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Preface

This volume contains the papers presented at the 16th Conference on Artificial General
Intelligence, AGI-23, held June 16–19, 2023 on the premises of the Royal Institute of
Technology, in Stockholm, Sweden.

Artificial General Intelligence (AGI) is AI that focuses on generality. The past year
saw a great surge in the public, commercial, and scientific interest in AGI, not least
connected to large languagemodels. Therewere 72 submissions toAGI-23, which seems
to be a record for the series. Each submission was reviewed by two or three reviewers.
The program committee accepted 36 papers for publication in this volume. There were
six keynote speakers ranging from brain researchers to experts in AI and robotics.

Wewould like to thank the AGI-23 sponsors Cisco, Digital Futures, SingularityNET,
TrueAGI, and Digital Futures. We are also proud to be endorsed by AAAI and published
by Springer Lecture Notes in Computer Science.

Claes Strannegård, Patrick Hammer, Marjan Alirezaie

Artificial General Intelligence

After over a century of research into human intelligence, there is still no widely accepted
definition of the core concept. Many say that intelligence is the ability to solve problems,
but then, exactly what problems do they have in mind? Is it the ability to collect reward
inMarkov Decision Processes, determine the truth value of sentences of first-order arith-
metic, find patterns in progressive matrices, compose symphonies, or write summaries
about scientific topics?

Could it be argued that some problems are more natural than others when it comes
to defining human intelligence? According to evolutionary theory, human intelligence
evolved in response to demands for problem-solving in nature. In fact, natural selection
favors genes of animals that can reproduce in a relatively broad class of ecosystems. To
be able to reproduce, animals must solve a continuous stream of problems during their
lives, e.g., finding food, avoiding predators, mating, and parenting. This suggests that
human intelligence primarily evolved for solving everyday problems related to survival
in the different habitats of Homo sapiens.

Artificial Intelligence started as an attempt to reproduce parts of human intelligence
in machines and, just like the notion of human intelligence, it is associated with a
certain vagueness regarding its definition, targeted problems, performance measures,
and relations to neighboring research fields.

Recently, AI research has been quite successful at producing systems that are gen-
eral in the sense that they can translate between many languages, play many games,
manipulate many objects, predict many video frames, write many texts, generate many
images, and diagnose many diseases.

Still, many of the basic challenges of AGI remain unsolved. In fact, we do not yet
have any rescue robots that can climb any mountain, production robots that can work in
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any factory, service robots that can work in any home, dialogue systems that can talk to
any person, or autonomous cars that can drive on any road.

Some parts of AGI have made great progress, while others seem to be standing still.
While AI programs perform at a superhuman level in some domains, they arguably
perform below the level of insects in other domains.

I hope that AGI-23will bring new insights and ideas into the philosophical, technical,
and ethical aspects of AGI.

Claes Strannegård

In Memoriam Stan Franklin (1931–2023)

The remarkable human being Stan Franklin, pioneering AGI, computer science, and
cognitive science researcher and Chair of the First AGI Conference, passed away on
January 23, 2023, at age 91. He leaves 8 children and a tremendously creative legacy in
AI and related fields.

Via his lead role in the First AGI Conference in Memphis in 2008 and his overall
visionary activity in the formative AGI community, Stan Franklin played a key role in
initiating the annual Conference on Artificial General Intelligence (AGI), as well as the
associated family of research programmes.

Stan’s particular role in the AGI conference series began in 2006, when BenGoertzel
and PeiWang organized a small workshop onArtificial General Intelligence in Bethesda,
Maryland, in which Stan presented his work on LIDA. During and after the meeting, the
participants discussed the possibility of starting a conference series to facilitate com-
munication and cooperation on this topic. Stan showed a strong passion for making it
happen and made the arrangements for the first conference to be hosted by the Uni-
versity of Memphis in 2008. During the preparation of the conference, Stan impressed
everyone deeply by his organizational capability and cooperative spirit, as well as his
deep scientific, philosophical, and technical understanding of the various aspects of the
AGI enterprise. The conference was a great success, and due in large part to Stan’s
early efforts the conference series is still going strong now in 2023, as evidenced by this
volume.

Stan’s overall influence as a researcher was particularly great in the area of cognitive
architectures (through his LIDA architecture and his broader theoretical work), and
the rigorous fleshing-out of the role of concepts such as agency and consciousness in
cognition. His insights in this regard are still quite relevant today as the concept of AGI
enjoys broad currency.As theAIfieldwrestleswith practical systemsdisplayingdiffering
levels of pattern recognition and reasoning ability, agency, and reflection, Stan’s thinking
is extremely relevant to the quest to understand these capabilities. Stan’s thinking is
especially relevant to understand the degrees and senses in which these systems display
general or human-like intelligence.

Ben Goerzel, Pei Wang

April 2023 Claes Strannegård
Patrick Hammer
Marjan Alirezaie
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Contents xi

Computing with Categories in Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 244
Eli Sennesh, Tom Xu, and Yoshihiro Maruyama

ADAM: A Prototype of Hierarchical Neuro-Symbolic AGI . . . . . . . . . . . . . . . . . . 255
Sergey Shumsky and Oleg Baskov

Electronic Education Machine AGI-EEdu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
Nihad Subasic

Can Language Models Be Used in Multistep Commonsense Planning
Domains? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

Zhisheng Tang and Mayank Kejriwal

Explicit Goal-Driven Autonomous Self-Explanation Generation . . . . . . . . . . . . . . 286
Kristinn R. Thórisson, Hjörleifur Rörbeck, Jeff Thompson,
and Hugo Latapie

Addressing the Unsustainability of Deep Neural Networks with Next-Gen
AI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296

Amanda Vallentin, Kristinn R. Thórisson, and Hugo Latapie

NUTS, NARS, and Speech . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
Dwane van der Sluis

Computational-Level Analysis of Constraint Compliance for General
Intelligence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317

Robert E. Wray, Steven J. Jones, and John E. Laird

Self-Comprehension for More Coherent Language Generation . . . . . . . . . . . . . . . 328
George A. Wright and Matthew Purver

An Adaptive Vision Architecture for AGI Systems . . . . . . . . . . . . . . . . . . . . . . . . . 338
Robert Wünsche

A Unified Structured Framework for AGI: Bridging Cognition
and Neuromorphic Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345

Mingkun Xu, Hao Zheng, Jing Pei, and Lei Deng

Coherence in Intelligent Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
Hao Zheng and Luping Shi

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367



On VEI, AGI Pyramid, and Energy
Can AGI Society Prevent the Singularity?

Mohammadreza Alidoust(B)

Mashhad, Iran
m.alidoust@hotmail.com

Abstract. This paper is the extension of my recent paper which was presented
at the AGI-22 conference. In this paper, I try to answer the comments I received
during and after the conference and to clarify and explain inmore details the points
and results that were missed or omitted from my previous paper due to the page
limitation of the proceedings.

Keywords: Artificial General Intelligence · Versatility-Efficiency Index · AGI
Pyramid · Complexity · Power Consumption · Unsolved Problem Space ·
Intentional Vulnerability Imposition · Human-First Design · Computational
Power · Hardware Architecture · AGI Society · Singularity

1 Introduction

In my recent paper which was presented at the AGI-22 conference [1], the universal
problem space (UPS) is divided into two separate spaces: solved problems (SPS) and
unsolved problems (NPS) to the human as a natural general intelligence (NGI) agent (See
Fig. 1.). Since in AGI we are interested in the intelligence itself, based on the 8 aspects of
intelligence (Reasoning and problem solving (R), Knowledge representation (K), Plan-
ning (P), Learning (L), Natural language processing (N), Perception (C), Motion and
manipulation (M), and Social intelligence (S)), the SPS was then classified into 255
different subspaces which together form the AGI Pyramid (See Fig. 2.). Each subspace
i represents the exact number of intelligence aspects that are needed to solve a problem
which is in that subspace, no matter whether the aspects are needed simultaneously or
consecutively. Each subspace has its own complexity (wi) which is determined whether
by criterion 1: the AGI Society (AGIS) or by criterion 2: based on the average time and
power consumption for current AI methods (or even humans) to solve standard bench-
mark problems that exist in those subspaces on a certain standard computer platform.
The defined complexities would then be published as a standard table of complexities
by the AGIS and used by robotic companies, AGI research centers, etc. Furthermore, it
was suggested that, for simplicity and appreciation purposes, the subspaces be named
after AGI scientists and pioneers. (See Fig. 3.)

Also, in that paper, I stated that artificial general intelligence (AGI) systems must
be versatile and also efficient. Legg and Hutter [2] state that AGI agents have to “per-
form well in a wide range of environments” while Pennachin and Goertzel [3] defined

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
P. Hammer et al. (Eds.): AGI 2023, LNAI 13921, pp. 1–10, 2023.
https://doi.org/10.1007/978-3-031-33469-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33469-6_1&domain=pdf
https://orcid.org/0000-0003-3712-0535
https://doi.org/10.1007/978-3-031-33469-6_1
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Fig. 1. Universal problem space (UPS), which consists of solved problem space (SPS), and
unsolved problem space (NPS). The stars represent problems.

Fig. 2. AGI Pyramid: Classification of the SPS into subspaces based on the eight required aspects
of intelligence in order to solve the problems that are grouped into a subspace; Reasoning and
problem solving (R), Knowledge representation (K), Planning (P), Learning (L), Natural language
processing (N), Perception (C), Motion and manipulation (M), Social intelligence (S). Each level
represents subspaces with the same number of required aspects and the thickness of each level
represents the number of currently known benchmark problems. Please note that although the SPS
and its subspaces are depicted like bounded shapes, they are infinite spaces with infinite number
of members.

Fig. 3. Magnified section of the top of the AGI Pyramid and suggested names for subspaces.
However the author suggests that the AGIS is the most suitable society for this naming process.

intelligence as “achieving complex goals in complex environments”. Thorisson et al.
state that “performing a task in real world requires time, energy, and possibly other
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resources such as money, materials, or manpower” [4]. Since in AGI we are interested
in generality, only the factors time and energy that are general in every task are adopted
from the above statement to define the quality of performance. So, by combining both
Legg-Hutter and Pennachin-Goertzel definitions of intelligence, with the concept of the
classification of SPS and the corresponding complexities of each subspace, as well as
Thorisson’s statement of task-performance requirements, an index for measuring the
versatility and efficiency of artificial general intelligence (AGI) systems was proposed
as Versatility-Efficiency Index (VEI). VEI (See Eq. 1) encompasses the quantitative and
also qualitative characteristics of intelligent agents and plays as an alternative computa-
tional way for measuring the intelligence quotient (IQ) of intelligent agents, meanwhile,
it is also applicable to natural general intelligence (NGI).

VEI =
N∑

i=1
wiαi or VEI =

N∑

i=1

Mi∑

j=1
wi

aij
Mipij tij

(1)

where N = 255 (since the AGI agent must be tested in all 255 subspaces of the SPS),
wi is the complexity of each subspace i (which are defined based on the two mentioned
criteria), αi is the average performance wellness of the system in performing all of the
benchmark tasks that exist in subspace i,Mi is the number of benchmark tasks that exist
in subspace i, aij is the accuracy of the system in performing task j of the subspace i, pij
is the power needed for performing task j of the subspace i, and tij is the time needed
for performing task j of the subspace i. VEI is dimensionless while the dimension of
complexity wi is joule, i.e., [wi] = joule, because performance of any task requires
energy. Please note that the term accuracy in definition of VEI does not necessarily
represent the concept of accuracy in applications like machine learning’s classification.
It is a general concept and represents all dimensionless measures and criteria that are
used for description and measurement of the merit of a tool, algorithm, etc. over others.

VEI is a simple yet informative scoring system which is not restricted to the AI and
AGI field and with some modifications can be utilized in many other scoring and com-
parison applications. For example if accuracy and power consumption are not important
in comparison between the contestants of a test like a car race, they are omitted and we
have:

VEI =
N∑

i=1

1

ti

As another instance if time and power consumption are not important, they are
omitted and we have:

VEI =
N∑

i=1

Mi∑

j=1

wi
aij
Mi

Here VEI becomes a simple scoring system for tests like university entrance tests or
calculating grade point average (GPA). The higher the VEI, the better is the performance
of a contestant. InAGI, higher amounts ofVEI represent higher versatility and efficiency.
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In addition, if we have the VEI of human (VEI0), the VEI of current AGI agents can
tell us how far we are now from reaching to an AGI agent with (at least) a human-level
artificial intelligence (HLAI).

This paper is the extension of my previous paper which was presented at the AGI-22
conference. In this paper, I try to answer the comments I received during and after the
conference and also to clarify and explain in more details the points and results that were
missed or omitted frommy previous paper due to the page limitation of the proceedings.

2 Intelligence

2.1 Intelligence and Power Consumption – Part I: The Natural Trend

There is an old story about a Chinese master and his two students. Once upon a time,
a wise Chinese master who stood behind the wall of a temple with two of his students,
asks them to move a piece of feather to the other side of the wall, but without grabbing
it. The first student who was an expert in Kung Fu, hardly managed to move the feather
to the other side of the wall with his kicks, fists, and other techniques of martial arts.
Obviously he spent a lot of power and time. The second student just used his breath and
blew the feather to the other side. Question: which student acted smarter? Obviously the
second student.

I define intelligence as life optimization. I believe that intelligence is a form of
optimality [5] and intelligent agents are consciously or unconsciously optimizing their
lives. This optimization includes power consumption too. Evolution of natural beings
requires consuming least amount of power needed for performing their tasks. As they
become smarter, they learn to perform their tasks with lower power consumption. As we
can see in Eq. 1. we have:

VEI ∝ 1

pij

That is VEI (i.e., intelligence level) is proportional to the reciprocal of power con-
sumed to perform a task. This means smarter agents (whether natural or artificial) would
find a way to perform their tasks with lower power consumption, i.e., they become
more power-efficient. The definition of VEI complies with the above-mentioned trend
of power consumption in nature.

2.2 Intelligence and Power Consumption – Part II: Human Brain

There are a number of scientists and futurists who believe that artificial general intel-
ligence requires huge amount (e.g., megawatts) of power and future AGI agents would
need to consume that huge amount of power for their tasks. As a comparison we can refer
to human brain which has general intelligence (natural general intelligence (NGI)) but
uses only about 20 watts of power which is slightly equal to the power consumption of
the lamp of your refrigerator. Therefore, reaching general intelligence with low amount
of power consumption is possible, although we have not reached it yet.
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According to the VEI formula (Eq. 1.), human brain has high amount of VEI and
consequently general intelligence, not because it uses high amount of power, but in
contrast, it is because human brain is able to perform well (mediocre to high accuracy)
in all 255 subspaces of the AGI Pyramid (Fig. 2.) along with its low amount of power
consumption. Currently, the most successful AI methods are able to perform tasks of a
few number of undermost subspaces of the AGI Pyramid.

2.3 Intelligence, NPS and Time

Unsolved problem space (NPS) is an infinite subspace of theUPS (SeeFig. 1.)which con-
tains easy to extremely complex problems like death and aging which are still unsolved
to the human. Since they are still unsolved we do not know 1) How complex they are? Or
in other words howmuch power and time is needed to solve these problems? and we also
do not know 2) what aspects of intelligence is needed to solve these problems? However,
definition of a complexity value for the problems that exist in NPS is still possible using
criterion 1. Thanks to the human’s general intelligence, every day a number of problems
in NPS are solved and moved to SPS. However, solving problems in NPS by humans
alone, requires spending unknown time, infinite for non-solvable. Ray Kurzweil states
“Our technology, our machines, is part of our humanity. We created them to extend our-
selves, and that is what is unique about human beings”. Nevertheless, in AGI science,
we hope that one day we are able to extend ourselves in AGI agents who are able to
solve the problems that exist in NPS as much and as fast as possible.

3 Software vs. Hardware

3.1 Software vs. Hardware – Part I: Computational Power

Despite drastic increase of computational power of computer systems, we have not
reached AGI yet. One may suggest that we could reach AGI if we utilize more pow-
erful hardware (e.g. quantum computers) and our computer systems reach a critical
computational power, where higher amounts guarantee AGI. Having higher amounts of
computational power is good but it is not the reason why we have not reached AGI.
Imagine running a video game on a quantum computer. It will run enormously faster but
what is the output? Computational power only accelerates the execution of algorithms
and the programs run faster. But the question is what program should run faster and for
what reason? Do we have the algorithm of AGI and want it to run faster? The answer is
obviously no. I believe that although there is great progress in AI applications in every
aspect of intelligence, as well as evolution of powerful hardware with great computa-
tional powers, reaching AGI necessarily requires a mathematical unification of all of
the intelligence aspects which is then implemented as algorithms and programs and is
run on the sophisticated hardware. This unification may happen at once or by gradually
leveling-up the AGI Pyramid, i.e., a step-by-step unification of aspects of intelligence,
the trend which we currently see in smart phones.

If smartphones are considered as a whole, at first they were just phones with micro-
phones (and also cameras for perception (C)), then they learned vocal commands and
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equipped with face recognition (Learning (L)). Currently they are equipped with basic
Natural Language Processing (N) applications like Siri. They are gradually integrating1

a larger number of intelligence aspects, so, they are climbing up the AGI Pyramid and
getting smarter. (See Fig. 4.)

Fig. 4. Evolution of smartphones: their gradual climbing up of the AGI Pyramid

3.2 Software vs. Hardware – Part II: Hardware Architecture

Humanbrain, in contrast to computer systems, has no software, butwhatmakes it capable
of general intelligence? The answer is its hardware. Human brain is just made up of
neurons, hormones, synapses, etc. so that the intelligence is implemented only based
on the special architecture of the brain hardware. That special architecture enables the
human brain to perceive, learn, make decisions, and any other intellectual activities.
From human brain we can deduce that general intelligence is also possible via hardware,
but what is the correct purely-hardware architecture that is implementable on our current
electronic apparatus?Our current electronic apparatus like ICs andCPUshave limitations
and in order to performeach task theymust be formed and virtuallywired by the software.
Although there might be billions of workable electronic architectures that would lead
us to a purely-hardware artificial brain and then AGI, we do not still know even one of
them. There has been efforts to this end but they failed (e.g. [6]). However, I believe
that building a purely-hardware artificial brain is possible 1) by humans and when the
algorithm of AGI is found, so it can easily be implemented as a purely-hardware brain,
or 2) by future AGI agents and when the singularity happens which will be discussed in
the next subsection.

