (Mapping for a Switching Network). The mapping π :
{1...N} → {1...N} corresponding to a switching network SN is defined such
that π(i) = j if and only if after evaluation of SN on the N inputs, the value of
the input wire i is assigned to the output wire j.
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A permutation network is a special switching network, and its corresponding
mapping is a permutation, so only one 1-switch needs to be used in the per-
mutation network. When the input of a switch is (x0, x1), the corresponding
output has two types, i.e., (x0, x1) or (x1, x0). An optimal permutation network
is proposed in [28]. For any N = 2l inputs, there is a permutation network with
N log(N) − N + 1 switches and the depth is 2 log(N) − 1.

A.2 OSN

In [23], Mohassel and Sadeghian implemented a constant-round 2-OEP protocol
using a combination of switching network and permutation network (they called
the oblivious evaluation of a switching network (OSN) protocol). We need to uti-
lize the OSN protocol, so here we introduce the implementation of their protocol.
We also refer the readers to [23] for the details of the OSN. The OSN protocol is
mainly composed of two components, (1) implements extended permutation by
using SN and PN, and (2) oblivious evaluation of switching networks by using
OT protocol.

Construct EP with SN and PN. For a switching network, N inputs can
finally get N outputs, but for extended permutation π : {1...M} → {1...N}, M
inputs will finally get N outputs (N ≥ M). To simulate an extended permutation
using a switching network, in addition to M real inputs of EP, N − M dummy
values are required. In [23], the construction of the entire switching network is
divided into three components: (1) dummy value placement, (2) replication, (3)
permutation. Figure 8 shows a concrete example.

Fig. 8. A Switching Network for EP π

Dummy value placement component takes M real values and N − M
dummy values as inputs. For each real input that is mapped to k different outputs
according to π, the component outputs the real value followed by k − 1 dummy
values. The process is similar to permuting N inputs, so it can be implemented
using a permutation network.
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Replication component takes the outputs of the previous component as
inputs. If the input is the real value, it will be output directly, and the dummy
value will be replaced with the real value before it. Because only two exchange
types are required, 1-switch can be used. For (x0, x1), possible output is (x0, x1)
or (x0, x0). When outputting (x0, x1), it means that both values are real values.
When outputting (x0, x0), it means that x0 is the real value, and x1 is the dummy
value. This phase can be implemented using N − 1 switches.

Permutation component takes the outputs of the replication component
as inputs, and N elements are placed in the final position according to the
mapping relationship π. This component can also be implemented using a per-
mutation network.

The first and third components can be implemented using a permutation
network, so the number of switches required is 2(N log(N)−N +1). The second
component requires N − 1 switches. Since 1-switch can be used in all three
components, a total of (2N log(N)−N+1) 1-switches are required to implement
the switching network.

Oblivious Evaluation of Switching Networks (OSN). Next, we will show
how 2-OEP can be achieved by computing the entire switching network. P1 has
a mapping π, so P1 can get the selection bit of each switch in the switching
network through π, and P1 also has a blind vector �t, P2 has the input vector
�x. Finally, P2 learns the output (xπ−1(1) ⊕ t1...xπ−1(N) ⊕ tN ) of the switching
network. In Fig. 9, we give two examples of 1-switch: Fig. 9(a) is mainly used
for the dummy value component and permutation component, and Fig. 9(b) is
used for the replication component. We take Fig. 9(a) as an example to explain,
assuming that the input wires of a switch are wi and wj , the output wires are
wk and wl, P2 generates random values on all four wires ri,rj ,rk,rl. P1 has
(xi ⊕ ri),(xj ⊕ rj) and the selection bit s0 of this switch. After evaluating the
switch, P1 learns y1,y2, this can be implemented through the OT protocol where
P1 as the receiver inputs the selection bit s0 and P2 as the sender inputs the
two values of the Γ column in Fig. 9(a). For example, when s0 is 0, P1 will get
(ri ⊕ rk, rj ⊕ rl), then P1 uses (xi ⊕ ri) and (ri ⊕ rk) to perform XOR operation
to get (xi ⊕rk), and uses (xj ⊕rj) and (rj ⊕rl) to perform the XOR operation to
get (xj ⊕rl), which completes the evaluation of a switch. The evaluation process
for the entire switching network is as follows. In the offline stage, P2 generates a
random value for each wire in the switching network, P1 and P2 execute a series
of parallel 1-out-of-2 OT protocols. In the online stage, P2 blinds its own input
vector �x using the random values on the input wires of the switching network that
are generated at the offline stage, and then sends the blinded result to P1. Now
P1 has the necessary information to evaluate the entire switching network, and
uses the XOR operation to evaluate the entire switching network locally. Finally,
P1 uses the blinding vector �t to blind the output of the switching network and
sends the blinded result to P2, P2 unblinds the result using random values on the
output wires of the switching network generated at the offline stage and learns
the final result (xπ−1(1) ⊕ t1...xπ−1(N) ⊕ tN ).
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Fig. 9. 1-Switch

From the above description, we can know that the OSN protocol is constant-
round. The total number of rounds is 3, because the OT protocol costs 2 rounds,
and it also costs 1 round for P1 to send the result to P2. Note that 1 round of
communication in which P2 sends the blinded vector �x to P1 can be incorporated
into the OT protocol. The evaluation of each switch needs to cost 1 OT, and the
entire OSN protocol needs to cost (2N log(N)−N +1) 1-out-of-2 OT protocols.

B Security Proof

Theorem 2. If H is modeled as a random oracle, the n-PFE protocol in Fig. 7
is secure in the (Fn−OSN ,FbitOT ,FstringOT )-hybrid model against a semi-honest
adversary corrupting up to n − 1 parties.

Proof. We will divide into two cases: P1 ∈ H, and P1 ∈ C and P2 ∈ H. Note
that the case of P1 ∈ C and Pi ∈ H (i ≥ 3) is similar to the second case.

P1 ∈ H. Let A denote an adversary that corrupts {Pi}i∈C . We construct a
simulator S to simulate A and play the role of {Pi}i∈C in an ideal world involving
an ideal functionality Fn−PFE evaluating f . S is defined as follows:

1-5 S acts as honest {Pi}i∈H and plays the functionalities Fn−OSN , FbitOT

and FstringOT , recording all values sent to and received from A .
6 S interacts with A acting as honest {Pi}i∈H, using input {xIi

:= 0}i∈H
for input wire Ii, S sends ΛIi

= xIi
⊕ λi

Ii
to A. For each i ∈ C and each

input wire Ii, S receives ΛIi
from A and computes xIi

= ΛIi
⊕ λi

Ii
.



Constant-Round Multiparty PFE with (Quasi-)Linear Complexities 139

7 S interacts with A acting as honest {Pi}i∈H, for each i ∈ C and all input
wires I, S receives Li

I,ΛI
from A.

8-10 S interacts with A acting as honest {Pi}i∈H. For each i ∈ C, S sends
(input, xIi

) on behalf of Pi to Fn−PFE .

Next we will show that the joint distribution of the outputs of A and honest
{Pi}i∈H in the real world is indistinguishable from the joint distribution of the
outputs of S and {Pi}i∈H in the ideal world.

Hybrid1. This is the hybrid-world protocol. S plays the role of honest {Pi}i∈H,
using real input {xIi

}i∈H instead of making {xIi
:= 0}i∈H, and plays the role

of Fn−OSN , FbitOT , FstringOT .
Hybrid2. Same as Hybrid1, except in step 6, for each i ∈ C, for each input

wire Ii, S receives ΛIi
from A, and computes xIi

= ΛIi
⊕ λi

Ii
. Then S sends

(input, xIi
) on behalf of Pi to Fn−PFE . So P1 outputs F(xI1 , ...xIn

).
The distributions on the view of A in Hybrid1 and Hybrid2 are identical.
P1 will generate the same outputs in both Hybrid1 and Hybrid2 under the
semi-honest security model.

Hybrid3. Same as Hybrid2, except in step 6, for each i ∈ H, for each input
wire Ii, S uses {xIi

:= 0}i∈H as input.
The distributions on the view of A in Hybrid2 and Hybrid3 are iden- tical,
because {λi

Ii
}i∈H are uniform, so {ΛIi

}i∈H are uniform for A.

Note that Hybrid1 is the real-world execution and Hybrid3 is the ideal-
word execution. This completes the proof for honest P1.

P1 ∈ C, P2 ∈ H. Let A denote an adversary that corrupts {Pi}i∈C . We
construct a simulator S to simulate A and play the role of {Pi}i∈C in an ideal
world involving an ideal functionality Fn−PFE evaluating f . S is defined as
follows:

1-4 S acts as honest {Pi}i∈H and plays the functionality Fn−OSN , recording
all values sent to and received from A .

5 S acts as honest {Pi}i∈H and plays the functionalities FbitOT and
FstringOT , and sends the garbled tables to A.

6 S interacts with A acting as honest {Pi}i∈H, using input {xIi
:= 0}i∈H

for input wire Ii, S sends ΛIi
= xIi

⊕ λi
Ii

to A. For each i ∈ C, for each
input wire Ii, S receives ΛIi

from A, and computes xIi
= ΛIi

⊕ λi
Ii

.
7 S interacts with A acting as honest {Pi}i∈H, for each i ∈ H, for all input

wires I, S sends Li
I,ΛI

to A.
8-10 S interacts with A acting as honest {Pi}i∈H. For each i ∈ C, S sends

(input, xIi
) computed in step 6 on behalf of Pi to Fn−PFE .

Next we will show that the joint distribution of the outputs of A and honest
{Pi}i∈H in the real world is indistinguishable from the joint distribution of the
outputs of S and {Pi}i∈H in the ideal world.
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Hybrid1. Same as the hybrid-word protocol. S plays the roles of honest {Pi}i∈H,
using real input {xIi

}i∈H instead of making {xIi
:= 0}i∈H, and plays the roles

of Fn−OSN , FbitOT , FstringOT .
Hybrid2. Same as Hybrid1, except in step 6, for each i ∈ C, for each input

wire Ii, S receives ΛIi
from A, and computes xIi

= ΛIi
⊕ λi

Ii
, and S sends

(input, xIi
) on behalf of Pi to Fn−PFE .

The distributions on the view of A in Hybrid1 and Hybrid2 are iden-tical.
Hybrid3. Same as Hybrid2, except in step 6, for each i ∈ H, for each input

wire Ii, S uses {xIi
:= 0}i∈H as input.

It follows from the security of garbling with H modeled as a random oracle
and {λi

Ii
}i∈H are uniform that the distributions on the view of A in Hybrid3

and Hybrid2 are identical.

Note that Hybrid1 is the real-world execution and Hybrid3 is the ideal-
word execution. This completes the proof for corrupted P1.
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Abstract. Private Set Intersection (PSI) enables two parties to learn
the intersection of their input sets without exposing other items that
are not within the intersection. However, real-world applications often
require more complex computations than just obtaining the intersection.
In this paper, we consider the setting where each item in the input set
has an associated payload, and the desired output is a subset of the
intersection obtained by evaluating certain conditions over the payload.
We call this new primitive Predicate Private Set Intersection (PPSI) and
show its applicability in many different scenarios. While a PPSI protocol
can be obtained by combining existing circuit-PSI and generic circuit-
based secure computation, this naive approach is not efficient. Therefore,
we also provide a specially designed PPSI protocol with linear complexity
and good concrete efficiency. We implemented the protocol and evaluated
it with extensive experiments. The results validated the efficacy of our
PPSI protocol.

Keywords: Private set intersection · Secure comparison · Secure
two-party computation

1 Introduction

Private set intersection (PSI) enables two parties C and S who have private
input sets x and y to get items that they have in common (i.e., x ∩ y) without
revealing other information. This technique can be applied to many applications,
such as matching in mobile apps [7], threat detection [30] and document search
[11]. Due to its versatility, many PSI protocols have been investigated [5–7,19].
Recent research on PSI focuses on improving its efficiency and the currently most
efficient PSI protocols are KKRT [19] and CM20 [5]. Even though PSI can solve
many real-world problems, in many other scenarios, a standard PSI protocol is
not sufficient because the application’s need may not be simply the intersection
of two sets. For example:

Advertising Campaigns. A Transaction Data Provider (TP) has a database
of the ids of customers and the amount they spend on transactions, denoted as
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Tibouchi and X. Wang (Eds.): ACNS 2023, LNCS 13906, pp. 143–166, 2023.
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(id, spending) [22]. An Advertisement Company (AdC) only has a database of
customer ids of which some have watched its advertisements. Rather than only
privately computing the intersection of customer ids to analyze the advertisement
conversion rates, AdC also wants to find among those click-through customers,
the high-value customers who spent above a threshold. This would allow the
AdC to better negotiate the commission and improve its advertisement strategy.
In this application, TP’s database needs to be kept private, and AdC’s customers
and the threshold are also private information since they relate to the company’s
commercial confidentiality.

Database Join. Join is a fundamental operation in databases. With the preva-
lence of distributed databases and vertical federated learning [24], secure join
over distributed data tables becomes notable [20,26]. Specifically, two database
owners each owns a table X and Y , respectively. They want to perform join
operations on the primary keys of X and Y to align data in the two tables and
filter the results with certain conditions. If we use Xj to denote the j-th column
of the table X, an example of an SQL-style join query is given as:

select X1 from X inner join Y on X1 = Y1 where Y2 > 23.3

As we can see, in those two applications, we are not interested in outputting
the intersection set, but rather a subset of the intersection that meets certain
conditions specified as a predicate over the payload associated with the ele-
ment in the intersection. In the first example, AdC wants to find the customers
who have watched the advertisement and also made a purchase on TP, and
the amount of purchase is higher than a pre-defined threshold. Similarly, in
the second example, X1 and Y1 can be seen as two sets, and items in Y2 are
corresponding payloads. The intended output is the set of items in Y , whose
primary keys are also in X1 and payloads satisfy the predicate Y2 > 23.3 (or
other arbitrary predicates). Consequently, existing PSI/PSI with payload com-
putation works [3,5–7,19,21,31,40] are not enough to meet the requirements of
the above-mentioned applications.

Motivated by this, we bring up a new primitive called Predicate Private Set
Intersection (PPSI). PPSI allows each item on an input set of one party to have
an associated payload, and another party can define a predicate over the payload.
Then, only those items that are in the intersection of the input sets and whose cor-
responding payloads meet the constraints will be revealed. A naive way to obtain
a PPSI protocol is to use circuit-PSI proposed in [3,31]. In a circuit-PSI protocol,
two parties will receive shares of the intersection set instead of learning the inter-
section in clear. Then, we can add a predicate computation on the payloads and
then feed the computation results and the shares to a circuit, thus achieving the
desired functionality of PPSI. However, this naive solution is not efficient. There-
fore we need a new design rather than trivially applying circuit-PSI.

Our contribution in this paper can be summarized as follows.

– We present the definition of Predicate Private Set Intersection (PPSI) and a
concrete construction of the protocol. To avoid costly circuit-based compu-
tation, we design a sub-protocol, which we call predicate masking. At a high
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level, for two items each from a different input set, the two parties jointly
evaluate the predicate over the payload, if the result is true, the same ran-
dom value will be added to the two set items; if the evaluation result is false,
different random values will be added to the two set items. Hence, after that,
the two parties only need to perform a plain PSI protocol (e.g., KKRT &
CM20) and the intersection computed will contain only the items that meet
the condition.

– We demonstrate PPSI with two exemplar applications. Given the applica-
tions, we can apply further optimizations. We use a batched secure compari-
son protocol (BatchComp) as a building block to achieve better efficiency for
predicate computation. This sub-protocol may be of independent interest in
its own right.

– We evaluate the performance of our PPSI protocol in two applications with
extensive experiments. The experimental results demonstrate that PPSI is
practical and scalable. We also compare our protocols with the state-of-the-
art circuit-PSI protocol CGS [3], and PPSI protocol is 3.9 ∼ 10× faster and
about 3.1× more communication efficient under different network settings.

The rest of the paper is organized as follows. In Sect. 2, we introduce PSI and
its various variants. In Sect. 3, we formally define PPSI and its goals in security
and efficiency. Sect. 4 and Sect. 5 present the technical foundation and details of
our PPSI protocol, respectively. Sect. 6 theoretically proves the security of PPSI
and Sect. 7 assesses its efficiency. Sect. 8 draws the conclusion of this paper.

2 Related Works

PSI was first introduced in [25]. Since then, lots of research about PSI has been
carried out [3,5–8,10,15,19,31,33,37].

PSI. The aforementioned long line of works [5,10,19,29,33] are based on oblivious
transfer to achieve PSI. And those protocols outperform other generic solutions.
The first work in this line is [10], which is based on OT extension and a specially
designed data structure called garbled Bloom filter. It achieves linear computa-
tional/communication complexity, and requires only a few public key operations
to bootstrap OT extension. In KKRT [19], the authors constructed a randomized
encoding protocol based on OT extension [17]. Based on the same techniques in
[19], Pinkas et al. [33] showed a detailed analysis of how different parameters affect
the communication cost. Next, Pinkas et al. [29] achieved a half communication
cost than that of KKRT, but roughly 6−7 times computation overhead compared
toKKRT.Then, inCM20 [5], the authors designed aPSI protocol that is the fastest
in a networkwithmoderate bandwidth (e.g., 30–100Mbps) and outperforms [29] in
both computation and computation cost. Nevertheless, KKRT can still be viewed
as a protocol optimized for the LAN setting, where bandwidth is not a bottleneck,
and it achieves better computation/communication trade-offs. And CM20 targets
and achieves better in the middle range bandwidth (e.g., 30–100 Mbps) setting.
Some otherPSIworks [6–8] in this category are based onHomomorphicEncryption
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(HE) methods. Chen et al. [7] introduced a PSI protocol based on Fan-Vercauteren
leveled fully homomorphic encryption scheme [12] that has a communication com-
plexity logarithmic in the larger input set size. Then, the security model of their
work is strengthened in a follow-up paper [6]. Those HE-based protocols focus on
computing the intersection of the unbalanced input sets and reducing communi-
cation overheads.

Circuit-PSI. The other line of work is circuit-PSI [3,15,31,37]. Huang et al.
[15] put forward a notion of circuit-PSI protocol based on garbled circuits, which
enables the secure computation of arbitrary functions f over the intersection.
Subsequently, some enhanced 2-party protocols [3,31] for circuit-PSI have been
proposed. In circuit-PSI [3,31], the intersection results are secret-shared between
two parties, then these two parties can take the results as inputs of circuits,
which achieve the functionality of f . The inputs of those circuits cannot only
be the intersection results, but also some associated payloads. Therefore, [3,31]
can compute on the associated payloads of the intersection items without leak-
ing the intersection. And [3,31] both claim O(n) complexity in the semi-honest
setting for PSI with computation. But the circuit-PSI proposed in [3] is state-
of-the-art and is 2.3x more communication efficient and around 2.3x faster than
the protocol in [31]. We can use the circuit-PSI protocol in [3] to perform the
same functionality as PPSI. However, our PPSI protocol achieves much better
efficiency than [3]. Besides, in [37], the author proposed a novel protocol, named
Conditional Private Set Intersection (CPSI), which can enforce additional con-
ditions for PSI. The authors utilized Trusted Execution Environments (TEEs)
and HE to construct their protocol. However, their protocol is subject to the
security issues of TEE [36] and the efficiency limitation of HE.

PSI with Payload Computation. Some other works have also considered
the application of PSI with payload computation [3,21,31,40]. Those works aim
to securely compute some desired functions on the payloads associated with
items that are in the intersection of the two input sets, and only reveal the
computation results of payloads to parties. For example, PSI-Sum, which has
been considered in many works [3,21,31,40], aims to compute the sum of the
payloads for the items in the intersection set and only return the sum result to
parties. Therefore, in PSI with payload computation, the parties are interested
in the payload computation results rather than the items in input sets, which is
different from PPSI.

3 Problem Formulation

Before discussing the definition of our focused problem, we first introduce the
definition of Predicate Private Set Intersection (PPSI). Next, we identify the
design goal of our protocol.

3.1 Defining PPSI

We first present the definition of PPSI. Suppose one client C has a set x =
{x1, ..., xm} with the constraining value α, and one server S provides a set y =
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{y1, ...yn} with the associate payloads pS = {pS,1, ..., pS,n}. Rather than merely
computing the intersection set x∩y, we wish to further confine this result subject
to some constraints. Therefore, we define a predicate P : (α, pS,i) → {0, 1}, for
i ∈ [1, n]. This predicate represents the constraint agreed upon by the client C
and the server S. And it can be replaced by any secure two-party computation
protocol. After executing our PPSI protocol, C gets the results r = {r1, ...rm}.
If an item rj,j∈[1,m] = 1, there exists an item yi,i∈[1,n] ∈ y and xj = yi, and the
associated payloads are subject to the predicate P(α, pS,i) = 1, otherwise rj = 0
and P(·, ·) = 0. The ideal functionality FPPSI is shown in Fig. 1.

Fig. 1. Ideal functionality FPPSI.

3.2 Design Goal

In this work, our goal is to design an efficient predicate private set intersection
protocol in the semi-honest setting, the following objectives need to be achieved.

– Privacy preserving: The inputs of one party in our protocol are kept private
from the other party. Meanwhile, the size of the intersection set and access
pattern also should be preserved and not revealed to any party.

– Efficiency: We also focus on reducing computation and communication
costs to make this protocol as efficient as possible, as complex computation
inevitably results in higher overhead. For computing set intersection with fur-
ther computation, it is better to make the computation and communication
overhead better than the generic circuit-PSI protocol.
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4 Preliminaries

In this section, we will review the cryptographic techniques utilized in this paper,
including secret sharing, cuckoo hashing, Oblivious Transfer (OT), secure com-
parison and the circuit-PSI protocol, and we will give the blueprint of the pro-
tocol [3].

4.1 Secret Sharing

Throughout our paper, we use 2-out-of-2 addictive secret sharing scheme over
the ring Z2� . 〈x〉C and 〈x〉S are used to denote the addictive shares that belong
to party C and S respectively. And 〈x〉B

C and 〈x〉B
S represent boolean shares of

a binary value x for C and S, respectively. Then, we use Share(x) to denote the
algorithm that takes x in Z2� as input and outputs the two shares 〈x〉C and 〈x〉S
over Z2� , and 〈x〉C + 〈x〉S = x (where + denotes addition in Z2�). In terms of
security, the shares 〈x〉C and 〈x〉S completely hide the secret x. Someone who
only has one share cannot infer any information about the secret, since the shares
are totally random [9].

4.2 Hashing Techniques

Cuckoo Hashing. Cuckoo hashing [28] is used in our protocol to align all items
C and S owned and reduce the computation cost. In detail, cuckoo hashing uses
some universal hash functions to map n items in a set x = {x1, ..., xn} to a
cuckoo hash table T with b bins. Each bin only contains at most one item. In
our protocol, we choose a variant of cuckoo hashing [32], which uses three hash
functions h1, h2, h3. To insert an item xi into a cuckoo hash table T, the brief
procedure is as follows: 1) Check whether three bins indexed by h1(xi), h2(xi)
and h3(xi) have existing items or not; 2) If at least one of those bins is empty,
insert xi into the empty bin with the smallest index; 3) Otherwise, randomly
select one bin in h1(xi), h2(xi) or h3(xi), and evict the prior item in the selected
bin and place xi in it. 4) Recursively execute 1) − 3) to insert the evicted item
from the previous step into the table T. This procedure is repeated until all items
in x are inserted and no more evictions are needed. After a certain number of
iterations, if there are still some items that cannot be inserted into bins, it will
cause failure and abortion to this process. Similar to [3,33], we set b = 1.27n
and achieve a failure probability of less than 2−40. We utilize the formalization
in [13]:

Tx ← Cuckoob
h1,h2,h3

(x), (1)

where h1, h2, h3: {0, 1}l → [b], and all items in x are inserted into a table Tx

with b bins.

Simple Hashing. In our paper, we use the same hashing functions used in
cuckoo hashing (i.e., h1, h2, and h3) to achieve simple hashing. To map an item
x to a hash table with simple hashing, this item will be put into three bins
indexed with h1(x), h2(x), and h3(x). Then, for mapping m items to a hash
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Fig. 2. A toy example of our PPSI protocol.

table with b bins, each item will be put into three bins, and each bin may have
multiple items since collisions will happen. We assume the maximum number of
items in one certain bin is maxb. As suggested in [33], maxb is determined by
the size of the input set m, the number of bins b and the statistical parameters
via

P (“∃ bin with ≥ maxb items′′) ≤ b · [
m∑

β=maxb

(
m

β

)
(
1
b
)β(1 − 1

b
)m−β ], (2)

where P represents the possibility and it should be no greater than 2−40.

4.3 Oblivious Transfer

Oblivious Transfer (OT) is an essential primitive in cryptography and can be
used for constructing secure computation protocols. It is a two-party protocol
between a sender and a receiver. The sender can transfer some of the poten-
tially many pieces of messages to the receiver but remain oblivious as to which
pieces have been transferred. We use different types of OT functionalities in
this paper. The basic one is 1-out-of-2 OT

(
2
1

)
-OT�, where a sender inputs two

strings (x0, x1) with length � and a receiver inputs a single bit σ. And the receiver
receives the string xσ and learns nothing about x1−σ [17]. Then, we use

(
n
1

)
-OT�

to denote 1-out-of-n OT, which is extended from the 1-out-of-2 OT. The sender’s
inputs are n strings (x0, ..., xn) and the receiver receives the exact string xσ [18].
And

(
2
1

)
-ROT� is the random OT. The sender receives two random elements

x0 and x1 with length � and the receiver outputs xσ according to the chosen
bit σ [18].

Notably, a large number of OT instances can be efficiently implemented by
a few base OT instances with asymmetric key operations and symmetric key
operations [17,18], denoted as IKNP-style OT. As suggested in [16], the general
secure two-party computation can be upgraded by using VOLE-style OT exten-
sion, so the IKNP-style OT primitives in PPSI can be substituted by VOLE-style
OT. We will discuss this in Sect. 7.



150 Y. Yang et al.

4.4 Secure Comparison

A secure comparison protocol takes x and y from two parties as inputs and
returns the boolean shares of 1{x < y} to each party. Notably, Rathee et al.
[34] propose a secure comparison protocol based on a recursive problem-solving
approach based on

(
n
1

)
-OT� and the functionality FAND. FAND take boolean

shares of values x, y ∈ {0, 1} as inputs and returns boolean shares of the com-
parison result x < y. Then the core idea of the secure comparison protocol in
CrypTFlow2 [34] is built on an observation

1{x < y} = 1{x1 < y1} ⊕ (1{x1 = y1} ∧ 1{x0 < y0}), (3)

where x, y ∈ Z2� , x = x1||x0 and y = y1||y0. The basic OT protocol used in
CrypTFlow2 is IKNP-style OT protocol [18]. For more details and the imple-
mentation of this protocol can refer to Appendix 1.

4.5 Technique Overview of Circuit-PSI

Circuit-PSI is a protocol that can be used as a useful implementation of PPSI.
To illustrate the difference between our construction and circuit-PSI, we give a
general description of the state-of-the-art circuit-PSI protocol [3] in this section.

First, a party C will use cuckoo hashing to map all items of C’s input set
x to a hash table Tx. Then another party S uses a simple hashing method
to hash S’s set y to another hash table Ty with the same hash functions as
used in cuckoo hashing. For security purposes, C will use dummy items to pad
each bin to make sure each bin has the same number of items. Next, C and S
need to generate random values for each item in the bins of their hash tables.
Therefore, if an item is in the intersection of x ∩ y, then this item will exist
in the same bin of Tx and Ty. Then, the authors in [3] proposed an Oblivious
Programmable Pseudorandom Function (OPPRF) protocol and built a private
set membership protocol based on OPPRF. If the table Tx and Ty both have b
bins, for bin τ ∈ [1, b], C and S perform a private set membership protocol over
the bins with the same indexes. C and S compare all items in Tx[τ ] and Ty[τ ]
to get whether the item in Tx[τ ] is exists in Ty[τ ]. After this protocol, C and S
will get the secret-shared boolean results, which can be used as input for other
subsequent computations (e.g., circuit-based computation, associated payloads
computation).

5 The Construction of PPSI

In this section, we present our PPSI protocol. Before delving into the details, we
first give a high-level overview of PPSI, which achieves the ideal functionality
of PPSI. Then we introduce the technical description of PPSI and the details of
our main sub-protocols. Finally, we discuss the applications of PPSI.
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5.1 High-Level Overview

In our PPSI protocol, first, the party S will use cuckoo hashing to map all items
of S’s input set y and payload set to a hash table. Then the other party C uses
a simple hashing method to hash all items in x to another hash table with the
same hash functions as used in cuckoo hashing. The process can align all items
of x and y. Then, C and S perform a secure two-party computation according
to the predicate P. The inputs of P are the constraining value α from C and
payloads from S. The outputs of P are boolean values and secret-shared to C
and S. If the boolean value is equal to 1, C gets a random value z and S will get
z′, where z = z′. If the boolean value is equal to 0, C and S also get z and z′

respectively, while z �= z′. Next, C and S can add those random values z and z′

to the items in their sets. Therefore, if an item s is in the intersection set x∩ y,
and the corresponding payload of the item is p and P(α, p) = 1, then C and S
will add z and z′ to this item in their sets to get new sets. It is obvious that
s + z = s + z′ if z = z′. Finally, C and S will perform a plain PSI protocol on
their new sets. Therefore, this process can be seen as a filter in PPSI, and it can
filter items that are in the intersection but do not satisfy the predicate.

5.2 Technical Description

In this section, we present a description of our PPSI protocol. We assume two
parties (C and S) need to perform PPSI, the process of PPSI can be divided into
three phases as follows.

Phase 1) Items Alignment. In this phase, two parties use hashing techniques
to align their input items. Similar to circuit-PSI protocols, two parties first map
their items to hash tables, which consist of multiple bins. If an input item is in the
intersection result, both parties map it to the same bin. This process can reduce
the computation cost of subsequent phases. To be specific, S uses cuckoo hashing
to hash the items in y into a hash table Ty, i.e., Ty ← Cuckoob

h1,h2,h3
(y). And

the table Ty has b bins. According to the definition of cuckoo hashing, there
is only one item in each bin of Ty. Then, C uses simple hashing functions h1,
h2 and h3 to hash the items in x into a two-dimension hash table Tx with b
bins. That is, an item xj ∈ x will exist in three hash bins indexed by h1(xj),
h2(xj) and h3(xj). In each bin of Tx, there will be multiple items since collisions
will happen. In terms of privacy concerns, if any two or three of h1(xj), h2(xj)
and h3(xj) collide and are mapped to one bin, then C needs to map one or
two dummy items any other bin to ensure that C maps 3m items in all bins.
Otherwise, S would know that a collision has happened when C aligns his/her
items. We assume the bin Tx[τ ] has maxbτ items, where τ ∈ [1, b]. Next, S
also maps the associated payloads to a hash table TpS with the same mapping
method. That is, if items yj ∈ y appear in the bin h2(yj), then the associated
payload pS,j is also in the same bin h2(yj) of TpS . At the end of this phase, C
and S have aligned all items they own. For an item in the intersection x ∩ y,
this item will be mapped into the same bins of Tx and Ty. Therefore, C and S
only need to compare the items in bins with the same indexes in Tx and Ty.
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Phase 2) Predicate Masking. In this phase, a predicate P operating on the
constraining value α and payloads pS is computed between C and S. The pred-
icate P takes α from C and a payload from TpS as inputs, and outputs boolean
results for this payload, indicating whether this payload meets the constraints
or not. We assume τ ∈ [1, b], and compute P(α,TpS [τ ]) → p∗

τ and p∗
τ ∈ {0, 1}.

And P could be any secure two-party computation protocol executed between
C and S, as long as the final results are boolean values and secret-shared to C
and S. We will give three applications of different secure two-party protocols in
Sect. 5.5.

After C and S have executed the predicate P, it will generate a boolean
value for the payload in each bin of TpS . And this boolean value is secret-shared
between C and S. Then, C and S need to call a predicate masking functionality
FPM that we designed to securely compute a random value for masking the items
in each bin of Tx and Ty according to the result of P. The functionality of FPM

is formalized as Fig. 3. Our FPM takes as input boolean shares of choice bits
p∗

τ , and returns two random values zτ and z′
τ to C and S. If the corresponding

choice bit is equal to 1, then zτ = z′
τ , else zτ �= z′

τ
$← Z2� . This random value

leaks no information about the inputs. Next, for τ ∈ [1, b] and β ∈ [1,maxbτ ], C
adds zτ to the item Tx[τ ][β], and maps this new item to the bin T′

x[τ ] of a new
two-dimension hash table T′

x. At the same time, S adds z′
τ to the item Ty[τ ],

and maps those new items into the same bin of a new hash table T′
y.

The core idea of this phase is that, if an item xj ∈ x is equal to the item
yi ∈ y and the associated payload meets the constraints p∗

i = 1, then we add the
same random value to both xj and yi. Otherwise, we add different random values
to xj and yi. After that, we can filter out the items that are in the intersection
but whose payloads do not meet the constraint predicate P.

Fig. 3. Ideal functionality FPM.
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Phase 3) Intersection Computation. In this phase, C performs a plain PSI
protocol (KKRT [19] or CM20 [5]) protocol with S. C and S take the items in
T′

x and T′
y as inputs to PSI. And there are n items in T′

y and 3m items in T′
x.

It is worth noting that, we consider the scenario of C being a receiver. However,
our PPSI protocol is flexible. S can also be set as a receiver, who gets the final
result. And C plays the role of a sender. Therefore, this flexibility enables our
protocol to meet more practical application requirements.

A Toy Example. We give an example of PPSI in Fig. 2. All green tables rep-
resent the hash tables of C, and blue tables belong to S. First, they map all
the items and payloads in Tx, Ty, TpC and TpS . Second, C and S perform a
predicate computation for each payload and the constraining value α. Third,
they invoke the PM protocol to get pairs of random values. If P(α, pS,1) = 1,
then z1 = z′

1. Next, C and S mask their items with those random values, and
input the items in Tx and Ty to a PSI protocol. Consequently, if x2 = y1
and P(α, pS,1) = 1, we can get x2 + z1 = y1 + z′

1 and this value is still in the
intersection set.

Fig. 4. Ideal functionality FBatchComp.

5.3 The Predicate Masking Protocol

In this section, we will introduce our Predicate Masking protocol (PM). It
achieves the ideal functionality FPM as shown in Fig. 3. This protocol aims to
generate random values for two parties according to a secret-shared boolean
value. Then, two parties can use random values output by FPM to mask their
own items for other computation. Therefore, this protocol can be used as a
building block in other secure two-party computation.

Next, we give a detailed description of our protocol for realizing FPM. When
C has a boolean value 〈p∗〉C , and S gets 〈p∗〉S , they invoke the functionality
FPM as shown in Algorithm 1. As we can see, the main part of this algorithm
is based on a ROT protocol. At the end of this algorithm, C outputs z, and S
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Algorithm 1. Predicate Masking, FPM

Input: C holds a boolean value 〈p∗〉B
C ;

S holds a boolean vector 〈p∗〉B
S .

Output: C learns z, and S learns z′, s.t., z = z′ if p∗ = 1, else zτ , z′
τ

$← {0, 1}�.
1: C and S invoke an instance of

(
2
1

)
-ROT where C is the receiver with a choose bit

〈p∗〉B
C and S is the sender. Then, S gets R0, R1 $← Z2� , and C receives R〈p∗〉B

C .

2: C sets z = R〈p∗〉B

C .
3: if 〈p∗〉B

S = 0 then
4: S sets z′ = R1.
5: else
6: S sets z′ = R0.
7: end if
8: C outputs z; S outputs z′.

gets z′. If C and S want to call this functionality n times to generate n pairs of
different random values, it can be efficiently achieved by one round of end-to-end
communication. The security of this protocol is based on the ROT protocol.

5.4 The Batched Secure Comparison Protocol

The Batched Secure Comparison protocol (BatchComp) is to realize batch secure
comparisons at one time. Consider a case where C inputs a variable α and S
inputs a set {p1, ..., pn}. And they wish to obtain the boolean shared values
of the comparison results {1{α < p1}, ...,1{α < pn}}. We present the ideal
functionality of BatchComp protocol in Fig. 4. Inspired from [17,27], instead
of repeating n times secure comparison protocol in CrypTFlow2 [34], we pro-
pose an efficient secure comparison protocol (BatchComp) to do those secure
comparisons at once.

As defined in Fig. 4, after this protocol, C and S will get a boolean share of
a vector, and each item of this vector indicates whether each item of S’s set is
bigger than α. Here, we give a detailed explanation of our BatchComp protocol
as Algorithm 5.3. There are four stages for our BatchComp protocol:

Splitting Stage: In step 1–2, C and S splitting their input values as q parts.
And we assume q = �/k. Therefore, there are 2k possibilities for each part of
input values;

Masking Stage: In steps 3–8, S chooses two random values for all the parts of
its input sets p, and masks the random values with a bit value;

Choosing Stage: In steps 9–13, C and S invoke the
(
n
1

)
-OT� extension protocol,

and C chooses corresponding random values according to his/her input. This
stage can compute the shares of the inequalities 〈ltt0,j〉C,S and equalities 〈eqt

0,j〉C,S
of the values at the leaf level;

Merging Stage: Based on the same idea in Eq. 3 above, recursively compute
the shares of the inequalities and equalities of each node (steps 14–19). Then the
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Algorithm 2. Batched Comparison, FBatchComp

Input: C and S hold variable α ∈ {0, 1}� and variables p = {p1, ..., pn} ∈ {0, 1}�,
respectively.

Output: C and S learn {〈1{α < p1}〉C , ..., 〈1{α < pn}〉C} and
{〈1{α < p1}〉S , ..., 〈1{α < pn}〉S}, respectively.

1: C parses its input as α = αq−1||...||α0, and for j ∈ [1, n], S parses its inputs as
pj = pq−1

j ||...||p0
j , where αt, pt

j ∈ {0, 1}k, for t ∈ [1, q − 1].

2: q = �/k, K = 2k.
3: for t = {0, ..., q − 1} do
4: for j = {1, ..., n} do

5: S samples 〈ltt
0,j〉S , 〈eqt

0,j〉S
$← {0, 1}.

6: for u = {0, ..., K − 1} do
7: S sets st

j,u = 〈ltt
0,j〉S ⊕ 1{u < yt

j}.
8: S sets vt

j,u = 〈eqt
0,j〉S ⊕ 1{u = yt

j}.
9: end for

10: end for
11: C&S invoke an instance of

(
K
1

)
-OT where S is the sender with inputs

{st
1,u||...||st

n,u}u∈[0,K−1], and C is the receiver with input αt. Then, C receives
{st

1,αt ||...||st
n,αt}.

12: C&S invoke an instance of
(

K
1

)
-OT where S is the sender with inputs

{vt
1,u||...||vt

n,u}u∈[0,K−1] and C is the receiver with input αt. Then, C receives
{vt

1,αt ||...||vt
n,αt}.

13: for j = {1, ..., n} do
14: C sets 〈ltt

0,j〉C ← st
j,αt .

15: C sets 〈eqt
0,j〉C ← vt

j,αt .
16: end for
17: end for
18: for j = {1, ..., n} do
19: for i = {1, ..., logq} do
20: for t = {0, ..., (q/2i) − 1} do
21: C invokes FAND with inputs 〈lt2t

i−1,j〉C and 〈eq2t+1
i−1,j〉C to learn output

〈temp〉C .
22: S invokes FAND with inputs 〈lt2t

i−1,j〉S and 〈eq2t+1
i−1,j〉S to learn output

〈temp〉S .
23: C sets 〈ltt

i,j〉C = 〈lt2t+1
i−1,j〉C ⊕ 〈temp〉C .

24: S sets 〈ltt
i,j〉S = 〈lt2t+1

i−1,j〉S ⊕ 〈temp〉S .

25: C invokes FAND with inputs 〈eq2t
i−1,j〉C and 〈eq2t+1

i−1,j〉C to learn output

〈eqt
i,j〉C .

26: S invokes FAND with inputs 〈eq2t
i−1,j〉S and 〈eq2t+1

i−1,j〉S to learn output

〈eqt
i,j〉S .

27: end for
28: end for
29: C sets 〈p∗

j 〉C = 〈1{α < pj}〉C ← 〈lt0logq,j〉C , and S sets 〈p∗
j 〉S = 〈1{α < pj}〉S ←

〈lt0logq,j〉S
30: end for
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values of the roots indicate the final output (step 20). Therefore, C and S get
the shared values of the comparison results p∗ = {1{α < p1}, ..., 1{α < pn}}.

The core idea behind our protocol is that we replace the
(
K
1

)
-OT� protocol

in the Choosing stage with a batched OT protocol proposed in [27]. As we can
see from this algorithm, in step 9, C has a choose bit αt and S has a n×K matrix
{st

1,u||...||st
n,u}u∈[1,K−1], then C and S need to perform the

(
K
1

)
-OT� protocol n

times if we use the secure comparison protocol in CrypTFlow2 [34]. However,
for the fixed choices, we only need to perform the

(
K
1

)
-OT� protocol once if we

use the batch OT protocol [27]. Therefore, we can reduce half of the bandwidth
requirement and make a 2.1x running time improvement than [34].

5.5 Applications of PPSI

In this section, we will give two general applications of our PPSI protocol as
mentioned in Sect. 1. The first application is when the predicate P is a com-
parison computation, and the second is when P is a combination of multiple
constraints.

Application 1: Advertising Campaigns. An AdC (C), who has a database
of customers id, wants to launch a query on a transaction database of a TP (S).
AdC wants to find those customers who have seen the advertisement and also
purchased on TP and the purchased amount is greater than α. We modelize this
problem as: C has a query set x = {x1, ..., xm}, a payload value α and S provides
a set y = {y1, ...yn}, and for i ∈ [1, n], each item yi has an associate payload
pS = {pS,1, ..., pS,n}, and the predicate P is defined as a secure comparison
computation. After executing our PPSI protocol, C gets the query result r =
{r1, ...rm}, where each item rj indicates whether xj is in the intersection set
x∩y and the associate payload of it is bigger than the constraining value α. For
j ∈ [1,m] and i ∈ [1, n], then we enumerate all possible cases:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

if ∃ yi : (xj = yi) ∧ (α < pS,i), then rj = 1;
if ∃ yi : (xj = yi) ∧ (α ≥ pS,i), then rj = 0;
if ∀ yi : (xj �= yi) ∧ (α < pS,i), then rj = 0;
if ∀ yi : (xj �= yi) ∧ (α ≥ pS,i), then rj = 0.

An Optimization. We propose an optimization method when C and S perform
the PPSI protocol in this application. After C and S align all items and payloads,
they need to perform a secure comparison protocol with their inputs α and
pS,i. We can use the state-of-the-art secure comparison protocol proposed in
CrypTFlow2 [34]. Therefore, C and S invokes the secure comparison protocol
of CrypTFlow2 b times. As we can see, α stays unchanged in those b times
comparisons. Then, instead of running b times secure comparison protocol, we
propose a Batched Secure Comparison protocol (BatchComp), which can do
b times secure comparison in one time. The ideal functionality of BatchComp
FBatchComp is shown as Fig. 4. And we give the details of FBatchComp in Sect. 5.4.
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Application 2: Database Join. In this application, we give an example of
database join. To demonstrate different situations, this example is a combination
of multiple predicates. For example, an SQL-styled query is as follows:

select X1 from X inner join Y on X1 = Y1 where α < Y2 < γ

In this example, the predicates are defined as determining whether the payloads
are in a certain range [α, γ]. We can divide this constraining range into two
separate predicates: the first is to compare α and Y2, and the second is to compare
γ and Y2. Therefore, we can perform the Phase 2 of PPSI two times to add
different pairs of random values to the items of input sets. We formalize this
problem as follows:

Suppose C has a query set x = {x1, ..., xm}, two values α and γ, which defined
a constraining range [α, γ], S provides a set y = {y1, ...yn} and an associated
payload pS = {pS,1, ..., pS,n}. C aims to get the result r = {r1, ...rm}, where each
item rj indicates whether xj is in the intersection set x ∩ y and the associate
payload of it is between the constraining range [α, γ]. Then C and S run PPSI.
The same as depicted in Sect. 5, in Phase 1, C and S will align all items with
simple hashing and cuckoo hashing to get Tx, Ty and TpS (b bins), respectively.
The only difference is in Phase 2, C and S will take secure comparison protocol
as predicate P and perform BatchComp to securely compare the value α and
the item in pS to get the secret-shared values of boolean results p∗

1 = {p∗
1,τ}b

τ=1,
where p∗

1,τ = 1{α < TpS [τ ]}. Next, C and S invoke the PM protocol to get b
random values z1,τ and z′

1,τ (τ ∈ [1, b]) respectively, and add those random values
to their corresponding items in Tx[τ ] and Ty[τ ]. Then, C and S will perform
BatchComp again with different inputs to check whether all the payload values
are less than γ. That is, C and S securely compute p∗

2,τ = 1{γ > TpS [τ ]} to
get p∗

2 = {p∗
2,τ}b

τ=1, and then perform PM protocol with the input p∗. After C
gets b random values z2,τ and S gets z′

2,τ (τ ∈ [1, b]), C and S add those random
values to the corresponding items in Tx[τ ] and Ty[τ ] again. At last, C and S
perform PSI with inputs Tx and Ty in Phase 3.

As we can see from this application, the different predicates are constraints
for those items in the intersection set. Therefore, we only need to perform all
protocols in Phase 2 multiple times to filter those items whose payloads cannot
meet the constraints.

6 Security Analysis

In this section, we analyze the security of the proposed sub-protocols. Under the
assumption that all parties are semi-honest, we use simulation-based to prove
the security of PPSI. Next, we show that our protocols satisfy our design goals.
Under the honest-but-curious assumption, the adversary is allowed to corrupt
the client C or the server S. To prove that a protocol is secure, the view of the
corrupted party is simulatable by given its input and output of this protocol
[14,23].
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Definition 1. A protocol is secure and can achieve the functionality F if there
exists a probabilistic polynomial-time simulator Sim that can generate a view
for the adversary Adv in the real world and the view is computationally indis-
tinguishable from its view in the ideal world.

To prove the security of our protocols, we then give the important lemma
used in our security analysis.

Lemma 1. For a random element r
$← Z2� and any independent element r′ ∈

Z2� , r ± r′ is uniformly random and independent from the element r′.

The complete proof of this lemma can refer to [2,14]. Based on Definition 1
and Lemma 1, we prove that our sub-protocols can be perfectly simulated as
follows:

Theorem 1. The Predicate Masking protocol is secure against semi-honest
adversaries.

The proof of this theorem is presented in Appendix 2.

Theorem 2. The Batched Secure Comparison protocol is secure against semi-
honest adversaries.

The proof of this theorem is shown in Appendix 2.

Privacy Preserving: As we can deduce from the security proof, the inputs of
C and S are kept private from each other in our protocol. Meanwhile, the size
of intersection set x ∩ y are kept private from C and S, since all intermediate
results are secure-shared between C and S. Besides, when C launches a query in
the database of S, all access pattern are kept private from S since each item in
S are involved in the computation and S can not know which items that C gets.

Table 1. The running time in s and
communication in MB of the protocol
PM (IKNP-style OT based).

n 214 216 218 220 222

Time LAN 0.003 0.012 0.026 0.092 0.29
WAN 0.32 0.44 0.82 2.34 8.5

Comm. 0.5 1.5 5.25 20.5 81.5

Table 2. The running time in s and
communication in MB of the protocol
PM (VOLE-style OT based).

n 214 216 218 220 222

Time LAN 0.001 0.004 0.001 0.044 0.157
WAN 0.081 0.082 0.088 0.113 0.255

Comm. 0.002 0.009 0.04 0.16 0.64

7 Performance Evaluation

In this section, we first give the details about the environment of our experiments
and the parameters used in our protocol. Then, we evaluate the building blocks
of PPSI. Final, we evaluate the efficiency of PPSI and compare it with the
state-of-art circuit-PSI protocol and other PSI-related protocols from different
aspects.
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Table 3. The running time in s and communication in MB of BatchComp and the
secure comparison protocol of CrypTFlow2 in the LAN setting, and the items for
comparison are 32-bit long. IKNP represents the IKNP-style OT based BatchComp
protocol, and VOLE represents the VOLE-style OT based BatchComp protocol.

n 210 215 220

Time CrypTFlow2 0.014 0.21 6.81

BatchComp (IKNP) 0.006 0.1 3.32

BatchComp (VOLE) 0.004 0.058 2.24

Comm. CrypTFlow2 0.47 15.05 481.5

BatchComp (IKNP) 0.23 7.05 225.5

BatchComp (VOLE) 0.04 1.12 36.57

Table 4. The running time in s of the first application of PPSI, and the BatchComp
and PM protocols are based on VOLE-style OT.

m vs n 212 vs 214 213 vs 214 214 vs 214 212 vs 218 213 vs 218 218 vs 218 212 vs 222 213 vs 222 222 vs 222

Breakdown

LAN Alignment < 10−3 < 10−3 < 10−3 0.023 0.024 0.024 1.18 1.18 1.22

P + FPM 0.007 0.087 1.39

PSI(KKRT) 0.037 0.046 0.062 0.2 0.2 0.69 2.98 3.03 14.1

PSI(CM20) 0.23 0.31 0.33 0.98 0.97 4.52 13.6 97.7 54.94

WAN Alignment < 10−3 < 10−3 < 10−3 0.023 0.024 0.024 1.18 1.18 1.22

P + FPM 0.4 0.77 3.91

PSI(KKRT) 1.12 1.27 1.41 1.87 2.1 8.1 12.72 12.86 113.63

PSI(CM20) 1.17 1.3 1.58 2.14 2.09 6.39 14.95 17.03 102.27

Table 5. The running time in s and communication in MB of the first application of
PPSI, and the BatchComp protocol and PM protocol are based on IKNP-style OT.

m vs n 212 vs 214 213 vs 214 214 vs 214 212 vs 218 213 vs 218 218 vs 218 212 vs 222 213 vs 222 222 vs 222

Time LAN KKRT 0.052 0.06 0.077 0.38 0.38 0.86 6.78 6.83 17.91

CM20 0.24 0.32 0.35 1.16 1.15 4.7 17.35 17.44 110.16

WAN KKRT 2.1 2.25 2.71 4.23 4.47 10.46 35.54 27.18 136.49

CM20 2.15 2.28 2.89 4.5 4.44 8.75 27.77 31.36 125.13

Comm. KKRT 2.69 3.97 5.21 20.88 22.91 81.31 317.87 319.15 1303.99

CM20 2.31 3.5 4.65 16.31 17.78 73.01 237.87 239.1 1181.13

7.1 Implementation Details

Our PPSI protocol is implemented in C++ and the code is available at
https://www.ppsi.cn. For the cuckoo hashing method used in our protocol, we
adopt the parameter used in [3,31]. When mapping n items to a hash table with
b bins via three hash functions, we set b = 1.27n for the stash-less setting. In
addition, we test two different OT protocols to implement our protocols. One
is IKNP-style OT protocol [18], and another is VOLE-style OT protocol [39],
which achieves better performance in some circumstances. The statistical secu-
rity parameter in our implementation is σ = 40, and the computational security
parameter is λ = 128.

https://github.com/cmZoO/PPSI
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Table 6. Running time in seconds of PPSI and CGS (CGS-PSM1, CGS-PSM2) [3].
We set the sizes of sets are equal and items in sets are of 64-bit length.

Network Setting LAN WAN

m = n 214 216 218 220 222 214 216 218 220 222

CGS-PSM1 0.7 1.65 6.07 24.78 100.12 7.73 16.49 42.85 162.61 652.35

CGS-PSM2 0.95 1.68 5.22 20.29 80.65 9.27 13.55 32.97 116.02 456.59

PPSI (Ours) 0.077 0.23 0.86 4.35 17.91 2.71 3.21 10.46 31.62 136.49

Table 7. Communication in MB of PPSI and CGS.

m = n 214 216 218 220 222

CGS-PSM1 24.33 99.48 397.65 1700.82 6824.49

CGS-PSM2 17.24 68.9 273.3 1155.7 4637.68

PPSI (Ours) 5.21 20.65 81.31 326.14 1303.99

7.2 Experimental Environment

All the following experiments are conducted on virtual Linux machines running
with AMD Ryzen 5 3600 3:60 GHz CPU and 16 GB of memory. All our programs
are implemented in C++. And we ran our protocols in two network settings.
The bandwidth between the two virtual Linux machines was about 10 GBps
(LAN setting) and 100 Mbps (WAN setting), respectively. The round-trip time
was about 0.02 ms (LAN setting) and 80 ms (WAN setting), respectively. The
network setting is simulated based on the Cheetah framework [1,16]. Our imple-
mentation is built on top of the open-source Cheetah framework [1] provided
by the authors of [16], the source code of CM20 [4], a library for private set
intersection [35], and the EMP toolkit [38]. Besides, we evaluate the work [3]
under the same environment as ours to show the efficiency of our protocols.

7.3 Evaluation for the Applications of PPSI

In this section, we will breakdown PPSI into individual components and give
both theoretical and experimental analysis when applying our PPSI protocol in
a scenario as depicted in Sect. 5.5. Then, we present the performance of our PM
protocol and BatchComp protocol based on different network settings and OT
protocols. Next, we combine those components together and evaluate the whole
process.

In our first application, we assume the predicate P is a secure comparison
protocol. We evaluate the running times of our PPSI based on different PSI
protocols (KKRT [19] and CM20 [5]) in both LAN/WAN settings. we breakdown
all individual components and present the execution times of the application of
PPSI as shown in Table 4. Besides, we not only perform our PPSI for equal
input sizes upto 222 items, but also the unequal sizes. In Phase 1, C and S will
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align their items. We present the time for alignment with different input sizes.
Then, in Phase 2, C and S perform a secure comparison in this application,
which performs our BatchComp protocol. Besides, C and S use the results from
BatchComp to perform the PM protocol. Because C and S need to execute b
times of secure comparison and PM protocols, and b is only related to the size of
n, the running times of this phase are the same when n keeps unchanged. As we
can see, if we use CM20 protocol in Phase 3 of PPSI, it has less communication
cost. In LAN setting, it can achieve better efficiency if we choose KKRT protocol
as a component of PPSI.

Next, we can combine all individual components together and present the
overall execution times of application 2 of PPSI as shown in Table 5. Similarly,
we evaluate the running times of our PPSI based on KKRT and CM20 in both
LAN/WAN settings. In the experiment of application 1, we use the VOLE-style
OT to achieve BatchComp and PM protocols, which have better performance.
However, we want to compare our PPSI with CGS [3], which is built based on
IKNP-style OT. It would be unfair to use the VOLE-style OT to build our PPSI
and compare it with CGS. Therefore, in this application, we evaluate the running
time and communication cost of PPSI based on IKNP-style OT. Then, we show
the comparison of PPSI and CGS in Sect. 7.5.

Performance of PM Protocol. In PPSI, the number of times PM is run is
related to the number of bins of the cuckoo hash tables b in our application.
Therefore, the PM protocol is run b = 1.27n times when n = 214, 216, ..., 222.
In Table 1 and Table 2, we evaluate the performance of our PM protocol based
on IKNP-style OT and VOLE-style OT protocols. As we can see, the VOLE-
style OT based PM protocol has reduced communication costs and is much more
efficient than the IKNP-style OT based PM protocol.

Performance of BatchComp Protocol. For the BatchComp protocol, we
show the results in Table 3. First, we compare BatchComp (IKNP-style OT
based) with the comparison protocol in CrypTFlow2 in the LAN setting. As we
can see, our protocol is about 2.1x better than CrypTFlow2 in both communi-
cation cost and running time. It is easy to learn that our BatchComp protocol
is mainly relied on the OT protocol, therefore, except using IKNP-style OT
protocol as a main building block of BatchComp, we also implement it based
on VOLE-style OT protocol, which only has 1-bit communication cost for an
instance of ROT protocol. And this VOLE-style OT based BatchComp protocol
is about 1 order of magnitude efficient than IKNP-style OT based in terms of
communication.

7.4 Theoretical Analyses

As described in Sect. 5.5, in Phase 1, S performs cuckoo hashing to map n items
to a table with b bins and b = 1.27n. Then, C uses simple hashing to get hash
tables with b bins. In Phase 2, C and S performing our BatchComp protocol for
b times comparison instead of b instances of the secure comparison protocol in
CrypTFlow2. The communication cost of b instances of

(
K
1

)−OT is reduced from
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b(2λ + K) bits to (2λ + bK) bits, for λ = 128. And the communication cost for
FAND in step 14–22 in Algorithm 5.3 is b(λ+20)�log q�+b(2λ+22)(q−1−�log q�)
bits. Therefore, the communication for performing BatchComp in Phase 2 is
2λ + bK + b(λ + 20)�log q� + b(2λ + 22)(q − 1 − �log q�) bits, where q = 8 in
our application of PPSI. Then, the communication cost for performing b times
of PM protocol is bλ bits.

7.5 Performance Comparison with CGS

In Table 6 and Table 7, we compare PPSI with CGS [3], one of the state-of-art
circuit-PSI protocols. CGS considers the situation that both parties have equal
sizes of input sets, so we also perform experiments when m = n. There are
two protocols proposed in CGS (CGS-PSM1 & CGS-PSM2). We use those two
protocol in CGS to achieve the same functionality as shown in Application
2, and compare our PPSI protocol with those two protocols in CGS. And the
running time and communication cost of PPSI shown in those two tables are
IKNP-style OT based. Table 6 shows the running time of PPSI and CGS in
the LAN and WAN settings. Under the LAN setting, our protocol is around
5−10x faster than CGS. And for the WAN setting, the end-to-end running time
of PPSI is up to 3.9x faster. And Table 7 presents the communication cost of
both protocols. Our communication cost is about 3.1x than CGS. Overall, our
protocol outperforms CGS in all network settings and different sizes.

Specifically, if a different predicate P is applied to PPSI and CGS, we only
need to trivially substitute the running time of predicate computation in the
final results to evaluate the performance. Therefore, the predicate computation
would not affect the comparison results. As we can see, our PPSI protocol out-
performance CGS in terms of running time and communication costs in different
network settings.

8 Conclusion

We presented a two-party efficient PPSI protocol, which has substantial savings
of computation cost and communication cost compared to circuit-PSI protocols.
PPSI protocol is desirable in many real-world applications. According to dif-
ferent network settings, we have offered different methods to achieve the best
performance of PPSI. As suggested in [3,16], we also tested PPSI based on the
VOLE-style OT protocol to reduce communication costs. Based on performance
analysis, we believe PPSI has a more practical use. For future work, we will try
to build a PPSI protocol that is secure against malicious adversaries. One of
the main challenges would be ensuring correctness when the adversaries become
malicious.
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Appendix 1: Secure Comparison

To compare x ∈ {0, 1}� provided by C and y ∈ {0, 1}� provided by S, the secure
comparison protocol performs the following four stages:

Splitting stage: C and S split their inputs x and y equally into q parts, and
q is a power of 2. Each part has k bits, and assume k divides �. Let K be a
parameter and K = 2k. That is x = xq−1||...||x0 and y = yq−1||...||y0, where
xt, yt ∈ {0, 1}k, t ∈ [0, q − 1].

Masking stage: For each part t ∈ [0, q − 1], C prepares 〈ltt
0〉B

C , 〈eqt
0〉B

C
$← {0, 1}.

For all u ∈ [0,K−1], C sets st
u = 〈ltt

0〉B
C ⊕1{xt < u} and vt

u = 〈eqt
0〉B

C ⊕1{xt = u}.

Choosing stage: C and S invoke an instance of
(
K
1

)
-OT� where C inputs

{st
u}u∈[0,K−1] and S inputs the choose bit yt. Then S gets the output 〈ltt

0〉B
S . Sim-

ilarly, C and S invoke another instance of
(
K
1

)
-OT� where C inputs {vt

u}u∈[0,K−1]

and S inputs the choose bit yt. Then S gets the output 〈eqt
0〉B

S .

Merging stage: C and S recursively compute the shares they have using the
idea of Equation (3). For i ∈ [1, logq] and t ∈ [1, (q/(2i) − 1)], C and S invoke
FAND to compute 〈ltt

i〉B
C = 〈lt2t

i−1〉B
C ∧〈eq2t+1

i−1 〉B
C ⊕〈lt2t+1

i−1 〉B
C and 〈ltt

i〉B
S = 〈lt2t

i−1〉B
S ∧

〈eq2t+1
i−1 〉B

S ⊕〈lt2t+1
i−1 〉B

S . Then C and S can compute 〈eqt
i〉B

C = 〈lt2t
i−1〉B

C ∧〈eq2t+1
i−1 〉B

C
and 〈eqt

i〉B
S = 〈lt2t

i−1〉B
S ∧ 〈eq2t+1

i−1 〉B
S . Final, C gets 〈lt0i 〉B

C and S gets 〈lt0i 〉B
S .

After the above four stages, C and S get the boolean shares of the comparison
result of x and y.

Appendix 2: Security Proof

The proof of Theorem 1 is as follows.

Proof. As shown in Algorithm 1, for C, the view during the protocol execution
will be viewC = (〈p∗〉B

C , z). Since z is generated by ROT protocol and is a
random value, according to Lemma 1, it is trivial to see that all values of C’s
view are uniformly random. C outputs nothing during this protocol. Therefore,
viewC and outputC can be simulated by a simulator SimC . Then SimC can
generate a view for the adversary AdvC , who can not distinguish the generated
view from its real view.
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For S, the view during the protocol execution will be viewS = (〈p∗〉B
S ).

Then S outputs R0, R1 during this protocol. Since R0, R1 is generated by ROT
protocol and are random values, according to Lemma 1, all values of S’s view
are uniformly random. Therefore, viewS and outputS can be simulated by a
simulator SimS . Then SimS can generate a view for the adversary AdvS , who
can not distinguish the generated view from its real view.

The proof of Theorem2 is as follows.

Proof. As shown in Algorithm 5.3, for C, the view in the protocol exe-
cution will be viewC = (α, {st

1,αt ||...||st
n,αt}, {vt

1,αt || ...||vt
n,αt}). Since

{st
1,αt ||...||st

n,αt}, {vt
1,αt ||...||vt

n,αt} are generated from the random elements (step
7–8 in Algorithm 5.3), according to Lemma 1, it is trivial to see that all values
of C’s view are uniformly random. The output of C is outputC = 〈1{α < pi}〉C ,
which is generated from the random values {st

1,αt ||...||st
n,αt}, {vt

1,αt ||...||vt
n,αt}

(step 14–20 in Algorithm 5.3). Therefore, viewC and outputC can be simulated
by a simulator SimC . Then SimC can generate a view for the adversary AdvC ,
who can not distinguish the generated view from its real view.

For S, the view in the protocol execution will be viewS = (p, 〈ltt0,j〉, 〈eqt
0,j〉}).

Since {〈ltt0,j〉, 〈eqt
0,j〉} are generated from the random elements (step 5 in Algo-

rithm5.3), all values of S’s view are uniformly random. The output of S
is outputS = 〈1{α < pi}〉S , which is generated from the random values
{〈ltt0,j〉, 〈eqt

0,j〉} (step 6–8 in Algorithm 5.3). Therefore, viewS and outputS
can be simulated by a simulator SimS . Then SimS can generate a view for the
adversary AdvS , who can not distinguish the generated view from its real view.
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Abstract. Despite its popularity, password based authentication is sus-
ceptible to various kinds of attacks, such as online or offline dictionary
attacks. Employing biometric credentials in the authentication process
can strengthen the provided security guarantees, but raises significant
privacy concerns. This is mainly due to the inherent variability of bio-
metric readings that prevents us from simply applying a standard hash
function to them. In this paper we first propose an ideal functional-
ity for modeling secure, privacy preserving biometric based two-factor
authentication in the framework of universal composability (UC). The
functionality is of independent interest and can be used to analyze other
two-factor authentication protocols. We then present a generic proto-
col for biometric based two-factor authentication and prove its security
(relative to our proposed functionality) in the UC framework. The first
factor in our protocol is the possession of a device that stores the required
secret keys and the second factor is the user’s biometric template. Our
construction can be instantiated with function hiding functional encryp-
tion, which computes for example the distance of the encrypted templates
or the predicate indicating whether the templates are close enough. Our
contribution can be split into three parts:

– We model privacy preserving biometric based two-factor authentica-
tion as an ideal functionality in the UC framework. To the best of
our knowledge, this is the first description of an ideal functionality
for biometric based two-factor authentication in the UC framework.

– We propose a general protocol that uses functional encryption and
prove that it UC-realizes our ideal functionality.

– We show how to instantiate our framework with efficient, state of the
art inner-product functional encryption. This allows the computa-
tion of the Euclidean distance, Hamming distance or cosine similarity
between encrypted biometric templates. In order to show its practi-
cality, we implemented our protocol and evaluated its performance.
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1 Introduction

It is long known that password based authentication is not very secure. Users tend
to choose bad passwords and frequent leaks of password databases enable offline
attacks. Biometric authentication mitigates many of these problems and has bet-
ter usability, since users do not have to remember their passwords anymore. How-
ever, the use of biometric authentication entails new problems. Biometric read-
ings present inherent variability and, thus, common protection mechanisms such
as standard hash functions or encryption cannot be employed. Furthermore, the
client’s biometric template (e.g. face, iris-scan or fingerprint) can be considered pri-
vacy sensitive, as it may reveal ethnic origin or even health conditions and, there-
fore, should remain private. Also, unlike passwords, biometrics cannot be changed,
hence, the breach of a biometric database may have more severe consequences than
the breach of a password database. Thus, for both privacy and security reasons it
is important to achieve reliable authentication, while preventing the server from
seeing the client’s biometric templates. A general technique to make authentica-
tion more secure is two-factor authentication. This incorporates a second factor in
the authentication process, so that in addition to the password or biometric the
user needs for example a secret key that is stored on a phone or a secure hardware
device. This makes an attack more difficult because it requires the attacker to get
both the device and the biometric/password.

Homomorphic encryption and general multiparty computation have been
used in the past to construct privacy preserving biometric authentication sys-
tems. However, using general multiparty computation usually requires multiple
rounds of communication, which can reduce efficiency. Approaches using homo-
morphic encryption (e.g. [19]) have the problem that some part of the server
needs to know the secret key to be able to decrypt the authentication decision.
This also means that, when the entire server infrastructure is compromised, the
attacker learns both the secret key and the encrypted templates and thereby
the cleartext templates. Functional encryption (FE) is similar to homomorphic
encryption in that it allows computing on encrypted data. The important advan-
tage of FE in the biometric authentication setting is that it allows the server
to learn the result of the computation in cleartext without having access to the
secret key that allows decryption of the templates. Depending on the underlying
FE scheme, the server only learns the distance of the biometric templates, or
only the fact whether this distance is below a certain threshold. This makes FE
well suited for the use case of biometric authentication.

Function hiding inner-product functional encryption (fh-IPFE) essentially
allows computing the inner-product of two encrypted vectors. Therefore, fh-
IPFE and its restricted and more efficient variant of single-key fh-IPFE has
been used in the past to construct privacy preserving biometric authentication
and identification systems [5,7,15,18]. Since one of the biometric templates is
encoded as the function, the function hiding property is important, as otherwise
this template would not be hidden. Because fh-IPFE only exists in the secret key
setting and this key needs to be stored somewhere, it is very natural to consider
fh-IPFE in the setting of two-factor authentication, where the first factor is the
secret key stored on the device and the second factor is the user’s biometric.
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However, the security of these constructions has not been studied in the con-
text of more complex systems in which multiple users have accounts on multiple
servers and the authentication protocol is executed in conjunction with other
protocols. For example a user could try to authenticate towards two different
servers at the same time with very similar or identical biometric templates.
Even if both servers are corrupted they should learn no more than the output of
the authentication protocol. It is also important that an attacker, who is in con-
trol of the network, can neither learn anything about the biometric templates,
nor impersonate a legitimate user. Furthermore, a malicious server should not
be able to use the authentication message of a user to impersonate that user to
another server.

Let us illustrate the danger of too restrictive security models with a con-
crete example. For their biometric authentication system the authors of [7] only
consider the privacy of the biometric templates in a setting with a single client
and a single server. However, the model does not guarantee security, i.e. it does
not guarantee that it is hard to impersonate an honest client. Concretely, in the
security definition the adversary gets access to one oracle for each the enrolment
phase and the authentication phase. In the real world these oracles call the actual
IPFE scheme, whereas in the ideal world a simulator has to produce the answers
without knowing the biometric template. This guarantees that an attacker can-
not learn anything about the biometric templates from the ciphertexts. However,
this does not guarantee that it is hard to impersonate an honest client. In fact,
an attacker can send a random vector as ciphertext, which causes the output to
be a random number. With their first parameter-set this is a random number in
Z220 . When the threshold for the biometric authentication system is e.g. τ = 32,
then the probability that a random number is below τ is 2−15. This is a too
high chance to impersonate a legitimate user for an attacker who does neither
know the secret key nor the user’s biometric. This example illustrates why it is
important to model both privacy and security in complex environments.

Contribution: In order to fill this gap, we model biometric authentication as an
ideal functionality in the framework of universal composability (UC) [6]. This
guarantees that the resulting protocols remain secure even in complex systems
and in the presence of powerful attackers. Our ideal functionality can also serve
as basis for the analysis of new protocols for two-factor authentication. In the
second step we propose a biometric based two-factor authentication protocol
that generically uses (single-key) function hiding functional encryption (fh-FE)
and signatures and formally prove that it realizes our ideal functionality. The
first factor is the secret key that is stored in secure hardware and the second fac-
tor is the biometric template. Next, we show how to instantiate our framework
with (single-key) fh-IPFE schemes so that it can compute either the Euclidean
distance, Hamming distance, or cosine similarity on encrypted biometric tem-
plates. We stress that our framework can also be instantiated in a way (e.g. with
techniques of [5]) that does not leak the distance of the templates to the server,
but only outputs the yes-no authentication decision. Finally, we describe the
proof of concept implementation of our protocol and present the results of the
performance tests. Thereby, we get a secure, privacy preserving and composable
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biometric authentication protocol. Furthermore, the protocol is practically effi-
cient and both enrolment and authentication only require a single message from
the client to the server. Our contribution can be summarized as follows:

– We provide a UC formalization of (two-factor) biometric authentication.
– We propose a general protocol/framework that realizes our ideal functionality,

which can be instantiated with fh-FE and signatures.
– We provide a concrete instantiation with fh-IPFE for computing the

Euclidean distance, Hamming distance or cosine similarity and a proof of
concept implementation.

1.1 Related Work

Universally Composable Biometric Authentication: Universally composable bio-
metric authentication has received some attention in the literature [1,2,10,11].
Dupont et al. [10] considers fuzzy (symmetric) password authenticated key
exchange, where the server also has to know the password in the clear. This
problem is solved in [11] by moving to the asymmetric setting. Their protocol
can be used for biometric authentication with binary vectors and the Hamming
distance. Asymmetric password authenticated key exchange is a stronger notion
of authentication than ours, since it considers mutual authentication, whereas
in our case only the client authenticates to the server. However, it is usually less
efficient, as Erwig et al. [11] note that “. . . going beyond password sizes of, say, 40
bits does not seem feasible.”, where e.g. iris templates for the Hamming distance
are usually more than 1000 bits long (see e.g. [4,8]). Agrawal et al. [1] construct a
biometric authentication system in which the reference template is secret shared
among three client devices. However, having three connected devices whenever
one wants to authenticate is not always practical. Agrawal et al. [2] consider the
scenario in which a client wants to get access to a certain area and the client’s
device, an external terminal and service provider interact in order to perform
the enrolment and the biometric matching. This is a different setting than ours.

Function Hiding Inner-Product Functional Encryption for Biometrics: Function
hiding IPFE has already been used for biometric authentication [7] and identi-
fication [5,15,18], however their security models do not take composability into
account. Composability is an important property when a protocols runs in con-
junction with other protocols in a complex environment like the internet. Both
[15,18] only rely on the security definition of IPFE but have no authentication or
identification related security model. The security model of [5] does take biomet-
rics into account, but is specific to searchable encryption. The work most closely
related to ours is [7], because it is the only one that directly considers biometric
authentication. Their security model is for biometric authentication, however it
only considers one user and one server and does not guarantee that it is hard to
impersonate another user. Both [7,18] have proposed constructions for fh-IPFE.
Contrary to existing work, we propose for the first time a general protocol for
privacy-preserving biometric based two-factor authentication that provides UC
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security guarantees and can be instantiated using any suitable fh-FE scheme
including the ones proposed by [7,18].

Other Biometric Authentication Protocols: There are many other protocols
for privacy preserving biometric authentication, such as [3,13,14,24,25]. The
authors of [13,24] consider biometric authentication for secure messaging and
text search, respectively, which is a different setting than ours. The authors of
[3,14,25] consider the classical setting of a client authenticating to a server. The
disadvantage of [3,14] is that the protocols need two non-colluding servers and
that they are not secure against fully malicious attackers. The authors of [25],
only consider the privacy of the client’s biometrics, but not security against
e.g. impersonations. None of them takes security under general composition into
account.

Jarecki et al. [17] propose protocols for secure, password based two-factor
authentication, where the user has a password and additionally owns a “crypto-
capable device”. They provide a very detailed security analysis of their protocol
in a game base setting. The main difference to our setting is that we use the UC
framework and that we work with biometrics instead of passwords.

2 Preliminaries

Notation: We write [n] for {1, . . . , n}. We use boldface letters such as v for
vectors and we write vi for the i-th entry of v. With ‖v‖ we denote the L2
norm of v. We write C for a client, S for a server, A for the adversary, Sim for
the simulator and Z for the environment. With reference template we mean the
biometric template used for enrolment and with probe template we mean the
template used for authentication. We usually denote them as b and b′.

2.1 (Secret Key) Function Hiding Functional Encryption

Definition 1. A secret key functional encryption scheme for a set of functions
F , which map from X to Y consists of the following four algorithms:

– FE.Setup(1λ) outputs public parameters pp and the master secret key msk
– FE.KeyGen(msk, f ∈ F) outputs a functional decryption key skf

– FE.Enc(msk, x ∈ X ) outputs a ciphertext cx

– FE.Dec(skf , cx) outputs a value y ∈ Y

We assume that pp is given as implicit input to all other FE algorithms.
Correctness: A functional encryption scheme FE is correct if ∀msk ← FE.Setup
(1λ),∀f ∈ F ,∀x ∈ X it holds that FE.Dec(FE.KeyGen(msk, f),FE.Enc(msk, x)) =
f(x).

In the special case of inner-product functional encryption (IPFE), which we
use for our instantiation in Sect. 5, the inputs are X := Z

n
q \ {0n} and F := {fy :

y ∈ Z
n
q \ {0n}}, where fy(x) := 〈y, x〉.
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Definition 2. For b ∈ {0, 1} we define Expb
A(λ) as the following experiment:

The experiment generates (pp,msk) ← FE.Setup(λ) and gives pp to A. The
experiment then answers the following types of oracle queries from A:

– QKeyGen(f0, f1): The experiment returns sk ← FE.KeyGen(msk, fb).
– QEnc(x0, x1): The experiment returns c ← FE.Enc(msk, xb).

When A outputs a guess bit b′, Expb
A outputs the same b′.

Definition 3. (Admissible adversaries) For an adversary A, let (f1
0 , f1

1 ), . . . ,
(fQK

0 , fQK

1 ) and (x1
0, x

1
1), . . . , (x

QE

0 , xQE

1 ) be the QKeyGen and QEnc queries. We
say that an adversary is admissible if ∀i ∈ [QK ],∀j ∈ [QE ] : f i

0(x
j
0) = f i

1(x
j
1).

Considering only admissible adversaries prevents A from trivially winning the
game by querying functions and inputs with different output values. We say that
an FE-scheme FE is fh-IND-secure, if for all admissible PPT adversaries A there
is a negligible function negl(λ) such that for all large enough λ

| Pr
[
Exp0A(λ) = 1

] − Pr
[
Exp1A(λ) = 1

]| ≤ negl(λ).

We say that an FE-scheme FE is single-key fh-IND-secure if the above holds
for the modified version of the experiment were only the first QKeyGen query
is answered, i.e. A only gets a single key. The function hiding property of the
definition is given by the fact that A does not know whether they got a secret
key for f0 or f1.

3 Modeling Biometric Authentication in the UC
Framework

In this section we describe our approach to modeling biometric based two-factor
authentication in the UC framework. We start by describing the threat model
and proceed by motivating and stating our ideal functionality. We then explain
the meaning of the functionality’s different interfaces. Furthermore, we describe
how we model message transfer and corruptions in the real world. We conclude
by discussing some design decisions and the security and privacy guarantees that
our functionality provides.

3.1 Threat Model

In this section we describe the threat model we consider. We will discuss the
attacker’s capabilities in more detail in Sect. 3.2, where we explain the differ-
ent interfaces of the ideal functionality. We expect our protocol to be used for
authentication over the internet. Communication is supposed to be done via
TLS, which means that clients can send messages to a server and be sure that
only the server can read them. On the other hand, the server does not know who
the sender of a message is. We assume that the attacker controls the network.
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So the attacker notices when a message is sent. Although the attacker cannot
read the messages sent via TLS, they can delay or block them or inject their
own messages.

The attacker can corrupt both arbitrary clients and the server and then control
their actions in arbitrary ways, i.e. we consider malicious corruptions. For simplic-
ity we only consider static corruptions of the server which means, that the server
is corrupted either the entire time or not corrupted at all. Clients can be corrupted
adaptively, i.e. the attacker can decide at any point in time to corrupt an arbitrary
client. However, looking ahead, we will assume that the clients’ keys are stored in
secure hardware. So when the attacker corrupts a client, they will only gain con-
trol over that client’s actions and gain blackbox access to the secure hardware. This
means, they can give to the secure hardware instructions to enrol or authenticate,
but they do not learn the internal state of the secure hardware. The use of secure
hardware is also the reason why the attacker does not immediately learn the user’s
biometric reference template, even if they corrupt both the server and the client.
Nevertheless, in the case that the adversary corrupts both the client and the server,
they may be able to extract the biometric reference template (cf. Section 3.2 for an
explanation of when this is possible).

3.2 The Ideal Functionality

We will first describe a simple ideal functionality in Fig. 1 for two-factor authen-
tication with biometrics as a second factor. Then we explain the changes that
we applied to this simple functionality in order to get to the actual two-factor
authentication functionality Fout

2FA in Fig. 2. Both functionalities are parameter-
ized with the out(·, ·) function, which will be part of our framework. It models
both the output that the server gets from the protocol and the information that
is leaked about the biometric templates. For example the out function could
return the distance of the biometric templates, which would then mean that the
server learns this distance. Alternatively the out function could only return one
bit, indicating whether the biometric templates are close enough.

− On (Enrol, sid, uid, b) from C
• if there is no record 〈·, ·, C〉:

∗ store 〈uid, b, C〉 and send (enrol, sid, uid) to S
− On (Auth, sid, uid, b′) from C:

• if there is a record 〈uid, b, C〉:
∗ send (auth, sid, uid, out(b, b′)) to S

• else send (auth-fail, sid) to S

Fig. 1. The code of the simplified ideal functionality.

We want to capture the setting of two-factor authentication where the first
factor is a secret key stored on the user’s phone or a dedicated hardware device.
The second factor is the user’s biometric. In our model the client C is the device
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on which the secret key is stored and the user is the actual person. For enrolment
the client sends the user-id uid, such as an email address, and the biometric
reference template b to the ideal functionality. If that client is not yet enroled,
the ideal functionality stores an internal record and notifies the server that a
client with uid has enroled. Note that the server gets no information about b.

For the authentication, C again sends the user-id and a fresh biometric template
b′ to the ideal functionality. If and only if the same client has previously enroled
with the same user-id, the ideal functionality gives out(b, b′) to S. Depending on
the underlying FE scheme this can be the distance of the templates or the yes-no
authentication decision. Note that apart from out(b, b′) the server learns nothing
about the biometric templates. The fact that the ideal functionality checks that
the identity C of the client in the authentication phase is the same as the identity
of the client in the enrolment phase represents the first factor, i.e. possession of
the secret key. Because in the UC framework clients cannot fake their identity, a
client cannot authenticate with the uid of another client. The second factor, i.e.
the biometric authentication is represented by the ideal functionality storing the
biometric templates and giving out(b, b′) to the server.

This simple functionality, however, does not capture all actions that an adver-
sary can take in the real world. Therefore, we added several interfaces in order
to model the adversary’s capabilities. Also we exchanged the uid by a randomly
chosen rid to avoid that two clients enrol with the same identifier. The resulting
functionality Fout

2FA is shown in Figure Fig. 2.

Meaning of the interfaces of Fout
2FA: Here we explain the meaning of all the

interfaces of Fout
2FA and their connection to reality.

The (Enrol, sid, ssid, b) and (Auth, sid, ssid, b) interface of a client C:
These are the interfaces that a client would use for normal enrolment and authen-
tication. All other interfaces are there to model the adversary’s capabilities. We
let the environment Z choose the biometric template and the time of enrol-
ment/authentication, because in practice we do not have control over the bio-
metric template or the timing. In UC-PAKE for example the environment also
chooses the credential i.e. the password and the time of enrolment/authentication
(cf. [16]). Letting the environment choose the biometric templates of the clients
and the time (and order) of their enrolments/authentications is in a sense like
taking the worst case of possible events in reality.

The EnrolOK and AuthOK interfaces: In the real world the adversary
can delay or block messages. The EnrolOK and AuthOK interfaces model the
fact that messages are only delivered when A explicitly allows this.

The (Enrol, sid, ssid, rid, b) and (Auth, sid, ssid, rid, b′) interface of A:
These two interfaces are necessary because the adversary has more control over
the records of corrupted clients. Our ideal functionality in Fig. 2 has an Enrol
interface which explicitly allows the adversary to enrol malicious clients with
arbitrary rid. All clients enroled in that way are explicitly stored as adversar-
ially enroled clients by Fout

2FA. The adversary can then use its Auth interface
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This functionality interacts with a server S (specified in the sid) and arbitrary
clients. It is parameterized by the function out(·, ·), which determines the output
that S gets.
Enrolment:
− On (Enrol, sid, ssid, b) from C

• if there is no record 〈enrol-request, ·, ·, C〉:
∗ store 〈enrol-request, ssid, b, C〉
∗ send (enrol, sid, ssid, C) to A

− On (EnrolOK, sid, ssid) from A
• if there is a record 〈enrol-request, ssid, b, C〉 and no record 〈enroled, C, ·, ·〉:

∗ sample rid ←$ {0, 1}λ

∗ store 〈enroled, C, rid, b〉
∗ if the record 〈enrol-request, ssid, b, C〉 is marked corrupted:

· mark the record 〈enroled, C, rid, b〉 as corrupted
∗ send (enrol, sid, ssid, rid) to S

− On (Enrol, sid, ssid, rid, b) from A:
• if there is a record 〈enroled-adversarial, rid, ·〉 or 〈enroled, ·, rid, ·〉:

∗ send (enrol, sid, ssid, ⊥) to S
• else: store 〈enroled-adversarial, rid, b〉 and send (enrol, sid, ssid, rid) to S

Authentication:
− On (Auth, sid, ssid, b′) from C:

• if there is a record 〈enrol-request, ·, ·, C〉:
∗ store 〈auth-request, ssid, b′, C〉
∗ send (auth, sid, ssid, C) to A

− On (AuthOK, sid, ssid) from A:
• if there is a record 〈auth-request, ssid, b′, C〉:

∗ if there is a record 〈enroled, C, rid, b〉:
· delete the record 〈auth-request, ssid, b′, C〉 and send (auth, sid, ssid, rid, out(b, b′)) to S

∗ else delete the record 〈auth-request, ssid, b′, C〉 and send (auth-fail, sid, ssid) to S
− On (Auth, sid, ssid, rid, b′) from A:

• if there is a record 〈enroled-adversarial, rid, b〉
∗ send (auth, sid, ssid, rid, out(b, b′)) to S

• else send (auth-fail, sid, ssid) to S
Corruption and impersonation:

− On (Corrupt, sid, C) from A:
• if there is a record 〈enroled, C, rid, b〉:

∗ mark the record corrupted
∗ send (corrupted, sid, rid) to A

• if there is a record 〈enrol-request, ssid, ·, C〉:
∗ mark the record corrupted
∗ send (corrupted, sid, rid) to A

− On (TryImpersonate, sid, ssid, C, b′) from A:
• if there is a record 〈enroled, C, rid, b〉 that is marked corrupted:

∗ send (auth, sid, ssid, rid, out(b, b′)) to S

Fig. 2. The code of the ideal functionality Fout
2FA.

to authenticate in the name of any such client. Importantly, the adversary has,
through their Enrol and Auth interfaces, only influence on the records of the
adversarially enroled clients. This guarantees that the adversary cannot authen-
ticate in the name of an honest client and, thus, cannot impersonate an honest
client by using this interface.
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The Corrupt and TryImpersonate interfaces: The adversary can use
the Corrupt interface to corrupt an honest client and thereby bypass the first
authentication factor. In reality this could mean that the adversary has gained
remote access to the device that the client uses. It can also mean that the
adversary has stolen the device or secure hardware token and has physical access
to it. These two cases are modeled by the same interface, because in both cases
the adversary gains the same capabilities, namely to try to impersonate the client
with a self-chosen biometric template. This is modeled by the TryImpersonate
interface, where A can specify a client C and a biometric template b′. If C has
been corrupted previously, Fout

2FA will send (auth, sid, ssid, rid, out(b, b′)) to the
server S. Thus, essentially the impersonation attempt will only succeed if A
knows a biometric template b′ that is close enough to the reference template b
and thereby bypasses the second authentication factor. This meaningfully models
reality where the adversary can only successfully impersonate an honest client
if they both have access to the device and know a matching biometric template.

Modeling Corruptions in the Real World: The code in Fig. 3 models the client’s
behavior upon corruption. This code is not part of the protocol that would be
executed in reality, but is added to the client in the real world experiment in the
UC framework in order to properly model client corruptions. In the language of
the UC framework, this code describes the behavior of the client’s shell, whereas
the body contains the actual protocol code. Later in our protocol we assume the
use of secure hardware for storing key material and computing the enrolment and
authentication messages, which is also reflected in the code in Fig. 3. Namely,
the adversary does not get the internal state of the client, but only blackbox
access to the secure hardware. This means that A can try to impersonate a
client by giving a biometric template b′ to the secure hardware and forwarding
the message to the server. We distinguish the host from the secure hardware.
The host would usually be the software on a smartphone or laptop and the secure
hardware would be a special chip in the phone or laptop, or a USB-stick like
hardware token.

When one wants to instantiate our model without the use of secure hardware
then it is necessary to adapt the code in Fig. 3 to return the entire local state of
the client and then exactly follow the instructions from A.

Modeling Message Transfer in the Real World: Messages in our framework will
be sent via the F ′

SMT functionality (Fig. 4), which is an adaption of FSMT from
[6]. It is meant to model TLS connections where the server is authenticated via
a certificate but the client is not authenticated. This is modeled by the fact that
F ′

SMT, as opposed to FSMT, does not give the client’s identity C to the server.
However, the client can be sure that only the server can read the message. It
is important to model this, because giving the client’s identity C to the server
would make further authentication unnecessary. Simply put, we will use F ′

SMT
to capture the client’s instruction “send m to S over the internet via TLS”.
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This code describes the behavior (of the shell) of a client C upon corruption.
− On (Corrupt, sid) from A

• if C is enroled (i.e. (Enrol, ·, ·)) has been called before:
∗ set flag corrupted
∗ from now on ignore every input from Z and only take instructions from A
∗ send (corrupted, sid) to A

− On (TryImpersonate, sid, ssid, b′) from A
• if flag corrupted is set

∗ give (Auth, sid, ssid, b′) to the secure hardware in the name of the host
∗ when getting an output m from the secure hardware, send m to A

Fig. 3. The code modeling client behavior upon corruption.

− On (Send, sid, S, m) from a client C
• send (sent, sid, C, S, l(m)) to A

− On (ok, sid) from A:
• If not yet generated output then send (Sent, sid, m) to server S

Fig. 4. The code of the F ′
SMT functionality (adapted from [6] to mimic TLS

messages).

On Using rid Instead of uid: It is important that the server gets a unique iden-
tifier with which they can link account information such as the user’s bank
account. We chose to replace the environment supplied uid by a rid that is ran-
domly chosen by Fout

2FA in the enrolment phase. This reduces the options of Z, as
now Z cannot make two honest clients enrol with the same identifier. Of course
the server can still store the user’s email address alongside to the user record.

On (Not) Including an Interface for the Adversary to Guess the Biometric:
Other authentication functionalities such as in [11,16] have an interface that
A can use to make online or offline password guesses. Our functionality does not
have an interfaces for offline guesses of credentials, because even if the server is
corrupted, our protocol protects against such an attack. This is possible, because
as opposed to [11,16] in our case the client stores secret key material. Looking
ahead, the only way that A could perform an offline attack is after both cor-
rupting the server and the client and breaking the security of the client’s secure
hardware module. Note that it is not enough to corrupt the client and break the
security of the hardware module, because all data, which the hardware module
stores, are independent of the biometrics. Regardless, our protocol builds on the
assumption that the secure hardware is indeed secure and, thus, such an attack
is out of scope of our model.

The TryImpersonate-interface can be seen as a way of allowing A to per-
form online credential guesses for specific clients. Note, however, that this is only
possible after A has corrupted the respective client.
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On Using Passwords Instead of Biometrics: Although our ideal functionality
in Fig. 2 is aimed at capturing biometric authentication, it does in fact also
capture password based authentication. Whether the inputs to the interfaces for
the functionality are biometric templates or passwords does not matter. In order
to perform equality checks on the passwords, one simply has to define the out(·, ·)
function to return 1 if both arguments are equal (i.e. the passwords match), and
0 otherwise. Additionally our functionality naturally captures typo tolerance in
the password matching. For that, the out(·, ·) function would be set to return
1 if the passwords match except for some common typos. This increases the
applicability of our functionality to a wider range of scenarios.

Discussion of the Security Guarantees: The functionality Fout
2FA guarantees that

an attacker cannot impersonate an honest client without corrupting that client
and having a matching biometric template. The only way for A to impersonate
a client is through the TryImpersonate interface, after calling the Corrupt
interface.

The functionality also guarantees that nobody learns anything about the
biometric templates, except of what can be inferred from the out function. This
can be seen by observing that Fout

2FA’s behavior does not depend on the biometric
templates and the only way a biometric template appears in Fout

2FA’s output is
within out(b, b′). This holds even if the server is malicious and an arbitrary
number of clients is corrupted. The same holds for the impossibility of offline
guessing attacks, as Fout

2FA simply does not allow them. However, if the adversary
corrupts both a client and the server, then they can try to impersonate that client
with arbitrary biometric templates and at the same time learn the result of the
out-function. When the out-function is the distance of the two templates, then
the adversary can often reconstruct the corrupted client’s reference template
from these results. Note however, that this is only possible when both the client
and the server are corrupted. Under these circumstances many protocols do not
retain any security guarantees. Our protocol in Sect. 4.3 achieves these strong
guarantees by using secure hardware on the client side.

Although the ideal functionality is for a single server, the composition theo-
rem of [6] guarantees security also in situations with multiple servers, when there
is one instance of Fout

2FA per server. A single user can also have multiple accounts
at possibly different servers. In that case the user’s device would run multiple
instances of the protocol in Fig. 6. Again the composition theorem of [6] ensures
that the security guarantees of Fout

2FA still hold.

4 The Framework

In this section we describe our general protocol Π2FA and show that it UC
realizes Fout

2FA. We start by describing a concrete use case in which our protocol
could be used in practice. We then define several algorithms that are used in our
protocol and the security proof and define their correctness. Every instantiation
of our general protocol needs to instantiate these algorithms. Then we describe
our general protocol and prove its security.
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4.1 Use Case

In our use case in Fig. 5 the user has a device such as a smartphone or laptop
(the host in Fig. 6) and wants to authenticate to a server. The secret keys of the
FE scheme and the signature scheme are stored in secure hardware. This can
be an external hardware token as in Fig. 5, or a trusted execution environment
on the phone such as ARM’s TrustZone. For enrolment and authentication the
device takes the user’s biometric template and gives it to the secure hardware.
The secure hardware can optionally do liveness detection, i.e. trying to detect if
the biometric data is coming from a live person or if e.g. somebody is holding a
photo in front of the camera. In the next step, the secure hardware encodes and
encrypts the biometric template and sends the resulting message to the server.
The server then performs the enrolment or authentication. Thus, the client can
authenticate to the server in a secure and privacy preserving manner. The first
factor of the authentication is the possession of the hardware token and the
second factor is the user’s biometric. When an attacker compromises the user’s
host device or steals the hardware token, they cannot impersonate the user, as
they are lacking the user’s biometric.

Fig. 5. The authentication phase of our use case where the secret keys are stored
on a secure hardware token.

This use case is very similar to the setting of FIDO2 [12]. However, in FIDO2
the biometric matching is performed in the secure hardware. Both with our pro-
tocol in Sect. 4.3 and with FIDO2, if the attacker manages to compromise the
keys in the secure hardware, then they can impersonate the user. However, an
advantage of our protocol over FIDO2 is that in this case the user’s biometric ref-
erence template remains secret, because the data stored on the secure hardware
do not depend on the reference template.

4.2 Requirements

Let Sig = (Sig.Gen,Sig.Sign,Sig.Vfy) be a EUF-CMA secure signature scheme. Let
FE = (FE.Setup,FE.KeyGen,FE.Enc,FE.Dec) be a fh-IND secure FE scheme for
the family of functions F , the input space X and output space Y. To instantiate
our framework the following six algorithms have to be defined and fulfill certain
properties:

– encodeRef(·) : B → F , takes the reference template and encodes it as function
of the FE scheme
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– encodeProbe(·) : B → X , takes the probe template and encodes it as input of
the FE scheme

– out(·, ·) : B×B → D, takes two biometric templates and outputs the authen-
tication result

– FE2out(·) : Y → D, takes an output of FE.Dec and converts it to an authen-
tication result

– chooseFakeRef(), outputs a fake reference template to be used by the simulator
– chooseFakeProbe(·, ·) : B × D → B, takes a reference template and a desired

result and outputs a corresponding fake probe template

We say that (encodeRef, encodeProbe, out,FE2out) are correct if ∀b, b′ ∈
B,msk ← FE.Setup(1λ), skb ← FE.KeyGen(msk, encodeRef(b)), c ← FE.Enc(msk,
encodeProbe(b′)):

out(b, b′) = FE2out(FE.Dec(skb, c)).

We say that (chooseFakeRef, chooseFakeProbe) are correct if ∀d ∈ D,
b ← chooseFakeRef(), b′ ← chooseFakeProbe(b, d) : d = out(b, b′). Choosing fake
templates will later be necessary for the simulator and allows us to rely on the
weaker fh-IND security instead of simulation based security of the FE scheme.
We will instantiate these algorithms in Sect. 5.

4.3 The Protocol

The code of the client and the server of our protocol Π2FA are depicted in Fig. 6
and Fig. 7. We divide the client in two parts, the host and the secure hardware.
The host is the normal program on the laptop or the phone, whereas the code of
the secure hardware runs in a trusted execution environment or on an external
hardware token. We use F ′

SMT to model TLS messages sent by the client to the
server as described in Fig. 4 and Sect. 3.2. Note that in our version of F ′

SMT (as
opposed to FSMT from [6]), the client’s identity C is not given to the server.

For enrolling, the host simply forwards the instruction to the secure hard-
ware, which chooses a random rid and keys for the signature scheme and FE
scheme. The secure hardware then encodes the biometric reference template and
generates a FE key for the encoded template. It gives the rid, the FE key and
the signature public key to the host, which sends it to the server. The server
simply stores these data. The secure hardware stores the FE master secret key,
the signature secret key and rid.

For authenticating, the host again passes the instruction to the secure hard-
ware, which first checks if it is already enroled. If so, it encodes the probe tem-
plate and encrypts it with the FE scheme. Furthermore it signs (sid, ssid, rid, c) in
order to prove ownership of the signature secret key. The secure hardware gives
the rid, the FE ciphertext and the signature to the host, who sends the message
to the server. The server checks the signature and computes the output of the
protocol. We assume that ssid is unique per client i.e. per rid. Thus, the value
(sid, ssid, rid) is globally unique and prevents an attacker from reusing the signa-
ture. In practice the sid can be set as the server’s name and the ssid as a counter
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that is increased by the client at each authentication. The server would also keep
a counter per client and only accept messages with a counter value higher than
the stored one. Upon receiving the signature and the encrypted probe template,
the server checks the signature and uses the FE.Dec algorithm to compute the
output, which for example could be the distance of the biometric templates or
a yes-no decision.

The code of the client, which is divided in the host and the secure hardware :
− the host on (Enrol, sid, ssid, b) from Z:

• give (Enrol, sid, ssid, b) to the secure hardware

− the secure hardware on getting (Enrol, sid, ssid, b) from the host
• if there is no record 〈rid, (·, ·), ·〉:

∗ rid ←$ {0, 1}λ

∗ (pk, sk) ← Sig.Gen(1λ)
∗ msk ← FE.Setup(1λ)∗ b := encodeRef(b)
∗ skb ← FE.KeyGen(msk,b)
∗ store record 〈rid, (pk, sk),msk〉
∗ give back m := (enrol, rid, pk, skb)) to the host

• on getting m from the secure hardware
∗ send (Send, (sid, ssid), S, m) to F ′

SMT as message to S
− the host on (Auth, sid, ssid, b′) from Z:

• give (Auth, sid, ssid, b′) to the secure hardware

− the secure hardware on getting (Auth, sid, ssid, b′) from the host
• if there is a record 〈rid, (pk, sk),msk〉

∗ b′ := encodeProbe(b′)
∗ c ← FE.Enc(msk,b′)
∗ σ ← Sig.Sign(sk, (sid, ssid, rid, c))
∗ give back m := (auth, rid, c, σ)) to the host

• on getting m from the secure hardware
∗ send (Send, (sid, ssid), S, m) to F ′

SMT as message to S

Fig. 6. The code of the client.

On the Need for Secure Hardware: Without secure hardware, the adversary can
—by compromising the client —get the secret keys and they could be able to
choose a fake encoding of a biometric template, which may convince the server
that the attacker is authentic. For example when we instantiate the FE scheme
with an IPFE scheme, as we do in Sect. 5, then the attacker can choose b′ =
0 . . . 0	. This makes the inner-product with the encoded reference template to
be 0, which may convince the server that the distance is zero and allows the
attacker to impersonate the user. This problem seems to be inherent to IPFE
schemes and is also present in e.g. [7,18]. We chose to address this problem
by storing the client’s secret keys in secure hardware and letting the secure
hardware do the encoding of the biometric template. This ensures that only
correctly encoded templates are encrypted and signed. Another approach to
prevent this attack is to add zero knowledge proofs to the protocol. The client
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The code of the server:
− on (sent, (sid, ssid), m = (enrol, rid, pk, skb)) from F ′

SMT as message from some client:
• if there is no record 〈rid, ·, ·〉:

∗ store 〈rid, pk, skb〉
∗ output (enrol, sid, ssid, rid)

• else output (enrol, sid, ssid, ⊥)
− on (sent, (sid, ssid), m = (auth, rid, c, σ)) from F ′

SMT as message from some client:
• if there is a record 〈rid, pk, skb〉 and Sig.Vfy(pk, (sid, ssid, rid, c), σ) = 1:

∗ d := FE2out(FE.Dec(skb, c))
∗ output (auth, sid, ssid, rid, d)

• else output (auth-fail, sid, ssid)

Fig. 7. The code of the server.

would then have to prove to the server that the biometric template has been
correctly encoded before being encrypted.

4.4 Security Proof

Theorem 1. If FE is a (single-key) fh-IND secure fh-FE scheme and Sig is an
EUF-CMA secure signature scheme, then Π2FA UC-emulates Fout

2FA in the F ′
SMT

hybrid model in the presence malicious adversaries.

We defer the security proof to Appendix A.

5 Instantiation

Function hiding IPFE schemes allow computing inner-products between two
encrypted vectors. This enables us to evaluate any distance measure between
biometric templates that can be written as inner-product. When we then use fh-
IPFE schemes in our framework, this enables the server to compute the distance
between the client’s reference and probe template. In this section we describe
how to use an fh-IPFE scheme IPFE to instantiate our framework for computing
the Euclidean distance, the Hamming distance or the cosine similarity of two
biometric templates. We also sketch how the techniques of [5] can be used to
instantiate our framework in a way that avoids the leakage of the distance of the
biometric templates.

Our framework can be instantiated with both [7,18]. Both provide function
hiding simulation security, which implies fh-IND security which is the notion
that we need in our framework. The IPFE scheme of Cheon et al. [7] only allows
the creation of a single decryption key, which is sufficient in our setting and
allows the scheme to be quite efficient. The scheme relies on the security of the
learning with errors assumption. The IPFE scheme of Kim et al. [18] allows
an arbitrary number of decryption keys, which makes it less efficient. It uses
pairings and has a security proof in the generic group model. We use the IPFE
scheme as black-box, the parties call the IPFE.Setup, IPFE.KeyGen, IPFE.Enc,
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IPFE.Dec algorithms whenever the respective algorithm in Fig. 6 and Fig. 7 is
called. We will assume that our biometric templates b are already embedded
in e.g. Euclidean or Hamming space, i.e. they are vectors were a small distance
implies similar biometrics. This is often achieved by applying a neural network
to the biometric reading [9,23]. Letting Z directly choose the embedding can be
seen as modeling Z’s influence on the network creation and training. Next we
show how to instantiate the algorithms described in Sect. 4.2.

Squared Euclidean Distance: In [23] the authors show how to transform face bio-
metrics into vectors, where similar faces have low squared Euclidean distance. Let
the discretized embedding be vectors in Z

n
m+1 (in [23] n = 128). Then the maxi-

mum squared Euclidean distance is m2 ·n and we can set D := {0, . . . , m2 ·n}. To
later simplify the chooseFakeRef and chooseFakeProbe algorithms of the simula-
tor we set B := Z

n
q , for q > m2 ·n. Note that this also allows Z to choose biomet-

ric templates with too large coordinates, however, this does not help in finding
a vector that is close to the reference template and, thus, does not impact secu-
rity. Because the desired output is the squared Euclidean distance dE , we define
out(b, b′) := min(dE(b, b′),m2 · n). Note that the squared Euclidean distance
between b and b′ can also be written as dE(b, b′) = −2〈b, b′〉+‖b‖2+‖b′‖2. Thus,
we can define encodeRef(b) := b = b1 . . . bn 1 ‖b‖2 	 and encodeProbe(b′) :=

b′ = −2b′
1 . . . −2b′

n ‖b′‖2 1	. Then 〈b,b′〉 is the squared Euclidean distance of
b and b′. This requires an IPFE scheme with X = Z

n+2
q and Y = Zq. Finally we

define FE2out(d) := min(d,m2 · n). Capping the result at m2 · n is necessary to
ensure that it stays inside of D. Kim et al. [18] used the same encoding technique
for computing similarity of text documents.

Next we explain how to instantiate chooseFakeRef and chooseFakeProbe. Let
chooseFakeRef() := b := 0 . . . 0	 ∈ Z

n
q . Then, finding a fake probe template

with distance d, is the same as finding a vector b′
1 . . . b′

n
	 s.t.

∑
i∈[n] b

′2
i = d.

When n is at least 4, then the existence of such a vector is guaranteed by
Lagrange’s four square theorem, furthermore there exist efficient algorithms for
computing these four values [22]. We define chooseFakeProbe as setting the first
four coordinates of b′ as the output of the algorithm of [22] and setting the other
coordinates to 0. Note that chooseFakeRef and chooseFakeProbe are only part of
the simulator and never need to be actually implemented or executed.

Hamming Distance: Iris readings can be transformed into binary vectors where
a small Hamming distance corresponds to similar irises, e.g. with techniques
described in [5]. For computing the Hamming distance dH we use the same
encoding technique as Kim et al. [18]. We assume that our templates are binary
vectors b ∈ B := {0, 1}n. Then the largest possible Hamming distance is n,
so we define D := {0, . . . , n}. We require from the IPFE scheme that X =
Z

n
q and Y = Zq, for q > n. Furthermore, we define out(b, b′) := dH(b, b′).

For encoding a template b we define the vector b via bi = 1, if bi = 1 and
bi = −1 if bi = 0. For example 1, 0, 1 	 becomes 1,−1, 1 	. We can then define
encodeRef(b) := encodeProbe(b) := b. However, the inner-product 〈b,b′〉 is not
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equal to the Hamming distance dH(b, b′). Let ip be the inner-product output by
the IPFE.Dec algorithm. Then we define FE2out(ip) := max(n−ip

2 , 0), to convert
the inner-product into the Hamming distance.

Defining the algorithms for the simulator is relatively simple. We define
chooseFakeRef() := b := 1 . . . 1	 ∈ B and chooseFakeProbe(b, d) as the same
vector with d of the entries flipped to 0.

Cosine Similarity: As noted in [2], the cosine similarity can also be used for
biometric matching (e.g. for faces as in [20]) and can be easily computed as an
inner-product. The cosine similarity of two vectors v,w is defined as dC(v,w) :=

〈v,w〉
‖v‖‖w‖ , whereby the largest possible cosine similarity is 1, so we define D :=
[0, 1] ⊂ R. Close vectors have a high cosine similarity. We assume that the
templates are vectors in B := Z

n
m, with a fixed public L2 norm l. We require

X = Z
n
q , Y = Zq, for q > l2. We define out(b, b′) := dC(b, b′) and encodeRef(b) :=

encodeProbe(b) := b. Then the cosine similarity can be computed as dC(b, b′) =
FE2out(〈b,b′〉) := min( 〈b,b′〉

l2 , 1).
Defining chooseFakeRef and chooseFakeProbe such that the templates have

the correct distance, satisfy the norm bound l and still have integer coordinates
seems rather complex and we leave it as future work. Thus, our security proof
does not cover the cosine similarity instantiation.

Checking if the Distance is Below a Threshold: The above constructions leak the
distance of the biometric templates to the server, which can be avoided by using
a construction of [5]. They use orthogonality functional encryption to check if
the inner-product is equal to a certain value and further use it to check if the
distance of two encrypted biometric templates is within a certain range i.e. below
a threshold. Their technique works with both the Euclidean and the Hamming
distance and can be used to instantiate our framework so that the server only
learns the yes-no authentication result.

6 Implementation

In this section we will briefly describe our proof of concept implementation and
the results of our performance tests. The source code is available at: https://
github.com/johanernst/ipfe-bio-auth. This includes the Golang source code of
the protocol and the performance tests, the Python code for creating the plots
and the raw output data of the experiments. For the function hiding IPFE scheme
we used the implementation of the scheme of [18] in the GOFE library described
in [21]. We run the performance tests on a single thread of an Intel Core i5-
10210U CPU on a laptop. As biometric templates we used random vectors with
increasing number of elements. Each element is an integer value between 0 and
255 and we used the instantiation for the squared Euclidean distance described
in Sect. 5. The choice of parameters is motivated by [23] who constructed a
neural network that embeds face images into Euclidean space and has a very

https://github.com/johanernst/ipfe-bio-auth
https://github.com/johanernst/ipfe-bio-auth
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high accuracy. They use float vectors with 128 entries and report that “...it can
be quantized to 128-bytes without loss of accuracy.”

For each of the different template lengths we performed 3 runs, where each
run consisted of enrolling/authenticating 10 clients. Finally we took the average
to get the running time of a single call to each of the algorithms. We also sepa-
rately measured the time spent in the calls to the IPFE schemes with the same
number of runs and clients. The results are depicted in Fig. 8 and Table 1.

The experiments show that most algorithms are rather fast (below 0.25ms),
only the enrolment algorithm of the client is a bit slower (about 1.4 s), because
the Setup algorithm of the underlying IPFE scheme [18] requires the inversion
of a n × n matrix, where n is the length of the vector. However, the enrol-
ment is only performed once and the 1.4 s (for templates with 128 entries as
in [23]) are unlikely to significantly disturb the user experience. The time that
the server needs to enrol a client is so low because the server does not have to
run any IPFE operations. Furthermore, Table 1 shows that most of the running
time is consumed by the IPFE scheme. This means that our protocol profits sig-
nificantly from future improvements in the area of function hiding IPFE. Also
our scheme only needs single-key function hiding IPFE which can probably be
constructed much more efficiently. Therefore, instantiating our protocol with a
single-key function hiding IPFE will likely also boost efficiency. For templates
with 128 entries the size of the enrolment message is 16.47 KB and the size of
the authentication message is 33.29 KB.

Fig. 8. The running time of the different parts of our protocol with different
template lengths.
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Table 1. This table shows the exact running times in seconds of the four algo-
rithms of our protocol. In parenthesis there is the time spent in the calls to the
IPFE scheme.

Template
size

Client
Enrolment

Server
Enrolment

Client
Authentica-
tion

Server
Authentica-
tion

64 0.211
(0.210)

0.0001 (-) 0.028 (0.027) 0.123 (0.121)

128 1.387
(1.389)

0.0001 (-) 0.053 (0.054) 0.224 (0.224)

7 Conclusion and Future Work

Privacy-preserving biometric authentication is a complex problem and although
significant work has been proposed in the area, the respective security models
often do not capture all desired security goals or do not model all realistic adver-
sarial behavior. In this paper we discussed and highlighted the importance of
both privacy preserving and secure biometric authentication systems that main-
tain their security guarantees in complex real world settings. To this end we
proposed an ideal functionality for universally composable biometric based two-
factor authentication. To the best of our knowledge this is the first description
of an ideal functionality for biometric based two-factor authentication in the
UC framework. Furthermore, we proposed a general protocol for privacy pre-
serving biometric authentication that provides UC security guarantees and can
be instantiated using any suitable function hiding functional encryption scheme
and a signature scheme. We provide a detailed security analysis and proof of the
proposed general framework. Additionally, we showed how to concretely instan-
tiate our framework with a function hiding IPFE scheme and, thereby, allow the
computation of the Euclidean distance, the Hamming distance or the cosine sim-
ilarity. Finally we explained our proof of concept implementation and presented
the results of the performance tests.

Future Work: A worthwhile direction for future work may be to use our ideal
functionality to analyze the FIDO2 protocol in the UC framework. The func-
tionality would need to be adapted a little bit. For example it would probably
need an interface for the server to indicate that they are willing to participate
in the protocol and an interface for the adversary to allow the delivery of the
server’s message to the client.

Another interesting direction would be to extend our model to allow cor-
rupted clients to get uncorrupted again. This can happen when the malware is
removed from the client’s device, or when the client gets back their, previously
stolen, hardware token.
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A Security Proof

Below we give the proof of Theorem 1.

Proof. We first provide a simulator in Fig. 9 and Fig. 10. Then we show that no
PPT environment Z can distinguish between the real world, where it is inter-
acting with the honest parties and the dummy adversary, from the ideal world,
where it is interacting with the honest parties and the simulator. We do so by
considering all actions that Z can take and argue for each of them that the
results, which Z gets in the real world and the ideal world, are essentially the
same. The actions that Z can take are:

– (Enrol, sid, ssid, b) to an honest client
– (Auth, sid, ssid, b′) to an honest client
– (ok, (sid, ssid)) to F ′

SMT
– (Send, (sid, ssid),S,m = (enrol, rid, pk, skb)) to F ′

SMT in the name of a cor-
rupted client

– (Send, (sid, ssid),S,m = (auth, rid, c, σ)) to F ′
SMT in the name of a corrupted

client
– (Corrupt, sid) to a client C
– (TryImpersonate, sid, ssid, b′) to a client C
To simplify the presentation, we assume that Z does not delay or block messages,
whenever the sender or receiver is corrupted. In that case the receiver directly
gets the message without the need for Z to send (ok, (sid, ssid)) to F ′

SMT. This
is reasonable, because Z cannot gain anything from blocking its own messages.
Therefore, when S is corrupted, Sim can directly send (EnrolOK, sid, ssid)
(resp. (AuthOK, sid, ssid)) to Fout

2FA after receiving (enrol, sid, ssid, ·) (resp.
(auth, sid, ssid, ·)) from Fout

2FA. In the real world we say that rid is enroled, if the
server has a record 〈rid, ·, ·〉. In the ideal world we say that rid is enroled, if the
ideal functionality has a record 〈enroled, ·, rid, ·〉 or 〈enroled-adversarial, rid, ·〉. In
both worlds this is equivalent to the server having output (enrol, sid, ssid, rid),
for some sid and ssid.

The simulator uses five different tables. Table T1 is for pending messages,
T2 contains entries for the adversarially enroled clients. In case the server is
corrupted, T3 contains an entry for each of the enroled clients. Table T4 contains
an entry for each client that was adaptively corrupted by Z and T5 contains all
(fake) messages that Sim created as response to TryImpersonate instructions
from Z.

• (Enrol, sid, ssid, b) to an honest client C: Z calls the enrol-interface of C.

Case 1. The server is honest:
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1 : Let le, la be the length of the enrolment- and authentication messages respectively.

2 : Forwarding messages:

3 : − on (enrol, sid, ssid, C) from Fout
2FA:

4 : • if S is corrupted: send (EnrolOK, sid, ssid) to Fout
2FA

5 : • else:
6 : ∗ simulate F ′

SMT by sending (sent, (sid, ssid), C, S, le) to Z as message from F ′
SMT

7 : ∗ store (enrol, ssid) in table T1

8 : − on (auth, sid, ssid, C) from Fout
2FA:

9 : • if S is corrupted: send (AuthOK, sid, ssid) to Fout
2FA

10 : • else:
11 : ∗ simulate F ′

SMT by sending (sent, (sid, ssid), C, S, la) to Z as message from F ′
SMT

12 : ∗ store (auth, ssid) in table T1

13 : − on (ok, (sid, ssid)) from Z to F ′
SMT:

14 : • if there is a record (enrol, ssid) in table T1: send (EnrolOK, sid, ssid) to Fout
2FA

15 : • else if there is a record (auth, ssid) in table T1: send (AuthOK, sid, ssid) to Fout
2FA

16 : • else: ignore this message

17 : Client messages to F ′
SMT:

18 : − on (Send, (sid, ssid), S, m = (enrol, rid, pk, skb)) from Z to F ′
SMT (from corrupted client)

19 : • if server S is corrupted: send (sent, (sid, ssid), m) to Z as F ′
SMT’s output to S

20 : • else:
21 : ∗ choose b ← chooseFakeRef()
22 : ∗ send (Enrol, sid, ssid, rid, b) to Fout

2FA //using the adversary’s interface
23 : ∗ if record (rid, ·, ·, ·) does not exist in table T2: store (rid, b, pk, skb) in table T2

24 : − on (Send, (sid, ssid), S, m = (auth, rid, c, σ)) from Z to F ′
SMT (from corrupted client)

25 : • if server S is corrupted: send (sent, (sid, ssid), m) to Z as F ′
SMT’s output to S

26 : • else:
27 : ∗ if there is entry (rid, b, pk, skb) in table T2 and Sig.Vfy(pk, σ, (sid, ssid, rid, c)) = 1:
28 : · d := FE2out(FE.Dec(skb, c)

29 : · choose b′ ← chooseFakeProbe(b, d) //make sure that out(b, b′) = d
30 : · send (Auth, sid, ssid, rid, b′) to Fout

2FA //using the adversary’s interface
31 : ∗ else if there is an entry (rid, sid, ssid, c, pk, C, b′) in T5
32 : and Sig.Vfy(pk, σ, (sid, ssid, rid, c)) = 1:
33 : · send (TryImpersonate, sid, ssid, C, b′) to Fout

2FA
34 : ∗ else: send (Auth, sid, ssid, ⊥, ⊥) to Fout

2FA //using the adversary’s interface

35 : Simulating a corrupted server:

36 : − on (enrol, sid, ssid, rid) from Fout
2FA to the corrupted server:

37 : • msk ← FE.Setup(1λ)
38 : • choose b ← chooseFakeRef()
39 : • b := encodeRef(b)
40 : • skb ← FE.KeyGen(msk, b)

41 : • (pk, sk) ← Sig.Gen(1λ)
42 : • store (rid, b, pk, sk,msk, skb) in table T3

43 : • send (sent, (sid, ssid), m = (enrol, rid, pk, skb)) to Z as F ′
SMT’s output to S

44 : − on (auth, sid, ssid, rid, d) from Fout
2FA to the corrupted server:

45 : • retrieve record (rid, b, pk, sk,msk, skb) from table T3

46 : • choose b′ ← chooseFakeProbe(b, d) //make sure that out(b, b′) = d
47 : • b′ := encodeProbe(b′)
48 : • c ← FE.Enc(msk,b′)
49 : • σ ← Sig.Sign(sk, (sid, ssid, rid, c))

50 : • send (sent, (sid, ssid), m = (auth, rid, c, σ)) to Z as F ′
SMT’s output to S

Fig. 9. The code of the simulator.



A Framework for UC Secure Privacy Preserving Biometric Authentication 189

51 : Continuation of the simulator’s code
52 : − on (Corrupt, sid) from Z to C:
53 : • send (Corrupt, sid, C) to Fout

2FA
54 : • if Fout

2FA answers with (corrupted, sid, rid):
55 : ∗ if S is corrupted:
56 : · retrieve (rid, b, pk, sk,msk, skb) from T3

57 : · store (C, rid,msk, pk, sk, b) in T4.
58 : ∗ else: //if S is not corrupted
59 : · msk ← FE.Setup(1λ)
60 : · (pk, sk) ← Sig.Gen(1λ)
61 : · choose b ← chooseFakeRef()
62 : · store (C, rid,msk, pk, sk, b) in table T4

63 : ∗ send (corrupted, sid) to Z
64 : − on (TryImpersonate, sid, ssid, b′) to C:
65 : • retrieve record (C, rid,msk, pk, sk, b) from T4

66 : • if server S is corrupted:
67 : ∗ send (TryImpersonate, sid, ssid, C, b′) to Fout

2FA
68 : ∗ receive back (auth, sid, ssid, rid, d) as output to S
69 : ∗ ̂b′ ← chooseFakeProbe(b, d)
70 : ∗ ̂b′ := encodeProbe(̂b′)
71 : ∗ c ← FE.Enc(msk, ̂b′)
72 : ∗ σ ← Sig.Sign(sk, (sid, ssid, rid, c))

73 : ∗ give (rid, c, σ) to Z as the output of the secure hardware to the host
74 : • else: //S is not corrupted
75 : ∗ b′ := encodeProbe(b′)
76 : ∗ c ← FE.Enc(msk,b′)
77 : ∗ σ ← Sig.Sign(sk, (sid, ssid, rid, c))

78 : ∗ store (rid, sid, ssid, c, pk, C, b′) in T5
79 : ∗ give (rid, c, σ) to Z as the output of the secure hardware to the host

Fig. 10. The second part of the code of the simulator.

Real world : C only continues if this is the first Enrol message they got.
They execute the setup algorithm of the FE scheme and the signature scheme
and choose a random rid. C prepares the message m for the server and
sends (Send, (sid, ssid),S,m) to F ′

SMT. F ′
SMT then sends (sent, (sid, ssid),

C,S, length(m)) to A, who gives it to Z.

Ideal world : C sends (Enrol, sid, ssid, b) to Fout
2FA, which only continues if this is

the first Enrol message from C. Fout
2FA then sends (enrol, sid, ssid, C,S) to Sim,

who gives (sent, (sid, ssid), C,S, le) to Z.
In both worlds Z gets a message if and only if the client has not yet sent

an enrolment message. By definition of le, we have that length(m) = le and,
therefore, the messages that Z gets in both worlds are the same.

Case 2. The server is corrupted:

Real world : C sends (Send, (sid, ssid),S,m := (enrol, rid, pk, skb)) to F ′
SMT for

random rid and fresh pk and skb. S directly gives this message to Z.

Ideal world : Fout
2FA sends (enrol, sid, ssid, C) to Sim, which replies with

(EnrolOK, sid, ssid). Sim then gets (enrol, sid, ssid, rid) as output to the cor-
rupted server. Sim chooses b and generates pk and skb. They then give
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(sent, (sid, ssid),m := (enrol, rid, pk, skb)) to Z in the name of the corrupted
server.

In both worlds sid and ssid are the same and rid is a random value that Z
has not previously seen. Also pk is in both worlds the result of Sig.Gen. The
only critical part is skb. In the real world the underlying vector b is the user’s
biometric, whereas in the ideal world the simulator chose b ← chooseFakeRef().
However, both skb are indistinguishable due to the function hiding property of
the FE scheme. In Lemma 1 we give a reduction that breaks the fh-IND-security
of FE if Z can distinguish between the real and ideal world.

• (Auth, sid, ssid, b′) to an honest client C: Z calls the auth-interface of C.

Case 1. The server is honest:

Real world : C checks if they are enroled. If so, C prepares the authentication
message m for the server and sends (Send, (sid, ssid),S,m) to F ′

SMT, which sends
(sent, (sid, ssid), C,S, length(m)) to A, who forwards it to Z.

Ideal world : C sends (Auth, sid, ssid, b′) to Fout
2FA. If C has previously sent an enrol-

message, Fout
2FA sends (auth, sid, ssidC,S) to Sim, who gives (sent, (sid, ssid),

C,S, la) to Z.
In both worlds Z gets a message if and only if the client has previously sent

an enrolment message. By definition of la, we have that length(m) = la and,
therefore, the messages that Z gets are the same in both worlds.

Case 2. The server is corrupted:

Real world : If C has previously sent an enrol-message, they send (Send, (sid, ssid),
S,m = (auth, rid, c, σ)) to F ′

SMT, where c is the encrypted, encoded b and σ a
signature of (sid, ssid, rid, c). S receives this message and directly gives it to Z.

Ideal world : If C has previously sent an enrol-message, Fout
2FA sends

(auth, sid, ssid, C) to Sim, which replies with (AuthOK, sid, ssid). Sim then gets
(auth, sid, ssid, rid, d = out(b, b′)) as output to the corrupted server, where b
and b′ are the client’s reference and fresh template. Sim chooses a fake probe
template such that its FE output with the fake reference template is exactly d.
Sim then encodes and encrypts the new fake template and creates a signature,
using the self-chosen keys from the enrolment phase, as an honest client would
do. They then give (sent, (sid, ssid),m := (auth, rid, c, σ)) to Z in the name of
the corrupted server.

In both worlds ssid is the same and rid is a random value that matches
the rid from the enrolment phase. The critical component is the ciphertext c.
Here we rely on the fh-IND-security of the FE scheme, which ensures that
no PPT adversary can distinguish between two ciphertexts, if the output of
FE.Dec(skb, ·) is the same in both cases. By choosing the fake templates as
b′ ← chooseFakeProbe(b, d), Sim ensures that the FE outputs are the same in
both worlds. We show the indistinguishability of both worlds formally in Lemma
1 by giving a reduction, which breaks the fh-IND-security of the FE scheme, if
Z is able to distinguish between the worlds. The signatures σ in both worlds are
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indistinguishable, as the secret keys are identically distributed and the signed
messages are indistinguishable.

• (ok, (sid, ssid)) to F ′
SMT: The environment lets through a client’s message:

Case 1. (ssid belongs to an enrol -message of a client C):

Real world : C chose rid uniformly from {0, 1}λ, therefore, S will not have a
record 〈rid, pk, skb〉 with overwhelming probability. Thus, S outputs (enrol, sid,
ssid, rid).

Ideal world : Sim sends (EnrolOK, sid, ssid) to Fout
2FA. Fout

2FA will not have a record
〈enroled, C, ·, ·〉, because C has not yet enroled and enrols at most once. Hence,
Fout

2FA will choose rid at random and give (enrol, sid, ssid, rid) as output to Z.
In both worlds rid is a random bit string that Z has not seen before. There-

fore, both worlds are indistinguishable for Z.

Case 2. (ssid belongs to an authentication-message of a client C): If Z previously
let through the corresponding enrol-message of C then S has a record 〈rid, pk, skb〉
and Fout

2FA has a record 〈enroled, C, rid, b〉. Thus, in the real world Z will get
(auth, sid, ssid, rid, d = FE2out(FE.Dec(skb, c))) from S. In the ideal world Z
will get (auth, sid, ssid, rid, out(b, b′)), where b, b′ are the same in both worlds
(chosen by Z). In both worlds rid will match the rid from the enrol-message. By
correctness of (encodeRef, encodeProbe, out,FE2out) we have d = out(b, b′).

If Z did not let through C’s enrol-message, S has no record 〈rid, ·, ·〉 (Z does
not even know rid) and Fout

2FA has no record 〈enroled, C, ·, ·〉. Thus, in both worlds,
Z gets as output (auth-fail, sid, ssid).

• (Send, (sid, ssid),m = (enrol, rid, pk, skb)) to F ′
SMT: A corrupted client’s

enrol-message:

Case 1. The server is honest:

Real world : If S previously output (enrol, sid, ssid′, rid) (i.e. rid is already
enroled), then S will output (enrol, sid, ssid,⊥). Otherwise S will output
(enrol, sid, ssid, rid).

Ideal world : Sim uses the adversary-interface of Fout
2FA by sending (Enrol,

sid, ssid, rid, b), for a fake template b. If rid is already enroled, Fout
2FA will out-

put (enrol, sid, ssid,⊥) to S and otherwise (enrol, sid, ssid, rid). The outputs in
both worlds are identical.

Case 2. The server is corrupted: In the real world S will receive
(sent, (sid, ssid),m) from F ′

SMT and output it to Z. In the ideal world Sim will
give (sent, (sid, ssid),m) to Z in the name of S. In both worlds Z gets identical
output.

• (Send, (sid, ssid),m = (auth, rid, c, σ)) to F ′
SMT: A corrupted client’s auth-

message:

Case 1. The server is honest: This is the case which shows that an attacker can
first, not impersonate an honest client and second, still needs a valid biometric
to impersonate an adaptively corrupted client.
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First consider the case where rid is not enroled, or the signature σ is not
valid. Then in both worlds Z will get (auth-fail, sid, ssid) as output from S.

Next, consider the case that the signature is valid and rid belongs to a client
that has been enroled by A, i.e. Fout

2FA has a record 〈enroled-adversarial, rid, ·〉 and
equivalently Sim has an entry (rid, ·, ·, ·) in T2. In the real world, S will output
(auth, sid, ssid, rid, dreal) and in the ideal world S will output (auth, sid, ssid,
rid, dideal). We have dreal = dideal, because Sim computes its internal variable d
exactly as the real server computes its output value and then uses it to gener-
ate fake templates that make Fout

2FA output out(b, b′) to S. By correctness of
(chooseFakeRef, chooseFakeProbe) Sim’s fake template b′ ← chooseFakeProbe
(b, d) satisfies out(b, b′) = d.

Now consider the case where rid is enroled, the signature is valid and
Sim has an entry (rid, sid, ssid, c, ·, C, b′) in T5, where rid, sid, ssid and c
are the same as from Z’s message to F ′

SMT. This implies that Z has
corrupted C and has sent a (TryImpersonate, sid, ssid, b′) instruction to
A/Sim and is now instructing A/Sim to send the message —that Z got
as response to the TryImpersonate instruction —to S. Thus, in the
real world S will output (auth, sid, ssid, rid, dreal). In the ideal world Sim
will send (TryImpersonate, sid, ssid, C, b′) to Fout

2FA which will then send
(auth, sid, ssid, rid, out(b, b′)) to S. Since in this case b and b′ will be the same
in both worlds, we have that dreal = out(b, b′), by correctness of (encodeRef,
encodeProbe, out,FE2out).

Let us now consider the last case, where neither of the above is true, Sim
gets to the else-case (in line 34) and rid is enroled and the signature is valid.
In the ideal world, Sim will send (Auth, sid, ssid,⊥,⊥) to Fout

2FA, which will then
give (auth-fail, sid, ssid) as output to S. In the real world, however, S will
output (auth, sid, ssid, rid, dreal). Thus, in this case Z can distinguish between
the worlds. However, this case can only occur if Z forges a signature. In Lemma
2 we sketch a reduction that wins the EUF-CMA game in that case.

Case 2. The server is corrupted: Exactly as in the case of a corrupted client’s
enrol-message, in both worlds the server will output (sent, (sid, ssid),m).

• Instruction to A/Sim to send (Corrupt, sid) to (the backdoor tape
of) client C:

Real world : A will send (Corrupt, sid) to C (on the backdoor tape). If and only
if the client C exists and is enroled, C’s shell will answer with (corrupted, sid).
A will then forward this message to Z.

Ideal world : Sim will send (Corrupt, sid, C) to Fout
2FA. Fout

2FA will answer with
(corrupted, sid, rid) if and only if the client C exists and is enroled. In that
case Sim will send (corrupted, sid) to Z.

Therefore, in both worlds Z will get the output (corrupted, sid) if and only
if C exists and is enroled. This is independent of whether the server is corrupted.

• Instruction to A/Sim to send (TryImpersonate, sid, ssid, b′) to (the
backdoor tape of) client C:
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Case 1. The server is honest:

Real world : A will send (TryImpersonate, sid, ssid, b′) to C (on the backdoor
tape). If C is corrupted, the shell will give (Auth, sid, ssid, b′) to the secure
hardware, which will respond with m = (auth, rid, c, σ). The shell will give m to
A who forwards it to Z.

Ideal world : Sim will retrieve the fake keys from table T4 which will exist only if
C has been corrupted. Then Sim will encode, encrypt and sign b′ as the secure
hardware would have done and give m = (auth, rid, c, σ) to Z.

In both worlds Z will get an answer if and only if C has been corrupted before.
In both worlds the rid is uniformly random, but stays the same over multiple
TryImpersonate instructions. Furthermore, c and σ are generated with the
same inputs and identically distributed keys which stay the same for multiple
calls to TryImpersonate. Therefore, both worlds are perfectly indistinguish-
able.

Case 2. The server is corrupted:

Real world : Z will get the same as in the case of an uncorrupted server, namely
m = (auth, rid, c, σ).

Ideal world : Sim will retrieve the fake keys from table T4 which will exist only
if C has been corrupted. Then Sim will send (TryImpersonate, sid, ssid, C, b′)
to Fout

2FA and get back (auth, sid, ssid, rid, d) as Fout
2FA’s answer to the corrupted

server. Sim creates a fake probe template so that the distance to the earlier fake
reference template is exactly d and encrypts and signs the message with the
corresponding fake keys. Sim then gives m = (auth, rid, c, σ) to Z.

In both worlds rid is uniformly random and stays the same over multiple
calls to TryImpersonate. The encryption and signature keys are identically
distributed and also stay the same for multiple calls to TryImpersonate. The
only difference is that the ciphertext c in the real world is the encryption of b′,
whereas in the ideal world it is the encryption of the fake probe template b̂′.
In Lemma 1 we show that if Z can distinguish between the real and the ideal
world, there is a reduction which breaks the fh-IND-security of the FE scheme.

Lemma 1. If Z can distinguish between a key skb in the real world and the ideal
world, or between a ciphertext c in the real world and the ideal world, then there
is a reduction B that wins the fh-IND-security experiment of the FE scheme.

Proof sketch. We use a hybrid argument over an upper bound on the number of
honest clients l. Let Hi be the execution in which the first i honest clients use keys
and ciphertexts as produced by the simulator. The other clients are still executed
as in the real world. In a bit more detail, in Hi, for honest clients {1, . . . , i},
whenever an enrolment-message is delivered to a corrupted server, Z gets the
output of the “on (Enrol, sid, ssid, rid) from Fout

2FA”-interface of the simulator.
Whenever an authentication-message of one of the first i clients is delivered to
a corrupted server, Z gets the output of the “on (Auth, sid, ssid, rid, d) from
Fout

2FA”-interface of the simulator. For clients {i + 1, . . . , l}, Z gets the output of
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the real clients Enrol (resp. Auth) interface. So in H0 all secret keys skb and
ciphertexts c are produced as in the real world, whereas in Hl all secret keys
and ciphertexts are produced as in the ideal world. An environment that is able
to tell apart the real world from the ideal world by distinguishing between the
real and simulated FE keys or ciphertexts, is also able to distinguish between H0

and Hl. Therefore, there must exist i ∈ {1, . . . , l} such that Z can distinguish
between Hi−1 and Hi. We give a reduction B that wins the fh-IND-security
experiment, given a distinguisher D for Hi−1 and Hi:

When Z calls the “(Enrol, sid, ssid, b)”-interface of the i-th honest client,
B takes the public parameters from the fh-IND FE security experiment
and asks a QKeyGen(b, b̂) query, where b is the encoding of b and b̂ =
encodeRef(chooseFakeRef()) is the encoding of the fake reference template. B
receives back the functional decryption key sk and gives this as part of the
enrolment-message to the corrupted server and thereby to Z. When Z calls the
“(Auth, sid, ssid, b′)”-interface of the i-th honest client, B asks a QEnc(b′, b̂′)
query, where b′ is the encoding of b′ and b̂′ is the encoding of the fake probe tem-
plate that the simulator would have chosen via chooseFakeProbe(·, ·). B receives
back the ciphertext c and gives this as part of the authentication-message to the
corrupted server and thereby to Z.

When the experiment’s bit b = 0, then B gets the secret key and ciphertexts
for the real biometric templates, whereby B perfectly simulates Hi−1. When the
experiment’s bit b = 1, then B gets the secret key and ciphertexts for the fake
biometric templates chosen by the simulator, whereby B perfectly simulates Hi.

Lemma 2. There is a reduction B that wins the EUF-CMA game if the envi-
ronment manages to get to the else-case in line 34 of the simulator with a valid
signature σ.

Proof sketch. The general idea is that B runs the simulator’s code, but whenever
the simulator would create a signature keypair, or sign a message, B instead uses
its challenger to get the keypair or signature.

A bit more in detail, B will guess a client C∗. When Sim creates a keypair for
that client in line 60 in Fig. 10), B will get the public key from its EUF-CMA
challenger. Whenever Sim would create a signature under the corresponding
secret key (e.g. in line 77 in Fig. 10), B asks a signing query to their challenger
and uses the response as the signature that Sim would have created. When B
gets a “(Send, (sid, ssid),S,m = (auth, rid, c, σ))” instruction from Z with a valid
signature σ (relative to the pk associated with rid), and gets to the else-case in
line 34 in Fig. 9), B outputs ((sid, ssid, rid, c), σ) as forgery to its EUF-CMA
challenger.

Now let us argue that this is indeed a valid forgery. First, observe that since
B came to the else-case, it does not have an entry in table T2, which means that
the message did not belong to an adversarially enroled client and thereby pk was
not chosen by Z, but by B’s EUF-CMA challenger. Second, since B came to the
else-case, it also does not have a matching entry in table T5, which means, it
did not ask a signing query for (sid, ssid, rid, c) to its challenger in response to a



A Framework for UC Secure Privacy Preserving Biometric Authentication 195

TryImpersonate instruction. Therefore, ((sid, ssid, rid, c), σ) constitutes a valid
forgery and B wins the EUF-CMA game.
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Abstract. Private information retrieval (PIR) allows a client to retrieve
an element from a database without revealing which element is down-
loaded to the database servers. PIR protocols with unconditional pri-
vacy and sublinear (in n) communication complexity can be constructed
assuming multiple honest-but-curious servers. This assumption however
cannot be guaranteed in many real life scenarios such as using cloud
servers as database servers. We consider an multi-server information-
theoretic PIR with result verification (PIR-RV) model where the client
can detect the existence of malicious servers even if only one server is
honest. We construct a t-private k-server PIR-RV protocol for arbitrary
k ≥ 2 and 1 ≤ t < k, and show its security for 2 ≤ k ≤ 5. The protocol’s

communication complexity is O( k2

t
(nk

t
)1/(�(2k−1)/t�−1) log p), where p is

the size of finite field.

Keywords: Cryptography · Private Information Retrieval · Malicious
Servers · Security

1 Introduction

Private information retrieval (PIR) [6] allows a client to retrieve an element
from a database without revealing which element is downloaded to the database
servers. The communication complexity of a PIR protocol is the total num-
ber of bits that the client must exchange in order to retrieve one bit from the
database. PIR is a fundamental privacy-preserving primitive in cryptography and
has applications in many systems such as private media browsing [12], metadata-
private messaging [1] and location-based services for smartphones [14,20].

A trivial PIR protocol requires the client to download the whole database
from a server and incurs a prohibitive communication complexity that is linear
in the size of the database. Chor et al. [6] showed that if there is only one
server and the perfect privacy of the retrieval index is required, then the linear
communication complexity is unavoidable. A multi-server PIR model [2–4,8,
9,18,21] is necessary if both perfect privacy and the sublinear communication
complexity are required. In a multi-server PIR model, the database is replicated
among multiple servers and the client retrieves a database element by querying
every server once, such that each individual server learns no information about
the retrieval index. A t-private k-server PIR protocol [18] provides the stronger
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Tibouchi and X. Wang (Eds.): ACNS 2023, LNCS 13906, pp. 197–216, 2023.
https://doi.org/10.1007/978-3-031-33491-7_8
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security guarantee that the retrieval index is perfectly private for any t colluding
servers.

While the early PIR protocols always assume honest-but-curious servers that
strictly follow the protocol’s specifications but try to learn the retrieval index,
recently a lot of efforts [5,7,10,13,15,19,22–25] have been made to deal with
malicious servers that may collude and provide wrong answers to the client,
in order to deceive the client into reconstructing an incorrect value. The PIR
protocols that tolerate malicious servers have particular interest in the modern
age of cloud computing because they allow the PIR servers to be implemented by
the untrustworthy cloud services, i.e., outsourcing the PIR servers’ computations
to the cloud.

Byzantine-Robust PIR (BRPIR). Informally, BRPIR protocols [5,7,10,15,
19,23] not only allow the client to learn the correct value of the retrieved database
element in the presence of a limited number of malicious servers but also allow
the client to figure out which servers are cheating (see Table 1). A t-private v-
Byzantine-robust k-out-of-� PIR ((t, v, k, �)-BRPIR) protocol ensures that if at
least k out of the � servers answer the client’s queries and at most v of the
k answering servers are malicious (called Byzantine servers) and return incor-
rect answers, then the client is able to both reconstruct the correct value of
the database element and figure out the incorrect answers. Beimel and Stahl [5]
constructed such systems for v ≤ t ≤ k/3. The BRPIR protocol of Yang et al.
[19] allows v ≤ t < k/2. The BRPIR protocols in both [5,19] require an expo-
nential time reconstructing algorithm. Goldberg [10] improved the robustness
with protocols that satisfy 0 < t < k and v < k − �√kt�. Devet and Goldberg
[7] got further improvements with 0 < t < k and v < k − t − 1. Both [7,10]
run in polynomial time but only result in a list of candidates for the value of
the retrieved database element. Kurosawa [15] proposed polynomial-time recon-
structing algorithms for the BRPIR protocol in [5]. Zhang et al. [23] proposed a
1-private BRPIR protocol with both a polynomial time reconstructing algorithm
and a communication complexity lower than [15].

Verifiable PIR (VPIR). The VPIR protocols [22,24] are constructed in either
the multi-server model or the single-server model such that the wrong answers
provided by the malicious servers will be detected and identified (but there is
no guarantee of recovering the correct element, or even a small list of candi-
dates). Compared with BRPIR, VPIR has higher efficiency and lower commu-
nication complexity. In particular, the k-server VPIR protocol’s communication
complexity is comparable to the best existing k-server PIR protocols for honest-
but-curious servers. Besides, VPIR protocols allow all the servers to be mali-
cious (Byzantine in BRPIR, see Table 1). The security of VPIR protocols in
both [22,24] is based on cryptographic assumptions. Therefore, they do not pro-
vide information-theoretic security. More importantly, VPIR protocols require a
trusted third party, called the data owner, to preprocess the database and set up
the public keys for verification. Another drawback of these protocols is that to
facilitate verification, both the client and the server(s) in these protocols have to
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do a lot of public-key operations such as pairing computations or lattice-related
computations.

Cheating Detectable PIR (CD-PIR). The CD-PIR protocol [25] allows
the client to detect the wrong answers provided by the malicious servers (but
there is no guarantee of identifying which servers are malicious, see Table 1).
The k-server CD-PIR also has comparable communication complexity to the
best existing k-server PIR protocols. Also, CD-PIR still works even if all of the
servers are malicious. Compared with VPIR, CD-PIR does not have to do the
costly public-key operations. Similar as VPIR, however, CD-PIR also requires
the data owner to be honest (as a trusted third party) to preprocess the database
and set up the keys for verification. The security of CD-PIR is not information-
theoretic but based on the collision resistance of hash functions.

PIR with Result Verification (PIR-RV). The PIR-RV protocol [13] is con-
structed only in a 2-server model. Similar as CD-PIR, PIR-RV protocol allows
the client to detect the wrong answers, provides information-theoretic security
and requires no public-key operation (see Table 1). Compared with CD-PIR,
PIR-RV protocol has only two participants: the client and the servers. The secu-
rity of PIR-RV relies on the assumption that one of the servers is honest. Such
assumption is much more practical compared to the assumption that there is an
honest data owner playing the role of a trusted third party (used in VPIR and
CD-PIR).

Compared with BRPIR, VPIR, and CD-PIR, if we restrict to protocols using
the same number of servers, the PIR-RV protocol from [13] is much more effi-
cient, either in terms of communication complexity or computational complexity.
However, a main limitation of [13] is that it only gives a protocol for 2 servers.
It’s very interesting to extend their PIR-RV study to k-server protocols for any
k ≥ 2 since more servers may indicate higher efficiency. However, such an exten-
sion seems highly nontrivial, if we consider k-server PIR-RV protocols whose
result verification property holds in the presence of as many as k − 1 malicious
servers. The main reason is that the very specific proof techniques of [13] for
security cannot be easily extended to the k > 2 cases.

1.1 Our Contribution

In this paper, we extend the PIR-RV study of [13] for more than 2 servers.
Specifically, we make the following contributions.

– We extend the 2-server PIR-RV model to k-server PIR-RV model for arbi-
trary k ≥ 2. Our model requires that the client should be able to detect the
existence of cheating servers even if only one of the servers is honest. There-
fore, our k-server PIR-RV protocol has k − 1 malicious servers tolerance. In
fact, it is impossible for a protocol to get k malicious servers tolerance if it is
free of trusted third-party. We will prove this conclusion in Sect. 3.

– We construct a t-private k-server PIR-RV protocol Γ for any k ≥ 2 and
1 ≤ t < k. As the security proofs are quite challenging, we show the security of
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our k-server PIR-RV protocols for 2 ≤ k ≤ 5. The communication complexity
of our t-private k-server PIR-RV protocol is

O

(
k2

t

(
nk

t

)1/(�(2k−1)/t�−1)

log p

)
.

For k = 2 and t = 1, it is consistent with the O(n1/2 log p) communication
complexity of the 2-server PIR-RV protocol of [13].

Table 1. Comparisons between the t-private k-server models of PIR, BRPIR, VPIR,
CD-PIR and PIR-RV. (We denote by ‘IT’ information-theoretic security and by ‘C’
computational security.)

PIR BRPIR [10] VPIR [22] CD-PIR [25] PIR-RV
(This paper)

Privacy � � � � �
Security × IT C C IT

Result Verification × � � � �
Malicious Servers Identification × � � × ×
Free of Trusted Third-Party � � × × �
Free of Public-Key Operation � � × � �
Malicious Servers Tolerance × k − t − 1 k k k − 1

1.2 Paper Organization

In Sect. 2, we introduce the notation and necessary tools for constructing our
PIR-RV protocols. In Sect. 3, we show a k-server PIR-RV model for any k ≥ 2
and define the correctness, privacy, security for PIR-RV protocols. We give the
construction of our PIR-RV protocol Γ for k ≥ 2 and 1 ≤ t < k in Sect. 4 and
show the security proof for 2 ≤ k ≤ 5. Finally, Sect. 5 contains our concluding
remarks.

2 Preliminaries

2.1 Notation

For any positive integer n, we denote [n] = {1, 2, . . . , n} and {aj}j∈[n] =
{a1, a2, . . . , an}. For any prime p, we denote by Fp the finite field of p elements,
denote F

∗
p = Fp \ {0} and denote by F

n
p the n-dimensional vector space over

Fp. For any vector V ∈ F
n
p and any i ∈ [n], we denote by V [i] the i-th element

of V . For any two vectors V1, V2 ∈ F
n, we denote by 〈V1, V2〉 the inner prod-

uct of V1 and V2. For any function f(λ) and any positive integer j, we denote
by f (j)(λ) the j-order derivative of f(λ). In particular, when j = 1, we denote
f ′(λ) = f (1)(λ). We denote by ¬E the complement of any event E. For any
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two polynomials g(λ) and h(λ), the notion g(λ) | h(λ) means that g(λ) divides
h(λ) or h(λ) is a multiple of g(λ), i.e., there exists a polynomial f(λ) such that
h(λ) = f(λ)g(λ). The notion g(λ) � h(λ) means that g(λ) does not divide h(λ)
and h(λ) is not a multiple of g(λ).

2.2 Constant Weight Code

For integers m, d,w > 0, a binary (m, d,w)-constant weight code is a code with
codeword length m, minimum Hamming distance d and Hamming weight w.
Let B(m, d,w) be the maximum size of a binary (m, d,w)-constant weight code.
Gramham and Slonane [11] established a lower bound of B(m, 4, w) by giving
an explicit construction of (m, 4, w)-constant weight code.

Theorem 1. (Graham and Sloane [11]) For any positive integers m,w such that
m ≥ w, B(m, 4, w) ≥ (

m
w

)
/m.

2.3 Cramer’s Rule

Consider a system of n linear equations in n unknowns:

Ax = b,

where A is a nonsingular n × n coefficient matrix and x =
[
x[1] · · · x[n]

]� is
the column vector of n unknowns. Cramer’s rule [16] states that the equation
system has a unique solution given by

x[i] =
|Ai|
|A| , 1 ≤ i ≤ n,

where Ai is the matrix formed by replacing the i-th column of A by the column
vector b.

2.4 Woodruff-Yekhanin PIR

The t-private k-server PIR-RV protocol in this paper is based on the t-private
k-server Woodruff-Yekhanin PIR protocol [18], which encodes the database as a
multivariate polynomial and uses Shamir’s secret sharing scheme [17] to protect
the privacy of the client’s retrieval index.

A k-server PIR is a communication protocol between a client and k
servers {Sj}j∈[k], where each server has a copy of a database DB =
(DB[1], . . . , DB[n]) ∈ {0, 1}n and the client wants to retrieve DB[i] for a pri-
vate index i ∈ [n], by interacting with the servers. In such a protocol, the client
sends a query to each server, receives an answer from each server, and finally
reconstructs DB[i] from the k answers. Such a protocol is said to be t-private if
any t out of the k queries give no information about i.
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To retrieve an item from a database DB = (DB[1], . . . , DB[n]) ∈ {0, 1}n,
Woodruff and Yekhanin let w = �(2k − 1)/t� and choose an integer m such that(
m
w

) ≥ n. Then they construct a public 1-to-1 index encoding E : [n] → {0, 1}m

that encodes any i ∈ [n] as a codeword of a binary (m, 2, w)-constant weight
code. The database DB is encoded as

F (z) = F (z[1], . . . , z[m]) =
n∑

j=1

DB[j]
∏

�:E(j)[�]=1

z[�], (1)

a homogeneous m-variate polynomial of degree w such that

F (E(i)) = DB[i]

for all i ∈ [n]. The client reduces the problem of privately retrieving DB[i] from
k servers to the problem of privately evaluating F (E(i)) with the k servers. To
this end, a prime p > k is chosen and F is interpreted as a polynomial over the
finite field Fp. For each j ∈ [k], the j-th server is associated with a nonzero field
elements λj . In particular, the field elements {λj}j∈[k] are distinct and can be
made public. To retrieve DB[i], the client chooses t vectors V1, V2, . . . , Vt ∈ F

m
p

uniformly and generates a polynomial of degree t,

G(λ) = E(i) +
t∑

s=1

λsVs. (2)

The client then lets aux = ({λj}j∈[k], {Vj}j∈[t]). For each j ∈ [k], the client sends
Qj = G(λj) to the j-th server. The j-th server then computes Aj [1] = F (Qj)
and

Aj [� + 1] =
∂F (z)
∂z[�]

∣∣∣∣
Qj

for all � ∈ [m], and returns an answer Aj = (Aj [1], . . . , Aj [m + 1]) to the client.
To reconstruct the database element DB[i], the client depends on the following
lemma.

Lemma 1. (Woodruff and Yekhanin [18]) Let {λj}j∈[k] be a set of k distinct
non-zero elements the finite field Fp. Let {uj}j∈[k] and {vj}j∈[k] be two subsets
of F

k
p. There exists at most one polynomial f(λ) ∈ Fp[λ] of degree ≤ 2k − 1 such

that f(λj) = uj and f ′(λj) = vj for all j ∈ [k].

Specifically, the client will consider the univariate polynomial

f(λ) = F (G(λ)). (3)

On one hand, it learns that f(λj) = Aj [1] for all j ∈ [k]. On the other hand, by
the chain rule, it learns that

f ′(λj) =
m∑

�=1

∂F (z)
∂z[�]

∣∣∣∣
Qj

· G′(λj)[�] =
m∑

�=1

Aj [� + 1] · G′(λj)[�].
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By Lemma 1, the client can interpolate the polynomial f(λ) of degree wt (≤
2k − 1) with the 2k values. Finally, the client learns that

DB[i] = F (E(i)) = f(0).

Since {Vj}j∈[t] are chosen uniformly, for any T ⊆ [k] with |T | ≤ t, the set
{G(λh)}h∈T = {E(i) +

∑t
j=1 λj

hVj}h∈T discloses no information about E(i).
The statement is implied by the properties of Shamir secret sharing scheme [17].
Therefore, the protocol is t-private. Clearly, the client sends a length-m vector
in Fp to each server and each server returns a length-(m+1) vector in Fp to the
client. The communication complexity of this t-private k-server PIR protocol is
O(km log p). Recall that m = O(wn1/w). If the prime p is chosen such that
k < p ≤ 2k, then the communication complexity of this t-private k-server PIR
protocol is O(k2 log k

t n1/� 2k−1
t �).

3 The PIR-RV Model

In this section, we extend the 2-server PIR-RV model in [13] to a k-server model
for any k ≥ 2. Our k-server PIR-RV model involves two kinds of participants:
a client and k servers {Sj}j∈[k]. Each server has a copy of a database DB =
(DB[1], . . . , DB[n]) ∈ {0, 1}n. The client has an index i ∈ [n] and wants to
privately retrieve the correct value of DB[i] from the k servers. The difference
between PIR-RV and PIR is that the servers in PIR-RV could be malicious and
try to persuade the client to accept an incorrect result. The client in a PIR-RV
needs to verify if the reconstructed result is correct or not.

Definition 1 (PIR-RV). A k-server PIR-RV protocol Γ = (Que,Ans,Rec) is
a triple of algorithms, which can be described as follows:

– ({Qj}j∈[k], aux) ← Que(n, i): This is a randomized querying algorithm for
the client. It takes the database size n and a retrieval index i ∈ [n] as input,
and outputs k queries {Qj}j∈[k], along with an auxiliary information aux.
For each j ∈ [k], the query Qj will be sent to the server Sj. The auxiliary
information aux will be used by the client in the reconstructing algorithm.

– Aj ← Ans(DB,Qj): This is a deterministic answering algorithm for the
server Sj (j ∈ [k]). It takes the database DB and the query Qj as input,
and outputs an answer Aj.

– {DB[i],⊥} ← Rec(i, {Aj}j∈[k], aux): This is a deterministic reconstructing
algorithm for the client. It uses the retrieval index i, the answers {Aj}j∈[k]

and the auxiliary information aux to reconstruct DB[i]. The output of this
algorithm is expected to be the correct value of DB[i] (when all answers are
correct) or a special symbol ⊥ (which indicates that at least one of the answers
is incorrect).

Same as the 2-server PIR-RV model in [13], a protocol Γ in our k-server PIR-
RV model should satisfy not only the properties of correctness and t-privacy, but
also the property of security against cheating servers.
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The k-server PIR-RV protocol Γ is said to be correct if the reconstructing
algorithm Rec always outputs the correct value of DB[i] when all servers are
honest.

Definition 2 (Correctness). The k-server PIR-RV protocol Γ is correct if for
any n, any DB ∈ {0, 1}n, any i ∈ [n], any ({Qj}j∈[k], aux) ← Que(n, i), it holds
that Rec(i, {Ans(DB,Qj)}j∈[k], aux) = DB[i].

The k-server PIR-RV protocol Γ is said to be (unconditionally) t-private if no
collusion of up to t servers can learn any information about the client’s retrieval
index i.

Definition 3 (t-Privacy). The k-server PIR-RV protocol Γ is t-private if for
any n, any i1, i2 ∈ [n] and any set T ⊆ [k] where |T | ≤ t, the distribution of
QueT (n, i1) and QueT (n, i2) are identical, where QueT denotes the concatenation
of the j-th output of Que for all j ∈ T .

Regarding the security of the PIR-RV protocol, we observe that at most
k − 1 malicious severs can be tolerated. Otherwise, the client with input i ∈ [n]
will be easily deceived into outputting a value /∈ {DB[i],⊥}. In fact, when all
of the k servers are malicious and colluding with each other, they may replace
the database DB with a new database DB′ such that DB′[j] �= DB[j] for all
j ∈ [n] and execute the rest of the protocol honestly. Then the client will output
DB′[i] /∈ {DB[i],⊥}.

Intuitively, the k-server PIR-RV protocol Γ is said to be secure if no collusion of
up to k−1 servers can cause the client with input i to output a value /∈ {DB[i],⊥},
by providing wrong answers. In our k-server PIR-RV model, we require that the
collusion of any k−1 servers should be tolerated. To define the security, we extend
the security experiment for 2-server PIR-RV model in [13] to the k-server case for
any k ≥ 2. In our security experiment EXPVer

Adv,Γ (n,DB, i, T ) (Fig. 1), an adver-
sary Adv controls up to k − 1 malicious servers {Sj}j∈T , knows both the database
DB and the retrieval index i, receives the queries {Qj}j∈T , and crafts the answers
{Âj}j∈T for the client. We say that the protocol is ε-secure if the client will not
output a value /∈ {DB[i],⊥}, except with probability ≤ ε.

Definition 4 (Security). The k-server PIR-RV protocol Γ is ε-secure if for
any adversary Adv, any T � [k], any n, any DB ∈ {0, 1}n, and any i ∈ [n],
Pr[EXPVer

Adv,Γ (n,DB, i, T ) = 1] ≤ ε.

Definition 5 (Communication complexity). The communication complex-
ity of a k-server PIR-RV protocol Γ for binary database of size n, denoted by
CCΓ (n, k), is the number of bits communicated between the client and all servers,
maximized over the choices of DB ∈ {0, 1}n and i ∈ [n], i.e., CCΓ (n, k) =
maxDB,i(

∑k
j=1(|Qj | + |Aj |)).
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Fig. 1. The security experiment EXPVer
Adv,Γ (n, DB, i, T ).

4 k-Server PIR-RV Protocol

4.1 Overview

In Woodruff-Yekhanin PIR [18], the index encoding E maps the indices in [n] to
the codewords of a binary (m, 2, w)-constant weight code, where w = �(2k−1)/t�.
Ke and Zhang [13] proposed a 1-private 2-server PIR-RV protocol based on
the 1-private 2-server Woodruff-Yekhanin PIR by replacing the binary (m, 2, 3)-
constant weight code with a binary (m, 4, 3)-constant weight code and keeping
λ1 and λ2 secret from the servers. In this section, we generalize the construction
of [13] to construct the t-private k-server PIR-RV protocol for any k ≥ 2 and
1 ≤ t < k by replacing the binary (m, 2, w)-constant weight code with a binary
(m, 4, w)-constant weight code. The parameters {λj}j∈[k] in our PIR-RV protocol
are chosen privately and kept secret from the servers.

In a binary (m, 4, w)-constant weight code, the Hamming distance between
any two codewords is at least 4. Therefore, the index encoding E in our PIR-RV
protocol satisfies the following property: for any distinct i, j ∈ [n], there exist
distinct �1, �2 ∈ [m] such that E(j)[�1] = E(j)[�2] = 1 and E(i)[�1] = E(i)[�2] =
0. Then we get

λ
∣∣∣(E(i) +

t∑
s=1

λsVs

)
[�1],

λ
∣∣∣(E(i) +

t∑
s=1

λsVs

)
[�2],

λ2
∣∣∣ ∏

�:E(j)[�]=1

(
E(i) +

t∑
s=1

λsVs

)
[�]. (4)

That is, the polynomial
∏

�:E(j)[�]=1(E(i) +
∑t

s=1 λsVs)[�] is always a multiple
of λ2. Besides, we always have that

λ2 �
∣∣∣ ∏

�:E(i)[�]=1

(
E(i) +

t∑
s=1

λsVs

)
[�] (5)
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for any i ∈ [n]. Let (f0, f1, . . . , fwt) be the coefficients of the function f(λ) in
Eq. (3), i.e.,

f(λ) =
n∑

j=1

DB[j]
∏

�:E(j)[�]=1

(
E(i) +

t∑
s=1

λsVs

)
[�]

=
wt∑

j=0

fjλ
j .

By Eqs. (4) and (5), the terms f0 and f1λ in f(λ) are completely determined by
the polynomial DB[i]

∏
�:E(i)[�]=1(E(i) +

∑t
s=1 λsVs)[�],i.e.,

f0 + f1λ = f(λ) mod λ2

=
n∑

j=1

DB[j]
∏

�:E(j)[�]=1

(
E(i) +

t∑
s=1

λsVs

)
[�] mod λ2

= DB[i]
∏

�:E(i)[�]=1

(
E(i) +

t∑
s=1

λsVs

)
[�] mod λ2,

f0 = DB[i],
f1 = DB[i] · 〈E(i), V1〉.

Therefore, we have the result verification equation

f1 = f0 · 〈E(i), V1〉, (6)

which in particular allows the client to make decision of whether accepting
the reconstruction result or not. The coefficients f0 and f1 are polynomials of
the auxiliary information aux = ({λj}j∈[k], {Vj}j∈[t]) and the servers’ answers
{Aj}j∈[k]. If at least one of the k servers is honest, then the collusion of the mali-
cious servers can’t learn all information of aux and the honest server’s answer.
Consequently, it will be hard for the malicious servers to craft incorrect answers
that can pass the verification equation. We will prove the security of our result
verification method in Sect. 4.2.

4.2 Our Construction

In this section, we show a t-private k-server PIR-RV protocol Γ in Fig. 2 for any
k ≥ 2 and 1 ≤ t < k.

The reconstructing algorithm Rec in our k-server PIR-RV protocol Γ always
outputs the correct value of DB[i] when all servers are honest.

Theorem 2. The k-server PIR-RV protocol Γ is correct.
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Fig. 2. t-Private k-server PIR-RV protocol Γ .

Proof. The polynomial F (z) in the protocol Γ is a homogeneous m-variate poly-
nomial of degree w, while G(λ) is a polynomial of degree t. Let g(λ) = F (G(λ))
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be the composite polynomial of degree wt. For each j ∈ [k], we have that

g(λj) = F (G(λj)) = F (Qj) = f(λj),

g′(λj) =
m∑

�=1

∂F (z)
∂z�

∣∣∣∣
Qj

G′(λj)[�]

=
m∑

�=1

Aj [� + 1]G′(λj)[�]

= f ′(λj).

By Lemma 1, f(λ) and g(λ) are the same polynomial,

f(λ) = g(λ) = F (G(λ)) =
n∑

j=1

DB[j]
∏

�:E(j)[�]=1

(E(i) +
t∑

s=1

λsVs)[�]

f0 = f(0) = F (G(0)) = F (E(i)) = DB[i].

Since the binary (m, 4, d)-constant weight code C has Hamming distance
≥ 4, for any j ∈ [n] \ {i}, there exist distinct �1, �2 ∈ [m] such that E(j)[�1] =
E(j)[�2] = 1 and E(i)[�1] = E(i)[�2] = 0. Then Eqs. (4) and (5) hold for any
distinct i, j ∈ [n]. Therefore, Eq. (6) holds, i.e.,

Rec(i, {Ans(DB,Qj)}j∈[k], aux) = f0 = DB[i].

��
No collusion of up to t servers in our k-server protocol Γ can learn any

information about the client’s retrieval index i.

Theorem 3. The k-server PIR-RV protocol Γ is t-private.

Proof. The proof for the privacy of our PIR-RV protocol is identical to that of
Woodruff-Yekhanin PIR [18]. By the property of Shamir’s secret sharing scheme
[17], for any T ⊆ [k], where |T | ≤ t, the set {Qj}j∈T = {G(λj)}j∈T = {E(i) +∑t

s=1 λs
jVs}j∈T is uniformly distributed over F

m×|T |
p . Therefore, for any n, any

distinct i1, i2 ∈ [n] and any set T ⊆ [k] where |T | ≤ t, the distribution of
{E(i1) +

∑t
s=1 λs

jVs}j∈T and {E(i2) +
∑t

s=1 λs
jVs}j∈T are identical. ��

The security of k-server PIR-RV protocols requires that any collusion of up
to k − 1 servers cannot deceive the client with input i into reconstructing a
value /∈ {DB[i],⊥}. In the following Theorem 4, we show that our k-server
PIR-RV protocol Γ (Fig. 2) is secure for 2 ≤ k ≤ 5. While this result seems
limited, we believe that proving the security of k-server PIR-RV protocols is
highly nontrivial. In particular, the proof techniques of [13] cannot be generalized
to prove the security of our protocol Γ for more than 2 servers (i.e., k > 2). To see
this, we note that the security proof of [13] reduces the event that an adversary
Adv wins in the security experiment to the event that Adv constructs a nonzero
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bivariate polynomial ν such that ν(λ1, λ2) = 0. The proof heavily depends on
the fact that {λj}j∈[2] is a uniformly distributed set in Adv’s point of view. In
our k-server PIR-RV model, the adversary controls k − 1 servers rather than a
single server. The proof technique of [13] is no longer applicable because the set
{λj}j∈[k] is no longer uniformly distributed in Adv’s point of view.

As a main contribution of this work, we develop new techniques to prove the
security of Γ for 2 ≤ k ≤ 5. Assume that T = [k] \ {1} and S1 is the only honest
server. In our security proof, we use Cramer’s rule to represent and generalize
the verification equation (Eq. (6)) in the form of a determinant of a matrix.
We manage to reduce the event that an adversary Adv wins in the security
experiment to the event that Adv constructs a nonzero univariate polynomial
ν such that ν(λ1) = 0. We prove that our PIR-RV protocols can resist the
adversary who knows ({λj}j∈T , {Qj}j∈T , {Vj}j∈[t],DB,E(i)) but λ1 and Q1.
Such adversary knows everything that Adv defined in the security experiment
EXPVer

Adv,Γ (n,DB, i, T ) knows. Therefore our PIR-RV protocol can resist Adv and
thus it is secure.

Theorem 4. The k-server PIR-RV protocol Γ is (4k − 4)/(p − k)-secure for
2 ≤ k ≤ 5.

Proof. It suffices to consider an adversary Adv that controls the k − 1 servers
{Sj}j∈T for T = [k] \ {1} in the security experiment EXPVer

Adv,Γ (n,DB, i, T ).
Clearly, λ1 is uniformly distributed in F

∗
p \ {λj}j∈T in Adv’s point of view

and Adv has no information about λ1. We reduce the event that Adv wins in
the security experiment to the event that Adv constructs a nonzero univariate
polynomial ν(λ) such that ν(λ1) = 0. For each j ∈ [k], let Aj = Ans(DB,Qj)
be the answer obtained by correctly executing the server’s answering algorithm.
Let Â1 = A1 and Âj be the answer chosen by Adv for each j ∈ T . Let

f(λ) =
2k−1∑
j=0

fjλ
j

be the polynomial interpolated with the 2k values {f(λj)}j∈[k] and {f ′(λj)}j∈[k]:

f(λj) = Aj [1], f ′(λj) =
m∑

�=1

Aj [� + 1] · G′(λj)[�], 1 ≤ j ≤ k. (7)

Let

f̂(λ) =
2k−1∑
j=0

f̂jλ
j

be the polynomial interpolated with the 2k values {f̂(λj)}j∈[k] and {f̂ ′(λj)}j∈[k]:

f̂(λj) = Âj [1], f̂ ′(λj) =
m∑

�=1

Âj [� + 1] · G′(λj)[�], 1 ≤ j ≤ k. (8)
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Equations (7) and (8) give the following linear equation systems:⎡
⎢⎢⎢⎢⎢⎣

f(λ1)
f ′(λ1)

...
f(λk)
f ′(λk)

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
v

=

⎡
⎢⎢⎢⎢⎢⎣

1 λ1 λ2
1 . . . λ2k−1

1

0 1 2λ1 . . . (2k − 1)λ2k−2
1

...
...

...
. . .

...
1 λk λ2

k . . . λ2k−1
k

0 1 2λk . . . (2k − 1)λ2k−2
k

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
M

⎡
⎢⎢⎢⎢⎢⎣

f0
f1
...

f2k−2

f2k−1

⎤
⎥⎥⎥⎥⎥⎦ , (9a)

⎡
⎢⎢⎢⎢⎢⎢⎣

f̂(λ1)
f̂ ′(λ1)

...
f̂(λk)
f̂ ′(λk)

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
v̂

= M

⎡
⎢⎢⎢⎢⎢⎢⎣

f̂0
f̂1
...

f̂2k−2

f̂2k−1

⎤
⎥⎥⎥⎥⎥⎥⎦

. (9b)

For brevity, let Y = 〈E(i), V1〉. Adv wins in the security experiment
EXPVer

Adv,Γ (n,DB, i, T ) if and only if the challenger outputs a value not in
{DB[i],⊥}. That is,

f̂0 �= f0, (10a)

f̂1 = f̂0Y. (10b)

The event that Adv wins is equivalent to the event that Eqs. (10a) and (10b)
both hold. Therefore, we have

EXPVer
Adv,Γ (n,DB, i, T ) = 1 ⇔ Eq.(10a) ∧ Eq.(10b). (11)

Since the protocol Γ is correct, the equation

f1 = f0Y. (12)

always holds. For brevity, let

H = (f̂1 − f1) − Y (f̂0 − f0).

Given the fact that Eq. (12) always holds, Eq. (10b) holds if and only if H = 0,

Eq.(10b) ⇔ H = 0. (13)

By Cramer’s rule (Sect. 2.3), we have that

f0 = |M (1)|/|M |,
f1 = |M (2)|/|M |,
f̂0 = |M̂ (1)|/|M |,
f̂1 = |M̂ (2)|/|M |,
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where M (j) and M̂ (j) are the matrices formed by replacing the j-th column of
M (Eq.(9a)) with the column vectors v (Eq.(9a)) and v̂ (Eq.(9b)) respectively
for j = 1, 2. Therefore, we have

H =
1

|M | ((|M̂
(2)| − |M (2)|) − Y (|M̂ (1)| − |M (1)|))

=
−1
|M |

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

⎡
⎢⎢⎢⎢⎢⎢⎣

f̂(λ1) − f(λ1) 1 + Y λ1 λ2
1 . . . λ2k−1

1

f̂ ′(λ1) − f ′(λ1) Y 2λ1 . . . (2k − 1)λ2k−2
1

...
...

...
. . .

...
f̂(λk) − f(λk) 1 + Y λk λ2

k . . . λ2k−1
k

f̂ ′(λk) − f ′(λk) Y 2λk . . . (2k − 1)λ2k−2
k

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

(15a)

Clearly, H = 0 if and only if the determinant |N | = 0,

H = 0 ⇔ |N | = 0. (16)

We consider the determinant |N | as a polynomial of variable λ1,

ν(λ1) = |N | =
4k−4∑
�=0

ν�λ
�
1.

Then |N | = 0 if and only if ν(λ1) = 0, i.e., λ1 is a zero of the polynomial ν(λ).
We next prove that it is impossible for Adv to craft the answers {Âj}j∈T such
that ν(λ) is constantly equal to 0 for 2 ≤ k ≤ 5. For brevity, we denote

Δ =

⎡
⎢⎢⎢⎢⎢⎣

Δ1

Δ2

...
Δ2k−1

Δ2k

⎤
⎥⎥⎥⎥⎥⎦ = v̂ − v =

⎡
⎢⎢⎢⎢⎢⎢⎣

f̂(λ1) − f(λ1)
f̂ ′(λ1) − f ′(λ1)

...
f̂(λk) − f(λk)
f̂ ′(λk) − f ′(λk)

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Since Â1 = A1, by Eqs. (7) and (8), we have that

Δ1 = f̂(λ1) − f(λ1)

= Â1[1] − A1[1]
= 0,

Δ2 = f̂ ′(λ1) − f ′(λ1)

=
m∑

�=1

Â1[� + 1] · G′(λ1)[�] −
m∑

�=1

A1[� + 1] · G′(λ1)[�]

= 0.

(17)
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Let N ′ be the matrix formed by removing the first two rows of N . For each
j ∈ [2k], let ej ∈ F

2k
p be the jth standard basis vector. Let

p(λ) =
[
0 1 + Y λ λ2 · · · λ2k−1

]
= (1 + Y λ)e2 +

2k∑
�=3

λ�e�.

