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Abstract. In this paper we introduce, ROCCA for Rational OpenCog
Controlled Agent, an agent, that, as its name suggests, leverages
the OpenCog framework to fulfill goals in uncertain environments. It
attempts to act rationally, relying on reasoning for both learning and
planning. An experiment in a Minecraft environment is provided as a
test case.
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1 Introduction

This paper describes an attempt to leverage the OpenCog framework [15] for
controlling agents in uncertain environments. It can be seen as a reboot of pre-
vious attempts [5,10,12] relying on new or improved components such as

– a hypergraph pattern miner [7] and a version of Probabilistic Logic Net-
works (PLN) [9] both implemented on top of OpenCog’s Unified Rule Engine
equipped with an inference control mechanism;

– a temporal and procedural extension of PLN [8];
– a simplified version of OpenPsi [5] leaving aside built-in urges and modulators

from MicroPsi [3] and using an action selection policy based on Thompson
Sampling [17].

It is comparable to OpenNARS for Applications (ONA) [14] but, among other
differences, uses PLN [9] as its core logic.

The ultimate goal of this project is to provide a technology to enable us
to experiment with forms of meta-learning and introspective reasoning for self-
improvements. The rational for using a reasoning-based system is that it offers
maximum transparency and is thus more amenable to reflectivity and intro-
spection [11,19]. The work that is described in this paper is only the premise
of that goal. No meta-learning is taking place yet. The objective for now is to
build an agent that is able to discover regularities from its environment and acts
rationally, possibly at the expense of efficiency, at least initially. For discovering
regularities, the agent uses a reasoning-based pattern miner [7]. Then combine
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these regularities to form plans using temporal and procedural reasoning. More
specifically plans are predictive implications of the form

𝐶 ∧ 𝐴 �𝑇
𝐺 ≞ TV

called Cognitive Schematics or Schemata. Which can be read as “in some context
𝐶, if some, possibly composite, action 𝐴 is executed, then after 𝑇 time units, the
goal 𝐺 is likely to be fulfilled, with second order probability measured by TV”.
These plans are then combined to into a mixture that grossly approximates
Solomonoff distribution [6]. Finally, the next action is selected using Thompson
Sampling [17]. The resulting system is called ROCCA for Rational OpenCog
Controlled Agent.

The rest of the paper is organized as follows. A recall of the OpenCog frame-
work is provided in Sect. 2. ROCCA is described in Sect. 3. An experiment using
it to control an agent in Minecraft is described in Sect. 4. A conclusion including
future directions is given in Sect. 5.

2 OpenCog Framework Recall

OpenCog [15] is a framework offering a hypergraph database technology with
a query language and a collection of programs built on top of it to perform
cognitive functions such as learning, reasoning, spreading attention and more.
Knowledge is stored in AtomSpaces, hypergraphs composed of atoms, links and
nodes, where links can connect to other atoms. Values can be attached to atoms
to hold probability, confidence, importance and more. Values and atoms can be
of various types. Let us recall the types we need for the rest of paper.

– A TruthValue is a second order probability distribution, i.e. a probability of
a probability.

– A SimpleTruthValue is a TruthValue where the second order distribution is
represented by a beta distribution of parameters controlled by a strength, a
proxy for a probability, and a confidence over that strength. It is denoted
<𝑠, 𝑐> where 𝑠 is the strength and 𝑐 is the confidence.

– A Predicate is function from a certain domain to 𝐵𝑜𝑜𝑙𝑒𝑎𝑛. A TruthValue can
be attached to a predicate, representing the prevalence of its satisfied inputs.
For instance 𝑃 ≞ < 0.4, 0.1 > represents that 𝑃 tends to evaluate to True
40% of the time, but there is a small confidence of 0.1 over that 40%. A
TruthValue can be attached to individual evaluations as well. For instance
𝑃 (𝑎) ≞ < 0.9, 1 > represents that the probability of 𝑃 (𝑎) evaluating over a
particular 𝑎 to True, is 0.9 and we are certain about it.