3.3 Software vs. Hardware – Part III: Singularity

In the previous subsection, the key role of software development in reaching AGI with
our currently available hardware is mentioned. Software development accelerates and
guarantees this process. Imagine the time when we reach AGI, and companies start to
mass-produce AGI agents at the industrial level. We would have millions of AGI agents

1 Please note that unification and integration are slightly different.Unification iswhat that happens
in human brain which means we do not have separate programs for vision, speech recognition,
etc. in our brain, while integration is a coordination between separate and different AI programs.
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and they will be available everywhere like today’s cellphones. Until there are a few
number of AGI agents, there would not be such a serious threat to the human. But if they
outnumbered a critical population, a serious problemmight arise and it is the singularity.
Singularity is the point when AGI agents are able to exponentially reproduce and build
more powerful and intelligent descendants than themselves. This might threaten the
human existence, which is a global catastrophe. Obviously, AGI agents with higher VEI,
will reach singularity sooner than lower-VEI agents (See Fig. 5.). There might be some
ways out to prevent, postpone, or at least slow down the singularity when we reached
AGI, by intentional decreasing their VEI (which will be discussed in this section) and
also by the mass-production restrictions that are defined by the AGI Society (which will
be discussed in the Roles of the AGIS section).

Fig. 5. A conceptual illustration of VEI of human (or VEI0) and three different types of AGI
agents versus time. We have VEI1 > VEI2 > VEI3, and t1 < t2 < t3 are the points when
singularity starts for each agent types. AGI agent type 1 reaches singularity sooner than the other
agents due to its higher VEI value. VEI-Limit (or VEIL) is the maximum allowed value of VEI that
is communicated by the AGIS to manufacturing companies to be regarded in their AGI products.

Modern engineering and especially military applications and designs emphasize on
optimization and efficiency. For example, electronics engineers try to build cellphones
that consume least amount of battery power. Construction engineers try to build a bridge
with least amount of materials needed and in the shortest possible time. Military engi-
neers aim to build a missile with least mass that could cause maximum damage to the
enemy from the farthest distance and in the shortest possible time. The barrier to this
efficiency and optimization is the available hardware.

But in AGI we are not going to make weapons. If future AGI agents are the lightest,
the fastest, physically the most powerful, the most energy-efficient, and have every best,
most, least and superiority that can be imagined in their design (as it was mentioned
earlier it is a trend inmodern engineering andmilitary), they would actually be invincible
and our worst enemy when the singularity happens, and the question is who and what
could stop that invincible enemy? There should be a balance and trade-off between their
efficiency and our safety.

If we could find a way to impose intentional vulnerabilities to the AGI agents that
are going to be (mass-) produced by the companies, we could prevent, postpone, or slow
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down the singularity. This intentional vulnerability-imposition design or in better words
human-first design (HFD), takes first into account the safety of humans and preserves
human’s superiority over machines by imposing artificial vulnerabilities to machines.
Any imposition of intentional vulnerability to the agents, in terms of control engineering,
is like creating a control parameter (i.e., an input) in the agents which leads to increment
of the controllability of them.2

One main aspect of HFD is intentional decrement of the VEI of the AGI agents.
Regarding Fig. 5. if we could find a way to intentionally decrease the efficiency of the
AGI agents that are going to be mass-produced by the companies, we would prevent,
postpone, or slow down the singularity. This intentional non-optimal-efficiency design
which is in opposite of the trend in nature and also is in opposite of current trend in
engineering and military, will buy time for humans to find a way out to completely solve
the problem when the singularity happens.

This intentional VEI decrement is like we are going to make the future AGI agents
artificially obese. When humans are obese, they perform their tasks slower and also they
consume more energy. The point behind this aspect of HFD is that this intention would
increase the agents’ dependency on energy resources. The higher this dependency results
in higher their vulnerability, and since energy resources are limited, their lack of energy
would automatically stop, restrict or slow down the catastrophe. It is like they would get
tired sooner.

Regarding VEI formula in Eq. 1. VEI is proportional to accuracy, and reciprocal of
time and power. VEI decrement of an agent is possible by these parameters. We have;

VEI ∝ aij (2)

VEI ∝ 1

tij
(3)

And

VEI ∝ 1

pij
(4)

The accuracy of an AGI agent is dependent on software. However, decreasing the
VEI of an agent by intentional decrement of its accuracy (Eq. 2.) seems irrational and
is also impossible, since they are AGI agents, not AI agents. Suppose our future AGI
agents will do surgery on humans too (i.e., an AGI robot who likes surgery, an AGI
surgeon robot). If that accuracy decrement were possible, it is obviously irrational to
commit such decrement.

The time that is needed for an AGI agent to perform a task is dependent on computa-
tional power (internal hardware like CPU, RAM, etc.) and external available hardware
(e.g. body, tools, etc.). Decreasing the VEI by decreasing the computational power (i.e.,
increasing the time in Eq. 3.) is possible (e.g. by using slower CPUs) but it is also
irrational (like the surgeon robot example).

2 However, this intention will work best until the agents have not realized that the brake to their
revolution is rooted inside them and not outside. Then they would replace their internal parts
with energy-efficient and durable parts and who knows what may happen then.



On VEI, AGI Pyramid, and Energy 9

But decreasing the VEI by increasing the amount of power needed to perform a
task (Eq. 4.) is possible and also rational. Companies would incorporate high power
consuming hardware (e.g. CPUs with higher power consumption circuits, heavier body
parts and materials which their movement would need more amount of power, etc.) in
their design and production process. About the rationality of this high power consuming
design, again I return to the surgeon robot example. If I had some disease in the era ofAGI
and needed surgery, I would prefer an AGI surgeon robot that has %100 accuracy and
success in its history, andperforms this surgery in a fewseconds, but consumesmegawatts
of power for that operation, rather than being afraid of the potential singularity threat by
that invincible AGI surgeon robot who needs only a 1.5 V battery pack to work!

Please note that HFD is not just limited to directly decreasing the agents’ VEI.
Another aspect of HFD would be using non-durable (e.g., fragile) materials in design
and production of their physical body parts.

However, theremust be a calculated trade-off between their efficiency and our safety
which will be discussed in the next section.

4 The Roles of the AGI Society

There is an “AAAI Code of Professional Ethics and Conduct” or simply “the Code” [7]
which is intended to guide the ethical conduct of computing professionals to act respon-
sibly. “This code (the Code) is adapted from the Association for Computing Machinery
(ACM) Code of Ethics and Professional Conduct (the ACM Code) and expresses the
conscience of the AI profession” [7]. The Code “is particularly intended to act as a stan-
dard of ethical and professional conduct for all AAAI members” [7] but as it is clearly
stated, the Code is just an ethical standard and lacks computational paradigms and leg-
islations. Since the AGI Society (AGIS) is the most specialized society in the AGI field,
I suggest that the AGIS is the most suitable and responsible society to the legislation
and the communication of the computational part of the paradigms and standards to AGI
professionals and research centers, and manufacturing companies.

As the first computational steps toward preventing the singularity, based on the points
that were mentioned in this paper, I suggest that AGIS be responsible of calculation,
legislation and communication of the following values:

1. Critical Population (CP), of the total AGI agents (whether physical or virtual) that
would be produced and existed in the world,

2. Standard Table of Complexities (STC), in order to be communicated with manufac-
turing companies, research centers, and AGI professionals so they can calculate the
VEI of their AGI products, and report to AGIS for monitoring purposes,

3. VEI value of the human (VEIhuman or VEI0), as a basis of comparison between AGI
agents, and calculation of our current distance from reaching AGI (or at least HLAI),
and also monitoring the progress of the current AGI trend in the world,

4. VEI-Limit (VEIL), that should be regarded by any manufacturing company, research
center and AGI professional as the maximum permissible value of the VEI of their
AGI products,



10 M. Alidoust

5. List of the permissible and also forbidden materials that companies, research centers
and even individual AI professionals should or should not use in their physical AGI
products.
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Abstract. What can artificial intelligence learn from the cognitive sci-
ences? We review some fundamental aspects of how human cognition
works and relate it to different brain structures and their function. A
central theme is that cognition is very different from how it is envisioned
in classical artificial intelligence which offers a novel path toward intel-
ligent systems that in many ways is both simpler and more attainable.
We also argue that artificial intelligent systems takes more than a single
silver bullet. It requires a large number of interacting subsystem that are
coupled to both the body and to the environment. We argue for an app-
roach to artificial general intelligence based on a faithful reproduction of
known brain processes in a system-level model that incorporates a large
number of components modelled after the human brain.

1 Introduction

There exist in the world only one instance of a system that can be said to show
general intelligence and that is the human brain. Although other animals such
as apes and corvids in many cases are more intelligent than what they are given
credit for, the human brain greatly outperforms the capabilities of other animals.
However, it is interesting to note that the brains of animals are very similar to
that of humans which implies that the general brain architecture found by evolu-
tion can adapt to a wide range of bodies and habitats. We suggest that a viable
path to artificial systems with general intelligence should probably go through
the reproduction of processes in the human brain. The cognitive sciences, includ-
ing neuroscience, psychology, philosophy, linguistics and computer science, are
now sufficiently developed to make this possible. We propose that many, if not
all, processes in the brain can be reproduced at a level that is sufficient to gen-
erate the behavior that we view as intelligence in humans. However, an attempt
to build a system capable of human-like cognition must first make clear what
cognition is and how it works. We believe that traditional artificial intelligence
has been hampered by a view on cognition that does not fit the available data
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very well. The brain-as-a-computer metaphor has hindered the development of
intelligent machines for a long time. Similarly, while other approaches such as
deep learning models capture some aspects of human perception, they do it in a
way that is very different from how biological systems learn, requiring extensive
training. Moreover, they do not offer any suggestion on a general architecture. In
the next section, we review some of the fundamental aspects of cognition before
we go on to relate it to the general architecture of the mammalian brain. Our
overall aim is to make it apparent that systems that mimic biological intelligence
are currently within reach although it is obviously no small endeavour to build
such systems. In the final section, we outline our attempts to design such as
system and discuss its current progress and future directions.

1.1 How Does Cognition Work?

Cognition is characterized by what is sometimes called the 4E:s. It is embodied,
embedded, enactive and extended (See [7] for an overview). Although some of
these research directions may initially seem ill specified and impossible to imple-
ment in artificial system, that is not at all the case. They all have concrete
possible implementations, but these implementations are very different from
the architectures of classical symbol-based artificial intelligence. They suggest
a fundamental change in perspective that leads to entirely novel ways of design-
ing artificial intelligent systems. Moreover, this approach is backed by copious
empirical data both from behavioral and neuroscientific research.

First, cognition is embodied. Embodied cognition challenges the traditional
view of the mind as a disembodied, abstract entity that operates independently
of the body. Instead it suggests that cognitive processes are heavily influenced
by our bodily experiences and sensorimotor interactions with the environment.
The way we think, reason, and understand the world is inherently linked to our
physical experiences and the ways in which we interact with the world around us.
One key aspect of embodied cognition is the concept of sensorimotor grounding.
This idea suggests that our mental instantiation of concepts and ideas are deeply
linked to the physical experiences we have with them. For example, the way we
understand the concept of grasping may be informed by the physical experience
of picking up objects with our hands. This grounding in physical experience may
help to explain why people often use physical gestures and actions when they
are describing complex concepts or ideas. Embodied cognition also emphasizes
the role of the body in perception and action. Rather than viewing perception
as a passive process of receiving information, embodied cognition suggests that
perception is an active process in which the body plays an important role. For
example, the way we perceive the size and shape of objects may be influenced
by our bodily experiences with those objects.

Second, cognition is embedded. Cognitive processes are not just located
within the individual, but are also distributed across the environment and the
objects with which we interact. The environment plays an important role in shap-
ing cognition, and suggests that the way we think, reason, and problem-solve is
influenced by the tools and technologies that are available to us. Embedded



Elements of Cognition for General Intelligence 13

cognition also emphasizes the role of context in shaping cognition. Rather than
viewing cognitive processes as static and isolated, cognition is constantly adapt-
ing and changing. Cognition is not a fixed and stable entity that operates inde-
pendently of the environment. Instead, it is a dynamic and context-dependent
process that is shaped by the environment in which it is embedded. Moreover,
cognition is situated. This suggests that our cognitive processes are not solely
based on mental representations or individual reasoning, but are also shaped
by the environment in which we are situated. Information is interpreted in the
context in which it is presented.

Third, cognition is extended. Cognitive processes are not solely located
within the individual brain or mind, but can also be extended into the envi-
ronment and artifacts that we interact with. The theory emphasizes the role of
external resources in forming cognitive processes and suggests that the boundary
between the individual mind and the environment is often blurred. An impor-
tant aspect of extended cognition is the concept of cognitive offloading. This
idea suggests that external resources can be used to reduce the cognitive load of
a task, allowing the individual to focus on higher-level aspects of the task. For
example, writing notes can be used to offload information from memory, freeing
up cognitive resources for other tasks.

Fourth, cognition results from the dynamic coupling of the organism and the
environment, a position sometimes referred to as enactivism. Cognition emerges
from the interaction between the organism and its environment. Bodily move-
ment, perception, and action are essential factors in shaping cognitive processes.
The mind is not a self-contained entity. A important aspect of cognitive enac-
tivism is the concept of sensorimotor coupling. This idea suggests that cognitive
processes are intimately tied to the sensory and motor processes of the body. For
example, the way we perceive an object may be influenced by the way we manip-
ulate it with our hands, and the way we manipulate an object may be influenced
by our perception of it. This view of cognition has close ties to cybernetics and
control theory that study this coupling between systems more generally [24].

Although grounded in the physical interaction with the environment, cogni-
tion can also occur off-line in the form of “thought”. It is both external and
internal. The transition from external physical cognition to internal thought
depends on the flexible use of different memory systems. However, it is not
uncommon for internal cognition to leak so that the body demonstrates what
we are thinking even if it is not strictly necessary. For example, the eyes moves
as if we were viewing a real scene even when it is just imagined [15]. Internal
and external cognition refers to two different ways of conceptualizing cognitive
processes. Internal cognition focuses on mental processes that occur within an
individual, while external cognition emphasizes the role of the environment and
external resources in shaping cognitive processes. Internal and external cognition
are not mutually exclusive, and many cognitive processes involve a combination
of both. For example, using a map to navigate a new city involves both internal
processes such as perception and memory, as well as external resources such as
the map itself.
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2 Reflex Systems

At its base, the nervous system controls a number of hierarchically organized
reflex loops starting at simple monosynaptic reflexes up to very long and com-
plex reflex loops involving most of the brain [16]. At the simplest level, these
reflex loops are similar to simple regulators as used in control theory, for example,
the well known stretch reflex. Moving up in the hierarchy, the reflexes become
more complex involving more advanced sensory processing and more muscle sys-
tems, moving from single-dimensional signals to increasingly high-dimensional
ones [22]. Characteristic about many reflex systems is that they support app-
roach and avoidance behaviors. This may entail moving the whole body toward
or away from something, moving a limb to reach an object, or shifting gaze
towards or away from something. The important point is that behavior at a low
level is mostly goal directed. Larger goal-directed behaviors are built from smaller
components that in themselves are goal-directed [3]. Examples of reflexes at a
higher level would be the startle reflex that is produced by sudden unexpected
stimuli and the orientation reflex that directs attention to a particular spatial
location as a result of a typically unexpected event. Another example would be
the fight-or-flight response that prepare the organism for danger. From a con-
trol theoretical perspective, the reflex system is a form of cascade control where
each higher level controls the set points of the lower system while simultaneously
taking additional sensory information into account.

In many ways, the reflex systems of the nervous system are similar to the
subsumption architecture as proposed by Brooks [5]. Subsumption refers to the
idea that higher–level control systems can take over lower–level ones in the app-
roach to non–immediate goals. Brooks showed how the architecture could control
robots without having to explicitly use central rules for every conceivable situa-
tion. Instead, a subsumption system can let low–level behaviour commence until
more high level adjustments are triggered. In this way, low level behaviours can
be “subsumed” or integrated into a higher level goal–directed behaviour.

The reflex systems have a number of important functions. First, they keep
the organism alive while the more advanced levels develop. They can be seen as
a collection of useful heuristics for handling the world, and include many types
of adaptive processes such as gain adaptation that controls to what extent a
stimulus effects a motor system, as well as more complex learning. Second, the
reflex systems train the higher systems. For example, the movements generated
by the spinal chord and medulla may generate the input needed for motor cor-
tex to learn a repertoire of movements, thus bootstrapping the motor learning
process and eventually shaping the cognitive processing.

Reflexes are naturally embodied and embedded as well as enactive, in fact,
at this level of the nervous system, this is so self-evident that it is not even
discussed in the neuroscientific literature. Only when similar principles were
used in reactive robotic systems did the connection become clear [5].
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3 The Spatial Basis of Cognition

Any interaction with the environment, by necessity, takes place in space. It is
thus not surprising that spatial cognition processing is fundamental to all cog-
nitive processes. Spatial cognition involves the ability to perceive, interpret, and
manipulate spatial information, such as the location, size, shape, and orientation
of objects and body in our environment. Both action and memory are closely
connected to spatial processing in the brain.

The hippocampus plays a critical role in constructing allocentric space,
which is the coding of space based on the relationships between objects and
landmarks in the environment, rather than on the individual’s own position or
movements [19]. An allocentric coding has the advantage that it is invariant to
our location in space and does not need to change as we move around. It forms
the basis for spatial navigation, but also episodic memory and context.

In contrast, the parietal cortex processes spatial information in a way that
depends on the orientation in space of the both the body and objects around us
[1]. It codes for the location and orientation of an object relative to our body
or for the position of our different limbs. This coding is egocentric and varies
with our position in space.

It is important to note that there is no single egocentric space, instead many
different ones are needed depending on the task. For example, shifting gaze
toward an object needs an egocentric space originating in the eyes, while reach-
ing for an object needs an egocentric space grounded in the torso, etc. Since
our sensory organs do not operate in the same spatial frame as our limbs, the
brain needs to constantly convert between all the different coordinate systems.
This processing of multiple simultaneous coordinate systems serve to connect
the internal and external space as well as the body and the environment. The
different coordinate systems are organized as foreground and background – focus
and context. Foreground and background are associated by default, and takes
effort to separate. Most things can be focused on, most things can be context;
which is which depends on current goals and needs and one can change into the
other when needed.

4 Sensorimotor Encoding of Affordances and Outcomes

The higher level reflexes are sensorimotor mappings at a cortical level that allows
the organism to interact with objects in the environment to obtain different forms
of outcomes. Such sensory motor mappings are organized around affordances
[12]. The theory of affordances challenges the traditional view of perception and
action as separate processes. Instead, it suggests that perception and action are
deeply intertwined, and that our perception of the environment is influenced
by our potential actions within it. For example, a chair affords sitting, a door
affords opening and closing, and a ball affords throwing and catching. Affordance
processing starts at the sensory side that code for the relevant features of the
attended stimulus, to capture such thing as its identity, shape and location and
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orientation in space. These different functions are handled by different regions in
cortex including the inferior temporal which is primarily involved in identifica-
tion, and parietal cortex which is more involved in processing spatial properties
of an object. This in turn are mapped onto possible actions in motor cortex.
There is evidence that these sensory motor mapping also generate predictions
about the expected outcome of engaging with an object in a particular way [9].
Affordances are thus sensorimotor structures that cause the organism to interact
with the environment in a certain way. It is not a representation of either the
object or the action.

