
Bridging AGI Theory and Practice
with Galois Connections

Ben Goertzel1,2(B)

1 OpenCog Foundation, Rockville, USA
ben@goertzel.org

2 SingularityNET Foundation, Amsterdam, The Netherlands

Abstract. Multiple cognitive algorithms posited to play a key role in
AGI (forward and backward chaining inference, clustering and concept
formation, evolutionary and reinforcement learning, probabilistic pro-
gramming, etc.) are given a common formulation as recursive discrete
decision processes involving optimizing functions defined over meta-
graphs, in which the key decisions involve sampling from probability
distributions over metagraphs and enacting sets of combinatory opera-
tions on selected sub-metagraphs. This forms a bridge between abstract
conceptions of general intelligence founded on notions of algorithmic
information and complex systems theory, and the practical design of
multi-paradigm AGI systems.

1 Introduction

The pursuit of AGI has an abstract theoretical aspect, in which the focus is
understanding what intelligence is at a fundamental level going beyond any par-
ticular biological organism or engineered system. It also has an acutely practical
aspect, in which one is trying to build particular systems with specific resources
and application foci, much like building any other machine (albeit with some
unique aspects given that this sort of machine is expected to take over its own
redesign and re-engineering process).

Connecting the theoretical and practical aspects of AGI is a major challenge,
which if done well can enhance both aspects. Here we present some ideas aimed at
fleshing out this connection, in the specific context of cross-paradigm metagraph-
based AI approaches like the OpenCog family of systems.

Perhaps the best known approach to the abstract formulation of AGI is
the algorithmic-information-theory-driven angle, as represented by AIXI [10],
Godel Machine [13] and their relatives. These abstract AGI systems have the
general form of “reinforcement learning” or “experiential interactive learning”
algorithms, meaning that they operate via iteratively observing the world, then
choosing actions that they expect will give them maximum reward based on
the world’s reactions, etc. They are unrealistic because their action selection is
uncomputable or at best computationally intractable (though efforts have been
made to scale them down [1,14,16]).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
P. Hammer et al. (Eds.): AGI 2023, LNAI 13921, pp. 115–125, 2023.
https://doi.org/10.1007/978-3-031-33469-6_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33469-6_12&domain=pdf
https://doi.org/10.1007/978-3-031-33469-6_12

116 B. Goertzel

An alternate way of conceiving AGI is Weaver’s notion of “Open Ended Intelli-
gence” [17], which considers intelligences as complex, self-organizing systems that
interact with their environments in such a way as to pursue the two complemen-
tary, often conflicting goals of individuation (maintaining system boundaries and
coherence) and self-transcendence (developing and acquiring new properties and
aspects, including those that would be incomprehensible to earlier system ver-
sions). This approach does not make unrealistic assumptions, but possesses a flu-
idity that renders its rigorous application to specific cases an interesting challenge.

In recent papers such as The General Theory of General Intelligence [7] and
Patterns of Cognition [6] I have sought to provide one sort of conceptual and
mathematical bridge between these general-purpose AGI frameworks and prac-
tical real-world AGI-oriented systems, via looking at formulations of the AI
algorithms playing key roles in the OpenCog AI system in terms of abstract
recursive discrete decision systems. This paper gives a concise overview of a few
of the key ideas from these longer works.

The DDSs (Discrete Decision Systems) we propose on the one hand can
be straightforwardly viewed as scaled down versions of AIXItl or time-bounded
Godel Machine type systems, but on the other hand can be used to drive con-
crete thinking about functional programming implementations of OpenCog algo-
rithms, and understood as seeds for the self-modifying self-organization con-
ceived in Open-Ended Intelligence theory.

The Patterns of Cognition analysis involves representing various cognitive
algorithms as recursive discrete decision processes involving optimizing func-
tions defined over metagraphs, in which the key decisions involve sampling from
probability distributions over metagraphs and enacting sets of combinatory oper-
ations on selected sub-metagraphs. A variety of recursive decision process called
a COFO (Combinatory Function Optimization) algorithm plays a key role. One
can view a COFO as being vaguely like Monte-Carlo-AIXI, but within the con-
text of a combinatory computational model – and with the added twist that the
Monte Carlo sampling based estimations are augmented by estimations using
other probabilistic algorithms that are themselves implemented using COFO.
There are close connections to modern probabilistic programming theory [11],
but with more of an emphasis on recursive inference algorithms and less reliance
on simplistic sampling methods.