– A Conjunction is a link between two predicates, representing the predicate
resulting from the pointwise conjunction of these two predicates. For instance
𝑃 ∧𝑄 ≞ <0.2, 0.3> represents the prevalence, with strength 0.2 and confidence
0.3, of the pointwise conjunction of 𝑃 and 𝑄.

– An Implication is a link between two predicates, semantically representing the
conditional probability between two events represented by these predicates.
For instance 𝑃 → 𝑄 ≞ <0.7, 0.4> indicates that if 𝑃 (𝑥) is True then there is
a 70% change with a 0.4 confidence, that 𝑄(𝑥) is also True.



Rational OpenCog Controlled Agent 97

Additionally we use the following types for temporal reasoning.

– A Sequential Conjunction is a link between two temporal predicates, repre-
senting the predicate resulting from the pointwise conjunction of these pred-
icates while the second one leads by a certain time. For instance 𝑃⩘𝑇

𝑄 is the
pointwise conjunction of 𝑃 and a leading 𝑄 by 𝑇 time units. Meaning that
(𝑃⩘𝑇

𝑄)(𝑥, 𝑡) is True if and only if 𝑃 (𝑥, 𝑡) and 𝑄(𝑥, 𝑡 + 𝑇 ) are True.
– A Predictive Implication is a link between two temporal predicates, repre-

senting the conditional probability between two events delayed by a certain
time. For instance 𝑃 �𝑇

𝑄 ≞ < 0.8, 0.5> indicates that if 𝑃 (𝑥) is True then
there is a 80% chance with a 0.5 confidence, that after 𝑇 time units 𝑄(𝑥) will
also be True.

The difference between a temporal and an atemporal predicate is its domain. A
temporal predicate must have at least a temporal dimension. More detail about
the temporal types and their associated inference rules is provided in [8].

3 Rational OpenCog Controlled Agent

ROCCA is implemented as an observation-planning-action loop interleaved with
learning and reasoning. It provides an interfacing between OpenCog and envi-
ronments such as Malmo [16] or OpenAI Gym [4]. It is written in Python which is
both supported by these environments and OpenCog. Figure 1 provide a graph-
ical representation of ROCCA as if it was a single loop incorporating all steps.
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Atomspace
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Fig. 1. Rational OpenCog Controlled Agent
control and learning cycles merged into a sin-
gle loop.

3.1 Memory

For better efficiency and clarity, the
memory of the agent is split into
three parts.

1. The Percepta AtomSpace holds
timestamped observations as
they come into the system.

2. The Working AtomSpace holds
any kind of data, ranging from
timestamped observations to
predictive implications. Most
knowledge used and inferred
during the course of learning are
usually dumped into this Atom-
Space.

3. The Schemata AtomSpace holds
Cognitive Schematics, which are
predictive implications relating
contexts, actions and goals.
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3.2 Processes

The agent runs two main processes:

1. A Control process for real-time reactive agent control.
2. A Learning process for non-reactive background learning.

In principle these two processes could happen in parallel. For now they alternate
in series. The agent starts in a control phase. A number of control cycles occur
as the agent motor-babbles through its environment. It is then followed by a
learning phase when the agent discover regularities and build plans. And finally
repeats the control phase to test how it performs after learning.

3.3 Control

The control process is composed of control cycles, each decomposed into Obser-
vation, Planning and Action phases, as described below.

1. Observation:
(a) Receive and timestamp observations, reward included, from the environ-

ment.
(b) Store the timestamped observations in the Percepta AtomSpace.

2. Planning :
(a) Select the goal for that cycle.
(b) Find plans fulfilling that goal from the Schemata AtomSpace.
(c) Build a mixture distribution from these plans.

3. Action:
(a) Select the next action via Thompson Sampling according to that mixture

distribution.
(b) Timestamp and store the selected action in the Percepta AtomSpace.
(c) Run the selected action and by that update the environment.