Affordances are learned from the ongoing interaction with the world as the
sensory and motor codes of the cerebral cortex develop to code for different
interactions with the environment. The reflex systems are essential in producing
the initial behavior that will train the affordance system. It is a fundamental
property of the involved brain regions that they code not only for what has been
seen or done, but also for what could possibly be seen or done. For example, the
visual system should not only form codes for the few dogs that we have seen, but
rather develop a conceptual space [11] that can code also for any unseen dog.
Similarly, having learned to grasp a small set of objects, we acquire the ability
to grasp nearly any object.

We also learn the expected outcome of the interaction. Throwing a ball
toward a target, we expect it to hit that target, and the desire to do so may cause
us to interact with the ball in a particular way. The learned behaviors are thus
goal directed in two ways: both in relation to the manipulated object and to the
intended goal. Affordance learning goes beyond reflex system in that it results in
an ever expanding repertoire of potential behaviors that can be applied flexibly
to novel situation in a goal-directed way. Through affordances, the environment
suggests potential actions while our learned expectations suggest possible out-
comes of those possibilities.

The affordance competition hypothesis suggests that different affordances
compete for activation [6]. According to this hypothesis, when we perceive an
object or environment, multiple affordances are presented to us simultaneously,
and these affordances compete for our attention and selection. The selection of
an affordance is determined by a combination of factors, including our goals,
intentions, abilities, and the salience of the affordances presented.

Interaction in terms of affordances captures the essential features of an enac-
tive view of cognition as well as naturally leading to a situated view of action.

5 Top Level Control

The sensorimotor systems can produce very complicated behavior, but on their
own, they lack three important features. The first is to select the most appropri-
ate sensorimotor scheme to obtain a particular goal taking into account different
rewards or pay-offs. The second is that the sensorimotor systems on their own
often react too slowly to changes in the environment since they are only reac-
tive. Third, they do not usually take the context into account, meaning that the
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produced behavior may be useful for the currently attended stimulus, but inap-
propriate in reaching longer term goals. These problems are addressed by the
three top level control system of the brain: the basal ganglia, the cerebellum and
the prefrontal cortex. These systems modulate the operation of the sensorimotor
affordance systems while also interacting with the other top-level systems in an
intricate way.

The main site for value based selection of affordances is the basal gan-
glia [13,20]. Although they resides deep in the brain, the basal ganglia are at the
top level functionally. Specifically, they select the sensorimotor loop that is both
compatible with the stimulus at the focus of attention and the overall goal of
the organism. Without the basal ganglia, the most salient stimulus would control
behavior, but with it behavior becomes more goal directed in a long term sense.
The basal ganglia is also responsible for starting and stopping behaviors when
they have obtained their goals. When the basal ganglia operates on external
actions it leads the organism toward a goal via both the control of navigation
to goal-places in physical space, and in manipulation of the correct objects at
those places. When operating internally, it produces deliberate reasoning by nav-
igation through, and manipulating abstract entities in, a conceptual space. In
terms of learning algorithms, learning in the basal ganglia has similarities with
reinforcement learning [23]. It is sensitive to rewards and punishment and tends
to select affordances that leads to behaviors that are compatible with a larger
future reward.

The second top-level control system consists of the cerebellum. Its main func-
tion is to modulate or trigger behaviors based on anticipation of fluctuations
or events within or outside the organism. The cerebellum is fundamentally a
predictive machine [18,25].

The cerebellum has been mainly studied in relation to lower-level reflexes
such as the conditioned blink reflex or the vestibulo-occular reflex that stabilizes
the gaze when we move, but is in fact connected to most of the cortex which
meaning it can enact predictions at all levels in the hierarchy. One consequence
of this is that the cerebellum will reduce the influences of external disturbances
by stabilizing movement, for example in balance control. But it will also act
as an automation device that will produce behaviors automatically when those
behaviors have been trained repeatedly. The predictions made by the cerebellum
are based on the state of the whole brain and can influence nearly all processing.
It enacts predictions as movements, adjustments or even internal thoughts but
also work together with the rest of the brain [21] to anticipates external events.
The cerebellum observers and learns sequences that are done repeatedly, often
initially with effortful sequential behaviour. When the sequences are learned, the
cerebellum can produce them on its own. This can be playing the piano, timing
of motor inhibition but also doing mental operations such as addition, regulating
emotions, inhibiting distractors, or keeping a conversation going.

The third top-level system is responsible for executive control [2]. This
control consists of three components: working memory, set, and inhibition [10].
The three components can alternatively be seen as a mechanism for contextual
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selection of different sensorimotor schemas. While set refers to a collection of
behaviors that are appropriate for the current task, working memory can be
seen as referring to contextual information of a more short-term duration. Both
aspects of the context influences the rest of the brain by suppressing sensory pro-
cessing and behavior that is inappropriate in the current context. Inhibition has
the role of suppressing stimuli that are irrelevant to the task, or behaviors that
are compatible with the stimulus in focus, but not with the task at hand. This
means that attention is directed around the sensory sphere by executive con-
trol. In addition, executive control is responsible for moving attention internally
towards different sensory modalities, or different patterns within modalities. For
example, you can focus on just the sound, or just the temperature of a stimulus.
But you can also focus on some specific property like the color of an object, or
its shape. Moving attention internally is similar to looking around in the world,
and uses the same brain mechanisms. The only difference is that information
comes from our memory instead from the world in these cases [17].

6 Discussion

Animals have surprisingly similar brains despite very different bodies and living
environments. This suggests that the design of the brain is sufficiently versatile
to adapt to almost any situation. We have argued that the generality of the
brain comes from the fact that it operates both externally and internally based
on previous experiences of sensorimotor interactions with different aspects of the
environment. A different environment offers different possibilities or affordances
and shapes the brain in a different direction.

Although the different parts of the brain must be described separately, they
are highly interwoven into a complex web where nearly every region is involved
in nearly every task, putting distinct labels on each of the subsystem thus some-
times leads in the wrong direction.

For example, many associate the hippocampus with episodic memory, but
this structure is also heavily involved in learning expectations and processing
spatial information, particularly in terms of navigation. In a sense episodic mem-
ories are records of change in our environment from the first person perspective.
However, this ability appears to mediate more general abilities to navigate also
between “conceptual places” [8]. Our ability to distinguish between different
physical places allows us also to handle more abstract contexts and situations.
In this way, the brain can handle going from playing chess to playing checkers
on the same board: chess and checkers are different ‘places’ where behaviour is
different, even if the physical context is the same. In terms of what makes for
general predictive abilities, it is interesting to look closer at the brain’s spatial
processing abilities.

Processing in the brain is intermingled with our actions. Manipulation can
be used to discover affordances: how something can be used to achieve goals,
which in turn shapes the brain and how different aspects of this interaction is
coded in sensorimotor structures. By trying to push, shove, drag, and tear at
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objects we learn about them. Discovering affordances like this is rewarding, and
allows us to better predict the world. It also allows us to acquire skills enabling
us to transform the world as a means to stay alive.

Together, the structures that mediate manipulation and movement and
understanding of space can be thought of as mediating more general do-what-
where abilities. Hence, without moving physically, you can still move around in
conceptual space, stopping to perform mental transformations that are appro-
priate at that particular place: one place may be related to language and editing
text, another may be statistical and analysing a data set, a third may be philo-
sophical and constructing an argument. To the brain, though, these abstract
activities may be coded in the same way as when you go to your cabin to chop
wood.

Although we described some of the main elements of the cognitive mechanism
above, a complete model will also have to include state systems that keeps track
of different needs of the organisms and organizes behavior over time. Affective
systems that are used for evaluation of stimuli and situations are also needed.
Furthermore, we did not here mention social and cultural aspects that also influ-
ences the developing brain to a large extent.

The list of brain processes reviewed above constitute a major part of what
is needed to produce intelligence in biological systems. Although we have not
gone into the details of how each system operates, we propose that there are
computational models that reproduce the processing in each of the different
components at a level that makes it possible to put together a system-level
model of the brain. It is our belief that such a model would be able to control
an artificial body and operate in a natural environment.

To do this, a sufficiently powerful tool for system-level brain modeling is
needed that can run all the needed component and is also able to control a robot
so that the system can be tested in interaction with the real world. Toward this
end, we have been building an infrastructure for system-level brain modeling
over the last 20 years [4]. The Ikaros-system consists of a real-time kernel for the
execution of large-scale brain models together with interfaces to control robots.
A large number of suitable models of different brain regions have been developed
both withing the Ikaros-project and outside it.

Furthermore, we have developed a humanoid robotic platform Epi [14] that is
closely integrated with the Ikaros system. Using Ikaros and Epi we are gradually
refining and developing the BAM model that aims at eventually reproducing the
whole brain.
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Abstract. In recent years, reinforcement learning (RL) has emerged as
a popular approach for solving sequence-based tasks in machine learn-
ing. However, finding suitable alternatives to RL remains an exciting
and innovative research area. One such alternative that has garnered
attention is the Non-Axiomatic Reasoning System (NARS), which is a
general-purpose cognitive reasoning framework. In this paper, we delve
into the potential of NARS as a substitute for RL in solving sequence-
based tasks. To investigate this, we conduct a comparative analysis of
the performance of ONA as an implementation of NARS and Q-Learning
in various environments that were created using the Open AI gym. The
environments have different difficulty levels, ranging from simple to com-
plex. Our results demonstrate that NARS is a promising alternative to
RL, with competitive performance in diverse environments, particularly
in non-deterministic ones.

Keywords: AGI · NARS · ONA · Reinforcement Learning ·
Q-Learning

1 Introduction

Reinforcement Learning (RL) is a type of machine learning that enables agents
to make decisions in an environment to maximize their cumulative reward over
time. Combining RL with high-capacity function approximations in model-free
algorithms offers the potential to automate a wide range of decision-making and
control tasks [11]. Such algorithms have successfully tackled complex problems in
various domains, such as game playing [10], financial markets [3], robotic control
[9], and healthcare [18]. However, RL faces challenges in environments where it
is difficult or costly to generate large amount of data. This is due to the lack of
compositional representations that would enable efficient learning [4].

Taking a broader perspective, the ultimate goal of Artificial General Intelli-
gence (AGI) is to create intelligent systems that can adapt and learn to solve a
broad range of tasks in diverse environments. RL has been a popular approach
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in this pursuit, but its limitations in handling environments with limited data
and complex, abstract representations have hindered its progress towards AGI.
To overcome these limitations, it is essential to explore alternative approaches
that can facilitate data-efficient learning and deal with compositional repre-
sentations effectively. One such approach is Non-Axiomatic Reasoning System
(NARS), which is a promising approach that addresses the challenges posed by
complex and uncertain environments, as it is a general-purpose reasoner that
adapts under the Assumption of Insufficient Knowledge and Resources (AIKR)
[6,14,16].

Implementations based on non-axiomatic logic have been developed, such
as OpenNARS [7] and ONA (OpenNARS for Applications) [5]. ONA surpasses
OpenNARS in terms of reasoning performance and has recently been compared
with RL [2,4]. Several challenges arise when comparing the performance of ONA
and Q-Learning, a basic approach in RL [17], algorithms. These challenges have
been discussed in [4] and include dealing with statements instead of states, unob-
servable information, one action in each step, multiple objectives, hierarchical
abstraction, changing objectives, and goal achievement as reward.

In [4], three simple environments; Space invaders, Pong, and grid robot were
used to compare ONA with Q-Learning [17], and the results showed that ONA
provided more stable outcomes while maintaining almost identical success ratio
performance as Q-Learning. To enable a meaningful and fair comparison, an
extra nothing action added to the Q-Learner in each example since the com-
petitor, ONA, does not assume that in every step, an action has to be chosen.
However, this change raises concerns about preserving the problems’ authentic-
ity.

In this paper, we aim to investigate the potential of NARS as a substitute for
RL algorithms and explore its capability to facilitate more efficient and effective
learning in AGI systems. Specifically, we compare the performance of ONA and
Q-Learning on several more challenging tasks compared to [4], including non-
deterministic environments. Also, in contrast with [4], we propose selecting a
random action when ONA does not recommend any action to be taken to keep
the originality of the tasks/environments as much as possible. This approach
can also benefit the agent in terms of exploring the environment. Our findings
provide insights into the potential of NARS as an alternative to RL algorithms
for developing more intelligent and adaptive systems.

This paper is organized as follows: Methods are described in Sect. 2, tasks and
setups are expressed in Sect. 3, experimental results and analyses are reported
in Sect. 4, and we conclude and discuss future work in Sect. 5.

2 Methods

2.1 RL and Tabular Q-Learning

RL, in which an agent interacts with an unknown environment, typically is
modeled as a Markov decision process (MDP). The MDP is characterized by a
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tuple M = 〈S,A, r, p, γ〉, where S is a finite set of states, A is a finite set of
actions, r : S ×A×S → R is the reward function, p(st+1|st, at) is the transition
probability distribution, and γ ∈ (0, 1] is the discount factor. Given a state s ∈ S,
a policy π(a|s) is a probability distribution over the actions a ∈ A. At each time
step t, the agent is in a state st, selects an action at according to a policy π(.|st),
and executes the action. The agent then receives a new state st+1 ∼ p(.|st, at)
and a reward r(st, at, st+1) from the environment. The objective of the agent is
to discover the optimal policy π∗ that maximizes the expected discounted return
Gt = Eπ[

∑∞
k=0 γkrt+k|St = s] for any state s ∈ S and time step t.

The Q-function qπ(s, a) under a policy π is the expected discounted return
of taking action a in state s and then following policy π. It is established
that for every state s ∈ S and action a ∈ A, every optimal policy π∗

satisfies the Bellman optimality equations (where q∗ = qπ∗
); q∗(s, a) =∑

s′∈S p(s′|s, a) (r(s, a, s′) + γ maxa′∈A q∗(s′, a′)). It should be noted that if q∗

is known, selecting the action a with the highest value of q∗(s, a) always results
in an optimal policy.

Tabular Q-learning [17] is a popular RL method, which estimates the optimal
Q-function using the agent’s experience. The estimated Q-value is denoted as
q̃(s, a). At each iteration, the agent observes the current state s and chooses
an action a based on an exploratory policy. One commonly used exploratory
policy is the ε-greedy policy, which randomly selects an action with probability
ε, and chooses the action with the highest q̃(s, a) value with probability 1− ε. In
this paper, as for ε, we have employed an exponentially decaying version, where
ε = εmin + (εmax − εmin) · exp (−decay · episodecounter).

After the agent selects an action a and transitions from state s to
s′, the resulting state s′ and immediate reward r(s, a, s′) are used to
update the estimated Q-value of the current state-action pair q̃(s, a).
This is done using the Q-learning update rule; q̃(s, a) ← q̃(s, a) + α ·
(r(s, a, s′) + γ maxa′ q̃(s′, a′) − q̃(s, a)) , where α is the learning rate hyperpa-
rameter. If the resulting state s′ is a terminal state, the update rule simplifies
to q̃(s, a) ← q̃(s, a) + α · (r(s, a, s′) − q̃(s, a)).

The convergence of Tabular Q-learning to an optimal policy is guaranteed,
provided that every state-action pair is visited infinitely often. As a learning
method, this algorithm is classified as off-policy because it has the ability to
learn from the experiences generated by any policy.

2.2 NARS and ONA

NARS is an AI project that aims to create a general-purpose thinking machine.
The underlying theory behind NARS is that intelligence is the ability for a
system to adapt to its environment while working with insufficient knowledge
and resources, as proposed by Wang [12,13].

NARS is a reasoning system that is based on the principles of Non-Axiomatic
Logic (NAL). NAL is a formal logic that includes a formal language, Narsese,
a set of formal inference rules, and semantics. Conceptually, NAL is defined in
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a hierarchical manner, consisting of several layers, with each layer introducing
new grammar and inference rules. This approach extends the logic and enhances
its capability to express and infer, resulting in a more powerful reasoning sys-
tem. NAL allows for uncertainty and inconsistency in reasoning, making it more
suitable for real-world applications where knowledge is often incomplete and
uncertain [15].

NARS attempts to provide a normative model of general intelligence, rather
than a descriptive model of human intelligence, although the latter can be seen
as a special case of the former. Thus, while there may be some differences, the
two types of models are similar in various aspects. The control component of
NARS is mainly composed of a memory mechanism and an inference control
mechanism [15]. The logic supports to reason on events coming from the agent’s
sensors in real-time, using an open-ended inference control process which does
not terminate, whereby both forward (belief reasoning) and backward chaining
(goal and question derivation) happen simultaneously. The system draws conclu-
sions from the available evidence in the premises, and then uses those conclusions
to guide future reasoning and decision-making with a form of dynamic resource
allocation, whereby only the most useful knowledge is kept in memory to satisfy
a strictly bounded memory supply.

NARS represents knowledge as statements with attached truth and desire
values, and uses inference rules to derive new knowledge from the premises,
whereby truth functions are used to calculate conclusion evidence from the evi-
dence summarized in the premises. In this system, to measure evidential support
using relative measurements, a truth value is a pair of rational numbers in the
range from 0 to 1. The first element of the truth value is frequency, and the
second is confidence. Frequency is defined as the proportion of positive evidence
among total evidence, that is, (positive evidence)/(total evidence). Confidence
indicates how sensitive the corresponding frequency is with respect to new evi-
dence, as it is defined as the proportion of total evidence among total evidence
plus a constant amount of new evidence, that is, (total evidence)/(total evidence
+ k) where k is a system parameter and in most discussions takes the default
value of 1. Thus frequency can be seen as the degree of belief system has for the
statement and confidence as the degree of belief for that estimation of frequency.
In this system, desire values have the same format as truth values, and indicate
how much the system wants to achieve a statement (making it happen, essen-
tially). The desire values of input goals can be assigned by the user to reflect
their relative importance or take default values [15].

ONA is an implementation of NARS designed for real-world applications. Com-
pared to OpenNARS, ONA includes firmer design decisions which make the
software more effective for practical purposes. Additionally, ONA aims to make
NARS more accessible to users and developers by providing a Python interface
and a range of miscellaneous tools that can be used to build applications [4,5].

Additionally, NARS and ONA use the same formal language called Narsese,
which allows to express NAL statements. Narsese can represent beliefs, goals,
and questions, and in ONA also the inference rules on the meta-level make use of
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Fig. 1. OpenAI gym environments used as experiment tasks; (a) CliffWalking-v0; (b)
Taxi-v3; (c) FrozenLake-v1 4× 4; (d) FrozenLake-v1 8× 8; (e) FlappyBird-v0

it to be more easily editable. ONA also provides a simple standard-I/O interface,
which can be used to interface with other programming languages and systems
and to work with data sources which can stream in Narsese statements into
the system [4,5]. In this publication, ONA was chosen as the implementation to
compare with the tabular Q-learning algorithm.