Then we have that

p(0) = e2,

p(j)(0) =

⎧⎪⎨
⎪⎩

Y e2, j = 1;

j!ej+1, 2 ≤ j ≤ 2k − 1;

0, j ≥ 2k;

By expanding the matrix N (Eq. (15a)) along its first two rows, we have that

ν0 =

∣∣∣∣∣∣
⎡
⎣ p(0)

p(1)(0)
N ′

⎤
⎦
∣∣∣∣∣∣ = 0,

j!νj =
j∑

�=0

(
j

�

) ∣∣∣∣∣∣
⎡
⎣p(j−�)(0)

p(�+1)(0)
N ′

⎤
⎦
∣∣∣∣∣∣ , 1 ≤ j ≤ 4k − 4.

(18)

With Eqs. (17) and (18), we can represent the system of the linear equations of
the coefficients {νj}j∈[4k−4] in matrix multiplication form:

S
[
Δ3 Δ4 . . . Δ2k

]� =
[
ν1 . . . ν4k−4

]�
,

where S is a (4k−4)×(2k−2) matrix whose every entry is a function of {λj}j∈T

and Y . For example, when k = 2 we have that

S =

⎡
⎢⎢⎣

6λ2
2 −2λ3

2

3λ2
2Y − 6λ2 −λ3

2Y + 3λ2
2

−4λ2Y 2λ2
2Y

Y −λ2Y − 1

⎤
⎥⎥⎦ ;
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when k = 3, we have that S =
[
S1 S2 S3 S4

]
for

S1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

10λ4
2λ6

3 − 16λ3
2λ7

3 + 6λ2
2λ8

3
5λ4

2λ6
3Y − 30λ4

2λ5
3 − 8λ3

2λ7
3Y + 36λ3

2λ6
3 + 3λ2

2λ8
3Y − 6λ2λ8

3
−20λ4

2λ5
3Y + 20λ4

2λ4
3 + 24λ3

2λ6
3Y − 36λ2

2λ6
3 − 4λ2λ8

3Y + 16λ2λ7
3

30λ4
2λ4

3Y + 20λ4
2λ3

3 − 16λ3
2λ5

3Y − 40λ3
2λ4

3 − 27λ2
2λ6

3Y + 30λ2
2λ5

3 + 12λ2λ7
3Y − 10λ2λ6

3 + λ8
3Y

−20λ4
2λ3

3Y − 30λ4
2λ2

3 − 16λ3
2λ4

3Y + 48λ2
2λ5

3Y + 30λ2
2λ4

3 − 8λ2λ6
3Y − 4λ7

3Y

5λ4
2λ2

3Y + 10λ4
2λ3 + 24λ3

2λ3
3Y + 36λ3

2λ2
3 − 27λ2

2λ4
3Y − 36λ2

2λ3
3 − 8λ2λ5

3Y − 10λ2λ4
3 + 6λ6

3Y

−8λ3
2λ2

3Y − 16λ3
2λ3 + 12λ2λ4

3Y + 16λ2λ3
3 − 4λ5

3Y

3λ2
2λ2

3Y + 6λ2
2λ3 − 4λ2λ3

3Y − 6λ2λ2
3 + λ4

3Y

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

S2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2λ5
2λ6

3 + 4λ4
2λ7

3 − 2λ3
2λ8

3
−λ5

2λ6
3Y + 6λ5

2λ5
3 + 2λ4

2λ7
3Y − 9λ4

2λ6
3 − λ3

2λ8
3Y + 3λ2

2λ8
3

4λ5
2λ5

3Y − 4λ5
2λ4

3 − 6λ4
2λ6

3Y + 12λ3
2λ6

3 + 2λ2
2λ8

3Y − 8λ2
2λ7

3
−6λ5

2λ4
3Y − 4λ5

2λ3
3 + 4λ4

2λ5
3Y + 10λ4

2λ4
3 + 9λ3

2λ6
3Y − 10λ3

2λ5
3 − 6λ2

2λ7
3Y + 5λ2

2λ6
3 − λ2λ8

3Y − λ8
3

4λ5
2λ3

3Y + 6λ5
2λ2

3 + 4λ4
2λ4

3Y − 16λ3
2λ5

3Y − 10λ3
2λ4

3 + 4λ2
2λ6

3Y + 4λ2λ7
3Y + 4λ7

3
−λ5

2λ2
3Y − 2λ5

2λ3 − 6λ4
2λ3

3Y − 9λ4
2λ2

3 + 9λ3
2λ4

3Y + 12λ3
2λ3

3 + 4λ2
2λ5

3Y + 5λ2
2λ4

3 − 6λ2λ6
3Y − 6λ6

3
2λ4

2λ2
3Y + 4λ4

2λ3 − 6λ2
2λ4

3Y − 8λ2
2λ3

3 + 4λ2λ5
3Y + 4λ5

3
−λ3

2λ2
3Y − 2λ3

2λ3 + 2λ2
2λ3

3Y + 3λ2
2λ2

3 − λ2λ4
3Y − λ4

3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

S3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6λ8
2λ2

3 − 16λ7
2λ3

3 + 10λ6
2λ4

3
3λ8

2λ2
3Y − 6λ8

2λ3 − 8λ7
2λ3

3Y + 5λ6
2λ4

3Y + 36λ6
2λ3

3 − 30λ5
2λ4

3
−4λ8

2λ3Y + 16λ7
2λ3 + 24λ6

2λ3
3Y − 36λ6

2λ2
3 − 20λ5

2λ4
3Y + 20λ4

2λ4
3

λ8
2Y + 12λ7

2λ3Y − 27λ6
2λ2

3Y − 10λ6
2λ3 − 16λ5

2λ3
3Y + 30λ5

2λ2
3 + 30λ4

2λ4
3Y − 40λ4

2λ3
3 + 20λ3

2λ4
3

−4λ7
2Y − 8λ6

2λ3Y + 48λ5
2λ2

3Y − 16λ4
2λ3

3Y + 30λ4
2λ2

3 − 20λ3
2λ4

3Y − 30λ2
2λ4

3
6λ6

2Y − 8λ5
2λ3Y − 27λ4

2λ2
3Y − 10λ4

2λ3 + 24λ3
2λ3

3Y − 36λ3
2λ2

3 + 5λ2
2λ4

3Y + 36λ2
2λ3

3 + 10λ2λ4
3

−4λ5
2Y + 12λ4

2λ3Y + 16λ3
2λ3 − 8λ2

2λ3
3Y − 16λ2λ3

3
λ4
2Y − 4λ3

2λ3Y + 3λ2
2λ2

3Y − 6λ2
2λ3 + 6λ2λ2

3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

S4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2λ8
2λ3

3 + 4λ7
2λ4

3 − 2λ6
2λ5

3
−λ8

2λ3
3Y + 3λ8

2λ2
3 + 2λ7

2λ4
3Y − λ6

2λ5
3Y − 9λ6

2λ4
3 + 6λ5

2λ5
3

2λ8
2λ2

3Y − 8λ7
2λ2

3 − 6λ6
2λ4

3Y + 12λ6
2λ3

3 + 4λ5
2λ5

3Y − 4λ4
2λ5

3
−λ8

2λ3Y − λ8
2 − 6λ7

2λ2
3Y + 9λ6

2λ3
3Y + 5λ6

2λ2
3 + 4λ5

2λ4
3Y − 10λ5

2λ3
3 − 6λ4

2λ5
3Y + 10λ4

2λ4
3 − 4λ3

2λ5
3

4λ7
2λ3Y + 4λ7

2 + 4λ6
2λ2

3Y − 16λ5
2λ3

3Y + 4λ4
2λ4

3Y − 10λ4
2λ3

3 + 4λ3
2λ5

3Y + 6λ2
2λ5

3
−6λ6

2λ3Y − 6λ6
2 + 4λ5

2λ2
3Y + 9λ4

2λ3
3Y + 5λ4

2λ2
3 − 6λ3

2λ4
3Y + 12λ3

2λ3
3 − λ2

2λ5
3Y − 9λ2

2λ4
3 − 2λ2λ5

3
4λ5

2λ3Y + 4λ5
2 − 6λ4

2λ2
3Y − 8λ3

2λ2
3 + 2λ2

2λ4
3Y + 4λ2λ4

3
−λ4

2λ3Y − λ4
2 + 2λ3

2λ2
3Y − λ2

2λ3
3Y + 3λ2

2λ2
3 − 2λ2λ3

3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The polynomial ν(λ) is a constant zero polynomial (i.e., ν1 = · · · = ν4k−4 = 0)
if and only if the vector

[
Δ3 Δ4 · · · Δ2k

]� lies in the zero space of the matrix
S. Let L be the matrix formed by the first 2k − 2 rows of S. For 2 ≤ k ≤ 5, our
calculation shows that the determinant of L is equal to

|L| = (2k − 1)!
∏
j∈T

λ8k−12
j

∏
j1,j2∈T,j1 	=j2

(λj1 − λj2)
8k−12.

Since {λj}j∈[k] are distinct and chosen from F
∗
p, the determinant |L| is always

nonzero. Therefore the matrix S is of full column rank for 2 ≤ k ≤ 5,
which indicates that the zero space of the matrix S is {0}. It follows that[
Δ3 Δ4 . . . Δ2k

]� = 0 , which indicates that the polynomial f̂(λ) and f(λ)
are interpolated with the same 2k values. Hence, f̂0 = f0 and Eq. (10a) does not
hold anymore. There are

Δ = 0 ⇔ [
Δ3 Δ4 . . . Δ2k

]� = 0 ⇒ ¬Eq.(10a),

Eq.(10a) ⇒ [
Δ3 Δ4 . . . Δ2k

]� �= 0 ⇔ Δ �= 0.
(19)

Therefore, it is impossible for Adv to win by setting ν(λ) to be a constant zero
polynomial for 2 ≤ k ≤ 5. Therefore, ν(λ) is a nonzero polynomial and λ1 is
uniformly distributed in F

∗
p \{λj}j∈T in Adv’s point of view for 2 ≤ k ≤ 5. Since
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ν(λ) is of degree 4k − 4, it has at most 4k − 4 zeros.

Pr
[
ν(λ1) = 0

∣∣∣Δ �= 0
]

≤ 4k − 4
p − k

.

By Eqs. (11), (13), (16) and (19), the adversary Adv wins the experiment with
probability

Pr
[
EXPVer

Adv,Γ (n,DB, i, T ) = 1
]

= Pr
[
Eq.(10a) ∧ Eq.(10b)

]
≤ Pr

[
Δ �= 0 ∧ |N | = 0

]
≤ Pr

[
|N | = 0

∣∣∣Δ �= 0
]

≤ 4k − 4
p − k

.

��
For any statistical security parameter κ, we can choose the size p of the finite
field Fp as p = O(2κk). Then our k-server PIR-RV protocol Γ is ε-secure with
ε = (4k −4)/(p−k), which is negligible in κ. In practice, κ may be chosen based
on the requirement of security level. For example, if 128-bit security is required,
then we may choose κ ≈ 128.

Efficiency Analysis. Clearly, the client sends a length-m vector in Fp to each
server and each server returns a length-(m+1) vector in Fp. The communication
complexity of our t-private k-server PIR-RV protocol is O(km log p). Note that
m is an integer such that there is a binary (m, 4, w)-constant weight code C of
size ≥ n, the size of the database DB. By Theorem 1, we can choose m such
that

(
m
w

)
/m ≥ n. Hence, m = O(w(nw)1/(w−1)) = O(k

t (nk
t )1/(�(2k−1)/t�−1)), the

communication complexity of Γ is CCΓ (n, k) = O(k2

t (nk
t )1/(�(2k−1)/t�−1) log p).

In PIR-RV/PIR, the parameters k and t are relatively small. For any given k
and t, we mostly care about the growth rate of the communication complexity
of a PIR-RV/PIR protocol in the parameter n, the size of the database. When
k = 2 and t = 1, the communication complexity of Γ is O(n1/2 log p), which is
consistent with the 2-server PIR-RV protocol in [13].

The prime p in our PIR-RV protocol should be much larger than the p in
Woodruff-Yekhanin PIR [18] due to the requirement of security. The larger p may
incur higher communication complexity. However, this side effect can be removed
by using the protocol to retrieve elements from a database in F

n
p such that every

time log p bits are retrieved but no extra communication is needed. In fact, if we
use the protocol in such a way, then the average communication cost incurred by
retrieving one bit from the database can be reduced to O(k2

t (nk
t )1/(�(2k−1)/t�−1)),

which is independent of p.

5 Conclusion

In this paper, we define a k-server PIR-RV model for any k ≥ 2 and pro-
pose a construction of t-private k-server PIR-RV protocols out of Woodruff and
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Yekhanin’s t-private k-server PIR protocols, by extending the idea of [13]. Prov-
ing the security of our protocols is highly non-trivial. We give a novel technique
to prove the security of the k-server PIR-RV protocols for 2 ≤ k ≤ 5. It is an
interesting open problem to extend our proof for arbitrary k.
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21ZR1443000) and National Natural Science Foundation of China (No. 61602304).
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Abstract. A Distributed Key Generation (DKG) protocol is an essen-
tial component of threshold cryptography. DKGs enable a group of par-
ties to generate a secret and public key pair in a distributed manner so
that the secret key is protected from being exposed, even if a certain
number of parties are compromised. Robustness further guarantees that
the construction of the key pair is always successful, even if malicious
parties try to sabotage the computation. In this paper, we construct two
efficient robust DKG protocols in the CSIDH setting that work with
Shamir secret sharing. Both the proposed protocols are proven to be
actively secure in the quantum random oracle model and use an Infor-
mation Theoretically (IT) secure Verifiable Secret Sharing (VSS) scheme
that is built using bivariate polynomials. As a tool, we construct a new
piecewise verifiable proof system for structured public keys, that could
be of independent interest. In terms of isogeny computations, our pro-
tocols outperform the previously proposed DKG protocols CSI-RAShi
and Structured CSI-RAShi. As an instance, using our DKG protocols,
4 parties can sample a PK of size 4 kB, for CSI-FiSh and CSI-SharK,
respectively, 3.4 and 1.7 times faster than the current alternatives. On
the other hand, since we use an IT-secure VSS, the communication cost
of our schemes is generally higher, except for a few specific parameters,
and the fraction of corrupted parties is limited to less than a third.

Keywords: Distributed Key Generation · CSIDH · Isogenies · VSS

1 Introduction

Key management is an important aspect of cryptography, as the security of cryp-
tographic algorithms crucially relies on the safety of secret keys. If an attacker
obtains the secret key, the security of the system is generally compromised.
Threshold cryptography addresses this issue by dividing the secret key among a
group of devices, in such a way that only subsets of these devices above a specific
threshold size t can reconstruct the secret key. An attacker would then need to
obtain shares from t + 1 parties to reconstruct the secret key. This effectively
eliminates the single point of failure of cryptographic algorithms. At the basis
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Tibouchi and X. Wang (Eds.): ACNS 2023, LNCS 13906, pp. 219–247, 2023.
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of threshold schemes are Distributed Key Generation (DKG) protocols, that are
run by the parties to produce a correct sharing of the secret key along with the
associated public key.

Threshold protocols based on classical assumptions have been extensively
studied and an initiative to standardize them has been taken by NIST.1 However,
due to the vulnerability of classical assumptions, like the Discrete Logarithm
(DL) and factoring problems, against quantum computers [28], the cryptographic
community has begun to work on a general migration of public key cryptography
to algorithms that are based on post-quantum problems. Threshold cryptography
will also need to adapt to these new problems.

One active research direction for designing post-quantum secure protocols
is isogeny-based cryptography, which relies on the hard problem of finding a
secret isogeny between two public elliptic curves. Isogeny-based cryptography
was initially based on ordinary elliptic curves [11,12,26], but in the last decade,
focus has almost entirely switched to supersingular elliptic curves due to security
and/or efficiency reasons. One of the first protocols to propose using supersingu-
lar elliptic curves was SIDH (supersingular isogeny-based Diffie-Hellman) [15].
However, protocols based on SIDH need parties to reveal extra information along
with their public key, which recently has been proven to be enough to recover
the secret isogeny [9,22,25], thus effectively breaking the SIDH-based family
of protocols. Fortunately, newer schemes such as SQISign [16] and CSIDH [10]
(commutative SIDH) are unaffected by these attacks, as they do not need to
reveal this extra information. The intrinsic commutativity of CSIDH has shown
to provide a lot of flexibility when designing cryptographic protocols. As such,
CSIDH provides a versatile toolbox, which allows to build more complex cryp-
tographic protocols, such as threshold schemes [2,6,8,13,17].

Previous DKGs in the CSIDH Setting. The first CSIDH-based actively
secure DKG was proposed as part of the distributed signature scheme called
Sashimi [13]. However, their original DKG protocol is quite inefficient in practice.
In follow-up work, Beullens, Disson, Pedersen and Vercauteren [6] proposed the
first robust DKG protocol for CSIDH, which works with Shamir secret sharing
and allows a set of parties to sample a single public key in a fully distributed
manner. The robustness ensures that the parties are able to carry on the DKG
even if the adversary tries to sabotage the protocol. Their construction, dubbed
CSI-RAShi, consists of two phases. A Verifiable Secret Sharing (VSS) phase,
where the parties create their shares of the secret key, and the Public Key (PK)
computation phase, where the parties use their shares to compute the target
PK. While in traditional Pedersen VSS [24], the verification of shares was easily
done by exploiting the homomorphic properties of modular exponentiation, this
is not possible with elliptic curves. To deal with this concern, [6] introduces
Piecewise Verifiable Proofs (PVPs), a sort of Zero-Knowledge (ZK) proof that
allows parties to verify that the share they got is consistent with respect to some
public commitment. In the PK computation step, a different ZK proof is used.
Both these proofs use a binary challenge space and as a result, the protocol is still
1 See https://csrc.nist.gov/projects/threshold-cryptography.

https://csrc.nist.gov/projects/threshold-cryptography
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computationally expensive, albeit faster than the Sashimi proposal. Moreover,
as a result of the ZK proofs used in the PK computation step, the security of the
DKG protocol needs to rely on a decisional assumption. As a result, the authors
can only argue security when the target public key is uniformly random, rather
than arbitrary.

CSI-RAShi is constructed to sample a single public key [x]E0 in a distributed
manner, and by repeating it k times, one can sample extended public keys of the
form ([x1]E0, . . . , [xk]E0) as they are used in the signature scheme CSI-FiSh [7].
Repeating CSI-RAShi k times is very inefficient, even if optimized [2]. To deal
with that concern, the authors of [2] proposed CSI-SharK, as a variant of CSI-
FiSh with Sharing-friendly Key, as well as Structured CSI-RAShi, as a variant of
CSI-RAShi for Structured Public Keys (SPKs). Structured CSI-RAShi allows a
set of parties to sample an SPK (introduced in [3]), i.e. a public key of the type
([c1x]E0, . . . , [ckx]E0), where c1, . . . , ck define an exceptional set. For an SPK
of the same size k, Structured CSI-RAShi is 4 times faster than generating an
extended public key using the original CSI-RAShi.

Our Contribution . In this paper, we construct two efficient robust DKG pro-
tocols for CSIDH-based cryptographic primitives that work with Shamir secret
sharing. Both protocols are proven to be actively secure in the Quantum Random
Oracle Model (QROM). Our DKG protocols can be considered as an alternative
to the DKG protocols CSI-RAShi [6] and its Structured variant [2]. We show
that both our proposed DKG protocols outperform these previous proposals in
terms of computational cost. Moreover, the VSS step of our DKG protocols
does not rely on any decisional (or computational) assumption,does not use ZK
proofs, and instead uses an efficient Information Theoretically (IT) secure VSS
scheme. However, the latter comes at the cost of increased communication and
a higher number of needed honest parties, in comparison with the alternatives.
Specifically, in the VSS step, more than 2/3 of the parties must be honest rather
than just the majority of them. But, as we are in the static corruption setting,
for the PK computation phase still our protocols work in the majority honest
setting, as in the original CSI-RAShi and its structured variant.

Technical Overview. To design our proposed DKG protocols, we have modified
the construction of CSI-RAShi to minimize the number of isogeny computations
required for each party, as they are the most computationally expensive parts
in these protocols. Our first key modification is to change the secret sharing
step of CSI-RAShi to an efficient VSS scheme based on bivariate polynomials,
that was first proposed in [31], but for a different purpose. The idea is that each
party Pi can distribute a value x(i) by sampling a random polynomial q(i)(Z) of
degree t subject to q(i)(0) = x(i), then hiding q(i)(Z) in the bivariate polynomial
S(i)(X,Y ), also of degree t in both variables, in a way that S(i)(0, Z) = q(i)(Z).
Now, instead of sending evaluations of a univariate polynomial, the verification
shares are two polynomials defined by S(i)(j, Y ) = gj(Y ) and S(i)(X, j) = fj(X),
which are then sent to each other party Pj . Parties can now do pairwise checks
to verify that the polynomials they got from Pi are correct by testing whether
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f
(i)
j (k) = g

(i)
k (j) and f

(i)
k (j) = g

(i)
j (k). The key point is that if there are at

least t of these relations that are satisfied, then there exists a unique bivariate
polynomial S(i)(X,Y ) as above and Pi acted honestly.

After the VSS step, to compute the PK, parties use their secret shares and
engage in a round-robin MPC protocol and prove that they did their computation
correctly. As opposed to CSI-RAShi, parties can no longer use the ZK proof
from [13] to prove correct execution, since they did not commit to their shares
x(i) in the VSS. Instead, we observe that as a result of our modifications, we can
use PVPs for this purpose. With PVPs, parties are able to prove that they are
updating the PK using q(i)(0) = x(i), which was shared in the VSS step.

Using the bivariate polynomial-based VSS and our new modifications
improves the efficiency of the final DKG protocol, when compared to previ-
ous results in the literature. The first source of improvement is that, instead of
performing expensive PVPs and isogeny computations to verify the shares, as
done in the VSS step of CSI-RAShi, now the parties just need to perform fast
polynomial evaluations and pairwise comparisons. The second source of improve-
ment is that we replace the ZK proofs in the PK computation step with a PVP
scheme, which is more efficient. Moreover, we remove the need for a decisional
assumption and also achieve IT security in the VSS step. Conveniently, remov-
ing the need for a decisional assumption, allows us to use the twist technique
from [7], to extend the challenge space of the PVP scheme, and further improve
the communication and computational costs in some cases. A downside resulting
from our modifications is that the communication generally increases (with a few
exceptions), and the fraction of corrupted parties allowed in the VSS reduces to
less than a third, rather than half, which seems to be unavoidable for IT security.
We also show how to build extended public keys with this protocol and discuss
optimizations to reduce the overall runtime.

The second DKG protocol we propose allows a set of parties to sample an
SPK. Note that since SPKs only have a single secret key, the VSS step is inde-
pendent of the length of the SPK. In order to adapt the PK computation step
to SPKs, we also construct a new PVP scheme, which is specific to SPKs, called
Structured PVPs (SPVP), which we believe to be of independent interest. The
SPVP scheme allows parties to prove that they are computing/updating the tar-
get SPK using different factors of the x(i) shared in the VSS step. By replacing
the ZK proofs in the SPK computation with our new SPVPs, we also manage
to improve the efficiency of the Structured CSI-RAShi scheme, proposed in [2].

At the end, it is worth mentioning that the idea of using an IT secure VSS
based on bivariate polynomials within a DKG was already exploited by [35], in
the DL setting. In that work, the authors plug the VSS scheme of [31] into the
threshold scheme by Gennaro, Jarecki, Krawczyk and Rabin [20] for distributing
the key generation of the Schnorr signature. After the VSS, the PK is then
constructed by having the players aggregate all partial public keys as specified
in [20]. However in the DL setting using the bivariate polynomial-based VSS [31]
does not provide a big gain in terms of efficiency, in comparison with [20]. On
the other hand, for isogenies, as we show the advantage of using a bivariate
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polynomial based VSS scheme in CSI-RAShi [6] and Structured CSI-RAShi [2]
is significant. As we can save on expensive ZK proofs and on the number of
isogeny computations (each taking around 35–40 ms).

Efficiency. Our base protocol (for a single public key) is naturally about twice
as fast as CSI-RAShi, currently the state-of-the-art. On the downside, commu-
nication cost scales quadratically in the number of parties n, instead of linearly,
which leads to a noticeable increase when more parties are present but manage-
able for low n. A noticeable exception is n = 2, where the communication cost of
our scheme is actually 27% lower than CSI-RAShi’s and the computational gain
is almost 3. These extra results are mainly due to the higher impact of using the
twist trick with fewer parties.

For larger public keys, we can use optimizations similar to the ones proposed
in [2]. The gains depend on the number of parties n and public key sizes k, but we
show that in terms of the number of isogeny computations, our protocols always
outperform the results from [2]. Due to the twist trick, the most important gains
are visible for low n. But even for n → ∞, we outperform extended CSI-RAShi
by a factor of 3 and structured CSI-RAShi with approximately a factor 1+k−1/2.
The gain against the latter thus becomes negligible only for large k and large n.

As a numerical example, consider PKs with k = 26 elements (which have a
size of about 4kB). For n = 4, we get a gain of 3.4 and 1.7 against extended and
structured CSI-RAShi from [2], while for n = 40, this gain reduces to 3.0 and
1.5, respectively. Comparing the communications of our structured scheme and
structured CSI-RAShi for k = 26, our scheme has about 8% higher communica-
tion when n = 4, while for n = 40, we have a factor of 60 more communication.

Outline. In Sect. 2, we review some preliminary concepts. In Sect. 3, we first
discuss the VSS based on bivariate polynomials, then use it to construct a DKG
protocol for a PK with a single curve and finally discuss its extension for gen-
erating multiple independent curves. Then, in Sect. 4, we present the second
DKG protocol for sampling an SPK. We discuss and compare the efficiency of
our DKG protocols in Sect. 5. Finally, we conclude the paper in Sect. 6.

2 Preliminaries

Notation. We use the assignment operator ← to denote random sampling from
a probability distribution D, e.g. x ← D, or uniform sampling from a set X, e.g.
x ← X. We write λ to denote a security parameter. We call a function f negligible
in X, if for any constant c, there exists some X0, such that f(X) < X−c for
X > X0. We denote this as negl(X). We call a function simply negligible if it is
negligible in λ. We write ZN := Z/NZ and log(x) := log2(x).

2.1 Isogeny-Based Cryptography

Isogenies are rational maps between elliptic curves, that are also surjective homo-
morphisms with respect to the natural group structure between these curves. In
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this work, we will only consider supersingular elliptic curves and separable iso-
genies defined over prime fields Fp. We denote the set of such elliptic curves
as E . The endomorphisms of elliptic curves over Fp define a ring structure that
is isomorphic to orders O in the quadratic imaginary field Q(

√−p). Separable
isogenies are uniquely defined by their kernels, which in turn can be identified
with the kernels of ideal classes in the class group cl(O). For efficiency reasons,
the prime p is chosen, so that p − 1 = 4

∏
i �i consists of the multiplication of

small primes. By this choice, ideals of the type �iO split into a prime ideal li and
its conjugate li, uniquely defining an isogeny and its dual, both of small prime
(and thus efficiently computable) prime degree �i.2 Throughout this work, we
assume the class group for the relevant order cl(O) to be known, so that arbi-
trary ideals can be transformed into efficient isogeny computations using the
relation lattice, by translating them to a small number of consecutive degree-�i

isogeny computations.3

We note that in general, class groups are of composite order. For any cyclic
subgroup of the class group, of size N | #cl(O) with generator g, we can then
define isogenies through the action of elements in ZN ⊆ Z#cl(O) as [ ] : ZN ×E →
E , where the action [a]E �→ E′ defines an isogeny with kernel isomorphic to
ker ga, reduced modulo the relation lattice. In this way, the map [ ] defines a free
and transitive group action [12] by ZN (as a proxy for the subgroup of cl(O))
on the set E . We refer the reader to [5,7,10,34] for more details on the explicit
computations of isogenies. For a more thorough introduction to isogenies and
isogeny-based cryptography, the authors recommend [10,14,30].

The fact that N can be composite implies that in general ZN constitutes a
ring (and not a field). This has to be handled with care, as in some applications,
inverse elements are needed. Assuming that N has the prime decomposition∏n

i=1 Ni, where, for later reference, we assume N1 < · · · < Nn, we can easily
work in a subgroup of size N ′ =

∏
i∈S Ni for S ⊂ {1, . . . , N} by using the

generator gN/N ′
.

2.2 DKG Protocols and Piecewise Verifiable Proofs

A DKG protocol mainly consists of secret sharing and PK computation. Secret
sharing-based protocols are interactive schemes between n parties P1, . . . , Pn,
such that at the end of the protocol, each party holds a share of a common
secret s in a way, that only specifically allowed sets (qualified sets) can join

2 The extra factor 4 is chosen so that p ≡ 3 mod 4, which makes the particular curve
E0 : y2 = x3 +x supersingular, and allows to work in the more efficient Montgomery
coordinates, see [10] for more details.

3 We note that this is not a trivial assumption, since computing large class groups is
generally difficult using classical computers, cf. [7], which computed a 257-bit class
group and associated lattice of relations for the CSIDH-512 parameter set from [10].
An alternative approach is discussed in [18], which strongly speeds up the class group
computations, but unfortunately leads to much slower group action computations.
We note however that there exist efficient quantum algorithms [21] for this purpose.
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forces in order to efficiently reconstruct s (or equivalently act with the isogeny
[s]), while this is unfeasible for any non-qualified set.

Throughout this work, we realize this sharing using Shamir Secret Sharing
(SSS) [27] and variants thereof. In SSS, the secret is defined as the evaluation of
some secret polynomial q(X) ∈ ZN [X] at zero, i.e. s = q(0) ∈ ZN . The shares
that the parties hold are then just evaluations of q(X) at other positions than
at (typically) zero. For simplicity we fix the share of party Pi to be si = q(i)
for i ∈ {1, . . . , n}. The degree of the secret polynomial, t = deg q, is then the
determining factor of qualified sets, i.e. any set Q of size |Q| > t can use Lagrange
interpolation in order to reconstruct the secret as follows

s = q(0) =
∑

i∈Q q(i)LQ
i =

∑
i∈Q q(i)

∏
j∈Q\{i}

j
j−i mod N ,

where LQ
i are the Lagrange coefficients for the set Q. For a set of size ≤ t, the

value s cannot be reconstructed, and in fact is information-theoretically hidden.
We note that since N might be a composite number in our case, we have to
ensure that n < N1 [17], where N1 is the smallest (non-trivial) divisor of N so
that any difference j − i is guaranteed to be invertible mod N . In case we want
to allow more than N1 parties, we can work in the subgroup generated by gN1 ,
as explained in Sect. 2.1. Throughout the rest of this work, for simplicity, we
always assume N to be the size of the subgroup that we are working with, i.e.
the largest subgroup ZN ⊆ Z#cl(O), for which N1 > n, where N1 is the smallest
non-trivial divisor of N .

In the easiest case, the shares si are produced by a trusted third party, called
a dealer. However, a Verifiable Secret Sharing (VSS) can easily be turned into
a DKG protocol, where the secret polynomial is generated by the parties them-
selves. A direct way to achieve this is outlined in [23], where each party Pi takes
the role of a dealer and generates a polynomial q(i)(X) ∈ ZN [X]t of the correct
degree and privately sends the share q(i)(j) to the party Pj for j ∈ {1, . . . , n}\{i}.
Then, every party can locally compute their own share by summing all the shares.
This implicitly defines the polynomial q(X) =

∑n
i=1 q(i)(X) and each player’s

share q(j) =
∑n

i=1 q(i)(j) as the sum of their shares. The implicitly defined secret
is s = q(0), unknown to all players, assuming the honest-majority setting and
that the protocol has been executed properly.

Since some (up to t) parties might behave maliciously, parties need a way to
verify that the shares they get are correct, i.e. that these really are the shares
of a polynomial of degree at most t. It is clear, that if a malicious adversary
chooses a polynomial of a degree larger than t, the reconstruction will fail. We
therefore define the functionality of a Shamir-based VSS as follows.

Definition 2.1 ([1, Functionality 5.5]). We define the VSS-functionality

FV SS(q(X), n) =

{
q(1), . . . , q(n) , if deg q ≤ t,

⊥, . . . ,⊥ , otherwise,

taking as input a q(X) ∈ ZN [X]t of degree t, and each party i ∈ {1, . . . , n}
receiving a Shamir share q(i). If deg q > t, the parties output ⊥ instead.
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As mentioned before, the next step in a DKG is the PK computation. In
isogeny-based protocols, this means generating one or several elliptic curves, e.g.
E = [s]E0, by jointly computing the action [s] in a distributed manner. Since
different elliptic curves cannot be combined, the distributed computation of [s]
has to be done in a round-robin fashion [17].

Security Requirements of DKG Protocols. Next, we recall the security
requirements of DKG protocols based on SSS. We stick to the definitions outlined
in [19], using the notation introduced in [6].4 We denote by A,B ← 〈AO1(X) |
BO2(Y )〉 the joint execution of the DKG protocol by (sets of) parties A with
input X and oracle access to O1 and B with input Y and oracle access to O2,
and yielding the output distributions A for A and B for B, respectively. We
define the output distributions of the DKG protocol as follows

Dout(AO1(X),BO2(Y )) =
{
(A,B)

∣
∣A,B ← 〈AO1(X)|BO2(Y )〉} ,

and drop the inputs, whenever the input string is empty.

Definition 2.2 (Robust correctness). A DKG protocol based on SSS
between n parties P1, . . . , Pn is called correct, if for any PPT adversary A and
any subset I ⊆ {1, . . . , n} of size |I| > t and n − |I| ≤ t for any t < n, we have
that

Pr

⎡

⎣
�f ∈ ZN [x]t :

E1 = · · · = En = [f(0)]E0 ,
and ∀i ∈ I : f(i) = si

∣
∣
∣
∣
∣
∣
A, {(Ei, si)}i∈I ← 〈AO | {PO

i }i∈I〉
⎤

⎦ ≤ negl(λ) .

Definition 2.3 (Secrecy). Let O be a random oracle. A DKG protocol based
on SSS between n parties P1, . . . , Pn satisfies secrecy, if for any PPT adversary
A, and any subset I ⊆ {1, . . . , n} with |I| > t and n − |I| ≤ t, there exists a
simulator S = (S1,S2) such that the following distributions are indistinguishable5

Dout(AO|{PO
i }i∈I) ≈ Dout(AS2 |S1(E)) .

Basically, robust correctness implies, that in the honest-majority setting,
the protocol will end in a way that each honest party Pi for i ∈ I will hold
a tuple (Ei, si), for which there exists a polynomial f(X) ∈ ZN [X]t, such that
Ei = [f(0)]E0 and si = f(i), up to negligible probability. Note that the definition
is for the case of a single PK, and it is straightforward to generalize it to the
case of an extended (structured) PK. Secrecy on the other hand implies, that the
adversary A, controlling up to t malicious parties, cannot learn anything about
s, other than what it can learn from the public key E = [s]E0.

4 We emphasize however, that our definition of secrecy is the same as the original one
introduced in [19] and thus differs from the “weaker” version presented in [6].

5 Dout(AO|{P O
i }i∈I) =

{
(A, Ei∗)

∣
∣A, {(Ei, si)}i∈I ← 〈AO|{P O

i }i∈I〉
}

for any i∗ ∈ I.
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Piecewise Verifiable Proofs. Next, we revisit Piecewise Verifiable Proofs
(PVPs), introduced in [6] to make the secret sharing step in CSI-RAShi ver-
ifiable. PVPs are ZK proofs for a list of relations R0, . . . , Rn with the same
witness space, where individual statements can be verified independently. For
a list of statements x0, . . . , xn, a PVP allows one to prove the existence of a
witness w such that (xi, w) ∈ Ri for any i ∈ {0, . . . , n}. The proof is of the
form (π̃, {πi}i∈{0,...,n}), where (π̃, π0) allows verification of x0 w.r.t. R0 (called
the main proof) and πi for i ∈ {1, . . . , n} further allows verification of xi w.r.t.
Ri. In particular, in [6], the witnesses constitute elements f(X) ∈ ZN [X]t, i.e.
polynomials in the variable X with coefficients defined over ZN and of degree at
most t. The relations are given as

R0 = {((E0, E1), f(x)) | E1 = [f(0)]E0 } ∧ Ri = {(xi, f(x))|f(i) = xi}, (1)

for i = 1, . . . , n, and E0, E1 ∈ E , i.e. supersingular elliptic curves defined over a
prime field Fp. Note that the witness is the same for all the relations.

CSI-RAShi [6] is an n-party honest-majority DKG protocol, that uses PVPs
in its VSS step. The idea is that a party, called the dealer, is in possession of
some polynomial f(X) ∈ ZN [X]t, where t ≤ �n−1

2 �. The dealer publishes E1 =
[f(0)]E0 and distributes the shares f(i) to parties P1, . . . , Pn. To prove that these
shares are correct, the dealer publishes a PVP for the relations R0, R1, . . . , Rn

as described above, and each party Pi can then verify the main statement R0 as
well as the statement Ri related to their share. In the honest-majority setting,
if all honest parties agree that their share is correct, they know that they each
possess a share of a unique polynomial f(X) of degree t, whose evaluation in 0
is in the commitment E1 = [f(0)]E0.

We describe the proof generation and verification of their PVP scheme in
Algorithms 1 and 2, where H : {0, 1}∗ → {0, 1}λ is a random oracle and C :
{0, 1}∗ × {0, 1}λ → {0, 1}2λ is a commitment scheme that is collapsing [33,
Definition 12] and quantum computationally hiding [6, Definition 2]. The authors
prove that their PVP scheme is correct, sound and ZK, therefore constitutes a
ZK proof system for the individual relations R0, . . . , Rn. For more details, we
refer the reader to the original CSI-RAShi paper [6].

The CSI-RAShi DKG Protocol. We quickly outline the building blocks and
underlying security rationale of CSI-RAShi [6]. We refer the reader to the original
source for more details and an algorithmic description of the protocol. The CSI-
RAShi protocol consists of two consecutive phases, the VSS step, and the PK
computation. The VSS is executed as outlined in Sect. 2.2, using a Pedersen-type
approach [23] for a distributed secret generation. The shares are then verified
using PVPs and any inconsistencies are resolved using the complaint resolution
protocol introduced in [20]. At the end of the VSS, the parties that have not
been disqualified, define the qualified set Q, which also implicitly defines the
secret s =

∑
i∈Q f (i)(0). In the PK computation step, the parties within the

qualified set then engage in a round-robin MPC protocol to compute the PK
E = [s]E0 as successive computations of the type Fi = [f (i)(0)]Fi−1, starting at
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Algorithm 1: PVP.P : The prover of non-interactive PVP [6].
Input : A witness polynomial f(X) ∈ ZN [X]≤t,

a statement x = ((E0, E1), x1, · · · , xn).
Output: A non-interactive piecewise proof π of the relations in equation (1).

for j = 1, . . . , λ do

bj ← ZN [X]≤t uniformly at random; Set Êj ← [bj(0)]E0

Sample y0, y
′
0 ← {0, 1}λ uniformly at random, and set

C0 ← C(Ê1 ‖ · · · ‖ Êλ, y0), and C′
0 ← C(E0, E1, y

′
0).

for i = 1, . . . , n do

yi, y
′
i ← {0, 1}λ uniformly at random and set Ci ← C(b1(i) ‖ · · · ‖ bλ(i), yi)

and C′
i ← C(xi, y

′
i)

d = d1 . . . dλ ← H(C,C′), where C = (C0, . . . ,Cn),C′ = (C′
0, . . . ,C

′
n)

for j = 1, . . . , λ do
rj(x) ← bj(x) − djf(x) mod N

return π̃ = (C,C′, r) and {πi = (yi, y
′
i)}n

i=0, where r = (r1, . . . , rλ).

Algorithm 2: PVP.V : The verifier of non-interactive PVP [6].
Input : An index i = 0, . . . , n, a statement piece xi of the form x0 = (E0, E1)

if i = 0, or xi ∈ ZN if i �= 0, as well as a proof piece
(π̃, πi) = ((C,C′, r), (yi, y

′
i)).

Output: true or false

if C′
i �= C(xi, y

′
i) then

return false

d1 . . . dλ ← H(C,C′)
if i == 0 then

for j = 1, . . . , λ do

if dj == 0 then Ẽj ← [rj(0)]E0

else Ẽj ← [rj(0)]E1

return C0 == C(Ẽ1, · · · , Ẽλ, y0)
else

return Ci == C(r1(i) + d1xi ‖ · · · ‖ rλ(i) + dλxi, yi)

F0 = E0 and ending at F|Q| = E. Parties prove correctness of their action using
the ZK proofs introduced in [13, Sec. 3.1]. The share f (i)(0) of any party that
misbehaves in the protocol can be reconstructed using Lagrange interpolation,
so that the protocol always succeeds in the honest-majority setting.

CSI-RAShi satisfies the robust correctness property of Definition 2.2, relying
on the soundness of PVPs. Furthermore, it satisfies a weaker variant of the
secrecy property, which unlike Definition 2.3 assumes the input curve E to be
uniformly sampled from E , rather than being arbitrary [6, Definition 4]. This
modification stems from the fact, that secrecy relies not only on the ZK property
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of PVPs, but also on the isogeny-based Decisional Diffie-Hellman assumption
(DDH) [32, Problem 2.2], which only holds for random inputs.6

Costs of CSI-RAShi. We discuss the computational and communication costs
of the CSI-RAShi protocol. The authors of [6] state the total sequential cost of
the protocol as n+2+(4n+1)λ isogeny computations, arguing that other costs
are negligible in comparison. For direct comparison with the results in Tables 2
and 3, we summarize the costs of CSI-RAShi and its extended and structured
versions in Table 1 below.

Table 1. Computational (top) and communication (bottom) cost of CSI-RAShi and
its extended and structured versions. The computational costs in terms of isogenies are
taken from [7] and [2], respectively. The communication cost for the basic protocol can
be recovered from the extended case, by setting k = 1. Note that the factor 1

2
in the

CC-communication cost comes from the λ-bit challenge in the zero-knowledge proofs
of [7], which is half the size of a commitment scheme output (CC = 2λ).

Basic Extended Structured

TE 1 + 2nλ (1 + 2nλ)k 1 + 2nλ

TI n + 2 + (4n + 1)λ (n + 2)(k − 1) + 2nλ(3k − 1) 2 + n(k − 1) + 2λ
(
n(

√
k − 1 + 1)2 + 1

)

TC 6n − 2 (6n − 2)k 6n − 2

TH 3n 3nk n(2k + 1)

Extended Structured

CN kλ(t + 2) λ(t + 1 +
√

k − 1)

CE 3k k + 2

CC (3n + 2 + 1
2
)k 3n + 2 + 1

2

√
k − 1

SecurityAssumptions. Next, we recall the security definitions of isogeny-based
Decisional Diffie-Hellman assumption (DDH) [32, Problem 2.2], and (c0, c1, · · · ,
ck−1)-Vectorization Problem with Auxiliary Inputs (Ck−1-VPwAI) [3], that are
used in CSI-RAShi [6] and its structured variant [2], respectively.

Definition 2.4 (Decisional Diffie-Hellman assumption). Distinguish with
non-negligible advantage between the distributions ([a]E, [b]E, [a + b]E) and
([a]E, [b]E, [c]E), where a, b and c are chosen uniformly at random from ZN .

Definition 2.5 ((c0, c1, · · · , ck−1)-Vectorization Problem with Auxiliary
Inputs (Ck−1-VPwAI)). Given an element E ∈ E and the pairs
(ci, [cix]E)k−1

i=1 , where Ck−1 = {c0 = 0, c1 = 1, c2, . . . , ck−1} is an exceptional
set, find x ∈ ZN .

6 We note that the authors of [6] use the description of very hard homogeneous spaces
as introduced by Couveignes [12], where this assumption is called the decisional
parallelization problem.
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3 Robust DKG for CSIDH Using Bivariate Polynomials

In this section, we introduce a new DKG protocol for CSIDH, based on a VSS
using bivariate polynomials [31], an idea that was originally introduced in [4].
When comparing to CSI-RAShi [6], the main advantage of this approach is that
we can replace the piecewise verifiable proofs in the VSS step with simple com-
parison operations and further replace the ZK proofs used in the PK computation
step with the cheaper piecewise verifiable proofs. This results in a more efficient
DKG protocol. On the downside, the protocol has increased the communication
cost, mainly due to the nature of the IT-secure VSS, and the number of cor-
rupted parties is restricted to t < n

3 , rather than honest-majority (i.e. t < n
2 ),

as is the case for CSI-RAShi. Throughout this section, we assume that n < N1,
where N1 is the smallest divisor of N | #cl(O).

3.1 A VSS Based on Bivariate Polynomials

We revisit the VSS approach from [1,31], using bivariate polynomials. This
section follows closely along the lines of [1, Sec. 5]. Yet, since we are working
with polynomials over rings, we have to slightly adapt the theorems and point
out differences in the proofs, in order to account for this fact.

A bivariate polynomial S(X,Y ) ∈ ZN [X,Y ] of degree t is a polynomial over
variables X and Y , each of which has degree at most t, i.e. we can write it as

S(X,Y ) =
∑t

i=0

∑t
j=0 aijX

iY j .

We write S(X,Y ) ∈ Z[X,Y ]t. The idea behind using bivariate polynomials in
the VSS of [4] is related to the following Theorem, adapted from [1, Claim 5.2].

Theorem 3.1. Let f1(X), . . . , ft+1(X) ∈ ZN [X] be polynomials of degree t.
Then there exists a unique bivariate polynomial S(X,Y ) ∈ ZN [X,Y ] of degree t
such that for every k = 1, . . . , t + 1, it holds that S(X, k) = fk(X).

Proof. The proof is identical to the proof of Claim 5.2 of [1], which uses
Lagrange interpolation over a finite field to construct S(X,Y ) from the eval-
uations S(X, k). Since t + 1 < N1, the Lagrange interpolation polynomials are
well-defined over the ring ZN and the proof works analogously. ��
Thus every degree-t bivariate polynomial can be interpolated from t+1 univariate
degree-t polynomials in the same way that every degree-t univariate polynomial
can be interpolated from t + 1 points. Conversely, the evaluation of a bivariate
polynomial in one of its variables defines a univariate polynomial (of the same
degree), in the same way as evaluating a univariate polynomial defines a point.
Similarly, if less than t + 1 univariate polynomials are known, the overarching
bivariate polynomial is IT hidden as the following theorem suggests.
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Theorem 3.2. Let I ⊂ {1, . . . , n} with |I| ≤ t and let f, g ∈ ZN [X]t with f(i) =
q(i) for all i ∈ I. Then for any two bivariate polynomials S1(X,Y ), S2(X,Y ) ∈
ZN [X,Y ]t with S1(0, Y ) = f(Y ) and S2(0, Y ) = g(Y ), the two sets

{i, S1(X, i), S1(i, Y )}i∈I and {i, S2(X, i), S2(i, Y )}i∈I

are indistiguishable.

Proof. See proof of Claim 5.4 of [1]. ��
Bivariate polynomials can be used in VSSs as follows [4]. To share a secret
x between n parties P1, . . . , Pn, one party, called the dealer, samples a random
polynomial q(Z) ∈ ZN [Z]t such that q(0) = x. Then the dealer samples a random
bivariate polynomial S(X,Y ) ∈ ZN [X,Y ]t with the constraint that S(0, Z) =
q(Z), so in particular S(0, 0) = x. In order to distribute x among the n parties,
the dealer sets

fi(X) = S(X, i) and gi(Y ) = S(i, Y ) ,

then sends fi(X) and gi(Y ) privately to party Pi for i = 1, . . . , n. Each party
can now construct their share as xi = fi(0) = S(0, i) , which allows to recover
x = S(0, 0) via Lagrange interpolation. The true advantage of using bivariate
polynomials manifests itself in the share verification step, which relies on the
following theorem.

Theorem 3.3. Let K ⊆ {1, . . . , n} be a set of indices with |K| ≥ t + 1 and
let {fk(X), gk(X)}k∈K be a set of pairs of polynomials in ZN [X]t. If fi(j) =
gj(i) holds for every i, j ∈ K, then there exists a unique bivariate polynomial
S(X,Y ) ∈ ZN [X,Y ]t, such that for every k ∈ K, fk(X) = S(X, k) and gk(Y ) =
S(k, Y ) .

Proof. This proof works analogous to the proof of Claim 5.3 of [1], by using the
uniqueness of S(X,Y ) guaranteed by Theorem 3.1 (instead of [1, Claim 5.2]). ��
Thus, in order to verify the correctness of their shares, each pair of parties Pi, Pj

simply checks that fi(j) = gj(i) and gi(j) = fj(i). If all these tests succeed, then
parties know that their shares are consistent with a single bivariate polynomial
and that the sharing was successful. In the converse case, if some of these checks
do not succeed, the players engage in the following steps to resolve the conflict [1].

1. If for a player Pi, the checks fi(j)
?= gj(i) or gi(j)

?= gj(i) do not succeed,
then Pi broadcasts a complaint by disclosing (i, j, fi(j), gi(j)). As a response,
the dealer reveals (i, fi(X), gi(Y )). Then each other player Pk evaluates the
complaints as below. Whenever players are satisfied with the complaint res-
olution, they broadcast consistent, otherwise they don’t.
(a) If, for every joint complaint, e.g. (i, j, fi(j), gi(j)) by Pi and

(j, i, fj(i), gj(i)) by Pj , the dealer does not reveal (i, fi(X), gi(Y )) nor
(j, fj(X), gj(Y )), jump to step 2. (without broadcasting consistent), oth-
erwise continue.
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(b) If there exists a response (k, fk(X), gk(X)), Pk accepts this as its new
shares, then jumps to step 2. (without broadcasting consistent), otherwise
continue.

(c) For any other response, verify if the polynomials revealed by the dealer
indeed do not satisfy the necessary checks. If they don’t, jump to step 2.
(without broadcasting consistent), otherwise continue.

(d) Broadcast the message consistent.
2. If at least n − t parties have broadcasted consistent, then each party outputs

its share xi = fi(0), otherwise return ⊥.

Theorem 3.4. For t < n/3, the secret sharing protocol, along with the conflict
resolution procedure described above, implements FV SS in a correct and secure
way, for a static malicious adversary (which might include the dealer).

Proof. We refer the reader to the proof of Theorem 5.7 of [1]. The proof here
works the same way, except that references to Claims 5.3 and 5.4 should be
substituted with Theorems 3.3 and 3.2, respectively. Furthermore, the values
α1, . . . , αn, at which the polynomials are evaluated in these proofs, should be
chosen from the subset {1, . . . , N1 − 1}. For simplicity, we choose {1, . . . , n}. ��

3.2 Robust Distributed Generation of [x]E0

We can easily extend the protocol described in the previous section to a dis-
tributed VSS by using the approach from [23]. There, each party Pi involved
in the protocol individually takes the role of the dealer and constructs and dis-
tributes shares of its secret x(i) to each other party. The final secret is then
simply the sum of all the secrets and each party’s share is the sum of all the
shares. Yet, if parties misbehave (as dealers or as receiving parties), the checks
described in the previous section will uncover this and parties will be disqual-
ified. In the end, the secret and secret shares are then actually defined as the
sum of the respective elements of all the qualified players. After a shared secret
x was implicitly defined in the VSS step, the parties engage in a PK compu-
tation step to compute the PK [x]E0. Thus our DKG protocol’s steps follow a
two step approach, along the lines of [20] or [6]. In contrast to those protocols
however, the parties do not have to commit to their shares in the first phase, but
rather resort to the pairwise comparisons described in the previous subsection.
We present our protocol in Fig. 1 and prove the following theorem in the full
version of the paper.

Theorem 3.5. If PVPs are sound, then the DKG protocol of Fig. 1 is correct
and robust. If PVPs are zero-knowledge, then the DKG protocol satisfies the
secrecy property.

Below, we explain some details of the steps in Fig. 1.
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VSS Step. We assume each party Pi wants to share a secret x(i). The distribution
of x(i) is achieved by sampling a random univariate polynomial q(i)(Z) ∈ ZN [Z]t
with x(i) = q(i)(0) and a random bivariate polynomial S(i)(X,Y ) ∈ ZN [X,Y ]t
with S(i)(0, Z) = q(i)(Z). Then Pi sets

f
(i)
j (X) = S(i)(X, j) and g

(i)
j (Y ) = S(i)(j, Y )

for j = 1, . . . , n and sends f (j)(X) and g(j)(Y ) privately to party Pj for all j.
The parties engage in the protocol to verify the correctness of their shares. In
case the checks fail, i.e. ⊥ is returned while a player Pk is the dealer, then Pk will
be disqualified and the protocol continues without the inputs by Pk. Thus, after

Fig. 1. The DKG protocol for a single public key [x]E0.
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the consistency check step, there will be a set Q ⊆ {1, . . . , n} of qualified parties
which implicitly defines the shared secret x as

x =
∑

i∈Q x(i) =
∑

i∈Q S(i)(0, 0) =
∑

i∈Q q(i)(0) = q(0) .

Each party can derive their share xj of x as

xj = q(j) =
∑

i∈Q q(i)(j) =
∑

i∈Q f
(i)
j (0) ,

and x = q(0) can be recovered by any subset of at least t + 1 parties.

PK Computation Step. In this step, the parties in Q engage in a round-robin
protocol for computing the public key [x]E0. For simplicity, we assume Q =
{1, . . . , n′}. Then, at step i, party Pi will compute

Fi−1 �→ Fi = [x(i)]Fi−1 ,

where F0 is some starting curve. At the end of the round-robin,

Fn′ = [x(n′)] · · · [x(1)]F0 =
[ ∑

i∈Q x(i)
]
F0 = [x]F0

is the public key. The only thing left to do for each player Pi is to prove that
they used the correct x(i) = q(i)(0). Since the other parties Pj each possess a
share f

(i)
j (0) = S(i)(0, j) = q(i)(j), the dealer Pi can convince them of having

used the correct action by proving the following relation

– Fi = [q(i)(0)]Fi−1 and
– for j ∈ Q, player Pj possesses the share q(i)(j) of q(i)(0).

for the witness polynomial q(i)(Z) ∈ ZN . It turns out that this is exactly the
language that is proved using the PVPs from Sect. 2.2, originally introduced
in [6]. Thus a player Pi can convince the other players of having acted with
q(i)(0), by relating it to the shares q(i)(j) = f

(i)
j (0) distributed in the VSS step.

Extended Public Keys. The DKG protocol in Fig. 1 can be easily extended to
sample k public keys, which is required in protocols like CSI-FiSh [7]. This can
simply be done by generating multiple polynomials S

(i)
1 , . . . , S

(i)
k for the respec-

tive secrets x(1,i), . . . , x(k,i). In the PK computation step, parties then compute
the curves F 1

i ← [x(1,i)]F 1
i−1, . . . , F k

i ← [x(k,i)]F k
i−1 , and prove correctness at

each step. In this case, it requires running k independent PVPs.

4 Robust DKG for Structured Public Keys

We recall that for a given secret x ∈ ZN , an SPK [2,3] has the form
{Ei = [cix]E0}k

i=1, where ci ∈ Ck and Ck = {c1 = 1, c2, · · · , ck} is a public
(super)exceptional set, see also Sect. 2.1. In this section, we present a new vari-
ant of the DKG protocol in Fig. 1, which would allow a set of parties to sample
an SPK in a distributed manner.
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VSS Step. Since an SPK has only one secret key, we need to execute the VSS
step only once. This is done exactly as in Fig. 1.

SPK Computation Step. In the SPK computation step, for a given superexcep-
tional set Ck = {c1 = 1, c2, . . . , ck}, each party Pi has to compute

F 1
i ← [x(i)]F 1

i−1, F 2
i ← [c2x(i)]F 2

i−1, . . . , F k
i ← [ckx(i)]F k

i−1 ,

and give a proof that they updated all the curves in the SPK with correct factors
of the secret key x(i) = q(i)(0) shared with other parties. Since the other parties
Pj each possess a share f

(i)
j (0) = S(i)(0, j) = q(i)(j) from the VSS step, party Pi

needs to convince them that it used the correct action by proving the following
relation:

– For a public superexceptional set Ck = {c1 = 1, c2, . . . , ck}:
F 1

i = [c1q(i)(0)]F 1
i−1 ∧ · · · ∧ F k

i = [ckq(i)(0)]F k
i−1, and

– for j ∈ Q, player Pj possesses the share q(i)(j) of q(i)(0),

where q(i)(Z) ∈ ZN is the witness polynomial. To prove the above relations, we
propose a new PVP scheme, which we call Structured PVP (SPVP), that can
be considered as an extension of the one proposed in [6, Algorithms 3 and 4],
and which will allow us to prove the computation of SPKs in our DKG.

Structured PVP (SPVP). We define the following list of relations R =
(R0, . . . , Rn), whose common witness space is ZN [X]≤t, the set of polynomials
over ZN of degree at most t:

R0 = {((Ck, F1, F
′
1, . . . , Fk, F ′

k), f(x)) | (F ′
l = [clf(0)]Fl)k

l=1 },

∀i = 1, . . . , n : Ri = {(xi, f(x))|f(i) = xi} . (2)

A statement x0 for R0 consists of a public superexceptional set Ck = {c1 =
1, c2, . . . , ck}, and a set of curves (F1, F

′
1, . . . , Fk, F ′

k) ∈ E2k. Just as in the original
PVPs, a statement xi for the relations {Ri}i=1,··· ,n is an element of ZN .

The description of non-interactive SPVP for relations of the above form
are presented in Algorithms 3 and 4. The algorithms use a random oracle
H : {0, 1}� → {0, 1}λ, and a non-interactive commitment scheme C : {0, 1}� ×
{0, 1}λ → {0, 1}2λ, where λ is the security parameter. In Appendix A, we prove
the following Theorem.

Theorem 4.1. Assuming that the commitment scheme C is collapsing and
quantum computationally hiding, the described non-interactive PVP for struc-
tured public keys (in Algorithms 3 and 4) is complete, sound, and ZK in the
QROM for the list of relations given in Eq. (2).

Efficiency. As it can be seen, by running SPVP.P a party needs to compute λk
group actions, query once to the random oracle H, and 2(n + 1) times to the
commitment scheme C. Similarly, by running SPVP.V a verifier needs to query
once to the random oracle H, and twice to the commitment scheme C, and only
in the case i = 0 it needs to compute λk group actions.
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Ternary Challenge Space. The challenge space of the (structured) PVP schemes
is binary. As a result, the PVP scheme constructed in [6] and its new variant
proposed above need to be repeated λ times to achieve the soundness error 1

2λ .
Unlike in CSI-RAShi, in our DKG protocols, the first party generates a PVP
proof starting from the base curve E0. Since the class group enjoys a symmetry
around the elliptic curve E0, this allows us to use the twist trick introduced in [7]
and extend the challenge space of the PVP schemes to {−1, 0, 1}, with minimal
changes to the descriptions in Algorithms 3 and 4. The resulting soundness

Algorithm 3: SPVP.P : The prover of non-interactive Structured PVP.
Input : A witness polynomial f(X) ∈ ZN [X]≤t,

a statement x = ((Ck, F1, F
′
1, . . . , Fk, F ′

k), x1, · · · , xn)).
Output: A non-interactive piecewise proof π of the relations in equation (2).

Parse Ck = {c1, c2, . . . , ck}.
for j = 1, . . . , λ do

bj ← ZN [X]≤t uniformly at random

F̂ 1
j ← [c1bj(0)]F1 , . . . , F̂ k

j ← [ckbj(0)]Fk

Sample y0, y
′
0 ← {0, 1}λ uniformly at random, and set

C0 ← C(F̂ 1
1 , · · · , F̂ k

1 ‖ · · · ‖ F̂ 1
λ , . . . , F̂ k

λ , y0),
C′
0 ← C(F1, F

′
1 ‖ · · · ‖ Fk, F ′

k, y′
0).

for i = 1, . . . , n do

yi, y
′
i ← {0, 1}λ uniformly at random; set Ci ← C(b1(i) ‖ · · · ‖ bλ(i), yi); and

C′
i ← C(xi, y

′
i)

d = d1 . . . dλ ← H(C,C′), where C = (C0, . . . ,Cn),C′ = (C′
0, . . . ,C

′
n)

for j = 1, . . . , λ do
rj(x) ← bj(x) − djf(x) mod N

return π̃ = (C,C′, r) and {πi = (yi, y
′
i)}n

i=0, where r = (r1, . . . , rλ).

Algorithm 4: SPVP.V : The verifier of non-interactive Structured PVP.
Input : An index i = 0, . . . , n, a statement piece xi of the form

x0 = (Ck, F1, F
′
1, · · · , Fk, F ′

k) if i = 0, or xi ∈ ZN if i �= 0, as well as a
proof piece (π̃, πi) = ((C,C′, r), (yi, y

′
i)).

Output: true or false

if C′
i �= C(xi, y

′
i) then

return false

d1 . . . dλ ← H(C,C′)
if i == 0 then

for j = 1, . . . , λ do

if dj == 0 then F̃ 1
j ← [c1rj(0)]F1, . . . , F̃ k

j ← [ckrj(0)]Fk

else F̃ 1
j ← [c1rj(0)]F ′

1, . . . , F̃ k
j ← [ckrj(0)]F ′

k

return C0 == C(F̃ 1
1 , · · · , F̃ k

1 ‖ · · · ‖ F̃ 1
λ , · · · , F̃ k

λ , y0)
else

return Ci == C(r1(i) + d1xi ‖ · · · ‖ rλ(i) + dλxi, yi)
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error rate becomes 1
3 and the number of repetitions reduces to λ′ := �λ/ log2 3�

to achieve the soundness error 1
2λ . This results in a noticeable gain, especially if

the number of parties is small.

Construction of the DKG Protocol. Figure 2 describes the construction of our
proposed robust DKG protocol for structured public keys. The protocol uses the
distributed VSS scheme described in Sect. 3.1, and the non-interactive Struc-
tured PVP (SPVP.P,SPVP.V ), given in Algorithms 3 and 4, as a subroutine.
The proof of the following theorem can be found in the full version of the paper.

Theorem 4.2. If structured PVPs are sound, then the DKG protocol of Fig. 2
to generate structured public keys is correct and robust. If structured PVPs are
ZK, then the DKG protocol satisfies the secrecy property.

Fig. 2. The DKG protocol for structured public keys.
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5 Efficiency of the DKG Protocols and Optimizations

We summarize the computational and communication costs of our DKG proto-
cols in Tables 2 and 3. We express the computational cost as the sequential run-
time of the protocol steps, i.e. the total runtime from start to finish, including
when some of the parties are idle. The communication cost is expressed in terms
of outgoing communication per party. These costs are established in detail in the
Appendix B, where we also discuss optimizations in order to minimize them.

Comparison of Extended and Structured Cases. We end this section with
a comparison between DKGs building extended or structured public keys in terms
of computational and communication costs. A direct comparison of Tables 2 and 3
reveals that while extended DKGs scale linearly with k in every term, structured
DKGs only scale with k in the number of isogeny computations TI and the num-
ber of shared elliptic curves CE . We summarize the trends for varying k and n in
Figs. 3 and 4 below, and discuss more details in the Appendix B. Figs. 3 and 4 also
compare our results with CSI-RAShi [6] with extended public keys (using the opti-
mizations from [2, Sec. 4.3]), as well as the recently proposed structuredCSI-RAShi

Table 2. Computational costs of the basic, extended and structured DKG in terms
of polynomial evaluations TE , isogeny computations TI and calls to the commitment
scheme TC and random oracle TH . The cost represents the total sequential cost of the
protocol, including idle times by the parties. For compactness, we do not consider the
twist trick described in the previous section; it can easily be reinstated by substituting
the terms of the form nλ to λ′ + (n − 1)λ in the factors of TE and TI . The impact of
the twist trick is further discussed in Appendix B. We define χn,k =

⌈
k
n

⌉ − ⌊
k
n

⌋
.

Basic DKG Extended DKG Structured DKG

TE 2(n − 1)2 + nλ(n + 2) 2(n − 1)2k + nλ(n
⌈

k
n

⌉
+ k + χn,k) 2(n − 1)2 + nλ(2n + 1)

TI 2nλ + n nλ(k + χn,k) + n
⌈

k
n

⌉
nλ(k + χn,k) + n

⌈
k
n

⌉

TC 2n(n + 3) 2n
( ⌈

k
n

⌉
(n − 1) + 2k + 2χn,k

)
2n(3n − 1)

TH 2n n(k + χn,k) n2

Table 3. Communication costs of the extended and structured DKG in terms of the
information contained in elements of ZN and E , i.e. CN and CE respectively, and of
the output of our commitment scheme CC . The cost represents the outgoing cost per
party. The cost of the basic DKG immediately follows by setting k = 1 in either case.
We again ignore the twist trick for compactness, which we regain by the substitution
nλ 
→ λ′ + (n − 1)λ in the costs of CN .

Extended DKG Structured DKG

CN 2k(n − 1)(n − t + 1) + knλ(t + 1) 2(n − 1)(n − t + 1) + nλ(t + 1)

CE nk nk

CC nk(3n + 2) n(3n + 2)
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Fig. 3. Computational cost in terms of isogeny computations for the CSIDH-512
parameter set, shown as a function of the number of parties n (left; for k = 26) and
as a function of the public key size k (right; for n = 4). We can see that our proto-
cols generally outperform the protocols from [2,6], most notably for large n or low k.
For asymptotically large k, our protocols coincide with structured CSI-RAShi in the
number of isogeny computations.

Fig. 4. Communication cost in kilobytes for the CSIDH-512 parameter set, shown as
a function of the number of parties n (left; exemplified for k = 26) and as a function
of the public key size k (right; for n = 4). We choose t as the largest integer < n/3.
We compare our results to the extended and structured CSI-RAShi from [2]. The
communication cost of our schemes is generally higher, but come close for small n
and specific ranges of k. Notably, our structured PK scheme outperforms structured
CSI-RAShi for n = 2 and k < 213 and for n = 3 in the parameter range k ∈ [22, 210].

from [2, Sec. 5.3].7 Both of these schemes are honest-majority Shamir secret shar-
ing based DKG protocols in the CSIDH setting. To our current knowledge, Struc-
tured CSI-RAShi represents the most efficient isogeny-based DKG in the literature
for (structured) public keys of size k > 1.

7 We note that [2] also analyzes extended and structured versions of the Sashimi
DKG [13], which is a full-threshold DKG. The authors in [2] show that the communi-
cation and computational costs of this DKG are basically the same as for CSI-RAShi,
up to some barely noticeable constant factors. We therefore omit their analysis here.
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6 Conclusion

In this paper, we presented two efficient robust DKG protocols in the CSIDH
setting, based on secret sharing with bivariate polynomials, which outperform
current alternatives [2,6] in terms of computational cost.

The first protocol allows a set of parties to sample a public key like [x]E0 or
([x1]E0, · · · , [xk]E0) and obtain a Shamir share of each of the secret keys. Such
public keys are used in isogeny-based cryptosystems (e.g. [17,26]) and signature
schemes (e.g. [7]), respectively. The second protocol allows a set of parties to
sample a structured public key, e.g. a PK of the form ([c1x]E0, · · · , [ckx]E0),
as used in the CSI-SharK signature scheme [2], and obtain a Shamir share of
x. Both protocols are secure in the QROM and achieve IT security in the VSS
step. However, compared to current alternatives, our protocols generally require
more communication between parties (except for some parameters) and a higher
number of honest participants (more than two-thirds) during the VSS step.

In Sect. 5 we showed that for generating a single PK, [x]E0, our first protocol
is at least two times faster than the state-of-the-art scheme CSI-RAShi [6]. In
cases where the number of parties is small, the improvement is even higher, e.g.
for n = 2, our first DKG protocol is about 3 times faster and also requires 27%
less communication. When generating extended or structured public keys, our
protocols are also faster than the currently most efficient ones [2,6]. For instance,
using our protocol, 4 parties can sample a PK of size 4 kB (i.e., k = 26), for
CSI-FiSh [7] and CSI-SharK [2], respectively 3.4 and 1.7 times faster than the
current DKG protocols.

As a building block for our second DKG protocol, in Sect. 4, we presented a
new PVP scheme specifically for SPKs, which we think can be of independent
interest for future protocols using SPK.
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A Security Proofs

A.1 Proof of Theorem 4.1

We prove the security of new non-interactive Structured PVP, described in Algo-
rithms 3 and 4 by the following theorem.

Theorem 4.1. Assuming that the commitment scheme C is collapsing and quan-
tum computationally hiding, the described non-interactive PVP for the structured
public keys (in Algorithms 3 and 4) is complete, sound, and ZK in the QROM
for the list of relations given in Eq. ( 2).

Proof. The proof of this theorem is analogous to the proof of [6, Theorem 2],
with a few differences, which we will highlight in this proof.

A key peculiarity of PVPs (and SPVPs) is that they use a weak version of the
Fiat–Shamir transform, i.e. where the random oracle is called with commitments
as inputs rather than commitments and statements. In [6], the consequences
regarding the security of this are treated in detail and PVPs could be proven
secure, even with this modification. We refer the reader to [6, App. A] for more
details. We note that these results also still apply to our case, so we will omit
proving them again. Rather, let us point out, where the differences between
SPVPs and PVPs lie. These are mainly in the definition of the relation R0,
which in the original CSI-RAShi paper is defined as

{(x0 = (F1, F
′
1), f(x)) | (F ′

1 = [f(0)]F1)} ,

and thus represents the special case k = 1 and c1 = 1 of the definition in Eq. (2).8

Similarly, the commitments as represented in Algorithms 3 and 4 also reduce to
the case k = 1.

As a result of this different structure, the proofs for completeness and sound-
ness are adapted below for the case i = 0. The case i �= 0 remains unchanged,
as also here the relation is unchanged. We note that zero-knowledge immedi-
ately follows from the properties of the commitment scheme C and is therefore
analogous to the proof in [6].

Completeness. For any j = 1, . . . , λ, if dj = 0, then rj = bj and hence F̃ l
j =

[clrj(0)]Fl = [clbj(0)]Fl = F̂ l
j for l = 1, · · · , k. If dj = 1, then rj(0) = bj(0)−f(0),

so again we have F̃ l
j = [clrj(0)]F ′

l = [clbj(0) − clf(0)][clf(0)]Fl = [clbj(0)]Fl =
F̂ l

j , for l = 1, · · · , k. Thus both C0 are equal and the verifier will accept.

Soundness. Let I ⊆ {0, 1, · · · , n} with |I| > t. Given two accepting tran-
scripts with different challenges (e.g. dj = 0 and d′

j = 1, without loss of
generality), if 0 ∈ I and any of [c1rj(0)]F1 �= [c1r′

j(0)]F ′
1, [c2rj(0)]F2 �=

8 Regarding security assumptions, the fact that f(0) cannot be obtained from
(F1, F

′
1 = [x]F1) relies on the GAIP, while we additionally rely on Ck-Vectorization

Problem with Auxiliary Inputs (Ck-VPwAI) to ensure that f(0) cannot be obtained
from the structured public key (Ck, F1, F

′
1, · · · , Fk, F ′

k).
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[c2r′
j(0)]F ′

2, · · · , [ckrj(0)]Fk �= [ckr′
j(0)]F ′

k, then we found a collision in C. Simi-
larly, if for some non-zero i ∈ I we have rj(i) �= r′

j(i) + xi then we also have a
collision for C. If there is no collision, then

rj(i) = r′
j(i) + xi for all i ∈ I, i > 0 , and

[clrj(0)]Fl = [clr
′
j(0)]F ′

l for l = 1, 2, · · · , k (if 0 ∈ I) ,

so we can extract a valid witness as rj(X) − r′
j(X). ��

B Computational and Communication Costs of Our
Protocols

In this section, we establish the computational and communication costs of our
DKG protocols. We express the sequential costs τ of the protocol steps, i.e. the
total runtime from start to finish, including when some of the parties are idle
and discuss optimizations that minimize these idle times. We denote by TI , TE ,
TC and TH the cost of isogeny computations, polynomial evaluations, calls to the
commitment scheme and calls to the random oracle, respectively. We ignore the
cost of other operations, such as sampling and addition and multiplication over
the ring ZN , as they are negligible in comparison. We express the communication
cost in terms of outgoing communication cost γ per party. Let CE and CN

denote the information content of an elliptic curve in E and an element in ZN ,
respectively. A monovariate polynomial of degree t can be represented by t + 1
elements in ZN . We first determine the costs of the individual building blocks
of our protocol, before we put them together and compute the full costs.

VSS. We can easily see that in the VSS step from Fig. 1, each party first eval-
uates and sends out 2(n − 1) monovariate polynomials. Then, in the verification
step, parties further evaluate and share 2(n − 1)(n − 2) polynomial evaluations.
We note that the evaluations can be done in parallel, thus this amounts to a
total of 2(n − 1)2 sequential evaluations and 2(n − 1)(n + t − 1) elements in ZN

sent out to the other parties. We find

τvss(n) = 2(n − 1)2TE and γvss(n, t) = 2(n − 1)(n + t − 1)CN .

Proof Step. In the public key computation step of Fig. 1, parties have to com-
pute one isogeny and run the proof in Algorithm 1. By carefully counting the
operations in the latter, we find the total cost of

τproof (n, λ) = λ(n + 1)TE + (λ + 1)TI + 2(n + 1)TC + TH .

After this step, the party has to publish the computed curve and the main proof
and send the individual proof pieces to each other player. We can easily check
that the proof pieces are 2λ bits each and that the main proof consists of 2(n+1)
commitments, each for 2λ bits and of the response, for λ(t + 1)CN .
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We note that both the computational and communication cost change when
we use the twist trick. Remember that in this case, the challenge space increases
from size 2 to 3, resulting in the number of repetitions being reduced to λ′ :=
�λ/ log2 3�. In this case, the proof simply cost becomes τproof (n, λ′). Regarding
communication, we point out that the size of the proof pieces, determined by
the security parameter λ, does not change when using the twist trick. To avoid
confusion, we simply denote the cost of a commitment, or of a proof piece as
CC = 2λ, which is fixed. We can then express the total communication cost in
the proof step as

γproof (n, t, λ) = CE + (3n + 2)CC + λ(t + 1)CN .

Verification Step. For simplicity, we look at the upper bound |Q| = n. The
verification step is reduced to the evaluation of Algorithm 2 by n − 1 parties,
in parallel, once for i = 0 and once for i �= 0. Note that the hash computation
remains the same in both cases, and so only has to be computed once. By
counting the different steps, we find the total of

τverif (λ) = λ(TE + TI) + 4TC + TH .

If all the checks succeed, parties do not have to communicate anything in this
step. In the converse case, per failed verification, parties have to broadcast one
polynomial and verify at most n by evaluating them. This happens at most t
times. We will ignore these costs in the interest of more realistic estimates.

Basic DKG Protocol. We can finally compute the full cost of the protocol
in Fig. 1. This protocol simply consists of a VSS, and n consecutive proof and
verification steps in the round-robin. We note that in the first round, we can use
the twist trick. We find

τDKG(n, λ) = τvss(n) + τproof (n, λ′) + τverif (λ′)
+ (n − 1)(τproof (n, λ) + τverif (λ)) .

and γDKG(n, t, λ) = γvss(n, t)+γproof (n, t, λ′)+(n−1)γproof (n, t, λ) . By looking
at the individual terms, we find the results summarized in Tables 2 and 3.

Extended DKG Protocol. In the case of extended (non-structured) public
keys discussed at the end of Sect. 3.2, the VSS step has to be repeated k times
and the cost of a round-robin step naively increases by a factor k. This cost can
be greatly improved by staggering the proofs and verifications, as was proposed
in [17] and analyzed in more detail in [2]. Roughly, the idea is to compute the
first proof and then publish it, so that other parties can verify it during the
creation of the second proof and so on. As a result, the sequential cost of a
round-robin step is reduced to the cost of k consecutive proofs plus one extra
verification. But we can even do better, using the idea from [2, Sec. 6]: Since all
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the different round-robins are independent computations, we can permute the
players for each of them, and run multiple round-robins in parallel. This means,
that while P1 computes the k first curves for one secret and creates the PVP,
P2 does the same but for a different secret etc. Then, all of the verifications are
performed, before moving onto the second step of all of the round-robins. In that
way, we minimize idle time.

For n players with k secrets, the lowest attainable sequential runtime in this
way is composed of

⌈
k
n

⌉
proof steps and k − ⌊

k
n

⌋
sequential verification steps,

per round-robin step. Including the twist trick, we find the total cost

τext.
DKG(n, k, λ) = kτvss(n) +

( ⌈
k
n

⌉
τproof (n, λ′) +

(
k − ⌊

k
n

⌋ )
τverif (λ′)

)

+ (n − 1)
( ⌈

k
n

⌉
τproof (n, λ) +

(
k − ⌊

k
n

⌋ )
τverif (λ)

)
. (3)

The communication costs are not changed by changing the order, so that we
simply find γext.

DKG(n, k, t, λ) = kγDKG(n, t, λ) . The individual terms are again
summarized in Tables 2 and 3.

Structured DKG Protocol. If we use the DKG for structured public keys
(given in Fig. 2), the VSS does not have to be repeated k times as we only have
a single secret. Furthermore, in the public key computation step, proofs and
verifications are done with SPVPs, which are introduced in Algorithms 3 and 4.
Some scrutiny reveals

τSPV P
proof (n, k, λ) = λ(n + 1)TE + k(λ + 1)TI + 2(n + 1)TC + TH ,

τSPV P
verif (k, λ) = λTE + kλTI + 4TC + TH .

Note that τSPV P
proof also includes the computation of the curves in the round-robin

step. In comparison to the cost of the standard PVPs established earlier, only
the isogeny computations increase by a factor k, while the other terms remain
unchanged. Regarding communication cost, we can easily see that an SPVP has
the same size as a PVP, independent of k. The difference to the basic case is
that we publish k curves instead of one, resulting in the cost per proof step of
γSPV P

proof (n, k, t, λ) = kCE + (3n + 2)CC + λ(t + 1)CN . We end up with the total

γSPK
DKG(n, k, t, λ) = γvss(n, t) + γSPV P

proof (n, t, λ′) + (n − 1)γSPV P
proof (n, t, λ) .

In the protocol from Fig. 2, we can use a similar approach as for the extended
DKG protocol, in the sense that we can run multiple round-robins in parallel. A
difference here, is that each player does not run k individual PVPs, but instead
batches them into SPVPs. This allows to run an initial round of n SPVPs in
parallel, each with

⌊
k
n

⌋
elements, and a second round with k mod n PVPs in

parallel. The first round has n − 1 subsequent verifications to be performed and
the second k mod n more, again all in parallel by the individual players. The
cost per round-robin step can therefore be expressed as

R(n, k, λ) = τSPV P
proof (n,

⌊
k
n

⌋
, λ) + (n − 1)τSPV P

verif (
⌊

k
n

⌋
, λ)

+ χn,k(τproof (n, λ) + (k mod n)τverif (λ)) ,
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where we define χn,k =
⌈

k
n

⌉ − ⌊
k
n

⌋
, i.e. χn,k = 0, if n | k, and 1 otherwise. These

steps are repeated n times, where at the first step we can use the twist trick.
Together with the VSS, we find the total cost of

τstr.
DKG(n, k, λ) = τvss(n) + R(n, k, λ′) + (n − 1)R(n, k, λ) . (4)

Again, the individual terms are summarized in Tables 2 and 3.

Comparison of Extended and Structured Case. Finally, we establish some
of the background related to Figs. 4 and 3.

Communication. Using the fact that N ≈ √
p [29] and choosing the security

parameter λ ≈ 4
√

p (reflecting the classical security, see [2,10]), we can easily
identify 2λ ≈ CC ≈ CN ≈ 1

2CE . By plugging this into the terms in Table 3
and dropping some of the constant terms, we can see, that the communication
cost of the extended DKG asymptotically scales with 2nkλ(5n + λt), while the
structured case scales with 2nλ(5n + λt + 2k). For n → ∞, the latter is k times
smaller, while for k → ∞, the latter is λt/2 times smaller, both considerable
gains. We depict these trends in Fig. 4. The asymptotic quadratic trend in n and
linear trend in k of our schemes are clearly visible in the figure. One can also see,
that the expected asymptotic gain of k = 26 for the structured case with respect
to the extended case is well-represented on the left graph, while the right graph
shows the expected asymptotic gain of λn/6 ≈ 64.

Computation. The results in Table 2 show that using structured public keys
removes the dependency on k in all cases but isogeny computations. It is clear
that the number of calls to commitment schemes or random oracles becomes the
same around k ≈ n. For the number of polynomial evaluations, this behavior
becomes a bit more complex, and the structured case always outperforms the
extended case for some k ≤ n. This is due to the fact that the VSS in the
extended case scales with k, while it is independent of k in the structured case.

We note that in general, isogeny computation costs will strongly dominate the
full protocol cost. We restate the full isogeny costs of both protocols here, in the
most general case, using the twist trick. For the latter, we define λ′ = �λ/ log2 3�.
By looking at the isogeny cost terms of Eqs. (3) and (4), we find, after some
arithmetic, that they are both equal to

I(n, k, λ) = (λ′ + (n − 1)λ)
(
k + χn,k

)
+ n

⌈
k
n

⌉
.

We compare this with the results from [2] in Fig. 3. Below, we also summarize
the gains we get by using the twist trick for low n.

n 2 3 4 5 6 8 10 20 50

Gain 18.3% 12.2% 9.2% 7.3% 6.1% 4.6% 3.6% 1.8% 0.7%
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34. Vélu, J.: Isogénies entre courbes elliptiques. CR Acad. Sci. Paris, Séries A, 273,
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Abstract. Generating supersingular elliptic curves of unknown endo-
morphism ring has been a problem vexing isogeny-based cryptographers
for several years. A recent development has proposed a trusted setup
protocol to generate such a curve, where each participant generates and
proves knowledge of an isogeny. Thus, the construction of efficient proofs
of knowledge of isogeny has developed new interest.

Historically, the isogeny community has assumed that obtaining
isogeny proofs of knowledge from generic proof systems, such as
zkSNARKs, was not a practical approach. We contribute the first con-
crete result in this area by applying Aurora (EUROCRYPT’19), Ligero
(CCS’17) and Limbo (CCS’21) to an isogeny path relation, and com-
paring their performance to a state-of-the-art, tailor-made protocol for
the same relation. In doing so, we show that modern generic proof sys-
tems are competitive when applied to isogeny assumptions, and pro-
vide an order of magnitude (3-10×) improvement to proof and verifica-
tion times, with similar proof sizes. In addition, these proofs provide a
stronger notion of soundness, and statistical zero-knowledge; a property
that has only recently been achieved in isogeny PoKs. Independently,
this technique shows promise as a component in the design of future
isogeny-based or other post-quantum protocols.

Keywords: Isogeny · Zero-knowledge · zkSNARK · Interactive Oracle
Proof · MPC-in-the-Head

1 Introduction

Isogeny-based cryptography was first introduced with the CGL hash function [24]
by Charles, Goren and Lauter, where the core hardness assumption is that, given
two isogenous elliptic curves, it is hard to recover an isogeny between them. Sev-
eral other isogeny-based protocols were proposed, including SIDH [48], which
relaxes the assumption by giving additional torsion point information; CSIDH
based on group actions [23,54]; SQI-Sign, a signature scheme based on endomor-
phism rings [31]; and pSIDH, a relative of SIDH which uses a different isogeny
representation [51]. Even though there was a recent cryptanalysis breakthrough
on SIDH [22,52,56], other cryptosystems (not based on SIDH) remain unaffected,
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such as [23,31,51]. Additionally, a variety of advanced schemes and protocols
based on isogenies, such as oblivious transfer and exotic signatures, have been
proposed in the literature [13–15,21,50].

In every isogeny-based cryptosystem, isogeny walks start from a public curve.
In the literature, the candidate is usually one of the j-invariants 0 or 1728 with a
known endomorphism ring. In isogeny-based constructions, sampling an elliptic
curve without knowing its endomorphism ring [18,53], is currently a compu-
tationally infeasible task, and is essential in some constructions and applica-
tions [1,21,24,50,58]. From a cryptanalytical perspective, having a public curve
with an unknown endomorphism ring significantly reduces the information an
attacker/analyst may have. A recent proposal [6] suggests a trusted setup cere-
mony to resolve this problem. In the ceremony, every party computes an isogeny
path from the previous curve to another, produces a proof that the isogeny was
generated honestly, and disposes of the path. They then publish their new curve
and associated proof publicly, which all parties verify. Once every participant
has completed their round, the ceremony outputs the final curve. As long as at
least one party behaves honestly, recovering the final curve’s endomorphism ring
is difficult, even if the rest of the participants collude.

However, generating a zero-knowledge proof of an isogeny path is not a trivial
task in general. In the realm of group actions, it is not difficult to achieve and
the proofs for more sophisticated relations can be made [4,13–15]. However, out
of realm of the group actions, the task has been known to be difficult to achieve
either soundness (for the exact relation) or (statistical) zero-knowledge, with
some protocols requiring ad-hoc security assumptions. The state-of-the-art line
of work is given in [6,27,30,42], yet there is still room for improvement. Suppose
300 participants run the ceremony single-threaded on a normal machine, the
protocol will take roughly an hour to complete for λ = 128, and 13 h for λ = 256.

Historically, it was assumed that tailor-made proof systems for isogeny rela-
tions performed better than generic ones. However, the developments of generic
proof systems, such as zkSNARKs1, which allow a prover to prove or argue the
knowledge of any NP relation, have advanced the field significantly in recent
years. zkSNARKs enable a prover to produce a publicly-verifiable proof in a
zero-knowledge and non-interactive manner. Moreover, the proof size is succinct,
sublinear in the size of the witness, and the verification time is much shorter
than producing the proof. The area of zero-knowledge proof systems has been
very active [3,10,17,19,33,47,49] (see [45,59] for surveys). These generic proof
systems work well with symmetric primitives and have applications in post-
quantum cryptosystems [7,32,36,37,41,63], and privacy-preserving blockchain
protocols such as [9].

Applying generic proof systems to isogeny-based cryptography remains
uncommon. Though there exists a verifiable delay function from isogenies using
a SNARG2 [25], it is not in zero-knowledge, and the result remains theoreti-
cal in nature, with unclear practicality. In particular, due to the complexity of

1 Zero-knowledge, succinct, non-interactive, arguments of knowledge.
2 Succinct, non-interactive argument.
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computing isogenies, size and the structure of the operating field, using generic
proof systems in isogeny-based cryptography appears challenging and impracti-
cal. Generic proof systems have been applied to protocols utilising fields of bit
length at most 256-bits, whereas many isogeny-based protocols utilise field exten-
sions of a field of upwards of 512-bits. Due to these factors, it was previously
assumed these proof systems did not scale well with isogeny-based protocols.
In the isogeny community, the plausibility of the following question was largely
disputed:

Can generic proof systems serve as a practical tool in isogeny-based
cryptography?

1.1 Contribution

We affirm the question above. That is, generic proof systems are remarkably
efficient for isogeny-based cryptography. Specifically, our contributions are:

– We propose a non-interactive protocol to prove knowledge of an isogeny path
using a generic zkSNARK proof system for R1CS (rank-1 constraint systems).
We achieve this by re-writing the isogeny path relation into a compact R1CS
representation and then applying existing (plausibly) post-quantum proof sys-
tems [3,10,33]. The PoK inherits the properties of soundness and statistical
zero-knowledge from the underlying proof systems, and supports supersingu-
lar isogeny graphs operating over any cryptographically sized prime of the
form p = 2af ′ ± 1 for every f ′ ∈ N with isogeny paths of arbitrary length.

– We provide an alternative set of parameters of the form p = 2a3bf + 1 with
equivalent security to those from SIKE to aid in our testing. These parame-
ters are designed to better support the requirements of the underlying proof
systems.

– Our protocol is implemented as a proof of concept, and we report benchmark
results for a variety of parameters. Using our R1CS instances from above,
the generic proof systems yield competitive results as isogeny identification
schemes. In particular, by utilising Aurora [10] our proof systems are roughly
3–10 times faster than the state-of-the-art [6] of the same walk length, while
maintaining a similar proof size.

1.2 Related Work

The motivation behind this work is to construct an efficient isogeny proof of
knowledge. One such application of which is a multi-party setup protocol to
generate a supersingular curve of unknown endomorphism ring, introduced in [6].
We give a brief history of prior works on proving isogeny knowledge, which differs
from our approach.
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Prior to this work, isogeny proofs of knowledge have existed in different forms,
notably [27,29]. These are Σ-protocols, tailored to the specific nature of isogeny
computation, and follow a direction to the original DJP identification protocol.
These protocols can be viewed as revealing different edges on the SIDH square
(Fig. 1) in order to prove knowledge of the isogeny φ : E0 → E1 of degree �eA

A .
To generate the square, the prover computes an isogeny ψ : E0 → E2 of degree
�eB

B . The prover then determines the isogenies φ′ and ψ′ by their kernels, such
that kerφ′ = ψ(kerφ) and kerψ′ = φ(kerψ).

Fig. 1. The SIDH square

In the original De Feo-Jao-Plût identification protocol, in each iteration of
the Σ-protocol, the prover generates a new SIDH square in the manner described
above (with a fresh choice of ψ). The prover reveals the curves E2, E3. The verifier
then sends a binary challenge b. If b = 0, the prover sends the vertical isogenies
to the verifier, who checks if they are indeed isogenies of correct degree, domain,
and codomain. Likewise, if b = 1, the prover sends the horizontal isogeny φ′, and
the prover verifies the isogeny is of correct degree and domain/codomain.

However, this protocol suffered from various issues. Aside from an ad-hoc
security assumption, it did not achieve statistical zero-knowledge (since the side
φ′ is strongly correlated to the side φ), and possessed issues with its proof of
soundness (see [27,43]). The former work increases the challenge space to 3,
and proposed a solution to soundness by including a commitment to �eB

B -torsion
bases of E2 and E3, such that the latter is the image of the former under φ′.

The latest work, Secuer PoK [6], resolves the problem of statistical zero-
knowledge (and forgoing the need for additional assumptions) by extending the
degree of φ and ψ by composing isogenies and gluing SIDH squares together such
that the walk ψ causes uniform mixing in a particular lift of the supersingular
isogeny graph3, causing the distribution of (E1, φ

′) to be statistically close to
uniform. In addition, also they extend the path length of the φ to guarantee the
image curve of the isogeny is uniform. This means that in their setup protocol,
provided a participant is honest, the output j-invariant is uniformly at random
in the set of supersingular elliptic curves.

However, there are still some problems with these approaches. The increased
challenge space of [6,27] yields a knowledge error of 2

3 per round, which increases
the number of repetitions required to achieve a sufficient soundness level. Fur-
thermore, secuer PoK relies on a relaxed assumption to soundness, namely that

3 The supersingular isogeny graph with level d Borel structure, where d = | kerφ|.
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the extractor may not obtain the original isogeny φ, but an isogeny φ′ = [�2i
B ]◦φ

for some i ≤ eB .
We forgo these approaches (and their soundness issues) by viewing the

isogeny, φ, as a walk on the supersingular �A-isogeny graph and then proving
the knowledge of the walk with a generic proof system. Provided the prover can
efficiently compute the intermediate j-invariants on the walk, which is done in
practice using Vélu’s formulae, this provides the same functionality as the proof
systems above.

2 Preliminaries

2.1 Notations

A function f : N → R
+ is negligible if for every polynomial p there is an N such

that for all n > N it holds that f(n) < 1
p(n) . Given a relation R, we say that

L(R) is the set of all elements x such that there exists a w where (x,w) ∈ R.

2.2 Isogeny Graphs

This section recalls a few essential properties of supersingular elliptic curves
relevant for our work. We refer to [57,61] for a more extensive exposition.

Elliptic Curves. An elliptic curve is a projective non-singular curve of genus
one, with a marked point. If the coefficients of a curve are defined over a field
K, we say the curve is defined over K. The K-rational points, E(K), form a
group under an additive operator. Elliptic curves over a field K may be uniquely
identified (up to isomorphism) by a single field element in K, called the j-
invariant. The j-invariant is efficiently computable given a curve’s coefficients.

Isogenies. An isogeny is a surjective morphism of elliptic curves preserving
both geometric structure (as a rational map) and group structure (as a group
homomorphism). The degree of a separable isogeny is the size of its kernel as a
group homomorphism. We say an isogeny is an �-isogeny if it has degree �, and
that two elliptic curves are �-isogenous if there exists an �-isogeny between them.
We shall assume all isogenies discussed in this work are separable (but need not
necessarily be cyclic).

Supersingular �-Isogeny Graph. We denote the supersingular �-isogeny
graph over Fp2 as G�(p), whose vertices are the supersingular elliptic curves
over the field (up to isomorphism), with an edge between two vertices if they
are �-isogenous4. It is a well known fact that for � �= p, apart from the vertices
j = 0, 1728; G�(p) is a Ramanujan graph [55], an optimal expander graph.

4 We view the edges as undirected by identifying each isogeny with its dual, and
identify edges which are equivalent up to post-composition with an isomorphism.
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Modular Polynomial. The modular polynomial Φ�(X,Y ), is a symmetric
polynomial of degree � + 1 whose roots over Fp2 correspond to every pair of
�-isogenous j-invariants of elliptic curves over Fp2 . This allows us to efficiently
determine if two elliptic curves are �-isogenous over a given field. For � = 2, we
have the modular polynomial

Φ2(X,Y ) = X3 + Y 3 − 162000(X2 + Y 2) + 1488XY (X + Y ) − X2Y 2

+ 8748000000(X + Y ) + 40773375XY − 157464000000000. (2)

So, two j-invariants j1, j2 are adjacent in G�(p) if and only if Φ�(j1, j2) = 0
mod p.

2.3 Proof Systems

Zero-Knowledge Succinct Non-interactive Arguments of Knowledge.
In the (explicitly programmable) random oracle model, a zero-knowledge non-
interactive succinct argument5 of knowledge (zkSNARK) for a relation R =
{(x,w)} is a tuple (P, V ) where P, V are probabilistic polynomial time (PPT)
algorithms with access to a random oracle ρ which satisfy the following proper-
ties:

– Completeness: For every (x,w) ∈ R, λ ∈ N,

Pr[V ρ(x, π) = 1 | π ← P ρ(x,w)] = 1

– Soundness: Given negligible soundness s, for every PPT P̃ , x /∈ L(R), and
λ ∈ N:

Pr[V ρ(x, π) = 1 | π ← P̃ ρ(x)] ≤ s(x, λ).

– Proof of Knowledge: Given negligible knowledge error κ, there exists a
PPT extractor E such that, for every x, PPT P̃ , λ ∈ N,

Pr[(x,w) ∈ R | w ← EP̃ (x, 1λ)] − Pr[V ρ(x, π) = 1 | π ← P̃ ρ] ≤ κ(x, λ).

Where the extractor E may program the responses to random oracle queries
of P̃ , and either get a response of the next query or output π, at which point P̃
goes to the start of its computation with the same randomness and auxiliary
input.

– Zero Knowledge: A non-interactive protocol (P, V ) is statistical zero-
knowledge (with negligible function z) in the explicitly programmable random
oracle model (EPRO)6, if there exists a PPT simulator S, such that for every
(x,w) ∈ R and unbounded distinguisher D:

Pr[Dρ[μ](π) = 1 | (π, μ) ← Sρ(x)] − Pr[Dρ(π) = 1 | π ← P ρ(x,w)] ≤ z(x, λ),
5 Typically, a non-interactive random-oracle proof system is a proof (NIZKPoK) only

if the definition of soundness holds given a computationally unbounded prover, and
is otherwise called an argument. We may use the terms interchangeably to refer to
both.

6 We include the definition of zero-knowledge in the EPRO model, which is required
in the application of the BCS transform—the Fiat-Shamir analogue for IOPs.
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where the EPRO, ρ[μ], outputs μ(x) if x is in the domain of μ, otherwise
it outputs ρ(x). The distributions are taken over the uniformly at random
instantiation of ρ and the randomness of P, V .

– Succinctness: A proof system (P, V ) for a relation R is succinct, if, for any
(x,w) ∈ R and corresponding proof π ← P ρ(x,w), π grows polylogarithmi-
cally in w. In particular, |π| = poly(λ, |x|, log(|w|)).

Interactive Oracle Proofs. An interactive oracle protocol between two PPT
algorithms A and B over k rounds is a protocol where at the ith round, A sends
an i-th message mi to B, who responds with a random access oracle fi which
may be queried in consequent rounds. After k rounds, A either accepts or rejects
(see [11] for details).

An Interactive Oracle Proof (P, V ) for a relation R with round complexity
k and soundess s satifies the following properties:

– Completeness: For every (x,w) ∈ R, (P (x,w), V (x)) is a k(x)-round inter-
active protocol with accepting probability 1.

– Soundness: For every x /∈ L(R) and every P̃ , (P̃ , V (x)), is a k(x)-round
interactive oracle protocol with accepting probability at most s(x).

Interactive Oracle Proofs (IOPs), introduced by Ben-Sasson et al [11], are a
generalisation of both Interactive Proofs (IPs) and Probabilistically Checkable
Proofs (PCPs). One may note that IOPs directly generalise PCPs to multiple
rounds. The motivation behind the construction of IOPs is that of efficiency, by
minimising redundancy that might be present in a traditional 1 round PCP con-
struction. Analogously to IPs and PCPs, an IOP may also satisfy the properties
of zero-knowledge, proof of knowledge, and succinctness, as well as a trans-
formation which performs similarly to the Fiat-Shamir transform [38]. Thus,
zkSNARKs can be obtained from IOPs. Intuitively, succinct proofs are achiev-
able when the prover sends random access oracles (instantiated via Merkle trees
with a CRH function), rather than full length messages.

Theorem 1 (BCS Transform). There exists a transform T that inputs an
IOP (P, V ) and outputs a non-interactive argument of knowledge (P ∗, V ∗) that
preserves proof of knowledge and succinctness. Moreover, when the underlying
IOP is statistically zero-knowledge, the resulting protocol is statistically zero-
knowledge under the EPRO model.7

Proof. See [11, Sec. 6]

In this work, we consider IOPs that satisfy all of these properties and are
also transparent. That is, secure in the absence of the common reference string
(CRS) model, in which protocols require trusted setup.

7 In particular, the extractor in the transformation T is straight-line, and does not
apply the forking lemma.



Efficient Isogeny Proofs Using Generic Techniques 255

2.4 Rank-1 Constraint Systems

We recall the definition of rank-1 constraint systems (R1CS), which some
zkSNARKs (e.g., Aurora) take as an input. R1CS is parameterized by n,m ∈ N

and a prime power q, and consists of instance-witness pairs ((A,B,C, v), w)
where A,B,C ∈ F

m×(n+1)
q and v,w are vectors over Fq such that

Az ◦ Bz = Cz

for z := (1, v, w) ∈ F
n+1
q , where ◦ denotes coordinate-wise (Hadamard) product.

Conceptually, A,B,C encode constraints on variables v, w; where v contains
(public) auxiliary input, and w contains both secret input and intermediate
variables in a computation. R1CS may encode arithmetic circuit satisfiability. In
Sect. 3.4, we encode level � modular polynomials into an R1CS instance, along
with some optimisations, to prove knowledge of an isogeny path.

2.5 MPC-in-the-Head

The MPC-in-the-Head (MPCitH) paradigm was introduced in the seminal work
of Ishai et al. [46] Suppose the prover wishes to convince a verifier of an NP
relation R in zero-knowledge, where x is the instance and w is the witness. The
prover simulates an MPC protocol with n parties locally (in its head) and com-
mits to the transcript. The verifier asks the prover to decommit a subset of the
transcript and check whether the messages are consistent and that the recon-
structed output is 1, meaning that the relation R holds. If there are no failures
during the verification, the verifier accepts the proof. Intuitively, completeness
holds trivially, (statistical) zero-knowledge holds if the decommitted transcript
is not enough to reveal the full transcript (e.g., revealing n−1 transcripts reveals
nothing about the full transcript when using additive secret sharing). Regarding
soundness, the prover may cheat if the faulty transcript is not challenged by the
verifier. Nevertheless, it is possible to boost the soundness by repeating the pro-
tocol many times. Using the Fiat-Shamir transform [38] it is possible to convert
an interactive protocol to a non-interactive one.

Limbo. Limbo [33] is the state-of-the-art non-interactive zero-knowledge proof
of knowledge for arithmetic circuit satisfiability protocol based on the MPCitH
paradigm. Despite not satisfying the asymptotic definition of succinctness, Limbo
has proven to have good concrete efficiency for small to medium sized circuits
(i.e. circuits with less than 500000 multiplication gates). Thus we include it in
our consideration. For the detailed description, we refer the reader to the paper.

2.6 Reed-Solomon IOPs

The other line of protocols [3,10,17] we consider in this work is called Reed-
Solomon IOPs. In contrast to the MPCitH-based approach above, these protocol
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achieve better asymptotic performance, with proof sizes scaling either sublinearly
or polylogarithmically in witness length (i.e. succinct).

At a high level, in RS-IOPs, the witness w corresponds to the input plus
all the intermediate variables in the computation. The prover transforms the
witness w into various vectors, depending on the proof system, which are then
encoded with a RS code. The verifier engages in various sub-protocols with the
prover to check conditions on the RS encoded values to convince itself that the
encoded values form valid RS codewords and satisfies the constraints given in
the relation.

Reed-Solomon Codes. Given an ordered subset L = {�1, ..., �k} of a field Fq

and α ∈ (0, 1], we denote RS[L,α] ⊆ F
k
q to be the set of evaluations over L

of all polynomials of degree less than αk. That is, a codeword c is in RS[L,α]
if and only if there exists a polynomial p of degree less than αk such that the
c = (p(�1), ..., p(�k)).

Aurora. Aurora is a transparent zkSNARK for the R1CS relation secure in the
EPRO. At a high level, Aurora’s underlying IOP reduces to proving the following
two subproblems:

– Rowcheck: Given vectors a, b, c ∈ F
m
q , test whether a ◦ b = c

– Lincheck: Given vectors x ∈ F
m
q , y ∈ F

n+1
q , and matrix M ∈ F

m×(n+1)
q ; test

whether x = My.

Given IOPs for these problems, one may construct an IOP for R1CS. Given
an R1CS instance ((q, n,m,A,B,C, v), w), the prover sends four oracles to the
verifier: the satisfying assignment for z, yA := Az, yB := Bz, and yC := Cz.
The prover then engages in parallel execution of the following:

– An IOP for Rowcheck to verify that yA ◦ yB = yz.
– An IOP for Lincheck to verify that yA = Az, yB = Bz, and yC = Cz.

Finally, the verifier checks that z is consistent with the auxiliary input v.
However, such a protocol would be neither succinct, nor zero-knowledge.

In order for the protocol to achieve sublinear communication complexity, the
subprotocols for Lincheck and Rowcheck both utilise Reed-Solomon encoded
variants. In this case, foregoing zero-knowledge, the subroutines for Lincheck
and Rowcheck encode the vectors yA, yB , yC as the coefficients of a unique
polynomial that matches them over some H1 ⊂ Fq where |H1| = m, and likewise
for z, as the coefficients of a polynomial that matches z over some H2 ⊆ Fq

where |H2| = n+ 1. In addition, some extra work is done to check the degree of
the polynomials is consistent with the input via a low-degree test. Aurora utilises
the FRI protocol [8] to achieve this efficiently.

Zero knowledge is achieved by encoding a vectors Az,Bz,Cz not as unique
polynomial of degree |H1|−1 matching the entries of Az,Bz,Cz on H1, but as a
random polynomial of degree |H1|+m conditioned on matching Az,Bz,Cz on H1
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(the same process applies to z with domain H2). The polynomial is represented
as evaluations over a domain L disjoint from H1 and H2 such that m queries
cannot leak any information about v. In order to guarantee these subsets are
disjoint, over a prime field, the subsets H1,H2 are chosen to be multiplicative
subgroups of the field (of order a power of two such that H1 ⊆ H2 or H2 ⊆ H1),
and the evaluation domain L is a multiplicative coset of a subgroup of H1 ∪ H2.

Ligero. Ligero [3] is another generic proof system based on an RS-IOP for
boolean or arithmetic circuit satisfiability (technically, an IPCP, as it only com-
prises of a single round). Ligero satisfies all of the properties of a zkSNARK
except for succinctness. Rather, it is sublinear, with proof length scaling in square
root of the circuit size. Given an arithmetic circuit C of N gates, a Ligero prover
represents the satisfying assignment of the s (≈ N) wires of C into a slightly
redundant matrix representation of size O(

√
s) × O(

√
s), and encodes each row

of this matrix using an (interleaved) RS code. The verifier challenges the prover
to reveal linear combinations of the entries of the codeword matrix, which is
checked against λ randomly selected columns of the matrix which are conse-
quently revealed by the prover.

Aside from the underlying proof relation, the key distinction between Aurora
and Ligero is informed by two design decisions: Ligero encodes its oracles with
O(

√
N) RS codewords of length O(

√
N), rather than by a single RS codeword of

length O(N). In addition, it uses a direct (single-round) low-degree test rather
than the FRI IOP.

Remark 1. Due to the closed-source implementation of Ligero, we apply our
testing with a modified variant, R1CS-Ligero [10, App. B] which supports R1CS.

3 Construction

3.1 Hardness Assumptions and Relations

Recent attacks have rendered the SIDH assumption broken [22,52,56]. The key
insight is that these attacks require the image of the torsion points P1, Q1, how-
ever, the following, more general isogeny path-finding problem below, historically
used to cryptanalyse SIDH, remains unaffected.

Problem 1 ( IsoPath). Given supersingular elliptic curves E0, E1 defined over
Fp2 , find an isogeny φ : E0 → E1 such that deg φ = �k for a fixed prime � and
some k ∈ Z.

We define the following relation based on the hardness of IsoPath:

R�k-IsoPath = {((E0, E1), φ) : φ : E0 → E1 is an isogeny, deg φ = �k, k ∈ Z}
The isogeny witness φ is typically represented by fixing a basis of the �k-torsion
group, and giving a kernel generator, a point on E0 of order �k. Instead, we
choose to represent our witness isogeny φ in the relation above by using the
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modular polynomial. Recall, two elliptic curves E,E′ are �-isogenous if and only
if Φ�(j(E), j(E′)) = 0. Then an isogeny φ : E0 → E1 of degree �k can equivalently
be represented as a sequence of intermediate j-invariants j1, j2, ..., jk−1 such that

Φ�(j(E0), j1) = 0
Φ�(ji, ji+1) = 0 for all i ∈ {1, ..., k − 2}

Φ�(jk−1, j(E1)) = 0

Hence, more precisely, the relation we prove is as follows:

R�k-ModPoly =
{(

(E0, E1), (ji)i∈{1,...,k−1}
)

:
Φ�(j(E0), j1) = 0, Φ�(jk−1, j(E1)) = 0
Φ�(ji, ji+1) = 0 ∀i ∈ {1, ..., k − 2}

}

When generating isogeny path instances, we want the length k to be small
enough to be efficient, but large enough to prevent meet-in-the-middle and colli-
sion search claw-finding type attacks [2,39,60], whose classical and quantum
heuristic run times are Õ(�k/2) and Õ(�k/3) respectively. One might there-
fore take k ≈ 2λ as reasonable security trade-off. We note that the relation
R�k-ModPoly does not impose any restrictions on the underlying finite field.
Hence, our method can apply to the CSIDH setting where ji are defined over
the prime field as long as the proof system supports the form of the prime.
Our method can complement the efficient proof systems [15,28] which have no
restrictions on the degree of the witness.

Remark 2. Note that in this case, the isogeny may not necessarily be cyclic. In
fact, the isogeny walk taken could indeed contain backtracking. In the applica-
tions we discuss in this work, this is not a problem, since an honest prover would
honestly generate a non-backtracking isogeny of degree k, which would hence be
cyclic. If one wishes to guarantee non-backtracking walks, this problem can be
resolved by adding the requirement that ji−1 �= ji+1 for all i in {1, ..., k − 1}.
We explain how to prove this with a cheap overhead in Appendix A.

3.2 High-Level Overview

The reader might wonder, what in particular does our isogeny representation
achieve? What makes this relation so amenable to generic proof systems is its
low-depth, highly regular decision circuit. That is, an arithmetic circuit C where
C(x,w) = 1 if and only if (x,w) ∈ R�k-ModPoly. In this case, C may simply be
a sequence of parallel evaluations of the modular polynomial on each pair of
adjacent j-invariants. This allows us encode the relation in a highly compact
(but equivalent) intermediate representation, to be fed into the proof system.

The general roadmap to utilising the generic proof systems is as follows:

1. Encode the relation R�k-ModPoly and pair (x,w) into an equivalent R1CS,
denoted by R′

�k-ModPoly and (x′, w′) respectively.
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2. Use a generic zkSNARK for R1CS (resp. arithmetic circuits) to argue the
knowledge of a witness w′ such that (x′, w′) ∈ R′

�k-ModPoly.
3. The prover’s knowledge of w′ will imply the knowledge of w such that (x,w) ∈

R�k-ModPoly.

Since we have to perform field arithmetic over a quadratic extension field we
can either work over the base field (where each Fp2 -multiplication will dictate a
series of underlying Fp multiplications), or adapt the proof system implementa-
tion to be suitable for quadratic extensions. The security of the proof systems
in question are independent of field choice, but the efficiency of Reed-Solomon
based protocols is subject to a requirement. Namely, being capable of perform-
ing efficient FFT and IFFT operations. Broadly speaking, working over a field
K, we require that K× contains a subgroup of order 2m for an integer m such
that c ≤ 2m, where c = max{m,n} for n variables and m constraints in a given
R1CS. When working with isogenies, we typically choose primes of the form
p1 = 2a3bf −1, or p2 = 2a3bf +1. It is clear that Fp2 would satisfy the condition
above, provided m ≤ a, but Fp1 would not, since |F×

p1
| = p1 − 1 = 2(2a3bf − 1).

The first solution is to simply instantiate the proof system only over the base field
with p2 primes, however this admits several problems. Firstly, Fp12 operations are
slightly more efficient. Since −1 is a non quadratic residue, Fp12 ∼= F(i) which
allows for more efficient multiplication, inversion and squarings. Secondly, we
want our protocol to be compatible with common choices of parameters, which
typically use p1 primes for efficiency reasons. Thus, we instantiate the proof sys-
tem over the extension field, whose multiplicative order is p2−1 = (p−1)(p+1).
This satisfies either choice of prime.

3.3 From Isogeny Relation to R1CS Instance

In order to apply our proof systems, we transform the modular polynomial rela-
tion into an R1CS with n variables and m constraints. Concretely, we consider
an R1CS consisting of the statement A,B,C ∈ F

m×(n+1)
p2 and a witness z ∈ F

n+1
p2

such that
Az ◦ Bz = Cz.

In this formulation, A,B,C are public matrices which correspond to an instantia-
tion of the language dependent on p, �, k. The vector z consists of 1, the auxiliary
input: j-invariants of the starting and ending curve, and the secret input: the j-
invariant sequence (as well as intermediate variables dependent on the inputs).
Each row of A,B,C will encode a linear constraint on the variables. One of
these rows must encode the modular polynomial of level �, Φ�(ji, ji+1) = 0,
which shows that two adjacent j-invariants are isogenous. For representation
compactness, we arrange the modular polynomial in the following form:

− 1488XY (X + Y − 1488−1XY ) = X3 + Y 3 − 162000(X2 + Y 2)+
8748000000(X + Y ) + 40773375XY − 157464000000000 (3)
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3.4 Optimization for R1CS over Fp2

We then encode matrices A,B,C such that a row evaluates the equation above
and performs intermediate variable consistency checks. Note that we can do far
better than the naive approach, where each row of the matrices correspond to
a single multiplication or addition of variables in z, and the entries of z contain
every intermediate variable obtained. In loose terms, in R1CS, each row can
encode: linear expression × linear expression = linear expression.

Suppose the isogeny path in question is of length k. If k = 1, � = 2 then by
Eq. (2), we obtain:

z = ( 1 j0 j1 j2
0 j2

1 j3
0 j3

1 j0j1 )T

with the matrices:

A =

⎡
⎣

0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 −1

⎤
⎦, B =

⎡
⎣

0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0
0 c4 c4 0 0 0 0 −1

⎤
⎦, C =

⎡
⎣

0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
c0 c1 c1 c2 c2 1 1 c3

⎤
⎦

where

c0 = −157464000000000 c1 = 8748000000 c2 = −162000
c3 = 40773375 c4 = 1488,

where the ci’s are derived from Eq. (3). The first 5 rows provide consistency
checks on each variable, including square, cube, and multiplication. The last row
checks the evaluation of the polynomial Eq. (3). Now we can extend this to a path
of length k > 1, for each j-invariant ji, we will introduce an additional 4 variables
(including input): ji, j2i , j3i , ji−1ji. We note that the squarings and cubings
for each j-invariant need only be checked once. Hence, we obtain n := 4k + 3
variables.

For each j-invariant in the sequence (including j0) there will be 2 constraints
for squaring and cubing consistency checks. For each adjacent pair ji−1, ji, there
will be 2 constraints: one checking consistency of the variable ji−1ji, and one the
evaluation of the modular polynomial. This gives us m := 4k + 2 constraints.

3.5 Optimization for Lifting to Fp × Fp

This subsection presents several techniques to reduce the overhead to lift arith-
metic over a quadratic field to a vector space of the prime field. We consider a
quadratic field Fp2 ∼= Fp[α] where α2 = d for some non-square d ∈ Fp.

The motivation is that, generally, the j-invariant of an elliptic curve is taken
over Fp2 while many proof systems natively support arithmetic over a prime field.
The impact to performance of either choice was unclear. Indeed, arithmetic com-
puations over Fp[α] can be viewed as arithmetic computations over an Fp-vector
space natively. That is, for x1, x2, y1, y2 ∈ Fp to represent x1 + x2α ∈ Fp[α], by
mapping x1 + x2α to (x1, x2) the addition is (x1 + y1, x2 + y2) and the multi-
plication is (x1y1 + x2y2d, x1y2 + x2y1). Naively, this results in 4 (variable) Fp-
multiplications for one (variable) Fp2 -multiplication (i.e. x1x2, y1y2, x1y2, x2y1).
In fact, with a few well-known tricks, this can be done more efficiently:
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Arithmetic. We start with multiplications.

– u1 = x1y1
– u2 = y2y2
– u3 = (x1 + x2)(y1 + y2), then
– x1y1 + x2y2d = u1 + u2d
– (x1y2 + x2y1) = u3 − u1 − u2

Now, there are only 3 (variable) Fp-multiplications. The benefit to this
depends on the proof system to be used. In many proof systems, it is much
more expensive to verifiy a (variable) multiplication relation than a (variable)
linear relation.

Let x + yα ∈ Fp[α], there is a trick for variable squaring:

– u1 = xy
– u2 = (x + y)(x + yd), then
– (x2 + y2i2) = u2 − (d + 1)u1

– 2xy = 2u1

Application to R1CS Matrices. Now we can apply the abovementioned tech-
niques to our R1CS matrices. Recall that in Sect. 3.4, we have a witness
vector z over Fp × F

7
p2 . To lift it into Fp, we firstly naturally embed it into

Fp × F
14
p . We explain how to build a submatrices and introduce intermediate

variables for each constraint as follows. As an abuse of notation, given an ele-
ment x := a + bα ∈ Fp[α], we refer to a as Re(x) and b as Im(x) respectively.

Squaring. For the squaring relation, it is fairly simple. Take the subvector
(1,Re(x), Im(x),Re(x2), Im(x2)) for instance, the corresponding submatrices for
this constraint are respectively

[
0 2 0 0 0
0 1 1 0 0

]
,

[
0 0 1 0 0
0 1 d 0 0

]
,

[
0 0 0 0 1
0 0 0 1 2−1(d + 1)

]
,

which represents 2Re(x)Im(x) = Im(x2) and (Re(x) + Im(x))(Re(x) + dIm(x)) =
Re(x2) + 2−1(d + 1)Im(x2), resp.

Multiplication. For the multiplication relation, we need an additional variable
u over Fp. We take the subvector (1,Re(x), Im(x),Re(y), Im(y), u,Re(xy), Im(xy))
for instance. The corresponding submatrices for this constraint are respectively

⎡
⎣
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
0 1 1 0 0 0 0 0

⎤
⎦ ,

⎡
⎣
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 0 1 1 0 0 0

⎤
⎦ ,

⎡
⎣
0 0 0 0 0 1 0 0
0 0 0 0 0 −d 1 0
0 0 0 0 0 1 − d 1 1

⎤
⎦ ,

which represents Im(x)Im(y) = u, Re(x)Re(y) = Re(xy) − ud, and (Re(x) +
Im(x))(Re(y) + Im(y)) = Im(xy) + Re(x)Re(y) + u, respectively.
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Constraint Eq. (3). We can apply our multiplication technique above to the
constraint Eq. (3). Recall that the final constraint from the modular polynomial
is (−xy)(c4x + c4y − xy) = x3 + y3 + c2(x2 + y2) + c1(x + y) + c3xy + c0.
The insight is every coefficient ci is over Fp so Re(·) has the linear proposition
Re(c4x + c4y − xy) = c4Re(x) + c4Re(y) − Re(xy) and so does the imaginary
part Im(·). Therefore, we can use three constraints for the real part and the
imaginary part of x3 + y3 + c2(x2 + y2) + c1(x + y) + c3xy + c0 in terms of
Re(X), Im(X),Re(Y ), Im(Y ) where X = −xy and Y = c4x + c4y − xy as the
method described above.

Concretely, for a subvector

z′ = (1 Re(x) Im(x) Re(y) Im(y) Re(x2) Im(x2) Re(y2) Im(y2)

Re(x3) Im(x3) Re(y3) Im(y3) Re(xy) Im(xy) u)

the corresponding submatrices for this constraint are respectively
⎡
⎣
0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −1 −1 0

⎤
⎦ ,

⎡
⎣
0 0 c4 0 c4 0 0 0 0 0 0 0 0 0 −1 0
0 c4 0 c4 0 0 0 0 0 0 0 0 0 −1 0 0
0 c4 c4 c4 c4 0 0 0 0 0 0 0 0 −1 −1 0

⎤
⎦ ,

⎡
⎣
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
c0 c1 0 c1 0 c2 0 c2 0 1 0 1 0 c3 0 −d
c0 c1 c1 c1 c1 c2 c2 c2 c2 1 1 1 1 c3 c3 (1 − d)

⎤
⎦ ,

which respectively represents

Im(X)Im(Y ) = u

Re(X)Re(Y ) = Re(Z) − ud

(Re(X) + Im(X))(Re(Y ) + Im(Y )) = Im(Z) + Re(Z) + (1 − d)u,

where

X = −xy

Y = c4x + c4y − xy

Z = x3 + y3 + c2(x2 + y2) + c1(x + y) + c3xy + c0.

In summary, for any isogeny path over any quadratic field Fp2 of length k, we can
transform it into an R1CS relation with 11k+4 variables and 11k+3 constraints
over Fp.

3.6 Parameter Choice

In order to offer a wider degree of flexibility, we apply our R1CS relation over
both Fp and Fp2 arithmetic, which allows for the support of:

– isogeny-based protocols (working over Fp2) with primes of the form p = 2af+1
with proof system operating over Fp,



Efficient Isogeny Proofs Using Generic Techniques 263

– and isogeny-based protocols with primes of the form p = 2af ± 1 operating
over Fp2 .

Once an isogeny path has been obtained, it is straightforward to obtain either
R1CS instance given the methods described in Sect. 3.4 and Sect. 3.5. We leave
the manner in which the isogeny paths are computed open to a more detailed
implementation. One such approach would be to use optimized SIDH imple-
mentations [5,26], with some modifications needed to support p2 primes. Note
that since p2 ≡ 1 mod 4, the curves of j-invariant 0, 1728 are not supersingu-
lar. In this setting, one can find a starting curve by using a root of the Hilbert
class polynomial mod p [20, Sec 3.2]. The public parameters p, �, k are sufficient
for a verifier to efficiently construct the R1CS matrices A,B,C offline, which
minimises the communication and storage cost.

In evaluating performance for comparison with [6], we have included the
standard SIKE parameters, but also include primes of comparable parameters
of the p2 form in order to compare performance over different base fields, which
should offer equivalent security at the cost of slightly reduced performance of
isogeny path computation. These primes are the smallest primes p2 = 2a3bf +1
such that for a corresponding SIKE prime p1 = 2a′

3b′
f ′ −1 we have that a ≥ a′,

b ≥ b′ and f ′ ≥ f . Due to the flexibility of the underlying proof systems, the
protocol can operate over arbitrary choices of k, and primes of this form. We
have fixed the path length k to the corresponding lengths of the Secuer PoK
2-isogeny path, which is of sufficient length to guarantee a uniformly distributed
end point, assuming a random walk. In fact, this is a conservative choice. It
is conjectured that non-backtracking walks can converge to the stationary dis-
tribution in shorter walks than compared to [6]. See [58, Conjecture 4.3]. We
stress that in many applications, uniform mixing is not necessary. In order to
guarantee minimal security, the path’s length must be approximately 2λ. For
the parameters and results of our proof for minimally secure path lengths, see
Sect. 4.2.

Remark 3. The choice of benchmarking this protocol with parameters obtained
from the now defunct SIKE may seem somewhat arbitrary. We do so to compare
our results to [6], whose implementation is limited to SIKE primes. A pragmatic
course of action might be to determine concrete parameters that are practical
and secure in the setting of isogeny commitments and hashing.

4 Implementation and Evaluation

In evaluating the performance of our isogeny proof of knowledge, we considered
protocols which support finite fields of arbitrary prime characteristic8, that are
statistical zero-knowledge, plausibly post-quantum and transparent (see Table 2).

Virgo and Orion [62,64] do satisfy these properties. However, we excluded
them from our testing as their implementation does not easily support generic
8 Subject to FFT performance conditions.
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Table 1. Our parameter sets for the evaluation of isogeny PoK in R1CS representation.

p k Variant R1CS Param. Security Level
n m

p434 22163137 − 1 705 Fp2 2823 2822 λ = 128

p441+ 2218313837 + 1 Fp 7759 7758

p503 22503159 − 1 774 Fp2 3099 3098 λ = 128

p509+ 2252315931 + 1 Fp 8518 8517

p610 23053192 − 1 1010 Fp2 4043 4044 λ = 192

p619+ 23073192119 + 1 Fp 11114 11113

p751 23723239 − 1 1280 Fp2 5123 5122 λ = 256

p761+ 23723239701 + 1 Fp 14084 14083

fields, but we hope to include them in future testing. Theoretically, Virgo per-
forms well for low-depth, uniform circuits such as our own.

The state-of-the-art is given by Ligero++; a protocol that combines aspects
of Virgo and Ligero, trading-off marginally higher verification times for faster
prover times than Aurora, with comparable proof sizes. However, it does not have
any open source implementations. Brakedown, Shockwave [44]; and the recent
LaBRADOR [16] are candidates of interest. However, they do not yet offer zero-
knowledge. There are no clear obstructions to them achieving zero-knowledge,
and provide promising results, so are worth considering in future lines of work.

Table 2. Asymptotic cost various transparent, post-quantum, zero-knowledge generic
proof systems, applied to an arithmetic circuit of N gates, n inputs, and depth D over
a fixed field.

Prover time Verifier time Proof size

Limbo [33] O(N) O(N) O(N)

Ligero [3] O(N logN) O(N) O(
√

N)

Aurora [10] O(N logN) O(N) O(log2 N)

Virgo [64] O(N + n logn) O(D logN + log2 n) O(D logN + log2 n)

Ligero++ [17] O(N logN) O(N) O(log2 N)

Orion [62] O(N) O(log2 N) O(log2 N)

Implementation. As a proof of concept, we evaluate the performance of our
isogeny proof of knowledge via:
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– Aurora and Ligero through a fork of libiop9, modified to support larger
prime fields and quadratic field extensions. Ligero’s original implementation
is closed source, but an adaptation is included in libiop. While originally
designed for arithmetic circuit satisifiability, libiop’s implementation sup-
ports R1CS instead, at claimed no extra cost.

– Limbo, through an implementation obtained via private correspondence (the
publicly available implementation is only available for binary fields). Limbo
is interfaced with our R1CS instances directly, with an arithmetic circuit that
evaluates Az ◦ Bz − Cz and then checking that the resulting vector equals to
zero.

Aurora and Ligero are directly tested with R1CS instances of size given in
Table 1. We separate the results for the standard SIKE parameters for direct
comparison with Secuer PoK, and include a second table of results (Table 4)
for the smooth primes which operate over Fp. Limbo is directly interfaced to
prove the given R1CS instance in a manner described in Sect. 2.5.

4.1 Comparison to SECUER PoK

To make a comparison, we include the results from the Secuer PoK [6],
through the reference implementation10. The Secuer PoK is a direct proof of
knowledge for a relaxed notion of the relation R2k-IsoPath, so provides compar-
ison as a tailored protocol to our results from applying generic proof systems.

Remark 4. In the previous version, our implementations are inconsistent with [6]
regarding the walk length. The Secuer PoK reports results for walks of sufficient
length in order to guarantee uniform mixing in the supersingular isogeny graph.
For consistency, we now evaluate our results based on the same parameters.
This is a desired feature in the setup ceremony protocol introduced in their
work. However, this is not a strict requirement in isogeny-based protocols. We
include an additional set of results in Sect. 4.2 which include results for walk
lengths which are minimally secure for the respective security levels, which may
be of interest in wider applications.

Results. The experiments are run on a IntelR© CoreTM i9-9900 CPU @ 3.10GHz.
The benchmarks include only single-threaded results as the libiop package does
not properly implement multi-threading and did not provide accurate results.
Nevertheless, Aurora and Ligero should reflect similar optimizations to that of [6]
from a well supported multi-threaded implementation, as the protocols are well
suited to parallelisation. In particular, the protocols run parallel compositions
of the proof in order to achieve necessary soundness level (Table 3).

9 Original source code available at https://github.com/scipr-lab/libiop. Our fork can
be found at https://github.com/levanin/libiop-fp2.

10 Source code available at https://github.com/trusted-isogenies/SECUER-pok.

https://github.com/scipr-lab/libiop
https://github.com/levanin/libiop-fp2
https://github.com/trusted-isogenies/SECUER-pok
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Table 3. Table of results comparing several generic proof systems operating over Fp2

for the R1CS instantiation of R2k-MP, and the isogeny Seceur PoK in [6]. Security
level and walk length is set according to Table 1 and P , V , S correspond to proof time,
verification time, and proof size respectively. Results displayed are for single-threaded
performance.

Parameter Our Work Secuer PoK
Aurora Ligero Limbo

p434 P 4,204 ms 1,479 ms 1,073 ms 12,369 ms
V 378 ms 1,899 ms 874 ms 1,399 ms
S 277 kB 3,281 kB 8,133 kB 191 kB

p503 P 4,944 ms 1,722 ms 1,379 ms 19,296 ms
V 440 ms 2,171 ms 1,146 ms 2,173 ms
S 313 kB 3,778 kB 10,335 kB 216 kB

p610 P 6,457 ms 3,331 ms 3,156 ms 60,915 ms
V 888 ms 3,102 ms 2,616 ms 6,646 ms
S 570 kB 4,568 kB 24,427 kB 404 kB

p751 P 15,070 ms 5,243 ms 7,702 ms 141,043 ms
V 2,383 ms 13,509 ms 6,587 ms 15,931 ms
S 852 kB 11,302 kB 50,670 kB 663 kB

Table 4. Table of results comparing generic proof systems operating over Fp for the
projected R1CS instantiation of R2k-MP operating over fields with characteristic of
the form 2a3bf + 1. Security level and walk lengths set according to Table 1. Results
displayed are for single threaded performance.

Parameter Aurora Ligero Limbo

p441+ P 2,313 ms 879 ms 1,037 ms
V 158 ms 1017 ms 835 ms
S 152 kB 2,803 kB 11,217 kB

p509+ P 5,999 ms 1301 ms 1,304 ms
V 455 ms 1370 ms 1,066 ms
S 214 kB 3,402 kB 14,205 kB

p619+ P 9,424 ms 2,822 ms 2,962 ms
V 895 ms 2,030 ms 2,451 ms
S 409 kB 4,149 kB 33,746 kB

p761+ P 12,555 ms 2,873 ms 7,062 ms
V 1,651 ms 4,464 ms 5,823 ms
S 687 kB 7,212 kB 70,018 kB
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We see that Aurora, the best overall performer, provides a 3-12 times
improvement to proof and verification times compared to secuer PoK, with
0–30% increase in proof length. If we consider smooth primes which allow for
operation over Fp, Aurora allows for similar improvements to proof and verifi-
cation times but with smaller proofs than secuer PoK when compared with
parameters of similar bit length. Limbo, as expected, performs well for smaller
parameters at the cost of much longer proof lengths. Conversely, Ligero is better
suited to larger parameters than Limbo but still suffers from long proofs. These
results should serve as evidence to support the choice of Aurora as a platform
for this application.

4.2 Identification Scheme for Moderate Length Walks

Our proof system may also serve as an identification scheme to validate a public
key (E,E′), where the prover can use our zkSNARK construction to demonstrate
their knowledge of a walk from E to E′, of sufficient length to resist the most
efficient generic algorithm for recovering the secret isogeny (i.e. the claw finding
algorithm). In this section, we demonstrate the effectiveness of our proof system
in this regard.

We show in Table 5 the R1CS parameter set (m,n) over Fp and Fp2 and the
isogeny walk length k with respect to the security parameter λ. A concrete result
is given in Tables 6 and 7 regarding the prover time, the verifier time and the
proof size for different forms of the primes.

Table 5. Our R1CS parameter set (m, n) over Fp and Fp2 and the isogeny walk length
k with respect to the security parameter λ and the prime p.

R1CS Param.
p k Variant n m Security Level

p434 22163137 − 1 216 Fp2 867 866 λ = 128

p441+ 2218313837 + 1 Fp 2380 2379

p503 22503159 − 1 250 Fp2 1003 1002 λ = 128

p509+ 2252315931 + 1 Fp 2754 2753

p610 23053192 − 1 305 Fp2 1223 1222 λ = 192

p619+ 23073192119 + 1 Fp 3359 3358

p751 23723239 − 1 372 Fp2 1491 1490 λ = 256

p761+ 23723239701 + 1 Fp 4096 4095
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Table 6. Table of results comparing several generic proof systems operating over Fp2 for
the R1CS instantiation of R2k-MP without relaxations. The soundness/zero-knowledge
security level is set according to Table 5 and P , V , S correspond to proof time, ver-
ification time, and proof size respectively. Results displayed are for single-threaded
performance.

Our Work
Parameter Aurora Ligero Limbo

p434 P 934 ms 587 ms 354 ms
V 99 ms 847 ms 273 ms
S 194 kB 1,849 kB 2,598 kB

p503 P 1,138 ms 686 ms 479 ms
V 114 ms 959 ms 380 ms
S 219 kB 2,127 kB 3,456 kB

p610 P 3,175 ms 2,488 ms 989 ms
V 472 ms 2614 ms 818 ms
S 517 kB 4,084 kB 7,607 kB

p751 P 3,882 ms 1,951 ms 2,131 ms
V 824 ms 6407 ms 1,793 ms
S 828 kB 6,394 kB 15,104 kB

Table 7. Table of results comparing generic proof systems operating over Fp for the
projected R1CS instantiation of R2k-MP operating over fields with characteristic of
the form 2a3bf +1. Soundness/zero-knowledge security levels set according to Table 5.
Results displayed are for single threaded performance.

Parameter Aurora Ligero Limbo

p441+ P 1,216 ms 427 ms 330 ms
V 98 ms 493 ms 264 ms
S 166 kB 1,733 kB 3,496 kB

p509+ P 1,440 ms 537 ms 438 ms
V 120 ms 603 ms 342 ms
S 182 kB 1,967 kB 4,657 kB

p619+ P 2,287 ms 1,130 ms 922 ms
V 239 ms 849 ms 746 ms
S 338 kB 2,414 kB 10,327 kB

p761+ P 3,030 ms 1,044 ms 1,938 ms
V 431 ms 1,951 ms 1,594 ms
S 551 kB 4,004 kB 20,588 kB



Efficient Isogeny Proofs Using Generic Techniques 269

5 Conclusion

In conclusion, we show that generic proof systems are competitive when applied
to isogeny-based relations, by giving a proof of concept for an isogeny proof
of knowledge using a compact R1CS instance, whose security is based on the
underlying proof systems. Our best experimental result shows an order of mag-
nitude improvement for prover and verifier time compared to the state-of-the-art
tailor-made isogeny protocol, Secuer PoK.

A Remark on Signatures. Several post-quantum signature schemes have been
proposed by applying MPCitH proof systems to PRFs, such as [7,12,32,63]. The
approach follows one of two processes, given a uniform secret key k:

1. The public key is y such that f(k) = y for a one-way function f . A signature
corresponds to a non-interactive proof that “I know a k such that f(k) = y”
where the message m is incorporated into the randomness of the challenges.

2. The public key is PRFk(0λ), and a signature is then an evaluation of PRFk(m)
attached with a proof that “I know a k such that I can compute both PRFk(m)
and PRFk(0λ)”.

Given a secure PRF, the latter approach is somewhat agnostic to the proof sys-
tem in question. However, in the former case, it is unclear that proofs obtained
from the BCS transform applied to IOPs can yield a secure signature scheme
analogous to Fiat-Shamir applied to Σ-protocols. Some works [35,40] indicate
the non-malleability or simulation extractability is an important notion in the
security of this construction. Simulation extractability provides that a malicious
prover cannot forge a valid proof without knowledge of the witness, even after
seeing polynomially many valid proofs. In particular, this notion seems to yield
a direct reduction to EUF-CMA. To this date, the security of the BCS transform
with messages incorporated into the verifier’s randomness lacks sufficient analy-
sis, and it is unclear as to what property is necessary and sufficient in order to
construct signatures by (1). If this is achieved, it is straightforward to convert
the isogeny proof of knowledge into a signature scheme based on the hardness
isogeny path-finding, where the one-way function is essentially the CGL hash
function.
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A Preventing Backtracking

In some applications, one might want a guarantee that the isogeny proven is
cyclic, which in our setting, is equivalent to showing that the isogeny walk is
non-backtracking. That is, a walk which does not immediately traverse the same
edge twice.

Theorem 2. An isogeny φ : E0 → Ek of degree 2k is cyclic if and only if φ’s
decomposition into 2-isogenies as a walk on the supersingular isogeny graph is
non-backtracking.

Proof. See [24, Prop. 1][34, Prop. 3.2]

In the modular polynomial relation we introduce, we do not provide any
guarantee that our isogeny is non-backtracking (and hence cyclic). However,
with minor overhead, it is possible to add this requirement. Observe that, given
an isogeny walk from E0 to Ek of length k, with a j-invariant sequence j0, ..., jk,
a backtracking walk implies that there exists an i ∈ {1, ..., k − 1} such that
ji−1 = ji+1. So it suffices to show that

δi = ji−1 − ji+1 �= 0 for all i ∈ {1, ..., k − 1}.

One can realise inequality in an arithmetic circuit with the following process:
given two numbers a, b, we may show that they are distinct if and only if there
exists an inverse of (a − b) over the field. Alternatively, there exists c such that
(a− b) · c = 1. The inverse c := (a− b)−1 can be precomputed by the prover and
given as a part of the input.

We can perform an additional optimization step to minimise the number
of precomputed inverses for the prover, the calculation of which is expensive.
Indeed, the prover can accumulate the product of the difference terms δi, and
check that the product is nonzero. In particular, our resulting conditions to
prevent backtracking are that:

1. Compute δ =
∏

δi =
∏k−1

i=1 (ji−1 − ji+1).
2. Input δ′ such that δδ′ = 1,

where the δ term will be non-zero if and only if all δi are non-zero, which is true
if (but not only if) the walk is non-backtracking. We note that this check will
also prevent the use of 2-cycles (with two distinct edges), which may be cyclic,
but are of little consequence in practice.

It is straightforward to add these constraints to our previous R1CS instance.
In the Fp2 setting, this would add an additional k−1 constraints and variables for
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the product check; and one constraint and variable (the inverse given as input)
for the inverse check. This version yields 5k +3 variables and 5k +2 constraints
in total, which means only a 25% overhead if compared to the original instance
size. We expect this to subject only a minor performance cost, as the protocol
scales well with instance size (as seen in the difference between Sect. 4.2 and
Sect. 4.1).
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1 Introduction

In the pre-quantum era the Diffie-Hellman protocol plays a paramount role
in securely exchanging secret keys. Diffie-Hellman shows its outstanding per-
formance when instantiated with sufficiently generic elliptic curve groups with
prime order q, since for solving the discrete logarithm in these groups on classical
computers only generic algorithms with square-root time complexity Θ(

√
q) are

known.
Such a complexity allows for extremely efficient instantiations that provide

e.g. 128 bit classical security for 256-bit group order q. Since Shor’s algorithm [42]
generically breaks discrete logarithms in every commutative group of order q
in time polynomial in log q, Diffie-Hellman unfortunately becomes completely
insecure in a quantum world.

The current post-quantum substitutes for key exchange primarily stem from
lattice problems, like Kyber [10], or from decoding problems, like McEliece [3,34].
However, in both cases we have already classical algorithms that are below square
root complexity [5,39]. As a consequence, lattice- and code-based schemes can
inherently not achieve the efficiency of the Diffie-Hellman protocol. For exploiting
smallness of secret keys, the representation technique has been quite successfully
applied first in the coding world [6,11,20,31,33], and then subsequently also for
lattice-based schemes [21,25,30,44].

Ideally, in a quantum world we would replace Diffie-Hellman by a protocol
for which

(a) the best classical algorithm achieves square root complexity, while
(b) the best quantum algorithm does not provide a significant speedup.

Within the last decade isogeny-based cryptography developed as a promising
candidate to provide an analogue of Diffie-Hellmann key exchange in the quan-
tum world.

Its hardness is based on the difficulty of computing isogenies between super-
singular elliptic curves. If extra information is available, like in the SIDH
proposal [27], then recent breakthrough results [13,29,40] show a collapse
of the problem’s complexity, leading to a devastating attack on the SIDH
cryptosystem.

In contrast to that, in the CSIDH cryptosystem [14] no extra information
is available to an attacker and the underlying isogeny computation problem
remains hard. The construction is made possible by restricting to the set of
supersingular elliptic curves defined over a prime field Fp. This set has car-
dinaltity N ≈ √

p, and the best classical algorithm to recover a secret isogeny is
a Meet-in-the-Middle algorithm with square root complexity O(

√
N). However,

the best quantum algorithm, due to Kuperberg [28], is subexponential in logN ,
with complexity 2O(

√
log N).

Current CSIDH Instantiations. To guard against Kuperberg-style attacks [9,16,
38], recent CSIDH instantiations recommend to use 512, 1024 or even 2048-
bit field size for Fp. To still retain highly efficient cryptosystems, current
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proposals [4,14–17,26,35–37] suggest to use secret keys from (sub-) sets of
{−m, . . . ,m}n of constant width m, for highly practical schemes like [16] even
restricted to ternary key spaces

SK1 = {−1, 0, 1}n, SK2 = {0, 1, 2}n, or SK3 = {−2, 0, 2}n.

Ternary keys can be guessed in 3n steps, and the currently best

(a) classical algorithm for recovering ternary keys is a Meet-in-the-Middle algo-
rithm with square root time and space complexity 3n/2,

(b) whereas the best quantum algorithm [43] is a mere quantum version of Meet-
in-the-Middle, called claw-finding, providing a rather modest speedup to
3n/3.

Our Contributions. We use the Restricted Effective Group Action (REGA) frame-
work, recently introduced in [2]. This abstraction can e.g. be instantiated via the
isogeny-based CSIDH group action. Group elements are represented by vectors
v = (v1, . . . , vn) ∈ Z

n, efficient implementations require to restrict the vector
entries vi to a small range {−m, . . . ,m} for some constant m. Highly efficient
implementations like [16] choose ternary key spaces for v.

For REGAs we introduce a REGA-DLOG problem that denotes the secret key
recovery problem in REGA-based cryptography, and resembles the dlog prob-
lem for the Diffie-Hellman protocol. As a special case, REGA-DLOGm denotes
the secret key recovery problem for secret keys chosen from a small range set
{−m, . . . ,m}n.

We show that the best CSIDH attacks, such as the Pollard-style algorithm
going back to Galbraith-Hess-Smart [24] for smallish p and Meet-in-the-Middle
(MitM) for small m, generalize to the REGA setting. For ternary key settings
we show that REGA-DLOG for the key spaces SK1 = {−1, 0, 1}n and SK2 =
{0, 1, 2}n is equivalently hard, and at least as hard as for SK3 = {−2, 0, 2}n.
Therefore, for ternary keys it suffices to concentrate on REGA-DLOG1 with
keyspace SK1.

Since |SK1| = 3n, our MitM achieves for REGA-DLOG1 run time 30.5n with
memory consumption also 30.5n. We then generalize the best time-memory
CSIDH trade-off [1,7,16,18] based on Parallel Collision Search (PCS), due to
van Oorschot and Wiener [45] to the REGA-DLOG1 setting resulting for memory
M ≤ 30.5n in run time

T = 30.75n/M0.5.

Notice that for maximal memory M = 30.5n we again achieve MitM complex-
ity T = 30.5n. However for constant M , also called the memory-less setting,
we achieve a T = 30.75n algorithm. See the dotted line (PCS) in Fig. 1 for a
visualization of the interpolation between the run time exponents 0.75 and 0.5.
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Fig. 1. Complexities for solving REGA-DLOG1.

The REGA setting is not only a natural abstraction of isogeny-based group
actions, but it also allows us —analogous to codes [6,23,31], lattices [25,30,44],
and low weight discrete logarithms [22,32]— to naturally exploit the algebraic-
combinatorial benefits of using small secret keys from Z

n.
Namely, by additively splitting a secret key v = v1 + v2 with many rep-

resentations v1,v2 ∈ {−1, 0, 1}n we significantly improve the standard PCS
time-memory trade-off for M ≤ 30.22n to

30.675n/M0.5.

Hence for memory M = 30.22n, which is less than the square root of MitM’s
memory 30.5n, we achieve run time 30.565n, only slightly inferior to MitM’s time
30.5n. In the memory-less setting, we obtain a 30.675n-algorithm. The tradeoff is
visualized as a dashed line (Partial Rep.) in Fig. 1.

Using more elaborate representations v1,v2 ∈ {−2, . . . , 2}n of the ternary
secret key, we further improve as visualized by the solid green line (Increased
Rep.) in Fig. 1. Especially, we obtain a memory-less T = 30.671n-algorithm, and
a natural interpolation to the exponent point (0.5, 0.5) from MitM. For larger
values of m ∈ {2, 3} we observe that the runtime exponent c in T = (2m +
1)cn, actually improves, we obtain for example memory-less algorithms with
time 50.629n (m = 2) and 70.618n (m = 3).

Limitations of our Approach. Since all our algorithms are based on collision
finding techniques, their expected run times are proven under the standard
mild heuristic that the constructed functions behave like random functions with
respect to collision search.

Moreover, we assume throughout the paper for sake of simplicity that a
random ternary secret key v ∈ {−1, 0, 1}n achieves its expected number of n/3
entries for each of −1, 0, and 1, respectively, i.e., an equal weight distribution.

However, these limitations are no serious restrictions. First, keys with equal
weight distribution have maximal entropy among all ternary keys and thus con-
stitute the worst-case for the standard MitM algorithm (over which we improve).
Second, it is not hard to see that keys with equal weight distribution amount
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to a polynomial fraction of all ternary keys. And last but not least, we show
that for almost all randomly chosen ternary keys one can with sub-exponential
overhead always enforce an equal weight distribution.

Potential Impact of Our Representation-Based Results. Current efficient CSIDH-
proposals like [16] define security levels with a memory complexity M signif-
icantly smaller than their run time complexity T . For instance [16] suggests 3
parameters sets with

(M1,M2,M3) = (280, 2100, 2119) and (T1, T2, T3) = (2128, 2128, 2192)

for achieving NIST security level L1, L2, L3, respectively. The authors of [16] use
a PCS-based approach for their analysis. Assuming that PCS has similar poly-
nomial overheads as our representation method (which is certainly a complex-
ity underestimation of the latter), for memories M1,M2,M3 our representation
method yields a reduced security level by 4.5, 8 and 13 bit, respectively.

Whether security bit reductions of these orders can be achieved in practice
has to be validated by experiments, which are out of the scope of this work.

Organisation of our Paper. In Sect. 2 we recall the definition of Restricted Effec-
tive Group Actions (REGA) and present a REGA-based key exchange modelling
CSIDH. Further we define REGA-DLOG, the main hardness problem underly-
ing this scheme, and its small key variant REGA-DLOGm. We also show that
REGA-DLOG1 is hardest with ternary keys from {−1, 0, 1}n.

In Sect. 3 we generalize known cryptanalytic results such as a Pollard-style
algorithm (Sect. 3.1), MitM (Sect. 3.2), and Parallel Collision Search (Sect. 3.3)
to REGA-DLOGm.

In Sects. 4.1 and 4.2 we introduce representation-based algorithms for
REGA-DLOG1, and provide a more elaborate version in Sect. 4.3. The case of keys
with non-equal weight distribution is discussed in Sect. 4.4. Section 4.5 addresses
REGA-DLOGm for larger m = 2, 3. Eventually, in Sect. 4.6 we discuss the possible
practical impact of the attack.

2 Preliminaries

The Commutative Supersingular Isogeny Diffie-Hellman (CSIDH) protocol [14]
is a promising candidate for quantum-secure cryptography. Similar as its prede-
cessor, the Couveignes-Rostovtsev-Stolbunov (CRS) scheme [19,41], it is based
on a commutative group action G × X → X . While the underlying mathematics
is quite involved, there exists a simple abstraction in the framework of crypto-
graphic group actions. This framework was first introduced by Couveignes [19]
under the name hard homogenous spaces. A more modern treatment is given
in [2]. In particular the latter work also introduces restricted effective group
actions (REGA) which model the properties of the CSIDH-based group action
more closely, hence we use that framework in our analysis.
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2.1 Restricted Effective Group Actions

This part follows the description of restricted effective group actions in [2] with
some small modifications explained in Remark 2.2.

Definition 2.1 (Group Action). Let (G, ◦) be a group with identity element
id ∈ G, and X a set. A map

� : G × X → X

is a group action if it satisfies the following properties:

1. Identity: id �x = x for all x ∈ X .
2. Compatibility: (g ◦ h) � x = g � (h � x) for all g, h ∈ G and x ∈ X .

Remark 2.1. In practice, one often requires that a group action is regular. This
means that for any x, y ∈ X there exists precisely one g ∈ G satisfying y = g �x.
For instance, this is the case for the CSIDH group action which we discuss in
Sect. 2.3.

Definition 2.2 (Effective Group Action). Let (G,X , �) be a group action
satisfying the following properties:

1. The group G is finite, commutative, and there exist efficient (PPT) algorithms
for membership and equality testing, (random) sampling, group operation and
inversion.

2. The set X is finite and there exist efficient algorithms for membership testing
and to compute a unique representation.

3. There exists a distinguished element x̃ ∈ X with known representation.
4. There exists an efficient algorithm to evaluate the group action, i.e., to com-

pute g � x given g and x.

Then we call x̃ ∈ X the origin and (G,X , �, x̃) an effective group action (EGA).

In practice, the requirements from the definition of EGA are often too strong.
The limitations are reflected in the weaker notion of restricted effective group
actions.

Definition 2.3 (Restricted Effective Group Action). Let (G,X , �) be a
group action and let g = (g1, ..., gn) be a set of elements in G and denote
H = 〈g1, . . . , gn〉 for the subgroup generated by these elements. Assume that
the following properties are satisfied:

1. The group G is finite, commutative, and n = poly(log(#H)).
2. The set X is finite and there exist efficient algorithms for membership testing

and to compute a unique representation.
3. There exists a distinguished element x̃ ∈ X with known representation.
4. There exists an efficient algorithm that given gi ∈ g and x ∈ X , outputs gi �x

and g−1
i � x.
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Then we call (G,H,X , �, x̃) a restricted effective group action (REGA).

Remark 2.2. Note that our definitions for EGA and REGA slightly differ from
those in [2]. First, we require that the underlying group G is commutative. This
allows us to formulate a group action based Diffie-Hellman protocol and it is the
only relevant case for our analysis. Second, we dropped the condition that the set
(g1, . . . , gn) in the definition of REGA is a generating set for G. This is necessary
to include CSIDH as a possible instantiation of a REGA. In that setting, it is an
open problem to determine a (compact) set of generators for the entire group G.
But heuristically a set of generators for a large subgroup H ⊂ G is known. More
details are provided in Sect. 2.3.

Vector Representation. Let (G,H,X , �, x̃) be a REGA with g = (g1, . . . , gn).
Elements in H can be represented as vectors v ∈ Z

n under the mapping φ :
Z

n → H, where

φ : v = (v1, . . . , vn) �→
n∏

i=1

gi
vi .

Note that this representation depends on the choice of generating set g for H.
And even fixing a set g, the representation is not unique. More precisely, the
kernel of the map φ is a lattice in Z

n which is in general not known explicitly.
Via the map φ, we define the action of Zn on X . Slightly abusing notation,

we denote v � x = φ(v) � x. Given a vector v ∈ Z
n, the action v � x can be

efficiently evaluated for any x ∈ X provided that the norm ‖v‖ is polynomial in
log(#H).

We highlight the following properties of the group action that will become
important in our analysis. For any u,v,w ∈ Z

n and x, y ∈ X it holds that
– v � (u � x) = (u+ v) � x = u � (v � x),
– y = (u+ v) � x implies v � x = −u � y,
– x = v � (−v � x),
– if w � x = (u+ v) � y, then (w − v) � x = u � y.

These properties immediately follow from the fact that � : Zn × X → X is a
commutative group action.

Random Sampling. In applications, it is often required to sample elements from
H. If the structure of H (in other words ker(φ)) is not known explicitly, then
it is not possible to sample elements uniformly at random. Instead, vectors are
sampled from some finite subset S ⊂ Z

n. For a perfect uniform sampling, the map
φ|S would need to be bijective. In practice, one often uses S = {−m, . . . , m}n ⊂
Z

n for some positive integer m. Here, m should be chosen small enough so that
for two random vectors v,w ∈ S the probability for v−w ∈ ker(φ) is low. Note
that this also requires that the generators g1, . . . , gn are evenly distributed in the
group. On the other hand, if one intends to sample from a large portion of the
whole group H, then m must be large enough so that φ|S is (almost) surjective.
However, in some settings it is sufficient to sample elements only from a small
part of the group. We already note that this is the case for the key spaces studied
in our paper.
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2.2 Cryptographic Group Actions and Computational Assumptions

Given an effective group action (G,X , �, x̃) one can construct a Diffie-Hellman
key exchange. The setup chooses a distinguished element x0 ∈ X . Then the
secret keys of Alice and Bob are group elements ga, gb ∈ G respectively, and the
corresponding public keys are xa = ga �x0 and xb = gb �x0. Now the shared key
can be computed as xab = ga � xb = gb � xa. For this protocol to be secure, the
following two problems need to be hard.

1. GA-DLOG: Given (x, y) ∈ X 2, determine g ∈ G such that y = g � x.
2. GA-CDH: Given (x, y, z) ∈ X 3, determine w ∈ X such that there exists g ∈ G

with y = g � x and w = g � z.

These problems are the natural generalizations of the discrete logarithm problem
and the computational Diffie-Hellman problem in the classical prime-order group
setting. As in [2], we refer to group actions satisfying these hardness assumptions
as cryptographic group actions.

In the REGA setting the random sampling of group elements (i.e. secret keys)
is not straightforward. A variant of the Diffie-Hellman key exchange adapted to
this setting is described in Fig. 2. In essence, this is an abstract description of
the CSIDH protocol introduced in [14], see also Sect. 2.3. The security of this key
exchange not only relies on the hardness of GA-DLOG and GA-CDH for the group
G,1 but also on the following variant of GA-DLOG which takes into account the
choice of the secret keyspace.

Fig. 2. A REGA-based Diffie-Hellman protocol.

Definition 2.4 (REGA-DLOGSK). Let (G,H,X , �, x̃) be a REGA with g =
(g1, . . . , gn) and SK ⊂ Z

n a finite subset. Given (x, y) ∈ X 2, determine v ∈ SK
such that y = v � x if such a vector v exists.

We say that the tuple (G,H,X , �, x̃, g, x, y) is an instance of the
REGA-DLOGSK. In the special case where SK = {−m, . . . ,m}n for some m ∈ N,
we write REGA-DLOGm for short.
1 More precisely, it relies on slightly modified versions of the problems, where the

adversary additionally knows that there exists a solution with g ∈ H ⊂ G.
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Remark 2.3. Breaking the REGA-DLOGSK assumption corresponds to recovering
the secret key of the REGA-based Diffie-Hellman scheme described in Fig. 2. We
would like to point out that in order to break the scheme, it is sufficient to recover
any (compact) vector representation of the secret key. More precisely, if a ∈ SK
is Alice’s secret key and an attacker finds some â ∈ Z

n that satisfies φ(â) =
φ(a) ∈ H, then he can compute the shared key as Kâ = â �xb = a �xb = Ka. Of
course, this further requires that the evaluation â � xb is efficiently computable.

In the following we compare the keyspace SK = {−m, . . . , m}n to other
choices from the literature of same cardinality. In particular the next lemma
shows that it suffices to focus on the analysis of REGA-DLOGm among these
choices.

Lemma 2.1. Let (G,H,X , �, x̃) be a REGA with g = (g1, . . . , gn). Let m ∈ N

and consider SK1 = {−m, . . . , m}n, SK2 = {0, . . . , 2m}n, SK3 = {−2m,−2(m−
1), . . . , 2m}n.

1. Then REGA-DLOGSK1 and REGA-DLOGSK2 are equivalent.

Further let H̃ = {g ◦ g | g ∈ H} ⊂ H, and g̃ = (g̃1 = g1 ◦ g1, . . . , g̃n = gn ◦ gn).

2. An instance (G,H,X , �, x̃, g, x, y) of REGA-DLOGSK3 can be transformed to
an instance

(
G, H̃,X , �, x̃, g̃, x, y

)
of REGA-DLOGSK1 .

3. In particular if #H is odd, then REGA-DLOGSK3 reduces to REGA-DLOGSK1 .

Proof. Let (G,H,X , �, x̃,g, x, y) be an instance of REGA-DLOGSK1 . Define
y′ = m � y, where m = (m, . . . ,m) ∈ Z

n. Then w ∈ {0, . . . , 2m}n solves
REGA-DLOGSK2 on input (G,H,X , �, x̃,g, x, y′) if and only if v = w −m solves
REGA-DLOGSK1 on input (G,H,X , �, x̃,g, x, y). In the same way, any instance
of REGA-DLOGSK2 can be transformed to an instance of REGA-DLOGSK1 . This
proves the first part of the lemma.

Now consider an instance (G,H,X , �, x̃,g, x, y) of REGA-DLOGSK3 . Let G̃
and g̃ as defined in the statement of the lemma. Note that H̃ is a subgroup of
H, and g̃ is a generating set for this group. Moreover if a solution v ∈ SK3 to
the REGA-DLOGSK3 instance exists, then φ(v) ∈ H̃. As explained in Sect. 2.1,
the vector representation of group elements depends on the choice of generators.
For a vector v = (v1, . . . , vn) ∈ SK3, we define ṽ = (v1

2 , . . . , vn

2 ) ∈ SK1. Then
the vectors v and ṽ represent the same element in H̃ ⊂ H with respect to
g and g̃ respectively. In other words

∏n
i=1 gvi

i =
∏n

i=1 g̃i
ṽi ∈ H̃. In particular

v solves REGA-DLOGSK3 on input (G,H,X , �, x̃,g, x, y) if and only if ṽ solves
REGA-DLOGSK1 on input

(
G, H̃,X , �, x̃, g̃, x, y

)
.

If #H is odd, then H̃ = H and X̃ = X . This observation implies the last
part of the lemma. �

Remark 2.4. Note that in general, REGA-DLOGSK3 and REGA-DLOGSK1 are
not equivalent even if #H is odd. To see this, consider an instance
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(G,H,X , �, x̃,g, x, y) of REGA-DLOGSK1 . Theoretically, this can be trans-
formed to the instance (G,H,X , �, x̃, g̃, x, y) of REGA-DLOGSK3 , where g̃ =
(
√

g1, . . . ,
√

gn). Here √
g denotes the (unique) element in G satisfying √

g◦√
g =

g. There are two issues with this transformation:

– It is not clear how to compute the elements √
gi for i ∈ {1, . . . , n}.

– If the group structure is known, one can compute √
gi = g

(ri+1)/2
i , where

ri = ord(gi). However the integers ri are only bounded by #H, hence the
evaluation of √

gi � x for some x ∈ X might require exponential time.

2.3 Isogeny-Based REGAs

An important instantiation of REGAs is provided by isogeny-based group
actions. Here, we explain the Commutative Supersingular Isogeny Diffie-Hellman
(CSIDH) group action.

Let p be a large prime of the form p = 4 · �1 · · · �d − 1, where the �i are small
distinct odd primes. Fix the elliptic curve E0 : y2 = x3+x over Fp. The curve E0

is supersingular and its Fp-rational endomorphism ring is O = Z[π], where π is
the Frobenius endomorphism.2 Let E��p(O) be the set of Fp-isomorphism classes
of elliptic curves defined over Fp, with endomorphism ring O. In our setting, an
equivalent definition is

E��p(O) = {EA : y2 = x3 + Ax2 + x | A ∈ Fp and EA is supersingular}.

The ideal class group cl(O) acts on the set E��p(O), i.e., there is a map

� : cl(O) × E��p(O) → E��p(O)
([a], E) �→ [a] � E,

satisfying the properties from Definition 2.1 [14, Theorem 7].
The set

g = ([l1], . . . , [ln]) , where li = (�i, π − 1) � O, for some n ≤ d

generates a large subgroup H ⊂ cl(O). The analysis in the original CSIDH
paper [14] already implies that under some heuristics (cl(O),H, E��p(O), �, E0)
is a REGA. We summarize the most important properties.

1. # cl(O) ≈ #H ≈ √
p.

2. Elements in E��p(O) can be efficiently represented by their Montgomery coef-
ficient A ∈ Fp. Given A ∈ Fp, one can efficiently test whether EA ∈ E��p(O)
using [14, Algorithm 1].

3. The distinguished element is x̃ = E0.
4. The expressions [li] � E and [li]−1 � E may be efficiently evaluated for any

elliptic curve E ∈ E��p(O) and any i ∈ {1, . . . , n} ([14, §3]).
2 Note that we later use O also in the context of standard Landau notation for com-

plexity statements, however, its meaning will be clear from the context.
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Elements of the group H are represented as vectors v ∈ Z
n. With this nota-

tion, the CSIDH protocol corresponds precisely to the REGA-based protocol
from Fig. 2. As secret keyspace SK, the original paper [14] suggests n = d and
SK = {−m, . . . , m}n, where m is chosen such that n log(2m + 1) ≈ log(

√
p).

Hence, key recovery in CSIDH corresponds to solving REGA-DLOGm. We note
that here the choice of g = ([l1], . . . , [ln]) guarantees that sampling from this
keyspace heuristically corresponds to a close to uniform sampling in the group
H.

For higher security parameters (e.g., a prime field of at least 2048 bits),
follow-up papers [15,16] suggest to sample the vectors from smaller sets. For
instance, it is suggested to use n < d and sample vectors from

SK1 = {−1, 0, 1}n, SK2 = {0, 1, 2}n, or SK3 = {−2, 0, 2}n.

As a consequence, the public key set {v� x̃ : v ∈ SKj} is only a subset of E��p(O)
for j := 1, 2, 3. Further, notice that # cl(O) and in particular G are odd, hence
Lemma 2.1 implies that the corresponding REGA-DLOG problems are equivalent
for the keyspaces SK1 and SK2, and as least as hard as for SK3.

3 Adapting Techniques to the REGA-DLOGm Setting

Let (G,H,X , �, x̃,g, x, y) be an instance of the REGA-DLOGm problem. Using the
abstract framework of cryptographic group actions, we present different (classi-
cal) algorithms to solve this problem. These algorithms are well-known in the
isogeny-based setting and have been used in the cryptanalysis of CSIDH.

In the following, let N = #H (a possibly unknown) integer and Nm =
(2m + 1)n. In the most recent proposals for CSIDH, we are in the situation
where the secret keyspace is much smaller than the group, i.e., Nm � N . In this
case the best known attacks are a meet-in-the-middle (Sect. 3.2), and parallel
collision search (Sect. 3.3) approach. For completeness, we also mention that
there exists a memory-less Pollard-style algorithm (Sect. 3.1) with running time
in O(

√
N) which is preferable if Nm ≈ N .

3.1 Pollard-Style Random Walks: A Galbraith-Hess-Smart
Adaptation

There exists a random walk approach to find a solution v ∈ Z
n (of possibly large

norm) in time O(
√

N) using only a polynomial amount of memory.
The random walks will be defined by two deterministic functions

f : X → {1, . . . , n}, σ : X → {−1,+1}.

In the first stage of the algorithm, we set x0 = x and v0 = 0 ∈ Z
n. Then a

walk of length T ≈
√

N is iteratively computed as

xi+1 = g
σ(xi)
f(xi)

� xi, vi+1 = vi + σ(xi)ef(xi),
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where ei is the i-th canonical vector. The pair (xT , vT ) is stored.
In the second stage, we set y0 = y and w0 = 0 ∈ Z

n. Then one computes

yi+1 = g
σ(yi)
f(yi)

� yi, wi+1 = wi + σ(yi)ef(yi)

until yS = xT for some S. Then (vT − wS) � x = y. Note that most likely
vT − wS /∈ {−m, . . . , m}n, so subject to our definitions it is not a solution to
REGA-DLOG. For the solution to be useful, one additionally needs a reduction
algorithm red which on input v ∈ Z

n computes an element red(v) of small norm
so that red(v) � x can be evaluated efficiently. In isogeny based group action
settings such reduction methods are available. And the corresponding Pollard-
style algorithm was first described by Galbraith, Hess, and Smart [24, Section 3].
Note that for the runtime analysis it is necessary that sampling vectors of small
norm in Z

n corresponds to (close to) uniform sampling of group elements in H
as is the case for CSIDH.

3.2 Meet-in-the-Middle (MitM)

The best known attack on REGA-DLOGm is a meet-in-the-middle-attack with
time and memory complexity in O(

√
Nm). To describe the idea, we introduce

the two sets

Sm,0 := {−m, . . . ,m}n
2 × {0}n

2 , Sm,1 := {0}n
2 × {−m, . . . ,m}n

2 .

These are disjoint subsets of Sm = {−m, . . . ,m}n of size
√

Nm each. Moreover,
any element v ∈ Sm has a unique representation as v0 + v1 with v0 ∈ Sm,0 and
v1 ∈ Sm,1. So given two set elements x, y ∈ X , the problem of finding v ∈ Sm

with y = v � x reduces to finding vectors v0 ∈ Sm,0 and v1 ∈ Sm,1 with

v0 � x = (−v1) � y. (1)

The time T and memory complexity M of this procedure are linear in the
size of the subsets |Sm,0| = |Sm,1|, and therefore gives T = M = O(

√
Nm).

Concretely, for v being chosen from a ternary alphabet we have T = M = O(3
n
2 ).

In practical applications the memory requirements of the MitM approach
usually render it ineffective and require to resort to time-memory trade-offs.
The naive trade-off for the MitM algorithm given W units of memory processes
the subset Sm,0 in batches of size W . For each batch it iterates through all
candidates x1 ∈ Sm,1 for v1 and checks for a match in the current batch. If no
match is found it continues with the next batch. Straightforward analysis shows
that this reduces the memory to Õ (W ), while increasing the time complexity to
Õ (Nm/W ).

However, in the limited memory setting the Parallel Collision Search (PCS)
technique by vanOorschot andWiener is known to offer a better trade-off behavior.
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3.3 Parallel Collision Search (PCS)

PCS is a technique to accelerate the search for multiple collisions between two
functions f0 and f1 by the use of memory. A single collision between functions
f0, f1 with domain D can be found in time Õ

(√
|D|

)
using a polynomial amount

of memory by standard techniques. The PCS algorithm now allows to find W

collisions in time Õ
(√

|D| · W
)

using Õ (W ) memory. This yields a Õ
(√

W
)

speedup over naive repetition of the memory-less procedure. We formalize this
in the following lemma.

Lemma 3.1 (Parallel Collision Search). Let fi : Di → D with |Di| = |D|,
i = 0, 1 be two random functions that can be evaluated in time polynomial in
logD. Then there is an algorithm that returns W collisions between f0 and f1

in time T = Õ
(√

|D| · W
)

using M = Õ (W ) memory.

Here we do not want to dive into the details on how the technique achieves
the acceleration, for those details the reader is referred to [45]. Instead we want
to focus on its application to the REGA-DLOGm or more specifically to the
CSIDH case. Therefore we first reformulate the search for v0 and v1 as a collision
search procedure. Let S

n/2
m := {−m, . . . ,m}n

2 and H : {0, 1}∗ → S
n/2
m be a hash

function. Further, define the functions fi : Sm,i → S
n/2
m , i = 0, 1 as

f0 : v �→ H(v � x) and f1 : v �→ H
(
(−v) � y

)
. (2)

Now clearly v0 and v1 form a collision between f0 and f1 (compare to Eq. (1)).
However, not every collision (x0,x1) between f0 and f1 leads to v, as the collision
might only be a collision in the hash function H, but not necessarily implying
that x0 � x = (−x1) � y. In order to find the single distinguished (often called
golden) collision (v0,v1) that leads to v we, therefore, have to find all collisions
between f0 and f1. Now, instead of naively applying the standard memory-less
collision search multiple times we make use of PCS to find W collisions at a
time using W units of memory. We outline this procedure in pseudocode in
Algorithm1.

Algorithm 1: PCS-Tradeoff to solve REGA-DLOGm

Input : Functions fi : Di → D, i = 0, 1 with |Di| = |D|, W units of memory,
instance (G, H, X , �, x̃,g, x, y) of the REGA-DLOGm

Output: solution v to the REGA-DLOGm instance (x, y) satisfying y = v � x
1 repeat
2 find W collisions (wi, zi) between f0, f1 using PCS
3 until ∃j : y = (wj + zj) � x
4 return wj + zj
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Analysis. Let us briefly analyze the correctness of the procedure. For the func-
tions f0, f1 defined in Eq. (2), we have already shown that the pair of inputs
(v0,v1), with v = v0+v1 forms a collision. Therefore the algorithm can succeed
in recovering v = v0 + v1 by finding random collisions between those functions.

Next let us analyze the running time. As already observed, we need to recover
all collisions between the functions to guarantee to find the distinguished collision
that leads to v. Further, we expect a total amount of C = |D| =

√
Nm colli-

sions between f0 and f1. Therefore after poly(n) ·
√

Nm/W applications of the
PCS technique, each yielding W collisions, we gathered a total of poly(n) ·

√
Nm

collisions. Under a standard assumption that treats those collisions as randomly
sampled from the set of all collisions, we found each collision between f0 and f1
with high probability using a standard coupon collectors argument. This implies
especially that we found the distinguished collision (v0,v1) and the algorithm
terminates. Each of the Õ

(√
Nm/W

)
comes at a cost of Õ

(√√
Nm · W

)
(com-

pare to Lemma 3.1), yielding a running time of

TPCS = Õ
(
(Nm)

3
4

√
W

)
,

while the memory complexity is given as M = Õ (W ).

4 A New Time-Memory Trade-Off Using Representations

In the following we make use of the representation technique to improve the time-
memory trade-off behavior of the PCS technique in the REGA setting. Therefore
we first re-define the used functions to use larger domains. At first sight, this
comes at the downside of increasing the cost for the collision search procedure.
However, by carefully choosing the new domains we guarantee that there are
several collisions (xi,yi), i = 1, . . . , N that allow to recover the secret v. In turn
it is not necessary to compute all existing collisions but only a 1/N -fraction to
find one of these distinguished collisions and recover v, which overall results in
a runtime advantage. Motivated by recent proposals to use ternary key spaces
and for didactic reasons we first concentrate on the case of m = 1. Moreover,
in Sects. 4.1 to 4.3, we assume that the solution to REGA-DLOG1 has the same
number of (−1)-, 0-, and 1-entries. Generalizations to the case of arbitrary weight
distribution and arbitrary m are given in Sect. 4.4 and Sect. 4.5, respectively.

4.1 A First Representation-Based Approach

We start with a (slightly) sub-optimal variant of our algorithm for didactic rea-
sons. In the following sections we then subsequently refine this initial algorithm.

Let the set of ternary vectors of length n with exactly αn ±1 entries each be
defined as

T n(α) := {x ∈ {−1, 0, 1}n | x contains exactly αn (+1) and αn (−1) entries}.
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Now we start by redefining the functions over different domains as

f0, f1 : T n(α) → T n(α). (3)

Apart from this the functions remain as specified in Eq. (2), where the hash
function is now defined on H : {0, 1}∗ → T n(α) and α ∈ �0, 1� is an optimization
parameter.

Our algorithm now again searches for collisions between f0, f1 via the PCS
strategy, until a collision (x0,x1) with x0 + x1 = v is found. A pseudocode
description is obtained by using the re-defined functions together with m = 1 as
input for Algorithm 1.

