
Probabilistic Logic Networks
for Temporal and Procedural Reasoning

Nil Geisweiller(B) and Hedra Yusuf(B)

SingularityNET Foundation, Amsterdam, The Netherlands
{nil,hedra}@singularitynet.io

Abstract. Probabilistic Logic Networks (PLN) offers an excellent the-
ory to frame learning and planning as a form of reasoning. This paper
offers a complement to the seminal PLN book [3], in particular to its
Chapter 14 on temporal and procedural reasoning, by providing formal
definitions of temporal constructs, as well as inference rules necessary to
carry temporal and procedural reasoning.

Keywords: Temporal Reasoning · Procedural Reasoning ·
Probabilistic Logic Networks

1 Introduction

This paper builds upon the Chapter 14 of the Probabilistic Logic Networks
book [3], adding and modifying definitions along the way to provide, we believe,
a better foundation for carrying temporal and procedural reasoning with PLN.
As we have found, even though the chapter is well written and conveys the con-
ceptual ideas with clarity, it leaves some formal definitions out. In addition the
Event Calculus [8] is intermingled with the definitions of sequential connectors
in, what we consider to be, an arbitrary and inflexible manner. On the contrary,
here we leave Event calculus aside, with the intention to re-introduce it in the
future as a separate layer standing on top of the new definitions.

Although this paper is theoretical, the work presented here is motivated by
practice, and has taken place in the context of developing a system for controlling
an agent in uncertain environments while relying on temporal and procedural
reasoning for both learning and planning [2].

2 Probabilistic Logic Networks Recall

PLN stands for Probabilistic Logic Networks [3]. It is a mixture of predicate
and term logic that has been probabilitized to handle uncertainty. Inference
rules can operate on direct evidence, or indirect evidence by combining existing
relationships to introduce new ones. As such it is well suited for building a model
of an environment, and planning in it. All it needs then is to be properly equipped
with a vocabulary for representing and manipulating temporal and procedural
knowledge.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
P. Hammer et al. (Eds.): AGI 2023, LNAI 13921, pp. 85–94, 2023.
https://doi.org/10.1007/978-3-031-33469-6_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33469-6_9&domain=pdf
https://doi.org/10.1007/978-3-031-33469-6_9


86 N. Geisweiller and H. Yusuf

2.1 Elementary Notions

Graphically speaking, PLN statements are sub-hypergraphs1 made of Links and
Nodes, called Atoms, decorated with Truth Values. Syntactically speaking, PLN
statements are not very different from statements expressed in another logic,
except that they are usually formatted in prefixed-operator with a tree-style
indentation to emphasize their graphical nature and to leave room for their
truth values. For instance

Implication 〈TV〉
𝑃

𝑄

represents an implication link between 𝑃 and 𝑄 with truth value TV. For the
sake of conciseness we also introduce some notations. First, we adopt a flattened,
as opposed to a tree-style, representation. For instance the implication link above
is represented as

Implication(𝑃 ,𝑄) 〈TV〉
Second, we introduce a more mathematically looking symbolic representation.
For instance, that same implication can be represented as

𝑃 → 𝑄 ≞ TV

There is a large variety of constructs in PLN. Here, we will focus primarily on
the ones for handling predicates. Let us recall that predicates are functions that
output Boolean values. The domain of a predicate can be arbitrarily defined,
but its range is always Boolean. In this paper, the letters 𝑎, 𝑏, 𝑐 represent atoms
of any type, 𝑥, 𝑦, 𝑧 represent atoms that are variables, while the capital letter
𝑃 , 𝑄, 𝑅 represent atoms that are predicates, thus typed as follows:

𝑃 ,𝑄,𝑅, . . . ∶ Domain ↦ {True,False}

Note that in PLN, predicates are not necessarily crisp because their outputs can
be totally or partially unknown, thus potentially measured by probabilities, or
to be precised Truth Values.

Truth values are, in essence, second order probability distributions, or prob-
abilities of probabilities. They are often described by two numbers: a strength,
𝑠, representing a probability, and a confidence, 𝑐, representing the confidence
over that probability. Such truth values are called Simple Truth Values and are
denoted as follows:

<𝑠, 𝑐>

Alternatively, the strength and the confidence of a simple truth value TV can be
denoted TV.𝑠 and TV.𝑐 respectively. Underneath, a simple truth value is a beta

1 because links can point to links, not just nodes.