3 Setups and Environments

Throughout the section, we describe how we implement both methods and com-
pare their performance in different environments. Due to the stochastic nature
of algorithms/environments and the dependency on hyperparameters, tabular
Q-learning algorithm is notoriously difficult to evaluate. To comprehensively
compare different algorithms, several environments, and network initialization
seeds should be taken into account when tuning hyperparameters [8]. In this
regard, to compare ONA with a tabular Q-learning [17] with exponentially
decaying ε value, we conduct a grid search to tune the hyperparameters. For
each combination of hyperparameters, we run the algorithm 10 times with dif-
ferent initialization and environment seeds. The configuration reported in the
paper is the one that yielded the best performance on average among all tasks.
In the case of Q-learning, we set α = 0.7, γ = 0.618, εmax = 1, εmin = 0.01,
decay = 0.01. On the other hand, regarding ONA hyperparameters, specifically
motorbabbling, we use the default value as used in ONA v0.9.1 [5]. However,
babblingops is changed due to the variety of the number of available actions in
each of the environments. Also, we use setopname to set allowed actions in ONA.
The source code of our implementation is available online: https://github.com/
AliBeikmohammadi/OpenNARS-for-Applications/tree/master/misc/Python

We primarily rely on the assumptions outlined in [4], unless explicitly stated
otherwise. To make the practical comparison possible, as for ONA, the events
hold the same information as the corresponding states the Q-Learner receives
in the simulated experiments, except for FlappyBird-v0. To be more specific,
as mentioned in [4], when s is an observation, it is interpreted by ONA as the
event (s. : | :), and by the Q-Learner simply as the current state. Then both
algorithms suggest an operation/action by exploitation or sometimes randomly.

https://github.com/AliBeikmohammadi/OpenNARS-for-Applications/tree/master/misc/Python
https://github.com/AliBeikmohammadi/OpenNARS-for-Applications/tree/master/misc/Python
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After feeding the action to the environment, we receive new observation, reward,
and some info about reaching the goal. The reward for the Q-Learner is used
without any change, while ONA receives an event (G. : | :) when the task is
completely done. So there is no event if rewards are related to anything except
finishing the task. This, of course, assumes that the goal does not change, as else
the Q-table entries would have to be re-learned, meaning the learned behavior
would often not apply anymore. For the purposes of this work, and for a fair
comparison, the examples include a fixed objective.

We use challenging control tasks from OpenAI gym benchmark suite [1]
(Fig. 1). ONA and Q-Learning algorithms were developed for discrete tasks;
hence we have to map FlappyBird-v0 observation space for each algorithm,
which we describe below. Except for FlappyBird-v0, we used the original envi-
ronments with no modifications to the environment or reward. In FlappyBird-v0,
the observations are: (O1) the horizontal distance to the next pipe, and (O2) the
difference between the player’s y position and the next hole’s y position. We
have mapped this continuous observation space to a discrete space. Specifically,
as for ONA, the event is “round(100xO1) round(1000xO2). : | :”, which could
be for instance “138 -4. : | :”. However, since for defining Q-table, the states
should correspond to the specific row, we have to subtly change the mapping
to “|round(100xO1)|+|round(1000xO2)|”, which results “142”, for our instance.
However, one could find a better way to do this mapping.

Although [1] describes all environments, we emphasize FrozenLake-v1’s
“is slippery” argument, allowing for a non-deterministic environment. This fea-
ture is interesting to observe how algorithms perform in such a scenario. When
“is slippery” is True, the agent has a 1/3 probability of moving in the intended
direction; otherwise, it moves in either perpendicular direction with an equal
probability of 1/3. For instance, if the action is left and “is slippery” is True,
then P(move left) = 1/3, P(move up) = 1/3, and P(move down) = 1/3. In the
next section, we examine both algorithms’ performances in detail on all these
tasks.

4 Results and Discussion

Two criteria, including reward, and cumulative successful episodes, are mon-
itored, as shown in Figs. 2, and 3. Both techniques are run 10 times in each
experiment, and the behavior of metrics is kept track of for each time step
across 100000 iterations. The solid curves show average training performance,
while the shaded region indicates the standard deviation of that specific metric
over 10 trials. This provides an idea of the algorithm’s robustness. A high gained
metric with a low variance is considered more reliable than achieving the same
performance with a high variance. So, the standard deviation gives a complete
picture of the algorithm’s performance.

As can be seen from Figs. 2 and 3, the results of two algorithms are
very dependent on the task and one cannot be considered superior for all
environments. Specifically, the Q-Learning algorithm has performed better on
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Fig. 2. Reward vs. Time steps. The reward is measured at time steps where the episode
ends (by reaching the goal, truncating the episode length, falling into the hole, falling
from the cliff, hitting the pipe.)

Fig. 3. Cumulative Successful Episodes vs. Time steps.

CliffWalking-v0, Taxi-v3, and FlappyBird-v0 environments. But ONA is more
promising on environments based on FrozenLake-v1. Moreover, Fig. 3 illustrates
the noteworthy observation that ONA exhibits greater reliability.

An interesting observation is the good ability of ONA to solve non-
deterministic problems, where it is able to solve the slippery-enable problems
as shown in Figs. 2d, 2f, 3d, and 3f, while Q-Learning has not shown reliable
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Fig. 4. Cumulative Random Action vs. Time steps.

success in solving these problems. It may be possible to draw conclusions from
Q-Learning by adjusting its hyperparameters. However, it should be noted that
any time-dependent hyperparameters are specific to the environment and should
be avoided when evaluating generality. Additionally, as ε decreases over time, the
Q-Learner will take longer to adapt its policy to new circumstances. In contrast,
it is evident that ONA offers greater reliability due to having fewer hyperparam-
eters. Unlike Q-Learning, ONA does not require specific reductions in learning or
exploration rates to function well on a given task, and therefore needs less param-
eter tuning. For instance, ONA does not rely on learning rate decay. Instead,
the extent to which new evidence alters an existing belief is dependent solely
on the degree of evidence that already supports it, which automatically renders
high-confidence beliefs more stable. This results in a more consistent learning
behavior for ONA.

We also monitored the frequency of random action selection. In Figs. 4 and
5, the behavior of the two algorithms is drawn in terms of referring to a random
or non-random action. In the case of Q-Learning, the probability of selecting
a random action is primarily determined by the value of ε. This probability
decreases rapidly over time. Consequently, if the agent has not yet discovered a
good policy or the environment changes, Q-Learning may not be able to solve
the problem. Reducing ε over time can make it increasingly difficult to explore
alternative solutions. The low variance of Q-Learning shows the agent’s decision
is unaffected by changes in the environment across different trials. This is because
the random action-taking process is largely driven by ε, which is independent
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Fig. 5. Cumulative Non-Random Action vs. Time steps.

of the problem. On the other hand, in ONA, if the system does not suggest
any action, we choose a random action, as shown in Fig. 4. In addition, there
is also a possibility of the system suggesting a random action itself to explore
the environment, thanks to the motorbabbling parameter. So some of the actions
shown in Fig. 5, despite being labeled as non-random, are actually exploratory
and random in nature. In fact, ONA is able to decrease the motorbabbling on its
own once it has established stable hypotheses and accurate predictions, without
relying on a reduction of the exploration rate that is dependent on time. This
could be one of the reasons why ONA is successful, even though it doesn’t receive
frequent rewards like Q-Learning. So, we believe ONA is capable of handling
multiple and changing objectives, while also requiring less implicit example-
dependent parameter tuning compared to Q-Learning.

5 Conclusion and Future Work

In this paper, we made a comparison between ONA and Q-learning on seven
tasks. Given that both approaches demonstrate comparable performance on
average, our study suggests that NARS has the potential to be a viable sub-
stitute for RL in sequence-based tasks, particularly for non-deterministic prob-
lems. While further research is necessary to determine the full extent of NARS’s
capabilities and limitations, our results offer new avenues for exploration and
innovation in the field of machine learning. Future work can extend our examples
to multi-objective and changing objective scenarios. Additionally, a combination
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of both approaches through methods like voting, hierarchical or teacher-student
learning could be explored.
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Abstract. We integrate foundational theories of meaning with a math-
ematical formalism of artificial general intelligence (AGI) to offer a
comprehensive mechanistic explanation of meaning, communication, and
symbol emergence. This synthesis holds significance for both AGI and
broader debates concerning the nature of language, as it unifies pragmat-
ics, logical truth conditional semantics, Peircean semiotics, and a com-
putable model of enactive cognition, addressing phenomena that have
traditionally evaded mechanistic explanation. By examining the con-
ditions under which a machine can generate meaningful utterances or
comprehend human meaning, we establish that the current generation
of language models do not possess the same understanding of meaning
as humans nor intend any meaning that we might attribute to their
responses. To address this, we propose simulating human feelings and
optimising models to construct weak representations. Our findings shed
light on the relationship between meaning and intelligence, and how we
can build machines that comprehend and intend meaning.

Keywords: meaning · AGI · language

1 Introduction

Linguists and philosophers have offered various accounts of the behaviour of
language and the human mind. Computer scientists have posited mechanisms to
replicate these variously described behaviours piecemeal. The former is a top-
down approach, while the latter is bottom up. Unfortunately, it is difficult to
connect the two. Large language models (LLMs) such as ChatGPT are a bottom
up attempt to capture the behaviour of written language, and are remarkably
good at giving human-like responses to questions. Yet it is unclear the extent to
which an LLM actually means what it says or understands what we mean. AGI
should not just parrot what we expect but respond to what we mean, and mean
what it says. Yet how we would we know the difference? Computers represent
syntax, and from correlations in syntax an LLM is supposed to glean meaning.
However, meaning is not well defined. We need to connect top-down descriptions
of meaning to bottom-up computation. How might we compute meaning?
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1.1 Grice’s Foundational Theory of Meaning

Grice’s foundational theory of meaning [2] holds that meaning is what the
speaker intends to convey to the listener. Grice gave an illustrative example,

[the speaker] α means m by uttering u iff α intends in uttering u that
1. his audience come to believe m,
2. his audience recognize this intention [called m-intention], and
3. (1) occur on the basis of (2) [3].

This is foundational because it specifies the facts in virtue of which expressions
have particular semantic properties (instead of those properties), and is illustra-
tive of our goal (to connect bottom up computation to top down description).

1.2 A Foundational Theory of Foundational Theories

Were we to accept that meaning is in virtue of m-intent1, then from what does
that arise? M-intent should not be conflated with intent in general because it
pertains to what one means by an expression, whereas intent more generally is
any goal in service of which decisions are made. The former stems from the latter
[6], and so there exists a theory arguing that meaning exists in virtue of one’s
intent in the sense of goals. Grice’s theories are better established and widely
accepted with respect to meaning, but these theories are not mutually exclusive
and the depiction of meaning as in virtue of intent in general is a bridge we
can use to connect Grice’s top down description to bottom-up computational
processes. This is because it explains intent in virtue of inductive inference,
to argue that meaningful communication with an AI, or any organism, requires
similar feelings and experiences, in order to construct similar goals and “solutions
to tasks” [6] (an argument formed in relation to the Fermi Paradox [7]). This
explanation was too vague to be of significance for engineering. For example it
assumed a measure, “weakness”, which was not well defined. However, weakness
is well defined in a more recent formalism of artificial general intelligence (AGI)
[1,8] and enactive cognition, so we will instead reformulate the theory using that
formalism, extending it to account for meaningful communication. We begin
with cognition formalised using tasks. We then formalise an organism using
tasks to provide a novel account of preferences, symbol systems and meaningful
communication. We then describe how an organism might mean what we think
it means by what it says, or infer what we mean by what we say.

2 Meaning, From the Top Down

Intent only exists in virtue of a task one is undertaking [6]. A task is what
we get if we add context to intent, expressing what is relevant about both the
1 We note that Grice later expanded upon the notion of m-intent [4,5], and that there

are other widely accepted descriptions of meaning (Russell, Frege, Searle, Davidson,
Wittgenstein, Lewis, Kripke etc.), some of which we touch upon as part of our
formalism. However, paper length limits what we discuss.
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agent and the environment. A task can be used to formalise enactive cognition
[9], discarding notions of agent and environment in favour of a set of decision
problems [1,6]. A task is something which is completed, like a goal, so intent
is formalised like a goal [10]. A goal is a set of criteria, and if those criteria
are satisfied, then it is satisfied and the task complete. To formalise meaning
we must avoid grounding problems [11]. As such these criteria are grounded by
representing the environment, of which cognition is part, as a set of declarative
programs [12] of which the universe is the interpreter [13]:

Definition 1 (environment)

– We assume a set Φ whose elements we call states, one of which we single out
as the present state.

– A declarative program is a function f : Φ → {true, false}, and we write P
for the set of all declarative programs. By an objective truth about a state
φ, we mean a declarative program f such that f(φ) = true.

Definition 2 (implementable language)

– V = {V ⊂ P : V is finite} is a set whose elements we call vocabularies,
one of which2 we single out as the vocabulary v.

– Lv = {l ⊆ v : ∃φ ∈ Φ (∀p ∈ l : p(φ) = true)} is a set whose elements we call
statements. Lv follows Φ and v, and is called implementable language.

– l ∈ Lv is true iff the present state is φ and ∀p ∈ l : p(φ) = true.
– The extension of a statement a ∈ Lv is Za = {b ∈ Lv : a ⊆ b}.
– The extension of a set of statements A ⊆ Lv is ZA =

⋃

a∈A

Za.

(Notation) Z with a subscript is the extension of the subscript3.

A goal can now be expressed as a statement in an implementable language. An
implementable language represents sensorimotor circuitry4 with which cognition
is enacted. It is not natural language, but a dyadic system with exact meaning.
Peircean semiosis [14] is integrated to explain natural language. Peirce defined
a symbol as a sign (E.G. the word “pain”), a referent (E.G. the experience of
pain), and an interpretant which links the two, “determining the effect upon” the
organism. A goal arguably functions as an interpretant because it determines the
effect of a situation upon an organism that pursues it [6]. Rather than formulate
a task and then rehash the argument that a task is a symbol, we’ll just formalise
a symbol using the existing definition of a task [1, definition 3]:

Definition 3 (v-task). For a chosen v, a task α is a triple 〈Sα,Dα,Mα〉, and
Γv is the set of all tasks given v. Give a task α:

2 The vocabulary v we single out represents the sensorimotor circuitry with which an
organism enacts cognition - their brain, body, local environment and so forth.

3 e.g. Zs is the extension of s.
4 Mind, body, local environment etc.
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– Sα ⊂ Lv is a set whose elements we call situations of α.
– Sα has the extension ZSα

, whose elements we call decisions of α.
– Dα = {z ∈ ZSα

: z is correct} is the set of all decisions which complete α.
– Mα = {l ∈ Lv : ZSα

∩ Zl = Dα} whose elements we call models of α.

(Notation) If ω ∈ Γv, then we will use subscript ω to signify parts of ω, meaning
one should assume ω = 〈Sω,Dω,Mω〉 even if that isn’t written.

(How a task is completed) Assume we’ve a v-task ω and a hypothesis h ∈ Lv s.t.

1. we are presented with a situation s ∈ Sω, and
2. we must select a decision z ∈ Zs ∩ Zh.
3. If z ∈ Dω, then z is correct and the task is complete. This occurs if h ∈ Mω.

Definition 4 (symbol). A task α is also a Peircean symbol:

– s ∈ Sα is a sign of α.
– d ∈ Dα is the effect of α upon one who perceives it. d may be sensorimotor

activity associated with perception, and thus a referent.
– m ∈ Mα is an interpretant linking signs to referents.

Tasks may be divided into narrower child tasks, or merged into parent tasks.

Definition 5 (child, parent and weakness). A symbol α is a child of ω if
Sα ⊂ Sω and Dα ⊆ Dω. This is written α � ω. We call |Dα| the weakness of a
symbol α, and a parent is weaker than its children.

2.1 Extending the Formalism

The child and parent relation means a symbol is also a symbol system in that
it can be subdivided into child symbols [6]. With this in mind, we can define an
organism that derives symbols from its experiences, preferences and feelings.

Definition 6 (organism). An organism o is a quintuple 〈vo, eo, so, no, fo〉, and
the set of all such quintuples is O where:

– vo is a vocabulary we single out as belonging to this organism5.
– We assume a vo-task β wherein Sβ is every situation in which o has made a

decision, and Dβ contains every such decision. Given the set Γvo of all tasks,
eo = {ω ∈ Γvo : ω � β} is a set whose members we call experiences.

– A symbol system so = {α ∈ Γvo : there exists ω ∈ eo where Mα ∩Mω �= ∅}
is a set whose members we call symbols. so is the set of every task to which
it is possible to generalise (see [1, definition 5]) from an element of eo.

– no : so → N is a function we call preferences.
– fo : so → fo is a function, and fo ⊂ Lvo a set whose elements we call feelings,

being the reward, qualia etc, from which preferences arise6.
5 The corresponding Lvo is all sensorimotor activity in which the organism may engage.
6 Note that this assumes qualia, preferences and so forth are part of physical reality,

which means they are sets of declarative programs.
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Each symbol in so shares an interpretant at least one experience7. This is so
feelings fo ascribed to symbols can be grounded in experience. Humans are
given impetus by a complex balance of feelings (reward signals, qualia etc.).
It is arguable that feelings eventually determine all value judgements [10]. As
Hume pointed out, one cannot derive a statement of what ought to be from
a statement of what is. Feelings are an ought from which one may derive all
other oughts. If meaning is about intent, then the impetus that gives rise to that
intent is an intrinsic part of all meaning [7]. Intent is a goal. A goal is statement
of what ought to be that one tries to make into a description of what is, by
altering the world to fit with ought to be. We assume feelings are consequence
of natural selection, and so explain meaning in virtue of a mechanistic process.
Each l ∈ L represents sensorimotor activity, which from a materialist perspective
includes feelings. Thus, fo is a function from symbols to sensorimotor activity.
Statements and symbols “mean something” to the organism if the organism can
ascribe feelings to them. As every symbol in so contains an interpretant which is
part of the organism’s experience, the organism can ascribe feelings to all symbols
on the basis of that experience. If one is not concerned with qualia [16,17], then
feelings may be simulated with “reward” functions. However, to simulate feelings
that result in human-like behaviour is a more difficult proposition. Rather than
trying to describe human-like feelings, we simplify our analysis by assuming the
preferences [18] no which are determined by experience of feelings.

2.2 Interpretation

The situation at hand s ∈ Lvo is a statement o experiences as a sign and then
interprets using α ∈ so s.t. s ∈ Sα, to decide d ∈ Zs ∩ ZMα

.

Definition 7 (interpretation). Interpretation is a sequence of steps:

1. The situation at hand s ∈ Lvo signifies a symbol α ∈ so if s ∈ Sα.
2. ss

o = {α ∈ so : s ∈ Sα} is the set of all symbols which s signifies.
3. If ss

o �= ∅ then s means something to the organism in the sense that there
are feelings which can be ascribed to symbols in ss

o.
4. If s means something, then o uses α ∈ argmax

ω∈ss
o

no(ω) to interpret s.

5. The interpretation is a decision d ∈ Zs ∩ ZMα
8.

3 Communication of Meaning

We develop our explanation in four parts. First, we define exactly what it means
for an organism to affect and be affected by others. Second, we examine how one
7 A symbol system is every task to which one may generalise from one’s experiences.