Behind the scenes of the COFO framework is a core insight drawn from the
body of theory behind the OpenCog system – that a combinatory computational
model defined over metagraphs is an especially natural setting in which to for-
malize various practical AGI-oriented algorithms. From a sufficiently abstract
perspective, all Turing-complete computational models are equivalent, and all
general-purpose computational data structures are equivalent. But from a prac-
tical AGI implementation and teaching perspective, it makes a difference which
computational models and data structures one chooses; the argument for meta-
graphs as the core data structure for AGI has been laid out in [3] and references
therein such as [2], and the argument for combinatory computing as the core
approach for AGI has been laid out in [9] and earlier papers referenced therein.

Bridging AGI Theory and Practice with Galois Connections 117

2 Discrete Decision Systems

To bridge the gap between abstract AGI agent models and practical AGI sys-
tems, we introduce a basic model of a discrete decision system (DDS) – a process
defined on n stages in which each stage t = 1, . . . , n is characterized by

– an initial state st ∈ St, where St is the set of feasible states at the beginning
of stage t;

– an action or “decision variable” xt ∈ Xt, where Xt is the set of feasible
actions at stage t – note that Xt may be a function of the initial state st;

– an immediate cost/reward function pt(st, xt), representing the cost/re-
ward at stage t if st is the initial state and xt the action selected;

– a state transition function gt(st, xt) that leads the system towards state
st+1 = gt(st, xt).

The mapping of the simple agents model given above into this framework is
fairly direct: environments determine which actions are feasible at each point in
time and goals are assumed decomposable into stepwise reward functions. Highly
generally intelligent agents like AIXItl fit into this framework, but so do prac-
tical AI algorithm frameworks like greedy optimization and deterministic and
stochastic dynamic programming. As we shall see, with some care and further
machinery the various cognitive algorithms utilized in the OpenCog framework
can be interpreted as DDSs as well.

To express greedy optimization in this framework, one begins with an initial
state, chosen based on prior knowledge or via purely randomly or via appropri-
ately biased stochastic selection. Then one chooses an action with a probability
proportional to immediate cost/reward (or based on some scaled version of this
probability). Then one enacts the action, the state transition, and etc.

An interesting case of “greedy” style DDS dynamics in an AGI context is the
adaptive spreading of attention through a complex network. OpenCog’s atten-
tional dynamics subsystem, ECAN (Economic Attention Networks), involves
spreading of two types of attention values through a knowledge metagraph –
Short-Term Importance (STI) and Long-Term Importance (LTI) values, repre-
senting very roughly the amount of processor time an Atom should receive in
the near term, and the criticalness of keeping an Atom in RAM in the near term.
In this case: an initial state is a distribution of STI and LTI values across the
Atoms in an Atomspace; an action is the spreading of some STI or LTI from
one Atom to its neighbors; an immediate cost/reward function is the degree
to which a given spreading action causes the distribution of STI/LTI values to
better approximate the actual expected utilities of assignation of processor time
and RAM to the Atoms in Atomspace; a state transition function is the
updating of the overall set of STI/LTI values; and the ECAN equations in the
OpenCog system embody a greedy heuristic for executing this DDS.

To express dynamic programming in this DDS framework is a little subtler,
as in DP one tries to choose actions with probability proportional to overall
expected cost/reward. Estimating the overall expected cost/reward of an action

118 B. Goertzel

sequence requires either an exhaustive exploration of possibilities (i.e. full-on
dynamic programming) or else some sort of heuristic sampling of possibilities
(approximate stochastic dynamic programming).

To handle concurrency in this framework, one can posit underlying atomic
actions wt ∈ Wt, and then define the members of Xt as subsets of Wt. In this
case each action xt represents a set of wt being executed concurrently.

3 Combinatory-Operation-Based Function Optimization

To frame the sorts of cognitive algorithms involved in OpenCog and related
AGI architectures in terms of general DDS processes, [6] introduces the notion
of COFO, Combinatory-Operation-Based Function Optimization. Basically, a
COFO process wraps a combinatory computational system of the sort considered
in [4] and [7] within a DDS, by using the combinatory system as the method
of choosing actions in a discrete decision process oriented toward optimizing a
function. The hypothesis is then made that this particular sort of DDS plays
a core role in practical AGI systems operating in environments relevant to our
physical universe and the everyday human world.