Probabilistic Logic Networks for Temporal and Procedural Reasoning 87

distribution [1], similarly to an opinion in Subjective Logic [5]. The parameters
of the corresponding beta distribution can be obtained as follows:

𝛼(𝑠, 𝑐) = 𝛼0 +
𝑠.𝑐.𝑘

1 − 𝑐
𝛽(𝑠, 𝑐) = 𝛽0 +

(1 − 𝑠).𝑐.𝑘
1 − 𝑐

where 𝑘 is a PLN parameter called the Lookahead, and 𝛼0 and 𝛽0 are usually
set to 0.5 corresponding to Jeffreys prior. For truth values obtained from direct
evidence, a simple truth value makes perfect theoretical sense. For truth values
obtained from indirect evidence, not so much, even though they are often used
in practice. When more precision is needed, to represent a multi-modal truth
value for instance, a mixture of simple truth values can be used. Also, through
out the paper, sometimes we may say probability, while what we really mean is
second order probability distribution.

Below is a table of the constructs used in this paper with their flattened and
symbolic representations, as well as precedence values to minimize parenthesis
usage with the symbolic representation.

Flattened Symbolic Precedence

Evaluation(𝑃 , 𝑎) 𝑃 (𝑎) 0

Not(𝑃 ) ¬𝑃 1

And(𝑃 ,𝑄) 𝑃 ∧𝑄 2

Or(𝑃 ,𝑄) 𝑃 ∨𝑄 2

Implication(𝑃 ,𝑄) 𝑃 → 𝑄 4

𝑎〈TV〉 𝑎 ≞ TV 5

For representing n-ary predicates evaluations we use 𝑃 (𝑎1, . . . , 𝑎𝑛) which may
be understood as a unary predicate evaluation applied to a tuple. Let us now
explain their semantics and how their truth values are to be interpreted.

– ¬𝑃 is the predicate resulting from the pointwise negation of 𝑃 .
– 𝑃 ∧𝑄 is the predicate resulting from the pointwise conjunction of 𝑃 and 𝑄.
– 𝑃 ∨𝑄 is the predicate resulting from the pointwise disjunction of 𝑃 and 𝑄.
– 𝑃 (𝑎) ≞ TV states that 𝑃 (𝑎) outputs True with a second order probability

measured by TV.
– 𝑃 → 𝑄 ≞ TV states that if 𝑃 (𝑎) is True for some 𝑎 in the domain of 𝑃 ,

then 𝑄(𝑎) is True with a second order probability measured by TV. In simple
probability terms, it represents P𝑟(𝑄|𝑃 ), the conditional probability of 𝑄

knowing 𝑃
2. We may also say that such implication is a conditional predicate

where 𝑄, the implicand, is conditioned by 𝑃 , the implicant.
– 𝑃 ≞ TV states that the prevalence of 𝑃 being True is measured by TV.

2 To be precise, P𝑟(𝑄|𝑃 ) should be P𝑟(S𝑎𝑡(𝑄)|S𝑎𝑡(𝑃 )), where S𝑎𝑡(𝑃 ) and S𝑎𝑡(𝑄) are the
satisfying sets of 𝑃 and 𝑄 respectively.



88 N. Geisweiller and H. Yusuf

2.2 Inference Rules

Inferences rules are used to construct PLN statements and calculate their truth
values. They fall into two groups, direct evidence based or otherwise. Rules from
the former group infer abstract knowledge from direct evidence, while rules from
the latter group infer knowledge by combining existing abstractions. In total
there are dozens of inference rules. For now, we only recall two, Implication
Direct Introduction and Deduction.

The Implication Direct Introduction Rule (IDI) takes evaluations as
premises and produces an implication as conclusion. It can be understood as
an inductive reasoning rule. It is formally depicted by the following proof tree.