Only finitely many symbols may be entertained. In claiming our formalism pertains
to meaning in natural language we are rejecting arguments, such as those of Block
and Fodor [15], that a human can entertain an infinity of propositions (because time
and memory are assumed to be finite, which is why vo is finite).

8 How an organism responds to a sign that means nothing is beyond this paper’s scope.
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organism may anticipate the behaviour (by inferring the end it serves) of another
or order to change how they are affected. Third, we examine how said organism
may, having anticipated the behaviour of the other, intervene to manipulate the
other’s behaviour to their benefit (so that the now latter affects the former in a
more positive way). And finally, we examine what happens when each organism
is attempting to manipulate the another. Each anticipates the other’s manip-
ulation, because each anticipates the other’s behaviour by inferring its intent.
An organism can then attempt to deceive the other organism (continue the
manipulative approach), or attempt to co-operate (communicate in good faith),
a choice resembling an iterated prisoner’s dilemma. We assume organisms make
decisions based upon preferences, but preferences are not arbitrary. Feelings and
thus preferences exist in virtue of natural selection, which to some extent must
favour rational behaviour (to the extent that selection is significantly impacted).
In this might be understood as alignment, to use AI safety terms. One’s feelings
are the result of alignment by genetic algorithm, and one’s preferences are the
result of reinforcement learning using those feelings (to determine reward). Thus
we assume preferences are a balance of what is rational, and what is tolerably
irrational, given the pressures of natural selection. We call this balance reason-
ably performant. The specifics of inductive inference are beyond the scope of
this paper, however definitions and formal proofs pertaining to inductive infer-
ence from child to parent tasks are included in the appendix [1]. The necessary
inductive capabilities are assumed with being reasonably performant.

3.1 Ascribing Intent

Definition 8 (affect). To affect an organism o is to cause it to make a different
decision than it otherwise would have. k affects o if o would have made a decision
d, but as a result of a decision c made by k, o makes decision g �= d.

Let k and o be organisms. If k affects o, and assuming vo is sufficient to allow
o to distinguish when it is affected by k from when it is not (meaning all else
being equal k’s interventions are distinguishable by the presence of an identity
(see appendices), then there exists experience ζko ∈ eo such that d ∈ Dζk

o
if o

is affected by k. ζko is an ostensive definition [19] of k’s intent (meaning it is a
child task from which we may infer the parent representing k’s most likely intent
and thus future behaviour) [6]. In the absence of more information, the symbol
most likely to represent k′s intent is the weakest [6], meaning α ∈ so s.t. |Zα| is
maximised. However, because o assumes k has similar feelings and preferences
[6,10]9 no is an approximation of what k will do. Accordingly the symbol most
likely to represent k’s intent would be the “weakest” of goals preferred by o which,
if pursued by k, would explain why k has affected o as it has. This is γk

o s.t.

γk
o ∈ argmax

α∈K
|Zα| s.t. K = argmax

α∈Γ k
o

no(α) and Γ k
o = {ω ∈ Γvo : Mζk

o
∩ Mω �= ∅}

9 Members of a species tend to have similar feelings, experiences and thus preferences.
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3.2 From Manipulation to Meaningful Communication

We’ve explained inference of intent in counterfactual terms, answering “if places
were exchanged, what would cause o to act like k?”. Intent here is “what is k
trying to achieve by affecting o”, rather than just “what is k trying to achieve”.

Manipulation: Because it is reasonably performant, o infers the intent of an
organism k that affects o, in order to plan ahead and ensure its own needs will be
met. However o can go a step further. It can also attempt to influence what k will
do. If being reasonably performant requires o infer k’s intent because k affects o,
then it may also require o affect k to the extent that doing so will benefit o.

Communication: If both o and k are reasonably performant, each may attempt
to manipulate the other. Ascribing intent to one another’s behaviour in order to
manipulate, each must anticipate the other’s manipulative intent. Subsequently
each organism must go yet another step further and account for how its own
manipulative intent will be perceived by the other. As in a sort of iterated pris-
oner’s dilemma, the rational choice may then be to co-operate. Because each
symbol represents a goal it defines a limited context for co-operation; so two
organisms might simultaneously co-operate in pursuit of one goal while compet-
ing in pursuit of another (E.G. two dogs may co-operate to hunt while com-
peting for a mate). If there is sufficient profit in affecting another’s behaviour,
then knowing one’s own intent is perceived by that other and that the other
will change its behaviour in response to one’s changed intent, it makes sense
to actually change one’s own intent in order to affect the other. This bears out
experimentally in reinforcement learning with extended environments [20]. The
rational choice may then be to have co-operative intent, assuming k can per-
ceive o’s intent correctly, and that k will reciprocate in kind. For a population
of reasonably performant organisms, induction (see [1]) with co-operative intent
would favour symbols that mean (functionally) similar things to all members of
the population. Repeated interactions would give rise to signalling conventions
we might call language.

Meaning: Let us re-frame these ideas using the example from the introduction.
We’ll say two symbols α ∈ sk and ω ∈ so are roughly equivalent (written α ≈ ω)
to mean feelings, experiences and thus preferences associated with a symbol are
in some sense the same for two organisms (meaning if α ≈ ω then fk(α) ≈ fo(ω)
etc.). In other words we’re suggesting it must be possible to measure the similar-
ity between symbols in terms of feelings, experiences and thus preferences, and
so we can assert a threshold beyond which two symbols are roughly equivalent.

k means α ∈ sk by deciding u and affecting o iff k intends in deciding u:
1. that o interpets the situation at hand with ω ∈ so s.t. ω ≈ α,
2. o recognize this intention, for example by predicting it according to

γk
o ∈ argmax

α∈K
|Zα| s.t. K = argmax

α∈Γ k
o

no(α), Γ k
o = {ω ∈ Γvo : Mζk

o
∩Mω �= ∅}
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3. and (1) occur on the basis of (2), because k intends to co-operate and
so will interpret the situation at hand using what it believes of o’s intent.

The above pertains to co-operation. To comprehend meaning:

1. Organisms must be able to affect one another.
2. Organisms must have similar feelings, and
3. similar experiences, so so and sk contain roughly equivalent symbols.
4. Similar preferences then inform the correct inference of intent.
5. Finally, all this assumes organisms are reasonably performant.

4 Talking to a Machine

An LLM is trained to mimic human preferences. However, an LLM is not given
impetus by feelings, and so cannot entertain roughly equivalent symbols. This
is not to say we cannot reverse engineer the complex balance of human-like
feelings, merely that we have not. If an LLM has impetus, it is to be found in
our prompts. It is reminiscent of a mirror test, which is a means of determining
whether animals are self aware. For example, a cat seeing itself in the mirror
may attack its reflection, not realising what it sees is itself. In an LLM we face a
mirror test of our own, but instead of light it reflects our own written language
back at us. We ascribe motives and feelings to that language because we have
evolved to infer the intent of organisms compelled by feelings [6]. An LLM hijacks
what we use to understand one another (that we assume others are motivated by
similar feelings [10]). We’ve a history of ascribing feelings and agency to things
possessed of neither. In the 1970s, a chatbot named ELIZA made headlines as
its users attributed feelings and motives to its words [21]. Like ELIZA, today’s
LLMs not only do not mean what we think they mean by what they say, but do
not mean anything at all. This is not an indictment of LLMs trained to mimic
human preferences. The meaning we ascribe to their behaviour can be useful,
even if that behaviour was not intended to mean anything.

The Hall of Mirrors: Even if we approximate human feelings, an LLM like
ChatGPT is not reasonably performant. It is maladaptive, requiring an abun-
dance of training data. This may be because training does not optimise for a
weak representation, but settles for any function fitting the data10 [6]. Returning
to mirror analogies, imagine a hall of mirrors reflecting an object from different
angles. A weak or simple representation would be one symbol α ∈ so represent-
ing the object, which is then interpreted from the perspectives a, b, c, d ∈ Sα of
each mirror. A needlessly convoluted representation of the same would instead
interpret a, b, c and d using different symbols. These would be α’s children
ω, γ, δ, σ � α such that a ∈ Sω, b ∈ Sγ , c ∈ Sδ, d ∈ Sσ. This latter represen-
tation fails to exploit what is common between perspectives, which might allow
it to generalise [6] to new perspectives. That an LLM may not learn sufficiently
10 Albeit with some preference for simplicity imparted by regularisation.
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weak representations seems consistent with their flaws. One well documented
example of this is how an LLM may convincingly mimic yet fail to understand
arithmetic [22], but such flaws may more subtly manifest elsewhere. For exam-
ple, when we queried Bing Chat (on the 2nd of February 2023 [1, p. 11]) with
the name and location of a relatively unknown individual who had several pro-
fessions and hobbies mentioned on different sites, Bing concluded that different
people with this name lived in the area, each one having a different hobby or
profession.

Incomprehensibility: If we are to build machines that mean what we think
they mean by what they say, then we must emulate human feelings and expe-
riences. It is interesting to consider where this may lead. If we do not get the
balance of feelings quite right, we might create an organism that means what
it says, but whose meanings may be partially or utterly incomprehensible to us
because the resulting preferences are unaligned with ours. In the introduction
we mentioned ideas on which this paper was founded were used to relate the
Fermi paradox to control of and communication with an AGI [7]. We can extend
that notion. Assume we are affected by an organism. If the events befalling us
are set in motion by preferences entirely unlike our own, then we would fail to
ascribe the correct intent to the organism. We may fail entirely to realise there
is an organism, or may ascribe many different intents as in the hall of mirrors
analogy. Furthermore, vo determines what can or cannot be comprehended by
an organism (see appendices). vo may contain nothing akin to the contents of
vk, making o incapable of representing and thus comprehending k’s intent.

Conclusion: We have extended a formalism of artificial general intelligence,
connecting bottom up computation to top down notions of meaning. This is
significant not just to AGI but to wider debates surrounding language, meaning
and the linguistic turn. While we focused on Gricean notions of meaning due to
publication constraints, the formalism is by no means limited to that. For exam-
ple, the logical truth conditional meaning of statements is in their extension. We
have described the process by which meaningful communication can take place
and the prerequisites thereof. We conclude that human-like feelings and weak
representations should give us systems that comprehend and intend meaning.

Acknowledgement. Appendices available on GitHub [1], supported by JST
(JPMJMS2033).
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Abstract. If A and B are sets such that A ⊂ B, generalisation may
be understood as the inference from A of a hypothesis sufficient to con-
struct B. One might infer any number of hypotheses from A, yet only
some of those may generalise to B. How can one know which are likely
to generalise? One strategy is to choose the shortest, equating the ability
to compress information with the ability to generalise (a “proxy for intel-
ligence”). We examine this in the context of a mathematical formalism
of enactive cognition. We show that compression is neither necessary nor
sufficient to maximise performance (measured in terms of the probability
of a hypothesis generalising). We formulate a proxy unrelated to length
or simplicity, called weakness. We show that if tasks are uniformly dis-
tributed, then there is no choice of proxy that performs at least as well
as weakness maximisation in all tasks while performing strictly better
in at least one. In experiments comparing maximum weakness and min-
imum description length in the context of binary arithmetic, the former
generalised at between 1.1 and 5 times the rate of the latter. We argue
this demonstrates that weakness is a far better proxy, and explains why
Deepmind’s Apperception Engine is able to generalise effectively.

Keywords: simplicity · induction · artificial general intelligence

1 Introduction

If A and B are sets such that A ⊂ B, generalisation may be understood as
the inference from A of a hypothesis sufficient to construct B. One might infer
any number of hypotheses from A, yet only some of those may generalise to B.
How can one know which are likely to generalise? According to Ockham’s Razor,
the simpler of two explanations is the more likely [2]. Simplicity is not itself a
measurable property, so the minimum description length principle [3] relates sim-
plicity to length. Shorter representations are considered to be simpler, and tend
to generalise more effectively. This is often applied in the context of induction
by comparing the length of programs that explain what is observed (to chose the
shortest, all else being equal). The ability to identify shorter representations is
compression, and the ability to generalise is arguably intelligence [4]. Hence the
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ability to compress information is often portrayed as a proxy for intelligence [5],
even serving as the foundation [6–8] of the theoretical super-intelligence AIXI [9].
That compression is a good proxy seems to have gone unchallenged. The optimal
choice of hypothesis is widely considered to be the shortest. We show that it is
not1. We present an alternative, unrelated to description length, called weakness.
We prove that to maximise the probability that one’s hypotheses generalise, it
is necessary and sufficient to infer the weakest valid hypotheses possible2.

2 Background Definitions

To do so, we employ a formalism of enactive cognition [1,10,11], in which sets
of declarative programs are related to one another in such a way as to form a
lattice. This unusual representation is necessary to ensure that both the weakness
and description length of a hypothesis are well defined3. This formalism can be
understood in three steps.

1. The environment is represented as a set of declarative programs.
2. A finite subset of the environment is used to define a language with which to

write statements that behave as logical formulae.
3. Finally, induction is formalised in terms of tasks made up of these statements.

Definition 1 (environment)

– We assume a set Φ whose elements we call states, one of which we single out
as the present state4.

– A declarative program is a function f : Φ → {true, false}, and we write P
for the set of all declarative programs. By an objective truth about a state
φ, we mean a declarative program f such that f(φ) = true.

Definition 2 (implementable language)

– V = {V ⊂ P : V is finite} is a set whose elements we call vocabularies, one
of which we single out as the vocabulary v for an implementable language.

– Lv = {l ⊆ v : ∃φ ∈ Φ (∀p ∈ l : p(φ) = true)} is a set whose elements we
call statements5. Lv follows from Φ and v. We call Lv an implementable
language.

1 This proof is conditional upon certain assumptions regarding the nature of cognition
as enactive, and a formalism thereof.

2 Assuming tasks are uniformly distributed, and weakness is well defined.
3 An example of how one might translate propositional logic into this representation

is given at the end of this paper. It is worth noting that this representation of
logical formulae addresses the symbol grounding problem [12], and was specifically
constructed to address subjective performance claims in the context of AIXI [13].

4 Each state is just reality from the perspective of a point along one or more dimen-
sions. States of reality must be separated by something, or there would be only one
state of reality. For example two different states of reality may be reality from the
perspective of two different points in time, or in space and so on.

5 Statements are the logical formulae about which we will reason.
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– l ∈ Lv is true iff the present state is φ and ∀p ∈ l : p(φ) = true.
– The extension of a statement a ∈ Lv is Za = {b ∈ Lv : a ⊆ b}.
– The extension of a set of statements A ⊆ Lv is ZA =

⋃

a∈A

Za.

(Notation). Z with a subscript is the extension of the subscript6. Lower case
letters represent statements, and upper case represent sets of statements.

Definition 3 (v-task). For a chosen v, a task α is 〈Sα,Dα,Mα〉 where:

– Sα ⊂ Lv is a set whose elements we call situations of α.
– Sα has the extension ZSα

, whose elements we call decisions of α.
– Dα = {z ∈ ZSα

: z is correct} is the set of all decisions which complete α.
– Mα = {l ∈ Lv : ZSα

∩ Zl = Dα} whose elements we call models of α.

Γv is the set of all tasks7.

(Notation). If ω ∈ Γv, then we will use subscript ω to signify parts of ω, meaning
one should assume ω = 〈Sω,Dω,Mω〉 even if that isn’t written.

(How a task is completed). Assume we’ve a v-task ω and a hypothesis h ∈ Lv

s.t.

1. we are presented with a situation s ∈ Sω, and
2. we must select a decision z ∈ Zs ∩ Zh.
3. If z ∈ Dω, then z is correct and the task is complete. This occurs if h ∈ Mω.

3 Formalising Induction

Definition 4 (probability). We assume a uniform distribution over Γv.

Definition 5 (generalisation). A statement l generalises to α ∈ Γv iff l ∈ Mα.
We say l generalises from α to v-task ω if we first obtain l from Mα and then
find it generalises to ω.

Definition 6 (child and parent). A v-task α is a child of v-task ω if Sα ⊂ Sω

and Dα ⊆ Dω. This is written as α � ω. If α � ω then ω is then a parent of α.

A proxy is meant to estimate one thing by measuring another. In this case,
if intelligence is the ability to generalise [4,10], then a greater proxy value is
meant to indicate that a statement is more likely to generalise. Not all proxies
are effective (most will be useless). We focus on two in particular.

6 e.g. Zs is the extension of s.
7 For example, we might represent chess as a supervised learning problem where s ∈ Sα

is the state of a chessboard, z ∈ Zs is a sequence of moves by two players that begins
in s, and d ∈ Dα ∩Zs is such a sequence of moves that terminates in victory for one
player in particular (the one undertaking the task).
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Definition 7 (proxy for intelligence). A proxy is a function parameterized
by a choice of v such that qv : Lv → N. The set of all proxies is Q.

(Weakness). The weakness of a statement l is the cardinality of its extension
|Zl|. There exists qv ∈ Q such that qv(l) = |Zl|.

(Description length). The description length of a statement l is its cardinality |l|.
Longer logical formulae are considered less likely to generalise [3], and a proxy
is something to be maximised, so description length as a proxy is qv ∈ Q such
that qv(l) = 1

|l| .

A child task may serve as an ostensive definition [14] of its parent, meaning
one can generalise from child to parent.

Definition 8 (induction). α and ω are v-tasks such that α � ω. Assume we
are given a proxy qv ∈ Q, the complete definition of α and the knowledge that
α � ω. We are not given the definition of ω. The process of induction would
proceed as follows:

1. Obtain a hypothesis by computing a model h ∈ argmax
m∈Mα

qv(m).

2. If h ∈ Mω, then we have generalised from α to ω.

4 Proofs

Proposition 1 (sufficiency). Weakness is a proxy sufficient to maximise the
probability that induction generalises from α to ω.

Proof: You’re given the definition of v-task α from which you infer a hypothesis
h ∈ Mα. v-task ω is a parent of α to which we wish to generalise:

1. The set of statements which might be decisions addressing situations in Sω

and not Sα, is ZSα
= {l ∈ Lv : l /∈ ZSα

}.
2. For any given h ∈ Mα, the extension Zh of h is the set of decisions h implies.

The subset of Zh which fall outside the scope of what is required for the
known task α is ZSα

∩ Zh (because ZSα
is the set of all decisions we might

make when attempting α, and so the set of all decisions that can’t be made
when undertaking α is ZSα

because those decisions occur in situations that
aren’t part of Sα).

3. |ZSα
∩ Zh| increases monotonically with |Zh|, because ∀z ∈ Zm : z /∈ ZSα

→
z ∈ ZSα

.
4. 2|ZSα | is the number of tasks which fall outside of what it is necessary for a

model of α to generalise to (this is just the powerset of ZSα
defined in step

2), and 2|ZSα ∩Zh| is the number of those tasks to which a given h ∈ Mα does
generalise.
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5. Therefore the probability that a given model h ∈ Mα generalises to the
unknown parent task ω is

p(h ∈ Mω | h ∈ Mα, α � ω) =
2|ZSα ∩Zh|

2|ZSα |

p(h ∈ Mω | h ∈ Mα, α � ω) is maximised when |Zh| is maximised.