None of these steps are computationally expensive. They involve algorithms that
are at most linear with the size of the Percepta and Schemata AtomSpaces. As
time goes and knowledge accumulates though, it will progressively slow down.
Indeed, for real-time responsiveness such control cycle should be bound by a
constant. Achieving this may require to incorporate other mechanisms such as
filtering and forgetting. This problem, as important as it is, is left aside for future
research. Given the small environments ROCCA has been tested with, it has not
been a problem so far. Let us now provide more details about these three phases.

Observation. During the observation phase, data coming from the environ-
ment are timestamped and stored in the Percepta AtomSpace with the format
datum@timestamp. For instance if at cycle 3 the agent observes outside(house),
then outside(house)@3 is inserted into the Percepta AtomSpace.
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Planning. The first step of the planning phase is to select a goal 𝐺 to fulfill. In
the current version of ROCCA though it merely returns a constant goal which is
to gain a reward within a forward window. More on goal selection can be found
in [11,13]. Once the goal has been selected, the agent searches the Schemata
AtomSpace with the following pattern matcher query

$𝐶 ∧ $𝐴 �𝑇
𝐺

where $𝐶 is a variable representing the context, $𝐴 is a variable representing
the action, 𝑇 is a time delay selected within that forward window and 𝐺 is
the selected goal. All returned candidates are then filtered according to their
contexts, only retaining those for which the context is evaluated to True at
the current time. Ideally, such crisp evaluation should be replaced by a second
order probability evaluation of a context being True. This is important for con-
texts that have elements of uncertainty. But for the sake of simplicity, in our
experiments so far, all contexts are crisply evaluated. Then from the set of valid
cognitive schematics, a second order mixture distribution is built and handed to
the next phase for performing action selection. The calculations used to build
that second order mixture distribution is detailed in [6].

Action. The Action phase consists of the following steps:

1. Select the next action via Thompson Sampling [17] according to the mixture
distribution built during the planning phase.

2. Timestamp and store the selected action in the Percepta AtomSpace.
3. Run the selected action and update the environment. If it is a composite

action, only run the first primary action.

The trickiest step here is selecting the next action via Thompson Sampling. The
novelty is that the second order probabilities can be leveraged by Thompson
Sampling. For example, assume we have two actions, 𝐴1 and 𝐴2, to choose among
two predictive implications

𝐶1 ∧ 𝐴1 �𝑇
𝐺 ≞ <0.6, 0.9>

𝐶2 ∧ 𝐴2 �𝑇
𝐺 ≞ <0.7, 0.1>

Using only the strengths of the truth values as proxy for probability of suc-
cess, the choice is clear. Action 𝐴2 should be selected, because its probability
of success, which is 0.7, is greater than that of 𝐴1, which is 0.6. However once
confidence is introduced, that choice becomes less clear because the truth value
of success of 𝐴2 has a low confidence of 0.1. In that case, first order probabili-
ties are sampled from their corresponding second order distributions, and then
these probabilities are compared. The action with the maximum probability gets
selected. Informally, the idea is to consider the possibilities that the agent might
be living in a world where 𝐴2 has a lower probability of success than 𝐴1. That
is the essence of Thompson Sampling. Figure 2 shows the second order distri-
butions of the probabilities of success of 𝐴1, in blue, and 𝐴2, in red, for these
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Fig. 2. Second order probability distributions of success of actions 𝐴1 and 𝐴2, using as
parameters of the beta distribution 𝛼(𝑠, 𝑐) = 𝛼0 + 𝑠.𝑐.𝑘

1−𝑐 and 𝛽(𝑠, 𝑐) = 𝛽0 + (1−𝑠).𝑐.𝑘
1−𝑐 where 𝑘,

the lookahead, is set to 100, and 𝛼0 and 𝛽0 are set to Jeffreys prior.

truth values. As one may notice, the area under the red curve situated at the
left of the blue curve is non-negligible. Meaning that the probability of being in
a world where 𝐴1 has a higher probability of success than 𝐴2 is non-negligible as
well. Because these strengths and confidences are periodically updated during
the lifetime of the agent, one can see how Thompson Sampling is a great alterna-
tive to 𝜀-greedy, as it offers a parameter-free mechanism to balance exploration
and exploitation that dynamically adapts with the knowledge of the agent.