𝑃 (𝑎1) ≞ TV𝑃

1 𝑄(𝑎1) ≞ TV𝑄

1 . . . 𝑃 (𝑎𝑛) ≞ TV𝑃

𝑛 𝑄(𝑎𝑛) ≞ TV𝑄

𝑛

(IDI)
𝑃 → 𝑄 ≞ TV

Assuming perfectly reliable direct evidence3 then the resulting simple truth value
can be calculated as follows:

TV.s =
∑

𝑛

𝑖=1 𝑓∧(TV
𝑃

𝑖
.s,TV𝑄

𝑖
.s)

∑
𝑛

𝑖=1 TV
𝑃

𝑖
.s

TV.c = 𝑛

𝑛 + 𝑘

where 𝑓∧ is a function embodying a probabilistic assumption about the con-
junction of the events. Such function typically ranges from the product (perfect
independence) to the min (perfect overlap). Note that this inference rule takes an
arbitrary number of premises. In practice it is not a problem as it is decomposed
into two rules covering the base and the recursive cases, while storing evidence
to avoid double counting.

The Deduction Rule (D) takes two implications as premises and produces a
third one. It can be understood as a deductive reasoning rule. Depending on the
assumptions made there exists different variations of that rule. The simplest one
is based on the Markov property

P𝑟(𝑅|𝑄, 𝑃 ) = P𝑟(𝑅|𝑄)

which gives rise to the rule depicted by the following proof tree.

𝑃 → 𝑄 ≞ TV𝑃𝑄
𝑄 → 𝑅 ≞ TV𝑄𝑅

𝑃 ≞ TV𝑃
𝑄 ≞ TV𝑄

𝑅 ≞ TV𝑅

(D)
𝑃 → 𝑅 ≞ TV

The reader may notice that three additional premises have been added, corre-
sponding to the probabilities P𝑟(𝑃 ), P𝑟(𝑄) and P𝑟(𝑅). This is a consequence of
the Markov property. The exact formula for that variation is not recalled here
but it merely derives from

P𝑟(𝑅|𝑃 ) = P𝑟(𝑅|𝑄, 𝑃 ) × P𝑟(𝑄|𝑃 ) + P𝑟(𝑅|¬𝑄, 𝑃 ) × P𝑟(¬𝑄|𝑃 )
3 A perfectly reliable piece of evidence has a confidence of 1. Dealing with unreliable

evidence involves using convolution products and is outside of the scope of this paper.



Probabilistic Logic Networks for Temporal and Procedural Reasoning 89

More information about this derivation can be found in Chapter 5, Section 5.3
of [3]. Finally, one may notice that the same conclusion may be inferred by differ-
ent inference paths leading to different truth values. How to properly aggregate
these truth values is not the subject of this paper and is discussed in Chapter 5,
Section 5.10 of [3].

3 Temporal Probabilistic Logic Networks

A temporal extension of PLN is defined in Chapter 14 of [3]. However, we have
found that some definitions are ambiguous, in particular the sequential connec-
tors SequentialAnd and SequentialOr redefined further below. Let us begin by
defining Temporal Predicates, or Fluents. Temporal predicates are regular pred-
icates with a temporal dimension:

𝑃 ,𝑄,𝑅, . . . ∶ Domain × Time ↦ {True,False}
The type of the temporal dimension, Time, could in principle be any thing that
has a minimum set of requirements, such as being an ordered semigroup or such.
In practice so far, we have used integers, thus capturing a discrete notion of time.
Not all temporal predicates need to have a non-temporal domain, Domain. In
that case, we may simply assume that such domain is the unit type () and ignore
it.

3.1 Temporal Operators

Let us define a set of temporal operators operating over temporal predicates.

Lag and Lead are temporal operators to shift the temporal dimension of a
temporal predicate. They are similar to the metric variations, 𝑃𝑛 and 𝐹𝑛, of the
Past and Future operators of Tense Logic [7], with the distinction that they are
applied over temporal predicates, as opposed to Boolean modal expressions. The
Lag operator is formally defined as follows:

𝐿𝑎𝑔(𝑃 , 𝑇 ) ∶= 𝜆𝑥, 𝑡.𝑃 (𝑥, 𝑡 − 𝑇 )

Meaning, given a temporal predicate 𝑃 , it builds a temporal predicate shifted
to the right by 𝑇 time units. In order words, it allows to looks into the past, or
one may say that it brings the past into the present. The Lead operator is the
inverse of the Lag operator, thus

𝐿𝑒𝑎𝑑(𝐿𝑎𝑔(𝑃 , 𝑇 ), 𝑇 ) ≡ 𝑃

and is formally defined as follows:

𝐿𝑒𝑎𝑑(𝑃 , 𝑇 ) ∶= 𝜆𝑥, 𝑡.𝑃 (𝑥, 𝑡 + 𝑇 )

It allows to look into the future, or one may say that it brings the future into
the present.