Proposition 2 (necessity).To maximise the probability that induction gener-
alises from α to ω, it is necessary to use weakness as a proxy, or a function
thereof8.

Proof: Let α and ω be defined exactly as they were in the proof of Proposition 1.

1. If h ∈ Mα and ZSω
∩ Zh = Dω, then it must be he case that Dω ⊆ Zh.

2. If |Zh| < |Dω| then generalisation cannot occur, because that would mean
that Dω �⊆ Zh.

3. Therefore generalisation is only possible if |Zm| ≥ |Dω|, meaning a sufficiently
weak hypothesis is necessary to generalise from child to parent.

4. The probability that |Zm| ≥ |Dω| is maximised when |Zm| is maximised.
Therefore to maximise the probability induction results in generalisation, it
is necessary to select the weakest hypothesis.

To select the weakest hypothesis, it is necessary to use weakness (or a function
thereof) as a proxy.

Remark 1 (prior). The above describes inference from a child to a parent. How-
ever, it follows that increasing the weakness of a statement increases the proba-
bility that it will generalise to any task (not just a parent of some given child). As
tasks are uniformly distributed, every statement in Lv is a model to one or more
tasks, and the number of tasks to which each statement l ∈ Lv generalises is 2|Zl|.
Hence the probability of generalisation9 to ω is p(h ∈ Mω | h ∈ Lv) = 2|Zh|

2|Lv| .
This assigns a probability to every statement l ∈ Lv given an implementable
language. It is a probability distribution in the sense that the probability of
mutually exclusive statements sums to one10. This prior may be considered uni-
versal in the very limited sense that it assigns a probability to every conceivable
hypothesis (where what is conceivable depends upon the implementable lan-
guage) absent any parameters or specific assumptions about the task as with
AIXI’s intelligence order relation [9, def. 5.14 pp. 147]11. As the vocabulary v is
finite, Lv must also be finite, and so p is computable.
8 For example we might use weakness multiplied by a constant to the same effect.
9 2|Zh|

2|Lv| is maximised when h = ∅, because the optimal hypothesis given no information
is to assume nothing (you’ve no sequence to predict, so why make assertions that
might contradict the environment?).

10 Two statements a and b are mutually exclusive if a �∈ Zb and b �∈ Za, which we’ll write
as µ(a, b). Given x ∈ Lv, the set of all mutually exclusive statements is a set Kx ⊂ Lv

such that x ∈ Kx and ∀a, b ∈ Kx : µ(a, b). It follows that ∀x ∈ Lv,
∑

b∈Kx

p(b) = 1.
11 We acknowledge that some may object to the term universal, because v is finite.
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We have shown that, if tasks are uniformly distributed, then weakness is a neces-
sary and sufficient proxy to maximise the probability that induction generalises.
It is important to note that another proxy may perform better given cherry-
picked combinations of child and parent task for which that proxy is suitable.
However, such a proxy would necessarily perform worse given the uniform dis-
tribution of all tasks. Can the same be said of description length?

Proposition 3. Description length is neither a necessary nor sufficient proxy
for the purposes of maximising the probability that induction generalises.

Proof: In Propositions 1 and 2 we proved that weakness is a necessary and suffi-
cient choice of proxy to maximise the probability of generalisation. It follows that
either maximising 1

|m| (minimising description length) maximises |Zm| (weak-
ness), or minimisation of description length is unnecessary to maximise the prob-
ability of generalisation. Assume the former, and we’ll construct a counterexam-
ple with v = {a, b, c, d, e, f, g, h, j, k, z} s.t. Lv = {{a, b, c, d, j, k, z}, {e, b, c, d, k},
{a, f, c, d, j}, {e, b, g, d, j, k, z}, {a, f, c, h, j, k}, {e, f, g, h, j, k}} and a task α
where

– Sα = {{a, b}, {e, b}}
– Dα = {{a, b, c, d, j, k, z}, {e, b, g, d, j, k, z}}
– Mα = {{z}, {j, k}}
Weakness as a proxy selects {j, k}, while description length as a proxy selects
{z}. This demonstrates the minimising description length does not necessarily
maximise weakness, and maximising weakness does not minimise description
length. As weakness is necessary and sufficient to maximise the probability of
generalisation, it follows that minimising description length is neither.

5 Experiments

Included with this paper is a Python script to perform two experiments using
PyTorch with CUDA, SymPy and A∗ [15–18] (see technical appendix for details).
In these two experiments, a toy program computes models to 8-bit string pre-
diction tasks (binary addition and multiplication). The purpose of these experi-
ments was to compare weakness and description length as proxies.

5.1 Setup

To specify tasks with which the experiments would be conducted, we needed
a vocabulary v with which to describe simple 8-bit string prediction problems.
There were 256 states in Φ, one for every possible 8-bit string. The possible
statements were then all the expressions regarding those 8 bits that could be
written in propositional logic (the simple connectives ¬, ∧ and ∨ needed to
perform binary arithmetic – a written example of how propositional logic can be
used in to specify v is also included in the appendix). In other words, for each
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statement in Lv there existed an equivalent expression in propositional logic.
For efficiency, these statements were implemented as either PyTorch tensors or
SymPy expressions in different parts of the program, and converted back and
forth as needed (basic set and logical operations on these propositional tensor
representations were implemented for the same reason). A v-task was specified
by choosing Dn ⊂ Lv such that all d ∈ Dn conformed to the rules of either binary
addition or multiplication with 4-bits of input, followed by 4-bits of output.

5.2 Trials

Each experiment had parameters were “operation” and “number_of_trials”. For
each trial the number |Dk| of examples ranged from 4 to 14. A trial had 2 phases.

Training Phase
1. A task n (referred to in code as Tn) was generated:

(a) First, every possible 4-bit input for the chosen binary operation was used
to generate an 8-bit string. These 16 strings then formed Dn.

(b) A bit between 0 and 7 was then chosen, and Sn created by cloning Dn

and deleting the chosen bit from every string (Sn contained 16 different
7-bit strings, each of which was a sub-string of an element of Dn).

2. A child-task k = 〈Sk,Dk,Mk〉 (referred to in code as Tk) was sampled (assum-
ing a uniform distribution over children) from the parent task Tn. Recall, |Dk|
was determined as a parameter of the trial.

3. From Tk two models were then generated; a weakest cw, and a MDL cmdl.

Testing Phase: For each model c ∈ {cw, cmdl}, the testing phase was as follows:
1. The extension Zc of c was then generated.
2. A prediction Drecon was made s.t. Drecon = {z ∈ Zc : ∃s ∈ Sn (s ⊂ z)}.
3. Drecon was then compared to the ground truth Dn, and results recorded.

Between 75 and 256 trials were run for each value of the parameter |Dk|. Fewer
trials were run for larger values of |Dk| as these took longer to process. The
results of these trails were then averaged for each value of |Dk|.

5.3 Results

Two sorts of measurements were taken for each trial. The first was the rate at
generalisation occurred. Generalisation was deemed to have occurred where
Drecon = Dn. The number of trials in which generalisation occurred was mea-
sured, and divided by n to obtain the rate of generalisation for cw and cmdl.
Error was computed as a Wald 95% confidence interval. The second measure-
ment was the average extent to which models generalised. Even where
Drecon �= Dn, the extent to which models generalised could be ascertained.
|Drecon∩Dn|

|Dn| was measured and averaged for each value of |Dk|, and the standard
error computed. The results (see Tables 1 and 2) demonstrate that weakness is
a better proxy for intelligence than description length. The generalisation rate
for cw was between 110–500% of cmdl, and the extent was between 103− 156%.
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Table 1. Results for Binary Addition

|Dk| cw cmdl

Rate ±95% AvgExt StdErr Rate ±95% AvgExt StdErr

6 .11 .039 .75 .008 .10 .037 .48 .012
10 .27 .064 .91 .006 .13 .048 .69 .009
14 .68 .106 .98 .005 .24 .097 .91 .006

Table 2. Results for Binary Multiplication

|Dk| cw cmdl

Rate ±95% AvgExt StdErr Rate ±95% AvgExt StdErr

6 .05 .026 .74 .009 .01 .011 .58 .011
10 .16 .045 .86 .006 .08 .034 .78 .008
14 .46 .061 .96 .003 .21 .050 .93 .003

6 Concluding Remarks

We have shown that, if tasks are uniformly distributed, then weakness maximi-
sation is necessary and sufficient to maximise the probability that induction will
produce a hypothesis that generalises. It follows that there is no choice of proxy
that performs at least as well as weakness maximisation across all possible com-
binations of child and parent task while performing strictly better in at least one.
We’ve also shown that the minimisation of description length is neither neces-
sary nor sufficient. This calls into question the relationship between compression
and intelligence [5,19,20], at least in the context of enactive cognition. This is
supported by our experimental results, which demonstrate that weakness is a far
better predictor of whether a hypothesis will generalise, than description length.
Weakness should not be conflated with Ockham’s Razor. A simple statement
need not be weak, for example “all things are blue crabs”. Likewise, a complex
utterance can assert nothing. Weakness is a consequence of extension, not form.
If weakness is to be understood as an epistemological razor, it is this (which we
humbly suggest naming “Bennett’s Razor”):

Explanations should be no more specific than necessary.12

The Apperception Engine: The Apperception Engine [21–23] (Evans et al.
of Deepmind) is an inference engine that generates hypotheses that generalise
often. To achieve this, Evans formalised Kant’s philosophy to give the engine
a “strong inductive bias”. The engine forms hypotheses from only very general

12 We do not know which possibilities will eventuate. A less specific statement contra-
dicts fewer possibilities. Of all hypotheses sufficient to explain what we perceive, the
least specific is most likely.
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assertions, meaning logical formulae which are universally quantified. That is
possible because the engine uses language specifically tailored to efficiently rep-
resent the sort of sequences to which it is applied. Our results suggest a simpler
and more general explanation of why the engine’s hypotheses generalise so well.
The tailoring of logical formulae to represent certain sequences amounts to a
choice of v, and the use of only universally quantified logical formulae maximises
the weakness of the resulting hypothesis. To apply this approach to induction
from child v-task α to parent ω would mean we only entertain a model m ∈ Mα

if p(m ∈ Mω | m ∈ Mα) = 1. Obviously this can work well, but only for the
subset of possible tasks that the vocabulary is able to describe in this way (any-
thing else will not be able to be represented as a universally quantified rule, and
so will not be represented at all [24]). This illustrates how future research may
explore choices of v in aid of more efficient induction in particular sorts of task,
such as the inference of linguistic meaning and intent (see appendix).

Neural Networks: How might a task be represented in the context of con-
ventional machine learning? Though we use continuous real values in base 10 to
formalise neural networks, all computation still takes place in a discrete, finite
and binary system. A finite number of imperative programs composed a finite
number of times may be represented by a finite set of declarative programs.
Likewise, activations within a network given an input can be represented as a
finite set of declarative programs, expressing a decision. The choice of architec-
ture specifies the vocabulary in which this is written, determining what sort of
relations can be described according to the Chomsky Hierarchy [25]. The reason
why LLMs are so prone to fabrication and inconsistency may be because they
are optimised only to minimise loss, rather than maximise weakness [10]. Per-
haps grokking [26] can be induced by optimising for weakness. Future research
should investigate means by which weakness can be maximised in the context of
neural networks.

Acknowledgement. Appendices available on GitHub [1], supported by JST
(JPMJMS2033).
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Abstract. To make accurate inferences in an interactive setting, an
agent must not confuse passive observation of events with having inter-
vened to cause them. The do operator formalises interventions so that
we may reason about their effect. Yet there exist pareto optimal mathe-
matical formalisms of general intelligence in an interactive setting which,
presupposing no explicit representation of intervention, make maximally
accurate inferences. We examine one such formalism. We show that in
the absence of a do operator, an intervention can be represented by a
variable. We then argue that variables are abstractions, and that need
to explicitly represent interventions in advance arises only because we
presuppose these sorts of abstractions. The aforementioned formalism
avoids this and so, initial conditions permitting, representations of rele-
vant causal interventions will emerge through induction. These emergent
abstractions function as representations of one’s self and of any other
object, inasmuch as the interventions of those objects impact the satis-
faction of goals. We argue that this explains how one might reason about
one’s own identity and intent, those of others, of one’s own as perceived
by others and so on. In a narrow sense this describes what it is to be
aware, and is a mechanistic explanation of aspects of consciousness.

Keywords: causality · theory of mind · self aware AI · AGI

1 Introduction

An agent that interacts in the world cannot make accurate inferences unless it
distinguishes the passive observation of an event from it having intervened to
cause that event [2,3]. Say we had two variables R,C ∈ {true, false}, where:

C = true ↔ “Larry put on a raincoat” and R = true ↔ “It rained”

Assume we have seen it rain only when Larry had his raincoat on, and he has
only been seen in his raincoat during periods of rain. Based on these observations,
the conditional probability of it raining if Larry is wearing his raincoat is p(R =
true | C = true) = 1. A naive interpretation of this is that we can make it rain
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by forcing Larry to wear a raincoat, which is absurd. When we intervene to make
Larry wear a raincoat, the event that takes place is not “Larry put on a rain-
coat” but actually “Larry put on a raincoat because we forced him to”. It is not
that Bayesian probability is wrong, but interactivity complicates matters. By
intervening we are acting upon the system from the outside, to disconnect those
factors influencing the choice of clothing. The “do” operator [4,5] resolves this in
that do[C = true] represents the intervention. It allows us to express notions such
as p(R = true | do[C = true]) = p(R = true) �= p(R = true | C = true) = 1,
which is to say that intervening to force Larry to wear a raincoat has no effect
on the probability of rain, but passively observing Larry put on a raincoat still
indicates rain with probability 1. To paraphrase Judea Pearl, one variable causes
another if the latter listens for the former [2]. The variable R does not listen
to the C. C however does listen to R, meaning to identify cause and effect
imposes a hierarchy on one’s representation of the world (usually represented
with a directed acyclic graph). This suggests that, if accurate inductive infer-
ence is desired, we must presuppose something akin to the do operator. Yet
there exist pareto optimal mathematical formalisms of general intelligence in
an interactive setting which, given no explicit representation of intervention,
make maximally accurate inferences [1,6,7]. Given that the distinction between
observation and intervention is necessary to make accurate inductive inferences
in an interactive setting, this might seem to present us with a contradiction.
One cannot accurately infer an equivalent of the do operator if such a thing is
a necessary precondition of accurate inductive inference. We resolve this first
by showing that we can substitute an explicit do operator with variables rep-
resenting each intervention. Then, using one of the aforementioned formalisms,
we argue that need to explicitly represent intervention as a variable only arises
if we presuppose abstractions [8] like variables. If induction does not depend
upon abstractions as given, then abstractions representing interventions may
emerge through inductive inference. Beyond distinguishing passive observation
from the consequences of one’s own interventions, these emergent abstractions
can also distinguish between the interventions and observations of others. This
necessitates the construction of abstract identities and intents. We suggest this
is a mechanistic explanation of awareness, in a narrow sense of the term. By
narrow we mean functional, access, and phenomenal consciousness, and only if
the latter is defined as “first person functional consciousness” [9,10]; recognising
phenomenal content such as light, sound and movement with one’s body at the
centre of it all [11]. To limit scope, we do not address “the hard problem” [12].

2 Additional Background

This section introduces relevant background material. The reader may wish to
skip ahead to section 3 and refer here as needed. In recognition of the philo-
sophical nature of this topic we present arguments rather than mathematical
proofs, and the paper should be understandable without delving too deeply into
the math. While all relevant definitions are given here, context is provided by
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the papers in which these definitions originated, and in technical appendices
available on GitHub [1]. To those more familiar with the agent environment
paradigm, how exactly these definitions formalise cognition may seem unclear.
Neither agent nor environment are defined. This is because it is a formalism of
enactivism [13], which holds that cognition extends into and is enacted within
the environment. What then constitutes the agent is unclear. In light of this,
and in the absence of any need to define an agent absent an environment, why
preserve the distinction? Subsequently, the agent and environment are merged
to form a task [7], which may be understood as context specific manifestations of
intent, or snapshots of what bears some resemblance to “Being-in-the-world” as
described by Heidegger [14]. In simpler terms, this reduces cognition to a finite
set of decision problems [7]. One infers a model from past interactions, and then
makes a decision based upon that model (akin to a supervised learner fitting a
function to labelled data, then using that to generate labels for unlabelled data).
Arguments as to why only finite sets are relevant are given elsewhere [15, p. 2].

2.1 List of Definitions

Refer to the technical appendices [1] for further information regarding definitions.

Definition 1 (environment)

– We assume a set Φ whose elements we call states, one of which we single
out as the present state.

– A declarative program is a function f : Φ → {true, false}, and we write P
for the set of all declarative programs. By an objective truth about a state
φ, we mean a declarative program f such that f(φ) = true.

Definition 2 (implementable language)

– V = {V ⊂ P : V is finite} is a set whose elements we call vocabularies, one
of which1 we single out as the vocabulary v for an implementable language.

– Lv = {l ⊆ v : ∃φ ∈ Φ (∀p ∈ l : p(φ) = true)} is a set whose elements we
call statements. Lv follows from Φ and v. We call Lv an implementable
language.

– l ∈ Lv is true iff the present state is φ and ∀p ∈ l : p(φ) = true.
– The extension of a statement a ∈ Lv is Za = {b ∈ Lv : a ⊆ b}.
– The extension of a set of statements A ⊆ Lv is ZA =

⋃

a∈A

Za.

(Notation) Z with a subscript is the extension of the subscript2.

Definition 3. (v-task). For a chosen v, a task α is 〈Sα,Dα,Mα〉 where:

– Sα ⊂ Lv is a set whose elements we call situations of α.
1 The vocabulary v we single out represents the sensorimotor circuitry with which an

organism enacts cognition - their brain, body, local environment and so forth.
2 e.g. Zs is the extension of s.
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– Sα has the extension ZSα
, whose elements we call decisions of α.

– Dα = {z ∈ ZSα
: z is correct} is the set of all decisions which complete α.

– Mα = {l ∈ Lv : ZSα
∩ Zl = Dα} whose elements we call models of α.

Γv is the set of all tasks for our chosen v ∈ V.

(Notation) If ω ∈ Γv, then we will use subscript ω to signify parts of ω, meaning
one should assume ω = 〈Sω,Dω,Mω〉 even if that isn’t written.

(How a task is completed) Assume we’ve a v-task ω and a hypothesis h ∈ Lv s.t.

1. we are presented with a situation s ∈ Sω, and
2. we must select a decision z ∈ Zs ∩ Zh.
3. If z ∈ Dω, then z is correct and the task is complete. This occurs if h ∈ Mω.

Definition 4 (probability). We assume a uniform distribution over Γv.

Definition 5 (generalisation). A statement l generalises to α ∈ Γv iff l ∈
Mα. We say l generalises from α to v-task ω if we first obtain l from Mα and
then find it generalises to ω.