Analysis. Recall that a collision (x0,x1) in f is either caused by a collision in
the hash function, i.e., x0 � x �= (−x1) � y, but H(x0 � x) = H

(
(−x1) � y

)
or we

have
x0 � x = (−x1) � y ⇔ (x0 + x1) � x = y,

In the latter case we call the collision real and conclude that x0 + x1 = v, since
v is sufficiently unique. This implies that any real collision leads to recovering v.

Next, let us analyze the amount of real collisions (x0,x1). For this it suffices
to analyze the amount of x0,x1 ∈ T n(α) which satisfy x0+x1 = v. Those pairs
(x0,x1) are usually called representations of v. Note that the amount of these
representations of v ∈ T n(1/3) is

R =
(

n/3
n/6

)2(
n/3

ε, ε, n/3 − 2ε

)
,

where ε = (α − 1
6 )n. Here the binomial coefficient counts the possibilities how n

6
of the 1 (resp. −1) entries of v can be contributed from x0, while the remaining
n
6 1 (resp. −1) entries have to be present in x1. The multinomial coefficient then
counts the possibilities how the remaining 1s and −1s can cancel out to represent
the 0s in v. Since our choice of α will ensure R ≥ 1 the algorithm can succeed
in recovering v by sampling random collisions between f0 and f1.

Let us now analyze the time complexity. We expect that after computing
C
R random collisions we encounter one that forms a representation of v, where
C is the total amount of existing collisions. Again we expect a total number
of C = |T n(α)| collisions. Further, under the standard assumption that the
functions still behave like random functions with respect to collision search, a
single collision can be found in time
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T1 := Õ
(√

|T n(α)|
)
= Õ

((
n

αn, αn, (1 − 2α)n

) 1
2
)

and using Lemma 3.1 we can find W collisions in time TW =
√

W · T1 using
M = Õ (W ) memory. Computing the required C

R collisions using M = Õ (W )
memory therefore takes expected time

T = Õ
(

C

R · W
· TW

)
= Õ

(
|T n(α)| 3

2

R ·
√

W

)
,

as long as C
R ≥ W .

To obtain a running time of the form T = Õ
(
3c(α)n

)
we approximate the

binomial and multinomial coefficients in T using the well known approximation
(

n

k

)
= Θ̃

(
2nH(k/n)

)
, (4)

where H(x) := −x log2(x) − (1 − x) log2(1 − x) denotes the binary entropy
function. We then perform a numerical optimization using the python library
scipy to find the optimal α for a given amount of memory W = 3ωn, ω ∈ �0, 0.5�.
We apply this strategy for all our representation based algorithms and make our
optimization code open source.3 The way we access the numerical optimization
framework is inspired by the code of Bonnetain, Bricout, Schrottenloher ans
Shen [8].

We illustrate the obtained runtime exponent as a function of the available
memory in Fig. 3 and give as comparison the standard PCS exponent and the
naive MitM trade-off. For an available memory that is only polynomial in n, i.e.,
ω = 0 we improve the running time from Õ

(
30.75n

)
to 30.675n. In turn this leads

to an improved trade-off with time complexity T = 30.675n/M0.5 for any available
memory M ≤ 30.22n. From there on the optimal choice of α does not fulfill the
constraint C

R ≥ W . However, by slightly adapting the choice of α it is possible
to enforce C

R ≥ W up to W < 30.265n. From there on more memory does not
translate into a runtime advantage, as indicated by the horizontal dotted line.

4.2 Interpolation Using Partial Representations

In order to interpolate between the standard PCS technique and our represen-
tation based method from the previous section we adapt in the following the
concept of partial representations introduced independently in [12,22] to our
setting. In turn this allows us to achieve runtime improvements for W ≥ 30.265n.

3 https://github.com/Memphisd/Low-Memory-Attacks-on-Small-Key-CSIDH.

https://github.com/Memphisd/Low-Memory-Attacks-on-Small-Key-CSIDH


292 J.-J. Chi-Domínguez et al.

Fig. 3. Complexity of PCS, MitM and the representation-based trade-off

So far both methods – standard PCS as well as our representation approach
– split the secret v in the sum of two vectors x0 and x1. For the standard PCS
technique the vectors x0 and x1 have disjoint support, while for the represen-
tation method the support overlaps. Partial representations now combine both
cases by introducing an additional optimization parameter δ ∈ �0, 1� that defines
how big the fraction of overlapping support of both vectors is. More precisely
the secret v ∈ {−1, 0, 1}n is split as

v = (y0,0, z0)︸ ︷︷ ︸
x0

+(0,y1, z1)︸ ︷︷ ︸
x1

= (y0,y1, z0 + z1)

with y0,y1 ∈ {−1, 0, 1} (1−δ)n
2 and z0, z1 ∈ T δn(α), where α is again an opti-

mization parameter. That means the vectors x0 and x1 have disjoint support on
the first (1 − δ)n coordinates, while on the last δn their support overlaps.

Let us now re-define the functions f0, f1 according to partial representations.
Therefore we use the following sets as domains

D0 := T
(1−δ)n

2 (1/3)× {0}
(1−δ)n

2 × T δn(α) and

D1 := {0}
(1−δ)n

2 × T
(1−δ)n

2 (1/3) × T δn(α),
(5)

and define the common image space as D := T (1−δ)n
2 (1/3)× T δn(α). Leading to

the functions
fi : Di → D, i = 0, 1. (6)

Again the concrete definition of the functions remains as given in Eq. (2), where
we now require a hash function H : {0, 1}∗ → D.

In the following we use Algorithm 1 with our adapted functions from Eq. (6)
and m = 1.

Analysis. The correctness follows from the analysis of the previous section and
the fact that our choice of parameters will ensure that there is at least one real
collision, i.e. a representation of the solution or following the notation of the
previous section R ≥ 1.
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Let us, hence, start by analyzing the, now changed, amount of representations
R. Note, that on the first (1 − δ)n coordinates, where elements from D0 and
D1 have disjoint support, we have only a single possible decomposition of any
element in T (1−δ)n

2 (1/3) × T (1−δ)n
2 (1/3). Therefore we assume that the solution

v lies in
T

(1−δ)n
2 (1/3) × T

(1−δ)n
2 (1/3) × T δn(1/3),

meaning the 1 and −1 entries distribute according to their expectation propor-
tionally onto the three segments of length (1−δ)n

2 , (1−δ)n
2 and δn. However, in the

following we show that ensuring such a distribution of the coordinates causes at
most a polynomial overhead.

Note that the probability over the random choice of v ∈ T n(1/3) for v having
a proportional coordinate distribution over the three segments is

( (1−δ)n
2

(1−δ)n
6 ,

(1−δ)n
6 ,

(1−δ)n
6

)2(
δn

δn/3,δn/3,δn/3

)

(
n

n/3,n/3,n/3

) =
1

poly(n)
,

which follows from approximating the binomial coefficients via Eq. (4). Note
that by randomly permuting the order of the generators of G we can obtain
independent uniform distributions of the 1 and −1 entries on v, each having
a probability of 1

poly(n) to distribute the coordinates as required. Therefore we
expect poly(n) repetitions of the algorithm with random permutations of the
generators to ensure this distribution in at least one of the executions.

On the last δn coordinates of elements from xi ∈ Di, we obtain multiple
representations of v = x0 + x1 as sum of two elements. Similar to the analysis
in the previous section the amount of such representations of one element from
T δn(1/3) as the sum of two elements from T δn(α) is given as

R =
(

δn/3
δn/6

)2(
δn/3

ε, ε, δn/3 − 2ε

)
,

where ε = (α − 1
6 )δn.

The complexity analysis follows along the lines of the analysis in Sect. 4.1
with the difference that a single collision search now comes at the cost of

T1 = Õ
(√

|D|
)
= Õ

⎛

⎝
(( (1−δ)n

2
(1−δ)n

6 , (1−δ)n
6 , (1−δ)n

6

)(
δn

αδn, αδn, (1 − 2α)δn

)) 1
2
⎞

⎠ .

The final complexity is then analogously given as T = Õ
(

C
R·W · TW

)
=

Õ
(

|D| 32
R·√W

)
, as long as C

R ≥ W , where still TW =
√

W · T1. The memory com-

plexity is still dominated by the application of the PCS with M = Õ (W ).

In Fig. 4 we illustrate the asymptotic running time exponent obtained by
numerical optimization of α, δ as a function of the memory. We observe that
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partial representations enable a smooth interpolation between the representa-
tion method from Sect. 4.1 and the PCS technique (Sect. 3.3), while providing
improvements over both methods for any 30.25n ≤ M < 30.4n.

Fig. 4. Complexity of PCS, the representation trade-off, and partial representations.

4.3 Increasing the Amount of Representations

In the following we again slightly adapt the domains of the functions to include
elements with coordinates in {−2, . . . , 2} rather than {−1, 0, 1}. While, as before,
this increases the size of the domains and, hence, the time for the collision
search, it also yields an increased amount of representations, leading to a runtime
improvement.

Note that in terms of representations any −1 can additionally be represented
as −2+1 (resp. 1+ (−2)), accordingly any 1 as −1+2 (resp. 2+ (−1)) and any
0 as −2+ 2 (resp. 2+ (−2)). Let the set of vectors with αn ±1 entries each and
β ±2 entries each be denoted as

T n(α, β) := {x ∈ {−2, . . . , 2}n | |x|1 = |x|−1 = αn ∧ |x|2 = |x|−2 = βn}, (7)

where |x|i = |{j ∈ {1, . . . , n} | xj = i}|.
We now adapt the domains of the previous section, i.e., we still use partial

representations, but now also including −2 and 2 entries. Therefore let the new
domains be

D̃0 := T
(1−δ)n

2 (1/3)× {0}
(1−δ)n

2 × T δn(α, β) and

D̃1 := {0}
(1−δ)n

2 × T
(1−δ)n

2 (1/3) × T δn(α, β),
(8)

and re-define the common image space as D̃ := T (1−δ)n
2 (1/3)×T δn(α, β), where

δ ∈ �0, 1� is subject to optimization and α, β are determined later. The functions
are then defined over

fi : D̃i → D̃, i = 0, 1, (9)

with their precise mapping still as given in Eq. (2), requiring now a hash function
H : {0, 1}∗ → D̃.

We now analyze the complexity of Algorithm 1 with input m = 1 and func-
tions as specified in Eq. (9).



Low Memory Attacks on Small Key CSIDH 295

Analysis. The analysis again follows along the lines of the analysis of the previous
section with the main difference lying in the amount of representations R and
the now increased domain size |D̃|. Let us start by examining the amount of
representations R. We, again, assume v to be from T (1−δ)n

2 (1/3)×T (1−δ)n
2 (1/3)×

T δn(1/3), which we ensure by random permutations of the generators leading
to polynomial overhead. In turn there exists exactly one decomposition of v in
the sum of two elements from D̃1 and D̃2 with respect to the the first (1 − δ)n
coordinates. Multiple representations only exist for the last δn coordinates. We
have the following possibilities to represent a −1, 0 and 1 entry in v = x0 + x1

0 : 0 + 0︸ ︷︷ ︸
z0

, 1 − 1︸ ︷︷ ︸
z1

, −1 + 1︸ ︷︷ ︸
z1

, 2 − 2︸ ︷︷ ︸
z2

, −2 + 2︸ ︷︷ ︸
z2

,

1 : 1 + 0︸ ︷︷ ︸
δn
6 −o

, 0 + 1︸ ︷︷ ︸
δn
6 −o

, 2 − 1︸ ︷︷ ︸
o

, −1 + 2︸ ︷︷ ︸
o

,

−1 : −1 + 0︸ ︷︷ ︸
δn
6 −o

, 0 − 1︸ ︷︷ ︸
δn
6 −o

, −2 + 1︸ ︷︷ ︸
o

, 1 − 2︸ ︷︷ ︸
o

.

(10)

Here the variable below each of the representations specifies how often we want
to use the corresponding representation to represent a corresponding coordinate
of v. For example we expect z0 many of the 0 entries in v to be represented in
the sum v = x0 + x1 as 0 + 0, z1 as 1 − 1, z1 as −1 + 1, z2 as 2 − 2 and z2 as
−2 + 2. It follows that we need to ensure

z0 + 2z1 + 2z2 =
δn

3
⇔ z0 =

δn

3
− 2z1 − 2z2,

as in total we need to represent δn
3 zeros of v. Note that the total amount of

1 (resp. −1) entries sums to δn
6 − o + δn

6 − o + o + o = δn
3 as required (since

there are that many −1 and 1 entries in the last δn coordinates of v). Note
that the parameters z1, z2 and o are optimization parameters of the algorithm.
Given the proportions specified in Eq. (10), we can directly derive the amount
of representations as

R =
( δn

3

z0, z1, z1, z2, z2

)( δn
3

δn
6 − o, δn

6 − o, o, o

)2

,

where the first term counts the possibilities to represent 0s and the second the
representations of ±1 entries A simple counting of the representations from Eq.
(10) including a ±1 or ±2 yields that the initial domains D̃1, D̃2 need to satisfy

α =
1
6
+

z1
δ

and β =
z2 + o

δ
.

From here the analysis is identical to the one from Sect. 4.2, leading to a time

complexity of T = Õ
(

C
R·W · TW

)
= Õ

(
|D̃| 32

R·√W

)
, as long as |D̃|

R ≥ W , and

memory complexity M = Õ (W ).
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In Fig. 5a we illustrate the obtained runtime exponent. We observe that the
increased amount of representations allows to naturally connect the trade-off to
the (0.5, 0.5) endpoint of MitM.

Fig. 5. On the left: Comparison of different representation based methods. On the
right: Comparison of representation based methods for different m.

4.4 Enforcing an Equal Weight Distribution

Recall that in previous sections we always assumed for simplicity that we attack
ternary vectors with equally balanced (up to rounding) number of (−1)-, 0-, and
1-entries. We now show that for almost all ternary vectors we can enforce such
an equal weight distribution by increasing the dimension of the REGA-DLOG1-
problem from n to n+O(

√
n). Our argument extends to all REGA-DLOGm with

constant m.
Notice that our algorithms are of complexity T = 3cn for some constant c,

and thus fully exponential in the dimension n. Therefore, our dimension increase
only leads to a subexponential overhead 3O(

√
n), i.e., we achieve asymptotic run

time
3c(n+O(

√
n)) = T · 3O(

√
n) = 3cn(1+o(1)).

Idea of Balancing. Let v be a random ternary, and denote by ni, i ∈ {−1, 0, 1}
its numbers of i-entries. Since ni ≤ n, we can guess all ni in polynomial time
O(n2). We show that with high probability all ni are bounded by n/3±O(

√
n).

Without loss of generality, let n−1 be the maximal value. We then add n−1 −n0

coordinates for 0-entries, and n−1 − n1 coordinates for 1-entries. These are in
total � = O(

√
n) coordinates.

To this end, let (G,H,X , �, x̃,g, x, y) be an instance of the REGA-DLOG1

problem with g = (g1, . . . , gn) and a ternary solution v satisfying v � x = y.
Let id be the neutral element in G, and let g′ = (g1, . . . , gn, id, . . . , id) be the

set of generators enhanced by � times id. Then any u = (v,w) with w ∈ Z
� is

a solution for the dimension-increased instance with g′ iff v is a solution for the
original instance with g. Especially, we obtain a solution for our n-dimensional
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instance by solving the n + � = n + O(
√

n)-dimension instance, and cutting off
the last � coordinates.

Chernoff Argument. It remains to show that all ni differ from n/3 by at most
O(

√
n). Since v is a random ternary vector, all ni are binomially distributed

random variables with E[ni] = n/3. We use the Chernoff bound

Pr [|ni − E[ni]| ≥ δE[ni]] ≤ 2e−E[ni]δ
2/3 for 0 < δ < 1.

Define δ = 3c√
n

for some constant c. Then Pr[|ni − n/3| ≥ c
√

n] ≤ 2e−c2 . Thus,
for sufficiently large c, almost all ternary vectors reach their expected value n/3
up to an O(

√
n) error term.

4.5 The Case of Arbitrary m

Intuitively it is clear that a similar approach as in Sects. 4.1 to 4.3 can be taken
to solve the REGA-DLOGm for an arbitrary integer m. One simply defines the
functions over appropriate domains, which allow for multiple representations of
v ∈ {−m, . . . ,m}n and then applies Algorithm 1 with those functions and the
respective choice of m. The main obstacle with this approach lies in the compu-
tation of the representations, which already for m = 1 became quite technical if
applying the technique to its full extend (compare to Sect. 4.3).

However, for completeness we specify in the following the running time for
the case of general m in dependence on the domain size and the amount of
representations. The result is an immediate implication of our previous analysis.

Let the functions be specified as fi : Si → S, i = 0, 1, with the mapping as
defined in Eq. (2), where H : {0, 1}∗ → S and |S0| = |S1| = |S|. Furthermore, let
every element v ∈ {−m, . . . ,m}n have R representations as the sum of elements
from S0, S1, i.e., there are R different pairs (x0,x1) ∈ S0 ×S1 with v = x0 +x1.

Then v can be found via Algorithm 1 with functions f0, f1 in time T =

Õ
(

|S| 32
R·√W

)
, as long as |S|

R ≥ W , using memory M = Õ (W ).

We additionally computed the running time of our technique for m ∈ {2, 3}
for an appropriate choice of function domains. We illustrate the corresponding
runtime exponents in Fig. 5b.

For obtaining the running times we used in the case of m = 2 addends
x0,x1 ∈ {−2, . . . , 2} (m = 2) and x0,x1 ∈ {−3, . . . , 3} (m = 2 (increased rep.))
to represent the solution v = x0 + x1. In the case of m = 3 we used only
addends x0,x1 ∈ {−3, . . . , 3}. For the full technical details of the analysis the
reader is referred to Appendix A. It can be observed, that for increasing m the
runtime exponent in dependence on search space improves. However, since the
improvement is getting smaller for growing m we conjecture that the exponent
converges.
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4.6 Potential Impact on Bit Security Level

In this section we approximate the maximal bit security reduction for suggested
parameter sets for CSIDH by the representation method. In our comparison
we assume that the standard PCS based time-memory trade-off (compare to
Sect. 3.3) suffers the same polynomial overhead as the representation based app-
roach. Since this might underestimate the overhead of the representation based
trade-off, the numbers should be seen as a maximal potential gain. Practical
experiments will have to determine to which extend this gain can be realized in
practice.

In [16] three concrete parameter instantiations for ternary-key CSIDH are
given, respectively aiming at satisfying NIST security level L1, L2 and L3. For
matching the security definition of category Li the authors impose restrictions
on the memory and time complexity of Mi = 2wi and Ti = wti with

(w1, w2, w3) = (80, 100, 119) and (t1, t2, t3) = (128, 128, 192).

In order to match those security definitions a number of generators ni equal to
n1 = 139 for L1, n2 = 148 for L2 and n3 = 210 for L3 is proposed. The security
of those parameter sets is determined via the PCS time-memory trade-off.

In the memory restriction the authors conservatively ignore polynomial fac-
tors, i.e., it holds Mi = 3cini = 2wi , which allows to determine the asymptotic
memory exponent as ci = wi

ni·log2 3 . For example for i = 1 we obtain ci ≈ 0.3631,
which yields an asymptotic running time of the PCS approach of TPCS = 30.5685n.
In comparison our technique improves the running time to TRep = 30.5316n, cor-
responding to a gain of

TPCS

TRep
= 30.5685n = 30.0369n,

which for n1 = 139 yields a reduced security level by 0.0369 · n1 · log2 3 ≈ 8.13
bit.

A similar analysis for the cases of i = 2 yields c2 ≈ 0.4263 with TPCS =
30.5369n and TRep = 30.5174n corresponding to a gain of 4.57 bit. The case of
i = 3 yields c3 ≈ 0.3575 with TPCS = 30.5713n and TRep = 30.5330n reducing the
security level by 12.75 bit.

Acknowledgements. Sabrina Kunzweiler and Alexander May were funded by the
Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Ger-
many’s Excellence Strategy - EXC 2092 CASA - 390781972.

A The Case of Larger m

For larger choices of m we still assume that each coordinate is present n
2m+1

times in the solution. For any constant m, this is the case for a polynomial
fraction of all keys, and can be ensure with subexponential overhead similar to
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the procedure explained in Sect. 4.4. Further, we always use partial representa-
tions, i.e., the domains consist, similar to Sect. 4.2 and Sect. 4.3 of three parts
of length (1−δ)n

2 , (1−δ)n
2 and δn. Here we assume that each coordinate is present

proportionally to the length of the segment, e.g., that the last segment contains
each coordinate exactly δn

2m+1 times, which again can be ensured at the cost of
a polynomial overhead only.

As outlined in Sect. 4.5, for each choice of m we now specify the used function
domains and derive the amount representations of the solution. Let us start with
the case of m = 2.

The Case of m = 2. We are looking for a solution v ∈ {−2, . . . , 2}. For our first
instantiation we use the same function definitions as in Sect. 4.3 given in Eqs.
(8) and (9), where we choose a different α and β, specified later. Let us again
specify the possible representations of each entry (similar to Eq. (10))

0 : 0 + 0︸ ︷︷ ︸
z0

, 1 − 1︸ ︷︷ ︸
z1

, −1 + 1︸ ︷︷ ︸
z1

, 2 − 2︸ ︷︷ ︸
z2

, −2 + 2︸ ︷︷ ︸
z2

,

1 : 1 + 0︸ ︷︷ ︸
δn
10 −o

, 0 + 1︸ ︷︷ ︸
δn
10 −o

, 2 − 1︸ ︷︷ ︸
o

, −1 + 2︸ ︷︷ ︸
o

,

−1 : −1 + 0︸ ︷︷ ︸
δn
10 −o

, 0 − 1︸ ︷︷ ︸
δn
10 −o

, −2 + 1︸ ︷︷ ︸
o

, 1 − 2︸ ︷︷ ︸
o

.

2 : 2 + 0︸ ︷︷ ︸
δn
10 − t

2

, 0 + 2︸ ︷︷ ︸
δn
10 − t

2

, 1 + 1︸ ︷︷ ︸
t

,

−2 : −2 + 0︸ ︷︷ ︸
δn
10 − t

2

, 0 − 2︸ ︷︷ ︸
δn
10 − t

2

, −1 − 1︸ ︷︷ ︸
t

.

Recall, that we have only representations on the last segment of length δn. As
we expect any coordinate to be present δn/5 times, we need that the numbers
below the representations in every row sum to δn/5. Therefore we have

z0 + 2z1 + 2z2 = δn/5 ⇔ z0 = δn/5 − 2z1 − 2z2.

Further by counting the respective number of ±1 and ±2 entries in those repre-
sentations we obtain

α =
1
10

+
z1 + t

δ
and β =

1
10

+
z2 − t/2 + o

δ
,

while the number of representations is given as

R =
( δn

5

z0, z1, z1, z2, z2

)( δn
5

δn
10 − o, δn

10 − o, o, o

)2( δn
5

δn
10 − t

2 , δn
10 − t

2 , t

)2

.

The values of z1, z2, o, t and δ are subject to numerical optimization.

Increased Representations for m = 2. In the following we represent v on its
last δn coordinates via the sum of two vectors x0,x1 ∈ {−3, . . . , 3}δn. Similar
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to including −2 and 2 entries in the case of m = 1 (Sect. 4.3), this leads to an
increased amount of representations and in turn a runtime improvement.

First we naturally extend the definition T n(α, β) from Eq. (7) to T n(α, β, γ),
where in the latter case included vectors contain exactly γn entries equal to ±3
each. Then we let the new function domains be defined as

S0 := T
(1−δ)n

2 (1/3)× 0
(1−δ)n

2 × T δn(α, β, γ) and

S1 := 0
(1−δ)n

2 × T
(1−δ)n

2 (1/3) × T δn(α, β, γ),
(11)

Accordingly we let their common image space be S = T (1−δ)n
2 (1/3) ×

T δn(α, β, γ).
Now we obtain additional representations of any 0, ±1 and ±2 entry. Let us

again specify all representations and how often they appear in the addition.

0 : 0 + 0
︸ ︷︷ ︸

z0

, 1− 1
︸ ︷︷ ︸

z1

, −1 + 1
︸ ︷︷ ︸

z1

, 2− 2
︸ ︷︷ ︸

z2

, −2 + 2
︸ ︷︷ ︸

z2

, −3 + 3
︸ ︷︷ ︸

z3

, −3 + 3
︸ ︷︷ ︸

z3

,

1 : 1 + 0,
︸ ︷︷ ︸

δn
10 −o−d1

0 + 1,
︸ ︷︷ ︸

δn
10 −o−d1

2− 1
︸ ︷︷ ︸

o

, −1 + 2
︸ ︷︷ ︸

o

, 3− 2
︸ ︷︷ ︸

d1

, −2 + 3
︸ ︷︷ ︸

d1

,

−1 : −1 + 0,
︸ ︷︷ ︸

δn
10 −o−d1

0− 1,
︸ ︷︷ ︸

δn
10 −o−d1

−2 + 1
︸ ︷︷ ︸

o

, 1− 2
︸ ︷︷ ︸

o

, −3 + 2
︸ ︷︷ ︸

d1

, 2− 3
︸ ︷︷ ︸

d1

,

2 : 2 + 0
︸ ︷︷ ︸

δn
10 − t

2−d2

, 0 + 2
︸ ︷︷ ︸

δn
10 − t

2−d2

, 1 + 1
︸ ︷︷ ︸

t

, 3− 1
︸ ︷︷ ︸

d2

, −1 + 3
︸ ︷︷ ︸

d2

,

−2 : −2 + 0
︸ ︷︷ ︸

δn
10 − t

2−d2

, 0− 2
︸ ︷︷ ︸

δn
10 − t

2−d2

, −1− 1
︸ ︷︷ ︸

t

−3 + 1
︸ ︷︷ ︸

d2

, 1− 3
︸ ︷︷ ︸

d2

.

(12)

Analogously to before we have

z0 + 2z1 + 2z2 + 2z3 = δn/5 ⇔ z0 = δn/5 − 2z1 − 2z2 − 2z3.

Further by counting we obtain

α =
1
10

+
z1 + t − d1 + d2

δ
, β =

1
10

+
z2 − t/2 + o − d2 + d1

δ
and

γ =
z3 + d1 + d2

γ

while the number of representations increases to

R =
( δn

5

z0, z1, z1, z2, z2, z3, z3

)( δn
5

δn
10 − o − d1,

δn
10 − o − d1, o, o, d1, d1

)2

·
( δn

5
δn
10 − t

2 − d2,
δn
10 − t

2 − d2, t, d2, d2

)2

.

The values of z1, z2, z3, o, t, d1, d2 and δ are subject to numerical optimization.
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Finally let us consider the case of m = 3.

The Case of m = 3. We now have a solution v ∈ {−3, . . . , 3}. We represent this
solution by using the same function domains as specified in Eq. (11), with an
adapted choice of α, β and γ.

The possible representations stay therefore as specified in Eq. (12), by replac-
ing γn

10 by γn
14 . Since every row has now to add up to γn

7 we obtain

z0 + 2z1 + 2z2 + 2z3 = δn/7 ⇔ z0 = δn/7 − 2z1 − 2z2 − 2z3.

We now get additionally representations for the ±3 entries in v:

3 : 3 + 0︸ ︷︷ ︸
δn
14 −d3

, 0 + 3︸ ︷︷ ︸
δn
14 −d3

, 2 + 1︸ ︷︷ ︸
d3

, 1 + 2︸ ︷︷ ︸
d3

,

−3 : −3 + 0︸ ︷︷ ︸
δn
14 −d3

, 0 − 3︸ ︷︷ ︸
δn
14 −d3

, −2 − 1︸ ︷︷ ︸
d3

−1 − 2︸ ︷︷ ︸
d3

.

This leads to the adapted choices of

α =
1
14

+
z1 + t − d1 + d2

δ
, β =

1
14

+
z2 − t/2 + o − d2 + d1

δ
and

γ =
1
14

+
z3 + d1 + d2 − d3

γ
.

Eventually the amount of representations is given as

R =
( δn

7

z0, z1, z1, z2, z2, z3, z3

)( δn
7

δn
14 − o − d1,

δn
14 − o − d1, o, o, d1, d1

)2

·
( δn

7
δn
14 − t

2 − d2,
δn
14 − t

2 − d2, t, d2, d2

)2( δn
7

δn
14 − d3,

δn
14 − d3, d3, d3

)2

.

References

1. Adj, G., Cervantes-Vázquez, D., Chi-Domínguez, J.J., Menezes, A., Rodríguez-
Henríquez, F.: On the cost of computing isogenies between supersingular elliptic
curves. In: Cid, C., Jacobson Jr., M.J. (eds.) SAC 2018. LNCS, vol. 11349, pp.
322–343. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-030-10970-
7_15

2. Alamati, N., De Feo, L., Montgomery, H., Patranabis, S.: Cryptographic group
actions and applications. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS,
vol. 12492, pp. 411–439. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-64834-3_14

3. Albrecht, M.R., et al.: Classic McEliece: conservative code-based cryptography
(2020)

https://doi.org/10.1007/978-3-030-10970-7_15
https://doi.org/10.1007/978-3-030-10970-7_15
https://doi.org/10.1007/978-3-030-64834-3_14
https://doi.org/10.1007/978-3-030-64834-3_14


302 J.-J. Chi-Domínguez et al.

4. Banegas, G., et al.: CTIDH: faster constant-time CSIDH. IACR Trans. Cryptogr.
Hardw. Embed. Syst. 2021(4), 351–387 (2021). https://doi.org/10.46586/tches.
v2021.i4.351-387

5. Becker, A., Ducas, L., Gama, N., Laarhoven, T.: New directions in nearest
neighbor searching with applications to lattice sieving. In: Krauthgamer, R.
(ed.) 27th SODA, pp. 10–24. ACM-SIAM (Jan 2016). https://doi.org/10.1137/
1.9781611974331.ch2

6. Becker, A., Joux, A., May, A., Meurer, A.: Decoding random binary linear codes
in 2

n
20 improves information set decoding. In: Pointcheval, D., Johansson, T. (eds.)

EUROCRYPT 2012. LNCS, vol. 7237, pp. 520–536. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-29011-4_31

7. Bellini, E., et al.: Parallel isogeny path finding with limited memory. In:
INDOCRYPT 2022. LNCS, vol. 13774, pp. 294–316. Springer, Cham (2023).
https://doi.org/10.1007/978-3-031-22912-1_13

8. Bonnetain, X., Bricout, R., Schrottenloher, A., Shen, Y.: Improved classical and
quantum algorithms for subset-sum. In: Moriai, S., Wang, H. (eds.) ASIACRYPT
2020. LNCS, vol. 12492, pp. 633–666. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-64834-3_22

9. Bonnetain, X., Schrottenloher, A.: Quantum security analysis of CSIDH. In: Can-
teaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12106, pp. 493–522.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45724-2_17

10. Bos, J., et al.: Crystals-kyber: a cca-secure module-lattice-based kem. In: 2018
IEEE European Symposium on Security and Privacy (EuroS&P), pp. 353–367.
IEEE (2018)

11. Both, L., May, A.: Decoding linear codes with high error rate and its impact
for LPN security. In: Lange, T., Steinwandt, R. (eds.) PQCrypto 2018. LNCS,
vol. 10786, pp. 25–46. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
79063-3_2

12. Bricout, R., Chailloux, A., Debris-Alazard, T., Lequesne, M.: Ternary syndrome
decoding with large weight. In: Paterson, K.G., Stebila, D. (eds.) SAC 2019. LNCS,
vol. 11959, pp. 437–466. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-38471-5_18

13. Castryck, W., Decru, T.: An efficient key recovery attack on SIDH (preliminary
version). IACR Cryptol. ePrint Arch, p. 975 (2022). https://eprint.iacr.org/2022/
975

14. Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: an efficient
post-quantum commutative group action. In: Peyrin, T., Galbraith, S. (eds.) ASI-
ACRYPT 2018. LNCS, vol. 11274, pp. 395–427. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-03332-3_15

15. Cervantes-Vázquez, D., Chenu, M., Chi-Domínguez, J.-J., De Feo, L., Rodríguez-
Henríquez, F., Smith, B.: Stronger and faster side-channel protections for CSIDH.
In: Schwabe, P., Thériault, N. (eds.) LATINCRYPT 2019. LNCS, vol. 11774, pp.
173–193. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30530-7_9

16. Chávez-Saab, J., Chi-Domínguez, J., Jaques, S., Rodríguez-Henríquez, F.: The
SQALE of CSIDH: sublinear vélu quantum-resistant isogeny action with low expo-
nents. J. Cryptogr. Eng. 12(3), 349–368 (2022). https://doi.org/10.1007/s13389-
021-00271-w

17. Chi-Domínguez, J., Rodríguez-Henríquez, F.: Optimal strategies for CSIDH. Adv.
Math. Commun. 16(2), 383–411 (2022). https://doi.org/10.3934/amc.2020116

https://doi.org/10.46586/tches.v2021.i4.351-387
https://doi.org/10.46586/tches.v2021.i4.351-387
https://doi.org/10.1137/1.9781611974331.ch2
https://doi.org/10.1137/1.9781611974331.ch2
https://doi.org/10.1007/978-3-642-29011-4_31
https://doi.org/10.1007/978-3-031-22912-1_13
https://doi.org/10.1007/978-3-030-64834-3_22
https://doi.org/10.1007/978-3-030-64834-3_22
https://doi.org/10.1007/978-3-030-45724-2_17
https://doi.org/10.1007/978-3-319-79063-3_2
https://doi.org/10.1007/978-3-319-79063-3_2
https://doi.org/10.1007/978-3-030-38471-5_18
https://doi.org/10.1007/978-3-030-38471-5_18
https://eprint.iacr.org/2022/975
https://eprint.iacr.org/2022/975
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-3-030-30530-7_9
https://doi.org/10.1007/s13389-021-00271-w
https://doi.org/10.1007/s13389-021-00271-w
https://doi.org/10.3934/amc.2020116


Low Memory Attacks on Small Key CSIDH 303

18. Costello, C., Longa, P., Naehrig, M., Renes, J., Virdia, F.: Improved classical crypt-
analysis of the computational supersingular isogeny problem. Cryptology ePrint
Archive, Report 2019/298 (2019). https://eprint.iacr.org/2019/298

19. Couveignes, J.M.: Hard homogeneous spaces. Cryptology ePrint Archive, Report
2006/291 (2006). https://eprint.iacr.org/2006/291

20. Esser, A.: Revisiting nearest-neighbor-based information set decoding. Cryptology
ePrint Archive, Report 2022/1328 (2022). https://eprint.iacr.org/2022/1328

21. Esser, A., Girme, R., Mukherjee, A., Sarkar, S.: Memory-efficient attacks on small
lwe keys. Cryptology ePrint Archive (2023)

22. Esser, A., May, A.: Low weight discrete logarithm and subset sum in 20.65n

with polynomial memory. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020.
LNCS, vol. 12107, pp. 94–122. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-45727-3_4

23. Esser, A., May, A., Zweydinger, F.: McEliece needs a break - solving McEliece-
1284 and quasi-cyclic-2918 with modern ISD. In: Dunkelman, O., Dziembowski,
S. (eds.) EUROCRYPT 2022, Part III. LNCS, vol. 13277, pp. 433–457. Springer,
Heidelberg (2022). https://doi.org/10.1007/978-3-031-07082-2_16

24. Galbraith, S.D., Hess, F., Smart, N.P.: Extending the GHS weil descent attack. In:
Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 29–44. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7_3

25. Glaser, T., May, A.: How to enumerate LWE keys as narrow as in kyber/dilithium.
Cryptology ePrint Archive, Report 2022/1337 (2022). https://eprint.iacr.org/
2022/1337

26. Hutchinson, A., LeGrow, J., Koziel, B., Azarderakhsh, R.: Further optimizations
of CSIDH: a systematic approach to efficient strategies, permutations, and bound
vectors. In: Conti, M., Zhou, J., Casalicchio, E., Spognardi, A. (eds.) ACNS 2020.
LNCS, vol. 12146, pp. 481–501. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-57808-4_24

27. Jao, D., De Feo, L.: Towards quantum-resistant cryptosystems from supersingular
elliptic curve isogenies. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071,
pp. 19–34. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25405-
5_2

28. Kuperberg, G.: A subexponential-time quantum algorithm for the dihedral hidden
subgroup problem. SIAM J. Comput. 35(1), 170–188 (2005)

29. Maino, L., Martindale, C.: An attack on SIDH with arbitrary starting curve. IACR
Cryptol. ePrint Arch., p. 1026 (2022). https://eprint.iacr.org/2022/1026

30. May, A.: How to meet ternary LWE keys. In: Malkin, T., Peikert, C. (eds.)
CRYPTO 2021. LNCS, vol. 12826, pp. 701–731. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-84245-1_24

31. May, A., Meurer, A., Thomae, E.: Decoding random linear codes in Õ(20.054n).
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Abstract. The Fujisaki-Okamoto (FO) transform (CRYPTO 1999 and
JoC 2013) turns any weakly (i.e., IND-CPA) secure public-key encryption
(PKE) scheme into a strongly (i.e., IND-CCA) secure key encapsulation
method (KEM) in the random oracle model (ROM). Recently, the FO
transform re-gained momentum as part of CRISTAL-Kyber, selected by
the NIST as the PKE winner of the post-quantum cryptography stan-
dardization project.

Following Fischlin (ICALP 2005), we study the complete non-
malleability of KEMs obtained via the FO transform. Intuitively, a KEM
is completely non-malleable if no adversary can maul a given public key
and ciphertext into a new public key and ciphertext encapsulating a
related key for the underlying blockcipher.

On the negative side, we find that KEMs derived via FO are not
completely non-malleable in general. On the positive side, we show that
complete non-malleability holds in the ROM by assuming the underlying
PKE scheme meets an additional property, or by a slight tweak of the
transformation.

Keywords: Non-malleability · Key encapsulation · Public-key
cryptography

1 Introduction

Public-key encryption (PKE) allows Alice to encrypt a message under a Bob’s
public key, so that Bob can decrypt the ciphertext using the corresponding
secret key. Several security notions for PKE have been proposed in the literature.
The most basic one, namely indistinguishability against chosen-plaintext attacks
(IND-CPA) requires that an adversary, given the public key, cannot distinguish
between the encryption of two messages.
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Non-malleability. As noted for the first time by Dolev et al. [9], IND-CPA appears
to be insufficient for many applications. Consider for instance the setting of private
auctions. Here, a bidder can sample its own pair of public/secret keys, encrypt
the bid b using the public key, and send the encryption together with the public
key to the auctioneer. After all the participants have sent their bid, the auctioneer
can declare the winner by asking each party to reveal the secret key (or the bid
itself, along with the random coins used for encryption). A malicious user, given a
ciphertext c containing the bid of another party, can try to construct a ciphertext
c′ that, when decrypted, leads to a bid b′ such that b′ > b.

In light of such malleability attacks, stronger security notions for PKE
schemes have been introduced. These include the notions of non-malleability
under chosen-plaintext and chosen-ciphertext attacks [3,6,9,19] (NM-CPA and
NM-CCA), and indistinguishability under chosen-ciphertext attacks (IND-CCA).
All of these notions imply that the attacker, given the public key and a target
ciphertext, is unable to craft a mauled ciphertext whose underlying plaintext is
related to the one contained in the target ciphertext.

Complete Non-malleability. In 2005, Fischlin [12] noted that non-malleability
might be still insufficient for some applications. In fact, the above notions do
not account for the possibility that the attacker may try to maul the public key
as well. For instance, consider again the setting of private auctions. A malicious
user, knowing a ciphertext c and the public key pk, may try to craft a public
key pk′ and a ciphertext c′ which encrypt a bid b′ > b. To capture these attacks,
Fischlin introduced complete non-malleability, which rules out such adversaries.

As noted by Fischlin himself, completely non-malleable PKE has several
useful applications, including key-agreement protocols with security against
unknown key attacks, and signature schemes with security against strong
unforgeability attacks (as needed, e.g., in e-cash systems).

Known Constructions. Fischlin [12] showed that a simple variant of RSA-OAEP
is completely non-malleable in the random oracle model (ROM).1 Ventre and
Visconti [23] later gave two constructions of completely non-malleable PKE
in the common reference string (CRS) model, based on non-interactive zero-
knowledge (NIZK) proofs for all of NP.

Subsequent work provided more efficient constructions of completely non-
malleable PKE without random oracles, using both pairing-based assumptions
[7,16] and lattice-based assumptions [21,22].

1.1 Our Contributions

In practice, due to its computational overhead, PKE is never used to encrypt
long messages. Rather, as it happens in many real-world protocols (including
TLS), the parties use public-key techniques in order to establish a common

1 He also proves that the original version of RSA-OAEP, as well as the Cramer-Shoup
PKE [8], is not completely non-malleable.
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secret key for a blockcipher, which can be later used in order to encrypt any
subsequent communication of arbitrary length. In the literature this paradigm
is also known as the key/data encapsulation method (KEM/DEM), or simply
hybrid encryption. This motivates our main question:

Can we get efficient constructions of completely non-malleable PKE via the
KEM/DEM paradigm?

Our main contribution is a positive answer to the above question. Namely,
we put forward natural notions of complete non-malleability for KEMs and show
that these notions are sufficient to imply completely non-malleable PKE with
small ciphertext rate. Furthermore, we show that an already existing, widely-
used, KEM meets our notions. We elaborate on these contributions below.

Definitions. A key encapsulation method (KEM) is made of two algorithms: An
encapsulation algorithm that, given the public key pk, outputs a ciphertext c
encapsulating a secret key K; and a decapsulation algorithm that, given the
secret key sk corresponding to pk, allows to recover K. Similarly to PKE, several
non-malleability properties for KEMs have been introduced.

In Sect. 3, we put forward three indistinguishability-based variants of com-
pletely non-malleable KEMs (dubbed NM-CPA*, NM-CCA1* and NM-CCA2*),
capturing different flavors of chosen-plaintext and chosen-ciphertext attacks.

In the full version [13], we further define the corresponding simulation-based
variants (dubbed SNM-CPA*, SNM-CCA1* and SNM-CCA2*), and show the
equivalence between the NM-ATK* and SNM-ATK* notions for ATK ∈ {CPA,
CCA1,CCA2}. More specifically, we show that for NM-CPA* and SNM-CPA*
the equivalence holds for so-called complete relations, while for NM-CCA1* and
SNM-CCA1*, and for NM-CCA2* and SNM-CCA2*, the equivalence holds for
a restricted set of relations called lacking relations. These findings are in line
with the work by Ventre and Visconti [23], who showed analogous results for
completely non-malleable PKE.

Analysis of Fujiaski-Okamoto. As our main contribution, we analyze the com-
plete non-malleability of the Fujiaski-Okamoto (FO) transform [14]. Recall that
the FO transform turns any IND-CPA secure PKE into an IND-CCA secure
KEM in the ROM, without affecting the ciphertext size, and at the cost of a
very small extra computation effort w.r.t. the underlying PKE scheme (when the
RO is replaced with a real-world hash function like SHA-256). Recently, the FO
transform re-gained momentum as part of CRISTAL-Kyber, selected by the NIST
as the PKE winner of the post-quantum cryptography standardization project
[18]. In this light, we believe that investigating further security properties of the
FO transform is a very natural research question.

Our analysis follows the modular analysis of the FO transform due to
Hofheinz et al. [15]. Here, one interprets the FO transform as a sequence of
two transformations T and U:
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– The transformation T starts with any IND-CPA PKE. The encryption algo-
rithm runs the encryption algorithm of the underlying PKE scheme but sets
its randomness to G(m), where G is a RO. The decryption algorithm runs
the decryption algorithm of the underlying PKE scheme, and returns ⊥ if the
decrypted message m′ is ⊥ or if the encryption of m′ with randomness G(m′)
does not equal the ciphertext.

– The transformation U takes a PKE scheme satisfying different flavours of
one-wayness (which are achieved by the transformation T), and outputs an
IND-CCA secure KEM. This transformation essentially comes in 2 variants.2

Um calculates the encapsulated key K by randomly choosing a message m
from the message space of the underlying PKE scheme, encrypting m under
pk, and then computing K as H(m), where H is a RO. U instead computes
the key as H(m, c).

First, in Sect. 4.1, we show a concrete attack against the transformation
Um that works even when considering the weakest flavour of complete non-
malleability (i.e., NM-CPA*). We take the El-Gamal PKE scheme as the base
PKE scheme to be transformed by T and U into a KEM scheme. In particular,
we prove that an adversary can appropriately maul the public key pk and the
ciphertext c encrypting m, and come up with a ciphertext c′ encrypting the
same message m under a different public key pk′. Since the encapsulated key
computed by Um is H(m), the key encapsulated by c and c′ will be the same.
Thus, complete non-malleability is trivially broken.

Second, in Sect. 4.2, we show that the transformation U is not completely non-
malleable. To see this, it suffices to take a contrived PKE scheme in which we
add a dummy bit to the public key of a PKE scheme satisfying the one-wayness
properties required by the transformation U. This additional bit is completely
ignored by the encryption algorithm and does not effect one-wayness. However,
one can trivially break complete non-malleability by flipping the last bit of the
public key. On the positive side, we show that U does achieve complete non-
malleability assuming the underlying PKE scheme meets a natural public-key
uniqueness property, where the latter essentially means that an adversary cannot
come up with different public keys pk, pk′ for which there exist a message m and
a ciphertext c such that c is a valid encryption of m under both pk and pk′.
Indeed, we point out that uniqueness seems to be a standard property to achieve
non-malleability, e.g. quasi-unique responses for Fiat-Shamir signatures [11,12].

Finally, in Sect. 4.3, we show how to tweak the transform U in order to obtain
complete non-malleability without requiring public-key uniqueness. For this, it
suffices to compute the key K as H(m, c, pk). This way, even if the attacker can
break public-key uniqueness, the random oracle will ensure that the two encap-
sulated keys are independent. We notice that a similar technique was already
used in [10], where regular CCA security of the FO transform in the multi-
user setting is achieved by adding just a fraction of the public key with high

2 Each of U and Um also comes in 2 variants, but the difference is irrelevant for what
follows.
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min-entropy as an input to the hash function. However, it is not clear whether
complete non-malleability of FO is achievable with such a slight modification.

Relation with Completely Non-malleable PKE. In Sect. 5, we show that by
combining a completely non-malleable KEM with a non-malleable secret-key
encryption (SKE) scheme we obtain a completely non-malleable PKE using the
KEM/DEM paradigm. Furthermore, we observe that one can always obtain a
completely non-malleable KEM by encrypting a random secret key via a com-
pletely non-malleable PKE.

1.2 Related Work

Nagao et al. in [17] analyze standard non-malleability in the context of key
encapsulation. In particular, they consider different flavours of non-malleable
KEM, such as NM-CPA, NM-CCA1 and NM-CCA2.

Ventre and Visconti [23] note that the stronger CCA2 notion of complete non-
malleability is not strictly necessary for some of the applications proposed by Fis-
chlin [12]. Hence, they put forward weaker flavours of complete non-malleability,
and establish the relations between the standard comparison-based notions NM-
ATK* and their simulation-based counterparts SNM-ATK* for ATK ∈ {CPA,
CCA1,CCA2}. They also give two constructions of completely non-malleable
NM-CCA2* secure PKE: one in the CRS model using NIZK proofs for all of NP,
and one in the plain model using interactive encryption.

Barbosa and Farshim [1] consider an equivalent indistinguishability-based
notion of complete non-malleability based on so-called strong CCA security,
in which the (strong) decryption oracle provides decryptions under arbitrarily
chosen public keys. Duman et al. [10] analyze CCA security of the FO transform
in the multi-user setting.

2 Preliminaries

In this section we introduce some basic notation and recall a few standard defi-
nitions that will be used later to prove some of our results.

2.1 Notation

We use calligraphic letters to denote sets, such as X , and lower-case letters for
variables, such as x. We use x ←$ X to indicate that x is picked uniformly at
random from X . A similar notation is used in the presence of a randomized or
probabilistic algorithm A. Indeed, x ←$ A(·) means that x is the output of the
randomized algorithm A. Alternatively, when a random coin r is given as an input
of A, we equivalently write x := A(·; r). All the algorithms we will consider are
PPT (Probabilistic Polynomial Time), i.e. for any input x ∈ {0, 1}∗ and random
coin r, A(x; r) terminates in at most polynomial many steps, in the size of its
inputs. When an algorithm A has access to a set of oracles {O1, . . . ,On}, we use
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the notation AO1,...,On , to indicate that A can interact in a black-box manner
with oracles O1, . . . ,On during its computation. We denote with λ ∈ N the
security parameter and we will assume that all the algorithms we will consider
take λ as an input. A function ν : N → [0, 1] is negligible if for every polynomial
p(n) ∃N ∈ N s.t. ∀n0 ≥ N, ν(n0) < 1

p(n0)
. We denote with negl(λ) any function

that is negligible in λ. Given two random variables X and Y , we denote X ≈c Y
when X and Y are computationally indistinguishable, and with X ≡ Y when X
and Y are identically distributed.

2.2 Public-Key Encryption

A public-key encryption (PKE) scheme Π consists of three algorithms (Gen,
Enc,Dec), together with a message space M (which we assume to be efficiently
recognizable) where:

– The key generation algorithm Gen takes as input 1λ and outputs a public-
private key pair (pk, sk).

– The encryption algorithm Enc takes as inputs a public key pk and a message
m ∈ M, and outputs an encryption c of the message m under pk.

– The deterministic decryption algorithm Dec takes as inputs a decryption key
sk and a ciphertext c, and outputs either a message m ∈ M, or ⊥ (denoting
failure).

Next, we define both correctness and security of PKE as needed for our purposes.
Some of the definitions below are taken verbatim from [15].

Definition 1 (γ-uniformity). Let Π = (Gen,Enc,Dec) be a PKE scheme with
message space M. Given (pk, sk) ←$ Gen(1λ), a message m ∈ M and a ciphertext
c we define the γ-uniformity function as follows

γ(m, c) = Pr [c = Enc(pk,m)] ,

where the probability is taken over the choice of the random coins used for
encrypting m under pk.

We say that Π is γ-uniform if, for any (pk, sk) ∈ Gen(1λ), any message
m ∈ M, and any ciphertext c ∈ {0, 1}∗, it holds that γ(m, c) ≤ γ.

Definition 2 (δ-correctness). Let Π = (Gen,Enc,Dec) be a PKE scheme with
message space M. A PKE scheme Π = (Gen,Enc,Dec) is δ-correct if

E
[

max
m∈M

Pr [Dec(sk, c) �= m | c ←$ Enc(pk,m)]
]

≤ δ,

where the expectation is taken over the sampling of (pk, sk) ←$ Gen(1λ).
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OW-PCA and OW-PCVA. We recall the definitions of one-wayness under
plaintext checking attacks (OW-PCA) and one-wayness under plaintext and
validity checking attacks (OW-PCVA).

Definition 3 (OW-ATK). Let Π = (Gen,Enc,Dec) be a public-key encryption
scheme with message space M. We define the following PKEow-atk games for
atk ∈ {pca, pcva}

Experiment PKEow-atk
Π,A (λ)

(pk∗, sk∗) ←$ Gen(1λ)

m∗ ←$ M
c∗ ←$ Enc(pk∗, m∗)

m′ ←$ AO1(pk, c∗)

return PCO(sk∗, m′, c∗)

Oracle PCO(sk∗,m, c)

return 1 iff

(Dec(sk∗, c) = m) ∧ (m �= ⊥)

Oracle CVO(c∗)(sk∗, c)

m := Dec(sk∗, c)

return 1 iff m �= ⊥

In the experiment above,

if atk = pca then O1 = PCO(sk∗, ·, ·),
if atk = pcva then O1 = PCO(sk∗, ·, ·),CVO(c∗)(sk∗; ·),

where CVO(c∗)(sk, ·) means that A is allowed to query the CVO algorithm for any
ciphertext distinct from the challenge ciphertext c∗. We say that Π is OW-ATK
secure if for all PPT A, Pr

[
PKEow-atk

Π,A (λ) = 1
]

≤ negl(λ).

Complete Non-malleability. Finally, we recall the indistinguishability-based
security definition for completely non-malleable PKE as defined by Ventre and
Visconti [23].

Definition 4 (NM-CPA*, NM-CCA1*, NM-CCA2*). Let Π = (Gen,Enc,
Dec) be a public-key encryption scheme, an let A = (A1,A2) be a PPT adversary.
For atk ∈ {cpa, cca1, cca2} and λ ∈ N then we have that PKEnm-atk∗

Π,A (λ) ≈c

PKEnm-atk∗
Π,A,$ (λ). The experiments PKEnm-atk∗

Π,A (λ) and PKEnm-atk∗
Π,A,$ (λ) are defined

as follows:



314 D. Friolo et al.

Experiment PKEnm-atk∗
Π,A (λ)

(pk∗, sk∗) ←$ Gen(1λ)

(M, s) ←$ AO1
1 (pk)

m∗ ←$ M
c∗ ←$ Enc(pk∗, m∗)

(pk, R, c) ←$ AO2
2 (M, pk∗, s, c∗)

return 1 iff ∃(m, r) s.t.

(c = Enc(pk, m; r)) ∧
(c �= c∗ ∨ pk �= pk∗) ∧
(m �= ⊥) ∧ R(m, m∗, pk, pk∗, c)

Experiment PKEnm-atk∗
Π,A,$ (λ)

(pk∗, sk∗) ←$ Gen(1λ)

(M, s) ←$ AO1
1 (pk)

m∗, m̃ ←$ M
c∗ ←$ Enc(pk∗, m∗)

(pk, R, c) ←$ AO2
2 (M, pk∗, s, c∗)

return 1 iff ∃(m, r) s.t.

(c = Enc(pk, m; r)) ∧
(c �= c∗ ∨ pk �= pk∗) ∧
(m �= ⊥) ∧ R(m, m̃, pk, pk∗, c)

In the experiments above

if atk = cpa then O1 = ε and O2 = ε,

if atk = cca1 then O1 = Dec(sk∗, ·) and O2 = ε,

if atk = cca2 then O1 = Dec(sk∗, ·) and O2 = Dec(c
∗)(sk∗, ·),

where Dec(c)(sk, ·) means that A is allowed to query Dec oracle for any ciphertext
distinct from the challenge ciphertext c∗.

2.3 Secret-Key Encryption

A secret-key encryption scheme (SKE) consists of a triple of algorithm (Gen,Enc,
Dec) together with a message space M and a key space K, in which:

– The key generation algorithm Gen takes as input 1λ and outputs a secret key
K ∈ K.

– The encryption algorithm Enc takes as input the secret key K ∈ K and a
message m ∈ M, and outputs a ciphertext c.

– The decryption algorithm Dec takes as input the secret key K ∈ K and a
ciphertext c, and outputs a message m ∈ M, or ⊥ denoting failure.

Let us consider the flavour of correctness needed for our scopes.

Definition 5 (Correctness). A SKE scheme Π = (Gen,Enc,Dec) is correct if

Pr
[
Dec(sk, c) = m | K ←$ Gen(1λ); c ←$ Enc(K,m)

]
= 1.

To make our security proofs go through, we use the non-malleability security
definition NM-ATK with ATK ∈ {CPA,CCA1,CCA2} introduced by Bellare
et al. [2]. As highligthed in [4,5] the original definitions were introduced the
asymmetric setting [6,9,20] but can be “lifted” to the symmetric setting using
the encryption oracle based template of [2]. Hence, by leveraging the results of
Bellare et al [6], NM-ATK for ATK ∈ {CPA,CCA1,CCA2} is equivalent to the
indistinguishability-based counterpart IND-ATK [4–6].
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Definition 6 (NM-CPA, NM-CCA1, NM-CCA2). Given a set of relations
R, a SKE scheme Π is NM-ATK secure with respect to any relation R ∈ R, if
for any NM-ATK adversary A = (A0,A1), SKEnm-atk

Π,A (λ) ≈c SKEnm-atk
Π,A,$ (λ). The

experiments are defined as follows

Experiment SKEnm-atk
Π,A (λ)

K∗ ←$ K
(M, s) ←$ AO1

0 (1λ)

m∗ ←$ M
c∗ ←$ Enc(K∗, m∗)

(R, c′) ←$ AO2
1 (M, s, c∗)

m′ := Dec(K∗, c′)

return 1 iff

(m′ �= ⊥) ∧ (c′ �= c∗) ∧ R(m∗, m′)

Experiment SKEnm-atk
Π,A,$ (λ)

K∗ ←$ K
(M, s) ←$ AO1

0 (1λ)

m∗, m̃ ←$ M
c∗ ←$ Enc(K∗, m∗)

(R, c′) ←$ AO2
1 (M, s, c∗)

m′ := Dec(K∗, c′)

return 1 iff

(m′ �= ⊥) ∧ (c′ �= c∗) ∧ R(m̃, m′)

In the experiments above

if atk = cpa then O1 = Enc(K∗, ·) and O2 = Enc(K∗, ·),
if atk = cca1 then O1 = Enc(K∗, ·),Dec(K∗, ·) and O2 = Enc(K∗, ·),
if atk = cca2 then O1 = Enc(K∗, ·),Dec(K∗, ·) and O2 = Enc(K∗, ·),Dec(c

∗)(K∗, ·),

where Dec(c
∗)(K∗, ·) means that A is allowed to query the Dec oracle for any

ciphertext c distinct from the challenge ciphertext c∗.

3 Completely Non-malleable KEMs

In this section, we formally introduce key encapsulation methods (KEMs).
Then, following the work on completely non-malleable PKE schemes of Fis-
chlin [12], and then Ventre and Visconti [23], we extend the notions of com-
plete non-malleability of PKEs to the context of KEMs. We follow a similar
blueprint of [23] (that, in turn, bases its definitions on [3]) by introducing
three indistinguishability-based security notions for completely non-malleable
KEMs dubbed NM-CPA*, NM-CCA1* and NM-CCA2*. We further intro-
duce, in the full version [13], three simulation-based notions dubbed SNM-
CPA*, SNM-CCA1* and SNM-CCA2* and investigate the relationship between
indistuinghishability-based and the simulation-based notions.

A KEM scheme consists of a triple of algorithms Π = (Gen,Encaps,Decaps),
together with a key space K, in which:

– The key generation algorithm Gen takes as input 1λ and outputs a public-
private key pair (pk, sk).
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– The encapsulation algorithm Encaps takes as input a public key pk, and out-
put a ciphertext c as well as a key K.

– The decapsulation algorithm Decaps takes as input a private key sk and a
ciphertext c and returns a key K ∈ K or ⊥ (denoting failure).

First of all, we start by considering the flavour of correctness needed for our
scopes.

Definition 7 (ε-correctness). A KEM scheme Π = (Gen,Encaps,Decaps) is
ε-correct if

Pr
[
Decaps(sk, c) �= K | (pk, sk) ←$ Gen(1λ); (c,K) ←$ Encaps(pk)

] ≤ ε.

Before diving into the definitions complete non-malleability for KEMs, we
introduce the notion of complete relation for KEMs, firstly defined by Fischlin
[12] in the setting of completely non-malleable PKE. A complete relation R in
the KEM setting is a probabilistic algorithm taking as inputs two public keys
pk and pk′, two encapsulation keys K and K∗, and a ciphertext c′. It outputs 1
if the relation is satisfied, and 0 otherwise. We will refer as R to be the set of
complete relations.

In the indistinguishability-based notion of complete non-malleability, we ask
the adversary to distinguish between two experiments. In both of them, we let
the adversary learn the challenge public key, ciphertext and encapsulated key,
and then make the adversary output a new public key pk′, a relation R and a
new ciphertext c′. If there exists a key K′ �= K and randomness r such that c′ and
K′ can be obtained by running the encapsulation algorithm with pk′ �= pk∗ and
randomness r, then the experiment will output 1. In the left-side experiment
the adversary will receive the key K∗ encapsulated in c∗, while in the right-
side experiment the key K∗ is sampled randomly and hence totally unrelated
from the key encapsulated in the received ciphertext. Note that the adversary
may come up with a triple (pk′, R, c′) such that there exists a key encapsulated
in c′ satisfying the relation R(K′,K∗, pk′, pk∗, c′), but the adversary may have
negligible advantage in distinguishing whether the key was encapsulated in c∗

or it was randomly chosen.

Definition 8 (NM-CPA*, NM-CCA1*, NM-CCA2*). Given a set of
relations R, a key-encapsulation mechanism Π = (Gen,Encaps,Decaps) is NM-
ATK* secure with respect to any relation R ∈ R, if for any NM-ATK* adversary
A = (A1,A2) for atk ∈ {cpa, cca1, cca2} and for all λ ∈ N, KEMnm-atk∗

Π,A (λ) ≈c

KEMnm-atk∗
Π,A,$ (λ).
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The experiments are defined as follows:

Experiment KEMnm-atk∗
Π,A (λ)

(pk∗, sk∗) ←$ Gen(1λ)

st ←$ AO1
1 (pk∗)

(c∗,K∗) ←$ Encaps(pk∗)

(pk′, R, c′) ←$ AO2
2 (pk∗, c∗,K∗, st)

return 1 if ∃(K′, r) such that

((c′,K′) = Encaps(pk′; r)) ∧
(pk′ �= pk∗ ∨ K′ �= K∗) ∧ (K′ �=⊥)

∧ R(K′,K∗, pk′, pk∗, c′)

Experiment KEMnm-atk∗
Π,A,$ (λ)

(pk, sk) ←$ Gen(1λ)

st ←$ AO1
1 (pk∗)

K∗ ←$ {0, 1}λ

(ĉ, ̂K) ←$ Encaps(pk∗)

(pk′, R, c′) ←$ AO2
2 (pk∗, ĉ,K∗, st)

return 1 if ∃(K′, r) such that

((c′,K′) = Encaps(pk′; r)) ∧
(pk′ �= pk∗ ∨ K′ �= K∗) ∧ (K′ �=⊥)

∧ R(K′,K∗, pk′, pk∗, c′)

In the experiments above,

if atk = cpa then O1 = ε and O2 = ε,

if atk = cca1 then O1 = Decaps(sk∗, ·) and O2 = ε,

if atk = cca2 then O1 = Decaps(sk∗, ·) and O2 = Decaps(c
∗)(sk∗, ·),

where Decaps(c
∗)(sk, ·) means that A is allowed to query Decaps algorithm for

any ciphertext distinct from the challenge ciphertext c∗.

In [12], Fischlin showed that there exist encryption and signatures schemes
that are not NM-CCA2* secure, even though they are NM-CCA2 secure, i.e. the
CCA secure in standard non-malleability notion of PKE (see [6] for the formal
definition). As we show in the following theorem, this holds also in the case of
KEMs. Let ATK ∈ {CPA,CCA1,CCA2}.

Theorem 1. Assume that there exists a NM-ATK secure KEM Π = (Gen,
Encaps,Decaps); then there exists a NM-ATK secure KEM Π ′ = (Gen′,Encaps′,
Decaps′) which is not NM-ATK* secure.

The proof of the theorem appears in Appendix A.1.

4 Analysis of Fujisaki-Okamoto Transforms

In the following, we analyze complete non-malleability of the FO transforms.
To do that, we will consider the modular treatment of the FO transforms
pursued by [15]. Each FO transform is an application of two transformations,
namely T and U. T takes as input an IND-CPA/OW-CPA secure PKE scheme
Π = (Gen,Enc,Dec) and a random oracle G, and outputs a deterministic
OW-PCVA PKE scheme Π1 = (Gen1,Enc1,Dec1) (when Π is OW-CPA, it
should also satisfy γ-uniformity for a sufficiently large γ). The encryption algo-
rithm of the transformed PKE runs the encryption algorithm of the under-
lying IND-CPA secure PKE scheme Π but uses G(m) as its randomness, i.e.
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Enc1(pk,m) := Enc(pk,m;G(m)). The decryption algorithm runs the decryption
algorithm of the underlying PKE scheme, i.e. m′ := Dec(sk, c), and returns ⊥
if m′ = ⊥ or the re-encryption of m under public-key pk and randomness G(m)
does not match with c, i.e. if Enc(pk,m′;G(m′)) �= c.

Given a PKE scheme satisfying OW-PCVA or some different flavour of one-
wayness (depending on the transformation we are going to use) and a random
oracle H, four variant of the transformation U can be used to produce an IND-
CCA2 KEM scheme. In fig Fig. 1 we recall the algorithms needed to instantiate
the the U⊥ and U�⊥ transformations. The algorithms for the U⊥

m and U�⊥
m transfor-

mations are the same of U⊥ and U�⊥ respectively, except that the encapsulation
algorithm computes the key K as H(m), and the decapsulation algorithm outputs
K := H(m) when m �= ⊥.

Fig. 1. Algorithms needed by the transformations U⊥[Π1,H] = (Gen1,
Encaps,Decaps⊥) and U�⊥[Π1,H] = (Gen⊥,Encaps,Decaps �⊥).

In Sect. 4.1, we will analyze the U⊥
m/U�⊥

m transformations and show that they
are not completely non-malleable by giving an attack that can be performed
when the underlying OW-PCVA PKE scheme is obtained by applying the trans-
formation T to a widely known IND-CPA PKE scheme.

Then, in Sect. 4.2, we will analyze the U⊥/U�⊥ transformations and show that
they are not completely non-malleable by constructing a contrived OW-PCVA
PKE scheme that, when given as input to U⊥/U�⊥, leads to a KEM whose NM-
ATK* security can be easily broken. Then, we show that it suffices to assume a
very natural property of the underlying OW-PCVA PKE scheme, named public-
key uniqueness, to achieve complete non-malleability.

Finally, in Sect. 4.3, we show that it is possible to achieve a completely non-
malleable KEM without assuming public-key uniqueness of the underlying PKE
scheme with a little tweak to U⊥/U�⊥.
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4.1 Analysis of the U⊥/ �⊥
m Transformations

In the following, we will show that U⊥
m and U�⊥

m transformations lead to a KEM
that is not completely non-malleable. In particular, we show a concrete attack
that can be carried out to both Π̃⊥

m := U⊥
m[T[Π,G],H] and Π̃ �⊥

m := U�⊥
m[T[Π,G],H]

even against the weaker notion of NM-CPA*. Let Π be the El-Gamal encryption
scheme.

When running the experiment KEMnm-cpa∗
Π̃⊥

m,A
(λ) with Π̃⊥

m (resp. Π̃ �⊥
m), an effi-

cient adversary A receives as input a public key pk∗ = (params, h), the challenge
ciphertext c∗, and an encapsulation key K∗. The challenge ciphertext c∗ is com-
puted as (c∗

1 = gr, c∗
2 = hr · m∗) with r = G(m∗), params = (G, g, q), where g is

the generator of a cyclic group G of order q, h = gx for x ←$ Zq, and m∗ is a
randomly sampled message from G. The challenge key K∗ is either the output
of the encapsulation algorithm on input m∗ (i.e., K∗ = H(m∗)), or it is sampled
from the uniform distribution over the key space K.

Now, A can craft a new public key pk′ = (params, h · gx′
), for x′ ←$ Zq, and a

ciphertext c′ = (c∗
1, c

∗
2 ·c∗

1
x′

). It is straightforward to see that, since Enc(pk′,m′) =
(gr, g(x+x′)rm∗) = c′, there exist a key K′ such that (c′,K′) = Encaps(pk′), where
c′ = Enc(pk′,m∗). Finally, since K′ := H(m′) with m′ = m∗, then K′ = K∗.

Now, A can define the relation between pk∗ and pk′ as follows:

Rpk(pk∗ = (params, h), pk′ = (params, h′)) = 1 iff h′ = h · gx′
, x′ ∈ Zp.

Moreover, A can define the relation between K∗ and K ′ as the identity relation,
i.e. RK(K∗,K′) = 1 iff K∗ = K′. As shown above, A can come up with a pk′ �= pk
satisfying the relation R(K∗,K′, pk∗, pk, c′) = RK(K∗,K′) ∧ Rpk(pk∗, pk′). Such
relation, when the ciphertext c′ is computed as above (i.e. c′ = (c∗

1, c
∗
2 · c∗

1
x′

)),
leads the KEMnm-cpa∗

Π̃⊥
m,A

(λ) experiment output 1 and the KEMnm-cpa∗
Π̃⊥

m,A,$
(λ) output 0

with non-negligible probability.
In the following, we will show that the U⊥/ �⊥ transformations can be turned

into a completely non-malleable KEM without much effort.

4.2 Analysis of the U⊥/ �⊥ Transformations

The U⊥ and U�⊥ transformations do not naturally satisfy complete non-
malleability. Indeed, given an OW-PCVA PKE scheme Π = (Gen,Enc,Dec), we
can construct a contrived OW-PCVA PKE scheme Π ′ = (Gen′,Enc′,Dec′) that
is trivially insecure against the NM-CPA* experiment. The scheme Π ′ follows:

Algorithm Gen′(1λ)

(pk, sk) ←$ Gen(1λ)

b ←$ {0, 1}
pk′ := pk||b
return (pk′, sk)

Algorithm Enc′(pk′,m)

Parse pk′ = (pk, b)

c ←$ Enc(pk, m)

return c

Algorithm Dec′(sk,m)

m := Dec(sk, m)

return m
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It is straightforward to see that the adversary of NM-CPA*, when run with
Π̃⊥ := U⊥[Π ′,H], distinguishes between the two experiments with non-negligible
probability. Indeed, an adversary A can come up with a public key pk′ different of
the public key generated by Π̃⊥ that leads to the same ciphertext c∗ encapsulat-
ing K∗ as computed in the KEMnm-cpa∗

Π̃⊥,A
experiment. To be precise, the adversary

A might define a relation R(K∗,K′, pk∗, pk, ·) = RK(K∗,K′) ∧ Rpk(pk∗, pk′),
where RK(K∗,K′) is the identity function and Rpk(pk∗, pk′) = 1 iff, given that
pk∗ can be parsed as (pk, b) with b ∈ {0, 1}, then pk′ equals (pk, 1 − b). If c∗ is
the encryption of a message m∗ under pk∗, then it trivially encrypts m∗ under
pk′. Hence, the key K∗ := H(m∗, c∗) will be the same.

An idea to avoid such an artificial attack, is to restrict the set of admitted
PKE schemes to the ones for which such attack is not possible to carry out in the
first place. As we will show, this suffice to guarantee complete non-malleability of
Π̃⊥. To do that, we introduce a natural property called public-key uniqueness,
informally stating that it is infeasible for an adversary to come up with two
different public keys leading to the same ciphertext when encrypting the same
message. For example, in El-Gamal, the encryption of the same message with
two different public keys will always lead to a different ciphertext for any possible
random coins and any possible message. This property, which we formalize below,
is indeed achieved by most of the known PKE schemes.

Definition 9 (Public-Key Uniqueness). A public-key encryption scheme
Π = (Gen,Enc,Dec) with message space M is public-key unique if, for all
unbounded/PPT adversary A, there exists a negligible function negl(λ) such that

Pr
[
∃r, r′,m :

Enc(pk,m; r) = Enc(pk′,m; r′)
∧ (pk �= pk′)

∣∣∣∣ (pk, pk′) ←$ A(1λ)
]

≤ negl(λ).

We say that Π is perfect public-key unique if do not exist two public keys pk and
pk′ with pk′ �= pk such that Enc(pk,m; r) = Enc(pk′,m; r′) for any m ∈ M and
any randomness r, r′.

In the following, we show that the KEM Π̃⊥ = U⊥[Π1,H] is completely
non-malleable when the PKE Π1 is OW-PCVA and satisfies perfect public-key
uniqueness. Note that our result trivially extends when Π1 satisfies public-key
uniqueness against PPT or unbounded adversaries.

Theorem 2 (Π1 pk-unique OW-PCVA ROM===⇒ Π̃⊥ NM-CCA2*). Assum-
ing the existence of a random oracle H, if Π1 is a correct OW-PCVA secure PKE
(Definition 3) satisfying perfect public-key uniqueness (Definition 9), then Π̃⊥

defined as above is a correct NM-CCA2* secure KEM (Definition 8).

Proof. Correctness of Π̃⊥ trivially follows from the correctness of Π1. The idea
behind the proof is to simulate the decapsulation oracle without using the secret
key. We can do that by answering the decapsulation queries with a random
key, and next simulate the random oracle H by using the plaintext checking
oracle PCO(sk∗, ·, ·), provided by the OW-PCVA game. Furthermore, we will
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use the ciphertext validity oracle CVO(c∗)(sk∗, ·) in order to reject decapsulation
queries for invalid ciphertexts. Before proceeding with the proof we need to
make the following observations. Since a NM-CCA2* adversary against Π̃⊥ is
allowed to choose both the public key and the ciphertext, the decapsulation
oracle can receive ciphertexts encrypted using a public key pk′ �= pk∗. However,
since the decapsulation oracle does not know the secret key associated to pk′,
we cannot require to it to check the validity of such ciphertexts. In other words,
the decapsulation oracle is only required to check the validity of ciphertexts
encrypted using the challenge public key pk∗. A similar observation shall be done
for the oracle H. Due to the fact that also H can receive ciphertexts encrypted
using any public key distinct from pk∗, we should be able to check the validity
of such ciphertexts. In other words, given a message m and a ciphertext c, we
should allow H to check whether m = Dec1(sk′, c). However, since H doesn’t know
the secret key associated with pk′, this desired behavior cannot be achieved.
For this reason, the same approach used for Decaps

(c∗)
⊥ (sk∗, ·) applies. Let B be

a PPT adversary that breaks NM-CCA2* security of Π̃⊥ with non-negligible
probability issuing a polynomially bounded number of queries to Decaps⊥ and
H. The sequence of games we are going to consider is described in Fig. 2.

Lemma 1. KEMnm-cca2∗
Π̃⊥,B

(λ) ≡ GB
0 (λ).

Proof. Let us start by noticing that in game G0 the challenger takes a uni-
form message m∗, computes c∗ ←$ Enc1(pk∗,m∗), K∗ := H(m∗, c∗) and outputs
(pk∗, c∗,K∗). This game coincides exactly with the left experiment of the NM-
CCA2* definition. Thus, KEMnm-cca2∗

Π̃⊥,B
(λ) ≡ GB

0 (λ). ��

Lemma 2. GB
0 (λ) ≡ GB

1 (λ).

Proof. Differently from G0, in game G1 we have modified the oracles Decaps(c
∗)

⊥
and H in order to avoid the usage of the secret key. In particular, G1 defines two
sets LH and LD, where LH contains all entries of the form (m, c,K) when either
Decaps

(c∗)
⊥ is queried about a ciphertext c or H was queried about (m, c), and LD

contains all the entries (c,K) when either Decaps
(c∗)
⊥ is queried about c or H is

queried about (m, c) for m = Dec1(sk′, c). Now, we want to show that the view
of B in G0 and G1 is distributed exactly in the same manner. For this purpose,
let us consider a ciphertext c′ and a message m′ = Dec1(sk′, c′) for which B has
never been queried Decaps

(c∗)
⊥ :

– Case m′ = ⊥: in game G0, Dec1(sk′, c′) will return ⊥ to indicate that c′ is
a malformed ciphertext, which is exactly the behavior the Decaps

(c∗)
⊥ has in

game G1. Regarding the behavior of H, we can see that in both games H
returns a randomly chosen key.
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Fig. 2. Sequence of games needed to prove Theorem 2 and the consequential oracle
modifications.

– Case m′ �= ⊥: in game G0, Decaps
(c∗)
⊥ returns K := H(m′, c′) which is either

a fresh key randomly chosen from the key space if (m′, c′) has never been
queried to H, or taken from LH if (m′, c′) was already stored in LH . In game
G1 we need to consider two sub-cases:

• B first queries H about (m′, c′) and then queries Decaps
(c∗)
⊥ about c′: In

this case, H returns a key K which is either a fresh key randomly chosen
from the key space, or it is already stored in LH . Since Decaps

(c∗)
⊥ has not

been queried about c′ yet, H will add (c,K) to LD. Next, when Decaps
(c∗)
⊥

will be queried about c′, it will return a key K stored in LD that coincides
with the key stored in LH , as in game G0.
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• B first queries Decaps
(c∗)
⊥ about c′ and then queries H about (m′, c′): In

this case, Decaps
(c∗)
⊥ returns a randomly chosen K, which is added to

both LD and LH . Subsequently, when H is queried about (m′, c′), the
oracle will return the key K stored in LH that coincides with the key
K stored in LD. This ensures that Decaps

(c∗)
⊥ (c′) = H(m′, c′) = K, as in

game G0.

Therefore, we have that GB
1 (λ) ≡ GB

0 (λ). ��
Lemma 3. GB

1 (λ) ≈c GB
2 (λ).

Proof. In game G2 we make the following two modifications. First, the challenger
takes a uniformly sampled key rather than the real key output by the oracle H,
and second we make the oracle H output ⊥ when queried about (m∗, c∗). By
denoting the latter event QUERY, we notice that G1 and G2 are identically
distributed conditioned to the event QUERY not happening. Thus, the only
hope for the adversary to distinguish between the G1 and G2 is to trigger the
QUERY event in G2. It is easy to see that when B queries H in game G1 about
(m∗, c∗), H will return the challenge encapsulation key K∗. Instead, in game G2,
the game returns ⊥ when B queries H about (m∗, c∗). Let us now assume that
QUERY is not triggered. Since K∗ is either an output of H or a randomly chosen
value, the adversary can only try to distinguish by guessing the plaintext m∗ of
c∗, calculate K′ := H(m∗, c∗) and then check whether K′ is equal to K∗. However,
this coincides with the QUERY event. Alternatively, the adversary might try to
distinguish by making G1 always output 1, i.e. B may try to come up with a
tuple (pk′, R, c′) for which the relation R(K′,K∗, pk′, pk∗, c′) holds for a key K∗

produced by the encapsulation algorithm under pk′ (as in G1), but does not hold
when such key is randomly chosen (as in G2). Note that H is a random oracle, so
the set of possible relations is restricted to the ones having K′ = K∗ = H(m∗, c∗),
otherwise even a single bit different than (m∗, c∗) in the input of H leads to an
independent output. For such a relation the adversary may try to find a public
key pk′ for which the encapsulation of K∗ under pk′ leads to c∗. However, for the
perfect public-key uniqueness property of Π1, such public key does not exist.
Since K′ can be computed only by giving as input to H a pair (m′, c′) in which
either m′ �= m∗ or c′ �= c∗, such a key is independent from the challenge key.
Hence, the distribution of the adversary’s view in both games is identical given
that QUERY does not happen.

Now, to estimate Pr [QUERY] we construct an efficient adversary A breaking
OW-PCVA of Π1 when QUERY occurs. In particular, we define A in Fig. 3.
Notice that A perfectly simulates G1. Indeed, the occurrence of QUERY implies
that B has queried H about (m, c), in which (m, c) ∈ LH for m = m∗ and
c = c∗. A will return m = m∗ and win the OW-PCVA experiment. Since such
condition coincides with the QUERY event, we get that the probability of B of
triggering QUERY coincides with the probability of A in winning the OW-PCVA
experiment, i.e. Pr [QUERY] = Pr

[
PKEow-pcva

Π1,A (λ)
]
. ��
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Fig. 3. Adversary A breaking security of the underlying OW-PCVA PKE.

Lemma 4. GB
2 (λ) ≈c GB

3 (λ).

Proof. Notice that game G3 is identically distributed to G0, except that the
challenge encapsulation key is randomly chosen from the key space. We will
show that the view of B in G2 and G3 is identically distributed, under the
condition that the QUERY event does not occur.

Let us fix a ciphertext c′ and a message m′ = Dec2(sk∗, c′). We consider two
cases:

– Case m′ /∈ M: in game G3, when Decaps
(c∗)
⊥ is queried about c′, it will return

⊥, which is exactly what Decaps
(c∗)
⊥ returns in G2.

– Case m′ ∈ M. Here, we need to consider two sub-cases:
• B first queries Decaps

(c∗)
⊥ and then H: assume that neither Decaps(c

∗)
⊥ nor

H have been queried before about c′ and (m′, c′) respectively. In G2,
when B queries Decaps

(c∗)
⊥ , Decaps(c

∗)
⊥ will return a uniform key K, add

an entry of the form (c′,K) to LD and an entry of the form (m′, c′,K)
to LH . Next, when B queries H about (m′, c′, pk′), H will return the
same key returned by Decaps

(c∗)
⊥ since (m′, c′,K) ∈ LH . In G3, Decaps

(c∗)
⊥

will return a uniform key K = H(m′, c′). Next, when B queries H about
(m′, c′), H will return the same key K. Therefore, in both games we have
Decaps

(c∗)
⊥ = K = H(m′, c′).

• B first queries H and then Decaps
(c∗)
⊥ : As before, let us assume that nei-

ther Decaps
(c∗)
⊥ nor H have been queried before about c′ and (m′, c′)
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respectively. In G2, when B queries H, H will return a uniform key K

and add an entry of the form (c′,K) to LD. Next, when Decaps
(c∗)
⊥ is

queried about c′, Decaps
(c∗)
⊥ will return the same key returned by H,

since (c′,K) ∈ LD. In game G3 when B queries H, H will return a uni-
form key K and add an entry of the form (m′, c′,K) to LH . Next, when
Decaps

(c∗)
⊥ is queried about c′, Decaps

(c∗)
⊥ will return the same key K,

due to the fact that (m′, c′,K) ∈ LH . Thus, in both games we have
H(m′, c′) = K = Decaps

(c∗)
⊥ .

Since the only hope for the adversary is to trigger the QUERY event in G3, the
probability for B to distinguish between G2 and G3 is bounded by the probability
of winning the OW-PCVA game of the underlying PKE scheme. ��
Lemma 5. GB

3 (λ) ≡ KEMnm-cca2∗
Π̃1,B,$

(λ).

Proof. Since G3 is similar to G0, with the only difference that the encapsulation
key K∗ is uniform and independent from the one obtained by querying H, for the
same considerations that we did for G0, it holds that the two distributions are
identically distributed. ��

Combining the above lemmas, we get that KEMnm-cca2∗
Π̃⊥

1 ,B
(λ) ≈c

KEMnm-cca2∗
Π̃⊥

1 ,B,$
(λ). ��

4.3 Modified Transformation Û⊥

In the following, we leverage the idea of prefix hashing introduced by Duman et
al. [10], to construct a completely non-malleable KEM without requiring public-
key uniqueness of the underlying PKE. In particular, our Û⊥ is identical to U⊥,
except that now the encapsulation algorithm gives as input to the random oracle
H also the public key pk together with the message m and the ciphertext c from
the underlying PKE scheme, i.e. K := H(m, c, pk). Note that now the decapsu-
lation oracle must take as input also the challenge public key together with the
challenge secret key in order to recompute H(m, c, pk). The theorem below states
that Π̃⊥

1 := Û⊥[Π1,H] is completely non-malleable. Since the techniques used
to prove the theorem below are similar to the ones used to prove Theorem 2,
we will only highlight the changes in the sequence of games w.r.t. the proof of
Theorem 2, and the changes needed to prove some lemma when required.

Theorem 3 (Π1 OW-PCVA ROM===⇒ Π̃⊥
1 NM-CCA2*). Assuming the exis-

tence of a random oracle H, if Π1 is a correct OW-PCVA secure PKE (Definition
3), then Π̃⊥

1 defined above is a correct NM-ATK* secure KEM (Definition 8).

The proof of the theorem appears in Appendix A.2.
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5 Relation with Completely Non-malleable PKE

In the following, we will show which kind of relationships exist between a
NM-ATK* PKE schemes and NM-ATK* KEM schemes. We will proceed by
first showing that a NM-ATK* PKE scheme is intrinsically a NM-ATK* KEM
scheme, and next we will introduce a construction to prove that a NM-ATK*
KEM can be used together with a NM-ATK SKE scheme to construct a NM-
ATK* PKE scheme by using the KEM/DEM paradigm.

5.1 NM-ATK* PKE =⇒ NM-ATK* KEM

Wlog, we can assume that M = K. Let Π = (Gen,Enc,Dec) be a PKE scheme,
and Π ′ = (Gen,Encaps,Decaps) be a KEM scheme defined as follows:

Algorithm Encaps(pk)

K ←$ K
c ←$ Enc(pk,K)

return (c,K)

Algorithm Decaps(sk, c)

K := Dec(sk, c)

return K

Theorem 4 (NM-ATK* PKE =⇒ NM-ATK* KEM). If Π is a NM-
ATK* secure PKE (Definition 4) with respect to a set of relations R, then Π ′

is a NM-ATK* secure KEM (Definition 8) with respect to R.

The proof of the theorem appears in Appendix A.3.

5.2 NM-ATK* KEM + NM-ATK SKE =⇒ NM-ATK* PKE

It is well known that a KEM scheme alone doesn’t allow to build a PKE scheme,
due to the fact that an encapsulation algorithm can be instantiated by encrypting
a uniformly chosen message. To solve this issue, a secret-key encryption scheme
can be used along with a key-encapsulation mechanism.

Let Πkem = (Genkem,Encaps,Decaps) be a NM-ATK* KEM with key space
K, and Πske = (Genske,Enc,Dec) be a NM-ATK SKE scheme with message
space M and the same key space K of Πkem, we can construct a hybrid PKE
scheme Πhy = (Genhy,Enchy,Dechy) as defined below.

Algorithm Genhy(1λ)

(pk, sk) ←$ Genkem(1λ)

return (pk, sk)

Algorithm Enchy(pk,m)

(c,K) ←$ Encaps(pk)

c′ ←$ Enc(K, m)

return (c, c′)

Algorithm Dechy(sk, c)

K := Decaps(sk, c)

return m := Dec(K, c)

We prove that if Πkem is a completely non-malleable KEM and Πske is a
non-malleable SKE, then Πhy is a completely non-malleable PKE.
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Theorem 5. If Πkem is an NM-ATK* secure KEM (Definition 8) with respect
to a set of relations R and Πske is an NM-ATK secure SKE (Definition 6) with
respect to a set of relations R′ ⊆ R, then the scheme Πhy described above is a
NM-ATK* secure PKE scheme (Definition 4) with respect to R.

The proof of the theorem appears in Appendix A.4.

Acknowledgements. We thank all the anonymous reviewer for their insightful com-
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A Supporting Proofs

A.1 Proof of Theorem 1

Proof. The intuition behind the proof is to define the scheme Π ′ in such a
way that the adversary can leverage its structure to succeed in the NM-ATK*
experiment. In particular, we define Π ′ in the following way:

Algorithm Gen′(1λ)

(pk, sk) = Gen(1λ)

b ←$ {0, 1}
pk′ := pk||b
return (pk′, sk)

Algorithm Encaps′(pk′)

Parse pk′ as pk′ := pk||b
(c,K) ←$ Encaps(pk)

return (c,K)

Algorithm Decaps′(sk, c)

K := Decaps′(sk, c)

return K

We can clearly see that Π ′ is not NM-ATK* secure. Indeed, an efficient
adversary A receiving a public key pk, the challenge ciphertext c and an encap-
sulation key K (either the real or the fake one), just have to flip the last bit
of pk denoted pk′ := pk||b̄, a relation R and the challenge ciphertext c. In this
case, A will always succeeds in breaking NM-ATK* security of Π ′. However, Π ′

is still NM-ATK secure. Indeed, this is true because the adversary has to break
NM-ATK security of Π ′ under the key pk, but for how Π

′
is defined, this is

equivalent to break NM-ATK security of Π. If an adversary is able to break
NM-ATK security of Π ′, then he can also break NM-ATK security of Π, and
this represent a contradiction to our assumption that Π is NM-ATK secure. ��

A.2 Proof of Theorem 3

Proof. The sequence of games and the consequential differences in the oracles
are described in Fig. 4.

The proofs that KEMnm-cca2∗
Π̃⊥

1 ,B
(λ) ≡ GB

0 (λ), GB
0 (λ) ≡ GB

1 (λ), and that GB
2 (λ)

≈c GB
3 (λ) are identical to Lemma 1, 2 and 4 respectively.

Lemma 6. GB
1 (λ) ≈c GB

2 (λ).
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Proof. The proof is identical to Lemma 3, except that now we do not use public
key uniqueness of the underlying PKE scheme to argue that the G1 and G2

are identically distributed conditioned to the fact that the event QUERY does
not happen. In this case, the adversary can try to distinguish between G1 and
G2 by guessing the plaintext m∗ of c∗, calculate K′ := H(m∗, c∗, pk∗) and then
check whether K′ is equal to K∗ or not. However, this coincides with the QUERY
event. Alternatively, the adversary might try to distinguish making G1 always
output 1, i.e. B tries to come up with a tuple (pk′, R, c′) for which the relation
R(K′,K∗, pk′, pk∗, c′) holds for a key K∗ encapsulated by c∗ under pk′ (as in
G1), but does not hold when such key is randomly chosen (as in G2). However,
for the random oracle assumption, since pk′ is part of the input of H, the key
K′ := H(m∗, c∗, pk′) will be independent from K∗ := H(m∗, c∗, pk∗). Thus, the
distribution of G1 and G2 is identical when QUERY is not triggered.

Fig. 4. Sequence of games needed to prove Theorem 3 and the consequential modifi-
cations of the oracles.
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Fig. 5. Adversary A breaking security of the underlying OW-PCVA PKE.

As in Lemma 3, to estimate Pr [QUERY] we construct an efficient adversary
A breaking OW-PCVA of PKE1 when QUERY occurs. We define A in Fig. 5.

Notice that A perfectly simulates G1. Indeed, the occurrence of QUERY
implies that B has queried H about (m, c, pk), in which (m, c, pk) ∈ LH for
m = m∗, c = c∗ and pk = pk∗. A then returns m = m∗. Since such event
coincides with QUERY, we get that the probability of B of triggering QUERY
coincides with the probability of A in winning the OW-PCVA experiment, i.e.
Pr [QUERY] = Pr

[
PKEow-pcva

Π1,A (λ)
]

≤ negl(λ). ��

Lemma 7. GB
3 (λ) ≡ KEMnm-cca2∗

Π̃1,B,§ (λ).

Proof. Since G3 is similar to G0, with the only difference that the encapsulation
key K∗ is uniform it is independent from the one obtained by querying H, for
the same considerations that we did for G0, it holds that the two distributions
are identically distributed. ��

Combining the above lemmas, we get that KEMnm-cca2∗
Π̃⊥

1 ,B
(λ) ≈c

KEMnm-cca2∗
Π̃⊥

1 ,B,$
(λ). ��

A.3 Proof of Theorem 4

Proof. Let us assume that there exists a PPT adversary A that breaks NM-ATK*
security of Π ′ with non-negligible probability, then we can build an efficient
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distinguisher D that breaks NM-ATK* security of Π. The intuition behind the
proof is that D will choose a distribution over the message space in such a way
that only two messages, say K and K′, can be sampled by the the challenger
playing NM-ATK* of the PKE scheme Π. In particular, D does the following:

1. Takes as input a public key pk and chooses a message distribution M from
which only two messages can be chosen, which we call K and K′.

2. Takes as input a challenge ciphertext c which is either an encryption of K
under pk or an encryption of K′ under pk.

3. Run A(pk, c,K). When A asks a decapsulation-oracle query for a ciphertext ĉ
do the following:
(a) Query the decryption oracle Dec(sk∗, ·) about ĉ to obtain a key K̂.
(b) Return K̂ to A.

4. When A returns (pk′, R, c′), return (pk′, R, c′) as well.

Let us analyze the behavior of D. First, notice that, independently from c, D
will always send the tuple (pk, c,K) to A. Recall also that the message space of
c is restricted to messages K and K′. In particular, when c is an encryption of K
under pk, D the view of A when run as a subroutine of D is identically distributed
to its view in KEMnm-atk∗

Π′,A (λ). When c is an encryption of K′ under pk, since K′

is uniform and independent from K, the view of A when run as a subroutine
of D is distributed identically to its view in KEMnm-atk∗

Π′,A,$ (λ). To summarize, the
probability that D distinguishes between PKEnm-atk∗

Π,D (λ) and PKEnm-atk∗
Π,D,$ (λ) is

the same of A distinguishing between KEMnm-atk∗
Π′,A,$ (λ) and KEMnm-atk∗

Π′,A,$ (λ), that
we assumed to be non-negligible. ��

A.4 Proof of Theorem 5

Proof. Correctness of the obtained PKE follows from the ε-correctness of the
underlying KEM and SKE schemes. The idea behind the proof is that, given
the challenge ciphertext c∗ = (c∗

1, c
∗
2), we can use NM-ATK* security of Πkem

to decouple the key encapsulated in c∗
1 from the key used in c∗

2 to encrypt the
message with the underlying SKE scheme Πske. At this point, since the encap-
sulated key is randomly chosen and independent from the encryption key, it is
not possible to for A to distinguish between a correct encryption (i.e., where
the encapsulated key and the encryption key are the same) and an encryption
where the key encapsulated in c∗ is randomly chosen and independent from the
one used to encrypt c∗

2. This holds even if A is allowed to maul pk∗ into some
related public key pk′. The next step is to use the NM-ATK security of Πske

to decouple m∗ from the relation R, i.e. given a ciphertext c∗
2 encrypting m∗, it

is infeasible for an adversary to distinguish between the experiment where the
relation R was checked by using either m∗ or m̃. Finally, NM-ATK* security of
Πkem can be used to re-join together the key encapsulated in c∗

1 with the key
used to encrypt m in c∗

2. Let A = Ahy, the sequence of games is described in
Fig. 6. The part of the proof required for a specific flavour of NM-ATK* will be
highligthed with a tag [NM-ATK*].
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Lemma 8. G0(λ) ≈c G1(λ).

Proof. Let us assume that Ahy can distinguish between G0 and G1 with non-
negligible probability. We can construct an adversary Anm breaking NM-ATK*
security of Πkem. Anm behaves as follows:

1. Take as input a public key pk∗, a ciphertext c and a key K̂, where either
K̂ = K∗ (the key encapsulated in c) or K̂ ←$ K.

2. Run Ahy(pk∗).
[NM-CCA*1/NM-CCA2*] When Ahy asks a decryption-oracle query about a
ciphertext (c1, c2) query Decaps(sk∗, ·) about c1 to obtain a key K′ and return
m := Dec(K′, c2).

Fig. 6. Sequence of games needed to prove Theorem 5.
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When Ahy outputs a message distribution M, take a uniform message m
←$ M, compute c ←$ Enc(K,m) and return c∗ = (c, c′) to Ahy.

3. [NM-CCA2*] When Ahy asks a decryption-oracle query about a ciphertext
(c1, c2) do the following:

– if c1 = c and c2 = c′ then return m := ⊥ (i.e. the query is not admissible).
– if c1 = c and c2 �= c′ then return m := Dec(K̂, c2).
– else, query Decaps(c

∗)(sk∗, ·) about c1 to obtain a key K′ and return m :=
Dec(K′, c2).

4. When Ahy outputs (pk, R, (c1, c2)), output (pk, R′, c1), where R′(·, ·, pk, pk∗, c)
= R(·, ·, pk, pk∗, c).

Notice that, since the only difference between G0 and G1 is that in G1 the
key is chosen at random, the only hope for he adversary Ahyb to distinguish
between the two hybrids is by finding a relation holding between pk, pk∗, and
c that is satisfied in G0 but not in G1 (or vice-versa). Hence, R′(·, ·, pk, pk∗, c)
= R(·, ·, pk, pk∗, c) is indeed a suitable relation for Anm. When K̂ taken as input
by Anm is K∗, then Anm perfectly simulates G0. When K̂ taken as input by Anm

is randomly chosen, Anm perfectly simulates G1. If Ahy distinguishes between
G0 and G1 with non-negligible probability, then Anm breaks NM-ATK* security
of the underlying KEM scheme with non-negligible probability. This leads to a
contradiction. ��
Lemma 9. G1(λ) ≈c G2(λ).

Proof. Let us assume that Ahy can distinguish between G1 and G2 with non-
negligible probability, we construct an adversary Aatk breaking NM-ATK secu-
rity of Πske. Aatk behaves as follows:

1. Receive as input a key K.
2. Generate a pair (pk∗, sk∗) ←$ Genkem(1λ).
3. Run Ahy(pk∗).

[NM-CCA*1/NM-CCA2*] When Ahy asks a decryption-oracle query about
a ciphertext (c1, c2), query the decryption oracle Dec(K̂, ·) of the NM-CCA
experiment about c2 to obtain a message m.

4. When Ahy outputs a message distribution M, output M to the challenger.
5. When receiving a ciphertext c′ from the challenger, compute (c∗

1,K
∗) ←$

Encaps(pk∗), and output (c∗
1, c

′) to Ahy.
6. [NM-CCA2*] When Ahy asks a decryption-oracle query about a ciphertext

(c1, c2) do the following:
– if c1 = c∗

1 and c2 = c′ then return m := ⊥ (i.e. the query is not admissible).
– else, query Dec(c

′)(K̂, ·) about c2 to obtain m := Dec(K′, c2). Then, out-
puts m to Ahyb.

7. When Ahy outputs (pk, R, (c1, c2)), Aatk output (R′, c2) to the challenger,
where R′(m0,m1) = R(m0,m1, ·, ·, ·). The challenger either checks R′(m,m∗)
= 1 where m∗ := Dec(K̂, c′) if Aatk is in SKEnm-atk

Πske,Aatk or checks if R′(m, m̃)
= 1 if m̃ is an randomly chosen message independent from c∗. Note that the
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only difference between G1 and G2 is that the game checks that m∗ given as
an input to R is encrypted in c∗

2, whereas in G2 the relation R takes as an
input a random m̃. Thus, the only hope for Ahyb in distinguishing between
the two hybrids is by finding a relation holding between m and m∗ but not
between m and m̃ (or vince-versa). Thus, we are allowed to cast R′(m0,m1) as
R(m0,m1, ·, ·, ·). When the relation R takes m∗ in input, then Aatk perfectly
simulates G1. When the relation R takes a random m̃ in input, Aatk perfectly
simulates G2.

If Ahy distinguishes between G1 and G2 with non-negligible probability, then
Aatk breaks NM-ATK security of the underlying SKE scheme with non-negligible
probability. This leads to a contradiction. ��
Lemma 10. GA

2 (λ) ≈c GA
3 (λ)

Proof. Let us assume that Ahy can distinguish between G2 and G3 with non-
negligible probability, we construct an adversary Anm breaking NM-ATK* secu-
rity of Πkem. Anm behaves as follows:

1. Takes as input a public key pk∗, a ciphertext c and a key K̂, where either
K̂ = K∗ (the key encapsulated in c) or K̂ ←$ K.

2. Run Ahy(pk∗).
[NM-CCA*1/NM-CCA2*] When Ahy asks a decryption-oracle query about a
ciphertext (c1, c2) query Decaps(sk∗, ·) about c1 to obtain a key K′ and return
m := Dec(K′, c2).

3. When Ahy outputs a message distribution M, take two uniform messages
m, m̃ ←$ M, compute c ←$ Enc(K,m) and return c∗ = (c, c′) to Ahy.

4. [NM-CCA2*] When Ahy asks a decryption-oracle query about a ciphertext
(c1, c2) do the following:

– if c1 = c and c2 = c′ then return m := ⊥ (i.e. the query is not admissible).
– if c1 = c and c2 �= c′ then return m := Dec(K̂, c2).
– else, query Decaps(c

∗)(sk∗, ·) about c1 to obtain a key K′ and return m :=
Dec(K′, c2).

5. When Ahy outputs (pk, R, (c1, c2)), output (pk, R′, c1), where R′(·, ·, pk, pk∗, c)
= R(·, ·, pk, pk∗, c).

Notice that, since the only difference between G2 and G3 is that in G2 the
key is chosen at random, the only hope for he adversary Ahyb to distinguish
between the two hybrids is by finding a relation holding between pk, pk∗, and
c that is satisfied in G2 but not in G3 (or vice-versa). Hence, R′ is a suitable
relation for Anm. When the kehy K̂ taken as input by Anm is randomly chosen,
it perfectly simulates G2. When the key K̂ taken as input by Anm is K∗, then
Anm perfectly simulates G3. If Ahy distinguishes between G2 and G3 with non-
negligible probability, then Anm breaks NM-ATK* security of the underlying
KEM scheme with non-negligible probability. This leads to a contradiction. ��

It is easy to see that GA
0 (λ) ≡ PKEnm-atk∗

Πhy,A (λ) and that GA
3 (λ) ≡

PKEnm-atk∗
Πhy,A,$ (λ). by combining the above lemmas, we have that PKEnm-atk∗

Πhy,A (λ) ≈c

PKEnm-atk∗
Πhy,A,$ (λ). ��
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1 DIENS, École normale supérieure, CNRS, Inria, PSL University, Paris, France
{ky.nguyen,david.pointcheval}@ens.fr

2 LTCI, Telecom Paris, Institut Polytechnique de Paris, Palaiseau, France
hieu.phan@telecom-paris.fr

Abstract. Research on (Decentralized) Multi-Client Functional Encryp-
tion (or (D)MCFE) is very active, with interesting constructions, espe-
cially for the class of inner products. However, the security notions have
been evolving over the time. While the target of the adversary in dis-
tinguishing ciphertexts is clear, legitimate scenarios that do not consist
of trivial attacks on the functionality are less obvious. In this paper, we
wonder whether only trivial attacks are excluded from previous security
games. And, unfortunately, this was not the case.

We then propose a stronger security notion, with a large definition of
admissible attacks, and prove it is optimal: any extension of the set of
admissible attacks is actually a trivial attack on the functionality, and
not against the specific scheme. In addition, we show that all the previous
constructions are insecure w.r.t. this new security notion. Eventually, we
propose new DMCFE schemes for the class of inner products that provide
the new features and achieve this stronger security notion.

Keywords: Functional Encryption · Corruptions · Security Notions

1 Introduction

Decentralized Multi-Client Functional Encryption. Multi-Input Func-
tional Encryption (MIFE) and Multi-Client Functional Encryption (MCFE),
together with their decentralized variants [15,21,22], have been receiving a
strong interest from the cryptographic community. They generalize the nice func-
tional encryption primitive [13,29] where the single input x, in the encryption
procedure, is split into an input vector (x1, . . . , xn), and the components can
be encrypted independently, possibly by different senders/clients in MCFE. An
index i for each component, and a (typically time-based) tag tag for MCFE, are
used for every encryption ci = Enc(i, tag, xi). From the n encrypted components
under the same tag tag, anyone owning a functional decryption key dkf , for the
n-ary function f , can compute f(x1, . . . , xn) but nothing else about the individ-
ual xi’s. In this paper, we focus on a standard and optimal security model for the
most general form of MCFE, namely decentralized MCFE, where the generation
of functional decryption keys is also split between multiple clients.
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Previous Corruption Model for (D)MCFE. In previous (D)MCFE, encryp-
tion was claimed to require a private key eki per client, for each component ci,
because of deterministic encryption. Then, some of these keys might get corrupted.
InDMCFE, where multiple clients contribute to generate the decryption functional
keys and also own secret keys ski, and some can get corrupted. Therefore, there
exists potential corruption of two categories of keys regarding DMCFE that need
to be dealt with: a private encryption key eki for encryption and a secret key ski for
generating functional keys. The proposed corruption model in the work onDMCFE
by Chotard et al. [15] is: when an adversary corrupts a client i, it receives both
(ski, eki). However, this does not reflect the real-life situation. In fact, the encryp-
tion keys eki’s and the secret keys ski’s can have different levels of protection (ski

looks more critical than eki) and can be stored on different devices. This is thus
a strong restriction to get both keys in case of corruption. Actually, this corrup-
tion model was employed in the previous DMCFE constructions for inner products
fy(x) = 〈x,y〉, as the numbers of ski’s and eki’s are equal, and in most of them
particularly, ski is either included in eki, e.g. [15,16,24], or they are the same, e.g.
[2,3,7]1. But this might not always be the case. Specifically, for quadratic functions
computing fA(x) = x�Ax as considered in [6,8], one could have n2 secret keys
skj for the square matrix A and n encryption keys eki only for the input vector x.
Hence, the holders of skj ’s and eki’s might differ.

Previous Notions of Admissible Attacks against (D)MCFE. Generally,
studying an advanced cryptographic primitive involves formalizing the ubiq-
uitous perception of trivial attacks when devising its security notion, those
that exploit only the functionality of the primitive to trivially break any spe-
cific constructions. A standard example is the case of identity-based encryp-
tion [11,12,18,30], of which the widely agreed security notion forbids the adver-
sary to obtain the secret key of any identity that could decrypt the challenge
ciphertext. In our case of (D)MCFE, everything becomes much more compli-
cated due to the computational aspect of the function class and the corruption
in multi-user setting. Following the introduction of (D)MCFE in the seminal
paper [15], to the best of our knowledge, all follow-up studies on (D)MCFE,
for instance [2,3,7,16,17,24], administered an admissibility condition in order
to prohibit trivial attacks, and restricted particularly adversaries to asking the
challenge components x∗

0[i] = x∗
1[i] in case of a corrupted i. Attacks that satisfy

the admissibility condition are called admissible attacks. Nonetheless, there was
no satisfactory justification for such a restriction, except that all the construc-
tions used a deterministic encryption, and so the corruption of eki could allow to
re-encrypt x∗

0[i] and compare with the challenge ciphertext. This was thus also
the similar argument to support private encryption keys. Since then, relaxing the
foregoing constraint was widely believed to be insurmountable for constructing
(D)MCFE schemes and proving their security.

1 The work of [7] constructs function-hiding dynamic decentralized FE, which directly
yields a DMCFE with a stronger property of function secrecy. Even though their pro-
posed security model captures separated corruption of eki and ski, implying they are
different, their dynamic decentralized FE construction uses the same key for both and
so does the resulting DMCFE, i.e. ski = eki for every i.
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An Improved Security Model for DMCFE. Since previous security notions
of DMCFE turn out unstable, the main goal of this paper is to propose a fair
and optimal security model.

Separating Corruptions of eki and ski. Our first step is thus to separate
the corruption of skj from that of eki, i.e. the adversary must specify which type
of keys it wants to corrupt. This gives more flexibility to the adversary. However,
its goal remains the same: distinguish between the encryption of x∗

0 and x∗
1 in

the challenge ciphertext. We notice that this new corruption model captures
the previous “both-or-nothing” model in previous works and any scheme that is
secure in this new fine-grained model will also be secure in the old one. A very
recent work by Agrawal et al. [7] also defined a security model with similar fine-
grained corruption, though as mentioned earlier (see footnote 3) their subsequent
DMCFE scheme for inner products has ski = eki for every i and by corrupting
one an adversary will obtain both keys.

Refining Admissibity for A Stronger Security. Our next objective con-
sists in challenging the belief from previous admissibility conditions and relaxing
the restriction x∗

0[i] = x∗
1[i] in case of a corrupted i. A more relaxed admissiblity

means more attacks will be considered, leading to a stronger security notion. To
summarize, we revise the security model for (D)MCFE and

1. We provide a new security model for DMCFE under separated corruption
of keys and less restrictive admissibility condition. Our security model
covers the security model in all previous works, in the sense that being
secure in the former implies being secure in the latter.

In Sect. 3.1, we give the intuition of our new formulation for admissibility con-
dition. This new definition will require probabilistic encryption, which exclude
the need of private encryption keys. Our security model will thus also consider
public-key encryption, as some security still holds when all the encryption keys
eki are corrupted. Note however this might make sense for limited classes of
functions only and becomes completely meaningless when both (eki, ski) can be
corrupted at once.

Optimality. At the core of our new security model is a more relaxed admissi-
bility condition. Up to this point one may well wonder if there is still room to
relax our condition, in the same way we have done to the admissibility condition
put forth since the birth of DMCFE in [15]. Our goal is to analyze this question
in a rigorous manner. This turns out to be notoriously hard because we aim to
settle this infamous problem with satisfactory justifications whenever a new con-
dition is introduced. Intuitively, since all prior works did not elaborate formally
whether an admissibility condition must be respected or it is just optional, we
have to start from scratch to formalize how “indispensable” a condition is. We
thus address this optimality question and this leads to our second contribution:

2. We provide a new framework to prove the optimality of our new notion
of admissible attacks. More formally, this allows us to show that any non-
admissible attack would actually break any efficient construction for the
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functionality. This proves that we only exclude attacks that are at the
functionality level and not at the scheme level.

We believe that the conceptual message from our methodology is one main con-
tribution of this paper. We refer to Sect. 3.3 for a detailed explanation of our
modeling choices as well as the encountered problems.

Impact and Feasibility. While we have shown our security notion to be opti-
mal w.r.t. the functionality for a class of functions, there are two remaining ques-
tions, with respect to this new admissibility notion: are the previous constructions
secure? Can we construct concrete schemes for non-trivial functionalities?

First, we can show that the class of inner products is a non-trivial class.
Furthermore, it has been widely studied, with several candidates: the DDH-
based MCFE for inner products from [2,15,17] cannot be proven secure in our
model, due to the following attack, which was artificially excluded in the previ-
ous security models. For any corrupted key eki, it was required that x∗

0[i] = x∗
1[i],

because of the deterministic encryption: an adversary corrupts client 1 among
n clients to get ek1, then queries the function y with y[1] = 0 and challenges
(x∗

0[i],x
∗
1[i])i∈[n] such that x∗

0[1] �= x∗
1[1] and 〈x∗

0,y〉 = 〈x∗
1,y〉. Then, the adver-

sary encrypts x∗
1[1] on their own using ek1. By comparing with the obtained

ciphertext on x∗
b [1], such an adversary can decide correctly on b. In addition to

these DDH-based constructions, in a work by Libert and Titiu [24], the authors
proposed the first LWE-based MCFE in the standard model. The ciphertext com-
ponents of this scheme is somewhat randomized by some small Gaussian error,
but the above attack still works by choosing x∗

0[1] �= x∗
1[1] that are far from

each other, then deciding based on the norm of the two ciphertexts’ difference2.
We note that the above attack gives a byproduct that complements our first
contribution

1-bis. Our security model is strictly stronger than the security model in
almost all previous works, in the sense that prior concrete schemes cannot
be proven secure in ours.

Besides the theoretical part introducing and proving our optimal security notion
for DMCFE, we also propose new constructions in the DDH setting which meet
the proposed level of security. This requires a number of new technical ideas, in
particular a technique for achieving admissibility via revocation (in a different
way than [5]) and using dual pairing vector spaces (DPVS) [26–28], to build a
probabilistic encryption scheme.

Roughly speaking, our new admissibility when translated for the particular
cases of inner-products introduces one condition that for all corrupted clients i,
for eki, for all functional key query y, it must hold that

(x∗
0[i] − x∗

1[i]) · y[i] = 0 . (1)

Previous security models required x∗
0[i] = x∗

1[i], but we now have to deal with
the case x∗

0[i] �= x∗
1[i] and y[i] = 0 additionally. A necessary condition is that our

2 We use the metrics employed in the context of the LWE-based (D)MCFE in [24].
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encryption must be probabilistic (otherwise, the attack described in the previ-
ous paragraph applies). However, that is not enough because we want semantic
security for the ciphertext component cti of x∗

b [i] as well, where b
$← {0, 1} is

the challenge bit. When we view this problem under the lens of revocation sys-
tems, similarities emerge: as soon as the special value 0 is set for y[i], we want
to nullify the ability for recovering information about x∗

b [i]. The foregoing fits
well in the context of revocation. Conveniently, the work by Agrawal et al. [5]
solved the “dual” problem, namely using IPFE to construct revocation systems,
and along the way, the authors of [5] presented a DDH-based IPFE that we
can embed locally into the vectors in DPVS, components by components. We
leverage this idea to concoct DPVS-based DMCFE schemes for inner-product
functionality and achieve security under the condition (1). In the end, our third
contribution is

3. We demonstrate the feasibility of our new security model by present-
ing DDH-based DMCFE schemes for inner products over polynomially
bounded ranges using pairings, the first concrete scheme whose security
holds against fine-grained corruptions and a less restrictive admissiblity.

More high-level details are provided in Sect. 3.4.

2 Preliminaries

We write [n] to denote the set {1, 2, . . . , n} for an integer n. For any q ≥ 2, we
let Zq denote the ring of integers with addition and multiplication modulo q.
For a prime q and an integer N , we denote by GLN (Zq) the general linear group
of degree N over Zq. We write vectors as row-vectors, unless stated otherwise.
For a vector x of dimension n, the notation x[i] indicates the i-th coordinate of
x, for i ∈ [n]. We will follow the implicit notation in [20] and use �a� to denote
ga in a cyclic group G of prime order q generated by g, given a ∈ Zq. This
implicit notation extends to matrices and vectors having entries in Zq. We use
the shorthand ppt for “probabilistic polynomial time”. In the security proofs,
whenever we use an ordered sequence of games (G0,G1, . . . ,Gi, . . . ,GL) indexed
by i ∈ {0, 1, . . . , L}, we refer to the predecessor of Gj by Gj−1, for j ∈ [L].

2.1 Hardness Assumptions

We state the assumptions needed for our constructions.

Definition 1. In a cyclic group G of prime order q, the Decisional Diffie-
Hellman (DDH) problem is to distinguish the distributions

D0 = {(�1�, �a�, �b�, �ab�)} D1 = {(�1�, �a�, �b�, �c�)}.

for a, b, c
$← Zq. The DDH assumption in G assumes that no ppt adversary can

decide the DDH problem with non-negligible probability.
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In the bilinear setting (G1, G2, Gt, g1, g2, gt, e, q), the Symmetric eXternal
Diffie-Hellman (SXDH) assumption makes the DDH assumption in both G1

and G2.

Definition 2. In the bilinear setting (G1, G2, Gt, g1, g2, gt, e, q), the Decisional
Bilinear Diffie-Hellman (DBDH) problem is to distinguish the distributions

D0 = {(�a�1, �b�1, �b�2, �c�2, �abc�t)} D1 = {(�a�1, �b�1, �b�2, �c�2, �r�t)}.

for a, b, c, r
$← Zq. The DBDH assumption in (G1, G2, Gt, g1, g2, gt, e, q) assumes

that no ppt adversary can decide the DBDH problem with non-negligible proba-
bility.

2.2 Dual Pairing Vector Spaces

Our constructions rely on the Dual Pairing Vector Spaces (DPVS) framework in
prime-order bilinear group setting (G1, G2, Gt, g1, g2, gt, e, q) and G1, G2, Gt are
all written additively. The DPVS technique dates back to the seminal work by
Okamoto-Takashima [26–28] aiming at adaptive security for ABE as well as IBE,
together with the dual system methodology introduced by Waters [31]. In [23],
the setting for dual systems is composite-order bilinear groups. Continuing on
this line of works, Chen et al. [14] used prime-order bilinear groups under the
SXDH assumption. Let us fix N ∈ N and consider G

N
1 having N copies of G1.

Any x = �(x1, . . . , xN )�1 ∈ G
N
1 is identified as the vector (x1, . . . , xN ) ∈ Z

N
q .

There is no ambiguity because G1 is a cyclic group of prime order q. The 0-
vector is 0 = �(0, . . . , 0)�1. The addition of two vectors in G

N
1 is defined by

coordinate-wise addition. The scalar multiplication of a vector is defined by
t · x := �t · (x1, . . . , xN )�1, where t ∈ Zq and x = �(x1, . . . , xN )�1. The addi-
tive inverse of x ∈ G

N
1 is defined to be −x := �(−x1, . . . ,−xN )�1. Viewing

Z
N
q as a vector space of dimension N over Zq with the notions of bases, we

can obtain naturally a similar notion of bases for G
N
1 . More specifically, any

invertible matrix B ∈ GLN (Zq) identifies a basis B of G
N
1 , whose i-th row bi

is �B(i)�1, where B(i) is the i-th row of B. The canonical basis A of G
N
1 con-

sists of a1 := �(1, 0 . . . , 0)�1,a2 := �(0, 1, 0 . . . , 0)�1, . . . ,aN := �(0, . . . , 0, 1)�1. It
is straightforward that we can write B = B · A for any basis B of G

N
1 corre-

sponding to an invertible matrix B ∈ GLN (Zq), for the change of basis. We
write x = (x1, . . . , xN )B to indicate the representation of x in the basis B, i.e.
x =

∑N
i=1 xi ·bi. Given a basis B = (bi)i∈[N ] of G

N
1 , we define B∗ to be a basis of

G
N
2 by first defining B′ := (B-1)� and the i-th row b∗

i of B∗ is �B′(i)�2. It holds
that B · (B′)� = IN the identity matrix and bi ×b∗

j = �δi,j�t for every i, j ∈ [N ],
where δi,j = 1 if and only if i = j. Treating G

N
2 similarly, we can furthermore

define a product of two vectors x = �(x1, . . . , xN )�1 ∈ G
N
1 ,y = �(y1, . . . , yN )�2 ∈

G
N
2 by x × y :=

∏N
i=1 e(x[i],y[i]) = �〈(x1, . . . , xN ), (y1, . . . , yN )〉�t. We call the

pair (B,B∗) dual orthogonal bases of (GN
1 , GN

2 ). If B is constructed by a random
invertible matrix B

$← GLN (Zq), we call the resulting (B,B∗) a pair of random



342 K. Nguyen et al.

dual bases. A DPVS is a bilinear group setting (G1, G2, Gt, g1, g2, gt, e, q,N) with
dual orthogonal bases. In this work, we also use extensively basis changes over
dual orthogonal bases, the details are recalled in the full version [25].

3 Technical Overview

3.1 Motivations for a Refinement on Admissibility

In the seminal work on DMCFE for a function class F by Chotard et al. [15], the
authors define the security game with oracles

(Initialize,Corrupt,LoR,DKeyGenShare,Enc,Finalize)

between a challenger and an adversary. The oracle Initalize sets up the param-
eters, including the number of clients n and their secret-encryption key pairs
(ski, eki). The oracle DKeyGenShare produces functional key components for
F ∈ F using ski under some function tag tag-f ∈ Tag, while LoR is the left-or-
right oracle, which outputs the challenge ciphertext component of x∗

b [i] under
tag ∈ Tag upon receiving (x∗

0[i],x
∗
1[i]) for b

$← {0, 1}. An adversary can corrupt
any client i of his choice by querying Corrupt so as to receive both (ski, eki).

In the end, a set of conditions is specified such that the adversary wins the
game only when they conform to these conditions and outputs a correct b′ equal
to the challenge bit b. The main reason there are such conditions is to focus only
on the scenarios where a notion of semantic security really makes sense in this
DMCFE setting. In this paper we call an attack that satisfies such conditions an
admissible attack. Checking these conditions is done by a Finalize procedure
in the security game, according to the sets C of corrupted clients (asked to
Corrupt), H of honest clients, and Q of key queries (asked to DKeyGenShare)
during the attack. To recall from [15, Definition 2, 5], the adversary’s output is
ignored and replaced by a random bit, i.e the attack is NOT admissible, if one
of the following holds:

1. There exists a corrupted client i ∈ C such that the i-th components of the
challenge messages (x∗

0,x
∗
1) are not the same, i.e. x∗

0[i] �= x∗
1[i].

2. There exists a tag tag ∈ Tag (respectively, tag-f ∈ Tag) and i �= j ∈ H such
that the j-th challenge component (respectively, key component) is queried
but the i-th challenge component (respectively, key component) is not.

3. None of the two above conditions are satisfied, but there exists a function F
queried to DKeyGenShare that differs on (x∗

0,x
∗
1), i.e. F (x∗

0) �= F (x∗
1).

Our observation is that only the condition 3 can be justified for the sake of
avoiding trivial attacks, while the other conditions 1 and 2 do not have sat-
isfactory explanations. About condition 1, we have seen from the attacks in
the paragraph Impact and Feasibility of Sect. 1 that this condition is arti-
ficial and unfortunately excludes also non-trivial attacks. About condition 2,
follow-up works [16,17] and other results on the subject [2–4,19] show that we
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can completely remove this constraint. Our objective now becomes devising a
less restrictive admissible condition, which should capture and generalize only
condition 3. We recall that a less restrictive condition implies more attacks will
be considered non-trivial and we obtain a stronger security model.

3.2 Towards a New Admissibility Condition Under Separated
Corruption of Keys

Our first step is to separate the corruption of ski from that of eki, i.e. the adversary
has to specify which type of keys with respect to component i he wants to corrupt.
All prior works allow the adversary to corrupt both keys at once. This separation
helps us define in a finer way which information the adversary can deduce using
each type of corrupted keys, and thus even deal with public-key encryption. As
a result, we have sets of corrupted and honest clients (Cskey,Hskey), (Cekey,Hekey),
independently for the secret keys (skj)j and the encryption keys (eki)i. This
even allows to have independent sets of clients owning the secret keys (skj)j and
the encryption keys (eki)i. Our complete security experiment can be found in
Fig. 1. Being already mentioned in Previous Corruption Model for (D)MCFE
of Sect. 1, to the best of our knowledge, almost all prior proposed constructions
of (D)MCFE can not handle separate corruption of eki and ski, for example,
see [2,3,7,15,16,24], despite the fact that a such separation is meaningful and is
indeed discussed notably in the security model of [7].

Next, we represent an n-ary function F : D1 × · · · × Dn → R of a function
class F by a length-m vector of parameters from Param1 ×· · ·×Paramm, given by
a deterministic encoding p : F → Param1 × · · · × Paramm and m can be different
from n. Given such representations as vectors for both inputs and functions, we
define the notion deducible inputs and functions (see Definition 3). More specif-
ically, let Hinp ⊆ [n],Hfunc ⊆ [m] and suppose we are given xinp ∈ (Di)i∈Hinp

and yfunc ∈ (Parami)i∈Hfunc
as lists of inputs and parameters that are indexed

by Hinp,Hfunc respectively. A vector z is deducible from xinp if their coordinates
at positions in Hinp are the same. Similarly, a function G is deducible from yfunc

if its parameters coincide at positions in Hfunc with yfunc. Intuitively, the lists
(xinp,yfunc) play the role of “honest” predetermined input’s components and func-
tion’s parameters, whilst the deducible (z, G) signifies what the adversary can infer
by manipulating the remaining “corrupted” parts of the input and function.

Being equipped with this notion of deducible inputs and functions, our admis-
sible condition is formulated as:

Given the sets (Hskey,Hekey), an attack is NOT admissible if there exist
tag, tag-f ∈ Tag, a function F ∈ F with parameters y = (yj)j∈[m],
two challenges (x∗

0,x
∗
1) := (x(0)

i , x(1)
i )i∈[n] such that (F, tag-f) is queried to

DKeyGenShare, ((x(0)
i , x(1)

i )i∈[n], tag) is queried to LoR and there exists
a pair (z(0), z(1)) deducible from (x(0)

ekey,x
(1)

ekey), a function G deducible from
yskey satisfying G(z(0)) �= G(z(1)) where we define yskey := (yi)i∈Hskey

and for
b ∈ {0, 1}, x(b)

ekey := (x(b)
i )i∈Hekey

.
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It can be verified that if an attack satisfies the previous notion of admissibility
in the original work [15], such an attack will satisfy our notion of admissibility
as well. Moreover, we can adapt naturally our admissibility from DMCFE to
MCFE3 and also demonstrate that the prior DDH-based constructions for MCFE
with deterministic encryption, for example from [2,15,17] to name a few, as
well as an LWE-based construction for MCFE from [24] with slightly randomized
encryption by Gaussian errors, cannot be proven secure in our new model by
giving a concrete admissible attack, as already explained in Sect. 1.

3.3 Optimality of the New Admissibility: A Conceptual Challenge

After formulating a new admissibility condition, one natural question arises: Is
this the most suitable condition? From a conceptual point of view, we want to
prove that

For certain function classes, our admissibility cannot be relaxed, i.e. one
cannot admit some non-admissible attack following our definition and still
hope to be able to construct some specific efficient scheme that is provably
secure.

Unsurprisingly, this poses a great definitional problem.
First of all, in all previous studies on (D)MCFE starting from [15], the admis-

sibility concerns adversaries in the security game. Hence, if we want to prove
the above claim, we need to consider all possible adversaries that can run non-
admissible attacks and argue that they must be excluded. This is hard to argue
rigorously, for example, what happens if a “dummy” adversary behaves in a non-
admissible way but in the end outputs only a random guess for the challenge
bit? Therefore, our very first step is to define the admissibility condition differ-
ently and take into account general attacks instead of adversaries. Afterwards,
our optimality notion for an admissibility condition on attacks is stated that:

An admissibility is optimal for F if we can construct a passive ppt distin-
guisher S that receives some non-admissible attack coming from the queries
of an adversary A to a challenger Chall in the game for a DMCFE E , uses
only properties of F , and devises a generic strategy to output the correct
challenge bit with significant probability in the security game against any
arbitrary DMCFE E ′.

Intuitively, S passively observes the non-admissible queries in the attack from
some specific interaction between A against some specific scheme E . Yet, these
queries helps S come up with a general approach to win significantly against any
DMCFE scheme in a game that allows such non-admissible behaviors. This means
it is impossible to prove security whenever this kind of behaviors is allowed.
We formalize all these details in Definition 11 and Theorem 12, Remark 14
elaborates more on the proof of our optimality claim. In the full version [25], our
3 The admissibility for MCFE is the particular condition when Hskey = [m] and thus
yskey = y, meaning the only deducible function is F itself.
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admissibility’s optimality is verified for concrete most-studied function classes.
Informally, we will explain in Sect. 4 the framework we proposed for arguing the
optimality of an admissibility. Finally, the detailed admissibility condition for
the class of inner products is given in Remark 15.

3.4 DMCFE for Inner Products with Refined Security Model

After introducing a new notion of admissibility in the security model for DMCFE
and argue its optimality, we provide concrete constructions of DMCFE for inner
products that are secure in this model. Our results are twofold. In Sect. 5.1 we
give an intermediate construction where the new admissibility is translated in
the case of inner-products together with the complete queries restriction (simi-
lar to condition 2 in previous works). In Sect. 6, we leverage this backbone con-
struction from Sect. 5.1 to remove this complete queries restriction via a generic
transformation as well as a concrete scheme with improved security.

In the following we highlight the main ideas of our backbone construc-
tion in Sect. 5.1. Our function class of interest is for computing inner products
F IP = {Fy} and Fy :

(
Z

∗
q

)n → Zq is defined as Fy(x) := 〈x,y〉. The parameter
vector of Fy is simply y = (y1, . . . , yn) ∈ Z

n
q and thus the number of param-

eters is the same as the dimension of the Zq-vector space for a prime q. Our
construction relies on the notion of Dual Pairing Vector Spaces (DPVSes, see
Sect. 2.2). We use DPVSes in the (additively written) bilinear group setting
(G1, G2, Gt, e, g1, g2, gt). We sample n pairs of random dual bases (Hi,H∗

i )
n
i=1.

Each client i will use their encryption key eki to encrypt the component xi under
some tag to get a ciphertext component cttag,i, which is a vector of elements in
G1 computed using Hi. Accordingly, each secret key ski will be used by the
DKShare in the decentralized key generation so as to generate a key component
dktag-f,i for yi under some tag-f, which is a vector of elements in G2 computed
using H∗

i . During decryption, the product cttag,i×dktag-f,i of vectors lying in dual
bases will yield an element in Gt of the form in the IPFE scheme by Agrawal,
Libert, and Stehlé (ALS) [9]. We denote by S = (s1, . . . , sn), U = (u1, . . . , un)
two vectors of secret scalars, intuitively which will be used in ALS ciphertext
components �siω+uiω

′ +xi�, where �(ω, ω′)�←H(tag) comes from a full-domain
hash function. In a centralized setting, such as the single-client scheme in [9] or
the MCFE scheme in [15], the ALS key extraction provides 〈S,y〉 and 〈U,y〉 to
be used in decryption.

Decentralizing ALS Key Extraction Under Separated Corruption. The
first technical challenge is how to implement the ALS key extraction in a decen-
tralized manner, because each key generator possessing yi will not be able to
compute 〈S,y〉 and 〈U,y〉 due to the lack of (yj)j �=i. Our idea is to use (siyi, uiyi)
in the i-th key components, masked by some randomness, then exploit the prop-
erties of products in DPVS that multiply facing coordinates together in order
to “glue” this randomness to appropriate values in the i-th ciphertext compo-
nent that enables correct decryption. More specifically, the components have the
following form:
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cttag,i ( · · · ωpi ω′qi ALS-ciph · · · )Hi ;
dktag-f,i ( · · · siyiαi + uiyiγ

′
i siyiγi + uiyiαi yi · · · )H∗

i
;

where ALS-ciph is the scalar in ALS ciphertext and (pi, qi) in cttag,i together
with (αi, γi, γ

′
i) in dktag-f,i satisfy piαi = ζ1, qiγi = ζ2, qiαi = ζ3, piγ

′
i = ζ4 and

ζ1, ζ2, ζ3, ζ4
$← Z

∗
q are determined at setup time. However, the aforementioned

local gluing technique is not enough, as it alone still reveals information about
individual xiyi from cttag,i ×dktag-f,i. A remedy is to put another layer of random
secret sharings θi

$← Zq into the partial key components such that
∑n

i=1 θi = 0
so that only when n pairs of ciphertext-key components are combined together
will we obtain the decrypted result. This new secret shares (θi)i are randomized
by dtag-f ← H(tag-f) for each functional key, the newly randomized (dtag-fθi)i

will behave indistinguishably from a random independent secret sharing of 0
under DDH. We refer to Sect. 5.1 and the transition G6 → G7 in in the proof of
Theorem 16 for more details.

Handling Separated Corruption. Each encryption key eki will contain
information relevant to the basis Hi so that client i can compute cttag,i, mean-
while each key generator can use ski related to the dual basis H∗

i for deriving the
partial ki,ipfe. It appears that the contents of eki and ski belong to dual bases,
independent for each i, and we handle their separated corruption by basis changes
over (Hi,H∗

i ) in DPVS. We note that as soon as we program the basis change
of one basis, we cannot control the change on its dual counterpart (defined by
linear relations, see the full version [25]). To this end, our proofs can handle at
best the scenario where one key type must be statically corrupted whereas the
other’s corruption can be dynamic, otherwise the fact that for some i the keys
eki and ski can be corrupted dynamically, in separate ways, can lead to inconsis-
tency between basis changes. In particular, we use basis changes to program the
master secret values (si, ui)i as well as the secret sharings (θi)i, thus we want
to program the changes on the dual bases H∗

i . Consequently, we enforce static
corruption on ski and perform those changes on i corresponding to honest ski

4.

Achieving New Admissibility by Embedding Revocation Mechanism
into Components. The second technical challenge is to handle our new admis-
sibility. In the prior weaker admissible condition introduced in [15], where
(eki, ski) are corrupted together, if i ∈ [n] is corrupted then x∗

0[i] = x∗
1[i]. Putting

forward the translation of our new admissibility in the functionality for inner
products, the concrete conditions are: let Δx[i] := x∗

0[i] − x∗
1[i], then

1. For all (tag-f,y) ∈ Q,
∑

i∈(Hskey∪Hekey)
Δx[i]y[i] = 0.

2. For all i ∈ Cekey \ Cskey, either x∗
0[i] = x∗

1[i] or y[i] = 0.
3. For all i ∈ Cskey, x∗

0[i] = x∗
1[i].

4 There are further involved technicalities to ensure that eki is constructed consistently,
e.g. see the transition G7 → G8 in the proof of Theorem 16.
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As the main complication compared to [15,17], when i ∈ Cekey \ Cskey it can be
the case that Δx[i] �= 0 and y[i] = 0. We want to ensure that even in this
configuration the adversary cannot distinguish the i-th ciphertext components.

We interpret this situation in the language of revocation: if the adversary
obtains the i-th key component dktag-f,i for yi := y[i] = 0, which is honestly
generated as i ∈ Cekey \ Cskey, then implicitly we are “revoking” the ability to
learn information about the i-th challenge component using dktag-f,i, even when
the adversary can encrypt whatsoever using the corrupted eki, whose role now
resembles a “public key” as in usual revocation systems. This leads us to the
idea of embedding some sort of DDH-based revocation technique into each i-th
component. We need to apply some revocation technique that is compatible with
the bilinear group setting and the ALS ciphertext form, which is current employ
at each component i in cttag,i. We turn our attention to a recent work by Agrawal
et al. [5], which builds public trace-and-revoke systems from standard assump-
tions and is particularly suitable for our objective because their constructions
can be generically based on the DDH-based ALS IPFE. At a very high level, the
decryption for m of the precedent scheme for revocation can be recasted as:

ALS-IPFE.Dec(skid, ct)
〈xid,vR〉 =

〈xid,vR · m〉
〈xid,vR〉 = m (2)

where skid is the decryption given for an identity id, xid is some vector associated
to id, and vR is derived from the revoked set R. With overwhelming probability,
〈xid,vR〉 �= 0 conditioned on id /∈ R.

To adapt to our situation the division is translated to subtraction of coordi-
nates and our “revoking” test depends only on a scalar yi and whether yi = 0
or not, the inner product become scalar multiplications in Z

∗
q . Consequently,

we introduce extra coordinates in the DPVS bases (Hi,H∗
i ) to implement the

aforementioned revocation technique, locally inside the vector’s components as
follows:

cttag,i ( ωpi ω′qi ALS-ciph − rivi riti · · · rand )Hi ;
dktag-f,i ( siyiαi + uiyiγ

′
i siyiγi + uiyiαi yi yivi/ti · · · dtag-fθi )H∗

i
;

Using extra coordinates to contain �(ALS-ciph − rivi, riti)�1 in cttag,i as well as
�(yi, yivi/ti)�2 in dktag-f,i helps us perform a “local” ALS+revocation decryption
for component i, following the idea (2), when performing cttag,i × dktag-f,i. Intu-
itively, our uniformly random scalar ri

$← Zq plays the role similar to that of
xid in the blueprint from [5], that helps proving semantic security in the case of
“revoked” yi = 0 under random basis changes in DPVS using DDH. This prob-
abilistic layer with ri

$← Zq allows to deal with corrupted encryption keys, even
when x∗

0[i] �= x∗
1[i]. This somehow covers public-key encryption. Our scheme is

secure in the stronger security model under new admissibility and the complete
queries restriction, adaptively in the challenges, with dynamic corruption of eki

and static corruption of ski.
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4 A Stronger Security Model for Decentralized
Multi-Client Functional Encryption

This section presents a new security model for (D)MCFE, in which we refine the
admissibility of adversaries in the security game and allow a more fine-grained
corruption of keys. Following the line of works by Chotard et al. [15,17], such a
notion of admissible adversaries is for excluding the attacks that are inevitable
under which we cannot prove security. Our objective is to define the admissi-
ble condition in a way that excludes as few attacks as possible, and as soon as
such condition is weakened, there is an unconditional generic attack to trivially
win the security game against any concrete scheme. First of all, Definition 3
formalizes the terminologies of parameters of a function and deducible func-
tions/inputs.

Definition 3 (Deducible inputs and functions). Fix λ ∈ N and denote by
Fλ a family of n-ary functions indexed by λ, with domain Dλ,1 × · · · × Dλ,n and
range Rλ, where n = n(λ) ∈ N is a function. Let Param1, . . . ,Paramm denote
m sets of parameters for functions in Fλ, where m = m(λ) ∈ N is a function.
Suppose there exists a deterministic encoding p : Fλ → Param1 × · · · × Paramm,
that maps a function Fy ∈ Fλ to its parameters y ∈ Param1 × · · · × Paramm.
Let Hinp ⊆ [n],Hfunc ⊆ [m] and suppose we are given xinp ∈ (Dλ,i)i∈Hinp and
yfunc ∈ (Paramj)j∈Hfunc

as lists of inputs and parameters that are indexed by
Hinp,Hfunc respectively.

A vector z ∈ Dλ,1 ×· · ·×Dλ,n is said to be deducible from xinp if ∀ i ∈ Hinp :
z[i] = xinp[i]. A function G is said to be deducible from yfunc if for all i ∈ Hfunc,
we have p(G)[i] = yfunc[i].

Remark 4. If yfunc = y, for the parameter y of some function Fy, then the
only function deducible from yfunc is Fy itself. In the DMCFE setting, there will
be situations with non-trivial yfunc where Hfunc � [m]. For concrete function
classes in our construction, we focus on the class to compute inner products
F IP = {Fy} and Fy :

(
Z

∗
q

)n → Zq that is defined as Fy(x) := 〈x,y〉. For inner
products, the parameters of a function Fy ∈ F IP can be precisely defined to be
p(Fy) := y ∈ Z

n
q and the number of parameters m is equal to the number of

arguments n. When Fλ is clear from context, we omit the subscript λ.

We now recall the notion of decentralized multi-client functional encryption
(DMCFE) whose syntax is given below.

Definition 5 (Decentralized Multi-Client Functional Encryption). A
decentralized multi-client functional encryption (DMCFE) scheme for a func-
tion class F consists of five algorithms

(Setup,DKShare,DKeyComb,Enc,Dec)

that are defined below:
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Setup(1λ): Given as input a security parameter λ and n = n(λ),m = m(λ),
generate in a possibly interactive manner n encryption keys (eki)i∈[n] as well
as m secret keys (skj)j∈[m] where m,n : N → N are functions.

Enc(eki, tag, xi): Given as inputs an encryption key eki, a message xi ∈ Dλ,i,
and a tag tag, output a ciphertext cttag,i.

DKShare(skj , tag-f, yj): Given a secret key skj, a tag tag-f ∈ Tag, and the j-th
parameter yj, output a partial functional key dktag-f,j.

DKeyComb((dktag-f,j)j∈[m], tag-f, F ): Given a tag tag-f together with a function
F and m partial functional keys dktag-f,j for the parameters p(F ), output the
functional key dktag-f,F .

Dec(dktag-f,F , c): Given the functional decryption key dktag-f,F and a list of
ciphertexts c := (cttag,i)n

i=1 of length n, output an element in Rλ or an invalid
symbol ⊥.

We make the assumption that all public parameters are included in the secret
keys and the encryption keys, as well as the (partial) functional decryption key.

Correctness. We require that for sufficiently large λ ∈ N, for all tag, tag-f ∈ Tag,
for all F ∈ F , (xi)i∈[n] ∈ Dλ,1 × · · · × Dλ,n and

skj , (eki)i∈[n]←Setup(1λ); dktag-f,j ←DKShare(skj , tag-f, yj)j∈[m] ;
dktag-f,F ←DKeyComb((dktag-f,j)j , tag-f, F ); (cttag,i)i ←(Enc(eki, tag, xi))i

where i ∈ [n] and j ∈ [m], the following holds with overwhelming probability:

Dec (dktag-f,F , (cttag,i)n
i=1) = F (x1, . . . , xn) when F (x1, . . . , xn) �= ⊥7 (3)

where F : Dλ,1 × · · · × Dλ,n → Rλ and the probability is taken over the random
coins of algorithms.

Security. We follow the approach in the work by Chotard et al. [15] so as
to define the security game with oracles Initialize, Corrupt, LoR, Enc,
DKeyGenShare, and Finalize. We recall that the oracle Enc is necessary for
a simpler notion of one challenge, while retaining an equivalence to the multi-
challenge notion using a hybrid argument shown in Lemma 8.

The adversary is also able to corrupt separately the secret key skj of any
key-generator j as well as the encryption key eki of any client i, which is done
via requests (i, skey) or (j, ekey) to the oracle Corrupt, respectively. We need to
exclude trivial attacks that can be mounted in the security experiment. Those
restrictions are encompassed in the notion of admissibility, which is extended
from similar notions in the works of [15,17].

In a nutshell, Definition 6 gives the definition of admissibility, generalizing
the admissibility condition that has been consistently used since the seminal
work of Chotard et al. [15]. We refer to Sect. 3 for a high-level discussion. In the
subsequent Sect. 4.1, we give the full formal treatment to prove the optimality
of our admissibility condition in Definition 6. The successive security analyses of
our DMCFE schemes rely crucially on this definition, translated for the concrete
class of inner product in Remark 15.
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Definition 6 (Admissibility condition). Let A be a ppt adversary and let

E = (Setup,DKShare,DKeyComb,Enc,Dec)

be a DMCFE scheme for a function class F set up w.r.t λ ∈ N. In Finalize,
considering the queries (Q,QEnc, Cskey, Cekey, {(x∗

0,x
∗
1, tag)}, {(x, tag(k))}), we say

that the attack corresponding to these queries is NOT admissible if the following
is satisfied

There exist tag, tag-f ∈ Tag, a function F ∈ F having parameters y ∈
Param1 × · · · × Paramm, two challenges (x(0)

i , x(1)
i )i∈[n] such that (tag-f, F ) ∈

Q is queried to DKeyGenShare, ((x(0)
i , x(1)

i )i∈[n], tag) is queried to LoR
and there exists a pair (z(0), z(1)) deducible from (x(0)

ekey,x
(1)

ekey), a function G
deducible from yskey satisfying

G(z(0)) �= G(z(1)) , (4)

where we define yskey := (y[i])i∈Hskey
and for b ∈ {0, 1}, x(b)

ekey := (x(b)
i )i∈Hekey

.

Otherwise, we say that the aforementioned attack is admissible.

Definition 7 (IND-security for DMCFE). A DMCFE scheme

E = (Setup,DKShare,DKeyComb,Enc,Dec)

for the function class F = {Fλ}λ∈N is xx-secure if for all ppt adversaries A, and
for all sufficiently large λ ∈ N, the following probability is negligible

AdvxxE,F,A(1λ) :=
∣
∣
∣
∣Pr[ExprxxE,F,A(1λ) = 1] − 1

2

∣
∣
∣
∣ .

The game ExprxxE,F,A(1λ) is depicted in Fig. 1. The security level indicator xx
can be: dmc-ind-cpa to indicate IND-security with adaptive challenges, dynamic
corruption of ekey, and dynamic corruption of skey; dmc-sel-ind-cpa to indicate
selective IND-security with selective challenges, dynamic corruption of ekey, and
dynamic corruption of skey; dmc-stat-ind-cpa to indicate static IND-security with
adaptive challenges, static corruption of ekey, and static corruption of skey5;
dmc-ind-cpa-1chal indicate one-time IND-security with one adaptive challenge
tag, dynamic corruption of ekey, and dynamic corruption of skey. The probability
is taken over the random coins of A and the algorithms.

5 In addition, we can allow dynamic corruption on one type but static corruption on
the other type of keys, such as dmc-stat-sk-ind-cpa to indicate partially static IND-
security with adaptive challenges, dynamic corruption of ekey, and static corruption
of skey.
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Lemma 8 allows us to concentrate on the notion of one-time IND-security
for our DMCFE constructions. The proof is a standard hybrid argument and we
give it in the full version [25] for completeness.

Lemma 8. Let E = (Setup,DKShare,DKeyComb,Enc,Dec) be a DMCFE scheme
for the function class F . If E is one-time IND-secure, then E is IND-secure.

4.1 Optimality of Admissibility as per Definition 6

In this section, we demonstrate that our notion of admissibility in Definition 6
is capturing all trivial attacks against DMCFE schemes for non-trivial function
classes, which include the class of inner-product and quadratic functionalities.
The high-level plan is given below.

Fig. 1. The security games Exprdmc-ind-cpa
E,F,A (1λ), Exprdmc-sel-ind-cpa

E,F,A (1λ) , and

Exprdmc-stat-ind-cpa
E,F,A (1λ) for Definition 7 and 17. The admissibility condition is

defined in Definition 6.
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Proving Optimality. The general idea on defining the optimality of an admis-
sibility condition can be revisited in Sect. 3.3. We now explain briefly how one
can show that an admissibility condition is optimal following what we try to
define. First and foremost, a notion of optimality makes sense when we con-
sider only certain functionalities and not any arbitrary class of functions. For
example, for a general functionality, the adversary’s admissibility as defined in
Definition 6 might not be efficiently decidable. Roughly speaking, Finalize may
have to go through all (z(0), z(1)) deducible from (x(0)

ekey,x
(1)

ekey) and all G deducible
from yskey so as to check relation (4). Therefore, we want to focus on classes for
which the admissibility can be decided efficiently by Finalize, at least for the
sake of having an efficient challenger in the security game.

In addition, we require a further property of the functionality under consid-
eration: in view of the admissibility check (4), the deduction of (z(0), z(1)) from
(x(0)

ekey,x
(1)

ekey) and of a function G from yskey can be done efficiently. We coin this
property fixed-component distinguishability. In summary, we restrain the opti-
mality evaluation to classes that are (1) fixed-component distinguishable and
(2) for which the admissibility is efficiently decidable. In the full version [25], we
prove that both most studied functionalities for inner products and quadratic
evaluations satisfy properties (1) and (2).

The core of our reasoning that an admissibility condition is optimal comprises
building a ppt distinguisher, which can exerts a non-admissible attack, to triv-
ially win significantly the security game against any DMCFE scheme. We recall
that Definition 6 views attacks as ensembles of queries made by some adversary
in its security game. Because the class allows deciding efficiently the admissi-
bility, our distinguisher can efficiently determine which query in the attack will
violate the check (4), and thanks to the fixed-component distinguishability, the
triplet (z(0), z(1), G) can be concretely reconstructed in an efficient manner.

In the end, facing any DMCFE challenger that allows the foregoing non-
admissible behaviour, our distinguisher can simply use (z(0), z(1), G) to trivially
win the game. This means that whenever we allow a non-admissible attack, or
in other words whenever we try to relax Definition 6, no DMCFE scheme can be
proved secure due to the existence of the above distinguisher.

To begin our formal treatment, we restrain our attention to particular func-
tion classes that satisfy certain properties.

Definition 9 (Fixed-component distinguishable classes). Fix λ ∈ N and
denote by Fλ = {F : Dλ,1×· · ·×Dλ,n → Rλ} a family of n-ary functions indexed
by λ having m parameters, where m = m(λ), n = n(λ) are functions.

For F ∈ Fλ, a triple (x(0)

inp,x
(1)

inp,Hinp), where x(b)

inp ∈ ∏
i∈Hinp

Dλ,i for b ∈ {0, 1},
is said to be distinguishing Fλ with fixed components if there exists a deducible
pair (z(0), z(1)) ∈ ∏

i∈[n] Dλ,i such that Fλ(z(0)) �= Fλ(z(1)) where

{
z(b)[i] = x(b)[i] for b ∈ {0, 1}, i ∈ Hinp

z(0)[i] = z(1)[i] ∀ i ∈ [n] \ Hinp

.
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A function F is said to be fixed-component distinguishable if there exists a triple
distinguishing F with fixed components and a ppt Turing machine that, given as
input this triple, outputs the corresponding deducible pair.

A function class Fλ is fixed-component distinguishable if for all F ∈ Fλ with
parameters p := p(F ), there exists a fixed-component distinguishable function G
deducible from (p[i])i∈Hfunc

for some Hfunc ⊆ [m], and a ppt Turing machine that,
given as inputs (F,Hfunc), outputs G.

Remark 10. We remark that a function class F is fixed-component distinguish-
able does not necessarily imply that the admissibility from Definition 6 for F
can be efficiently decided. Roughly speaking, given a function among the adver-
sary’s queries, the ppt Turing machine from fixed-component distinguishability
will output some deducible function G for which one can test the admissible
condition (4) efficiently. But that is not enough, as to decide the admissibility
of an attack, we need to check all such deducible functions and there is no fur-
ther guarantee in the case of general functionalities that we can do this check
efficiently. In the concrete cases of inner products and quadratic functions, the
check over all such deducible functions can be done efficiently by using their
linear properties, see the full version [25] for more details.

We now define what means for an admissibility to be optimal for a func-
tion class F . For simplicity, we can consider the one-challenge setting thanks to
Lemma 8.

Definition 11. Let λ ∈ N and denote by F a family of n(λ)-ary functions
indexed by λ, with m(λ) parameters for each member of F . An admissibility
condition adm(·) is optimal for F if there exists a ppt distinguisher S so that
for all non-admissible

(Q,QEnc, Cskey, Cekey, {(x∗
0,x

∗
1, tag)}, {(x, tag(k))})

of some ppt adversary A and against a DMCFE E for F in a security experiment
ExprE,F,A given in Fig. 1, we have

Pr
[S((Q, QEnc, Cskey, Cekey, {(x∗

0,x∗
1, tag)}, {(x, tag(k))})) = b : b←Chall(randChall)]

≥ 1

poly(λ)

where (Q,QEnc, Cskey, Cekey, {(x∗
0,x

∗
1, tag)}, {(x, tag(k))}) is well-defined at the

time of Finalize and b ← Chall(randChall) means the challenger Chall uses the
bit b in ExprE,F,A.

We now state our main theorem for the optimality of our admissibility.

Theorem 12. Let F be a function class that has efficient decidability for admis-
sibility and is fixed-component distinguishable. Then, our admissibility condition
as defined in Definition 6 is optimal for F .
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Proof (Of Theorem 12). Without loss of generality, we consider the one-challenge
notion. We need to prove that: there exists a ppt distinguisher S so that for any
non-admissible (Q,QEnc, Cskey, Cekey, {(x∗

0,x
∗
1, tag)}, {(x, tag(k))}) of some DMCFE

E for F and some ppt adversary A in a security experiment ExprxxE,F,A given in
Fig. 1, we have

Pr
[S((Q, QEnc, Cskey, Cekey, {(x∗

0,x∗
1, tag)}, {(x, tag(k))})) = b : b←Chall(randChall)]

≥ 1

poly(λ)
.

Let Eabs = (Setupabs,DKShareabs,DKeyCombabs,Encabs,Decabs) be an abstract
DMCFE for F that satisfies the correctness relation (3). We describe the dis-
tinguisher S as follows:

1. The distinguisher S parses

(Q,QEnc, Cskey, Cekey, {(x∗
0,x

∗
1, tag)}, {(x, tag(k))})

then use Eabs and (Q,QEnc, {(x∗
0,x

∗
1, tag)}) for abstracting the key compo-

nents to obtain {(dkabstag-f,F,j)j∈[m]}(tag-f,F )∈Q, the challenge ciphertext com-
ponents to obtain (ctabstag,i)i∈[n] for each {(x∗

0,x
∗
1, tag)}, and the encryption

responses to obtain (ctabs,(k)i )i∈[n]. If there are corrupted keys skj or eki queried
by A, they will also be replaced by their abstracted counterparts skabsj or ekabsi .
In the following S only needs the abstract DMCFE Eabs for F , no matter what
the details of the concrete E are.

2. If there exists (tag-f, F ) ∈ Q such that F (x∗
0) �= F (x∗

1), S combines the key
components of (tag-f, F ), decrypts the challenge ciphertext components, and
outputs 1 if and only if the result is F (x∗

1). All algorithms come from Eabs =
(Setupabs,DKShareabs,DKeyCombabs,Encabs,Decabs). Else, in the following we
assume that F (x∗

0) = F (x∗
1) for all (tag-f, F ) ∈ Q.

3. Because this is a non-admissible attack, S uses the efficient decidability of F
to find (tag-f, F ) ∈ Q, whose parameters is y := p(F ), so that: there exists a
pair (z(0), z(1)) deducible from (x(0)

ekey,x
(1)

ekey), a function G deducible from yskey

satisfying
G(z(0)) �= G(z(1)) ,

where yskey := (y[i])i∈Hskey
and x(0)

ekey := (x(0)
i )i∈Hekey

, x(1)

ekey := (x(1)
i )i∈Hekey

. We
remark that finding F can be done efficiently in Q because the current attack
comes from the execution of some ppt adversary A, which implies the size of
Q is polynomially bounded.

4. Because F is fixed-component distinguishable (see Definition 9), using F and
Cskey, S can efficiently find a function G deducible from yskey such that G is
fixed-component distinguishable.

5. Thanks to the fixed-component distinguishability of G, using (x(0)

ekey,x
(1)

ekey)
and Hekey, the pair (z(0), z(1)) can be found efficiently by S.

6. The distinguisher S then uses the corrupted keys (ekabsi )i∈Cekey
to compute

new ciphertext components (c̃tabstag,i)
n
i=1 of z(b) implicitly, using (ctabstag,i)i∈Hekey
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for the challenge (x∗
b [i])i∈Hekey

, and using Encabs to encrypt (z(b)[i])i∈Cekey
using

(ekabsi )i∈Cekey
.

7. Next, S uses the corrupted keys (skabsi )i∈Cskey
to compute new key components

(d̃k
abs

tag-f,G,i)
n
i=1 of G implicitly, using (dkabstag-f,F,i)i∈Hskey

, and using DKShareabs

to derive (d̃k
abs

tag-f,F,i)i∈Cskey
from (p(G)[i])i∈Cskey

.
8. Finally, S uses DKeyCombabs to combine the newly generated key compo-

nents (d̃k
abs

tag-f,i)
n
i=1. Then S decrypts the newly generated challenge ciphertext

(c̃tabstag,i)i∈[n] using the abstract algorithm Decabs, the adversary outputs 1 if
and only if the result is equal to G(z(1)).

In the end, S outputs 1 if and only if (Q,QEnc, Cskey, Cekey, {(x∗
0,x

∗
1,

tag)}, {(x, tag(k))}) comes from an execution of any A against Chall of E in which
Chall picks 1 as the challenge bit. This concludes the proof. �
Remark 13. The abstract object Eabs in the proof of Theorem 12 are used
only in our formal proofs of the optimality for our admissible condition. In the
concrete constructions of DMCFE, no such abstract objects are needed, as the
admissibility are examined via concrete tests over the adversary’s queries in the
security game. For instance, see the full version [25] for the cases of linear and
quadratic functions.

Remark 14. The generic distinguisher S in Theorem 12 is weak in the sense
that all it has is a non-admissible attack with the corresponding

(Q,QEnc, Cskey, Cekey, {(x∗
0,x

∗
1, tag)}, {(x, tag(k))})

determined by A’s behaviour during the security game, not depending on the
concrete implementation of E . However, thanks to the non-admissibility of the
given attack and the fixed-component distinguishability of the function class, S
can still output the correct challenge bit, in the security against any DMCFE
scheme. This means that as soon as we allow some non-admissible behaviour,
where the concrete descriptions of A and E can be arbitrary as long as this
behaviour stays the same, there is no hope in proving security regardless of
the specific implementation of E . Equivalently, our Definition 6 that excludes
exactly these non-admissible attacks cannot be enlarged in any sense and cap-
tures the most attacks against which we can prove security. Last but not least,
we see clearly the role of the abstract DMCFE Eabs: it abstracts out the concrete
details of some specific scheme E from which calculations over the non-admissible
queries can be done, and return the “black-boxed” data that obey the correctness
of DMCFE schemes for F .

Remark 15. As a corollary the admissibility’s optimality for the class of inner
products (including for polynomially bounded ranges - see the full version [25]
for more details), we have specific conditions for admissible attacks in this case:

1. For all vectors (x∗
0,x

∗
1) that is queried to LoR, for all (tag-f,y) ∈ Q,∑

i∈H Δx[i]y[i] = 0 where Δx[i] = x∗
0[i] − x∗

1[i], where H := Hekey ∩ Hskey.
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2. For all vectors (x∗
0,x

∗
1) that is queried to LoR, for all (tag-f,y) ∈ Q, for all

i ∈ Cekey \ Cskey, either x∗
0[i] = x∗

1[i] = 0 or y[i] = 0.
3. For all vectors (x∗

0,x
∗
1) that is queried to LoR, for all (tag-f,y) ∈ Q, for all

i ∈ Cskey, x∗
0[i] = x∗

1[i].

5 DMCFE for Inner Products with Stronger Security
Against Complete Queries

5.1 Construction

This section presents a decentralized multi-client FE scheme, as defined in Sect. 4,
for the function class F IP,poly

B,B′ and Fy :
(
Z

∗
q

)n → Zq is defined as Fy(x) := 〈x,y〉
where ‖x‖∞ < B and ‖y‖∞ < B′, where B,B′ = poly(λ) ∈ N are polynomials.
The high-level ideas are discussed in Sect. 3.4. As discussed in Remark 4, the
parameter vector of F IP,poly

B,B′ is simply y of size n. Hence the number of secret
keys and of encryption keys are equal to n. Our admissibility is also optimal
for F IP,poly

B,B′ , see the full version [25]. We need a full-domain hash function H1 :
Tag → G

2
1, where Tag denotes the set of tags used for ciphertext components

and functional key components. In addition, we also need a hash function H2 :
Tag × Z

n
q → Zq.

We are in the bilinear group setting (G1, G2, Gt, g1, g2, >, e, q) and G1, G2, Gt

are written additively. The details of our DMCFE scheme go as follows:

Setup(1λ): Choose n pairs of dual orthogonal bases (Hi,H∗
i ) for i ∈ [n], where

(Hi,H∗
i ) is a pair of dual bases for (G6

1, G
6
2). We denote the basis changing

matrices for (Hi,H∗
i ) as (Hi,H

′
i):

(Hi = Hi · T; H∗
i = H ′

i · T∗)i∈[n]

where Hi,H
′
i ∈ Z

6×6
q and (T = �I6�1,T∗ = �I6�2) are canonical bases of

(G6
1, G

6
2) , for the identity matrix I6. Sample two full-domain hash functions

H1 : Tag → G
2
1 and H2 : Tag × Z

n
q → Zq. We recall that interactions are

involved only in this Setup phase. For each i ∈ [n], we write

Hi = (hi,1,hi,2, . . . ,hi,6) H∗
i = (h∗

i,1,h
∗
i,2, . . . ,h

∗
i,6)

and sample S,U, V, T
$← (Z∗

q)
n where S = (s1, . . . , sn), U = (u1, . . . , un), V =

(v1, . . . , vn), T = (t1, . . . , tn). Sample θi
$← Z

∗
q such that

∑n
i=1 θi = 0. Then,

sample ζ1, ζ2, ζ3, ζ4, pi, qi, αi, γi, γ
′
i

$← Zq, for i ∈ [n], satisfying

piαi = ζ1 qiγi = ζ2 qiαi = ζ3 piγ
′
i = ζ4 (5)

and output the secret keys ski and the encryption keys eki as follows

ski :=
(

siαih∗
i,1 + siγih∗

i,2, uiγ
′
ih

∗
i,1 + uiαih∗

i,2,
vi

ti
h∗

i,3 + h∗
i,4, θih∗

i,6

)

eki := (piH
(1)
i − (ζ1si + ζ4ui)H

(4)
i , qiH

(2)
i − (ζ2si + ζ3ui)H

(4)
i ,

tihi,3 − vihi,4, hi,4, H(6)
i )

where H
(k)
i denotes the k-th row of Hi for i ∈ [n].
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DKShare(ski, (tag-f, info(y)), yi): We assume that the function tag contains tag-f
and public information about info(y). The i-th parameter is yi := y[i]. Com-
pute H2(tag-f, info(y))→ dtag-f,y ∈ Zq. Parse

ski :=
(

siαih∗
i,1 + siγih∗

i,2, uiγ
′
ih

∗
i,1 + uiαih∗

i,2,
vi

ti
h∗

i,3 + h∗
i,4, θih∗

i,6

)

.

Sample z
$← Zq then compute

ki,ipfe = yi · (siαih∗
i,1 + siγih∗

i,2) + yi · (uiγ
′
ih

∗
i,1 + uiαih∗

i,2)

+ yi ·
(

vi

ti
h∗

i,3 + h∗
i,4

)

+ dtag-f,y · θih∗
i,6

=
(

siyiαi + uiyiγ
′
i, siyiγi + uiyiαi,

vi

ti
yi, yi, 0, dtag-f,yθi

)

H∗
i

.

Output dktag-f,i := ki,ipfe.
DKeyComb((dktag-f,i)i∈[n], tag-f,y): Output ⊥ if there is any incoherence of

dtag-f,y among the dktag-f,i. Otherwise, parse dktag-f,i := ki,ipfe and output
dktag-f,y := (ki,ipfe)i∈[n].

Enc(eki, tag, xi): Parse

eki := (piH
(1)
i − (ζ1si + ζ4ui)H

(4)
i , qiH

(2)
i − (ζ2si + ζ3ui)H

(4)
i ,

tihi,3 − vihi,4, hi,4, H(6)
i )

and compute H1(tag)→ (�ω�1, �ω′�1) ∈ G
2
1 and sample ri

$← Zq. Compute

ci,ipfe = (piH
(1)
i − (ζ1si + ζ4ui)H

(4)
i ) · �ω�1 + (qiH

(2)
i − (ζ2si + ζ3ui)H

(4)
i ) · �ω′�1

+ ri · (tihi,3 − vihi,4) + xihi,4 + H
(6)
i �ω�1

= (ωpi, ω′qi, riti, −(ωζ1 + ω′ζ2) · si − (ω′ζ3 + ωζ4) · ui + xi − rivi, 0, ω)Hi
.

and output cttag,i := ci,ipfe.
Dec(dktag-f,y, c): Parse dktag-f,y = (ki,ipfe)i∈[n] and c := (cttag,i)i. Finally, compute

the discrete logarithm in base > of �out�t =
∑n

i=1 (cttag,i × ki,ipfe) and output
the small value out.

The correctness of the scheme is verified by:

�out�t

=
n∑

i=1

(cttag,i × ki,ipfe)

=
n∑

i=1

⎛

⎜
⎜
⎜
⎜
⎝

(ωpi, ω′qi, riti,−(ωζ1 + ω′ζ2) · si − (ω′ζ3 + ωζ4) · ui + xi − rivi,
0, ω)Hi

×
(siyiαi + uiyiγ

′
i, siyiγi + uiyiαi,

vi

ti
yi, yi,

0, dtag-f,yθi)H∗
i

⎞

⎟
⎟
⎟
⎟
⎠



358 K. Nguyen et al.

(∗)
=

n∑

i=1

�ωζ1siyi + ωζ4uiyi + ω′ζ2siyi + ω′ζ3uiyi + θidtag-f,yω�t

+
n∑

i=1

�(−(ωζ1 + ω′ζ2) · si − (ω′ζ3 + ωζ4) · ui + xi) · yi�t

= �(ωζ1 + ω′ζ2) · 〈S,y〉 + (ω′ζ3 + ωζ4) · 〈U,y〉�t +
n∑

i=1

�θidtag-f,yω�t

− �(ωζ1 + ω′ζ2) · 〈S,y〉 + (ω′ζ3 + ωζ4) · 〈U,y〉�t + �〈x,y〉�t
= �〈x,y〉�t ,

where the equality (∗) comes from system (5). We recall that (θi)i∈[n] is a secret
sharing of 0.

5.2 Adaptive Security Against Static Corruptions of Secret Keys

We now give the security theorem of one time IND-security for our construction
from Sect. 5.1, adaptively in the challenge messages with dynamic corruption of
encryption keys and static corruption of secret keys. We refer to Remark 15 for
the concrete interpretation of the security model. The full proof can be found in
the full version [25].

Theorem 16. Let E = (Setup,DKShare,DKeyComb,Enc,Dec) be a DMCFE can-
didate for F IP from Sect. 5.1 in a bilinear group (G1, G2, Gt, g1, g2, >, e, q). Then,
E is IND-secure with static corruption of secret keys in the ROM if the SXDH
assumption holds for G1 and G2. More specifically, let n denote the dimension
for inner-products, K denote the maximum number of key queries, and Q1, Q2

denote the maximum number of random oracle (RO) queries to H1,H2 respec-
tively. For any ppt adversary A against E with static secret key corruption and
one-time challenge, we have the following bound:

Advdmc-stat-sk-ind-cpa-1chal
E,F,A (1λ) ≤ (3 + 2Q1 + K) · AdvSXDH

G1,G2
(1λ) +

Q2
2

2q

and in the reduction there is an additive loss O(Q1 · tG1 +Q2 · tG2) in time, where
tG1 , tG2 is the cost for one addition in G1, G2.

6 DMCFE for Inner-Products with Stronger Security
Against Incomplete Queries

In this section, we show how to obtain a DMCFE scheme that is IND-secure
against chosen plaintext attacks without complete queries restriction (see con-
dition 2 in Sect. 3.1), under our stronger admissibility notion. The definition of
security notion for the new setting is restated so that admissible adversaries can
query incomplete challenge ciphertexts as well as incomplete functional keys.
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Definition 17 (Admissible attacks with incomplete queries). Let A be a
ppt adversary and let

E = (Setup,DKShare,DKeyComb,Enc,Dec)

be a DMCFE scheme for a function class F set up w.r.t λ ∈ N. We denote
by randChall the random coins of the challenger and randA the random coins of
the adversary in an experiment given in Fig. 1. In Finalize, considering the
queries (Q,QEnc, Cskey, Cekey, {(x∗

0,x
∗
1, tag)}, {(x, tag(k))}), we say that the attack

corresponding to these queries is NOT admissible if the following is satisfied

There exist tag, tag-f ∈ Tag, a function F ∈ F , two challenges (x(0)
i , x(1)

i )i∈[n]

such that (F, tag-f) is queried to DKeyGenShare for all honest components,
((x(0)

i , x(1)
i )i∈[n], tag) is queried to LoR for all honest components, and there

exists a pair (z(0), z(1)) deducible from (x(0)

ekey,x
(1)

ekey), a function G deducible
from yskey satisfying

G(z(0)) �= G(z(1)) ,

where we define yskey := (yi)i∈Hskey
and for b ∈ {0, 1}, x(b)

ekey := (x(b)
i )i∈Hekey

.

Otherwise, we say that the attack is admissible.

Definition 18 (IND+-security for DMCFE). A DMCFE scheme

E = (Setup,DKShare,DKeyComb,Enc,Dec)

for the function class F = {Fλ}λ∈N is IND+-secure if for all ppt adversaries A,
and for all sufficiently large λ ∈ N, the following probability is negligible

Advxx+E,F,A(1λ) :=
∣
∣
∣
∣Pr[Exprxx+E,F,A(1λ) = 1] − 1

2

∣
∣
∣
∣ .

The probability is taken over coins of A and the algorithms. The indicator xx can
be among {dmc-ind-cpa, dmc-sel-ind-cpa, dmc-stat-ind-cpa, dmc-ind-cpa-1chal}6.
The experiment Exprxx+E,F,A(1λ) is the same as ExprxxE,F,A(1λ) depicted in Fig. 1,
except that we use Definition 17 for the admissibility condition in Finalize.

6.1 Constructions

Generic Transformation with Security Against Selective Challenges.
We follow the same method in [17] and apply generically a layer of using a primi-
tive called All-or-Nothing Encapsulation (AoNE), so as to make our scheme from
Sect. 5.1 secure in our stronger security model against incomplete queries. Our
AoNE-based transformation uses the generic AoNE from [17], which in turn is

6 Similarly, we can allow dynamic corruption on one type but static corruption on
the other type of keys, such as dmc-stat-sk-ind-cpa+ to indicate partially static IND-
security with adaptive challenges, dynamic corruption of ekey, and static corruption
of skey.
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built on top of a one-time secure symmetric encryption (OT-SE). In the security
proof, which can be naturally adapted from [17, Theorem 26], this OT-SE pre-
vents programing conveniently to achieve adaptive security w.r.t the challenge
ciphertexts. We also remark that the static corruption is unavoidable since the
security of AoNE makes sense only when being applied on honest components,
for the security reduction. This generic transformation is provably secure under
static corruption and selective challenges. The transformation is presented in the
full version [25].

Concrete Scheme with Security Against Adaptive Challenges. We
present a concrete adaptation of our base DMCFE scheme from Sect. 5.1 to sat-
isfy the stronger security notion against incomplete challenge ciphertexts as well
as incomplete functional keys, with minimal modifications being put in boxed
components for the ease of comparison. The function class stays the same as in
Sect. 5.1, for which our admissibility is optimal, see the full version [25]. In con-
trast to the generic transformation, we build the AoNE concretely by combining
one-time pad (OTP) and a random oracle (RO). Then, the programmability of
the RO helps us circumvent the problem of adaptive queries. While programming
the RO, we indeed exploits in a non-blackbox manner the OTP as a summation
in Z

∗
q to accumulate a secret sharing of 0 on the honest parts (known in advance

thanks to static corruption).
The details of our construction go as follows:

Setup(1λ): Sample two full-domain hash functions H1 : Tag → G
2
1 and H2 :

Tag×Z
n
q → G2. Choose n pairs of dual orthogonal bases (Hi,H∗

i ) for i ∈ [n],
where (Hi,H∗

i ) is a pair of dual bases for (G8
1, G

8
2) . We denote the basis

changing matrices for (H,H∗
i ) as (Hi,H

′
i):

(Hi = Hi · T; H∗
i = H ′

i · T∗)i∈[n]

where Hi,H
′
i ∈ Z

8×8
q and (T = �I8�1,T∗ = �I8�2) are canonical bases of

(G8
1, G

8
2) , for the identity matrix I8. We recall that interactions are involved

only in this Setup phase. For each i ∈ [n], we write

Hi = (hi,1,hi,2, . . . ,hi,8) H∗
i = (h∗

i,1,h
∗
i,2, . . . ,h

∗
i,8)

and sample ζ1, ζ2, ζ3, ζ4, S, U, V, T, D,E
$← (Z∗

q)
n where S = (s1, . . . ,

sn), U = (u1, . . . , un), V = (v1, . . . , vn), T = (t1, . . . , tn),D = (d1, . . . , dn),
and E = (e1, . . . , en). Sample θ1, . . . , θn

$← Z
∗
q such that

∑n
i=1 θi = 0 and for

i ∈ [n] let pi, qi, αi, γi, γ
′
i

$← Zq satisfy

piαi = ζ1 qiγi = ζ2 qiαi = ζ3 piγ
′
i = ζ4

We set the public parameters to be (�〈E,1〉�1, �〈D,1〉�2) . Sample ε, δ
$← Zq

and generate random n-out-of-n secret sharings (εi)i, (δi)i of ε, δ so that
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∑n
i=1 εi = ε,

∑n
i=1 δi = δ. Output the secret keys ski and the encryption keys

eki as follows

ski := ( εi , siαih∗
i,1 + siγih∗

i,2, uiγ
′
ih

∗
i,1 + uiαih∗

i,2,−
vi

ti
h∗

i,3 + h∗
i,4,

θiH
′(6)
i − eiH

′(8)
i , εhi,8 )

eki := ( δi , piH
(1)
i − (ζ1si + ζ4ui)H

(4)
i − diH

(7)
i , qiH

(2)
i − (ζ2si + ζ3ui)H

(4)
i ,

tihi,3 − vihi,4, hi,4, H(6)
i , δh∗

i,7 )

where H
(k)
i denotes the k-th row of Hi for i ∈ [n] and 1 = (1, . . . , 1).