More specifically, we envision a cognitive system controlling an agent in an
environment to be roughly describable as a DDS (the “top-level DDS”), and
then envision the cognitive processing used for action selection in the DDS as
comprising: 1) A memory consisting of a set of entities that combine with each
other to produce other entities, i.e. a combinatory system embodied in a knowl-
edge metagraph; 2) Cognitive processes instantiated as COFO processes, i.e.
as DDSs whose goals are function optimizations and whose actions are func-
tion evaluations, all leveraging a common metagraph as background knowledge
and as a dynamic store for intermediate state; 3) One or more DDSs carrying
out attention allocation on the common metagraph (the core DDS here using
greedy heuristics but supplemented by one or more additional DDSs using more
advanced cognition), spanning the portions of the metagraph focused on by the
various COFO processes.

So practical intelligent systems are modeled as multi-level DDSs where the
subordinate DDSs operating within the outer-loop agent control DDS are mostly
COFO processes. In [7] some effort is taken to explore how the various COFO-
like processes involved in human-like cognition appear to interoperate in human
cognitive architecture, and more specifically how the OpenCog Hyperon design
explicitly interleaves COFO processes in its attempt to manifest advanced AGI.

A COFO process, more explicitly, involves making of a series of decisions
involving how to best use a set of combinatory operators Ci to gain information
about maximizing a function F (or Pareto optimizing a set of functions {Fi}) via
sampling evaluations of F ({Fi}). For simplicity we’ll present this process in the
case of a single function F but the same constructs work for the multiobjective
case. It is shown in [6] how COFO can be represented as a discrete decision
process, which can then be enacted in greedy or dynamic programming style.

Given a function F : X → R (where X is any space with a probability
measure on it and R is the reals), let D denote a “dataset” comprising finite

Bridging AGI Theory and Practice with Galois Connections 119

subset of the graph G(F) of F , i.e. a set of pairs (x, F (x)). We want to introduce
a measure qF (D) which measures how much guidance D gives toward the goal
of finding x that make F (x) large. The best measure will often be application-
specific; however as shown in [6] one can also introduce general-purpose entropy-
based measures that apply across domains and problems.

We can then look at greedy or dynamic programming processes aimed at
gradually building a set D in a way that will maximize qρ,F (D). Specifically, in
a cognitive algorithmics context it is interesting to look at processes involving
combinatory operations Ci : X × X → X with the property that P (Ci(x, y) ∈
MD

ρ |x ∈ MD
ρ , y ∈ MD

ρ) � P (z ∈ MD
ρ |z ∈ X). That is, given x, y ∈ MD

ρ ,
combining x and y using Ci has surprisingly high probability of yielding z ∈ MD

ρ .
Given combinatory operators of this nature, one can then approach gradually

building a set D in a way that will maximize qρ,F (D), via a route of successively
applying combinatory operators Ci to the members of a set Dj to obtain a set
Dj+1.

Framing this COFO process as a form of recursive Discrete Decision System
(DDS), we obtain:

1. A state st is a dataset D formed from function F
2. An action is the formation of a new entity z by

(a) Sampling x, y from X and Ci from the set of available combinatory oper-
ators, in a manner that is estimated likely to yield z = Ci(x, y) with
z ∈ MD

ρ

i. As a complement or alternative to directly sampling, one can perform
probabilistic inference of various sorts to find promising (x, y, Ci).
This probabilistic inference process itself may be represented as a
COFO process, as we show below via expressing PLN forward and
backward chaining in terms of COFO

(b) Evaluating F (z), and setting D∗ = D ∪ (z, F (z)).
3. The immediate reward is an appropriate measure of the amount of new

information about making F big that was gained by the evaluation F (z).
The right measure may depend on the specific COFO application; one fairly
generic choice would be the relative entropy qρ,F (D∗,D)

4. State transition: setting the new state st+1 = D∗

A concurrent-processing version of this would replace 2a with a similar step in
which multiple pairs (x, y) are concurrently chosen and then evaluated.

The action step in a COFO process is in essence carrying out a form of
probabilistic programming [11] (which is clear from the discussion of probabilis-
tic programming in a dependent type context given in [5]). Finding the right
conglomeration of combinatory operators to produce a given output is formally
equivalent to finding the right program to produce a given sort of output, and
here as in probabilistic programming one is pushed to judiciously condition esti-
mates on prior knowledge.