90 N. Geisweiller and H. Yusuf

SequentialAnd is a temporal conjunction where one of the temporal predicate
arguments have been temporally shifted. There are at least two variations that
can be defined. A first where the past of the first predicate is brought into the
present. A second where the future of the second predicate is brought into the
present. In this paper we use the second one, formally defined as

SequentialAnd(𝑇 , 𝑃 ,𝑄) ∶= And(𝑃 ,Lead(𝑄, 𝑇 ))

which results into a temporal predicate that is True at time 𝑡 if and only if 𝑃 is
True at time 𝑡 and 𝑄 is True at time 𝑡 + 𝑇 . Since we do not know at that point
which one of the two variations is best, in practice we have implemented both,
but in this paper we settle to one for the sake of simplicity.

SequentialOr is a temporal disjunction where one of the temporal predicate
arguments have been temporally shifted. Like for SequentialAnd we settle to the
variation where the future of the second predicate is brought into the present,
defined as

SequentialOr(𝑇 , 𝑃 ,𝑄) ∶= Or(𝑃 ,Lead(𝑄, 𝑇 ))

which results into a temporal predicate that is True at time 𝑡 if and only if 𝑃 is
True at time 𝑡 or 𝑄 is True at time 𝑡 + 𝑇 .

PredictiveImplication is an implication where the future of the implicand has
been brought into the present, defined as

PredictiveImplication(𝑇 , 𝑃 ,𝑄) ∶= Implication(𝑃 ,Lead(𝑄, 𝑇 ))

resulting into a conditional predicate, that in order to be defined at time 𝑡

requires that 𝑃 is True at time 𝑡, and if so, is True at 𝑡 if and only if 𝑄 is True
at time 𝑡 + 𝑇 .

Let us introduce a symbolic representation for these temporal constructs with
precedence values to minimize parenthesis usage.

Flattened Symbolic Precedence

Lag(𝑃 , 𝑇 )
→
𝑃

𝑇

1

Lead(𝑃 , 𝑇 )
←
𝑃

𝑇

1

SequentialAnd(𝑇 , 𝑃 ,𝑄) 𝑃 ⩘𝑇
𝑄 3

SequentialOr(𝑇 , 𝑃 ,𝑄) 𝑃 ⩗𝑇
𝑄 3

PredictiveImplication(𝑇 , 𝑃 ,𝑄) 𝑃 �𝑇
𝑄 4

Additionally, we assume that ⩘𝑇 and ⩗𝑇 are right-associative. The Lag (resp.
Lead) operator is symbolized by an overlined arrow going to the right (resp. to
the left) because it brings the past (resp. the future) into the present.



Probabilistic Logic Networks for Temporal and Procedural Reasoning 91

3.2 Temporal Rules

Given these operators we can now introduce a number of temporal inference
rules.

The Predictive Implication to Implication Rule (PI) takes a predictive
implication as premise and produces an equivalent implication, as depicted by
the following proof tree.

𝑃 �𝑇
𝑄 ≞ TV

(PI)

𝑃 →
←
𝑄

𝑇

≞ TV

Note that because the conclusion is equivalent to the premise, the truth values
may optionally be stripped out the rule.

𝑃 �𝑇
𝑄

(PI)

𝑃 →
←
𝑄

𝑇

The Implication to Predictive Implication Rule (IP) takes an implication
as premise and produces an equivalent predictive implication, as depicted, here
without truth value, by the following proof tree.

𝑃 →
←
𝑄

𝑇

(IP)
𝑃 �𝑇

𝑄

The Temporal Shifting Rule (S) takes a temporal predicate and shits its
temporal dimension to the left or the right. An example of such rule is depicted
by the following proof tree.