DKShare(ski, (tag-f, info(y)), yi): We assume that the function tag contains tag-f
and public information about info(y). The i-th parameter is yi := y[i]. We
will use a full-domain hash function H2 : Tag × Z

n
q → G2. Parse

ski := (εi, siαih∗
i,1 + siγih∗

i,2, uiγ
′
ih

∗
i,1 + uiαih∗

i,2,
vi

ti
h∗

i,3 + h∗
i,4,

θiH
′(6)
i − eiH

′(8)
i , εhi,8) .

Compute H2(tag-f, info(y))→ �κtag-f,y�2 and
ki,ipfe

= yi · (siαih∗
i,1 + siγih∗

i,2) + yi · (uiγ
′
ih

∗
i,1 + uiαih∗

i,2)

+yi(vi

ti
h∗

i,3 + h∗
i,4) + (θiH

′(6)
i − eiH

′(8)
i ) · �κtag-f,y�2

= (siyiαi + uiyiγ
′
i, siyiγi + uiyiαi,

vi
ti

yi, yi, 0, κtag-f,yθi, 0, −eiκtag-f,y )H∗
i

e(εi · �〈E,1〉�1, �κtag-f,y�2) = �εi〈E,1〉κtag-f,y�t

where �〈E,1〉�1 is public. Output dktag-f,i := (ki,ipfe, ε · hi,8, �εi〈E,1〉κtag-f,y�t ).
DKeyComb(dktag-f,i, tag-f,y): Output ⊥ if there is any incoherence among the

dktag-f,i. Else, let dktag-f,i := (ki,ipfe, ε · hi,8, �εi〈E,1〉κtag-f,y�t).
Compute �ε〈E,1〉κtag-f,y�t =

∑n
i=1�εi〈E,1〉κtag-f,y�t and output

dktag-f,y := ((ki,ipfe, ε · hi,8 )i∈[n], �ε〈E,1〉κtag-f,y�t ) .

Enc(eki, tag, xi): Parse

eki := (δi, piH
(1)
i − (ζ1si + ζ4ui)H

(4)
i − diH

(7)
i , qiH

(2)
i − (ζ2si + ζ3ui)H

(4)
i ,

tihi,3 − vihi,4, hi,4, H(6)
i , δ · h∗

i,7)

and compute H1(tag)→ (�ω�1, �ω′�1) ∈ G
2
1; and sample ri

$← Zq. Compute
ci,ipfe

= (piH
(1)
i −(ζ1si +ζ4ui)H

(4)
i −diH

(7)
i ) ·�ω�1+(qiH

(2)
i −(ζ2si +ζ3ui)H

(4)
i ) ·

�ω′�1
+ri · (tihi,3 − vihi,4) + xihi,4 + H (6)

i �ω�1
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= (ωpi, ω′qi, riti,−(ωζ1 +ω′ζ2) · si − (ω′ζ3 +ωζ4) ·ui +xi − rivi, 0, ω,

−diω, 0 )Hi

e(�ω�2, δi · �〈D,1〉�2) = �δi〈D,1〉ω�t

where �〈D,1〉�2 comes from the public parameters.
Output cttag,i := (ci,ipfe, δ · h∗

i,7, �δi〈D,1〉ω�t ).
Dec(dktag-f,y, c): Parse

dktag-f,y = ((ki,ipfe, ε · hi,8 )i, �ε〈E,1〉κtag-f,y�t );

c = (ci,ipfe, δ · h∗
i,7, �δi〈D,1〉ω�t )n

i=1

Compute �δ〈D,1〉ω�t =
∑n

i=1�δi〈D,1〉ω�t and

�out�t =
∑n

i=1

(
(cttag,i + ε · hi,8 ) × (ki,ipfe + δ · h∗

i,7 )
)

+ �ε〈E,1〉κtag-f,y�t + �δ〈D,1〉ω�t .
Finally, compute the discrete logarithm and output the small value out.

The correctness of the scheme is verified by:

�out�t

=
n∑

i=1

(
(ki,ipfe + δ · h∗

i,7) × (cttag,i + ε · hi,8)
)

+ �ε〈E,1〉κtag-f,y�t + �δ〈D,1〉ω�t

=
n∑

i=1

⎛

⎜
⎜
⎜
⎜
⎝

(siyiαi + uiyiγ
′
i, siyiγi + uiyiαi,

vi

ti
yi, yi,

0, κtag-f,yθi, δ,−eiκtag-f,y)H∗
i×

(ωpi, ω′qi, riti,−(ωζ1 + ω′ζ2) · si − (ω′ζ3 + ωζ4) · ui + xi − rivi,
0, ω,−diω, ε)Hi

⎞

⎟
⎟
⎟
⎟
⎠

+ �ε〈E,1〉κtag-f,y�t + �δ〈D,1〉ω�t

(∗)
=

n∑

i=1

�ωζ1siyi + ωζ4uiyi + ω′ζ2siyi + ω′ζ3uiyi + θiωκtag-f,y�t

+
n∑

i=1

�(−(ωζ1 + ω′ζ2) · si − (ω′ζ3 + ωζ4) · ui + xi) · yi�t

+
n∑

i=1

�(−(ωζ1 + ω′ζ2) · si − (ω′ζ3 + ωζ4) · ui + xi) · yi�t

= �〈x,y〉�t .

where the equality (∗) comes from system (5). We recall that (θi)i∈[n] is a secret
sharing of 0.

Security. We prove the one-time static security of our DMCFE scheme in the
ROM, where the full-domain hash functions are modeled as random oracles,
the sets of corrupted clients Cekey as well as Cskey must be sent up front (static
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corruption), while the challenges (x∗
0,x

∗
1) can be adaptively chosen (adaptive

challenge). We note that we can achieve a better level of security in our concrete
instantiation compared to the generic transformation. On one hand, our trans-
formation follows the same blueprint in the work by Chotard et al. [17], which
is the most relevant to our DMCFE setting. We apply a layer of All-or-Nothing
Encapsulation (AoNE) to our ciphertext and key components, which ensures that
the original key/ciphertext components can be recovered only when all parts are
gathered. Our concrete DMCFE in Sect. 6 builds the AoNE directly by combining
one-time pad (OTP) and a random oracle (RO). Then, the programmability of
the RO helps us circumvent the problem of adaptive queries. While programming
the RO, we indeed exploits in a non-blackbox manner the OTP as a summation
in Z

∗
q to accumulate a secret sharing of 0 on the honest parts (known in advance

thanks to static corruption).

Theorem 19 Let E = (Setup,DKShare,DKeyComb,Enc,Dec) be the DMCFE
constructed in Sect. 6.1. Then, E is one-time statically IND+-secure in the ROM
following the security model in Definition 18 if the SXDH and DBDH assump-
tions hold for G1 and G2. More specifically, let n denote the dimension for inner-
products, Q1, Q2 denote the maximum number of random oracle (RO) queries to
H1,H2 and K denote the total number of functional key queries. For any one-
time challenge ppt adversary A against E with static corruption of secret keys
and encryption keys, we have the following bound:

Advdmc-stat-1chal+
E,F IP,A (1λ) ≤ (K + 1)AdvDBDH

G1,G2
(1λ) + (3 + 2Q1 + K)AdvSXDH

G1,G2
(1λ) +

Q2
2

2q
.

Details are presented in the full version [25].
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Abstract. Döttling and Garg (CRYPTO 2017) introduced a non-black-
box approach to identity-based encryption (IBE). This paves the way for
the first and still the only anonymous IBE (AIBE) scheme from the com-
putational Diffie–Hellman (CDH) assumption of Brakerski et al. (EURO-
CRYPT 2018). This paper revisits the blinding technique of Braker-
ski et al. and introduces a suite of blind primitives, extending chameleon
encryption, hash encryption, and one-time signature with encryption.
Using them, we propose an AIBE scheme from CDH with improved effi-
ciency compared to Brakerski et al., especially in the decryption time.
We also propose the first anonymous hierarchical IBE (AHIBE) scheme
from CDH and the first AIBE and AHIBE schemes from the φ-hiding
assumption, with similar efficiency as their non-anonymous counterparts.

Keywords: identity-based encryption · hierarchical IBE · anonymity ·
computational Diffie-Hellman · φ-hiding

1 Introduction

Identity-based encryption (IBE) [5] allows a sender to encrypt messages to a
receiver without knowing the receiver-specific public key, but only using the
receiver’s identity and a master public key that is small, i.e., polynomial in the
security parameter. For decryption, the receiver is issued a secret key corre-
sponding to its identity. Hierarchical IBE (HIBE) [15] further supports key del-
egation. The secret key or the delegate key of identity id enables the generation
of secret/delegate keys for any identities with prefix id. HIBE found applications
in forward-secure public-key encryption [10] and timed-released encryption [14].
Anonymous IBE (AIBE) [4] and anonymous HIBE (AHIBE) [7] further hide the
recipient identity of ciphertexts from unauthorized decryptors. Anonymity can
be leveraged to defend against the inherent key escrow of IBE [13]. A(H)IBE
found applications in public-key (and identity-based) searchable encryption [1].

Most (H)IBE schemes are constructed from pairing [3,5,21,27,28] or lat-
tice [2,11] assumptions. It was unclear whether the computational Diffie–
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Hellman (CDH) assumption suffices until the result of Döttling and Garg [16,17].
They introduce a non-black-box approach to construct (H)IBE from CDH. Non-
black-box approaches to encryption typically defer parts of encryption proce-
dures to decryptors, which prevents encryptors from learning the otherwise
required inputs fed to those partial encryption procedures. Such approaches
bypass the black-box impossibility results of IBE [6,26]. Its core building block
is an encryption primitive called chameleon encryption (CE), which associates a
chameleon hash function with an encryption scheme. Chameleon hash supports
collision tractability – one can use the trapdoor to efficiently find a collision
(i.e., another pre-image) of a given hash value by outputting another chameleon
randomness.

This approach then enjoys many developments, starting with generic con-
structions of (H)IBE from a new notion named one-time signatures with encryp-
tion (OTSE) [15]. Döttling et al. [18] then proposed a generic OTSE construc-
tion from hash encryption (HE), a simplification of chameleon encryption. Garg
and Hajiabadi [19] introduced one-way function with encryption (OWFE), a
close relative to CE, HE, and OTSE. Goyal et al. [24] provided a new OWFE
scheme from the φ-hiding assumption. All these primitives lead to many interest-
ing cryptographic results, e.g., laconic oblivious transfer [12], registration-based
encryption [20], trapdoor functions [19], and chosen-ciphertext security [25].

Inspired by the non-black-box approach, Brakerski et al. [8] proposed the first
and still the only AIBE scheme from CDH. Somewhat surprisingly, despite the
above two lines of development, we see not many developments of non-black-box
anonymous IBE. We are intrigued to ask:

Can we extend the applicability of Brakerski et al.’s blinding technique [8]?
Specifically, can we push the frontier of anonymous IBE in terms of effi-
ciency, key delegation, or the spectrum of intractability assumptions?

1.1 Our Results

In this work, we propose an AIBE scheme from CDH, which greatly improves
the efficiency of the AIBE scheme of Brakerski et al. [8], especially in terms
of decryption time. We also propose the first AHIBE scheme from CDH and
the first AIBE and AHIBE schemes from the φ-hiding assumption [9], which
was never used to construct (H)IBE explicitly before. The former result is only
slightly less efficient compared to the existing non-anonymous hierarchical IBE
(HIBE) schemes from CDH [15,17]. The latter result has the same efficiency as
the only (implicit) non-anonymous (H)IBE schemes from φ-hiding.

For constructing AIBE from CDH, we extend CE [17] to support blindness [8],
a property that is useful for realizing anonymity. We then construct a blind CE
scheme from CDH and adapt the non-blind IBE-from-CE framework [17] to
obtain AIBE. For AHIBE from CDH and A(H)IBE from φ-hiding, we extend
HE [18] and OTSE [15] to support blindness. We then propose a blind HE scheme
from φ-hiding. With our blind HE and CE constructions, we further adapt the
non-blind OTSE-from-HE/CE [18] and (H)IBE-from-OTSE [15] frameworks to
obtain anonymous (H)IBE.
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1.2 Technical Overview

Typically, IBE is realized by assigning each possible identity a unique public key,
which can be done without knowing the corresponding master secret key. The
small master public key essentially compresses all these public keys.

Non-black-box Approach to IBE. CE and OTSE are (possibly symmetric-key)
encryption primitives associated with a hash function or a signature scheme. The
hash or the signature serves as a compression of many possible inputs, ultimately,
the public keys of underlying public-key encryption (PKE) to be compressed in
the non-black-box IBE scheme [15,17]. CE encryption takes in a hash value, an
index, and a bit value. Decryption requires the witness (including the chameleon
hash randomness) of a pre-image corresponding to the given hash value, where
the bit at the specified index of the pre-image should match the bit specified
by the encryptor. OTSE encryption shares the same interface, while decryption
uses the signature as the witness, signing a message with its bit value at the
specified index matching the bit specified by the encryptor.

A Merkle hash tree is built, with each node hashes or signs on two children
nodes. In more detail, in the CE-based approach, each internal node is associated
with a hash value of the values for its two children nodes, where the pre-image
and the chameleon hash randomness form its secret key. For OTSE, the master
public key contains the single verification key at the root, and the secret key for
each node is a signature signing on the verification key of its two children nodes.
For the leaf level, each node is associated with a PKE public/private key pair.
All the key material for each node (e.g., the chameleon hash randomness and
the OTSE key pair) is derived from a pseudorandom function taking the same
master secret seed and the identity associated with each node as the input.

To encrypt to an identity id, a sequence of circuits will be garbled along the
path from the leaf node for id to the root, where the leaf circuit proceeds a PKE
encryption of the plaintext, and each non-leaf circuit proceeds a hash encryption
of input labels of its child circuit. Interestingly, these encryption procedures are
deferred to the decryptor. At last, the ciphertext consists of the sequence of gar-
bled circuits and the input labels of the root circuit. The decryptor with identity
id is given the PKE secret key for id and the corresponding decryption keys of
CE/OTSE in its root-to-leaf path, which suffice to evaluate each garbled circuit
and decrypt the output along the root-to-leaf path and eventually the plaintext.

Blinding Technique. The seminal non-black-box IBE scheme of Döttling and
Garg [17] is not anonymous since invalid decryption reveals a prefix of the tar-
geted recipient id – Given a ciphertext for id, a secret key for id′ can evaluate
the garbled circuits successfully up to the node of divergence between id and id′.

Brakerski et al. [8] suggested a blinding technique to force a (no matter
whether valid or invalid) decryptor to go down the hash tree blindly. Namely,
every decryptor is able to evaluate all the garbled circuits until the very end.
Whereas an anonymous encryption scheme only requires a ciphertext to hide
its recipient from unauthorized decryptors, Brakerski et al. proposed a stronger
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blindness notion for IBE (and the underlying encryption and garbling primi-
tives), which requires that a ciphertext/garbled circuit of a random input looks
(partially) random to even authorized decryptors/evaluators. With such blind
primitives, invalid evaluations in a non-black-box scheme always remain exe-
cutable up to the end; otherwise, the decryptor breaks the blindness of the
primitives. Moreover, one may observe that the blindness property is transmit-
table – the randomness property preserves for a blind ciphertext/garbled circuit
of another blind ciphertext/garbled circuit. Thus, the blindness property of the
underlying primitives directly leads to that of the non-black-box IBE scheme.

Limitation of the Blinding Technique. The transmittable blindness property
seems customized for the non-black-box approach, which employs underlying
primitives in a recursive manner. However, a blindness notion requires a strong
definition, which is hard to achieve for most encryption primitives [15,17,18,24]
of non-black-box IBE. Namely, an encryption scheme is blind if each ciphertext is
composed of a recipient-dependent part that looks random as long as the plain-
text is random, and a recipient-independent part that only relates to the public
information. Take the CE primitive [17], which allows encryption upon an index,
as an example. Currently, there are two ways to construct CE: the accumulation-
style framework [24] and the missing-block framework [17]. In both frameworks,
the ciphertext must contain the input index plainly, which can be neither ran-
dom nor only related to public information. It remains unclear how to anonymize
other non-black-box IBE schemes using the blinding technique.

Anonymizing Döttling–Garg IBE. Our idea is to hide the input index within
our blind IBE construction by including dummy components, similar to private
broadcast encryption. We propose a blind CE scheme with relaxed blindness,
in which a CE ciphertext consists of a random recipient-dependent part and an
only-index-dependent part. The latter hides all non-public inputs of an encryp-
tion except the index, namely, the hash value, the expected bit at the index, and
the plaintext.

In our blind IBE scheme, the first part of our CE ciphertexts will be generated
in blind garbled circuits, which are “blindness-preserving” [8]. We can afford to
put the second part of the CE ciphertexts directly in an IBE ciphertext (without
deferred encryption via garbled circuits). A legitimate decryptor who has the
secret key for the right identity will pick the correct ciphertext at the correct
index. Meanwhile, using the wrong one, the CE decryption result will be random,
which the blind garbled circuit will allow the evaluation continues until the leaf
node, eventually decrypts to a random plaintext.

Anonymizing HIBE with Relaxed Blind CE. Recall that the IBE-from-CE con-
struction [17] associates a hash key to each level of the tree. Extending it to
support key delegation, a trivial approach would release the corresponding trap-
door, compromising the security of the whole level. As a remedy, a node-specific
hash key, which is derived from the PRF as usual, would be introduced solely for
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this purpose. (The usual “certification” of the two lower-level hash keys for the
0- and 1-branches would depend on the hash value from the above hash key.)

Unfortunately, our relaxed blind CE idea does not work with the HIBE-from-
CE construction [17]. The reason is that the corresponding HIBE encryption
now needs the node-specific hash key to encrypt, which will be done via deferred
encryption, and is unavailable from the short master public key for encryptors
to create the only-index-dependent part (outside of the garbled circuit).

We thus resort to the alternative non-black-box HIBE construction [18] from
one-time signature with encryption (OTSE) [15]. OTSE certifies the two lower-
level OTSE verification keys via one-time signatures, instead of (chameleon)
hashing in CE. Its encryption interface remains the same as CE, except that the
hash key is replaced with the OTSE verification key. To decrypt, it requires the
one-time signature as the witness.

Instantiating this design takes three steps [18]. Non-compact OTSE, with the
verification key size bigger than the size of the messages to be signed, can be built
easily from PKE. A compact OTSE, akin to how the master public key is com-
pact when (identity-based secret key extraction of) IBE is viewed as a signature
scheme, can be built from a non-compact one via the help of hash encryption
(HE). HE simply removes the collision tractability from the chameleon hash
encryption. Indeed, this part could be seen as a generalization of the original
approach [17]. (H)IBE scheme can then be built from a compact OTSE.

We observe that this design is compatible with our blind CE approach.
We thus obtain an AHIBE scheme from CDH using our CDH-based blind CE.
Finally, with one-way function with encryption (OWFE) [24], which essentially
replaces CE/HE/OTSE with the witness being the pre-image of the associated
OWF, we obtain AIBE and AHIBE constructions from the φ-hiding assumption,
thanks to the existing OWFE construction from φ-hiding [24].

Organization. Section 2 defines notations, hard problems, hardcore predicates,
A(H)IBE, CE, blind PKE, blind garbled circuits, and delegatable pseudoran-
dom functions. Section 3 presents our blind CE construction. Sections 4 and 5
present our construction of A(H)IBE from CDH. Section 6 shows how to con-
struct A(H)IBE from the φ-hiding assumption. Section 7 discusses DDH/LWE-
version of our constructions. Our security proofs are in Appendix A.

2 Background

Let λ be the security parameter. PPT refers to probabilistic polynomial time.
The notation [n] denotes the set {1, . . . , n}, str[i] denotes the i-th bit of str, and
str[≤ i] denotes the first i bits of str, particularly, str[≤ 0] = ε is the empty string.

2.1 Hard Problems and Hardcore Predicates

Definition 1 (Hard-to-Compute Functions). Let f : {0, 1}∗ → {0, 1}∗ be
a function and X = {Xλ}λ be an ensemble of input distributions for f . f is
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hard-to-compute for X if it holds for any PPT algorithm A that Pr[A(1λ, x) =
f(x)] ≤ negl(λ), where x ← Xλ.

Definition 2 (Computational Diffie–Hellman (CDH) Assumption). Let
(G, ·) be a cyclic group of order p with generator g and CDH(g, ga, gb) = gab for

a, b
$←− Zp. The CDH assumption states that CDH over G is hard to compute.

A hard-to-compute function like the CDH problem by itself does not give
any pseudorandom bit. Hardcore predicates associated with hard-to-compute
functions upgrade a computational assumption into a decisional assumption.
One can construct hardcore predicates for any hard-to-compute function [23].

Definition 3 (Hardcore Predicate [17]). Let f : {0, 1}∗ → {0, 1}∗ be a hard-
to-compute function and X = {Xλ}λ be an ensemble of input distributions for
f . A predicate h : {0, 1}∗ → {0, 1} is a hardcore predicate for f if h is deter-
ministic and efficiently computable given f(x), and for any PPT algorithm A:
Pr[A(1λ, x) = h(f(x))] ≤ 1/2 + negl(λ), where x ← Xλ.

Theorem 1 (Goldreich–Levin Theorem [23]). For every hard-to-compute
function f : {0, 1}∗ → {0, 1}∗, there is a Goldreich–Levin hardcore predicate
g : {0, 1}∗ → {0, 1} for f , which is only a gentle modification of f , such that the
hardness of g is equivalent to that of f .

2.2 Anonymous (Hierarchical) Identity-Based Encryption

Definition 4 (Identity-Based Encryption). An IBE scheme consists of
four PPT algorithms (Setup, KeyGen, Enc, Dec) as follows:

– Setup(1λ, 1n) : This algorithm takes as input a security parameter 1λ and an
identity length 1n, and it outputs a master public key mpk and a master secret
key msk.

– KeyGen(mpk,msk, id) : This algorithm takes as input the master public key
mpk, the master secret key msk, and an identity id, and it outputs a secret
key skid.

– Enc(mpk, id,m; r) : This algorithm takes as input the master public key mpk,
an identity id, a message m, and a randomness r, and it outputs a cipher-
text ct.

– Dec(mpk, skid, ct) : This algorithm takes as input the master public key mpk,
a secret key skid, a ciphertext ct, and it outputs a plaintext m or ⊥.

We require that an IBE scheme satisfies the following two properties:

◦ Correctness: Dec(mpk, skid, ct) = m with probability 1, where (mpk,msk) ←
Setup(1λ, 1n), skid ← KeyGen(mpk,msk, id), and ct ← Enc(mpk, id,m), over
the randomness of (Setup,KeyGen,Enc,Dec).
◦ IND-ID-CPA Security: Any PPT adversary A cannot win the following
security game with probability greater than 1/2 + negl(λ):
1. (mpk,msk) ← Setup(1λ, 1n)
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2. (id∗,m0,m1, st) ← AKeyGen(mpk,msk,·)(mpk)
3. ζ

$←− {0, 1}, ct ← Enc(mpk, id∗,mζ)
4. ζ ′ ← AKeyGen(mpk,msk,·)(st, ct)
5. A wins if ζ ′ = ζ and A never queried id∗ to its KeyGen oracle.

Definition 5 (Anonymous Identity-Based Encryption). An AIBE
scheme is an IBE scheme with the following stronger notion of security:

◦ IND-ANON-ID-CPA Security: Any PPT adversary A cannot win the fol-
lowing security game with probability greater than 1/2 + negl(λ):
1. (mpk,msk) ← Setup(1λ, 1n)
2. (id0, id1,m, st) ← AKeyGen(mpk,msk,·)(mpk)
3. ζ

$←− {0, 1}, ct ← Enc(mpk, idζ ,m)
4. ζ ′ ← AKeyGen(mpk,msk,·)(st, ct)
5. A wins if ζ ′ = ζ and A never queried id0 or id1 to its KeyGen oracle.

In HIBE, the identities are no longer of fixed length. The input 1n to Setup
defines the maximum length of identities. HIBE features an additional algorithm
Delegate, which allows the generation of delegate keys dk. The delegate key dkid
for an identity id enables a user to generate secret (or delegate) keys using the
KeyGen (or Delegate) algorithm for any identity with prefix id. The delegate key
dkε for the empty identity ε is defined to be the master secret key msk.

Definition 6 ((Selective-ID) Hierarchical Identity-Based Encryption).
An HIBE scheme is an IBE scheme with an additional Delegate algorithm:

– Delegate(mpk, dkid, id
′) : This algorithm takes as input master public key mpk,

a delegate key dkid and an identity id′, and it outputs a delegate key dkid‖id′ .

We require that an HIBE scheme satisfies the following two properties:

◦ Correctness: We have Delegate(mpk,msk, id‖id′) = Delegate(mpk, dkid, id
′),

KeyGen(mpk,msk, id‖id′) = KeyGen(mpk, dkid, id
′), and Dec(mpk, skid, ct) = m

hold with probability 1, ∀λ ∈ N
+, where (mpk,msk) ← Setup(1λ), skid ←

KeyGen(mpk,msk, id), dkid←Delegate(mpk,msk, id), and ct←Enc(mpk, id,m).
◦ sel-IND-ID-CPA Security: Any PPT adversary A cannot win the following
security game with probability greater than 1/2 + negl(λ):
1. id∗ ← A(1λ)
2. (mpk,msk) ← Setup(1λ)
3. (m0,m1, st) ← AKeyGen(mpk,msk,·),Delegate(mpk,msk,·)(mpk)
4. ζ

$←− {0, 1}, ct ← Enc(mpk, id∗,mζ)
5. ζ ′ ← AKeyGen(mpk,msk,·),Delegate(mpk,msk,·)(st, ct)
6. A wins if ζ ′ = ζ, A never queried id∗ to its KeyGen oracle, and never

queried id to its Delegate oracle for some id which is a prefix of id∗.

Definition 7 ((Selective-ID) Anonymous Hierarchical Identity-Based
Encryption). An AHIBE scheme is an HIBE scheme with the following
stronger notion of security:
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◦ sel-IND-ANON-ID-CPA Security: Any PPT adversary A cannot win the
following security game with probability greater than 1/2 + negl(λ):
1. (id0, id1) ← A(1λ), it is required that |id0| = |id1|.
2. (mpk,msk) ← Setup(1λ)
3. (m, st) ← AKeyGen(mpk,msk,·),Delegate(mpk,msk,·)(mpk)
4. ζ

$←− {0, 1}, ct ← Enc(mpk, idζ ,m)
5. ζ ′ ← AKeyGen(mpk,msk,·),Delegate(mpk,msk,·)(st, ct)
6. A wins if and only if ζ ′ = ζ and A never queried id0 or id1 to its KeyGen

oracle, and A never queried id to its Delegate oracle for some id which is
a prefix of id0 or id1.

2.3 Chameleon Encryption (CE)

A CE scheme [17] is a chameleon hash function that supports encryption and
decryption procedures. It encrypts w.r.t. a hash value h and an index-bit pair
(i, b). The ciphertext can be decrypted given a preimage (x, r) of h where xi = b.

Definition 8 (Chameleon Encryption [17]). A CE scheme consists of five
PPT algorithms (KeyGen, H, H−1, Enc, Dec) as follows:
– KeyGen(1λ, n) : This algorithm takes as input the security parameter 1λ and

a message length n, and it outputs a key k and a trapdoor t.
– H(k, x; r) : This algorithm takes as input a key k, a message x ∈ {0, 1}n, and

coins r, and it outputs a hash value h, where h is of λ bits.
– H−1(t, (x, r), x′) : This algorithm takes as input a trapdoor t, a message x ∈

{0, 1}n, coins r, and a message x′ ∈ {0, 1}n, and it returns r′.
– Enc(k, (h, i, b),m; ρ) : This algorithm takes as input a key k, a hash value h,

an index i ∈ [n], b ∈ {0, 1}, a message m ∈ {0, 1}∗, and a randomness ρ, and
it outputs a ciphertext ct.

– Dec(k, (x, r), ct) : This algorithm takes as input a key k, a message x, coins
r, and a ciphertext ct, and it outputs a value m (or ⊥).

We require that a CE scheme satisfies the following properties:
◦ Uniformity: ∀x, x′ ∈ {0, 1}n, the distributions H(k, x; r) and H(k, x′; r′) are
statistically close, where r, r′ are chosen uniformly at random.
◦ Trapdoor Collisions: For any x, x′ ∈ {0, 1}n, and r, if (k, t) ←
KeyGen(1λ, n) and r′ = H−1(t, (x, r), x′), then H(k, x; r) = H(k, x′; r′). More-
over, if r is chosen uniformly at random, then r′ is also statistically close to
uniform.
◦ Correctness: Dec(k, (x, r), ct) = m holds ∀λ with probability 1 where
(k, t) ← KeyGen(1λ, n), h = H(k, x; r), and ct ← Enc(k, (h, i, xi),m), over
the randomness of (KeyGen,H,H−1,Enc,Dec).
◦ IND Security: Any PPT adversary A cannot win the following security
game with probability greater than 1/2 + negl(λ):
1. (k, t) ← KeyGen(1λ, n)
2. (x, r, i, st) ← A(k)
3. ζ

$←− {0, 1}, ct ← Enc(k, (H(k, x; r), i, 1 − xi), ζ)
4. ζ ′ ← A(st, ct). A wins if ζ ′ = ζ.
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2.4 Blind Public Key Encryption

In blind PKE [8], an encryption of a random plaintext is (partially) indistin-
guishable from random, even when the corresponding secret key is known.

Definition 9 (Blind Public Key Encryption (with public parameters)).
A blind PKE scheme consists of four PPT algorithms (Init,KeyGen,Enc,Dec):

– Init(1λ) : This algorithm takes as input a security parameter 1λ, and it outputs
public parameters pp.

– KeyGen(pp; r) : This algorithm takes as input the public parameters pp, and
a randomness r, and it outputs a pair of public and secret keys (pk, sk).

– Enc(pp, pk,m; ρ) : This algorithm takes as input the public parameters pp, a
public key pk, a message m, and a randomness ρ, and it outputs a cipher-
text ct.

– Dec(pp, sk, ct) : This algorithm takes as input the public parameters pp, a
secret key sk, and a ciphertext ct, and it outputs a plaintext m or ⊥.

We require that a blind PKE scheme satisfies the following three properties:

◦ Correctness: Dec(pp, sk, ct) = m holds ∀λ with probability 1, where pp ←
Init(1λ), (pk, sk) ← KeyGen(pp), and ct ← Enc(pp, pk,m), over the random-
ness of (Init,KeyGen,Enc,Dec).
◦ IND-CPA Security: Any PPT adversary A cannot win the following security
game with probability greater than 1/2 + negl(λ):
1. pp ← Init(1λ), (pk, sk) ← KeyGen(pp)
2. (m0,m1, st) ← A(pp, pk)

3. ζ
$←− {0, 1}, ct ← Enc(pp, pk,mζ)

4. ζ ′ ← A(st, ct). A wins if ζ ′ = ζ.
◦ IND-BLIND-CPA Security: We can decompose the output of Enc(pp,
pk,m; ρ) into E1(pp; ρ)‖E2(pp, pk,m; ρ) such that any PPT adversary A can-
not win the following security game with probability greater than 1/2+negl(λ):
1. pp ← Init(1λ), (pk, sk) ← KeyGen(pp)

2. m
$←− M, ρ

$←− R (M and R are the message and randomness spaces)
3. c̄t1 = E1(pp; ρ), c̄t2 = E2(pp, pk,m; ρ)

4. L = |c̄t2|, c̄t′2
$←− {0, 1}L, ζ

$←− {0, 1}
5. if ζ = 0, then ct = (c̄t1, c̄t2); if ζ = 1, then ct = (c̄t1, c̄t

′
2)

6. ζ ′ ← A(pp, pk, sk, ct). A wins if ζ ′ = ζ.

2.5 Blind Garbled Circuits

A blind garbling scheme [8] is a garbling scheme with a blindness security prop-
erty, which requires that a simulator’s output is uniformly random as long as
the corresponding input is uniformly random.

Definition 10 (Blind Garbling Scheme [8]). A blind garbling scheme con-
sists of three PPT algorithms (Garble,Eval,Sim) as follows:
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– Garble(1λ,C) : This algorithm takes as input a security parameter 1λ and a
circuit C : {0, 1}n → {0, 1}m, and it outputs a garbled circuit Ĉ along with
input labels (lbli,b)i∈[n],ζ∈{0,1} where each label lbli,b ∈ {0, 1}λ.

– Eval(Ĉ, L̂) : This algorithm takes as input a garbled circuit Ĉ along with a
set of n labels L̂ = (lbli,xi

)i∈[n] for some string x ∈ {0, 1}n, and it outputs a
string y ∈ {0, 1}m.

– Sim(1|C|, 1n, y) : This algorithm takes as input the description length of C,
input length n, and an m-bit string y, and it outputs a simulated garbled
circuit C̃ and labels L̃ = (lbli)i∈[n].

We require that a blind garbling scheme satisfies the following three properties:

◦ Correctness: For all circuits C : {0, 1}n → {0, 1}m, inputs x ∈ {0, 1}n, (Ĉ,

(lbli,b)i,b) ← Garble(1λ,C), and L̂ = (labi,xi
)i∈[n], we have Eval(Ĉ, L̂) = C(x).

◦ Simulation Security: For all circuits C : {0, 1}n → {0, 1}m, inputs x ∈
{0, 1}n, we have that the distribution {(Ĉ, L̂) : (Ĉ, (lbli,b)i,b) ← Garble(1λ,C),
L̂ = (lbli,xi

)i∈[n]} is computationally indistinguishable from the distribution
{(C̃, L̃) : (C̃, L̃) ← Sim(1|C|, 1n,C(x))}.
◦ IND-BLIND Security: For all circuits C : {0, 1}n → {0, 1}m and a uniformly
random output y ∈ {0, 1}m, the distribution {(C̃, L̃) ← Sim(1|C|, 1n, y)} is
indistinguishable from a completely uniform bit string of the same length.

2.6 Delegatable Pseudorandom Functions

Pseudorandom functions (PRF) are efficiently computable seeded functions that
are indistinguishable from truly random functions under oracle access. Delegat-
able PRF [17] is PRF that additionally supports the delegation of seeds for inputs
that start with certain prefixes. The classic GGM construction [22] can be made
delegatable. We use PRF in our AIBE, and delegatable PRF for AHIBE.

Definition 11 (Pseudorandom Function). F : {0, 1}λ × {0, 1}∗ → {0, 1}λ

is a PRF if it holds for any PPT algorithm A that

|Pr[AF(s,·)(1λ) = 1] − Pr[Af(·)(1λ) = 1]| < negl(λ),

where F is efficiently computable, s ∈ {0, 1}λ is a seed for F , and f : {0, 1}∗ →
{0, 1}λ is a uniformly random function.

Definition 12 (Delegatable Pseudorandom Function). A delegatable PRF
consists of two PPT algorithms (F ,F .Delegate) as follows:

– F(s, x) This algorithm takes as input a seed s ∈ {0, 1}λ and a string x ∈
{0, 1}∗, and it outputs a value u ∈ {0, 1}λ.

– F .Delegate(s, x) This algorithm takes as input a seed s and an input x, and
it outputs a seed sx.

We require that a delegatable PRF satisfies the following two properties:
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◦ Delegatability: For all inputs x, x′ ∈ {0, 1}∗, we have F(s, x‖x′) = F(sx, x′),
where sx = F .Delegate(s, x).
◦ Selective Pseudorandomness: For any PPT algorithm A and every x ∈
{0, 1}∗ of size at most polynomial in λ, we have that

|Pr[AF(s,·),Delegate(s,·)(1λ) = 1] − Pr[AH(·),Delegate(s,·)(1λ) = 1]| ≤ negl(λ),

where s ← {0, 1}λ is a seed for F , Delegate(s, ·) delegates seeds for all inputs
x′ ∈ {0, 1}∗ that are not x’s prefix, and H is a function that is uniformly
random on x and all its prefixes, but identical to F(s, ·) on all other inputs.

3 Blind Chameleon Encryption

We formulate blind CE. A blind CE encryption of a random plaintext is indis-
tinguishable from random even to an adversary who has the decryption power.

3.1 Definition

In this paper, a relaxed notion of blindness suffices, which only expects a part
of the ciphertext to be indistinguishable from random.

Definition 13 (Blind Chameleon Encryption). A CE scheme is blind if it
satisfies the following stronger notion of security:

◦ IND-BLIND Security: There exists some decomposition of Enc(k, (h, i, b),m;
ρ) = E1(k, i; ρ)‖E2(k, (h, i, b),m; ρ) such that any PPT adversary A cannot
win the following security game with probability greater than 1/2 + negl(λ):
1. (k, t) ← KeyGen(1λ, l)
2. (x, r, i, st) ← A(k)

3. m ← {0, 1}, ρ
$←− R

4. c̄t1 = E1(k, i; ρ), c̄t2 = E2(k, (H(k, x; r), i, xi),m; ρ)

5. L = |c̄t2|, c̄t′2
$←− {0, 1}L, ζ

$←− {0, 1}
6. if ζ = 0, then ct = (c̄t1, c̄t2); if ζ = 1, then ct = (c̄t1, c̄t

′
2)

7. ζ ′ ← A(st, ct). A wins if ζ ′ = ζ.

3.2 Our Construction

We modify the CE scheme of Döttling and Garg [17] to obtain a blind CE
scheme, with modifications highlighted in red. In particular, while the component
e in the ciphertext is random as long as m is random, we let the other part
of the ciphertext be independent of the targeted hash value h, by pushing hρ

into e. Intuitively, the key k contains 2n random group elements gj,b′ , each
corresponding to one unique index-bit pair. A hash value h of a string x is
the multiplication of group elements gj,xj

corresponding to each bit j of x. To
encrypt to a hash value h and an index-bit (i, b) pair, the value h divided by
gi,b is used to hide the plaintext, while group elements gj,b′ corresponding to all
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other indexes j 
= i are given. With the preimage x of h s.t. xi = b, a decryptor
is able to compute h divided by gi,b using the group elements corresponding to
other indexes, and finally recover the plaintext.

Let (G, ·) be a cyclic group of order p with generator g. Let f be a hard-
to-compute function defined as f(g, ga, gb, gc) = g(a−b)·c. It is easy to see that
the hardness of f is equivalent to that of CDH over G. Let HardCore(·) be the
Goldreich–Levin hardcore predicate of f . Our blind CE construction is as follows.

– KeyGen(1λ, n):
• For each j ∈ [n], b′ ∈ {0, 1}, choose a uniformly random value αj,b′ ← Zp

and compute gj,b′ = gαj,b′ .
• Output k = (g, (gj,b′)j∈[n],b′∈{0,1}) and t = ((αj,b′)j∈[n],b′∈{0,1}).

– H(k, x; r): Sample r ← Zp and output h = gr ·
∏

j∈[n] gj,xj
.

– H−1(t, (x, r), x′): Output r′ = r +
∑

j∈[n](αj,xj
− αj,x′

j
) mod p.

– Enc(k, (h, i, b),m; ρ):
• Sample ρ ← Zp.
• For j 
= i, b′ ∈ {0, 1}, compute cj,b′ = gρ

j,b′ .
• Compute c = gρ and e = HardCore( hρ

gρ
p,b

) ⊕ m.

• Output ct = (c̄t1 = (i, c, (cj,b′)j,b′), c̄t2 = e).
– Dec(k, (x, r), ct) : Output m = HardCore(cr ·

∏
j∈[n]\{i} cj,xj

) ⊕ e.

Efficiency. The efficiency of our CE construction is almost the same as that of
Döttling and Garg [17], except that we move one multiplication operation from
the encryption procedure to the decryption procedure, whereas each encryp-
tion procedure performs O(n) exponentiations, and each decryption procedure
performs O(n) multiplications, where n is the input length to KeyGen.

Theorem 2 ([17]). The construction described above is chameleon encryption
if the CDH problem over G is hard.

Theorem 3. The given chameleon encryption scheme is blind, where E1 outputs
c̄t1 and E2 outputs c̄t2.

The proof is deferred to Appendix A.1.

4 Anonymous Identity-Based Encryption

We give our construction of AIBE scheme from CDH, as a consequence of upgrad-
ing the Döttling–Garg IBE scheme [17] to blind IBE.

4.1 Blind Identity-Based Encryption

A blind IBE encryption of a random plaintext is (partially) indistinguishable
from random, even when the corresponding secret key is known.
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Definition 14 (Blind Identity-Based Encryption [8]). An IBE scheme is
blind if it satisfies the following stronger notion of security:

◦ IND-BLIND-ID-CPA Security: There exists some decomposition of
Enc(mpk, id,m; ρ) = E1(mpk; ρ)‖E2(mpk, id,m; ρ) such that any PPT adver-
sary A cannot win the following security game with probability greater than
1/2 + negl(λ):
1. (mpk,msk) ← Setup(1λ, 1n)
2. (id∗, st) ← AKeyGen(mpk,msk,·)(mpk)

3. m
$←− M, ρ

$←− R (M and R are the plaintext and randomness spaces)
4. c̄t1 = E1(mpk; ρ), c̄t2 = E2(mpk, id∗,m; ρ)

5. L = |c̄t2|, c̄t′2
$←− {0, 1}L, ζ

$←− {0, 1}
6. if ζ = 0, then ct = (c̄t1, c̄t2); if ζ = 1, then ct = (c̄t1, c̄t

′
2)

7. ζ ′ ← AKeyGen(mpk,msk,·)(st, ct). A wins if ζ ′ = ζ.

Theorem 4 ([8]). A blind IBE scheme is also an AIBE scheme.

4.2 Our Construction

We construct a blind IBE scheme from our blind CE scheme, basing on Döttling–
Garg IBE [17], with modifications highlighted in red.

Let CE be a blind CE scheme, PKE be a blind PKE scheme, where the hash
value of CE and the public keys of PKE have the same length l polynomial in λ,
GC be a blind garbling scheme, and F be a pseudorandom function.

We first define two functions NodeGen and LeafGen, and three circuits T, Q,
and BatchEnc. The NodeGen and LeafGen functions define the Merkle hash tree
(for non-leaf and leaf nodes, respectively) and provide access to the correspond-
ing CE and PKE keys. The T (resp., Q) circuit acts as the leaf (resp., non-leaf)
circuit proceeding PKE (resp., CE) encryption of the plaintext (resp., input to
its child circuit). The BatchEnc circuit proceeds a set of recipient-dependent CE
encryptions, which will be called in the Q circuit. The main purpose for us to
define the additional function BatchEnc instead of directly defining Q is for easier
replacement of Q in our security proofs.

– NodeGen((k0, . . . , kn−1), (t0, . . . , tn−1, s), v):
• Let i = |v|; compute hv = CE .H(ki, 02l;F(s, v)).
• Compute hv‖0 = CE .H(ki+1, 02l;F(s, v‖0)).
• Compute hv‖1 = CE .H(ki+1, 02l;F(s, v‖1)).
• Let xv = hv‖0‖hv‖1; compute rv = CE .H−1(ti, (02l,F(s, v)), xv).
• Output (hv, xv, rv).

– LeafGen((pp, kn−1), (tn−1, s), v):
• Compute hv = CE .H(kn−1, 02l;F(s, v)).
• Compute (lpkv‖0, lskv‖0) = PKE .KeyGen(pp;F(s, v‖0)).
• Compute (lpkv‖1, lskv‖1) = PKE .KeyGen(pp;F(s, v‖1)).
• Let xv = lpkv‖0‖lpkv‖1; compute rv = CE .H−1(tn−1, (02l,F(s, v)), xv).
• Output ((hv, xv, rv), lskv‖0, lskv‖1).
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– T[pp,m, ρ](lpk): Compute and output PKE .E2(pp, lpk,m; ρ).
– Q[k, β, Ȳ , ρ̄](h) : Compute and output BatchEnc(k, h, β, Ȳ ; ρ̄).
– BatchEnc(k, h, β, Ȳ ; ρ̄): This function takes input as a chameleon encryption

key k, a hash value h, a flag β ∈ {0, 1}, a set of labels Ȳ = (Yj,b)j∈[l],b∈{0,1},
and a set of randomness ρ̄ = (ρj,b)j∈[2l],b∈{0,1}.

• For j ∈ [l], b ∈ {0, 1}, derive ctj,b = CE .E2(k, (h, j + β · l, b), Yj,b; ρj+β·l,b).
• Output (ctj,b)j∈[l],b∈{0,1}.

Below presents our blind IBE scheme (Setup,KeyGen,Enc,Dec).

– Setup(1λ, 1n):
• Compute ppPKE ← PKE .Init(1λ).
• For each i ∈ [0, n − 1], compute (ki, ti) ← CE .KeyGen(1l, 2l).
• Choose a random seed s for F .
• Let v0 = ε be the root node; compute (h0, ·, ·, ·) = NodeGen((k0, . . . ,

kn−1), (t0, . . . , tn−1, s), v0).
• Output mpk = (ppPKE , k0, . . . , kn−1, h0) and msk = (t0, . . . , tn−1, s).

– KeyGen(mpk,msk, id):
• Define vi = id[≤ i] for i ∈ [0, n − 1].
• For i ∈ [0, n − 2], compute (hi, xi, ri) = NodeGen((k0, . . . , kn−1), (t0, . . . ,

tn−1, s), vi).
• For i = n − 1, compute ((hi, xi, ri), lskvi‖0, lskvi‖1) = LeafGen((ppPKE ,

kn−1), (tn−1, s), vi).
• Output skid = ((h0, x0, r0), . . . , (hn−1, xn−1, rn−1), lskid).

– Enc(mpk, id,m; (ρ′, ρ̄(1), . . . , ρ̄(n))):

• Sample random strings ρ′, ρ̄(1), . . . , ρ̄(n) where ρ̄(i) = (ρ(i)j,b)j∈[2l],b∈{0,1}.
• Compute (T̃, Ȳ (n)) ← GC.Garble(1λ,T[ppPKE ,m, ρ′]).
• Compute ct(n) = PKE .E1(ppPKE ; ρ′).
• For i = n − 1, . . . , 0, compute (Q̃(i), Ȳ (i)) ← GC.Garble(1λ,Q[ki, id[i + 1],

Ȳ (i+1), ρ̄(i+1)]) and ct(i) = (ct(i)j,b)j,b = (CE .E1(ki, j; ρ
(i+1)
j,b ))j∈[2l],b∈{0,1}.

• Parse Ȳ (0) = (Y (0)
j,b )j,b, let Ỹ (0) = (Y (0)

j,h0[j]
)j .

• Output ct = (ct(0), . . . , ct(n), Q̃(0), . . . , Q̃(n−1), T̃, Ỹ (0)).
– Dec(mpk, skid, ct):

• For i = 0, . . . , n − 1, proceed as follows:
* Compute c̄t(i)

′
= GC.Eval(Q̃(i), Ỹ (i)), parse c̄t(i)

′
= (ct(i)

′

j,b )j∈[l],b∈{0,1}.

* For j ∈ [l], compute ct(i)j = ct
(i)
j′,xi[j′]‖ct

(i)′

j,xi[j′] and ỹ
(i+1)
j = CE .Dec(ki,

(xi, ri), ct
(i)
j ) where j′ = j + id[i + 1] · l.

* Let Ỹ (i+1) = (ỹ(i+1)
j )j∈[l].

• Compute ct(n)
′
= GC.Eval(T̃, Ỹ (n)).

• Output m = PKE .Dec(ppPKE , lskid, ct
(n)‖ct(n)′

).
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Correctness. Consider a secret key skid = ((h0, x0, r0), . . . , (hn−1, xn−1, rn−1),
lskid), and a ciphertext corresponding to the same identity ct = (ct(0), . . . , ct(n),
Q̃(0), . . . , Q̃(n−1), T̃, Ỹ (0)). We consider each step of the decryption process below.

By correctness of GC, the evaluation of Q̃(0) yields the output of BatchEnc that
takes input as labels of the next garbled circuit Q̃(1). Next, by construction, we
have the correct CE encryptions (ct(1)j )j of the labels for the next garbled circuit
Q̃(1). By correctness of CE , the CE decryption of the appropriate ciphertexts
yields the correct labels (Y (1)

j,h1[j]
)j for Q̃(1). Following the same argument, we can

argue that the CE decryption of the appropriate ciphertexts generated by Q̃(1)

yields the correct input labels for Q̃(2). Repeating this argument, the last garbled
circuit T̃ outputs a PKE encryption of m under lpkid. Finally, the correctness of
PKE ensures that the recovered m is the encrypted one.

Efficiency. The most computationally intensive part of a non-black-box IBE
scheme is the non-black-box use of underlying primitives inside garbled circuits
during each decryption procedure. In this paper, we will only compare the effi-
ciency among the non-black-box constructions.

Our AIBE construction shares almost the same efficiency as Döttling–Garg
IBE, except that our encryption procedure additionally performs O(2nl2) expo-
nentiations to run nl recipient-independent CE encryptions, and our ciphertext
size is increased by O(2nl2) group elements to contain nl recipient-independent
CE ciphertexts. These increases are minor compared to the overall encryption
time and ciphertext size, which mainly depend on the time to garble circuits and
the size of the garbled circuits, respectively.

Notably, our AIBE construction greatly improves the efficiency of the AIBE
scheme of Brakerski et al. [8], as shown in Table 1, where λ is the security param-
eter, l is the length of h in CE and pk in PKE, n is the length of identities in
IBE, T and S are respectively the number of identities and the length of mpk
of a weakly compact IBE (wcIBE) primitive [8]. The reduction of the modular
exponentiations inside garbled circuits leads to the major saving of our scheme.
Also, our master public key size grows linearly with the length n of identities
in IBE, whereas that in [8] grows linearly with the number T of identities in
wcIBE, which should be set large enough to ensure that S < T/4.

Sadly, the encryption time and ciphertext size mainly depend on the time to
garble circuits and the size of the garbled circuits, respectively, which are hard
to compare when the circuits being garbled are different. Roughly, while the
number of circuits being garbled is O(n) in both schemes, the complexity of our
circuits is lower [8]. Thus, the encryption time and ciphertext size of our scheme
shall not become worse [8].

Semantic Security and Blindness. We prove the IND-ID-CPA and IND-
BLIND-ID-CPA securities of our scheme. Our construction requires the division
of encryption, and thus the blindness property (or some weaker ciphertext divis-
ible property) of the underlying primitives for even IND-IN-CPA security.
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Table 1. Efficiency Comparison of AIBE Schemes

Decryption time (operations inside circuits) Size of mpk Size of sk

Ours 2λnl + 1 exponentiations O(4nl) O(nl)

[8] 4λnlTS exponentiations O(2lT ) O(nlTS)

Theorem 5 (IND-ID-CPA Security). Our IBE scheme is IND-ID-CPA
secure if CE is a blind CE scheme, PKE is a blind PKE scheme, GC is a secure
garbling scheme, and F is a PRF.

The proof is deferred to Appendix A.2.

Theorem 6 (IND-BLIND-ID-CPA Security). Our IBE scheme is IND-
BLIND-ID-CPA secure if CE is a blind CE scheme, PKE is a blind PKE scheme,
GC is a blind garbling scheme, and F is a PRF.

The proof is deferred to Appendix A.3.

5 Anonymous Hierarchical Identity-Based Encryption

We present an AHIBE scheme based on the CDH assumption using a blind
HIBE scheme via making a one-time signature with encryption (OTSE) con-
struction [18] and, subsequently, an HIBE-from-OTSE construction [15], blind.

5.1 Blind OTSE from Blind CE

An OTSE scheme [15] is a one-time signature scheme that supports encryption
and decryption procedures. We define OTSE with selective security properties,
which suffices to build selective-ID blind HIBE and adaptive-ID blind IBE.

Definition 15 (Blind One-Time Signature with Encryption). A blind
OTSE scheme consists of five PPT algorithms (Setup,KeyGen,Sign,Enc,Dec):

– Setup(1λ, l) : This algorithm takes as input a security parameter 1λ and a
message length l, and it outputs public parameters pp.

– KeyGen(pp) : This algorithm takes as input public parameters pp, and it out-
puts a pair of verification and signing keys (vk, sk).

– Sign(pp, sk, x) : This algorithm takes as input public parameters pp, a signing
key sk, and a message x, and it outputs a signature σ.

– Enc(pp, (vk, i, b),m) : This algorithm takes as input public parameters pp, a
verification key vk, an index i, a bit b, and a plaintext m, and it outputs a
ciphertext ct.

– Dec(pp, (vk, σ, x), ct) : This algorithm takes as input public parameters pp, a
verification key vk, a signature σ, a message x, and a ciphertext ct, and it
outputs a plaintext m.



382 H. Wu and S. S. M. Chow

We require that a blind OTSE scheme satisfies the following three properties:

◦ Correctness: With probability 1 over the randomness of (Setup,KeyGen,Sign,
Enc,Dec), we have that Dec(pp, (vk, σ, x),Enc(pp, (vk, i, b),m)) = m where
pp ← Setup(1λ, l), (vk, sk) ← KeyGen(pp), σ ← Sign(pp, sk, x) and xi = b.
◦ Selective Security: Any PPT adversary A cannot win the following security
game with probability greater than 1/2 + negl(λ):
1. pp ← Setup(λ, l)
2. x ← A(pp)
3. (vk, sk) ← KeyGen(pp)
4. σ ← Sign(pp, sk, x)
5. (i,m0,m1, st) ← A(pp, vk, σ)
6. ζ ← {0, 1}, ct ← Enc(pp, (vk, i, 1 − xi),mζ)
7. ζ ′ ← A(st, ct). A wins if ζ ′ = ζ.

◦ sel-IND-BLIND Security: there exists some decomposition of Enc(pp, (vk, i,
b),m; r) = E1(pp, i; r) ‖ E2(pp, (vk, i, b),m; r) such that any PPT adversary
A cannot win the following security game with probability greater than 1/2 +
negl(λ):
1. pp ← Setup(λ, l)
2. x ← A(pp)
3. (vk, sk) ← KeyGen(pp)
4. σ ← Sign(pp, sk, x)
5. (i, j, st) ← A(pp, vk, σ)
6. m ← M, r ← R (M and R are the plaintext and randomness spaces)
7. c̄t1 ← E1(pp, i; r), c̄t2 ← E2(pp, (vk, i, j),m; r)
8. L = |c̄t2|, c̄t′2 ← {0, 1}L, ζ ← {0, 1}
9. if ζ = 0, then ct = (c̄t1, c̄t2); if ζ = 0, then ct = (c̄t1, c̄t

′
2)

10. ζ ′ ← A(st, ct). A wins if ζ ′ = ζ.

We first construct a blind non-compact OTSE scheme, in which the size of
the verification key may be bigger than the size of the messages allowed to be
signed. Our construction is based on a blind PKE scheme PKE and the non-blind
non-compact OTSE construction [18], with modifications highlighted in red.

– Setup(1λ, l):
• Compute PKE .pp ← PKE .Init(1λ).
• Output pp = (PKE .pp, 1λ, l).

– KeyGen(pp; r′):
• For j = {1, . . . , l}, b ∈ {0, 1}, compute (pkj,b, skj,b) ← PKE .KeyGen(1λ).
• Set vk ← {pkj,0, pkj,1}j∈[l] and sk ← {skj,0, skj,1}j∈[l].
• Output (vk, sk).

– Sign(pp, sk, x): Output σ ← {skj,xj
}j∈[l].

– Enc(pp, (vk, i, b),m; ρ):
• Compute ct1 ← PKE .E1(PKE .pp; ρ).
• Compute ct2 ← PKE .E2(PKE .pp, pki,b,m; ρ).
• Output ct = (i, ct1, ct2).

– Dec(pp, (vk, σ, x), ct): Output m ← PKE .Dec(PKE .pp, ski,xi
, ct1‖ct2).
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Theorem 7. The above construction is a blind non-compact OTSE construction
if PKE is blind.

The proof is easy and thus omitted.
We then construct a blind compact OTSE scheme from a blind non-compact

OTSE scheme NC, a blind garbling scheme GC, and a blind CE scheme CE (can
as well be a hash encryption since collision tractability is not needed here), basing
on the non-blind OTSE construction [18], with modifications highlighted in red.

– Setup(1λ, l): Compute NC.pp ← NC.Setup(1λ, l), k ← CE .KeyGen(1λ, l′)
(where l′ is the size of the verification keys vk). Output pp = (NC.pp, k).

– KeyGen(pp; r′): Compute (NC.vk,NC.sk) ← NC.KeyGen(NC.pp), and h ←
CE .H(k,NC.vk). Set vk = h, sk = (NC.vk,NC.sk). Output (vk, sk).

– Sign(pp, sk, x): Compute NC.σ ← NC.Sign(NC.pp,NC.sk, x). Output σ =
(NC.vk,NC.σ).

– Enc(pp, (vk, i, b),m; ρ, {ρj,b′}j∈[l′],b′∈{0,1}):
• Let C be the following circuit.
C[NC.pp, i, b,m, ρ](NC.vk):

Compute and output NC.E2(NC.pp, (NC.vk, i, b),m; ρ).
• Compute ct′ ← NC.E1(NC.pp, i; ρ).
• Compute (C̃, eC) ← GC.Garble(1λ,C[NC.pp, i, b,m, ρ]).
• Parse eC = {Yj,0, Yj,1}j∈[l′].
• For j ∈ [l′], b′ ∈ {0, 1}, compute ct′j,b′ ← CE .E1(k, j; ρj,b′) and

ct′′j,b′ ← CE .E2(k, (h, j, b′), Yj,b′ ; ρj,b′).
• Output ct = (C̃, ct′, {ct′j,b′ , ct′′j,b′}j,b′).

– Dec(pp, (vk, σ, x), ct):
• Let y = NC.vk, compute ỹ ← {CE .Dec(k, y, ct′j,yj

‖ct′′j,yj
)}j∈[l′].

• Compute c′ ← GC.Eval(C̃, ỹ).
• Output m ← NC.Dec(NC.pp, (y,NC.σ, x), ct′‖c′).

Theorem 8. Our OTSE construction is selectively secure if CE is a blind CE
scheme, NC is a non-compact blind OTSE scheme, and GC is a garbling scheme.

The proof is completely analogous to that of [18, Theorem 6] and thus omitted.
The core idea is that no PPT adversary can distinguish the real security game
from a security game in which the challenge ciphertext is computed using the
simulator algorithm of the underlying garbling scheme.

Theorem 9. Our OTSE scheme is sel-IND-BLIND secure if CE is a blind CE
scheme, NC is a non-compact blind OTSE scheme, and GC is a blind gar-
bling scheme.

The proof is deferred to Appendix A.4.
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5.2 Blind HIBE from Blind OTSE

We propose the definition for blind HIBE. In blind HIBE, an encryption of a
random plaintext is (partially) indistinguishable from random, even when the
corresponding secret key is known.

Definition 16 ((Selective-ID) Blind HIBE). An HIBE scheme is blind if
it satisfies the following stronger notion of security:

◦ sel-IND-BLIND-ID-CPA Security: There exists some decomposition of Enc(
mpk, id,m; ρ) = E1(mpk, |id|; ρ)‖E2(mpk, id,m; ρ) such that any PPT adver-
sary A cannot win the security game below with probability greater than
1/2 + negl(λ):
1. (id∗, st) ← A(1λ)
2. (mpk,msk) ← Setup(1λ)

3. m
$←− M, ρ

$←− R (M and R are the plaintext and randomness spaces)
4. c̄t1 = E1(mpk, |id∗|; ρ), c̄t2 = E2(mpk, id∗,m; ρ)

5. L = |c̄t2|, c̄t′2
$←− {0, 1}L, ζ

$←− {0, 1}
6. if ζ = 0, then ct = (c̄t1, c̄t2); if ζ = 1, then ct = (c̄t1, c̄t

′
2)

7. ζ ′ ← AKeyGen(mpk,msk,·),Delegate(mpk,msk,·)(st, ct).
8. A wins if ζ ′ = ζ and A never queried id to its Delegate oracle for any id

that is a prefix of id∗.

Theorem 10. A blind HIBE scheme is also an AHIBE scheme.

The proof is deferred to Appendix A.5.
We construct a blind HIBE scheme from our blind OTSE scheme, basing on

the non-blind HIBE-from-OTSE construction of Döttling and Garg [15], with
modifications highlighted in red. Let OT SE be a blind compact OTSE scheme,
and PKE be a blind PKE scheme, where the verification keys of OT SE and the
public keys of PKE have the same length l. Let GC be a blind garbling scheme
and F be a delegatable PRF. We assume for convenience that F has two output
registers F1 and F2.

We first define two functions NodeGen, LeafGen, and three circuits T, Qlast, Q:

– NodeGen(pp1, pp2, v, s):
• Compute (vkv, skv) = OT SE .KeyGen(pp1;F1(s, v)).
• Compute (vkv‖0, skv‖0) = OT SE .KeyGen(pp1;F1(s, v‖0)).
• Compute (vkv‖1, skv‖1) = OT SE .KeyGen(pp1;F1(s, v‖1)).
• Compute (lpkv, lskv) = PKE .KeyGen(pp2;F2(s, v)).
• Compute xv = vkv‖0‖vkv‖1‖lpkv.
• Compute σv = OT SE .Sign(pp1, skv, xv).
• Output (vkv, σv, xv).

– NodeGen′(pp, s, v): Compute (lpkv, lskv) = PKE .KeyGen(pp,F2(s, v)) and
output lskv.

– T[pp,m, ρ](lpk): Compute and output PKE .E2(pp, lpk,m; ρ).
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– Qlast[pp, Ȳ , ρ̄′](vk): Compute and output

{OT SE .E2(pp, (vk, j + 2l, b), Yj,b; ρj,b)}j∈[l],b∈{0,1}.

– Q[pp, β ∈ {0, 1}, Ȳ , ρ̄](vk): Compute and output

{OT SE .E2(pp, (vk, j + βl, b), Yj,b; ρj+βl,b)}j∈[l],b∈{0,1}.

Below presents our HIBE scheme (Setup,Delegate,KeyGen,Enc,Dec).

– Setup(1λ):
• Compute OT SE .pp ← OT SE .Setup(1λ, 3l).
• Compute PKE .pp ← PKE .Init(1λ).
• Choose a random seed s for F .
• Let v0 = ε be the root node, compute (vk0, ·, ·) = NodeGen(OT SE .pp,

PKE .pp, v0, s)
• Output mpk = (OT SE .pp,PKE .pp, vk0) and msk = dkε = (s, ∅,⊥).

– Delegate(mpk, dkid, id
′):

• Let n = |id|, n′ = |id′|, parse dkid = (sid, {lki}i∈[n], lskid).
• For i ∈ [0, n′], compute lkn+i = NodeGen(OT SE .pp,PKE .pp, id′[≤ i], sid).
• For i = n′, compute lskid‖id′ = NodeGen′(PKE .pp, id′[≤ i], sid).
• Compute sid‖id′ = F .Delegate(sid, id′).
• Output dkid‖id′ = (sid‖id′ , {lki}i∈[n+n′], lskid‖id′).

– KeyGen(mpk, dkid, id
′):

• Compute dkid‖id′ = (s, {lki}i, lsk) using Delegate(mpk, dkid, id
′).

• Output skid‖id′ = ({lki}i, lsk).
– Enc(mpk, id,m; ρ′′, ρ̄′, ρ̄(n−1), . . . , ρ̄(0)):

• Sample randomnesses ρ′′, ρ̄′, ρ̄(n−1), . . . , ρ̄(0) where ρ̄′ = (ρ′
j,b)j∈[l],b∈{0,1}

and ρ̄(i) = (ρ(i)j,b)j∈[2l],b∈{0,1}.
• Compute (T̃, Ȳ T) ← GC.Garble(1λ,T[PKE .pp,m, ρ′′]).
• Compute ct′′ = PKE .E1(PKE .pp; ρ′′).
• Let n = |id|, for i = n, . . . , 0, proceed as follows:

* If i = n, derive (Q̃(n), Ȳ (n)) ← GC.Garble(1λ,Qlast[OT SE .pp, Ȳ T, ρ̄′])
and ct(n) = (ct(n)j,b ) = (OT SE .E1(OT SE .pp, j + 2l; ρ′

j,b))j∈[l],b∈{0,1}.
* Else, compute (Q̃(i), Ȳ (i)) ← GC.Garble(1λ,Q[OT SE .pp, idi+1, Ȳ

(i+1),

ρ̄(i+1)]) ct(i) = (ct(i)j,b) = (OT SE .E1(OT SE .pp, j; ρ(i)j,b))j∈[2l],b∈{0,1}.

• Let y = vkv0 and compute Ỹ (0) = (Y (0)
j,yj

)j .
• Output ct = (ct(0), . . . , ct(n), ct′′, Q̃(0), . . . , Q̃(n), T̃, Ỹ (0)).

– Dec(mpk, skid, ct):
• Let n = |id|, for i = 0, . . . , n − 1, proceed as follows:

* Compute c̄t(i)
′
← GC.Eval(Q̃(i), Ỹ (i)), parse c̄t(i)

′
= (ct(i)

′

j,b )j∈[l],b∈{0,1}.
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* Compute ỹ
(i+1)
j = OT SE .Dec(OT SE .pp, lki, ct

(i)
j′,xi[j′]‖ct

(i)′

j,xi[j′]), for
j ∈ [l], where j′ = j + id[i + 1] · l.
* Let Ỹ (i+1) = (ỹ(i+1)

j )j∈[l].

• Compute c̄t(n)
′
← GC.Eval(Q̃(n), Ỹ (n)). Parse c̄t(n)

′
= (c(n)j,b )j∈[l],b∈{0,1}.

• Recover Ỹ (n+1) = (OT SE .Dec(OT SE .pp, lkn, ct
(n)
j,xn[j+2l]‖ct

(n)′

j,xn[j+2l])j∈[l]

and ct′ ← GC.Eval(T̃, Ỹ (n+1)).
• Output m = PKE .Dec(PKE .pp, lskid, ct

′′‖ct′).

Table 2. Efficiency Comparison of OTSE Schemes

Decryption time
(operations inside
circuits)

Size of mpk Size of vk Size of sk

Ours 4l exponentiations O(2l2) a string of length l 4l strings of length l

[8] 2l exponentiations O(l) 2λ + 1 group elements
and a string of length l

2λ + 1 integers

Efficiency. As there is no prior AHIBE scheme from CDH, we compare the
efficiency of our scheme with the non-anonymous HIBE-from-CDH schemes [15,
17]. Like our IBE, our AHIBE-from-OTSE construction shares almost the same
efficiency as the HIBE-from-OTSE construction [15]. Moreover, the HIBE-from-
CDH construction [15] is identical to the latter one [17] when plugging their
OTSE-from-CE construction into their HIBE-from-OTSE construction [15].

So, it suffices to compare our OTSE primitive with the one of Döttling and
Garg [15], which is shown in Table 2, where λ is the security parameter, and l is
the input length to OT SE .Setup, the length of h in CE, and the length of pk in
PKE.

One may see that the performance of our scheme is only slightly worse
than the one of Döttling and Garg [15], whereas our scheme achieves blind-
ness. Besides, the encryption time and ciphertext size are the time to garble one
circuit and the size of one garbled circuit, respectively. While the complexity
of a complete encryption procedure inside circuits is similar, our scheme allevi-
ates the complexity of the circuit by pushing a part of the encryption procedure
outside of the circuit, which is not allowed in their OTSE scheme [15].

Theorem 11. Our HIBE scheme is sel-IND-ID-CPA secure if OT SE is a com-
pact blind OTSE scheme, PKE is a blind PKE scheme, and GC is a secure
garbling scheme.

The proof is completely analogous to that of [15, Theorem 4] and thus omitted.
The core idea is that no PPT adversary can distinguish the real security game
from a security game in which the challenge ciphertext is computed using the
simulator algorithm of the underlying garbling scheme.
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Theorem 12. Our HIBE scheme is sel-IND-BLIND-ID-CPA secure if OT SE
is a compact blind OTSE scheme, PKE is a blind PKE scheme, and GC is a
blind garbling scheme.

The proof is deferred to Appendix A.6.

6 A(H)IBE from φ-Hiding Assumption

We show how to construct A(H)IBE schemes from the φ-hiding assumption. In
particular, we construct a weakened version of blind CE, namely, the blind hash
encryption (HE) scheme, from the φ-hiding assumption. Specifically, (blind) HE
is (blind) CE scheme without collision tractability. We omit the formal defini-
tion for (blind) HE as it is just (blind) CE that removes the trapdoors and the
H−1 algorithm. We note that a blind HE scheme from φ-hiding can be boot-
strapped into blind PKE from φ-hiding using the framework in [8, Section 7.5
(Full Version)], which together with the blind HE scheme itself can further be
bootstrapped into blind HIBE from φ-hiding as in Sect. 5.

We construct our blind HE scheme from the φ-hiding assumption, basing
on a one-way function with encryption (OWFE) scheme [24, Section 6], with
modifications highlighted in red. Note that our construction only requires the
IND security and IND-BLIND security properties and hence no longer requires
the restriction to the message length n for satisfying the two additional one-
wayness and smoothness properties [24].

Definition 17 (φ-hiding Assumption). Let φ(N) = N ·
∏

p|N (1 − 1/p). Let
Primes(λ) denote the set of primes of bit-length λ, and let RSA(λ) = {N : N =
pq; p, q ∈ Primes(λ/2); gcd(p − 1, q − 1) = 2}. For any e ≤ 2λ, let RSAe(λ) =
{N ∈ RSA(λ) : e divides φ(N)}. We say that the φ-hiding assumption is hard
if for all ε > 0, integers e such that 3 < e < 2λ/4−ε and any PPT adversary A,
Pr[A(N, e) = 1 : N ← RSA(λ)] − Pr[A(N, e) = 1 : N ← RSAe(λ)] ≤ negl(λ).

Let Ext be a randomness extractor such that the extracted string looks uni-
formly random as long as the source has high randomness. (One can regard the
extractor as a hardcore predicate but with output space being a string of some
fixed length instead of a bit.) Let p1 = 2, p2 = 3, and ei = logpi

N�, fi = pei
i

for all i. Our blind HE scheme is described as follows.

– KeyGen(1λ, n) : Set RSA modulus length t = 5λ, and sample RSA modu-
lus N ← RSA(t). Next, sample a generator g ← Z∗

N , 2n (λ-bit) primes
ei,b ← Primes(λ) for i ∈ [n], b ∈ {0, 1}, and elements d0, d1 ← ZN .
Then, sample a seed s ← S of extractor Extλ,l and output public param-
eters k = (N, s, g, {ei,b}i,b, d0, d1).

– H(k, x) : Output h = gf1f2(d0x+d1)
∏

i ei,xi mod N .
– Enc(k, (h, i, b),m; ρ) : Output ct = (i, c = gρ, e = Ext(hρ/ei,b , s) ⊕ m).
– Dec(k, x, ct) : Output m = Ext(cf1f2(d0x+d1)

∏
j �=i ej,xj , s) ⊕ e.
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Efficiency. There is no explicit (H)IBE scheme from φ-hiding in the literature.
Indeed, the only known way to construct (H)IBE from φ-hiding is by plugging
the existing OWFE scheme [24] into the non-blind version [18] of our framework
in Sect. 5. While the efficiency of our blind framework is close to the non-blind
framework [18], it suffices to compare our HE construction with the OWFE
construction [24]. It is easy to observe that the efficiency of the two constructions
is almost the same.

Theorem 13. Our scheme above is a blind HE under the φ-hiding assumption.

The proof for the IND security is completely analogous to that of [24, Theorem
6.2] and thus omitted. The IND-BLIND security can be easily shown from the
property of the randomness extractor Ext.

7 Discussions

Efficient AIBE from Decisional Diffie–Hellman (DDH). As in the seminal
paper [17], we can derive a DDH-version of our CE scheme by removing the
Goldreich–Levin hardcore predicate, and further obtain a DDH-version of our
AIBE scheme. Notably, DDH leads to CE where the recipient-independent part
E1(k, i; ρ) of a ciphertext can be further divided into two parts: the index
i, and the remaining components, which are indistinguishable from those of
another recipient-independent ciphertext E1(k, j; ρ) for random j ∈ [n]. With
the stronger property, we are able to reduce the ciphertext size of our AIBE-
from-CE construction. Specifically, the Enc algorithm in AIBE no longer needs
to generate the whole “fake” recipient-independent CE ciphertexts.

A(H)IBE from Lattice. It is easy to show that the HE-from-LWE scheme in [18,
Section 3.2] is blind. We can then obtain an A(H)IBE-from-LWE construction
using the technique in Sect. 5.

8 Concluding Remarks

Following the seminal result of Döttling and Garg [17], we show how to construct
A(H)IBE schemes by applying the blinding technique of Brakerski et al. [8] to
non-black-box (H)IBE schemes. It would be interesting to explore more efficient
construction of anonymous schemes basing on different assumptions.

A Proof of Security

A.1 Proof of Theorem 3

Proof. Let c̄t1 = E1(k, i; ρ) = (i, c = gρ, (cj,b′) = (gρ
j,b′)j∈[n]\{i},b′∈{0,1}), c̄t2 =

E2(k, (h, i, b),m; ρ) = m ⊕ HardCore( hρ

gρ
i,b

). It is obvious that c̄t1 is independent

of h, b, and m. As HardCore( hρ

gρ
i,b

) is deterministic given c̄t1, we have that c̄t2 is
random as long as m is random. It follows that any adversary will have exactly
1/2 probability of winning the IND-BLIND game. ��
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A.2 Proof of Theorem 5

Proof. Suppose A is an efficient adversary playing the IND-ID-CPA security
game. We will show that the advantage of A is negligible with a sequence of
hybrids. Let q be a polynomial upper bound on the runtime of A, and thus also
an upper bound for the number of A’s key queries.

– Greal: This game is the original security game, as shown in Definition 4.
– G0: This game is identical to Greal except that all pseudorandom function

calls are responded to using a truly random function.
– Gτ for τ ∈ [1, n]: For every τ , this game is identical to G0 except in how

the challenge ciphertext is generated. Recall that the challenge ciphertext
contains a sequence of n + 1 garbled circuits. In Gτ , we generate the first τ
of these garbled circuits using the simulator provided by the garbled circuit
construction. More formally, to compute a challenge ciphertext for identity
id∗, the first τ garbled circuits are generated as follows:

• For i = τ −1, . . . , 0, parse Ȳ (i+1) = (Y (i+1)
j,b )j,b, compute (Q̃(i), (Y (i)

j )j) ←
GC.Sim(1λ,BatchEnc(ki, hi, id

∗[i + 1], (Y (i+1)
j,hi+1[j]

, Y
(i+1)
j,hi+1[j]

)j ; ρ̄(i+1))), and

set Ȳ (i) = (Y (i)
j , Y

(i)
j )j .

We note that we can always generate (hi, xi, ri) for i ∈ [0, n − 1] locally.
– Gn+1: This game is identical to Gn except that we generate the (n + 1)-th

garbled circuit using the simulator provided by the garbled circuit construc-
tion. More formally, to compute a challenge ciphertext for identity id∗, the
(n + 1)-th garbled circuit is generated as follows:

• For i = n, compute

(T̃, (Y (i)
j )j) ← GC.Sim(1λ,PKE .E2(ppPKE , lpkid∗ ,mζ ; ρ′)),

and set Ȳ (i) = (Y (i)
j , Y

(i)
j )j .

We note that even though the adversary is not allowed to query for skid∗ , we
can always generate lpkid∗ locally.

– Gfinal: This game is identical to Gn+1 except that we change the ciphertext
PKE .E2(ppPKE , lpkid∗ ,mζ ; ρ′) hardwired in the simulated garbling of the cir-
cuit T to be PKE .E2(ppPKE , lpkid∗ , 0; ρ′).

The indistinguishability between Greal and G0 follows directly from the pseu-
dorandomness property of F . The indistinguishability between Gτ and Gτ+1

for τ ∈ [0, n − 1] is proved in Lemma 1. The indistinguishability between Gn

and Gn+1 follows from the simulation security of GC. The indistinguishability
between Gn+1 and Gfinal follows from the IND-CPA security and the blindness
security of PKE . Finally, Gfinal is information-theoretically independent of the
message mζ , in which A gains no advantage. ��

Lemma 1. Gτ and Gτ+1, τ ∈ [0, n − 1], are computationally indistinguishable.

Proof. We describe a sequence of hybrid games.
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– Hτ,1: This game is identical to Gτ except that we change the generation
process of the (τ + 1)-th garbled circuit

(Q̃(τ), Ȳ (τ)) ← GC.Garble(1λ,Q[kτ , id∗[τ + 1], Ȳ (τ+1), ρ̄(τ+1)]),

where Ȳ (τ) = (Y (τ)
j,b )j,b, to

(Q̃(τ), (Y (τ)
j )j) ← GC.Sim(1λ,BatchEnc(kτ , hτ , id∗[τ + 1], Ȳ (τ+1); ρ̄(τ+1))),

and set Ȳ (τ) = (Y (τ)
j , Y

(τ)
j )j .

When making the change, we are free to compute hτ and respond to any key
queries as we possess the trapdoors of CE and secret keys of PKE .

– Hτ,2: This game is identical to Hτ,1 except that we change how the values
hv and rv for v ∈ {0, 1}τ are calculated when responding to the adversary’s
key query. Recall that in Gτ , hv is computed as CE .H(kτ , 02l;F(s, v)), and rv

is computed as CE .H−1(tτ , (02l,F(s, v)), xv). In Hτ,1, we choose rv uniformly
and compute hv = CE .H(kτ , xv; rv).

– Hτ,3: This game is identical to Hτ,2 except that we change the generation
process of the (τ + 1)-th garbled circuit:

(Q̃(τ), (Y (τ)
j )j) ← GC.Sim(1λ,BatchEnc(kτ , hτ , id∗[τ + 1], Ȳ (τ+1); ρ̄(τ+1))),

to (Q̃(τ), (Y (τ)
j )j)

← GC.Sim(1λ,BatchEnc(kτ , hτ , id∗[τ + 1], (Y (τ+1)
j,hτ+1[j]

, Y
(τ+1)
j,hτ+1[j]

)j ; ρ̄(τ+1))).

When making the change, we do not generate (kτ , tτ ) by ourselves. Instead,
we obtain kτ from a CE experiment. The output of the BatchEnc function
(i.e., the “correct” set of the recipient-dependent CE encryptions) and the
“correct” set of the recipient-independent CE encryptions are returned by
the CE experiment. We note that despite the fact that 2l randomnesses are
input into the BatchEnc function, only l randomnesses are used to generate
the “correct” set of recipient-dependent CE encryptions. Thus the challenger
is free to newly generate l randomnesses to compute the “fake” set of the
recipient-independent CE encryptions with the new randomnesses. Besides,
any key queries can be responded to using the method described in Hτ,2.

– Hτ,4: This game is identical to Hτ,3 except that we calculated hv and rv as
in the original scheme.

The indistinguishability of hybrids Gτ and Hτ,1 follows from the simulation
security of GC. The indistinguishability of hybrids Hτ,1 and Hτ,2 follows from
the trapdoor collision and uniformity properties of CE . The indistinguishability of
hybrids Hτ,2 and Hτ,3 follows from the IND security and the blindness security of
CE . The indistinguishability of hybrids Hτ,3 and Hτ,4 follows from the trapdoor
collision and uniformity properties of CE . Finally, Hτ,4 is identical to Gτ+1. ��
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A.3 Proof of Theorem 6

Proof. Enc(mpk, id,m; (ρ′, ρ̄(1), . . . , ρ̄(n))) can be decomposed into E1 and E2:
E1(mpk; (ρ′, ρ̄(1), . . . , ρ̄(n))) = (ct(0), . . . , ct(n)), E2(mpk, id,m; (ρ′, ρ̄(1), . . . , ρ̄(n)))
= (Q̃(0), . . . , Q̃(n−1), T̃, Ỹ (0)). Suppose that A is an efficient adversary playing the
IND-BLIND-ID-CPA security game. Let q be a polynomial upper bound on the
runtime of A, and thus also an upper bound for the number of A’s key queries.
We will show that A gains a negligible advantage in the IND-BLIND-ID-CPA
security game, using a sequence of hybrid games. Note that in the hybrids, we
only make changes when ζ = 0, i.e., the challenge ciphertext ct = (c̄t1, c̄t2). In
particular, we will act as the game challenger and interact with A.

– Greal: This game is the original security game, as shown in Definition 14.
– G0, . . . , Gn+1 are defined analogously as in Appendix A.2.
– G′

τ for τ ∈ [0, n]: This game is identical to Gn+1 except in how the challenge
ciphertext is generated. Recall that in Gn+1, we generate the (i+1)-th garbled
circuit as GC.Sim(1λ, ·) → (Q̃(i), (Y (i)

j )j) and set Ȳ (i) = (Y (i)
j , Y

(i)
j )j . (When

i = n, the generated garbled circuit is T̃, here we abuse the notion of Q̃(i)

for convenience.) In this game, to compute a challenge ciphertext for identity
id∗, the last (n + 1 − τ) garbled circuits are generated as follows:

• For i = n, we replace (T̃, (Y (i)
j )j) with a uniformly random string of the

same length.
• For i = n − 1, . . . , τ , we replace (Q̃(i), (Y (i)

j )j) with a uniformly random
string of the same length.

The indistinguishability of G′
n and Gn+1 is proved in Lemma 2. The indistin-

guishability of G′
τ+1 and G′

τ for τ ∈ [0, n − 1] is proved in Lemma 3. In G′
0, A

will have no advantage in winning the IND-BLIND-ID-CPA security game. ��

Lemma 2. Gn+1 and G′
n are computationally indistinguishable.

Proof. We describe a hybrid game:

– H ′
n+1: This game is identical to Gn+1 except that we change the ciphertext

hardwired in the simulated garbling of the (n + 1)-th garbled circuit from

(T̃, (Y (n)
j )j) ← GC.Sim(1λ,PKE .E2(ppPKE , lpkid∗ ,m; ρ′)),

to
(T̃, (Y (n)

j )j) ← GC.Sim(1λ,U),

where U is sampled uniformly at random from the output space of PKE .E2().

The indistinguishability of Gn+1 and H ′
n+1 follows from the IND-BLIND security

of PKE . The indistinguishability of H ′
n+1 and G′

n follows from the IND-BLIND
security of GC. ��

Lemma 3. G′
τ+1 and G′

τ are computationally indistinguishable, ∀τ ∈ [0, n− 1].
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Proof. We describe a sequence of hybrid games.

– H ′
τ+1,1: This game is identical to G′

τ+1 except that we calculate values hv

and rv for v ∈ {0, 1}τ as in Hτ,1.
– H ′

τ+1,2: It is identical to H ′
τ+1,1 except that we change the ciphertext hard-

wired in the simulated garbling of the (τ+1)-th garbled circuit: (Q̃(τ), (Y (τ)
j )j)

← GC.Sim(1λ,BatchEnc(kτ , hτ , id∗[τ + 1], (Y (τ+1)
j,hτ+1[j]

, Y
(τ+1)
j,hτ+1[j]

)j ; ρ̄(τ+1))),

to
(Q̃(τ), (Y (τ)

j )j) ← GC.Sim(1λ,U),

where U is sampled uniformly at random from the output space of BatchEnc().
We note that when making the change, we do not generate (kτ , tτ ) by our-
selves. Instead, we obtain kτ from a CE experiment. Although tτ is not given
to us, we can compute hτ and respond to any key queries using the method
described in H ′

τ+1,1.
– Hτ+1,3: This game is identical to G′′

τ+1,2 except that we calculate values hv

and rv as in the original scheme.
– H ′

τ+1,4: It is identical to H ′
τ+1,3 except that we change the generation process

of the (τ + 1)-th garbled circuit in the challenge ciphertext. In particular, we
set (Q̃(i), (Y (τ)

j )j) as a uniformly random string of the same length.

The indistinguishability of G′
τ+1 and H ′

τ+1,1 follows from the trapdoor collision
and uniformity properties of CE . The indistinguishability of H ′

τ+1,1 and H ′
τ+1,2

follows from the IND-BLIND security of CE . The indistinguishability of H ′
τ+1,2

and H ′
τ+1,3 follows from the trapdoor collision and uniformity properties of CE .

The indistinguishability of H ′
τ+1,3 and H ′

τ+1,4 for τ ∈ [0, n] follows from the
IND-BLIND security of GC. We note that H ′

τ+1,4 is identical to G′
τ . ��

A.4 Proof of Theorem 9

Proof. Enc(pp, (vk, i, b),m; r = (ρ, {ρj,b′}j∈[l′],b′∈{0,1})) can be decomposed into
two parts: E1(pp, i; r) = (ct′, {ct′j,b′}j,b′), E2(pp, (vk, i, b),m; r) = (C̃, {ct′′j,b′}j,b′).
Suppose that A is an efficient adversary playing the sel-IND-BLIND security
game. We will show that A gains a negligible advantage in the sel-IND-BLIND
security game, using a sequence of hybrid games. In the hybrids, we only make
changes when ζ = 0, i.e., the challenge ciphertext ct = (c̄t1, c̄t2). In particular,
we will act as the game challenger and interact with A.

– Greal: This game is the original security game, as shown in Definition 15.
– G0: This game is identical to the game H2 in [18, Theorem 6]. Specifi-

cally, the recipient-dependent part of the challenge ciphertext is generated
as (C̃, (Yj,NC.vkj

)j) ← GC.Sim(1λ,NC.E2(NC.pp, (NC.vk, i, b),m; ρ)), ct′′j,b′ ←
CE .E2(k, (h, j, b′), Yj,NC.vkj

; ρj,b′) for j ∈ [l′], b′ ∈ {0, 1}.
– G1: This game is identical to G0 except in how the challenge ciphertext

is generated. In particular, we compute (C̃, (Yj,NC.vkj
)j) as GC.Garble(1λ,U)

where U is sampled uniformly at random from the output space of NC.E2(
NC.pp, (h, i, b),m; ρ).
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– G2: This game is identical to G1 except in how the challenge ciphertext is
generated. In particular, we replace (C̃, (Yj,NC.vkj

)j) by a uniformly random
string of the same length.

– G3: This game is identical to G2 except in how the challenge ciphertext is
generated. In particular, we replace ct′′j,b′ for j ∈ [l′], b′ ∈ {0, 1} by uniformly
random strings of the same length.

The indistinguishability of Greal and G0 is proved [18, Theorem 6] and thus
omitted. The indistinguishability of G0 and G1 follows from the sel-IND-BLIND
security of NC. The indistinguishability of G1 and G2 follows from the IND-
BLIND security of GC. The indistinguishability of G2 and G3 follows from the
IND-BLIND security of CE . In G3, A will have no advantage in winning the
sel-IND-BLIND security game.

A.5 Proof of Theorem 10

Proof. Consider an adversary A playing the sel-IND-ANON-ID-CPA security
game of HIBE; A is eventually given a challenge ct ← Enc(mpk, idζ ,m), where
(id0, id1,m) are chosen by A. We note that id0 and id1 are restricted to the same
length. For each ζ ∈ {0, 1}, it is certainly the case that A cannot distinguish
whether it was given ctidζ ,m ← Enc(mpk, idζ ,m) or ctidζ ,m∗ ← Enc(mpk, idζ ,m

∗),

where m∗ $←− M; this follows from sel-IND-ID-CPA security of HIBE. Addition-
ally, by sel-IND-BLIND-ID-CPA security of HIBE, A also cannot distinguish
whether it is given ctidζ ,m∗ as above or ct′idζ ,m∗ = E1(mpk, |idζ |; ρ)‖U for ρ

$←− R,

U $←− {0, 1}|E2(mpk,idζ ,m∗;ρ)|. As ct′id0,m∗ and ct′id1,m∗ are drawn from identical dis-
tributions, we conclude that A cannot distinguish whether it is given ctid0,m or
ctid1,m, as desired. ��

A.6 Proof of Theorem 12

Proof. The encryption algorithm Enc(mpk, id,m; r = (ρ′′, ρ̄′, ρ̄(n−1), . . . , ρ̄(0))) of
our scheme can be decomposed into two parts: E1(mpk; r) = (ct(0), . . . , ct(n), ct′′),
E2(mpk, id,m; r) = (Q̃(0), . . . , Q̃(n), T̃, Ỹ (0)). Suppose that A is an efficient adver-
sary playing the sel-IND-BLIND-ID-CPA security game. We will show that A
gains a negligible advantage in the sel-IND-BLIND-ID-CPA security game, using
a sequence of hybrid games. We note that in the hybrid games, we only make
changes when ζ = 0, i.e., the challenge ciphertext ct = (c̄t1, c̄t2). In particular,
we will act as the game challenger and interact with A.

– Greal: This game is the original security game, as shown in Definition 16.
– G0: It is identical to H2n∗+3 in [15, Theorem 4]. Specifically, the PRF function

is modified such that all key queries can be responded by the challenger
without knowing the trapdoor values tv ∀v ∈ {ε, id∗[≤ 1], . . . , id∗[≤ n − 1]}.
The recipient-dependent part of the challenge ciphertext is generated as:
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Compute (T̃, (Y T
j )j) ← GC.Sim(1λ, PKE .E2(pp

PKE , lpkid∗ , m; ρ′′)).

For i = n, . . . , 0:

If i = n:

Compute (Q̃(n), (Y
(n)

j )j)

← GC.Sim(1λ,Qlast[OT SE .pp, (Y T
j , Y T

j )j , ρ̄
′](vkvid∗[≤n])).

Else:

Compute (Q̃(i), (Y
(i)

j )j)

← GC.Sim(1λ,Q[OT SE .pp, idi+1, (Y
(i+1)

j , Y
(i+1)

j )j , ρ̄
(i+1)](vkvid∗[≤i])).

– G0,2: This game is identical to G0 except in how the challenge ciphertext is
generated. In particular, we compute (T̃, (Y T

j )j) as GC.Sim(1λ,U), where U is
sampled uniformly at random from the output space of PKE .E2().

– G0,1: This game is identical to G0,2 except in how the challenge ciphertext is
generated. In particular, we replace (T̃, (Y T

j )j) by a uniformly random string
of the same length.

– Gτ,2 for τ ∈ [1, n]: It is identical to Gτ−1,1 except for the challenge ciphertext.
Particularly, we compute (Q̃(n−τ+1), (Y (n−τ+1)

j )j) as GC.Sim(1λ,U1) if τ =
1 or GC.Sim(1λ,U2) otherwise, where U1 and U2 are sampled uniformly at
random from the output space of Qlast(·) and Q(·) respectively.

– Gτ,1 for τ ∈ [1, n]: This game is identical to Gτ,2 except in how the challenge
ciphertext is generated. In particular, we replace (Q̃(n−τ+1), (Y (n−τ+1)

j )j) by
a uniformly random string of the same length.

The indistinguishability of Greal and G0 is proved in [15, Theorem 4] and thus
omitted here. The indistinguishability of G0 and G0,2 follows from the IND-
BLIND security of PKE . The indistinguishability of Gτ,2 and G′

τ,1 for τ ∈ [0, n]
follows from the IND-BLIND security of GC. The indistinguishability of Gτ−1,1

and G′
τ,2 for τ ∈ [1, n] follows from the sel-IND-BLIND security of OT SE . In

Gn,1, A will have no advantage in winning the sel-IND-BLIND-ID-CPA security
game. We note that in all of the above games, the challenger is free to answer
the key queries with the modified PRF. ��
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Abstract. We introduce the notion of publicly auditable functional
encryption (PAFE). Compared to standard functional encryption, PAFE
operates in an extended setting that includes an entity called auditor,
besides key-generating authority, encryptor, and decryptor. The auditor
requests function outputs from the decryptor and wishes to check their
correctness with respect to the ciphertexts produced by the encryptor,
without having access to the functional secret key that is used for decryp-
tion. This is in contrast with previous approaches for result verifiability
and consistency in functional encryption that aim to ensure decryptors
about the legitimacy of the results they decrypt.

We propose four different flavors of public auditability with respect
to different sets of adversarially controlled parties (only decryp-
tor, encryptor-decryptor, authority-decryptor, and authority-encryptor-
decryptor) and provide constructions for building corresponding secure
PAFE schemes from standard functional encryption, commitment
schemes, and non-interactive witness-indistinguishable proof systems. At
the core of our constructions lies the notion of a functional public key,
that works as the public analog of the functional secret key of functional
encryption and is used for verification purposes by the auditor. Crucially,
in order to ensure that these new keys cannot be used to infer additional
information about plaintext values (besides the requested decryptions by
the auditor), we propose a new indistinguishability-based security defi-
nition for PAFE to accommodate not only functional secret key queries
(as in standard functional encryption) but also functional public key and
decryption queries. Finally, we propose a publicly auditable multi-input
functional encryption scheme (MIFE) that supports inner-product func-
tionalities and is secure against adversarial decryptors. Instantiated with
existing MIFE using “El Gamal”-like ciphertexts and Σ-protocols, this
gives a lightweight publicly auditable scheme.

Keywords: Functional Encryption · Auditability · Public Verifiability

1 Introduction

Functional Encryption (FE) [17,31] is a cryptographic primitive that transcends
the “all-or-nothing” decryption capabilities that classical public-key encryption
schemes provide, by allowing the decryptor to acquire pre-agreed function out-
puts of the encryptor’s data. In particular, given an encryption key ek, the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Tibouchi and X. Wang (Eds.): ACNS 2023, LNCS 13906, pp. 396–425, 2023.
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encryptor produces a ciphertext ct for plaintext data x. The decryptor can then
use a functional secret key skf , for an agreed function f , provided by a key-
generation authority, in order to retrieve the function output f(x). The security
of FE guarantees that the decryptor learns nothing about x other than f(x) (and
what can be inferred from it). Since it was first proposed by Boneh et al. [17]
there has been a plethora of works on FE e.g., providing efficient schemes for spe-
cific functionalities (inner product [8], quadratic [6,9,12,25]), and generalizations
of the definition for multiple inputs (Multi-Input FE (MIFE) [24,36]), multiple
encryptors or authorities (Multi-Client FE (MCFE) [5,21,29] and Multi-Party
FE [7]), or dynamic sets of participants (Decentralized Dynamic FE [20]).

The selective decryption capabilities that FE provides makes it suitable for
multiple real-world applications, such as the following:

Checkable Cloud Storage. Consider an application where users wish to
upload their files (e.g., images) onto a cloud service provider. For privacy
purposes uploaded files should be encrypted. However, from the cloud service
provider’s perspective it would be ideal if it could still infer some information
about the encrypted files, with the consent of the users. For example, it might
wish to learn certain file-related aggregate statistics, or ensure that the files’
contents satisfy certain policies (e.g., the uploaded images do not contain states
of déshabillé [2]). Using FE to produce the ciphertext and providing the cloud
server with appropriate skf simultaneously achieves the above privacy and utility
properties.

Auditable Financial Data. Another example application comes from the
field of finance, where there exist institutions (e.g., [1,3]) that are in charge
of examining the books of business-conducting companies and organizations to
ensure that they conform to legal and financial policies. Again, FE enables such
fine-grained control without necessarily disclosing all raw data.

Private Data Brokerage. The abundance of data produced daily from our
online activity has naturally led to the notion of “data monetization”. Com-
panies operating as data brokers collect large volumes of data, perform useful
statistical analyses over them and market the results to interested buyers (e.g.,
for marketing or political campaigns [22]). Due to the potentially sensitive nature
of the raw data, privacy-aware individuals could opt to use an FE scheme that
only reveals to the broker pre-agreed aggregate statistics.

While FE seems to map very nicely to the privacy requirements of these
applications, the trust model in the settings described allows for potential mis-
behavior from parties that is not captured by FE security definitions. Note that
in all applications above the party that plays the role of the FE-decryptor is
different than the party that needs to be convinced about the legitimacy of the
function outputs. For example, the cloud service provider may need to prove to
a law enforcement agency that the stored encrypted data do not violate any legal
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policies and likewise, for our second example, auditing companies may need to
provide guarantees to governmental regulatory bodies. Finally, in our last exam-
ple, data buyers should receive a guarantee about the correctness and consis-
tency of the purchased statistical analyses results with respect to the raw data,
to avoid having to blindly trust the broker. Based on the above, FE only par-
tially achieves the security requirements of the mentioned applications (allowing
the decryptor to only learn function outputs). Particularly, it needs to be aug-
mented or complemented with other cryptographic techniques to enable results
verification.

There exists a limited number of works in the FE literature that aims to
enrich schemes with some notion of result verification. Badrinarayanan et al. [11]
proposed verifiable FE and more recently Badertscher et al. [10] proposed a
relaxation of this notion under various adversarial models called consistent FE.
However, both these works operate in a different security model than the ones
described above, as they aim to protect the decryptor against attacks launched
by a misbehaving encryptor, authority, or both. That is, at a very high level, the
decryptor can run a verification algorithm that ensures there is a common “expla-
nation” for all decrypted function outputs (see detailed discussion in related work
section below). That said, this verification algorithm may require access to the
functional decryption keys skf for different functions f , which is perfectly accept-
able in case it will be executed by the decryptor (who is already entrusted with
these keys). Importantly, the problem we are concerned with is strictly harder:
an external party needs to be able to verify decrypted results without access
to skf and the decryptor is always assumed to behave adversarially to this goal.
Hence none of these prior works for verifiable FE is applicable.

One “easy” solution to our problem would be to provide the external auditing
party with skf , allowing it to decrypt results directly. However, access to skf

allows the decryption of arbitrary sets of ciphertexts (e.g., in an application
where ciphertexts are publicly accessible). While this might be acceptable for
some cases, a more “controlled disclosure,” is more realistic and preferable in
other scenarios i.e., when the auditor has to go through the decryptor first.
Finally, an alternative “folklore” way for verifying received results is if one can
rely on an active direct communication channel between the encryptor and the
auditor. In such a setting, the encryptor can use a generic zero-knowledge proof
(ZKP) protocol to convince the auditor, when asked, that its plaintext does not
deviate from certain policies. This is far from a realistic assumption though,
as the encryptor might be unavailable or even unwilling to provide the auditor
with such information. An alternative to this would be for the encryptor to
produce, ahead of time and alongside its ciphertext, corresponding proofs of
validity, provably adhering to certain policies. Policies change, unfortunately,
meaning that the encryptor would need to engage in multiple ZKP executions
over time, which is undesirable for the same reasons as the previous example.
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Table 1. Auditability versions for general FE depending on the untrusted parties
and cryptographic building blocks used for the corresponding PAFE schemes. Legend:

◦=Honest, •=Adversarial. Ad/Sel stands for adaptively/selectively secure.

Sec Encryptor Authority Decryptor Public

Auditability

Security Building Blocks

5.1 ◦ ◦ • PA-UD Ad Ad-FE Com + NIWI

5.1 • ◦ • PA-UED Ad Ad-FE Com + NIWI

5.2 ◦ • • PA-UAD Ad 4×Ad-FE Com + NIWI

5.2 • • • PA-UEAD Sel 4×Sel-FE Com + NIWI

1.1 Our Results

Motivated by the above, we introduce the notion of publicly auditable functional
encryption (PAFE), which operates in an extended setting that includes, besides
the authority, encryptor, and decryptor, an additional party named auditor.
PAFE enables the auditor to verify the decryption results/functional outputs
received from the decryptor. Unlike previous works on FE verification [10,11],
PAFE achieves “public verifiability”, i.e., the auditor can run the verification
algorithm without access to skf . In order to achieve this, we introduce a new
public parameter that we term functional public key (pkf ) for function f . This
is provided by the authority as a public analog of skf and it operates as an
“anchor-of-trust” for the auditor’s verification.

Next, we define different flavors of public auditability, based on different cor-
rupted sets among authority, encryptor, and decryptor. We stress that public
auditability is meaningful as a property when the decryptor is untrusted; it is
trivially achieved if the auditor trusts the decryptor-provided results. Besides,
any combination of the remaining entities (encryptor, authority, or both) may be
colluding with the decryptor to “fool” the auditor. Thus, we propose four defini-
tions of auditability for FE corresponding to different untrusted-participants sets
PA-UD, PA-UED, PA-UAD, PA-UEAD corresponding to untrusted decryptor,
encryptor-decryptor, authority-decryptor, and encryptor-authority-decryptor,
respectively, as shown in Table 1, and we explore the relations among them.

Besides auditability, PAFE must maintain the standard security definition
of FE [17,21] i.e., the decryptor learns nothing about the plaintext, except for
function outputs. Additionally, the inclusion of functional public keys enables a
broader class of attacks from an adversary that has access only to ciphertexts,
pkf , and possibly function outputs y; but not skf . To elevate the security model
to a more realistic scenario that includes the cases we explained above, we con-
sider a mixed class of adversaries that may acquire access to functional secret
or public keys in a dynamic way. Additionally, we provide the adversary with
oracle access to the encryption and decryption algorithms. Recall that a secure
FE scheme allows for any adversary to win with non-negligible advantage only
if for all queried functional secret keys and ciphertexts, all underlying plaintexts
pairs have equal function outputs. In our PAFE extended model, adversaries
may attempt to abuse the decryption capabilities on a ciphertext ct to infer
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functional evaluations for a function f for which acquiring the respective skf

would violate the FE winning conditions. To capture all adversarial cases, we
propose a new security definition for PAFE, extending the one for FE.

Additionally, we present four different constructions, each one satisfying a
different public auditability flavors. Table 1 depicts the respective cryptographic
components and the achieved Security/Public-Auditability types. As we discuss
in the next part, we build our PAFE using secure FE schemes, enhanced with
appropriate use of commitment schemes to “anchor” the functional public keys
pkf , and non-interactive witness indistinguishability (NIWI) proof systems to
force the untrusted parties to prove the correctness of their computations. For the
untrusted key-generating authority case (PA-UAD, PA-UEAD), we also expand
upon the replication techniques of Badrinarayanan et al. [11].

Our first four schemes work for arbitrary classes of functions (as long as
the underlying FE supports them). In the last part of the paper we design a
publicly auditable multi-input FE (MIFE) scheme specifically for inner-product
functionalities, i.e., linear combinations between encrypted vectors and public
weights. Using the MIFE of [8], which produces “El Gamal”-style ciphertexts
as a building block, combined with classic Σ-protocols [14,18] yields an efficient
publicly auditable scheme against untrusted decryptors.

1.2 Overview of Techniques

The introduction of the functional public key in the FE setting poses a “mod-
eling” challenge. Even though pkf should be uniquely tied to skf for a specific
function f , it should not reveal anything about its private counterpart or the
plaintext of the encryptor. To ensure this, we compute pkf as a perfectly binding
and computationally hiding commitment of skf . Due to the perfectly binding
property no adversary can generate two different functional secret keys that map
to the same functional public key which makes the auditability properties easier
to prove. The computational hiding property ensures that no bounded-resources
adversary can infer any information about skf from its pkf counterpart, hence
function outputs that have not been explicitly queried for via the decryption
oracle are protected.

However, augmenting IND-secure FE schemes to build secure PAFE schemes
is not trivial, due to the diversification of the winning conditions between the
IND-security game for FE schemes and that of PAFE that we mentioned above.
One way to achieve this would be to restrict ourselves to weaker adversaries.
E.g., consider an extremely limited setting where the adversary (after setup)
first declares all the secret and public functional keys it wants, as well as all
plaintext pairs to be encrypted and ciphertexts to be decrypted. Having access
to all this information allows us to check which winning conditions are not vio-
lated each time and construct the keys accordingly (either “honestly” or as
“dummies”). Clearly, we would prefer to achieve security against more general
adversarial behavior. To this end, we use NIWI proofs to combat such adver-
sarial behavior based on the different winning conditions of the two games and
achieve fully adaptive security, i.e., there is no restriction in the order in which
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the adversary issues its different queries. Specifically, our PA-UD and PA-UED
constructions leverage the setup performed by the trusted authority to construct
an adaptively secure PAFE scheme based on an adaptively secure FE scheme,
perfectly binding and computationally hiding commitments and perfectly sound
and computationally witness indistinguishable NIWI proof system.

For the cases where the authority is considered untrusted, we need to employ
multiple instances of FE where the function output derives from the majority
of the decryptions and enrich our NIWI relations accordingly, using techniques
similar to [11]. Importantly, in the PA-UAD setting we can still construct an
adaptively secure PAFE scheme by leveraging that the encryptor is trusted.
This derives specifically from a combination of all ciphertexts using a common
plaintext x with complex relations proving a threshold of correct execution of
the Setup, Key-Generation, and Decryption algorithms. However, in the last case
where all entities are untrusted PA-UEAD we do not have such guarantees and
we can only achieve a selective type of security, as follows: We require that the
encryptor provide all plaintext pair queries, before generating any functional
secret keys. While this is more limited than the adaptive security of the first
three schemes, it arguably suffices for certain applications (e.g., for the cloud
application we discussed above, consider the case where all data is uploaded
ahead of time, before auditing functions are chosen).

The four different corruption sets result in four discrete public auditability
definitions of their own, which we divide into two subcategories depending on
whether the authority is trusted or not. A similar division can also be done on
whether the encryptor is trusted or not, which results in an interesting realization
about the public auditability definitions. For the former cases (PA-UD,PA-UAD),
the auditor is guaranteed to receive the function output f(x) that corresponds
to the plaintext x that the encryptor has used to produce its ciphertext, and
specifically for function f that the auditor holds its respective pkf . However, for
the cases where the encryptor is untrusted (PA-UED,PA-UEAD), it can generate
its ciphertext arbitrarily. Therefore, a notion of “consistency” has to suffice to
the auditor, which results to an existential condition for x to be in the domain
of f

(
whose respective pkf the auditor holds and decryption returns f(x)

)
.

2 Related Work

Badrinarayanan et al. [11] were the first to consider, in the FE setting, the
possibility of encryptors colluding with the authority to try and “cheat” the
decryptor into receiving falsified or meaningless function outputs. To safeguard
against such attacks, they proposed verifiable FE, including algorithms for the
verification of the ciphertext production and the key generation. The verifiability
property states that if both algorithms succeed, then decryptors always get a
function output (for function f) of a plaintext in the domain of f . This is a
very strong definition, as it quantifies over all mpk, ct, f , skf the existence of a
plaintext x whose function outputs are the result of the decryption algorithm.
Interestingly, this is actually the best decryptors can ask for, since the ciphertext
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can be generated arbitrarily. More efficient verifiable FE schemes were more
recently proposed for inner-product functionalities using pairing-based NIWIs
and a perfectly correct inner-product functional encryption scheme [34], and for
general functionalities via the use of trusted execution environments [35].

Following in the same line of works, Badertscher et al. [10] proposed the
notion of consistency for FE schemes which builds on the idea of [11] in the
following way. Additionally to considering the case where both the encryptor
and the authority collude, they examine also the cases where just one of the two
entities try to “cheat” the decryptor. They observe that in both cases where the
encryptor is corrupted, a similar property as in [11] suffices, however, when the
encryptor is honest, then the decryptor could request a stronger guarantee, i.e.,
that it gets the function output of the specific plaintext x that the encryptor used
to generate the ciphertext ct. The authors explore the relations between their
consistency notions and other notions of security (i.e., IND-CPA, IND-CCA,
CFE), provide compilers to build consistent FE schemes from FE, NIZKs, and
NIWIs, and provide concrete constructions for consistent FE for inner-product
functionalities, in the presence of a corrupted encryptor.

At first, it might seem that our notion of public auditability can be achieved
by the above schemes. However, even though there exist similarities specifically
between our constructions and the ones of [10,11], public auditability aims to
protect the auditor who lacks knowledge of skf and knows instead only pkf . In
that sense, our approach can be broadly viewed as a public-key analog of the
notions of verifiability and consistency. Thus, not only our constructions require
additional techniques for auditability, but PAFE requires a modified security
definition, expanded to capture additional adversarial cases, as discussed above.

Koutsos et al. [28] proposed a construction of a privacy-preserving data mar-
ketplace that uses FE to protect the privacy of the raw data. To the best of our
knowledge, this is the only work that considers a similarly augmented setting
for FE with auditability and provides a solution without relying on trusted com-
munication between the encryptor and the auditor. Similarly to our work, they
utilize a public equivalent of skf to ensure the legitimacy of the brokered results
against an untrusted auditor (but not untrusted authority/encryptor or any com-
bination between them). Moreover, they only consider “passive” attacks from
parties that observe ciphertexts but without decryption capabilities. Finally,
their scheme builds on the MCFE scheme of [21] which supports only inner-
products functionalities.

Barbosa et al. [13] were concerned with a somewhat similar problem to ours.
In that work the authors proposed a cryptographic primitive called Delegatable
Homomorphic Encryption (DHE). With DHE schemes a weak client is convinced
that the decryption (which was performed by a potentially malicious cloud ser-
vice provider) was performed correctly. The authors assume a trusted communi-
cation channel between the encryptor and the auditor, so that the latter could
be convinced about the legitimacy of the results received from decryptors. How-
ever, this is a strong assumption and an unrealistic one as well, as the content
provider could go offline after the uploading of its data onto the cloud service
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WINIWI
β (1λ, A) (for relation R)

(x, w1, w2, st) ← A1(1
λ)

π ← NIWI.Prove(1λ, x, wβ)
α ← A2(π, st)
Output: α ∧ (x, w1) ∈ R ∧ (x, w2) ∈ R

Fig. 1. Witness-indistinguishability game of a NIWI proof system.

provider. Contrary to our work, the authors of [13] do not consider any possi-
ble corruptions from the encryptor or the authority and rely on both FE and
fully-homomorphic encryption [23] schemes.

3 Preliminaries

Below we present the necessary cryptographic background for our work.

General Notation. We denote by F = {Fλ}λ∈N a family of sets Fλ of functions
f : Xλ → Yλ. We call Fλ a functionality class such that all functions f ∈ Fλ have
the same domain and the same range. A function negl(λ): N ← R

+ is negligible
if for every positive polynomial p(λ) there exists a λ0 ∈ N, such that for all
λ > λ0 : ε(λ) < 1/p(λ). We denote [n] = {1, · · · , n} for n ∈ N

�. For algorithms
A and B, we write AB(·)(x) to denote that A gets x as an input and has oracle
access to B, that is, the response for an oracle query q is B(q). Oracles increment
a counter every time they receive a query and associate the input-output pairs
with their counter, so they can answer repeated queries consistently. Last, we
denote by ←$D sampling uniformly at random from domain D.

NIWI Proof Systems. A non-interactive witness-indistinguishable proof sys-
tem (NIWI) allows a prover to convince a verifier about the validity of the
statement in a way that guarantees that “cheating” provers cannot succeed in
this. On the other hand, witness indistinguishability means that no verifier inter-
acting with an honest prover can distinguish which of two witnesses w1, w2 was
used by the latter (assuming such witnesses exist for the statement).

Definition 1. (Non-Interactive Witness-Indistinguishable Proofs [10]) Let R be
an NP relation and consider the language L = {x | ∃ w with (x,w) ∈ R}. A
non-interactive witness-indistinguishable proof (NIWI) for the relation R is a
tuple of PPT algorithms NIWI = (NIWI.Prove, NIWI.Verify):
NIWI.Prove(1λ

, x, w) : Takes as input the unary representation of the security
parameter λ, a statement x and a witness w, and outputs a proof π.
NIWI.Verify(1λ

, x, π) : Takes as input the unary representation of the security
parameter λ, a statement x, and a proof π, and outputs 0 or 1.

A NIWI is complete, if for all statement-witness pairs in the relation (x,w) ∈ R,
it holds that: Pr[NIWI.Verify(1λ, x,NIWI.Prove(1λ, x, w)) = 1] = 1. Besides, a
NIWI fulfills the properties of soundness and witness-indistinguishability.
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(NIWI Soundness). We define the advantage of an adversary A as:

AdvSound
NIWI,A(λ) := Pr[(x,w) ← A(1λ) : NIWI.Verify(x, π) = 1 ∧ x /∈ L]

A NIWI is perfectly sound if AdvSound
NIWI,A(λ) = 0 for all algorithms A, and com-

putationally sound, if AdvSound
NIWI,A(λ) ≤ negl(λ) for all PPT algorithms A.

(Witness-Indistinguishability). For β ∈ {0, 1}, we define the experiment
WINIWI

β (1λ,A) in Fig. 1. The advantage AdvWI
NIWI

(
A(1λ)

)
of an adversary A =

(A1,A2) is:

|Pr[WINIWI
0 (1λ,A) = 1] − Pr[WINIWI

1 (1λ,A) = 1]|

A NIWI is witness-indistinguishable, if AdvWI
NIWI

(
A(1λ)

)
= 0 for all algorithms

A = (A1,A2), and computationally witness-indistinguishable, if the advantage
AdvWI

NIWI

(
A(1λ)

)
≤ negl(λ) for all PPT algorithms A = (A1,A2). In our PAFE

schemes, we use NIWIs with perfect soundness and computational witness indis-
tinguishability, such as the ones proposed in [15]. We also note that for the con-
figurations with trusted PAFE authority (Sect. 5.1), our NIWIs can be readily
replaced with zero-knowledge proof systems that provide a stronger flavor of
witness privacy.

Commitments. This primitive allows a party to first commit to a message in
a way that reveals nothing about it, and later open it in way that guarantees it
cannot “equivocate” for multiple openings. We rely on perfectly binding, com-
putationally hiding commitments (e.g., built from one-way permutations [15]).

Definition 2 (Commitment Schemes). A commitment scheme consists of a
pair of PPT algorithms (Com.Setup,Com.Commit). The Com.Setup algorithm pp
← Com.Setup(1λ) generates public parameters pp for the scheme, for security
parameter λ. The commitment algorithm defines a function Mpp × Rpp → Cpp,
for message space Mpp, for randomness space Rpp, and for commitment space
Cpp, determined by pp. It takes as input a message x and randomness r and
outputs c ← Com.Commitpp(x; r). A perfectly binding and computationally hiding
commitment scheme must satisfy the following properties:

• Perfectly Binding: Two different strings cannot have the same com-
mitment. More formally, ∀ x0 
= x1, r0, r1,Com.Commit(x0; r0) 
=
Com.Commit(x1; r1).

• Computationally Hiding: For all strings x0 and x1 (of the same length),
for all non-uniform PPT adversaries A, we have that AdvCom−Hiding(A) is
the advantage defined as:
|Pr[A(Com.Commit(x0; r0))=1] − Pr[A(Com.Commit(x1; r1))=1]| < negl(λ)
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3.1 Functional Encryption

A functional encryption scheme [9,17] can be used to encrypt a message, akin to
“standard” encryption. However, using special function-specific decryption keys,
it also allows a decryptor to learn specific function outputs of the message, but
nothing else. The following definition is based on [17,21].

Definition 3 (Functional Encryption). Let F = {Fλ}λ∈N be a family of
sets Fλ of functions f : Xλ → Yλ. An FE scheme for the functionality class Fλ

is a tuple of four algorithms FE = (FE.Setup,FE.KeyGen,FE.Enc,FE.Dec).

– FE.Setup(1λ) : Takes as input the security parameter λ as 1λ and outputs a
master public key mpk, a master secret key msk, and an encryption key ek.

– FE.KeyGen(mpk,msk,f) : Takes as input a master public key mpk, a master
secret key msk and a function f ∈ Fλ, and outputs a functional secret key skf .

– FE.Enc(ek, x) : Takes as input an encryption key ek and a string x ∈ Xλ, and
outputs a ciphertext ct.

– FE.Dec(mpk, f, skf , ct) : Takes as input a master public key mpk, a function
f ∈ Fλ, a functional secret key skf , and a ciphertext ct. It outputs a function
value y∈ Yλ or ⊥, indicating an invalid ciphertext.

Correctness. An FE scheme is correct, if ∀λ ∈ N, ∀f ∈ Fλ,∃x ∈ Xλ s.t.:

Pr

⎡
⎣

(msk,mpk,ek) ← FE.Setup(1λ)
FE.Dec(mpk,f, skf ,ct) = f(x) skf ← FE.KeyGen(mpk,msk, f)

ct ← FE.Enc(ek,x)

⎤
⎦ > 1 − negl(λ)

The security of FE is captured by the following indistinguishability game. At
a high level, the adversary has access to a “left-right” encryption oracle and a key
generation for functions of its choice. Importantly, the game detects whether the
adversary ever submit an encryption query for a pair of messages with different
output for some of the queried functionalities (trivially breaking the game).

Definition 4 (IND Security for FE). Let us consider an FE scheme. No
PPT adversary A should be able to win the following game against a challenger C:

• Initialization: C runs the setup algorithm (mpk,msk,ek) ←FE.Setup(1λ) and
chooses a random bit b←$ {0, 1}. It provides the master public key mpk to A.

• Encryption queries QEnc(x0,x1): A has unlimited adaptive access to a Left-or-
Right encryption oracle and receives ciphertext ct, generated by FE.Enc(ek,xb).

• Functional key queries QKeyGen(f): A has unlimited and adaptive oracle
access to the FE.KeyGen(mpk,msk,f) algorithm for any input function f of
its choice. It is given back the functional secret key skf .

• Finalize: A provides its guess b′ on the bit b and this procedure outputs the
result β of the security game, according to the analysis given below.
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Experiment INDMIFE
A (1λ)

(n, st0) ← A0(1
λ)

{eki}i∈[n] ←MIFE.Setup(1λ, n)

(X0,X1, st1) ← AMIFE.KeyGen(mpk,msk,·)
1 (st0, {eki}i∈[n]), X

� = {x�
i,j}i∈[n],j∈[q]

b ← {0, 1} CTi,j ← MIFE.Enc(mpk, ek,X)

Fig. 2. MIFE security game.

The game output β depends on the following conditions. If QKeyGen queries
have been issued for some function f and there exists a pair of values ( x0,x1)
queried to QEnc, such that f( x0) 
= f( x1), we set β ←$ {0, 1}. In any aother
case we set the output to β ← b′.
A wins in the game if β = b and we remark that a naive adversary, by sampling
randomly β has probability of winning equal to 1

2 . We denote the advantage that
A has of winning as AdvIND(A) and we say this FE is IND-secure if for any
PPT adversary A, AdvIND(A) = |Pr[β = 1|b = 1]−Pr[β = 1|b = 0]| ≤ negl(λ).

The game above captures the adaptive security of FE. There exists also a
selective variant, where the adversary is forced to send all its encryption queries
QEnc in one shot, before issuing any other type of query.

3.2 Multi Input Functional Encryption

We alter the original definition of MIFE scheme in [24] for consistency purposes.
Specifically, we let MIFE.Setup(·) output additionally a master public key mpk
and we augment all remaining algorithms’ inputs with mpk.

Definition 5 (Multi-Input Functional Encryption). Let F = {Fλ}λ∈N be
a family of sets Fλ of functions f : Xλ → Yλ. A multi-input functional encryp-
tion scheme (MIFE) for the functionality class Fλ is a tuple of four algorithms
MIFE= (MIFE.Setup, MIFE.KeyGen, MIFE.Enc, MIFE.Dec).
MIFE.Setup(1λ, n): Takes as input a unary representation of the security param-
eter λ and an integer n, and outputs a master public key mpk, a master secret
key msk, and a set of n encryption keys {eki}i∈[n].
MIFE.KeyGen(mpk,msk,f): Takes as input a master public key mpk, a master
secret key msk and a function f ∈ Fλ, and outputs a functional secret key skf .
MIFE.Enc(mpk,eki,x): Takes as input a master public key mpk, an encryption
key eki and a string x ∈ Xλ, and outputs a ciphertext cti or err (denoting an
encryption error).
MIFE.Dec(mpk,f ,skf ,{cti}i∈[n]): Takes as input a master public key pkf , a func-
tion f , a functional key skf , and a set of ciphertexts {cti}i∈[n] and outputs a
function value y ∈ Yλ or ⊥, which indicates an invalid ciphertext.

Security of MIFE schemes was defined in [24], parameterized by the number
of encryption keys known to the adversary, and the number of challenge mes-
sages per encryption key. Similarly to [26], our construction is uplifted of any
conditions regarding these two parameters.
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Definition 6 (Indistinguishability-based security [26]). We say that a
MIFE scheme for n−ary functions F is fully IND-secure if for every adversary
A, the advantage of A defined as: Advsec−MIFE

(
A(1λ)

)
= |Pr[INDMIFE

A ]−1/2| <
negl(λ), where the game INDMIFE

A (1λ) is depicted in Fig. 2.

4 Publicly Auditable Functional Encryption

In this section, we present our definition of publicly auditable functional encryp-
tion, its security game, and different flavors of pubic auditability, each one cor-
responding to a different corruption set among the encryptor, authority, and
decryptor entities.

Below we show the algorithms of a PAFE scheme. The main differences com-
pared to FE are: (i) the addition of a functional public key pkf for each func-
tion, (ii) a new algorithm ProveDec executed by the decryptor to convince a
third party (auditor) about the decryption correctness, and (iii) a new algo-
rithm PAFE.VerifyDec that takes pkf (but not skf ) and a proof of decryption
correctness for the same function f as the key and accepts or rejects an output.

Definition 7 (Publicly Auditable FE) Let F = {Fλ}λ∈N be a family of sets
Fλ of functions f : Xλ → Yλ. A publicly auditable functional encryption scheme
for the functionality class Fλ is a tuple of six algorithms PAFE = (PAFE.Setup,
PAFE.KeyGen, PAFE.Enc, PAFE.Dec, PAFE.ProveDec, PAFE.VerifyDec).

– PAFE.Setup(1λ): Takes as input a unary representation of the security param-
eter λ and outputs a master public key mpk, a master secret key msk, and an
encryption key ek.

– PAFE.KeyGen(mpk,msk,f): Takes as input a master public key mpk, a master
secret key msk and a function f ∈ Fλ, and outputs a functional secret key
skf and a functional pubic key pkf .

– PAFE.Enc(mpk,ek,x): Takes as input an encryption key ek and a string x
∈ Xλ, and outputs a ciphertext ct.

– PAFE.Dec(mpk,f ,skf ,ct): Takes as input a master public key mpk, a function
f ∈ Fλ, a functional key skf , and a ciphertext ct. It outputs a function value
y ∈ Yλ or ⊥, which indicates an invalid ciphertext.

– PAFE.ProveDec(mpk,f ,skf ,pkf ,ct,y): Takes as input a master public key mpk,
a function f ∈ Fλ, a functional secret key skf , a functional public key pkf ,
a ciphertext ct, and a value y and outputs a proof πd.

– PAFE.VerifyDec(mpk,f ,pkf ,ct,y,π): Takes as input a master public key mpk,
a function f ∈ Fλ, a functional public key pkf , a ciphertext ct, a value y,
and a proof π and outputs 1 if y = PAFE.Dec(mpk,f ,skf ,ct), and 0 otherwise.

PAFE satisfies the correctness of FE schemes as per Definition 3 and additionally
satisfies the following notion of auditable correctness.
Auditable correctness. A scheme PAFE has auditable correctness, if ∀ λ ∈ N,
∀ f ∈ Fλ,∃ x ∈ Xλ the following probability is negligible in λ.
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Pr

⎡

⎢
⎢
⎢
⎢
⎣

(msk,mpk,ek) ← PAFE.Setup(1λ)
PAFE.Dec(mpk,f, skf , ct) = f(x) ct ← PAFE.Enc(ek,x)
1 ← PAFE.VerifyDec(mpk,f, (skf , pkf ) ← KeyGen(mpk,msk,f)

pkf , ct, f(x), πd) πd ← PAFE.ProveDec(mpk,f, skf , pkf ,
ct, f(x))

⎤

⎥
⎥
⎥
⎥
⎦

The security of a PAFE scheme is captured by an indistinguishability game
that is an “extended” version of the one from Definition 4 to allow also for oracle
access to functional public keys and decryptions.

Definition 8 (Security for PAFE). Consider the following game between
PPT adversary A and challenger C:

• Initialization: C runs the setup algorithm (mpk,msk,ek) ←PAFE.Setup(1λ)
and chooses a random bit b←$ {0, 1}. It provides the master public key mpk
to A.

• Encryption queries: QEnc(x0,x1): A has unlimited adaptive access
to a Left-or-Right encryption oracle and receives ciphertext ctb ←
PAFE.Enc(mpk,ek,xb).

• Functional key queries QSKeyGen(f): A has unlimited and adaptive oracle
access to the PAFE.KeyGen(mpk,msk,f) algorithm for input functions f of its
choice. It receives the functional secret and public keys (skf ,pkf ).

• Functional public key queries QPKeyGen(f): A has unlimited and adaptive
oracle access to the PAFE.KeyGen(mpk,msk,f) algorithm for any input func-
tion f of its choice. It is given back a functional public key pkf .

• Decryption queries QDec(ctb,f): A has unlimited adaptive access to an ora-
cle for the PAFE.Dec(mpk,f ,skf ,ct) algorithm, for any input ciphertext ct
and any function f of its choice. If no Q(S/P)KeyGen query for f has been
issued, C outputs ⊥. Otherwise, A receives the function output f( xb), where
ctb=PAFE.Enc(mpk,ek,xb), alongside a proof π about its correctness.

• Finalize: A provides its guess b′ on the bit b and this procedure outputs the
result β of the security game, according to the analysis given below.

A wins in the game if β = b and we remark that a naive adversary, by
sampling randomly β has probability of winning equal to 1

2 . In case A has
either issued (i) QSKeyGen queries for some function f and also QEnc
queries for a pair of values, (x0,x1), such that f(x0) 
= f(x1), or (ii) QDec
query for ciphertext ctb and function f and has issued a ctb ← QEnc(x0,x1)
query, where ct0=PAFE.Enc(mpk,ek,x0) and ct1=PAFE.Enc(mpk,ek,x1), such that
f(x0) 
= f(x1), then β ←$ {0, 1}. Otherwise β = b′. We denote the advantage that
A has of winning as Advsec−PAFE(A) and we say this PAFE is secure if for
any PPT adversary A, Advsec−PAFE(A) = |Pr[β = 1|b = 1] − Pr[β = 1|b =
0]| ≤ negl.

As with FE, we can also have a selective version of the above game where the
adversary declares all its encryption queries prior to other oracle accesses.
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PA-UD(1λ, A) and PA-UAD(1λ, A)

(mpk,msk,ek) ← PAFE.Setup(1λ)
(mpk�,ek�) ← A(1λ)

(y�,π�, i, j) ← APAFE.KeyGen(mpk,msk, ·),PAFE.Enc(mpk,ek,·)(1λ,mpk)
� i corresponds to the i-th PAFE.KeyGen oracle query and

(fi,skf,i,pkf,i) is its associated information
� j corresponds to the j-th PAFE.Enc oracle query and

(xj ,ctj) is its associated information
If (y� �= fi(xj)∧PAFE.VerifyDec(mpk,fi, pkf,i,ctj ,y

�, π�) = 1)
If (y� �= f�(xj) ∧ PAFE.VerifyDec(mpk�,f�, pk�

f ,ctj ,y
�,π�) = 1)

Output 1
Else output 0

Fig. 3. Public Auditability with Untrusted (Authority and) Decryptor (Color figure
online)

PA-UED(1λ, A) and PA-UEAD(1λ, A)

(mpk,msk,ek) ← PAFE.Setup(1λ)
(mpk�,ct�,{y�

i ,π
�
i ,f

�
i ,pk

�
f,i}i∈[n]) ← A(1λ)

(y�,π�, ct�, i) ← APAFE.KeyGen(mpk,msk, ·)(1λ,mpk, ek)
� i corresponds to the i-th PAFE.KeyGen oracle query and

{fi,skf,i,pkf,i} is its associated information
If (� x ∈ Xλ : y� = fi(x) ∧ PAFE.VerifyDec(mpk,fi, pkf,i,ct

�,y�)=1)
If

(
� x′ ∈ Xλ : ∀i ∈ [n] y�

i = fi(x
′) ∧ VerifyDec(mpk�,ct�,f�

i , pk�
f,i,y

�
i , π�

i )=1
)

Output 1
Else output 0

Fig. 4. Public Auditability with Untrusted Encryptor, (Authority, and) Decryptor.
(Color figure online)

4.1 Public Auditability Definitions

There exist totally four different cases of public auditability, depending on which
of the involved parties are adversarial and possibly colluding to trick the audi-
tor into accepting an incorrect functional decryption result (see Table 1). In
particular we consider the cases where: (i) only the decryptor is corrupted (PA-
UD), (ii) both the encryptor and the decryptor are corrupted (PA-UED), (iii)
both the key-generating authority and the decryptor are corrupted (PA-UAD),
and (iv) the encryptor, the key-generating authority, and the decryptor are cor-
rupted (PA-UEAD). Each corruption set results in a different definition of public
auditability, defined below. At a high level, auditability ensures that, even though
auditors have no decryption capabilities of their own, there is still a guarantee
of (at least some level of) consistency between what they receive and what the
decryptor computed. We note that this renders pointless to define this property
for cases where the decryptor is honest (or the auditor itself is dishonest).

We provide game-based definition of public auditability for all four corruption
cases. The two games for honest (resp. corrupted) authority are very similar,
hence we depict them together in Fig. 3 (resp. Figure 4). The lines shown in red
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correspond to the games modified for corrupted authorities, each time replacing
the preceding line in black and we denote by the superscript � all adversary-
provided elements.

Definition 9. (Public Auditability) Let SET ∈ {UD,UAD,UED,UEAD} and
consider the experiments PA-UD, PA-UAD from Figure 3 and PA-UED, PA-UEAD
from Figure 4. A PAFE for F is SET-publicly auditable against the correspond-
ing set of corruptions if ∀λ ∈ N, ∀x ∈ Xλ, ∀PPT adversaries A, it holds that
Pr[PA-SET(1λ,A) = 1] < negl(λ).

Based on the above definition we make the following observations. First, when
the encryptor is honest, the auditor should be guaranteed to receive the exact
function output corresponding to the function fi of its choice and the actual
plaintext x used by the honest encryptor. On the contrary, for cases PA-UED
and PA-UEAD where the encryptor is not trusted, there is no guarantee that
the ciphertexts were honestly computed. In these settings, the best the auditor
can hope for is a notion of “consistency.” I.e., there must exist some common
plaintext element within the domain of fi (or, in the case of multiple functions,
the non-empty intersection of their respective domains) that evaluates to the
output (or outputs) received and verified by the auditor.

Second, in the PA-UD experiment the condition y� 
= fi(xj) could be equiva-
lently written as (y� 
= PAFE.Dec(mpk,fi,skf,i,ctj). However, this is not the case
for PA-UAD. In the former case the encryptor chooses an x ∈ Xλ and encrypts
honestly. In the latter case the encryptor may still intend to encrypt a valid
plaintext x. However, the adversary (colluding authority and decryptor) may
manipulate the generated keys so that even an honestly generated ciphertext is
not decryptable into the image space of fi.

5 PAFE Constructions from FE

Below we provide constructions for secure and publicly auditable PAFE schemes
from secure FE schemes and other cryptographic primitives i.e., commitment
schemes and NIWI proof systems. As in Sect. 4, we “group” our constructions
together. However, now we do so based on whether the key-generating authority
is trusted or not. Lines in blue in all figures of this section, depict additional
steps/parts for when the encryptor is untrusted. Both auditable and regular
correctness, for all our constructions, follow directly from the correctness of
the underlying FE scheme, the correctness of the commitment scheme and the
completeness of the employed NIWI proof systems. For each construction we
provide proofs about its security and public auditability flavor. For readability
reasons our proofs are delegated to the Appendix and our full version [4].

5.1 Auditability with Trusted Authority

PA-UD Auditability. For this construction (Fig. 5) we employ an FE scheme,
a perfectly binding and computationally hiding commitment scheme, and a per-
fectly sound and computationally witness-indistinguishable NIWI proof system.
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PAFE.Setup(1λ):

s1, s2, ud, ue ←$ {0, 1}λ

pp ← Com.Setup(1λ;s1)
(msk,mpk,ek) ← FE.Setup(1λ;s2)
cd ← Com.Commit(msk; ud)
ce ← Com.Commit(msk; ue)
Return (pp,mpk,msk,ek,cd,ce)

PAFE.KeyGen(mpk,msk,f):

skf ←FE.KeyGen(mpk,msk,f)
rf ←$ {0, 1}λ

pkf ←Com.Commit(skf ; rf )
Return (skf ,rf ,pkf )

PAFE.Enc(mpk,msk,ek,x,ce,ue):

ct ← FE.Enc(ek,x;se), se ←$ {0, 1}λ

πe ←NIWIe.Prove(mpk,msk,ek,x,ct,ce,ue,se)
Return (ct,πe)

PAFE.Dec(mpk,f ,skf ,ct):

y ← FE.Dec(mpk,f ,skf ,ct)
Return y

πd ←NIWId.Prove(mpk,msk,f ,skf ,rf ,pkf ,ct,y,cd,ud)
Return πd

PAFE.VerifyDec(mpk,f ,pkf ,ct,y,ce,cd,πe,πd):

b1 ←NIWId.Verify(mpk,f ,pkf ,ct,y,cd,πd)
b2 ←NIWIe.Verify(mpk,ct,ce,πe)
Return b1∧b2

Fig. 5. PAFE construction with untrusted (encryptor and) decryptor. (Color figure
online)

Relation RUED,d:
Statement: zd = (mpk,f ,pkf ,ct,y,cd)
Witness: wd = (skf ,rf ,�,ud)
RUED,d(zd, wd) = 1 iff:(
pkf ← Com.Commit(skf ; rf )

∧ y ← FE.Dec(mpk,f ,skf ,ct)
)

∨ cd ← Com.Commit(�; ud)

Relation RUED,e:
Statement: ze = (mpk,ct,ce)
Witness: we = (ek,x,se,�,ue)
RUED,e(ze, we) = 1 iff:
ct=FE.Enc(mpk,ek,x; se)
∨ce←Com.Commit(�; ue)

Fig. 6. Relations used in the constructions of Fig. 5. (Color figure online)

First, our functional public keys pkf are computed as commitments of the
corresponding skf . Second, PAFE.ProveDec produces a NIWI proof for the cor-
rectness of the decryption. The relation RUD is shown in Fig. 6. Symbol �,
included in this relation, is a fixed value from the supported domain of the
commitment scheme Com, lying outside the domain of possible msk values that
can be produced from FE.Setup (assuming, without loss of generality, that the
domain of Com is a superset of the latter). This turns NIWI proofs into “OR”-
proofs, allowing us to formally prove the IND-security of our scheme even in the
presence of arbitrary oracle queries, without compromising auditability—since
PAFE.Setup, which is executed by the trusted authority, will never produce � as
the msk. Below, we state Theorem 1 regarding the security and PA-UD public
auditability of our construction, whose full proof we include in Appendix A.

Theorem 1. Let FE be an IND-secure FE for a family of functions F . Let
Com be a perfectly binding and computationally hiding commitment scheme and
NIWId a perfectly sound and computationally witness-indistinguishable NIWI for
relation RUD (Fig. 6). Then, the PAFE scheme of Fig. 5 for F is secure as per
Definition 8 and UD-publicly auditable as per Definition 9.
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PA-UED Auditability. To achieve public auditability against untrusted
encryptor and decryptor we use the our PA-UD construction as a baseline, but
additionally we require the encryptor to provide a NIWI proof for the validity
of the ciphertext computation. The auditor now has to perform two NIWI veri-
fications while executing the PAFE.VerifyDec algorithm. If both succeed, then it
is convinced about the legitimacy of the received result. The additional elements
this construction has with respect to the the PA-UD one are highlighted in blue
in Fig. 5 and the two relations RUED,e and RUED,d that need to be supported
by the NIWI schemes are defined in Fig. 8. Below we state Theorem 2 and we
provide its proof in the full version of our work [4].

Theorem 2. Let FE be an IND-secure FE scheme for a family of functions
F . Let Com be a perfectly binding and computationally hiding commitment
scheme and NIWId,NIWIe perfectly sound and computationally witness indistin-
guishable NIWI proof systems for relations RUED,d,RUED,e (Fig. 6). Then, the
PAFE scheme of Fig. 5 for F is adaptively secure under Definition 8 and publicly
auditable against untrusted encryptors and decryptors as per Definition 9.

5.2 Auditability with Untrusted Authority

Contrary to our previous constructions, since the authority can no longer be
trusted to honestly run the setup and key-generation algorithms, our “OR”
proof strategy no longer works. Instead, we adapt an approach from [11] based
on replicating the FE computations, while accepting the majority of the func-
tional decryptions as the correct output. In particular, our constructions use
four instances of an IND-secure FE scheme, again combined with a perfectly
binding and computationally hiding commitment scheme, and perfectly sound
and computationally witness-indistinguishable NIWIs.

PA-UAD. To achieve public auditability in the presence of untrusted authority
and decryptor, we augment the output of the PAFE.KeyGen algorithm to include
a NIWI proof that guarantees at least three-out-of-four FE.Setup and FE.KeyGen
instances have been generated honestly (Fig. 7). Additionally, the output of the
PAFE.ProveDec algorithm now states that at least two-out-of-the-four decryp-
tions have been executed honestly. The corresponding relations RUAD,f ,RUAD,d

that need to be supported by the NIWI schemes, are defined in Fig. 8. What is
more, PAFE.Dec now returns the majority of the functional decryptions—in case
majority is not reached, PAFE.Dec returns ⊥.

Auditability now is based on the fact that: (i) the encryptor is assumed to
be trusted, meaning that it always encrypts the same message (regardless of
how the encryption keys were originally generated), (ii) it is always guaranteed
that at least one of the four FE instances is executed honestly with respect to
key-generation, encryption, and decryption. To justify this in more detail, note
that since three-out-of-four FE keys are computed correctly and two-out-of-four
decryptions are performed correctly (and given the encryptor uses the same
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PAFE.Setup(1λ):
For i ∈ [4]:
(mski,mpki,eki) ← FE.Setup(1λ;si)
si ←$ {0, 1}λ

cf= Com.Commit(14·len; uf ), uf ←$ {0, 1}λ

ce= Com.Commit(1len; ue) ue ←$ {0, 1}λ

cd= Com.Commit(1len; ud) ud ←$ {0, 1}λ

msk = {mski}i∈[4]

mpk = ({mpki}i∈[4],cf ,ce,cd)
ek = {eki}i∈[4]

Return (mpk,msk,ek)

PAFE.KeyGen(mpk,msk,f):
For i ∈ [4]:
skf,i←FE.KeyGen(mpki,mski,f ; sk,i)
sk,i ←$ {0, 1}λ

pkf,i ←Com.Commit(skf,i; rf,i)
rf,i ←$ {0, 1}λ

sk = {sk,i}i∈[4]

rf = {rf,i}i∈[4]

skf = {(skf,i, rf,i, sk,i)}i∈[4]

pkf = {pkf,i}i∈[4]

πf ← NIWIf .Prove(mpk,msk,f ,skf ,pkf ,sk,rf )
pk′

f = (pkf ,πf )
Return (skf ,pk

′
f )

PAFE.Enc(mpk,ek,x):
For i ∈ [4]:
cti ←FE.Enc(eki,x;se,i)
se,i ←$ {0, 1}λ

se = {se,i}i∈[4]

πe ←NIWIe.Prove(mpk,ek,x,ct,se)
Return ct = ({cti}i∈[4],πe)

PAFE.Dec(mpk,f ,skf ,ct):
For i ∈ [4]:
yi ← FE.Dec(mpki,f ,skf,i,cti)
If ∃j1 �= j2 �= j3 ∈ [4]: yj1

= yj2
= yj3

Return y1
Return ⊥

PAFE.ProveDec(mpk,f ,skf ,pkf ,ct,y):
πd ←NIWId.Prove(f ,y,mpk,skf ,pkf ,ct)
Return πd

PAFE.VerifyDec(mpk,pk′
f ,ct,πd,y,f):

Parse pk′
f = (pkf , πf )

b1 ← NIWIf .Verify(mpk, pk′
f , f)

b2 ← NIWIe.Verify(mpk,ct)
b3 ← NIWId.Verify(mpk,pkf ,ct,y,πd,f)
Return b1∧b2 ∧ b3

Fig. 7. PAFE construction with untrusted encryptor, authority, and decryptor.

plaintext for all four ciphertexts), there is no way the sets of FE instances with
correct keys and those with correct decryptions are disjoint.

More technically, this translates into the following: Suppose the decryptor
provides the auditor with a fabricated y� that does not correspond to the output
of the FE.Dec(·) for any of the correctly computed (mpk,skf ). This would result
in the decryptor breaking the correctness of the underlying FE scheme as all
ciphertexts are also correctly computed. Hence, assuming the FE scheme is per-
fectly correct the only output y for which the auditor who runs PAFE.VerifyDec
will accept is the correct functional output for the x encrypted by the encryptor.
We now state the following theorem and we offload the formal proof to the full
version of our work [4].

Theorem 3. Let FE be a secure FE scheme for a family of functions F . Let
Com be a perfectly binding and computationally hiding commitment scheme,
NIWIf and NIWId perfectly sound and computationally witness-indistinguishable
NIWIs for RUAD,d and RUAD,d respectively (Fig. 8). Then, PAFE in Fig. 7 is
adaptively secure under Definition 8 and publicly auditable against untrusted
authority and decryptor as per Definition 9.
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PA-UEAD. Finally we focus on the “extreme” case where all protocol par-
ticipants (authority, encryptor, and decryptor) collaborate to cheat the auditor
into accepting an incorrect functional output. To achieve public auditability in
this case, we use the PA-UAD construction as a baseline but we augment the
output of the encryption to include a NIWI proof as well, following a similar
approach as the one we adopted to go from PA-UD to PA-UED. However, given
the multiple FE instances we need to further modify our technique (Fig. 7).

Overall, we use NIWIs to prove that at least three-out-of-the-four execu-
tions of the FE.Setup and FE.KeyGen algorithms have been executed honestly.
Likewise, for at least two-out-of-the-four executions of the FE.Enc and at least
three-out-of-the four executions ofFE.Dec algorithms. The above are depicted in
relations RUEAD,f , RUEAD,e and RUEAD,d in Fig. 8. Unlike in the PA-UAD case,
here we additionally consider the encryptor to be untrusted therefore we cannot
use the same reasoning to guarantee that at least for one FE instance all the
algorithms (FE.Setup,FE.KeyGen,FE.Enc,FE.Dec), have been correctly executed.
Instead, we reason about the properties of our construction as follows:

First, RUEAD,f and RUEAD,d both require that pkf is computed honestly,
for their respective indices, which “ties them together”. On the other hand, the
encryption algorithm is not tied to the pkf . However, having a three-out-of-
four threshold for the NIWI proof regarding functions key generation suffices
to guarantee majority in PAFE.Dec. Finally, note that RUEAD,f enforces that
all four decryptions return the same result which guarantees that the auditor
receives a valid function output. Recall that, since the encryptor is not assumed
honest in this setting, we cannot guarantee that the output y is the correct
functional output for the plaintext x used by for all four ciphertexts; just a
“consistent” explanation for all four of them (see Sect. 4.1).

One downside of our final construction is that it only satisfies the selective
version of Definition 8, where the adversary issues all encryption queries before
any other oracle access (but after receiving the output of PAFE.Setup). To see
why this is necessary, observe that condition (2) of relation RUEAD,f requires
knowledge of all ciphertexts cti for the NIWI proof generation. Similarly to
before, we state the following theorem and delegate the proof for our PA-UEAD
scheme to the full version of our work [4].

Theorem 4. Let FE be an IND-secure FE scheme for a family of functions
F . Let Com be a perfectly binding and computationally hiding commitment
scheme, NIWIf , NIWIe, NIWId computationally witness-indistinguishable and
perfectly sound NIWIs for relations RUEAD,e, RUEAD,f , and RUEAD,d shown in
Fig. 8. Then, PAFE in Fig. 7 is selectively secure under Definition 8 and publicly
auditable against untrusted encryptor, authority, and decryptor as per Defini-
tion 9.
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Relation RUAD,f :

Statement: zf=({mpki,fi,pkf,i,cti}i∈[4]); Witness: wf=({mski,skf,i,rf,i,rki
,si}i∈[4])

RUAD,f (zf , wf )=1 iff either of the following conditions hold:
(1) - ∀j ∈ [4] : pkf,j ← Com(skf,j ; rf,j) ∧ (mpkj ,mskj) ← FE.Setup(1λ; sj)

∧ skf,j ← FE.KeyGen(mpkj ,mskj ,fj ;rkj
)

(2) - ∃A1 ⊂ [4], with |A1| = 3, s.t. ∀j ∈ A1: pkf,j ← Com.Commit(skf,j ; rf,j)
∧ (mpkj ,mskj) ← FE.Setup(1λ; sj) ∧ skf,j ← FE.KeyGen(mpkj ,mskj ,f ;rkj

)

Relation RUAD,d:

Statement: zd=({mpki,fi,pkf,i,cti}i∈[4],y,πd) Witness: wd=({skf,i,rf,i}i∈[4])
RUAD,d(zd, wd)=1 iff either of the following conditions hold:
(1) ∀k ∈ [4] : pkfk

← Com(skfk
; rfk

) ∧ y ← FE.Dec(mpkk,f ,skfk
,ctk)

(2) ∃A2 ⊂ [4], with |A2| = 2, s.t. ∀k ∈ A2: pkfk
← Com(skfk

; rfk
)

∧ y ← FE.Dec(mpkk,f ,skfk
,ctk) ∧ cf ←Com({skf,i}i∈[4]; uf ) ∧ cd ←Com(0len; ud)

Relation RUEAD,f :

Statement: zf={mpki,fi,pkf,i,cti}i∈[4],cd, cf );

Witness:wf=({mski,skf,i,rf,i, si}i∈[4], y, ud, uf )
RUEAD,f (zf , wf )=1 iff either of the following conditions hold:
(1) -

( ∀j ∈ [4] : pkf,j ← Com.Commit(skf,j ; rf,j) ∧ (mpkj ,mskj) ← FE.Setup(1λ; sj)
∧ skf,j ← FE.KeyGen(mpkj ,mskj ,fj ;rf,j)

) ∧ cf ←Com.Commit(14·len; uf )
(2) -

( ∃A1 ⊂ [4], with |A1| = 3, s.t. ∀j ∈ A1:
pkf,j ← Com.Commit(skf,j ; rf,j) ∧ (mpkj ,mskj) ← FE.Setup(1λ; sj)
∧ skf,j ← FE.KeyGen(mpkj ,mskj ,f ;rf,j)

) ∧ cf ←Com.Commit(04·λ; uf )
∧ ∃ y ∈ Xλ such that ∀ i ∈ [4]: y ← FE.Dec(mpki,fi,skf,i,cti)

Relation RUEAD,e:

Statement: ze=({mpki, cti}i∈[4],y,ce); Witness: we=({eki,xi,se,i}i∈[4], ue)
RUEAD,e(ze, we)=1 iff either of the following conditions hold:
(1) ∀k ∈ [4] :

ctj = FE.Enc({ekj ,mpkj},x;se,j) ∧ cf ←Com.Commit(14·len; uf )
∧ ce ← Com.Commit(1len; ue)

(2) ∃A2 ⊂ [4], with |A2| = 2, s.t. ∀k ∈ A2:
ctk = FE.Enc({ekk,mpkk},x;se,k) ∧ ce ←Com.Commit(0len; ue)

Relation RUEAD,d:

Statement: zd=({mpki,fi,pkf,i,cti}i∈[4],y,πd); Witness: wd=({skf,i,rf,i}i∈[4])
RUEAD,d(zd, wd)=1 iff either of the following conditions hold:
(1) ∀k ∈ [4] :

pkfk
← Com.Commit(skfk

; rfk
) ∧ y ← FE.Dec(mpkk,fk,skfk

,ctk)
∧ ce ←Com.Commit(1len; uf )

(2) ∃A3 ⊂ [4], with |A3| = 3, s.t. ∀k ∈ A3:
pkfk

← Com.Commit(skfk
; rfk

) ∧ y ← FE.Dec(mpkk,fk,skfk
,ctk)

∧ cd ←Com.Commit(0len; ud)

Fig. 8. Relations used in the constructions for secure PA-UAD and PA-UEAD PAFE.

6 Relations Among PA Definitions

Here, we investigate any implications between the public auditability definitions.
The strongest out of the four is the one where all entities are untrusted, whereas
the weakest one is the one where just the decryptor is untrusted. A natural
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assumption would be that the strongest implies any weaker definition. However,
this is not the case and below we elaborate more on the reason why.
PA-UAD =⇒ PA-UD: In order to prove this we consider the contrapositive, that
is assuming the existence of an adversary A that wins in the PA-UD with non-
negligible probability, we will construct an adversary A′ that wins in the PA-UAD
with also non-negligible probability. A, additionally to the needs of A′ requires
an honestly generated mpk and oracle access to the key-generating algorithm. A′

runs PAFE.Setup honestly once and provides mpk to A, and whenever the latter
issues a QKeyGen query A′ simulates the random oracle. It runs PAFE.KeyGen
honestly, forwards the output to A, and stores the input-output information so it
can answer future repeated queries. Clearly both A and A′ have equal advantage
of winning their respective games, which concludes our analysis.
PA-UEAD =⇒ PA-UED: Similarly, to prove this we consider the contrapositive,
that is assuming the existence of an adversary A who wins in the PA-UED with
non-negligible probability, we construct an adversary A′′ that wins in the PA-
UEAD with also non-negligible probability. The proof is similar to the previous
reduction as A′′ operates exactly as A′. Therefore, both A and A′′ have equal
advantage of winning their respective games.

For the remaining relations, namely PA-UED =⇒ PA-UD and PA-
UEAD =⇒ PA-UAD we observe that the winning conditions for adversaries
on either side of the implications are different. Specifically, when the encryptor
is trusted it produces a legitimate ciphertext that is decryptable to a functional
output. Thus, public auditability is satisfied only if the auditor receives that
exact function output. However, when the encryptor is untrusted, it suffices for
the ciphertext to be decryptable to any function output. This discrepancy in the
winning conditions obscures the remaining relations significantly.

7 Publicly Auditable Inner-Product MIFE

Here we present a publicly auditable MIFE scheme for inner-product function-
alities, i.e., for weighted sums between plaintext vectors x={xi}i∈[n] ∈ Z

n
q and

weights {wi}i∈[n] ∈ Z
n
q . We note here that the main difference between FE and

MIFE is that the latter allows computing a function over multiple (n) cipher-
texts, all of which are individually computed with different encryption keys.

To realise our construction, we employ the existing inner-product multi-
input scheme of [8]. At a high level, that construction produces “ElGamal-style”
ciphertexts, as follows. Given a vector of inputs x={xi}i∈[n] ∈ Z

n
q , the corre-

sponding ciphertexts are of the form (gr, hr, {gxi · hr
i }i∈[n]), for encryption key

ek=({si,ti}i∈[n]), and master public key mpk= (G, g, h, {hi}i∈[n]). The decryptor
multiplies all ciphertexts and divides the product by (gr)skf,g · (hr)skf,h , where
skf,g = Σn

i=1si ·wi and skf,h = Σn
i=1ti ·wi, and then solves the discrete logarithm

problem to acquire the inner product output (assuming a “small” domain for xi

and n, so that the final discrete logarithm can be computed efficiently [8]).
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PAFE.Setup(1λ, 1n):
Choose cyclic group G

of prime order q > 2λ

with generators g, h ←$G

For i ∈ [n]:
si, ti ←$Zp

hi = gsi · hti

ek = {(si, ti)}i∈[n]

msk = {(si, ti)}i∈[n]

cd = gΣn
i=0si·ti · hΣn

i=0si·ti

mpk = (G, g, h, cd, {hi}i∈[n])

PAFE.KeyGen(msk′,mpk′,{wi}i∈[n]):

Parse msk′ = {(si, ti)}i∈[n]

Parse mpk′ = (G, g, h, cd, {hi}i∈[n])
skf = (Σn

i=1si · wi, Σ
n
i=1ti · wi)

pkf = (gΣn
i=1si·wi , hΣn

i=1ti·wi)

PAFE.Enc(mpk′, ek′,{xi}i∈[n]):

Parse ek′ := {si, ti}i∈[n]

Parse mpk′ = (G, g, h, cd, {hi}i∈[n])
re ←$Zp

ct = (gr, hr, {gxi · hr
i }i∈[n])

PAFE.Dec(mpk′,{wi}i∈[n],sk
′
f ,ct

′):

Parse mpk′ = (G, g, h, cd, {hi}i∈[n])
Parse sk′

f = (Σn
i=1si · wi, Σ

n
i=1ti · wi)

Parse ct′ = (gr, hr, {gxi · hr
i }i∈[n])

y=
∏n

i=1 gxi ·hr
i

g
r·(Σn

i=1si·wi)·hr·(Σn
i=1ti·wi)

PAFE.ProveDec(mpk′,{wi}i∈[n],sk
′
f ,pk

′
f ,ct

′,y′):

Parse mpk′ = (G, g, h, cd, {hi}i∈[n])
Parse sk′

f = (Σn
i=1si · wi, Σ

n
i=1ti · wi)

Parse pkf
′ = (gΣn

i=1si·wi , hΣn
i=1ti·wi)

Parse ct′ = (gr, hr, {gxi · hr
i }i∈[n])

π ← NIZK.Prove(mpk′,{wi}i∈[n],sk
′
f ,pk

′
f ,ct

′,y′)
Return π

PAFE.VerifyDec(mpk′,{wi}i∈[n],pk
′
f ,ct

′,y′,π′):

Parse mpk′ = (G, g, h, cd, {hi}i∈[n])

Parse pkf
′ = (gΣn

i=1si·wi , hΣn
i=1ti·wi)

Parse ct′ = (gr, hr, {gxi · hr
i }i∈[n])

Return NIZK.Verify(mpk′,{wi}i∈[n],pk
′
f ,ct

′,y′,π′)

Fig. 9. Publicly auditable MIFE for inner products with untrusted decryptor.

We now present our PA MIFE scheme that achieves public auditability in
the presence of untrusted decryptors (PA-UD), using a non-interactive zero-
knowledge argument (NIZK) [16] to produce a proof of correct decryption. Refer-
ring to the construction of Fig. 9, we observe that the decryptor needs only give
the term (gr)skf,g · (hr)skf,h to potential auditors and convince them about the
fact that skf has been used appropriately to generate this term. This can be
done by proving discrete logarithm relations between what the verifier already
knows and the information received from the decryptor, i.e., proving knowledge
of a common discrete logarithm between multiple DDH tuples.

This can be done via a general-purpose NIZK or even a Σ-protocol for DDH
tuples (e.g., see [32, Ch. 5.2]). In the second case, the resulting construction would
be very efficient and would not require trusted CRS generation. To satisfy the
security definition, the NIZK should be fully zero-knowledge; if instantiated with
a Σ−protocol we assume the non-interactive version based on the Fiat-Shamir
heuristic is used which also makes it zero-knowledge against arbitrary verifiers.
Formally, the relation for the NIZK , in Camenisch-Stadler notation [18], is:

PK{(x, r):(g, h, gr, hr, gΣn
i=1si·wi , hΣn

i=1ti·wi , gr·Σn
i=1si·wi , hr·Σn

i=1ti·wi , gud · hrd)}
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We state the following theorem and delegate the proof for our publicly
auditable MIFE scheme to the full version of our work [4].

Theorem 5. The construction depicted in Fig. 9 is a PAFE scheme for inner-
product functionalities. It is secure as per Definition 8 and is publicly auditable
as per Definition 9, assuming that the MIFE scheme of [8] is IND-secure as per
Definition 6 and the employed NIZK is computationally sound.

8 Conclusion and Discussion

In this work we introduced public auditability in the context of functional encryp-
tion. We defined four flavors of PA, for each different corresponding corruption
set among the participating parties, and presented corresponding constructions
that achieve these definitions, as well as a novel indistinguishability security defi-
nition for PAFE. Our constructions rely on secure FE, commitments, and NIWI
schemes to force the parties to prove their correct behavior. Finally, we pro-
posed a multi-input PAFE scheme that supports linear combination functional-
ities expressed as vector inner-products. It builds upon previous MIFE schemes
that produce “El Gamal”-style ciphertexts that are amenable to Σ-protocols,
thus being potentially very efficient for use in practice.

Our work leaves many possible directions for future research in this topic.
First, it would be of interest to design an adaptively secure PA-UEAD PAFE
scheme, since our presented construction for this setting is only selectively secure.
In this aspect, we believe it is possible to consider a different type of model relax-
ation of security, i.e., with “static” function key queries. This refers to an adver-
sary who specifies mutually exclusive sets of functions for which it either requests
functional secret keys or solely public ones. This setting is incomparable to selec-
tive security but it seems more applicable to several real-world applications like
the ones we described in the introduction of the paper. Another direction would
be to design and implement practical PAFE schemes in any of the auditability
settings, at least for more expressive functionalities (e.g., quadratic functions
from [12,25]). Finally, it is worth exploring other use cases and applications for
more efficient PAFE schemes, e.g., in the context of auditable cryptocurren-
cies [19,27,30] and auditable blockchain storage [33].

Acknowledgements. We would like to thank the anonymous reviewers for their con-
structive feedback. This work was partially supported by Hong Kong RGC under grant
16200721.

Appendix

A Proof of Theorem 1

We prove the PAFE security game indistinguishable regardless of the challenger
bit. We define multiple Hybrids to go from the execution of the PAFE security
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game with b = 0 to the execution with b = 1 and prove them subsequently
indistinguishable. We state the advantage that the adversary has during each
transformation and provide the total advantage at the end of our analysis.

Note that we exclude from our analysis adversarial strategies that trivially
win the PAFE security game (by violating its winning conditions). This means
that if the adversary issues a series of queries like (�) or (��) the advantage of
the adversary is reduced to 0, from the PAFE security game (Definition 8).

(�) : QEnc(x0,x1), QSKeyGen(f) such that
(��) : QEnc(x0,x1)→ct, QPKeyGen(f), QDec(ct,f) f(x0)
= f(x1)

Now, observe that we can divide all remaining possible, non-trivially-winning,
strategies into two cases, based on whether the adversary issues QDec(·,·) queries
(case (i)) or not (case (ii)).

Intuitively by making such a division first we “exploit” the fact that adver-
saries who do not issue QDec(·, ·) queries (case (ii)), essentially degenerate into
FE-type adversaries. The only exception is that they can also have access to
functional public keys (which are computationally hiding commitments). On the
other hand, we know that the adversary in case (i) will issue at least one non-
trivially-violating QDec(ct, ·) query, for QEnc(x0,x1)→ct. This allows us to define
hybrids over the total number of QEnc queries that are subsequently different
in just a single output of the QEnc(x0,x1)→ctb query (based on the challenger
bit) and prove them indistinguishable. In more detail, we present our analysis
for the two cases below:

Proof (Security).
Case (i): We assume APAFE issues at least one QDec(·, ·) query. We prove indis-
tinguishability of the game that APAFE plays when b = 0 and b = 1 through
a series of hybrids. Below we define the hybrids and prove them consecutively
indistinguishable. The challenger bit is represented in the game/hybrid expo-
nents.
Hybrid G0

UD: It is the security game when b = 0.

Hybrid H0
UD,1: It is exactly the same game as G0

UD except for the computa-

tion of the cd. In G0
UD cd ← Com.Commit(msk,;ud), whereas in H0

UD,1 c′
d ←

Com.Commit(�;ud). From the hiding property of the employed commitment
scheme no PPT adversary who sees a commitment can identify the commit-
ted value. Thus, G0

UD ≈ H0
UD,1 and more specifically, AdvDistinguish

G0
UD−H0

UD,1
(APAFE) =

AdvCom-Hidding(APAFE).
Hybrid H0

UD,2: It is exactly the same game as H0
UD,1 except for the computation

of πd. In H0
UD,1 πd ← NIWId.Prove(mpk,msk,f ,skf ,rf ,pkf ,ct,y,cd,ud) using the

first condition for relation RUD,d, whereas in H0
UD,2, using the second condition

of RUD,d, π′
d ← NIWId.Prove(mpk,⊥,f ,⊥,⊥,pkf ,ct,y,cd,ud) respectively. From the

witness indistinguishability property of NIWId no PPT adversary can distinguish
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between which condition is satisfied for the generation of πd. Thus, H0
UD,1 ≈

H0
UD,2 and more specifically, AdvDistinguish

H0
UD,1−H0

UD,2
(APAFE) = AdvWI

NIWI(APAFE).

Hybrid H0
UD,3: It is exactly the same game as H0

UD,2 except for the compu-
tation of the y. In this case, we change y to be y = f(x) instead of y ←
FE.Dec(mpk,f ,skf ,ct). Remember that for APAFE to have non-negligible chance
of winning in its game, it must be that for all functions f that APAFE issues
a QSKeyGen(f) query, for all ct ← QEnc(x0,x1): f(x) = f(x0) = f(x1).
Additionally and similarly, for all functions f for which APAFE has issued
QPKeyGen(f) and QDec(ct,f) queries, where ct← QEnc(x0,x1), it must be that
f(x) = f(x0) = f(x1). In any other case by the restrictions of the security game
for PAFE Advsec−PAFE

(
APAFE(1λ)

)
= 0. Since APAFE cannot win in any of these

two games with non-negligible advantage unless f(x0) = f(x1), H0
UD,2 ≈ H0

UD,3

and more specifically, AdvDistinguish
H0

UD,2−H0
UD,3

(APAFE) = 0.

Hybrid H0
UD,4: In this game we make the following change: the challenger

samples j′ ←$ {0, · · · ,m + 1}, initializes a counter j = 0, and when APAFE

issues an encryption query, the challenger sets j = j + 1 and returns ctbj
(we denote that query as QEnc(x0,j ,x1,j), more concretely). Now, when APAFE

issues a QPKeyGen(f) query, C checks whether f(x0,j′) 
= f(x1,j′). If so, it
samples zf , rf ←$ Zp and computes pkf ← Com.Commit(zf ,rf ). Remember
that since f(x0,j′) 
= f(x1,j′) the adversary cannot issue a QSKeyGen(f) or
a QDec(ctbj′ ,f) query — for that particular ciphertext. In such cases APAFE

would trivially diminish its advantage to 0, contradicting our assumption that
it has non-negligible advantage ε in winning the security game for PAFE. There-
fore, from the hiding property of the underlying commitment scheme, simi-
larly to G0

UD ≈ HUD,1, we get that H0
UD,3 ≈ H0

UD,4 and more specifically,
AdvDistinguish

H0
UD,3−H0

UD,4
(APAFE) = AdvCom-Hidding(APAFE).

Hybrid Hb
UD,5.j : We now define a series of hybrids, indexed by j. In these hybrids

we make the following change: the challenger samples b←$ {0, 1} and when APAFE

issues a QEnc(x0,x1) query C returns ct0 ←PAFE.Enc(mpk,ek,x0), if j < j′,
ct1 ←PAFE.Enc(mpk,ek,x1), if j > j′, and ctb ←PAFE.Enc(mpk,ek,xb), if j = j′.
Based on the choice of j we define m + 1 sub-hybrids, which we denote by
Hb

UD,5.m+1, · · · Hb
UD,5.0. Clearly, H0

UD,4 = Hb
UD,5.m+1, H1

UD,4 = Hb
UD,5.0, and

H1
UD,5.j = H0

UD,5.j+1. Following we prove H0
UD,5.j ≈ H1

UD,5.j , which translates
into H0

UD,5.j ≈ H0
UD,5.j+1, based on the above, and ultimately into H0

UD,4 ≈
H1

UD,4.

Lemma 1. Assuming the underlying FE scheme is secure as per Definition 4
H0

UD,5.j ≈ H1
UD,5.j.

Proof. We prove this via contraposition. We construct an adversary AFE that
utilizes APAFE to win in the security game of FE. Now, assuming APAFE issues
at most m Qenc(·) queries, AFE functions as follows:
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– Initialization: AFE receives mpk from C, computes pp ← Com.Setup(1λ),
samples j� ←$ [m], initializes counter = 0, initializes a table Tenc, samples
rs ← {0, 1}λ, computes cd ← Com.Commit(�;ud), samples b′ ← {0, 1}, and
forwards the triple (pp,mpk,cd) to APAFE.

– Encryption queries: When APAFE issues a QEnc(x0,x1) query to AFE, the lat-
ter issues a QEnc(xj ,xj) query to C and increments counter by 1. xj = x0

for counter < j�, and xj = x1 for counter > j�. For counter = j� AFE for-
wards the query to C without any alteration. Regardless the case, C returns
a ciphertext ct, which AFE forwards to APAFE.

– Functional secret key queries: When APAFE issues a QSKeyGen query to AFE,
the latter forwards the query to C, who responds with skf . AFE then checks
if a QPKeyGen query has been issued for f . If not, it samples rf ←$ {0, 1}λ

and computes pkf ← Com.Commit(skf ; rf ), AFE forwards (skf ,pkf ) to APAFE.
– Functional public key queries: When APAFE issues a QPKeyGen(f) query

to AFE, the latter checks whether f(x0.j�) 
= f(x1.j�). If so, AFE

samples rf ←$ {0, 1}λ, samples zf ←$ {0, 1}λ, and computes pkf ←
Com.Commit(zf ; rf ). Otherwise, AFE forwards a QSKeyGen(f) query to C,
who responds with skf . AFE samples rf ←$ {0, 1}λ, and computes pkf ←
Com.Commit(skf ; rf ). In any case AFE returns pkf to APAFE.

– Decryption queries: When APAFE issues a QDec(ct, f) query to AFE, the latter
assigns y ← f(xj) and πd ← NIWId.Prove(mpk,�,f ,⊥,⊥,pkf ,ct,y,cd,ud). AFE

forwards (y,πd) to APAFE.
– Finalization: APAFE outputs a bit b′ which A forwards to C.

The advantage AFE has in winning the FE IND-security game utilizing APAFE

is ε
m > negl(λ). This derives from the fact that AFE needs to “guess” correctly

the ctbj ←Qenc(·, ·) query for which APAFE will issue at least one “legitimate”
QDec(·,ctbj) query; and does so by sampling j� at random.

Thus, H0
UD,4 = Hb

UD,5.m+1 ≈ Hb
UD,5.0 = H1

UD,4 and more specifically:
AdvDistinguish

H0
UD,4−H1

UD,4
(APAFE) = AdvFE-IND security(APAFE).

Hybrid H1
UD,3: In this game we make the following change: When APAFE issues

a QPKeyGen(f) query, C forwards pkf ←PAFE.KeyGen(msk,mpk,f) to APAFE.
From the hiding property of the underlying commitment scheme, similarly
to H0

UD,3 ≈ H0
UD,4, we get that H1

UD,4 ≈ H1
UD,3 and more specifically,

AdvDistinguish
H1

UD,4−H1
UD,3

(APAFE) = AdvCom-Hidding(APAFE).

Hybrid H1
UD,2: It is exactly the same game as H1

UD,3 except for the computation
of the y. In this case, we change y to be y ← FE.Dec(mpk,f ,skf ,ct), instead of
y = f(x). Similarly to the case H0

UD,2 ≈ H0
UD,3, we get that H1

UD,3 ≈ H1
UD,2

and more specifically, AdvDistinguish
H1

UD,3−H1
UD,2

(APAFE) = 0.

Hybrid H1
UD,1: It is exactly the same game as H1

UD,2 except for the compu-

tation of πd. In H0
UD,2 π′

d ← NIWId.Prove(mpk,⊥,f ,⊥,⊥,pkf ,ct,y,cd,ud) using
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the second condition of RUD,d, whereas in H0
UD,1, using the first condition for

relation RUD,d, πd ← NIWId.Prove(mpk,msk,f ,skf ,rf ,pkf ,ct,y,cd,ud). From the
witness indistinguishability property of NIWId, similarly to H0

UD,1 ≈ H0
UD,2

we get that H1
UD,2 ≈ H1

UD,1 and more specifically, AdvDistinguish
H1

UD,2−H1
UD,1

(APAFE) =

AdvWI
NIWI(APAFE).

Game G1
UD: It is the security game when b = 1. It is exactly the same game as

H1
UD,1 except for the computation of the cd. In H1

UD,1 c
′
d ← Com.Commit(�;ud),

whereas in G1
UD cd ← Com.Commit(msk,;ud). From the hiding property of the

employed commitment scheme no PPT adversary who sees a commitment can
identify the committed value. Thus, H1

UD,1 ≈ G1
UD and to be more specific,

AdvDistinguish
H1

UD,1−G1
UD

(APAFE) = AdvCom-Hidding(APAFE).

Therefore, the overall advantage APAFE has in case (i): AdvDistinguish
G0

UD−G1
UD,(i)

(APAFE) ≤
4 × AdvCom-Hidding(APAFE) + 2 × AdvWI

NIWI(APAFE) + AdvFE-IND security(APAFE).