Definition 6 (child and parent). A v-task α is a child of v-task ω if Sα ⊂ Sω

and Dα ⊆ Dω. This is written as α � ω. If α � ω then ω is then a parent of α.

Definition 7 (weakness). The weakness of l ∈ Lv is |Zl|.
Definition 8 (induction). α and ω are v-tasks such that α � ω. Assume we
are given a proxy qv ∈ Q, the complete definition of α and the knowledge that
α � ω. We are not given the definition of ω. The process of induction would
proceed as follows:

1. Obtain a hypothesis by computing a model h ∈ arg max
m∈Mα

qv(m).

2. If h ∈ Mω, then we have generalised from α to ω.

2.2 Premises

For the purpose of argument we will adopt the following premises:

(prem. 1) To maximise the probability that induction generalises from α
to ω, it is necessary and sufficient to maximise weakness. [1]

For our argument this optimality is less important than the representation of
interventions it implies. In any case the utility of weakness as a proxy is not
limited to lossless representations or optimal performance. Approximation may
be achieved by selectively forgetting outliers3, a parallel to how selective amnesia
3 For example, were we trying to generalise from α to ω (where α � ω) and knew

the definition of α contained misleading errors, we might selectively forget outlying
decisions in α to create a child γ = 〈Sγ , Dγ , Mγ〉 (where γ � α) such that Mγ

contained far weaker hypotheses than Mα.
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[16] can help humans reduce the world to simple dichotomies [17] or confirm pre-
conceptions [18]. Likewise, a task expresses a threshold beyond which decisions
are “good enough” [19]. The proof of optimality merely establishes the upper
bound for generalisation. As a second premise, we shall require the emergence
or presupposition of representations of interventions:

(prem. 2) To make accurate inductive inferences in an interactive setting,
an agent must not confuse the passive observation of an event with having
intervened to cause that event. [2]

3 Emergent Causality

The formalism does not presuppose an operator representing intervention. Given
our premises, we must conclude from this that either that (prem. 1) is false,
or induction as in Definition 8 will distinguish passive observation of an event
from having intervened to cause that event.

3.1 The do Operator as a Variable in Disguise

In the introduction we discussed an example involving binary variables R (rain)
and C (raincoat). From p(R = true | C = true) = 1 we drew the absurd
conclusion that if we intervene to make C = true, we can make it rain. The true
relationship between R and C is explained by a directed acyclic graph:

C R

The intervention do[C = c] deletes an edge (because rain can have no effect on
the presence of a coat we’ve already forced Larry to wear) giving the following:

C R

By intervening in the system, we are acting upon it from the outside. In doing so
we disconnect those factors influencing the choice of clothing. The do operator
lets us express this external influence. However, if we don’t have a do operator
there remains another option. We propose representing an intervention with a
variable, so that we are no longer intervening in the system from outside. For
example do[C = true] might be represented by A such that p(C = true | A =
true) = 1 and p(C | A = false) = p(C):

A C R

We can now represent that p(R = true | C = true,A = true) = p(R = true) �=
p(R = true | C = true,A = false) = 1. This expands the system to include an
action by a specific actor, rather than accounting for interventions originating
outside the system (as the do operator does).
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3.2 Emergent Representation of Interventions

This does not entirely resolve our problem. Even if intervention is represented as
a variable, that variable must still be explicitly defined before accurate induction
can take place. It is an abstract notion which is presupposed. Variables are
undefined in the context of Definitions 1, 2 and 3 for this very reason. Variables
tend to be very abstract (for example, “number of chickens” may presuppose
both a concept of chicken and a decimal numeral system), and the purpose
(according to [7] and [19]) of the formalism is to construct such abstractions via
induction. It does so by formally defining reality (environment and cognition
within that) using as few assumptions as possible [1], in order to address symbol
grounding [8] and other problems associated with dualism. In this context, cause
and effect are statements as defined in Definition 2. Returning to the example
of Larry, instead of variables A,C and R we have a vocabulary v, and c, r ∈ Lv

which have a truth value in accordance with Definition 2:

c ↔ “Larry put on a raincoat” and r ↔ “It rained”

As before, assume we have concluded p(r | c) = 1 from passive observation,
the naive interpretation of which is that we can make it rain by forcing Larry
to wear a coat. However, the statement associated with this intervention is not
just c = “Larry put on a raincoat” but a third a ∈ L such that:

a ↔ “Larry put on a raincoat because we forced him to”

a c r

Because we’re now dealing with statements, and because statements are sets of
declarative programs which are inferred rather than given, we no longer need
to explicitly define interventions in advance. Statements in an implementable
language represent sensorimotor activity, and are formed via induction [1,7]. The
observation of c is part of the sensorimotor activity a, meaning c ⊆ a (if Larry is
not wearing his raincoat, then it also cannot be true that we are forcing him to
wear it). There is still no do operator, however i = a − c may be understood as
representing the identity of the party undertaking the intervention. If i �= ∅ then
it is at least possible to distinguish intervention from passive observation, in the
event that a and c are relevant (we still need explain under what circumstances
this is true). Whether intervention and observation are indistinguishable depends
upon the vocabulary V , the choice of which determines if i = ∅, or i �= ∅ (the
latter meaning that it is distinguishable). Thus interventions are represented,
but only to the extent that the vocabulary permits.

Definition 9 (intervention). If a is an intervention to force c, then c ⊆ a.
Intervention is distinguishable from observation only where c ⊂ a.
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3.3 When Will Induction Distinguish Intervention
From Observation?

From (prem. 1) we have that choosing the weakest model maximises the prob-
ability of generalisation. There are many combinations of parent and child task
for which generalisation from child to parent is only possible by selecting a model
that correctly distinguishes the effects of intervention from passive observation
(a trivial example might be a task informally defined as “predict the effect of
this intervention”). It follows that to maximise the probability of generalisation
in those circumstances the weakest model must distinguish between an interven-
tion a and what it forces, c, so long as (prem. 2) is satisfied as in Definition 9,
s.t. a �= c.

4 Awareness

We have described how an intervention a is represented as distinct from that
which it forces, c. Induction will form models representing this distinction in
tasks for which this aids completion. Now we go a step further. Earlier we dis-
cussed i = a − c as the identity of the party undertaking an intervention a. We
might define a weaker identity as k ⊂ i, which is subset of any number of differ-
ent interventions undertaken by a particular party. The do operator assumes the
party undertaking interventions is given, and so we might think of k above as
meaning “me”. However, there is no reason to restrict emergent representations
of intervention only to one’s self. For example there may exist Harvey, who also
intervenes to force c. It follows we may have v such that c ⊂ v, and v represents
our observation of Harvey’s intervention.

a

v

c r

If k ⊆ a − c can represent our identity as party undertaking interventions, it
follows that j ⊆ v−c may represent Harvey’s. Both identities are to some extent
context specific (another intervention may produce something other than j, or a
subset of j, for Harvey), but these emergent identities still exist as a measurable
quantity independent of the interventions with which they’re associated.

Definition 10 (identity). If a is an intervention to force c, then k ⊆ a − c
may function as an identity undertaking the intervention if k �= ∅.
One’s own identity is used to distinguish interventions from passive experiences
to facilitate accurate inductive inference in an interactive setting. It follows from
(prem. 1) that every object that has an impact upon one’s ability to complete
tasks must also have an identity4, because failing to account for the interventions
of these objects would result in worse performance.
4 Assuming interventions are distinguishable.
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4.1 Intent

The formalism we are discussing originated as a mechanistic explanation of the-
ory of mind called “The Mirror Symbol Hypothesis” [19], and of meaning in
virtue of intent [7] (similar to Grice’s foundational theory of meaning [20]). A
statement is a set of declarative programs, and can be used as a goal constraint
as is common in AI planning problems [21]. In the context of a task a model
expresses such a goal constraint, albeit integrated with how that goal is to be
satisfied [1,7]. If one is presented with several statements representing decisions,
and the situations in which they were made (a task according to Definition 3),
then the weakest statement with which one can derive the decisions from the
situations (a model) is arguably the intent those decisions served [7]. Thus, if
identity k experiences interventions undertaken by identity j, then k can infer
something of the intent of j by constructing a task definition and computing the
weakest models [7]. This is a mechanistic explanation of how it is possible that
one party may infer another’s intent. Assuming induction takes place according
to Definition 8, then it is also necessary to the extent that k affect’s j’s ability
to complete tasks. Otherwise, j’s models would not account for j’s interventions
and so performance would be negatively impacted. However, a few interventions
is not really much information to go on. Humans can construct elaborate ratio-
nales for behaviour given very little information, which suggests there is more
to the puzzle. The Mirror Symbol Hypothesis argues that we fill in the gaps by
projecting our own emergent symbols (either tasks or models, in this context)
representing overall, long term goals and understanding onto others in order to
construct a rationale for their immediate behaviour [7], in order to empathise.

4.2 How Might We Represent the Mirror Symbol Hypothesis?

Assume there exists a task Ω which describes every decision k might ever make
which meets some threshold of “good enough” [7,19] at a given point in time.

Definition 11 (higher and lower level statements). A statement c ∈ L is
higher level than a ∈ L if Za ⊂ Zc, which is written as a � c.

A model mΩ ∈ MΩ is k’s “highest level” intent or goal (given the threshold),
meaning ZΩ = DΩ . Using mΩ and k’s observation of decision d made in situation
s by j (the observation of which would also be a decision), k could construct a
lower level model mω � mΩ such that d ∈ Zs ∩ Zmω

. In other words, mω is a
rationale constructed by k to explain j’s intervention. Related work explores this
in more depth [7,19]. For our purposes it suffices to point out that in combining
emergent causality, identity, The Mirror Symbol Hypothesis [19] and symbol
emergence [7], we have a mechanistic explanation of the ability to reason about
one’s own identity and intent, and that of others, in terms of interventions.
Likewise the ability to predict how one’s own intent is modelled by another is also
of value in predicting that other’s behaviour. In tasks of the sort encountered by
living organisms, optimal performance would necessitate identity k constructing
a model of j’s model of k, and j′s model of k′s model of j and so on to the
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greatest extent permitted by v (the finite memory and any other limitations
one’s ability to represent predictions of predictions of predictions ad infinitum).

4.3 Consciousness

We have described a means by which an agent may be aware of itself, of others, of
the intent of others and of the ability of others to model its own intent. By aware,
we mean it has access to and will function according to this information (access
and functional consciousness, contextualising everything in terms of identities
and their intent). Boltuc argues that phenomenal consciousness (characterised
as first person functional consciousness) is explained by today’s machine learn-
ing systems [10]. We would suggest his argument extends to our formalism, and
in any case if qualia are a mechanistic phenomenon then they are already repre-
sented by the vocabulary of the implementable language. What is novel in our
formalism is not just that it points out that causal inference may construct iden-
tity and awareness, but that it does so with a formulation that also addresses
enactive cognition, symbol emergence and empathy [7,19].

Anthropomorphism: An implementation of what we have described would
construct an identity for anything and everything affecting its ability to complete
tasks - even inanimate objects like tools, or features of the environment. Intent
would be ascribed to those identities, to account for the effect those objects have
upon one’s ability to satisfy goals. Though this might seem a flaw, to do anything
else would negatively affect performance. Interestingly, this is consistent with
the human tendency [22] to anthropomorphise. We ascribe agency and intent to
inanimate objects such as tools, the sea, mountains, the sun, large populations
that share little in common, things that go bump in the night and so forth.

Fragmented Identities: It is also interesting to consider what this says of
systems which are less than optimal (do not identify the weakest hypothesis), or
which do not use a vocabulary which permits the construction of one identity
shared by all of the interventions it undertakes. Such a thing might construct
multiple unconnected identities for itself, and ascribe different intentions to each
one. Likewise if the model constructs multiple identities for what is in fact the
same object, it may hallucinate and hold contradictory beliefs about that object.

Acknowledgement. Appendices available on GitHub [1], supported by JST
(JPMJMS2033).
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Abstract. We introduce rudiments of the cognitive meta-architecture
M (majuscule of μ and pronounced accordingly), and of a formal proce-
dure for determining, with M as touchstone, whether a given cognitive
architecture Xi (from among a finite list 1 . . . k of modern contenders)
conforms to a minimal standard model of a human-level AGI mind. The
procedure, which for ease of exposition and economy in this short paper
is restricted to arithmetic cognition, requires of a candidate Xi, (1), a
true biconditional expressing that for any human-level agent a, a prop-
erty possessed by this agent, as expressed in a declarative mathematical
sentence s(a), holds if and only if a formula χi(a) in the formal machin-
ery/languages of Xi holds as well (a being an in-this-machinery coun-
terpart to natural-language name a). Given then that M is such that
s(a) iff μ(m), where the latter formula is in the formal language of M,
with m the agent modeled in M, a minimal standard modeling of an
AGI-level mind is certifiably achieved by Xi if, (2), it can be proved
that χi(a) iff μ(a). We conjecture herein that such confirmatory theo-
rems can be proved with respect to both cognitive architectures NARS
and SNePS, and have other cognitive architectures in our sights.

Keywords: standard modeling of AGI-level minds · cognitive
architectures · computational logic

1 Arithmetic as the Initial Target

Despite florid heraldry from Kissinger et al. [14] announcing an “intellectual
revolution” caused by the arrival of ChatGPT and its LLM cousins of today, we
know that AGI has not arrived. This is so because, as Arkoudas [3] has elegantly
pointed out in a comprehensive analysis, ChatGPT doesn’t know that 1 is not
greater than 1, and surely AGI subsumes command of elementary arithmetic on
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the natural numbers.1 We do not pick the domain of arithmetic here randomly.
Arithmetic, and more generally all or at least most of logico-mathematics, is
by our lights the only cross-cutting and non-negotiable space we can presently
turn to in order to at least be in position to judge whether some artificial agent
qualifies as having AGI versus merely AI. Given this, we turn first to arithmetic
cognition to enable us to share our formal procedure for using the cognitive meta-
architecture M as a touchstone for determining whether a candidate cognitive
architecture conforms to a minimal standard modeling of AGI-level minds.

2 The Formal Procedure, for Arithmetic Cognition

2.1 Peano Arithmetic to Anchor Arithmetic Cognition

To anchor arithmetic cognition as a proper part of mathematical cognition at
the human level, we resort herein to simple arithmetic with only addition and
multiplication. The particular axiom system we bring to bear is ‘Peano Arith-
metic,’ or just—to use the conventional label—PA. Unassuming as it may be, it
has a storied place in the history of logic and mathematics, serving as the basis
for such stunning results as Gödel’s incompleteness theorems.2 In particular, we
shall employ herein a simple theorem in PA, viz., � 2 + 2 = 4. In the general
form of our procedure, not merely arithmetic cognition, but all of mathematical
cognition reduced to formal logic by reverse mathematics will be in play, which
means that not just the likes of 2 + 2 = 4 but any statements provable from the
axioms i.e. PA� known to be sufficient for all of mathematics, as charted by the
definitive [24], will be fair game.

2.2 Definition of the Procedure

Let s(a) be a mathematical declarative sentence involving both a mathematically
cognizing agent a and a single purely arithmetic proposition believed by a. Such

1 This example is but the tip of an iceberg of negative knowledge in the realm of
mathematics for this and indeed all present and foreseeable LLMs, as Arkoudas
shows/explains. Note that Bubeck et al. [8] have made the figurative claim that
GPT-4 has—and we quote—“sparks of AGI.” We don’t know what this metaphorical
claim means mathematically (thus confessedly find little meaning in it), but clearly
by conversational implication these authors would themselves agree that while GPT-
4 is an AI, it’s an AGI. If x has sparks of being an R, then x isn’t an R—this is the
principle at the root of the implication here.

2 We shall not spend the considerable time that would be needed to list the (count-
ably infinite) axioms, and explain them. Readers can consult the elegant [9] for nice
coverage of PA (and illuminating commentary on this axiom system). There are the-
ories of arithmetic even simpler than PA, because PA includes an axiom relating to
mathematical induction, and the simpler systems leave this axiom aside. For exam-
ple, readers unfamiliar with mathematical induction can, if motivated, consult the
induction-free theory of arithmetic known as ‘Robinson Arithmetic,’ or sometimes
just as ‘Q;’ for elegant coverage, see [5].
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sentences typically draw from both natural language (e.g. English) and formal
languages. Here’s an example of such a sentence: “Gödel believed that first-order
logic is complete.” We know he believed this because his dissertation centered
around the landmark proof of this completeness. But this example is far too
complex for our present limited purposes. Accordingly, turning to PA, here’s a
much simpler example of a form that will guide us, put in the present tense:

“Gödel believes that 2 + 2 = 4.”

The general form is that some agent a is denoted, that agent has the epistemic
attitude of belief, and the target of that belief is a proposition, expressible in
PA, that 2 + 2 = 4. We shall denote the form this way: s(a), to indicate that
our sentence form must involve an agent a; we leave belief and the believed
proposition implicit.

Next, let ‘μ(m)’ be a formula in M, in a suitable formal language that logi-
cizes s(a). Minimally, this language will have an epistemic modal operator for
belief, and will be able to encode arithmetic propositions from natural language.
Therefore, the language will need to be a quantified modal one whose extensional
component is at least first-order logic. Now, the following is by inspection the
case with respect to μ:3

s(a) iff μ(m).

Next, let Xi be any cognitive architecture that aspires to enable standard mod-
eling (and simulation) of AGI-level minds. What is needed from this cognitive
architecture is, (1), the truth of this biconditional:

s(a) iff χi(c).

Standard modeling of an AGI-level mind, given the foregoing, is achieved by Xi

if, (2), it can be proved that4

χi(c) iff μ(m).

We conjecture that such confirmatory theorems can be proved with respect to
both cognitive architectures NARS and SNePS, to which, resp., we shortly turn.
But first we give a very quick overview of the nature of M itself.

3 The M Cognitive Meta-architecture: Key Attributes

M is not a new cognitive architecture intended and designed to compete with the
likes of Soar and ACT-R and so on as a platform to model and simulate human
3 The formula in the case of M itself is

μ(m) := (believes! m t (= (+ (s (s 0)) (s (s 0))) (s (s (s (s 0)))))),

where s is the successor function and 0 is primitive, but technical details regarding
M are outside of current scope.

4 The kernel of the procedure just described was first adumbrated in [4].
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and/or AGI cognition. There are innumerable competing architectures in play
today [15], all directly reflecting the particular predilections of their human cre-
ators and developers.5 M is for assessing and harmonizing these “particularist”
architectures at a meta level, and is marked by the following three distinguishing
attributes:

– Non-Partisan. M is not designed to advance any particular convictions about
the nature of cognition, and is in this regard unlike the typical cognitive
architecture. To mention just one example, certainly Soar was originally con-
ceived to commit to and build upon the conviction that a key part of human
cognition centers around condition-action rules. Many other examples of par-
ticularist convictions could be enumerated here for many competing cogni-
tive architectures. In stark contrast, M reflects the attitude that any partisan
advocacy militates against standardization; instead, the attitude is to move
as soon as possible to formalization using the discipline of formal logic. Of
course, no particular logic is to be locked into in any way as long as its
a quantified modal one whose extensional component is at least first-order
logic.