In the case where one pursues COFO via dynamic programming, it becomes
stochastic dynamic programming because of the probabilistic sampling in the

120 B. Goertzel

action. If probabilistic inference is used along with sampling, then one may have
a peculiar sort of approximate stochastic dynamic programming in which the
step of choosing an action involves making an estimation that itself may be
usefully carried out by stochastic dynamic programming (but with a different
objective function than the objective function for whose optimization the action
is being chosen).

Basically, in the COFO framework one looks at the process of optimizing F
as an explicit dynamical decision process conducted via sequential application
of an operation in which: Operations Ci that combine inputs chosen from a
distribution induced by prior objective function evaluations, are used to get new
candidate arguments to feed to F for evaluation. The reward function guiding
this exploration is the quest for reduction of the entropy of the set of guesses at
arguments that look promising to make F near-optimal based on the evaluations
made so far.

The same COFO process can be applied equally well the case of Pareto-
optimizing a set of objective functions. The definition of MD

ρ must be modified
accordingly and then the rest follows.

Actually carrying out an explicit stochastic dynamic programming algorithm
according to the lines described above, will prove computationally intractable
in most realistic cases. However, we shall see below that the formulation of the
COFO process as dynamic programming (or simpler greedy sequential choice
based optimization) provides a valuable foundation for theoretical analysis.

4 Cognitive Processes as COFO-Guided Metagraph
Transformations

COFO is a highly general framework, and to use it to structure specific AI
systems one has to take the next step and introduce specific sets of combina-
tory operations, often associated with specific incremental reward functions in
the spirit of (but often not identical) the information-theoretic reward approach
hinted above. In [6] explicit discussion is given to the COFO expression of a vari-
ety of cognitive algorithms used in the OpenCog AGI approach: Logical reason-
ing, evolutionary program learning, metagraph pattern mining, agglomerative
clustering and activation-spreading-based attention allocation.

We will focus mainly here on AGI architectures such as OpenCog that have
metagraphs as core meta-representational data structures – thus placing meta-
graphs in a dual role: 1) As a fundamental means of analyzing what the AGI
system is doing from a conceptual and phenomenological perspective; 2) As the
core data structure the AGI system uses to store various sorts of information as
it goes about its business.

In this sort of AGI architecture, the expression of logical inference, program
learning and pattern mining in combinatory-system terms ties directly back to
the discussion of distinction metagraphs and associated patterns in [7]. Logical
inference rules can be considered as transformations on distinction metagraphs.
Bidirectional inference rules (expressed using coimplication) are rules mapping

Bridging AGI Theory and Practice with Galois Connections 121

between two distinction metagraphs that have different surface form but ulti-
mately express the same distinctions between the same observations. Programs
can be viewed, using Curry-Howard type mappings, as series of steps for enact-
ing these logical-inference-rule transformation on metagraphs, where the steps
are to be carried out on an assumed reference machine. The reference machine
itself may also be represented as a distinction metagraph with temporal links
used to express the transitions involved in computations. Pattern mining can be
expressed in terms of formal patterns in metagraphs. Clustering can be viewed
as a sort of metagraph transformation that creates new ConceptNodes grouping
nodes into categories. Etc.

In this context, COFO presents itself as a way of structuring processes
via which sub-metagraphs transform other sub-metagraphs into yet other sub-
metagraphs, where the submetagraphs are interpreted as combinators and are
combined via a systematic recursive process toward the incremental increase of
a particular reward function. And the common representation of multiple COFO
processes involved in achieving the overall multiple-goal-achieving activities of a
top-level DDS in terms of a shared typed metagraph is one way to facilitate the
cognitive synergy needed to achieve high levels of general intelligence under prac-
tical resource constraints. The reliance on a common metagraph representation
makes it tractable for the multiple cognitive algorithms to share intermediate
state as they pursue their optimization goals, which enables the cognitive-synergy
dynamic in which each process is able to call on other processes in the system
for assistance when it runs into trouble.