Case (ii): We assume APAFE issues no QDec(·, ·) queries and has a non-negligible
advantage ε in winning the PAFE ecurity game. In this case we exploit the fact
that APAFE will not issue a QSKeyGen(f) query if there exists a pair of messages
(x0, x1) in a QEnc(x0, x1) → ct query, such that f(x0) 
= f(x1) and vice versa —
since either way would trivially violate the winning conditions of the PAFE secu-
rity game, rendering Advsec−PAFE(APAFE) = 0

(
see case (�)

)
. We therefore can

construct a “greedy” adversary A′
FE who utilizes APAFE and wins the FE IND-

security game with non-negligible advantage. A′
FE forwards all queries made by

APAFE to its challenger, except for QPKeyGen(·) ones. When APAFE issues a
QPKeyGen(f) query to A′

FE, the latter checks whether ∃ct ←QEnc(x0, x1) such
that f(x0) 
= f(x1). If so, A′

FE samples rf ←$ {0, 1}λ, samples zf ←$ {0, 1}λ, and
computes pkf ← Com.Commit(zf ; rf ). Otherwise, A′

FE forwards a QSKeyGen(f)
query to C, who responds with skf . A′

FE samples rf ←$ {0, 1}λ, and computes
pkf ← Com.Commit(skf ; rf ). In any case A′

FE returns pkf to APAFE. Since the
commitment scheme is computationally hiding A′

FE has also ε > negl(λ) advan-
tage in winning the FE IND-security game, violating our initial assumption.

(Auditability). We show that no PPT adversary APA-UD can violate the PA-
UD property of PAFE, assuming a computationally sound NIWI for relation
RUD,d, NIWId and a perfectly binding commitment scheme Com. We examine
two cases. First, there is the case where the adversary APA-UD may output a
tuple T that satisfies RUD,d. If so, it either satisfies the condition that ensures
that PA-UD holds

(
pkf ← Com(skf ; rf ) ∧ y ← FE.Dec(mpk,f ,skf ,ct)

)
, or the

“trapdoor” condition cd ← Com(�;ud). In the PA-UD setting cd is generated by
the authority (assumed to be honest in this setting), meaning that no malicious
decryptor can generate a convincing proof using condition (2) of RUD,d.

Otherwise, without loss of generality we distinguish between the following
regarding the first condition: T either violates the commitment or the algorithmic
condition. Since the commitment is perfectly binding, ∀pkf �(sk�

f ,r�
f ) 
= (skf ,rf )
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such that pkf ← Com(sk�
f ;r�

f ) ∧ pkf ← Com(skf ;rf ). Additionally, since mpk
and ct, are provided by trusted entities and the uniquely correct skf is used
in the FE.Dec algorithm, y is also explicitly correct (due to the correctness of
the underlying FE scheme). Due to the soundness property of NIWId any proof
π� that passes verification is generated for accepting PA-UD statements using
valid witnesses. Therefore, no PPT APA-UD can break the PA-UD property with
non-negligible advantage.
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Abstract. We revisit the problem of robustly reusable fuzzy extractors
(RRFEs) with post-quantum security. Our main focus is constructions
secure in the quantum random oracle model (QROM) that can be built
by modifying existing classical ROM constructions. To date, security in
the QROM has not been considered in the context of RRFEs. More
specifically, we achieve three core contributions. The first is to produce
a simple QROM construction of a (non-reusable) robust fuzzy extractor
with security bounds that do not depend explicitly on the number of cor-
rectable errors t. As Becker (ePrint/2017/493) showed, previous ROM
proofs depend heavily on t, preventing their use in certain applications
(e.g. to PUFs). Our second contribution is to produce the first RRFE
with a security proof in the QROM. The security bounds here also do not
depend explicitly on t. Importantly, the construction does not utilise ran-
dom number generation which can be difficult to achieve on constrained
devices in a PUF application. Finally, we suggest optimisations of the
only existing post-quantum standard model RRFE capable of correcting
a linear number of errors, showing that it is far less efficient than our
QROM construction.

Keywords: post-quantum security · QROM · fuzzy extractors ·
robustness

1 Introduction

Fuzzy extractors [14] were introduced by Dodis et al. to enable secure deriva-
tion of cryptographic keys from entropic (but non-uniform) noisy data sources.
Informally, a fuzzy extractor consists of two algorithms: a generation algorithm
FE.Gen and a reproduce algorithm FE.Rep. The generation algorithm takes as
input a piece of source data w from a noisy entropic source and outputs a “hint”
associated to the data P along with a secret key k i.e. (P, k) := FE.Gen(w). The
reproduce algorithm takes as input a piece of data w′ and hint P , and outputs
a key k′ := FE.Rep(w′, P ). These algorithms must achieve:

– Correctness: If w and w′ are close (e.g. at most Hamming distance t apart for
binary data), it should always be the case that k = k′.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Tibouchi and X. Wang (Eds.): ACNS 2023, LNCS 13906, pp. 429–459, 2023.
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– Key uniformity: Given P , the key k is indistinguishable from a uniform key,
assuming that w is drawn from a distribution with sufficient entropy.

The first property says that if w and w′ are two noisy readings of the same source,
the keys derived by the generation and reproduce algorithms are equal. The
second property says that an attacker that knows the hint P cannot distinguish
the key from uniform (assuming w comes from some high entropy distribution).

Applications of Fuzzy Extractors. The original application of fuzzy extrac-
tors envisaged by Dodis et al. was biometric authentication [14], where a secret
key is produced by taking some entropic biometric reading e.g. iris scans. Reading
biometric data is subject to inherent noise, so it is difficult to reproduce a single
secret key. Fuzzy extractors solve this problem by storing a (public) hint associ-
ated to an initial biometric reading. Each follow-up read is combined with this
hint to correctly rederive the original key. Additionally, fuzzy extractors trans-
form non-uniform biometric data into uniform keys suitable for cryptographic
use. A similar application is the derivation of secret keys from so called “Physi-
cal Uncloneable Functions” (PUFs). A PUF is essentially a piece of light-weight
hardware able to output a silicon fingerprint of itself that can be reproduced on-
demand rather than stored in non-volatile memory. They are often used to as a
“root-of-trust” in secure key generation on IoT devices [21] because they are eas-
ily implemented on integrated circuits. The silicon fingerprint is typically derived
from small uncontrollable variations in the manufacturing process. For example,
the well-known SRAM PUF [18] relies on manufacturing variations leading to
fairly stable high-entropy 0/1 power-up patterns in SRAM cells. These random
patterns can serve as silicon fingerprints. Unfortunately, the power-up pattern
is not perfectly reproducible, and uncontrollable variations in temperature or
supply voltage can cause bit flips when comparing repeated readings.

Robustness. Following the seminal paper of Dodis et al. many works have con-
sidered additional security properties of fuzzy extractors. For example, the idea
of a robust fuzzy extractor was introduced by Boyen et al. [8]; robustness requires
that if an honestly produced hint is overwritten with some potentially malicious
value, the reproduce algorithm detects this and outputs a failure symbol ⊥. This
means that even if an adversary can overwrite the hint, it cannot force a device
to use an incorrect key. The robust scheme of Boyen et al. is built from any secure
sketch [14] which is a primitive consisting of a generation algorithm SS.Gen and
a reconciliation mechanism SS.Rec. Informally, if s = SS.Gen(w) and w′ is a bit
string differing from w in at most t positions, then SS.Rec(w′, s) = w. For secu-
rity it is required that the unpredictability of w (i.e. the min-entropy of w) given
s remains high. From a well-formed secure sketch1, the robust construction of
Boyen et al. can be interpreted using a hash function H in the random oracle
model (ROM) via the following description, where H is parsed as (H1,H2):
1 Well-formed roughly means that for any w and sketch value s, SS.Rec(w, s) is within

Hamming distance t of w, where t is the maximal number of correctable errors.
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– FE.Gen(w) : Output hint P = (s, h) := (SS.Gen(w), H1(w,SS.Gen(w))) and
key k = H2(w, s).

– FE.Rep(w′, P = (s, h)) : Compute w̃ := SS.Rec(w′, s). If H1(w̃, s) �= h, output
⊥. Else output k′ = H2(w̃, s).

Intuitively, an adversary outputting a valid hint must know the value of (w, s)
(or produce a hash pre-image) to obtain a correct hash value in FE.Rep. In
the security argument, well-formedness of the secure sketch helps relate the
unpredictability of w̃ given s to the unpredictability of w′, and subsequently
w. Unfortunately the method of proof leads to a security bound depending on
Volt = ‖{x : HW (x) ≤ t}‖ where HW denotes Hamming weight. As analysed by
Becker [5], this dependence on t restricts the utility of Boyen et al.’s scheme (and
also that of [13]) in practical scenarios. Specifically, Becker shows that to achieve
both correctness and security, the maximal error rate that can be corrected is
3% when BCH codes are used to implement SS. This error rate is significantly
lower than a “typical” PUF rate of 15%. Therefore, a natural question is:

(Q1) Can we obtain a security bound for the simple hash-based robust fuzzy
extractor that is independent of Volt and valid in the (Q)ROM?

Moving away from the ROM, there are many examples of robust fuzzy extractors
whose security holds in the standard model such as those of [11,13]. The first of
these is particularly interesting in the context of robustness, as its performance
nearly matches the that of the original non-robust construction of Dodis et al.
Additionally, the security proof is information-theoretic. However, it is worth
noting that the security proof is in a common reference string (CRS) model, and
that the construction requires random number generation (which is not the case
for the simple hash based constructions considered in this paper); reliance on
a random number generator (RNG) can be problematic on constrained devices,
such as the IoT devices relying on PUFs for key derivation.

Reusability. Another extension of the original security properties is the notion
of reusability [7]. This notion considers the case where the generation algorithm is
run multiple times to produce several hints/keys corresponding to noisy versions
of the same source data. Reusability asks that distinct keys derived from a single
noisy source remain uniform from the perspective of an adversary that has access
to the corresponding hint values (and a selection of potentially compromised
keys). This situation occurs when a single noisy source is used to derive multiple
keys. Examples of reusable fuzzy extractors secure in the ROM can be found
in [1,7,9] whereas schemes secure in the standard model can be found in [4,9,
24,25]. The notions of robustness and reusability were subsequently combined
to define robustly reusable fuzzy extractors [26]. Examples of robustly reusable
fuzzy extractors in the standard model can be found in [12,26,27]. Note that all
robustly reusable fuzzy extractor constructions to date have been proven secure
in the standard model using standard computational assumptions.
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Post-quantum Constructions. It is well-known that many standard number
theoretic assumptions used in cryptography do not hold against quantum capa-
ble adversaries. This led to the construction of schemes based on post-quantum
assumptions that are believed to hold for quantum adversaries. Generally speak-
ing, using the ROM can lead to relatively simple and very efficient construc-
tions. However, the classical ROM is not appropriate for post-quantum security
because quantum adversaries may have access to quantum implementations of
the random oracle, and thus make superposition queries to it. This motivated
the introduction of the quantum random oracle model [6] or QROM. To our
knowledge, the problem of constructing fuzzy extractors in the QROM is yet to
be studied. This leads to the important open question:

(Q2) Are there practical, simple and efficient robustly reusable fuzzy extrac-
tors provably secure in the QROM?

Looking now to the standard model, post-quantum fuzzy extractors have
been considered extensively, often based on the learning with errors (LWE)
assumption [4,15,19,24]. Further, post-quantum robustly reusable fuzzy extrac-
tors are given in [12,27]. Unfortunately, the first of these works cannot correct a
linear number of errors (i.e. cases where the Hamming distance between w and
w′ is a constant fraction of their bit-lengths) rendering it unsuitable for applica-
tions such as PUFs where a linear error rate is expected. On the other hand, the
work of [12] does not have this issue. A simple observation is that the scheme
from [12] is based on plain LWE [22] (or more precisely on learning parity with
noise (LPN) which may be conceptualised as LWE with modulus 2). Typically,
converting schemes from LWE/LPN to ring-LWE/LPN [17,20] saves a factor of
O(λ) (where λ is the security parameter) somewhere within the scheme. This
saving arises because O(λ)×O(λ) matrices used in plain LWE/LPN are replaced
by degree O(λ) polynomials in ring-LWE/LPN. Therefore, a natural question is:

(Q3) Can we improve on the efficiency of existing standard model robustly
reusable fuzzy extractors by using the ring-LWE/LPN assumption?

Contributions. Our contribution is to tackle the three open questions (Q1)-
(Q3) outlined above. For (Q1), we prove that a lightly modified version of the
hash-based scheme of Boyen et al. can be proved robust in the QROM with
security bound independent of Volt according to the definition of [26]. In fact,
this particular definition is slightly weaker than the strongest definition of Boyen
et al. [8] as the source error between reads is assumed to arbitrarily depend on
the hint seen by the adversary. In other words, the definition of [26] captures the
case where natural source errors are independent of the true source value, as well
as the case where the adversary is able to arbitrarily manipulate source errors.
The stronger definition of Boyen et al. additionally considers arbitrary source
error distributions that can even depend on the secret source value. Nonethe-
less, under the plausible assumption that source errors are independent of the
true read value, our scheme and security proof are applicable. This assumption
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is particularly suited to the PUF setting as elaborated next. For SRAM PUFs
and more generally, the error profile between multiple reads is typically inde-
pendent of the values of the PUF bits themselves. For instance, an SRAM PUF
derives an output bit by considering the power-up behavior of an SRAM cell
containing two cross-coupled and nominally identical inverters. Process varia-
tions cause mismatches between the inverters, so that the cell typically powers
up in either the 0 or 1 state. However, the presence of electronic noise occasion-
ally changes the powerup state, resulting in imperfect reliability. Since the cell
is symmetric, the electronic noise, and thus error probability, will be indepen-
dent of the direction of mismatch between the inverters. Briefly, there are two
main modifications imposed on the previous hash-based construction: the first is
that the requirement of well-formedness can be dropped, and the second is that
the underlying secure sketch must satisfy a certain linearity property originally
introduced in [11] in the context of standard model robust fuzzy extractors. To
produce our QROM proof, we use a different strategy to the original proof of
Boyen et al. allowing us to utilise known techniques from the QROM litera-
ture. In particular, we make use of a one-way to hiding (O2H) lemma [3,23]
and Zhandry’s quantum query recording techniques [28] to produce our QROM
proof. Unlike in previous hash-based constructions, the security bound derived
does not depend explicitly on t and therefore does not place strong restrictions
on the number of correctable errors. Due to space requirements, the results with
their concrete security bounds are stated as Theorem 1 and Theorem 2, but the
proofs are deferred to AppendixE and the full version of this paper. The proof
of the more general and main result of reusable robustness (Q2) is included in
the main body instead.

Next we answer (Q2), showing that a minor modification of the robust con-
struction is robustly reusable in the QROM (Theorem 3), giving concrete security
bounds. The security game gives the adversary access to a reusability oracle that
on input a perturbation Δ, with Hamming weight at most t, returns a hint and
key computed at w + Δ. Again, the definitions are from [26] and consider cases
where source errors are adversarially chosen, so may depend arbitrarily on the
hints seen but not on the source value as in [9]. We note that the only construc-
tion achieving the stronger reusability definition [9] is unable to handle adaptive
reusability queries or a linear number of errors. Additionally, even optimisations
of this construction [10] have hint sizes in the 100’s of MBs or more in practical
applications. The only further modification required to the simple hash con-
struction is that the underlying secure sketch must be linear, homomorphic and
well-formed2. The syndrome-based code offset secure sketch of Dodis et al. [14]
possesses these three properties. The homomorphic property was previously con-
sidered in the context of standard model robustly reusable fuzzy extractors [26].
The security proofs here make crucial use of the same aforementioned results
from the QROM literature, and the derived security bounds depend on the
amount of entropy m′ left in a source after leaking a secure sketch value, but

2 The well-formed property can be dropped for the sake of weaker properties (see
Remark 1), but we choose to use properties already defined in the literature.
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not explicitly on t. However, the scheme’s efficiency still suffers somewhat when
t is moderately large, as the number of required bits n grows relatively quickly
with t in syndrome code-offset sketches; for details, see Sect. 4.3. Otherwise, the
construction is very efficient, requiring just n−κ+λ bits of hint storage (where n
and κ are the length and dimension respectively of the code used in the syndrome
code-offset sketch) to extract a large number of key bits. In short, κ may be as
small as 4λ for robust reusability in the QROM and 2λ in the ROM. We note
that there is an unavoidable implicit dependence on t, both due to the Singleton
bound 2t ≤ n − κ and the relation n − κ = m − m′ arising from the code-offset
secure sketch, where m and m′ are the min-entropies of the source distribution
before and after learning a secure sketch value respectively. However, this weak
dependence sharply contrasts the Volt dependence in previous works.

Finally, we answer (Q3) by translating the robustly reusable standard model
construct of Cui et al. [12] from plain- to ring-LPN to improve efficiency. If the
underlying ring is a field, the transformation is trivial. However, using non-field
rings that split into many factors allows for fast multiplication algorithms (via
e.g. fast Fourier transform-like methods [2]), so we describe a small modification
of Cui et al. to permit the use of arbitrary rings. As we show in Sect. 5, the
requirement on the error correcting code for the syndrome-based code offset
secure sketch is much stricter than that of the QROM construction. This leads
to a required number of PUF bits and hint storage that is orders of magnitude
larger than the hash-based construction. The scheme also requires an RNG,
unlike the QROM construction.

Roadmap. We begin with preliminaries in Sect. 2. We then present the simple
hash-based construction in Sect. 3, followed by a list of plain robustness results
proven in AppendixE and the full version of this paper. In Sect. 4, we prove
reusability and reusable robustness in the QROM and include an account of
parameter restrictions (Sect. 4.3). We modify the LPN-based robustly reusable
fuzzy extractor of Cui et al. in Sect. 5 and show that the parameter restric-
tions are noticeably stricter than those arising in the QROM proofs. Finally, we
conclude the paper, suggesting directions for future work in Sect. 6.

2 Preliminaries

We use standard mathematical set notation e.g. N,Z,R,C and asymptotic nota-
tion ω(·), O(·), poly(·) etc. We denote vectors using boldface font and consider
vectors as strings by concatenating the individual entries of a vector. If v is
a vector over R, then ‖v‖ denotes its Euclidean norm. Alternatively, if Δ is a
binary vector/string, then ‖Δ‖ denotes the Hamming weight of Δ. A unitary
matrix U ∈ C

n×n satisfies U†U = I where U† denotes the Hermitian conjugate
of the matrix U and I is the n × n identity matrix. For any n ∈ N, we write [n]
to denote the set {1, 2, . . . , n}. We will denote the security parameter as λ. An
algorithm is said to be efficient or polynomial time if it runs in time poly(λ). Take
any random variable X and denote its distribution as DX . We write x ← DX
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to denote that x is sampled from the distribution DX . We also write x ← X to
mean the same thing as x ← DX by abuse of notation. Also, if X is a set, x ← X
means that x is sampled uniformly from the set X. If X is a random variable,
then for any algorithm A, the output of the algorithm on input X, i.e. A(X)
is also a random variable. We use the notation Prx←X [y ← A(x)] to denote
the probability that A(X) takes the value y. When an algorithm has a super-
script, it means that the algorithm has “black-box” oracle access to the function
present in the superscript. For example, AH indicates that the algorithm has
oracle access to some function H. The min-entropy of a random variable X is
defined as ˜H∞(X) := − log (maxx Pr[X = x]). Take a secondary random vari-
able Y with distribution DY . Note that the event Y = y induces a marginal
distribution on X. The conditional min-entropy of X given Y is then defined as
˜H∞(X | Y ) := − log (Ey←Y [maxx Pr[X = x|Y = y]]).

2.1 Quantum Random Oracle Model (QROM)

For the basics of quantum algorithms/computation, see AppendixA. We now
discuss quantum algorithms with quantum access to a random oracle H. Since
quantum computation is represented by unitary operators/matrices, we need
that queries to H change the state of an adversary in a unitary way. H is
usually implemented as an oracle that performs the following transformation
H : |x, y, z〉 	−→ |x, y ⊕ H(x), z〉 where z is a place-holder for all registers not
affected by random oracle queries. Slightly abusing notation so that H denotes
the unitary and the function itself, the quantum computation of an algorithm
takes the form UqHUq−1H . . . U2HU1 |ϕ0〉 where |ϕ0〉 is an initial state and the
Ui’s are unitaries. In order to obtain the output of a quantum algorithm, we
then take a measurement of the output registers.

Below is the simplest version of the one-way to hiding (O2H) lemma [23]. Note
that the lemma allows algorithm AH to submit batches of queries in parallel to
H and the result depends on the depth of AH ’s queries, i.e. the number of batches
that AH sends to H. The formulation of the version of the O2H lemma below
is from [3]. Using the more complex semi-classical oracle techniques of [3] does
not appear to improve our final security bounds in any meaningful way, so we
stick to the formulation below.

Lemma 1 (O2H Lemma). Let X and Y denote input and output spaces
respectively. Take (G,H, S, z) to follow some arbitrary distribution where S ⊆ X,
G : X → Y , H : X → Y such that ∀x ∈ S,G(x) = H(x) and z belongs to
the input space of a query-depth d quantum oracle algorithm AH . Define the
algorithm BH(z) as follows:

– Sample i ← {1, . . . , d}
– Run AH(z) until just before its i-th query to H
– Measure the oracle input registers and output the result of the measurement

denoted T

Define Adv(B) := Pr[S ∩ T �= ∅ : T ← BG(z)]. Then for any classical event E
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1. |Pr[E : AH(z)] − Pr[E : AG(z)]| ≤ 2d · √Adv(B).
2. |√Pr[E : AH(z)] − √

Pr[E : AG(z)]| ≤ 2d · √Adv(B).

We will also use a quantum query recording lemma from [28]. In this work,
Zhandry introduced the “compressed standard oracle” denoted CStO that essen-
tially adds the random oracle points queried by an adversary to some database
registers D (that is itself a superposition). If a pair (x, y) ∈ D, then we write
D(x) = y. The useful thing about the CStO oracle is that it almost preserves
the output distribution of any algorithm when it is used in place of a random
oracle. The particular quantum query recording lemma from [28] we use follows.

Lemma 2. Suppose there is an algorithm A that on input z and oracle access
to random oracle H : {0, 1}∗ → {0, 1}n outputs tuples (x1, . . . , xk, y1, . . . , yk, ζ).
Let R be some collection of such tuples. Suppose that on input z, A outputs a
tuple that belongs to R such that for i = 1, . . . , k,H(xi) = yi with probability
p. Now consider running A on input z with respect to CStO and measuring the
database D after A produces its output. Let p′ be the probability that on input
z, A’s output tuple is in R and D(xi) = yi where yi �= ⊥ for i = 1, . . . , k. Then√

p ≤ √
p′ +

√

k/2n.

2.2 Fuzzy Extractor Definitions

Secure Sketches. Secure sketches are a fundamental building block used to con-
struct fuzzy extractors [14]. Intuitively, a secure sketch allows one to recover a
secret value w from a nearby secret value w′ while controlling the amount of
leakage on these secret values.

Definition 1. A (m,m′, t)-secure sketch over a metric space M with metric d is
a pair of potentially randomised procedures SS.Gen : M −→ {0, 1}∗ and SS.Rec
that satisfy the following properties:

1. (Correctness) ∀w,w′ ∈ M s.t. d(w,w′) ≤ t, SS.Rec(w′,SS.Gen(w)) = w.

2. (Secrecy) ∀ distributions W s.t. ˜H∞(W ) ≥ m, ˜H∞(W | SS.Gen(W )) ≥ m′.

Intuitively, a (m,m′, t)-secure sketch allows us to correct up to t errors for a
min-entropy m input whilst retaining at least m′ bits of min-entropy on leaking
the secure sketch value. We also recall definitions of further properties next:

Definition 2 (Linear secure sketches [11]). Suppose M is also a group with
an addition operation. A secure sketch SS is linear if ∃ an efficiently computable
function f s.t. for arbitrary (w, s∗,Δ) with d(Δ, 0) ≤ t, we have SS.Rec(w +
Δ, s∗) = w + f(Δ, s∗, s) where s := SS.Gen(w).

Definition 3 (Homomorphic secure sketches [26]). A secure sketch SS is
homomorphic if ∀w1, w2 ∈ M, SS.Gen(w1 + w2) = SS.Gen(w1) ⊕ SS.Gen(w2).

Definition 4 (Well-formed secure sketches [8]). A (m,m′, t) secure sketch
SS is well-formed if ∀w′ ∈ M and s, d(SS.Rec(w′, s), w′) ≤ t.
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Note that one could also consider well-formed sketches where SS.Rec can output
a failure symbol ⊥. However, this would not interact well with the definition of
linear secure sketches, so we do not consider such well-formedness definitions.

Example 1 (Syndrome Code-Offset [14]). For a linear [n, k, d = 2t + 1] code
C ∈ Z

k×n
2 with parity check matrix H ∈ Z

n×(n−k)
2 , the (tweaked) syndrome

code-offset secure sketch denoted SynSS is comprised of the following algorithms:

– SynSS.Gen(w) : For w ∈ {0, 1}n, output s = w · H.
– SynSS.Rec(w′, s) : For any s ∈ {0, 1}n−k and w′ ∈ {0, 1}n, compute ẽ =

s ⊕ (w′ · H) and syndrome decode to compute e such that e · H = ẽ and
‖e‖ ≤ t. If such an e is not found, return w′. Otherwise, output w′ ⊕ e.

SynSS is a (m,m′, t) secure sketch for m′ = m − (n − k). It clearly possesses the
homomorphic and well-formed properties. For the linearity property, note that
SynSS.Rec(w⊕Δ, s∗) is w⊕(Δ⊕e) where e is a function of Δ, s∗ and w ·H =: s.

Fuzzy Extractors. We now write the definition of a fuzzy extractor [14], altered
to allow for security with respect to different classes of adversary. The original
definition only considered statistical security meaning that the indistinguisha-
bility was written in terms of statistical distance. However, we generalise this to
consider e.g. ROM/QROM adversaries.

Definition 5. For any metric space M with metric d, positive reals m, �, ε and
positive integer t, a (M,m, �, t, ε) fuzzy extractor with respect to adversary class
A is a collection of algorithms (FE.Gen,FE.Rep) such that

1. For any w ∈ M, FE.Gen(w) outputs a hint or “helper data string” P and a
key string R ∈ {0, 1}�.

2. FE.Rep takes any w′ ∈ M and hint P as inputs and outputs a key-string or
failure symbol ⊥.

3. (Correctness) For any w,w′ where d(w,w′) ≤ t, if (P,R) ← FE.Gen(w), then
FE.Rep(w′, P ) = R.

4. (Security/Uniformity) Consider any adversary A in class A and distribution
W with ˜H∞(W) ≥ m. Then the advantage that A has when distinguishing
(P,U) from (P,R) where (P,R) ← FE.Gen(W) and U ← {0, 1}� is at most ε.
In other words, ∀A ∈ A, 1

2 |Pr[1 ← A(P,R)] − Pr[1 ← A(P,U)]| ≤ ε.

We can modify the above to define a fuzzy extractor in the common reference
string (CRS) model. This is done by adding a procedure FE.Init that samples a
public CRS that is used as additional input to the FE.Gen and FE.Rep algorithms.
This CRS may not be tampered with in any of the fuzzy extractor definitions
considered and the distribution of W is assumed to be independent of the CRS.

Plain Robustness. We now introduce the plain robustness definition. Very infor-
mally, robustness asks that whenever a adversarially chosen hint P ∗ is used, the
FE.Rep algorithm detects this and outputs the failure symbol ⊥. The security
definition allows an adversary to choose the shift Δ applied to the original source
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value w that will be used to check the validity of the hint P ∗. If the adversary
class is computationally unbounded, then the distribution of Δ could depend
arbitrarily on any of the information that the adversary knows e.g. the genuine
hint P that is derived from w, but not directly on w itself (as in the stronger
definition of [8]). Nonetheless, the definition below follows the more recent one
used in [12,26,27] and is practically meaningful.

Definition 6. Take any metric space M with metric d, positive reals m, �, ε, δ
and positive integer t. A (M,m, �, t, ε) fuzzy extractor has robustness δ with
respect to adversary class A if ∀A ∈ A and distributions W such that ˜H∞(W) ≥
m, the following experiment outputs success with probability at most δ:

– A is given P computed as (P,R) = FE.Gen(w) for some secret w ← W .
– A outputs (Δ,P ∗). The experiment outputs success if and only if ‖Δ‖ ≤ t,

P ∗ �= P and FE.Rep(w + Δ,P ∗) �= ⊥.

The reader may notice that the challenger does not send R to the adversary
in the above definition. Such scenarios are known as pre-application robustness.
The analogous post-application robustness definition gives R to the adversary
and is stronger. Note that the reusable robustness definition below implies the
post-application version of robustness above.

Reusable Robustness. We now state the definition of a robustly reusable fuzzy
extractor [26]. Intuitively, the robustly reusable property of a fuzzy extractor
guarantees that both robustness and uniformity hold, even when an adversary
can obtain multiple hints and some keys derived from noisy versions of a fixed
source value. The definition will make use of two separate security experiments
– one for reusability/uniformity and the other for reusable robustness (which is
slightly different to the experiment in Definition 6). Each experiment gives the
adversary access to a single oracle. For the reusability experiment the adversary
is given classical access to the oracle Ob(·). On adversarial input Δ, this oracle
returns ⊥ if ‖Δ‖ > t. Otherwise, it samples (P,R) ← Gen(w + Δ) and uniform
U , returning (P,R) if b = 0 and (P,U) if b = 1. Note that choices of U are
recorded and used again in the event of a repeated query. We may now describe
the reusability experiment with bit b as Expre,b

A (λ):

– Challenger C samples w ← W.
– Given oracle access to Ob(·), A outputs a bit i.e. b′ ← AOb().
– The output of the experiment is the bit b′.

We next describe the (reusable) robustness experiment. This involves a query
list Q and an oracle OGen(·). On classical adversarial input Δ, this oracle returns
⊥ if ‖Δ‖ > t and returns (P,R) ← Gen(w + Δ) otherwise (adding P to the list
Q). The reusable robustness experiment Expro

A (λ) can now be described as:

– Challenger C samples w ← W and initialises Q = ∅.
– (P ∗,Δ∗) ← AOGen(·)().
– Output:
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• If ‖Δ∗‖ > t, the experiment outputs 0.
• If P ∗ ∈ Q the experiment outputs 0.
• If Rep(w + Δ∗, P ∗) = ⊥, the experiment outputs 0.
• Otherwise the experiment outputs 1.

Definition 7. A (M,m, �, t, ε) fuzzy extractor has reusability ε1 and reusable
robustness ε2, and is therefore a (M,m, �, t, ε, ε1, ε2) robustly reusable fuzzy
extractor with respect to adversary class A, if it satisfies the following two require-
ments:

1. (Reusability) For any adversary A∈ A,

1
2

·
∣

∣

∣Pr[Expre,0
A (λ) = 1] − Pr[Expre,1

A (λ) = 1]
∣

∣

∣ ≤ ε1.

2. (Reusable Robustness) For any adversary A∈ A,

Pr[ExproA (λ) = 1] ≤ ε2.

3 Simple Hash Construction and Results

We will show that the following construction, built from a secure sketch SS over a
space M of size 2η, will be a robust and also a robustly reusable fuzzy extractor
according to the definitions from Sect. 2. We also assume that secure sketch
values lie in a set S whose size is 2ν . The proofs will assume that M = {0, 1}η

and S = {0, 1}ν where η, ν ∈ Z for simplicity, but may be easily generalised.
The simple hash-based construction (denoted HFE) that we consider is essentially
that of Boyen et al. [8] and uses a single random oracle H : {0, 1}η × {0, 1}ν →
{0, 1}k+� whose output is parsed into a k bit string and an � bit string. The
construction HFE is as follows:

– HFE.Gen(w) : Compute s = SS.Gen(w), (h1, h2) = H(w, s) where h1 ∈ {0, 1}k

and h2 ∈ {0, 1}�. Output randomness R = h2 and hint P = (s, h1).
– HFE.Rep(w̃, (s, h1)) : Compute w′ = SS.Rec(w̃, s) and (h′

1, h
′
2) = H(w′, s)

where h′
1 ∈ {0, 1}k and h′

2 ∈ {0, 1}�. If h′
1 �= h1 then output ⊥. Otherwise,

output h′
2.

Note that we could divide H into two separate random oracles (with output
lengths k and �) but choose not to in order to ease notation. Another important
point is that the extracted key-length � may take any desired value as long as
the bounds in the security theorem offer λ-bit security. This is a by-product
of relying on random oracle models. We now state two new plain robustness
results, the first of which is proven in AppendixE. The proof of the second can
be found in the full version of this paper. In the next section, we state and prove
the more involved theorem (Theorem 3) on reusable robustness in the QROM.
In fact, Theorem 3 implies Theorems 1 and 2.
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Theorem 1. Let (SS,Rec) be a linear (m,m′, t) secure sketch. Then the hash
construction HFE is a robust (M,m, �, t, ε = 2q · 2−m′

) fuzzy extractor with
robustness δ ≤ 2−k + 2q · 2−m′

in the classical ROM against unbounded adver-
saries making at most q queries to the random oracle.

Theorem 2. Let (SS,Rec) be a linear (m,m′, t) secure sketch. Then the hash
construction HFE is a robust (M,m, �, t, ε = 2q · 2−m′/2) fuzzy extractor with
robustness

δ ≤ min

{

q · 2−m′
+ 2(q + 1) · 2−m′/2 + 2

√
q · 2−(k+m′)/2 + 2−k,

(

√

q · 2−m′ +
√

1/2k + 2
√

q(q + 1) · 2−m′
)2

}

in the QROM against unbounded quantum adversaries making at most q queries
to the quantum random oracle.

4 Simple Robustly Reusable Fuzzy Extractors

4.1 Reusability in the QROM

We now look to prove the reusability property of HFE. An interesting observa-
tion is that considering the proof of the following lemma, it turns out that the
reusability condition would hold (with the same security bounds) even if the
adversary is given quantum access to the reusability oracle.

Lemma 3. Let SS be a homomorphic (m,m′, t) secure sketch. Then HFE is a
(M,m, �, t, ε = 2q · 2−m′/2) reusable fuzzy extractor with reusability

ε1 ≤ 2q · 2−m′/2

in the QROM with respect to unbounded quantum adversaries making at most q
quantum random oracle queries.

Proof. Consider any distribution W with ˜H∞(W) ≥ m and w ← W. By the
homomorphic property of the secure sketch, if we write s = SS.Gen(w), then
sΔ := SS.Gen(w + Δ) = s + SS.Gen(Δ). The adversary A (which we assume
to be deterministic and unbounded) in the reusability experiment has classical
access to Ob and quantum access to the random oracle H used in the construction
(which we parse as H1 and H2 by splitting the output H into the first k bits and
the remaining � bits). We also introduce a further independent random oracle
H3 with the same input/output spaces as H2 to use in the proof. We can then
say that on input Δ, Ob returns

– (sΔ,H1(w + Δ, sΔ),H2(w + Δ, sΔ)) if b = 0
– (sΔ,H1(w + Δ, sΔ),H3(w + Δ, sΔ)) if b = 1



Robustly Reusable Fuzzy Extractors in a Post-quantum World 441

Now considering that A is unbounded, we can simplify things by giving A
responses to all possible Ob queries as part of its input. In fact, we do not even
have to specify the sΔ’s as they are computable from s and the Ob oracle input
Δ. Suppose, we include the values zb=0 := {s, (H(w + Δ, sΔ))Δ} where Δ ranges
over all error vectors such that ‖Δ‖ ≤ t, as part of its input. Then for any Δ′, A
can compute sΔ′ (using the homomorphic property) and retrieve H(w+Δ′, sΔ′)
itself from zb=0 i.e. it can perfectly compute the responses of a classical oracle
Ob=0. Alternatively, if we include zb=1 := {s, (H1(w + Δ, sΔ),H3(w + Δ, sΔ))Δ}
as input, it would perfectly compute the responses to the Ob=1 oracle. Therefore,
we replace classical access to an Ob oracle by including the appropriate extra
information zb in A’s input.

We will be using the O2H lemma. In particular, let G be equal to H on all
points apart from on the set S := {(w + Δ, sΔ) : ‖Δ‖ ≤ t}. On all remaining
points, G is uniformly chosen from {0, 1}k+�. We consider first the case where
the reusability experiment uses the bit b = 0. Then for w ← W and (G,H)
sampled as above, the input of A will be given as zb=0 = (s, (H(w + Δ, sΔ))Δ).
Then Lemma 1 tells us that

∣

∣Pr[AH(zb=0) = 1] − Pr[AG(zb=0) = 1]
∣

∣ ≤ 2q
√

Pr[BG(zb=0) ∈ S]

where BG is described in Lemma 1. Note that if BG’s output (w∗, s∗) is in S,
then w∗ = w + Δ and s∗ = s + SS.Gen(Δ) for some Δ such that ‖Δ‖ ≤ t, which
implies that w∗ − Rec(0, s∗ − s) = w + Δ − Δ = w. In other words, there is an
algorithm B̄G that finds w on input zb=0 with probability Pr[BG(zb=0) ∈ S]. Note
that the input zb=0 which is just s along with a set of uniform values that are
entirely independent of the random oracle G. Therefore, the only w-dependent
information that B̄G(zb=0) has access to is s implying that Pr[BG(zb=0) ∈ S] =
Pr[B̄G(zb=0) = w] ≤ 2−m′

due to the fact that SS is a (m,m′, t) secure sketch.
Therefore, |Pr[AH(zb=0) = 1] − Pr[AG(zb=0) = 1]| ≤ 2q · 2−m′/2.

We can reuse the analysis above using the input zb=1 to conclude that
∣

∣Pr[AH(zb=1) = 1] − Pr[AG(zb=1) = 1]
∣

∣ ≤ 2q · 2−m′/2

using the same G and H. Also, the joint distributions of (G, zb=0) and (G, zb=1)
are identical, so Pr[AG(zb=1) = 1] = Pr[AG(zb=0) = 1]. Putting everything
together and using the triangle inequality, we have

1
2

· ∣∣Pr[AH(zb=0) = 1] − Pr[AH(zb=1) = 1]
∣

∣ ≤ 2q · 2−m′/2.

��

4.2 Reusable Robustness in the QROM

We now consider proving the reusable robustness of the simple construction HFE
in the QROM (Theorem 3 below). For more details on efficiency and parame-
ter settings, see Sect. 4.3. However, we note here that similarly to the QROM
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robustness result of Theorem 2, taking k = λ, q = 2λ enforces that we use a
(m,m′, t)-secure sketch with m′ ≈ 4λ if we want λ-bit security in the QROM. In
slightly more detail, the reusable robustness bound alone (i.e. ε2) would allow the
use of m′ ≈ 3λ, but the indistinguishability from uniform bounds (i.e. parameter
ε, ε2) are stricter, enforcing the choice m′ ≈ 4λ.

Recall that the reusable robustness experiment gives the adversary classical
access to the OGen oracle and that the adversary wins only if the Δ∗ it returns
was not queried to OGen. This can be conceptualised by considering a quantum
adversary that takes a measurement of a register, records the result and then
submits the classical value to the OGen oracle whenever it wants to make an
oracle query. Note that this complication does not appear in the reusability
proof of Lemma 3 as queries need not be recorded. To make our adversary more
compatible with the O2H lemmas and standard quantum computation (i.e. to
defer all measurements to the end of the computation), we may w.l.o.g. consider
an adversary with quantum access to OGen subject to the following:

– Every time the adversary queries OGen, it first copies the contents of the OGen

query register into a database register DGen. Note that DGen will have multiple
slots, and on the i-th query, the i-th slot will be filled in with the contents of
the query register just before the i-th query to OGen. The DGen query registers
will therefore be in superposition.

– Just before performing the measurement to obtain the final output, measure
the database register DGen and interpret the result as the list of classical
queries that the adversary made to OGen.

The joint distribution of the database measurement DGen and adversary state
is identical to the distribution of the intermediate measurements and adversary
state. For a detailed proof of this, see AppendixD. In this way, we can include
the adversary’s OGen queries in DGen while deferring all measurements to the
end, as is customary when analysing quantum algorithms.

Theorem 3. Let SS be a homomorphic, linear, and well-formed (m,m′, t)
secure sketch over M. Then HFE is a (M,m, �, t, ε = 2q · 2−m′/2, ε1 = 2q ·
2−m′/2, ε2) reusable robust fuzzy extractor with reusable robustness

ε2 ≤ min

⎧

⎨

⎩

q · 2−m′
+ 2

√

q · 2−m′ ·
(√

1
2k

+
√

q + 1
)

+ 2
2k

,
(

√

q · 2−m′ + 2
√

1/2k + 2
√

q(q + 1) · 2−m′
)2

⎫

⎬

⎭

in the QROM with respect to unbounded quantum algorithms making at most q
quantum random oracle queries.

Proof. For the expressions of ε and ε1, see Lemma 3 and its proof in Sect. 4.1. We
now restrict attention to the bound on ε2. Assume that A takes its deferred mea-
surement form (see above the theorem statement and further details in Sect.D).
Consider the algorithm EH

A that essentially represents the reusable robustness
experiment between A and its challenger. Specifically, for any random oracle
H parsed as H1,H2 (where H1 consists of the first k output bits and H2 the
remaining � bits), the details of EH

A are as follows:
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– The input of EH
A takes the form z =

(

w, z′ := (s, (hΔ)‖Δ‖≤t)
)

, where w ←
W, s := SS.Gen(w), sΔ = SS.Gen(w + Δ) = s + SS.Gen(Δ) and hΔ := H(w +
Δ, sΔ) is parsed as (h(1)

Δ , h
(2)
Δ ) ∈ {0, 1}k × {0, 1}�.

– EH
A (z) runs AH,OGen using the copying strategy to defer all OGen query input

measurements to the end by keeping a database DGen. Recall that this requires
quantum access to OGen. In order to achieve this, EH

A simply uses the values
z′ =

(

s, (hΔ)‖Δ‖≤t

)

to implement the quantum oracle OGen for A.
– EH

A (z) measures the DGen registers and then A’s output registers to obtain
results D∗

Gen and output ((s∗, h∗),Δ∗).
– EH

A (z) then decides its final output by performing the following:
• If ‖Δ∗‖ > t, output 0.
• If there is a Δ ∈ D∗

Gen such that (sΔ, hΔ) = (s∗, h∗), output 0.
• If there is a Δ such that s∗ = sΔ, ‖Δ‖ ≤ t and ‖Δ∗ − Δ‖ ≤ t, then check

whether h∗ = h
(1)
Δ . If so, output 1 and if not output 0.

• Otherwise, use a random oracle query to check whether the random oracle
evaluated at (w + f(Δ∗, s∗, s), s∗) has its first k bits equal to h∗, where
f is the function from the linearity property. If so, output 1 and if not
output 0.

Throughout this proof, we will abuse notation by writing AH(z′) to represent
running AH,OGen(), where OGen queries are answered using oracle access to the
appropriate entries in z′. Using this notation, the second item in the description
of EH

A simply says that EH
A runs AH(z′). Also, the conditions that EH

A checks are
identical to those checked in the reusable robustness experiment with respect to
the construction of HFE. The only slight difference is that the values h

(1)
Δ are

used to verify whether H(SS.Rec(w+Δ∗, s∗), s∗) = h∗ in the case where s∗ = sΔ

for ‖Δ∗ − Δ‖ ≤ t, ‖Δ‖ ≤ t. Note that in this case, SS.Rec(w + Δ∗, s∗) = w + Δ,
meaning that the value h

(1)
Δ may be used to correctly perform the check instead

of using the random oracle directly. Therefore, we have that ε2 = Pr[EH
A (z) = 1].

We now focus on bounding Pr[EH
A (z) = 1] to complete the proof.

We will be applying the O2H lemma (Lemma 1) using the notation introduced
above. To do so, consider sampling a uniformly random function G, w ← W and
setting H to be equal to G apart from on the set S := {(w + Δ, sΔ) : ‖Δ‖ ≤ t}.
On the set S, H is sampled as a uniformly random function. Note that H is (on
its own) a uniformly random function as required. Intuitively, if A has access to
G, the reusability oracle (which uses values of H evaluated on points in S) does
not help it identify w. Lemma 1 then tells us that

∣

∣Pr[EH
A (z) = 1] − Pr[EG

A (z) = 1]
∣

∣ ≤ 2(q + 1)
√

AdvB (1)
∣

∣

∣

∣

√

Pr[EH
A (z) = 1] −

√

Pr[EG
A (z) = 1]

∣

∣

∣

∣

≤ 2(q + 1)
√

AdvB (2)

where B is described in Lemma 1 and AdvB := Pr[BG(z) ∈ S]. The factor (q +1)
on the right-hand side arises because EG

A makes at most one extra query to the
random oracle when deciding whether to output 1 or 0. We can now bound
Pr[EG

A (z) = 1] and AdvB using the two lemmas below to complete the proof.
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Lemma 4. Pr[EG
A (z) = 1] ≤ q · 2−m′

+ 2
√

q2−m′

2k
+ 2

2k
and

√

Pr[EG
A (z) = 1] ≤

√

q · 2−m′ + 2

√

1
2k

.

Proof (Of lemma). Consider the algorithm ĒG
A that on input z (sampled like the

input of EG
A ) behaves as follows:

– Run EG
A up to the point where the output registers of A and the DGen register

have just been measured to obtain (Δ∗, s∗, h∗,D∗
Gen).

– Classically compute the output

(x := (w + f(Δ∗, s∗, s), s∗), y := h∗, ζ := (Δ∗, s∗,D∗
Gen)).

Now define the set R := {(x, y, (Δ∗, s∗,DGen)) : ‖Δ∗‖ ≤ t, s∗ �= sΔ∀Δ ∈ DGen}.
Note that there are two ways in which EG

A checks the hash value h∗ when deciding
whether to output 1 or 0: in the case that s∗ = sΔ for some ‖Δ‖ ≤ t and
‖Δ∗ − Δ‖ ≤ t, it uses h

(1)
Δ and otherwise it uses the random oracle to perform

the check. In this first case, EG
A outputs 1 only if h∗ = h

(1)
Δ and Δ /∈ DGen.

Therefore, given the first case, the probability that EG
A outputs 1 is at most 2−k

because hΔ is a uniform value, independent of G, that A never accesses. To argue
this formally, recall that our deferred measurement view where A uses quantum
access to OGen is equivalent to the original view where A takes intermediate
measurements before accessing OGen classically. In the second case, EG

A outputs
1 when the output of ĒG

A denoted as (x, y, ζ) is in R and G1(x) = y where G1 is
the function that outputs the first k output bits of G. Denoting p := Pr[ĒG

A (z) ∈
R ∧ G1(x) = y], we then have that Pr[EG

A (z) = 1] ≤ p + 1/2k after considering
both of the aforementioned cases. We can also use the triangle inequality to

obtain
√

Pr[EG
A (z) = 1] ≤ √

p +
√

1/2k.
Now define G2 to be function that outputs the final � bits of G so that

G is parsed as a concatenation G1 and G2. Next, consider running algorithm
ĒCStO,G2

A (z) where G1 is implemented using CStO from Lemma 2 and G2 is
implemented using the standard unitary. Let p′ denote the probability that on
running ĒCStO,G2

A (z), we get output (x, y, ζ) ∈ R, and that on measuring the
CStO database D, we find that D(x) = y �= ⊥. By Lemma 2, we know that√

p ≤ √
p′ +

√

1/2k where k is the output length of G1.
To complete the proof of this lemma we bound p′. Note that if D(x) �= ⊥

and (x, y, ζ) ∈ R, we are guaranteed that (w + f(Δ∗, s∗, s), s∗) is present in
some element of the database D. Therefore, p′ is at most the probability that
ACStO,G2(z′) simply ends up inserting (w + f(Δ∗, s∗, s), s∗) into the database.
Denote the probability of this latter event as p′′. Since p′ ≤ p′′ we now attempt
to bound p′′. Consider the following algorithm Ā that takes as input s (where
s = SS.Gen(w) for w ← W) and attempts to recover w:

– Sample hΔ uniformly for each Δ with ‖Δ‖ ≤ t and define z′ := (s, (hΔ)Δ).
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– Run ACStO,G2(z′) to obtain output (Δ∗, s∗, h∗) and measured OGen query list
D∗

Gen, then subsequently measure the CStO database to obtain

D = {(x1, y1), . . . , (xq′ , yq′)} where q′ ≤ q.

– Sample i ← [q′], parse xi = (wi, si) and output wi − f(Δ∗, s∗, s).

The input z′ of ACStO,G2 here is clearly from the correct distribution as it is
s along with a collection of random values independent of the random oracle
(CStO, G2). Note that Ā(s) returns w if and only if ACStO,G2(z′) inserts (w +
f(Δ∗, s∗, s), ) into D and the index i corresponds to a position of an element
of the form (w + f(Δ∗, s∗, s), ) in D. Therefore, we have Pr[Ā(s) = w] ≥ p′′/q′

where we have inequality because there may be more than one element of the
desired form. We also know that information theoretically, Pr[Ā(s) = w] ≤
2−m′

. Overall, we may conclude that p′ ≤ p′′ ≤ q′ · 2−m′ ≤ q · 2−m′
. Plugging

this into the inequality
√

p ≤ √
p′ +

√

1/2k and Pr[EG
A (z) = 1] ≤ p + 1/2k or

√

Pr[EG
A (z) = 1] ≤ √

p +
√

1/2k completes the proof of this lemma. ��

Lemma 5. Assuming that SS is a well-formed, homomorphic (m,m′, t) secure
sketch, AdvB ≤ q

q+1 · 2−m′
.

Proof (Of lemma). Recall that all queries to the random oracle during execution
of EG

A (except potentially the last one) are performed when running A as a
subroutine. Also, recall that when deciding whether to output 1 or 0, EG

A only
ever queries a point of the form (, sΔ) to the random oracle when s∗ = sΔ and
‖Δ∗ − Δ‖ > t. In such a case, we have that SS.Rec(w + Δ∗, sΔ) �= w + Δ as SS
is a well-formed sketch and ‖(w + Δ∗) − (w + Δ)‖ > t. This implies that if BG

chooses to measure the input register just before the random oracle query used
to check h∗, it cannot possibly obtain a value in S := {(w + Δ, sΔ) : ‖Δ‖ ≤ t}.

Now we consider the case that the query randomly chosen by BG does not
correspond to the final query. In this case, all queries are the result of running
AG(z′) where z′ = (s, (hΔ)‖Δ‖≤t) is just s along with a collection of uniform
values independent of the random oracle G. Therefore, if BG manages to output
an element of S with some probability, then there is an unbounded quantum
algorithm taking input s that can output an element of S with the same proba-
bility. This (unbounded) quantum algorithm just uses s, chooses uniform G and
values (hΔ)‖Δ‖≤t and then runs AG(z′) where z′ := (s, (hΔ)‖Δ‖≤t), measuring
a random query. Now, from any element (w′, sΔ) of S and knowledge of s, we
can compute Δ = SS.Rec(0, sΔ − s) and w = w′ − Δ. The correctness of this
procedure is due to the fact that for a homomorphic sketch capable of correcting
t errors, SS.Rec(0,SS.Gen(Δ)) = Δ. Using this procedure, we can compute w
from any element of S and s. Therefore, in the event that the randomly chosen
query of BG does not correspond to the last query, if BG returns an element of
S with probability p̃, then there is a quantum algorithm that returns w with
probability p̃. However, we know that information theoretically, p̃ ≤ 2−m′

.
To complete the proof of the lemma, note that the randomly chosen query

that B measures is equal to the final query with probability at least 1/(q +1). ��
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Inserting the lemma bounds into Eqs. (1) and (2) completes the proof of reusable
robustness. ��
Remark 1. We may drop the well-formedness of SS in favour of a weaker prop-
erty: ∀w and t < ‖Δ‖ ≤ 2t, SS.Rec(w+Δ,SS.Gen(w)) �= w. This allows to argue
(as in the above proof) EG

A never queries the random oracle on points in S when
checking h∗. Alternatively, one can use a (m,m′, 2t) secure sketch, changing the
third output condition of EH

A to consider the case where s∗ = sΔ for any Δ ≤ 2t.

4.3 Parameters and Efficiency

As mentioned at the beginning of this section, we require a (m,m′ ≈ 4λ, t)
linear, homomorphic and well-formed secure sketch for λ-bit security. This is
independent of the length of the key � we derive from HFE per hint value. To use
the syndrome code-offset secure sketch (see Sect. 2.2), we need a linear [η, κ, d =
2t + 1] code and a source distribution W with support over {0, 1}η and min-
entropy m = m′ + (η − κ) ≈ 4λ + (η − κ). For an almost perfect source, m ≈
η which means choosing a linear [η, κ, 2t + 1] code with κ ≥ 4λ. This may
introduce a rather stringent requirement on η and m (which corresponds to
the number of source bits and entropy required) for reasonable error rates. In
particular, as t increases, the size of the term η − κ must increase, meaning
that the required entropy of the source m increases too. However, in all other
aspects, the construction is very efficient: only η − κ + λ bits of storage are
required per hint and we can extract any number of random bits � using the
random oracle. In the classical ROM setting, to correct t errors, we can simply
use a [η, κ, d = 2t + 1] error correcting code where κ ≥ 2λ for λ-bit security.

5 Post-Quantum Standard Model Construction

In this section, we present an improvement to the standard model construction
of Cui et al. [12] based on the post-quantum assumption learning parity with
noise (LPN). The scheme is built from three components: a linear homomor-
phic secure sketch (e.g. the syndrome code-offset construction), a randomness
extractor, and a symmetric key encapsulation mechanism (SKEM) that has a
decapsulation uniformity property. The notions of randomness extractors and
SKEMs are defined in AppendixB whereas the (ring-)LPN problem is recalled
in AppendixC. Figure 1 depicts how the components fit together to make the
reusable robust fuzzy extractor. Note that this construction is in the CRS model
where the CRS takes the form of a uniform seed used in a randomness extractor.
We recall the LPN-based SKEMLPN from [12]:

– SKEMLPN.Setup(1λ) : Derive public parameters m = poly(λ), n = poly(λ),
k = poly(λ), τ ∈ (0, 1/2) and pick a [m, k, d = 2t + 1] code (E ,D) s.t. τm ≤ t.

– SKEMLPN .Encaps(K) : For K ∈ Z
n×k
2 , sample a ∈ Z

n
2\{0}, e ← Bermη ,k′ ←

Z
k
2 , output

(

(c1, c2) := (a,a	K + e	 + E(k′)), k′) .
– SKEMLPN .Decaps((c1, c2),K) : Output D(c2 − c1K).
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Fig. 1. A diagram of the robustly reusable fuzzy extractor of [12]. SS is a linear,
homomorphic secure sketch, Ext is a strong randomness extractor and SKEM is a
SKEM with decapsulation uniformity. An algorithm FE.Init samples a random seed
(crs) for the extractor. The “authentication tag” K1 must be ω(log(λ)) bits, with K2

the remaining bits of K. K2 is the fuzzy extractor output and P is the helper data.

Assuming k and n are O(λ), the secret key in the above SKEM has O(λ2) bits.
Given Fig. 1, we need to extract O(λ2) uniform bits from a randomness extractor
to use this SKEM. In the PUF setting, O(λ2) source bits would be required.
We next propose a ring-LPN based SKEM (with decapsulation uniformity) to
minimize the number of secret key bits (and therefore source bits) below. The
description interprets ring elements as coefficient vectors when applying linear
codes. Assuming k and n are O(λ), we end up with encapsulation keys of size
O(λ) which is an improvement by a factor of λ. Explicitly, our proposal is:

– SKEMRLPN .Setup(λ) : Choose a degree n = poly(λ) polynomial f , set R :=
Z[X]/f(X) and R2 := R/2R. Choose k and m = poly(λ) s.t. m = κn for
some κ ∈ Z, τ ∈ (0, 1/2) and pick a [m, k, d = 2t + 1] code (E ,D) s.t. τm ≤ t.

– SKEMRLPN .Encaps((k1, k2)) : For k1 ∈ Rκ
2 , k2 ∈ Z

k
2 , sample a ∈ R2\{0},

e ← Berκ·n
τ (interpreted as e ∈ Rκ

2 ), k̃ ← Z
k
2 and output

(c1, c2) := (a, a · k1 + e + E(k̃)), k′ = k̃ ⊕ k2.
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– SKEMRLPN .Decaps((c1, c2), (k1, k2)) : Output D(c2 − c1k1) ⊕ k2.

Remark 2. The main difference is the “one-time pad” k2 which is a uniform
hidden value from the perspective of the decapsulation uniformity definition
(see Definition 9 in AppendixB). If R2 is a field, c1 �= 0 and k1 ∈ Rκ

2 is uniform,
c1 ·k is uniform without k2. If R2 is not a field, entries of c1 ·k all lie in the ideal
generated by c1, so k2 ensures decapsulation uniformity. Choosing a non-field
R2 can lead to efficient implementations of ring multiplication e.g. [2].

The proof of correctness and key-shift pseudorandomness are very similar to
the scheme of Cui et al. and are deferred to AppendixF. We now ask how many
source bits/entropy is required in the robustly reusable fuzzy extractor of Cui et
al. Suppose we have n̄ source bits with m̄ bits of min-entropy. Then the entropy
left after revealing a syndrome code-offset secure sketch using a [n̄, k̄, d̄ = 2t̄+1]
code is m̄−(n̄− k̄) bits. After applying a randomness extractor (e.g. the Toeplitz
extractor in AppendixB) we derive at most m̄− n̄+ k̄ − 2λ uniform bits (within
statistical distance 2−λ).

We will now use the fact that the Cui et al. construction uses extracted
random bits as a SKEM key. In the case that κ = 1 in SKEMRLPN and R2 is
a field (see the above remark arguing that we can then ignore k2), we require
that m̄ − n̄ + k̄ ≥ 2λ + n where n is the dimension of a ring R chosen so that
RLPNR,1,τ has λ bits of security. For plausible parameters, n is much larger than
2λ so the term 2λ + n will be much larger than the analogous term of 4λ (see
Sect. 4.3) for the random oracle based HFE construction. To be more concrete,
the updated ring-LPN Lepton parameters3, suggests that n is at least 215 at
the 128-bit security level, leading to a very rough estimation that n = 256λ
for practical ring-LPN schemes. Therefore, not only does the standard model
construction introduce much stricter requirements on the number of required
source bits/entropy, it also requires the storage of much larger hints compared
to the HFE construction. In addition, the standard model construction requires
access to a true random number generator unlike the HFE construction. We
stress here that the security of the HFE construction only holds in an idealized
quantum random oracle model, so comparisons with the ring-LPN construction
needs to be considered carefully.

6 Conclusion

In conclusion, we have given a proof of security for a robustly reusable fuzzy
extractor in the QROM. Our construction is simple and the security bounds are
very concrete, allowing a relatively easy application of our results to practical
situations. Prior to our work, we are not aware of any fuzzy extractor results in
the QROM. Therefore, our contributions may serve as a baseline for future fuzzy
extractor constructions in the QROM. We also suggested an optimisation to the

3 Available in the penultimate presentation slide of https://csrc.nist.gov/CSRC/
media/Presentations/Lepton/images-media/Lepton-April2018.pdf.

https://csrc.nist.gov/CSRC/media/Presentations/Lepton/images-media/Lepton-April2018.pdf
https://csrc.nist.gov/CSRC/media/Presentations/Lepton/images-media/Lepton-April2018.pdf
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only existing post-quantum robustly reusable fuzzy extractor in the standard
model capable of correcting a linear fraction of errors (as required in the PUF
setting), showing that the QROM construction outperforms it by a distance.

Finally, we suggest directions for future work. Recall that there is a model
slightly stronger than the one considered in this work where errors in the security
arguments may depend arbitrarily on secret values, rather than just values that
the adversary sees [8,9]. The first potential avenue for future work is to come up
with efficient constructions in this stronger model, where security bounds depend
weakly on the number of correctable errors and a linear fraction of errors can
be tolerated. Another direction is to improve the security bounds in our QROM
proofs.

Acknowledgements. We thank Prof. Kenneth G. Paterson, Dr. Shahram Mossayebi
and our anonymous reviewers for their comments and suggestions on this work.

A Quantum Computation Preliminaries

Let H be a complex Hilbert space of dimension n with orthonormal basis

{|1〉 , . . . , |n〉} .

A (pure) quantum state |ψ〉 over this Hilbert space is a (normalized) complex
linear combination of the basis states i.e. |ψ〉 =

∑n
i=1 αi |i〉 where αi ∈ C and

∑

i ‖αi‖2 = 1. On making a basis measurement on the state |ψ〉, we have
Pr[i] = ‖αi‖2 where Pr[i] is the probability of measuring the state to be in
|i〉. More generally, the probability of measuring the state |ψ〉 and finding it to
be in some other state |φ〉 is ‖ 〈ψ| |φ〉 ‖2 which is equal to Tr (|φ〉 〈φ| |ψ〉 〈ψ|) =
Tr(Πφ |ψ〉 〈ψ|). Next, a projection value measurement (PVM) with k possible
outcomes is a collection of k projections as Π1, . . . ,Πk such that

∑k
i=1 Πi = I.

Then the probability of the outcome indexed by i is Pr[i] = 〈ψ|Πi |ψ〉. The
post-measurement state after measuring i is Πi |ψ〉 /‖Πi |ψ〉 ‖.

Quantum algorithms are usually described by applying some quantum com-
putation i.e. unitary U to a starting state |ϕ0〉. The state |ϕ0〉 is said to contain
input registers, output registers and ancillary registers to aide its computation.
At the end of this computation, a measurement associated with some set of
projections projection {Π1, . . . , Πk} over the output registers is taken to obtain
some usable classical information from the computation. In this context, k will
be the number of distinct values the output registers can take. For example, if
the output registers consist of κ qubit registers (i.e. registers that can take only
binary values when measured), then k = 2κ. Overall, the probability of the algo-
rithm outputting j is ‖Πj · U |ϕ0〉 ‖2 where U denotes the unitary applied when
running the quantum algorithm. Note that this format of a quantum algorithm
is w.l.o.g as any algorithm with intermediate projections can be written in the
stated form (with slightly different unitaries and projections). In other words, we
do not need to consider intermediate measurements by the principle of deferred
measurements.
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B Preliminaries for Standard Model Construction

The following definition uses the notion of statistical distance. The statistical
distance of two distributions P and Q is SD(P,Q) :=

∑

x |Pr[P = x] − Pr[Q =
x]|/2.

Definition 8. A function Ext : W × S → R is a strong (m, ε) randomness
extractor if for any distribution W over W with ˜H∞(W) ≥ m,

SD ((Ext(W, US), US), UR×S) ≤ ε

where US and UR×S are the uniform distributions over S and R×S respectively.

Example 2. Take S to be the set of all binary Toeplitz matrices of the form

A =

⎡

⎢

⎢

⎢

⎣

a0 an−1 . . . a1

a1 a0 . . . a2

...
...

...
...

ak−1 ak−2 . . . ak

⎤

⎥

⎥

⎥

⎦

∈ Z
k×n
2

where k < n and W = Z
n
2 . Then Ext(w,A) = A · w is a strong (m, 2−(m−k)/2)

extractor. Informally, this extractor maps m bits of entropy to within statistical
distance 2−λ of the uniform distribution over Z

k
2 provided that m ≥ k + 2λ.

Definition 9 ([12,26]). A symmetric key encapsulation mechanism (SKEM)
with decapsulation uniformity consists of three algorithms

SKEM = (SKEM.Setup,SKEM.Encaps,SKEM.Decaps)

where:

– SKEM.Setup(1λ) takes as input a security parameter and outputs public
parameters pp that include descriptions of spaces Re,K,K′ and C.

– SKEM.Encaps(k; r) is a probabilistic algorithm taking as input a key k ∈ K′

and randomness r ∈ Re and outputs (C,K) where C ∈ C is a ciphertext and
K ∈ K is an encapsulated key.

– SKEM.Decaps(C, k) takes as input a key k ∈ K′ and ciphertext C ∈ C and
outputs a decrypted key K ′ ∈ K or ⊥.

A SKEM with decapsulation uniformity must satisfy the following properties:

1. (Correctness)

Pr
[

K = K ′ :
pp←SKEM.Setup(λ), k←K′

(C,K)←SKEM.Encaps(k)
K′←SKEM.Decaps(C,k)

]

= 1 − negl(λ).

2. (Key-Shift Pseudorandomness) For all PPT A,

Pr

[

b′ = b :
pp←SKEM.Setup(λ), k←K′

b←{0,1}
b′←AOksp

b (λ)

]

= negl(λ)

where the oracles Oksp
0 and Oksp

1 are defined below.
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3. (Decapsulation Uniformity) For any C ∈ C and K ′ ∈ K,

Pr[SKEM.Decaps(C, k) = K ′ : pp←SKEM.Setup(λ)
k←K′ ] =

1
|K| .

The oracles for the key-shift pseudorandomness property are defined as:

– Oksp
0 : On input δ, return uniform (C,K) ← C × K.

– Oksp
1 : On input δ, return (C,K) ← SKEM.Encaps(k + δ).

C (Ring-)LPN Preliminaries

We now recall the LWE [22] and ring-LWE [20] problems with modulus 2, also
known as LPN and ring-LPN (RLPN) respectively. Below, Berτ represents the
Bernoulli distribution with probability τ ∈ [0, 1].

Definition 10. For dimensions m,n and Bernoulli parameter τ ∈ (0, 1/2), the
LPN distribution with secret S ∈ Z

n×m
2 , denoted Am,n,τ (S) is sampled as follows:

First sample a ← Z
n
2 , e ← Berm

τ and output (a,a	S⊕e). The LPNm,n,τ problem
is to distinguish between an unbounded number of samples of Am,n,χ(S) and the
uniform distribution over Z

n
2 × Z

m
q where S ← Z

n×m
2 .

Definition 11 ([17]). For dimension m′, ring R = Z[X]/(f(X)) with f of
degree n, and Bernoulli parameter τ ∈ (0, 1/2), define R2 := R/2R. The ring-
LPN distribution with secret s ∈ Rm′

q denoted as Am′,R,τ (s) is sampled as fol-
lows: First sample a ← R2, e ← Berm′n

t (interpreted as an element of Rm′
2 where

each coefficient is sampled from Bert) and then output (a, a · s+ e) ∈ R2 × Rm′
2 .

The RLPNm′,R,τ problem is to distinguish between an unbounded number of sam-
ples of Am′,R,τ (s) and the uniform distribution over R2 × Rm′

2 where s ← Rm′
2 .

Note that a single secret i.e. m′ = 1 RLPN sample is essentially (a, a·s+e), where
a · s can be expressed as a n×n matrix multiplied by a n-dimensional vector. In
other words, a single RLPN sample (a, a·s+e) can be considered as n structured
LPN samples (with m = 1). However, only 2n bits are required to represent an
RLPN sample whereas n LPN samples require n2 + n bits of storage. Further,
ring multiplication can be made extremely fast if the underlying ring splits into
many factors by applying fast Fourier transform-like techniques (e.g. [2]). These
are two main advantages of RLPN over LPN.

D Deferring Measurements for Recorded Classical Oracle
Queries

Consider a quantum algorithm A that is restricted to making classical queries
to some quantum instantiation of an oracle O : X → Y . This is no different from
the case where A has purely classical access to the oracle. In order to make a
classical query to the quantum oracle, A can take an intermediate measurements
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of the query input register before making its query. Note that this is equivalent
to a classical query because the query input register collapses to a classical state
after the measurement. Our aim here is to show that there is an algorithm Ā
that keeps some database registers (in addition to the registers of A) such that

– Ā does not make any measurements until it is ready to make an output
measurement (in particular, there are no intermediate measurements of the
query input register).

– When producing output, Ā additionally measures the database registers.
– The joint distribution of A’s output and intermediate measurements is iden-

tical to the joint distribution of Ā’s output and database measurement.

Given these properties, Ā perfectly simulates the behaviour of A and its interme-
diate measurements while deferring measurements to the end of the computation.

Note that we can describe the measurement of the query input register by
considering the set of projections {Πx = I⊗ |x〉 〈∗|x ⊗ I : x ∈ X}. We explicitly
describe the algorithm A making q classical queries to O as follows:

– A has registers |∗〉 . . .A⊗|∗〉 x, yO where for any basis state, applying the oracle
treats x as the input register and y as the output, i.e. an oracle application is

(I ⊗ O) |φ〉A ⊗ |x, y〉O := |φ〉A ⊗ |x, y ⊕ O(x)〉O .

– A begins in the state |φ0〉.
– For i = 1, . . . , q:

• A performs a unitary Ui on the entire state to obtain |φi−1〉.
• A performs a measurement. Denoting the result as xi, the un-normalized

collapsed state is (I ⊗ Πxi
⊗ I) |φi−1〉.

• A sends its state to the oracle and it applies I ⊗ O.
– A applies a unitary Uq+1 and takes a measurement of its output registers.

Note that if we were to add a register containing the results xi after every
measurement, the output distribution of A is unchanged as the overall state
is always a product state between A’s state and a classical list of observed
measurements.

Here we will show how to defer measurements of A to the end while preserving
the output distribution of A and the intermediate measurements jointly. There
will be three sets of registers of the form |. . .〉A, |x, y〉O and |. . .〉D where the last
of these denotes a set of q registers that will store a record of the O-queries. The
deferred measurement algorithm will be denoted as Ā and will have quantum
access to O. The behaviour of Ā is as follows:

– Ā has registers |. . .〉A ⊗ |x, y〉O ⊗ |. . .〉D.

– Ā begins in the state |φ0〉 ⊗
q times

︷ ︸︸ ︷

|0, . . . , 0〉D where |φ0〉 is A’s starting state.
– For i = 1, . . . , q:

• Ā performs the unitary Ui ⊗ ID (where Ui is the same unitary as in the
description of A).
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• Ā then adds the contents of the query input register into the i-th slot of
the D registers. Denote the unitary that performs this as Ci.

• Ā sends its state to the oracle which applies I ⊗ O ⊗ ID to the state.
– Ā applies the unitary Uq+1 ⊗ ID and then measures the D registers.
– Finally, Ā takes a measurement of the output registers.

Consider now the set of projections {ΠD,i
x : x ∈ X, i ∈ [q]} where ΠD,i

x

denotes the projection of the i-th slot of the D registers onto the state |x〉. Also
consider the set {ΠD

x : x ∈ Xq} where ΠD
x is the projection of the D registers

onto |x1, . . . , xq〉 from which it can be seen that

ΠD
x = ΠD,q

xq
· · · · · ΠD,1

x1
.

Furthermore, recall that Πx denotes the projection of the query input register
onto |x〉. Then we have the following claim:

Claim. Take Ci to be the unitary from the description of Ā. For any value of
x = (x1, . . . , xq) ∈ Xq, any |φ0〉, any sequence of unitaries U1, . . . , Uq and any
oracle O, the two following (un-normalized) states are equal:

1. Uq+1 · Cq · Πxq
· Uq . . . C2 · Πx2 · U2 · C1 · Πx1 · U1 (|φ0〉 ⊗ |0, . . . , 0〉D)

2. ΠD
x · Uq+1 · Cq · Uq . . . C2 · U2 · C1 · U1 (|φ0〉 ⊗ |0, . . . , 0〉D)

Proof. We first show that for any i, applying Ci ·Πxi
to a state where the i-th D

register is 0 is the same as applying ΠD,i
xi

·Ci to that same state. Note that both Ci

and Πxi
are the identity on all registers other than the query input register and i-

th D register. Therefore, ignoring all registers except for the query input and i-th
D register, we have Ci ·Πxi

(|x〉⊗|0〉D,i) = δx,xi
|x〉⊗|x〉 = ΠD,i

xi
·Ci(|x〉⊗|0〉D,i).

Therefore the first state in the claim is equal to

Uq+1Π
D,q
xq

CqUq . . . ΠD,2
x2

C2U2Π
D,1
x1

C1U1(|φ0〉 ⊗ |0, . . . , 0〉D).

Next, note that the projection ΠD,i
xi

is the identity on all registers except for the
i-th D register and that all matrices to the left of it are the identity on the i-th
D register. Therefore, each ΠD,i

xi
commutes with everything to the left of it, so

the fact that
ΠD

x = ΠD,q
xq

· · · · · ΠD,1
x1

completes the proof. ��
Carefully examining the two states from the above claim, we can see that the
first state corresponds to A’s pre-output measurement state given intermediate
measurement results x (and copying classical information into the D registers
along the way) and the second corresponds to Ā’s pre-output measurement given
that the D registers are measured to contain x. Therefore, for any given oracle-
input measurement sequence x, the resulting state of A and Ā are identical.
What remains is to show that the distribution of oracle-input measurements of
A and Ā is the same.
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In the second state from the claim, all matrices applied to (|φ〉 ⊗ |0, . . . , 0〉)
are unitary apart from the projection. Therefore, before the projection is applied,
we have a normalized state, which implies that the probability that Ā measure
the D registers in the state x is exactly

∥

∥ΠD
x · Uq+1 · Cq · Uq . . . C2 · U2 · C1 · U1 (|φ0〉 ⊗ |0, . . . , 0〉D)

∥

∥

2
.

On the other hand, let us consider the probability when q = 2 i.e. A just measures
some x1 and x2. The probability of measuring x1 is ‖Πx1 ·U1 (|φ0〉 ⊗ |0, . . . , 0〉) ‖2,
and the probability of it measuring x2 given that it measured x1 is

∥

∥

∥

∥

Πx2 · U2 · C1 · Πx1 · U1 (|φ0〉 ⊗ |0, . . . , 0〉)
‖Πx1 · U1 (|φ0〉 ⊗ |0, . . . , 0〉) ‖

∥

∥

∥

∥

2

.

Therefore, the probability that A measures (x1, x2) is

‖Πx2 · U2 · C1 · Πx1 · U1 (|φ0〉 ⊗ |0, . . . , 0〉) ‖2.
Following this logic through for general q and noting that applying the unitary
Uq+1 · Cq does not affect norms, we have that the probability of A measuring
the sequence x is

‖Uq+1 · Cq · Πxq
· Uq . . . C2 · Πx2 · U2 · C1 · Πx1 · U1 (|φ0〉 ⊗ |0, . . . , 0〉D) ‖2,

which is precisely the same as Ā’s probability by the claim above.

E Separate Robustness and Reusability Proofs

Although plain robustness is implied by reusable robustness, we consider the
former here to explicitly address the first key question from the introduction.
This section also serves as intuition for the more complex robustly reusable
proofs. We also stress that reusable robustness (proved in Sect. 4.2) also implies
the stronger post-application version of robustness discussed in Sect. 2.

E.1 Robustness in the Classical ROM

Here we will write a relatively simple proof of robustness in the classical ROM.
Note that the lack of explicit dependence of the security bound on the number of
correctable errors (i.e. t) is achieved by considering linear secure sketches along
with the robustness definition from Sect. 2. Once we have this proof, we can
aim to translate it into the QROM setting using the O2H lemma and Zhandry’s
quantum query recording techniques as is done in the full version. Taking k = λ
and query bound q = 2λ, the below shows that we may use a (m,m′, t) secure
sketch where m′ ≈ 2λ to achieve λ bits of security in the classical ROM.

Theorem 4. Let (SS,Rec) be a linear (m,m′, t) secure sketch. Then the hash
construction HFE is a robust (M,m, �, t, ε = 2q · 2−m′

) fuzzy extractor with
robustness δ ≤ 2−k + 2q · 2−m′

in the classical ROM against unbounded adver-
saries making at most q queries to the random oracle.
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Proof. Assume that the adversary A is unbounded and deterministic, but only
accesses the oracle H at most q times. Throughout, we parse H as H1 (the
function that outputs the first k bits of H) and H2 (the function that outputs
the final � bits of H). Denote the hint/helper data given to the adversary in the
robustness game as P := (s, h = H1(w, s)) where w is the secret value sampled
by the challenger. It is assumed that w follows any any distribution W with
min-entropy at least m. We denote the algorithm EH

A (w,P ) to be the robustness
experiment that is played between the challenger and adversary A with respect
to the values w and P . Concretely, EH

A on input (w,P ) is as follows:

1. Run AH(P ) and wait for it to output (Δ∗, P ∗ = (s∗, h∗)).
2. Decide on the ultimate output according to the following:

– If ‖Δ∗‖ > t: output 0.
– If s∗ = s: output 0.
– If H1(w + f(Δ∗, s∗, s), s∗) �= h∗ (where f is from the linearity property

of the sketch and H1 is computed via a random oracle query): output 0.
Otherwise output 1.

It can be seen that the probability that A wins the robustness experiment
is then δ = Prw,P,H [1 ← EH

A (w,P )] after noting that if ‖Δ‖ ≤ t and s∗ = s,
it is required that P ∗ = P for the hash value to be valid. Now suppose we
sample a function G as follows: set G(x) = H(x) for all x �= (w, s) and set
G(w, s) uniformly in {0, 1}k. The point of introducing this function G is that
it is independent of the input P given to the adversary. Consider the event E
that A queries its oracle on the point (w, s) at some point during execution of
EA. Note that G and H are identical apart from on the input (w, s). Therefore,
the output of EG

A (P ) and EH
A (P ) are identical unless there is an oracle query

on (w, s). Note that AG(P ) queries its oracle on (w, s) if and only if AH(P )
does (assuming A is deterministic). Also, any potential random oracle query
performed when EA makes its output decision cannot possibly be (w, s) as it is
guaranteed that s∗ �= s. Therefore, we can write

∣

∣

∣

∣

∣

∣

Pr
w,P,
G,H

[

1 ← EH
A (w,P )

] − Pr
w,P,
G,H

[

1 ← EG
A (w,P )

]

∣

∣

∣

∣

∣

∣

≤ Pr
w,P,
G,H

[E : EG
A (w,P )]. (3)

AG(P ) is given input P = (s,H1(w, s)) and access to G where G(w, s) is inde-
pendent of H1(w, s). This means that the uniform value H1(w, s) does not leak
any information on w at all given access to G. Therefore, if AG(P ) makes q
oracle queries, the probability that it queries (w, s) is at most q · 2−γs where
γs = ˜H∞(W | s) for a fixed P . Taking an expectation over P , we find that
Pr[E : EG

A (w,P )] ≤ q · 2−m′
by the security of the secure sketch.

Now we analyse Pr
[

1 ← EG
A (w,P )

]

. Denote the sequence of queries that A
submits to the oracle G as Q = ((w1, s1), . . . , (wq, sq)) (we parse each query
as (wi, si) and pad Q to make it have length exactly q). Recall that we use
f to denote the function from the linearity condition on the secure sketch. If
(w + f(Δ∗, s∗, s), s∗) was not in Q, then the value of G(w + f(Δ∗, s∗, s), s∗) is
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uniform from A’s perspective, in which case h∗ is correct with probability 2−k.
Therefore, if this point is not in Q, then EG

A outputs 1 with probability 2−k. On
the other hand, suppose that (w+f(Δ∗, s∗, s), s∗) does appear in Q and consider
the algorithm Ā(s) that (i) takes input of the form s = SS.Gen(w), (ii) samples
h ← {0, 1}k and runs AG((s, h)) (simulating G) until it outputs (Δ∗, s∗, h∗)
recording the query list Q, and (iii) for i ← [|Q|], takes the i-th element of Q
denoted by xi = (wi, si) and outputs wi − f(Δ∗, s∗, s). Now Ā(s) outputs w
when both (w + f(Δ∗, s∗, s), s∗) appears in Q and it chooses a correct value i.
This implies that

Pr
s

[w ← Ā(s)] =
1
q

· Pr[(w + f(Δ∗, s∗, s), s∗) ∈ Q].

Furthermore, the probability of any algorithm (including Ā) outputting w on
input s is at most 2−γs for fixed s. Overall we have

Pr
w,P,
G,H

[

1 ← EG
A (w,P )

] ≤ 2−k + Pr
w,P,
G,H

[(w + f(Δ∗, s∗, s), s∗) ∈ Q]

= 2−k + q · Pr
s

[w ← Ā(s)]

≤ 2−k + q · 2−m′
.

Combining the above inequality with Eq. (3) completes the proof for the robust-
ness bound. For the bound on ε, we can say that the advantage of A in dis-
tinguishing R = H2(w) from a uniform value U given P = (s, h) is at most
the probability that A queries H on (w, s) given that it knows P = (s, h). To
upper bound this probability we can use Eq. (3), but instead of considering the
event that EG

A or EH
A outputs 1, we consider the event that (w, s) is queried to

the random oracle by A during the execution of EA. The RHS of the inequality
remains the same so we may reuse the analysis above to bound it. Also, similarly
to the above, if EG

A (w,P ) outputs (w, s) in the query list to G, there must be an
algorithm similar to Ā (with input s) that finds w by picking some query made
to G at random. ��

F Security Proof for Ring-LPN SKEM

Lemma 6. SKEMRLPN is correct as long as τm ≤ t.

Proof. Take any encapsulation key k1 ∈ Rκ
2 , k2 ∈ Z

k
2 , and encapsulation ran-

domness a ∈ R2, k̃ ∈ Z
k
2 . Also consider e sampled according to Berκ·n

τ . Then the
ciphertext/output key is

(c1, c2) := (a, ak1 + e + E(k̃)), k′ = k̃ ⊕ k2.

Note that for e ← Berκ·n
τ , the probability that e has Hamming weight larger

than τm is negligible as in [16]. Therefore, D(c2 − c1k) = D(e + E(k̃)) = k̃ with
all but negligible probability. ��
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Lemma 7. The SKEM described above has key-shift pseudorandomness as long
as RLPNκ,R,τ is hard.

Proof. We will provide a reduction from an algorithm B attempting to solve the
RLPNm′,R,τ problem to the algorithm A that plays the key-shift pseudorandom-
ness game. We suppose that B has access to an oracle that returns arbitrarily
many pairs (a,b) where (a,b) is either from the RLPN distribution or from the
uniform distribution. Using A as a sub-routine, B carries out the following steps:

1. B samples the public parameters pp ← SKEMRLPN .Setup(λ) and gives them
to A. B also samples k2.

2. Whenever A makes a Oksp-query on δ = (δ1, δ2) ∈ Rκ
2 × {0, 1}k, B begins by

asking its RLPN challenge oracle for a sample (a,b). It then samples k̃ ← Rκ
2

and returns

(c1, c2) = (a,b + a · δ1 + E(k̃)), k′ = k̃ ⊕ (k2 ⊕ δ2)

to A.
3. When A has finished making its queries, it outputs a bit b′. B outputs b′.

First note that if B has access to truly uniform samples (a,b), then B’s
answers to A’s oracle queries are truly uniform and independent. In other words,
B perfectly simulates the key-shift pseudorandomness experiment when b = 0.
On the other hand, suppose that B has access to samples of the form (a, as + e)
where s ← Rκ

2 that is fixed across queries. In this case, B’s answers take the
form

(c1, c2) = (a, a(s + δ1) + e + E(k̃)), k′ = k̃ ⊕ (k2 ⊕ δ2)

which is precisely the required form when b = 1 in the key-shift pseudorandom-
ness experiment. Therefore, if B outputs the same as A, then the advantage
of B in the RLPNκ,R,τ problem is exactly the advantage of A in the key-shift
pseudorandomness game. ��
The decapsulation uniformity proof follows trivially from the discussion in
Remark 2.
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Abstract. In 2013, the Snowden revelations have shown subversion of
cryptographic implementations to be a relevant threat. Since then, the
academic community has been pushing the development of models and
constructions to defend against adversaries able to arbitrarily subvert
cryptographic implementations. To capture these strong capabilities of
adversaries, Russell, Tang, Yung, and Zhou (CCS’17) proposed CPA-
secure encryption in a model that utilizes a trusted party called a watch-
dog testing an implementation before use to detect potential subver-
sion. This model was used to construct subversion-resilient implemen-
tations of primitives such as random oracles by Russell, Tang, Yung,
and Zhou (CRYPTO’18) or signature schemes by Chow et al. (PKC’19)
but primitives aiming for a CCA-like security remained elusive in any
watchdog model. In this work, we present the first subversion-resilient
authenticated encryption scheme with associated data (AEAD) with-
out making use of random oracles. At the core of our construction are
subversion-resilient PRFs, which we obtain from weak PRFs in combi-
nation with the classical Naor–Reingold transformation. We revisit clas-
sical constructions based on PRFs to obtain subversion-resilient MACs,
where both tagging and verification are subject to subversion, as well as
subversion-resilient symmetric encryption in the form of stream ciphers.
Finally, we observe that leveraging the classical Encrypt-then-MAC app-
roach yields subversion-resilient AEAD. Our results are based on the
trusted amalgamation model by Russell, Tang, Yung, and Zhou (ASI-
ACRYPT’16) and the assumption of honest key generation.

Keywords: Subversion · Authenticated Encryption · Symmetric
Cryptography

1 Introduction

While many cryptographic primitives nowadays have sound security proofs based
on widely believed complexity-theoretic assumptions implementing these prim-
itives securely is highly non-trivial as many possible attacks are not captured
by the formal security models. For example, a malicious party can intentionally
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embed a covert channel into an implementation of a cryptographic application.
This kind of subversion is widely known as kleptography or algorithm substitution
attacks (ASAs) and was first studied by Young and Yung [42].

The most prominent real-world example is the modification of the Dual EC
pseudorandom number generator [40] by the NSA. This pseudorandom genera-
tor involves two constants P and Q. If these constants are chosen independently,
Dual EC is secure [16], but the designer of the implementation (or the standard)
can easily construct two dependent constants P and Q allowing them to recon-
struct the state. We refer to the work of Checkoway et al. [19] for a more in-depth
discussion. While the possibility of a backdoor due to [40] has been known since
2007, it was not known whether such backdoors would be used by law enforce-
ment agencies such as the NSA. This changed with the revelation of internal
NSA documents by Edward Snowden in 2013. These documents explicitly talk
about Project Bullrun, where resources are used to “Insert vulnerabilities into
commercial encryption systems, IT systems, networks, and endpoint communi-
cations devices used by targets.” and “Influence policies, standards, and specifi-
cations for commercial public key technologies.” [34]. These revelations reignited
the interest in subversion attacks with the work by Bellare, Paterson, and Rog-
away [10]. In general, the subverter A of a primitive Π has two roles: First, they
provide a subverted implementation denoted by ˜Π. Second, they participate in
the usual security experiment and aim to break the security guarantees provided
by the unsubverted implementation of Π.

1.1 Subversion-Resilience Models

While many different subversion attacks were studied in different scenarios, the
universal stateless attack by Bellare, Jaeger, and Kane [7] showed that it is impos-
sible to prevent subversion attacks against symmetric encryption schemes without
additional assumptions. Later, this impossibility result was extended by Berndt
and Lískiewicz [12] to also hold for all randomized algorithms. To circumvent these
impossibility results different models were used. Here, we focus on the most promi-
nent models, which are cryptographic reverse firewalls, self-guarding schemes, the
immunization model , and the watchdog model. We emphasize that these models
seem incomparable as they rely on different assumptions. Each use case requires a
careful investigation of which model reflects the considered setting best.

Cryptographic Reverse Firewalls. Mironov and Stephens-Davidowitz [32]
introduced cryptographic reverse firewalls. In this model a third party called
firewall resides between the communicating parties involved in a cryptographic
protocol. These firewalls “sanitize” the communication between the parties, usu-
ally by rerandomizing the messages sent by the parties. As the firewalls are mod-
eled as non-subverted algorithms, this prevents leakage of sensitive information
by the subverted implementation. An important feature of these firewalls is the
fact that they do not have access to the secret keys of the parties and do not “pro-
vide security”, i.e., they do not help non-subverted implementations in achieving
security objectives. As described above, the typical approach for reverse firewalls
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is to rerandomize the communication, see, for example, [4,17,18,20,25,32]. Even
though many cryptographic primitives allow for rerandomization, primitives that
aim for authenticity do not allow this. To still guarantee subversion-resilience in
the firewall model, one needs to revert to strong assumptions. For example,
Mironov and Stephens-Davidowitz [32] either make use of a symmetric bilin-
ear map where the inverse computational Diffie–Hellman assumption, which is
strictly stronger than the computational Diffie–Hellman assumption [32], holds
or need a strongly rerandomizable asymmetric encryption scheme, for which no
candidate is currently known. This allows them to design IND-CCA-secure pro-
tocols. Alternatively, Bossuat et al. [15] equip the reverse firewall with a key
shared with both endpoints it aims to protect, which deviates from the standard
assumptions described above.

Self-Guarding Schemes. Fischlin and Mazaheri [27] introduced the notion of
self-guarding schemes that split each scheme into an initialization phase and a
computation phase. Here, the initialization phase is supposed to be unsubverted,
and thus outputs produced during that phase can be used to sanitize the output
of the possibly subverted computation phase.

Immunization. Dodis, Ganesh, Golovnev, Juels and Ristenpart [24] formalized
an immunization model for pseudorandom generators, where an immunization
function is applied to the output of the generator. Depending on the knowl-
edge of the subverter about this function, the authors show different approaches
for choose the immunization function in such a way that the output of the sub-
verted pseudorandom generator is indistinguishable from the output of an honest
pseudorandom generator. In both the semi-private and the private model, the
authors were able to construct such functions.

Watchdog Model. Bellare, Paterson, and Rogaway [10] introduced a model
in which a trusted monitoring party called watchdog1 tests a primitive for sub-
version. Russell, Tang, Yung, and Zhou [37] introduced a non-black-box-variant
of this model, called the trusted amalgamation model, where the designer of a
primitive is allowed to split the primitive into different components that each
can individually be checked the watchdog. The complete primitive is then amal-
gamated from these components by the trusted (i.e., not subverted) amalgama-
tion function. This amalgamation function should thus be as simple as possible.
For several cryptographic primitives subversion-resilient constructions were pro-
posed, for example, trapdoor one-way permutations [37], pseudorandom genera-
tors [11,37], symmetric IND-CPA-encryption schemes [38], hash functions [27],
asymmetric IND-CPA-encryption schemes [11,38], random oracles [5,23,39]2,
signature schemes [21,37], and key encapsulation mechanisms [11].

This paper also uses the trusted amalgamation model, so let us take a closer
look at important details of this model. First, the order of the quantification is
important, as discussed by Russell, Tang, Yung, and Zhou [37]. In the following,
fix some primitive Π. One possibility to define that Π is subversion-resilient is
1 They introduced the concept of detecting subversion rather than a “watchdog”.
2 Note that the proof in [39] contained an error that was later fixed in [13].
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to demand that for each subverter A, there is a watchdog WD such that either
1) the watchdog WD detects the subversion provided by A or 2) the subverted
implementation provided by A does not weaken the security guarantees. While,
at first glance, this model closely resembles the usual cryptographic security
model, the watchdog now needs to depend on the adversary and, to protect
against multiple different adversaries, all corresponding watchdogs need to be
deployed. A much more desirable solution is to use a single universal watchdog
WD such that every subverter A will be detected by this single watchdog. In
our work, we use simple universal watchdogs that only sample uniformly ran-
dom inputs and check the possibly subverted implementation against the honest
specification.

For simplicity, we assume throughout this work that the attacker always
provides stateless implementations. Similarly to the approach by Russell, Tang,
Yung, and Zhou, we can also allow rewindable stateful implementations [37,
Rem. 2.5]. This means that the watchdog is allowed to rewind the state of the
implementation and test it for various inputs starting from the same state. If
these are not rewindable, time bombs as introduced by Fischlin and Mazaheri [27]
are possible, which seem to be unpreventable by an universal offline watchdog.

1.2 Towards Subversion-Resilient Authenticated Encryption

There has been huge progress over the last years and for many cryptographic
primitives it was shown how to construct them in a subversion-resilient manner.
However, authenticated encryption (AE in the following) where both encryption
and decryption are subject to subversion has not been achieved in an offline
watchdog model. The main challenge in constructing subversion-resilient AE is
protecting the decryption algorithm. This is due to input-trigger attacks, which
cannot be avoided without additional assumptions (such as trusted operations
or the trusted amalgamation model) or using heavy machinery such as random
oracles in a model where the decryption algorithm is modeled as a black box
algorithm.

Russell, Tang, Yung, and Zhou [39] showed how to make random ora-
cles subversion-resilient. This then leads to subversion-resilient signatures by
Chow et al. [21], where both the signing and verification algorithm can be sub-
verted while heavily relying on the subversion-resilient random oracle. The authors
also showed how to construct subversion-resilient signatures in the standard
model, where key generation and signing are subverted. While making use of ran-
dom oracles may also directly lead to subversion-resilient AE, this work explores
the possibility of achieving this notion without resorting to random oracles.

Another approach to fix subversion without random oracles was proposed by
Ateniese, Francati, Magri, and Venturi [3]. Here, the authors show how to san-
itize deterministic algorithms where all algorithms can be subverted, including
the sanitizer. They present a transformation from an arbitrary algorithm to a
subversion-resilient one. Their approach uses a secret (but tamperable) random
source to generate the keys and the public parameters. However, the results in
[3] only apply to deterministic primitives, for which it is well-known that they do
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not achieve CPA security. In a setting where the adversary is allowed to freely
choose inputs to its oracles, referred to as unconstrained games in [3], subversion-
resilience is achieved by using an online watchdog, i.e., a watchdog which has
access to transcripts of the considered security experiment. We, on the other
hand, focus on offline watchdogs, which only get oracle access to the subverted
algorithms before the security experiment is executed. As the construction of a
subversion-resilient MAC where both the tagging and the verification algorithms
may be subverted and the adversary chooses the input to its oracle is a crucial
building block in our work, the results of [3] cannot be applied. Finally, Armour
and Poettering showed in a series of works [1,2] several attacks on decryption of
AEAD and verification of message authentication. Similar approaches are used
by Russell, Tang, Yung, and Zhou [38] who effectively rerandomize the inputs to
subverted algorithms. Unfortunately, this cannot be directly applied to decryp-
tion/verification, as input trigger attacks cannot be avoided without assuming
that rerandomization is done as a trusted operation.

Hence, we deduced the following main research question of this work:

Is it possible to construct subversion-resilient authenticated encryption without
random oracles in an offline watchdog model while only assuming

non-cryptographic building blocks to be trusted?

In this paper, we answer this question affirmatively.

On the Difficulties of Constructing Subversion-Resilient AE. Before
we describe our solution, it is instructive to understand and recognize the dif-
ficulties in constructing subversion-resilient authenticated encryption. The first
major obstacle lies in the existence of input trigger attacks, first formalized by
Degabriele, Farshim, and Poettering [22]: Such an attack modifies the under-
lying algorithm only on a single, arbitrary input x� called the trigger. When-
ever the algorithm is given x� as input, it deviates from the specification by,
e.g., outputting the secret key. As these triggers are chosen randomly by the
attacker, no offline watchdog can detect the presence of these triggers. Thus,
Degabriele, Farshim, and Poettering proposed a solution using an online watch-
dog. Now, these triggers are naturally connected to security experiments that
model a search problem. Namely, in the final communication step of these experi-
ments, the adversary usually sends some input which is directly evaluated by the
underlying primitive. This direct transfer of information from the attacker to the
primitive leads to trigger attacks, as the attacker can simply choose to submit
such a trigger that solves the search problem. Now, security experiments that
aim to secure the authenticity of information are typically modeled as search
problems, where the task of the attacker is to produce some kind of forgery.
Hence, such primitives are quite vulnerable to trigger attacks. Furthermore, even
if one only considers decision problems, a direct transfer of information from the
attacker to the primitive still allows for the use of input triggers.
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1.3 Our Contribution

In this work, we show that subversion-resilient AE can be achieved without
the use of random oracles. We use the trusted amalgamation model proposed
by Russell, Tang, Yung, and Zhou [37,38], which also inspired our work. To
overcome input triggers, we need to avoid search problems and primitives that
take direct input from the adversary. At the core of our construction are weak
PRFs, i.e., PRFs that are only indistinguishable from random only if evaluated
on random inputs. Our main contributions can be summarized as follows.

Weak PRFs are Subversion-Resilient. We first observe that these weak
PRFs are naturally subversion-resilient, i.e., any implementation is indistinguish-
able from random given it passes the watchdog’s check.

Subversion-Resisilient PRFs from Weak PRFs. As a next step, we use
the classical Naor–Reingold transformation [33] that transforms a weak PRF
into a PRF that can be queried arbitrarily. We prove that the Naor–Reingold
construction also transforms a subversion-resilient weak PRF into a subversion-
resilient PRF. In the context of subversion and the trusted amalgamation model,
the trusted amalgamation applying the Naor–Reingold transformation can thus
be seen as a trusted data structure, as the adversarially chosen inputs are only
used to choose random keys in a trusted manner.

Subversion-Resilient AE from PRFs. Given subversion-resilient PRFs,
the classical “PRF-as-MAC” approach also guarantees subversion-resilience by
assuming canonical verification and a trusted comparison operation. Making
use of subversion-resilient PRFs again, we show that the classical randomized
counter mode is also subversion-resilient assuming a trusted ⊕ operation, which
can even be generalized to stream ciphers. From both a subversion-resilient MAC
and encryption scheme, we then prove that subversion-resilient authenticated
encryption can be achieved via the classical “Encrypt-then-MAC” approach.

1.4 Discussion

Finally, we discuss our contribution and the assumptions we make in this work.

Subversion-Resilient AEAD from ROs. Note that given a subversion-
resilient RO, as proposed in [39], one could replace the subversion-resilient PRF
in our work by the RO and would obtain the similar results. However, argueably
a subversion-resilient RO is a much stronger assumption than the existence of a
weak PRF (in the standard model) that we base our results on in this work. To
obtain a subversion-resilient RO, Russell et al. also make use of a trusted XOR
operation and thus also need the same trust-assumptions as we do in our work.

Previous Work on Subversion-Resilient MACs. In previous work, Fischlin,
Janson, and Mazaheri [26] also observed that weak PRFs are a helpful tool to
defend against backdoors. They show that a backdoored weak PRF implies a
public key encryption scheme, arguing that the difference in performance can be
easily detected. Further, they show that applying the randomized cascade (RC)
construction by Maurer and Tessaro [31] to a weak PRF immunizes HMAC
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against backdoors. As discussed later, using the RC construction also works for
our construction, but requires to model the used prefix-free encoding as a trusted
building block. Also, while Fischlin, Janson and Mazaheri focus on the properties
of HMAC as a PRF, we focus on the subversion-resilience property of a MAC
and its role in the Encrypt-then-MAC approach. As our model does not include
detection based on the performance time of the subverted algorithm, we base
the security of our construction on the subversion-resilience of weak PRFs.

Honest Key Generation. Contrary to previous works [21,38] we dismiss mod-
eling subversion of key generation as this is typically only an abstraction for some
means to derive a secure key. Even if one can construct key generation that could
be executed by a single party, it is not clear how both parties would end up with
the same key, potentially requiring a secure channel for key transportation. But
to do this, both parties need to participate in a key-exchange protocol, which
usually allows for a wide range of possible subversions (see, e.g., [25,32]). Hence,
our work can be extended by some approach to derive uniform keys.

Weak PRFs. One may think that using weak PRFs instead of “standard” PRFs
may be sufficient. However, it is not clear how to obtain MACs from (subversion-
resilient) weak PRFs, as the security of MACs against forgery attacks are mod-
eled as a search problem. While we would be able to answer all tagging queries
via random queries to the PRF (e.g., via a Carter-Wegman-style [41] construc-
tion), handling the final forgery query is a challenge, as this query is directly
made on the verification algorithm.

Trusted Operations. We make use of several trusted operations, as it is not
hard to see that some sort of trusted operations are needed to avoid trig-
ger attacks proposed in previous works [1,2,22]. While being necessary, we
aimed to minimize the number of trusted operations. Our approach only uses
a trusted comparison and a trusted XOR. We believe that both of these (non-
cryptographic operations) are simple enough to be either regarded as trusted or
realized in hardware in a trusted manner. Not using a trusted XOR operation
would most likely imply the need for some sort of rerandomization of cipher-
texts before decrypting to remove biases. To the best of our knowledge, there
is no AE scheme fulfilling such a property. Further, a trusted comparison seems
unavoidable as otherwise a verification or decryption algorithm could reject or
accept chosen inputs (since an adversarially chosen input is fed into a subverted
component), as input triggers are again possible.

Relation to Immunized PRGs. As described above, Dodis et al. [24] con-
structed subversion-resilient pseudorandom generators in both the semi-private
and the private immunization model. We believe that classical constructions of
PRFs from PRGs such as the one due to Goldreich, Goldwasser, and Micali [28]
can be used to also obtain PRFs in the immunization model. But, while our
constructions rely on an offline watchdog and the amalgamation assumption,
the constructions in the immunization model rely on the fact that parts of the
implementation (i.e., the immunization function) is hidden from the subverter.
These assumptions are orthogonal to each other.
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2 Subversion-Resilience

In this section, we define the notion of subversion-resilience and loosely follow
the approach by Russell, Tang, Yung, and Zhou [37]. Before we define the actual
notions, we first describe our general notation and the overall setting.

2.1 Notation and Model

Notation. Recall that we need to distinguish between the specification of a
primitive Π and the implementation of Π provided by the adversary. To make
the distinction between an honest specification of a primitive Π and a (possibly)
subverted implementation more explicit, we use the following notation through-
out this paper. We denote by ̂Π the specification of the primitive and by ˜Π the
implementation of that primitive provided by the adversary.

A security experiment Exp for a cryptographic primitive Π with security
objective GOAL involves one party, namely the adversary A trying to break the
security objective against ̂Π. In contrast, subversion experiment ExpSR is exe-
cuted with an implementation of the considered primitive by the adversary and
consists of three phases involving two parties: In the first phase, the adversary A
provides provides a subverted implementation ˜Π. This implementation is then
examined by a watchdog WD that tries to detect the subversion in the second
phase. Finally, in the third phase, the adversary A takes part in the security
experiment, where the subverted implementation is used. In the following, we
always treat A as pair (A0,A1), where A0 provides the subverted implementa-
tion ˜Π and A1 takes part in the security experiment. As usual, we denote the
security parameter by λ.

Amalgamation. As discussed earlier, preventing subversion attack in a purely
black-box way is not possible, as universal undetectable attacks are known,
e.g., by Berndt and Lískiewicz [12]. Russell, Tang, Yung, and Zhou [37] thus
introduced a non-black-box model called the trusted amalgamation model. While
a primitive Π = (Π1, . . . , Πr) usually consists of a few different algorithms,
the trusted amalgamation model splits all of these components into subrou-
tines. For example, an encryption scheme usually consists of r = 3 algorithms
(KGen,Enc,Dec), but these might be composed of several subroutines used in
different places. The trusted amalgamation model makes the use of these sub-
routines more explicit by representing a primitive as the list of subroutines
π = (π1, . . . , πn) and a trusted amalgamation function Am that takes this list and
produces the algorithms corresponding to the primitive. Let us get back to the
example given above, Am(π) = (KGen,Enc,Dec) that consists of subroutines πi.
We will allow the subverter to individually subvert the subroutines πi arbitrarily
by providing implementations π̃i, but assume that the amalgamation function is
not subject to subversion. The security experiment is then played on ˜Π = Am(π̃).
This assumption is usually justified by making this amalgamation function as
simple as possible such that it can be checked automatically. For example, the
amalgamation in the construction of Bemmann, Chen, and Jager [11] and in the
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constructions of Russell, Tang, Yung, and Zhou [38] only handles inputs and
outputs of different subroutines and makes use of a few XOR operations. In the
following, we thus represent the specification ̂Π of a primitive as ̂Π = (Am, π),
where π = (π1, . . . , πn) is the list of subroutines. We also need to consider the
amalgamation function for a single algorithm Πi of a primitive, which we denote
by Ami. That is, the amalgamation Am(π) = (Am1(π), . . . ,Amr(π)) actually
consists of a vector of amalgamation functions such that there is a function for
each algorithm of the primitive. As a shortcut, we simply write (Am, ̂Ψ) if a
construction uses a subversion-resilient ̂Ψ = (AmΨ , ψ) as a building block.

Split-Program Model. In addition to trusted amalgamation, Russell, Tang,
Yung, and Zhou [37] also used the split-program methodology. Similar to mod-
ern programming techniques, it is assumed that randomness generation is split
from a randomized algorithm. The randomness generator and the deterministic
algorithm can then be tested individually by the watchdog. We also use this
methodology in our work.

Randomness Generation. The constructions in this paper rely on “good”
(i.e., in particular trusted) randomness being available. For this, either one of
the constructions proposed by Russell, Tang, Yung, and Zhou [38] or Bemmann,
Chen, and Jager [11] can be used. Both works contain constructions generating
randomness that is indistinguishable from random for the adversary provid-
ing the implementation without using random oracles. For this paper, we can
use both constructions. Hence, for simplicity, we abstract away the randomness
generation and assume that our constructions generate uniformly random bits,
while being able to test randomized algorithm on selected random coins. This
assumption allows us to simplify notation and focus on our contributions to
enable authentication in the presence of subversion.

2.2 Subversion-Resilience

Next, we define the notion of subversion-resilience. Intuitively, we extend a “con-
ventional” security experiment Exp by a preceding check for subversion of the
primitive. Afterwards, the security experiment is executed. This is illustrated
in Fig. 1. As we study both decision (i.e. indistinguishability) and search (i.e.
unpredictability) problems in this paper, we associate with experiment Exp a
“baseline win probability” denoted by δ that gives the winning probability of a
naive attacker, i.e., δ = 0 for search problems and δ = 1/2 for decision problems.
To extend Exp, we first run A0 to obtain a subverted implementation π̃ (Fig. 1,
l. 1). The watchdog WD then tests the implementation before we run the security
experiment Exp with adversary A1 on the subverted implementation ˜Π = Am(π̃)
as usual (Fig. 1, l. 3). The variable state is only used to synchronize A0 and A1.
Throughout this work we use the convention that the watchdog outputs “true” in
the case that subversion is detected. To formalize subversion-resilience, consider
the next definition and the corresponding security experiment shown in Fig. 1.
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Fig. 1. The security experiment for GOAL-security under subversion.

Definition 1. A specification of a primitive ̂Π = (Am, π) is GOAL-secure under
subversion in the offline watchdog model with trusted amalgamation if one can
efficiently construct a ppt watchdog algorithm WD such that for any ppt adver-
sary A = (A0,A1) it holds

AdvSRGOAL, ̂Π
A (1λ, δ) is negligible or DetWD,A(1λ) is non-negligible

where AdvSRGOAL, ̂Π
A (1λ, δ) = |Pr[ExpSRGOAL, ̂Π

WD,A (1λ) = 1] − δ| and
DetWD,A(1λ) = |Pr[WDπ̃(1λ) = 1] − WDπ(1λ) = 1]| using the experiment shown
in Fig. 1, with δ ∈ {0, 1

2} indicating whether a search or a decision problem is
considered.

Note that AdvGOAL, ̂Π
A (1λ, δ) is not parameterized by the watchdog WD. We

chose this approach to simplify notation, as the testing of the watchdog does
not influence the advantage of the adversary directly. For public key encryption,
this model is not equivalent to the model proposed by Russell, Tang, Yung,
and Zhou [38], where the adversary has access to a subverted encryption oracle.
For symmetric encryption, our more general definition captures theirs with some
differences in syntax.

As mentioned earlier, we assume stateless subversion and that key and ran-
domness generation are trusted. In order to shorten notation, we call primitives
just GOAL-secure under subversion.

2.3 Achieving Subversion-Resilience

To prove our upcoming PRF construction subversion-resilient, we use an obser-
vation made by Russell, Tang, Yung, and Zhou [37]. If a deterministic primitive
is only given inputs according to a public distribution and the implementa-
tion deviates from the specification with some probability δ (with inputs chosen
according to this public input distribution), then a ppt watchdog can detect this
with probability at least δ. Hence, in order to stay undetected, the number of
inputs the implementation deviates from the specification needs to be negligible.

Lemma 1. Consider an implementation ˜Π := (π̃1, . . . , π̃k) of a specification
̂Π = (π̂1, . . . , π̂k), where π1, . . . , πk are deterministic algorithms. Additionally,
for each security parameter λ, public input distributions X1

λ, . . . , Xk
λ are defined

respectively. If there exists a j ∈ [k] such that Pr[π̃j(x) �= π̂k(x) : x
$← Xj

λ] = δ,
this can be detected by a ppt offline watchdog with probability at least δ.
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Fig. 2. The security experiment for (weak) PRFs. Here, $ denotes an input argument
chosen uniformly at random from Dλ upon any query issued by the adversary. Further,
if K ∈ Kλ, the oracle F (K, ·) can only be queried on elements of Dλ.

An instructive example to understand the usefulness of this lemma is the
following. Suppose that we are given a single function f and a probability dis-
tribution X on the domain of f . In an experiment, the adversary can now issue
a query, where x

$← X is drawn and the pairs (x, f(x)) is given to the adversary.
The goal of the adversary is to obtain a sample (x�, ˜f(x�)), where x� ∈ X∗ for
some subset X� ⊆ Supp(X) such that ˜f(x�) �= ̂f(x�) where Supp(X) is the sub-
set of values the variable X can take. Clearly, if the adversary can only perform
a bounded number of samples, the density of X� wrt. X cannot be arbitrarily
small. But, as the distribution X is publicly known, a watchdog can also sample
according to X and check the implementation ˜f against the specification ̂f on
these samples. Then, it is not hard to see that the adversary wins if the watchdog
distinguishes the implementation from the specification.

3 Pseudorandom Functions

Intuitively, a PRF is a keyed function F : K × D → R associated with a key
space K, that is indistinguishable from a function sampled uniformly at ran-
dom from the set of all functions D → R. More formally, K =

⋃

λ∈N
Kλ,

D =
⋃

λ∈N
Dλ, and R =

⋃

λ∈N
Rλ. Additionally, we use Func(D,R) to denote

the set of all functions mapping elements from D to R. In this paper, we only
consider spaces that are subsets of {0, 1}∗.3 Let us recall the standard definition
of (weak) PRFs.

Definition 2. Let T ∈ {wPR,PR} and let ExpT
A,F be defined as shown in Fig. 2.

We define AdvT
A,F (1λ) := |Pr[ExpT

A,F (1λ) = 1] − 1/2|. We say that F is pseudo-
random if AdvPRA,F (1λ) is negligible for all ppt adversaries A. Further, we say that
F is weakly pseudorandom if AdvwPRA,F (1λ) is negligible for all ppt adversaries A.

Weak PRFs are Subversion-Resilient. The first observation is that since
all inputs given to the PRF are distributed uniformly at random, they follow a
distribution that is publicly known. This allows us to apply Lemma 1. For an
3 We actually only require that we can sample uniform elements of D and K efficiently

and that D is a quasi group with operation ⊕.
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implementation ˜F of a specification ̂F of a weak PRF, let Neqλ ⊆ Kλ × Dλ be
the set of inputs, where ˜F deviates from the specification, i.e., Neqλ = {(K,x) ∈
Kλ × Dλ | ˜F (K,x) �= ̂F (K,x)}. Now, consider the proportional amount p of
Neqλ, i.e., p = |Neqλ|

|Kλ×Dλ| . As the input distribution of the weak PRF experiment
is public, Lemma 1 now directly implies the existence of a ppt watchdog with
detection probability p (simply testing ˜F on uniformly random inputs). Hence,
for an adversary to succeed in the subversion-experiment, p must be negligible.
But, as all inputs to the weak PRF are drawn randomly, the probability that an
adversary making q queries will ever encounter an input to the weak PRF that
belongs to Neqλ is bounded by q · p and is thus negligible for ppt adversarys, as
q is bounded by a polynomial in λ, yielding the following theorem.

Theorem 1. If F is weakly pseudorandom, then the trivial specification ̂F = F
is weakly pseudorandom under subversion.

3.1 Constructing Subversion-Resilient PRFs

In the following, we use the classical Naor–Reingold construction [33] to con-
struct a (standard) PRF from a weak PRF that is subversion-resilient.

The Naor–Reingold Construction. Let Fw : K×D → R be a weak PRF. For
the sake of simplicity, we only focus on the case that elements of K, D, and R are
of equal length and refer the reader to the survey by Bogdanov and Rosen [14]
for generalizations. We now construct a (standard) PRF F (�) : K2·� × {0, 1}� →
R that is parameterized by some integer � of the form � = 2r describing the
message length. It is easiest to construct F (�) inductively. In the simplest case
of � = 1, the key of F (�) consists of two randomly sampled keys of F (i.e.,
two random bit strings K0,K1 ∈ K). On input x ∈ {0, 1}, it returns Kx, i.e.,
F (1)((K0,K1), x) = Kx. Given F (�), we construct F (2�) inductively as follows.
A key of F (2�) consists of two keys K

(�)
0 and K

(�)
1 of F (�) (which in turn consists

each of 2� keys of Fw). On input x = (x1, x2, . . . , x2�), the function F (2�) applies
F (�) with the first key K

(�)
0 to the first half of x to obtain a key for Fw and then

computes F (�) with the second key on the second half of x to obtain a value.
More formally,

F (2�)((K(�)
0 ,K

(�)
1 ), (x1, . . . , x2�))

= Fw(F (�)(K(�)
0 , (x1, . . . , x�)), F (�)(K(�)

1 , (x�+1, . . . , x2�))).

An useful alternate interpretation is the following (shown in Fig. 3). The key of
F (2�) consists of 2� key pairs (Ki,0,Ki,1) for i = 1, . . . , 2�. On input (x1, . . . , x2�),
we construct a complete binary tree of height r, where r = log(2�). The final level
of this binary tree contains the 2� leaves. To produce the output of F (2�), we now
construct a labeling of the vertices. We first label the i-th leave of the tree with
Ki,xi

, i.e., the message bit xi determines whether we take Ki,0 or Ki,1. To obtain
the label of an inner node v of the tree, we compute Fw(left(v), right(v)), where
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Fig. 3. The alternate interpretation of the Naor-Reingold construction as labeling of
a complete binary tree for the value x = (0, 1, 1, 0). The corresponding leaf values are
marked in blue. (Color figure online)

left(v) (resp. right(v)) is the label of the left (resp. right) child of v. Finally, the
output of F (2�) is the label of the root of the tree. It is well-known that this
construction gives a PRF F (�) if Fw is weakly pseudorandom.

Theorem 2 ([33, Thm. 5.1]4). Let � ∈ N with � = 2r. If Fw is weakly pseu-
dorandom, then F (�) is pseudorandom.

Now, observe that a non-subverted, honest call-structure to the underly-
ing function Fw (which is trivially true due to our amalgamation assumption)
directly implies the subversion-resilience of F (�). On the lowest level, F (1) will
only return completely random values, which is clearly subversion-resilient. The
inputs to F (2) are thus completely random values which follow a public input
distribution and Lemma1 directly implies subversion-resilience.

Theorem 3. If ̂F is pseudorandom under subversion, then for each � with � =
2r, ̂F (�) is pseudorandom under subversion.

Proof. Our watchdog simply samples random keys and random inputs for the
weak PRF Fw and checks for deviations from the specification. As for the
subversion-resilience of Fw discussed above, let Neqλ be the set of inputs for
which ˜Fw deviates from its specification. As shown before, by applying a watch-
dog that simply tests a sufficient number of random inputs to Fw, we know that
the probability p = |Neqλ|

|Kλ×Dλ| is negligible. On the lowest level, corresponding to
F (1), we only choose one of two random values. Hence, the watchdog can easily
verify the correctness of F (1) as there are only constantly many different inputs.
In the next level, corresponding to F (2), the function Fw is only applied to these
completely random inputs. If an adversary makes q ∈ poly(λ) many queries, the
probability that one of the calls to Fw on this level deviates from the specifica-
tion is at most q · (�/2) · p, which is negligible. Conditioned on the event that
all calls to Fw on the level corresponding to F (2) follow the specification, the
inputs to the q · (�/4) calls to Fw on the level corresponding to F (4) are indis-
tinguishable from random (due to the security of the specification of the weak
PRF). Hence, with probability q · (�/4) · p, these inputs also do not belong to

4 Naor and Reingold use the notion of a synthesizer, which are in our context equivalent
to weakly PRFS [14].
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Neqλ, if the inputs on the level corresponding to F (2) do not belong to Neq.
Let E�′ be the event that all inputs on the level corresponding to F (�′) do not
belong to Neqλ. By iterating the above argumentation, it is not hard to see that
Pr[E�′ | E�′/2] ≥ 1 − q · (�/�′) · p holds. From Pr[E2] ≥ 1 − q · (�/2) · p, we can
conclude via a simple induction that

Pr[E�′ ] = Pr[E�′ | E�′/2] · Pr[E�′/2] + Pr[E�′ | ¬E�′/2] · Pr[¬E�′/2]

≥
∏r′

i=1
(1 − q · (�/2i) · p)

for �′ = 2r′
. Hence, all probabilities Pr[E�′ ] are of the form 1 − negl(λ) for a

negligible function negl. We can thus conclude that the probability that any
input to Fw belongs to Neqλ is negligible. The original security guarantee due
to Theorem 2 then directly implies the subversion-resilience of F (�). 	


Alternative Constructions. In principle any transformation from weak to
standard PRFs can be used in our construction. We chose the Naor-Reingold
construction, due to its simplicity and as it only requires the amalgamation func-
tion to act as a trusted data structure and no trusted operations. Alternatively,
the randomized cascade construction by Maurer and Tessaro [31] can be used.
There adversarially chosen messages are directly fed into a prefix-free encoding,
which then needs to be modeled as a trusted operation in order to prevent input
triggers. Another alternative is the IC construction by Maurer and Sjödin [30],
where the input provided by the adversary is processed bitwise and either a weak
PRF is executed or a previously computed value is used in an iterative process.

4 MAC

We now show how to construct subversion-resilient MACs using any subversion-
resilient PRFs, e.g., the one from the previous section. Let us first recall the
standard definition of MACs. A MAC works on a keyspace K, message space M,
and tag space T . Also, we have K =

⋃

λ∈N
Kλ, M = Mλ∈N, and T =

⋃

λ∈N
Tλ.

Definition 3. We call a triple MAC = (KGen,Tag,Vf) a message authentica-
tion code (MAC) for key space K, message space M, and tag space T . The
randomized key generation algorithm KGen produces upon the security parame-
ter 1λ as input a key K

$← Kλ. The randomized tagging algorithm Tag is given
a key K ∈ Kλ and a message M ∈ Mλ and returns a tag T ∈ Tλ. The deter-
ministic verification algorithm Vf is given a key K, a message M , and a tag T
and returns a bit b.

For correctness, we require that for all K ∈ Kλ, for all M ∈ Mλ, and all
T ∈ Supp(Tag(K,M)), it holds Vf(K,T ) = 1. Next, we recall the standard
security notion of (strong) unforgeability of MACs.
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Definition 4. Let MAC be a MAC and let ExpSUF-CMA
A,MAC (1λ) be defined as shown

in Fig. 4. We define AdvSUF-CMA
A,MAC (1λ) := Pr[ExpSUF-CMA

A,MAC (1λ) = 1] and say that
MAC is strongly unforgeable under a chosen message attack, or SUF-CMA-
secure, if AdvSUF-CMA

A,MAC (1λ) is negligible for all ppt adversaries A.

Fig. 4. The forgery experiment for MACs. On input M ∈ Mλ the oracle Tag(K, ·)
computes T

$← Tag(K,M), stores (M,T ) in Query and returns T .

4.1 MAC from PRFs

Consider the following generic construction of a (fixed-length) deterministic
MAC based on a PRF. Let F be a keyed function F : K × D → R. We define
MACF = (KGenF ,TagF ,VfF ) with key space K, message space M, and tag space
T such that KGenF on input 1λ outputs a uniform key K

$← Kλ, TagF on input
key K ∈ Kλ and message M ∈ Dλ, returns T = F (K,M), and VfF on input
a key K ∈ Kλ, message M ∈ Dλ, and a tag T ∈ Rλ, outputs 1 if and only if
T = TagF (K,M). It is a well-known result by Goldreich, Goldwasser and Micali
that a PRF can directly be used to construct a MAC which we recall.

Theorem 4 ([29]). If F is pseudorandom, then MACF is SUF-CMA-secure.

Theorem 4 guarantees that the subversion-resilience of the underlying func-
tion F directly transfers to MACF , if the = operation during the verification
is part of the trusted amalgamation. Thus, M̂ACF = (Am, ̂F ), where ̂F is a
subversion-resilient PRF, and Am calls the PRF for tagging and for verification
it recomputes the MAC using the implementation of the PRF and compares the
result with its input. Thus, the watchdog runs the watchdog of the subversion-
resilient PRF. Finally, we can conclude that the PRF presented in Sect. 3.1 (built
from a weak PRF) is a subversion-resilient deterministic MAC as well.

Theorem 5. If ̂F is pseudorandom under subversion, then M̂ACF = (Am, ̂F )
is SUF-CMA-secure under subversion assuming a trusted = operation.

Corollary 1. The specification M̂ACF (�) = (Am, ̂F (�)) is SUF-CMA-secure
under subversion assuming a trusted = operation.
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5 Symmetric Encryption

In this section, we construct subversion-resilient symmetric encryption using
a classical construction based on PRFs that has indistinguishable encryptions
under a chosen-message attack. A symmetric encryption scheme works on a
keyspace K, message space M, and ciphertext space C. As usual, we have K =
⋃

λ∈N
Kλ, M = Mλ∈N, and C =

⋃

λ∈N
Cλ.

Fig. 5. Security experiment for IND$-CPA-security, where RoR0(M) = $K(M) and

RoR1(M) = Enc(K,M) such that $K(M) computes C
$← Enc(K,M) and if C = ⊥,

outputs ⊥, and otherwise, outputs a random string of length |C|.

Definition 5. We call a triple SE = (KGen,Enc,Dec) a symmetric encryption
scheme SE with key space K, message space M, and ciphertext space C. The ran-
domized key generation algorithm KGen outputs upon the security parameter 1λ

as input a key K
$← Kλ. The randomized encryption algorithm Enc is given a

key K ∈ Kλ and a message M ∈ Mλ and returns either a ciphertext C ∈ Cλ or
a symbol ⊥. The deterministic decryption algorithm Dec is given a key K and
a ciphertext C, and returns either a message M ∈ Mλ or the symbol ⊥.

We say that Π has perfect correctness, i e., for all K ∈ Kλ, all M ∈ Mλ and
all C ∈ Supp(Enc(K,M)), we have Dec(K,C) = M if C �= ⊥. For security, we
consider IND$-CPA-security (i.e., indistinguishability from random bits) [35,36],
which can be shown to imply IND-CPA-security in the left-or-right sense (see,
e.g., [6]) by a straightforward reduction.

Definition 6. Let SE be a symmetric encryption scheme and let ExpIND$-CPA
A,SE (1λ)

be defined as shown in Fig. 5. We define AdvIND$-CPA
A,SE (1λ) := Pr[ExpIND$-CPA

A,SE (1λ)
= 1] and say that SE is IND$-CPA-secure if AdvIND$-CPA

SE (A) is negligible for all
ppt adversaries A.

Symmetric Encryption from PRFs. In Sect. 3, we construct subversion-
resilient PRFs. A classical use case of PRFs is the construction of symmet-
ric encryption. Recall the following construction of a stream cipher SEKS =
(KGenKS,EncKS,DecKS) based on a PRF KS: K × D → R. KGen on input 1λ

outputs a uniform key K
$← Kλ, EncKS on input a key K ∈ Kλ and a message

M ∈ Rλ, outputs a ciphertext (IV, C), where IV
$← D and C := KS(K, IV) ⊕ M ,

and DecKS on input a key K ∈ Kλ and a ciphertext (IV, C) ∈ Dλ × Rλ, outputs
M := KS(K, IV) ⊕ C.
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Subversion-Resilience of Stream Ciphers. Next, we show that the above
construction is subversion-resilient if the underlying function KS is a subversion-
resilient weak PRF. Thus, we consider ŜEKS = (Am, ̂KS) where ̂KS is the spec-
ification of a subversion-resilient weak PRF and Am randomly chooses IVs and
then calls the underlying PRF and applies the trusted ⊕ operation.

Theorem 6. If ̂KS is weakly pseudorandom under subversion, then ŜEKS is
IND$-CPA-secure under subversion given that the randomness generation and
⊕ operation are trusted.

Proof (Sketch). The watchdog runs the watchdog for ̂KS. The main idea of the
proof is that the output of KS is indistinguishable from uniformly random bits
for uniformly random IVs and any adversary, even under subversion. Thus for
any message M , the output of Enc is indistinguishable from uniformly random
bits under subversion for any adversary as well. Hence, ŜEKS is IND$-CPA-secure
under subversion.

Key Stream Derivation of CTR. It remains to demonstrate that this con-
struction can actually be instantiated. A popular instantiation of the above
construction is the (randomized) counter mode (CTR$). The above construc-
tion in combination with KSCTR defined next yields CTR$. Given a PRF
F : K × D → R, we define the function KSCTR : K × D → R� as

(K, IV) �→
(

F (K, IV), F (K, IV ⊕ 〈1〉n), . . . , F (K, IV ⊕ 〈� − 1〉n)
)

,

where � ∈ poly(λ) and 〈i〉n denotes the n-bit binary representation of i ∈ N.
Next, we show that KSCTR is a subversion-resilient weak PRF assuming that
handling the state (i.e. the counter) is modeled as part of the amalgamation.

Theorem 7. If ̂F is pseudorandom under subversion, then K̂SCTR is a sub-
version-resilient weak PRF under the assumption that randomness generation
and the ⊕ operation are trusted.

Proof (Sketch). The watchdog for K̂SCTR runs the watchdog for ̂F as a subrou-
tine. To prove that the KSCTR is secure even if the building block F is subverted,
the main idea is as follows: If F is indistinguishable from random (even under
subversion), then KSCTR is indistinguishable from random for uniformly ran-
dom inputs as long as the sequence (IV, . . . , IV ⊕ 〈� − 1〉n) does not overlap for
two PRF queries. This is because an adversary directly could observe the struc-
ture and distinguish the function from random. By a simple argument, one can
bound this probability by q2�

|D| , which is negligible for polynomial block length �,
polynomial IV length log(|D|), and a polynomial number of PRF queries q.

Note that KSCTR is not a PRF as the adversary can simply choose the IVs
such that they overlap which enables the adversary to distinguish KSCTR from
a truly random function with overwhelming probability. Finally, Theorem6 and
7 imply that the randomized counter mode CTR$ is subversion-resilient.
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Corollary 2. Let CTR$ be the stream cipher construction above instantiated
with KSCTR. Then, ĈTR$ is IND$-CPA-secure under subversion given that the
randomness generation and the ⊕ operation are trusted.

Thus, IND$-CPA security directly follows from the security of the underlying
PRF. While security is preserved, this does not automatically mean that correct-
ness is preserved also: the decryption algorithm is not executed in the IND$-CPA
security experiment, but is fundamental for correctness. As discussed by Russell,
Tang, Yung, and Zhou [38] this would allow for censorship of chosen messages.
If we would consider a black box decryption algorithm, perfect correctness is
impossible to achieve, as a single input trigger (for example for C� the decryp-
tion always output a constant value) violates the perfect correctness requirement
while highly unlikely to being detected by a watchdog. Nevertheless, as in our
construction the adversary only provides an implementation of the underlying
PRF, we see that our construction automatically satisfies perfect correctness.

Theorem 8. The specification ŜEKS is perfectly correct.

Proof. Correctness follow from the “canonical decryption”5 of the stream cipher
as the same value as during the encryption procedure are computed. Thus, even
if KS(K, IV ) deviates from the specification, the subverted output cancels out
by the ⊕ operation: ˜Dec(K, ˜Enc(K,M)) = ˜KS(K, IV ) ⊕ ˜KS(K, IV ) ⊕ M = M .

Note that previous works [38] also achieved correctness, but tolerated a negligible
decryption error. This is because the authors viewed the decryption algorithm
as an algorithm with a public input distribution and can check consistency with
the specification up to a negligible failure probability. Due to more fine grained
access to the decryption procedure, we can guarantee perfect correctness.

6 Authenticated Encryption

We now see that the classical Encrypt-then-MAC approach grants us subversion-
resilient authenticated encryption, given subversion-resilient building blocks. An
authenticated encryption scheme works on a keyspace K, message space M, data
space D, and ciphertext space C. As usual, we have K =

⋃

λ∈N
Kλ, M = Mλ∈N,

D =
⋃

λ∈N
Dλ, and C =

⋃

λ∈N
Cλ. In the following, we assume that the message

space Mλ and the ciphertext space Cλ contain a special symbol ⊥.

Definition 7. We call a triple AD = (KGen,Enc,Dec) a symmetric encryption
scheme with associated data for key space K, message space M, data space D,
and ciphertext space C. The randomized key generation algorithm KGen outputs
a key K

$← Kλ upon input the security parameter 1λ. The randomized encryption
algorithm Enc is given a key K ∈ Kλ, a message M ∈ Mλ, associated data D ∈
Dλ and returns a ciphertext C ∈ Cλ. The deterministic decryption algorithm Dec
is given a key K ∈ Kλ, a ciphertext C ∈ Cλ, associated data D ∈ Dλ and returns
a message M ∈ Mλ.
5 By this we mean recomputing a value and applying it via ⊕ to the ciphertext in

order to decrypt.
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Fig. 6. The security experiment for AEAD. The oracle Enc(K, ·, ·) expects for K ∈ Kλ

a message M ∈ Mλ and data D ∈ Dλ, while Dec(K, ·, ·) expects a ciphertext C ∈ Cλ

and data D ∈ Dλ.

A symmetric encryption scheme with associated data AD = (KGen,Enc,Dec)
is said to be perfectly correct if for all K ∈ Kλ, M ∈ Mλ, and D ∈ Dλ it holds
Dec(K,Enc(K, (M,D)),D) = (M,D).

Definition 8. Let AD be a symmetric encryption scheme with associated data
and let ExpAE

A,AD(1λ) = 1 be defined as shown in Fig. 6. We define AdvAE
A,AD(1λ) :=

Pr[ExpAE
A,AD(1λ) = 1] and say that AD is AE-secure if AdvAE

A,AD(1λ) is negligible
for all ppt adversaries A.

Usually, the experiment requires that the adversary does not ask for decryp-
tion of outputs of the encryption oracle. For b = 0 the experiment cannot output
a message, since its just given a random string. As this would trivially break
security (and the adversary already knows the answer to the query), this case is
excluded in most works. Hence, there is no need to manage the set Q explicitly.
In the context of subversion this approach unfortunately also rules out a natu-
ral, challenging attack. An adversary could provide an implementation for the
decryption algorithm, which instead of a certain message M� simply outputs
the secret key, allowing the adversary to trivially break security. If the decryp-
tion algorithm is modeled as a black box, this attack seems unavoidable since
a watchdog cannot efficiently detect the trigger message M�. Even amalgama-
tion of several subverted components cannot prevent this attack if no trusted
component is ever used, as an input trigger for the “first” component can again
directly lead to input trigger of the next subverted component and so on. Thus,
some sort of trusted operation is necessary in order to defend against these
kind of attacks. As seen by our construction of stream ciphers with “canonical
decryption” in combination with a trusted XOR operation, perfect correctness is
guaranteed. In order to include this attack in our model, we change the behavior
of the oracles in the experiment for b = 0 by introducing book keeping of the
queries. This allows the adversary to ask for decryptions of encryption queries
without trivially breaking security. An interesting side effect of this definition is
that every scheme satisfying this security notion also needs to satisfy correctness
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(although only up to negligible failure probability), as the adversary would be
able to distinguish the two worlds of the experiment otherwise.

6.1 Achieving Subversion-Resilience via Encrypt-then-MAC

The classical way to construct authenticated encryption relies on the use of a
MAC that is applied after encryption. Decryption then first verifies the MAC
and afterwards performs the underlying decryption algorithm. Due to the strong
unforgeability of the MAC, an adversary cannot make use of decryption and the
security experiment reduces to IND$-CPA-security. This is useful for achiev-
ing subversion-resilience, as a symmetric encryption which is IND$-CPA secure
under subversion does not give any security guarantees for the decryption algo-
rithm and avoids input trigger attacks. While our construction of stream ciphers
guarantees correctness under random inputs, this cannot be guaranteed if the
adversary can freely choose the inputs for the decryption algorithm. The reason
for this again are input trigger attacks, since no watchdog knows the distribution
of the queries made by the adversary. The Encrypt-then-MAC approach with
subversion-resilient MAC ensures that input trigger attacks are ruled out even
if the verify algorithm is subverted. In combination with a subversion-resilient
encryption scheme the adversary needs forge a MAC to obtain a decryption of
a ciphertext that it did not obtain as an output of the encrypt oracle.

Encrypt-then-MAC. Let MAC = (Gen,Tag,Vf) be a MAC and SE$ = (KGen$,
Enc$, Dec$) be a symmetric encryption scheme. Then, the symmetric encryp-
tion scheme with associated data AD = ADSE$,MAC = (KGenAD, EncAD, DecAD)
is defined as follows: The key generation algorithm KGenAD(1λ) first obtains
a key KMAC

$← KGenMAC(1λ), another key K$
$← KGen$(1λ) and outputs

K = (KMAC,K$). The encryption algorithm EncAD(K = (KMAC,K$),M,D)
first calls the underlying encryption algorithm Enc$ to compute a ciphertext
C$

$← Enc$(K$,M), then produces a tag T
$← Tag(KMAC, C$ || D), and outputs

C = (C$, T ). The decryption algorithm DecAD(K = (KMAC,K$), C = (C$, T ),D)
first verifies the MAC of C by computing b

$← Vf(KMAC, C$ || D,T ). If b = 0
(i e. the verification failed), it returns ⊥. Else, it computes M

$← Dec$(K$, C$)
and returns M . The straightforward reduction to the security of MAC and SE$

can be used to obtain the following well-known theorem.

Theorem 9 ([9]). If MAC is SUF-CMA-secure and SE$ is IND$-CPA-secure,
then AD is AE-secure.

Correctness of SE is directly inherited by AD as the MAC does not change
the correctness of the underlying encryption scheme.

Theorem 10. If ̂SE$ is perfectly correct, then ̂AD is perfectly correct.

We prove that the Encrypt-then-MAC approach is indeed sound if both the
encryption scheme as well as the MAC are subversion-resilient, following the
proof idea of Bellare and Namprempre [8,9].
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Theorem 11. If ̂SE is IND$-CPA-secure under subversion, M̂AC is SUF-CMA-
secure under subversion and ̂SE is correct, then ̂AD is AE-secure under subver-
sion and correct.

Proof (Sketch). The watchdog for ̂AD runs the watchdog for ̂SE and M̂AC. Note
that there is no need for testing the components in combination, as both allow
arbitrary input distributions while being subverted and are executed indepen-
dently. Assuming that the watchdog does not detect subversion, we can follow
the proof of Bellare and Namprempre [8,9] for the Encrypt-then-MAC approach.
The main difference is to base the security on the subversion-resilience of the
building blocks rather then the “classical” security properties. However, these
only differ by the preceded check by the watchdog and that usage of the imple-
mentation instead of the specifications. Thus, in the same way IND$-CPA secu-
rity in the classical setting does grant any security guarantees for the decryption
algorithm, we also do not need to immunize the subverted decryption algorithm.
First, we replace the decryption algorithm for b = 1 with an oracle that always
answers with the ⊥ symbol, except if the input was obtained by querying the
encrypt oracle. If the output of the encrypt oracle was handed to the decryption
oracle, the adversary always obtains correct answer, either by the correctness
of the encryption scheme for b = 1 or due to the book keeping if b = 0. Now
assume C was not obtained via the encrypt oracle. In case C is malformed and
the decryption oracle returns a ⊥ symbol, the adversary cannot distinguish this
from an oracle which always returns the ⊥ symbol. The last case that remains
is that C is a valid ciphertext and such that the encrypted message (M,D) was
not issued to the encryption oracle. This case is again not possible, since any
adversary reaching this case would have successfully forged a tag for (M,D), thus
breaking subversion resilience of M̂AC. Therefore we can “disable” the decryption
oracle. Then however, we can base security entirely on the subversion-resilience
of ̂SE, as the adversary can only make effective use of the encrypt oracle. We
replace the encrypt oracle with an oracle returning random bits. This change is
again indistinguishable by the subversion-resilience of ̂SE. We changed all oracles
so that for both choices of b the adversary is given access to the same oracles,
thus being unable to win the experiment apart from guessing the bit b.
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INDOCRYPT 2021. LNCS, vol. 13143, pp. 73–92. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-92518-5 4

14. Bogdanov, A., Rosen, A.: Pseudorandom functions: three decades later. In: Tutori-
als on the Foundations of Cryptography. ISC, pp. 79–158. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-57048-8 3

15. Bossuat, A., Bultel, X., Fouque, P.-A., Onete, C., van der Merwe, T.: Designing
reverse firewalls for the real world. In: Chen, L., Li, N., Liang, K., Schneider, S.
(eds.) ESORICS 2020. LNCS, vol. 12308, pp. 193–213. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-58951-6 10

16. Brown, D.R.L., Gjøsteen, K.: A security analysis of the NIST SP 800-90 elliptic
curve random number generator. In: Menezes, A. (ed.) CRYPTO 2007. LNCS,
vol. 4622, pp. 466–481. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-74143-5 26

https://doi.org/10.1007/978-3-030-21568-2_23
https://doi.org/10.1145/2810103.2813635
https://doi.org/10.1007/978-3-319-96881-0_10
https://doi.org/10.1109/SFCS.1997.646128
https://doi.org/10.1145/2810103.2813681
https://doi.org/10.1145/2810103.2813681
https://doi.org/10.1007/3-540-44448-3_41
https://doi.org/10.1007/s00145-008-9026-x
https://doi.org/10.1007/978-3-662-44371-2_1
https://doi.org/10.1007/978-3-662-44371-2_1
https://doi.org/10.1007/978-3-030-75245-3_23
https://doi.org/10.1145/3133956.3133981
https://doi.org/10.1145/3133956.3133981
https://doi.org/10.1007/978-3-030-92518-5_4
https://doi.org/10.1007/978-3-030-92518-5_4
https://doi.org/10.1007/978-3-319-57048-8_3
https://doi.org/10.1007/978-3-030-58951-6_10
https://doi.org/10.1007/978-3-540-74143-5_26
https://doi.org/10.1007/978-3-540-74143-5_26


482 P. Bemmann et al.

17. Chakraborty, S., Dziembowski, S., Nielsen, J.B.: Reverse firewalls for actively
secure MPCs. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS,
vol. 12171, pp. 732–762. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-56880-1 26

18. Chakraborty, S., Magri, B., Nielsen, J.B., Venturi, D.: Universally composable
subversion-resilient cryptography. In: Dunkelman, O., Dziembowski, S. (eds.)
EUROCRYPT 2022, Part I. LNCS, vol. 13275, pp. 272–302. Springer, Heidelberg
(2022). https://doi.org/10.1007/978-3-031-06944-4 10

19. Checkoway, S., et al.: A systematic analysis of the juniper dual EC incident.
In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.)
ACM CCS 2016, pp. 468–479. ACM Press, October 2016. https://doi.org/10.1145/
2976749.2978395

20. Chen, R., Mu, Y., Yang, G., Susilo, W., Guo, F., Zhang, M.: Cryptographic reverse
firewall via malleable smooth projective hash functions. In: Cheon, J.H., Takagi,
T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 844–876. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53887-6 31

21. Chow, S.S.M., Russell, A., Tang, Q., Yung, M., Zhao, Y., Zhou, H.-S.: Let a non-
barking watchdog bite: cliptographic signatures with an offline watchdog. In: Lin,
D., Sako, K. (eds.) PKC 2019. LNCS, vol. 11442, pp. 221–251. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-17253-4 8

22. Degabriele, J.P., Farshim, P., Poettering, B.: A more cautious approach to security
against mass surveillance. In: Leander, G. (ed.) FSE 2015. LNCS, vol. 9054, pp.
579–598. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48116-
5 28

23. Dodis, Y., Farshim, P., Mazaheri, S., Tessaro, S.: Towards defeating backdoored
random oracles: indifferentiability with bounded adaptivity. In: Pass, R., Pietrzak,
K. (eds.) TCC 2020. LNCS, vol. 12552, pp. 241–273. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-64381-2 9

24. Dodis, Y., Ganesh, C., Golovnev, A., Juels, A., Ristenpart, T.: A formal treat-
ment of backdoored pseudorandom generators. In: Oswald, E., Fischlin, M. (eds.)
EUROCRYPT 2015. LNCS, vol. 9056, pp. 101–126. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46800-5 5

25. Dodis, Y., Mironov, I., Stephens-Davidowitz, N.: Message transmission with reverse
firewalls—secure communication on corrupted machines. In: Robshaw, M., Katz, J.
(eds.) CRYPTO 2016. LNCS, vol. 9814, pp. 341–372. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53018-4 13

26. Fischlin, M., Janson, C., Mazaheri, S.: Backdoored hash functions: immunizing
HMAC and HKDF. In: Chong, S., Delaune, S. (eds.) CSF 2018 Computer Secu-
rity Foundations Symposium, pp. 105–118. IEEE Computer Society Press (2018).
https://doi.org/10.1109/CSF.2018.00015

27. Fischlin, M., Mazaheri, S.: Self-guarding cryptographic protocols against algorithm
substitution attacks. In: Chong, S., Delaune, S. (eds.) CSF 2018 Computer Security
Foundations Symposium, pp. 76–90. IEEE Computer Society Press (2018). https://
doi.org/10.1109/CSF.2018.00013

28. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions
(extended abstract). In: 25th FOCS, pp. 464–479. IEEE Computer Society Press,
October 1984. https://doi.org/10.1109/SFCS.1984.715949

29. Goldreich, O., Goldwasser, S., Micali, S.: On the cryptographic applications of ran-
dom functions (extended abstract). In: Blakley, G.R., Chaum, D. (eds.) CRYPTO
1984. LNCS, vol. 196, pp. 276–288. Springer, Heidelberg (1985). https://doi.org/
10.1007/3-540-39568-7 22

https://doi.org/10.1007/978-3-030-56880-1_26
https://doi.org/10.1007/978-3-030-56880-1_26
https://doi.org/10.1007/978-3-031-06944-4_10
https://doi.org/10.1145/2976749.2978395
https://doi.org/10.1145/2976749.2978395
https://doi.org/10.1007/978-3-662-53887-6_31
https://doi.org/10.1007/978-3-030-17253-4_8
https://doi.org/10.1007/978-3-662-48116-5_28
https://doi.org/10.1007/978-3-662-48116-5_28
https://doi.org/10.1007/978-3-030-64381-2_9
https://doi.org/10.1007/978-3-662-46800-5_5
https://doi.org/10.1007/978-3-662-53018-4_13
https://doi.org/10.1109/CSF.2018.00015
https://doi.org/10.1109/CSF.2018.00013
https://doi.org/10.1109/CSF.2018.00013
https://doi.org/10.1109/SFCS.1984.715949
https://doi.org/10.1007/3-540-39568-7_22
https://doi.org/10.1007/3-540-39568-7_22


Subversion-Resilient Authenticated Encryption Without Random Oracles 483

30. Maurer, U., Sjödin, J.: A fast and key-efficient reduction of chosen-ciphertext
to known-plaintext security. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol.
4515, pp. 498–516. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-72540-4 29

31. Maurer, U., Tessaro, S.: Basing PRFs on constant-query weak PRFs: mini-
mizing assumptions for efficient symmetric cryptography. In: Pieprzyk, J. (ed.)
ASIACRYPT 2008. LNCS, vol. 5350, pp. 161–178. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-89255-7 11

32. Mironov, I., Stephens-Davidowitz, N.: Cryptographic reverse firewalls. In: Oswald,
E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 657–686. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6 22

33. Naor, M., Reingold, O.: Synthesizers and their application to the parallel construc-
tion of pseudo-random functions. J. Comput. Syst. Sci. 58(2), 336–375 (1999)

34. Perlroth, N., Larson, J., Shane, S.: Secret documents reveal NSA campaign against
encryption (2013). https://archive.nytimes.com/www.nytimes.com/interactive/
2013/09/05/us/documents-reveal-nsa-campaign-against-encryption.html

35. Rogaway, P.: Authenticated-encryption with associated-data. In: Atluri, V. (ed.)
ACM CCS 2002, pp. 98–107. ACM Press, November 2002. https://doi.org/10.
1145/586110.586125

36. Rogaway, P., Bellare, M., Black, J., Krovetz, T.: OCB: a block-cipher mode of
operation for efficient authenticated encryption. In: Reiter, M.K., Samarati, P.
(eds.) ACM CCS 2001, pp. 196–205. ACM Press, November 2001. https://doi.org/
10.1145/501983.502011

37. Russell, A., Tang, Q., Yung, M., Zhou, H.-S.: Cliptography: clipping the power of
kleptographic attacks. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS,
vol. 10032, pp. 34–64. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53890-6 2

38. Russell, A., Tang, Q., Yung, M., Zhou, H.S.: Generic semantic security against
a kleptographic adversary. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu,
D. (eds.) ACM CCS 2017, pp. 907–922. ACM Press, October/November 2017.
https://doi.org/10.1145/3133956.3133993

39. Russell, A., Tang, Q., Yung, M., Zhou, H.-S.: Correcting subverted random oracles.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 241–
271. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0 9

40. Shumow, D., Ferguson, N.: On the possibility of a back door in the NIST sp800-90
dual EC PRNG (2007). http://rump2007.cr.yp.to/15-shumow.pdf, cRYPTO 2007
Rump Session

41. Wegman, M.N., Carter, L.: New hash functions and their use in authentication
and set equality. J. Comput. Syst. Sci. 22(3), 265–279 (1981). https://doi.org/10.
1016/0022-0000(81)90033-7

42. Young, A., Yung, M.: The dark side of “black-box” cryptography or: should we
trust capstone? In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 89–103.
Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 8

https://doi.org/10.1007/978-3-540-72540-4_29
https://doi.org/10.1007/978-3-540-72540-4_29
https://doi.org/10.1007/978-3-540-89255-7_11
https://doi.org/10.1007/978-3-662-46803-6_22
https://archive.nytimes.com/www.nytimes.com/interactive/2013/09/05/us/documents-reveal-nsa-campaign-against-encryption.html
https://archive.nytimes.com/www.nytimes.com/interactive/2013/09/05/us/documents-reveal-nsa-campaign-against-encryption.html
https://doi.org/10.1145/586110.586125
https://doi.org/10.1145/586110.586125
https://doi.org/10.1145/501983.502011
https://doi.org/10.1145/501983.502011
https://doi.org/10.1007/978-3-662-53890-6_2
https://doi.org/10.1007/978-3-662-53890-6_2
https://doi.org/10.1145/3133956.3133993
https://doi.org/10.1007/978-3-319-96881-0_9
http://rump2007.cr.yp.to/15-shumow.pdf
https://doi.org/10.1016/0022-0000(81)90033-7
https://doi.org/10.1016/0022-0000(81)90033-7
https://doi.org/10.1007/3-540-68697-5_8


Scored Anonymous Credentials

Sherman S. M. Chow1(B) , Jack P. K. Ma1, and Tsz Hon Yuen2

1 Department of Information Engineering, The Chinese University of Hong Kong,
Shatin, N.T., Hong Kong

{smchow,mpk016}@ie.cuhk.edu.hk
2 Department of Computer Science, The University of Hong Kong, Pokfulam, Hong

Kong
thyuen@cs.hku.hk

Abstract. Securely maintaining “credits” of users judging their behav-
ior in past authenticated sessions is vital to encourage user participation,
but doing it over anonymous credentials is non-trivial, especially when
users would avoid claiming negative credit and escape from blocklisting.
Prevalent designs impose an authentication cost linear in the blocklist
size or a stringent requirement of sequential and timely judgment of each
session without retrospective adjustment, as a single unjudged session
curbs the authentication of all users. We propose scored anonymous cre-
dentials, a new design storing a number of active sessions with volatile
scores downgradable before finalized. Sessions can be judged in any order
and at varying times without affecting all users. Any backlog of unjudged
sessions only affects the users behind them. We achieve efficiency and
flexibility using verifiable shuffle, which is hardly used in existing anony-
mous blocklisting/reputation enforcement systems.

1 Introduction

Anonymity has always been an important issue on the Internet. In the early days,
most people (wrongly) assumed anonymity on the Internet by using pseudonyms,
but the service provider (SP) might use IP addresses to identify the users.
Anonymity networks [29,36] were then developed to make tracing IP addresses
more difficult. However, this may not be directly applicable to services that
require users to register and authenticate. Using the same registered pseudonym
to access the service each time links user behavior across sessions. It is possible to
uniquely profile a user across different services by collecting this information [41].

Anonymous credentials [18] ensure unlinkable authentications. However,
users may “misbehave” in some sessions exploiting their anonymity. To illus-
trate, Wikipedia users (contributors/reviewers) may prefer their identities to be
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masked so that their views would not represent any belonging organizations or
communities (e.g., a company/political party) and avoid their online behavior
causing any consequence in their “real” life, especially in places with restricted
freedom of speech. On the other hand, Wikipedia has its own set of “subjective”
policies and guidelines (e.g., concerning copyright) that users must follow. Users
who violate such policies repetitively and deliberately should be penalized.

It is challenging to support subjective revocation (cf., legal contract) in anony-
mous authentication without relying on any trusted third party (TTP). Some
systems only support objective revocation based on mathematically or algorith-
mically evaluable claims of misbehavior (cf., smart contract), such as double
spending in e-cash [23,37] or double voting [24]. Revocable anonymous creden-
tials [2,3,17,19,28] often assume users to be revoked had been deanonymized
by some external means. TTP-based approaches, such as group/traceable sig-
natures, require a revocation authority to use a non-public database gathered
when the user first joins the system [7,22] or a secret key to recover the signer
identity [7,26] or create a tracing token [1,48]. The TTP is assumed not to vio-
late user privacy unnecessarily. Simply, “off-the-shelf” credentials themselves do
not support TTP-free subjective revocation [44].

Generalizing revocation, reputation can be used as a basis for granting
privileges to special services or imposing limitations on users based on their
behaviors. It is important to encourage participation, especially when participa-
tion may potentially incur a revocation or real-life consequences. A large-scale
online anonymous community has already been developed. For example, Bern-
stein et al. [10] showed that over 90% of posts are anonymous on 4chan.org,
which has a million posts per day1 and 22+ million unique monthly users. How-
ever, registration is not needed for posting anonymously in these forums cur-
rently. So, reputation cannot be maintained. We refer to [35] for a survey on
reputation management.

Updatable anonymous credential is useful for adding reputation. Each user
is associated with a reputation score, an aggregated sum of all individual rep-
utations decided by the SP (possibly after hearing from other users) one gains
from each contribution. A high reputation could mean the user has successfully
helped many others and can be considered more trustworthy. Reputation can
also somewhat mitigate sybil attacks since an attacker would need to give up
any previously earned reputation for registering anew.

1.1 A Critical Review of Existing Systems

Existing (updatable) anonymous credential systems with subjective revocation,
however, are designed for applications with lower traffic and anonymity needs
(e.g., assuming anonymity is needed for 20% of all Wikipedia posts and is meant
to handle about 100, 000 anonymous posts per day [4,5]). They are not suitable
for a large-scale community with millions of posts per day, e.g., Reddit.

1 Statistic at https://4stats.io.

https://4stats.io
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All works reviewed below assume one SP serving many clients. There is no
separate (trusted) entity for revocation. For simplicity, this line of works assumes
the SP is both the credential issuer and verifier, and has the final say in the score
for each session, which can be published on a public bulletin board.

After a successful user authentication, the SP will assign a publicly-known
session identifier. The user credential will be attached to a ticket associated to the
session identifier. These two terms are often used interchangeably in this paper.

Table 1 compares known systems in terms of their desired properties.

Blocklisting/Reputation with Linear (Proving) Cost. BLAC [44] and EPID [13]
are two early TTP-free systems. Their blocklist consists of “deterministic tags”
directly available from the authentication transcripts of sessions that should be
blocklisted. Revocation is done by proving that the user secret in the credential
could not have generated any tag in the blocklist. This takes O(L) time, where
L is the blocklist size. Moreover, the blocklist never shrinks. It can become
very long quickly since malicious users are motivated to keep damaging (e.g.,
spamming or committing vandalism) in a short period before getting caught.
The whole system keeps slowing down as times go by, affecting all (honest) users.

BLACR [5] extends BLAC to also support reputation with three lists, L+,
L−, and LB, storing the tags of positively scored, negatively scored, and blocked
sessions, respectively. Authentication now runs in O(|L+| + |L−| + |LB|) time,
which is even worse than BLAC’s O(L) time complexity, where L = |LB|.

SNARKBlock [43] improves BLAC with an optimized zkSNARK-based proof
protocol that allows reusing proofs against chunks of unchanged blocklist. If a
session is later unblocked, all must recompute the proof w.r.t. the affected chunk.

Discouraging Infrequent Users. To tackle the linear complexity, BLACR was
extended into BLACR-Express [5] with checkpoints. Suppose a user has passed
an authentication after the i-th checkpoint in the blocklist; the SP marks the
value i on the credential. Any future blocklist checking of this updated credential
only needs to be done with respect to ΔL entries put into the blocklist after the
i-th checkpoint. This discourages infrequent users from logging in since their
authentication request before catching up with the latest checkpoint will be
slower and stand out from the crowd, degrading their anonymity. Users are
motivated to rush to get their express passes, forcing the SP to handle a burst
of requests at each checkpoint, which might result in a denial of service.

Stringent Timelines for Blocklisting. PEREA [45] changes the authentication
semantic for reducing the O(L) complexity to O(K), where K is the fixed number
of tickets in a credential. Each authentication replaces the oldest of the K tickets
with a new one, so misbehavior must be caught within the “revocation window”
of K authentications. Since malicious users are motivated to wash off their bad
records, it imposes a stringent requirement for the SP to evaluate each session
sequentially and timely. The same applies to FAUST [38] and PERM [4]. In
Table 1, PERM is marked to have no score consistency since the washing-out
problem makes the credential score inconsistent with the judgment intention.
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Table 1. Summary of Related Work: Halt-free systems should have complexity inde-
pendent on any global list, without halting authentication due to a single hard-to-judge
session; SNARKBlock is like BLAC, and PEREA is like PERM in this table.

Scheme Halt-free Score Consistency Rate Limit Cred. Update Dynamic Judgment

BLAC ✗ ✗ ✗ Full Flexibility
BLACR ✓ ✗ Non-“Checkpointed”
PERM ✗ ✗ ✗ ✓ Block-then-Forgive
PE(AR)2 ✓ ✗ ✓ Block-then-Forgive
FARB ✗ ✓ ✓ ✓ Block-then-Forgive
SAC ✓ ✓ ✓ ✓ Before Finalization

Block First, Forgive Later. PERM and PE(AR)2 [47], which do not prove w.r.t.
the whole global list, only support score upgrades – an easy option as a user is
motivated to claim them. Indeed, PE(AR)2 does not force redeeming of negative
scores by itself. Also, the SP might take strict “block-first-forgive-later” measures.

Unavoidably Halting Innocent Users. PERM [4] takes the revocation-window
model further, which forces the session identifiers to increase sequentially. The
goal is to remove the use of accumulator in PEREA [45] for reducing user com-
putation (albeit with a slightly higher server-side cost) via using a global judg-
ment pointer pointing to the latest authenticated session that has been judged
(e.g., free from misbehavior). The eldest unjudged session of every credential
should not be “too far away” from the global pointer for successful authentica-
tion. FARB [46] further exploits the sequential order assumption, which replaces
K disjunctive proofs (judged or unjudged) with simply one range proof.

Such an authentication semantic forbids any user from redeeming the judged
session in an arbitrary order (or it violates the increasing-identifier invariant).
The existence of one hard-to-judge session will affect “innocent” users who have
nothing to do with that session to an even greater extent than PEREA (which
essentially maintains a local judgment pointer compared by counting).

Moreover, even when the global halting is “lifted,” i.e., that controversial
session is eventually finalized, all users are motivated to redeem all redeemable
sessions in a rush, similar to the checkpoint design of BLACR-Express [5].

We stress that this is a design oversight of all these systems under the
revocation-window model, creating a technical restriction incompatible with
operational characteristics. In other words, ideally, the fact that some sessions
take longer to judge should only affect their originators but not all system users.

1.2 Our Contribution

We propose scored anonymous credentials (SAC) with a number of features.

Avoiding Queue Structure or Disjunctive Proof. All K tickets a user holds are
assigned with an initial score, e.g., 0, at their creation time. These tickets are
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marked as “active” and can only be removed from the credential when the SP
finalizes them. This is in contrast to PERM/PEREA, which always removes the
oldest ticket and adds a new one to the credential upon authentication.

To assure the SP of the ticket statuses in a credential, authentication requires
proving that each ticket is either an active one with a volatile score, a judged
one with a finalized score, or a dummy ticket. Instead of the apparent need for a
disjunctive proof (extensively used in PERM/PEREA), we employ a signature-
based set membership proof for each ticket (with its optimization and complexity
to be described shortly) against a global ticket list with volatile/finalized scores.

Shuffling and Summing Up All Tickets. The user can redeem (and remove) any
finalized or dummy tickets. To highlight a novelty of our new design, we do
not use complicated zero-knowledge proof (ZKP) to explicitly force a user to
redeem/claim a session that is finalized or with its volatile score downgraded.
Instead, we use the same signature-based set membership proof to force the
inclusion of all tickets (of any status) via a summation of all (volatile/finalized)
scores. To privately prove/update this metadata, we employ verifiable shuffle and
dummy tickets so the SP/user can judge/redeem tickets in an arbitrary order.
To the best of our knowledge, no related systems so far use verifiable shuffle.

Solving the Global-Halting Problem. As a major innovation, SAC deviates from
the two prevalent designs – reliance on a global judgment pointer (e.g., PERM)
or global checkpoints (e.g., BLACR), while still being efficient. The SP can keep a
“problematic” session pending prolonged judgment “active” with a volatile score.
A credential is only blocked from further authentication if it has K unjudged
sessions. Users who are not involved with the problematic cases just authenticate
as usual. This leads to “intelligent” rate-limiting tracing back to originating users.

Flexibility of Scoring. Supporting active sessions allows an assignment of volatile
scores before finalization, making SAC scoring mechanism highly flexible and free
from any chronological order of judgment. The SP could temporarily assign a
negative score to the session in question, leading to a more natural and benign
authentication semantic in which a user with a higher reputation (many prior
positive scores) is less likely to be blocked abruptly due to one potential wrong-
doing. Yet, once the wrongdoing is confirmed, the session status can be changed
from active to finalized, and the user could still be (permanently) banned. More-
over, our efficient ZKP over the status of all sessions in a credential also enables
downgradable scores, while prior works might support only block-then-forgive.

Flexible Anonymity-Efficiency Trade-Off. The use of verifiable shuffle ensures
an updated credential remains unlinkable to its old version sharing some old
tickets. SAC thus features a dynamic buffer size2 K. Users with fewer/more than
K tickets can pad/remove dummy tickets during each authentication. Frequent
users are more willing to choose a larger K, either actually storing many active

2 It is non-trivial to reduce the queue size of PEREA/PERM while preserving privacy.
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sessions or having some of them being dummy sessions of score 0. Less frequent
users can opt for a smaller K, which leads to a faster authentication time. This
is similar to ring signatures or related techniques [23], in which one can choose
which user groups (cf., those using a particular suggested buffer size in SAC) to
hide inside. As the SP knows the number of tickets to be removed, the users can
agree to remove one (dummy or judged) ticket per authentication for anonymity.

High Efficiency via Optimized Cryptographic Techniques. As explained, a key
idea to support redeeming of judged sessions in an arbitrary order is to leverage
verifiable shuffle, a building block yet to be explored by the research line of TTP-
free anonymous credentials with blocklist and reputation. This ensures that the
set of sessions is correctly shuffled across the old credential and an updated one.
A breakthrough of Bayer and Groth [9] features a “minimal” communication
bandwidth of O(

√
K) for shuffling K commitments with almost linear complex-

ity in proving and verification. Recent advances in (succinct) zero-knowledge
argument of knowledge (e.g., Bulletproofs [14]) reduce the communication costs
to O(log K) with higher computational costs for the prover and verifier.

Our construction also includes some other optimization for better efficiency.
Recall that each authentication ZK-proves that some of its past tickets are in
the active ticket list. Like PERM, we do not use pairing-based accumulators [2];
but instead of enforcing a sequential ticket order in a credential to simplify the
membership proof, we use a constant-size signature-based set membership proof,
albeit without incurring global halting caused by one controversial session.

To claim the score of judged tickets, PERM uses ZKP of signatures, which
results in O(K) pairings and exponentiations. We equip our signatures with an
efficient batch verification algorithm accompanied by its zero-knowledge version.
It takes O(K) exponentiation and O(1) pairing only, which greatly improves the
efficiency. The use of disjunctive proofs in PERM prevents batching operations.

Finally, we empirically show that SAC outperforms existing related systems,
given the simplicity of our design and the cryptographic techniques we employed.

Concurrent Work. SMART [39] extends FARB [46] into a multi-queue design
to alleviate the time pressure of finalizing a hard-to-judge session. Each queue
keeps tickets that have undergone the same number of transient judgments. A
transient judgment takes its effect or is “redeemed” in each authentication, which
moves the corresponding ticket from one queue to another. As a credential can be
seen as multiple credentials (using the implicit queue design of FARB) bundled
together, sequential judging is still enforced per queue but does not affect other
queues. This reduces the global-halting effect of sequential judging with a linear
cost in the number of queues. However, it requires a more complex ZKP to
hide the queue number during redemption. On the other hand, SMART marks
the “version” of each transient judgment independently, while enforcing score
updates in SAC involves expiring all previously signed judgments and issuing
new ones (Sect. 3.5). In Table 1, SMART shares the same characteristics as SAC.
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2 Definitions

2.1 Syntax of Scored (or Blocklistable) Anonymous Credentials

We first formulate an abstract definition for anonymous credentials, modeling
the two kinds of interactions between users and the service provider (SP). After
the SP sets up the whole system, each user registers with the SP anonymously
to obtain a credential. A user can then use it to authenticate to the SP. For SAC,
the SP updates the public information to reflect the new score or status assigned
to each session according to the action carried out by its user.

We use an existing notation [47] of 2PC(U(inU ), S(inS)) → {U(outU ),
S(outS)} to represent parties U and S interact via the respective U and S por-
tion of the 2-party computation protocol 2PC taking ini and outputting outi for
i ∈ {U ,S}.

Definition 1. Anonymous credentials involve the algorithms/protocols below.
Setup(1λ) → (pp, sk): The SP inputs in a security parameter λ, and outputs

a secret key sk for the SP itself and the public parameter pp.
Reg(U(pp),S(pp, sk)) → {U(cred,A),S(pp′)}: The user U inputs the public

parameter pp, while the SP S takes pp and the secret key sk as input. Upon
completion, the user outputs a credential cred and an attribute set A, while the
SP outputs an updated public parameter pp′.

Auth(U(pp, cred,A, f),S(pp, sk, f)) → {U(b, cred′,A′), S(b, pp′)}: The user U
inputs the public parameter pp, its credential cred, its attributes A, and the
same access policy f , while the SP S inputs the public parameter pp, the secret
key sk, and an access policy f . Upon completion, U outputs a bit b indicating
whether authentication is successful, an updated credential cred′, and updated
attributes A′, while S outputs the same bit b and an updated public parame-
ter pp′.

Update(pp, sk, aux) → pp′: The SP inputs the public parameter pp, the secret
key sk, and auxiliary information aux, capturing the score assigned to a certain
session as recorded by Auth in pp′. It outputs an updated public parameter pp′.

Prior Formulations. Earlier works [4,5,38,45] never explicitly give a syntactic
framework of blockable anonymous credentials or those also supporting reputa-
tion. A notable exception is PE(AR)2 [47], which features a standalone redemp-
tion protocol that updates a credential according to the SP-side update given
by two separate algorithms for revocation and scoring (a session) run by the SP.

Our SAC formulation forces the redemption of any negative finalized score
(not supported by PE(AR)2) and hence encapsulates the redemption protocol in
Auth, the authentication protocol. For a generic treatment, we also encapsulate
all kinds of assignments of score/status into one Update algorithm run by the SP.

In contrast to the different designs of prior works, our definition is generic
for an abstract authentication semantic purely based on an attribute set A as a
user secret input and an authentication policy f as a common public input.

In what follows, we will also supplement details specific to SAC, e.g., what
are in pp, with discussions of alternatives in some prior works.
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Credential Attributes. In SAC (and systems like PERM/PEREA), the credential
encoding attributes A stores session identifiers U = {t1, . . . , tK} originated from
each session (e.g., a forum post or a Wikipedia edit) and score(s) s to be checked
against the access policies, e.g., whether they exceed certain thresholds.

Session Judgment. Public session judgments made by the SP are reflected in the
updatable public parameter pp. In SAC, pp contains a list LA = {(tj , sj , σj)} of
active judgments and a list LJ = {(tj , σ̂j)} of finalized, judged tickets, where tj
is a ticket unique to each session and sj is the session score. PERM maintains
only LA; while PEREA also maintains LJ as a list of blocked tickets.

All entries are accompanied by σj or σ̂j , possibly different forms of signatures
issued by the SP. The use of signature varies according to instantiations, which
we omit for brevity in parts of our later discussion. Particularly, for SAC, the
signatures in LJ are for set membership proof. We often use a “compact” form
L = {(ti, si, σi, ∅/σ̂i} that combines L{A,D,J}. For ti ∈ LA \LJ, the last entry is ∅.

In alternative formulation (e.g., PEREA), LJ could contain a single (public)
cryptographic object, e.g., accumulator, instead of many signatures. LA might
also be a cryptographic object storing key-value pairs.

Workflow. Below supplements details of SAC calling the (abstract) algorithms:

1. (SAC.Setup) The service provider (SP) setups the credential system.
– It runs KGen(1λ) → (pp, sk), where sk is the secret credential-issuance

key.
– For public parameters pp, its static part contains the cryptographic

parameters and the public (verification) key corresponding to sk. It also
defines default values like the list LD of dummy tickets, and the base score
s0 for the initial attributes A0. Its dynamic part contains initially empty
lists LA and LJ of active and judged tickets with scores, and a set for
recording the nonce revealed by the user during authentication.

2. (SAC.RegU ↔ SAC.RegS) A user registers to the SP to obtain a credential.
– The user and SP run Reg(U(pp),S(pp, sk)) → {U(cred,A0),S(pp′)}.
– The initial attributes A0 = (x, q, s0,U) contain user secret x, a nonce q

(both kept secret from the SP), an initial score s0, and a user ticket set
U, which will be initialized with a set of dummy tickets UD (as defined by
pp).

3. (SAC.AuthU ↔ SAC.AuthS) A user who holds a valid credential from SAC.Reg
authenticates via Auth(U(pp, cred,A, f),S(pp, sk, f)), where policy f checks:

– Nonce q has not been previously used by any authentication.
– Judged tickets in UJ = (U ∩ LJ) are (required3 to be) cleared out.
– The credential score s plus the score of all tickets in U satisfies f .

It outputs ⊥ if the check fails; otherwise, it updates the credential attributes:
– Judged or dummy ticket(s) are removed from U. (Users can redeem any

number of dummy tickets, i.e., the set T containing tickets from (UD∪UJ).)

3 In PERM/PEREA, the oldest ticket would be removed even if it is not yet judged.
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– Nonce q is replaced by a new one (unknown to the SP) chosen by the
user.

– Their scores are accumulated to s.
– A new ticket t, chosen by the SP, is appended to the user’s credential.
– Dummy tickets are padded to maintain |U| = K (if needed).

The SP assigns t with an initial score 0 and updates LA with (t, s, σ) applied
as an active (and unjudged) session. The SP also records q in pp′.

4. (SAC.Update) The SP can judge the ticket t with a score s using its key by
running Update(pp, sk, (t, s)) → pp′ that appends (t, s) (with a signature) to
list LA. Alternatively, it can also finalize t by adding it to list LJ. The list of
signatures on (t, s) (and t) is made public and is managed by the SP.

2.2 Security Requirements

We consider the requirements of blocklistable anonymous credentials [4,5,38,45].
At a high level, SAC should satisfy the following properties:

– Completeness. An honest user can be authenticated by an honest SP if its
credential satisfies the access policy, i.e., fpp(A) = 1.

– Soundness. A user must hold a valid credential encoding A, i.e., fpp(A) = 1,
to authenticate. The updated attribute A′ follows specifications in Auth.

– Anonymity. The SP can only learn whether an authenticating user satis-
fies the authentication policy. The SP cannot distinguish the authentication
requested by user i ∈ {0, 1} with attributes Ai if fpp(A0) = fpp(A1).

Soundness. We consider soundness against malicious users similar to and largely
relies on the soundness of the underlying ZKP. It covers scoring consistency, i.e.,
a malicious user cannot claim a ticket owned by others or a wrong score.

In SAC, although a user can choose to “procrastinate” in claiming the score of
judged sessions U∩LJ, the scores of all tickets in U are still counted toward the
authentication policy. All tickets are initially in an active state, e.g., (ti, sti

, σti
) ∈

LA for all tickets ti in the system. Scoring consistency requires the score s′

computed as a sum of users’ current score s (taking one attribute slot in the
credential) and those of the past tickets

∑
t∈U

st is consistent with LA and LJ.