𝑃 ≞ TV (S)
←
𝑃

𝑇

≞ TV

Shifting does not change the truth value of the predicate. Indeed, the prevalence
of being True remains the same, only the origin of the temporal dimension
changes. Note however that the predicate itself changes, it is shifted. Therefore,
unlike for the IP and PI inference rules that produce equivalent predicates,
the truth values must be included in the rule definition, otherwise the rule of
replacement would incorrectly apply. There are a number of variations of that
rule. For the sake of conciseness we will not enumerate them all, and instead
show one more variation over conditional predicates.

𝑃 → 𝑄 ≞ TV
(S)

←
𝑃

𝑇

→
←
𝑄

𝑇

≞ TV

The Predictive Implication Direct Introduction Rule (PIDI) is similar
to the implication direct introduction rule of Sect. 2 but accounts for temporal
delays between evaluations. It is formalized by the following proof tree.



92 N. Geisweiller and H. Yusuf

(
𝑃 (𝑎𝑖, 𝑡𝑖) ≞ TV𝑃

𝑖

)
𝑖=1,...,𝑛

(
𝑄(𝑎𝑖, 𝑡𝑖 + 𝑇 ) ≞ TV𝑄

𝑖

)
𝑖=1,...,𝑛

(PIDI)
𝑃 �𝑇

𝑄 ≞ TV

The truth value formula is identical to that of the implication direct introduction
rule. In fact, such rule can be trivially derived by combining the implication
direct introduction rule, the implication to predictive implication rule and the
definition of the Lead operator.

The Temporal Deduction Rule (TD) is similar to the deduction rule of
Sect. 2 but operates on predictive implications. It is formally depicted by the
following proof tree.

𝑃 �𝑇1 𝑄 ≞ TV𝑃𝑄
𝑄 �𝑇2 𝑅 ≞ TV𝑄𝑅

𝑃 ≞ TV𝑃
𝑄 ≞ TV𝑄

𝑅 ≞ TV𝑅

(TD)
𝑃 �𝑇1+𝑇2 𝑅 ≞ TV

As it turns out, the truth value formula is also identical to that of the deduction
rule, but the proof is not so trivial. In order to convince us that it is the case, let
us construct a proof tree that can perform the same inference without requiring
the temporal deduction rule. The result is depicted below

𝑃 �𝑇1 𝑄 ≞ TV𝑃𝑄

(PI)

𝑃 →
←
𝑄

𝑇1
≞ TV𝑃𝑄

𝑄 �𝑇2 𝑅 ≞ TV𝑄𝑅

(PI)

𝑄 →
←
𝑅

𝑇2
≞ TV𝑄𝑅

(S)
←
𝑄

𝑇1
→
←
𝑅

𝑇1+𝑇2
≞ TV𝑄𝑅

𝑃 ≞ TV𝑃

𝑄 ≞ TV𝑄

(S)
←
𝑄

𝑇1
≞ TV𝑄

𝑅 ≞ TV𝑅

(S)
←
𝑅

𝑇1+𝑇2
≞ TV𝑅

(D)

𝑃 →
←
𝑅

𝑇1+𝑇2
≞ TV

(IP)
𝑃 �𝑇1+𝑇2 𝑅 ≞ TV

As you may see, the premises and the conclusion of that inference tree match
exactly the premises and the conclusion of the temporal deduction rule. Since
none of the intermediary formula, beside the deduction formula, alter the truth
values, we may conclude that the formula of the temporal deduction rule is
identical to that of the deduction rule.

3.3 Example

In this section we show how to carry an inference combining direct and indirect
evidence. To illustrate this process, we consider the temporal predicates 𝑃 , 𝑄
and 𝑅, with two datapoints as direct evidence of 𝑃 �1

𝑄, combined with another
predictive implication, 𝑄 �2

𝑃 , given as background knowledge, to produce a
third predictive implication, 𝑃 �3

𝑅, based on indirect evidence. The whole
inference tree is given below (using 𝑘 = 100 as Lookahead in the truth value
formula).