5 COFO Processes as Galois Connections

For some of the cognitive algorithms treated in COFO terms in [6] one requires
a variety of COFO that uses greedy optimization to explore the dag of pos-
sibilities, for others one requires a variety of COFO that uses some variation
on approximation stochastic dynamic programming. In either case, one can use
the “programming with Galois connections” approach from [12] to formalize the
derivation of practical algorithmic approaches. Roughly, in all these cases, Galois
connections are used to link search and optimization processes on directed meta-
graphs whose edge targets are labeled with probabilistic dependent types, and
one can then show that – under certain assumptions – these connections are ful-
filled by processes involving metagraph chronomorphisms (where a chronomor-
phism is a fold followed by an unfold, where both the fold and unfold are allowed
to accumulate and propagate long-term memory as they proceed).

5.1 Greedy Optimization as Folding

Suppose we are concerned with maximizing a function f : X → R via a “pattern
search” approach. That is, we assume an algorithm that repeatedly iterates a
pattern search operation such as: Generates a set of candidate next-steps from
its focus point a, evaluates the candidates, and then using the results of this

122 B. Goertzel

evaluation, chooses a new focus point a∗. Steepest ascent obviously has this
format, but so do a variety of derivative-free optimization methods as reviewed
e.g. in [15].

Evolutionary optimization may be put in this framework if one shifts atten-
tion to a population-level function fP : XN → R where XN is a population
of N elements of X, and defines fP (x) for x ∈ XN as e.g. the average of f(x)
across x ∈ XN (so the average population fitness, in genetic algorithm terms).
The focus point a is a population, which evolves into a new population a∗ via
crossover or mutation – a process that is then ongoingly iterated as outlined
above.

The basic ideas to be presented here work for most any topological space X
but we are most interested in the case where X is a metagraph. In this case
the pattern search iteration can be understood as a walk across the metagraph,
moving from some initial position in the graph to another position, then another
one, etc.

We can analyze this sort of optimization algorithm via the Greedy Theorem
from [12],

Theorem 1 (Theorem 1 from [12]). (|S � R|) ⊆ (|S|) � R if R is transitive and
S satisfies the “monotonicity condition” R◦ ← SFR◦

which leverages a variety of idiosyncratic notation: R S←− FR indicates S ·FR ⊆
R ·S ; (|S|) means the operation of folding S ; 〈µX :: fX〉 denotes the least fixed
point of f ; T ◦ means the converse of T , i.e. (b, a) ∈ R◦ ≡ (a, c) ∈ R ; S � R
means “S shrunk by R”, i.e. S ∩ R/S◦. Here S represents the local candidate-
generation operation used in the pattern-search optimization algorithm, and R
represents the operation of evaluating a candidate point in X according to the
objective function being optimized.

If the objective function is not convex, then the theorem does not hold, but
the greedy pattern-search optimization may still be valuable in a heuristic sense.
This is the case, for instance, in nearly all real-world applications of evolutionary
programming, steepest ascent or classical derivative-free optimization methods.

5.2 Galois Connection Representations of Dynamic Programming
Decision Systems Involving Mutually Associative Combinatory
Operations

Next we consider how to represent dynamic programming based execution of
DDSs using folds and unfolds. Here our approach is to leverage Theorem 2
in [12] which is stated as

Theorem 2 (Theorem 2 from [12]). Assume S is monotonic with respect to R,
that is, R S←− FR holds, and dom(T) ⊆ dom(S·FM). Then

M = ((|S|)· (|T |)◦) � R ⇒ 〈µX::(S·FX·T ◦) � R〉 ⊆ M

Bridging AGI Theory and Practice with Galois Connections 123

Conceptually, T ◦ transforms input into subproblems, e.g. for backward chain-
ing inference, it chooses (x, y, C) so that z = C(x, y) has high quality (e.g.
CWIG); for forward chaining, it chooses x, y, C so that z = C(x, y) has high
interestingness (e.g. CWIG).
FX figures out recursively which combinations give maximum immediate reward
according to the relevant measure. These optimal solutions are combined and
then the best one is picked by � R, which is the evaluation on the objective
function. Caching results to avoid overlap may be important here in practice
(and is what will give us histomorphisms and futumorphisms instead of simple
folds and unfolds).

The fix-point based recursion/iteration specified by the theorem can of course
be approximatively rather than precisely solved – and doing this approxima-
tion via statistical sampling yields stochastic dynamic programming. Roughly
speaking the approach symbolized by M = ((|S|)· (|T |)◦) � R begins by apply-
ing all the combinatory operations to achieve a large body of combinations-of-
combinations-of-combinations-. . ., and then shrinks this via the process of opti-
mality evaluation. On the other hand, the least-fixed-point version on the rhs of
the Theorem iterates through the combination process step by step (executing
the fold).