Anonymity. Anonymity is defined against a passive SP (strictly stronger than
eavesdroppers) trying to deanonymize a user who is invoking an authentication
instance. Due to the correct functionality, the authentication policy f can dis-
tinguish whether (the credential of) a user satisfies the required score threshold.
The best anonymity guarantee only holds modulo what is inferrable from f .

Active attacks manipulating f or the score of a session are excluded. For
example, the SP, leveraging its role, could put a session of question to the block-
list for identifying if the user being authenticated has originated the now blocked
session. Such manipulations are noticeable publicly and leave evidence. A user
can refuse to carry out the authentication and possibly complain against the SP.

In more detail, SAC is anonymous if any adversary can only win the
anonymity game below with probability negligibly better than a random guess:
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1. Adversary A runs Setup and outputs the public parameter pp.
2. A can instruct a user controlled by challenger C to run Reg with A. If the

protocol outputs a valid credential, C stores it with a unique user identifier.
3. A can instruct registered users controlled by C to run Auth over a policy f

with A as the SP. If the user’s credential does not pass f , C outputs ⊥ to A.
4. A picks two users u0, u1, and sends them to C.
5. C checks if both u0, u1 pass the policy check f . If so, it flips a coin b ∈ {0, 1}

and runs Auth using ub’s credential, else it outputs ⊥.
6. A wins if it guesses b correctly and C does not output ⊥ in Step 5.

One might consider unlinkability, in which the SP cannot tell whether the
same user is authenticating. The unlinkability game can be captured by having
the adversary pick a user u in Step 4, and the challenger randomly authenticates
with a random valid user or u. Intuitively, it is captured by anonymity since the
SP only learns if fpp(A) returns 1 during authentication. This is similar to the
equivalence between “left-or-right” and “real-or-random” formulations.

Alternatively, one could formulate a simulation-based definition, requiring the
transcript of different Auth instances to be uncorrelated from those of the same
user or the Reg instance. More formally, it asks for a probabilistic polynomial-
time simulator that can simulate the view of a corrupted SP in Auth. The ideal
functionality is in Appendix D.

3 Proposed System

3.1 Building Blocks

Zero-Knowledge Proof-of-Knowledge (ZKPoK). We use a ZKPoK system
with correctness, soundness, knowledge extraction, and zero-knowledgeness. It
involves a three-move commit-challenge-response Σ-protocol. In the random ora-
cle model, it can be converted into non-interactive signatures/proofs of knowl-
edge.

We use the notation from Camenisch and Stadler [20], like PoK{(α, ρ) : z =
gαhρ}, to denote such proof of (α, ρ) where z = gαhρ holds. Multiple ZKPoK
protocols could be chained into a bigger one for multiple conditions. Compared
to ZKPoK, a zero-knowledge argument of knowledge (ZKAoK) is a proof system
that satisfies soundness property against any computationally-bounded prover.

Set Membership Proof. Given a commitment C = gihρ with g, h ∈ G1 to a
value i and randomness ρ, a set membership proof is a ZKPoK that i belongs to
some discrete set Φ. The proof PSet of Camenisch et al. [16] uses the selectively-
secure Boneh–Boyen (BB) signature [11]. The SP with the signature key pair
(x,w = fβ) ∈ Zp ×G2 alongside with (g′, g′β) ∈ G

2
1 (required by the underlying

simulator) publishes signatures σ̂i = g
1

β+i ∈ G1 \ {1G1} on values i in set Φ. The
prover picks r ∈R Zp, and computes V = σ̂r

i and V ′ = V −igr. The proof consists
of (V 
= 1G1 , V

′) and the PoK: PoK{(i, r, ρ) : C = gihρ; V ′ = V −igr} as follows.
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1. The prover picks s, t, u ∈R Zp and sends a = V −sgt,D = gshu to the verifier.
2. The verifier returns a random challenge c ∈R Zp.
3. The prover sends zi = s − ic, zr = t − rc, and zρ = u − ρc.
4. The verifier checks if a = V ′cV −zigzr , D = Ccgzihzρ , and ê(V,w) = ê(V ′, f).

In SAC, we also use BB signature to certify the judged status of a session.

Range Proof. A range proof can be viewed as a special case of set membership
proof [15] by defining the set as the range, say, integers in [A,B]. This imposes
an upper bound value, so we do not need to handle the wrap-around issue in Zp

even though p is public. This range-proof system is also simple and efficient.

Bulletproofs. Bulletproofs proposed by Bünz et al.. [14] is a non-interactive zero-
knowledge proof protocol without a trusted setup, featuring a proof size only
logarithmic in the witness size. Bulletproofs are well suited for proofs for general
arithmetic circuits and inner-product relations. Range proof over the interval
[0, 2n) can be done using inner product arguments over a committed value v,
i.e., PoK{(v, ρ) : C = gvhρ ∧ (0 ≤ v < 2n)}. Two interval proofs can be combined
as a range proof on the arbitrary range [A,B] using a standard trick [15]. At a
high level, for 2b−1 < B < 2b, the prover proves v − A, v − B + 2b are in [0, 2b).
For SAC, we also set the upper limit (say, [0, 264 − 1]) to cover possible scores.

Zero-Knowledge Argument of a Shuffle. A shuffle of commitments {C1, . . . , CN}
of messages {a1, . . . , aN} is a set of commitments {C ′

1, . . . C
′
N} of {b1, . . . , bN}

committing to the same set of messages but in a permuted order, i.e., bi = aπ(i)

for some permutation π : [N ] → [N ]. If we treat the messages as the roots of
two polynomials of degree N , one can test for a random z (can be picked by the
verifier) if

∏N
i=1(ai − z) =

∏N
i=1(bi − z) holds for AoK of permutation. As an

arithmetic circuit, this requires 2(N −1) multiplication gates and is readily sup-
ported by the Bulletproofs. The prover and verifier computation are both linear
in N but with logarithmic proof size (excluding the commitments). Appendix B
reviews the ZK shuffle argument by Bayer and Groth [9] as an alternative.

Verifiable shuffle is used in SAC authentication after the client’s list of session
identifiers is updated. Its purpose is to provide anonymity to the user.

BBS+ Signatures. BBS+ signature of Au, Susilo, Mu, and Chow [6] extends the
BBS signature of Boneh, Boyen, and Shacham [12] with multiple message blocks
and efficient ZK protocols for signing and verification. It is existentially unforge-
able against adaptive chosen message attacks under the q-SDH assumption over
pairing groups [16] with no efficient isomorphism between G1 and G2.

Let h0, h1, . . . , h�+1 be generators of G1 and f be a generator of G2. The
signer’s secret key is γ ∈ Zp and the public key is w = fγ . To sign on blocks of
messages (m1, . . . ,m�) ∈ Z

�
p, the signer randomly picks e, y ∈ Zp and computes

A = (h0h
m1
1 · · · hm�

� hy
�+1)

1
γ+e . The signature is (A, e, y), and one can verify it by

checking if ê(A,wfe) = ê(h0h
m1
1 · · · hm�

� hy
�+1, f) holds.
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Table 2. Major Notations for User-side and SP-side Data Structures

Notation Description

x, q, s user long-term secret key, nonce used for authentication, credential score
cred, σ credential over A = (x, q, s,U), signature from the SP, e.g., on A

U list of session identifiers (or tickets) kept by a user’s credential
L list of sessions ((ti, si, σi, I) tuples) maintained and published by the SP
LI, UI sub-lists of L or U containing sessions of a specific status I ∈ {J, A, D},

meaning Judged, Active, or Dummy, respectively

BBS+ signatures mostly serve as credentials in many privacy-preserving sys-
tems. In SAC, they also link the ticket with its score.

Protocol PIss. It allows a user to obtain a signature from the signer on a block of
values (m1, . . . ,m�) without revealing them. It is used in SAC registration and
credential update during authentication.

1. The user computes CM = hm1
1 hm2

2 · · · hm�

� hy′
�+1 for some randomly generated

y′ ∈ Zp, and sends CM to the signer with the following proof:

PoK
{

({mi}i∈[1,�], y
′) : CM = hm1

1 hm2
2 · · · hm�

� hy′
�+1

}
.

2. The signer aborts if the proof does not verify; otherwise, randomly picks
e, y′′ ∈ Zp, computes A = (h0CMhy′′

�+1)
1

e+γ , and returns (A, e, y′′) to the user.
3. The user aborts if ê(A,wfe) 
= ê(h0h

m1
1 · · · hm�

� hy′+y′′
�+1 , f). Otherwise, the user

outputs σ as (A, e, y = y′ + y′′).

Protocol PSig. It enables proving the knowledge of a signature σ = (A, e, y) on
message blocks (m1, . . . ,m�) without revealing the signature nor the messages.
The prover can also disclose messages contained in D ⊂ {m1, . . . ,m�}. The prover
randomizes the signature with ρ1 ∈ Z

∗
p by setting A′ = Aρ1 . It also computes

b = h0h
s
�+1

∏�
i=1 hmi

i = Aγ+e, Ā = A′−e · bρ1 , and ρ3 = 1/ρ1. It then picks
r2 ∈ Zp and sets d = bρ1 · h−ρ2

�+1 and s′ = s − ρ2 · ρ3. The prover computes:

PoK{({mj}, e, ρ1, ρ2, ρ3, s
′) :Ā/d = hρ2

�+1/A
′e ∧ h0

∏

mi∈D

hmi
i

∏

mj /∈D

h
mj

i = dρ3h−s′
�+1}.

The above proof is performed as follows:

1. The prover picks re, r1, r2, r3, rs′ , rm1 , . . . , rm�
∈ Zp and sends to the verifier

R1 = A′−rehr2
�+1 and R2 = dr3h

−rs′
�+1

∏
mj /∈D

h
−rmj

i .
2. The verifier returns a random challenge c ∈R Zp.
3. The prover sends ze = re − ce, zs′ = rs′ − cs′, zi = ri − cρi for i ∈ [1, 3], and

zmj
= rmj

− cmj for j such that mj /∈ D.
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4. The verifier checks Ā
d = Rc

1A
−zehz2

�+1, h0

∏
mi∈D

hmi
i = Rc

2h
−zs′
�+1 /

∏
mj /∈D

h
zmj

i .

The proof consists of (A′, Ā, d, π) and can be verified by checking A′ 
= 1G1

and ê(A′, w) = ê(Ā, f). The signer needs to publish (ḡ, ḡγ) for ḡ 
= 1G1 (for
the zero-knowledge simulator). It is used in SAC authentication for proving the
credential on attribute sets and proving the score of each authenticated session.

3.2 Key Ideas

Setup. In Setup, the SP runs the key generation of all underlying signature
schemes (the choices will be specified in Sect. 3.3). All the signing keys are put
to the secret key sk, and the public keys are put to the public parameter pp, along
with the list L, and system parameters including the threshold score sth, score
−Smax for blocklisting, and the buffer sizes K with Kmax being the maximum.

Fig. 1. Suppose t3 is judged and t4 is dummy. The user authentication now redeems
T = {t3, t4} to get a new score snew. A ticket t for this session is added to the credential.
The user (with help from the SP) adds a dummy ticket tD to maintain the credential size.
The user proves that (t1, t2, t, tD, t5) is shuffled to (t′

1, t
′
2, t

′
3, t

′
4, t

′
5) where the SP remains

oblivious to the session type of all the ti’s and information like whether they are old.

List L contains tuples for the sessions, which includes:

– a set LD of dummy sessions, each with a score of 0,
– a set LA for storing active sessions with (dynamically) rated scores, and
– a set LJ for judged sessions with finalized, judged scores.

Table 2 lists the major notations. Only L in the table is public. Each entry of L
is of the form (ti, si, σti,si

, state), storing a session identifier ti, its score si, a
signature σti,si

(for the integrity of L), and its state information state, which is

– an empty string if the state is active, or
– a signature on ti for judged or dummy (so later authentication can redeem it).

Suppose sth = 0. Initially, the SP puts Kmax dummy sessions of score 0, each
in the form of (ti, 0, σ, σ̂), into LD, where σ signs on (ti, 0) and σ̂ signs on ti.
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Registration. In Reg, each eligible user chooses a credential size K ∈ K, randomly
chooses two Zp values as the long-term secret x and the (first) nonce q for
showing the freshness of the credential, and prepares an attribute set of size
(K + 3) as A = (x, q, s = 0, t1, . . . , tK), where s is the (initial) score of the user,
and UD = (t1, . . . , tK) is a subset of dummy session identifiers from LD in pp.

Let U denote the set of session identifiers kept by a credential. Just after
registration, U = UD. This will make a newborn credential indistinguishable (in
size) from ones with the same number of sessions while some of them are active
or judged. The user proves in ZK that attribute set A is well-formed:

– Knowledge of x, q, which are hidden from the SP;
– s = 0 (or any base score agreed between the user and the SP);
– (t1, . . . , tK) are dummy tickets, by showing ti ∈ LD (via PoK of signatures).

The SP then completes the signature issuance via the ZK signature issuance pro-
tocol PIss, which produces a signature σA on A, serving as a user credential cred.

Authentication. In Auth, the user ZK-proves that credential cred on attribute set
A = (x, q, s, t1, . . . , tK) satisfies the access policy (to be made explicit in
Sect. 3.3), except q is revealed in clear. Let U = (t1, . . . , tK). The proof con-
sists of:

– Credential Validation. The user ZK-proves via PSig that it has a signature σA

on A, but reveals nonce q to show that it is not a replay of past credentials.
– Score Satisfaction. For set U of size K in A certified by cred, the user proves

in ZK, for each ta ∈ U, that the session ta has score sta
as specified in list L

by proving via PSig σta,sta
is a signature on (ta, sta

). This proof can be done
in a batch for efficiency. The user can then prove in ZK that s+

∑
t∈U

st > sth
for some agreed threshold sth. The SP cannot learn U = {ta}.

After some authentications and before any judgment is finalized, U trans-
forms to UA ∪ UD, with some active tickets added. Over time, the SP will mark
some sessions as judged. U then transforms to UJ∪UA∪UD (similar to the SP-side
public session list L = LJ ∪ LA ∪ LD). Also, a user may adjust UD to make the
size of U equal to some other allowed value K ′ ∈ K.

The protocol should also ensure that the credential is updated faithfully:

– Credential Update.
1. The SP chooses and publishes t′ as the current session identifier.
2. The user picks a set of tickets T ⊆ U and uses the set membership proof

PSet to ZK-prove that they are either judged or dummy, e.g., T ⊂ LJ∪LD.
3. The user updates U to U

′ = (U \T) ∪U
′
D ∪ {t′}, where U

′
D ⊂ LD pads4 the

number of sessions of U′ to K ′, for a possibly new size K ′ (for K ′ ∈ K).
4. The user picks a fresh random nonce q′ and proves in ZK that the shuffled

U
′ and the new aggregated score s′ are well-formed w.r.t. sessions in T.

4 Dummy sessions are judged with a default (zero) score, allowing users to pad U with
some dummy tickets from U to T to hide the judged ones among them.
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5. The SP and user engage in credential issuance protocol PIss for a new
credential cred′ on the new attributes A′ = (x, q′, s′,U′).

For the new U
′ with U

′
D and t′ added and T removed, verifiable shuffle is

applied to permute their order, i.e., the positions of T in U. Figure 1 depicts
an example where the updated ticket set (t1, t2, t, tD, t5) is verifiably shuffled.

Finally, the SP updates pp by adding an entry (t′, 0, σt′,0, ∅) into list L,
meaning that session t′ has an initial score 0 (or any default) and an active state.

Session Score Update. In Update, the SP rates a session t by updating an entry
(t, sold, σt,sold

, ·) in list L into (t, snew, σt,snew , ·), meaning that the new score of
the session t is snew, which can be less than sold, negative, or even −(Smax + 1)
for revoking a credential, where Smax is the maximum possible score of any
credential5 (and the threshold for maintaining unrevoked status is 0). To finalize
a session t, the SP updates (t, ·, ·, ∅) to (t, ·, ·, σ̂) in L, where σ̂ is a signature on t.

A user can keep a ticket t in its credential as long as it can provide a valid
membership proof of t against LA. If t is finalized, the score for t in both LA and
LJ should be consistent. This way, the user credential score is correctly accounted
for during authentication, and keeping tickets would not harm the system.

3.3 Instantiation

Setup(1λ) → (pp, sk): On input of the security parameter λ, the SP generates
public parameter pp and the secret key sk as follows:

1. The SP chooses the bilinear map context over groups of prime order p (a
poly(λ)-bit prime) with pairing ê : G1 × G2 → GT .

2. The SP creates the key for BBS+ signature by randomly picking γ ∈ Zp,
generators h0, h1, . . . , hKmax+4 ∈ G1 and f0 ∈ G2, and computing w0 = fγ

0 .
3. The SP creates the keys for set membership proofs by randomly picking

β ∈ Zp, generators g ∈ G1, f1 ∈ G2, and computing w1 = fβ
1 .

4. The SP maintains a list of sessions L = {(t, s, σ, state)}, where t is the session
identifier, s is the score, σ is the BBS+ signature on (t, s), and state is the
status of the session (either an empty string for active, or a Boneh-Boyen
signature on t, for judged or dummy). The SP initializes L by adding Kmax

dummy sessions (t, 0, σ, σ̂) with a different identifier t, where:
– σ = (A = (h0h

t
1h

t
3)

1
γ+e , e, y) is a BBS+ signature for random e, y ∈ Zp.

– σ̂ = g
1

β+t denotes a Boneh-Boyen signature on t.
5. The SP runs K(1λ), the algorithm for generating the common reference string

crs for the ZKPoK protocol PoK (to be defined below). In particular, it con-
tains the set of Boneh-Boyen signatures {σ̂i} needed by the signature-based
membership proof PSet.

6. The SP sets secret key sk = (γ, β) and public parameters

pp = (crs, g, h0, . . . , hKmax+4, f0, f1, w0, w1,K, Smax,L).
5 The SP can derive it from Kmax with an appropriate upper limit for each session.
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Reg(U(pp),S(pp, sk)) → {U(cred,A),S(pp′)}: The user obtains a credential
from the SP via an authenticated channel as follows:

1. (Preparation:) The user randomly picks x′, q ∈ Zp, and selects K ∈ K.
The user prepares attributes of size K + 3 as A = (x′, q, s = 0, t1, . . . , tK),
where ti ∈ LD for i ∈ [1,K]. The user generates the commitment C ′

M =
hx′
1 hq

2h
t1
4 · · · htK

K+3h
y′
K+4 for some random y′ ∈ Zp and sends C ′

M to the SP.
2. (Signing:) The SP randomly picks x′′ ∈ Zp, computes CM = C ′

M · hx′′
1 , and

sends x′′ to the user. The user secret is then computed by x = x′ + x′′. They
then engage in the protocol PIss of the BBS+ signature for the commitment
CM using the public key (h0, . . . , hK+4, f0, w0). In the end, the user obtains
a BBS+ signature σA. The public parameter pp′ = pp remains unchanged.

3. (Credential Generation:) The user stores the credential cred = σA and the
attributes A = (x, q, s = 0,U = {t1, . . . , tK}).

Auth(U(pp, cred,A, f),S(pp, sk, f)) → {U(b, cred′,A′), S(b, pp′)}: With cred
on attributes A = (x, q, s,U := {t1, . . . , tK}), the user attempts to prove that a
credential with a score above sth given in the access policy f as follows:

1. (Nonce revelation:) The user reveals q privately to the SP. If q is fresh, the
SP picks t′ and publishes it as the identifier of the new (active) session for
this user authentication. Otherwise, the SP aborts as it is a replay.

2. (Proof about authentication requirements:) To prove to the SP, the user runs
a combined ZKPoK PoK, which is a conjunction of several ZKPoK’s:
(a) PSig: knowing a signature σA on the attributes A = (x, q, s, {t1, . . . , tK});
(b) PSig: knowing sti

, σti,sti
where σti,sti

is a BBS+ signature on the ticket ti
and the score sti

, for ti ∈ U;
(c) Range proof6: sth ≤ s +

∑K
i=1 sti

≤ Smax.
Note that the range proof considers the current scores for all tickets irrespec-
tive of their status, even if a downgraded score has not been redeemed.

3. (Updated credential:) The combined ZKPoK PoK also proves about knowing:
(a) (many copies of) PSet: a set of judged or dummy session identifiers T, via

a signature-based membership proof that for all ti ∈ T, there exists a
Boneh-Boyen signature σ̂i (only presents for a judged or dummy session);

(b) commitment on a new nonce q′ ∈ Zp;
(c) Ĉi = gtihri

0 ∀ti ∈ U
′, where (U′, s′) ← Redeem(U ∪ {t′},T,K ′) to be

defined shortly, and K ′ ∈ K, which the user can choose to have K ′ = K.
(d) Ĉ ′

i is a shuffle π of Ĉi, which means Ĉ ′
i = gtπ(i)h

r′
i

0 for all ti ∈ U
′;

(e) C ′
M is a new commitment on (x, q′, s + s′, Û), where Û =

{tπ(1), . . . , tπ(K′)}.
Redeem(U,T,K) is for redeeming scores in T within U and puts dummy
sessions into U

′ if needed to make |U′| = K ′. Note that U′ = U∪{t′} \T is of
size |U′| = K + 1 − |T|. If it is less than K ′, U′ will be padded with dummy
sessions {d} ⊆ LD. It also outputs a new score s′ =

∑
tj∈T

stj
.

6 It involves commitments of s and sti for ti ∈ U if it is instantiated by Bulletproofs.
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4. (New credential generation:) The SP issues a BBS+ signature cred′ on A′ =
(x, q′, s + s′, Û) by using the protocol PIss on C ′

M .
5. (List update:) The SP adds the entry (t′, 0, σ, ∅) to list T, where σ is a BBS+

signature on the message (t′, 0).

Appendix C provides a concrete instantiation using signature-based range proof
PSet, verifiable shuffle [9], and batch BBS+ signatures (in Appendix A).

Update(pp, sk, aux) → pp′: To assign a new score s to a session t given in aux,
the SP issues a new BBS+ signature σ on (t, s) for the new or updated entry
(t, s) in L. (See Sect. 3.5 for the signature timestamping issue.) To block, the SP
assigns the lowest possible negative score −(Smax + 1).

When no more change is needed for a session t, the SP changes the status of
the session to “judged” by computing σ̂t = g

1
β+t and putting (t, ·, ·, σ̂t) on L.

3.4 Efficiency and Flexibility Highlights

Achieving Efficiency for Many Active Sessions. The user needs to store all its
active session identifiers and construct proof about them for claiming the scores
of all the sessions, i.e., the computation complexity grows with the size of user-
side storage. We use a few interesting techniques to improve user-side efficiency:

1. Users can remove session identifiers from the credential once they are judged.
Their scores will be permanently aggregated to the finalized score field s of
the credential. Low-usage users can choose to keep a small buffer size K.

2. The score of each session is signed by BBS+ signatures, which support efficient
ZK proof (without proving pairing relation) and batch verification.

3. The same proof asserts the ticket status without disjunctive proof and the
involved commitments needed by PERM/PEREA for proving unjudged ses-
sions (ti−jp < N or knowledge of a judgment on ti). This saves approximately
K range proofs without requiring sequential judging.

Fair Rate-Limiting. SAC supports a (set of) maximum buffer size K (K). The
SP is required to finalize the judgment on at least one of these sessions when all
K active session slots are used up by the user. Any user is only rate-limited by
its own previously unjudged tickets. Besides, the number of unjudged tickets sets
an upper bound to the cardinality of the to-redeem ticket set T. PERM/PEREA
can be treated as a special case where |T| = 1 (“redeeming” the first ticket).

Removal of Old Judgments. Signatures that were too old could be removed. The
SP can still keep only the session identifier and score. If an infrequent user even-
tually claims those sessions, it can still be done without affecting correctness but
just anonymity. This is more flexible than the existing blocklist-based approach,
in which truncating the blocklist may forgive some bad users for free.



Scored Anonymous Credentials 501

3.5 Discussion on Privacy and Security Issues

Variations of User Authentication/Redemption Behavior. The SP and the users
can judge and redeem scores from the sessions, respectively, in an arbitrary
order. From an anonymity perspective, suppose a user always redeems the first
few sessions in its credential during authentication while another user always
redeems the last few; their difference in behavior may compromise anonymity.
Verifiable shuffle is thus used to ensure obliviousness to any pattern of redemp-
tion. Anonymity holds among users using the same size parameters, specifically,
K (the number of sessions in the credential) and |T| (the size of the ticket to
redeem) with the system-wide choices of size K and many dummy tickets LD.

Retrieval of Signatures. Similar to redemption in PERM, users should also
retrieve the signatures corresponding to others’ sessions to hide in the crowd.
The download can be amortized, such as getting a random subset after each
interaction (e.g., browsing on a forum), or can be done via private information
retrieval, like what is necessary for other privacy-preserving applications (e.g.,
getting the list of bridges for Tor [40]). Compared with BLAC/EPID, which
performs expensive cryptographic operations against each blocklist entry, our
“allowlist” does not need to be downloaded during the authentication.

Credential “Hijacking” Prevention. A user can freely choose the nonce for each
credential update. If a user picks a used nonce, it cannot be used to authenticate.
This brings a subtle issue if a malicious user somehow learns the victim’s creden-
tial nonce. A malicious user can block a victim user by using the victim’s nonce
as the nonce of a new credential and authenticate using it before the victim.

The issue can be prevented by slightly extending the protocol so the SP can
contribute a part of the nonce randomness. The SP and user respectively pick
q′, q′′. The new nonce will be set to q′ + q′′ during credential generation. The
probability of hitting a used nonce is negligible if the nonce space is exponentially
large, which is our case. In the rare event that results in a used nonce, the user
can reveal q′′ and rerun the credential generation part with the SP.

Signatures Timestamping/Expiry. SAC needs to expire old signatures when the
score is updated. This is a general problem of timestamping signatures, which
has been studied thoroughly in different contexts with multiple solutions, e.g.,
outsourced and authenticated data structure which supports membership query
and update [42]. Solutions for timestamping signatures can be plugged into SAC
generically. We describe below a simple (but not necessarily optimal) solution.

The SP issues a new set of signatures for each session in predefined inter-
vals. The interval identifier can be signed together with the updated score via
the multi-block feature of BBS+ signatures. The proof will require proving the
interval to be the current one, as how proofs are made on other messages certi-
fied.

This simple solution requires the SP to generate multiple signatures for mul-
tiple updates. Nevertheless, the SP is supposed to be more resourceful and can
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use online/offline signatures with preparation done offline. The SP would not
update indefinitely as the scores of active sessions will eventually be finalized.
Only the most-updated signatures or the finalized ones should be kept.

Expiry of signatures is only needed for volatile scores. If a session can only
be changed from unjudged to finalized, signature expiry is not needed at all.

3.6 Integration with Other System Components

Precondition for Registration. To prevent unauthorized sharing of credentials,
the standard practice is to embed valuable secrets to credentials such that sharing
them means sharing the secret too. The SP can require the user to post the public
key of a cryptocurrency account, prove the knowledge of its secret key to the
SP, and use it as the user secret in the SAC credential.

Multi-SP and Decentralization. A 1-out-of-n disjunctive (or membership) proof
can be used to prove the validity of cred and judgments under a set of authorized
SPs’ public keys. With homomorphic commitments, judgments from different
SPs can be combined arithmetically. However, one cheating SP can ruin the sys-
tem by issuing malformed credentials. Threshold BBS+ signature [30] with blind
signing protocol can be applied to achieve t-out-of-n threshold signing, where t-
out-of-n signing parties (SPs) are needed to issue/update user credentials.

Enforcement vs. Voting. SAC is for privacy-preserving reputation enforcement
(PPRE). The basic setting assumes the SP decides the score. Alternatively,
privacy-preserving reputation voting (PPRV), often called “privacy-preserving
reputation” [33], aims for the privacy of (peer) voters who cast votes of a score
for other users. They may use cryptographic techniques such as linkable ring
signatures [25,32] for double-voting detection [24]. Some require a TTP, or users
can request votes from many voters via secure multi-party computation.

Among many PPRV approaches, “reputation transfer” [33] overlaps with
PPRE. A user can use a claiming mechanism to link scores cast by voters to
a new pseudonym. Nevertheless, users are not forced to claim every (negative)
rating. Some work discusses the usage of ZKP, which should cover all ratings and
brings us back to linearly processing a global list we strive to avoid. In general,
incorporating PPRV with PPRE may not be straightforward.

A concurrent work [23] outlined a “decentralized anonymous social networks”
construction supporting both PPRE and PPRV, with a focus on sustainability.

Keyed-Verification Anonymous Credentials (KVAC). In many scenarios, the
SP also acts as the verifier without the need for public verifiability offered by
SAC. In KVAC [21], verifying the proof of possession of a credential requires
the issuer’s secret (issuance) key. KVAC [8,21,27] does not consider credential
updates based on previously committed (and authenticated) messages. More-
over, revocable KVAC [34] assumes a TTP revocation authority using traceable-
tag techniques [1,6,22]. Finally, KVAC [8,21,27] could still use public-key
algebraic-group operations. We leave more efficient constructions using KVAC
as future work.
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4 Performance

4.1 Computation and Communication Complexities

We select PERM with one score category (� = 1) [4] as the representative to
compare. We set |T| = 10 (the set of tickets to be redeemed). New dummy
sessions will be appended and shuffled with currently active sessions to maintain
the credential buffer size. The size for the shuffle proof via Bulletproofs consists
of the input and output commitments and the logarithmic size (inner-product)
proof (1601 bytes for K = 200). An authentication needs to prove (K +3) BBS+
signatures for the accumulated score. PERM needs extra K (possibly simulated)
range proofs for its ZKP of partial knowledge. Since we utilize succinct (sublinear
size) ZKAoK, the communication overhead is relatively small compared to the
ZKP on the BBS+ signatures (a few KBs versus hundreds of KBs).

4.2 Empirical Results

We run SAC and PERM [4] over a desktop PC equipped with Ryzen 7 3700X
and 96GB RAM running Ubuntu 20.04 (on Windows Subsystem for Linux 2).
We modified the Rust libraries7 that implemented the BBS+ signature over
the pairing-friendly curve BLS12-381, and the Bulletproofs implementation8 for
BLS12-381. For SAC, the set of possible buffer sizes is K = {10, 30, . . . , 200}. We
compare SAC with running PERM on different window sizes Kmax = K.

Fig. 2. Computation time of the service provider and user with |T| = 10: (i) PERM
only supports redeeming the first ticket, i.e., |T| = 1. (ii) BBS+ signatures over Type-3
curves feature batch ZKP verification, which our implementation does not employ.

7 https://github.com/docknetwork/crypto.
8 https://github.com/dalek-cryptography/bulletproofs.

https://github.com/docknetwork/crypto
https://github.com/dalek-cryptography/bulletproofs
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Figure 2 outlines the authentication time. For the user side, SAC takes
0.714s/5.91s when K = 10, 200. Meanwhile, PERM takes 1.90s and 34.0s when
K = 10, 200. For K = 50, SAC still performs better than PERM at K = 10.

For the SP side, SAC takes 0.612 s/5.97 s when K = 10/200. Comparatively,
PERM takes 0.625 s and 11.3 s when K = 10, 200. For K ≥ 90, the SP computa-
tion cost for PERM is like twice of SAC for the same number of stored sessions.

For data transfer, we suppose each session score and the maximum repu-
tation score of a user are in a 64-bit range. Furthermore, the total number of
authentications is less than 264. The serialized size of a Zp, G1, and G2 element
is 32, 48, and 96 bytes, respectively. Each entry in our list L is 176 bytes for
active sessions and 80 bytes for judged or dummy sessions. The total downlink
complexity is 176|LA| + 80(|LD| + |LJ|) bytes. Here, the signature of the SP used
in the range proof is put in the public parameters as in PERM. Dummy sessions
in SAC never change. Users can download them during registration.

To compare with PERM, suppose the number of anonymous authentications
per day is 20,000, and the same number of authentications is judged (which only
adds an extra 80 bytes to L). A user of PERM and SAC would need to download
respectively 3.5MB and 5MB of data a day to keep up-to-date without decoys.

For each authentication, a user of both PERM and SAC proves possession of
O(K) BBS+ signature on stored sessions with the scores accumulated, which is
about 368 KBytes for K = 200. PERM runs ZKP for K disjunctive statements,
which consist of signature possession and range proof. We instantiated the range
proof with Bulletproofs; the extra communication overhead of PERM is around
3676 bytes per session. On the other hand, the proof of shuffle using Bulletproofs
in SAC is 1601 bytes (for K = 200) and the total size with commitments is 96 ·K
bytes. The extra ZKP on a BB signature has around 240 · |T| bytes (|T| ≤ K).
Thus, we have a lower authentication communication cost than PERM.

5 Conclusion

We propose scored anonymous credentials (SAC), a new and intuitive credential
design supporting revocation and reputation. Unlike the two existing designs
of either checking every session that ever happened (e.g., BLAC(R) [5,44]) or
assuming sequential judgments (e.g., PEREA [45], PERM), we directly deal with
the user sessions via verifiable shuffle and other optimized cryptographic tech-
niques. We also support downgrading the score of a session until it is finalized,
while existing updatable anonymous credentials (e.g., PE(AR)2 [47], PERM)
only support score upgrade. We evaluate the efficiency of our proposed system
SAC and show that it outperforms existing related systems, given the simplicity
of our design and cryptographic techniques. We thus resolved the open problem
of devising an anonymous credential with (reputation and) revocation mecha-
nism that does not halt the entire system due to just one misbehaving user.
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A Batch BBS+ Signature

The original ZKP for a BBS+ signature [6] is performed as follows.

Protocol PSig. It allows a prover to prove that it knows a signature σ = (A, e, y) on
blocks of messages (x1, . . . , x�) without revealing the signature nor the messages.

1. The prover randomly generates rA ∈ Zp, sets β = rAe, and sends A1 =
AĥrA , A2 = hrA

1 to the verifier along with the following proof Π:

PoK

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

({xi}i∈[1,�],e, y, rA, β) :

(A2 = hrA
1 ) ∧ (1 = A−e

2 hβ
1 ) ∧

ê(A1, w)
ê(h0, f)

= ê(h1, f)x1 · · · ê(h�, f)x� · ê(h�+1, f)y·

ê(ĥ, w)rA · ê(ĥ, f)β/ê(A1, f)e

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

.

2. Upon receiving (A1, A2,Π), the verifier outputs 1 if proof Π is valid.

Details such as its construction can be found in [6].

Batch BBS+ Signatures. We construct batch BBS+ (B-BBS+) featuring a batch
verification algorithm for BBS+ signatures and its zero-knowledge version. With-
out loss of generality, we illustrate with two-message blocks (s1,m1) ∈ Z

2
p (suf-

fices for SAC). The signature (A1 = (h0h
s1
1 hm1

2 hy1
3 )

1
γ+e1 , e1, y1) can be verified by:

ê(A1, wfe1) = ê(h0h
s1
1 hm1

2 hy1
3 , f).

For i ∈ [1,K], let (Ai, ei, yi) be the signature on (si,mi). To batch verify,
pick (δ1, . . . , δK) as a random vector of �b-bit elements from Zp and test if:

ê(
K∏

i=1

Aδi
i , w) · ê(

K∏

i=1

Aeiδi
i , f) = ê(h

∑K
i=1 δi

0 · h
∑K

i=1 siδi

1 · h
∑K

i=1 miδi

2 · h
∑K

i=1 yiδi

3 , f).

which takes 2 pairings, 2K+4 exponentiations in G1, and 2K+2 multiplications
in G1. Since 1 pairing takes roughly the time of 5 exponentiations, and non-batch
verifications take 2K pairings, 4K exponentiations in G1, and 4K multiplications
in G1 for K signatures, the batch verification speeds up by 4.5× for large K.

Theorem 1. For security level �b, the above algorithm is a batch verifier for
BBS+ signatures with the probability of accepting an invalid signature being 2−�b .

The batching technique for BBS+ basically follows from [31][Theorem 3.2].
BBS+ signature is weakly secure in the standard model under the q-SDH
assumption [6]. Below is the batched zero-knowledge proof PBvfy for B-BBS+.

Protocol PBvfy. It allows proving the knowledge of K signatures σi = (Ai, ei, yi)
on messages (si,mi) for i ∈ [1,K].
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1. Let δi be an �b-bit element picked by the verifier in Zp. The prover randomly
generates μi ∈ Zp, computes Bi = hμi

1 ,Di = Aiĥ
μi , ιi = μiei, and sends

Bi,Di to the verifier along with the proof Π:

PoK

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

({si,mi, μi, ei, yi, ιi}i∈[1,K]) :
K∧

i=1

(
Bi = hμi

1 ∧ 1 = B−ei
i hιi

1

)
∧

ê(
∏K

i=1 Dδi
i , w)

ê(h
∑K

i=1 δi

0 , f)
=ê(h1, f)

∑K
i=1 δisi · ê(h2, f)

∑K
i=1 δimi ·

ê(h3, f)
∑K

i=1 δiyi · ê(ĥ, w)
∑K

i=1 δiμi ·

ê(ĥ, f)
∑K

i=1 δiιi/ê(
K∏

i=1

Dδiei
i , f)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

2. Upon ((B1,D1), . . . , (BK ,DK),Π), the verifier outputs 1 if proof Π is valid.

B Alternative for Zero-Knowledge Argument of a Shuffle

Let Ci = Epk(Mi; ρi) for i ∈ [1, N ], a ciphertext created from encrypting message
Mi under public key pk using randomness ρi. Homomorphic encryption allows
simple multiplications of encrypted Mi and Mj without decrypting it first via
simple multiplication of ciphertexts: Epk(Mi; ρi)Epk(Mj ; ρj) = Epk(MiMj ; ρi+ρj).
There are efficient zero-knowledge arguments for showing a shuffling of cipher-
texts produced by homomorphic encryption, i.e., for all i ∈ [N ], decrypting C ′

i

is the same as decrypting Cπ(i), where π : [N ] → [N ] is the permutation.
We review a recent scheme by Bayer and Groth [9]. The first step is to

commit to permutation π. The prover receives a challenge x and commits to
xπ(1), . . . xπ(N). The prover will give an argument of knowledge of openings of the
commitments to permutations of 1, . . . , N and x1, . . . , xN . The prover demon-
strates that the same permutation has been used in both cases using random
challenges y and z. By using the homomorphic properties of the commitment,
the prover can compute commitments to d1−z = yπ(1)+xπ(1)−z, . . . , dN −z =
yπ(N)+xπ(N)−z, in a verifiable manner, then uses a product argument to show:

N∏

i=1

(di − z) =
N∏

i=1

(yi + xi − z).

These are two identical degree-N polynomials in z (with the roots permuted).
By Schwartz-Zippel lemma, the prover has a negligible chance over the choice
of z of making a convincing argument unless there is a permutation π such that
di = yπ(i)+xπ(i) for i ∈ [1, N ]. Furthermore, there is negligible probability over
the choice of y of this being true unless the first commitment contains π(i) and
the second commitment contains xπ(i) for i ∈ [1, N ].
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The prover has commitments to xπ(i) and uses the multi-exponentiation argu-
ment to show there exists a ρ such that

N∏

i=1

Cxi

i = Epk(1; ρ)
N∏

i=1

Cxπ(i)

i .

Since the encryption E is homomorphic, the verifier can deduce that
∏N

i=1 Mxi

i =
∏N

i=1 Mxπ(i)

i for some permutation π. Since x is a random challenge chosen by
the verifier, we have a correct shuffle with overwhelming probability.

Depending on the implementation, there is a trade-off between the round
complexity, communication complexity, and the computation time of the users
and the SP [9]. In principle, we can apply any zero-knowledge arguments of
a shuffle. For efficiency, we will require the shuffle and the commitments (to
session identifiers) to be in the same group. For our construction, we can use the
homomorphic ElGamal encryption of a message M with pk = (h, u) is (Muρ, hρ),
which fits with Bayer-Groth’s argument [9]. Since decryption is not needed in
our case, we can encode a ticket t by M = ht, and only include the first part of
the ciphertext. It is easy to see that it preserves the homomorphic property.

C Authentication using Batch-BBS+ and Range Proof

The signature-based range proof can be constant-size if the threshold score sth
and the maximum score smax is short, e.g., �b-bit integers for �b = 10. Let g ∈ G1,
u ∈ G1 (for the shuffle), and f2 ∈ G2 be generators. The SP picks a random
α ∈ Zp, and computes w2 = fα

2 . The SP puts BB signatures Yj = g
1

α+j for all
j ∈ [sth, smax] in the public parameters. (One can instead apply Bulletproofs [14].)

1. Let σA = (A, e, y) be the credential on attributes A = (x, q, s, {t1, . . . , tK}).
Let J be a set of M = |J| indexes where tj ∈ T for all j ∈ J. The user sends
the parameters K, M , and q to the SP. The SP returns a new identifier t′.

2. The SP randomly picks δ1, . . . , δK , ζi, ιi for i ∈ [1,K−M ] and �b-bits numbers
{θj}j∈J and sends to the user.

3. The user picks rA, rt, re, rβ , rx, rs, r1, . . ., rK in Zp, computes β = rAe and:

A1 = AĥrA , A2 = hrA
1 , T1 = hrt

1 , T2 = A−re
2 h

rβ

1 ,

Rx = grx , Rs = grs , R1 = gr1 , . . . , RK = grK ,

R = ê(h1, f)rx · ê(h3, f)rs · ê(h4, f)r1 · · · ê(h�, f)rK ·
ê(h�+1, f)ry · ê(ĥ, w)rt · ê(ĥ, f)rβ /ê(A1, f)re .

For i ∈ [1,K], let (Ai, ei, yi) be the B-BBS+ signature for ticket ti and score si

in L. The user randomly picks μi, rsi
, rμi

, rβi
in Zp, and computes

βi = μiei, Di = Aiĥ
μi , Bi = hμi

1 , Si = grsi , T̄i = h
rμi
1 , W̄i = B

−rei
i h

rβi
1 ,

RL = ê(h1, f)
∑K

i=1 δiri · ê(h2, f)
∑K

i=1 δirsi ê(h3, f)
∑K

i=1 δiryi · ê(ĥ, w0)
∑K

i=1 δirμi

ê(ĥ, f)
∑K

i=1 δirβi /ê(
K∏

i=1

D
δirei
i , f).
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Let s∗ = s +
∑K

i=1 si. The user computes a range proof of s∗ with v, rv ∈ Zp:

V = Y v
s∗ , R∗ = ê(V, f2)−rs−∑K

i=1 rsi · ê(g, f2)rv .

For all j ∈ J, the user randomly picks vj , rvj
in Zp and computes:

Vj = σ̂
vj

j , RJ = ê(
∏

j∈J

V
−θjrj

j , f) · ê(g, f)
∑

j∈J
θjrvj .

The user runs Redeem(U ∪ {t′},T,K ′) as follows. Suppose w.l.o.g. U =
{t1, . . . , tK} and T = {tK−M+1, . . . , tK}. So J = {K − M + 1, . . . , K}. Sup-
pose U

′ = {t′1, . . . , t
′
K′−1, t

′} is selected where t′i = ti for i ∈ [1,K − M ],
t′K−M+1 = t′, and t′i is a random element in LD, i ∈ [K −M +2,K ′]. The user
computes s′ =

∑
j∈J

sj , and the encryption for tickets t′1, . . . t
′
K−M+1, by ran-

domly picking ρi ∈ Zp for i ∈ [1,K − M + 1] and setting Ĉi,1 = gt′
iuρi , Ĉ2 =

g
∑K−M+1

i=1 ζiρi . The user picks a permutation π : [K ′] → [K ′]. Let t̂i = t′π(i)
for i ∈ [1,K − M + 1]. The user also computes the homomorphic encryption
by randomly picking ρ′

i ∈ Zp and setting Ĉ ′
i,1 = gt̂iuρ′

i , Ĉ ′
2 = g

∑K−M+1
i=1 ιiρ

′
i .

For updating the credential, the user randomly picks r̂1, . . . , r̂K−M and sets:

C ′
M = hx

1h
q′
2 hs+s′

3 ht̂1
4 · · · ht̂K−M+1

K−M+4h
y′
K′+4,

R′
M = hrx

1 h
rq′
2 h

rs+
∑

j∈J
rsj

3 hr̂1
4 · · · hr̂K−M+1

K−M+4h
ry′
K′+4,

R̂1 = gr̂1 , . . . , R̂K−M+1 = gr̂K−M+1

and sends SP set J, dummies (t′K−M+2, . . . , t
′
K′−1), and the commitments:

A1, A2, T1, T2, Rx, Rs, R1, . . . , RK , R, {Di, Bi, Si, T̄i, W̄i}i∈[1,K], RL, V,R∗,
{Vj}j∈J, RJ, {Ĉi,1, Ĉ

′
i,1, R̂i}i∈[1,K−M+1], Ĉ2, Ĉ

′
2, C ′

M , R′
M .

The user can now perform the ZK argument for shuffling Ĉi,1, Ĉ2 to Ĉ ′
i,1, Ĉ

′
2.

Details can be found in [9].
4. If (t′K−M+2, . . . , t

′
K′−1) are dummies, the SP returns challenge c ∈ Zp.

5. The user computes and sends the following with q to the SP:

zx = rx + cx, zs = rs + cs, zA = rt + crA,

ze = re + ce, zv = rv + cv, zq′ = rq′ + cq′,
zβ = rβ + crAe, zy′ = ry′ + cy′, zy = ry + cy.

For i ∈ [1,K],
zi = ri + cti, zsi

= rsi
+ csi, zyi

= ryi
+ cyi,

zei
= rei

+ cei, zμi
= rμi

+ cμi, zβi
= rβi

+ cμiβi.

For j ∈ J, zvj
= rvj

+ cvj .

For l ∈ [1,K − M ], ẑl = r̂l + ct̂l.

6. The SP checks if T1A
c
2 = hzA

1 , T2 = A−ze
2 h

zβ

1 ,
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R(
ê(A1, w)

ê(h0, f)ê(h2, f)q
)c = ê(h4, f)z1 ê(h5, f)z2 · · · ê(hK+3, f)zK ê(h1, f)zx ·

ê(h3, f)zs ê(hK+4, f)zy ê(ĥ, w)zA ê(ĥ, f)zβ /ê(A1, f)ze ,

RL(
ê(

∏K
i=1 Dδi

i , w0)

ê(h
∑K

i=1 δi
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It checks T̄iB
c
i = h

zμi
1 , W̄i = B

−zei
i h

zβi
1 for i ∈ [1,K] and the zero-knowledge

argument for the shuffling [9].

The SP computes: A′ = (h0C
′
Mh

t′
K−M+2

K−M+5 · · · ht′
K′−1

K′+2h
t′
K′

K′+3h
y′′
K′+4)

1
e′+γ for ran-

dom e′, y′′ ∈ Zp, and sends (A′, e′, y′′) to the user.
The SP then adds the entry (t′, 0, σ, ∅) to list T, where σ = (A, e, y) is the
B-BBS+ signature with A = (h0h

t′
1 hy

3)
1

γ+e for some random e, y ∈ Zp.
7. The user gets σ′

A = (A′, e′, y′+y′′) and updates its attributes to A′ = (x, q′, s+
s′, {t̂1, . . . , t̂K−M+1, t

′
K−M+2, . . . , t

′
K′}).

D Security

D.1 Simulation-Based Model

We use the simulation-based security definition following the literature [4,45].
We consider a security game where an environment E , which can schedule the
invocation of the functionalities of SAC at its wish, is asked whether it is inter-
acting with the real world or the ideal world. In the real world, all honest players
communicate as specified in the protocol description. In the ideal world, the same
players also follow the protocol except that they interact via a trusted party T ,
responsible for handling all the inputs and outputs for them. The adversary A
in the real world takes control of some of the players and can communicate arbi-
trarily with environment E . But A does not know the communications between
honest parties and the origin of messages received by A.

Roughly, SAC is secure if, for any probabilistic polynomial time (PPT) algo-
rithms A and E , there exists another algorithm S, which has black-box access
to A, controlling the same players in the ideal world as A does in the real world,
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such that E cannot distinguish if it is interacting with A or S. In other words,
it also cannot distinguish between the real world and the ideal world. We first
specify the functionalities of SAC in the real world and the ideal world, respec-
tively:

1. Setup. The system starts when E specifies the set of honest and dishonest
users and the SP (static model).

– Real World. The SP generates (pp, sk) and gives pp to all players.
– Ideal World. The trusted party T initializes a database that stores the

registration and authentication transcripts of all users. It also keeps track
of the attributes of each user, and the public parameter pp, which contains
the status/score of each session.

2. Registration. E asks user i to register with the SP.
– Real World. User i registers with the SP, and both parties output indi-

vidually the output of this interaction to E . If user i has already been
registered, the honest SP will reject the request. Similarly, an honest user
discards the credential from the SP if it has successfully registered before.

– Ideal World. User i sends a registration request to T , who informs the SP
about the request and whether user i has obtained a credential before. T
forwards the decision of the SP to user i. The user and the SP individually
send the output of this interaction to E . If the SP accepts the request and
user i has not registered before, T stores this transcript in its database.

3. Authentication. E asks user i to authenticate and redeem some sessions.
– Real World. User i authenticates with the SP w.r.t. the access policy f

like a threshold score sth and redeems the scores of sessions specified by
E . Both user i and the SP pass the local output of this interaction to E .

– Ideal World. User i sends an authentication request to T , who checks
according to pp whether the user i satisfies the authentication condition.
In more detail, T maintains a database of the current and past tickets for
each user, where the score of a user should match with the current pp.
T informs the SP that some anonymous user wants to authenticate and
whether the user satisfies the authentication condition. The SP replies
with a new session identifier t or reject to T , and T forwards it to user
i. If the authentication is successful, T removes the redeemed sessions
(T specified by the user) from the user’s attributes and updates its score.
It also adds an entry for the active session t with score 0 to the database,
and stores t as one of the user’s session identifiers. The user and the SP
individually send the output of this interaction and t (if not reject) to E .

4. Update. E asks the SP to update the score s to, or finalize, a session t.
– Real World. The SP runs the update algorithm as instructed by E .
– Ideal World. T updates its database accordingly as instructed by E .

In the ideal world, all sessions are anonymous and unlinkable from the SP’s
view, and T verifies whether the authenticating user satisfies the authentication
condition. These capture completeness, anonymity, and soundness.
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Definition 2. Let RealE,A(λ) (resp. IdealE,S(λ)) be the probability that E out-
puts 1 when it runs in the real world (resp. ideal world) with adversary A (resp.
S having black-box accesses to A). SAC is secure if, for all PPT algorithms,
|RealE,A(λ) − IdealE,S(λ)| is negligible in λ.

D.2 Proof

Theorem 2. Our scheme is secure if the BBS+ and weak BB signatures
are existentially unforgeable, and the range proof, set membership proof, zero-
knowledge argument of shuffling, PIss, PSig, PSet, and ZKPoK protocols are secure.

We describe how to construct S in detail, except with the details of the
underlying building blocks omitted (e.g., how to extract what S needs from the
ZKPoK). Firstly, S maintains a list of credentials issued to A during the life span
of the system. S also acts as an ideal-world adversary to the trusted party T .
S simply forwards any messages between E and A. We consider two cases for S:

Case 1: The SP is honest:

1. Setup. S generates (pp, sk) and sends pp to A.
2. Registration. S acts as a dishonest user i (in the ideal world) to T and an

honest SP to A as a dishonest user in the real world. Using the knowledge
extractor of the ZKPoK protocol, S extracts the value of x from A. This
value will be used to identify the dishonest user i. S sends the request to T
on behalf of the user i. If T replies accept, S issues the credential to A and
also stores that credential.

3. Authentication. S acts as a dishonest user i to T and an honest SP to A. S
extracts and uses the value x during authentication to determine user i. Two
worlds are indistinguishable except in the rare events below:

– During registration, S fails to extract x from A. This happens with neg-
ligible probability by the soundness property of PIss.

– During a successful authentication, S fails to extract x from A. This
happens with negligible probability by the soundness property of PSig.

– There exists a successful authentication from A such that S outputs
accept on behalf of an honest SP, but T indicates the authenticating
user does not satisfy the policy.

The last case implies that A successfully did one of the following:
– forged a credential on attributes that has never been issued,
– obtained a credential on attributes with a ticket that is neither originated

from the past version of the credential nor any dummy sessions,
– created one fake proof in authentication.

All these happen with negligible probability due to the following:
– BBS+ signatures are existentially unforgeable and PSig is sound,
– the set membership proof is sound,
– the argument of shuffling is (computationally) sound, and
– the zero-knowledge proof is sound.

Since S may need to run the extractor of the ZKPoK protocol, we require that
the registration and authentications are run sequentially. A similar restriction
also applies to PEREA, BLACR, and PERM.
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Case 2: The SP is dishonest:

1. Setup. S is given pp by A.
2. Registration. S acts as a dishonest SP to T (in the ideal world) and an honest

user i to A. When T requests registration for user i, S runs the registration
protocol with A using the simulator of PIss. If S does not obtain a valid
credential from A, then S replies reject to T .

3. Authentication. S acts as a dishonest SP to T and an honest user to A. When
T requests authentication for an anonymous user, S runs the authentication
protocol with A. If T proceeds and satisfies the authentication policy, S uses
the simulator of the ZKPoKs and shuffling protocol to simulate the view of
A using the random number q. If A rejects, S replies reject to T .

The simulation provided to A is correct due to the zero-knowledge property
of the ZKPoK protocols and shuffling protocol and the hiding property of the
commitment scheme. The behavior of S in the ideal world is the same as that
of A in the real world.
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Abstract. Password Authenticated Key Exchange (PAKE) have become
a key building block in many security products as they provide interesting
efficiency/security trade-offs. Indeed, a PAKE allows to dispense with the
heavy public key infrastructures and its efficiency and portability make
it well suited for applications such as Internet of Things or e-passports.
With the emerging quantum threat and the effervescent development
of post-quantum public key algorithms in the last five years, one would
wonder how to modify existing password authenticated key exchange pro-
tocols that currently rely on Diffie-Hellman problems in order to include
newly introduced and soon-to-be-standardized post-quantum key encap-
sulation mechanisms (KEM). A generic solution is desirable for main-
taining modularity and adaptability with the many post-quantum KEM
that have been introduced.

In this paper, we propose two new generic and natural constructions
proven in the Universal Composability (UC) model to transform, in a
black-box manner, a KEM into a PAKE with very limited performance
overhead: one or two extra symmetric encryptions. Behind the simplicity
of the designs, establishing security proofs in the UC model is actually
non-trivial and requires some additional properties on the underlying
KEM like fuzziness and anonymity. Luckily, post-quantum KEM pro-
tocols often enjoy these two extra properties. As a demonstration, we
prove that it is possible to apply our transformations to Crystals-Kyber,
a lattice-based post-quantum KEM that will soon be standardized by
the National Institute of Standards and Technology (NIST).
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In a nutshell, this work opens up the possibility to securely include
post-quantum cryptography in PAKE-based real-world protocols.

Keywords: Key Encapsulation Mechanism · Password-Authenticated
Key Exchange · Universal Composability

1 Introduction

A Password Authenticated Key Exchange (PAKE) protocol allows two users to
derive a secret key over insecure channels only with the premise of sharing the
same low entropy password. PAKE has become increasingly relevant in recent
years due to the proliferation of connected devices and the growing demand
for secure communication in scenarios where a public key infrastructure (PKI)
may not be practical or desirable. It is particularly appealing for use cases like
the Internet of Things (IoT) or e-passports, where portability, independence,
and efficiency are important considerations. For IoT devices, for example, PKI
is not feasible because of the number of devices and their limited computing
resources and connectivity. PAKE allows these devices to securely communicate
with each other using a simple password that can be easily changed if compro-
mised. Similarly, in the case of e-passport, PAKE can be used to establish secure
communication between the passport and a reader without the need for a PKI.
It allows for a more portable and independent solution, as no central authority
is necessary to verify a passport’s authenticity. Overall, PAKE offers a trade-off
between security and efficiency as compared to traditional authenticated key
exchange protocols in certain circumstances.

Security models for PAKEs The security of PAKE will always be weaker than
the security of PKI-based authenticated key exchange. Indeed, the presence of a
low-entropy password allows powerful dictionary attacks. The conceptual idea in
the PAKE security models is to accept the possibility of such dictionary attacks
but to prove that they must be made online, i.e. that no password validity test is
accessible offline. This slight security regression compared to authenticated key
exchange is often accepted because online dictionary attacks are rarely relevant
in practical contexts and the efficiency gain of PAKE is much higher. Moreover
one can always block a user after a certain number of failed attempts. More
formally, for proving the security of PAKE, the dictionary attacks should then
be materialized in the existing security models for authenticated key exchange.
Several solutions have emerged and have been refined over the last decade. Today,
there are two main security models for PAKE protocols: the Bellare-Pointcheval-
Rogaway [BPR00] and the Universal Composability (UC) model [Can01,CR03]
with its PAKE’s version [CHK+05]. The BPR model, introduced by Bellare,
Pointcheval, and Rogaway, is a game-based security model that uses specific
games to evaluate the ability of an adversary to break the protocol. On the
other hand, the UC model, introduced by Canetti, is a simulation-based model
that provides strictly better security guarantees, as stated in the original UC
PAKE paper [CHK+05].
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Existing work on PAKE . The concept of PAKE was formalized and analyzed
during the 1990 s s by Bellovin and Meritt with the Encrypted Key Exchange
(EKE) protocol [BM92]. Since then, various PAKE protocols have been proposed,
with some standardized by organizations such as the Internet Engineering Task
Force (IETF) [Sch17]. Over the years, two main categories of PAKE appeared.
The first use passwords to obscure the exchanged messages while the second use
them as part of the randomness to build the necessary material, like the group
generator. EKE [BM92] and OEKE [BCP03] are typical examples of the former.
And SPEKE [Mac01] or CPace [AHH22] are examples for the latter. While many
different PAKE designs have been introduced, not all are proven in the strong UC
security model. In the previous examples of PAKE constructions, EKE [DHP+18],
OEKE [ACCP08] and CPace [AHH21] have been proven in the UC model.

Post-quantum threat. While vastly used in current security products like IoT
or e-passports, all these PAKE constructions rely on the Diffie-Hellman key
exchange to provide cryptographic security. It raises concerns about their long-
term security, as the emergence of quantum computing in recent years threat-
ens any Diffie-Hellman-based key exchange, and thus any currently used PAKE.
Indeed, quantum computers would potentially break, even retroactively, the
mathematical foundations of many current cryptographic systems including the
difficulty of the Diffie-Hellman problem. Therefore, it is crucial to carefully con-
sider the long-term security of PAKE protocols and design them accordingly. In
response to this potential threat to current cryptographic systems, the National
Institute of Standards and Technology (NIST) has launched a standardization
process for post-quantum cryptographic primitives in 2017. The goal of this
campaign is to provide new post-quantum standards for two basic and cru-
cial cryptographic building blocks: Key Encapsulation Mechanisms (KEMs) and
digital signatures. These two families of public-key algorithms may be used
on their own but more importantly, the future standards are destined to be
included as black-boxes in internet and IoT protocols to complement the pre-
quantum bricks. Many different families of mathematical problems were used
for the design of candidate algorithms like error correcting codes or lattices.
The analysis of the different candidate algorithms is currently ongoing but the
NIST has announced a first set of standards in 2022 including the lattice-
based KEM Crystals-Kyber [SAB+22]. More recently, specific PAKE construc-
tions using post-quantum cryptography, in particular, lattices assumptions, were
introduced. However most lattice constructions are either proven in weaker secu-
rity models [GDLL17] or using mechanisms that are highly inefficient in prac-
tice [BCV19,ZY17].

1.1 Our Contributions

This paper proposes the first generic constructions to transform a black-box
KEM into a PAKE. The idea is natural and inspired from EKE and OEKE. In
high level, it consists in encrypting the public key using the password as a secret
key. A second modification consists in either encrypting the ciphertext with that



GeT a CAKE: Generic Transformations from KEM to PAKE 519

same password or adding an authentication tag. The first transformation is called
CAKE, derived from K(EM-to-P)AKE, and the second transformation is called
OCAKE. Both constructions are graphically sketched later in the paper in Figs. 4
and 5. By design, they are simple, efficient and easy to implement. However, the
price for such simplicity must be paid on the analysis side.

Let us first intuitively discuss the requirements on the KEM for achieving
formal security. Consider a KEM where the public key is designed with a par-
ticular shape, for example, the public key might always be composed of small
coefficients. When encrypted, the distribution of the sent message would look
uniformly distributed. However, any attacker may perform an offline dictionary
attack: given an encrypted public key, it will be possible to leverage the particu-
lar public key form as a condition for the valid password. In such case, the correct
password will be the one that decrypts to a public key with small coefficients.
Hence, an indistinguishability property on the distribution of the public key,
called fuzziness (formally defined in Definition 3), will be required to avoid offline
dictionary attacks. Likewise, such property on the ciphertext, called anonymity
(formally defined in Definition 4), will be essential. In addition, another impor-
tant property should be fulfilled by the symmectric encryption to construct such
PAKE. The needed property is ensured by the Ideal Cipher (IC) model [BPR00].
It consists in assuming that the encryption behaves like a random permutation
on every key. While it does not retain clear weaknesses to use a relaxed model,
an ideal cipher is necessary to unwrap the proofs of our theorems.
In this paper, we successfully prove our CAKE and OCAKE constructions in the
UC model assuming the above properties, the random oracle model (ROM) and
the erasure model stating that any obsolete internal information is erased.

Why two constructions? Similarly to EKE and OEKE, CAKE and OCAKE offer
slightly different security/efficiency trade-offs. Let us compare both construc-
tions:

– The first construction, CAKE, consists in encrypting both exchanged mes-
sages. It leads to an implicitly authenticated key exchange protocol based on
passwords. However a participant is not sure that the opposing party is able
to obtain the session key. This assurance can only be achieved by explicit
authentication. The security model for proving CAKE is very strong as it
captures adaptive corruptions. In other words, the model allows an attacker
to corrupt a user and thus obtain all its internal state in an adaptive way
during an ongoing execution of the protocol.

– In order to add explicit authentication of the receiver, one usually includes
a key-confirmation tag. In this case, one can remark with OCAKE that only
one symmetric encryption is required. The second encryption is just replaced
by the authentication that provides an explicit authentication to the receiver.
However, this construction can only be proven secure in the static corruption
model where the attacker may still corrupt users but the choice should be
made before the execution of the protocol. Additionally, it is here possible to
add an explicit client authentication at the end of the exchange to provide
mutual explicit authentication.
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In complement, we propose to show that the assumed properties on the KEM
are not just artifacts that allow our proof to work. They are actually verified
in concrete KEMs. We choose the example of Crystals-Kyber [SAB+22] as our
guinea pig for applying our transformations. Crystals-Kyber is a future NIST
post-quantum standard. We formally demonstrate that Kyber validates fuzziness
and anonymity leading up to security statements for CAKE-Kyber (Theorem 3)
and OCAKE-Kyber (Theorem 4).

1.2 Outline of the Paper

In Sect. 2, we introduce the preliminary notions on KEM, their security properties
with some lattice definitions and a brief introduction to Kyber. In Sect. 3, we
provide all the necessary information about PAKEs and their security in the UC
model. In Sect. 4, we present both our KEM to PAKE transformations along with
their security statements. For space reasons, the proofs are sketched in the main
body of the paper and the full simulations are detailed in Appendices A and B
(however full proofs are detailed in the same appendices of the full version that
can be found here: [BCP+23]). Finally, we demonstrate our techniques on Kyber
in Sect. 5.

2 Preliminaries

2.1 Notations

We note scalars, vectors, and matrices with lowercase plain (i.e. n), lowercase
bold (i.e. e), and uppercase bold (i.e. A), respectively. We denote by negl(κ) a
negligible function of a security parameter κ. Given a finite set S, the notation
x ←$ S means a uniformly random assignment of an element of S to the vari-
able x. We note KEM the denomination of a key exchange mechanism and refer
to KEM for the specific key encapsulation mechanism algorithm.

2.2 Key Encapsulation Mechanism

Even if the Key Encapsulation Mechanism’s denomination is relatively recent,
KEMs have been widely used throughout the history of public key cryptog-
raphy. The first illustration is the fact that ElGamal [ElG85], based on the
Diffie-Hellman key exchange, can be easily seen as a KEM. We will demon-
strate later in this section that it enjoys several security notions, such as seman-
tic security, fuzziness, and anonymity. Thereafter, with the NIST competition,
many new researches have conducted to the introduction of KEM using a wide
variety of structures. Let us cite a few examples: SABER [DKRV18,DKR+20],
Crystals-Kyber [BDK+18,SAB+22], NewHope [ADPS16,PAA+19] on lattice-
based assumptions or alternatively McEliece [McE78,ABC+22] on code-based
assumptions.
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Definition 1 (Key Encapsulation Mechanism). A Key Encapsulation
Mechanism (KEM) is a triple of algorithms (KeyGen, Encaps, Decaps):

– KeyGen: Returns a of pair public-secret keys (pk, sk) ∈ P × SK
– Encaps: Takes a public key pk ∈ P as input to produce a ciphertext c ∈ C and

a key K ∈ K. The ciphertext c is called an encapsulation of the key K;
– Decaps: Takes a secret key sk ∈ SK and an encapsulation c ∈ C as input,

and outputs K ∈ K.

where SK, P, C, and K are the sets of secret keys, public keys, ciphertexts and
session keys.

The formalization of the sets P, C, and K will impact the security notions pre-
sented in the sequel.

Correctness. The correctness of a KEM requires that, for a security parameter
κ,

Pr
[

(pk, sk) ←$ KeyGen(1κ)
(c,K) ← Encaps(pk) : Decaps(sk, c) = K

]
> 1 − negl(κ).

Security Notions. The usual security notion for KEM is semantic security, also
known as indistinguishability :

Definition 2 (Indistinguishability). We define the advantage of any adver-
sary A in deciding the key of the KEM by:

AdvindKEM(A) =
∣∣∣∣ Pr
DR

[A(c,K) = 1] − Pr
D$

[A(c,K ′) = 1]
∣∣∣∣ .

where we consider the real and random distributions

DR = {(pk, sk) ← KeyGen(1κ); (c,K) ← Encaps(pk) : (c,K)},

D$ = {(pk, sk) ← KeyGen(1κ); (c,K) ← Encaps(pk);K ′ ←$ K : (c,K ′)}.

In all the advantage definitions, we will denote AdvindKEM(t) the maximal advantage
any adversary can have within time t.
Let us introduce additional properties for KEMs, on the distributions of the pub-
lic keys and of the encapsulations. We will denote by fuzziness the randomness of
public keys, and by anonymity the randomness of the encapsulation. The latter
is the usual definition, when the ciphertext distribution does not depend on the
public key, and thus does not leak any information about the recipient.

Definition 3 (Fuzzy KEM). A KEM is said fuzzy if the distribution of the
public keys output by the KeyGen algorithm are computationally indistinguishable
from uniform keys in P. More formally, we define the advantage of any adversary
A in breaking the fuzziness of the KEM by:

AdvfuzzyKEM (A) =
∣∣∣∣ Pr
DR

[A(pk) = 1] − Pr
D$

[A(pk) = 1]
∣∣∣∣ ,
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where

DR = {(pk, sk) ← KeyGen(1κ) : pk} and D$ = {pk ←$ P : pk}.

Definition 4 (Anonymous KEM). A KEM is said anonymous if the distribu-
tion of the ciphertexts outputted by the Encaps algorithm are computationally
indistinguishable from uniform ciphertexts in C. More formally, we define the
advantage of any adversary A in breaking the anonymity of the KEM by:

AdvanoKEM (A) =
∣∣∣∣ Pr
DR

[A(c) = 1] − Pr
D$

[A(c) = 1]
∣∣∣∣ ,

where

DR = {(pk, sk) ← KeyGen(1κ); (c,K) ← Encaps(pk) : c} and
D$ = {c ←$ C : c}.

ElGamal Key Encapsulation Mechanism. In order to illustrate the above notions,
let us consider the particular KEM derived from the so-called ElGamal encryption
scheme [ElG85]. Let G be a group of prime order q, spanned by an element g:

– KeyGen(1κ): chooses a random x ←$ Zq and sets sk ← x, pk ← gx, with
SK = Zq and P = G;

– Encaps(pk): chooses a random r ←$ Zq and sets c ← gr, K ← pkr, with
C = G and K = G;

– Decaps(sk, c): outputs K ← csk.

It is well-know that the indistinguishability of this KEM relies on the Decisional
Diffie-Hellman assumption. From the above description, this is clear that public
keys are uniformly distributed in G, hence this KEM is fuzzy; and the ciphertexts
are also uniformly distributed in G, thus this KEM is also anonymous. Note that
the ElGamal KEM actually validates even stronger properties: perfect fuzziness
(or smoothness) and perfect anonymity. The perfect nature comes from the fact
that these notions are no longer computational but statistically ensured. As
will be later stated in Remark 1, these properties are less common for post-
quantum KEM protocols and thus will not be considered as requirements for our
constructions.

2.3 Learning with Errors

Three rounds of the NIST standardization campaign are already over and one
type of hardness assumption seems to be more enticing: lattices. Lattice prob-
lems provide strong worst-case to average-case reductions, making them excel-
lent candidates for long-term security. Indeed state of the art algorithm using
quantum adversaries are not far more efficient compared to current existing
algorithm to solve LWE. In this section, we introduce the Learning With Errors
(LWE) [Reg06] assumptions. It can be divided into two problems: a decisional
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and a search problems. Both are assumed intractable in reasonable time, even
for a quantum computer. Let us introduce the decisional version.

We directly consider this problem in a module structure named Module-LWE
(we refer to [LS15] for more details). We define Rq as the ring Zq[X]/(Xn + 1).
Let βη be the distribution on Rq where each coefficient of the polynomial is
generated according to a centered binomial distribution with parameter 2η. We
define the oracle Omlwe

m,k,η that outputs samples of the form (A,b = A ·s+e) with
s ←$ βk

η , A ←$ Rm×k
q , and e ←$ βm

η .

Definition 5 (Decisional MLWEm,k,η Problem). Given a set of parameters
m, k, η ∈ N, the advantage of any probabilistic polynomial time algorithm A in
deciding the d-MLWE over Rq is:

Advd−mlwe
m,k,η (A) =

∣∣∣∣ Pr[(A,b) ← Omlwe
m,k,η : A(A,b) = 1]

−Pr[(A,b) ←$ Rm×k
q × Rm

q : A(A,b) = 1]

∣∣∣∣ .

2.4 CRYSTALS-Kyber

Crystals-Kyber, also known as Kyber, is a Module-LWE-based KEM that is one
of the most efficient post-quantum solutions. It was introduced in response to
the NIST call for standardization of post-quantum primitives and was accepted
as the first post-quantum standard for key exchange in 2022. In its original
paper [BDK+18], Kyber is proposed as a KEM that is secure against chosen-
plaintext attacks (CPA-secure) and then achieves chosen-ciphertext attacks
(CCA-secure) with the Fujisaki-Okamoto transform.
In Fig. 1, we present the CPA-secure version of Kyber, where Rq is the ring
Zq[X]/(Xn + 1). Following the last supplemented version (3.0) [SAB+22], the
suggested parameters are defined as follows: (Xn + 1) is the 2n-th cyclotomic
polynomial where n and q are equal respectively to 256 and q = 3329.
Additionally, for the sake of efficiency, Kyber includes an optimization using a
compression function that can be thought of as a bit cut. While we do not use
this compression in our protocol for the sake of clarity, it should be included in
any implementation of our protocols using Kyber for maximum efficiency and
correctness. We refer to the most recent NIST submission package [SAB+22] for
more detailed information.

3 Password Authenticated Key Exchange

3.1 Introduction to PAKE

Initially introduced by Bellovin and Merritt [BM92], a Password-Authenticated
Key Exchange (PAKE) is a protocol that allows two parties to establish a shared
secret session key over an insecure communication channel using a password as
the only authentication means. The goal of PAKEs is to ensure that the key
exchange is secure even if the password is weak or stolen by an attacker, the
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Kyber.KeyGen(1κ)

1 : ρ, σ ←$ {0, 1}κ

2 : A ← Rk×k
q := Sam(ρ)

3 : (s, e) ← βk
η × βk

η := Sam(σ)

4 : b ← A · s + e

5 : return (pk = (ρ,b), sk = s)

Kyber.Encaps(pk = (ρ,b))

1 : τ ←$ {0, 1}κ

2 : m ←$ {0, 1}n ⊆ Rq

3 : A ← Rk×k
q := Sam(ρ)

4 : (r, e′, e”) ← βk
η × βk

η × βη := Sam(τ)

5 : u ← AT · r + e′

6 : v ← bT · r + e” +
⌈ q

2

⌋
· m

7 : return c ← (u, v)

Kyber.Decaps(sk = s, c = (u, v))

1 : return

⌈
2

q

(
v − sT · u

)⌋

Fig. 1. Simplified Kyber KEM: Kyber.KeyGen, Kyber.Encaps, Kyber.Decaps

only possible attack being an online exhaustive search, which can be detected
and stopped using some organizational action.

PAKE protocols are handy when strong authentication is required while other
forms of authentication (certificates) are not usable. They are often used in
combination with other protocols to provide a secure channel for communication.

PAKE protocols might be vulnerable to two types of attacks: offline-dictionary
attacks and online-dictionary attacks. The former occurs when an attacker gains
knowledge of the password using pre computed lists of common passwords and
exchanged information. Whereas, the latter involves an attacker actively trying
to obtain the password by attempting to log in with different guesses. PAKE
protocols often implement measures such as limiting the number of tries an
attacker can make to guess the password to protect against online-dictionary
attacks. Consequently, the security of a PAKE protocol ultimately relies on its
resistance to offline-dictionary attacks. In other words, the strength of a PAKE
protocol is determined by how difficult it is for an attacker to guess the password
from the public transcript, even if it has a lof of time and resources.

3.2 The Universal Composability (UC) Model

Overview of the UC Framework. The Universal Composability (UC) model
[Can01] is a simulation-based model in which an environment Z attempts to
differentiate the output of a protocol execution Π in the real world from the
output generated in an ideal world. In the real world, the execution takes place
between parties and an potential adversary. In the ideal world, dummy players
and an ideal adversary or simulator S interact solely with an ideal functionality
F to compute a specific function f . The ideal functionality can be informally
defined as a trusted party that honestly and unconditionally responds to any
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query. A schematic representation is given in Fig. 2.
The original paper [Can01] only uses sid as session identifiers, but a improved
version of the UC model was published in [CR03] introducing subsession identi-
fiers ssid. For more clarity, throughout this article we use ssid for (sid, ssid). More
explicitly, two ssid could theoretically be equal on different sessions sid, but by
setting ssid :− (sid, ssid), we enforce the uniqueness of ssid. This uniqueness is
necessary in the proofs provided in Appendices A and B.

Fig. 2. Real versus Ideal world: Z capability.

The goal of the UC model is to emulate the protocol Π using the ideal
functionality. If the emulation is performed such that the environment Z cannot
distinguish (1) Π’s outputs with possible interactions with an adversary A from
(2) the outputs of dummy parties and a simulator interacting with the ideal
functionality F , then one can state that Π UC-emulates F .

In our case, the protocols are Password-Based Authenticated Key Exchange
(PAKE) and the ideal functionalities used throughout the paper specifically
designed for PAKEs [CHK+05,ACCP08] are FpwKE and FpwKE-sA (taken from
[CHK+05] and defined in Fig. 3).

Ideal Functionality FpwKE. We present here the ideal functionality that is
used for PAKEs. A detailed description of the functionality is given in [CHK+05].
It consists of three types of queries: NewSession, TestPwd and NewKey:

– NewSession allows a party to initialize a connection to another opposing
party using its password. The functionality FpwKE uses this query to record
the connection as well as the initial party’s password.

– TestPwd models the unique online password test (online dictionary attacks)
that is enabled through the execution of a PAKE. This query additionally
impacts the view of the ideal functionality. Querying TestPwd changes the
view of FpwKE in the exchange of two parties by altering the behavior of the
next query NewKey, according to the correct or incorrect guess.
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– NewKey interface allows to give parties a session key consistent with the state
of their record. If two fresh entities do not share/use the same password then
FpwKE does not give them the same key. Contrarily, if they do, this oracle
returns the same key for both parties. However the behavior is more refined
than that and takes account possible alterations from TestPwd (more details
in Fig. 4).

Ideal Functionality with server authentication FpwKE-sA. We present a
variation FpwKE-sA of the previous ideal functionality to add explicit server
authentication. A detailed description of the functionality is provided in Fig. 3.

– in each record in L (defined in Figure 3), we add a component role ∈
{client, server}. From this point forward, L has components of the form
(ssid, Pi, Pj , pw, status, role).

– If the client queries NewKey at a time when the server still has not queried
NewKey in the same session ssid, then FpwKE-sA does nothing.

– If Pi and Pj do not share the same password: then the client gets abort
whatever the status is.

Model. To prove that a protocol UC-emulates FpwKE or FpwKE-sA, we first
need to set the model and assumptions for the proof. In this paper, we consider
the Random Oracle Model (ROM) and the Ideal Cipher (IC) model (more details
in full version [BCP+23]). We also make use of the erasure model and assume
that the adversary A is able to perform either adaptive or static corruptions,
depending on the protocol.

Random Oracle. We use the definition of ROM introduced by Hofheinz and
Müller-Quade [HM04]. This assumption provides a powerful tool that coher-
ently responds to queries and generates answers that are uniformly random and
independent of the input of the query.

Ideal Cipher. The ideal cipher model was first introduced in [BPR00]. It con-
siders that a cipher behaves as a perfectly independent random permutation for
every key used.We will generalize it a little bit by differentiating the input set
and the output set, and then considering random bijections for every key.

Corruption. As mentioned earlier, we consider two types of corruptions in this
paper: static corruptions and adaptive corruptions. Static corruptions allow the
adversary to obtain the password of a party prior to the execution of the protocol.
This means that during a simulation, the simulator knows which parties have
been corrupted. Adaptive corruptions allow the adversary to corrupt any party
during the execution of the protocol by revealing the password and internal state
of the party.

Erasure model. The erasure model is a simple but powerful assumption. In this
model, we assume that any internal information that is no longer useful ceases
to exist. Therefore, in the event of information leakage, or adaptive corruption,
previous internal information is not leaked as it no longer exists.
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PAKE Ideal Functionality with server Authentication: FpwKE-sA

Session Initialization
On (NewSession, ssid, role, pw, Pi, Pj) from Pi:

– Sends (NewSession, ssid, role, Pi, Pj) to S.
– If this is the first NewSession query, or if it is the second NewSession query and

there is a record (ssid, Pj , Pi, pw
′, �, �) ∈ L, then record (ssid, Pi, Pj , pw, fresh, role)

in L.

Active attack
Upon receiving a query (TestPwd, ssid, Pi, pw

′) from the adversaryS, if there exists
record (ssid, Pi, Pj , pw, fresh, role) ∈ L, do:

– If pw = pw′ mark the record as compromised and reply to S with ”correct guess”.
– If pw �= pw′, mark the record as interrupted and reply to S with ”wrong guess”.

Key Generation
Upon receiving a query (NewKey, ssid, Pi, SK) from S, where SK ∈ {keys}, if there is a
record of the form (ssid, Pi, Pj , pw, status, role) ∈ L, for any value status, and this is
the first NewKey query for Pi:

– if role = client
• If status = compromised, or if one of the players Pi or Pj is corrupted and

there exists two records (ssid, Pi, Pj , pw, client) and (ssid, Pj , Pi, pw, server)
then send (ssid, SK) to Pi;

• Else if status = fresh and there is a record (ssid, Pj , Pi, pw
′, client′) with pw′ =

pw, and a session key SK′ has been sent to Pj , that was fresh at that time,
then send (ssid, SK′) to Pi. Else if pw′ �= pw, choose a random key SK′ whose
length is k and send (ssid, SK′) to Pi.

• Else if status = fresh, and if no record completed record exists for Pj in ssid
do nothing.

• Else if status = interrupted, send (ssid, error) to Pi.
– if role = server

• If status = compromised, or if one of the players Pi or Pj is corrupted then
send (ssid, SK) to Pi;

• Else if status = fresh or status = interrupted, choose a random key SK′ ∈
{keys} and send (ssid, SK′) to Pi.

Update the record as completed.

Fig. 3. FpwKE-sA: the ideal Functionality of a PAKE with server explicit authentication.
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Alice : A, pw ssid Bob : B, pw

(pk, sk) ← KEM.KeyGen(1κ)

Epk ← E1(ssid‖pw, pk)
A,Epk

pk ← D1(ssid‖pw,Epk)

(c, K) ← KEM.Encaps(pk)

Ec ← E2(ssid‖pw, c)
B,Ec

c′ ← D2(ssid‖pw,Ec)

K′ ← KEM.Decaps(sk, c′)

SK ← H(ssid, A, B,Epk,Ec, K′) SK ← H(ssid, A, B,Epk,Ec, K)

Fig. 4. CAKE with (E1, D1), (E2, D2) two pairs of ideal ciphers. E1 is a bijection from P
to P ′ while E2 is a bijection from C to C′.

4 Two Pieces of One Cake: Study of EKE and OEKE

In this study, we propose to examine the use of KEM with specific properties
in the context of EKE and One-Way Encrypted Key Exchange (OEKE). We
first introduce an evolved version of EKE called CAKE, that provides implicit
authentication only, and then extend it to OEKE using a variant called OCAKE,
that additionally provides explicit authentication of the receiver. We prove the
security of these protocols in the Universal Composability (UC) model, assuming
three properties of the KEM: semantic security, fuzziness, and anonymity. These
two studies offer a balance between security properties and efficiency: CAKE
handles adaptive corruptions, while OCAKE is proven secure in a relaxed model
that only allows static corruptions to provide explicit authentication.

4.1 CAKE

In this subsection, we present a study of the K(EM)-EKE protocol, referred to
as CAKE. This protocol is based on the use of generic KEM in EKE and is the
most conservative of the two constructions we propose.

To study CAKE properly, as well as expressing the necessary properties on
the underlying KEM, we first fix a KEM (KeyGen, Encaps, Decaps) with the sets SK,
P, C, and K as in Definition 1. Next, we define two ideal cipher pairs (E1, D1)
and (E2, D2). We additionally define a set of keys Key and two sets P ′ and C′

respectively bijections from P and C where both of them offer easy uniform
sampling:

E1 : Key × P → P ′ E2 : Key × C → C′

D1 : Key × P ′ → P D2 : Key × C′ → C
The actual keys of the ideal ciphers are the concatenations of the ssid and the

passwords, to ensure independent bijections between different executions of the
protocol. We introduce a description of CAKE in Fig. 4 along with its security
theorem based on the fuzziness and anonymity of the underlying KEM in the ROM
and IC models, while allowing adaptive corruptions.
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Theorem 1. Let (E1, D1), (E2, D2) be two pairs of ideal ciphers and H be a ran-
dom oracle. We note qD1 (resp. qD2) the maximal number of queries to the decryp-
tion oracle D1 (resp. D2). We also note qE1 (resp. qE2) the maximal number of
queries to the encryption oracle E1 (resp. E2) explicitly asked by the adversary.
Finally, we note qs the number of sessions. The CAKE protocol described in Fig. 4
using KEM, a key encapsulation mechanism that is both fuzzy (Def. 3) and anony-
mous (Def. 4) ensuring semantic security, UC-emulates FpwKE in the erasure
model with adaptive corruptions.
More precisely, if we define AdvcakeKEM (A) the advantage of an adversary A to break
the above claim, it is bounded by

(2qs + qD1 + qD2) · AdvindKEM(t)

+ (qs + qD1) · AdvfuzzyKEM (t) + qD1 · (qs + qD2) · AdvanoKEM (t)

+ qH · qs · 2−λk + q2E1 · 2−λp−1 + q2E2 · 2−λc−1,

where λk is the bit-length of the encapsulated keys, λp the bit-length of the public
keys, and λc the bit-length of the ciphertexts, for the KEM scheme.

Sketch of Proof: In the subsequent games, we denote Pr[G] the probability for
the environment Z to output 1 in the simulated game G. The goal is to prove that
Pr[G] is close to the probability to output 1 in the ideal game, while starting from
the real game G0. The sequence of games will end with G9 that only uses the
ideal functionality FpwKE , and is thus the ideal game. The complete simulation
can be found in the Appendix A and the complete proof in the Appendix of the
full version ([BCP+23]). We present here a sketch of proof:

G0: Real world protocol using the following assumptions: erasure model, random
oracle, ideal cipher, adaptive corruption and lastly a fuzzy and anonymous
KEM, which is also indistinguishable.

G1: Honest simulation of the random oracle H and the pairs of ideal ciphers
(E1, D1) and (E2, D2) from Fig. 4, where we abort in case of collision during
explicit encryption calls. Additionally, a private simulation of a random oracle
H∗ used for the simulation when S cannot extract private information.

G2: Embedding of the secrets during the simulation of D1 and D2.
G3: Simulation of Alice’s initialization with D1 instead of E1.
G4: Simulation of Bob’s answer with D2 instead of E2.
G5: Preparation of Alice’s reaction, by anticipating all the possible public keys

decrypted by D1 when a query is asked to D2.
G6: Simulation of Alice’s reaction, using the previous simulation of D2.
G7: Random session keys, where we replace all the unknown keys SK by random

values.
G8: Adaptive corruptions, where we program the random oracle H and provide

the secret values in case of corruption.
G9: Using on queries from FpwKE to detail the simulator in the ideal world.

A precise simulator is defined in Appendix A with Figs. 6, 7 and 8. ��
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Alice : A, pw ssid Bob : B, pw

(pk, sk) ← KEM.KeyGen(1κ)

Epk ← E(ssid‖pw, pk)
A,Epk

pk ← D(ssid‖pw,Epk)

(c, K) ← KEM.Encaps(pk)

Auth ← H1(ssid, A, B, pw,Epk, c, K)

B, c, Auth
K′ ← KEM.Decaps(sk, c)

H1(ssid, A, B, pw,Epk, c, K′) ?= Auth

SK ← H2(ssid, A, B,Epk, c, Auth, K) SK ← H2(ssid, A, B,Epk, c, Auth, K)

Fig. 5. OCAKE with (E, D) an ideal cipher. E is a bijection from P to P ′.

Remark 1. Instantiated with the KEM derived from ElGamal presented in Sect. 2,
CAKE-ElGamal is exactly the famous EKE [BM92]. But the proof technique actu-
ally differs because ElGamal enjoys perfect fuzziness (or smoothness) and per-
fect anonymity, which facilitate the EKE security proof. However, post-quantum
algorithms cannot validate all these strong properties.

4.2 OCAKE

In this subsection, we modify the above CAKE protocol by adding explicit
authentication of the receiver, which allows to remove one encryption. The mod-
ifications are based on the OEKE [BCP03] protocol but with generic KEM pro-
tocols instead of a Diffie-Hellman based key exchange.

In this setting, we only handle static corruptions in the security model.
Indeed, it would have been possible to include adaptive corruptions in the secu-
rity model with a statistical notion for the anonymity, i.e. perfect anonymity.
But the computational property of our anonymity definition (see Definition 4)
is more realistic for post-quantum KEM protocols. And thus here, adaptive cor-
ruptions cannot be handled by our proof in the UC-framework: in case of honest
transcripts, we must generate a random c, on behalf of Bob. In case of Alice’s
corruption, one can program E in order to set a specific (pk, sk), but if the sim-
ulator commits on a specific c, then it cannot remain consistent. In particular,
the adversary could have tried many passwords when decrypting Epk, hence
one cannot anticipate the public key for c.

In order to thoroughly study this approach, we outline the modifications
in Fig. 5. We remove one encryption on the server flow to change it into an
authentication. However for the sake of the proof, we have to slightly change how
the hash query is usually done. Instead of using the public transcript, we use
part of the secret information for the sake of the simulation in the security proof.
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Lastly we use FpwKE-sA in Fig. 3: the PAKE ideal functionality with explicit
authentication of the server.

Theorem 2. Let (E, D) be a pair of ideal cipher. Let H1 and H2 be two random
oracles. We note qD the maximal number of queries to the decryption oracle
D. We also note qE the maximal number of queries to the encryption oracle E,
explicitly asked by the adversary. And we note qs the number of sessions. The
OCAKE protocol described in Fig. 5 using KEM, a key encapsulation mechanism
that is both fuzzy (Def. 3) and anonymous (Def. 4) while ensuring semantic
security, UC-emulates FpwKE-sA in the erasure model with static corruptions.
More precisely, if we define AdvocakeKEM (A) the advantage of an adversary A to
break the above claim is bounded by

(qs + qD) · AdvfuzzyKEM (t) + (qs + qD + 1) · AdvindKEM(t) + qD · AdvanoKEM (A)

+ (qH1 + 2qs)2 · 2−λH1−1 + q2E · 2−λp−1 + (qH1 + qH2) · qs · 2−λk ,

where λk is the bit-length of the encapsulated keys, λp the bit-length of the public
keys for the KEM scheme, and λH1 the bit-length of the authentication tag.

Sketch of Proof: Similarly to the proof of Theorem 1, in the subsequent
games, we denote Pr[G] the probability for the environment Z to output 1
in the simulated game G. The goal is to prove that Pr[G] is close to the prob-
ability to output 1 in the ideal game, while starting from the real game G0.
The sequence of games will end with G8 that only uses the ideal functionality
FpwKE-sA, and is thus the ideal game. The complete simulation can be found
in the Appendix B and the complete proof is depicted in the same Appendix of
the full version ([BCP+23]). We present here a sketch of proof:

G0: Real world protocol using the following assumptions: erasure model, random
oracle, ideal cipher, static corruption and lastly a fuzzy and anonymous KEM,
which is also indistinguishable.

G1: Honest simulation of two random oracles H1, H2 and an ideal cipher (E, D)
from Fig. 5, where we abort in case of collision during explicit encryption calls.
Additionally a private simulation of each random oracle H∗

1, H
∗
2 used for the

simulation when S does not know any passwords. We also exclude collisions
on H1 and H∗

1.
G2: Embedding of the secret keys during the simulation of D.
G3: Simulation of an adversary finding Auth by chance.
G4: Simulation of Alice’s initialization with D instead of E.
G5: Simulation of Bob’s answer with (c, Auth).
G6: Simulation of Alice’s reaction, using the Auth and the abortion in case the

authentication is not verified.
G7: Random session keys, where we replace all the unknown authentication tags

Auth and keys SK by random values, except for correctly guessed passwords
G8: Using on queries from FpwKE-sA to detail the simulator in the ideal world.

A precise simulator is defined in Appendix B with Figs. 9 and 10. ��
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Remark 2. Comparatively to remark 1, instantiated with the KEM derived from
ElGamal presented in Sect. 2, OCAKE-ElGamal is exactly OEKE [ACCP08].

Additional remarks:

Removing the cipher on pk and keeping it on c like OEKE is not possible.
To follow strictly its framework one would need a perfectly anonymous KEM
otherwise the client could construct a subset attack using the gap of a miscon-
structed cipher on decryption. Furthermore, we place our study in the con-
text of quantum-secure KEM and none of them allows for perfect anonymity.
Therefore the strict OEKE framework is not an enticing approach for long-
term usability.

This protocol is only secure against static corruptions. An adversary allowed to
apply adaptive corruptions could corrupt the client a reception of (c, Auth)
before it computes Decaps. The adversary would then obtain sk because
Decaps needs it and implies that the erasure is not applied. Knowing sk,
a random c ←$ C is easily recognizable from a honestly built one leading the
adversary to distinguish the simulation in the above proof.

Adding an authentication of the client afterwards for mutual authentication is
entirely possible. The proof extensively use tricks before the derivation of the
session key to either extract private information or to send indistinguishable
random elements. Since this is done before, either the client would send a hon-
est authentication, a perfectly indistinguishable one or a recognizable wrong
one.

5 Crystal-Kyber

5.1 Security Properties

Crystals-Kyber has been introduced in Sect. 2. For the following results, we set
P = {0, 1}κ ×Rk

q , SK = βk
η , C = Rk

q ×Rq and K = {0, 1}n. First of all, we recall
the indistinguishability property of Crystals-Kyber [BDK+18]:

Lemma 1. Kyber on parameters (k, η, q, n) is an indistinguishable KEM:

AdvindKyber(A) ≤ Advd−mlwe
k,k,η (t) + Advd−mlwe

k+1,k,η(t)

Next, let us verify the anonymity and fuzziness properties guaranteed by
Kyber.

Lemma 2. Crystals-Kyber is an anonymous KEM in C = Rk
q × Rq:

AdvanoKyber(A) ≤ Advd−mlwe
k,k,η (t) + Advd−mlwe

k+1,k,η(t)
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Proof. Let sample a public key pk ←$ (A,b), by definition of Kyber in Fig. 1

c = (u, v) with
{
u = AT · r + e′

v = bT · r + e′′ +
⌈

q
2

⌋ · m

We can rewrite c as:
[
u
v

]
←

[
A
b

]T

r +
[

e′

e′′ +
⌈

q
2

⌋ · m

]

It forms a Module-LWE instance

([
A
b

]T

,

[
u
v

])
provided that (A,b) is uni-

formly random on Rk×k
q ×Rk

q which is true under the d-MLWEk,k,η assumption.
This directly gives:

AdvanoKyber(A) ≤ Advd−mlwe
k+1,k,η(t) + Advd−mlwe

k,k,η (t)

��
To prove anonimity in lemma 2, Kyber needs to ensure the decisional MLWE
argument, therefore:

Corollary 1. Crystals-Kyber is a fuzzy KEM with P = Rk
q :

AdvfuzzyKyber(A) ≤ Advd−mlwe
k,k,η (t)

Theorem 3. Let (E1, D1), (E2, D2) be two pairs of ideal ciphers, and H a random
oracle. We note qD1 (resp. qD2) the maximal number of queries to the decryption
oracle D1 (resp. D2), explicitly asked by the adversary, and qs the number of
session. The CAKE protocol from Fig. 4 instantiated with Kyber UC-emulates
FpwKE in the erasure model with adaptive corruptions:

AdvcakeKyber(A) ≤ ((5qs + 3qD1 + 2qD2) + 2qD1 · (qs + qD2)) · Advd−mlwe
k+1,k,η(t)

+ qH · qs · 2−n + q−kn · (q2E1 · 2−κ + q2E2 · q−n)/2

Theorem 4. Let (E, D) be an ideal cipher, and H1, H2 two random oracles. We
note qD the maximal number of queries to the decryption oracle D, explicitly asked
by the adversary, and qs the number of session. The OCAKE protocol from Fig. 5
instantiated with Kyber UC-emulates FpwKE-sA in the erasure model with static
corruptions:

AdvocakeKyber (A) ≤ 2 · qD · (Advd−mlwe
k+1,k,η(t)) + 3 · qD · (Advd−mlwe

k,k,η (t))

+ (qH1 + qH2) · qs · 2−n + q2E · 2−κ + qH1 · 2−n
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5.2 Instantiation of the Block Cipher

To prove the UC-security of both CAKE-Kyber and OCAKE-Kyber, the ideal
cipher model is crucial. More precisely it needs to ensure that finding a colli-
sion on the encryption is statistically impossible without querying a decryption
oracle. It removes both the following approaches out of the equation: stream
cipher and one time pad. The conception of a relevant block cipher for our
transformations is actually nontrivial. In fact, the underlying sets, like Rq, are
not convenient for building a symmetric block cipher statistically following the
necessary ideal properties. We present here a solution issued from known ad-hoc
techniques. We believe that it can be improved for better performance but this
task is left as future work.

To keep light notations, we do not encrypt the seed of A, and thus consider
the encryption of an element in Rk

q ∼ Z
n×k
q for the public key. We can do the

same with Rk
q × Rq ∼ Z

n×(k+1)
q for the ciphertext.

To encrypt pk ∈ Rk
q ∼ Z

n×k
q , we can first encode pk into {0, . . . qnk − 1},

and then use a block cipher on �-bits, such that 2�−1 ≤ qnk < 2�. We thus
have an encoding/decoding from Rk

q to {0, 1}� that can be seen as a superset of
{0, . . . qnk − 1}. Let us thus consider all these encodings equivalent.

From (E, D) on �-bit blocks and κ-bit keys, we can build a permutation onto
the restricted set {0, . . . qnk − 1}: one defines the encryption scheme with key K
on b ∈ Rk

q ∼ {0, . . . qnk − 1} as E′
K(b) = EK(. . . EK(b) . . .), stopping at the first

element in {0, . . . qnk − 1}. Decryption works the same way, and will stop at the
right place as all ignored intermediate values are outside the expected set.

Actually, the number of iterations will be small, as there is a probability less
than 1/2 at each step. This technique is vulnerable to timing attacks, but one
can always include virtual loops.

We emphasize that this study is done without using the optimized Kyber
(without) the compression, decompression functions. However, these two func-
tions map elements of Zq to Zq′ with q′ < q, therefore the study remains similar.

5.3 Parameters

The bounds in Theorems 3 and 4 are slightly looser than the ones that constrain
the choice of parameters for Kyber. Thus, some adaptations of the obtained secu-
rity levels are necessary. We propose to recompute the security level for the set of
parameters taken from Kyber’s last submission to the NIST [SAB+22] and choos-
ing parameters that allow to reach around 100 bits of security against quantum
adversaries. While this can be argued to be weak, PAKE are not used in highly
critical applications but in highly efficient ones. Hence, 100 bits of security against
quantum adversaries would constitute a mid to long-term security target.

We present in Table 1 the security estimations for CAKE-Kyber and OCAKE-
Kyber obtained with the pq-crystal estimate [DS21] against a quantum adversary
with KYBER768 and KYBER1024 parameters.
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Table 1. Bit security estimates of CAKE-Kyber and OCAKE-Kyber using parameters
from version 3.0 of the NIST [SAB+22] against a quantum adversary. Estimation done
using python script from pqcrystals github [DS21].

Kyber parameters Bit-sec against quantum
adversaries obtained

with [DS21]

Kyber1024 102

CAKE-Kyber

Kyber768 98

Kyber1024 162

OCAKE-Kyber

The security/efficiency trade-off between CAKE and OCAKE is confirmed in
this example. According to Table 1, CAKE provides more conservative assump-
tions as an adaptive adversary are included in the model however it is less efficient
that its OCAKE alternative.

We emphasize the fact that this paper propose a generic construction proven
secure in the UC model. To our knowledge before this work no UC-secure
lattice-based PAKE are usable in practice. However BPR-secure PAKE such
as [GDLL17] should be slightly more efficient in practice due to our reduction.
One benefit of our approach is that the efficient and secure implementation of
Kyber can directly be applied.

6 Conclusion and Perspectives

In this article we characterize the necessary properties for a key encapsulation
mechanism to be used in a password authenticated key exchange and more pre-
cisely in both EKE and OEKE. Additionally we prove that these properties are
respected by the newly standardized Kyber. To supplement this study we intro-
duce a set of possible parameters for Kyber, ensuring around 100 bit of security.
Lastly we propose a cipher respecting statistically ideal cipher properties for the
application of both CAKE (Fig. 4) and (OCAKE Fig. 5).
While our work focuses on post-quantum alternatives, one could improve our
results by supposing a random self-reducible KEM (like El-Gamal). Random self-
reducibility implies that arbitrarily many independant instances can be reduced
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to only one such instance. Although current post-quantum schemes are not self-
reducible KEM but such an assumption would lead to tighter reductions and it
would allow for SPEKE or CPace constructions to be generalized to more KEM
protocols.
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LS15. Langlois, A., Stehlé, D.: Worst-case to average-case reductions for module lat-
tices. Des. Codes Cryptogr. 75(3), 565–599 (2015)

Mac01. MacKenzie, P.: On the security of the SPEKE password-authenticated key
exchange protocol. Cryptology ePrint Archive, Report 2001/057 (2001). https://
eprint.iacr.org/2001/057

McE78. McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory.
The deep space network progress report 42–44, Jet Propulsion Laboratory, Califor-
nia Institute of Technology, January/February (1978). https://ipnpr.jpl.nasa.gov/
progress report2/42-44/44N.PDF

PAA+19. Poppelmann, T., et al.: NewHope. Technical report, National Institute
of Standards and Technology (2019). https://csrc.nist.gov/projects/post-quantum-
cryptography/round-2-submissions

Reg06. Regev, O.: Lattice-based cryptography. In: Dwork, C. (ed.) CRYPTO 2006.
LNCS, vol. 4117, pp. 131–141. Springer, Heidelberg (2006). https://doi.org/10.1007/
11818175 8

https://doi.org/10.1007/3-540-45539-6_11
https://doi.org/10.1007/3-540-45539-6_11
https://doi.org/10.1007/11426639_24
https://doi.org/10.1007/11426639_24
https://doi.org/10.1007/978-3-319-78372-7_13
https://doi.org/10.1007/978-3-319-78372-7_13
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://doi.org/10.1007/978-3-319-89339-6_16
https://doi.org/10.1007/978-3-319-89339-6_16
https://github.com/pq-crystals/security-estimates
https://github.com/pq-crystals/security-estimates
https://eprint.iacr.org/2017/1196
https://doi.org/10.1007/978-3-540-24638-1_4
https://eprint.iacr.org/2001/057
https://eprint.iacr.org/2001/057
https://ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.PDF
https://ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.PDF
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://doi.org/10.1007/11818175_8
https://doi.org/10.1007/11818175_8


538 H. Beguinet et al.

SAB+22. Schwabe, P., et al.: CRYSTALS-KYBER. Technical report, National Insti-
tute of Standards and Technology (2022). https://csrc.nist.gov/Projects/post-
quantum-cryptography/selected-algorithms-2022

Sch17. Schmidt, J.-M.: Requirements for password-authenticated key agreement
(PAKE) schemes. RFC 8125, 1–10 (2017)

ZY17. Zhang, J., Yu, Yu.: Two-round PAKE from approximate SPH and instantiations
from lattices. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. Part III, volume
10626 of LNCS, pp. 37–67. Springer, Heidelberg (2017). https://doi.org/10.1007/
978-3-319-70700-6 2

https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://doi.org/10.1007/978-3-319-70700-6_2
https://doi.org/10.1007/978-3-319-70700-6_2


Multiparty Computation



Explicit and Nearly Tight Lower Bound
for 2-Party Perfectly Secure FSS

Keitaro Hiwatashi1,3(B) and Koji Nuida2,3

1 Graduate School of Information Science and Technology, The University of Tokyo,
Tokyo, Japan

keitaro hiwatashi@mist.i.u-tokyo.ac.jp
2 Institute of Mathematics for Industry, Kyushu University, Fukuoka, Japan

nuida@imi.kyushu-u.ac.jp
3 National Institute of Advanced Industrial Science and Technology, Tokyo, Japan

Abstract. Function Secret Sharing (FSS) is a cryptographic tool intro-
duced by Boyle et al. (EUROCRYPT 2015) and is useful for several
applications such as private information retrieval, oblivious-RAM, multi-
party computation, etc. Most of the known FSS schemes are based on a
pseudorandom generator and hence with computational security. In con-
trast, there are only a few known constructions of information-theoretic
FSS, which are just for restricted function classes. It has not been well
studied how efficient information-theoretic FSS can be in general. In
this paper, we focus on (2-party) perfectly secure information-theoretic
FSS and prove that the key size is explicitly (i.e., not just asymptot-
ically) bounded below by the size of the subgroup generated by the
function class. To the best of our knowledge, this is the first lower
bound for information-theoretic FSS for an arbitrary function class. Our
result shows that for several practically meaningful function classes, per-
fectly secure information-theoretic FSS must be much inefficient, not
only asymptotically but also in practical parameters. Furthermore, we
prove that this explicit lower bound is nearly tight by constructing per-
fectly secure information-theoretic FSS schemes for arbitrary function
classes almost achieving our lower bound.

Keywords: function secret sharing · lower bounds ·
information-theoretic security

1 Introduction

Function secret sharing (FSS), introduced by Boyle et al. [2], is informally a
secret sharing scheme on a function class F . That is, (2-party) FSS splits a
function f ∈ F into two functions f0 and f1, which are called keys of f , such that
(1) f(x) = f0(x)+f1(x) holds for all inputs x and (2) each fb does not reveal any
information of f . The splitting algorithm is called the key generation algorithm
and the algorithm to compute fb(x) is called the evaluation algorithm. Since the
introduction of FSS, many applications have been proposed: e.g., distributed
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oblivious RAM [5–7] from FSS for point functions; private queries (including
private information retrieval, PIR) [10,12] from FSS for point functions and
interval functions; metadata-hiding messaging [8] from FSS for point functions;
and multi-party computation (MPC) [1,4] from FSS for point functions, interval
functions, bit-decomposition functions, etc.

Most of the known FSS schemes [1–6] are based on a pseudorandom generator
and hence with computational security. In contrast, there are only a few perfectly
secure information-theoretic FSS (IT-FSS) schemes [4]. One may wonder why
there are only a few IT-FSS, while most of the (ordinary) secret sharing schemes
are perfectly secure. More specifically, in (ordinary) secret sharing, we already
know an efficient construction of a perfectly secure secret sharing scheme (for
threshold access structures) for a set S with only log |S| bits share size. Coming
back to the case of FSS, is it also possible to construct an IT-FSS scheme for a
function class F with log |F| bits key size?

Unfortunately, two negative results are known regarding efficient IT-FSS:

1. Gilboa and Ishai [9] stated that the information-theoretic distributed point
functions (DPF), which is a special case of FSS for point functions, need
Ω(2n) bits key size, where n is the bit size of input space. Furthermore, they
also showed that if there exists an efficient DPF scheme, then a one-way
function exists.

2. Boyle et al. [2] proved that if there exists an efficient FSS scheme for a poly-
spanning function class, which includes point functions and interval functions,
then a pseudorandom function exists.

However, their results do not cover some function classes used in applications: For
example, their results showed that FSS for a function class {fα,β} over α ∈ Z2n

and β ∈ Z2n , where fα,β is a function such that fα,β(α) = β and fα,β(x) = 0 for
x �= α, implies the existence of one-way functions. (Therefore, it seems difficult to
construct an IT-FSS scheme for the function class.) However, an FSS scheme for
its subclass {fα,1} over α ∈ Z2n does not imply the existence of one-way functions
by their argument, since the function class is not poly-spanning. (Therefore, there
is a possibility to construct an efficient IT-FSS scheme for this function class.)
This function class is used in the equality test in MPC [4]. See Sect. 3 for more
details.

Additionally, the two negative results are based on asymptotic analysis. How-
ever, in applications, non-asymptotic efficiency evaluation on practical param-
eters is also important. There is a possibility that in practical parameters, an
IT-FSS scheme with an asymptotically large key size outperforms an FSS scheme
based on pseudorandom generators with an asymptotically small key size.

In the context of the above, we tackle the question of how much we can
improve the key size of IT-FSS.

1.1 Our Contributions

We give an explicit lower bound for the key size of (2-party) IT-FSS for an
arbitrary function class. To the best of our knowledge, it is the first lower bound
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for IT-FSS for an arbitrary function class. Also, our lower bound is explicit and
therefore is useful for analyzing the efficiency in fixed practical parameters, while
the known lower bound for IT-FSS for point functions is just asymptotic. Using
our explicit lower bound, we can clarify that the key size of an IT-FSS scheme
is much larger than that of an FSS scheme based on pseudorandom generators,
even in practical parameters. For example, our lower bound implies the key size
of an IT-FSS scheme for point functions with n = 64 bits input and output space
is at least 270 − 65 bits, while the key size of the computationally secure scheme
in [3] for the same function class is 8576 bits.

Furthermore, we prove that this explicit lower bound is nearly tight by con-
structing IT-FSS schemes for arbitrary function classes almost achieving our
lower bound. For a general case, the gap in the key size of our construction com-
pared to our lower bound is only almost the bit size of the range of functions.
The gap becomes smaller for some special cases: especially, when the range of
functions is an elementary Abelian 2-group, the key size of our construction is
just one bit larger than our lower bound.

1.2 Technical Overview

We provide an overview of our techniques. We explain more details in the fol-
lowing sections.

Explicit Lower Bound. We give an explicit lower bound for IT-FSS for a
function class F in two steps:

1. We convert an IT-FSS scheme to a simplified IT-FSS scheme with (at most)
1-bit additional key size (Theorem 2).

2. We give an explicit lower bound for a simplified IT-FSS scheme (Corollary 1
and Corollary 2).

Informally, a simplified IT-FSS scheme is a symmetric and non-redundant IT-
FSS scheme. “Symmetric” means that the evaluation algorithm is independent
of party id. “Non-redundant” means that the behavior of the evaluation algo-
rithm differs when the key is different. We can convert an IT-FSS scheme to
a symmetric IT-FSS scheme simply by embedding a party id into a key. That
is, key generation algorithm outputs (b||kb, (1 ⊕ b)||k1⊕b)1 as a key pair, where
(k0, k1) is a key pair generated in the original key generation algorithm and b is
a random bit. The evaluation algorithm parses the key into the form of b||kb and
invokes the based evaluation algorithm as a party b. Then we convert a sym-
metric IT-FSS scheme to a simplified IT-FSS scheme. This can be realized by
identifying keys of which the behavior of the evaluation algorithm is the same.

In the second step, we give an explicit lower bound for a simplified IT-FSS
scheme. First, due to the non-redundant property for the keys, we show that the
possible keys for the first party are in one-to-one correspondence to the possible

1 “||” denotes a concatenation.
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keys for the second party. That is, given a key k0, which is one component of a
key pair, and a function f , the other component k1 is uniquely determined. We
express this mapping as k0

f→ k1. Using this mapping sequentially, a sequence of
functions (f0, . . . , fn−1) corresponds to a sequence of keys (k0, . . . , kn) as follows:

k0
f0→ k1

f1→ · · · fn−1→ kn.

Then from the correctness, i.e., the fact that the sum of outputs of the eval-
uation algorithm is equal to f(x), there exists an algebraic relationship between
a sequence of functions and the corresponding sequence of keys. Using this alge-
braic relationship, we can construct an injection from F ′ to the key space, where
F ′ is a certain set determined by F . Therefore, the key size is explicitly bounded
below by the size of F ′.

Nearly Optimal Construction. Our construction is similar to a one-time
truth table [4,11], which can be seen as an additive secret sharing on a set of all
functions. In the case that the function class F is closed under addition, we can
use an ordinary additive secret sharing scheme to generate a “share” (regarded as
a key) of a function. Therefore, we can construct an IT-FSS scheme for function
class 〈F〉, where 〈F〉 is the linear span of F , with log |〈F〉| bits key. Of course,
this is also an IT-FSS scheme for function class F ⊆ 〈F〉. Surprisingly, from a
simple argument using group theory, we can show that this construction almost
achieves our lower bound.

1.3 Organization

We provide the notations used in this paper and the definition of information-
theoretic FSS in Sect. 2. In Sect. 3, we review the known negative results regard-
ing IT-FSS. We show an explicit lower bound for an IT-FSS scheme for an
arbitrary function class in Sect. 4. In Sect. 5, we give an IT-FSS scheme that
nearly achieves the lower bound given in Sect. 4.

2 Preliminaries

In this section, we review the basic notations used in this paper (Sect. 2.1) and
the definition of FSS considered in this paper (Sect. 2.2).

2.1 Notation

We let log x denote the logarithm of x to base 2, s||s′ denote the concatenation of
two strings s and s′, and π◦σ for two permutations π and σ denote the composed
permutation, i.e., π ◦ σ(x) = π (σ(x)) for all x. For a set X , |X | denotes the size
of X . For an integer n, [n] denotes a set {0, 1, . . . , n − 1}. We let G denote an
Abelian group, + denote the operation on G, and 0 denote the identity element
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of G. For g ∈ G, −g denotes the inverse element of g, and we write g−g′ instead
of g +(−g′). For a set X , GX denotes the set of all functions X → G. GX can be
seen as a direct product

∏|X |
i=1 G and the operation of GX is also denoted by +.

For non-negative integer n and a group element g ∈ G, n · g denotes the n times
summation of g, i.e.,

∑n
i=1 g. For a subset S ∈ G, 〈s〉s∈S denotes the subgroup

of G generated by S. We also write 〈S〉 for short.

2.2 Function Secret Sharing

In this paper, function class F is a subset of GX . That is, all functions f ∈ F
have the same domain X and the same range G. Also, since we focus on the
information-theoretic setting, it is not required for f ∈ F to be computed in
polynomial time.

We naturally modify the definition of (2-party) FSS in [2] to the information-
theoretic setting as follows:

Definition 1. A perfectly secure Information-Theoretic 2-party Function Secret
Sharing (IT-FSS) scheme (Gen,Eval,K) for function class F ⊆ G

X , consists of
a probabilistic algorithm Gen, a deterministic algorithm Eval, and a key space K
with the following syntax:

– Gen(f) : Taking f ∈ F as input, outputs key pair (k0, k1) ∈ K × K.
– Eval(i, ki, x) : Taking party id i ∈ {0, 1}, key ki ∈ K, and x ∈ X as input,

outputs share yi ∈ G.

satisfying the following correctness and security requirements:

– Correctness : For all f ∈ F , x ∈ X ,

Pr[y0 + y1 = f(x) | (k0, k1) ← Gen(f), yi ← Eval(i, ki, x)] = 1.

– Security : For (k0, k1) ← Gen(f), the distribution of each ki alone is inde-
pendent of f .

3 Known Negative Results

In this section, We review the known negative results regarding IT-FSS shown
in [2,9]. Also, we explain that these negative results are not robust, that is, they
become not applicable once we slightly modify the function class.

3.1 Lower Bound for Information-Theoretic DPF

Gilboa et al. stated that information-theoretic DPF needs exponential key
size [9]. More specifically, let fα for α ∈ {0, 1}n be a function {0, 1}n → {0, 1}
such that fα(x) = 1 when x = α and fα(x) = 0 otherwise. Then, the result of [9]
implies that an information-theoretic DPF, i.e., an IT-FSS scheme for the func-
tion class {fα}α∈{0,1}n needs Ω(2n) bits key size. This lower bound is proved by
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showing a connection to a known lower bound of information-theoretic 2-server
binary PIR, which is a type of PIR scheme in which the server’s response is just
a bit: Similarly to Theorem 2 in [9], we can construct an information-theoretic 2-
server binary PIR scheme with 2(�+1) bits communication using IT-FSS scheme
for the function class {fα}α∈{0,1}n with � bits key size. On the lower bound for
information-theoretic 2-server binary PIR, [13] shows that Ω(2n) bits commu-
nication is needed. Therefore, information-theoretic DPF also needs Ω(2n) bits
key size.

However, the argument of [9] becomes not immediately applicable when the
function class is just slightly modified. For example, on a DPF scheme whose
domain and range are {0, 1}n, the above negative result does not directly hold
since the lower bound for 2-server binary PIR cannot be applied.

3.2 Connection to One-Way Function

Gilboa et al. showed that a computational DPF scheme implies the existence
of one-way functions [9]. On the other hand, as a result covering more general
function classes, Boyle et al. showed that a computational FSS scheme for a poly-
spanning function class implies the existence of pseudorandom functions [2]. We
explain the latter result.

Let the domain (the range, resp.) of functions in F be {0, 1}n (G, resp.). F is
called poly-spanning if F “efficiently spans” the whole function space. That is,
for arbitrary polynomially many input-output pairs (xi, yi) ∈ {0, 1}n ×G, there
exist polynomially many functions fj ∈ F such that yi =

∑
j fj(xi) holds for all

i. In [2], multi-bit point functions and comparison functions are mentioned as
examples of poly-spanning function classes:

– Multi-bit Point Functions. The class of functions {fα,β} over α ∈ {0, 1}n

and β ∈ {0, 1}m where fα,β is a function such that fα,β(α) = β and fα,β(x) =
0 for x �= α.

– Comparison Functions. The class of functions {fα} over α ∈ [2n] where
fα : [2n] → {0, 1} is a function such that fα(x) = 1 if x ≤ α and fα(x) = 0
otherwise.

However, we can make point functions be not poly-spanning by slightly
changing the definition. Consider the function class {fα,1} over α ∈ {0, 1}n,
where the range of each fα,1 is Z2n , which is a type of point functions used
in secure equality test [4] or private queries [10,12]. This function class is not
poly-spanning: In fact, we cannot select polynomially many (with respect to n)
functions fαj ,1 such that 2n − 1 =

∑
j fαj ,1(0).

4 Our Explicit Lower Bound

In this section, we show an explicit lower bound for IT-FSS. More specifically,
we demonstrate the following theorem:
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Theorem 1. Let (Gen,Eval,K) be an IT-FSS scheme for a function class F .
Then, the key size is bounded below as following:

log |K| ≥ −1 + log |〈f − f ′〉f,f ′∈F |.
If G is an elementary Abelian 2-group (i.e., g + g = 0 for all g ∈ G), then the
key size is more strictly bounded below as following:

log |K| ≥ −1 + log |〈F〉|.
We give this explicit lower bound for IT-FSS in two steps:

1. We convert an IT-FSS scheme to a simplified IT-FSS scheme (defined later)
with (at most) 1-bit additional key size (Theorem 2).

2. We give an explicit lower bound for a simplified IT-FSS scheme (Corollary 1
and Corollary 2).

Theorem 1 is readily deduced from Theorem 2, Corollary 1, and Corollary 2. We
explain the first step in Sect. 4.1, and the second step in Sect. 4.2. Finally, we
give examples for some specific function classes in Sect. 4.3.

4.1 Conversion from IT-FSS to Simplified IT-FSS

We define simplified IT-FSS as follows.

Definition 2. A simplified IT-FSS scheme is an IT-FSS scheme (Gen,Eval,K)
with the following four properties:

1. Eval algorithm does not depend on party id, i.e., Eval(0, k, x) = Eval(1, k, x)
for all k ∈ K and x ∈ X (we write them simply as Eval(k, x)).

2. The possible key pairs are symmetric, i.e., if Pr[(k, k′) ← Gen(f)] > 0, then
Pr[(k′, k) ← Gen(f)] > 0.

3. Different keys define different evaluation functions, i.e., for all k �= k′ ∈ K,
there exists x ∈ X such that Eval(k, x) �= Eval(k′, x).

4. The key space is not redundant, i.e., for all k ∈ K and f ∈ F , there exists
k′ ∈ K such that Pr[(k, k′) ← Gen(f)] > 0.

Given an arbitrary IT-FSS scheme (Gen,Eval,K) for function class F , we
construct a simplified IT-FSS scheme (Gen′,Eval′,K′) such that log |K′| ≤ 1 +
log |K|. First, we construct an IT-FSS scheme with the first and the second
properties of Definition 2. Secondly, we construct an IT-FSS scheme with the
first, the second, and the third properties. Finally, we construct a simplified
IT-FSS scheme.

First Step: Conversion to IT-FSS with Properties 1 and 2. We construct
an IT-FSS scheme (Gen1,Eval1,K1) with the first and the second properties of
Definition 2 from the original IT-FSS scheme (Gen,Eval,K). These properties can
be easily satisfied by putting party ids into keys as follows: Let K1 be {0, 1}×K.
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Gen1(f) generates (k0, k1) by invoking Gen(f), randomly chooses b ∈ {0, 1}, and
outputs (k′

0, k
′
1) = (b||kb, (b ⊕ 1)||kb⊕1). Eval1(k′, x) parses the key k′ into b||k,

and outputs the value y = Eval(b, k, x). The requirements of correctness and
security for (Gen1,Eval1,K1) are readily deduced from those for (Gen,Eval,K).
The first property of Definition 2 is satisfied since Eval1 does not take a party
id as input. The second property of Definition 2 is satisfied since a key pair
generated by Gen(f) is flipped when the (random) party id b ∈ {0, 1} generated
in Gen1(f) is flipped. On the key size, log |K1| is equal to 1 + log |K|.

Second Step: Conversion to IT-FSS with Properties 1, 2, and 3. Then,
we convert the IT-FSS scheme (Gen1,Eval1,K1) to (Gen2,Eval2,K2) with the
first, the second, and the third properties of Definition 2. We define an equiva-
lence relation ∼ on K1 as follows:

k ∼ k′ ⇔ Eval1(k, x) = Eval1(k′, x) for all x ∈ X .

Let K2 ⊆ K1 be a complete system of representatives, and let φ be the natural
surjection K1 → K2. That is, φ(k) ∼ k holds for all k ∈ K1. Gen2(f) gener-
ates (k0, k1) by invoking Gen1(f) and outputs (φ(k0), φ(k1)). Eval2 is the same
as Eval1. The requirements of correctness and security for (Gen2,Eval2,K2) are
readily deduced from those for (Gen1,Eval1,K1). Also, the first and the second
properties of Definition 2 are readily deduced from those for (Gen1,Eval1,K1).
The third property of Definition 2 is satisfied by the definition of K2. On the
key size, log |K2| is at most log |K1|.

Third Step: Conversion to Simplified IT-FSS. Finally, we convert the
IT-FSS scheme (Gen2,Eval2,K2) to a simplified IT-FSS scheme (Gen′,Eval′,K′).
Let K2,b,f ⊆ K2 for b ∈ {0, 1} and f ∈ F be the set of keys that may appear as
party b’s key corresponding to f . That is,

K2,0,f = {k ∈ K2 | ∃k′ ∈ K2 s.t. Pr[(k, k′) ← Gen2(f)] > 0} ,

K2,1,f = {k ∈ K2 | ∃k′ ∈ K2 s.t. Pr[(k′, k) ← Gen2(f)] > 0} .

From the security requirement for (Gen2,Eval2,K2), the distribution of party b’s
key corresponding to f is independent of f . Therefore, K2,b,f is also independent
of f . K2,b,f is also independent of b because

Pr[(k, k′) ← Gen2(f)] > 0 ⇔ Pr[(k′, k) ← Gen2(f)] > 0

holds from the second property of Definition 2 for (Gen2,Eval2,K2). Let K′ denote
K2,b,f . In Gen2 algorithm, keys in K2\K′ are never generated. Therefore, we
can use K′ as a key space instead of K2. The first, the second, and the third
properties of Definition 2, and the requirements of correctness and security for
(Gen2,Eval2,K′) are readily deduced from those for (Gen2,Eval2,K2). Also, the
fourth property of Definition 2 is satisfied by the definition of K′. On the key
size, log |K′| is at most log |K2|.
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In summary, the following theorem holds:

Theorem 2. Given an arbitrary IT-FSS scheme (Gen,Eval,K) for a function
class F , we can construct a simplified IT-FSS scheme (Gen′,Eval′,K′) for F such
that log |K′| ≤ 1 + log |K|.

4.2 Lower Bound for Simplified IT-FSS

In this section, we give an explicit lower bound for a simplified IT-FSS scheme
(Gen,Eval,K) for a function class F in two steps: First, we describe behavior of
Gen algorithm using permutations on K. Then, we construct an injection from
〈f − f ′〉f,f ′∈F to K. This means that |K| is bounded below by |〈f − f ′〉f,f ′∈F |.
First Step: Description of Gen Algorithm Using Permutations. In the
following, we sometimes identify the key space K with a set [|K|]. Let Pf be a
|K| × |K| matrix such that

Pf [k, k′] :=

{
1 (Pr[(k, k′) ← Gen(f)] > 0)
0 (otherwise).

Then, the following lemma holds:

Lemma 1. Pf is a permutation matrix. That is, the number of 1’s in each
row/column is equal to one.

Proof. Assume there exist k, k′, k′′ ∈ K such that k′ �= k′′ and Pf [k, k′] =
Pf [k, k′′] = 1. From the correctness requirement, the followings hold for all
x ∈ X :

Eval(k, x) + Eval(k′, x) = f(x),
Eval(k, x) + Eval(k′′, x) = f(x).

These equations imply that Eval(k′, x) is equal to Eval(k′′, x) for all x ∈ X , but
this contradicts the third property of Definition 2. Hence, the number of 1’s in
each row is at most one. Similarly, the number of 1’s in each column is at most
one. Also, the fourth property and the second property of Definition 2 means
the number of 1’s in each row/column is at least one. Therefore, the number of
1’s in each row/column is equal to one. ��

From Lemma 1, there exists a unique permutation σf on K corresponding
to permutation matrix Pf , i.e., Pf [k, σf (k)] = 1. Then, the behavior of Gen
algorithm can be described using σf : Gen(f) chooses k ∈ K according to some
distribution, which is independent of f from the security requirement, and out-
puts (k, σf (k)).

Second Step: Construction of an Injection 〈f − f ′〉f,f ′∈F → K. For k ∈
K, let vk ∈ G

X be a function mapping x ∈ X to Eval(k, x) ∈ G. From the
correctness requirement, vk + vσf (k) is equal to f for all k ∈ K. Hence, we have

vk + vσf (k) = f,

vσf (k) + vσf′◦σf (k) = f ′,
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therefore

vk − vσf′◦σf (k) = f − f ′. (1)

Let πf,f ′ be a permutation equal to σf ′ ◦σf . Since the Eq. (1) holds for all k ∈ K
and f, f ′ ∈ F , we have

vk − vπf1,f′
1
(k) = f1 − f ′

1,

vπf1,f′
1
(k) − vπf2,f′

2
◦πf1,f′

1
(k) = f2 − f ′

2,

...
vπfn−1,f′

n−1
◦···◦πf1,f′

1
(k) − vπfn,f′

n
◦···◦πf1,f′

1
(k) = fn − f ′

n,

therefore

vk − vπfn,f′
n

◦···◦πf1,f′
1
(k) =

n∑

i=1

(fi − f ′
i) (2)

for all n ∈ N, k ∈ K, and f1, · · · , fn, f ′
1, · · · , f ′

n ∈ F . Let Φk : 〈f −f ′〉f,f ′∈F → K
be a function defined as

Φk

(
n∑

i=1

(fi − f ′
i)

)

= πfn,f ′
n

◦ · · · ◦ πf1,f ′
1
(k).

We note that some of the elements f1, . . . , fn in the definition of Φk may be
duplicate, and similarly for f ′

1, . . . , f
′
n. Then, the following lemma holds:

Lemma 2. For all k ∈ K, Φk is well-defined and injective.

Proof. First, we prove the well-definedness. Let
∑n

i=1(fi−f ′
i) and

∑m
j=1(gj −g′

j),
where fi, f

′
i , gj , g

′
j ∈ F for all i and j, be two expressions for the same element of

〈f−f ′〉f,f ′∈F and let kf and kg be πfn,f ′
n
◦· · ·◦πf1,f ′

1
(k) and πgm,g′

m
◦· · ·◦πg1,g′

1
(k)

respectively. From the Eq. (2), we have

vkf
= vk −

n∑

i=1

(fi − f ′
i)

= vk −
m∑

j=1

(gj − g′
j)

= vkg
.

This means that Eval(kf , x) is equal to Eval(kg, x) for all x ∈ X . From the third
property of Definition 2, kf is equal to kg and Φk is well-defined.

Since Φk is well-defined, we have vk − vΦk(h) = h for all h ∈ 〈f − f ′〉f,f ′∈F
from the Eq. (2). Therefore, h ∈ 〈f − f ′〉f,f ′∈F is uniquely determined by Φk(h)
and this means that Φk is injective. ��
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This lemma gives an explicit lower bound for a simplified IT-FSS scheme:

Corollary 1. Let (Gen,Eval,K) be a simplified IT-FSS scheme for a function
class F . Then, the size of key space K is bounded below as following:

|K| ≥ |〈f − f ′〉f,f ′∈F |.
Proof. This corollary is readily deduced from the fact that by Lemma 2 there
exists an injection Φ : 〈f − f ′〉f,f ′∈F → K. ��

For the Case of Elementary Abelian 2-Groups. When G is an elementary
Abelian 2-group, i.e., g + g = 0 for all g ∈ G, we can give a more strict lower
bound than Corollary 1. From the correctness and the fact that −g = g in G,
we have

vk − vσf (k) = f

for all k ∈ K and all f ∈ F . Now an argument similar to the derivation of Eq. (2)
from Eq. (1) implies that we have

vk − vσfn◦···◦σf1 (k)
=

n∑

i=1

fi.

Let Ψk : 〈F〉 → K be a function defined as

Ψk

(
n∑

i=1

fi

)

= σfn
◦ · · · ◦ σf1(k).

Similarly to Lemma 2, Ψk is also well-defined and injective. Therefore, we have
a more strict lower bound:

Corollary 2. Let (Gen,Eval,K) be a simplified IT-FSS scheme for a function
class F . If G is an elementary Abelian 2-group, then the size of key space K is
bounded below as following:

|K| ≥ |〈F〉|.

4.3 Examples for Specific Function Classes

We show several examples for specific function classes. The following function
classes are slightly modified from the original ones and are not poly-spanning.
Therefore the negative result [2] reviewed in Sect. 3.2 cannot be applied to these
function classes. Note that these function classes are also used in applications
such as secure equality test and secure integer comparison [4].

Point Functions [2,3,9]. The function class is defined as follows:

– X = G = Z2n .
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– F = {fα}α∈Z2n , where fα(x) = 1 if x = α and f(x) = 0 otherwise.

For this function class F , we can determine 〈f − f ′〉f,f ′∈F as following:

〈f − f ′〉f,f ′∈F =

{

f ∈ G
X

∣
∣
∣
∣
∣

∑

x∈X
f(x) = 0

}

.

Therefore, the key size of an IT-FSS scheme for this F is bounded below by
−1 + n(2n − 1) bits.

Distributed Comparison Functions [1–3]. The function class is defined as
follows:

– X = G = Z2n .
– F = {fα}α∈Z2n , where fα(x) = 1 if x ≤ α and f(x) = 0 otherwise.

For this function class F , we can determine 〈f − f ′〉f,f ′∈F as following:

〈f − f ′〉f,f ′∈F = {f ∈ G
X | f(0) = 0}.

Indeed, for any 1 ≤ α ≤ 2n − 1, g := fα − fα−1 satisfies that g(α) = 1 and
g(x) = 0 for x �= α; therefore the elements of 〈f − f ′〉f,f ′∈F have no restrictions
on the values at x �= 0. On the other hand, for any f, f ′ ∈ F we always have
f(0) − f ′(0) = 1 − 1 = 0. Therefore, the key size of an IT-FSS scheme for this
F is bounded below by −1 + n(2n − 1) bits.

Bit-Conjunction Functions [1]. The function class is defined as follows:

– X = {0, 1}n,G = Z2n .
– F = {fS}S⊆{1,2,...,n}, where fS(x) = 1 if ∧i∈Sxi = 1 and f(x) = 0 otherwise.

For this function class F , we can determine 〈f − f ′〉f,f ′∈F as following:

〈f − f ′〉f,f ′∈F = {f ∈ G
X | f(1, 1, . . . , 1) = 0}.

Indeed, for any 0 ≤ k ≤ n − 1 and any x = (x1, . . . , xn) ∈ {0, 1}n with
Hamming weight k, let S = {i | xi = 1}. Then g := fS − f{1,2,...,n} sat-
isfies that g(x) = 1, g(1, 1, . . . , 1) = 1 − 1 = 0, and g(y) = 0 for any
y ∈ {0, 1}n\{x} with Hamming weight at most k. Therefore, for functions in
〈f − f ′〉f,f ′∈F , the value at x can be freely adjusted without changing the
values at points in {y | Hamming weight of y is n or at most k}\{x}. Iter-
ating this process for k = 0, . . . , n − 1, the values at all x �= (1, 1, . . . , 1)
can be freely adjusted. On the other hand, for any f, f ′ ∈ F we always have
f(1, 1, . . . , 1) − f ′(1, 1, . . . , 1) = 1 − 1 = 0.

Therefore, the key size of an IT-FSS scheme for this F is bounded below by
−1 + n(2n − 1) bits.
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5 Nearly Optimal Construction

We prove the following theorem by concretely constructing a scheme as in the
statement.

Theorem 3. Let F be an arbitrary function class. Then there exists an IT-FSS
scheme (Gen,Eval,K) for the function class F such that

log |K| = log |〈F〉|.

Proof. We construct an IT-FSS scheme (Gen,Eval,K) for a wider function class
〈F〉, instead of F . Since 〈F〉 is closed under addition, an additive secret sharing
for 〈F〉 can be regarded as an IT-FSS scheme for 〈F〉. That is, Gen(f) randomly
chooses (k0, k1) ∈ 〈F〉 × 〈F〉 such that k0 + k1 = f . Eval(b, k, x) outputs k(x).
In this scheme, the key space K is 〈F〉 and the key size is log |〈F〉|. ��

For the key size in the statement in comparison to our lower bounds, let f0 be
an element of F with minimal order (in the Abelian group G

X ) and let η denote
the order of f0. Let F ′ be the subgroup of 〈F〉 generated by {f0}∪{f −f ′}f,f ′∈F .
Then we have g = f0 + (g − f0) ∈ F ′ for all g ∈ F , therefore F ′ = 〈F〉.
Moreover, since f0 has order η, for all g ∈ F ′, there exists a ∈ [η] such that
g ∈ a·f0+〈f−f ′〉f,f ′∈F . This implies that |〈F〉| ≤ η·|〈f−f ′〉f,f ′∈F |, therefore the
difference of the key size in our construction and our lower bound in Theorem 1
is

log |〈F〉| − (−1 + log |〈f − f ′〉f,f ′∈F |) ≤ 1 + log η (bits)

for the general case, and it is only

log |〈F〉| − (−1 + log |〈F〉|) ≤ 1 (bit)

for the case of elementary Abelian 2-group G. The right-hand side 1 + log η is
at most 1 + log eG where eG denotes the exponent of G, that is, the minimal
positive integer eG with eG · g = 0 for all g ∈ G (note that eG · f0 = 0 and
therefore η ≤ eG). In particular, since eG ≤ |G|, the difference of the key size in
our construction and our lower bound (for the general case) is at most 1+log |G|
bits. For function classes given in Sect. 4.3, this 1 + log |G| bits gap is just n + 1
bits and small enough in comparison to the lower bound (� n2n bits).
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Abstract. In STOC 2019 Canetti et al. showed how to soundly instan-
tiate the Fiat-Shamir transform assuming that prover and verifier have
access to the key of a correlation intractable hash function for efficiently
searchable relations. The transform requires the starting protocol to be a
special 3-round public-coin scheme that Canetti et al. call trapdoor sigma-
protocol. One downside of the Canetti et al. approach is that the key of the
hash function can be used only once (or a pre-determined bounded number
of times). That is, each new zero-knowledge proof requires a freshly gener-
ated hash key (i.e., a freshly generated setup). This is in contrast to what
happens with the standard Fiat-Shamir transform, where the prover, hav-
ing access to the same hash function(modelled as a random-oracle), can
generate an unbounded number of proofs that are guaranteed to be zero-
knowledge and sound.

As our main contribution we extend the results of Canetti et al., by
proposing amulti-theoremprotocol that follows theFiat-Shamir paradigm
and relies on correlation intractable hash functions. Moreover, our proto-
col remains zero-knowledge and sound even against adversaries that choose
the statement to be proven (and the witness for the case of zero-knowledge)
adaptively on the key of the hash function. Our construction is presented in
the form of a compiler, that follows the Fiat-Shamir paradigm, which takes
as input any trapdoor sigma-protocol for the NP-language L and turns it
into a non-interactive zero-knowledge protocol that satisfies the proper-
ties we mentioned. To be best of our knowledge, ours is the first compiler
that follows the Fiat-Shamir paradigm to obtain a multi-theorem adaptive
NIZK relying on correlation intractable hash functions.

Keywords: NIZK · Fiat-Shamir Transform · Adaptive Multi-Theorem
Zero-Knowledge · Correlation Intractable Hash Functions

1 Introduction

Non-interactive zero-knowledge (NIZK) proofs [2,13] allow a prover to convince
a verifier about the validity of an NP-statement with just one round of interac-
tion (one message that goes from the prover to the verifier). One of the most
famous techniques used to realize non-interactive proofs is the Fiat-Shamir (FS)
transform [16]. This transform takes as input a sigma-protocol and turns it into
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M. Tibouchi and X. Wang (Eds.): ACNS 2023, LNCS 13906, pp. 555–581, 2023.
https://doi.org/10.1007/978-3-031-33491-7_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33491-7_21&domain=pdf
http://orcid.org/0000-0001-5062-0388
https://doi.org/10.1007/978-3-031-33491-7_21


556 M. Ciampi and Y. Xia

a NIZK proof. A sigma-protocol is a special three-round public-coin interactive
proof executed between a prover P and a verifier V, where P’s goal is to convince
V that a common statement x belongs to a given NP language L. The prover
knows a witness w (corresponding to x) and starts the interaction by sending a
first message a; the verifier then sends a uniformly random bit-string c, called
the challenge, to which the prover replies with the last message z. Finally, the
verifier decides whether x ∈ L or not based on x and the transcript (a, c, z).

The FS transform makes a sigma-protocol non-interactive by letting the
prover do the sampling of the challenge. In particular, the prover computes
c ← H(a), where H is a hash function. One way to argue about the security
of this construction is by modeling H as a Random Oracle [1,14]. Recently, [3–
6,18,19,22] showed that if the hash function is correlation-intractable (CI) for
certain relations, then the resulting NIZK is sound. Informally, the CI property
ensures that given a random hash key k, it is computationally difficult to find
any input α, s.t. (α,Hk(α)) ∈ R for a particular relation R.

In more detail, Canetti et al. [4] shows that the FS transform remains secure
assuming that the hash function is correlation intractable for efficiently search-
able relations1. The result of [4] can be applied only to a restricted class of sigma-
protocols called trapdoor sigma-protocol. Trapdoor sigma-protocols are three-
round public-coin protocols defined in the Common Reference String (CRS)
model that enjoy three main properties: honest verifier zero-knowledge (HVZK),
optimal soundness, and admit a bad-challenge extractor. The property of HVZK
is quite standard and guarantees the existence of a simulator that, upon receiving
the challenge (the second round), it produces a transcript that is indistinguish-
able from the transcript generated via the interaction of an honest prover and
verifier. Optimal soundness guarantees that for any statement x /∈ L and the
first-round message a there exists at most one challenge c, such that a verifier
would accept the transcript (a, c, z), for the statement x, for some third-round
z. We refer to the unique challenge c as the bad-challenge. Finally, the bad-
challenge extractor is an algorithm that takes as input a false statement x, a
valid first-round a, and some trapdoor information τ , and efficiently computes
the bad-challenge c.

Adaptive multi-theorem NIZK. The most basic notion of soundness for a non-
interactive proof system guarantees soundness in the presence of an adversary
that decides the statement to be proven before the sampling of the CRS. Sim-
ilarly, the notion of zero-knowledge is guaranteed to hold for any choice of
theorem-witness sampled by the adversary non-adaptively on the CRS. We refer
to this class of adversaries as non-adaptive adversaries. It is possible to con-
sider stronger (and more realistic) notions of security that guarantee that both
the soundness and the zero-knowledge hold even if the adversary can make the
choice of the theorem to be proven (and of the witness for the zero-knowledge
experiment) adaptively on the CRS. In [4] the authors argue that if the trapdoor

1 A relation is efficiently searchable if given x it is efficient to find y such that (x, y) ∈
R.
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sigma-protocol admits a special bad-challenge extractor, and moreover it is adap-
tive special-honest verifier zero-knowledge2, then the NIZK they obtain using CI
hash functions is also adaptive secure. Unfortunately, the only trapdoor sigma-
protocol known to satisfy all the required properties is the Lapidot-Shamir [20]
protocol for Hamiltonian graphs. In [9] the authors show that all sigma-protocols
can be turned into trapdoor sigma-protocols with an adaptive HVZK simulator.
One drawback of all the previous approaches is that the zero-knowledge prop-
erty is not preserved if the same hash key is used to generate more than one
proof. However, we would like to be able to use the same hash key to generate
multiple proofs (for potentially different theorems). We refer to this notion of
zero-knowledge as multi-theorem NIZK, and we investigate the following ques-
tion:

Is it possible to obtain an adaptive multi-theorem NIZK by applying the
Fiat-Shamir paradigm using a hash function that is correlation intractable for

efficiently searchable relations?

Another way to phrase the above is that we ask whether it is possible to con-
struct an adaptive multi-theorem NIZK using the same setup (and complexity)
assumption as in [4,9].

1.1 Our Results

In this work we show how to obtain an adaptive multi-theorem NIZK for any
language L that admits a trapdoor sigma-protocol ΣL (we do not require ΣL

to be adaptive HVZK). The nice feature of our NIZK is that the prover, after
a pre-processing (non-interactive) phase, upon receiving the statement to be
proven and the corresponding witness, generates proofs by just following the FS
paradigm.

Due to its FS-like structure, the soundness of our scheme relies only on
the security of the underlying trapdoor sigma-protocols and on the correlation-
intractability of the hash function (exactly as in all previous works that although
achieved a weaker form of zero-knowledge). The zero-knowledge property instead
relies on the HVZK of the trapdoor sigma-protocols, the security of the CI hash
function, and the hardness of the Decisional Diffie-Hellman (DDH) assumption.
This is exactly in the same spirit as [4,9] where the authors instead rely on the
hardness of public-key encryption schemes to argue about zero-knowledge. An
informal theorem that summarizes our result is the following

Theorem (informal): If ΣL is a trapdoor sigma-protocol for the language L,
then it is possible to realize an adaptive multi-theorem NIZK protocol that
follows the FS paradigm. In particular, the soundness of the NIZK protocol

depends only on the soundness of underlying trapdoor sigma-protocols and on
the security of the hash function.

2 The notion of adaptive HVZK guarantees the existence of a simulator that can
generate the first-round of the protocol without the knowledge of the theorem.
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We note that an easy way to construct a multi-theorem NIZK would be
to use the OR approach proposed in [15]. In this, a statement T /∈ L� for a
membership-hard language3 L� is put in the CRS, and the prover provides an
OR proof proving that either x ∈ L or T ∈ L�. This approach has two main
drawbacks: 1) the NIZK is inherently computational zero-knowledge and 2) the
soundness holds only under the condition that the tuple T is sampled such that
T /∈ L�. In our work, we show how to modify the FLS approach to remove the
second limitation. Hence, we obtain a NIZK that has exactly the same setup
assumptions as previous works, but in addition, we obtain a protocol that is
multi-theorem.

1.2 Technical Overview

Adaptive Multi-theorem NIZK from CI Hash Functions. We first recall
the approach proposed in [15] used to realize an adaptive multi-theorem NIZK
protocol for an NP language L. In this, the prover generates an OR proof showing
that either x ∈ L or that T ∈ L�, where T is an instance that is part of the CRS.
The soundness holds due to the soundness of the OR proof and the fact that by
the construction of the CRS T /∈ L�. The adaptive zero-knowledge comes from
the fact that a simulator, to generate simulated proofs needs to program the
CRS with T � ∈ L� (and for this no knowledge about the statement to be proven
is needed). Upon receiving a statement x, the simulator uses the witness for T �

to generate the OR proof. If the OR proof is witness-indistinguishable (WI), and
L� is a membership-hard language, then the protocol is adaptive zero-knowledge.
The multi-theorem feature comes from the fact that the WI property is closed
under sequential composition.

By relying on the result of [11], it is possible to compile two sigma-protocols,
respectively for the language L1 and L2, into a new sigma-protocol for the OR
language L1∨L2. In this paper, we argue that the compiler of [11] works similarly
for trapdoor sigma-protocols. This means that if we have a trapdoor sigma-
protocol for L and one for L�, we can obtain an adaptive multi-theorem NIZK
protocol by doing the following. First, we obtain a trapdoor sigma-protocol for
the language L∨L�, and then we apply the FS transform to the resulting protocol
thus obtaining a NIZK protocol for the language L ∨ L�.

The scheme we have just described departs from the FS paradigm mostly due
to the presence of the T value embedded in the CRS (that the simulator needs to
program as we have discussed earlier). In the FS paradigms, such a component
is not required, since the simulator only needs to program the hash function to
perform the final simulation. But more importantly, the value T needs to be
correctly generated, (i.e., it must not belong to L� otherwise the soundness does
not hold). This is clearly something undesirable since now the soundness does
not only rely on the security of the hash function (which is the case for the FS
transform) but also requires additional parameters to be generated honestly.
3 Intuitively, a membership-hard language is one for which it is possible to sample

instances of the problem in a way that it is hard to detect if a given instance is in
the language or not.
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We work around this problem as follows. We define L� as being the language
of all the DH tuples, and instead of requiring the CRS to contain T /∈ L�, we
let the prover pick the tuple T . We then require the prover to provide a non-
interactive zero-knowledge proof via a protocol ΠNDH thus proving that the tuple
does not belong to L� (i.e., T is non-DH). Note that we require ΠNDH to be a
NIZK protocol that guarantees security only if one proof is generated (i.e., it
is not multi-theorem zero-knowledge). In particular, ΠNDH can be instantiated
via the Fiat-Shamir transform using a correlation intractable hash function on a
specific trapdoor sigma-protocol (we will elaborate more on this in the technical
part of the paper). The rest of the protocol follows as before. That is, the prover,
upon receiving a statement x and its witness, perform an OR proof, proving
either that x ∈ L or that T is a DH tuple.

The main observation here is that ΠNDH needs to be run only once, and the
obtained proof can be reused any time the prover is required to generate a proof
for a new instance x. So, we can see our protocol as divided into two phases.
In the offline phase the prover samples a non-DH tuple T , and runs ΠNDH to
generate a NIZK proof that we denote with πNDH (without sending it). Upon
receiving a statement and a witness, the prover generates the OR proof πOR,
and sends over (πOR, T, πNDH).

We prove that the protocol we have just described is adaptive multi-theorem
zero-knowledge. Intuitively, this holds since the simulator can fake the proof for
the non-DH tuple by running the simulator of ΠNDH. Then the proof πNDH can
be simulated with respect to a DH tuple, hence any OR proof can be generated
using the fact that T ∈ L�. Given that the OR proof we will use is witness
indistinguishable (WI), and that the WI property is maintained under paral-
lel composition, then our final protocol is multi-theorem zero-knowledge. The
adaptive zero-knowledge property comes from the fact that the simulator can
run internally the simulator of ΠNDH to generate the setup (i.e., to program the
hash function) without knowing x.

There is a caveat about this protocol. Note that the tuple T can be chosen
by the adversarial prover adaptively on the description of the hash function. So,
even if we do not need ΠNDH to be multi-theorem, it seems that we need it to be
at least adaptive-sound. To obtain an adaptive-sound NIZK protocol following
the FS paradigm, we could rely on the results of [9]. In this, the authors show
how to convert any sigma-protocol into an adaptive-sound NIZK protocol using
correlation intractable hash functions. However, the Ciampi et al. compiler incurs
an efficiency loss, since it requires, for each bit of the challenge of the starting
sigma-protocol, to generate two ciphertexts. To avoid this, we first argue that it
is sufficient to fix the first two components of the tuple T (g, gα) in the CRS, and
let the adversarial prover choose only X,Y adaptively on the hash function to
form the tuple T = (g, gα,X, Y ). We then show how to obtain a protocol ΠNDH

that remains sound in this semi-adaptive adversarial setting, while maintaining
reasonable performance (i.e., for a security parameter of 1024 bits the prover
and verifier of ΠNDH need to perform 50 exponentiations each).

We need to argue that the OR proof also remains sound when part of the
tuple T is chosen by the adversary. In the technical part of the paper, we will
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show how to realize such an OR proof and provide our new formal definition of
soundness that we call semi-adaptive soundness, which allows the adversary to
decide part of the component of an NP statement. This notion lies in between the
standard notion of soundness and the notion of adaptive soundness, which allows
the adversary to decide all the parameters of the NP instance to be proven.

On Adaptive Soundness. So far we have mostly focused on obtaining an
adaptive zero-knowledge scheme that allows the re-use of the hash-key. We have
not mentioned whether it is possible to also prove that our NIZK is adaptive
sound. We argue that if the trapdoor sigma-protocol ΠL admits a special type
of extractor (in [9] the authors show that any sigma-protocol can be modified to
enjoy this special property), then our NIZK is also adaptive-sound. We refer to
the technical part of our paper for more detail.

1.3 Related Work

One of the works most related to ours is [7]. In this, the authors construct
an adaptive sound, adaptive zero-knowledge, multi-theorem NIZK from corre-
lation intractable hash functions (plus other assumptions like LWEs, or DDH
and LPN). However, the results of [7] follow a different spirit compared to ours
(and compared also to [4]). As discussed in the previous section, a multi-theorem
adaptive NIZK can be trivially obtained using a folklore technique. Namely, it
is easy to construct an adaptive multi-theorem NIZK protocol from the same
assumptions we use in our paper by following the FLS approach. However, this
approach produces a CRS that has two components: a hash key, and a tuple
T /∈ L�. Hence, the soundness of the protocol depends on T not being in L�.
This is in contrast with what happens in the standard FS transform where the
soundness depends only on the soundness of the underlying sigma protocol and
on the CI of the hash function. All the multi-theorem protocols proposed in [7]
have a similar drawback. That is, the soundness is based on a public key (that is
part of the CRS) being sampled correctly. If such a public key is not sampled cor-
rectly then the soundness trivially does not hold. In our work, we instead get the
same advantage of the FS approach (and of the results proposed in [4]) by provid-
ing a protocol whose soundness is based on the correlation intractability of the
hash function and on the soundness of the underlying trapdoor sigma-protocol
only. To give a concrete example of the benefit of our compiler compared to
existing solutions we note the following. If we instantiate our NIZK with the
trapdoor sigma-protocol for the language of Diffie-Hellman tuples, we obtain a
multi-theorem adaptive NIZK where the CRS consists of the hash key, and two
group elements (g, h). The soundness of this NIZK then holds as long as the
hash-key is honestly generated, while (g, h) can be maliciously generated.

Our work follows the spirit of [4], where the authors show how to compile
any trapdoor sigma protocol into a NIZK using the FS approach. We extend
the approach of Canetti et al. proposing a compiler that turns any trapdoor
sigma-protocol into a multi-theorem adaptive NIZK. Hence, any improvement in
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the efficiency of trapdoor sigma protocols has an immediate impact on the per-
formance of our NIZK. [7] follows a different path by proposing ad-hoc schemes
that depart from the Fiat-Shamir approach. The advantage of [7] over our work
is that the results of [7] are UC secure and tolerate adaptive corruption.

2 Preliminaries

Notations. We denote the security parameter by λ and use “||” as the con-
catenation operator. For a finite set Q, x ←$ Q denotes a sampling of x from Q
with uniform distribution. We use “ = ” to check the equality of two different
elements, “ ← ” as the assigning operator (e.g. to assign to a the value of b
we write a ← b). We use the abbreviation PPT which stands for probabilistic
polynomial time. We use poly(·) to indicate a generic polynomial function. We
denote with Zp the set of integers, where p is the order of the set, with N the
set of natural numbers. We use G.Gen(1λ) to represent the algorithm to find the
generator in the group G. ν represents the negligible function, and δ represents
the non-negligible function. For an NP language L we denote the corresponding
NP-relation with RL. We assume familiarity with the notions of negligible and
non-negligible functions, and also the notion of interactive proof systems.

2.1 Diffie-Hellman Related Definitions

Let G be the group of an order p, with a generator g. Let T = (g, h = gx,X, Y )
be a tuple, where x ∈ Zp. Let LDH = {T ∈ G4 | ∃w ∈ Zp : X = gw ∧Y = hw} be
the language of DH tuples. Let LNDH = {T ∈ G4 | ∃w,w′ ∈ Zp : X = gw ∧ Y =
hw′ ∧ w �= w′} be the language of non-DH tuples.

We assume the Decisional Diffie-Hellman (DDH) hardness assumption holds
in the group G. The DDH hardness assumption is as follows:

Definition 1 (DDH hardness Assumption). For every PPT algorithm A:
∣
∣
∣Pr[A(T ) = 1 |T ∈ LDH ] − Pr[A(T ) = 1 |T ∈ LNDH ]

∣
∣
∣ ≤ ν(λ).

2.2 Non-Interactive Argument Systems Related Definitions

We recall the notion of non-interactive argument systems here.

Definition 2 (Non-Interactive Zero-Knowledge Argument Systems).
A non-interactive zero-knowledge argument system (NIZK) for an NP-language
L with the corresponding relation RL is a non-interactive protocol Π =
(Setup,P,V), where:

– Setup(1n, 1λ) takes as the input a statement length n and a security parameter
λ. It outputs a common reference string crs.

– P(crs, x, w) takes as the input crs, the statement x and the witness w, s.t.
(x,w) ∈ RL. It outputs the proof π.
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– V(crs, x, π) takes as the input crs, x and π. It outputs 1 to accept and 0 to
reject.

Π has the following properties:

– Completeness. For all λ ∈ N, and all (x,w) ∈ RL, it holds that:

Pr
[

V(crs, x,P(crs, x, w)) = 1
∣
∣
∣ crs ←$ Setup(1|x|, 1λ)

]

= 1 − ν(λ)

– Soundness. For all PPT provers P�, s.t. for all λ ∈ N, and all x /∈ L, it
holds that:

Pr
[

V(crs, x, π) = 1
∣
∣
∣ crs ←$ Setup(1|x|, 1λ);π ←$ P�(crs)

]

≤ ν(λ).

– Zero knowledge. There exists a PPT simulator Sim such that for
every (x,w) ∈ RL, the distribution ensembles {(crs, π) : crs ←$

Setup(1|x|, 1λ);π ←$ P(crs, x, w)}λ∈N and {Sim(1λ, x)}λ∈N are computation-
ally indistinguishable.

2.3 Sigma-protocol Related Definitions

Most of the following definitions are taken from [4,10].

Definition 3 (Sigma-protocol). Assuming there is a three-round public-coin
interactive protocol Σ = (Gen,P,V) for a NP language L (and corresponding
relation RL) in the common reference string model, where:

– Gen takes as input the unary representation of the security parameter, and it
outputs the common reference string crs.

– In the first round of the protocol, P takes as input the common reference string
crs, the instance x, the witness w, the randomness R, and it will output the
first round message a.

– In the second round, V takes as input the crs, x, a, and it will output the
challenge c.

– In the third round, P takes as input the crs, x, w, a, c, R, and it will output
the third round message z.

– When V receives (crs, x, a, c, z) as inputs, it outputs 1 to accept and 0 to
reject.

Σ is a sigma-protocol if satisfies the following properties:

– Completeness: If (x,w) ∈ RL, then all honest generated transcripts are
accepting.

– Optimal soundness: For every common reference string crs, every instance
x /∈ L, and every first message a, there is at most one challenge c =
f(crs, x, a) such that (crs, x, a, c, z) is an accepting transcript for any choice
of third message z. We informally call f the “bad-challenge function” associ-
ated with Σ and note that f may not be efficiently computable.
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– Special HVZK: There exists a PPT simulator algorithm Sim that takes as
x ∈ L and c ∈ {0, 1}�, and outputs an accepting transcript for x where c
is the challenge (we denote this action with (a, z) ← Sim(x, c)). Moreover,
for all 
-bit strings c, the distribution of the output of the simulator on input
(x, c) is computationally indistinguishable from the distribution of the honest
generated transcript obtained when V sends c as the challenge and P runs on
common input x and any private input w such that (x,w) ∈ RL.

Remark 1. The Definition 3 is a bit different from the standard notion of sigma-
protocol [12] since we only require the protocol to be the optimal sound (instead
of special-sound).

Then we recall the definition of the instance-dependant trapdoor sigma-
protocol from [4].

Definition 4 (Instance-dependant trapdoor sigma-protocol [4]). We
say that a sigma-protocol Σ = (Gen,P,V) with bad-challenge function f is an
instance-dependant trapdoor sigma-protocol if there are PPT algorithms TrapGen,
BadChallenge with the following syntax.

– TrapGen(1λ, x, aux) takes as input the unary representation of the security
parameter, an instance x, and an auxiliary input aux. It outputs a common
reference string crs along with a trapdoor τ .

– BadChallenge(τ, crs, x, a) takes as input a trapdoor τ , common reference string
crs, instance x, and first message a. It outputs a challenge c.

We additionally require the following properties:

– CRS Indistinguishability: For any (x, aux), an honestly generated com-
mon reference string crs is computationally indistinguishable from a common
reference string output by TrapGen(1λ, x, aux).

– Correctness: For every instance x /∈ L, there exists an auxiliary input
aux such that for all (crs, τ) ←$ TrapGen(1λ, x, aux), we have that
BadChallenge(τ, crs, x, a) = f(crs, x, a).

OR Composition of ID Trapdoor Sigma-Protocols. In our paper, we
also argue that the OR composition [11] of any 2 instance-dependant trapdoor
sigma-protocols (for the relation RL0 and RL1) is an instance-dependant trap-
door sigma-protocol for the relation RL0∨L1 . Moreover, the resulting protocol
is witness indistinguishable (WI). In more detail, assuming the existence of
2 instance-dependant trapdoor sigma-protocols ΣL0 = (GenL0 ,PL0 ,VL0) and
ΣL1 = (GenL1 ,PL1 ,VL1) respectively for the NP language L0 and L1, then the
application of the compiler of [11] yields a protocol ΣL0∨L1 such that the fol-
lowing lemma holds.

Lemma 1. ΣL0∨L1 is an instance-dependant trapdoor sigma-protocol and it is
witness indistinguishable for the language L = {(x0, x1) : x0 ∈ L0 ∨ x1 ∈ L1}

Due to lack of space, we refer the reader to the full version to see full proofs.
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2.4 Multi-theorem, Adaptive Non-interactive Proofs

Definition 5 (Adaptive Multi-Theorem Zero Knowledge [17]). Assum-
ing we have a non-interactive protocol Π = (Setup,P,V) for an NP language
L with corresponding relation RL. Π is adaptive multi-theorem zero knowledge
if for any PPT algorithm A, there exists a PPT simulator Sim = (Sim0,Sim1),
running in (expected) polynomial time, such that for polynomial bounded q:

∣
∣
∣
∣
Pr

[

ExptΠ,Sim,A(1|x|, 1λ) = 1
]

− 1
2

∣
∣
∣
∣
≤ ν(λ)

The experiment ExptΠ,Sim,A(1|x|, 1λ) is defined as follows:

ExptΠ,Sim,A(1|x|, 1λ) :

b ←$ {0, 1}, q ← 0, StateA ← ∅, crs0 ←$ Setup(1|x|, 1λ), (crs1, τSim1) ←$ Sim0(1
|x|, 1λ)

repeat

q ← q + 1, (StateA, x, w) ←$ A(1λ, crsb, StateA)

if (x, w) ∈ RL then π0 ←$ P(crs0, x, w), π1 ←$ Sim1(crs1, τSim1 , x)

else π0 ← π1 ← ∅
(StateA, cont, d) ←$ A(1λ, StateA, πb)

until cont = false

return b = d

Definition 6 (Witness Indistinguishability). Assuming we have an inter-
active protocol ΣL = (GenL,PL,VL) for NP language L. ΣL is Witness Indis-
tinguishable for relation RL if, every malicious verifier V�

L, s.t. for all x,w,w′

with (x,w) ∈ RL and (x,w′) ∈ RL, it holds that:
∣
∣
∣
∣
Pr

[

V�
L(x, π0) = 1 | π0 ←$ PL(x, w)

]

− Pr

[

V�
L(x, π1) = 1 | π1 ←$ PL(x, w′)

]∣
∣
∣
∣
≤ ν(λ)

2.5 Semi-adaptive Soundness

We now introduce a new notion of soundness that we call semi-adaptive sound-
ness. Informally, we see every theorem x as divided into two parts (α, β), and
we require the adversary to specify α before the sampling of the CRS, whereas
β can be adaptively chosen from the adversary. More formally:

Definition 7 (Semi-Adaptive Soundness). Given 2 sets S1 ⊆ {0, 1}�, S2 ⊆
{0, 1}�, and the NP language L = {(α, β) | α ∈ S1 ∧ β ∈ S2 ∧ φ(α, β) =
1} defined over some predicate φ. Assuming we have a non-interactive protocol
Π = (Setup,P,V) for an NP language L with corresponding relation RL. Π is
semi-adaptive sound if for any α ∈ S1 and for any PPT prover P�, it holds that:
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Prα

[

(α, β) /∈ L ∧ V(crs, (α, β), π) = 1 | α ∈ S1 ∧ β ∈ S2;

crs ←$ Setup(1|x|, 1λ); (π, β) ← P �(crs, α)
]

≤ ν(λ).

2.6 Semi-instance-dependant (SID) Trapdoor Sigma-Protocol

We introduce an extension of the notion of trapdoor sigma-protocols we denote
as semi-instance-dependant trapdoor sigma-protocol. Informally, similar to semi-
adaptive soundness defined above, we divided every theorem x into 2 parts (α, β),
and the TrapGen and BadChallenge algorithms of the semi-instance-dependant
trapdoor sigma-protocol will take α other than the whole theorem x.

Definition 8 (Semi-instance-depandant trapdoor sigma-protocol).
Given S1 ⊆ {0, 1}�, S2 ⊆ {0, 1}�, and the NP language L = {(α, β) | α
∈ S1 ∧ β ∈ S2 ∧ φ(α, β) = 1} defined over some predicate φ. We say that
a sigma-protocol Σ = (Gen,P,V) with bad-challenge function f is a semi-
instance-dependant trapdoor sigma-protocol if there are PPT algorithms TrapGen,
BadChallenge with the following syntax.

– TrapGen(1λ, α, aux) takes as input the unary representation of the security
parameter, the first part of the instance α, and an auxiliary input aux. It
outputs a common reference string crs along with a trapdoor τ .

– BadChallenge(τ, crs, α, a) takes as input a trapdoor τ , common reference string
crs, the first part of the instance α, and first message a. It outputs a challenge
c.

We additionally require the following properties:

– CRS Indistinguishability: For any (α, aux), an honestly generated com-
mon reference string crs is computationally indistinguishable from a common
reference string output by TrapGen(1λ, α, aux).

– Correctness: For every instance x /∈ L, there exists an auxiliary input
aux such that for all (crs, τ) ←$ TrapGen(1λ, α, aux), we have that
BadChallenge(τ, crs, α, a) = f(crs, x, a).

We argue that the OR composition of [11] applied on a SID trapdoor sigma-
protocol and an ID trapdoor sigma-protocol yields a new SID for the OR relation.
More formally, assuming the existence of an ID trapdoor sigma-protocol ΣL0 =
(GenL0 ,PL0 ,VL0) for NP language L0 and a SID trapdoor sigma-protocol ΣL1 =
(GenL1 ,PL1 ,VL1) for NP language L1 = {(α, β) | α ∈ S1∧β ∈ S2∧φ(α, β) = 1},
then the application of the compiler of [11] on ΣL0 and ΣL1 will yield a SID
trapdoor sigma-protocol ΣL0∨L1 , such that the following lemma holds.

Lemma 2. ΣL0∨L1 is a semi-instance-dependant trapdoor sigma-protocol, and it
is witness indistinguishable, for NP language L = {((α, x), β) | (α, x) ∈ S′

1 ∧ β ∈
S′
2 ∧ (φ(α, β) = 1 ∨ x ∈ L0)}, where S′

1 = S1 × {0, 1}� and S′
2 = S2.

Proof. The proof is nearly identical to the proof for Lemma 1.
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2.7 Correlation-intractable Hash Functions and FS Transform

Here we recall the related definitions of Correlation-Intractable Hash Family
(CIHF) from [4].

Definition 9 (Hash family). For a pair of efficiently computable functions
(n(·),m(·)), a hash family with input length n and output length m is a collection
H = {hk : {0, 1}n(λ) → {0, 1}m(λ)}λ∈N,k∈{0,1}s(λ) of keyed hash functions, along
with a pair of PPT algorithms specified as follows: (i) H.Gen(1λ) outputs a hash
key k ∈ {0, 1}s(λ); (ii) H.H(k, x) computes the function hk(x).

Definition 10 (Correlation intractability). For a given relation ensemble
R := {Rλ ⊆ {0, 1}n(λ) × {0, 1}m(λ)}, a hash family H = {hk : {0, 1}n(λ) →
{0, 1}m(λ)}λ∈N,k∈{0,1}s(λ) is said to be R-correlation intractable with security
(σ, δ) if for every σ-size attacker A := {Aλ}:

Pr
[

(x, hk(x)) ∈ Rλ : k ←$ H.Gen(1λ);x ←$ A(k)
]

= O(δ(λ)).

We say that H is R-correlation intractable if it is R-correlation intractable
with security (λc, λ−c) for all constants c > 1.

Definition 11 (Sparsity). For any relation ensemble R := {Rλ ⊆ {0, 1}n(λ)×
{0, 1}m(λ)}λ, we say that R is ρ(·)-sparse if for all λ ∈ N and for any x ∈
{0, 1}n(λ) it holds that (x, y) ∈ Rλ with probability at most ρ(λ) over the choice
of y ←$ {0, 1}m(λ). When ρ is a negligible function, we say that R is sparse.

Efficiently Searchable Relations. In this work, we will need hash families to
achieve correlation intractability for relations R with a unique output y = f(x)
associated to each input x, and such that y = f(x) is an efficiently computable
function of x.

Definition 12 (Unique output relation). We say that a relation R is a
unique output relation if for every input x, there exists at most one output y
such that (x, y) ∈ R.

Definition 13 (Efficiently searchable relation). We say that a (necessarily
unique-output) relation ensemble R is searchable in (non-uniform) time t if there
exists a function f = fR : {0, 1}∗ → {0, 1}∗ computable in (non-uniform) time t
such that for any input x, if (x, y) ∈ R then y = f(x); that is, f(x) is the unique
y such that (x, y) ∈ R, provided that such a y exists. We say that R is efficiently
searchable if it is searchable in time poly(n).

Programmability. The following property turns out to be very useful to prove
the zero-knowledge property of non-interactive proofs derived using correlation
intractable hash families.
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Definition 14 (1-universality). We say that a hash family H is 1-universal
if for any λ ∈ N, input x ∈ {0, 1}n(λ), and output y ∈ {0, 1}m(λ), we have
Pr

[

hk(x) = y : k ←$ H.Gen(1λ)
]

= 2−m(λ).
We say that a hash family H is programmable if it is 1-universal, and if

there exists an efficient sampling algorithm Samp(1λ, x, y) that samples from the
conditional distribution k ←$ H.Gen(1λ)|hk(x) = y.

We recall the theorem from [4] that we use in our work:

Theorem 1 ([4]). Suppose that H is a hash family that is correlation-
intractable for all subexponentially sparse relations that are searchable in time T .
Moreover, suppose that Σ = (Gen,P,V,TrapGen,BadChallenge) is an instance-
dependent trapdoor sigma-protocol with 2−λε

soundness for some ε > 0, such that
BadChallenge(τ, crs, x, a) is computable in time T . Then, H soundly instantiates
the Fiat-Shamir heuristic for Σ.

A Note on NIZK from ID Trapdoor Sigma-Protocol. Assuming the
existence of an ID trapdoor sigma-protocol ΣL for NP language L, then the
application of Theorem 1 on ΣL will yield a sound NIZK protocol ΠL.

In our work, we also make use of the following lemmas. The application of
Theorem 1 on ΣL0∨L1 (from Lemma 1) will yield a NIZK protocol ΠL0∨L1 , such
that the following lemma holds.

Lemma 3. ΠL0∨L1 is sound and WI.

For Lemma 4, it states that FS transform with CIHF applied on any SID
trapdoor sigma-protocols will yield a semi-adaptive sound NIZK.

Lemma 4. Let ΣL be a semi-instance-dependant trapdoor sigma-protocol, for
language L = {(α, β) | α ∈ Sα ∧β ∈ Sβ ∧φ(α, β) = 1}. Then, NIZK ΠL obtained
by applying FS transform with a CIHF H on ΣL, is semi-adaptive sound, for
language L.

We refer to the full version for the formal argument.

The Existence of the SID Trapdoor Sigma-Protocols. In [9] the authors
observe that it is possible to extract the unique bad-challenge for well-known
Chaum-Pedersen sigma-protocols [8] for DH tuples that we denote with ΣDH

(we recall it in Fig. 1, where crs = ∅).
In particular, the authors show how to extract the bad-challenge of the 1-

bit challenge version of the sigma-protocol ΣDH for DH tuples. We show that
the parallel repetition version Σt

DH is a SID trapdoor sigma-protocol for LDH =
{(g, h,X, Y ) | (g, h) ∈ S1 ∧ (X,Y ) ∈ S2 ∧ φ(g, h,X, Y ) = 1}, where S1 =
{(g, gx) ∈ G×G | x ∈ Zp}, S2 = {(h, hy) ∈ G×G | y ∈ Zp}, and φ(g, h,X, Y ) =
1 if and only if ∃w ∈ Zp : X = gw ∧ Y = hw. Formally (proofs are in the full
version):
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Fig. 1. Sigma-protocol ΣDH for LDH

Theorem 2. Let Σt
DH be the parallel repetition version of ΣDH, with the number

of repetition t. Then, Σt
DH is a semi-instance-dependant trapdoor sigma-protocol,

for LDH.

One of the main tools we rely on is a SID trapdoor sigma-protocol for the
language of the non-DH tuple. In particular, we need to construct a protocol
ΣNDH for the language LNDH = {(g, h,X, Y ) | (g, h) ∈ S1 ∧ (X,Y ) ∈ S2 ∧
φ(g, h,X, Y ) = 1}, where S1 = {(g, gx) ∈ G × G | x ∈ Zp}, S2 = {(h, hy) ∈
G×G | y ∈ Zp}, and φ(g, h,X, Y ) = 1 if and only if ∃w,w′ ∈ Zp : X = gw ∧Y =
hw′ ∧w �= w′. At a high level, our protocol works as follows. The prover computes
a commitment of a random value b ∈ {0, 1}τ . The commitment is equivocal when
T ∈ LNDH and it is binding (and extractable) otherwise. The prover sends the
commitment of b to the verifier, who replies with a uniformly random c ∈ {0, 1}.
In the third round, the prover will equivocate the commitment to an opening of
c, and send the opening information to the verifier. We recall that the honest
prover can always equivocate the commitment since T ∈ LNDH.