Note that in this example only two actions among two cognitive schematics
are considered, but in practice there is usually a handful of actions among a
potentially very large number of cognitive schematics with overlapping contexts
and conflicting goals. The resulting distribution of success of each action is typ-
ically multi-modal and do not reduce to a beta distribution. How to deal with
such a multitude of cognitive schematics is treated in [6].

3.4 Learning

The difficulty then comes down to discovering cognitive schematics that are as
predictive and widely applicable as possible. For that, ROCCA uses a combina-
tion of pattern mining and reasoning.

Pattern Mining. A relatively inexpensive way to discover regularities in the
environment is to mine the Percepta AtomSpace. For instance, given

{go(right)@0, square(right)@1, go(left)@1, square(left)@2, . . . }
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the pattern miner can discover temporal relationships such as

go(right) �1
𝑠𝑞𝑢𝑎𝑟𝑒(𝑟𝑖𝑔ℎ𝑡)

go(left) �1
𝑠𝑞𝑢𝑎𝑟𝑒(𝑙𝑒𝑓 𝑡)

as well as more abstract relationships, such as

go(𝑥) �1
𝑠𝑞𝑢𝑎𝑟𝑒(𝑥)

The pattern mining algorithm used by ROCCA is detailed in [7]. This is a
generic hypergraph pattern miner, not specialized for temporal patterns. In order
to mine temporal patterns with it, timestamps are represented as naturals. 0 is
presented by 𝑍, 1 by 𝑆(𝑍), 2 by 𝑆(𝑆(𝑍)), etc. This provides the needed structure
to discover temporal relationships between events. As it currently stands, the
pattern miner can efficiently discover mono-action plans. Mining poly-action
plans is also possible but has two issues:

1. In the worse case, the computational cost of mining goes up exponentially
with the size of the action sequence to mine.

2. The number of observations to accumulate in order to generate cognitive
schematics with decent confidences goes up exponentially as well.

The latter is really the most problematic because we cannot buy our way out of
it. If each observation takes a certain amount time, determined by the control
cycle period in the case of primary observations, then we have to go through
them, we cannot speed time up. This is even more true for abstract percepta
that can only be observed at periods that are multiples of control cycle periods.
Also, in some cases, a particular action sequence may never be observed at all,
yet we still would like to have a way to estimate the likelihood of its success. In
order to address these limitations and more, we need reasoning.

Temporal Reasoning. ROCCA uses a temporal extension of PLN described
in [8] to update existing cognitive schematics obtained by pattern mining, and
discover new cognitive schematics by combining existing ones. For instance it
can infer poly-action plans by stringing mono-action plans together, as well as
generalize or specialize their contexts or goals. Temporal rules integrated into
ROCCA include:

1. Predictive Implication Direct Introduction to infer the truth value of a pre-
dictive implication from direct observations.

2. Temporal Conditional Conjunction Introduction to specialize a goal within a
plan by considering the conjunction of existing cognitive schematics goals.

3. Temporal Deduction to string together small plans to form bigger ones.

The precise semantics of these rules is detailed in [8]. An example of how they
are used is presented below.
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4 Experiment in a Simple Minecraft Environment

In this experiment, we use Malmo [16] to construct a basic Minecraft world that
comprises a house filled with diamonds and a key. The objective of the agent
is to retrieve the key, located somewhere in the vicinity of the house, and then
unlock the door of the house. Upon unlocking the door, the agent is able to
collect a diamond and receive a reward.