6 Associativity of Combinatory Operations Enables
Representing Cognitive Operations as Folding
and Unfolding

A key insight reported in Patterns of Cognition is that the mutual associativity
of the combinatory operations involved in a cognitive process often plays a key
role in enabling the decomposition of the process into folding and unfolding
operations. This manifests itself for example in the result that

Theorem 3. A COFO decision process whose combinatory operations Ci are
mutually associative can be implemented as a chronomorphism.

This general conclusion regarding mutual associativity resonates fascinat-
ingly with the result from [4] mentioned above, that mutually associative com-
binatory operations lead straightforwardly to subpattern hierarchies. We thus
see a common mathematical property leading to elegant and practically valu-
able symmetries in both algorithmic dynamics and in knowledge-representation
structure. This bolsters confidence that the combinatory computational model
is a good approach for exploring the scaling-down of generic but infeasible AGI
models toward the realm of practically usable algorithms.

This conclusion regarding mutual associativity also has some practical impli-
cations for the particulars of cognitive processes such as logical reasoning and
evolutionary learning. For instance, one can see that mutually associativity
holds among logical inference rules if one makes use of reversible logic rules
(co-implications rather than implications), and for program execution processes

124 B. Goertzel

if one makes use of reversible computing. It is also observed that where this
mutual associativity holds, there is an alignment between the hierarchy of sub-
goals used in recursive decision process execution and subpattern hierarchies
among patterns represented in the associated knowledge metagraph.

In the PLN inference context, for example, the approach to PLN inference
using relaxation rather than chaining outlined in [8] is one way of finding the
fixed point of the recursion associated with the COFO process. What the theo-
rem suggests is that folding PLN inferences across the knowledge metagraph is
another way, basically boiling down to forward and backward chaining as out-
lined above. However, it seems this can only work reasonably cleanly for crisp
inference if mutual associativity among inference rules holds, which appears to
be the case only if one uses PLN rules formulated as co-implications rather than
one-way implications.

Further, when dealing with the uncertainty-management aspects of PLN
rules, one is no longer guaranteed associativity merely by adopting reversibility
of individual inference steps. One must heuristically arrange one’s inferences as
series of co-implications whose associated distributions have favorable indepen-
dence relationships.

7 Challenges and Prospects

The assumptions needed to get from the symmetry properties of discrete decision
processes to fold and unfold operations are not entirely realistic – for instance,
to get the derivations to work in their most straightforward form, one needs to
assume the underlying metagraph remains unchanged as the folding and unfold-
ing processes proceed. If the metagraph changes dynamically along with the
folding and unfolding – e.g. because inference processes are drawing conclusions
from the nodes and links created during the folding process, and these conclu-
sions are being placed into the metagraph concurrently with the folding process
proceeding – then one loses the straightforward result that simple approximate
stochastic dynamic programming algorithms will approximate the optimal result
of the decision process. This is a serious limitation, but it must also be under-
stood that in many cases the real-time changes to the metagraph incurred by
the folding and unfolding process are not a significant factor. Creating rigorous
theory connecting abstract AGI theory to pragmatically relevant cognitive algo-
rithms and their implementations is a complex matter inevitably involving some
simplifications and approximations; the trick is to choose the right ones.

If one wishes to explore open-ended, evolutionary AGI systems in which
multiple algorithms constructed on diverse principles interact within a common
meta-representational fabric, then the conceptual and mathematical approach
presented here provides an avenue for relatively elegant and concise formaliza-
tion, putting diverse AI methods in a common framework. This framework has
potential to ease practical complexity and performance analysis, and also con-
nects practical operational systems with broader conceptions of AGI.