This protocol is sound since when T /∈ LNDH, the probability of the prover
providing a valid opening for c is 2−τ . To extract the bad-challenge, we will rely
on the fact that the commitment is extractable when T /∈ LNDH. In particular, we
prove that it is possible to extract the bad-challenge for a proof computed with
respect to a tuple T = (g, h,X, Y ), having access only to the discrete logarithm
of h. This is the reason why our protocol is only semi-adaptive and not fully
adaptive (i.e., if the entire tuple was chosen by the adversary then the extractor
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would have no access to the discrete logarithm of h). We refer the reader to the
Appendix A for details of this concrete construction.

One nice feature of the protocol we have described is that for a challenge
of size τ = log λ, where λ is the security parameter, prover and verifier need to
perform only 5 exponentiations each (We refer to Appendix A.1 for the efficiency
analysis). We see ΣNDH as a result of independent interest. Previous to our
work, it was already known how to construct a trapdoor sigma protocol with
similar performance, but ours is the first protocol to have such performance
while being a SID trapdoor sigma-protocol. In particular, we note that in [21],
the authors give a construction of trapdoor sigma-protocol for the language of
DH (hence, also for the language of non-DH) tuples with similar performance as
ours. Unfortunately, it is not clear how to prove that the protocol proposed in
[21] is also a SID trapdoor sigma-protocols.

3 NIZK with Adaptive Multi-theorem ZK

In this section, we show how to obtain our adaptive multi-theorem ZK and sound
NIZK protocol for an NP language L, assuming that we have an ID trapdoor
sigma-protocol ΣL = (GenL,PL,VL) for L. For our construction we make use of
the following tools:

– A hash family H that is correlation-intractable for all subexponentially sparse
relations that are searchable in time T , which is also programmable.

– The SID trapdoor sigma-protocol ΣOR = (GenOR,POR,VOR) of Sect. 2.6 for
NP language LOR = L ∨ LDH = {((g, h, x), (X,Y )) | (g, h, x) ∈ S1 ∧ (X,Y ) ∈
S2 ∧ (φ(g, h,X, Y ) = 1 ∨ x ∈ L)}, where S1 = {(g, gα, x) ∈ G × G × {0, 1}� |
α ∈ Zp}, S2 = {(h, hβ) ∈ G × G | β ∈ Zp}, and φ(g, h,X, Y ) = 1 if and
only if ∃w ∈ Zp : X = gw ∧ Y = hw. The protocol ΣOR has 2−λε

soundness
for ε > 0. We note that this protocol can be obtained starting from ΣL and
any SID trapdoor sigma protocol ΣDH for LDH. We provide an example (Σt

DH

from Theorem 2) to be used as ΣDH.
– A SID trapdoor sigma-protocol ΣNDH = (GenNDH,PNDH,VNDH) for LNDH.

ΣNDH need to have 2−λε

soundness for ε > 0.

We denote the obtained NIZK protocol with Π = (Setup,P,V). The Setup
algorithm works as follows:

– crsL ←$ GenL(1λ), crsDH ← crsNDH ← ∅, g ←$ G.Gen(1λ), x ←$ Zp, h ← gx,
k ←$ H.Gen(1λ).

– output (crsL, crsDH, crsNDH, (g, h), k)

We formally describe the interaction between the prover and the verifier of Π in
Fig. 2.

Before proving the security of Π, we need to prove that the FS transform
applied on ΣOR yields a WI semi-adaptive sound non-interactive protocol. This
comes immediately from Lemma 2, 3, and 4. Hence, if we denote with ΠOR the
non-interactive protocol resulting from the application of the FS transform on
ΣOR we can claim the following.
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Fig. 2. Our NIZK protocol Π

Theorem 3. ΠOR is WI semi-adaptive sound for LOR.

We are now ready to prove our main lemmas.

Lemma 5. Let Π be the protocol of Fig. 2, then Π is sound.
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Proof. Assuming Π is not sound, then there exists a PPT algorithm A, s.t.:

Prx

[

x /∈ L ∧ V(crs, x, π) = 1 | crs ←$ Setup(1|x|, 1λ);π ←$ A(crs, x)
]

≥ δ(λ).

To make V accept when x /∈ L, there are 2 possibilities:

– When T is a DH tuple, VNDH(crsNDH, T, aNDH, cNDH, zNDH) = 1, and VOR

((crsL, crsDH), (x, T ), a, c, z) = 1. If VNDH accepts when T /∈ LNDH then it
means that A can find (aNDH, cNDH, zNDH) to make
(crsNDH, T, aNDH, cNDH, zNDH) accepting with non-negligible probability, and
it directly contradicts to the semi-adaptive soundness of ΠNDH. Formally, we
can construct the following adversary A′:

A′(crsNDH, k, α) :

crsL ←$ GenL(1
λ), crsDH ← ∅, parsing α as (g, h), w ←$ Zp, β ← (gw, hw),

x ← (g, h, β), crs ← (crsL, crsDH, crsNDH, (g, h), k)

waiting for receiving all π from A(crs, x)

return all (π, β)

Now we have the following observation: 1) A works correctly. We know
crsL ←$ GenL(1λ), crsDH = ∅. Also, the hash key k, crsNDH and (g, h)
are provided by the challenger, so we can conclude that crs is the same
as crs ←$ Setup(1|x|, 1λ). 2) The output of A makes V accept with non-
negligible probability, and it means that we find an accepting proof π when
(α, β) /∈ LNDH. This contradicts Lemma 4.

– When T is a non-DH tuple, VNDH(crs, T, aNDH, cNDH, zNDH) = 1, and VOR

(crs, (x, T ), a, c, z) = 1. Then VNDH accepts because T ∈ LNDH. However,
if VOR accepts when x /∈ L ∧ T /∈ LDH it means that the adversary A is
able to find (a, c, z) to make (crs, (x, T ), a, c, z) accepting with non-negligible
probability, and it directly contradicts the semi-adaptive soundness of ΠOR.
The reduction is identical to the reduction for ΠNDH above, and it contradicts
Theorem 3.

We note that in this proof, the security only relies on the soundness of ΠNDH

and ΠOR, where their soundness relies on the CI property of CIHF. We do not
use the DDH assumption here. �
Lemma 6. Let Π be the protocol of Fig. 2, then Π is adaptive multi-theorem
zero-knowledge.

Proof. We have the following simulator Sim = (Sim0,Sim1), by having SHVZK
simulator SimNDH from ΣNDH:
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Sim(1|x|, 1λ) :

crsL ←$ Gen(1λ), crsDH ← crsNDH ← ∅, g ←$ G.Gen(1λ), x, wDH ←$ Zp, cNDH

←$ {0, 1}λ

h ← gx, TDH ← (g, h, gwDH , hwDH), (aNDH, zNDH) ← SimNDH(TDH, cNDH)

k ←$ Samp(1λ, aNDH, cNDH), crs ← (crsL, crsDH, crsNDH, (g, h), k)

τSim ← (TDH, wDH, aNDH, zNDH)

return crs, τSim

Sim(crs, τSim, x) :

ROR ←$ {0, 1}λ, a ← POR((crsL, crsDH), (x, TDH), wDH;ROR), c ← H.H(k, a)

z ← POR((crsL, crsDH), (x, TDH), wDH, a, c;ROR)

return (aNDH, zNDH, TDH, a, z)

We prove this lemma through hybrid experiments. We denote the output of
adversary in the hybrid Hi with outHi , to show for i = {0, 1, 2, 3}: |Pr[outHi

]−
Pr

[

outHi+1
]| ≤ ν(λ). We note that outH0 corresponds to the output of the

adversary in the real game, and outH4 corresponds to the output of the adversary
in the simulated experiments. We highlight the part that has differences for
better understanding:

H0 :

StateA ← ∅
crsL ←$ GenL(1

λ), crsNDH ← crsDH ← ∅, g ←$ G.Gen(1λ)

x, α, β, RNDH ←$ Zp

h ← gx, k ←$ H.Gen(1λ)

crs ← (crsL, crsDH, crsNDH, (g, h), k)

T ← (g, h, gα, hβ)

aNDH ← PNDH(crsNDH, T ;RNDH)

cNDH ← H.H(k, aNDH)

zNDH ← PNDH(crsNDH, T, (α, β), aNDH, cNDH;RNDH); repeat

(StateA, x, w) ←$ A(1λ, crs, StateA)

if (x, w) ∈ RL then ROR ←$ {0, 1}λ, a ← POR((crsL, crsDH), (x, T ), w;ROR)

c ← H.H(k, a), z ← POR((crsL, crsDH), (x, T ), w, a, c;ROR)

π ← (aNDH, zNDH, T, a, z)

else π ← ∅
(StateA, cont, d) ←$ A(1λ, StateA, π)

until cont = false

return d = 0
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H1 : StateA ← ∅, crsL ←$ GenL(1
λ), crsNDH ← crsDH ← ∅, g ←$ G.Gen(1λ)

x, α, β, RNDH ←$ Zp, cNDH ←$ {0, 1}λ, h ← gx, T ← (g, h, gα, hβ)

aNDH ← PNDH(crsNDH, T ;RNDH), k ← Samp(1λ, aNDH, cNDH)

crs ← (crsL, crsDH, crsNDH, (g, h), k), zNDH ← PNDH(crsNDH, T, (α, β), aNDH, cNDH;RNDH)

repeat

(StateA, x, w) ←$ A(1λ, crs, StateA)

if (x, w) ∈ RL then ROR ←$ {0, 1}λ, a ← POR((crsL, crsDH), (x, T ), w;ROR)

c ← H.H(k, a), z ← POR((crsL, crsDH), (x, T ), w, a, c;ROR)

π ← (aNDH, zNDH, T, a, z)

else π ← ∅
(StateA, cont, d) ←$ A(1λ, StateA, π)

until cont = false

return d = 0

H2 : StateA ← ∅, crsL ←$ GenL(1
λ), crsNDH ← crsDH ← ∅, g ←$ G.Gen(1λ)

x, α, β, RNDH ←$ Zp, cNDH ←$ {0, 1}λ, h ← gx, T ← (g, h, gα, hβ)

(aNDH, zNDH) ← SimNDH(T, cNDH) , k ← Samp(1λ, aNDH, cNDH)

crs ← (crsL, crsDH, crsNDH, (g, h), k); repeat

(StateA, x, w) ←$ A(1λ, crs, StateA)

if (x, w) ∈ RL then ROR ←$ {0, 1}λ, a ← POR((crsL, crsDH), (x, T ), w;ROR)

c ← H.H(k, a), z ← POR((crsL, crsDH), (x, T ), w, a, c;ROR)

π ← (aNDH, zNDH, T, a, z)

else π ← ∅
(StateA, cont, d) ←$ A(1λ, StateA, π)

until cont = false

return d = 0

H3 : StateA ← ∅, crsL ←$ GenL(1
λ), crsNDH ← crsDH ← ∅, g ←$ G.Gen(1λ)

x, wDH, RNDH ←$ Zp, cNDH ←$ {0, 1}λ, h ← gx, TDH ← (g, h, gwDH , hwDH)

(aNDH, zNDH) ← SimNDH(TDH, cNDH), k ← Samp(1λ, aNDH, cNDH)

crs ← (crsL, crsDH, crsNDH, (g, h), k); repeat

(StateA, x, w) ←$ A(1λ, crs, StateA)

if (x, w) ∈ RL then ROR ←$ {0, 1}λ, a ← POR((crsL, crsDH), (x, TDH), w;ROR)

c ← H.H(k, a), z ← POR((crsL, crsDH), (x, TDH), w, a, c;ROR)

π ← (aNDH, zNDH, TDH, a, z)

else π ← ∅
(StateA, cont, d) ←$ A(1λ, StateA, π)

until cont = false

return d = 0
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H4 : StateA ← ∅, crsL ←$ GenL(1
λ), crsNDH ← crsDH ← ∅, g ←$ G.Gen(1λ)

x, wDH, RNDH ←$ Zp, cNDH ←$ {0, 1}λ, h ← gx, TDH ← (g, h, gwDH , hwDH)

(aNDH, zNDH) ← SimNDH(TDH, cNDH), k ← Samp(1λ, aNDH, cNDH)

crs ← (crsL, crsDH, crsNDH, (g, h), k); repeat

(StateA, x, w) ←$ A(1λ, crs, StateA)

if (x, w) ∈ RL then ROR ←$ {0, 1}λ, a ← POR((crsL, crsDH), (x, TDH), wDH;ROR)

c ← H.H(k, a), z ← POR((crsL, crsDH), (x, TDH), wDH, a, c;ROR)

π ← (aNDH, zNDH, TDH, a, z)

else π ← ∅
(StateA, cont, d) ←$ A(1λ, StateA, π)

until cont = false

return d = 0

Then we have the following reductions:

– H0,H1: Assuming there exists a PPT algorithm A that
∣
∣
∣
∣
Pr

[

outH0
] −

Pr
[

outH1
]
∣
∣
∣
∣
≥ δ(λ), then we can construct an adversary A′ that can break the

programmability of CIHF H (Definition 14) through the following reduction:
• A′ queries the challenger of the programmability of H that sends back

the hash key k
• A′ samples crsL by using GenL, samples crsDH, crsNDH, (g, h) correspond-

ingly, and does crs ← (crsL, crsDH, crsNDH, (g, h), k)
• A′ sends crs to A to get (x,w)
• A′ preparing π by using (x,w) and sends it to A
• A′ outputs the output of A

We now observe that if the challenger uses H.Gen to sample k, we are in H0,
otherwise, we are in H1. This implies H0 ≈ H1.

– H1,H2: Assuming there exists a PPT algorithm A that
∣
∣
∣
∣
Pr

[

outH1
] −

Pr
[

outH2
]
∣
∣
∣
∣

≥ δ(λ), then we can construct an adversary A′ that can break

the SHVZK of ΣNDH through the following reduction:
• A′ queries the challenger of the SHVZK of ΣNDH that sends back the

proof aNDH, zNDH

• A′ samples crsL by using GenL, samples k by using Samp,
samples crsDH, crsNDH, (g, h) correspondingly, and does crs ←
(crsL, crsDH, crsNDH, (g, h), k)

• A′ sends crs to A to get (x,w)
• A′ preparing πOR by using (x,w) and does π ← (πOR, T, aNDH, zNDH)
• A′ sends π to A, and outputs the output of A
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We now observe that if the challenger provides a real transcript, we are in
H1, otherwise, we are in H2. This implies H1 ≈ H2.

– H2,H3: Assuming there exists a PPT algorithm A that
∣
∣
∣
∣
Pr

[

outH2
] −

Pr
[

outH3
]
∣
∣
∣
∣
≥ δ(λ), then we can construct an adversary A′ that can break the

DDH hardness assumption (Definition 1) through the following reduction:
• A′ queries the challenger of the DDH hardness assumption that sends

back the tuple T = (g, h,X, Y )
• A′ gets (g, h) from T , and uses T to generate (aNDH, zNDH) from using

SimNDH

• A′ samples crsL by using GenL, samples k by using Samp, samples crsDH,
crsNDH correspondingly, and does crs ← (crsL, crsDH, crsNDH, (g, h), k)

• A′ sends crs to A to get (x,w)
• A′ preparing πOR by using (x,w) and does π ← (πOR, T, aNDH, zNDH)
• A′ sends π to A, and outputs the output of A

We now observe that if the challenger provides a non-DH tuple, we are in H2,
otherwise, we are in H3. This implies H2 ≈ H3.

– H3,H4: Assuming there exists a PPT algorithm A that
∣
∣
∣
∣
Pr

[

outH3
] −

Pr
[

outH4
]
∣
∣
∣
∣

≥ δ(λ), then we can construct an adversary A′ that can break

the WI of ΠOR through the following reduction:
• A′ queries the challenger of the WI of ΠOR that sends back x, πOR =

(aOR, zOR)
• A′ samples crsL by using GenL, samples k by using Samp,

samples crsDH, crsNDH, (g, h) correspondingly, and does crs ←
(crsL, crsDH, crsNDH, (g, h), k)

• A′ sends crs to A to get (x,w)
• A′ use πOR from the challenger, and does π ← (πOR, TDH, aNDH, zNDH)
• A′ sends π to A, and outputs the output of A

We now observe that if the challenger provide ΠOR by using w, where (x,w) ∈
RL, we are in H3, otherwise we are in H4. This implies H3 ≈ H4.
We can concludes H0 ≈ H1 ≈ H2 ≈ H3 ≈ H4. Therefore, the simulated
transcript from Sim is computationally indistinguishable from a transcript in
the real game. �

On the Adaptive Soundness of Our Protocol. In the previous section, we
showed that Π is (non-adaptive) sound and adaptive multi-theorem ZK. In this
section, we argue that it is possible to slightly modify Π and get a protocol that
enjoys the same properties as Π, but in addition, it is also adaptive-sound.

In [9] the authors show that if the input of the hash function used in the FS
transform contains also the theorem (and not just the first round of the underly-
ing protocol), and moreover the trapdoor sigma-protocol is instance-independent
then the resulting NIZK is adaptive sound. As an additional contribution, the
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authors of [9] show that any sigma-protocol can be turned into an instance-
independent trapdoor sigma-protocol (this construction has an overhead, that
requires computing two ciphertexts for each bit of the challenge of the starting
trapdoor sigma-protocol).

Hence, using the results of [9], we can construct an instance-independent
trapdoor sigma-protocol for the language L∨LDH. If we apply the FS transform
using as the input of the hash-function also x then the final NIZK protocol we
obtain is both adaptive sound and adaptive multi-theorem ZK.

A SID Trapdoor Sigma-Protocols for Non-DH Tuples
and Proofs

In this section, we present a new sigma-protocol (denoted as ΣNDH) for LNDH =
{(g, h,X, Y ) | (g, h) ∈ S1 ∧ (X,Y ) ∈ S2 ∧ φ(g, h,X, Y ) = 1}, where S1 =
{(g, gx) ∈ G×G | x ∈ Zp}, S2 = {(h, hy) ∈ G×G | y ∈ Zp}, and φ(g, h,X, Y ) =
1 if and only if ∃w,w′ ∈ Zp : X = gw ∧ Y = hw′ ∧ w �= w′. We also argue
that the application of the FS transforms on our protocol yields a semi-adaptive
multi-theorem sound NIZK.

We propose the formal description of our protocol ΣNDH = (GenNDH,PNDH,
VNDH) in Fig. 3, where the crs = ∅.

Fig. 3. The protocol for LNDH
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Lemma 7. ΣNDH is a sigma-protocol for language LNDH.

Due to lack of space, the proof for Lemma 7 appears in the full version.

Lemma 8. ΣNDH has a PPT extractor Extuni(α, τ, a), where α is (g, h) from
the tuple T = (g, h,X, Y ), τ is the trapdoor, a is the first round message, s.t.
∀T /∈ LNDH, if the unique bad-challenge is c, Extuni can extract gc (which is also
unique).

Proof. Extuni, on input α = (g, h), τ = x, such that gx = h, a = (a1, a2) (the
first round of the sigma-protocol ΣNDH), returns gc ← aτ

2
a1

, where c is the bad-
challenge.

Extuni outputs the correct results due to the following observation. If we
have the first round message a = (a1, a2), and T /∈ LNDH, due to the optimal
soundness property, we know that there is at most one challenge c that makes the
transcript (a, c, z) accepting. Then because the transcript is accepting it must
be that a1 = Y r̃1hr̃2

gc and a2 = X r̃1gr̃2 . When T /∈ LNDH, aτ
2

a1
= Xxr̃1gxr̃2

Y r̃1hr̃2 gc = gc.
Because g is the generator in the cyclic group G, gc and c are 1 to 1 mapping.
It means gc is also unique.

Claim. If the number of all the possible challenges c is bounded to poly(λ), then
by using brute force, computing c from gc is efficient (polynomial time in λ).

Lemma 9. If the challenge c of the protocol ΣNDH satisfies that c ∈
{0, 1}K log2(λ

ε) for ε > 0 and for integer K ≥ 1, then for t = Ω( λε

K log2(λ
ε) ), the

parallel repetition version Σt
NDH is a semi-instance-dependant trapdoor sigma-

protocol, for LNDH = {(g, h,X, Y ) | (g, h) ∈ S1∧(X,Y ) ∈ S2∧φ(g, h,X, Y ) = 1},
where S1 = {(g, gx) ∈ G × G | x ∈ Zp}, S2 = {(h, hy) ∈ G × G | y ∈ Zp}, and
φ(g, h,X, Y ) = 1 if and only if ∃w,w′ ∈ Zp : X = gw ∧ Y = hw′ ∧ w �= w′.

Proof. By applying Lemma 1 in [12], we know Σt
NDH is a sigma-protocol, and we

only focus on proving the property for the SID trapdoor sigma-protocol.
The corresponding TrapGenNDH algorithm has the following inputs:
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– 1λ: The unary representation of the security parameter
– α: (g, h) from the tuple (g, h,X, Y )
– aux: x from gx = h

Then the outputs of TrapGenNDH is crs = ∅ and τ = aux.
We denote the transcript of i-th repetition as (ai

1, a
i
2, ci, zi). The construction

of the bad-challenge extractor BadChallengeNDH(τ, crs, α, a) is:

BadChallengeNDH(τ, crs, α, a) :

gc1 ← Extuni(α, τ, (a1
1, a

1
2))

Brute force search on gc1 to get c1

...

gct ← Extuni(α, τ, (at
1, a

t
2))

Brute force search on gct to get ct

c ← (c1||c2||...||ct)
return c

where a = ((a1
1, a

1
2), ..., (a

t
1, a

t
2)) is the first round message of Σt

NDH. By Lemma
8 and the claim that brute force is efficient for small search space, we know
BadChallengeNDH is a PPT algorithm.

Then we prove the CRS Indistinguishability and Correctness:

– CRS Indistinguishability:
Because the Σt

NDH’s CRS is an empty set, the honestly generated CRS is com-
putationally indistinguishable from CRS computed by TrapGen(1λ, x, aux)

– Correctness: Assuming the Correctness does not hold, it means the transcript
of one of the repetitions is not accepted. It contradicts Lemma 8.

�

A.1 Efficiency analysis

Here we compare the efficiency of our ΠNDH with the NIZK protocol obtained
by applying the FS transform using a CIHF to the well-known protocol ΣDH =
(GenDH,PDH,VDH) used to prove that a tuple is non-DH tuple. We recall how
such a protocol works in Fig. 4.
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Fig. 4. The protocol for non-DH from DH

Because no expensive operations are introduced in this conversion, the effi-
ciency is the same as ΣDH. Also, the FS transform does not introduce any expen-
sive operations.

Hense, we compare the efficiency of Σt
NDH with Σt

DH from Theorem 2:

– Considering the security parameter λ = 2048, and ε = 10
11 . Then p is 1024

bits.
– ΠDH: It requires 1024 repetitions, and in each repetition, the prover needs

to compute 2 exponentiations, and the verifier needs to compute 4 exponen-
tiations. In total, it requires 2048 exponentiations for the prover and 4096
exponentiations for the verifier.

– ΠNDH: It requires 1024
K log2(1024)

= 103
K repetitions.

• If we make K = 10, then the required repetition is 11. In each repetition,
the prover needs to compute 5 exponentiations and the verifier needs
to compute 5 exponentiations. In total, the prover needs to compute 55
exponentiations and the verifier needs to compute 55 exponentiations.

• We also want to emphasize that, reducing the number of repetition only
influence the reduction of soundness. In the honest execution, neither the
prover nor the verifier does the brute force search computation to get c
from gc.
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Also, we can use following formula to get lower bound of λ, s.t. ΠNDH more
efficient than ΠDH:

6λε ≥ 10
λε

Kε log2(λ)

log2(λ) ≥ 10
6Kε

λ ≥ 2
5

3Kε
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Abstract. We study game-theoretically secure protocols for the clas-
sical ordinal assignment problem (aka matching with one-sided prefer-
ence), in which each player has a total preference order on items. To
achieve the fairness notion of equal treatment of equals, conventionally
the randomness necessary to resolve conflicts between players is assumed
to be generated by some trusted authority. However, in a distributed set-
ting, the mutually untrusted players are responsible for generating the
randomness themselves.

In addition to standard desirable properties such as fairness and
Pareto-efficiency, we investigate the game-theoretic notion of maximin
security, which guarantees that an honest player following a protocol
will not be harmed even if corrupted players deviate from the protocol.
Our main contribution is an impossibility result that shows no maximin
secure protocol can achieve both fairness and ordinal efficiency. Specif-
ically, this implies that the well-known probabilistic serial (PS) mecha-
nism by Bogomolnaia and Moulin cannot be realized by any maximin
secure protocol.

On the other hand, we give a maximin secure protocol that achieves
fairness and stability (aka ex-post Pareto-efficiency). Moreover, inspired
by the PS mechanism, we show that a variant known as the OnlinePSVar
(varying rates) protocol can achieve fairness, stability and uniform dom-
inance, which means that an honest player is guaranteed to receive an
item distribution that is at least as good as a uniformly random item. In
some sense, this is the best one can hope for in the case when all players
have the same preference order.

Keywords: Ordinal assignment problem · Distributed protocols ·
Game-theoretic security

1 Introduction

In this paper, we study secure distributed protocols for the classical ordinal
assignment problem [4,9,10] (aka matching with one-sided preference), in which
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there are players N and items M, where each player has some total preference
order on the items. For ease of illustration, we focus on the case n = |N | = |M|,
even though our results can be readily generalized to the case |N | �= |M|.

A mechanism takes a preference profile of all players’ preference orders and
returns a (possibly random) assignment of items to players, where an assignment
is a matching between M and N , i.e., a bipartite graph in M × N , where the
degree of each node is at most 1.

From a player’s perspective, the result of the mechanism is the probability
vector representing the distribution of the item that it receives. A player’s pref-
erence naturally induces a partial preference order on the probability vectors.
We assume that a player prefers to receive some item over having no item.

In the economics literature, several mechanism properties have been investi-
gated.

– Pareto Efficiency. Intuitively, this means a mechanism attempts to cater to
the preference orders of the players.
An assignment is stable (aka ex-post Pareto-efficient) if there is no subset S
of players who would like to exchange items such that everyone in S gets a
more preferred item afterwards; a mechanism is stable if it always returns a
stable assignment.
A (random) assignment is ordinally efficient (aka ex-ante Pareto-efficient) if
there does not exist another random assignment such that a non-empty subset
S of players receive item probability vectors they strictly prefer than before
(while those for players not in S do not change). A mechanism is ordinally
efficient if for any player preference profile, it returns an ordinal efficient
assignment. One could see that ordinal efficiency is a stronger property than
stability.

– Fairness. This is also known as equal treatment (of equals), meaning that if
two players have an identical preference order, then under the mechanism,
the two players should receive identical item distributions.
In this paper, we will consider a stronger notion of fairness that places condi-
tions when two players have an identical preference among a subset of their
most preferred items.

– Truthfulness. This is also known as strategyproof, which means a player does
not have the incentive to misreport their preference order to a mechanism.

Distributed Randomness to Achieve Equal Treatment. Observe that
randomness is necessary for a mechanism to achieve equal treatment. Typically,
in the economics literature [4], one assumes that some trusted central authority
will be responsible for generating the randomness in a mechanism, and it suf-
fices to analyze a mechanism as a function that takes a preference profile and
returns a distribution of assignments. In contrast, in a distributed setting such as
blockchain applications [14], there is no trusted authority and any randomness is
generated in a distributed fashion among the players, each of whom may want to
receive a more preferable item distribution or behave maliciously to harm other
players. Hence, we will explore various security notions for distributed protocols.
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Model of Distributed Protocols. We consider the following assumptions that
are commonly adopted in blockchain applications: (i) the protocol is distributed
and involves only the players (with no trusted authority), (ii) each message can
be seen by everyone. Specifically, we consider a synchronized communication
model, in which each player can post messages to some broadcast channel (such
as a ledger [2]). In each round, each agent reads posted messages on the chan-
nel from previous rounds, performs some local computation (possibly based on
locally generated randomness) and posts new messages to the channel. At the
end of the protocol, some publicly agreed deterministic function is applied to
the whole transcript of messages to identify the output.

An honest agent follows the procedure as specified by the protocol. To distin-
guish between truthfulness and honesty, we assume that the preference profile is
either publicly known or each player has already declared some preference order
before the protocol begins.

In this paper, we also distinguish between mechanism and protocol in the fol-
lowing sense. We say that a protocol realizes a mechanism, if under honest execu-
tion by all players, the protocol produces a random assignment that has the same
distribution as specified by the mechanism. When we say that a protocol has a cer-
tain mechanism property (such as equal treatment or ordinal efficiency), we mean
that the property is satisfied when all players behave honestly in the protocol.

On the contrary, an adversary controls some corrupted players that may
deviate from the protocol. A Byzantine adversary can cause a corrupted player
to behave arbitrarily, while a fail-stop adversary can only cause a corrupted
player to abort (i.e., stop sending messages) in a protocol.

Security Notions of Distributed Protocols. The strictest notion of security
for a protocol solving the problem is that under any strategy of the adversary, the
output of the protocol still has the same distribution as one under honest execu-
tion. However, this is impossible even for the simple case of the fair coin toss prob-
lem [6,7], in which 2 players wish to agree on a uniformly random bit in {0, 1} (with
zero bias). To see that this is a special case of the assignment problem, consider 2
players that have the same preference order on 2 items. Then, any stable mecha-
nism that achieves equal treatment is equivalent to returning one of the 2 possi-
ble assignments with equal probability. Specifically, Cleve’s impossibility result [7]
states that given any protocol for the fair coin toss problem among two players
that terminates within a bounded number of rounds, at least one of the players
can cause the output to have a non-zero probability bias towards either 0 or 1 by
aborting at some point during the protocol. This impossibility result holds even if
one assumes ideal cryptographic primitives such as one-way functions.

Game Theoretic Notions of Security. Observe that Cleve’s aforementioned
impossibility result states that a player can bias the outcome of the protocol,
but not necessarily towards a more favorable one to itself. As opposed to the
fair coin problem (in which the goal of the adversary is to introduce bias), in the
lottery problem [13] (aka leader election problem), exactly one of the n players is
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chosen as the winner. For the lottery problem, a protocol is maximin secure [5]
if an honest player’s winning probability does not decrease under the strategy
of an adversary.

The lottery problem can be solved by an elegant distributed protocol with
the help of a non-malleable commitment scheme (e.g., one based on one-way
functions [11]). Intuitively, such a scheme allows an agent i to hide some input
xi in a commitment Ci, which behaves like a blackbox to others; later, the
agent can decide to open Ci to reveal xi, but the scheme prevents Ci from
opening to any other different value. To simplify our description, we assume the
existence of an ideal commitment scheme; this has the advantage of separating
the computational issue regarding cryptography from the game theoretic aspects
of the problem.

The special case of n = 2 agents can be solved by a simple Blum duel
protocol [3], in which each of two players (labeled 0 and 1) randomly picks
an input bit in {0, 1} and broadcasts its commitment. After receiving another
player’s commitment, each player opens its own commitment to reveal its input
bit, and the winner is the XOR of the two revealed input bits. However, if one
player does not open its input bit, then the other player will automatically be
the winner of the duel. Observe that an honest player wins with a probability of
at least 1

2 . (Since this is a zero sum game, no dishonest player can win with a
probability of larger than 1

2 .) Using a binary tournament tree of depth O(log n)
in which every internal node corresponds to an instance of the duel subroutine,
one can see that this readily corresponds to a distributed protocol with O(log n)
rounds for the lottery problem in which an honest player wins with a probability
of at least 1

n .
Motivated by the lottery problem, the notion of maximin security can also

be applied to a protocol for the assignment problem, in which an honest player
would receive the same or a more preferable outcome distribution, should cor-
rupted players deviate from the protocol.

1.1 Technical Challenges

To understand this game-theoretic notion of security, we first investigate whether
well-known mechanisms in the literature can be realized by maximin secure
protocols.

Random Priority (RP aka random serial dictatorship ) mechanism [1,17]. The
mechanism first samples a uniformly random permutation on the players, who
are assigned items sequentially, one player at a time accordingly. When it is
a player’s turn, it will receive its most preferred item among the still available
items. It can be easily checked that the mechanism is truthful and achieves equal
treatment, but it is known to be not ordinally efficient.

Observe that to realize RP, one possible approach is to generate a permu-
tation uniformly at random in a “maximin secure” fashion. Since we already
have a maximin secure protocol for the lottery problem, it is tempting to use it
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to generate a random permutation of players. For instance, an instance of the
lottery problem can determine which player ranks first, and so on for the rest
of the permutation. Indeed, one can show that this protocol is maximin secure
with respect to the rank received by a player in the permutation.

Unfortunately, this does not translate to the maximin security with respect
to a player’s preference for items. Consider the following example with 3 players
such that players 1 and 2 both have item A as their favorite, while player 3 has a
different favorite item B. Observe that under honest execution, player 1 receives
its favorite item A with probability 1

2 .
However, player 1 can be hurt in the following way. When rank 1 is deter-

mined in the first lottery problem instance, player 3 has an abort strategy that it
aborts whenever in the round against player 2, which results in player 2 winning
automatically in this round. Under this strategy of player 3, player 1 still wins
with a probability 1

3 , but the winning probability of player 3 can be transferred to
player 2 who now wins with probability 2

3 . As a result, under this attack, player 1
receives its favorite item with probability 1

3 , which is smaller than before.
The above example shows that generating a random permutation via the

lottery problem protocol cannot achieve maximin security for the assignment
problem, but does not rule out the possibility that there may be a maximin
secure protocol that can realize RP.

Probabilistic serial (PS) mechanism. This was proposed by Bogomolnaia and
Moulin [4], for which we imagine that each object is one unit of different juice,
and each player consumes its most preferred available juice in the order of its
preference list at the same rate; the resulting consumption corresponds to a
(deterministic) fractional assignment of the object which is a bistochastic matrix
1 that can be random rounded to give an (integral) assignment. While it is known
that PS is ordinally efficient and clearly achieves equal treatment, there are
known examples in which PS is not truthful. Indeed, it has been proved [4] that in
general, no mechanism can simultaneously achieve equal treatment, truthfulness
and ordinal efficiency. Realizing PS by a maximin secure protocol seems tricky,
because the rounding of the aforementioned bistochastic matrix involves intricate
dependencies of item preferences among the players. Indeed, our main result
shows that this is actually impossible.

1.2 Our Contributions

Analogous to the aforementioned impossibility result [4] that no mechanism can
satisfy equal treatment, truthfulness and ordinal efficiency simultaneously, we
have the following impossibility result for maximin secure protocols.

Theorem 1 (Impossibility Result to Achieve Maximin Security). For
n ≥ 4 players, any mechanism that achieves both strong equal treatment and
ordinal efficiency cannot be realized by a maximin secure protocol (against a
fail-stop adversary) that terminates with a bounded number of rounds.
1 A bistochastic matrix is one with non-negative real elements such that the sum of

every row and the sum of every column is equal to 1.
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Here are the implications of this impossibility result.

– Strong equal treatment means that for any k ≤ n, if two players have exactly
the same preference order among their k most favorite items, then the two
players have exactly the same probabilities for receiving each of those k items.
Since PS also achieves strong equal treatment, it follows that no maximin
secure protocol can realize PS.

– The impossibility result also means that if a protocol ensures that an hon-
est player will not be hurt by corrupted players (i.e., maximin security is
achieved), then the mechanism is not ordinally efficient, which implies that
it is possible that all the players might collude and deviate from the protocol
such that no player will get hurt and some player will be strictly better off.

Even though we do not know how to realize RP with a maximin secure pro-
tocol and have shown that PS cannot be realized by a maximin secure protocol
(against even a fail-stop adversary), we have the following positive result on
maximin secure protocols.

Theorem 2 (Maximin Secure Protocol). There exists a mechanism that
achieves both stability and strong equal treatment (when all players are honest)
and can be realized by a maximin secure protocol against a fail-stop adversary
controlling up to n − 1 corrupted players.

Our protocol known as preference priority (PP, Algorithm 1) runs a sequence
of lottery problem instances, where each lottery decides the fate of a specific item.
Loosely speaking, the protocol can achieve maximin security because it ensures
that a fail-stop adversary cannot affect the order of the lottery problem instances
in the sequence. In Sect. 2, we explain some scenarios in which it is justifiable to
consider only fail-stop adversaries.

Uniform Dominance. The notion of maximin security guarantees that an hon-
est player cannot be hurt by corrupted players that deviate from the protocol,
but an honest player can still be attacked if other players lie about their pref-
erence orders. If a mechanism satisfies equal treatment, then an honest player
can be attacked by a malicious adversary that controls every other player, who
claims to have exactly the same preference order as the honest player, thereby
forcing everyone to receive every item with the same probability. Therefore, the
adversary can make sure that an honest player cannot get something better than
a uniformly random item in M. We say that a protocol achieves uniform dom-
inance if an honest player receives an item distribution that is at least as good
as a uniformly random item, no matter what the other players say (about their
preference orders) or do (in the protocol).

It is not too difficult to check that the above idea of realizing RP by generating
a uniformly random permutation via instances of the lottery problem can achieve
uniform dominance. On the other hand, the PS mechanism ensures that for any
preference profile, each player receives an item distribution that is at least as good
as a uniformly random item. Even though we have shown that PS cannot be real-
ized by a maximin secure protocol, we have designed a variant known as online PS
with varying rates (OnlinePSVar, Algorithm 2) that achieves uniform dominance.
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Theorem 3 (Uniform Dominance). The OnlinePSVar protocol achieves sta-
bility, strong equal treatment and uniform dominance against a Byzantine adver-
sary (controlling up to n − 1 players).

Even though OnlinePSVar also uses the lottery problem subroutine, it might
have a potential advantage over RP when players have vastly different preference
orders. For RP, observe that all players need to participate in the lottery problem
to determine which player has ranked 1 in the permutation. On the other hand,
one can check that for OnlinePSVar, when players have very different favorite
items, each instance of the lottery problem can potentially involve fewer players
(because each item might be fractionally consumed by fewer players), thereby
improving the round complexity of the protocol, as the lottery problem on n
players takes O(log n) rounds.

Paper Organization. We give the formal notation in Sect. 2 and introduce
standard building blocks in Sect. 3. Our impossibility result in Theorem 1 is
proved in Sect. 4. Our maximin secure protocol is given in Sect. 5, and we show
how uniform dominance is achieved in Sect. 6. Finally, we outline some future
directions in Sect. 7.

1.3 Other Related Work

Since the ordinal assignment problem was introduced by Gardenfors [9], there
have been numerous works on the subject; for details, refer to Chap. 2 of the
book [8].

To circumvent Cleve’s aforementioned impossibility result [7] for the fair coin
toss problem (with multi-players), Chung et al. [6] have proposed game-theoretic
notions of security when players have a preference for the coin outcome.

The folklore tournament tree protocol for the lottery problem has gained
renewed interest in the context of blockchain applications [13]. To improve the
round complexity of lottery protocols, Chung et al. [5] have considered approx-
imate game-theoretic notions of security. Since the lottery problem has a clear
zero-sum game structure, an honest player cannot be hurt iff corrupted players
cannot gain any unfair advantage. In contrast, our impossibility result in Theo-
rem 1 for the ordinal assignment problem implies that if an honest player cannot
be hurt in a protocol, then it might still be possible for some players to collude
and be strictly better off.

2 Preliminaries

Let N denote the set of players and M denote the set of items, where n = |N | =
|M|. For a positive integer �, we write [�] := {1, 2, . . . , �}. We use SM (or S when
M is clear from context) to denote the collection of total orders over M. Each
player i ∈ N has some preference order �i in S, which is also represented by a
favorite function Oi : [n] → M, where Oi(k) is the k-th favorite item of player i.
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Given a preference profile σ ∈ SN , we implicitly assume that the associated �i

(also denoted as σi) and Oi are defined for each i ∈ N .
We use A to denote the collection of assignment matrices in {0, 1}N×M such

that every row and column has exactly one non-zero entry. For instance, given
some P ∈ A, P (i, j) = 1 iff player i receives item j; we also use Pi to denote the
i-th row of P . The convex hull2 conv(A) = {P ∈ [0, 1]N×M :

∑
j∈M P (i′, j) =

1,
∑

i∈N P (i, j′) = 1,∀i′ ∈ N , j′ ∈ M} is exactly the collection of bistochastic
matrices.

Distribution. Given some set U , we use Δ(U) := {x ∈ [0, 1]U :
∑

u∈U xu = 1}
to denote the collection of distributions on U .

Mechanism. In this paper, a mechanism is a mapping that takes a preference
profile in SN and returns a distribution in Δ(A). Typically, the description of a
mechanism gives a method to randomly sample an assignment in A. Observe that
a distribution ρ ∈ Δ(A) induces a bistochastic matrix

∑
A∈A ρA · A ∈ conv(A).

Alternatively, in the literature, a mechanism is sometimes described by giving the
resulting bistochastic matrix, from which a (possibly non-unique) distribution
of assignments can be computed efficiently. However, note that it can be NP-
hard to compute the bistochastic matrix from a mechanism description (such as
RP [16]).

Conventionally, the randomness used for sampling an assignment in a mech-
anism is assumed to be generated by some trusted authority. Truthfulness refers
to whether a player reveals its true preference order to the mechanism. The main
focus of this work is the scenario when this randomness is jointly generated by
the players according to some procedure known as a (distributed) protocol.

Communication Model of Protocols. Players participate in a (possibly ran-
domized) protocol, at the end of which the whole transcript of all sent messages
determines an assignment in A. We assume that either the preference profile is
public information, or before the protocol begins, each player declares its pref-
erence order. We emphasize the distinction that honesty refers to whether a
player follows the procedure as specified by the protocol, as opposed to whether
a player is truthful about its preference.

A protocol proceeds in synchronous rounds over a broadcast channel, i.e., a
message sent by a player in one round will reach all players at the beginning of
the next round. In every round, based on messages received in previous rounds,
a player generates randomness and performs local computation as specified by
the protocol to generate a message to be sent in this round.

Adversarial Model. An adversary Adv controls some corrupted players. The
adversary can observe the internal states of the corrupted players and control
their actions. We assume that the adversary is rushing, i.e., it can wait for
the messages from all honest players in a round before it decides the actions
of the corrupted players in that round. A fail-stop adversary can instruct a

2 A convex hull of S ⊂ Rn refers to the minimum convex set that contains S.
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corrupted player to deviate from the protocol only by stopping to broadcast a
message in some round (after which the player will not broadcast any message
in subsequent rounds). A Byzantine adversary can instruct a corrupted player to
behave arbitrarily. An adaptive adversary can decide which so far honest player
to corrupt at the end of a round, based on messages already sent. However, since
we will mainly consider protocols that are secure against n−1 corrupted players,
adaptive corruption is not a crucial feature of the adversary.

Ideal Cryptographical or Hardware Assumptions. Under the following
scenarios, we can restrict our attention to fail-stop adversaries.

– Ideal Cryptographical Assumption. We consider adversaries that cannot break
cryptographical primitives such as commitment schemes [11] and zero-
knowledge proofs [15]. At the beginning of the protocol, each player gen-
erates all the randomness that will be used in each round of the protocol
using verifiable random functions [12] and broadcast the commitments of the
randomness, together with the corresponding zero-knowledge proofs that the
randomness and commitments are generated correctly. Then, in each round
of the protocol, a player uses committed randomness to generate and broad-
cast the message, together with the zero-knowledge proof that the message is
generated using the committed randomness.
We remark that for Byzantine adversaries in Theorem 3, we assume only the
existence of ideal commitment schemes (but not necessarily zero-knowledge
proofs or verifiable random functions).

– Ideal Hardware Assumption. Each player is assumed to reside within an SGX
enclave that cannot be corrupted. Hence, an adversary can only disrupt the
broadcast channel of a player.

We say that a protocol realizes a mechanism if, under honest execution by
all players, the protocol produces the same distribution of assignments as the
mechanism.

Player Satisfaction. Recall that a mechanism returns some (random) A ∈ A,
where each Ai, the i-th row of A, is a random vector and the j-th element of
expectation E[Ai] illustrates the probability that player i gets item j under this
(random) mechanism. We could easily see that E[Ai] ∈ Δ(M), where Δ(M) is
the collection of distributions of items. Rather than using a utility function that
could give a total order for comparison, we say the satisfaction of player i to be
E[Ai] which introduces a partial order under what we call vector dominance.

Definition 1 (Vector Dominance). Given vectors p, q ∈ Δ(M), a player i
with favorite function Oi prefers p to q if

∀j ∈ [n],
∑

k∈[j]

p(Oi(k)) ≥
∑

k∈[j]

q(Oi(k)). (1)

In this case, we say that p dominates q (with respect to i), and this defines a
partial order p 	i q on Δ(M). Observe that the partial order can be extended to
[0, 1]M (where the coordinates of a vector do not necessarily sum up to 1) also
via (1).
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Definition 2 (Matrix Dominance). Given P,Q ∈ conv(A) and σ ∈ S, we
say that P dominates Q (with respect to σ), if, for all i ∈ N , the rows of P and
Q corresponding to i satisfy Pi 	i Qi; we denote this by P 	σ Q.

Strict Dominance. Observe that we use the term “dominate” to refer to a binary
relation 	 that happens to be reflexive; hence, every element dominates itself.
When we say p strictly dominates q, we mean p 	 q and p �= q.

2.1 Some Well-Known Properties of Mechanisms

The following property intuitively expresses the idea that a mechanism should
return an assignment according to the preferences of the players.

Definition 3 (Stability). An assignment P ∈ A is stable with respect to a
preference profile σ ∈ SN , if there does not exist a different assignment P ′ such
that P ′ 	σ P .

A mechanism is stable if it always produces a stable assignment with respect
to the input preference profile.

Definition 4 (Ordinal Efficiency). A bistochastic matrix P ∈ conv(A) is
ordinally efficient with respect to σ ∈ SN , if there does not exist a different
P ′ ∈ conv(A) such that P ′ 	σ P .

A mechanism is ordinally efficient if for all inputs σ ∈ SN , it returns a
distribution in Δ(A) whose induced bistochastic matrix is ordinally efficient with
respect to σ.

Ordinal efficiency is a stronger property than stability. However, if a mech-
anism returns an assignment based on players’ preferences, then a player may
benefit by lying about its true preference.

Definition 5 (Truthfulness). A mechanism is (strongly) truthful, if a player
lying about its preference order will receive a vector in Δ(M) that is dominated
(with respect to its true preference) by the vector received had it been truthful.

A mechanism is weakly truthful, if a lying player cannot receive a vector in
Δ(M) that strictly dominates the vector received had it been truthful.

All the properties above can be achieved by a deterministic mechanism (which
is realized by a trivial protocol in which no communication other than announc-
ing one’s preference is needed). For instance, in a deterministic serial dictator-
ship, the players can be arbitrarily ranked and we let a higher-ranked player
choose its favorite item before lower-ranked players. The following property cap-
tures fairness, and can be achieved only with randomness.

Definition 6 ((Strong) Equal Treatment (of Equals)). A matrix P ∈
conv(A) achieves (strong) equal treatment with respect to σ ∈ SN (that defines
favorite functions Oi’s), if for all i, j ∈ N and � ∈ [n], the following holds:

“∀k ∈ [�], Oi(k) = Oj(k)” implies that “∀k ∈ [�], P (i, Oi(k)) = P (j,Oj(k))”.
A matrix P achieves weak equal treatment if the above condition holds for

� = n (but not necessarily for other values of �).
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Fact 1 (Impossibility Result [4]). For n ≥ 4 players, there is no mechanism that
can achieve all the following: ordinal efficiency, strong truthfulness and weak
equal treatment.

This impossibility result implies that any fair mechanism (in terms of equal
treatment) is either (i) not strongly truthful or (ii) not ordinally efficient. In
case (i), this means that a player might have the incentive to lie about its pref-
erence order. In case (ii), this means that potentially all players might collude
and deviate from the protocol such that everyone is better off. Therefore, in this
paper, we focus on notions that provide some guarantees to honest and truthful
behavior, as opposed to discouraging deceitful or corrupted behavior.

2.2 Security Notions of Protocols

We introduce our security notions for protocols and explain the intuition. The
next security notion encourages a player to remain honest even when there are
corrupted players, because it captures the guarantee that an honest player will
not be hurt.

Definition 7 ((Approximate) Maximin Security). For ε ≥ 0, a protocol
Π is (1 − ε)-maximin secure against an adversary Adv if the following holds
for any input preference profile σ ∈ SN . Given σ, suppose that Q ∈ A is the
(random) assignment produced by Π under the strategy of Adv, while P ∈ A
is the one produced had every player behaved honestly. Then, for every honest
player i, the expectations of the i-th rows satisfy E[Qi] 	i (1 − ε) · E[Pi], where
the partial order 	i is defined in Definition 1 with respect to the preference σi

of player i.
In this work, we focus on the special case ε = 0, which is simply known as

maximin secure.

As mentioned in the introduction, if players can lie about their preference
orders, then the best guarantee that one can only hope for is that an honest
player still receives something that is at least as good as a uniformly random
item.

Definition 8 (Uniform Dominance). A protocol Π achieves uniform dom-
inance against an adversary Adv if for any input preference profile σ ∈ SN and
any honest player i, the i-th row of the (random) assignment P ∈ A returned
by the protocol (under the strategy of Adv) satisfies E[Pi] 	i e, where e ∈ Δ(M)
is the uniform vector and 	i is the partial order defined in Definition 1 with
respect to the preference σi of player i.

Remark 1. An equivalent formulation of Definition 8 is that for all � ∈ [n], the
probability that a truthful and honest player will receive an item from its top �
choices is at least �

n , no matter what the other players say or do.
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3 Standard Building Blocks

We give descriptions for some well-known primitives. Since they are all standard,
we just highlight some important properties and give the relevant references.

Commitment Scheme. Assuming the existence of one-way func-
tions/permutations, there is a constant-round publicly verifiable commitment
scheme [11] that is perfectly correct, perfectly binding, and concurrent non-
malleable. For the purpose of understanding this paper, the reader just needs to
know that the commit phase of the scheme allows a player to construct a com-
mitment C of some secret message m. In a real-world scheme, the commitment is
computationally hiding, which means a polynomial-time adversary cannot learn
anything about the secret message from C. However, for ease of exposition, we
will assume that the commitment is ideally secure and the event that the adver-
sary can gain extra information from the commitment has zero probability. In
the open phase, the player can choose to open the commitment to reveal the
secret message m, where perfectly binding means that it is impossible to open
the commitment to any other message different from m.

Lottery Problem. There is a set N of n players, and the input is a probability
vector p ∈ Δ(N ). The goal is for the players to participate in a protocol that
determines a winner such that for each i ∈ N , player i wins with a probability pi.

Duel Protocol. The special case n = 2 for rational input probability vector can
be solved by an extension of the Blum’s protocol [3] that uses a commitment
scheme. On a high level, in the first round, each of the two players picks a
random element from some appropriate ring and broadcasts its commitment. In
the second round, each player opens its commitment and the sum of the opened
elements determines the winner. If a player fails to open its commitment, the
other player is the winner; if both players fail to open their commitments, a
default player can be the winner. It is straightforward that an honest player i
wins with a probability at least pi even if the other player is controlled by a
Byzantine adversary. However, as the duel protocol is used as a subroutine later,
there is some subtlety when both players are controlled by the adversary. Observe
that a Byzantine adversary can choose which player to be the winner without
being detected, while any deviation by a fail-stop adversary will be immediately
revealed in the transcript. This distinction is important later as we consider
maximin security of protocols.

Tournament Tree Protocol. The duel protocol can be generalized to any n ≥ 2
players with rational input probability vector by the tournament tree protocol
that has a binary tree structure in which each internal node corresponds to
an instance of a duel protocol; for a detailed description, see [5]. Again, any
honest player i wins with a probability at least pi even if all other players are
controlled by a Byzantine adversary. Similarly, as in the duel protocol, if all
players are corrupted, a Byzantine adversary can choose any player to be the
winner without being detected.
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3.1 Augmented Protocols for the Lottery Problem

For completeness, we describe the augmented duel protocol and introduce the
terminology to describe the detection of corrupted players, in the case of fail-stop
adversaries.

In an instance AugDuel(p1, p2), there are non-negative integers k1, k2 ∈ Z

such that for i ∈ {1, 2}, player i is supposed to win with probability pi = ki

k1+k2
.

In addition to the two players, all players in N (might) participate as follows.

1. Commit Step. Denote k := k1 + k2 and � := 
log2 k�. Each player i ∈ {1, 2}
samples a uniformly random element si in the ring Zk, which can be rep-
resented by an �-bit string; each player in {1, 2} commits to its string and
broadcasts the commitment.

2. Open Step. Each player i ∈ {1, 2} opens its commitment to reveal si. If
s1 + s2 ∈ {0, 1, . . . , k1 − 1}, then player 1 wins; else, player 2 wins.

3. Corruption Detection and Survivor. If a player in {1, 2} aborts or fails to
open its commitment to reveal an element in Zk, then the protocol identifies
this player as corrupted. If there is only one identified corrupted player, the
other player is the winner; if both players are identified as corrupted, a default
winner (say player 1) can be chosen.
A player in {1, 2} that neither wins nor is identified as corrupted is known as
a survivor.

Lemma 1 (Augmented Duel Protocol). In an instance AugDuel(p1, p2) of
the augmented duel protocol, the following properties hold.

1. Even when Adv is Byzantine, an honest player i ∈ {1, 2} wins with a proba-
bility at least pi.

2. Suppose Adv is fail-stop. Then, there exists a coupling3 between the honest
execution and the corrupted execution under the strategy of Adv such that
if the survivor sets S and SAdv correspond to the honest and the corrupted
executions, respectively, it holds that SAdv ⊆ S; moreover, if an honest player
wins in the honest execution, it also wins in the corrupted execution.

Proof. The first statement for Byzantine adversaries is a well-known result, and
we prove the second statement under fail-stop adversaries.

We first describe the coupling. We sample s1 and s2 independently from Zk

and use them to create a coupling between an honest execution and an execution
under the strategy of Adv. Observe that s0 = s1 + s2 is distributed uniformly at
random in Zk.

Recall that the goal is to show that by fixing s1 and s2, we always have
SAdv ⊆ S, where S is the survivor set under honest execution.

Finally, without loss of generality, assume that conditioning on some value
s0 = s1+s2, the survivor set is S = {1}, which means player 2 is the winner under
3 In probability theory, a coupling between two probability spaces (Ω1, Pr1) and

(Ω2, Pr2) is a joint space (Ω1 × Ω2, Pr), whose projections into Ω1 and Ω2 equal
to (Ω1, Pr1) and (Ω2, Pr2), respectively.
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honest execution. The only way to contradict SAdv ⊆ S is to make 2 ∈ SAdv, i.e.,
2 cannot be a winner under the strategy of Adv.

Conditioning on this value of s0, observe that the only way the adversary
Adv can make player 2 lose the duel is to make it fail to open its commitment,
thereby identifying player 2 as corrupted; this also means that player 2 cannot
lose if it remains honest.

Therefore, it follows that 2 /∈ SAdv, which means that SAdv ⊆ S; moreover, if
2 is honest, then it also wins in the corrupted execution. �

Extension to the Tournament Tree Protocol. We can use the augmented AugDuel
as a subroutine in the tournament tree protocol. Given a subset N ′ ⊆ N , we
denote an instance of the augmented tournament tree protocol by AugTourn(pi :
i ∈ N ′), where each instance of the duel protocol is implemented by AugDuel.
Similarly, a non-winning player of AugTournament that is not identified as cor-
rupted in any AugDuel instance is known as a survivor. A similar result is given
as follows.

Lemma 2 (Augmented Tournament Tree Protocol). In an instance
AugDuel(pi : i ∈ N ′) of the augmented tournament tree protocol, the following
holds.

1. Even when Adv is Byzantine, an honest player i ∈ N ′ wins with a probability
at least pi (even when all other players in N are corrupted).

2. Suppose that Adv is fail-stop. Then, there exists a coupling between an honest
execution and the execution under the strategy of Adv with corresponding
survivor sets S and SAdv such that it holds that SAdv ⊆ S; moreover, under
this coupling, if an honest player wins under the honest execution, it also wins
in the corrupted execution.

Proof. The proof follows from Lemma 1, which gives the first statement.
For the second statement, we apply the same coupling over all instances of

AugDuel as in the proof of Lemma 1. Suppose in an honest execution over candi-
dates N̂ , some player i0 is the winner of AugTourn, which means the survivor set
is S = N̂ \ {i0}. This means that i0 is the winner of all the AugDuel instances.
Under the same conditions as in Lemma 1, there is no way i0 can lose any of the
duels without being identified as a corrupted player. Therefore, i0 /∈ SAdv and
the result follows. �

4 Impossibility Result to Achieve Maximin Security

The impossibility result in Fact 1 states that in general, no mechanism can achieve
strong truthfulness, ordinal efficiency and weak equal treatment simultaneously.
Hence, even when all players are honest, no protocol can realize such a mecha-
nism. Recall that we have the distinction between truthfulness (whether a player
reveals its true preference) and honesty (whether a player follows a protocol), and
the notion of maximin security in Definition 7 is concerned about players’ honesty
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(as opposed to their truthfulness). Therefore, as a first step to designing protocols,
it is natural to ask whether it is possible to have a maximin secure protocol that
realizes a mechanism that satisfies ordinal efficiency and strong equal treatment.
The goal of this section is the following impossibility result.

Theorem 4 (Impossibility Result). There exists an instance with n = 4
players such that any mechanism that achieves ordinal efficiency and strong equal
treatment cannot be realized by a maximin secure protocol (which terminates in a
bounded number of rounds) against fail-stop adversaries that control at least n

2 play-
ers.

To get some intuition about ordinally efficient mechanisms, we revisit a well-
known ordinally efficient mechanism that also achieves strong equal treatment.

Recall that the PS mechanism [4] gives a (deterministic) procedure to com-
pute the induced bistochastic matrix P from a given preference profile. Initially,
all items are unconsumed. At any moment, each player can fractionally consume
its favorite remaining item at a unit rate until that item is totally consumed.
Observe that at time 1, all items will be totally consumed. The entry P (i, j) is
the fraction of item j consumed by player i in this process.

Example 1 (Instance with 4 Players). Consider n = 4 players with the following
preference profile σ on M := {mi : i ∈ [4]}, where the PS mechanism produces
the bistochastic matrix PPS ∈ conv(A).

m1 �1 m3 �1 m2 �1 m4

m1 �2 m4 �2 m2 �2 m3

m2 �3 m3 �3 m1 �3 m4

m2 �4 m4 �4 m1 �4 m3

PPS =

⎡

⎢
⎢
⎣

1
2 0 1

2 0
1
2 0 0 1

2
0 1

2
1
2 0

0 1
2 0 1

2

⎤

⎥
⎥
⎦

Observe that PPS corresponds to a unique distribution Δ(A) as follows: PPS =
1
2Ahead + 1

2Atail, where

Ahead =

⎡

⎢
⎢
⎣

0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

⎤

⎥
⎥
⎦ and Atail =

⎡

⎢
⎢
⎣

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎤

⎥
⎥
⎦ .

Lemma 3 (Unique Distribution). For the problem instance in Example 1,
PPS is the unique bistochastic matrix that achieves both ordinal efficiency and
strong equal treatment.

Proof. Suppose P ∈ conv(A) is a bistochastic matrix that achieves both ordinal
efficiency and strong equal treatment for the instance in Example 1.

First, consider player 1. Because of strong equal treatment, we have
P (1,m1) = P (2,m1), which implies that P (1,m1) ≤ 1

2 = PPS(1,m1).
Since( PPS1, O1(1)) + PPS(1, O1(2)) = PPS(1,m1) + PPS(1,m3) = 1, we have
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for � ∈ {2, 3, 4}, 1 =
∑

j∈[�] PPS(1, O1(j)) ≥ ∑
j∈[�] P (1, O1(j)).

It follows that the rows of the matrices corresponding to player 1 satisfy:
PPS(1, ·) 	1 P (1, ·).

A similar analysis for players 2 to 4 implies that PPS 	σ P , which means PPS

dominates P with respect to P . Since P is ordinally efficient with respect to σ,
it follows that P = PPS. �

4.1 Reduction from Coin-Flipping Problem

We next complete the proof of Theorem 4. We assume that there is a maximin
secure protocol Π that terminates within a bounded number of rounds, and real-
izes a mechanism that achieves both equal treatment and ordinal efficiency on the
instance in Example 1. From Π, we will construct a two-party coin-flipping proto-
col. Finally, we show that Cleve’s impossibility result [7] will contradict the max-
imin security of Π (against fail-stop adversaries controlling at most 2 players).

Interpreting Π as a Two-Party Coin-Flipping Protocol. Suppose party A
and part B would like to use Π in Example 1 as a coin-flipping protocol. Party A
controls players in {1, 2}, while party B controls players in {3, 4}. Observe that
we consider the case that at most one party is corrupted by a fail-stop adversary.
By Lemma 3, when both parties are honest, the outcome of Π can be either Ahead

or Atail, which can be naturally interpreted as a coin outcome. However, if either
party is corrupted, there can be other outcomes of Π that we need to interpret
as coin outcomes, after which the description of the coin-flipping protocol will be
completed.

The following lemma says that the maximin security of Π implies that when
only one party is corrupted, the assignment for players in the honest party still
satisfies either assignment matrix Ahead or Atail. Hence, if possible, we can use
the assignment for players in either party A or party B to determine the coin
outcome. Note that the assignments for the two parties will not contradict each
other. The reason is that combining the first two rows from one of the assignment
matrices and the last two rows from the other assignment matrix will not be a
valid assignment.

Finally, if the assignment for the players in neither party is consistent with
Ahead or Atail, Lemma 4 implies that both parties are corrupted, in which case
any default coin outcome (say head) can be returned.

Lemma 4 (Assignment for an Honest Party). Suppose Π is maximin
secure against a fail-stop adversary controlling at most 2 players. Then, the
assignment for players in an honest party in Π agrees with either Ahead or Atail,
each of which happens with probability 1

2 .

Proof. We consider the case that party A = {1, 2} is honest, and the case when
party B is honest can be analyzed similarly.

By the maximin security of Π, each player in {1, 2} receives m1 with prob-
ability 1

2 (which means which player receives m1 partitions the sample space
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into two equally likely events). Since the vector received by player 1 must dom-
inate the row PPS(1, ·) (with respect to its own preference), it follows that if
player 1 does not receive m1 (which happens with probability 1

2 ), it must receive
m3 = O1(2).

Similarly, if player 2 does not receive m1, then it must receive m4 = O2(2).
Therefore, it follows that the assignment for players in party A satisfies either
Ahead or Atail, each of which happens with probability 1

2 . �
Corollary 1 (Contradiction to Cleve’s Result [7]). Lemma 4 implies that
when there is only one corrupted party in the two-party coin flipping protocol,
the outcome of the coin is unbiased.

5 Achieving Perfect Maximin Security

In view of the impossibility results in Fact 1 and Theorem 4, we design a protocol
(assuming ideal cryptographical tools) that achieves the following properties.

Theorem 5 (Achieving Stability, Strong Equal Treatment and Max-
imin Security). Assuming an ideal commitment scheme, there exists a proto-
col that realizes a mechanism that achieves stability and strong equal treatment
(when all players behave honestly); moreover, the protocol achieves perfect max-
imin security against a fail-stop adversary that controls up to n − 1 players.

5.1 Preference Priority (PP) Protocol

Algorithm Intuition. The PP protocol in Algorithm 1 proceeds according to
round r from 1 to n. In round r, survivors (that have not been assigned their at
least (r−1)-st items) will compete for their r-th favorite items (if still available)
via the AugTourn protocol. If the r-th favorite item for a player is no longer
available, then the player does not compete for any item in round r. Observe
that this implies that the protocol is not weakly truthful (in the case where all
players honestly follow the protocol). However, this rigidity of when an item can
be assigned is how this protocol achieves maximin security.

Naive Variant. Observe that one could consider a more straightforward variant
of Algorithm 1. In each round r, instead of restricting the survivors to compete
for their r-th favorite item, we allow them to compete for their most preferred
remaining items. Specifically, we replace C in line 8 in Algorithm 1 by partitioning
S according to each survivor’s favorite item in R, i.e., we denote Oi(R) as the
favorite item of i in R, and let C = {{i ∈ S : Oi(R) = j} : j ∈ R}. We call this
variant of the algorithm NaivePP.

One can verify that the following Lemma 5 is still valid for NaivePP.

Lemma 5. The PP protocol described in Algorithm 1 realizes a mechanism that
achieves strong equal treatment and stability.
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1 Input: A preference profile σ ∈ SN (declared by players) for the items M.
2 Output: A (random) assignment A ∈ A.
3 Initialization:
4 Set A to an empty assignment (i.e., a zero matrix).
5 Let S ← N denote the current collection of valid survivors.
6 Let R ← M denote the current collection of available items.
7 for r from 1 to n do
8 Let C = {{i ∈ S : Oi(r) = j} : j ∈ R} be a partial partition of S according

to each survivor’s r-th favorite item in R.
9 foreach C ∈ C in an arbitrary order do

10 Suppose for all i ∈ C, the common r-th favorite item is Oi(r) = j.
11 Let p = (pi = 1

|C| : i ∈ C) indicate that players in C should compete for
item j uniformly at random.

12 Run AugTourn(p) to obtain the winner ̂i and the survivor set

S′ ⊆ C \ {̂i}; if |C| = 1, we assume that the only player in C is the
default winner and cannot abort.

13 Assign A(̂i, j) ← 1.
14 Update R ← R \ {j} and S ← S \ (C \ S′).
15 end

16 end
17 Any remaining items are arbitrarily assigned to players with no items yet

(according to some pre-determined rule) and update A accordingly.
18 return assignment A

Algorithm 1: Preference Priority Protocol

Proof. Strong equal treatment follows because if two players have exactly the
same preference for their r most favorite items, then they will behave in exactly
the same way as long as those r items are not assigned.

Stability follows because if a player is assigned an item j in the r-th round,
then all its more preferred items than j are no longer available at the beginning
of the r-th round. �

However, the following Example 2 shows that NaivePP is not maximin secure.

Example 2 (NaivePP Not Maximin Secure). Consider n = 9 players with the
preference profile given by the following matrix, where each row corresponds to
a player and each entry (i, j) contains the index of the j-th favorite item for
player i.

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 2 3 4 5 6 7 8 9
1 2 6 4 5 7 8 9 3
1 2 6 4 5 7 8 9 3
1 2 6 4 5 7 8 9 3
1 2 6 4 5 7 8 9 3
5 2 3 7 8 6 9 1 4
5 2 3 7 8 6 9 1 4
5 3 6 7 8 9 1 2 4
5 3 6 7 8 9 1 2 4

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦
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Honest scenario. We first argue that when every player participates honestly,
player 1 will surely receive one of its top 4 favorite items. The reason is that
player 1 will definitely not get item m3, since m3 will be assigned to one of
player 8 or player 9 at round 2. This means if player 1 has not received its top 2
items by the beginning of round 3, it will be the only player to compete for m4

in round 3.

Corrupted scenario. We show that if both players 8 and player 9 abort in their
first round, then with positive probability, player 1 does not get one of its top 4
favorite items.

Observe that with positive probability, player 7 gets m5. Then, with positive
probability both player 1 and player 6 fail to get m2, and hence these two players
will compete for m3 at round 3. With positive probability, player 1 fails to receive
its top 3 favorite items, and it has to compete with at least one player (from
players 2 to 5) for m4 at round 4. Hence, we conclude that when player 8 and
player 9 abort in their first round, the probability of player 1 getting one of its
top 4 favorite items is less than 1.

5.2 Maximin Security Analysis

Simplifying Notation. We first introduce some notations to facilitate the anal-
ysis of maximin security. Throughout the analysis, we fix some input preference
profile σ and honest player i0 ∈ N , and use 	 to denote the partial order on
Δ(M) defined in Definition 1 with respect to the preference σi0 of player i0.

Execution State. We use Λ to denote the collection of execution states of
the protocol in Algorithm 1. A state λ = (r, S,R, a) ∈ Λ is a tuple, where the
protocol is currently at the beginning of round r ∈ [n], S is the current collection
of survivors, R is the current collection of remaining items, and if i0 /∈ S, then
a ∈ M is the item already received by i0, and a = ⊥ otherwise.

While we consider a state λ that may not be reachable from an honest exe-
cution, we only consider valid states that satisfy the following conditions:

– |S| ≤ n − r + 1 and |S| ≤ |R|;
– if i0 ∈ S, then all of the (r − 1) most favorite items of i0 are not in R.

Observe that if i0 is honest, then only valid states (which are defined with
respect to i0) can be reached in the execution of the protocol.

Item Distribution. For any state λ ∈ Λ, we use Π(λ) ∈ Δ(M) to denote the
distribution of the item received by player i0 if the protocol is executed honestly
by all players from state λ onwards. Since Π(λ) has no randomness if i0 /∈ S
(because i0 has already received an item from A), it suffices to consider the case
i0 ∈ S (and a = ⊥).

Lemma 6 (Monotonicity with Respect to Removing Survivors or
Adding Items). Consider a valid state λ = (r, S,R,⊥) ∈ Λ, where S con-
tains an honest player i0. Then, the following monotone properties hold.
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P (r): Remove Player. Suppose i �= i0 is another player, and λ1 = (r, S \
{i}, R,⊥), where we allow i /∈ S. Then, Π(λ1) 	 Π(λ).

Q(r): Add Item. Suppose j ∈ M \ R is an item not in R such that λ2 =
(r, S,R ∪ {j},⊥) is still valid. Then, Π(λ2) 	 Π(λ).

Proof. We consider backward induction on r. For the base case r = n, because
of the definition of a valid state, we have the trivial case that S contains a
single survivor i0 and R contains a single item Oi0(n). Hence, λ = λ1, and the
statement P (n) holds. Observe that there is no other item j /∈ R such that
λ2 = (n, S,R ∪ {j},⊥) is also valid; hence, the statement Q(n) also trivially
holds.

Consider some 1 ≤ r < n such that for all r +1 ≤ t ≤ n, the statements P (t)
and Q(t) are true.

We first prove the statement P (r). Suppose player i �= i0 is removed. Since
the case i /∈ S is trivial, it suffices to consider i ∈ S. Suppose j = Oi(r) is the
r-th favorite item of player i. If j /∈ R, then player i is not going to compete for
any item in round r, and so this is equivalent to removing player i in round r+1,
and we can use P (r + 1); hence, we can assume j ∈ R.

Suppose C = {s ∈ S : Os(r) = j} are survivors that compete for item j in
this round r. Observe that survivors in S not competing for j behave the same
in round r in states λ = (r, S,R,⊥) and λ1 = (r, S \ {i}, R,⊥). There are two
sub-cases.

– |C| = 1. This means in the current round r, no other survivor in S views j
as its r-th favorite item. In particular, this implies that item j is not within
the r most favorite items of player i0. We can construct a coupling between
the states at the beginning of round r + 1 resulting from λ and λ1. For
every state λ̂ = (r + 1, Ŝ, R̂, a) that results from λ, we map it to λ̂1 =
(r +1, Ŝ, R̂∪{j}, a) that results from λ1; observe that both transitions occur
with the same probability. Hence, the statement Q(r + 1) implies that P (r)
is true in this case.

– |C| ≥ 2. We construct a coupling between states resulting from λ and λ1.
Suppose from λ, the next state at the beginning of round r + 1 is λ̂ = (r +
1, Ŝ, R̂, a). There are two further cases.
(i) Case i ∈ Ŝ. This means player i did not win in AugTourn for item j. In
this case, we map λ̂ to λ̂1 = (r + 1, Ŝ \ {i}, R̂, a), and use P (r + 1) in this
case.
(ii) Case i /∈ Ŝ. This means player i has won item j starting from state λ. To
create the coupling under this case, from state λ̂1, we pick a player i′ ∈ C \{i}
uniformly at random to be the winner of item j. The result is the state
λ̂1 = (r + 1, Ŝ \ {i′}, R̂, a), and we also use P (r + 1) for this case.

We next prove the statement Q(r), i.e., we add item j /∈ R at the beginning
of round r. Let r∗ be the minimum round at least r such that there exists
i ∈ S such that Oi(r∗) = j. If r∗ > r, then we can use the statement Q(r∗);
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hence, we can assume that there is some i ∈ S such that Oi(r) = j, and so
C = {i ∈ S : Oi(r) = j} is non-empty.

We create a coupling between states at the beginning of round r+1 resulting
from λ = (r, S,R,⊥) and λ2 = (r, S,R ∪ {j},⊥), respectively.

Observe that if λ̂ = (r+1, Ŝ, R̂, a) results from λ, then C ⊆ Ŝ because players
in C did not compete for any item in round r. However, from state λ2, exactly
one of C will win item j and be removed from S; hence, we randomly pick one
player i ∈ C to win item j. There are two cases.
(i) Case i = i0. Observe that player i0 prefers item j to any item in R. Hence,
in this case λ̂2 = (r + 1, Ŝ \ {i0}, R̂, j) is better for i0 than λ̂.
(ii) Case i �= i0. In this case, we consider λ̂2 = (r + 1, Ŝ \ {i}, R̂, a), and apply
the statement P (r + 1).

This concludes the induction proof. �
Lemma 7 (Maximin Security). The PP protocol in Algorithm 1 is maximin
secure against a fail-stop adversary that controls up to n − 1 players.

Proof. We show that an honest player i0 cannot be harmed by a fail-stop adver-
sary Adv. Specifically, we argue that if v ∈ Δ(M) is the distribution vector
received by i0 under the honest execution and vAdv is the corresponding one
under the strategy of Adv, then vAdv 	 v with respect to the preference of i0.

Observe that Algorithm 1 consists of multiple instances of AugTourn. There
are two cases.

– Suppose i0 participates in an instance of AugTourn for some item j in some
round r. Observe that at this moment, item j is the most preferred item
among the remaining items by i0. Lemma 2 states that the probability that
i0 wins item j cannot be decreased by the adversary Adv. If the strategy of
Adv causes any corrupted player to abort in this instance of AugTourn, the
resulting distribution received by i0 still dominates the original distribution.

– Suppose i0 does not participate in an instance of AugTourn. Lemma 2 states
that there exists a coupling between an honest execution and an execution
under the strategy of Adv such that the survivor set SAdv produced under
Adv is always a subset of S under honest execution. Lemma 6 states that
removing other players cannot harm the honest player i0. Hence, the resulting
distribution received by i0 under Adv still dominates that produced under an
honest execution.

Performing a hybrid argument on every instance of AugTourn in Algorithm 1
gives the required result. �

6 Achieving Uniform Dominance

Re-Visiting PS mechanism. We can see from the proof of Theorem 4 that
the hurdle in realizing the PS mechanism is that it can capture the coin-flipping
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problem, for which a fail-stop adversary controlling at least n
2 players can cause

a non-zero bias on the outcome probability (from the ideal 1
2 ). Even though we

do not know how to modify PS to achieve maximin security, it has inspired us
to design a variant of the protocol that can achieve uniform dominance against
Byzantine adversaries.

6.1 OnlinePSVar Protocol

Protocol Design Intuition. The online probabilistic serial with varying rates
(OnlinePSVar) protocol in Algorithm 2 is based on the original PS mechanism,
but as soon as an item is totally consumed, it is rounded via the lottery problem
according to the fractional consumptions by the players. Observe that to make
the description intuitive, the consumption of an item seems to be an “action”
by a player. However, this is actually performed automatically according to the
input preference profile (about which a player could still lie though). The players
actually only actively participate in instances of AugTourn, which is assumed to
take zero ”time” in the consumption process.

1 Input: A preference profile σ ∈ SN (declared by players) for the items M.
2 Output: A (random) assignment A ∈ A.
3 Initialization:
4 Set A to an empty assignment (i.e., a zero matrix).
5 All items in M are unconsumed.
6 for each player i ∈ N , set consumption rate of si ← 1 unit of item per unit time.
7 Consider each item as 1 unit of an infinitely divisible commodity; initialize time

= 0.
8 while ∃i ∈ N : si > 0 do
9 Every player i ∈ N consumes its favorite item (according to its preference

order σi) that is still not totally consumed at rate si.

10 When an item j ∈ M is totally consumed by some subset ̂N of players (if
there is more than one such item, process each item independently), do the
following:

11 Let p = (pi : i ∈ ̂N ) describe how players fractionally divide item j.

12 Run AugTourn(p) to obtain the winner ̂i and the survivor set S ⊆ ̂N \ {̂i};
recall that a survivor is a non-winning player that is not identified as
corrupted in AugTourn.

13 Assign A(̂i, j) ← 1.

14 Varying Rates: for i ∈ S, set si ← si + s
̂i × pi

∑

k∈̂N\{̂i} pk
.

15 for i ∈ ̂N \ S, set rate si ← 0.

16 end
17 Any remaining items are arbitrarily assigned to players with no items yet

(according to some pre-determined rule) and update A accordingly.
18 return assignment A

Algorithm 2: OnlinePSVar Protocol
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We would like to highlight an important feature: when line 14 “Varying Rate”
is executed, the rate of the winner in AugTourn is distributed among survivors
proportional to their winning probabilities. We shall see that this is extremely
important to achieve uniform dominance, as illustrated later in Example 3.

Terminology. Strictly speaking, OnlinePSVar is a protocol. However, when we
say the OnlinePSVar mechanism, we mean the corresponding mapping that takes
an input preference profile and returns a distribution of assignments when all
players behave honestly in the protocol.

Lemma 8. (Obvious Properties). The OnlinePSVar mechanism achieves
strong equal treatment and stability.

Proof. Recall that to consider the properties of the mechanism, we investigate
what happens when all players are honest.

From the description in Algorithm 2, for two players with exactly the same
preference for their top k items, before all those k items are totally consumed or
one of them is assigned an item, they will behave in exactly the same way. This
implies that the mechanism achieves strong equal treatment.

Stability is also obvious because the first item that is totally consumed will be
the top choice for the player that receives it. Applying this observation repeatedly
to the remaining items gives the conclusion. �

Varying Rates. Observe that the re-distribution of consumption rates among
survivors after AugTourn and the detection of corrupted players can make the
process very complicated. Surprisingly, we have observed the following structural
property of the process. In retrospect, we could have replaced line 14 “Varying
Rates” with a much simpler updating rule, but this will make the description
less intuitive.

Lemma 9 (Consumption Rate at Joining Time). Consider the consump-
tion process in OnlinePSVar. Suppose a player starts the consumption of an item
at time t ≥ 0 (with a positive rate). Then, we must have t < 1 and its consump-
tion rate for that item is 1

1−t . This holds even when all players are controlled by
a Byzantine adversary.

Proof. Observe that the consumption process can be affected by the outcome
of each AugTourn instance (which has at most n outcomes). Hence, there are at
most nn scenarios of the process, in which each scenario has at most n possible
times that a player can join the consumption of an item. Therefore, there are
only a finite number of times a player can join the consumption of an item, and
we can prove the result by induction on the joining time.

The base case t = 0 is trivial, because initially all players have a consumption
rate of 1. For the induction hypothesis, suppose that some player i joins the
consumption of an item j at some time t > 0 such that if any player starts
joining the consumption of any item at time t′ < t, it must be the case that
t′ < 1 and the rate at that moment is 1

1−t′ .
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Since t > 0, this means that player i has just finished participating in some
AugTourn for another item ĵ, and is a (non-winning) survivor. Consider the
winner d for item ĵ, and let td and ti be the corresponding joining times.

By the induction hypothesis, both td and ti are less than 1, and the two
players are consuming item ĵ at rates sd = 1

1−td
and si = 1

1−ti
. This means

that in the instance of AugTourn for item ĵ, their winning probabilities are pd =
(t − td)sd and pi = (t − ti)si.

Therefore, the rate re-distribution rule gives that after AugTourn, the new
rate for player i is:

s = si + sd · pi

1−pd
= si + sd·(t−ti)si

1−(t−td)sd
= si · 1−(t−td)sd+sd·(t−ti)

1−(t−td)sd
= 1

1−t .

Since s > 0, we must have t < 1 and the inductive step is completed. Observe
that no assumption about truthfulness or honesty is needed in this proof. �
Corollary 2 (Same New Rate for Survivors of AugTourn). In
OnlinePSVar, any instance of AugTourn with more than one candidate is com-
pleted strictly before time 1, and all the resulting survivors have the same new
consumption rates. This holds even when all players are controlled by a Byzan-
tine adversary.

6.2 OnlinePSVar Achieves Uniform Dominance

We first illustrate that the variant OnlinePS (which is the variant of Algorithm 2
with line 14 “Varying Rates” removed) does not achieve uniform dominance
(even when all players are honest).

Example 3 (OnlinePS does not achieve uniform dominance). Consider n = 5
with A = {1, 2, 3} and B = {4, 5}, where m1 and m2 are the top two items for
all players, but m1 �A m2 and m2 �B m1. Then, a simple calculation shows
that the probability that player 1 receives item m1 or m2 is: 1

3 + 2
3 × 1

12 < 2
5 .

Interrupted Process and Claiming Ownership in OnlinePSVar. Later in
our proofs, we would like to consider the probability of whether an honest
player i0 has already been assigned an item by some time t ∈ [0, 1]. However, it is
possible that at time t, a player is still consuming some item j. We introduce the
concept of claiming ownership. The interpretation here is that we interrupt the
process at this time, and sample a Bernoulli random variable with the param-
eter equal to the fraction of item j already consumed by player i to determine
whether player i0 should receive that item. Hence, when we say that a player has
claimed the ownership of an item by time t, we mean that the player has either
received that item or has a claim to that item via the above Bernoulli process.
Observe that for t = 1, the claim of ownership and the actual assignment are
equivalent.

Lemma 10 (Probability of Ownership). Suppose an honest player i0 is
about to start consuming some item at time t0 (which means at this point i0 still
has not received any item). Then, for all t ∈ [t0, 1], the probability that i0 will
have claimed ownership of any item by time t is t−t0

1−t0
.
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Proof. As argued in Lemma 9, the set of possible times that some player starts to
consume some item is finite. Hence, we prove the result by (backward) induction
starting from larger values of t0.

Suppose t0 is the largest time that any player can start to consume an item,
and player i0 happens to start consuming an item at time t0. By Lemma 9,
player i0 is consuming that item at rate 1

1−t0
. The maximality of t0 means that

this is the last ever item available to i0 and there cannot be another player
competing with i0; otherwise, it would have been possible to start consuming
another item at a time later than t0. Hence, by time t ∈ [t0, 1], player i0 would
have consumed t−t0

1−t0
fraction of item j, which is exactly the probability of claim-

ing ownership by the Bernoulli process at this moment.
For the induction hypothesis, suppose an honest player i0 starts to consume

some item j at some time t1 such that for all t0 > t1, the required result holds
if an honest player starts to consume an item at time t0.

By Lemma 9, i0 consumes item j at rate 1
1−t1

. Observe that if item j is not
fully consumed by time t, then the same argument as the base case holds, and
the probability that i0 claims ownership of j by time t is t−t1

1−t1
.

Otherwise, we let the consumption process carry on until item j is fully
consumed at some time t0 > t1. By Lemma 9, at time t0, the fraction of item j
consumed by i0 is t0−t1

1−t1
, which is the probability that (honest) player i0 will win

in AugTourn for item j. However, conditioned on i0 losing item j at time t0, the
induction hypothesis says that by time t > t0, i0 would have claimed ownership
of some item with probability t−t0

1−t0
.

Hence, to summarize the case when item j is fully consumed before time t,
the probability that i0 will have claimed ownership of some item by t is:

t0−t1
1−t1

+ (1 − t0−t1
1−t1

) · t−t0
1−t0

= t−t1
1−t1

.
This completes the induction proof. �

Lemma 11 (Uniform Dominance). The protocol OnlinePSVar achieves uni-
form dominance.

Proof. It suffices to show that for all � ∈ [n], the probability that an honest
player i0 will receive an item among its top � favorite items is at least �

n , no
matter whether the other players are truthful or honest.

Observe that the sum of consumption rates over all players is at most n (when
a corrupted player is detected, its rate is set to 0). Therefore, before t = �

n , at
least one of player i0’s top � items has not been totally consumed. This means
that before time t, player i0 is consuming only among its top � items, and it is
obvious that a player can only claim ownership of an item that it has attempted
to consume.

Hence, by Lemma 10 with t0 = 0, the probability that player i0 has claimed
ownership of one of its top � items by time t = �

n is �
n . Finally, consider the

natural coupling between the interrupted process at time t and the original
OnlinePSVar process (achieved by coupling the Bernoulli process at interruption
with the corresponding AugTourn) such that any item whose ownership is claimed
by i0 at time t is also received by i0 in OnlinePSVar. This completes the proof.

�
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6.3 OnlinePSVar Is Not Maximin Secure nor Strongly Truthful

We will give two examples to show that OnlinePSVar is neither maximin secure
nor strongly truthful.

OnlinePSVar is not Maximin Secure. To show that OnlinePSVar cannot
achieve maximin security even against fail-stop adversary, we first illustrate the
idea of constructing the counter-example for showing OnlinePSVar is not max-
imin secure. Suppose there are two sets of players X1,X2 with large enough
|X1| and |X2|, and three special players, i1, i2, i3. The following is the profile
regarding the three special players with unimportant items omitted:

m3 �1 · · · �1 · · · �1 · · ·
m1 �2 m2 �2 m3 �2 · · ·
m1 �3 m2 �3 m3 �3 · · ·

We assume players in X1 like m1 the most and will compete for m1 at time
0, and later they will not interfere with items m2 and m3. For players in X2, we
assume that they will compete for m2 at time 1

2 , but they will not interfere with
m1 and m3 at all. We have two observations.

1. We consider the game with players X1 ∪ {i1, i2, i3}. In this case, at time 0,
i2, i3 and players in X1 will compete for m1, and it will be finished in a short
time. Since i2 and i3 have low chances of getting m1, they will then compete
for m2 and finish this round at time ≈ 1

2 . As a result, one of the players will
get m2 and the other will join in competing for m3 with i1 at time ≈ 1

2 .
2. We consider the game with players X2 ∪{i1, i2, i3} In this case, one of i2 and

i3 will get m1 and the other (namely, i2) will start to compete for m2 at time
1
2 . Note that players in X2 will join as well and item m2 will be finished in a
short time. Since i2 has low chance for getting m2, it will join in competing
m3 with i1 at time ≈ 1

2 .

The above observations illustrate a fact that, when one of X1 or X2 is absent,
the probability for i1 getting m3 in these two cases could be arbitrarily close.
Hence, we consider a sequence of games constructed by replacing participants
involved in the game: we start from the game described in observation 1, and
gradually shift to the one in observation 2 by adding players from X2 or removing
players from X1. Then, there exist two consecutive games, where, the probability
of i1 getting m3 declines after removing some player from X1, or increases after
adding some player from X2. This gives the intuition for the following counter-
example.

Example 4 (OnlinePSVar Not Maximin Secure). Consider the preference profile
given by the following matrix, where each row corresponds to a player and each
entry (i, j) contains the index of the j-th favorite item for player i.
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⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

3 1 2 4 5 6 7 8 9 10 11 12 13 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 14 13 12 11 10 9 8 7 6 5 4 2 3
4 2 14 13 12 11 10 9 8 7 6 5 1 3
4 2 14 13 12 11 10 9 8 7 6 5 1 3
5 2 14 13 12 11 10 9 8 7 6 4 1 3
5 2 14 13 12 11 10 9 8 7 6 4 1 3
6 2 14 13 12 11 10 9 8 7 5 4 1 3
6 2 14 13 12 11 10 9 8 7 5 4 1 3
7 2 14 13 12 11 10 9 8 6 5 4 1 3
7 2 14 13 12 11 10 9 8 6 5 4 1 3
8 2 14 13 12 11 10 9 7 6 5 4 1 3
8 2 14 13 12 11 10 9 7 6 5 4 1 3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The player 4 acts as X1 and players 5, . . . , 14 act as X2 in the discussion
above. Using a program, we can use the brute force approach to compute the
probability that a player wins a certain item. When all players act honestly,
player 1 will get its favorite item m3 with probability 1132927

1499784 ≈ 0.7553. However,
if player 4 aborts at the beginning, then agent 1 gets m3 with probability 77

102 ≈
0.7549, which violates maximin security.

OnlinePSVar is not Strongly Truthful. The following example 5 is a counter-
example to show that OnlinePSVar is not strongly truthful.

Example 5 (OnlinePSVar Not Strongly Truthful). Consider n = 4 players with
the following true preferences:

m1 �1 m2 �1 m3 �1 m4

m1 �2 m2 �2 m3 �2 m4

m2 �3 m3 �3 m4 �3 m1

m2 �4 m3 �4 m4 �4 m1

In OnlinePSVar, player 2 obtains one of its top two items {m1,m2} with
probability 1

2 . We show that player 2 can increase this probability by lying
about its preference as:

m2 � m1 � m3 � m4.

At time t = 1
3 , item m2 is totally consumed.

If player 2 loses the tournament for item m2, then it will compete with
player 1 for item m1 starting at time t = 1

3 . In OnlinePS, the rate of player 2
remains 1, while in OnlinePSVar, its rate is increased to 1.5. Hence, it suffices to
do the calculation for the former case, in which item m1 will be totally consumed
at time t′ = 2

3 , when player 2 will get 1
3 fraction of m1.

Hence, by lying, the probability that player 2 obtains either m1 or m2 is:
1
3 + (1 − 1

3 ) · 1
3 = 5

9 , which is larger than before.
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7 Conclusion

We have considered the game-theoretic notion of maximin security for proto-
cols solving the ordinal assignment problem, where randomness is necessary to
achieve the fairness notion of equal treatment.

Our major contribution is the impossibility result that shows no maximin
secure protocol can satisfy both strong equal treatment and ordinal efficiency,
thereby also excluding the possibility of any maximin secure protocol that real-
izes the well-known PS mechanism. However, the problem of whether there exists
a maximin secure protocol that realizes RP is still open. In general, the following
questions are interesting future directions.

– Does there exist a maximin secure protocol that achieves both strong equal
treatment and uniform dominance?

– Does there exist a maximin secure protocol that achieves both strong equal
treatment and truthfulness?
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Abstract. A garbling scheme is a fundamental cryptographic building
block with a long list of applications. The study of different techniques
for garbling a function, towards optimizing computation and communi-
cation complexity, has been an area of active research. Most common
garbling techniques work by representing each gate in the circuit as a set
of ciphertexts that encrypt its truth table row-by-row.

In this work we present a new garbling scheme in the random oracle
(RO) model that garbles circuits in the gate-by-gate paradigm by cap-
turing the gate functionality (AND,XOR) as a whole rather than as a set
of ciphertexts. The final gate garbling requires 4κ bits of communication
in expectation, 4 RO calls for garbling and 1 RO call for evaluation. We
prove that the scheme satisfies privacy in the non-programmable random
oracle model and against PPT adversaries. We also show how this scheme
can be extended to support free-XOR and garble any gate functionality
over binary inputs.

Keywords: Garbled Circuits · Gate-by-Gate Garbling · Random
Oracles

1 Introduction

The theory and practice of garbling circuits has been the focus of a long line
of research, starting from the seminal work of [Yao86], and further optimized
in the works of [LP09,PSSW09,BHR12,ZRE15,HK20,RR21], to name a few.
Garbled circuits (GCs) are a fundamental building block that represents a func-
tion and a secret input in such a way that evaluating the garbled circuit on
the input representation reveals nothing beyond the function output. GCs have
a long list of applications like constant round secure two-party computation
(2PC) [LP09], constant round multiparty computation [BMR90,BLO16], zero-
knowledge proofs [FNO15,GKPS18], bootstrapping obfuscators [App13], func-
tional encryption [GKP+13], and verifiable computation [GGP10].
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Owing to its wide range of applications, Bellare et al.. presented an abstrac-
tion for garbling in [BHR12], viewing it as a fundamental building-block for use
in cryptographic protocols. This abstraction is termed as a garbling scheme and
is a framework defining four algorithms. A garbling algorithm takes a function
representation, i.e. a circuit, and uses it to create a garbled circuit (GC). Depend-
ing on the scheme, the GC may have certain function hiding properties: given
a GC, the actual functionality garbled remains hidden. The garbling algorithm
also creates an input encoding function. Next, an input encoding algorithm takes
any valid input to the circuit garbled and uses the input encoding function to
give ‘input labels’ that correspond to the GC. The input labels typically have the
property that, when looked at in isolation, they do not reveal the input repre-
sented. An evaluation algorithm takes a GC and a set of input labels for a certain
input, and derives a representation of the function output. Finally, an output
decoding algorithm derives the function output from its representation output
by the evaluation algorithm. It is required that nothing beyond the function
output is revealed. [BHR12] also gives various definitions of desirable properties
for garbling schemes like correctness, privacy, authenticity and obliviousness.

A scheme for garbling circuits was first proposed in [Yao86] and its security
was formalized in [LP09]. The formalism of [BHR12] captures this construc-
tion and many subsequent works in garbling published after [BHR12] have fol-
lowed the same line of thought as [LP09], also describing themselves in terms
of [BHR12]. [LP09] garbles a circuit in a gate-by-gate manner where each gate is
garbled by encoding its truth table row-by-row, creating a set of ciphertexts. Sub-
sequent optimizations reduce the size of garbled gates by either reducing cipher-
text sizes, allowing certain ciphertexts to not require communication [PSSW09],
or re-writing the gate functionality so that its truth table has fewer rows [ZRE15].

1.1 Our Contributions

We propose a novel scheme for garbling circuits in the gate-by-gate paradigm
that captures the gate’s truth table as a whole in one encoding, rather than as a
set of encrypted rows. We operate in the non-programmable random oracle (RO)
model wherein both the garbler and the evaluator are given access to a common
random oracle. Our garbling approach requires 4 RO queries to garble any binary
gate functionality and 1 RO query for evaluation. For a computational security
parameter κ, letting the length of each input label be κ, the expected length of
each garbled gate is 4κ bits. We also describe how this scheme can be modified
to support free-XOR at the cost of increasing the size of other garbled gates.

Although this scheme does not improve upon the current state-of-the-art
in garbling size, it produces a garbling with size that is comparable. It also
has certain advantages over schemes that produce garblings. For instance, the
garbling scheme in [ZRE15] produces gate garblings of size 2κ while providing
free-XOR compatibility. However, evaluating their GC requires 2 calls to the
underlying cryptographic primitive for a gate, while our scheme requires only 1
RO call. The garbling scheme in [PSSW09] also produces gate garblings of size
2κ while making 4 calls to the underlying cryptographic primitive for garbling
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and 1 call for evaluation. However, it does not support free-XOR and nor can it
be extended to support it like our scheme allows. We also have an advantage in
computation complexity over [RR21] that produces a gate garbling of size 1.5κ
at the cost of up to 6 primitive calls for garbling and 3 for evaluation. Further
novelty of our scheme lies in the new approach employed for garbling that opens
up a variety of avenues for future work.

Our scheme satisfies correctness and privacy [BHR12] against a PPT adver-
sary with access to t(κ) queries to the random oracle for any polynomial t(·).
Informally, the privacy-by-indistinguishability property requires that for two cir-
cuits C0 and C1 that have the same topology, and for two inputs x0 and x1 such
that C0(x0) = C1(x1), a garbling of C0 along with input labels corresponding
to x0 should be indistinguishable from a garbling of C1 and input labels for x1.

[BHR12] also contains a result stating that if the leakage function for a gar-
bling scheme is invertible, the definitions of privacy-by-indistinguishability and
privacy-by-simulation are equivalent. For our garbling scheme, the leakage func-
tion – information about the function revealed by the garbling – is the topology
of the circuit garbled. This is indeed an invertible leakage – given a circuit topol-
ogy, one can construct a circuit that has that topology. Therefore, it holds that
our garbling scheme also satisfies privacy-by-simulation.

1.2 Related Work

Secure garbling of circuits and corresponding ways of succinctly representing the
garbling has been the aim of a long line of research [BMR90,NPS99,KS08,LP09].
The most common paradigm for garbling a circuit operates at the gate level (also
known as the ‘gate-by-gate paradigm’) where for each gate in the circuit, each
line in the truth table of the gate functionality is encrypted separately. The
underlying primitive for encryption is a symmetric-key algorithm (e.g., a pseu-
dorandom function (PRF), a circular-correlation robust hash function (CCR),
a CPA-secure dual-key cipher (DKC)) which yields extremely fast algorithms.
This paradigm led to a long sequence of successful optimizations in computa-
tion and communication, that established garbled circuits as a practical tool for
achieving 2PC [PSSW09,KMR14,ZRE15].

Minimizing the size of garbled circuit representation so as to reduce the com-
munication complexity is a widely studied research area. To this effect, [KS08]
proposes a garbling technique that allows for ‘free-XOR’ – an XOR gate need not
be represented in the garbling at all. Following [LP09,PSSW09] proposes schemes
that garble each gate in a circuit by garbling its truth-table row wise, but in a
way that certain garbled rows need not be communicated. For a computational
security parameter κ, one such scheme (GRR3) produces a gate garbling of size
of 3κ, while still remaining compatible with free-XOR. Another scheme (GRR2)
garbles each gate with 2κ-bits, at the cost of forfeiting free-XOR compatibility.
Both of these are improvements over the 4κ-bits required in [LP09]. Another
work, [ZRE15] takes this further by proposing a garbling technique that garbles
each gate using 2κ-bits, while remaining compatible with free-XOR. [KKS16]
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shows a scheme in which 2κ bits can be used to garble internal gates of a cir-
cuit, while gates with circuit input wires as input can be garbled using κ bits.
For certain classes of circuits, formulas in particular, their construction requires
between κ and 1.5κ bits per garbled gates on average.

Table 1. Comparison of our scheme with related work. We compare the garbling size
and the number of primitive calls for garbling and evaluation for an AND gate. κ is
the computational security parameter.

Garbling Scheme Gate Garbling Size Number of RO Calls

Garbling Evaluation

[ZRE15](Free-XOR) 2κ 4 2

[RR21](Free-XOR) 1.5κ + 8 6 3

Our Work 4κ 4 1

Our Work (Free-XOR) 8κ 4 1

The state-of-the-art in garbled gate size optimization today is [RR21] where
the size of each garbled gate is 1.5κ bits. Pursuing a different line of garbling
size optimization, [HK20] proposes a scheme that reduces the size of the circuit
as a whole to the size of the longest branch of computation.

An extended line of works the generalizes garbling is the study of randomized
encodings [IK00,Ish13,App17]. Given a function f and an input x, a randomized
encoding is a representation f̂(x, r) generated using randomness r such that no
information beyond f(x) can be derived from it. A garbling can be viewed as a
special case of a randomized encoding. Specifically, a projective garbling such as
ours is a case of a decomposable randomized encoding, where given the garbling
and the active input labels only, nothing beyond the function output is revealed.

2 Technical Overview

Our garbling scheme operates in the random oracle model where both the garbler
and evaluator get access to a random oracle (RO). Below we discuss the key
design aspects of the core scheme. Discussion about the free-XOR extension is
deferred to Sect. 5.

The Garbling Algorithm. Conforming to the [BHR12] formalism, the input to
the garbling algorithm is a circuit C; and it outputs a garbled circuit F , an
input encoding set e, and an output decoding set d. The algorithm itself can
be separated into the following subroutines that are executed sequentially: (1)
Init(C) → e; (2) Circuit(C, e) = (F,D); (3) DecodingInfo(D) → d.
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Input Label Sampling. The first subroutine in the garbling algorithm takes the
circuit C and creates the input encoding set e. This subroutine Init(·) is a ran-
domized algorithm. From within C, this algorithm only uses n, the number of
input wires. This allows the generation of e potentially ahead of knowing the
function f . Similar to other traditional garbling schemes, the scheme we design
is also a projective garbling scheme. So e contains a set of input wire labels. In
our construction, for each of the n input wires, for an ‘external length parameter’
�, an �-length label is sampled uniformly at random to represent the 0 and 1 bit,
under the constraint that both labels for the same wire cannot be the same.

Gate-by-Gate Garbling. The next subroutine Circuit(·) is a deterministic func-
tion. It takes the input encoding set e with all the randomness it entails, and
extends it to create the complete garbled circuit F and output wire labels D. In
order to extend the existing randomness in a way that lets the garbling preserve
its privacy, Circuit(·) makes black box calls to a random oracle RO.

Each gate in the circuit is garbled separately and in a topological order. To
this effect, for the q total gates in the circuit C, each gate is assigned an index g
in this ordering. The random oracle RO employed throughout the gate-by-gate
garbling process is tweakable: it takes as an additional input the gate index g so
that it behaves independently for each gate.

Garbling a Gate. For a gate g, let A and B be its input wires, g be its output
wire index, and fg be its functionality (e.g., AND, XOR). When garbling a gate,
our methods deviate significantly from traditional garbling techniques. At its
core, we make the following observation: each gate is a binary gate so there are 4
combinations of input values, but only two possible output values corresponding
to one output wire.

Therefore, at its core, a gate garbling is a means to convert a pair of input
labels into an output label. For a wire A, LA

0 and LA
1 are its labels (similarly

LB
1 , LB

0 for B, and Lg
1, L

g
0 for output wire g). We require that for the gate g, the

input label combinations be mapped to (Lg
0, L

g
1) in such a way that the gate

functionality fg is preserved. For instance, if the gate is an AND gate, {(LA
0 , LB

0 ),
(LA

0 , LB
1 ), (LA

1 , LB
0 )} should be mapped to Lg

0, and (LA
1 , LB

1 ) to Lg
1.

We encode all four input label pairs into one encoding ∇g such that, given
one label from each input wire, ∇g can be used to convert these into the correct
output label. The details on how ∇g is generated can be found in Appendix A
where Table 3 indicates how the garbling for the AND functionality is generated
and Table 4 indicates the same for the XOR functionality. These tables are part
of the description of the garbling scheme: that is, they are predetermined and
remain the same regardless of the circuit garbled or the randomness used.

The entire gate garbling process is a result of deterministic steps starting
from the input label values. For gate g with input labels LA

1 , LA
0 and LB

1 , LB
0 , first,

in order to eliminate redundancy, for each pair of input bits (a, b) ∈ {0, 1}2 the
input labels is input to a random oracle: ROg(LA

a , LB
b ) → Xg

ab. The random oracle
RO takes as input the tweak g and two labels with total length 2�, and outputs
an �′-length string. The output length �′ is much larger than that of the input
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and each RO output string is sampled uniformly at random and independently
of the responses of other queries to ROg.

Next, the random oracle outputs (Xg
00,X

g
01,X

g
10,X

g
11) are used to derive a

single �g-bit string ∇g (that is padded by 0s to make its length equal to �′) that
encodes the gate functionality. ∇g has the properties that given any one Xg

ab, it
maps it to an �-bit uniformly random binary string Lg

fg(a,b). The gate garbling
∇g has Hamming weight � and the positions in this string that contain ‘1’ are
termed as ‘effective key positions’. Each bit in ∇g is set independently until its
hamming weight becomes �. We denote the length of the garbling up to this
point as �g bits. It follows that �g varies for each gate g, but it still holds that
�g = O(κ). The mapping of Xg

ab to an output label is done by projecting the
bits in Xg

ab over the effective key positions in ∇g. The resulting output label is
of length � and is independently and identically distributed (i.i.d.) over all bit
positions. It also holds that the pair ∇g and Xg

ab do not reveal any information
about the inactive output label or the other random oracle outputs.

Decoding Information. Once all the garbled gates and output wire labels are
derived in F , it remains to generate the output decoding information d. In our
construction, we employ another random oracle RO′ for this. In the subroutine
that creates the decoding information, for every output wire j, we sample an �-
bit string dj . This string has the property that, given output wire labels (Lj

0, L
j
1),

it holds that RO′(Lj
0, d

j) = 0 and RO′(Lj
1, d

j) = 1. Note that such a decoding
will always yield some output even for arbitrary �-bit strings that are not output
labels. The subroutine DecodingInfo(D) → d generates this decoding information
given the output wire labels set.

Evaluating the Garbled Circuit. An evaluator, given the garbled circuit F , a set
of input wire labels X, and the decoding information d, works gate-by-gate. It
has access to RO and RO′ and knows the indices of each gate. Starting with the
input labels L ∈ X we term each value in its view during an honest evaluation
as active. For each gate g, with active input labels LA

a , LB
b , the evaluator works

by first deriving ROg(LA
a , LB

b ) = Xg
ab. Then using Xg

ab and ∇g ∈ F , it computes
Lg

fg(a,b) = Xg
ab ◦ ∇g where ◦ is the operation selecting the bits in Xg

ab over

the effective key positions in ∇g. For an output wire label Lj
b, using dj ∈ d, it

computes RO′(Lj
b, d

j) = b as the function output.

Security Intuition. Our scheme satisfies privacy against a PPT adversary. This
notion is modeled as a game between the adversary and a challenger where the
adversary first picks two circuits C0 and C1 of its choice such that they have
the same topology. That is, letting Φ denote the leakage function revealing the
topology of a circuit, it needs to hold that Φ(C0) = Φ(C1). The adversary also
chooses two inputs x0 and x1 such that C0(x0) = C1(x1). The challenger picks a
bit b ∈ {0, 1}, garbles Cb and encodes the input xb. It sends the resulting (F,X, d)
to the adversary and then the adversary, making up to a polynomial number of
queries to the random oracles, needs to output which bit b the challenger chose.
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In order to understand why our scheme satisfies this notion of privacy, first
note that the garbling (F, d) in the challenge, in isolation does not reveal any
information about the circuits C0 or C1, beyond Φ, the topology that is identical.
This is because the garbling hides the gate functionality as each gate garbling
originates from the same distribution regardless of the functionality.

Given the complete challenge (F,X, d), an honest evaluation already reveals
the complete ‘active path’ in the garbling. Our proof follows by proving that
the knowledge of the active path gives the adversary no advantage at all in
distinguishing. That is, given the complete challenge (F,X, d) and all honest
queries, they are distributed independently of the bit b. Hence, we identify that
learning elements in the ‘inactive paths’ is a prerequisite to privacy violation.

We formalize the notion of “learning a label” as making a random oracle
query leading eventually to an inactive label. We identify what kind of queries
lead to this and term them as bad events1. There are three bad events that
are triggered by a query to RO. In ‘Bad Event 1’, the adversary “guesses” a
candidate input label to the gate input wire A and queries it to RO together
with the active input label of wire B. ‘Bad Event 2’ is defined symmetrically for
the input wire B of a gate and ‘Bad Event 3’ is defined when inactive candidates
are queried on both input wires. They are all analysed similarly.

‘Bad Event 1’ is triggered by two sub-events. First, when the candidate is the
inactive input label and the query outputs either the active output label or the
inactive output label. Second, when the output from the query is a valid output
label - the active or inactive output wire label used in the garbling - but the
input label tested is not the inactive input label. This case is possible since the
RO maps each input to an output value independently and uniformly at random.
So a value that is not the inactive input label is mapped to a gate output label.

Intuitively, the resistance against this event comes due to the size of the set of
candidate labels to be tested. Stemming from the fact that � is appropriately set,
and there is a unique active label Lg, it follows that there are 2� − 1 candidate
labels for which the output of RO is unknown to the adversary. Beyond this
information, any two labels within the set of possible labels are uniform and
independent. This holds by construction because the labels of a wire are either
sampled uniformly at random (input wire labels) or derived as projections of
random oracle outputs (internal wire labels). The latter also results in a random
�-bit string owing to the fact that the random oracle outputs are sampled freshly
and uniformly at random for each distinct domain value, and the nature of the
gate garbling ∇g used to select a subset of these bits. Within the set of candidate
labels for a wire, there is always the inactive label - used in the garbling -
triggering the bad event. However, possibly other ‘false positive’ label values
may also trigger the bad event owing to the nature of the random oracle outputs.
Considering multiple RO queries amounts to sampling without replacement. In
essence, the security argument boils down to the fact that the set of candidate

1 The proof technique we use is similar to [BHKR13] except that our adversary is PPT
rather than query bounded. Since we do not assume anything about the adversarial
strategy, this implies only that the bound on the number of queries is polynomial.
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labels is sufficiently large so that the adversary cannot cover a non-negligible
portion of it within their query budget. The advantage gained by making RO
queries increases linearly in the number of queries and decreases exponentially
in � (Theorem 4). Thus, the adversary’s advantage is always negligible.

It remains to argue that when adversarial queries are made across different
random oracles in different gates the bound on the probability of bad events
remains unchanged. As a special case, let us consider two gates such that the
output wire of one feeds into the other gate as input. First, note that the co-
domain (all possible RO outputs) of the random oracle is {0, 1}�′

. However the
domain is much smaller: {0, 1}2�. Due to this, the size of its range (the subset
of the co-domain that is the set of actual RO outputs corresponding to all the
RO inputs) is also upper-bounded by 22�. However, due to the properties of the
random oracle, it is not possible to distinguish between its co-domain and range
without querying the domain set. If a label in the range of RO is the inactive
input label to the next gate, it will have triggered a ‘Bad Event’ as the inactive
output label of the previous gate, ending the game. If the label is not the inactive
input label, the adversary learns that further queries using this label as input
are unnecessary, but gains no insight how to choose the candidate for the next
query among the other 2� − 1 candidate input labels. Learning not to query this
label to RO has cost the adversary a query in the previous gate hence it remains
the case that “one query → one discarded value”.

Therefore no advantage beyond what was learned directly by the query prop-
agates between gates. This analysis holds without loss of generality when con-
sidering any number of gates in the circuit. We use this to bound the probability
of encountering any of the three bad events, given t(κ) queries to the random
oracles and conclude that this is negligible in κ in our main result (Theorem 1).

3 Preliminaries

Table 2 contains a list of all the parameters with respect to which our garbling
scheme is constructed. We denote by {0, 1} the set containing 0 and 1, and by
{0, 1}n the set of vectors of length n with each position containing 0 or 1. We
use [] to denote an empty array. For a vector V and i ∈ N, we denote by V [i] the
element in the ith position in the vector. When [i] is used in isolation, it signifies
the set of elements 1, . . . , i.

Circuit Notation. For a function f : {0, 1}n → {0, 1}m, let C be its circuit
representation. Let q be the number of gates in C. Each gate g ∈ [q] is defined
by a gate functionality fg ∈ {AND,XOR}, two input wires A,B and an output
wire g where, A,B, g ∈ [n + q] and topological ordering holds: A,B < g.

Random Oracles. The security proof of our scheme holds in the random ora-
cle model, which abstracts a truly random function. Following the notation
from [KL14], the random-oracle model posits the existence of a public, ran-
dom function R that can be evaluated only by “querying” an oracle – which can
be thought of as a “black box” – returning R(x) when given input x.
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Table 2. Table of Parameters

Parameter Information

n number of circuit input wires

m number of circuit output wires

q number of gates in the circuit

� (external length parameter) length of a wire label

�′ (internal length parameter) length of approximate keys

�g length of garbled gate ∇g

κ computational security parameter

s number of adversarial random oracle queries

Definition 1 (Random Oracle). A random oracle RO is an interface for an
oracle function R : {0, 1}a → {0, 1}b that is sampled uniformly from the family
of functions that map the domain of binary strings {0, 1}a into {0, 1}b.

Garbling Scheme. [BHR12] abstracts garbling as a primitive containing four
algorithms as given in Definition 2. In the definition, a function f is represented
as a circuit C. We also denote by Φ(C) = (n,m, q, {A,B, g}g∈[q]) the topology
of the circuit C. Finally, x ∈ {0, 1}n denotes the function input and y ∈ {0, 1}m

denotes the function output.

Definition 2 (Garbling Scheme [BHR12]). Let f : {0, 1}n → {0, 1}m be a
function with circuit representation C and κ be a computational security param-
eter. A garbling scheme GS = (Gb,En,De,Ev) has four PPT algorithms:

– Gb(1κ,C) → (F, e, d): returns a garbling F , input encoding set e, and output
decoding set d.

– En(e, x) := X: returns the encoding X for function input x.
– Ev(F,X) := Y : returns the output labels Y by evaluating F on X.
– De(Y, d) := {⊥, y}: returns either the failure symbol ⊥ or a value y = f(x).

These algorithms must satisfy the following properties:
– Correctness: For every κ, circuit C and input x,

Pr[y = C(x) : (F, e, d) ← Gb(1κ,C), X = En(e, x),

Y = Ev(F, X), y = De(d, Y ) ] = 1

– Privacy: Let Algorithm 1 denote the actions of the challenger in an indis-
tinguishability game. Let Φ be a leakage function representing the topology of
a circuit. For every PPT adversary A (with access to RO), for all circuits
C0,C1 s.t. Φ(C0) = Φ(C1) and every x0, x1 s.t. C0(x0) = C1(x1) of the
choice of A, there exists a negligible function μ such that A’s advantage is,

Adv(κ) =
∣
∣
∣
∣
Pr[ARO(C0,C1, x

0, x1, F,X, d) = b] − 1
2

∣
∣
∣
∣
< μ(κ)
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Algorithm 1. Privacy
1: proc Challenger(C0,C1, x

0, x1)
2: if x0, x1 �∈ {0, 1}n or Φ(C0) �= Φ(C1) or C0(x

0) �= C1(x
1) return ⊥

3: b ← {0, 1}
4: (F, e, d) ← Gb(1κ,Cb)
5: X = En(e, xb)
6: Return (F, X, d)

4 The Scheme

In this section we present our garbling scheme. The scheme itself is presented in
Sect. 4.1. We present in Sect. 4.2 the intuition behind why the scheme is correct.
In Sect. 4.3, we discuss the security guarantee and outline the proof of security.
A full proof is presented in Appendix B.

4.1 Garbling Algorithm

For a function f : {0, 1}n → {0, 1}m, let C be its circuit representation. The
garbling algorithm has the following form:

Algorithm 2. Algorithm Gb(1κ,C)
1: set the external length parameter � = κ and internal length parameter �′ = 8�
2: Init(C, �) → e
3: Circuit(e,C, �, �′) = (F, D)
4: DecodingInfo(D, �) → d
5: Return F, e, d

The garbling algorithm as above begins by setting the variables � and �′

defined in Table 2. These parameterize the lengths of the inputs and outputs of
the random oracles employed in the construction. The ‘external length param-
eter’ � parameterizes the length of all wire labels throughout the circuit. The
additional ‘internal length parameter’ �′ parameterizes the length of the inter-
mediate values in the gate garbling – the outputs of RO – and serves as a loose
upper bound on the length of each gate garbling �g. The actual length of the
gate garbings are variable and much smaller than �′ bits. Since the intermediate
garbling values never have to be communicated, and so do not contribute to
the communication complexity, �′ can be arbitrarily larger than �. We refer the
reader to Appendix A.1 for details as to why �′ is set to 8�. Finally, � is also
the Hamming weight of ∇g and parameterizes the effective length of the gate
garbling. The complete garbling algorithm employs two random oracles of the
following forms: (1) ROg : {0, 1}2� → {0, 1}�′

; and (2) RO′ : {0, 1}2� → {0, 1}.
The first is used in each gate and so it uses the gate number g as a tweak. The
latter is used for circuit output decoding.
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Input Encoding Generation. The garbler starts by executing Init(C, �) → e, for-
mally described in Algorithm 3. Let n be the number of input wires in C and �
be the external length parameter. This algorithm uses the garbler’s randomness
to sample �-length labels to represent the 0 and 1 values for each input wire.
These labels are sampled uniformly at random, under the constraint that two
labels for the same wire cannot take the same value. This resulting set of input
wire labels is the input encoding set e.

Algorithm 3. Init(C, �)
1: extract n from C and initialize e = []
2: for input wire W ∈ [n] do
3: Sample LW

0 ← {0, 1}� uniformly at random
4: Sample LW

1 ← {0, 1}� − {LW
0 } uniformly at random

5: Set e[W ] = eW = (LW
0 , LW

1 )
6: end for
7: Return e

Garbled Circuit Generation. The garbler now runs a deterministic algorithm to
generate the garbled circuit: Circuit(e,C, �, �′) = (F,D). This algorithm receives
as input a circuit C with q gates and a projective input encoding set e with
labels for all n input wires. The output of this algorithm is a garbled circuit F ,
and a set D of pairs of labels for the m output wires of the garbled circuit. This
is described in Algorithm 4. This algorithm works gate-by-gate where it creates
a garbled gate by calling a subroutine described in Algorithm 5. The garbled
circuit so produced is F = (∇1, . . . ,∇q).

Gate Garbling. We discuss now the subroutine that the garbling algorithm uses
to garble each gate of the circuit: (Lg

0, L
g
1,∇g) ← Gate(LA

0 , LA
1 , LB

0 , LB
1 , g, fg, �).

This subroutine receives the gate index g, input labels set (LA
0 , LA

1 , LB
0 , LB

1 ) and
a gate functionality indicator, fg ∈ {AND,XOR}. For simplicity and complete-
ness, we only discuss these functionalities although we can encode any gate func-
tionality over binary inputs. The subroutine outputs a gate garbling ∇g (with
Hamming weight �) and a set of labels for the gate output wire (Lg

0, L
g
1), each of

�-bit length. The details of this subroutine are formally described in Algorithm 5.
This is a deterministic function but with access to random oracle ROg.

A gate is garbled in the following stages. First, given the set of input labels
(LA

0 , LA
1 , LB

0 , LB
1 ), note that each of the combinations in ((LA

0 , LB
0 ), (LA

0 , LB
1 ),

(LA
1 , LB

0 ), (LA
1 , LB

1 )) is a 2�-bit string where � bits are common with any other
combination. To unlink the pairs, the input label combinations are passed into
a random oracle ROg. In order for this function to sample fresh outputs for
different gates which may have potentially the same input wires, the input to
ROg also includes the gate id g as a tweak. For bits a, b ∈ {0, 1}, this step
creates ROg(LA

a , LB
b ) = Xg

ab. The values (Xg
00,X

g
01,X

g
10,X

g
11) are intermediate
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Algorithm 4. Circuit(e,C, �, �′)
1: ∀g ∈ [q], initialize the random oracle ROg[2�, �′]
2: initialize the wire label set W = [W1, . . . , Wn+q]
3: for each circuit input wire A do
4: WA = (LA

0 , LA
1 ) ∈ e

5: end for
6: initialize F = [], D = []
7: for each gate g = (fg, A, B, g) in C in topological order do
8: extract input wire labels LA

0 , LA
1 , LB

0 , LB
1 ∈ W

9: compute (Lg
0, L

g
1, ∇g) ← Gate(LA

0 , LA
1 , LB

0 , LB
1 , g, fg, �)

10: set F [g] ← ∇g

11: set Wg = (Lg
0, L

g
1) ∈ W

12: if g is an output gate then
13: D[g] ← (Lg

0, L
g
1)

14: end if
15: end for
16: Return (F, D)

garbling values termed ‘approximate key’, each �′-bit long, that are the outputs
of the random oracle. Note that since �′ is an internal length parameter and, as
all internal variables are not communicated, it can be arbitrarily long without
effecting the communication complexity of the garbling scheme.

Next, the set (Xg
00,X

g
01,X

g
10,X

g
11) is used to create a gate garbling ∇g. The

length of ∇g is �g ≤ �′ and it varies for each garbled gate. Depending on the
gate type, Tables 3–4 contain truth-tables that indicate how a single index of ∇g

is set as a function of the bits in the same index in each of (Xg
00,X

g
01,X

g
10,X

g
11).

These tables are part of the description of the garbling scheme and are fixed
prior to running the garbling algorithm.

The garbling ∇g is generated bit-by-bit until the Hamming weight comes
to �, the effective length. The gate garbling ∇g is also made such that for any
intermediate value Xg

ab, the output label can be derived as ∇g ◦ Xg
ab = Lg

fg(a,b)

where ◦ is an operation that projects the bits in Xg
ab over all the positions where

∇g is set to 1. An essential property that ∇g satisfies is that on its application
with any of the Xg

ab, it produces one of two values Lg
0 and Lg

1 that are distributed
uniformly at random in {0, 1}� and, that too, according to the gate functionality.
These, along with the gate garbling ∇g are the outputs of this subroutine.

Decoding Information. The randomized algorithm DecodingInfo(D, �) → d takes
the labels set D for the output wires, and returns a sequence d that maps them
back to their plain values; see Algorithm 6. This employs a random oracle RO′.

Completing the Garbling Scheme. It remains to describe, for completeness, the
working of the input encoding algorithm En, the evaluation algorithm Ev and the
output decoding algorithm De. The interfaces and purpose of these are respec-
tively the same as in standard garbling [BHR12]. For brevity we only describe
them in algorithmic form in Algorithm 7.
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Algorithm 5. Gate((LA
0 , LA

1 ), (LB
0 , LB

1 ), g, fg, �)
1: Xg

00 = ROg(LA
0 , LB

0 )
2: Xg

01 = ROg(LA
0 , LB

1 )
3: Xg

10 = ROg(LA
1 , LB

0 )
4: Xg

11 = ROg(LA
1 , LB

1 )

5: initialize ∇g ← 0�′
and let j = 1

6: repeat
7: Set slice ← Xg

00[j]||Xg
01[j]||Xg

10[j]||Xg
11[j]

8: if fg == AND ∧ slice ∈ {0000, 0001, 1110, 1111} then � See Table 3
9: ∇g[j] ← 1

10: else if fg == XOR ∧ slice ∈ {0000, 1001, 0110, 1111} then � See Table 4
11: ∇g[j] ← 1
12: end if
13: increment j = j + 1
14: until HW (∇g) = � or j = �′

15: if HW (∇g) �= � then
16: ABORT the computation
17: end if
18: �g = j
19: Lg

0 = Xg
00 ◦ ∇g � A ◦ B = projection of A[i] for positions with B[i] = 1

20: if fg == AND then
21: Lg

1 = Xg
11 ◦ ∇g

22: else if fg == XOR then
23: Lg

1 = Xg
01 ◦ ∇g

24: end if
25: Return (Lg

0, L
g
1, ∇g)

4.2 Motivating Our Scheme

The mainstream literature on garbled circuits has been operating under the gate-
by-gate paradigm. Informally, binary gates are individually garbled in topological
order. The garbling algorithm samples values for the two labels for each wire
(sometimes with additional constraints on their relations) and uses each pair
of input labels as a key for encrypting the output label. This is the setting in
which [LP09] proves the security of garbling schemes using a primitive that was
later termed by [BHR12] a Dual-Key Cipher (DKC). Later, [ZRE15] termed
this kind of garbling as ‘linear’. They provided a model for linear garbling and
showed that any scheme in their model that simultaneously achieves correctness
and privacy requires at least two ciphertexts, thus providing a lower bound on the
communication efficiency of such schemes. Our scheme deviates from [ZRE15]’s
linear model in several key points.

Approximate Keys. Despite a syntactical similarity, a major difference from
prior work is that we do not consider the input labels as keys. Instead, we
consider them as an entropy source to an Approximate-Key-Derivation Function.
This function, modeled as a random oracle and denoted by RO, converts each



624 A. Acharya et al.

Algorithm 6. DecodingInfo(D, �)
1: initialize RO′[2�, 1] and d = []
2: for output wire j ∈ [m] do
3: extract Lj

0, L
j
1 ← D[j]

4: repeat
5: sample dj ∈R {0, 1}�

6: until RO′(Lj
0, d

j) = 0 and RO′(Lj
1, d

j) = 1
7: d[j] ← dj

8: end for
9: Return d

label pair into a uniformly distributed string of length �′. The resulting tuple
t = (X00,X01,X10,X11) is a set of approximate keys.

Gate Output Label Derivation. The tuple t contains approximate keys in the
following sense: t = (X00,X01,X10,X11) can be viewed as a 4×�′ binary matrix.
The garbler scans for each j ∈ [�′], indices slicej = (X00[j],X01[j],X10[j],X11[j]).
For an AND gate, the bits in the same column in X00,X01 and X10 must agree
on the same value. When they do, the respective position in Lg

0 is set to this
value and the respective position in Lg

1 is set to the corresponding bit value from
X11. Otherwise (i.e., if they do not agree), the value in position j is not included
in the construction of the output label.

Table 3 in Appendix A is a truth table according to which the indices slicej

are used to set the jth index of ∇g when the AND functionality is garbled. Note
that the index in ∇g is set to 1 only in the rows of the table where it holds
that X00[j] = X01[j] = X10[j]. Further, each index j of ∇g is set independently,
depending on a different slicej . Each value in this slice is an RO output and
so the slice is a uniformly random value in {0, 1}4. The right side of Table 3
contains the value in the output label that is a result of projecting the value of
Xg

ab in the positions where ∇g contains 1. One can see that L00, L01, and L10
always have the same value (and are therefore the same). If anywhere among
the �′ positions we have L11 	= (L00 = L01 = L10) (i.e., Lines 1 and 14 in Table 3)
then, {LA

0 , LA
1 } × {LB

0 , LB
1 } 
→ {Lg

0, L
g
1} preserves the structure of a binary AND.

The case for an XOR gate is similar except that the agreement is sought
between L00 and L11, as well as between L01 and L10. Then if at least once in
the �′ positions (L00 = L11) 	= (L01 = L10), the structure of a binary XOR is
preserved. Table 4 in Appendix A is a truth table according to which the indices
slicej are used to set the jth index of ∇g when the gate functionality is XOR.
Note that the index in ∇g is set to 1 only in the rows of the table where it holds
that X00[j] = X11[j] and X01[j] = X10[j].

Both Table 3 and Table 4 are part of the description of the garbling scheme:
that is, they are predetermined and remain the same regardless of the function
garbled or the randomness used.
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Algorithm 7. Algorithms to Evaluate the Garbling
1: procedure En(e, x)
2: initialize X = []
3: for every j ∈ [n] do
4: set X[j] = Lj

xj
= ej [xj ]

5: end for
6: Return X
7: end procedure
8:
9: procedure Ev(F, X)

10: initialize Y = []
11: for each gate g ∈ [q] in a topological order do
12: LA, LB ← active labels associated with the input wires of gate g
13: extract ∇g ← F [g] and compute Lg ← RO(g, LA, LB) ◦ ∇g

14: if g is a circuit output wire then
15: Y [g] ← Lg

16: end if
17: end for
18: Return Y
19: end procedure
20:
21: procedure De(Y, d)
22: initialize y = []
23: for j ∈ [m] do
24: y[j] ← lsb(RO′(Y [j], dj))
25: end for
26: Return y
27: end procedure

Garbling other gate functionalities. Generalizing the above technique lets us
garble an n-input binary gate computing any functionality fg. A gate g with
n input wires and one output wire, with each wire holding binary values would
have two �-length labels for each wire. For each input wire indexed i ∈ [n], let
these labels be Li

0, L
i
1 ∈ {0, 1}�. Garbling such a gate would require a random

oracle of the form ROg : {0, 1}n� → {0, 1}�′
. Let a = {ai}i∈[n] ∈ {0, 1}n be a

possible input value to this gate. The garbling proceeds by first making 2n calls
to the random oracle of the form ROg({Lai

i }i∈[n]) → Xg
a , for all a ∈ {0, 1}n.

Letting t = {Xg
a}a∈{0,1}n be the set of approximate keys, we need that t be

partitioned into two sets: t0 = {Xg
a}fg(a)=0 containing all approximate keys that

need to be mapped to the gate output label Lg
0, and t1 = {Xg

a}fg(a)=1 with those
that are mapped to Lg

1. Each index in ∇g
fg

is set to 1 only when the values in
the slice of t0 are equal and that of t1 are equal. This corresponds to 4 possible
values of slice: 0m, 1m, the transpose vector of the truth table of fg, and the
complement thereof. In effect, only knowing these 4 combinations suffices for
gate garbling.
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Let us consider the special case of 2-input binary gates for some functionality
fg. The random oracle is of the form ROg : {0, 1}2� → {0, 1}�′

and there are 4
approximate keys in the tuple t = (Xg

00,X
g
01,X

g
10,X

g
11). In the truth-table for

setting the bits in ∇g
fg

, out of the 24 = 16 rows, 4 rows would set the bit in ∇g
fg

to 1. Therefore, when a garbling is generated for a 2-input binary gate, it has
the same distribution regardless of the gate functionality. This is the basis of the
gate functionality hiding property of the scheme.

No ciphertexts. In the evaluation algorithm Ev of our scheme, given two input
labels, the evaluator can obtain from the random oracle exactly one approximate
key whereas what they need is the output label. To enable this, the garbler
records in ∇ the bit positions from which the output label is derived. We believe
∇ should not be considered a ciphertext since it does not encrypt any labels but
instead encodes the relation between an approximate-key and the output label.
Furthermore, whereas a ciphertext normally captures the relation between a pair
of input labels and the output label, ∇ captures the relation between all input
labels and both output labels. Finally, each bit of ∇ is zero with probability 3

4
and one with probability 1

4 .

4.3 Security

We consider a PPT adversary A that runs for t(κ) time steps for any polyno-
mial t(·) in the security parameter κ. A has access to the random oracles ROg

and RO′ but, owing to its running time, is restricted to making at most t(κ)
queries overall. Among these, we make a distinction between the set of honest
queries H, and adversarial queries Q. Given the challenge (F,X, d) output from
Algorithm 1, we term the set of queries made in Ev(F,X) = Y and De(Y, d)
as the honest queries H. For a circuit C with q gates and m output wires, this
includes q calls to RO, and m calls to RO′. Therefore, |H| = q + m and its con-
tents are determined completely by the challenge. Any other query A makes is
an adversarial query in Q. We only consider sets Q where |Q| < t(κ).

Security Game. The security game for Privacy from Definition 2 is an interaction
between the adversary A and the challenger. Let Φ be a leakage function denoting
the topology of a circuit. That is, for a circuit C, Φ(C) outputs everything except
the gate functionality of each gate in the circuit. First A picks circuits C0,C1

of its choice such that Φ(C0) = Φ(C1), and two inputs x0, x1 ∈ {0, 1}n such
that C0(x0) = C1(x1). Then, (C0,C1, x

0, x1) are given to the challenger. On
receiving this, the challenger first samples a bit b ← {0, 1} uniformly at random.
It then garbles Cb, creating (F, e, d). It encodes xb using e to get X. The challenge
(F,X, d) is sent back to A. Now A with polynomial running time, and access
to the random oracles ROg, and RO′ to make honest queries H and adversarial
queries Q, is tasked with guessing b that was used internally by the challenger.

The adversary’s view. In the privacy game from Definition 2, A has in its view
(C0,C1, x

1, x0) of its own choice, (F,X, d) that it receives as the challenge, the
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set of honest queries (and responses) H, and adversarial queries (and responses)
Q. We define a function V(·) that represents the information learnt by A. For
instance, V(F,X, d) refers to the information A can deduce from the challenge
(F,X, d). In particular, by V(F,X, d,H,Q) we denote all the information learnt
by the adversary2. The advantage Adv of A can be restated as

Adv =
∣
∣
∣
∣
Pr[A(V(F,X, d,H,Q)) = b] − 1

2

∣
∣
∣
∣

where the probability distribution is taken over the secrets of the challenger (i.e.,
random choice of b ← {0, 1}, and the garbling randomness: (F, e, d) ← Gb(Cb)),
and the choice of the adversarial query set Q. The adversary needs to distinguish
between the cases that the challenger chooses b = 0 and b = 1.

Theorem 1. Let GS = (Gb,En,Ev,De) be a garbling scheme as in Algorithms 2–
7. Let κ be a computational security parameter. For every PPT adversary A with
running time t(κ) having access to all random oracles RO ∈ (ROg,RO′) in the
Privacy game (Definition 2), ∃ a negligible function μ s.t. A’s advantage is,

Adv(κ) =
∣
∣
∣
∣
Pr[ARO(C0,C1, x

0, x1, F,X, d) = b] − 1
2

∣
∣
∣
∣
< μ(κ)

Proof Outline. We prove that our garbling scheme preserves privacy against
a PPT adversary. The privacy game (Algorithm 1) returns as a challenge
(F,X, d) and the adversary A is tasked with guessing the bit b such that
(F, e, d) ← Gb(Cb) and X = En(e, xb). Note that the garbling (F, d) in isola-
tion is distributed identically for both C0 and C1. This is because the garbling
technique creates each gate garbling ∇g in a way that it is distributed identically
regardless of the gate functionality fg ∈ {AND,XOR} and Φ(C0) = Φ(C1).

We denote by honest queries the RO queries that are necessary for evaluating
the garbling F on X. Then our proof follows by proving in Theorem 2 that given
the challenge (F,X, d) and the set of honest queries H only, the view of the
adversary A is identically distributed for the cases where b = 0 and b = 1. In
order to show this, we first prove that nothing beyond the active path P of the
evaluation is revealed from the given information. Next, we show that the active
path is identically distributed for both cases.

All queries that are not honest queries are referred to as adversarial queries.
When an adversarial query is made, we make a distinction between the case
where a response lies in the garbling F , and those that do not. We call the
former a ‘Bad Event’. When a ‘Bad Event’ occurs we assume an adversary can
detect this, and that it gives it enough information to distinguish for b. Therefore,
we bound the probability of a Bad Event for a single query in Theorem 3.

When a query does not lead to a bad event, this implies that its response
is irrelevant to the construction of (F, d). Making such a query does not give

2 We omit writing (C0,C1, x
0, x1) and other garbling parameters like � and �′ for

brevity but it is assumed to be always included.
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the adversary any advantage over the case considered in Theorem 2. However, it
restricts the domain of future queries to the random oracles. As a result, a future
query to it may have a higher probability of incurring a bad event. In Theorem 4,
we bound the advantage that the adversary would have on making s adversarial
queries. This is done by first, calculating the probability that an ith query leads
to a bad event given that i − 1 previous queries have not triggered a bad event.
This probability is an increasing function of i. Next, A’s advantage is bounded as
the complement of the probability that no bad event has occurred in s queries.
The probability of no bad event occurring is calculated as the product of the
complement of the individual probabilities for each round i that was previously
calculated. This result also holds in the case where A makes t(κ) adversarial
queries, completing the proof for the main theorem: Theorem 1.

5 Supporting Free-XOR

The garbling scheme in Sect. 4 can be further extended to support free-XOR.
The idea is similar to existing free-XOR schemes where the garbler samples a
secret global offset Δ ∈ {0, 1}�. For each input wire, the 0-label is sampled
uniformly at random and the 1-label is set such that L0 ⊕ L1 = Δ. The XOR
gate is evaluated by setting the output label as the bitwise XOR between the
labels of the two input wires. This complies with the XOR gate functionality and
maintains the invariant that for the output wire of the XOR gate, L0 ⊕ L1 = Δ.
This gate itself has no garbling representation.

It now remains to show how other gate functionalities like AND are garbled so
that the output wire labels maintain the same invariant. This is done by including
Δ as one of the constraints, along with t = (X00,X01,X10,X11), that is used to
create ∇g. Table 5 in Appendix A indicates the new set of constraints. In this
table, the index j in ∇g is set to 1 only when the indices in X00 = X01 = X10

and when for the desired index j′ in Δ, it holds that X00⊕X11 = Δ. Algorithm 8
details the gate garbling algorithm for the AND gate, supporting free-XOR. Note
that while the index j is incremented in every iteration, going over all the indices
in ∇g, the index j′ is incremented only when one bit in ∇g is set to 1, so as to
move to the next element in Δ. This continues until the � bits in Δ are exhausted.

Note that out of the 32 different ways that ∇g[j] can be set in Table 5, only
1
8 of them sets it to 1 and the rest set the bit to 0. So in order to maintain a
Hamming weight of � in ∇g, its size would become 8� in expectation. Therefore,
supporting free-XOR in this scheme incurs the cost of increasing the size of the
gate garbling ∇g by double in expectation.

Although this modification to the scheme for free-XOR compatibility
increases the size of the garbled gates, the same security analysis as in the proof
in Appendix B, with the exception that the leakage function Φ now not only
reveals the topology of the circuit, but also the position of the XOR gates. This
leakage function is also invertable and so the extension from indistinguishability
based privacy to simulation based privacy still holds.
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Algorithm 8. Gate((LA
0 , LA

1 ), (LB
0 , LB

1 ), g, �,Δ)
1: Xg

00 = ROg(LA
0 , LB

0 ), Xg
01 = ROg(LA

0 , LB
1 ), Xg

10 = ROg(LA
1 , LB

0 ), Xg
11 = ROg(LA

1 , LB
1 )

2: initialize ∇g ← 0�′
and let j = 1, j′ = 1

3: repeat
4: slice ← Δ[j′]||Xg

00[j]||Xg
01[j]||Xg

10[j]||Xg
11[j]

5: if slice ∈ {00000, 10001, 11110, 01111} then � See Table 5
6: ∇g[j] ← 1 and j′ = j′ + 1
7: end if
8: j = j + 1
9: until j′ == �

10: Lg
0 = Xg

00 ◦ ∇g

11: Lg
1 = Xg

11 ◦ ∇g

12: Return (Lg
0, L

g
1, ∇g)

Our security proof follows a ‘Bad Event’ analysis and the advantage that
the adversary gains is calculated in terms of the probability of encountering a
bad event. Therefore the advantage in the privacy game for this scheme with
free-XOR can be calculated as being the same as that for the scheme in Sect. 4.
However, there remains a crucial difference between the modified scheme and the
original. In the original scheme, we assume for simplicity that if a Bad Event is
encountered, the adversary can distinguish and security is violated. However, this
may not always be the case. In practice, encountering a bad event would only aid
in violating privacy when it is encountered at certain favourable wires or gates,
depending on the circuit topology. But, in the modified scheme, encountering
a bad event means finding an inactive output label and along with the active
value already known, this reveals the value of the global offset Δ. Then all the
inactive labels throughout the garbling can be found and the privacy is violated.

Summarizing, in the original scheme, in practice, encountering a Bad Event
may not always violate privacy. But, when the scheme is modified for free-XOR,
encountering a Bad Event would always violate privacy. Owing to our conserva-
tive approach, the proof in Appendix B accounts for the worst case scenario when
analyzing the scheme in Sect. 4, and is therefore agnostic to whether free-XOR
compatibility was leveraged or not. Therefore both schemes are secure.

Garbling Other Gates. Extending the discussion in Sect. 4.2, a general n-input
binary gate computing any functionality fg can be garbled in a free-XOR com-
patible way. Here again, a random oracle is used to generate the 2n approximate
keys t = {Xg

a}a∈{0,1}n . Out of these, let t0 = {Xg
a}fg(a)=0, and t1 = {Xg

a}fg(a)=1.
Similar to Table 5, the table for creating ∇g

fg
contains m = 2n + 1 columns on

the left where 2n columns correspond to the approximate keys and one column
is for the global offset Δ. The number of rows in the table would be 2m out of
which only 4 would set ∇g to 1: the rows where each element in t0 takes the
same value b0, elements in t1 takes value b1, and b0 ⊕ b1 equals the value in Δ.
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A Additional Details of the Scheme

A.1 Setting the Length of RO Output

The random oracle RO is employed in each gate in the garbling to derive the
approximate keys t = (X00,X01,X10,X11) from the gate input labels LA

0 , LA
1 and

LB
0 , LB

1 . This oracle RO takes as an input a gate id g ∈ [q] as a tweak, and two
�-bit labels: one from each input wire A and B. It outputs an �′-bit value Xab. In
the garbling scheme, for a security parameter κ, we set � = κ and �′ = 8� = 8κ.
In this section we discuss the reason why �′ is set this way in terms of κ.

The primary reason stems from the nature of the algorithm used to create
∇g. The gate garbling ∇g is created bit-by-bit independently until it contains

Table 3. For a gate index g and j ∈ [�′], this table defines ∇g
∧[j] (where fg = AND) as a

function in Xg
00[j], X

g
01[j], X

g
10[j], X

g
11[j]. The right side demonstrates how Xg

ab[j]◦∇g[j]
collapses into only two distinct values Lg

0 = L00 = L01 = L10 and Lg
1 = L11. Each row

in the table corresponds to one bit-slice of the values Xg
ab[j] for a, b ∈ {0, 1}.

Xg
00 Xg

01 Xg
10 Xg

11 ∇g
∧ L00 L01 L10 L11

0 0 0 0 0 1 0 0 0 0

1 0 0 0 1 1 0 0 0 1

2 0 0 1 0 0 – – – –

3 0 0 1 1 0 – – – –

4 0 1 0 0 0 – – – –

5 0 1 0 1 0 – – – –

6 0 1 1 0 0 – – – –

7 0 1 1 1 0 – – – –

8 1 0 0 0 0 – – – –

9 1 0 0 1 0 – – – –

10 1 0 1 0 0 – – – –

11 1 0 1 1 0 – – – –

12 1 1 0 0 0 – – – –

13 1 1 0 1 0 – – – –

14 1 1 1 0 1 1 1 1 0

15 1 1 1 1 1 1 1 1 1
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Table 4. For a gate index g and j ∈ [�′], this table defines ∇g
⊕[j] (where fg = XOR) as

a function in Xg
00[j], X

g
01[j], X

g
10[j], X

g
11[j]. In addition, the right side demonstrates how

Xg
ab[j]◦∇g[j] collapses into only two distinct values Lg

0 = L00 = L11 and Lg
1 = L01 = L10.

Each row in the table corresponds to one bit-slice of the values Xg
ab[j] for a, b ∈ {0, 1}.

Xg
00 Xg

01 Xg
10 Xg

11 ∇g
⊕ L00 L01 L10 L11

0 0 0 0 0 1 0 0 0 0

1 0 0 0 1 0 – – – –

2 0 0 1 0 0 – – – –

3 0 0 1 1 0 – – – –

4 0 1 0 0 0 – – – –

5 0 1 0 1 0 – – – –

6 0 1 1 0 1 0 1 1 0

7 0 1 1 1 0 – – – –

8 1 0 0 0 0 – – – –

9 1 0 0 1 1 1 0 0 1

10 1 0 1 0 0 – – – –

11 1 0 1 1 0 – – – –

12 1 1 0 0 0 – – – –

13 1 1 0 1 0 – – – –

14 1 1 1 0 0 – – – –

15 1 1 1 1 1 1 1 1 1

� positions with 1. From Table 3, 4 it is evident that a position j in ∇g is set
to 1 with probability 1

4 over a random choice of (X00[j],X01[j],X10[j],X11[j]) ∈
{0, 1}4. As these bits originate from random oracle outputs, they are indeed
distributed uniformly at random. Therefore, �′ needs to be set such that the
probability of ∇g having Hamming weight < � is negligible in κ. Let us now
examine this probability for �′ = 8κ.

For a gate g, let H be a random variable that denotes the Hamming weight of
∇g derived from a random t = (X00,X01,X10,X11) where each Xab ∈ {0, 1}�′

.

H ∼ Binomial(�′,
1
4
) = Binomial(8κ,

1
4
)

This random variable has a mean μ = np = 8κ
4 = 2κ and variance σ2 = npq =

1.5κ. Then, using Hoeffding’s inequality for Binomial Distributions,

Pr[H < κ] ≤e−2n(p− k
n )2

=e−16κ( 1
4− κ

8κ )2

=e− κ
4

which is negligible in κ.
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Table 5. For a gate index g, j ∈ [�′] and j′ ∈ [�], this table defines ∇g
∧[j] (where

fg = AND) as a function of Xg
00[j], X

g
01[j], X

g
10[j], X

g
11[j] and Δ[j′]. In addition, the

right side demonstrates how combining Xg
ab[j] ◦ ∇g[j] collapses into only two distinct

values Lg
0 = L00 = L01 = L10 and Lg

1 = L11 such that Lg
0 ⊕ Lg

1 = Δ. Each row in the
table corresponds to one bit-slice of the values Xg

ab[j] for a, b ∈ {0, 1}.

Δ Xg
00 Xg

01 Xg
10 Xg

11 ∇g
∧ L00 L01 L10 L11

0 0 0 0 0 0 1 0 0 0 0

1 0 0 0 0 1 0 – – – –

2 0 0 0 1 0 0 – – – –

3 0 0 0 1 1 0 – – – –

4 0 0 1 0 0 0 – – – –

5 0 0 1 0 1 0 – – – –

6 0 0 1 1 0 0 – – – –

7 0 0 1 1 1 0 – – – –

8 0 1 0 0 0 0 – – – –

9 0 1 0 0 1 0 – – – –

10 0 1 0 1 0 0 – – – –

11 0 1 0 1 1 0 – – – –

12 0 1 1 0 0 0 – – – –

13 0 1 1 0 1 0 – – – –

14 0 1 1 1 0 0 – – – –

15 0 1 1 1 1 1 1 1 1 1

16 1 0 0 0 0 0 – – – –

17 1 0 0 0 1 1 0 0 0 1

18 1 0 0 1 0 0 – – – –

19 1 0 0 1 1 0 – – – –

20 1 0 1 0 0 0 – – – –

21 1 0 1 0 1 0 – – – –

22 1 0 1 1 0 0 – – – –

23 1 0 1 1 1 0 – – – –

24 1 1 0 0 0 0 – – – –

25 1 1 0 0 1 0 – – – –

26 1 1 0 1 0 0 – – – –

27 1 1 0 1 1 0 – – – –

28 1 1 1 0 0 0 – – – –

29 1 1 1 0 1 0 – – – –

30 1 1 1 1 0 1 1 1 1 0

31 1 1 1 1 1 0 – – – –
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B Proof of Theorem 1

Before stating the proof itself, we define certain terms used within our proof.

B.1 Proof Setup

In the security game, the adversary’s goal given (F,X, d) is to distinguish
whether (F, d) ← Gb(C0) and X = En(e, x0), or (F, d) ← Gb(C1) and X =
En(e, x1). Going forward, for a gate g, we denote by LA and LB the active input
labels, and by Lg the active output label. These values are revealed during the
evaluation of F on X. We show in our proof that the knowledge of these active
values only gives the adversary A zero advantage in distinguishing b.

We denote by LA∗ and LB∗ the inactive input labels, and by Lg∗ the inactive
output label. We term as a “Bad Event”, the case where an adversary A learns
an inactive label for any wire in F . These reveal additional information about
the circuit and potentially its correlation to X, leading the adversary to gain
advantage in distinguishing in the privacy game. For simplicity of analysis, we
assume that when a random oracle query leads to a ‘Bad Event’, privacy is
already violated, without needing further work/queries from the adversary. For
any wire indexed i, we denote by Li′

a candidate for an inactive label. Such
a candidate is queried to the random oracle in order to learn whether it is the
inactive label or not. We bound the probability of a “Bad Event” by computing a
bound on the number of such possible queries. We then argue that for each query
to RO ∈ (ROg,RO′), the probability of encountering a bad event is negligible.

We denote by Q the set of adversarial queries and responses. Setting |Q| = s,

Q =
{

[gi, qi, ri]
}

i∈[s]

where gi is the gate index for when RO is queried, qi is the value input during
the ith query, and ri is its respective response.

We denote by H, the set of honest queries and responses. Given the challenge
(F,X, d), this is the set of queries to ROg,RO′ that are made within Ev(F,X) =
Y and De(Y, d) = y. The set H has the following form:

H =

{

{[g, (LAg , LBg ),XABg ]}g∈[q]

{[−, (Y [j], dj), yj ]}j∈[m]

We denote by P the corresponding active path in F . P contains all the values
revealed when evaluating the garbling (F, d) on X. All the elements in P can be
derived from the elements in H. P has the form:

P =
{

{

LAg , LBg ,XABg , Lg
}

g∈[q]

⋃ {

Y [j], dj , yj

}

j∈[m]

}

Note that all the labels Lw for each wire w ∈ [n + q] are of length �-bits
(Table 2). This is also the length of the output labels Y [j] and decoding labels
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dj for each output wire j ∈ [m]. For each gate g ∈ [q], the values XABg has
length �′-bits. This is an upper bound on the length of the gate garbling ∇g.
Each ∇g has Hamming weight �. This Hamming weight is the effective key length
and the indices in ∇g containing 1 are termed as the effective key positions.

Definition 3 (Bad Event 1). For a gate g with a garbling ∇g, let LB be the
set of candidate inactive labels for input wire B. Let Lg∗ be the inactive output
label and Lg be the active output label. ‘Bad Event 1’ occurs when for Lb′ ∈ LB

that is queried by the adversary to RO, it holds that,

ROg(LA, Lb′
) ◦ ∇g ∈ {Lg, Lg∗}

For simplicity, we treat the test for whether a candidate output label Lg′
is

the inactive label Lg∗ as requiring zero additional calls after the call to ROg for
Bad Event 1 (Definition 3).

Lemma 1. In the same setting as in Definition 3, let BLB ⊆ LB be the set
of candidates leading to ‘Bad Event 1’, Lb′

be the candidate queried in the i-th
query, and Li ⊆ LB the set consisting of the previous i − 1 queried candidates.
For effective key length � of ∇g it holds that,

Pr[ROg(LA, Lb′
) ◦ ∇g ∈ {Lg, Lg∗}|BLB ∩ Li = ∅] ≤ 1

2� − i
+ 2−�+1

i.e., the probability that the i-th query triggers ‘Bad Event 1’ is upper bounded
by 1

2�−i−1
+ 2−�+1 as long as none of the previous queries triggered the same.

Proof: Let S = LB − Li be the set of candidate input labels that have not yet
been queried. Note that the size of the set S ≥ 2� − i−1. Let E be the event that
BLB ∩ Li = ∅ ∩ Lb′ 	∈ Li, that is, a new label is being queried and none of the
previous i−1 queries have triggered a Bad Event. We calculate the probability of
‘Bad Event 1’ by considering two cases. One case is when the inactive input label
is chosen: Lb′

= LB∗ ∈ S. Querying on this yields one of Lg∗ or Lg (according
to the gate functionality) with probability 1. The other case is when any other
candidate Lb′

i ∈ S is picked. Since the output of ROg is a truly random string in
{0, 1}�, it can yield Lg∗ or Lg with probability 2

2� . Therefore,

Pr[ROg(LA, Lb′
) ◦ ∇g ∈ {Lg, Lg∗}|E]

= Pr[ROg(LA, Lb′
) ◦ ∇g ∈ {Lg, Lg∗}|E, Lb′

= LB∗] · Pr[Lb′
= LB∗∣∣E]

+ Pr[ROg(LA, Lb′
) ◦ ∇g ∈ {Lg, Lg∗}|E, Lb′ 	= LB∗] · Pr[Lb′ 	= LB∗∣∣E]

= 1 · 1
2� − i − 1

+
2
2�

· 2� − i − 2
2� − i − 1

≈ 1
2� − i − 1

+ 2−�+1 ��
Symmetrically, we define Bad Event 2 and 3 as follows:
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Definition 4 (Bad Event 2). For a gate g with a garbling ∇g, let LA be the
set of candidate inactive labels for input wire A. Let Lg∗ be the inactive output
label and Lg be the active output label. ‘Bad Event 2’ occurs when for La′ ∈ LA,
it holds that,

ROg(La′
, LB) ◦ ∇g ∈ {Lg, Lg∗}

Definition 5 (Bad Event 3). For a gate g with a garbling ∇g, let LB and
LA be the set of candidate inactive labels for input wire B and A respectively.
Let Lg∗ be the inactive output label and Lg be the active output label. ‘Bad Event
3’ occurs when for Lb′ ∈ LB and La′ ∈ LA, it holds that,

ROg(La′
, Lb′

) ◦ ∇g ∈ {Lg, Lg∗}

Corollary 1. In the same setting as Definition 4, let BLA ⊆ LA the set of
candidates leading to ‘Bad Event 2’, La′

be the candidate queried in the i-th
query, and Li ⊆ LA the set consisting of the previous i − 1 queried candidates.
For effective key length � of ∇g it holds that,

Pr[ROg(La′
, LB) ◦ ∇g ∈ {Lg, Lg∗}|BLA ∩ Li = ∅] ≤ 1

2� − i − 1
+ 2−�+1

i.e., the probability that the i-th query triggers ‘Bad Event 2’ is upper bounded
by 1

2�−i
+ 2−�+1 as long as none of the previous queries triggered the same.

Corollary 2. In the same setting as Definition 5, let BLA,LB ⊆ LA ×LB be the
ordered set of candidates leading to ‘Bad Event 3’, Lb′

and La′
be the candidate

queried in the i-th query, and Li ⊆ LA ×LB be the set consisting of the previous
i − 1 queries. For effective key length � of ∇g it holds that,

Pr[ROg(La′
, Lb′

) ◦ ∇g ∈ {Lg, Lg∗}|BLA,LB ∩ Li = ∅] ≤ 1
2� − i − 1

+ 2−�+1

i.e., the probability that the i-th query triggers ‘Bad Event 3’ is upper bounded
by 1

2�−i
+ 2−�+1 as long as none of the previous queries triggered the same.

B.2 The Complete Proof

Theorem 2 (Honest-but-Curious Adversarial Behaviour). Let A be a
PPT adversary. In the privacy game as in Algorithm 1, given (C0,C1, x

0, x1)
of A’s choice such that Φ(C0) = Φ(C1) and C0(x0) = C1(x1), the challenge
(F,X, d), and H, the set of honest queries only, it holds that,

Pr[F, d ← Gb(C0),X = En(e, x0)|V(F,X, d,H)]

= Pr[F, d ← Gb(C1),X = En(e, x1)|V(F,X, d,H)]

Proof: Before proving the above theorem, consider the following lemmas:
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Lemma 2 (Honest Queries reveal only the Active Path). Let (F,X, d)
be the challenge that is output from Algorithm 1. Let H be the set of honest
queries and let P be the active path. Then,

V(F,X, d,H) = P

Proof: The proof follows in two steps. First we need to show that P can indeed
be derived from V(F,X, d,H). That is,

P ⊆ V(F,X, d,H)

This holds by construction. The active path P can be derived from V(F,X, d,H)
since all of its elements can be determined from H. Recall, H is the set of honest
queries to the random oracles that are necessary for computing Y = Ev(F,X)
and y = De(Y, d) from the challenge. By definition, it has the form,

H =

{

{[g, (LAg , LBg ),XABg ]}g∈[q]

{[−, (Y [j], dj), yj ]}j∈[m]

So (F,X, d,H) does indeed complete all the information in the active path:

P =
{

{

LAg , LBg ,XABg , Lg
}

g∈[q]

⋃{

Y [j], dj , yj

}

j∈[m]

}

In order to complete the proof of the theorem, it remains to show that nothing
beyond P is revealed from V(F,X, d,H). That is,

P ⊇ V(F,X, d,H)

We show that P alone can be used to recreate the tuple (F,X, d,H). First,
note that X contains the set of active labels for all circuit input wires. This is
contained within P . The set d = {dj}j∈[m] is the decoding information, also
contained within P . H can also be determined by P . For each gate g, the
elements (LAg , LBg ,XABg ) ∈ P are the query and response for ROg. The set
{

Y [j], dj , yj

}

j∈[m]
is the set of RO′ query and responses in H. Finally, F is a

set of gate garblings, ∇g. For each g ∈ [q], this can be derived from examining
XABg and Lg: ∇g is set to 1 for only those positions in XABg whose projection
gives Lg. This completes the proof. ��
Lemma 3 (Active Paths are Identically Distributed). For the gar-
bling (F0, d0, e) ← Gb(C0), let X0 = En(e, x0) and let P0 and H0 be the
corresponding active path and honest queries set. Similarly, For the garbling
(F1, d1, e) ← Gb(C1), let X1 = En(e, x1) and let P1 and H1 be the active path
and honest queries set. Then if C0(x0) = C1(x1) and Φ(C0) = Φ(C1), it holds
that,

{F0, d0,X0, P0,H0} ≡ {F1, d1,X1, P1,H1}
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Proof: The proof for this considers the distribution A0 = {F0, d0,X0, P0,H0}
that is derived using C0 and x0, and the distribution A1 = {F1, d1,X1, P1,H1}
that is derived using C1 and x1. Let us examine these distributions:

– In both distributions, the garbling (F0, d0) ∈ A0 and (F1, d1) ∈ A1 are dis-
tributed the same way. The garbling F0, d0 are a garbling of C0, and F1, d1
are a garbling of C1 using the garbling scheme in Algorithms 2-6. It holds that
their topology, Φ(C0) = Φ(C1). The garbling produced does not reveal any
information beyond Φ. This is because the gate garbling ∇g is distributed the
same way regardless of the functionality fg ∈ {AND,XOR} due to the nature
of Algorithm 5 and Table 3, 4.

– Considering the complete challenge (F0, d0,X0) ∈ A0 and (F1, d1,X1) ∈ A1,
note that the active input labels sets contain labels that are sampled indepen-
dently and uniformly at random from {0, 1}�. These distributions, without
making any random oracle queries, is also identically distributed since X and
F, d are independent when no RO queries are made.

– On evaluating the challenges, note that C0(x0) = C1(x1) and so the distri-
butions cannot be distinguished on the basis of the output of the evaluation.
The honest queries in the set H0 are determined by (F0,X0, d0). The dis-
tribution of these queries is identical to that in H1 that are determined by
(F1,X1, d1). This is because the probability that the random oracle query
responses are distributed as in H0 is the same as the probability of it being
as in H1. Therefore (F0, d0,X0,H0) ∈ A0 and (F1, d1,X1,H1) ∈ A1 are iden-
tically distributed.

– The active paths P0 and P1 are determined completely by H0 and H1.

Therefore,
{F0, d0,X0, P0,H0} ≡ {F1, d1,X1, P1,H1}

From Lemma 2, given (F,X, d) and the honest queries H only, nothing
beyond the active path P is revealed. Lemma 3 shows that the active paths
for any C0, x

0 and C1, x
1 is identically distributed. Therefore, the theorem fol-

lows.
Theorem 3 shows a bound on the advantage from a single adversarial query.

Theorem 3 (Advantage of a single malicious query). Let A be a PPT
adversary and � be the effective key length. Given the challenge (F,X, d) as in
Algorithm 1, A’s advantage on a single adversarial query is bounded by,

Adv|Q|=1 ≤ 2−� +
1

2� − 2

Proof: From Lemma 1 and Corollary 1 and 2, we can conclude that when the
adversary A makes one adversarial query, it can encounter at most one of the 3
‘Bad Events’. It can also only gain advantage if the query it makes corresponds
to a ‘Bad Event’. Therefore, A’s advantage on a single adversarial query is,
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Adv|Q|=1 ≤ Pr[Bad Event] ≤ max
j∈[3]

(Pr[Bad Event j]) ≤ 1
2� − 2

+ 2−�

��
Theorem 4 extends the result above to provide a bound on the advantage

gained from multiple adversarial queries.

Theorem 4 (Advantage in multiple malicious queries). Let A be a PPT
adversary and � be the effective key length. Given (F,X, d) as in Algorithm 1, the
honest queries set H, and adversarial queries Q s.t. |Q| = s, A’s advantage is,

Adv|Q|=s <
s

2� − 2

Proof: In order to prove the above theorem, note that a query made by an
adversary A can be broadly classified under one of the following categories:

1. An Honest Query where the query and the response for the random oracle
lies on the active path of the garbling in the challenge (F,X, d). Theorem 2
shows that given all the queries H in the active path, A’s advantage is 0.

2. An Adversarial Query yielding a ‘Bad Event’ is a query other than an Honest
Query for which the response of the random oracle lies within the garbling
in the challenge. This may reveal information about the garbling beyond the
active path. On such an event, without loss of generality, we consider privacy
as violated. Our proof builds towards bounding the probability of this event.

3. An Adversarial Query not yielding a ‘Bad Event’ is a random oracle query
and response that can evidently not be involved in the construction of the
challenge garbling. Making queries to the RO that yield such responses do
not help identify the inactive path and therefore give no advantage. That
is, given the honest-query-set H, and adversarial queries that do not lead to
a ‘Bad Event’, this will at most help narrow down the domain of the RO.
This helps increase the probability of eventually encountering a ‘Bad Event’.
However, until the ‘Bad Event’ is encountered this gives A no advantage over
possessing H.

Let qi be the event that the ith adversarial query takes place given that all i − 1
queries before it have not lead to any bad event. We have from Lemma 1, and
Corollary 1 and 2 that each of the ‘Bad Events’ 1, 2 and 3 are bounded as,

Pr[ Bad Event ∈ {1, 2, 3}∣∣qi] ≈ 1
2� − i − 1

+ 2−�

Note that the probability of the ‘Bad Event’ increases with the increase in the
number of queries and in each query, the probability of encountering any ‘Bad
Event’ at all is calculated as the maximum of these above probabilities. Let us
now compute, the probability that a ‘Bad Event’ is encountered given |Q| = s
adversarial queries to the same random oracle:
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Pr[ Bad Event
∣
∣|Q| = s] = 1 − Pr[¬ Bad Event

∣
∣|Q| = s]

= 1 − Πs
i=11 − Pr[ Bad Event

∣
∣qi]

< 1 − Πs
i=1

(

1 − 1
2� − i − 1

− 2−�

)

≈ 1 − Πs
i=1

(
2� − i − 2
2� − i − 1

)

=
s

2� − 2

We have seen in the proof for Theorem 3 that one adversarial query can trigger
at most 1 ‘Bad Event’ and the adversary A’s advantage is bounded by the
probability of a ‘Bad Event’ occurring. Given an adversarial query, if the response
leads to a ‘Bad Event’, we assume that privacy is violated. If it does not, the
views of the adversary are still identical. We therefore need to calculate the
probability of at least one ‘Bad Event’ among |Q| = s adversarial queries.

The above is a bound on the probability of a ‘Bad Event’ on a particular ran-
dom oracle RO ∈ (ROg,RO′). It remains to extend this result to the case where
adversarial queries were made to different random oracles across different gate
garblings in the circuit. Note that each random oracle used in the construction
is independent. So the result of queries to one random oracle do not affect the
result of making (even the same) queries to a different random oracle, except
for possibly reusing the query space as a result of seeing a query output without
triggering a bad event. So the above is an upper bound that also extends to the
case where not all of the previous i − 1 queries have been made to the same
random oracle since all those cases are bounded by this case. Hence it follows
again that when |Q| = s, A’s advantage is bounded by:

Adv|Q|=s <
s

2� − 2

Summing up, the proof of our final theorem follows. ��
Theorem 1 (Overall advantage of a malicious adversary - Restated).
Let GS = (Gb,En,Ev,De) be a garbling scheme as in Algorithms 2–7. Let κ be

a computational security parameter. For every PPT adversary A with running
time t(κ) having access to all random oracles RO ∈ (ROg,RO′), participating in
the Privacy game (Definition 2), ∃ negligible function μ s.t. A’s advantage is,

Adv(κ) =
∣
∣
∣
∣
Pr[ARO(C0,C1, x

0, x1, F,X, d) = b] − 1
2

∣
∣
∣
∣
< μ(κ)

Proof: For a PPT adversary A running for t(κ) time steps, |Q| ≤ t(κ). Setting
� = κ, we have from Theorem 4,

Adv|Q|=t(κ) <
t(κ)

2κ − 2 ��
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Abstract. Many decentralized applications require a common source of
randomness that cannot be biased or predicted by any single party. Ran-
domness beacons provide such a functionality, allowing parties to peri-
odically obtain fresh random outputs and verify that they are computed
correctly. In this work, we propose Mt. Random, a multi-tiered random-
ness beacon that combines Publicly Verifiable Secret Sharing (PVSS)
and (Threshold) Verifiable Random Function (VRF) techniques in order
to provide efficiency/randomness quality trade-offs with security under
the standard DDH assumption (in the random oracle model) using only a
bulletin board as setup (a requirement for the vast majority of beacons).
Each tier provides a constant stream of random outputs offering progres-
sive efficiency vs. quality trade-offs: true uniform randomness is refreshed
less frequently than pseudorandomness, which in turn is refreshed less
frequently than (bounded) biased randomness. This wide span of effi-
ciency/quality allows for applications to consume random outputs from
an optimal point in this trade-off spectrum. In order to achieve these
results, we construct two new building blocks of independent interest:
GULL, a PVSS-based beacon that preprocesses a large batch of random
outputs but allows for gradual release of smaller “sub-batches”, which
is a first in the literature of randomness beacons; and a publicly veri-
fiable and unbiasable protocol for Distributed Key Generation protocol
(DKG), which is significantly more efficient than most of previous DKGs
secure under standard assumptions and closely matches the efficiency
of the currently most efficient biasable DKG protocol. We showcase the
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efficiency of our novel building blocks and of the Mt. Random beacon
via benchmarks made with a prototype implementation.

1 Introduction

Randomness is essential for constructing provably secure cryptographic prim-
itives and protocols. For several applications, it does not suffice that parties
simply have a local source of randomness, but we require instead a randomness
beacon that can periodically provide the same fresh unbiased and unpredictable
random values to all parties. This is particularly important in decentralized
applications such as Proof-of-stake blockchains (e.g. [12,16,26]), sharding pro-
tocols [37] and smart contracts that need randomness. In such settings, it is
desirable to implement a random beacon as a protocol among the mutually dis-
trustful participants of the corresponding system without trusting any single
party. Moreover, such protocols must have guaranteed output delivery, publicly
verifiable outputs.

Notice that a simple coin tossing protocol where parties commit to local
randomness and then output the sum of the opened values is not sufficient, as
parties can bias the output with a selective abort strategy, where they open or
not their commitments depending on their view so far. Hence, several alterna-
tives for constructing randomness beacons have been proposed based on pub-
licly verifiable secret sharing (PVSS) [4,8,9,26,33,35], verifiable random func-
tions (VRF) [12,15,16,20,23,36], verifiable delay functions (VDF) [2,3,5,32,38]
and homomorphic encryption [13]. Moreover, achieving fairness against ratio-
nal adversaries via financial punishments has been proposed by the RANDAO
project [30].

Constructions using plain VRFs require very little computation and commu-
nication, but are open to the aforementioned selective abort bias. Since they rely
on the computation of a VRF by a party who has a certain secret key, an adver-
sarial party can always bias the final output by choosing whether to reveal or
not their own VRF output under its secret key (see [16]). Threshold (also called
distributed) VRFs, or TVRFs, solve this by always allowing a large enough set
of parties (e.g. a majority of parties) to compute the verifiable random function,
after a setup that consists on a distributed key generation protocol. However,
current TVRF-based random beacons protocols simply apply the TVRF to the
previous output of the beacon, defining the new beacon output as some fixed
function of the new TVRF output. This approach requires a fixed initial seed to
which the TVRF is applied in the first round, and since the entropy of such seed
is of course finite, the unpredictability guarantees of the process will on the long
run necessarily deteriorate. To the best of our knowledge there is no analysis of
how exactly this plays out.

Finally, PVSS-based beacons such as SCRAPE [8] and ALBATROSS [9]
enhance the commit-and-open strategy mentioned above by having parties com-
mit to their inputs via PVSS. This renders the selective abort strategy useless,
since unopened secrets can always be reconstructed by an honest majority of
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parties. On the downside, such protocols require more communication and com-
putation. Although ALBATROSS [9] allows parties to generate a large batch of
outputs with little overhead, these outputs are all revealed at once, instead of
gradually providing fresh random values, as in TVRF-based protocols.

There are a number of recent works on constructing randomness beacons
from time based primitives, such as Time Lock Puzzles (TLP) [6,19,25,31] and
Verifiable Delay Functions (VDF) [5,17,29,38]. Such protocols [2,3,5] require a
structured common reference string as setup and achieve communication com-
plexity linear in the number of parties but are based on sequential computation
assumptions, e.g. [31] and [17]. These assumptions are arguably less understood
than classical assumptions such as the Decisional Diffie-Hellman (DDH) assump-
tion, upon which PVSS and (T)VRF-based beacons can be constructed. Hence,
we focus on the latter, basing all our constructions on DDH. However, time-based
primitives can potentially be used to instantiate Tier 2 of our beacon.

1.1 Our Contributions

In this work, we aim to combine the PVSS and (threshold) VRF approaches
to obtain a best-of-both-worlds “multi-tiered” randomness beacon construction.
Moreover, as a key part of Mt. Random’s construction, we design a novel protocol
for publicly verifiable and unbiasable distributed key generation. Finally we also
present GULL (Gradually UnLeashed aLbatross), a new PVSS-based beacon
that generates a large batch of random outputs like ALBATROSS but allows for
gradually releasing of smaller “sub-batches” of outputs. All of our constructions
are publicly verifiable and proven secure against malicious adversaries under a
single standard assumption, i.e. Decisional Diffie Hellman (DDH).

Mt. Random: A Multi-tiered Randomness Beacon. More precisely, Mt.
Random is a protocol where VRF, TVRF and PVSS-based random beacons are
run as independent tiers executed in parallel. Each tier offers a different trade-
off between complexity and randomness quality. By using the outputs of each
tier as seeds for the next one, we aim at constructing a flexible architecture for
randomness beacons that achieves good concrete efficiency without sacrificing
security guarantees. Moreover, our approach allows for higher level protocols
to choose what tier to use when obtaining randomness, according to the best
complexity vs. randomnness quality trade-off for each application. At a glance,
Mt. Random is constructed as follows:

– Setup - Distributed Key Generation (DKG): All Tiers use a Public
Ledger for communication in order to achieve public verifiability and Tiers 1
and 2 use our novel DKG protocol to obtain threshold key pairs.