𝑃 (1) ≞< 1, 1> 𝑃 (2) ≞< 1, 1> 𝑄(1+1) ≞< 0, 1> 𝑄(2+1) ≞< 1, 1>
(PIDI)

𝑃 �1
𝑄 ≞< 0.5, 0.02> 𝑄 �2

𝑅 ≞< 0.3, 0.1> 𝑃 ≞< 1, 0.02> 𝑄 ≞< 0.5, 0.02> 𝑅 ≞< 0.2, 0.5>
(TD)

𝑃 �3
𝑅 ≞< 0.2, 0.018>

4 Procedural Reasoning

Let us now examine how to use temporal deduction to perform a special type
of procedural reasoning, to build larger plans made of smaller plans by chaining
their actions. Given plans, also called Cognitive Schematics [4], of the form



Probabilistic Logic Networks for Temporal and Procedural Reasoning 93

𝐶1 ∧ 𝐴1 �𝑇1 𝐶2 ≞ TV1

...

𝐶𝑛 ∧ 𝐴𝑛 �𝑇𝑛 𝐺 ≞ TV𝑛

expressing that in context 𝐶𝑖, executing action 𝐴𝑖 may lead to subgoal 𝐶𝑖+1 or
goal 𝐺, after 𝑇𝑖 time units, with a likelihood of success measured by TV𝑖, we
show how to infer the composite plan

𝐶1 ∧ 𝐴1 ⩘𝑇1 . . . ⩘𝑇𝑛−1 𝐴𝑛 �𝑇1+···+𝑇𝑛 𝐺 ≞ TV

alongside its truth value TV. The inferred plan expresses that in context 𝐶1,
executing actions 𝐴𝑖 to 𝐴𝑛 in sequence, waiting 𝑇𝑖 time units between 𝐴𝑖 and
𝐴𝑖+1, leads to goal 𝐺 after 𝑇1 + · · · + 𝑇𝑛 time units, with a likelihood of success
measured by TV. Note that strictly speaking, 𝐴𝑖 is not an action, it is a predicate
that captures the temporal activation of an action. This can be formalized in
PLN as well but is not where the difficulty lies. Thus here we directly work
with action activation predicates and refer to them as actions for the sake of
convenience.

Let us show how to do that with two action plans by building a proof tree
like we did for the temporal deduction rule. The final inference rule we are trying
to build should look like

𝐶1 ∧ 𝐴1 �𝑇1 𝐶2 ≞ TV 12
𝐶2 ∧ 𝐴2 �𝑇2 𝐶3 ≞ TV 23

. . .

𝐶1 ∧ 𝐴1 ⩘𝑇1 𝐴2 �𝑇1+𝑇2 𝐶2 ≞ TV

where the dots are premises to be filled once we know what they are. Indeed,
we cannot directly apply temporal deduction because the implicand of the first
premise, 𝐶2, does not match the implicant of the second premise, 𝐶2 ∧ 𝐴2. For
that reason it is unclear what the remaining premises are. However, we can
build an equivalent proof tree using regular deduction, as well as other temporal
inferences rules defined in Sect. 3. The resulting tree (without truth values so
that it can fit within the width of the page) is given below.

𝐶1 ∧𝐴1 �𝑇1 𝐶2
(PI)

𝐶1 ∧𝐴1 →𝑇1
←
𝐶2

𝑇1

(I)

𝐶1 ∧𝐴1 ∧
←
𝐴2

𝑇1
→
←
𝐶2

𝑇1
∧
←
𝐴2

𝑇1

𝐶2 ∧𝐴2 �𝑇2 𝐶3
(PI)

𝐶2 ∧𝐴2 →
←
𝐶3

𝑇2

(S)
←
𝐶2

𝑇1
∧
←
𝐴2

𝑇1
→
←
𝐶3

𝑇1+𝑇2
𝐶1 ∧𝐴1 ∧

←
𝐴2

𝑇1

𝐶2 ∧𝐴2
(S)

←
𝐶2

𝑇1
∧
←
𝐴2

𝑇1

𝐶3
(S)

←
𝐶3

𝑇1+𝑇2

(D)

𝐶1 ∧𝐴1 ∧
←
𝐴2

𝑇1
→
←
𝐶3

𝑇1+𝑇2

(IP)
𝐶1 ∧𝐴1⩘

𝑇1 𝐴2 �𝑇1+𝑇2 𝐶3

Note that we have used of a new rule labeled (I) at the left of the proof tree. This
rule eliminates independent predicates from an implication without modifying
the truth value of its conclusion. Its use is justified by the fact that 𝐴2 is executed
immediately after reaching 𝐶2, thus cannot have an effect on it.