Bridging AGI Theory and Practice with Galois Connections 125

References

1. Franz, A., Gogulya, V., Löffler, M.: WILLIAM: a monolithic approach to AGI. In:
Hammer, P., Agrawal, P., Goertzel, B., Iklé, M. (eds.) AGI 2019. LNCS (LNAI),
vol. 11654, pp. 44–58. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
27005-6 5

2. Gibbons, J.: An initial-algebra approach to directed acyclic graphs. In: Möller,
B. (ed.) MPC 1995. LNCS, vol. 947, pp. 282–303. Springer, Heidelberg (1994).
https://doi.org/10.1007/3-540-60117-1 16

3. Goertzel, B.: Folding and unfolding on metagraphs (2020). https://arxiv.org/abs/
2012.01759

4. Goertzel, B.: Grounding Occam’s razor in a formal theory of simplicity. arXiv
preprint arXiv:2004.05269 (2020)

5. Goertzel, B.: Paraconsistent foundations for probabilistic reasoning, programming
and concept formation. arXiv preprint arXiv:2012.14474 (2020)

6. Goertzel, B.: Patterns of cognition: cognitive algorithms as Galois connections
fulfilled by chronomorphisms on probabilistically typed metagraphs. arXiv preprint
arXiv:2102.10581 (2021)

7. Goertzel, B.: Toward a general theory of general intelligence: a patternist perspec-
tive. arXiv preprint arXiv:2103.15100 (2021)

8. Goertzel, B., Pennachin, C.: How might probabilistic reasoning emerge from the
brain? In: Proceedings of the First AGI Conference, vol. 171, p. 149. IOS Press
(2008)

9. Goertzel, B., Pennachin, C., Geisweiller, N.: Engineering General Intelligence,
Part 1: A Path to Advanced AGI via Embodied Learning and Cognitive Syn-
ergy. Atlantis Thinking Machines, Springer, Heidelberg (2013). https://doi.org/
10.2991/978-94-6239-027-0

10. Hutter, M.: Universal Artificial Intelligence: Sequential Decisions Based on Algo-
rithmic Probability. Springer, Heidelberg (2005). https://doi.org/10.1007/b138233

11. van de Meent, J.W., Paige, B., Yang, H., Wood, F.: An introduction to probabilistic
programming. arXiv preprint arXiv:1809.10756 (2018)

12. Mu, S.C., Oliveira, J.N.: Programming from Galois connections. J. Log. Algebraic
Program. 81(6), 680–704 (2012)

13. Schmidhuber, J.: Godel machines: fully self-referential optimal universal self-
improvers. In: Goertzel, B., Pennachin, C. (eds.) Artificial General Intelligence.
COGTECH, pp. 119–226. Springer, Heidelberg (2006). https://doi.org/10.1007/
978-3-540-68677-4 7

14. Schmidhuber, J.: Optimal ordered problem solver. Mach. Learn. 54(3), 211–254
(2004). https://doi.org/10.1023/B:MACH.0000015880.99707.b2

15. Torczon, V.: Pattern search methods for nonlinear optimization. In: SIAG/OPT
Views and News. Citeseer (1995)

16. Veness, J., Ng, K.S., Hutter, M., Uther, W., Silver, D.: A Monte-Carlo AIXI
approximation. J. Artif. Intell. Res. 40, 95–142 (2011)

17. Weinbaum, D., Veitas, V.: Open ended intelligence: the individuation of intelligent
agents. J. Exp. Theor. Artif. Intell. 29(2), 371–396 (2017)

https://doi.org/10.1007/978-3-030-27005-6_5
https://doi.org/10.1007/978-3-030-27005-6_5
https://doi.org/10.1007/3-540-60117-1_16
https://arxiv.org/abs/2012.01759
https://arxiv.org/abs/2012.01759
http://arxiv.org/abs/2004.05269
http://arxiv.org/abs/2012.14474
http://arxiv.org/abs/2102.10581
http://arxiv.org/abs/2103.15100
https://doi.org/10.2991/978-94-6239-027-0
https://doi.org/10.2991/978-94-6239-027-0
https://doi.org/10.1007/b138233
http://arxiv.org/abs/1809.10756
https://doi.org/10.1007/978-3-540-68677-4_7
https://doi.org/10.1007/978-3-540-68677-4_7
https://doi.org/10.1023/B:MACH.0000015880.99707.b2

	Bridging AGI Theory and Practice with Galois Connections
	1 Introduction
	2 Discrete Decision Systems
	3 Combinatory-Operation-Based Function Optimization
	4 Cognitive Processes as COFO-Guided Metagraph Transformations
	5 COFO Processes as Galois Connections
	5.1 Greedy Optimization as Folding
	5.2 Galois Connection Representations of Dynamic Programming Decision Systems Involving Mutually Associative Combinatory Operations

	6 Associativity of Combinatory Operations Enables Representing Cognitive Operations as Folding and Unfolding
	7 Challenges and Prospects
	References