– Tier 1 - Uniform Randomness via PVSS with GULL: This tier gives
O(n) individual batches of O(n) uniformly random outputs with communi-
cation and computational complexities of O(n2) for n parties.

– Tier 2 - Uniform Pseudorandomness via TVRFs: This tier uses a fresh
output from Tier 1 as a seed when a new one is needed, providing 1 uniformly
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pseudorandom output per execution with communication and computational
complexities linear in the number of parties running the tier.

– Tier 3 - Bounded-Biased Pseudorandomness via VRFs: This tier uses
a fresh output from Tier 2 as a nonce when a new one is needed. Communi-
cation and computational complexities depend on output bias, i.e. the lower
the complexity the higher the adversarial bias on the output.

Publicly Verifiable Distributed Key Generation. We introduce a new
publicly verifiable distributed key generation (DKG) protocol that can provide
both the keys needed for the threshold encryption used in GULL (Tier 1) and
for the TVRF (Tier 2). The security of our DKG scheme is based solely on
DDH (in the random oracle model) and it guarantees that the public key cannot
be biased by a rushing adversary (unlike in some other alternatives). In terms
of communication and computation, our protocol is more efficient than previous
unbiasable DKG schemes and essentially as efficient as the best biasable schemes.

GULL (Gradually UnLeashed aLbatross). We introduce GULL, a PVSS-
based random beacon that generates O(n) individual sub-batches of O(n) ran-
dom outputs each, where n is the number of parties in the protocol. Differently
from the previous work ALBATROSS, all sub-batches remain initially hidden
and can be opened at different points of time. Opening one sub-batch gives no
information about the yet unopened ones. While GULL is marginally slower
than ALBATROSS if a full batch of random outputs is required, it is signifi-
cantly more efficient when a sequence of fresh unpredictable outputs are required:
GULL allows for preprocessing a large amount of sub-batches of uniformly ran-
dom outputs that can be gradually revealed at a low cost.

1.2 Technical Overview

Besides the Mt. Random architecture described above, our main technical con-
tributions are novel protocols for PVSS-based randomness generation (GULL,
used for implementing Tier 1) and for distributed key generation (used by both
Tiers 1 and 2). We describe our main novel techniques.

Distributed Key Generation. Departing from SCRAPE and ALBATROSS,
we construct a DKG secure under the DDH-assumption and compatible with
threshold El Gamal and TVRFs. Our goal is to establish a common public key
tpk = gtsk and partial public keys of the form tpki = gtski , where each party
Pi receives secret keys tski that are Shamir shares for tsk. The aforementioned
PVSS-based beacons output a group element gr, that can be set as tpk. This
is essentially constructed by having each party deal a secret gs by constructing
Shamir shares σi of s and encrypting gσi under Pi’s public key. Then gr is defined
by aggregating the gs that were shared correctly (i.e. gr =

∏
gs(a)

where s(a) is
correctly shared by Pa). In the process of reconstructing gr, parties obtain partial
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public keys tpki by decrypting the shares they have received and aggregating
them (i.e. tpki =

∏
gσ

(a)
i ), while proving the validity of the process.

However, parties do not obtain the corresponding partial secret keys ski from
the PVSSs, as parties only obtain values gσi but not σi. In our DKG, we modify
the secret sharing phase described above, by having dealers also send a cipher-
text containing the Shamir share σi which can only be decrypted by learning the
corresponding “group share” gσi . This guarantees that only party Pi can recon-
struct σi. However, we then need to deal with the case where Pi detects that the
group share and Shamir share are inconsistent with each other. In comparison
to Fouque-Stern DKG, where the use of Paillier encryption allows the dealer to
construct an elegant, but expensive, proof of the fact that the two values are the
same, here this is not possible. Instead, we resort to a dispute resolution where
the complaining party Pi reveals the received Shamir share and either Pi or the
dealer of that share is disqualified. Revealing this share does not harm privacy
since one of the two parties will be disqualified and that share will never be used.

One technical novelty we introduce with respect to ALBATROSS, which we
will also exploit later in GULL, lies in the order of operations: in ALBATROSS
parties first decrypt and reveal each gσi , jointly reconstruct the secrets gs of
each dealer, and these opened secrets are aggregated to create the final output
gr; here, instead, parties aggregate their encrypted shares first and only reveal
(and prove correctness of) the aggregated shares, which become the partial keys
public tpki; then tpk is reconstructed from the tpki. This change of order can be
done because the operations involved are linearly homomorphic.

GULL. While the ALBATROSS construction provides a large uniformly ran-
dom output, one problem is that the whole output is reconstructed by the par-
ticipants at once. In Mt. Random and other applications, it is instead desirable
that parts of this output are released gradually, while the rest of the output is
kept hidden. We depart from ALBATROSS to construct GULL, a random bea-
con that accomplishes this. In ALBATROSS, the output consists of � · �′ group
elements, that we can group as �′ blocks of � elements each; all these blocks
are released at once. In GULL, parties execute the beginning of the protocol as
in ALBATROSS (until the whole output is fixed), but then can release every
block of � outputs independently. Every block release needs little communication
and computation and blocks not yet released are unpredictable given the opened
ones.

In order to do this, after parties publish their encrypted shares and correct-
ness proofs, and the set Q of dealers who have shared their secret correctly has
been set, every party aggregates their shares received from the different dealers
as a first step, then decrypts their aggregated shares, but rather than com-
municating them, they re-encrypt them under threshold El Gamal encryption,
proving this encryption is correct and consistent with the rest of the protocol.
We introduce and analyse a protocol πEG for this proof. At this point, there
are �′ blocks of � secrets shared, where for each block the vector of � secrets
is shared via packed Shamir secret sharing, and at least t + � receivers have
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encrypted their share with threshold El Gamal. Due to linearity of both the
El Gamal scheme and the secret sharing reconstruction, the encryptions of the
secrets in a block can be computed from any set of t+� encrypted shares. Now a
large enough subset of parties can decrypt each coordinate of the secret. Unfor-
tunately, decrypting one of these coordinates may give information about the
other secret coordinates in the same block, so we release all of the block of �
coordinates at once. However, the remaining unopened blocks of � coordinates
are still secret and uniformly distributed in the view of any subset of t parties.

1.3 Related Works

Table 1. Comparison of DKG schemes where n is the total number of parties, t is
the number of corrupted parties, kq is the number of bits of an element of Gq or Zq,
kN is the number of bits of the Paillier cryptosystem modulus N and kh is the output
length of a hash function. Exp, Enc, Dec stand for operation of G (i.e. exponentiation),
Paillier encryption and Paillier decryption, respectively. We consider that Pedersen and
Gennaro et al. have private messages encryted under El Gamal. For typical parameters
kq = 256, kN = 2048, we have kN = 8kq, Enc=3600 Exp and Dec=4880 Exp.

Scheme Comp.

(Exp/Enc/Dec)

Comm. (bits) Rounds Bias Resist. Assump.

Pedersen [28] nt+ 5n+ t+ 1 (2n2 + tn +

n)kq

1 + 2 No DDH

Gennaro et

al. [21]

2nt + 11n +

3t + 3

(4n2 + 2tn +

2n)kq

2 + 3 Yes DDH

Fouque-

Stern [18]

(nt+5n+t+1)

Exp. +4n

Enc+n Dec

(2n2 + tn +

n)kq

+2n2kh +

3n2kN

1 No DDH+DCR

F-S [18] in

terms of Exp.

and kq

nt + 18005n +

t + 1

(28n2 + tn +

n)kq

1 No DDH +DCR

Our Result 9n + t + 2 (2n2 + tn +

5n)kq

2 + 2 Yes DDH

Distributed Key Generation. While most distributed key generation (DKG)
protocols employ secret sharing similarly to the one we introduce, the key differ-
ences lie on how parties prove the correctness of their shares and their consistency
with the public information they post. Possibly the best known is Pedersen’s pro-
tocol [28], where parties use a Feldman’s VSS to do this, resulting in a protocol
with at least 1 round of interaction, and 2 additional rounds if there are dis-
putes. Gennaro et al. [21] observed that malicious parties can bias the public
key generated by Pedersen’s DKG and fixed this problem by introducing a new
round of interaction and a new round of dispute resolution. Fouque and Stern
[18] proposed a publicly verifiable one-round DKG based on the Paillier cryp-
tosystem that still allows the adversary to bias public keys. A recent work by
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Gurkan et al. [22] introduces a publicly verifiable DKG with communication
complexity of O(n) based on the notion of aggregation via gossip. However, this
protocol is based on pairing assumptions, stronger than our DDH assumption,
and also outputs group elements as secret keys (rather than elements in Zq), i.e.
the output is incompatible with threshold El Gamal encryption. It would be very
interesting to achieve the type of output keys we need with gossip techniques.

In Table 1, we compare DKG protocols in terms of computation, communica-
tion, number of rounds (fixed rounds+dispute resolution rounds), assumptions
and biasability of the global public key. Since Pedersen’s and Gennaro et al.’s
protocols need private communication between parties, we assume that this is
done through the public ledger using El Gamal encryption. For comparing to
Fouque-Stern, we estimated that Paillier encryption and decryption are equiva-
lent to 3600 and 4880 group operations over a DDH-hard group, respectively, at
the 128-bit security level, on a Intel(R) Core(TM) i7-10510U CPU @ 1.80GHz
using the RELIC library [1]. Our protocol requires almost the same communica-
tion as Pedersen’s, differing only in lower order terms, and less communication
than Gennaro et al. and Fouque-Stern, especially when compared with the lat-
ter, since kN is larger than kq (we can currently assume kq = 256, kN = 2048).
On the other hand, Pedersen and of course Fouque-Stern have better round
complexity, at the cost of allowing bias on the public key.

Table 2. Comparison of random beacon protocols according to computation in terms
of modular exponentiations, communication in terms of bits posted on public ledger,
bias resistance, computational assumption and setup assumption. n= number of par-
ties, PKI = Public Key Infrastructure, RO= Random Oracle, SCRS= Structured Com-
mon Reference String, URS= Uniform Random String, VDF= computational cost of
VDF evaluation. In GULL (generation), “Output size” means that a batch of O(n2)
encrypted random elements are prepared but not opened until the Opening phase.

Computation Comm.
Ledger

Output
Size

Bias Resist. Comp.
Assumption

Setup
Assumption

GRandPiper [4] O(n) O(n2) 1 Yes q-SDH SCRS

HydRand [33] O(n) O(n2) 1 Yes DDH PKI, RO

ALBATROSS [9] O(n2 log n) O(n2) O(n2) Yes DDH PKI, RO

GULL (generation) O(n2) O(n2) O(n2) Yes DDH PKI, RO

GULL (opening) O(n2) O(n2) O(n) Yes DDH PKI, RO

DRAND [36] O(n) O(n) 1 Yes Gap-DH DKG, RO, Many
URS

Ouroboros Praos [16] O(n) O(n) 1 No CDH PKI, RO, URS

Original VDF [5] VDF O(n) 1 Yes VDF SCRS

RandRunner [32] VDF O(n) 1 Yes VDF URS, RO

Mt. Random-Tier 1 O(n2) O(n2) O(n) Yes DDH PKI, RO

Mt. Random-Tier 2 O(n) O(n) 1 Yes DDH PKI, RO, Tier 1

Mt. Random-Tier 3 O(n) O(n) 1 No DDH PKI, RO, Tier 2
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Randomness Beacons. Mt. Random is the first random beacon of its kind, i.e.
combining different sub-protocols generating fresh random outputs each with a
different randomness quality vs. efficiency trade-off. Previous works have focused
on improving one specific approach to randomness generation instead of combin-
ing multiple approaches. On the other hand, in introducing the novel multi-tiered
architecture of Mt. Random the main hurdle was supporting protocols compat-
ible with all Tiers and based on a single assumption (DDH): the new DKG
protocol used for Tiers 1 and 2 and the new Tier 1 beacon GULL that allows
for efficiently gradually releasing large batches of random outputs. Hence, when
comparing with previous works, we focus on comparing each previous work with a
specific tier of Mt. Random. Besides communication/computational/round com-
plexity, we also take into consideration the supporting protocols required as setup
by previous works and the security assumptions they are based in, since provid-
ing a cohesive suite of protocols based on a single assumption is a key feature of
Mt. Random. A comparison is presented in Table 2.

In comparing Mt. Random with previous works it is useful to observe the
following correspondences between its Tiers and each previous protocol: Tier 1
consists of executing GULL’s generation phase and then successively opening
individual sub-batches of outputs; Tier 2 consists of running a DDH-based ver-
sion of DRAND using seeds from Tier 1; Tier 3 consists of running Ouroboros
Praos using nonces from Tier 2. Tier 1 is has a little overhead with respect to the
state-of-the-art beacon ALBATROSS in case O(n2) outputs are needed at once,
but has an advantage within Mt. Random’s architecture where sub-batches of
fresh O(n) outputs are frequently required. In this case, ALBATROSS would
have to be executed n times to obtain the same amount of fresh randomness
batches, resulting in complexity much hire than that of Tier 1 using GULL.
Tiers 2 and 3 naturally have the same complexity as DRAND and Ouroboros
Praos. However, instead of relying on stronger assumptions, an external DKG
phase and an external source of fresh seeds as is the case of DRAND, Tier 2 is
fully based on DDH and receives keys and fresh seeds from our DKG protocol
and Tier 1, which are also based on DDH. Hence, the main advantage of Mt.
Random is providing a self-contained infrastructure for executing its upper Tiers
based on a single well studied assumption without sacrificing efficiency, which is
made possible by our novel DKG and GULL protocols respectively executed for
generating threshold keys and running Tier 1.

2 Preliminaries

For integers m ≤ n, [m,n] denotes the set {m,m + 1, . . . , n}. We let [n] = [1, n].
Our protocols take place in a cyclic group G of prime order q. We denote by Zq

the finite field of q elements (for the same prime q), consisting of the integers
modulo q, and note that we can speak of ga for g ∈ G, a ∈ Zq and this respects
the rule ga · gb = ga+b where the sum is in Zq. Finally Zq[X]≤d denotes the set
of polynomials in Zq[X] with degree at most d.
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2.1 Adversarial and Communication Models

We consider security against a malicious static adversary, which may arbitrarily
deviate from the protocol but chooses what parties to corrupt before the exe-
cution starts1. The adversary will corrupt at most (n − �)/2 parties, for some
integer � > 0, which we think of as a small fraction of n. For simplicity, we
assume access to an authenticated bulletin board. Once a party posts a mes-
sage to the bulletin board, it becomes immutable and immediately available to
all other parties, who can also verify the authenticity of the message (i.e. that
it was indeed posted by a given party). Such a bulletin board could be substi-
tuted by a blockchain based public ledger, a public key infrastructure and digital
signatures; however, modeling the corner cases that arise in this scenario intro-
duces a number of technicalities that are not the main focus of this work. We
assume synchronous communication: messages sent (or posted to the bulletin
board) in a round are guaranteed to be received by all honest parties by the
next round. Our protocols can be extended to the partially synchronous setting
(i.e. with adversarially controlled but finite communication delays) via standard
techniques (e.g. waiting for a majority of valid shares to be received [2,3,9]).

2.2 Packed Shamir Secret Sharing

Secret sharing allows to distribute a secret among n parties P1, . . . , Pn by deliv-
ering a share to each party, so that only certain subsets of these parties can later
reconstruct it by pooling together their received shares.

In (t, �)-packed Shamir secret sharing over Zq (with q prime), the secret is
a vector (s0, . . . , s�−1) ∈ Z

�
q, and order to share this secret, the dealer chooses

f ∈ Zq[X]≤t+�−1 with f(−j) = sj for j ∈ [0, � − 1], and sends the evaluation
σi := f(i) as share to party Pi. Here we are assuming that q ≥ n+ �, so that the
evaluation points −j for the secrets and i for the shares are disjoint. The more
classical Shamir secret sharing scheme is the case � = 1. The (t, �)-packed Shamir
secret sharing satisfies t-privacy, meaning that the secret vector is distributed
independently from any set of t shares, and t + �-reconstruction, i.e., the secret
vector can be recovered from any set A of t + � shares. For the latter, Lagrange
interpolation can be used: each secret coordinate can be reconstructed as a linear
combination of the shares in the set. Namely, sj =

∑
i∈A Li,A(−j) · σi for the

Lagrange polynomials Li,A(X) =
∏

k∈A,k �=i
X−k
i−k .

2.3 Non-interactive Zero Knowledge Proofs

In a zero knowledge proof of knowledge a prover wants to convince a verifier
that she knows a piece of information (witness) that makes certain statement
true without revealing anything about this witness. Non-interactive proofs carry

1 This is the model assumed by most random beacon constructions with the only
exception (to the best of our knowledge) of [16], and proving security against adaptive
adversary would require expensive techniques such as non-committing encryption.
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out this with a single message from the prover. We consider proofs for public
verifiers, meaning anyone can verify the proof. We need non-interactive zero-
knowledge proofs of knowledge for two types of statements in a cyclic group of
prime order q: discrete logarithm equality (DLEQ) proofs [11] and low-degree
exponent interpolation (LDEI) [9]. In fact, DLEQ proofs can be seen as a special
case of LDEI proofs. Both can realized from Sigma-protocol techniques.

In a LDEI proof, the statement is given by a vector of elements of the group,
and the prover claims that their discrete logarithms with respect to a given
vector of public generators are evaluations of a polynomial of degree lower than
certain bound. If we set this bound to be 0 (i.e. the only accepted polynomials
are constants) then we have a DLEQ proof: we are proving that the discrete
logarithm of the given elements with respect to the generators are all equal. A
non-interactive LDEI proof of knowledge (in the random oracle model) of the
interpolating polynomial was presented in [9] and is given in Fig. 1.

Fig. 1. LDEI zero knowledge proof of knowledge πLDEI from [9]. πDLEQ((gi)
m
i=1,

(xi)
m
i=1) will denote the case d = 0.

2.4 Publicly Verifiable Secret Sharing (PVSS)

A publicly verifiable secret sharing scheme allows any external party to verify the
correct sharing and reconstruction of a secret, with the help of zero knowledge
proofs posted respectively by the dealer and the reconstructing parties. We will
base our constructions upon techniques from SCRAPE [8] and the subsequent
modifications in ALBATROSS [9]. These schemes in turn follow the blueprint
of Schoenmakers’ PVSS [34]. The PVSS in ALBATROSS can be seen as a gen-
eralization of SCRAPE that allows for a flexible trade-off where the dealer can
share a vector of � group elements, while at most t ≤ (n − �)/2 parties can be
corrupted if we want both t-privacy and (n − t)-reconstruction, which will be
necessary later. In contrast, the parameters in SCRAPE (and in Schoenmakers’
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PVSS) would correspond to the case � = 1. The amortized computation and
communication per secret shared in ALBATROSS becomes much better as �
grows.

If a party correctly PVSSs a secret, meaning that the (publicly verifiable)
proof of correct sharing is valid, then this party is committed to the secret in
a way that the commitment can be opened by a large enough set of honest
share-receivers, regardless of whether the dealer wants to open it. This allows to
construct a commit-and-open random beacon that does not present the prob-
lem that parties may decide on opening their commitments depending on other
opened commitments they have seen. More precisely, in a PVSS-based random
beacon each party PVSSs a random secret and everyone can compute the set Q
of parties that have correctly shared; all the secrets dealt by parties in Q are then
opened and the final output is obtained by applying a randomness extractor to
these opened secrets, which guarantees that the result is uniformly random and
independent from the inputs of any set of t parties. The randomness extractor
in ALBATROSS is built from a t-resilient matrix, which we define next.

Definition 1. A matrix M ∈ Z
r×m
q is t-resilient if for any A = {i1, ..., it} ⊆ [m]

of size t, Mv is independent from the coordinates of v indexed by A, i.e. for any
(y1, . . . , yt) ∈ Z

t
q, the distribution of Mv when conditioned to vi1 = y1, . . . , vit

=
yt and (vj)j /∈A being uniform in Z

m−t
q , is uniform in Z

r
q.

A t-resilient matrix with the parameters above needs to satisfy r ≤ m − t.
An optimal choice (i.e. r = m − t) is to let M be a transpose of a Vandermonde
matrix (we are assuming q ≥ m). For computation efficiency reasons, [9] chooses
M with entries Mij = αi·j for some α ∈ Zq of order larger than r · m.

In our case, m = n− t (as we can only guarantee n− t parties have correctly
shared their inputs) and thus �′ = n − 2t is the maximum size of the output
of the t-resilient function. In [9], parameters were set such that �′ = �. In this
paper, we keep � and �′ = n − 2t as two separate parameters.

2.5 Verifiable Random Functions (VRFs)

A verifiable random function (VRF) [27] is a pseudorandom function that can
be evaluated by the owner of a secret key, who at the same time gets a proof
or correct evaluation that can be verified with the corresponding public key. A
VRF scheme consists of three algorithms (λ is a security parameter):

– KeyGen(1λ): outputs a public and secret key pair (pk, sk).
– Eval(sk, x) is a deterministic algorithm which outputs a pair (y, π) where y is

the output of the function and π is a proof.
– Verify(pk, x, y, π) is a probabilistic algorithm that outputs 0 or 1 (respectively

meaning “reject” or “accept” the proof).

It has been observed in [16] that the standard VRF security definition is not
sufficient in the randomness beacon setting. Pseudorandomness only holds if the
key pair has been honestly generated (i.e. by KeyGen) but when it is generated
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Fig. 2. VRF with unpredictability under malicious key generation [16].

maliciously the adversary can bias VRF outputs. In VRF-based beacons (e.g.
Fig. 3), the adversary can generate its own key pairs maliciously, and hence we
require the VRF to be unpredictable under malicious key generation as defined
in [16]. A VRF scheme (KeyGen(1λ),Eval(sk, x),Verify(pk, x, y, π)) with unpre-
dictability under malicious key generation is secure if it holds that:

– (complete provability): for every (pk, sk) generated by KeyGen, and every x, if
(y, π) = Eval(sk, x) then Verify(pk, x, y, π) = 1 with overwhelming probability;

– (unique provability): for every x, any y1 �= y2, and any proofs π1, π2, then
at least one of Verify(pk, x, y1, π1) or Verify(pk, x, y2, π2) output 0 with over-
whelming probability.

– (pseudorandomness): no PPT adversary can distinguish between Eval(sk, x)
and a uniformly random string, even when having chosen x, after seeing pk.

– (unpredictability under malicious key generation) no PPT adversary who gen-
erated (pk, sk) arbitrarily can distinguish between Eval(sk, x) and a uniformly
random string for an unknown uniformly random x.

Fig. 3. VRF-based beacon from [16].
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We describe in Fig. 2 the VRF with unpredictability under malicious key
generation from [16]. A randomness beacon based on this VRF was presented
in [16], and is described in Fig. 3. The beacon uses an initial seed σ0 which may
come from a CRS or, as will happen in our multi-tiered beacon, as an output
from some protocol. The beacon proceeds iteratively as follows: At each round
r each party has a key-pair for a VRF and evaluates the VRF on the seed σr−1

obtaining σi
r. The parties compute σr as the XOR of the correctly computed σi

r

(which the can check using the verification procedure and the public keys). The
output of that round is the hash H(σr), while σr is used as seed for the next
round. Note that malicious parties may bias the result by waiting until honest
parties publish their evaluations of the VRF and then deciding whether they
publish theirs.

2.6 Threshold Verifiable Random Functions (TVRFs)

Analogously to the case of signatures, one can define a distributed notion of
verifiable random functions, where each party can compute a partial evaluation,
and any t+1 valid partial evaluations can be combined to obtain the global eval-
uation of the VRF. Following [20] we define a TVRF as the tuple of algorithms
below, where as usual t denotes the corruption threshold:

– DistKeyGen(1λ): outputs secret keys tski, i ∈ [n], corresponding public partial
keys tpki and global public key tpk.

– PartialEval(x, tski, tpki) is a deterministic algorithm which outputs a pair
mi = (yi, πi) where yi is a partial evaluation and πi is a proof.

– Combine(tpk, {tpki}, x, A, (mi)i∈A), where A ⊆ [n] with |A| ≥ t + 1, outputs
either (y, π) consisting of global evaluation y and a global proof π, or ⊥.

– Verify(tpk, x, y, π) is a probabilistic algorithm that outputs 0 or 1 (respectively
meaning “reject” or “accept” the proof).

A TVRF has the following properties:

– Consistency: Given any x, when we apply Combine to any ≥ t + 1 correct
partial evaluations (mi)i∈A, we obtain the same y.

– Robustness: If Combine outputs a pair (y, π), then Verify(tpk, x, y, π) = 1
– Uniqueness: for every x, for any y1 �= y2, and any proofs π1, π2, then at least

one of Verify(tpk, x, y1, π1) or Verify(tpk, x, y2, π2) output 0 with overwhelming
probability.

– Pseudorandomness: roughly, the adversary correcting t parties cannot distin-
guish the output of the function from a uniformly random value, even when
choosing the input.

We describe in Fig. 4 a DDH-based threshold VRF inspired by a thresh-
old Boneh-Lynn-Shacham (BLS) signatures from in [20]. Notice that the origi-
nal DRAND/Dfinity TVRF uses actual pairing based threshold BLS signatures
in order to achieve compact proofs. Both this construction and the improved
GLOW TVRF construction are proven secure in [20] and could serve as a build-
ing block for the DRAND/Dfinity beacon. However, we present the DDH based



658 I. Cascudo et al.

version for the sake of simplicity and for making it clear that all Mt. Random
building blocks can be instantiated from DDH in the ROM. Note that we do not
make the instantiation of DistKeyGen explicit, as we both introduced our own
scheme in Sect. 3 and discussed a number of alternatives in the Introduction.

Fig. 4. DDH-based threshold VRF (DDH-DVRF in [20]).

The DRAND/Definity beacon we alluded to above is given in Fig. 5. Notice
that, in the threshold scenario, the pseudorandomness property of the standard
definition is sufficient to guarantee that VRF outputs are unbiased because dis-
tributed key generation guarantees that keys are correctly generated.

Fig. 5. The DRAND/Dfinity beacon.
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2.7 Threshold Encryption

A threshold encryption scheme allows to encrypt a message towards a group of
receivers, such that the message can be decrypted by any t + 1 of them, but not
less. A threshold encryption scheme is composed by the following algorithms:

– DistKeyGen(1λ): outputs secret keys tski, i ∈ [n], corresponding public partial
keys tpki and a global public key tpk.

– Enc(tpk,m) outputs a ciphertext E.
– LocalDec(tpki, tski, E) outputs a partial decrypted message xi.
– GlobalDec(tpk, I, {tpki}i∈I , {xi}i∈I , E), where I ⊆ [n] with |I| ≥ t+1, outputs

a decrypted message m′ or an error ⊥.

We describe informally below the properties we want from a threshold encryp-
tion scheme, following the work of [14], which we refer to for formal definitions.
These are attained by the threshold version of El Gamal encryption that we
show in Fig. 6.

– Completeness: If the keys have been honestly generated with DistKeyGen, a
message m honestly encrypted, and a set I of at least t+1 honest parties have
computed correct partial decryptions xi of the corresponding cyphertexts
with their keys, then GlobalDec, taking that cyphertext and the public keys
and partial decryptions of I, will output m

– Robustness: Given as inputs 2 subsets I and J of at least t+1 parties and their
corresponding partial decryptions of a same cyphertext, if GlobalDec does not
reject then it outputs the same message on both inputs with overwhelming
probability.

– IND-CPA against static corruption: We assume the adversary corrupts a set A
of at most t parties at the beginning of the protocol. The scheme is IND-CPA
secure if the adversary cannot guess (with success probability non-negligibly
larger than 1/2) the plaintext corresponding to a given cyphertext, even if
this a cyphertext encrypts a message from a set of 2 possible messages that
the adversary has chosen, and given of course that the adversary knows all
the public keys and the secret keys corresponding to A.

3 Distributed Key Generation via PVSS

We introduce a DKG protocol πDDH−DKG in Fig. 7 that is publicly verifiable
and guarantees the adversary cannot bias the global public key. Moreover, the
πDDH−DKG can be easily extended to generate more than one threshold key
pair (Remark 2) and to refresh existing secret key shares (Remark 1). In the full
version of this paper [10], we formally analyse the security of πDDH−DKG in
the real/ideal simulation paradigm with sequential composition. This paradigm
is commonly used to analyse cryptographic protocol security and provides
strong security guarantees, namely that several instances of the protocol can
be executed in sequence while preserving their security. More details about this
model can be found in [7]. Concretely, we prove Theorem 1, which states that
πDDH−DKG securely implements the functionality FDDH−DKG in Fig. 8.
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Fig. 6. Threshold El Gamal encryption scheme

Theorem 1. Under the DDH assumption and assuming an authenticated bul-
letin board, πDDH−DKG securely realizes FDDH−DKG in the random oracle
model against a malicious static PPT adversary A corrupting t ≤ n−1

2 parties.

Remark 1 (Refreshing partial keys). The protocol can be modified to one that,
given a distributed key ensemble (tpk, {tpki}, {tski}) in the form above (not
necessarily created by our protocol) outputs fresh random partial secret and
public keys t̃ski, t̃pki corresponding to the same global keys tsk, tpk. This is
done by having each party Pa share the value s(a) = 0 in step 1) of Fig. 7. It is
easy to modify the LDEI proof to additionally prove in zero knowledge that the
PVSS is indeed a sharing to 0 (in Fig. 1, the prover just chooses u(X) with the
additional condition u(0) = 0 and the verifier checks that z(0) = 0). Modifying
the DKG protocol in this way will output the ensemble (tpk′, {tpk′

i}, {tsk′
i})

with tpk′ = 1G. Now parties can define t̃pki = tpki · tpk′
i and each party Pi can

privately compute t̃ski = tski + tsk′
i.

Remark 2 (Outputting �′ key ensembles). Our DKG protocol would correspond
to the case � = �′ = 1 in the analogy with ALBATROSS, but of course we can also
easily adapt the protocol for � = 1, �′ ≥ 1, where assuming now t ≤ (n−�′)/2, we
would obtain as output �′ independent instances (tpk(k), {tpk(k)i }, {tsk(k)i }), k ∈
[�′]. The protocol works in the same way until step 4. In step 5 parties Pi compute
Ŝi,k =

∏
a∈Q(Ŝ(a)

i )Mk,a , σi,k =
∑

a∈Q Mk,aσ
(a)
i and Si,k =

∏
a∈Q(S(a)

i )Mk,a for
k = 1, . . . , �′. Then steps 6, 7, 8 are executed independently for each k, where in
step 7 parties verify Ŝi,k =

∏
a∈Q(Ŝ(a)

i )Mk,a . Moreover, the refreshing technique
(Remark 1) can be easily extended to deal with refreshing �′ ensembles.
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Fig. 7. Protocol πDDH−DKG for distributed key generation via SCRAPE.

4 GULL: Gradual Release of PVSS Outputs
via Threshold Encryption

Before presenting GULL, we describe a zero-knowledge proof for the EG relation
that we will need, which is similar to discrete logarithm equality, except that
one of the elements that would be public in the DLEQ relation now is encrypted
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Fig. 8. Distributed Key Generation Functionality FDDH−DKG

by El Gamal (threshold) encryption. The relation is as follows:

REG = {((}∞, §∞, §∈,�, 	, 
), (∫ ,∇, }∈)) ∈ G
� × (Z∈

� × G) :
gs
1 = x1, gr

1 = c, d = tr · g2, gs
2 = x2}

The problem here is that g2 is part of the witness, and should not be revealed.
Our solution consists on reducing this to proving knowledge of exponents r, s, w
with gr

1 = c, gs
1 = x1, ds · tw = x2, cs · gw

1 = 1, which can be done with
a standard Σ-protocol. The point is that if (s, r, g2) is a witness for REG, then
setting w = −rs will satisfy the equations, while on the other hand, knowledge of
(r, s, w) satisfying these equations implies knowledge of (r, s, g2) satisfying REG.
We present protocol πEG in Fig. 9 and formally state and prove its security in
Proposition 1

Proposition 1. Protocol πEG is a correct proof of knowledge of (s, r, g2) such
that ((g1, x1, x2, t, c, d), (s, r, g2)) ∈ REG, with special soundness (with soundness
error 1/q), and zero knowledge in the random oracle model, assuming the Fiat-
Shamir heuristic holds.

Proof. We prove that the interactive public-coin version of this protocol where e
is chosen uniformly at random by the verifier is correct, special-sound and zero
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Fig. 9. NIZK πEG for REG

knowledge and the Fiat-Shamir heuristic implies the properties above for the
non-interactive version.

Correctness: The protocol is easily seen to be correct, as setting w = −rs
implies ds · tw = x2, cs · gw

1 = 1 if the relation is correct, as argued above, and
hence all of the checks will pass.

Special-Soundness: Now suppose that a prover can answer two different chal-
lenges e �= e′ with zr, zs, zw and respectively z′

r, z
′
s, z

′
w. This means that the

4 checks by the verifier pass in both cases. From here it is easy to see that
ce−e′

= g
zr−z′

r
1 and xe−e′

1 = g
zs−z′

s
1 so one can extract r = (zr − z′

r)/(e − e′),
s = (zs − z′

s)/(e − e′) and g2 = d · t−r. Note that these values satisfy that
gs
1 = x1, gr

1 = c, d = tr · g2, so in order to show that the extracted (s, r, g2) is a
witness, we only need to additionally show that gs

2 = x2 From the fact that the
fourth check passes in both cases, we get that 1 = czs−z′

s · gzw−z′
w

1 , which implies
1 = cs(e−e′)g

zw−z′
w

1 . Since we already knew c = gr
1 for the extracted r, this means

g
rs(e−e′)+zw−z′

w
1 = 1. Since we are in a group of prime order, so g1 is a generator,

it must hold that rs(e − e′) + zw − z′
w = 0. Finally from the fact that the third

check passes in both instances we have xe−e′
2 = dzs−z′

stzw−z′
w , which, using the

information deduced in the previous line and the expression for the extracted s,
means xe−e′

2 = (dst−rs)e−e′
. Now since e−e′ �= 0 and we are in a group of prime

order, this means x2 = dst−rs. But the right hand side is exactly gs
2 so x2 = gs

2

as we wanted to show.

Zero Knowledge: The simulator samples zr, zs, zw, e independently and uni-
formly at random in Zq, and defines a1, a2, a3, a4 as the verifier would do in the
proof verification. This generates a transcript which is indistinguishable from
one of an actual protocol, as it is easy to see.

We now construct GULL, a random beacon that allows for generating O(n2)
outputs that can be opened in individual batches of O(n) outputs. We present
GULL in Fig. 10 and formally state its security in Theorem 2.

Theorem 2. Assuming DDH holds in G, for any static adversary A corrupting
t parties, with probability at least 1 − t/q the following holds (in the random
oracle model) for protocol GULL in Fig. 10:
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Fig. 10. GULL: PVSS beacon with gradual release. Setup and Preparation

– All honest parties obtain the same output (ok,j)k∈[�′],j∈[0,�−1] ∈ G
�·�′

.
– (Unbiasability) Regardless of the actions of A, the distribution of the output

is computationally indistinguishable from uniform in G
�·�′

.
– (Unpredictability after opening k′ batches –inspired by [9,24]). For every k′ ∈

�′, consider the following experiment played after the values ok,j , k ∈ [k′], j ∈
[0, �−1] have been opened in step 4. A challenger chooses b ∈ {0, 1} at random;
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if b=0, it sets wk,j = ok,j (the true unopened outputs) for k ∈ [k′ + 1, �′],
j ∈ [0, � − 1]; if b = 1, it chooses all these wk,j independently and uniformly
at random in G. The challenger sends all wj,k to A who makes a guess b′.
Then the probability that b′ = b is at most 1/2+negl(λ) where λ is the security
parameter.

Proof. We first note that if a corrupted party cheats in one of the zero knowledge
proofs, that party will be caught with probability at least 1 − 1/q. Therefore
the probability that a corrupted party deviates from the protocol and yet is
included in Q, I or J is at most t/q. Hence, except with this probability, all
parties included in Q, I, J have behaved honestly in the respective steps (sharing,
threshold encryption, threshold decryption). We assume this from now on. Since
there are at least t + � honest parties, |I| ≥ t + � and |J | ≥ t + 1, so the protocol
always finalizes. In fact, the outputs are already determined at the end of step
1: they are ok,j = gfk(−j), where fk =

∑
a∈Q Mk,af (a) where Q is fixed at the

end of step 1. Since up to this point the protocol is exactly as in Albatross the
unbiasability under DDH follows from the results there.

We now argue unpredictability. For the sake of notation, assume that the
adversary A corrupts Pn−t+1, . . . , Pn−t. Suppose that after the first k′ batches
(ok,j)k∈[k′],j∈[0,�−1] have been opened, A is given a vector vb for uniformly ran-
dom b ∈ {0, 1} where v0 = (ok,j)k∈[k′+1,�′],j∈[0,�−1] and v1 is uniformly random
in G

�·(�′−k′). We will prove that if A can guess b with probability non-negligibly
larger than 1/2, then we can construct D that solves the ((n− t) · �)-DDH prob-
lem: namely (h, hα, hβ11 , · · · , hβ(n−t)� , hγ11 , · · · , hγ(n−t)�) is sampled as a chal-
lenge, where h is uniformly random in the group G and α, and all βij are chosen
independently and uniformly at random in Zq while the value of γij is dictated
by a bit b′ chosen uniformly at random: if b′ = 0, then γij = αβij for all i, j;
while if b′ = 1, γij are uniformly random in Zq if b′ = 1. This challenge is sent
to D, who has to guess b′. The ((n − t) · �)-DDH problem is equivalent to DDH
as long as the number (n − t) · � is polynomial in the security parameter.

We construct a distinguisher D which runs an internal copy of A. D will
simulate an execution of GULL where g = hα and the vector of secrets chosen
by each honest party Pa is gβaj (we will show how this can be done). These equal
hγaj if γaj = αβaj . At the end of the simulation, D sets as a challenge for A the
outputs that one would obtain if the honest parties had shared the values hγaj .
A now makes a guess of whether this are correct outputs or random values. In
the former case D guesses that γaj = αβaj and in the latter that γaj are random.

The simulation is as follows: D sets g = hα, samples ui in Zq for i ∈ [n − t]
and sets pki = hui , implicitely defining ski = ui/α (which D does not know). It
waits for A to choose pki and ski for malicious parties. Moreover, the distributed
key generation algorithm is run to establish the threshold keys tski, tpk, tpki.

D chooses τai, at random in Zq for a ∈ [n−t], i ∈ [n−t+1, n]. Let f (a) be the
polynomial in Zq[X]≤t+� with f (a)(i) = τai for i ∈ [n−t+1, n] and f (a)(j) = βaj

for j ∈ [0, �−1]. D does not know f (a) but it can compute hf(a)(i), for i ∈ [n− t],
from the values hβaj for j ∈ [0, � − 1] and hτai for i ∈ [n − t + 1, n] by Lagrange
interpolation. Note that hβaj are part of the challenge. D sets Ŝi = (hf(a)(i))ui for
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i ∈ [n − t] and Ŝi = pkτai
i for i ∈ [n − t + 1, n]. Now Ŝi = pk

f(a)(i)
i for all i, hence

it is a sharing for the vector (gf(a)(−j))j∈[0,�−1] = (gβaj )j∈[0,�−1]. D simulates
the proof π(a) using the zero knowledge simulator. It waits for the adversary
to send the corresponding information from Round 1, which determines Q. Let
Q0 = Q ∩ [1, n − t], Q1 = Q ∩ [n − t + 1, n].

D samples values S′
ik at random (which will play the role Sik play in the real

protocol) and simulates the proof πEG,i,k. From here, the rest of the protocol is
simulated with D playing for the honest parties and A for the corrupted ones.
After opening k′ batches, A is given as a challenge the values xkj defined by
xj =

∏
a∈Q0

(hγaj )Mk,a · ∏
a∈Q1

(gf(a)(−j))Mk,a , where f (a) was extracted from
π(a). These would be the outputs obtained in the real protocol if γaj = αβaj ,
since the secrets of honest parties Pa are implicitely defined as gβaj = hαβaj .
While, if γaj are uniformly random, xkj are also uniformly random due to the
properties of the t-resilient matrix.

A makes a guess about whether the vector of xkj are the secrets or random
values, and D outputs the same guess about whether γj = αβj . Note xkj are the
actual secrets if and only if γaj = αβaj . So if A’s view V iewA,k′ at this point is
as in a real protocol where honest parties have input gβaj , we would be done.

We argue this by induction. Consider first k′ = 0, i.e. no outputs have been
opened yet. Then apart from π(a), πEG,i, which have been simulated with the
zero knowledge simulator (so they are indistinguishable from the real view), the
other point where the simulation differs from the real protocol is in the fact
that S′

ik are chosen at random. But by IND-CPA property of El Gamal (in turn
based on DDH) their encryptions are indistinguishable from encryptions of the
“real” Sik. For k′ > 0, the situation is more delicate because now also the opened
outputs in the simulated run depend on the simulated S′

ik. By induction, the
view V iewA,k′−1 of the adversary before the opening of the k′-th output batch
is indistinguishable from that in the real protocol. We have argued that, under
those conditions and the DDH assumption, our unpredictability claim is true
and hence the distribution of the remaining outputs, in particular of the next
batch (ok′,j)j∈[0,�−1], conditioned to that view is indistinguishable from uniform
in both the real and simulated run. We conclude that the views V iewA,k′ in the
real and simulated protocol are also indistinguishable which finalizes the proof.

5 Constructing Mt. Random

In Fig. 11, we present Mt. Random, our multi-tiered beacon composed by the
building blocks presented so far. As discussed earlier, we have three tiers: Tier
1 - Uniform Randomness, Tier 2 - Pseudorandomness and Tier 3 - Bounded
Biased Randomness. Starting from Tier 1, going up each tier represents a trade-
off between efficiency and randomness quality, where more efficiency is gained
at the cost of quality. In other words, higher tiers generate random outputs
faster than lower tiers albeit with losses in randomness quality, i.e. going from
uniformly random values to values with a bounded adversarial bias. Moreover,
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Fig. 11. Mt. Random: Multi-tiered Randomness Beacon.

each higher tier uses outputs from the previous tier as seeds, ensuring that all
tiers operate within a desired level of bias while maintaining efficiency. We use
the DDH assumption (in the random oracle model) to prove security of all of
Mt. Random’s building blocks, i.e. PVSS, DKG, TVRF and VRF, thus obtain-
ing a final construction whose security is based on a single standard assump-
tion while achieving competitive concrete efficiency. However, we remark that
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other constructions of these building blocks can be used within our framework
in order to achieve better efficiency at the cost of having security underpinned
by multiple and possibly less standard assumptions. Moreover, each Tier could
be constructed from other primitives that yield random outputs with similar
guarantees, e.g. Tier 2 could be instantiated using VDF based beacons [5]. We
will now discuss the building blocks used for tier and provide a security analysis.

Tier 1: Uniform Randomness via PVSS: The first tier of Mt. Random
outputs true uniform randomness. It is important to output uniformly random
values at this tier because these values will be used as seeds for Tier 2. We
instantiate Tier 1 with GULL using threshold encryption keys generated by our
DKG protocol (Fig. 7). Tier 1 has the highest execution time and communication,
outputting uniformly random values less frequently than higher tiers. On the
other hand, instead of outputting a single value, Tier 1 will output a batch of
uniformly random values that can be used to seed Tier 2 multiple times (instead
of requiring a full execution of Tier 1 every time Tier 2 needs a new seed).

In the original ALBATROSS [9] protocol, the full batch of outputs is revealed
as soon as the protocol terminates. This is not an issue when seeding Tier 2, since
Tier 2 outputs cannot be predicted without a threshold key. However, it might
be a problem in the case where fresh uniformly random outputs from Tier 1 are
required for applications other than seeding Tier 2. Hence, we instantiate Tier 1
with GULL, which allows for gradually revealing smaller “sub-batches” of out-
puts. Under this regime, whenever a fresh uniformly random output is required
for other applications, a fresh sub-batch can be revealed, which is significantly
more efficient than re-executing the full ALBATROSS protocol.

Tier 2: Pseudorandomness via Threshold VRFs: Tier 2 outputs pseu-
dorandom values instead of truly uniformly random values. While these values
are not suitable for some applications (e.g. seeding PRGs), they are sufficient
for a number of popular applications (e.g. selecting random committees). We
instantiate Tier 2 with a DDH based version of the DRAND/Dfinity TVRF pro-
posed in [20] coupled with our new DKG protocol (Fig. 7). We choose to use a
DDH-based TVRF in order to instantiate all of our building blocks from a single
standard assumption. However, a more efficient TVRF (e.g. GLOW [20]) can be
used for better performance at the cost of a stronger assumption.

There are two main hurdles in using TVRF-based beacons: 1. keys must be
generated in a distributed manner; 2. being essentially a distributed PRG, the
beacon must be re-seeded periodically. Mt. Random respectively solves these
issues by employing our new DDH-based DKG (Fig. 7) and by periodically re-
seeding Tier 2 with uniformly random outputs from Tier 1. Using our DKG, we
maintain public verifiability of threshold key validity and consequently of Tier
2’s output without requiring extra assumptions. Moreover our DKG protocol can
be used to refresh secret key shares if parties are compromised (see Remark 1).

Tier 3: Bounded Biased Randomness via VRFs: The third tier of Mt.
Random outputs pseudorandom values that may be biased by the adversary
up to a certain upper bound. While this sort of biased randomness finds less
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applications than unbiased pseudorandomness or uniform randomness, it is still
sufficient for important applications such as selecting block creators in Proof-of-
Stake based blockchains (e.g. Ouroboros Praos [16]). We instantiate Tier 3 with
the VRF and VRF-based beacon protocols from Ouroboros Praos, which are
secure under the CDH assumption (implied by DDH). However, differently from
the original Ouroboros Praos beacon, where each execution is seeded with the
output of the previous one, we seed this protocol with an output from Tier 2.
This crucial difference reduces the potential adversarial bias in Tier 3 outputs.

5.1 Security Analysis

Theorem 3. Under the DDH assumption in G, for any static adversary cor-
rupting t < n/2 parties, with probability at least 1 − t/q, the following holds (in
the random oracle model) for Mt. Random in Fig. 11:

– All Tiers have guaranteed output delivery, all honest parties obtain the
same outputs H(ok1),H(ok2), . . . , H(ok�), H(zr) and H(w′

r) from each output
request from Tiers 1, 2 and 3, respectively.

– (Unbiasability for Tiers 1 and 2) Regardless of the actions of the adver-
sary, the distribution of H(ok1),H(ok2), . . . , H(ok�) (resp. H(zr)) from Tier
1 (resp. Tier 2) is computationally indistinguishable from uniform.

– (Unpredictability for Tiers 1 and 2). Given all previous outputs from Tiers 1
and 2, the adversary cannot predict future outputs from Tiers 1 and 2.

– (Bounded Bias and Predictability for Tier 3) The adversary can predict and
bias at most t bits of the output of Tier 3.

Proof. (Sketch) Notice that in the initialization phase we execute our DKG
protocol (Fig. 7) before initiating the execution of the tiers. Due to the security
of the DKG protocol (Theorem 1), the resulting global and partial public keys
tpk, tpki and tpk, tpk′

i for i ∈ [n] are guaranteed to be unbiased and each party
Pi is guaranteed to have obtained its secret share tski, tsk

′
i as well as the same

public keys. Moreover, we can extract adversarial secret keys, see [10].
In Tier 1, we execute GULL from Fig. 10 using keys tpk, tpki, tski, which gives

us two main guarantees as shown in Theorem2: 1. The Preparation phase results
in �′ output blocks that are guaranteed to be recoverable by a majority of the
parties but remain secret until the Opening phase is executed; 2. All � values of
each output block are guaranteed to be uniformly random. Hence, when Tier 1
is initiated, �′ output blocks with � uniformly random values become available.
When an output is requested, executing the procedures of Tier 1 clearly returns
either an uniformly random output (or ⊥, in which case more output blocks are
obtained executing step 2 of Tier 1’s output request procedure).

In Tier 2, we execute the TVRF-based beacon protocol from Fig. 5, which is
proven to output pseudorandom values in [20]. Since we periodically re-seed this
protocol with uniformly random values from Tier 1, its outputs are guaranteed
to be pseudorandom. Notice that we can re-seed Tier 2 with outputs from Tier
1 that are already revealed but still not used as a Tier 2 seed. By the security
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of the TVRF scheme (proven in [20]), an adversary controlling a minority of the
parties cannot predict the output of the TVRF on any given input. Hence, the
outputs of Tier 2 cannot be predicted by the adversary (who only corrupts a
minority of the parties) upon learning the seed. Notice that the TVRF security
properties hold since we use unbiased threshold keys tpk′, tpk′

i, tsk
′
i.

In Tier 3, we execute the protocol in Fig. 3, proven to output bounded biased
values in [16] even when it is seeded with outputs of a previous execution of itself.
Hence, seeding this protocol with the unbiased pseudorandom outputs from Tier
2, not only preserves but improves on the proven bias bounds for its outputs.
Using outputs from Tier 2 that are already known but still not used as a seed
in Tier 3 preserves the security, since even by knowing the seed in advance the
adversary can introduce a bounded bias to the output as proven in [16].

6 Efficiency Analysis

Distributed Key Generation. Our novel DKG protocol’s performance is fur-
ther showcased in Figs. 12a and 12b, which show the DKG computation time
and communication size for changing number of parties n for Tiers 1 and 2.

Fig. 12. a) DKG computation time for Tiers 1 and 2 for changing number of parties n
with fixed t = �n

3
�. b) DKG communication size for Tiers 1 and 2 for changing number

of parties n with fixed t = �n
3
�

Mt. Random. We provide a reference implementation for each one of the tiers
here: https://github.com/ZenGo-X/random-beacon. Our main goal is to demon-
strate the trade-off in efficiency between the three tiers. We also highlight the
sensitivity to changing number of parties n, the threshold t and culprits c when
relevant. All our measurements were done on a t3.medium AWS instance (2
vCPU of Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50 GHz, 4 GB RAM).
Our experiments do not include network latency or delay, as network latency is
larger than our computation times and would mask them. Since the number of

https://github.com/ZenGo-X/random-beacon
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Fig. 13. Execution time (a) and communication (b) of each Tier with fixed t = �n
3
�,

� = 1. (c) Amortized cost of generating a single element at Tier 1 with fixed n = 25,
t = 8, � = 9. Average execution time of Tier 1 for a number c of corruptions with fixed
n = 25, t = 8 (d) and for large n with fixed t = �n

3
�, � = 1 (e). (f) Average execution

time of Tier 2 for threshold t with n = 25.

rounds of Tier 1 is larger than that in Tier 2 and Tier 3, and communication
size of Tier 2 is larger than communication size of Tier 3, if we include latency,
we trivially get our expected hierarchy. Network delay is of no interest: the com-
munication bandwidth is small enough for the network to not be a bottleneck.
Measurements were done using a benchmark tool and averaged over many runs.

Computation Time and Communication Size: In Fig. 13a and Fig. 13b we
compare the computation time for a single run and the communication size of
each tier as a function of n. As shown by the figures, Tier 1 is the slowest and
the one that requires the most communication, while Tier 3 requires the least
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computation time and communication, and Tier 2 is in the middle, which is
coherent with our use of the tiers in Mt. Random.

Tier 1 and Tier 2 Sensitivity: We measured Tier 1 without gradual release
(ALBATROSS), i.e., all random values are released at once. In Fig. 13c we show
how changing � impacts the amortized cost of a single random element. As
expected, the more random elements we pack in a single run the more efficient
the amortized computation per a single random element is. This result hints to
the effectiveness of running GULL in settings were fresh unpredictable output
is needed by an application other than Tier 2.

In Fig. 13d, we fix n and change the number of culprits c, which impacts
the total running time in a meaningful way, since less computation is done in
an optimistic case with less misbehaving parties. Figure 13e shows Tier 1 per-
formance for large n. The choice of the curve dramatically affects efficiency.
In this case, the Secp256k1 curve implementation outperforms BLS12-381 (we
used libraries https://github.com/rust-bitcoin/rust-secp256k1 for Secp256k1
and https://github.com/algorand/pairing-plus for BLS12-381). All other Tier
1 benchmarks are based on BLS12-381 curve in order to make results compara-
ble to Tier 2. Finally, Fig. 13f, shows computation time of Tier 2 for fixed n and
various threshold t. As expected, the computation time is linear in n.
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pedersen: application to Helios. In: Proceedings of the 12th Annual ACM Workshop
on Privacy in the Electronic Society, WPES 2013, pp. 131–142. ACM (2013)

15. Daian, P., Pass, R., Shi, E.: Snow White: robustly reconfigurable consensus and
applications to provably secure proof of stake. In: Goldberg, I., Moore, T. (eds.)
FC 2019. LNCS, vol. 11598, pp. 23–41. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-32101-7 2

16. David, B., Gaži, P., Kiayias, A., Russell, A.: Ouroboros Praos: an adaptively-
secure, semi-synchronous proof-of-stake blockchain. In: Nielsen, J.B., Rijmen, V.
(eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 66–98. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-78375-8 3

17. De Feo, L., Masson, S., Petit, C., Sanso, A.: Verifiable delay functions from super-
singular isogenies and pairings. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT
2019. LNCS, vol. 11921, pp. 248–277. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-34578-5 10

18. Fouque, P.-A., Stern, J.: One round threshold discrete-log key generation without
private channels. In: Kim, K. (ed.) PKC 2001. LNCS, vol. 1992, pp. 300–316.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44586-2 22

19. Freitag, C., Komargodski, I., Pass, R., Sirkin, N.: Non-malleable time-lock puzzles
and applications. In: Nissim, K., Waters, B. (eds.) TCC 2021. LNCS, vol. 13044, pp.
447–479. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90456-2 15

20. Galindo, D., Liu, J., Ordean, M., Wong, J.-M.: Fully distributed verifiable random
functions and their application to decentralised random beacons. In: IEEE Euro-
pean Symposium on Security and Privacy, EuroS&P 2021, Vienna, Austria, 6–10
September 2021, pp. 88–102. IEEE (2021)

21. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure distributed key genera-
tion for discrete-log based cryptosystems. In: Stern, J. (ed.) EUROCRYPT 1999.
LNCS, vol. 1592, pp. 295–310. Springer, Heidelberg (1999). https://doi.org/10.
1007/3-540-48910-X 21

22. Gurkan, K., Jovanovic, P., Maller, M., Meiklejohn, S., Stern, G., Tomescu, A.:
Aggregatable distributed key generation. In: Canteaut, A., Standaert, F.-X. (eds.)
EUROCRYPT 2021. LNCS, vol. 12696, pp. 147–176. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-77870-5 6

23. Hanke, T., Movahedi, M., Williams, D.: Dfinity technology overview series, con-
sensus system (2018)

24. Heidarvand, S., Villar, J.L.: Public verifiability from pairings in secret sharing
schemes. In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC 2008. LNCS, vol.
5381, pp. 294–308. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-04159-4 19

https://eprint.iacr.org/2021/1096
https://eprint.iacr.org/2021/1096
https://doi.org/10.1007/3-540-48071-4_7
https://eprint.iacr.org/2019/1320
https://eprint.iacr.org/2019/1320
https://doi.org/10.1007/978-3-030-32101-7_2
https://doi.org/10.1007/978-3-030-32101-7_2
https://doi.org/10.1007/978-3-319-78375-8_3
https://doi.org/10.1007/978-3-030-34578-5_10
https://doi.org/10.1007/978-3-030-34578-5_10
https://doi.org/10.1007/3-540-44586-2_22
https://doi.org/10.1007/978-3-030-90456-2_15
https://doi.org/10.1007/3-540-48910-X_21
https://doi.org/10.1007/3-540-48910-X_21
https://doi.org/10.1007/978-3-030-77870-5_6
https://doi.org/10.1007/978-3-642-04159-4_19
https://doi.org/10.1007/978-3-642-04159-4_19


674 I. Cascudo et al.

25. Katz, J., Loss, J., Xu, J.: On the security of time-lock puzzles and timed commit-
ments. In: Pass, R., Pietrzak, K. (eds.) TCC 2020. LNCS, vol. 12552, pp. 390–413.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64381-2 14

26. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: a provably secure
proof-of-stake blockchain protocol. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017.
LNCS, vol. 10401, pp. 357–388. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63688-7 12

27. Micali, S., Rabin, M.O., Vadhan, S.P.: Verifiable random functions. In: 40th FOCS,
pp. 120–130. IEEE Computer Society Press, October 1999

28. Pedersen, T.P.: A threshold cryptosystem without a trusted party (extended
abstract) (rump session). In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS,
vol. 547, pp. 522–526. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-
46416-6 47

29. Pietrzak, K.: Simple verifiable delay functions. In: Blum, A. (ed.) ITCS 2019, vol.
124, pp. 60:1–60:15. LIPIcs, January 2019

30. randao.org. RANDAO: Verifiable random number generation (2017). https://www.
randao.org/whitepaper/Randao v0.85 en.pdf. Accessed 20 Feb 2020

31. Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock puzzles and timed-release
crypto (1996)

32. Schindler, P., Judmayer, A., Hittmeir, M., Stifter, N., Weippl, E.R.: RandRunner:
distributed randomness from trapdoor VDFs with strong uniqueness. In: NDSS
2021. The Internet Society, February 2021

33. Schindler, P., Judmayer, A., Stifter, N., Weippl, E.R.: HydRand: efficient contin-
uous distributed randomness. In: 2020 IEEE Symposium on Security and Privacy,
pp. 73–89. IEEE Computer Society Press, May 2020

34. Schoenmakers, B.: A simple publicly verifiable secret sharing scheme and its appli-
cation to electronic voting. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666,
pp. 148–164. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-
1 10

35. Syta, E., et al.: Scalable bias-resistant distributed randomness. In: 2017 IEEE
Symposium on Security and Privacy, pp. 444–460. IEEE Computer Society Press,
May 2017

36. DRAND Team: DRAND project website (2020). https://drand.love. Accessed 21
Mar 2021

37. Wang, G., Shi, Z.J., Nixon, M., Han, S.: SoK: sharding on blockchain. In: Pro-
ceedings of the 1st ACM Conference on Advances in Financial Technologies, AFT
2019, Zurich, Switzerland, 21–23 October 2019, pp. 41–61. ACM (2019)

38. Wesolowski, B.: Efficient verifiable delay functions. In: Ishai, Y., Rijmen, V. (eds.)
EUROCRYPT 2019. LNCS, vol. 11478, pp. 379–407. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17659-4 13

https://doi.org/10.1007/978-3-030-64381-2_14
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/3-540-46416-6_47
https://doi.org/10.1007/3-540-46416-6_47
https://www.randao.org/whitepaper/Randao_v0.85_en.pdf
https://www.randao.org/whitepaper/Randao_v0.85_en.pdf
https://doi.org/10.1007/3-540-48405-1_10
https://doi.org/10.1007/3-540-48405-1_10
https://drand.love
https://doi.org/10.1007/978-3-030-17659-4_13


Revisiting Transaction Ledger Robustness
in the Miner Extractable Value Era

Fredrik Kamphuis1(B), Bernardo Magri2, Ricky Lamberty1,
and Sebastian Faust3

1 Corporate Research, Robert Bosch GmbH, Renningen, Germany
{fredrik.kamphuis,ricky.lamberty}@de.bosch.com

2 The University of Manchester, Manchester, UK
bernardo.magri@manchester.ac.uk

3 Technical University of Darmstadt, Darmstadt, Germany
sebastian.faust@cs.tu-darmstadt.de

Abstract. In public transaction ledgers such as Bitcoin and Ethereum,
it is generally assumed that miners do not have any preference on the con-
tents of the transactions they include, such that miners eventually include
all transactions they receive. However, Daian et al. S&P’20 showed that
in practice this is not the case, and the so called miner extractable
value can dramatically increase miners’ profit by re-ordering, delaying
or even suppressing transactions. Consequently an “unpopular” transac-
tion might never be included in the ledger if miners decide to suppress
it, making, e.g., the standard liveness property of transaction ledgers
(Garay et al. Eurocrypt’15) impossible to be guaranteed in this setting.

In this work, we formally define the setting where miners of a trans-
action ledger are dictatorial, i.e., their transaction selection and ordering
process is driven by their individual preferences on the transaction’s con-
tents. To this end, we integrate dictatorial miners into the transaction
ledger model of Garay et al. by replacing honest miners with dictatorial
ones. Next, we introduce a new property for a transaction ledger protocol
that we call content preference robustness (CPR). This property ensures
rational liveness, which guarantees inclusion of transactions even when
miners are dictatorial, and it provides rational transaction order preser-
vation which ensures that no dictatorial miner can improve its utility
by altering the order of received candidate transactions. We show that
a transaction ledger protocol can achieve CPR if miners cannot obtain
a-priori knowledge of the content of the transactions. Finally, we provide
a generic compiler based on time-lock puzzles that transforms any robust
transaction ledger protocol into a CPR ledger.

Keywords: blockchain · liveness · rational security

1 Introduction

In distributed transaction ledgers such as Bitcoin [26] and Ethereum [8], trans-
actions proposed by users are verified in a decentralized way and appended into
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a public ledger in an unalterable order. To this end, a set of network participants
called miners are responsible for the process of including and finalizing transac-
tions by running the consensus protocol. The liveness property of a consensus
protocol guarantees that a correctly generated transaction that is provided as
input to all the miners will eventually appear on the ledger. It has been formally
shown that this guarantee is achieved under the assumption of honest majority
(or supermajority) of miners [3,16,25]. Therefore, it is commonly assumed that
honest miners input all the transactions to the consensus protocol in the exact
same order they were received. In practice, transaction ledger protocols usually
establish incentive mechanisms (e.g., in the form of transaction fees) to justify
this fundamental assumption. A transaction ledger protocol therefore aims to
achieve self-enforced honest behavior by incentivizing parties to behave honestly
and penalizing deviation of the desired protocol behavior [4,21]. These mecha-
nisms yield profit for miners, e.g. for honestly including and appending transac-
tions into blocks. Nevertheless, when analyzing the incentive compatibleness of
honest behavior, the approach usually taken [2] is based on the assumption that
miners do not have any rational interest in the actual content of the transactions
they include. As it turns out, this assumption cannot be guaranteed in practice.
In fact, there are many works that show that rational miners indeed profit from
altering the order or even ignoring certain transactions entirely [10,15,30,31].
While forking on the underlying ledger to revert transactions could theoretically
lead to the same results, it requires at least 1/3rd or the majority of the resources
of the network (i.e., computation or stake) to be executed [7,22,24]. Additionally,
such an attack could lead to unforeseeable dynamics that might be undesirable
for rational adversaries [2,7]. Moreover, reordering, delaying or suppressing single
transactions during the inclusion in the block is a much more subtle deviation
from the honest behavior compared to forking, and more importantly can be
accomplished by any individual miner. Therefore, this type of behavior might
be considered as a viable and practical strategy by rational miners [10,27].

Daian et al. [10] generalizes this concept of content-depending utilities as
miner extractable value (MEV). MEV is a metric representing all kinds of
opportunities a rational miner can generate utility permissionlessly from e.g.,
re-ordering, delaying or censoring of transactions depending on the transaction’s
content. [10] shows that MEV is not just a theoretical concept, but rather a real-
world phenomenum that is already occurring at scale in today’s DeFi1 space, e.g.
in the form of transaction front-running, reaching its current spike with roughly
25000 ETH (4.1 million USD) available for arbitrage daily2. Overall, the actual
content preference of rational miners depends on on-chain dynamics within the
transaction ledger protocol, such as arbitrage opportunities, front running and
censorship, but also on utility sources outside the ledger. This might include
cross-chain dynamics where miners can generate profit on other chains by tak-

1 The term decentralized finance (DeFi) refers to an alternative financial infrastruc-
ture, that is built on top of open and permissionless protocols, such as the Ethereum
blockchain.

2 Flashbots. http://explore.flashbots.net/, as of July 09, 2022.

http://explore.flashbots.net/
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ing rational actions on their chain [24], but also off-chain dynamics where the
profit for taking rational actions is generated entirely off-chain [7]. Therefore, the
actual individual utility a rational miner can generate for taking actions against
candidate transactions is unknown to the public and the protocol designer.

Further, as illustrated by Daian et al. unclaimed MEV opportunities in a
branch of the blockchain can incentivize miners to support that branch and
abandon the longest chain, thus “rolling back” blocks and creating potential
forks. This harms the network and even poses a fundamental threat to the secu-
rity of the underlying consensus protocol.

To summarize, the inherent issue is that miners can use their a-priori knowl-
edge of the transaction content to alter the set of transactions they are supposed
to include. This information asymmetry provides miners with an advantage by
taking rational actions (e.g., altering order, delaying, suppressing) which may
be rewarded disproportionately in comparison to honest behavior [10,15]. More-
over, these rational actions are not a violation of the underlying transaction
ledger protocol, and thus not captured by existing security definitions. The min-
ers that are willing to take rational actions based on the transactions’ contents
are referred to as dictatorial miners.

Due to space limitations the related work section is presented in Appendix A.

1.1 Contributions

In this work we analyze the liveness and transaction order guarantee that can be
achieved against dictatorial miners. In this vein, we follow the Bitcoin backbone
model of Garay, Kiayias and Leonardos [16] with the twist that instead of hon-
est miners we assume a set of dictatorial miners with hidden3 preferences over
the contents of transactions. The dictatorial miners participate honestly in the
consensus protocol but may choose to take rational actions that do not violate
the properties of the ledger protocol, e.g. re-order, delay or suppress a partic-
ular set of transactions. In addition, dictatorial miners are allowed to collude
with each other if it is (individually) more profitable. Our contributions can be
summarized as follows:

– We introduce a new property for transaction ledger protocols that we call con-
tent preference robustness (CPR), which yields robustness against dictatorial
miners. A CPR-ledger provides the following guarantees:

• Rational liveness: It provides essentially the same guarantees as the orig-
inal liveness definition [16], but against dictatorial miners. To achieve
this we show that no dictatorial miner can increase its profit by selec-
tively suppressing transactions if (1) dictatorial miners gain no a-priori
knowledge of the transactions contents, (2) withholding transactions is
punishable by the ledger and (3) dictatorial miners expect to not lose
utility (on average) by honestly participating in the transaction ledger
protocol.

3 We call hidden the preferences that are individual to the miners, and not known to
the protocol designer.
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• Rational transaction order preservation: It ensures that no dictatorial
miner can improve its expected utility by altering the order of received
transactions. We show that rational transaction order preservation can
be achieved under essentially the same conditions as rational liveness.

– We present a generic compiler based on time-lock puzzles that compiles any
robust transaction ledger protocol (according to [16]) into a transaction ledger
protocol that is CPR. On a technical level, the compiled protocol maintains
two (logically) separate chains; the “control chain” that contains only time-
lock puzzles of the transactions, and the “sanitized chain” that contains the
actual contents of the transactions from (the common prefix of) the control
chain. The intuition is that the control chain provides a global ordering of
the transactions for all miners, and once that ordering is fixed, the sanitized
chain can be built with the actual contents of all valid transactions from the
control chain. Finally, we show that the compiled protocol is CPR.

2 Transaction Ledger Model

In this work we extend the transaction ledger model of Garay et al. [16] to
the setting where dictatorial miners may use their a-priori knowledge of the
transaction content in order to generate MEV. To this end, we first state the
fundamentals of the transaction ledger model by Garay et al. [16] and then
continue to explain how we adapt their model.

2.1 Ledger Backbone Model

According to Garay et al. [16] a transaction ledger is represented as a vector of
blocks l = (B1, ...,Bd), where each block Bi = (tx1, ..., txn) is a vector of trans-
actions tx ∈ T . T denotes the set of valid transactions. Appending a transaction
tx to a vector l is denoted by l||tx. Also, appending a vector of transactions B
to another vector l is denoted as l||B. txi,j denotes transaction txj in block Bi.
As a ledger is a vector of transactions, we simply denote it as l = (tx1, ..., txm)
omitting the block numbers when clear from the context.

The transaction ledger protocol is executed by a set of miners M in the
presence of a PPT adversary S, and driven by a PPT environment Z. Each
honest miner Mi maintains its own local copy of the chain li. Further, an honest
miner Mi process a local buffer Xi := (tx1, . . . , txe), that are candidate trans-
actions to be incorporated into the ledger li provided by the environment Z.4

In [16], a transaction ledger protocol is defined by the transaction generation
oracle TxGen that issues transactions on behalf of the users and the set of valid
ledgers L. Upon receiving a message (IssueTx, γ, P ), TxGen generates a unique
transaction tx[γ] ∈ T on behalf of P , where tx[γ] denotes a transaction tx that
contains an encoding of content γ. Further, a ledger is defined by the three inter-
face functions V(·), I(·),R(·). Where V(·) is the chain validity function, I(·) is the
4 Note that honest miners operate Xi as provided by the environment and do not

change any ordering to maximize fees.
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input contribution function that is executed to provide new blocks, and R(·) is
the chain reading function that returns a semantic interpretation of the ledger.

Moreover, a transaction ledger protocol is called robust if it provides per-
sistence and liveness. Persistence means that a transaction that appears’deep
enough’ into the chain will appear at the same position for all honest miners.
On the other hand, liveness means that if a transaction is input to the honest
miners for at least v rounds it will appear k blocks deep into the chain of those
miners.

In our work we assume the existence of a robust transactions ledger protocol
Π = (I,V,R,TxGen,L) for some liveness parameter v. For more details on the
ledger backbone protocol protocol we refer the reader to the Appendix B.

2.2 Dictatorial Miners

In our model, the transaction ledger protocol is executed by miners in the pres-
ence of a PPT adversary S, and driven by a PPT environment Z. The adversary
S can fully corrupt a minority of the miners (as in [16]). In contrast to the model
of [16], every miner that is not fully corrupt will automatically be dictatorial,
leaving no honest miner in the protocol. The difference between an honest miner
and a dictatorial miner is that a dictatorial miner has preferences over the con-
tent of transactions and might therefore re-order, delay, or suppress transactions
it receives from the environment.

Formally, a dictatorial miner Mi receives, at the beginning of each round, in
its transaction buffer Xi candidate transactions provided by the environment Z,
just as honest miners would. However, Mi may execute the input contribution
function I(·) on a modified X′

i instead. At the beginning of each round Mi may
choose X′

i depending on the received transaction buffer Xi and the current ledger
l. For every transaction tx ∈ Xi, Mi decides whether to include tx in X′

i, to
suppress it, or to delay it to a later round.

When deciding on how to treat a candidate transaction tx[γ] a dictatorial
miner is assumed to maximize its expected utility with respect to its private
utility function ui : l × Γ �→ R. The utility function ui(l, γ) computes the utility
of Mi for including a transaction tx[γ] into the ledger l5. If a miner Mi includes
a transaction tx without knowing its content the expected utility for including
this transaction is denoted as ui(l, tx). The miner’s expectation is taken over the
distribution on the transaction’s contents supplied by the environment Z which
is assumed to be common prior for all miners6.
5 The utility function covers all kinds of revenues a miner might expect including fees,

extractable values, bribes. Since, estimating this utility is rather complex we assume
the function only to be known to the respective miner itself.

6 For the simplicity of our model we assume that all dictatorial miners share a common
believe on the contents of transactions the environment Z will provide. In practice,
this belief might be different for the miners considering the information available
to the miners. However, aligning the believes might be part of the collaboration
between the miners.
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We say that a miner prefers to include a transaction tx0[γ0] over transaction
tx1[γ1] in some ledger l if ui(l, γ0) > ui(l, γ1). The preference is denoted as
tx0[γ0] � tx1[γ1] if the ledger l is evident from the content. A miner is indifferent
between tx0[γ0] and tx1[γ1], denoted as tx0[γ0] ∼ tx1[γ1], if ui(l, γ0) = ui(l, γ1).
Appending a new transaction results in a new ledger, therefore the utility for
appending tx0[γ0] and then appending tx1[γ1] is ui(l, γ0) + ui(l||γ0, γ1). Finally,
we denote an empty content of a transaction as ⊥. The expected utility for
including an empty or neutral content ⊥ is assumed to be ui(l,⊥) = 0, since
including an empty transaction results semantically in the same ledger.7

Miner’s Coalition. Dictatorial miners may collude with each other if forming a
coalition yields a higher individual utility. In fact, [10] shows that even if min-
ers have concurrent preferences, e.g., they are concurring for the same MEV
opportunity, collaborative behavior is not just stable but in fact yields a higher
individual utility. Therefore, it is assumed (and observed in practice) that dic-
tatorial miners will eventually collude if it is individually more profitable [10].
Our model allows dictatorial miners to coordinate their actions against single
transactions, thus whenever there exists an individually profitable coalition of
dictatorial miners, one could see it as a single entity.8 Note that this may include
the grand coalition of all miners.

Forking. We stress, that dictatorial miners execute the same input contribution
function as honest miners (with potentially different inputs), thus only creating
valid blocks and extending the current chain. While a sufficiently large coalition
of malicious miners could fork the the longest chain, the simple reorder, delay
or suppression of transactions that can be performed by dictatorial miners is a
much more subtle deviation from the honest behavior compared, thus allowing
for a positive result even against a coalition of all dictatorial miners.

3 Content Preference Robustness

In this section we formalize the concept of content preference robustness, that
yields liveness and transaction order guarantee against dictatorial miners. To this
end, we define the properties rational liveness and rational transaction ordering.
Further, we explain the rational of restricting dictatorial miners beliefs in order
to exclude trivial cases from our model.

3.1 Rational Liveness

Rational liveness says that a transaction that is input to all dictatorial miners
will eventually appear in the ledger. Consider a transaction ledger protocol Π =
(I,V,R,TxGen,L). Rational liveness is defined as:
7 Appending an empty transaction does not change, e.g., any balances nor account

states.
8 Practically, this means that dictatorial miners might even exchange secret informa-

tion, e.g. if a transaction content is secret shared amongst the miners.
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Definition 1 (Rational liveness). If a transaction tx[γ] ∈ T issued by TxGen
is input for all dictatorial miners for at least v consecutive rounds, then all
dictatorial miners will report this transaction at least k blocks deep into the
ledger, for some k, v ∈ N.

Intuitively, rational liveness provides the same guarantees as the liveness defini-
tion of [16], but extended to dictatorial miners. In order to show that a robust
transaction ledger protocol Π achieves this property one has to show that it is
in the dictatorial miners best interest to behave as an honest miner, such that
the transactions provided by the environment are forwarded unchanged to the
input contribution function.

3.2 Rational Transaction Ordering

The original model of [16] does not formalize the concept of transaction order-
ing. However, as practically demonstrated by [10] dictatorial miners can extract
significant utility by rearranging transactions in different ways. Therefore, trans-
action ordering is of major relevance when considering dictatorial behavior of
the miners. To this end we define rational transaction ordering preservation as
follows:

Definition 2 (Rational transaction ordering). A transaction ledger proto-
col Π = (I,V,R,TxGen,L) preserves rational transaction ordering if for all pairs
of transactions (tx0, tx1) issued by TxGen, for all ledgers l ∈ L and for all miners
Mi ∈ M, we have that ui(l||tx0, tx1) = ui(l||tx1, tx0).

Intuitively, rational transaction order preservation means that a dictatorial miner
receives the same expected utility for including transaction tx0 before transaction
tx1 into a ledger l for all pairs (tx0, tx1) and all ledgers l ∈ L. In particular this
means that a dictatorial miner does not improve its expected utility by altering
the order of transactions received by the environment, and hence has no incentive
to do so.

3.3 Restrictions on the Environment

Since we allow the miner’s utility function to depend on off-chain dynamics,
it is possible that the utility of a miner is always negative. Thus, this miner
would do strictly better by always suppressing all transactions, independently
of their content (or the current ledger). This might be induced, e.g., by some
utility source that offers a large compensation for mining empty blocks. Since
this kind of utility source would make the rational decision independently of the
transaction’s contents or the ledger state, we explicitly exclude them from our
model.

For this, we limit the expectations of the miners about the environment Z
such that all transactions sent to the miners are expected to yield at least a pos-
itive utility, as otherwise the miners are not incentivized to include transactions.
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Definition 3 (Expected incentive compatible environment). An envi-
ronment Z providing transactions to a set of miners M executing the ledger
protocol Π is expected incentive compatible if for all miners Mi ∈ M, for all
ledgers l ∈ L, and for all tx ∈ T we have that ui(l, tx) > 0.

Note, that this does not restrict the environment itself but rather the believe
of the dictatorial miners about the environment. Intuitively, this means that
the miners expect the environment to provide transactions that yield a posi-
tive utility on average, where the expectation is taken over the distribution of
transaction contents the environment provides. This assumption is essential to
ensure that dictatorial miners will eventually improve their expected utility by
including transactions. Note that miners expecting to lose utility for including
transactions provided by the environment would trivially not include it. In prac-
tice, this is usually accomplished by transaction fee mechanisms.9 Note however
that this assumption does not trivialise the problem, as even with an expected
incentive compatible environment, dictatorial miners could still increase their
profits by, e.g., suppressing or reordering selected transactions from the ledger.

Content Preference Robustness. Putting all together, we now define the notion of
content preference robustness (CPR) for a transaction ledger protocol executed
in the presence of dictatorial miners.

Definition 4 (content preference robustness). A transaction ledger proto-
col Π = (I,V,R,TxGen,L) executed by a set of dictatorial miners M driven by
some expected incentive compatible environment Z in presence of a PPT adver-
sary S is called CPR if Π achieves rational liveness and rational transaction
ordering.

4 Compiling a Robust Ledger into a CPR Ledger

In this section we show how to get content preference robustness for a transac-
tion ledger protocol. In particular, we show how to generically compile a robust
transaction ledger protocol into a CPR transaction ledger protocol.

4.1 CPR Compiler

A CPR compiler for a robust transaction ledger protocol Π is defined as follows.

Definition 5 (CPR Compiler). Let Π = (I,V,R,TxGen,L) be a robust trans-
action ledger protocol. A CPR compiler Φ is a PPT algorithm Π ′ ← Φ(Π) such
that Π ′ = (I′,V′,R′,TxGen′,L′) achieves CPR.

In the following we provide an overview of our CPR compiler, followed by a
detailed description of how our CPR-compiler Φ transforms each component of
a robust transaction ledger protocol Π to build the CPR ledger protocol Π ′.
9 Note, that in practice it would be sufficient for the dictatorial miners to believe

that the environment is incentive compatible for themselves. However, for the sake
of simplicity of our model we assume that miners believe that the environment is
expected incentive compatible for every miner.
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4.2 Compiler Overview

The CPR compiler modifies the transaction generation oracle TxGen into a
“time-lock transaction generation oracle”, that issues transactions inside time-
lock puzzles [5,28] that can be opened after some specified time has passed.
The idea is to let the miners commit to a set and order of time-locked transac-
tions before their content gets revealed. This forces the miners to make decisions
about incoming transactions before knowing the actual content of the transac-
tions. However, the miners might try to delay transactions until their content
gets revealed before making their final decision. Therefore, the protocol Π ′ has to
ensure that delaying transactions is not expected to br profitable for the miners.

The compiled transaction ledger protocol Π ′ maintains two separate chains;
the “control” chain l′c that contains a ledger consisting of time-locked trans-
actions, and the “sanitized” chain l′m that contains the actual contents of the
transactions that are final in the control chain. The mining of new blocks follows
the rules of the underlying robust ledger protocol Π (e.g., Proof-of-Work), and it
occurs in the control chain first. To extend the ledger, miners first gather all the
new (time-locked) transactions from their input buffer and build a block. The
miner that wins the right to append a block to the control chain is also respon-
sible for extending the sanitized chain by providing solutions to the time-lock
puzzles that are in the common-prefix of the control chain.

To illustrate with a concrete example, consider a robust ledger protocol with
liveness parameter v of 2 rounds, i.e., after 2 rounds a transaction is considered
final in the ledger, e.g. being k = 2 blocks deep into the chain. Assume a time-lock
puzzle instantiation that can only be opened 2 rounds after its creation. Hence,
for the first 2 rounds of the protocol only the control chain will be extended,
as no solution to puzzles is yet available. At round 3 the miner that creates the
new block on the control chain must also create a new block on the sanitized
chain by providing solutions to all the puzzles that are included in the block
created at round 1 in the control chain; the solution to the puzzles are in fact
the contents of the transactions. From round 3 onwards, every new round will
extend both chains, and the sanitized chain at round r will contain the contents of
the transactions included at round r −2 in the control chain. As all transactions
that are at least 2 blocks deep in the ledger are final, then the blocks in the
sanitized chain only includes contents that are already final.The structure of the
build ledger is illustrated in Fig. 1.

Fig. 1. High-level architecture of a CPR ledger with liveness parameter v = 2.
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Note that the control chain is the only chain that needs consensus, as the
state of the sanitized chain can be deterministically retrieved from the control
chain. However, miners can still freely choose the time-locked transactions to be
included in the control chain, and therefore try to delay a time-locked transaction
until learning its content before deciding to either include it or suppress it. To
this end, our construction implements a mechanism that invalidates transactions
that are “too old”. Thus, dictatorial miners face the dilemma of either including
a time-locked transaction without knowing its content, or delaying it, which leads
to the invalidation of the transaction and loss of utility. To solve the dilemma,
rational miners must rely on their expectation on the transactions’ content.

4.3 Time-Lock Transaction Generation Oracle

Here we describe how our CPR compiler Φ builds the time-lock transaction gen-
eration oracle TxGen′ for the compiled protocol Π ′. A natural way to model a
time-lock transaction generation oracle TxGen′ is by describing it as a function-
ality. The functionality we need from such an oracle is that transactions can be
created on behalf of users and the miners are merely notified that a transaction
has been created. Moreover, published transactions should be associated with a
fresh ledger account. The content corresponding to the transaction can only be
retrieved after some predetermined number of rounds.

More formally, the Ftl-TxGen functionality encapsulates the content γ of a
transaction into a randomly generated transaction tag t̃x that is delivered to
every miner. A miner can learn the content associated with a transaction tag at
least δ rounds after the transaction has been issued by sending at least δ solve
requests for the same transaction tag to Ftl-TxGen. Once, the correct amount
of requests is issued the functionality returns the associated solution tag sid.
Further, the functionality allows to verify if a content belongs to a transaction
tag by returning the corresponding content. To this end, on receiving a solution
tag sid at any time the functionality Ftl-TxGen returns the associated content γ.
By separating, solving the puzzle from revealing the message it is ensured that
a message can be revealed at any time if sid is known, even without solving the
puzzle. Note that in our functionality, the issuing round of a transaction as well
as a fresh ledger account are also associated with the transaction tag.

Practically, this means that users sign the time-locked transaction using a
freshly generated ledger account and include a time stamp of the creation time,
which relates to the current round.10 The first can be used for practical reasons to
deter malicious users from flooding the ledger with time-locked transactions, as
we will discuss later on in Sect. 5. The latter is used by the protocol to determine
whether a transaction is “too old”. The Ftl-TxGen functionality is described next.

10 According to Garay et al. this would practically relate to the block number. Therefore
this “timestamping” of the creation round is practically achieved by including the
latest known block number.
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Functionality Ftl-TxGen

The Ftl-TxGen functionality is parameterized by a delay parameter δ that
represents how many rounds the transaction content stays hidden, a set of
transaction tags T̃ , a set of ledger accounts A, and space of solution tags
Sid. It is executed by a set of users P, a set of miners M, and an adversary
S. Ftl-TxGen maintains initially empty lists O and Q.

– On message (IssueTx, txid, γ) from Pi ∈ P in some round r the func-
tionality samples t̃x ←$ T̃ , sid ←$ Sid, and the account A ←$ A. Then,
it records the tuple (txid, t̃x, sid, γ, r, A, Pi) in O and sends it to Pi. Fur-
ther, send the message (Issued, txid, t̃x, r, A) to every M ∈ M and S.

– On message (Solve, txid, t̃x) from Mi ∈ M in some round r the func-
tionality does the following: If no record (txid, t̃x, r,Mi) exists in Q
append (txid, t̃x, r,Mi) to Q. Let L be the set of records of the form
(txid, t̃x, ·,Mi) in Q and (txid, t̃x, sid, γ, r′, A, Pj) a record in O. If |L| ≥ δ
send the message (txid, t̃x, sid, r,Mi) to Mi and S. Otherwise send mes-
sage (txid, t̃x,⊥, r,Mi).

– On message (RevealMsg, txid, t̃x, sid) from Mi ∈ M in
some round r the functionality does the following: If there
is a record (txid, t̃x, sid, γ, r′, A, Pj) in O send the message
(txid, t̃x, sid, γ, r′, A, Pj , r,Mi) to Mi and S. Otherwise send mes-
sage (txid, t̃x, sid,⊥,⊥,⊥,⊥, r,Mi).

Note that we intentionally separate the set of users (that only post transac-
tions) and miners (that process the transactions) in the Ftl-TxGen functionality.
This is to better illustrate that our results only concern the case where miners
do not send transactions. It is easy to see that whenever a miner itself generates
transactions it is not possible to prevent this miner from learning the content
of its own transaction. Therefore, we restrict the functionality to only accept
IssueTx commands from users.

In order to instantiate the transaction generation oracle TxGen′ of the com-
piled protocol Π ′ the functionality Ftl-TxGen should be parameterized with a delay
parameter δ = v, where v is the liveness parameter of Π. Further, the content
space Γ ′ for the protocol Π ′ corresponds to the transaction space T in the sup-
port of the transaction generation oracle TxGen of the underlying transaction
ledger protocol Π. Intuitively, this means that the environment Z samples trans-
actions in the support of TxGen that are provided as content to Ftl-TxGen when
issuing a transaction.11

Realizing the Ftl-TxGen Functionality. Our Ftl-TxGen functionality is a simplified
version of the time-lock puzzle functionality of [5, Fig. 3], where we simply cast it
as a transaction generation oracle. In particular, the original functionality sam-

11 Nevertheless, the functionality Ftl-TxGen is not restricted to a specific content space.
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ples a consecutive sequence of puzzle states, while sending a solve request returns
the next state in the sequence. For the sake of simplicity of our functionality we
omit the intermediary states. Instead in our functionality a puzzle tag is queried
multiple times to solve the puzzle until the functionality returns a solution tag.
This solution tag corresponds to the last puzzle state from the original function-
ality and can be used to reveal the massage at any time as in [5]. Note, that this
simplification does not interfere with the security since no additional information
is leaked. Additionally, our functionality samples a new account that is associ-
ated with the transaction tag. Since this tag is sampled uniformly at random it
does not leak any information about the content or solution tag associated with
the transaction tag and therefore does not have any impact on the security.

In [5], it was shown that (a version of) the well known time-lock puzzle
construction by Rivest, Shamir and Wagner [28] realizes the time-lock puzzle
functionality of [5] in the Universal Composition (UC) model [9]. The time-lock
puzzle construction of [28] is based on the assumption that it is hard to compute
repeated squarings of an element of (Z/NZ)× with large N in less time than it
would take to compute each of the squarings sequentially, unless the factorization
of N is known. Therefore, in order to solve a time lock puzzle a miner has to
perform a predefined amount sequential squarings.

Hence, by the composition property of the UC framework, we can simply use
the time-lock puzzle protocol of [5] as a plug-in replacement for our functionality.

4.4 Chain Validity Function

A ledger l′ of the compiled transaction ledger protocol Π ′ consists of the con-
trol chain l′c and the sanitized chain l′m. The control chain is a ledger of tuples
tx′ = (txid, t̃x, A) providing time-locked transaction tags t̃x from the tag space
T̃ , an associated ledger account A from the the ledger account space A, and
unique transaction identifiers txid. The sanitized chain l′m is a ledger of trans-
action contents containing tuples of the form γ′ = (sid, γ, r, P ). A transaction
ledger l′ consists of blocks (Br1

1 , ...,Brn
n ) where for each block Bri

i , ri denotes
the round the block is created in. Each block extends the control chain l′c
and the sanitized chain l′m. Therefore, each block is a tuple Bri

i = (Bri
c,i,Bri

c,i),
with Bri

c,i = (tx′
i,1, ..., tx

′
i,y) and Bri

c,i = (γ′
i,1, ..., γ

′
i,q). For simplicity we denote

l′ = (l′c, l
′
m) = ((tx′

1, ..., tx
′
p), (γ

′
1, ..., γ

′
q)) when referring to the concatenation of

all blocks. A ledger l′ is in the set of valid ledgers L′ if the chain validation
function V′ returns true on l′. Intuitively, V′(·) checks for every content in the
sanitized chain if it corresponds to the transaction tag at the same position in
the control chain. The formal algorithm for checking if a ledger l′ is a valid ledger
for the transaction ledger protocol Π ′ is provided in Algorithm 1.

4.5 Input Contribution Function

The input contribution function I′(·) is executed in order to generate an
updated ledger. It receives as input a current transaction ledger l′ = (l′c, l

′
m) =

((tx′
1, ..., tx

′
p), (γ

′
1, ..., γ

′
q)), a buffer of not included transactions X. Further, I′(·)
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Algorithm 1. V′(l′)

1: parse (l′c, l
′
m) ← l′

2: parse (tx′
1, ..., tx

′
p) ← l′c

3: parse (γ′
1), ..., (γ

′
q)) ← l′m

4: for i = 1, ..., q do
5: parse (txidi, t̃xi, A) ← tx′

i

6: parse (sidi, γi, ri, Pi) ← γ′
i

7: send (RevealMsg, txidi, t̃xi, sidi) to
Fδ

tl-TxGen to receive (txidi, t̃xi, sidi, γ̃i, r̃i,
P̃i)

8: if γ̃i �= γi ∨ r̃i �= ri ∨ P̃i �= Pi then:
9: return false

10: end if
11: end for
12: return true

is stateful by maintaining a buffer of time-lock puzzle solutions C. Intuitively, I(·)
starts with solving all transaction tags from the control chain that are not solved
yet. All found solutions are stored in the solution buffer. Then, in order to extend
the ledger l′ the function I′(·) extends the sanitized chain with the contents of
transaction tags from the block that is k blocks deep into the control chain.
Further, I′(·) extends the control chain by selecting a set of new time-lock trans-
action tags from X. Finally, I′(·) includes for all selected time-locked transactions
the current round number.12 The formal algorithm is shown in Algorithm 2.

Algorithm 2. I′(l′,X, r)

1: parse (l′c, l
′
m) ← l′

2: parse (tx′
1, ..., tx

′
p) ← l′c

3: parse (γ′
1), ..., (γ

′
q)) ← l′m

4: for i = q + 1, ..., p do
5: parse (txidi, t̃xi, A) ← tx′

i

6: send (Solve, txidi, t̃xi) to Fδ
tl-TxGen

to receive message (txidi, t̃xi, sidi)
7: if sidi �= ⊥ then:
8: send (RevealMsg, txidi, t̃xi, sidi)

to Fδ
tl-TxGen to receive (txidi, t̃xi, sidi, γi,

ri, A, Pi)
9: append (txidi, t̃xi, sidi, γi, ri, A,

Pi) to C
10: end if
11: end for

12: parse (Br1
c,1, ..., Brn

c,n) ← l′c
13: j ← n + 1 − k
14: parse (tx′

q+1, ..., tx
′
q+y) ← Brj

c,j

15: Br
m,n+1 = ⊥

16: for i = q + 1, ..., q + y do
17: get (txidi, t̃xi, sidi, γi, ri, A, Pi)

from C
18: γ′ ← (sidi, γi, ri, Pi)
19: Br

m,n+1 = Br
m,n+1||γ′

20: end for
21: get (tx′

p, ..., tx′
p+j) from X

22: Br
c,n+1 ← (tx′

p, ..., tx′
p+j)

23: Br
n+1 = (Br

c,n+1, Br
m,n+1)

24: return l′ = l′||Br
n+1

Remark. One could also separate the tasks of solving time-lock puzzles and
extending the chain into different functions. However, since extending the ledger
depends on solving the puzzles we simply incorporate solving the puzzles into
I(·). By doing so, we additionally stick closer to the model of [16].

12 According to Garay et al. this “timestamping” of the inclusion round is practically
achieved by giving a block number to the selected transactions.
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4.6 Chain Reading Function

The chain reading function R′(·) returns a semantic interpretation of a ledger
l′ ∈ L′. It receives as input a transaction ledger l′ and internally calls the chain
validation function V(·) and chain reading function R(·) of the underlying trans-
action ledger protocol Π. The intuition is that the revealed contents in the
sanitized chain contain transactions in the support of TxGen from the protocol
Π. Therefore, R′(·) can determine the longest chain that is a valid ledger with
respect to V(·). This longest chain can then be interpreted by R(·). Additionally,
R′(·) checks for every transaction content in the sanitized chain if the correspond-
ing time-locked transaction tag was included “too late” in the control chain by
comparing the revealed round number of the transaction tag generation with the
round number of the block that included the transaction tag. If the difference
between block creation round and transaction creation round is more than the
liveness parameter v the content gets ignored. The function R′(·) ensures that
transaction contents that are considered as “too old” are not interpreted by R(·)
and are therefore not considered for the semantic interpretation of the ledger l′.
The algorithm for R′ is shown in Algorithm 3.

Algorithm 3. R′(l′)

1: if V′(l′) = false then:
2: return ⊥
3: end if
4: (l′c, l

′
m) ← l′

5: parse (Br1
c,1, ..., Brn

c,n) ← l′c
6: parse (Br1

m,1, ..., Brn
m,n) ← l′m

7: l̃ ← ⊥
8: for i = 1, ..., n do
9: (γ′

i,1, ..., γ
′
i,y) ← Bri

m,i

10: for j = 1, ..., y do
11: parse (sidj , γj , rj , Pj) ← γ′

j

12: parse tx[γ̃j ] ← γj

13: if V(l̃||tx[γ̃j ]) = true ∧ ri ≤
rj + v then:

14: l̃ ← l̃||tx[γ̃j ]
15: end if
16: end for
17: end for
18: return R(l̃)

4.7 Security Analysis

Now we state our main theorem and show that the compiled transaction ledger
protocol Π ′ compiled by our CPR-compiler Φ is indeed CPR if the underlying
protocol Π is robust.

Theorem 1. Let Π be a robust transaction ledger protocol. Then, for all
expected incentive compatible environments Z, the compiled transaction ledger
protocol Π ′ ← Φ(Π) achieves CPR.
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The intuition of the proof is to show that dictatorial miners maximize their
utility by behaving honestly in all expected incentive compatible environments.
If all dictatorial miners behave as honest miners we can conclude that Π ′ is CPR.
The intention is that no single miner nor coalition of miners is able to gain any
a-priori knowledge of the transaction content by the time they can decide about
including the transactions. Additionally, the construction deincentivizes delaying
transactions until the miners can learn the content, due to the invalidation of
’too old’ transactions. Therefore, dictatorial miners fear of missing out on the
transactions and the associated expected profit if they try to learn the content
first. The full analysis is deferred to Appendix C.

5 Discussions

In this section we discuss several aspects of our results.

Coercion Resistance in CPR Transaction Ledger Protocols. As shown in our
analysis, rational liveness can be achieved if the dictatorial miners gain no a-
priori information about the content of candidate transactions. However, miners
may try to coerce users in order to make them reveal the content of their trans-
actions a-priori. By doing so, the miners would again be able to enforce their
preferences on the transactions. While coercion resistance is to the best of our
knowledge a new issue in transaction ledger protocols, it is quite well known in
voting protocols [11,18]. However, the techniques from the voting literature does
not seem to apply in our setting. The inability of a user to prove the content of
its transaction to a miner would not solve the problem of coercion. Recall that
all transactions are eventually opened in the sanitized chain. Thus, a miner could
simply establish a contract where a user commits to the content that it discloses
before hand, and gets punished if the time-locked transaction opens to something
else later on. This coercion attack is possible in this context since in transaction
ledger protocol it is very unlikely that another user sends a transaction with the
same content. In voting on the other hand it is very much possible that there
is another ballot with the same vote. We believe that coercion-resistance in the
setting of transaction ledger protocols is an interesting open problem left for
future work.

Performance Considerations. In our compiler, every transaction is included as a
time-lock puzzle in the control chain, while the solution must be provided later
in the sanitized chain, once the puzzle is deep enough in the control chain. This
requires miners to solve time-lock puzzles for every transaction. While this addi-
tional computational effort burdens the miners, we note that the computational
cost per transaction is constant (unlike, e.g. PoW). Nevertheless, it is possible
to improve the efficiency significantly in practice. For example, one could allow
the issuer of the transaction to reveal the puzzle solution once the puzzle is deep
enough in the control chain, such that the miners only have to solve the puzzles
for non responsive users. Alternatively, recent advancements in time-lock puzzles
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yield promising results. In particular, Abadi and Kiayias [1] recently proposed
a construction for “chained time-lock puzzles” that allows to compose multiple
puzzles into a single one, hence dramatically reducing the computational effort
of solving multiple the puzzles.

Invalid and Conflicting Transactions. Naturally, it is hard to decide if a time-
lock puzzle contains a transaction that does not contradict any other transaction
already in the chain. However, we stress that this is not an issue for the safety
and correctness of the ledger since it is still possible to deterministically con-
sider only valid transactions in the sanitized chain. Nevertheless, the inclusion
of inconsistent transactions in the control chain might be undesirable in prac-
tice. Therefore, flooding the ledger with time-lock puzzles of invalid transactions
should be deincentivized. Flooding attacks are usually deincentivized by a fee
paid by the sender of a transaction [8,26]. To this end, in our construction,
a time-locked transaction is associated with a ledger account. This associated
ledger account can be charged fees for including the time-locked transaction
in the control chain, independently of the content hidden inside the time-lock
puzzle. Note, that this fee does not necessarily replace any fees for executing
the transactions’ contents hidden inside the time-lock puzzle. This assumes that
users have access to unlinkable ledger accounts, such that the associate ledger
account does not reveal any information about the content hidden inside the
time-lock puzzle. This can usually be achieved using anonymization and mixing
techniques [6,29]. However, as in Garay et al. [16], the design of a concrete fee
mechanism is outside the scope of this work.

Targeted Censorship. We stress that in this work we are not concerned with
censorship targeted at individuals, but we only consider preferences over the
contents of the transactions. We note that the full anonymization of transactions
requires not only protocol level anonymization but also network level anonymiza-
tion, what is known to be a hard problem in practice. Dictatorial miners, might
be able to gain some information about the transaction content form the net-
work layer of the protocol, for example learning the sender node of a transaction
in the underlying network. However, to protect against some level of censorship
against individuals, one can still run the CPR protocol over TOR [13].

Alternative Approaches. A different approach to achieve CPR could be by lever-
aging threshold cryptography or multi-party computation [25]. However, even
if threshold cryptography is clearly capable of preventing an unqualified set
of miners from taking rational actions, it also inherently defines a coalition of
miners that can. As pointed out by Daian et al. [10], any coalition that yields
higher utility should be expected to be formed eventually. Hence, we rely on
time-lock puzzles which are inherently coalition resistant by design. Choosing
time-lock parameters in a way that no miner can learn the content a-priori while
on the same hand guaranteeing that every miner can be expected to provide the
solutions is practically challenging. In particular, due to hardware differences,
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some miners may perform the required sequential computation faster than oth-
ers. Also, aligning the delay parameter of the time-lock puzzle with the desired
block creation time of the underlying transaction ledger protocol might be chal-
lenging, especially for probabilistic block creation times [8,26]. Therefore, a prac-
tical instantiation should reflect this by considering a gap in which miners are
expected to provide the solutions for time-lock puzzles. Another approach to the
computational time-lock puzzle is proposed by Liu et al. [23]. They propose a
construction of a “time-release encryption” relative to a reference clock using
witness encryption. With their construction it is possible to encrypt a transac-
tion such that its plaintext is released, e.g., at a predefined blockdepth of the
ledger. While this solves the challenge of choosing time-lock puzzle parameters,
the implementation of such scheme would be rather impractical, since the size of
the witness used for decryption is approximately the size of the entire blockchain.

6 Conclusion

In this work we investigate the setting where “dictatorial miners” can use their
a-priori knowledge of transactions’ content to alter the set and order of candidate
transactions in their most favorable way to improve their utility. To this end, we
introduce the model of dictatorial miners that may deviate from honest behavior
by suppressing or reordering transactions selectively depending on their content.
We incorporate dictatorial miners in the transaction ledger protocol modeled by
Garay et al. [16] by replacing honest miners with dictatorial ones. In that vein, we
show that a transaction ledger protocol can achieve content preference robustness
by guaranteeing rational liveness and rational transaction order preservation. We
show that this can be achieved if dictatorial miners cannot learn the contents of
transactions before they are in the common-prefix of the chain. In particular, we
provide a construction for a CPR compiler that can transform any generic robust
transaction ledger protocol into a CPR ledger protocol by leveraging time-lock
puzzles.
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A Related Work

In this section we discuss some related works and compare them with our results.

Bitcoin Incentive Compatibility. Badertscher et al. [2] showed that Bitcoin sat-
isfies the properties of persistence and liveness (as defined in [16]) in presence of
a rational majority. However, in their work the utilities of the rational partici-
pants are restricted to a natural class of incentives for the miners, such as fees
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and block rewards, explicitly excluding preferences over transaction contents.
In this work we extend their results and explicitly focus on utilities based on
transaction contents.

Order-Fairness for Byzantine Consensus. Kelkar et al. [19] deal with the issue
of order fairness in transaction ledger protocols. They point out that consistency
and liveness do not protect against malicious manipulation of the received order
of transactions. This implies that the resulting ordering of transactions does not
necessarily reflect the received ordering. Their proposed solution provides block
order fairness, which says that if sufficiently many miners receive a transaction
tx before tx′ then no honest miner can report tx′ in a block before tx. Further,
they show that it is not possible to guarantee received order fairness, consistency
and liveness at the same time.

Moreover, [19] gives a positive result for a slightly weaker definition of order
fairness under the strict assumption that a fraction of the parties behave hon-
estly, i.e., the honest parties will not alter the order of transactions under any
circumstances. In comparison, our model does allow every miner to alter the
order of candidate transactions, or even suppress them, for the sake of individ-
ual profit. Our construction ensures that miners are indifferent between transac-
tions they are supposed to include into the ledger, and do therefore not expect
a higher utility for altering the transaction’s order. Note however that this does
not contradict the impossibility result of Kelkar et al. [19].

Censorship Resistant Consensus. Miner’s suppresion of transactions was already
addressed by Miller et al. [25]. In order to achieve censorship resilience they pro-
pose a BFT consensus protocol combined with threshold encryption. In the pro-
posed construction miners select transactions from their local buffer and encrypt
them under the common public key of the threshold encryption. Before decryp-
tion the miners exchange and agree on the encrypted transactions. As in [19]
the security of the construction is also based on the assumption of an honest
fraction of miners. We note that in our model, any qualified set of miners can
decrypt the threshold encrypted messages at any time and therefore can learn
the plaintext collaboratively for the sake of common and individual profit.

Time-lock Puzzle in Blockchains. Khalil et al. [20] provide an implementation of
a trustless centralized exchange based on an underlying blockchain that prevents
front-running attacks of the centralized operator and the miners of the blockchain
by using time-lock puzzle. The idea of their construction is that the set and the
ordering of bids and offers is determined before the plaintexts are revealed.

Deuber et al. [12] use time-lock puzzles to ensure opening of commitments.
In [12] they propose a minting mechanism based on waiting time auctions. In
order to ensure that the block creators actually include all the openings for the
commitments of bids in a block, it is required that all openings to the commit-
ments are encapsulated in a time-lock puzzle and sent together with the bid
transaction. In both works time-lock puzzles are used to ensure that commit-
ments can be opened even if the opening messages get “lost” in the way, e.g. by
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a corrupted miner. While both of the previous works utilize time-lock puzzles
to ensure openings in their respective ledger application we leverage time-lock
puzzles to strengthen the ledger itself by improving its liveness guarantees.

Further, Doweck and Eyal [14] propose a construction for a multi-party timed
commitment. In their construction a set of N users engage in an interactive com-
mitment protocol with a single coordinator to commit to a list of messages by
the users that can be revealed by the coordinator at a later time. Their construc-
tion is based on El-gamal encryption with a randomly sampled public key of a
small group size, where the private key is revealed by the coordinator by brute
force. Additionally, they provide a construction for a transaction ledger protocol
that leverages their multi-party timed commitment. However, their construction
requires the users to engage in interactive commitment protocols with one or
even several miners leading to a significant communication overhead especially
for higher numbers of users. Moreover, the searching for an El-gamal private key
can be parallelized, offering no lower bound of operations under miners’ coali-
tion. Our construction on the other hand let users publish and propagate their
transactions as commonly done in transaction ledger protocols.

Bribery and MEV Attacks. There are various incentive based attacks utilizing
rational miners that intend to either revise, reorder or to exclude certain trans-
actions from the ledger. On a high level, all these attacks are dynamics that
might influence a rational miner’s preference over transaction content. In [22],
Liao and Katz show an attacker that incentivizes forking the main chain using
high transaction fees. Moreover, McCorry et al. [24] present a different bribery
contract that makes the miners change their mining strategy. In their work,
miners’ utility depends on the attackers bribe rather than on hidden content
preferences. For example, the goldfinger attack of [24] incetivizes miners to mine
empty blocks independent of the content of any available transaction.13

Bribery attacks that incentivize miners to suppress transactions based on
their content are proposed by Winzer et al. [31] and Tsabary et al. [30]. These
types of attacks can be prevented if the dictatorial miners are not able to choose
transactions based on their content.

Daian et al. [10] introduced Time-bandit attacks where adversarial miners
can fork the blockchain by utilizing MEV opportunities. The attack works by
leaving MEV opportunities in the main chain for other miners to claim, thus
incentivizing other rational miners to fork the chain to claim the MEV opportu-
nity. Similarly to [22], this subsidizes a 51% attack. Miners may be incentivized
to break consensus if the block rewards are not enough in comparison to the
MEV [10] opportunities. While our construction does not entirely prevent this
type of attack, it mitigates it by making the attack more costly for the miner
to pull off; the required fork would to claim the MEV would be considerably
deeper, making it less profitable.

13 Clearly, this attack can not be prevented by our construction and outlines the lim-
its we will elaborate in this work; dictatorial miners might suppress transactions
independent of the content if they expect to improve their utility by doing so.
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Sandwich attacks are a common predatory trading strategy in which a miner
or a trader “wraps” a victim’s transaction between two adversarial transac-
tions [10]. If the market price of an asset is expected to rise/fall after the execu-
tion of a large pending transaction, the adversary may extract value by inserting
its own transaction right before/after the spotted pending transaction. Our con-
struction prevents sandwich attacks since the attacker is not able to spot a target
transaction and sandwich it at the same time.

Finally, Judmayer et al. [17] showed that it is almost impossible to determine
the exact globally available MEV opportunities at a certain point in time, and
that a narrow definition of MEV fails to capture all extractable value occasions
of other actors, the emerging network dynamics, or the probabilistic nature of
permissionless cryptocurrencies. In that vein, we consider the complexity of MEV
by assuming the exact utility of miners for including transaction to be unknown.

B Transaction Ledger Protocol

According to Garay et al. [16] a transaction ledger aims at keeping a record
of monetary accounts and its associated balance; a transaction record in the
ledger is typically (but not limited to) an instruction to move balances between
accounts. A transaction ledger is represented as a vector of blocks l = (B1, ...
,Bd), where each block Bi = (tx1, ..., txn) is a vector of transactions tx ∈ T . T
denotes the set of valid transactions. Appending a transaction tx to a vector l
is denoted by l||tx. Also, appending a vector of transactions B to another vector
l is denoted as l||B. txi,j denotes transaction txj in block Bi. As a ledger is a
vector of transactions, we simply denote it as l = (tx1, ..., txm) omiting the block
numbers when clear from the context.

The transaction ledger protocol is executed by a set of miners M in the
presence of a PPT adversary S, and driven by a PPT environment Z. The
protocol execution takes place in rounds. The environment provides inputs to
all parties and receives outputs, while the attacker might fully corrupt some of
the miners. Each honest miner Mi maintains its own local copy of the chain li.
Further, an honest miner Mi process a local buffer Xi := (tx1, . . . , txe), that
are candidate transactions to be incorporated into the ledger li provided by the
environment Z. In [16], a transaction ledger protocol is defined by the transaction
generation oracle TxGen, the set of valid ledgers L and by the three interface
functions V(·), I(·),R(·).

The transaction generation oracle TxGen generates transactions on behalf of
the users P which are abstracted by the environment Z. It is defined with respect
to the set of valid transactions T , the set of valid contents Γ , (which denotes
the set of content information with semantic value for the ledger, e.g., “account
A increases its balance by 10 monetary units”) and the set of ledger accounts A.
Note that a user Pi might be associated with multiple ledger accounts. During
the execution of the transaction ledger protocol, TxGen can be accessed by the
environment Z and it generates transactions that are provided to the miners
and the adversary S. Upon receiving a message (IssueTx, γ, P ) from the environ-
ment Z, TxGen generates a unique transaction tx[γ] ∈ T , where tx[γ] denotes a
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transaction tx that contains an encoding of content γ. After that, TxGen sends
(Issued, tx[γ], A) for some ledger account A ∈ A to every miner and S.

On the other hand, the three interface functions V(·), I(·),R(·) are defined as
follows:

– V(l): The content validation predicate, upon input a sequences of transac-
tions (tx1[γi], ..., txm[γm]) checks whether all the transactions constitute a
semantically valid ledger. Formally, V(·) defines the set of valid ledgers L and
checks if l ∈ L, e.g. V(l) checks if there are no conflicting transactions in l.

– R(l): The chain reading function returns a semantic interpretation of the con-
tents (γ1, ..., γn), e.g. a list of account addresses and balances Upon receiving
a ledger l = (tx1[γ1], . . . , txn[γn]), and if V(l) = 1.

– I(l,X, r): Upon receiving a ledger and a buffer of local transactions in some
round r the input contribution function creates some new block B = (tx1[γ1],
. . . , txe[γe]), where txi ∈ X and returns l′ := l||B.

Moreover, a transaction ledger protocol is called robust if the following prop-
erties are satisfied:

– Persistence: If at any round r an honest miner Mi maintains a ledger that
contains a transaction tx ∈ T in a block more than k ∈ N blocks deep in the
chain, then tx occurs at the same position in the chain of all the other honest
miners.

– Liveness: If a transaction tx ∈ T issued by TxGen is input for all honest
miners in M for at least v consecutive rounds, then all honest miners will
report this transaction at least k blocks deep into the ledger, for some k, v ∈ N.

According to [16] a robust transaction ledger protocol can be build on top
of a blockchain backbone protocol that satisfies the properties common prefix,
chain quality and chain growth by defining the interfaces I,V,R,TxGen, and L.
In our work we assume the existence of a robust transactions ledger protocol
Π = (I,V,R,TxGen,L) for some liveness parameter v. Therefore, we can waive
details of the underlying backbone protocol that is used to implement Π. For
more details on the ledger backbone protocol protocol we refer the reader to the
paper of Garay et al. [16].

C Analysis of Theorem 1

Let Π = (I,V,R,TxGen,L) be a robust transaction ledger protocol executed
by a set of miners M in the presence of a PPT adversary S driven by some
environment Z, and let Π ′ = (I′,V′,R′,Ftl-TxGen,L′) be the compiled transaction
ledger protocol Π ′ ← Φ(Π) executed by a set of dictatorial miners M′ in the
presence of a PPT adversary S driven by some environment Z ′. Let δ = v be
the delay parameter of Ftl-TxGen.

At any round r a dictatorial miner Mi receives a transaction buffer Xi from
the environment Z ′ and provides an altered transaction buffer X′

i to the input
contribution function I′(·).
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In order to show that Π ′ achieves CPR it is necessary to show that Π ′

achieves rational liveness and rational transaction ordering. To this end, we show
that a dictatorial miner Mi can not improve its expected utility ui by deviating
from honest behavior. A dictatorial miner Mi behaves honest if X′

i = Xi at any
round r. If it is in the best interest of dictatorial miners to behave honest it can
be concluded that Π ′ achieves rational liveness if Π achieves liveness.

Let therefore Xi = (tx′
1, ..., tx

′
n) with tx′

j = (txidj , t̃xj , Aj) for all j ∈ [n] be a
transaction buffer that is provided to some dictatorial miner Mi in some round
ry for some current ledger l′ry ∈ L′ by the environment Z. Since, Z is expected
incentive compatible it holds that ui(l′, tx′

j) > 0 for every tx′
j ∈ Xi. Therefore, it

follows that Mi prefers to include tx′
j over suppressing it, if γ′

j = (sidj , γj , rj , Pj)
associated with tx′

j is sampled by Z from some common prior distribution over Γ
and Mi did not gain any additional information about γj . Therefore, a dictatorial
miner that is able to reduce its uncertainty about γj over the course of some
rounds might actually be able to improve its expected utility by suppressing
tx′

j . Consequently, it would be in a dictatorial miners best interest to learn the
content of transactions instead of relying on the common prior expectation.

Since Z provides transactions tx′
j issued using the functionality Ftl-TxGen any

dictatorial miner is able to learn the content γ′
j associated with tx′

j after at
least v rounds after it was issued.14. However, Ftl-TxGen does not allow any single
miner Mi nor an adversary S that corrupts any subset of miners to learn γ′

j

before v rounds. In particular this means that no single miner nor any coalition
of miners is able to reduce its uncertainty about γ′

j before v rounds. However,
a dictatorial miner Mi could still improve its expected utility by delaying every
transaction tx′

j it receives in some round ry for v rounds so it can learn its
contents. To this end, the chain reading function R′(·) checks for every transac-
tion tx′

j = (txidj , t̃xj , Aj) with associated content γ′
j = (sidj , γj , rj , Pj) included

in some block Bry
y created in round ry if ry ≤ rj + v. If not, γ′

j is ignored by
R′(·). Consequently, whenever a dictatorial miner Mi receives a transaction tx′

j

in some round ry for the first time and decides to delay this transaction for at
least 1 round, it knows that γ′

j associated tx′
j will be ignored by R′(·). Since any

content γ′
j that is ignored by R′(·) is treated as if the corresponding transaction

tx′
j was not included at al delaying a transaction yields the same expected utility

as suppressing it for every dictatorial miner Mi, every transaction tx′
j and every

ledger l′ry ∈ L′. Since, Z is expected incentive compatible it can be concluded
that every dictatorial miner Mi prefers to include any transaction tx′

j in the
round it received it first. Therefore, any miner Mi will include any transaction
tx′

j ∈ Xi into X′
i in any round. Therefore, Π ′ executed by a set of dictatorial

miners M in presence of an adversary S driven by an expected incentive com-
patible environment Z achieves rational liveness. Moreover, let X

ry
i be the set

of transactions in Xi that miner Mi received for the first time in that round ry.
Since for every transactions tx′

j ∈ X
ry
i the transaction tag t̃xi and the associated

account A are chosen uniformly at random and do not reveal any information

14 Note that, since Z is expected to provide the inputs to the dictatorial miners the
miner Mi is expected to receive any transaction tx′

j in the same round it is issued.



Revisiting Transaction Ledger Robustness 697

about the associated content γ′
i any dictatorial miner Mi must be indifferent

between either including some transaction tx′
1 in some ledger l′roundy

||tx′
0 or

including some transaction tx′
0 in some l′roundy

||tx′
1 for every pair of transac-

tions (tx′
0, tx

′
1) ∈ X

ry
i and every ledger l′roundy

. Therefore, it can be concluded
that Π ′ also achieves rational transaction preservation.
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Abstract. A cryptocurrency wallet app is a piece of software that man-
ages, stores, and generates private keys of cryptocurrency accounts. With
the provision of services such as easy access to transaction history, and
checking account balance besides transmissions of new transactions in
distributed networks such as Blockchains, cryptocurrency wallet apps
gain unprecedented popularity which in turn attracts malicious actors
to attack users resulting in loss of cryptocurrency assets and leakage
of sensitive user data. This paper presents the first large-scale study
of Android cryptocurrency wallet apps. We surveyed apps on Google
Play to detect and extract meta-data and application packages of 457
cryptocurrency wallet apps. We perform several passive and active mea-
surements designed to investigate the security and privacy features to
study the behavior of cryptocurrency wallet apps. Our analysis includes
investigating cryptocurrency wallet apps’ third-party embedding, mal-
ware presences, and exfiltration of users’ sensitive data to third-parties.
Our study reveals vulnerabilities and privacy issues in cryptocurrency
apps including the insecure use of HTTP to serve transactions.

Keywords: Cryptocurrency Wallet · Static Analysis · Dynamic
Analysis · User-review Analysis

1 Introduction

Cryptocurrency wallet applications (or wallet apps) for mobile devices are used
to securely store cryptocurrency assets and enable users to control their assets
over private keys. Like using any type of mobile application, users of wallet apps
are possibly faced with security and privacy vulnerabilities rendered by devel-
opers’ coding practices and privacy practices related to their business models.
However, as wallet apps are involved in controlling users’ financial assets, the vul-
nerabilities become more severe if they are leveraged by attackers. For instance,
adversaries could leverage the embedded third-party libraries and request per-
missions of the app to steal important information such as private keys. Hence,
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it is important to assess wallet apps’ behaviors for potential security and privacy
issues to inform users as well as developers. Recently, several works have stud-
ied security and privacy issues of wallet apps [16,19,23,33]. Nevertheless, their
analysis focuses on some characteristics such as apps requested permission, and
privacy leakage, and are limited to a few existing apps.

To provide a comprehensive assessment of the security and privacy issues of
457 Android wallet apps, we perform the first large-scale study of the privacy
and security features of wallet apps on Google Play. We first collect wallet apps
available in the Google Play store. We use static analysis and dynamic analysis
to investigate the privacy and security features of these apps. In static analysis,
we evaluate the source code of each app to identify the requested permissions,
third-party libraries embedding, malware presence, and anti-analysis adoption.
Whereas in dynamic analysis, we monitor the application during execution and
capture the network traffic to observe the application interaction. Moreover,
we analyse wallet apps’ privacy policies for compliance and evaluate users’ per-
ceptions by investigating users’ comments. To foster future research, we release
our code and dataset used in this paper to the research community: https://
walletapps2021.github.io/.

The main contributions of our work are as follows:

Source Code Analysis. We collect a corpus of 457 wallet apps from Google
Play and illuminate their evolution and popularity on Google Play (Sect. 2.2).
We systematically analyse wallet apps’ source codes and find potential security
issues spanning from requesting dangerous permission, embedding third-party
libraries for advertising and tracking purposes, presence of malware code, and
using anti-analysis techniques (Sect. 4).

Our analysis identified 8 (1.7%) apps using sensitive permission such as
android.permission.DOWNLOAD WITHOUT NOTIFICATION in their code which,
once requested, enables the app to download any file or malware executables
without user consent, 25 (5.4%) wallet apps embed malware code in their source
code according to VirusTotal [43]. We also found 13 (2.8%) apps embed Cross-
Library Data Harvesting (XLDH) library [44] which “illegally” extracts user
information from legitimate libraries such as Facebook, Google, Twitter, and
Dropbox.

Apps’ Network Traffic Analysis. We investigate the runtime and net-
work behavior of the wallet apps by installing them into an Android phone
and navigating the app’s activities while running on the phone (Sect. 5). Our
analysis detected broad evidence of potential security and privacy issues of
the apps, including data leakages, using unencrypted transmission via HTTP,
and requesting third-party domains containing advertisers and trackers. For
instance, we detected 148 apps transmitting their traffic via unencrypted HTTP
protocol. Moreover, we identified 15 apps (e.g.,com.btcc.mobiwalletand and
com.coinburp.mobile) sharing user credentials and device information with
third-parties via HTTP.

https://walletapps2021.github.io/
https://walletapps2021.github.io/
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Privacy Policy and Users’ Reviews Analysis. We analyse potential com-
pliance issues of apps by evaluating apps’ privacy practices and investigating app
user reviews (Sect. 6). Particularly, our analysis detected 87 (19%) apps failed
to provide privacy policy links for their user and 78 (17%) violated the privacy
policy related to sharing users’ information with third-parties.

2 Background and Data Collection Methodology

2.1 Background

Cryptocurrency is a digital asset that uses cryptography to ensure its creation
security and transaction security [45]. There are over 2,500 different kinds of
cryptocurrencies now, where the most well-known cryptocurrencies are “Bitcoin”
and “Ethereum” which are traded at numerous cryptocurrency exchanges or
marketplaces. Cryptocurrency exchanges offer trade services among cryptocur-
rencies. There are centralised exchanges (governed by a company), decentralized
exchanges (provided an automated process for peer-to-peer trades), and hybrid
exchanges [45].

The traded cryptocurrencies are normally kept at wallet in the form of hash
values termed as wallet addresses [23]. Each address is corresponding to a pair
of keys: public and private. The public key is used for external transactions such
as sending or receiving cryptocurrencies. In order to prove the ownership of the
cryptocurrency, each transaction is signed with a private key. If a user loses their
private keys, they will lose their associated cryptocurrency assets. Anyone who
gains the private key of a public address can authorize a transaction.

2.2 Cryptocurrency Wallet Apps Collection on Google Play

Google Play neither lists wallet applications as distinct apps’ categories nor its
search functionality yields all wallet applications. To collect and identify all
possible wallet apps, we develop a crawling methodology. First, we query Google
Play search with cryptocurrency-related keywords to collect a seed cryptocur-
rency wallet app. The keywords consist of “crypto”, “cryptocurrency”, “bitcoin”,
“coin”, “Ethereum”, “wallet”, and others coin abbreviation such as “BTC”,
“ETH” and “DOGE“. We then use Google Play Store Scraper API1, a tool for
scraping and parsing application data from the Google Play Store2, to recursively
crawl similar apps of the seed app IDs. By using this method, we found 3,629 app
IDs. The API also returned the apps’ meta-data such as the app’s title, average
rating, user reviews, descriptions, and categories to be further used for the app’s
selection. We then manually checked each app’s description and filtered only
cryptocurrency wallet apps. Finally, we obtain 457 free cryptocurrency wallet
apps. We leverage gplaycli [25] to download the application packages (APKs)
from Google Play of 457 cryptocurrency wallet apps. Given that Google Play
1 https://pypi.org/project/google-play-scraper/.
2 https://play.google.com/store.

https://pypi.org/project/google-play-scraper/
https://play.google.com/store
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does not report the actual release date of the apps but their last update, we use
the date of their first comment as a proxy for their release date. For 63 (13.8%)
apps without any user reviews as of this writing, we determine the approximate
release date by their last update.

Fig. 1. Evolution of the analyzed cryptocurrency wallet apps on Google Play.

Figure 1 shows that cryptocurrency wallet apps have increased four-fold since
February 2018. Figure 2 depicts the distributions of the number of installs and
an average rating of the analyzed cryptocurrency wallet applications on Google
Play. We found that 21.8% (100) of the applications have at least 50,000 installs.
We also observe that 51.3% (234) of the applications have at least 3.0 average
ratings showing that the vast majority of the applications are positively rated
by users. Conversely, we noted that 63 (13.8%) apps without any reviews have
an average rating of 0.0 and have at most 500 installs.

Fig. 2. Distribution of the number of installs and average app’s rating of the analyzed
cryptocurrency wallet apps on Google Play.
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3 Assessment Methodology

We use a set of custom-built tools to assess source codes and network runtime
behaviors of the apps for potential security and privacy issues. The following
sections describe our analysis categorised into static, dynamic, and compliance
analysis.

3.1 Static Analysis

We assess wallet apps for requesting sensitive permission, presence of third-party
tracking libraries and malware codes, use of security certificates, anti-analysis
methods, compliance and user reviews analysis, and leakage of sensitive data to
third-parties.

Permission Analysis. To get the resources it needs during runtime, each wallet
app must declare all of its resource requirements in the AndroidManifest.xml
file. We use apktool to decompress the APKs of the analysed apps and extract all
permissions declared in <uses-permission> and <service>3 tags. We analyse
the requested permissions for potential vulnerabilities and wallet apps’ capabil-
ities for possible exploits.

Tracking Libraries. By inspecting the decompressed source code of each app,
we examine the presence of embedded third-party libraries. To identify which
libraries are associated with tracking, analytics, and advertising services, we
aggregate the manually curated list of 383 tracking and advertising libraries
from [15,20,21,40]. In particular, we inspect the APK file of an app to determine
sub-directories and match them with our list of tracking and advertising libraries.
If there is a match between the sub-directory and an entry of the third-party
libraries, the app is deemed to be used by the corresponding third-party library.
Given that apps may use obfuscation methods to hide the names of third-party
libraries [8,14], we consider our results as a lower bound on the presence of
third-party libraries in cryptocurrency wallet apps.

We also analyzed the existence of suspicious Cross-Library Data Harvest-
ing (XLDH) libraries in cryptocurrency wallet apps. XLDH is a type of library
that steals user information from legitimate libraries such as Facebook, Google,
Twitter, and Dropbox. XLDH libraries actively scan the legit libraries’ existence
and extract important information from the library’s Software Development Kit
(SDK) embedded in the same apps. Extracted information including user access
token, user name, advertisement ID, and user image is then sent to the XLDH
libraries server. Due to the illegal operation, Facebook has taken legal action
against several companies providing this XLDH library [44]. To identify the
emergence of XLDH libraries, we scanned the third-party libraries embedded by
the cryptocurrency wallet app and compared the results against a list published
by [44].
3 Note that service permissions are requested at runtime to enable specific functions

such as connecting to a VPN network.
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Malware Presence. We leverage VirusTotal [43], an online solution that aggre-
gates the scanning capabilities provided by over 70 antivirus engines (AV), to
detect malware activities in the apps. We automate our malware analysis by
using VirusTotal’s Report API to retrieve the malware detection results. After
completing the scanning process for a given app, VirusTotal generates a positive
report that indicates which of the participating AV scanning tools detected any
malware activity in the app and the corresponding malware signature (if any).

Out of 457 apps, 153 apps have a size more than the VirusTotal API threshold
(32 MB) which cannot directly scan for by using the API. Fortunately, there
are 35 apps that have been analyzed by the VirusTotal previously. Hence, we
manually upload 118 apps to the VirusTotal website to scan for malware presence
in the apps.

Anti-analysis Detection. We determine whether an app uses any means of
evading, obscuring, or disrupting the analysis of parties other than the applica-
tion developers. In fact, malware developers rely on these techniques to evade
basic analysis layers of application market stores such as Google Play [6]. For
example, He et al. [17] found that 52% of their malware samples leveraged
anti-analysis techniques to evade, obscure, or disrupt analysis methods. We use
APKiD [32] tool to obtain a list of anti-analysis techniques such as “manipu-
lator”, “anti-virtual machine”, “anti-debug”, “anti-disassembly”, “obfuscator”,
and “packer” (cf. Appendix A for further details).

3.2 Network Measurements

To investigate the runtime and network behavior of the cryptocurrency wallet
apps, we manually install each app on a Huawei GR5 phone running Android
Version 7.0 and navigate the app running on the phone. To capture the network
traffic generated by each app, we run mitmproxy [26] at a WiFi access point
to intercept all the traffic being transmitted between the mobile phone and the
Internet. For each of the analysed apps, we manually navigate the app activities
such as login and clicking on buttons to potentially execute app components. Our
manual tests last for at least three minutes per app. We inspect the captured
network traffic of each app for data leakages, communication with third-party
domains, and HTTPS adoption.

3.3 Compliance and User Comments Analysis

Privacy Policy Analysis. We aim to examine the compliance of the apps’
developers in two categories: (i) providing a privacy policy link, and (ii) adhering
to the privacy policy in terms of sharing user information with third-parties
(TP). In the first category, we mark an app as violating the privacy policy
agreement if it does not provide a privacy policy link or does provide a misleading
link such as a broken link or an inaccessible link. In the second category, we mark
an app failing to adhere to the privacy policy if it declares not to share user
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information with the TPs in the privacy policy descriptions, but in fact, sharing
them during the app’s execution. We develop a tool to retrieve and extract the
privacy policy description of each app using the BeautifulSoup Python library.
We then use a machine learning classification model [46] to classify if the app
claims to collect and share user information with TPs in its privacy policy.

User Reviews Analysis. Unlike most financial applications such as banking
apps developed and released by official financial institutions such as banks [3],
cryptocurrency wallet apps can be developed and released by any party or devel-
oper. Another key feature of the wallet apps is that there is no underlying asset
like the banking system. Users choose cryptocurrency wallets only based on trust.
Thus, in this study, we make user review one of the important parameters in
analyzing security issues and the possibility of privacy leaks from users of cryp-
tocurrency wallet apps. We create scripts to aggregate user reviews (comments)
for each app and classify them into positive (4- and 5-star), neutral (3-star), and
negative (1- and 2-star) reviews according to the number of stars that the user
chose for the app.

Table 1. Top 10 dangerous permissions requested by analyzed cryptocurrency wallet
apps in our dataset.

No Permission Name # of Request (%)

1 CAMERA 399 (87.3%)

2 WRITE EXTERNAL STORAGE 334 (73.1%)

3 READ EXTERNAL STORAGE 268 (58.6%)

4 INSTALL PACKAGES 146 (31.9%)

5 READ PHONE STATE 97 (21.2%)

6 ACCESS COARSE LOCATION 96 (21.0%)

7 ACCESS FINE LOCATION 96 (21.0%)

8 RECORD AUDIO 82 (17.9%)

9 READ CONTACTS 68 (14.9%)

10 GET ACCOUNTS 54 (11.8%)

4 Static Analysis Result

4.1 Permission Analysis

Android classifies permission requests into three categories including normal per-
missions, dangerous permissions, and signature permissions [10]. We found 8,339
permission requests from 457 wallet apps. We group the permission requests
according to the resource sensitivity access levels. Additionally, Android also
allows third-parties to develop their own permissions with names and syntax
tailored to the standard developer library. We found that 1,755, 2,802, and 570
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permission requests fall into the dangerous category, normal category, and sig-
nature permissions respectively. In addition, we found that 3,212 permission
requests were not covered by the permission level list listed in [10]. We then group
these permission requests into the customized/third-party permission category
for our further analysis.

Table 1 shows the 10 most dangerous permissions requested by cryptocur-
rency wallet apps. We detected that 399 (87%) apps request permission to access
the device’s camera to activate the camera during the user document verifica-
tion process including taking a photo of a legitimate government-issued ID and
scanning the wallet address in the form of a QR code. We also found 82 (18%)
apps requesting voice recordings as shreds of evidence that users give consents
for them to store user data.

Fig. 3. Empirical cumulative distribution function (ECDF) of permission per app
across various categories as per Android Official API [9].

On average, each app requests 18 permissions, which consist of 4 dangerous
permissions, 7 customized permissions, 6 normal permissions, and 1 signature
permission. Specifically, Fig. 3 shows that 95% of apps requesting less than 5 sig-
nature permissions, 65% of apps request 3 to 7 dangerous permissions, and 65% of
apps request 5 to 10 normal permissions. Surprisingly, 35% of apps requested 5 to
20 customized permissions, and 15% of apps requested more than 20 customized
permissions. This trend indicates a shift in the mobile programming paradigm
from traditional Android libraries to reproducible third-party libraries.

Further analysis of customized permissions found that out of 3,212 cus-
tomized permissions requested by 353 apps, there are 236 distinct permission
names of this permission type. From permission names, there are 12 permissions
embedded by more than 100 apps. Table 9 lists the top 20 requested third-party
permissions used to support third-party libraries embedded by apps. Most of
these permissions are useful in the push notification process from third-party
cloud facilities to the device installing the app.

Another worth noting in apps’ permission analysis is the compli-
ance of apps’ developers to the use of permission agreements and the
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potential security risk to certain apps. We found that 26 apps request
for android.permission.MOUNT UNMOUNT FILESYSTEMS (cf. Table 2. Accord-
ing to [10], this permission can be used to mount and unmount exter-
nal storage such as SSD cards. However, this permission is only for pre-
installed applications or applications that were already installed when the
device was distributed. In addition, we discovered that 8 apps request
android.permission.DOWNLOAD WITHOUT NOTIFICATION (cf. Table 2) which
allows the app to download any file without user consent. This can be very
dangerous if the app automatically downloads malicious applications into the
device. com.nexowallet and com.polehin.android are two out of eight apps
that requested this permission and those apps have been installed by more than
1 million devices and have review scores of 4.6 and 4.2 respectively.

Table 2. (Un)Mount file system and download without notifications permissions
requested by the analysed apps.

Sensitive Permission # of Apps (%) Example App

MOUNT UNMOUNT FILESYSTEMS 26 (5.7%) com.bityard.us2

DOWNLOAD WITHOUT NOTIFICATION 8 (1.8%) com.burency.app

4.2 Third-party Libraries Penetration

We found a total of 59 distinct third-party libraries embedded in 391 apps. Due
to the limited list in our dictionary and the obfuscation mechanism adopted by
the apps, we were unable to detect third-party libraries in 66 apps (≈ 14% of
457 wallet apps). Depending upon their intended functionalities, we group the 59
distinct libraries into four main categories: Analytics, Ads & Tracker, Payment,
and Social Media libraries.

Table 3. Dominant libraries grouped by the library category.

No Analytics No Ads&Tracker

Names Count (%) Names Count

1 Google Analytic 61 (3.7%) 1 Google Ads 259 (15.8%)

2 Mixpanel 20 (1.2%) 2 Appsflyer 66 (4.0%)

3 adjust 15 (0.9%) 3 Tencent 25 (1.5%)

4 Umeng 11 (0.7%) 4 AppLovin 4 (0.2%)

5 Flurry 10 (0.6%) 5 Appboy 4 (0.2%)

No Payment No Social Media

Names Count Names Count

1 Squareup 166 (10.1%) 1 Facebook 198 (12.1%)

2 Intuit 8 (0.5%) 2 Twitter 10 (0.6%)

3 Paypal 1 (0.1%) 3 Weibo 3 (0.2%)

4 Urbanairship 1 (0.1%)
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Table 3 shows the dominance of Google Analytics and Google Ads for the
Analytics and Ads & Tracker categories which are embedded in 61 and 259 apps,
respectively. As for the Payment and Social Media categories, Squareup and
Facebook are the most popular and adopted in 166 and 198 apps, respectively.

According to data distribution, the adoption rate of third-party libraries by
cryptocurrency wallet apps is considered to be low. Particularly, Table 4 shows
that 172 (37.6%) apps did not adopt Ads & Tracker libraries whereas other 270
(59.1%) apps adopted only 1 or 2 libraries, 13 (2.8%) apps adopted from 3 to
5 libraries and 2 (0.2%) apps adopted more than 5 libraries. This adoption rate
is much smaller than the adoption of Ads & Tracker libraries in other genres
of apps, for example, measurement by Sentana et al., [36] found that 22.2% of
Android health-related apps embed at least five different third-party libraries,
or in the measurement results by [39] who found more than 43.0% of non-mobile
health apps in their corpus embed more than 5 Ads & Tracker libraries. The
two apps that embed the most Ads & Tracker libraries in their package are
network.xyo.coin and com.callsfreecalls.android, with 10 and 9 libraries,
respectively and they have been installed more than 1 million times.

Table 4. Distribution of third-party libraries embedded by the analyzed apps.

# Of Libraries Analytics Payment Social Media Ads & Trackers

1 94 (20.6%) 166 (36.3%) 194 (42.5%) 211 (46.2%)

2 12 (2.6%) 5 (1.1%) 7 (1.5%) 59 (12.9%)

3 1 (0.2%) 0 (0.0%) 1 (0.2%) 10 (2.2%)

4 0 (0.0%) 0 (0.0%) 0 (0.0%) 2 (0.4%)

5 0 (0.0%) 0 (0.0%) 0 (0.0%) 1 (0.2%)

6+ 0 (0.0%) 0 (0.0%) 0 (0.0%) 2 (0.4%)

The adoption rate of the other three types of libraries is less than the adoption
rate of the Ads & Tracker library. There are only 202 (44.2%) apps that adopted
1 to 3 Social Media libraries, 171 (37.4%) adopted 1 to 3 Payment libraries,
and only 107 (23.4%) apps adopted 1 to 3 Analytics libraries. This phenomenon
reinforces the exposure made by [28] where advertising is not the main source of
income in the cryptocurrency wallet ecosystem. Most apps support their opera-
tional costs through affiliate fees. In this model, the cryptocurrency wallet apps
accommodate the crypto swap process from the cryptocurrency swap service
provider. Some of the profits obtained by the service provider are from the dif-
ference in currency values which are shared with apps. Another business model
is to make cryptocurrency wallets become a part of cryptocurrency exchange
apps and get a split fee from the exchange transaction. In addition to the busi-
ness model, some apps gain funding from the Initial Coin Offering (ICO) for
cryptocurrency wallets that are integrated with certain coins.

Apart from the four types of third-party libraries, we also analyzed the
existence of suspicious Cross-Library Data Harvesting (XLDH) libraries in
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cryptocurrency wallet apps. We found that 13 (2.8%) apps embed XLDH
libraries in their package as shown in Table 5. Particularly, com.yandex.metrica
library, which is embedded by 4 apps, extracts the Google Advertising id,
Android ID, and user MAC address and then exfiltrates the information to
https://startup.mobile.yandex.net. Similar information was also extracted
by com.leanplum, cn.sharesdk, com.inmobi. More detailed information is
harvested by com.umeng.socialize which includes AccessToken and user data
(ID/name/link/photo) on several social media platforms including Facebook,
Twitter, Dropbox, Kakao, Yixin, Wechat, QQ, Sina, Alipay, Laiwang, Vk, Line,
and Linkedin.

Table 5. XLDH Libraries embedded in the analysed apps.

App ID XLDH Library Exfiltration Endpoint # of Installs

app.hodlify com.yandex.metrica https://startup.mobile.yandex.net 1K+

co.bitx.android.wallet com.leanplum undetected 5M+

com.evraon.trading com.yandex.metrica https://startup.mobile.yandex.net 1K+

com.ixx android cn.sharesdk http://api.share.mob.com/log4 5K+

com.okinc.okex.gp cn.sharesdk http://api.share.mob.com/log4 1M+

io.bincap.exchange com.yandex.metrica https://startup.mobile.yandex.net 500+

network.xyo.coin com.inmobi https://sdkm.w.inmobi.com/user/e.asm 1M+

com.btcc.mobiwallet cn.sharesdk http://api.share.mob.com/log4 1K+

com.zengo.wallet com.leanplum undetected 100K+

com.sixpencer.simplework cn.sharesdk http://api.share.mob.com/log4 10K+

com.fox.one com.umeng.socialize http://plbslog.umeng.com/umpx share 1K+

com.beecrypt.beecrypthd com.yandex.metrica https://startup.mobile.yandex.net 1K+

com.hconline.iso cn.sharesdk http://api.share.mob.com/log4 1K+

4.3 Malware Presences

Based on VirusTotal results, we found 25 apps detected containing mal-
ware. Specifically, 18 apps were detected by 1 antivirus engine, 3 apps
were detected by 2 antivirus engines, and 4 apps were detected by
more than 3 antivirus engines. Moreover, 9 antivirus engines detected
malware on com.top1.group.international.android, 8 engines detected
malware on com.jex.trade, and 7 and 4 engines detected malware on
com.legendwd.hyperpayW and im.token.app, respectively.

We further cross-validate this analysis results with the anti-analysis measure-
ment results in Sect. 4.4. As we shall show later in Sect. 4.4, there are four apps
that embed the Jiagu packer to encrypt the .dex file. In this measurement, there
are 4 antivirus engines (i.e., Ikarus, Fortinet, ESET-NOD32, and MaxSecure)
that consistently detect the same malware in the four apps that embed Jiagu
packer in their packages.

https://startup.mobile.yandex.net
https://startup.mobile.yandex.net
http://api.share.mob.com/log4
http://api.share.mob.com/log4
https://startup.mobile.yandex.net
https://sdkm.w.inmobi.com/user/e.asm
http://api.share.mob.com/log4
http://api.share.mob.com/log4
http://plbslog.umeng.com/umpx_share
https://startup.mobile.yandex.net
http://api.share.mob.com/log4


710 I. W. B. Sentana et al.

4.4 Anti-analysis detection

Figure 4 depicts our analysis results of anti-analysis methods employed by wallet
apps. We discuss our analysis of the evasion methods in the following.

Fig. 4. Anti-Analysis mechanisms employed by the analysed wallet apps.

Manipulator. We found that 18 (3.9%) apps are marked as containing manip-
ulator because the Dalvix Executable (.dex) files developed using dexmerge com-
piler. Note that .dex file, which exists in each APK, is a byte-code file converted
from Java.class. Thus, it can be executed by the devices. Originally, dex file is
developed using dx or r8 compiler. APKiD tool will mark an app as containing a
manipulator if (i) the original .dex files of the app are modified using a modifica-
tion library such as dexmerge or (ii) .dex files are created from reverse-engineered
source code using dexlib library, which is commonly used by decompiler tools such
as a�pktool or smali [34,35]. APKiD tool identifies the manipulator by analyzing
the change history in Map Ordering Type of the .dex files since the code sequence
resulted from original .dex compiler, dexmerge, dexlib or dex2lib is different [13].

Anti Virtual Machine. We detected 429 (93.8%) apps adopting anti-virtual
machine (Anti-VM) analysis in their package. An Anti-VM is a mechanism to
detect whether the apps are executed on an emulator or real device. The goal
is to impede the analysts to run the apps in an isolated environment such as
Virtual Machine. The most common mechanism to check whether the device
is emulated [30] is to analyze build.prop file containing a list of Build API
methods, including Build.Fingerprint, Build.Hardward, and Build.Device
and other device’s properties. An alternative method is to check the Tele-
phony manager which contains fixed API values for Android emulators includ-
ing getNetworkType(), getNetworkOperator(), getPhoneType() and other
network-related properties.
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Anti Debug. We found 278 (60.8%) apps leveraging anti-debugging techniques
to disrupt the reverse engineering of their source code. The anti-debugging tech-
nique ensures that the apps are not running under a debugger or changing the
app’s behavior when running under the debugger mode. Android provides two
levels of debugging and anti-debugging protocol [29]. The first level of debug-
ging can be conducted in communication protocol between Java Virtual Machine
and debugger using Java Debug Wire Protocol (JDWP). We can identify anti-
debugging by verifying if the setup includes the debuggable flag in Application-
Info or by checking the timer checks routine. While the next level of anti-debug
technique is to conduct traditional debugging by using ptrace in Linux system
call. In this research, we found all of the 287 cryptocurrency wallets activating
the debuggable flag of Debug.isDebuggerConnected() check, which is part of
JDWP anti-debug level.

Obfuscator. Overall, we found 70 (15.3%) apps leveraging obfuscation tools
in their package. Of that number, 3 apps obfuscated by Dexguard [14], 3 apps
obfuscated by Arxan [11]. obfuscation is a process of concealing the original
source code, binary code, or byte-code into an obscure set of characters, and 6
apps obfuscated by Clang [38]. Dexguard is a proprietary Android obfuscation
tool that provides multi-layer protection against the static and dynamic analysis
of byte-code, manifest, and all other resources included in distribution packages.
While Dexguard obfuscated the byte-code level of Android Apps, Arxan and
Clang are categorized as Low-Level Virtual Machines tools that obfuscated the
binary code level of Android Apps.

Anti Disassembly. This technique prevents the reverse engineer from disas-
sembling the byte-code into higher-level code such as Java or Smali. The most
popular anti-disassembly mechanism in Android is by developing part of the code
segment in C or C++ using Native Development Kit (NDK) [37]. NDK provides
platform libraries to manage native activities and access physical device compo-
nents [7]. NDK uses CMake as a native library compiler that creates a different
byte-code structure compared to the code written in Java or Kotlin. Hence, it
impedes common Android tools such as Apktool or Smali to disassemble the
byte-code. It required an advanced reverse engineer familiar with ARM proces-
sor architecture, Assembler language, Java Native Interface (JNI) convention,
and Application Binary Interface (ABI) compiler to decompile the byte-code.
More advanced techniques are used by malware developers to evade disassem-
bly tools explained by [27]. The technique leveraging jmp and call commands in
byte-code level to direct the instruction flow to a certain location with a constant
value, or direct the flow to the same target memory location. This technique will
produce a false listing of source code when it disassembles using a decompiler
tool. We found 4 apps leveraging the anti-disassembly techniques. Analysis of
those apps returns the value of “Illegal class name”, indicating the decompiler
result violates the standard structure of Java or Kotlin.
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Packer. Initially, Packer was created to protect intellectual property in the
form of source code on Android apps. These tools prevent third-parties from
analyzing source code or doing reverse engineering. Packer works by encrypting
the .dex files in the Android package and storing the encryption results in a
secure new block architecture. Unlike the obfuscator which will be decrypted
when executed on the device, the packer is remained stored in the packer block
and uses unpacker when it will be executed on the device. However, commercial
packers are often used by malware developers to hide malicious codes [5,12]. We
found that 7 (1.5%) apps use packers, of which 4 apps embed Jiagu packer, while
the three remaining apps use Ijiami, SecNeo, and Yidun packers. Note that the
wallet apps using Jiagu packer are also detected as malware by VirusTotal (cf.
Sect. 4.3).

5 Dynamic Analysis Result

We investigate the runtime, network behavior of the cryptocurrency wallet apps.
Out of 457 tested apps, we successfully captured the network traffic of 391 apps.
The reasons that we failed to capture traffic of 66 apps include the app navigation
process crashing and the app installation failure.

5.1 Securing Network Requests

To secure communication from in-path attackers, apps leverage transport layer
security (TLS) and HTTPS. For each wallet app, we filter TCP flows in network
traces (saved in pcap file), to identify whether the connection establishment
between the app and the Internet is over TLS. We also identify the TLS version,
cipher name, and the HTTP version used in the apps’ traffic. We also filter
network traffic for HTTP(S) requests. We found that 261 (66.7%) apps have
established TLS for all of their traffic where they use TLSv1.2 and/or TLSv1.3
in their traffic, 148 (37.8%) apps include traffic that was not over TLS when they
use HTTP scheme in their traffic and 9 (2.3%) apps do not use TLS in all of their
traffic. Of the 391 apps that we successfully captured network traffic, 148 (37.8%)
apps transmitted some of their traffic over unencrypted HTTP protocol, which
could be vulnerable to modification during the transmission and be transparent
for traffic analysis.

5.2 Sensitive Data Aggregation and Sharing

We observe whether an app collects and transmits data related to users’ infor-
mation and wallet information in their network traffic. Based on the captured
traffic dumped into the .har file, we extract the HTTP request package’s header
and payload and find whether user information is in the app’s traffic.
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Data Aggregation Practices. For each app, we extract all HTTP requests
with the POST method and inspect the postData field of the package’s header to
identify data related to the user, credential, device, location, and wallet infor-
mation. If so, the app is claimed to collect personal information as well as wallet
information. In order to detect if an app collects user information, we match
predefined keywords with the key values in the postData field. For any matching
keywords, we claim that the app collects user information. A similar strategy is
applied to the detection of collecting device information, credential information,
location information, and wallet information. To define related keywords to each
information category, we first scan all unique keys in the postData field of all
apps’ traffic. We then search for related keywords for each information category.
As the keys used in postData field to refer to the same information are not
exactly matched. We carry all possible keywords for each information category
to ensure that we do not miss any app that collects a piece of given information.
For instance, the predefined keywords for user information are determined based
on the list of all unique keywords we scanned for from all apps’ traffic. We search
for all keys in that list that contain the string ‘name’. After that, we manually
filter out keywords that include ‘name’ but do not refer to personal information.
Finally, we obtain a predefined keyword list related to user information including
‘first name’, ‘last name’, ‘surname’, ‘Username’, ‘email’, ‘account name’, ‘user-
name’, ‘name’, ‘partner name’, ‘given name’, ‘named user id’, ‘user name’,
‘full name’, ‘emailAddress’, ‘emailToken’, ‘email id’, ‘fullname’. Similarly, we
obtain the keywords for device information, credentials, location, and wallet
information. We provide details of our keywords for each user-related informa-
tion category in Appendix B.

Based on the apps’ traffic and our predefined keywords, we identify a number
of apps that collect personal information as well as wallet information. Table 6
shows the identified number of apps (out of 391 apps) that collect a given infor-
mation.

Table 6. Number of apps collecting personal and wallet information.

Collected Apps Collecting Apps Sharing Apps Sharing Sharing via

Attributes Info with FP with TP HTTP

User Info 67 (17.1%) 10 (2.5%) 57 (14.6%) 4 (1.0%)

Credential Info 50 (12.8%) 9 (2.3%) 41 (10.5%) 4 (1.0%)

Device Info 83 (21.2%) 5 (1.2%) 78 (19.9%) 5 (1.3%)

Location Info 16 (4.1%) - 16 (4.1%) -

Wallet Info 44 (11.2%) 2 (0.5%) 42 (10.7%) -

Sharing Sensitive Data with Third-Parties. For all apps that collect per-
sonal information and wallet information, we further inspect the requested URL
in the URL field of the packet’s header to identify if the collected data is shared
with third parties.
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We also identified apps that share the collected information with TPs via
the HTTP scheme. Table 6 also shows the identified number of apps that share
collected personal information and wallet information with third parties and apps
that share these data using the HTTP scheme. Specifically, we found that 15 apps
(e.g., com.btcc.mobiwallet and com.coinburp.mobile) share user credentials
and device information with third-parties via HTTP.

5.3 Third-party Domain Request

We identify third-party domains in the app traffic from the captured pcap file.
For each analysed app, we capture all requested domains from har file and clas-
sify requested domains into first-party domains and third-party domains (i.e.,
Domains that do not belong to apps’ developers). To determine apps’ commu-
nication with third-parties, we leveraged filter lists: EasyList [1] an advert block
list, and EasyPrivacy [2] a supplementary block list for tracking, to filter advert
and tracking related third-party domains requested by the tested apps.

113 (28.9%) apps requested more than 10 unique domains during the app
execution. Among them, the app with the handle name of io.atomicwallet
requested 66 different domains. Individually, 70 (17.9%) apps requested
one third-party domain, 338 (86.4%) apps requested more than two third-
party domains and 72 (18.4%) apps requested more than 10 third-party
domains. The app with the handle name of com.paymintlabs.paymint
requested 44 different third-party domains. Top 5 third-party domains
firebaseinstallations.googleapis.com, google.com, crashlytics.com,
rqmob.com and facebook.com were found to be requested by 169 (43.2%), 133
(34%), 91 (23.2%), 87 (22.2%), and 76 (19.4%) apps, respectively.

6 Privacy Policy Compliance and User Review Results

6.1 Privacy Policy Analysis

Upon the privacy policies extraction, we managed to extract 327 privacy poli-
cies and failed to extract 130 privacy policies due to several reasons as listed
in Table 10. 31 (6.8%) cryptocurrency wallet apps provide an untraceable link
for their privacy policy in Play Store content page information, while 17 (3.7%)
cryptocurrency wallet apps did not provide any link to their privacy policy doc-
uments. The result from privacy policy extraction is then used in the following
analysis:

Compliance to Provide Privacy Policy Link. As a part of our first analysis,
which is related to the developer compliance to provide a privacy policy link,
we used the extraction result and exclude several reasons for failures, such as
HTTP error 403 and HTTP error 503 which is used by the server as a part
of the defense against Denial of Service (DoS) attack (cf. Table 10). We also
exclude several links that can be traced if it navigated manually by humans to
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reach privacy policy such as the HTTP error 104 and HTTP error 111 as well
as SSL ERROR BAD CERTIFICATE DOMAIN. And for the last, we exclude the apps
that are no longer available in Play Store. Hence, in total Overall, we found 87
(19.0%) cryptocurrency wallet apps failed to provide a privacy policy on Google
Play.

App’s Adherence To Information Sharing Policy. This analysis consists of two
steps: classification of the app’s privacy policy for collecting user information
and validation of sharing the collected information with third-parties (TP). For
each app, we first classify the app’s privacy policy as true or positive if they
declare or claim that the apps share the user information with the TPs, while
the app’s privacy policy is labeled as false or negative if they do not declare to
share the user information to the TPs. Second, we cross-validate the apps that
are labeled to be false to the third-party libraries embedded by corresponding
apps and cross-validate those apps to the third-party domains accessed during
the app’s runtime. We assume that the cryptocurrency wallet apps violate the
privacy policy in terms of sharing user information with the third-parties if they
do not declare it in privacy policies while embedding tracking libraries (Sect. 4.2)
or they send user information to the third-party domains (Sect. 5.3).

To automatically detect if the app claims to share user information with
TPs, we rely our classification on an existing corpus of privacy policies [46]
annotated by legal experts. This corpus contained 213 and 137 privacy policies
labeled as positive and negative, respectively. However, the positive annotation
in this corpus is only given for the policy that contains very specific information
sharing and annotates the general information sharing phrases to the negative.
For instance, specific phrases such as “We share your email address with third
parties” would be annotated as positive, while general phrases such as “We share
your information with third parties” would be labeled as negative. Hence, we re-
label this corpus by removing privacy policies that contain general information
sharing in the negative class. After this step, 35 privacy policies remain in the
negative subset. To avoid an imbalance of class data, we reduce the size of the
positive subset and make our new corpus containing 68 and 35 privacy policies
labeled as positive and negative, respectively. We then train a Support Vector
Machine (SVM) classification model based on our new corpus.

Since our classification model is trained in English-based language, we then
exclude non-English privacy policies from 327 (out of 457) cryptocurrency wallet
apps from which we could extract their privacy policy text. We found that 60 (out
of 327) privacy policies were written in a non-English language, including binary
texts. We then classify these 267 privacy policies using our trained classification
model. As a result, we found 93 privacy policies classified as false meaning that
the corresponding apps did not declare or claim to share user information with
TPs, and 175 privacy policies classified as true indicating that the apps declare
to share user information with the TPs.

We then cross-validate 93 apps which corresponding privacy policy apps
labeled as false to the apps adopting third-party libraries in Sec. 4.2. We then
marked the apps that embed at least one third-party library as apps that failed
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to adhere to privacy policies related to sharing users’ information with third
parties. As a result, we found 78 (17.0%) cryptocurrency wallet apps fall into
this category.

We examine 93 apps that do not claim to share user information with third
parties (i.e., being labeled as false in the privacy policy classification) by investi-
gating their network traffic during execution time (Sect. 5.2). We found 26 apps
that did not declare to share user information with the TPs had shared user infor-
mation including personal information, device information, credentials, location,
and wallet information. Details of our results are shown in Table 7. Consequently,
we also marked these apps as violating privacy policy in terms of sharing user
information with TPs.

Table 7. Apps sharing user information with TPs w/o claiming in privacy policy

Attribute # Apps Shared Information

Personal Info 4 (4.3%) ‘username’, ‘surname’, ‘email’, ‘name’

Device Info 11 (11.8%) ‘deviceType’, ‘device uuid’ ‘deviceData’, ‘device name’

‘deviceFreeSpace’, ‘device id’ , ‘device token’, ‘deviceModel’

Credentials Info 4 (4.3%) ‘password’, ‘password score’

Location Info 2 (2.2%) ‘locale’

Wallet Info 5 (5.3%) ‘primary public key’, ‘branch key’, ‘wallet version’

‘backup public key’, deployment key’

6.2 User Reviews Analysis

We use users’ negative comments (reviews) to capture the perceptions and con-
cerns about the security and privacy features of wallet apps. Our reasoning
to focus our analysis on negative reviews, 1- and 2-star reviews appearing on
Google Play, for popular apps is that any serious concern exposed by a user
should receive a negative review. Overall, we obtained 673,424 reviews corre-
sponding to 403 (88.2%) wallet apps. We noted that 54 (12.8%) apps have no
user reviews while 78.5% (359) of the analyzed apps have at least one negative
comment with a total of 175,564 or 26.1% of total reviews.

For further analysis, we process negative reviews by grouping them based on
the type of complaint. We detect the complaint type in each negative review
based on the occurrence of keywords in the review and group it into six cat-
egories, including fraudulent, bugs, authentication, security, usability, ads, and
tracker. For example, the appearance of the word “scam”, “fake” or “liar” in
a negative review indicates a complaint about fraudulent activities. Similarly,
reviews containing keywords such as “bugs” or “error” into Bugs complaint.
More details about the complaint category and the keywords mapping can be
seen in Table 8.
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Table 8. Distribution of users’ complaints in different categories. The percentage of
users’ complaints is measured by dividing “# of Complaints” using the total negative
reviews.

Category # of Complaints (%) #of Apps(%) Keywords

Fraudulent 50,628 (28.8%) 287 (62.8%) ‘scam’,‘fake’,‘money’,

‘liar’,‘purchase’,‘payment’,

‘credit card’,‘debit card’,

‘cash’,‘manipulation’

Bugs 22,742 (13.0%) 256 (56.0%) ‘bug’,‘error’,‘crash’,‘update’,

‘upgrade’,‘not responding’,

‘freeze’,‘stuck’

Authentication 37,791 (21.5%) 262 (57.3%) ‘verification’,‘verify’, ‘verif’

‘verified’,‘account’,

‘notification’,‘login’,‘register’

Security 4,692 (2.7%) 176 (38.5%) ‘security’,‘secure’,‘hack’,‘bot’

‘hacking’,‘hacker’,‘insecure’

Usability 11,599 (6.6%) 213 (46.6%) ‘confuse’,‘confusing’,‘bad’,

‘rubbish’,‘slow’,

‘junk’,‘user interface’

Ads and 772 (0.4%) 102 (22.3%) ‘ads’,‘video ads’,‘tracker’,

tracker ‘intrusive ads’,‘massive ads’

‘advert’,

‘advertisement’

Table 8 also shows the number of complaints and their percentage of total
negative reviews grouped by category. Most of the users complaints are related
to fraud with 50,628 (22.5%) complaints, followed by authentication with 37,791
(14.9%), bugs with 22,742 (12.3%), usability with 11,599 (4.5%), security with
4,692 (2.6%), and ads and tracker with 772 (0.6%). This result is surprising as we
expect ads and trackers to get a large proportion of complaints considering that
the corpus of the analyzed wallets apps are free apps. However, after looking in
more detail at the business process of wallets and considering the low adoption
of third-party ads and tracker libraries discussed in Sect. 4.2, it is acceptable
that ads and trackers are not a “big player” in wallet apps. To observe the
distribution of complaint categories in cryptocurrency wallet apps, we calculate
the ratio of complaints occurrence per category to the total negative reviews for
each app. This is to accommodate gaps between the apps with a large number
of reviews and a small number of reviews. For example, com.coinbase.android
has a fraudulent ratio of 32.8% calculated from 10,210 fraudulent complaints
divided by 31,107 negative reviews owned by the app.
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Fig. 5. ECDF of user complaints ratio per app across various categories.

Based on this calculation, fraud still dominates compared to other complaint
categories. There are 20 apps (4.4%) that have more than 50% fraud complaints.
All of these apps have a totally negative review below 100 and 15 apps have
a total review (positive, normal, and negative) under 100. Figure 5, depicts the
distribution of the ratio of negative reviews to the total number of reviews across
various categories.

We also cross-validated the negative review ratio of VirusTotal’s detection
results on malicious apps, as shown in Table 11. As a result, of the 25 apps that
were detected as malicious by the VirusTotal, 8 apps have received negative
ratios above 25% where 3 of them have been installed more than 100K times.

7 Related Work

Recently, few work studied the security and privacy risks of Android cryptocur-
rency wallet apps. For instance, He et al. [16] discovered threat vectors of cryp-
tocurrency wallet apps and studied the security weaknesses of both the Android
system and cryptocurrency wallets. However, this work provides an assessment
of just two apps.

Hu et al. [19] explored the security features of the 10 most popular Bit-
coin wallet applications and discovered three security vulnerabilities of Bitcoin
wallet applications including privacy leakage, spamming and financial loss and
demonstrated corresponding proof-of-concept attacks. Sai et al. [33] examined
the security issues of 48 commonly used Android cryptocurrency wallet applica-
tions. Nevertheless, this work mainly focuses on security vulnerabilities rendered
by requested permissions. Li et al. [23] studied the security risks of 8 common
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Android cryptocurrency wallet apps by examining requested permissions, backup
files, Android clipboard, and accessibility service.

Biryukov and Tikhomirov [4] proposed a security and privacy analysis
method based on clustered transactions on timing analysis for Bitcoin, Dash,
Monero, and Zcash cryptocurrencies. The measurement relies on four main
parameters including information Leak to external storage, XSS attacks via
Javascript in WebView, Insecure connection, and information leak into logs.
Uddin et al. [41], proposed Horus, a security assessment framework for Android
Cryptocurrency apps that includes static and dynamic analysis. Static analy-
sis in Horus focuses on the security assessment based on the API calls while
dynamic analysis was only used to profile the app’s structure and to identify the
key location storage during the runtime.

In contrast, our work provides a large-scale comprehensive analysis of the
security and privacy features of 457 Android cryptocurrency wallet applications.
The static analysis in our study consists of several security and privacy param-
eters that include permission, app packaging, anti-analysis adoption, the use of
third-party libraries, and malware presence. While the dynamic analysis in our
study conducted the identification of standard security practices and capture the
network traffic to seek the potential information leakage to the third party. This
study also provides analysis results from the user’s point of view and potentially
of developer compliance related to the privacy policy.

8 Conclusion

Unlike most free apps which use ads to monetize their apps, wallet apps use split
or sharing fees to support their business process. Hence, it gives a unique char-
acteristic to the apps’ structure in terms of third-party libraries’ adoption and
permission requests. In addition, most wallet apps also utilize third-party cloud
infrastructure, especially to support push notification facilities, which causes the
adoption of third-party libraries in this regard to be large. The adoption of this
third-party library is helpful in accelerating application development, but on the
other hand, it also leaves security and privacy issues for users.

In this study, we found several permission requests that are very dangerous
for users and also the adoption of a malicious library adopted by wallet apps. The
adoption of anti-analysis techniques by wallet apps has also led to a malware-
detecting issue by a number of antivirus engines. We also found several violations
of the privacy policy agreement between the developer and the user by the
wallet apps. Thus, we expect the results of this assessment would assist users in
observing the security and privacy of wallet apps on marketplaces such as the
Google Play Store. To foster future research, we release our code and dataset
used in this paper to the research community: https://walletapps2021.github.
io/.
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A List of Anti-analysis Methods in Wallet Apps

We further explain the anti-analysis techniques used by the analyzed wallet
apps.

– Manipulator. It is a tool or mechanism to modify .dex file and to re-package
the modified .dex file into new apps [13,34,35].

– Anti Virtual Machine. A technique [24,31,42] to detect and evade analysis
via sandboxes Android emulators or virtual machine.

– Anti Debug. It is a mechanism to prevent program analysis or debugging
activities [29].

– Obfuscator. Obfuscation is a process of concealing the original source code,
binary code, or byte-code into an obscure set of characters by encrypting or
changing the original code without omitting the functionality. The goal is
to impede the reverse engineering of the code by unauthorized parties. An
Obfuscator renames libraries, variables, methods and class names [8,14].

Table 9. Top 20 customized and third-party permissions requested by the analyzed
apps.

No Permission Name # of Request (%)

1 com.google.android.c2dm.permission.RECEIVE 307 (67.2%)

2 com.google.android.c2dm.permission.SEND 297 (65.0%)

3 .finsky.permission.BIND GET INSTALL REFERRER SERVICE 290 (63.5%)

4 .gms.auth.api.signin.permission.REVOCATION NOTIFICATION 113 (24.7%)

5 com.huawei.android.launcher.permission.CHANGE BADGE 102 (22.3%)

6 com.anddoes.launcher.permission.UPDATE COUNT 101 (22.1%)

7 com.sonyericsson.home.permission.BROADCAST BADGE 101 (22.1%)

8 com.sec.android.provider.badge.permission.WRITE 101 (22.1%)

9 com.sec.android.provider.badge.permission.READ 101 (22.1%)

10 com.majeur.launcher.permission.UPDATE BADGE 101 (22.1%)

11 com.htc.launcher.permission.READ SETTINGS 101 (22.1%)

12 com.htc.launcher.permission.UPDATE SHORTCUT 101 (22.1%)

13 com.huawei.android.launcher.permission.READ SETTINGS 96 (21.0%)

14 com.huawei.android.launcher.permission.WRITE SETTINGS 96 (21.0%)

15 com.sonymobile.home.permission.PROVIDER INSERT BADGE 96 (21.0%)

16 android.permission.READ APP BADGE 92 (20.1%)

17 com.oppo.launcher.permission.READ SETTINGS 91 (19.9%)

18 com.oppo.launcher.permission.WRITE SETTINGS 91 (19.9%)

19 me.everything.badger.permission.BADGE COUNT READ 90 (19.7%)

20 me.everything.badger.permission.BADGE COUNT WRITE 90 (19.7%)
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Table 10. Cause of Privacy Policy Extraction Failured.

No. Caused of Failured # of Apps (%)

1 404: Not Found 31 (6.8%)

2 403: Forbidden 19 (4.2%)

3 No Privacy policy link 17 (3.7%)

4 3: Temporary failure in name resolution 14 (3.1%)

5 2: Name or service not known 10 (2.2%)

6 No Metadata Found 9 (2.0%)

7 503: Service Temporarily Unavailable 7 (1.5%)

8 110: Connection timed out 3 (0.7%)

9 SSL: CERTIFICATE VERIFY FAILED 3 (0.7%)

10 522: Cloudflare times out 3 (0.7%)

11 SSL ERROR BAD CERT DOMAIN 2 (0.4%)

12 502: Bad Gateway 1 (0.2%)

13 104: Connection reset by peer 1 (0.2%)

14 526: Origin SSL Certificate Error 1 (0.2%)

15 403: Ip Forbidden 1 (0.2%)

16 500: Internal Server Error 1 (0.2%)

17 400: Bad Request 1 (0.2%)

18 308: Permanent Redirect 1 (0.2%)

19 307: server returned infinite loop 1 (0.2%)

20 111: Connection refused 1 (0.2%)

21 0: Error 1 (0.2%)

22 5: No address associated with hostname 1 (0.2%)

23 UNRECOGNIZED NAME ALERT 1 (0.2%)

Total 130(28.4%)

– Anti Disassembly. It is a technique aiming to prevent the extraction of
symbolic representations of the assembly code instructions from the APK of
an Android app [18,22].

– Packer. It is a techniques aiming at evading reverse engineering by encrypting
the .dex file [5,12].

B Keywords for Personal Data Transmission Analysis

Device information keywords: deviceDescription, unidentified device,
deviceID, deviceToken, deviceRegKey, rooted device, device model, device audio, device-
Data, device token, deviceType, device brand, deviceId, devicetoken, kochava device id,
device name, deviceFreeSpace, deviceOEM, deviceOS, device, device uuid,
device os, deviceHeight, device api, deviceInfo, device type, device time, deviceWidth,
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actual device type, deviceRm, deviceKey, deviceModel, device fingerprint id, device id,
deviceMAC, deviceId, deviceVersion, deviceFingerPrintId, device data
Credential information keywords: second password confirmation, password, pass-
word score, password confirmation, second password, password
Location information: localeIdentifier, location, locale language code,
locale country code, locale, h region

Collected wallet information: devkey, walletId, previous deployment key, wal-

letAddress, key index, subwallets, coin, master public key, deployment key, wallet type,

deployment key, gApikey, wallet version, bitcoin notification enabled, key, sort key,

previous deployment key, temporary private key, primary public key, branch key, pub-

lic key, walletAddressIndex, wallet transaction notification enabled, wallets, coinId,

backup public key, wallet id, walletAddressNm, api key, walletID, pub key

Table 11. List of cryptocurrency wallet apps that are considered as malicious by users
in Google Play reviews and by VirusTotal (AV-positive column). For each cryptocur-
rency wallet app, the NR-Ratio represents the ratio of the number of negative users’
comments to the total number of all users’ comments.

# App ID NR-Ratio Installs Rating AV-positives

1 com.top1.group.international.android 1.0% 10000+ 4.7 9

2 com.jex.trade 43.1% 500000+ 4.1 8

3 com.legendwd.hyperpayW 10.4% 50000+ 4.8 7

4 im.token.app 25.2% 500000+ 4.1 4

5 com.vidulumwallet.app 13.8% 1000+ 4.2 2

6 com.remint.app 18.8% 10000+ 4.4 2

7 com.portto.blocto 23.8% 10000+ 4.3 2

8 roseon.finance 4.6% 10000+ 4.8 2

9 com.fox.one 2.9% 1000+ 4.8 1

10 com.studentcoin 63.5% 50000+ 4.4 1

11 one.mixin.messenger 15.8% 10000+ 4.5 1

12 net.ethylyte.com 2.9% 5000+ 4.5 1

13 augstrain.asn 33.3% 10+ 0.0 1

14 co.edgesecure.app 27.1% 100000+ 4.0 1

15 com.viabtc.pool 14.8% 100000+ 4.6 1

16 com.bitcoinglobal 50.0% 5000+ 0.0 1

17 com.crypto.multiwallet 18.1% 100000+ 4.4 1

18 com.friendst.strangr 80.0% 10000+ 3.8 1

19 com.quidax.app 32.4% 100000+ 3.7 1

20 com.digifinex.app 21.0% 100000+ 3.9 1

21 com.lingxi.bexplus 1.8% 50000+ 4.7 1

22 app.goodcrypto 15.5% 100000+ 4.5 1

23 com.enjin.mobile.wallet 9.5% 500000+ 4.6 1

24 com.holacoins.wallet 20.4% 50000+ 4.2 1

25 africa.bundle.mobile.app 9.9% 100000+ 4.5 1
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