94 N. Geisweiller and H. Yusuf

After retaining the premises and the conclusion only, and adding back the
truth values, we obtain the following procedural deduction rule:

𝐶1∧𝐴1 �𝑇1 𝐶2 ≞ TV 12
𝐶2∧𝐴2 �𝑇2 𝐶3 ≞ TV 23

𝐶1∧𝐴1∧
←
𝐴2

𝑇1
≞ TV 1

𝐶2∧𝐴2 ≞ TV 2
𝐶3 ≞ TV 3

(PD)
𝐶1∧𝐴1⩘𝑇1𝐴2 �𝑇1+𝑇2 𝐶3 ≞ TV

with a formula identical to that of the deduction rule, once again. The premises
filling the dots are therefore

𝐶1∧𝐴1∧
←
𝐴2

𝑇1

≞ TV 1
𝐶2∧𝐴2 ≞ TV 2

𝐶3 ≞ TV 3

There is no doubt these premises could be further decomposed into sub-inferences
as it was done with the (I) rule. Indeed, likely more simplifications can be made
by assuming that the agent has a form of freewill and thus that its actions are
independent of the rest of the universe, outside of its decision policy influenced by
its very procedural reasoning. This is reminiscent of the do-calculus [6] and will
be explored in more depth in the future. In the meantime, these are left as they
are, as it introduces no additional assumption, and their truth values can always
be calculated using inference rules based on direct evidence, if anything else.
Future directions may also include adding inference rules to support behavior
trees; introducing Event Calculus operators as predicate transformers (similar
to how Lag and Lead are defined); as well as supporting temporal intervals and
continuous time.

References

1. Abourizk, S., Halpin, D., Wilson, J.: Fitting beta distributions based on sample
data. J. Constr. Eng. Manag. 120, 288–305 (1994)

2. Geisweiller, N., Yusuf, H.: Rational OpenCog controlled agent. In: Hammer, P.,
et al. (eds.) AGI 2023. LNAI, vol. 13921, pp. xx–yy. Springer, Cham (2023)

3. Goertzel, B., Ikle, M., Goertzel, I.F., Heljakka, A.: Probabilistic Logic Networks.
Springer, New York (2009). https://doi.org/10.1007/978-0-387-76872-4

4. Goertzel, B., et al.: Cognitive synergy between procedural and declarative learning
in the control of animated and robotic agents using the OpenCogPrime AGI archi-
tecture. In: Proceedings of the AAAI Conference on Artificial Intelligence (2011)

5. Jøsang, A.: Subjective Logic: A Formalism for Reasoning Under Uncertainty, 1st
edn. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42337-1

6. Pearl, J.: Causal diagrams for empirical research. Biometrika 82, 669–688 (1995)
7. Prior, A.N.: Past, Present and Future. Clarendon Press, Oxford (1967)
8. Shanahan, M.: The event calculus explained. In: Wooldridge, M.J., Veloso, M. (eds.)

Artificial Intelligence Today. LNCS (LNAI), vol. 1600, pp. 409–430. Springer, Hei-
delberg (1999). https://doi.org/10.1007/3-540-48317-9 17

https://doi.org/10.1007/978-0-387-76872-4
https://doi.org/10.1007/978-3-319-42337-1
https://doi.org/10.1007/3-540-48317-9_17

	Probabilistic Logic Networks for Temporal and Procedural Reasoning
	1 Introduction
	2 Probabilistic Logic Networks Recall
	2.1 Elementary Notions
	2.2 Inference Rules

	3 Temporal Probabilistic Logic Networks
	3.1 Temporal Operators
	3.2 Temporal Rules
	3.3 Example

	4 Procedural Reasoning
	References