The aim of the experiment is to make ROCCA learn from interacting with the
Minecraft environment and collect as many diamonds as possible. To make the
task easier, the primary actions and perceptions provided by Malmo have been
replaced by high level actions such as go(key), go(house) and go(diamonds), as
well as high level perceptions about the state of the agent such as outside(house),
hold(key) and the reward for completing a given action, reward(1).

The experiment consists of two iterations of training lasting fifty control
cycles each, interleaved by a learning phase of a few hours. During the first iter-
ation, no learning is taking place as the agent has no prior knowledge. The agent
randomly explores the environment. Then it enters a learning phase, discovering
cognitive schematics via mining and reasoning, subsequently leading the agent
to achieve more frequently its goal during the next training phase.

Let us look more closely how ROCCA discovers cognitive schematics. Given
the following observations

{. . . ,Reward(0)@10, outside(house)@10, hold(key)@10, go(house)@10,
inside(house)@11, go(diamond)@11, Reward(0)@11, Reward(1)@12, . . . }

ROCCA can mine, among many other things, the following cognitive schematic

hold(key) ∧ go(house) �1 inside(house) ≞ <0.833, 0.007>

Additionally, by applying the temporal conditional conjunction introduction rule
on the relevant relationships, such as

outside(house) ∧ go(key) �1 outside(house) ≞ <1, 0.007>
outside(house) ∧ go(key) �1 hold(key) ≞ <1, 0.007>

the agent derives

outside(house) ∧ go(key) �1 outside(house) ∧ hold(key) ≞ <1, 0.007>

which, if combined with

outside(house) ∧ hold(key) ∧ go(house) �1 inside(house) ≞ <0.833, 0.007>

can be used by the procedural deduction rule to infer

outside(house) ∧ go(key)⩘1go(house) �2 inside(house) ≞ <0.833, 0.007>

Continuing this reasoning process ultimately results in the discovery of an effec-
tive plan that leads to achieving the goal, such as

outside(house) ∧ go(key)⩘1go(house)⩘1go(diamond) �3 reward(1) ≞ <0.833, 0.005>
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A rigorous evaluation is kept for a future paper, nonetheless our preliminary
results indicate that ROCCA successfully learns the necessary cognitive schemat-
ics and, as a consequence, accumulates more rewards during the second iter-
ation. In the first iteration the cumulative reward is around 5, then doubles
to quadruples during the second iteration, depending on the random seed and
other parameters. If ROCCA keeps running after that, the cumulative reward
rate keeps going up because the confidences of the cognitive schematics increase,
leading to more exploitation and less exploration. One may notice that some
plans are not completely reliable, their strengths is below 1. That is because
some actions may fail. ROCCA is suited for dealing with uncertainty and has
no problem with that. These findings are encouraging but only apply to a very
simple environment and may not be indicative of the overall performance of
ROCCA. More experiments over more environments are required and will be
pursued in future work.

The source code of ROCCA is hosted on Github [2] and a video of this
experiment is available on YouTube [1].

5 Conclusion

ROCCA, a system that leverages the OpenCog framework for controlling an
agent in uncertain environments has been presented. This agent is in a strong
sense fully reasoning-based, from learning to planning. The advantage we believe
of such approach, in spite of its current inefficiencies, is to offer greater trans-
parency and foster greater capabilities for meta-learning and self-improvement.
As such, we are only at the start of our endeavor. Towards that end, future
directions include:

1. Integrate Economic Attention Networks [18] for Attention Allocation. Record
attentional spreading as percepta to learn Hebbian links [18] and improve
attention allocation in return.

2. Carry out concept creation and schematization, also called crystallized atten-
tion allocation, to speed up repetitive information processing. This done
well should also provide a solution to the problem of creating hierarchies
of abstract observations and actions.

3. Record more internal processes, not just attentional spreading, as internal
percepta to enable deeper forms of introspection.

4. Plan with internal actions, not just external, such as parameter tuning and
code rewriting to enable self-improvements.
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