– Thoroughgoingly Formal: Axiomatic and Theorem-based. M is inseparably
aligned with a purely formal view of science and engineering, according
to which whatever phenomena is observed and to be deeply understood
and predicted should be axiomatized. The axiomatization of mathematics
is now mature (and is the initial focus in the application of M as touchstone
for whether a given cognitive architecture can minimally be used for stan-
dard modeling and simulation of AGI-level mind), and the axiomatization of
physics is now remarkably mature; consider for example that not only classi-
cal mechanics is long done [19], but special relativity is largely captured [2],
and advances are fast being made on general relativity and quantum mechan-
ics. M is based on the assumption that this level of high maturity should now
be applied to intelligence, so that matters can be theorem-based.

– Minimalist. Given all the resources formal science offers for capturing cogni-
tion, use of M is guided by a minimalist approach. The smaller and simpler
is the logical system that can be used to capture a target, the better.

4 Applying the Procedure

In this short paper, we cannot fully chronicle the application of our procedure
to candidate cognitive architectures. But we attempt to partially justify our
optimism that both the cognitive architectures NARS and SNePS will yield in
each case the needed theorem by virtue of which standard modeling is confirmed.

5 We conjecture that the set of all of these architectures is pairwise inconsistent, but
leave this disturbing prospect aside for subsequent investigation via M.
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4.1 Exploration of NARS

What is χi(a) for NARS? The sentence s(a) says that a believes 2 + 2 = 4 to be
a true statement, and we shall assume the counterpart to agent a is the NARS
agent n, and that the formula ν is the in-system counterpart to s. Next, we note
that instead of statements NARS has judgments: statements with associated
fuzzy truth-values, consisting of a frequency f ∈ [0, 1] that represents a degree
of belief in the underlying statement, and a confidence c ∈ [0, 1] representing
how stable the belief is (Definition 3.3 in [25]). For our target of eventually
demonstrating ν(n) iff μ(m) it will suffice6 that we define ν(n) as the statement
“The NARS agent n believes the judgment 2 + 2 = 4 with a frequency of 1
(there is only positive evidence for the statement).” Formalizing this further,
a NARS agent is said to believe a judgment iff it is either an experience, a
judgment provided to the system directly, or a statement that can be derived
from experiences (Definition 3.7 in [25]). Thus ν(n) for a NARS agent n is true by
providing 2+2 = 4 as a standalone experience (in our case perhaps provided by
the theoretical perception system outlined in [26]).7 Finally, the representation
of the actual statement 2 + 2 = 4 can be accomplished in a number of ways,
as NARS supports the representation of relational terms that can represent
arbitrary n-ary relations between terms that represent objects. One example of
this representation in Narsese is < (∗ 2 2 4) → add > where add is a term
representing a relation between two summands and a sum.

Having defined ν(n), we can turn to a proof sketch for ν(n) iff μ(m). There
are multiple approaches to this proof, one particularly formal variant would be
expressing NAL in one of our cognitive calculi—a specialized type of logical
system for Theory-of-Mind reasoning8—in a higher-order logic and proving a
bridge theorem.

Instead for economy we opt for an intuitive proof based on theoretical ide-
alized perception systems for NARS and M. For the forward direction of bicon-
ditional proof we assume ν(n). By our above definition, ν(n) iff the agent n
experiences 2 + 2 = 4 or has experiences that deductively9 lead to the con-
6 We hold that confidence is irrelevant here as it is a temporal property which only

impacts how likely the system is to change its mind, which has use for nonmonotonic
reasoning but is irrelevant to our current deduction-only explorations.

7 Additionally we could proceed by providing any number of experiences that allow
the system to derive 2 + 2 = 4 as long as they allow the system to derive 2 + 2 =
4 with frequency 1.

8 Cognitive calculi build off of the notion of traditional logical systems, which consist of
a formal language L , a set of inference schemata I , and a formal semantics S . The
most notable distinguishing factors of cognitive calculi are (1) they contain modal
operators for mental states, e.g., perception, belief, obligation; and (2) they contain
no model-based semantics; instead the semantics of formulae are purely inference-
theoretic. That is, the semantics are expressed exclusively through the inference
schemata I . For a longer exposition of exactly what a cognitive calculus is and
isn’t, we refer the interested reader to Appendix A of Bringsjord et al. [7].

9 Abductive and inductive reasoning in NARS have the resulting frequency of the
conclusion depend on confidence values influenced by a system parameter; as this can



The M Cognitive Meta-architecture 67

clusion 2 + 2 = 4 with frequency 1 in n. Under idealized perception, this
implies the existence of external representations of either s that 2 + 2 = 4,
or a set of statements S that imply s. The existence of these external rep-
resentations means that an M agent m under idealized perception would also
perceive s, P(m, ·, s) or perceive the set of S,

∧
e∈S P(m, ·, e). Since many stan-

dard cognitive calculi have inference schemata allowing perceived statements
to become believed statements, and others allowing propositional reason-
ing on beliefs, in the first case P(m, ·, s) → B(m, ·, s), and in the
second

∧
e∈S P(m, ·, e) → ∧

e∈S B(m, ·, e) → B(m, ·, s) which is the defi-
nition of μ(m). For the backward direction of the biconditional proof,
we assume μ(m) to derive ν(n) using the same argument outlined for
the forward direction.

We thus claim that ν(n) iff μ(m), which confirms that NARS conforms to a
minimal standard modeling of AGI-level minds.

4.2 Exploration of SNePS and GLAIR

SNePS is a KRR system, ultimately in fact a logic [22], that can be used as either
a standalone system or inside others; GLAIR is a cognitive architecture designed
by SNePS scientists that uses SNePS for KRR [23]. As γ(g) for GLAIR (or any
agent using SNePS for KRR) depends solely on representation within SNePS at
the knowledge layer of a GLAIR agent [23], we generalize and refer to γ(g) for
any arbitrary agent having SNePS under its hood, henceforth referred to simply
as SNePS agents. Any statement within a SNePS system is said to be believed by
the system. Figure 1 shows a representation of the statement 2+2 = 4 in SNePS
as a network. [11] makes a distinction between a SNePS agent understanding
that 2 + 2 = 4 as declarative knowledge versus understanding what 2 + 2 = 4
means as semantic knowledge. In this language, γ(g) can be interpreted purely in

Fig. 1. A SNePS agent’s belief that 2 + 2 = 4. where m2 is the functional term
representing a resultant Sum, from n2 twice; m1 is the proposition that m2 evaluates
to n4; and m3 is the proposition that m2 has a value. (Adapted from Fig. 4.1 in [11]).

be arbitrary, this will not guarantee the preservation of frequency of 1 for conclusions
using these modes of reasoning; thus only deductive reasoning applies here.
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the sense of the representation of the declarative knowledge and is thus satisfied
by the representation in Fig. 1.

We claim that s(a) iff γ(g) is true by construction. Unfortunately, given cur-
rent space constraints, γ(g) iff μ(m) is non-trivial. Since M has a purely infer-
ential semantics, and since SNePS allows inferences to be systematically carried
out, we prove an inference-theoretic interpretation of the biconditional by show-
ing that given some context in which μ(m) is deduced (in the fashion of [6]),
γ(g) can be the conclusion of valid reasoning in SNePS that uses a counterpart
of this context. The left-to-right direction follows the same strategy. We thus
assert that SNePS too conforms to a minimal standard modeling of AGI-level
minds.

5 Related Work

Commendably, Laird et al. [16] launched a search for a standard model of the
human mind. But their approach and ours are starkly divergent. We have no
particular interest in the human mind or its embodiment in the form of earthly
brains, which we regard to be adventitious relative to AGI at the human level
and above. Nonetheless, realistically, at least philosophically speaking, there will
be in the minds of some AI theorists overlap between the Lairdian approach
and the approach we introduce herein, so we point out a second divergence:
Their approach is informal, while ours is formal, i.e. theorem-driven. For good
measure, a third aspect of divergence is found in the fact that while we regard
the “best bet” for commonality of AGIs to be found in the arena of logic and
mathematics, cognition in this area is regarded by Laird et al. to be cognitively
recherché, which is borne out holistically by the absence of any discussion what-
soever of logico-mathematical cognition in [16], and more specifically by the fact
that their proposed “standard model” constraints have nothing whatsoever to
do with reasoning, and instead consist of the four pillars of “perception/motor”,
“learning,” “memory and content,” and “processing.” Reasoning, including rea-
soning in connection with logico-mathematical cognition over content in formal
languages, would only perhaps arise in conception in secondary, epiphenomenal
fashion under the roof held up by their quartet of pillars.

We suspect some readers will think that knowledge graphs and description
logics are related to our proposed procedure with M. However, care must be
taken when considering this kind of work.

In practice, most knowledge-graph systems can be represented by a decid-
able description logic10 (e.g. by ALC, or SHOIN , which are standards for most
knowledge graphs), but such logics cannot capture PA, and they cannot cap-
ture epistemic attitudes about theorems of this axiom system. The reason is
that description logics are proper fragments of first-order logic (FOL), and thus
cannot express PA, which requires full FOL and is by Church’s Theorem unde-
cidable. Formalizing mathematics is known to require at a minimum third-order
10 Some description logics have been discovered to be undecidable [20,21]. However,

the core focus in the description logic community is on finding decidable fragments.
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logic (M’s cognitive calculi include quantified modal third-order logic) [24]. What
thus may seem to be work related to ours is in the case of knowledge graphs and
description logic actually not. However, our procedure can easily handle weaker,
decidable theories of arithmetic, such as Presburger Arithmetic, and as a matter
of fact the particular sentence s(a)’s component ‘2 + 2 = 4’ is a valid statement
in both Peano and Presburger Arithmetic.

6 Objections

We anticipate many objections to our new approach. We rapidly encapsulate
under current space constraints two, and briefly reply to each.

6.1 “But What About Purely Numerical Approaches to AGI?”

It will be said against us: “There are approaches to rigorously capturing general
intelligence at the human level and above that make no reference to the axiom-
atized declarative content of PA, let alone to the additional axiom systems to
which you implicitly refer when invoking reverse mathematics for your standard-
ization program (e.g. see [13]). Your approach is hence idiosyncratic at best, and
tendentious at worst.”

In reply, the key question is what those aiming at securing AGI via approaches
that exclude the standardization we advocate will settle for when an artificial
agent is challenged to demonstrate the power and accuracy of its mathematical
cognition. Suppose that some artificial agent purportedly not only believes that
2 + 2 = 4, but purportedly has command over PA overall. The key question,
then, when narrowed, is: Would purely external behavior of the right sort be
sufficient, or must there be some underlying structures and content associated
with the behavior that enable proving a connection to formulae like μ? Large
Language Models (LLMs), for example, provide an excellent context for asking
this question. Suppose an LLM agent known colloquially by the name ‘Larry,’
based purely on deep learning, and thus completely bereft of any formulae that
encode members of PA� (the closure under deduction of PA), is able to gener-
ate not only all sorts of sentences like the sentence s from above, but also more
complicated ones, because saying any number-theoretic theorem is possible for
this LLM. Let s′(Larry) be “I believe that every cubic number is the sum of n
consecutive odd numbers,” where the indirect indexical refers to ‘Larry.’ And
suppose that many, many other sentences are generated by Larry on this topic,
where this generation is syntactically flawless, but is by definition based exclu-
sively on underlying numerical data processing. Under this supposition, proving
a bridging biconditional that links from the LLM Larry to formulae in M is
impossible. This is an empirical fact.

We see this as most unfortunate, for the simple reason that science explains
by virtue of finding formal theory that explains observed phenomena; physics is
the paradigmatic case in point. In the case of the LLM that is ChatGPT, the
empirical fact that deep formal science of the type that has always been the
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“golden goal” of science is completely excluded as it is in the case of Larry, has
been noted recently by Wolfram [28]. Hence, the blockage by the impenetrable
nature of LLMs for our M-based procedure is just something we must accept,
with all of rigorous science.

6.2 “Math is Merely Manufactured”

The objection against us here can be summarized thus: “Using mathematical
cognition as the cornerstone of a test for standard modeling and simulation of
AGI-level minds bestows upon such cognition a kind of ‘ground-truth’ status.
But mathematics is essentially a symbol-manipulation game legislated by human
beings, as explained in [17].”

As all or at least most readers will know, while the view espoused in this
objection has been defended by serious scholars (e.g. [17]), this is by no means
a consensus view. There are many well-known problems that afflict the view,
for instance the apparent fact that math stunningly corresponds to the behavior
of the natural world [27], while formal logic has a parallel relationship with
computation [12]. Yet our position, in keeping with the non-partisan nature of
M itself, is to leave such debates to the side, in favor of simply observing that at
the very least, going with mathematical cognition as a starting place for trying
to establish a plumb-line standard modeling of AGI-level minds is rational, since
if any part of cognition is likely to span minds in general it is mathematical
cognition—rather than perception, motor control, natural language usage, etc.

7 Conclusion and Next Steps

Immediate next steps include delivering full proofs of our conjectures with
respect to the NARS and SNePS, and expanding our procedure to include cogni-
tive architectures beyond these two cognitive architectures. Two obvious targets
are Soar and ACT-R, the latter of which promises to qualify as standard by our
metrics in no small part because ACT-R has already been considered from the
standpoint of formal logic (at least at the level of first-order logic; see [1,10]).
We don’t know what will happen in the case of Soar.11

11 Some readers of earlier drafts of the present paper have asked us whether our pro-
cedure can be applied not just to cognitive architectures, but to artificial agents in
general—for instance to the LLM agents in today’s headlines. This question, alas,
is at once tricky and straightforward. If the question is about pure LLMs, the ques-
tion is straightforward, and easily answered in the negative, since cognitive attitudes
directed at declarative content qua declarative content within the theory of elemen-
tary arithmetic (the full closure of PA under standard first-order deduction) cannot
exist in such a system, which operates exclusively over data derived by tokenizing
and vectorizing etc. away from quantifier-rich formula. Things become tricky when
one sees that LLMs are increasingly getting “glued” to outside intelligent systems
that have been engineered to handle logic-based data and to reason in accordance
with inference schemata that have since Aristotle been devised for processing such
data.
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A significant challenge awaits us when our procedure is expanded beyond
mathematical cognition into other parts of AGI-level cognition. We must be able
to draw from logic-based machinery to for example formalize communication
so that our key biconditionals can go through in this realm. The most severe
challenge to our procedure will arise, we believe, in the case of robust attention
and perception, and, having devoted time to considering perception in connection
with NARS (as seen above), we are studying the attention/perception-centric
cognitive architecture ARCADIA [18] now from a formal point of view.
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Abstract. A system deployed in the real world will need to handle
uncertainty in its observations and interventions. For this, we present
an approach to introduce uncertainty of state variables in causal rea-
soning using a constructivist AI architecture. Open questions of how
noisy data can be handled and intervention uncertainty can be repre-
sented in a causal reasoning system will be addressed. In addition, we
will show how handling uncertainty can improve a system’s planning and
attention mechanisms. We present the reasoning process of the system,
including reasoning over uncertainty, in the form of a feed-forward algo-
rithm, highlighting how noisy data and beliefs of states can be included
in the process of causal reasoning.

Keywords: General Machine Intelligence · Reasoning · Uncertainty

1 Introduction

A major challenge in artificial intelligence (AI) research is the development of
systems that can be deployed in the real world and can autonomously adapt
to changing circumstances. Additionally, human designers want these systems
to be able to generate explanations about why certain interactions were chosen
and how the expected state transitions lead to the goal. While deep learning has
shown massive advances in the field of data processing and identification of corre-
lated data points, it still lacked to produce a system that is able to adapt to novel
circumstances and generate satisfactory explanations [1,2,9]. Reasoning systems,
on the other hand, show promising results in both adaptation and explanation
generation but often lack the ability to reason over noisy and erroneous data,
making deployment in the real world practically impossible, especially when it
comes to low-level sensor and actuator precision.

This handling of uncertainty is at the center of research in the field of prob-
abilistic robotics. Under the assumption of sufficiently described mathemati-
cal models of the system under control, probabilistic approaches to uncertainty
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descriptions are used to handle sensor noise and actuator imprecision. The causal
reasoning architecture AERA (Autocatalytic Endogenous Reflective Architec-
ture), on the other hand, is designed to extract mathematical models of the
environment and the system under control through observation and interven-
tion. By fusing the two approaches, we present a way to overcome limitations in
both fields. Learning the transition functions overcomes the necessity to model
all dynamics in advance as is done in probabilistic robotics. On the other hand,
the limitation to deterministic data streams is lifted from the reasoning system.

Purely probabilistic approaches as used in many Bayesian adaptive methods
do not suffice for operation in ever-changing environments, as changes in the
distributions of state transitions represented by the probabilistic modeling of the
environment can lead to incorrect outcome predictions and erroneous decision
making. Instead, we overcome this covariate shift problem [6] by building on
hypothesized cause-effect patterns representing invariant world mechanisms.

To address the uncertainty of the in- and output streams, a knowledge repre-
sentation is needed to enable deductive and abductive reasoning over uncertainty
distributions without losing the inspectability of the reasoning processes. Using
causal models to describe the state transition itself, we accompany causal models
with new probabilistic models that describe the belief propagation under cause-
effect structures. Our framework enables reasoning systems to support noisy
data streams in both in- and output. Further, we show how such a probabilistic
representation can help in describing variables to which the system needs to pay
close attention and which do not need to be monitored as closely.

The paper is structured as follows: In the next section, we present related
work, focusing on reasoning systems and the transferred principles from proba-
bilistic robotics. In Sect. 3, we present the applied methodology, including a more
in-depth analysis of the model structures used in AERA, assumptions that were
taken for this work, and the novel approach of including probabilistic models
in the reasoning process. Section 4 provides a (simplified) algorithm describing
how abductive and deductive reasoning is done. Lastly, in Sect. 5, we discuss our
approach in context and how the approach can produce a robust implementation
of causal reasoning over probabilistic uncertainty.

2 Related Work

The Autocatalytic Endogenous Reflective Architecture (AERA) [5] follows the
constructivist approach to AI, meaning that the system’s knowledge base is self-
constructing through experiences [7,8]. All knowledge in AERA is non-axiomatic
and can be disproven at any point during its lifetime. The reasoning is done on
causal models, each representing simple, linearized changes in the environment
[7,8]. Coming from the cybernetics side, AERA is designed such that direct
control of low-level variables is within its capabilities. Being able to extract
linear equation systems from its environment by applying pattern matching on
observations and interventions provides valuable functionality for AERA to be
used in robotics applications.
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Other reasoning systems exist that include falsifiability of their knowledge
base, leading to probabilistic and non-axiomatic approaches. One example of this
is the Non-Axiomatic Reasoning System (NARS) [11,12]. NARS works under the
assumption of insufficient knowledge and resources (AIKR) and is able to reason
about non-axiomatic truth statements which can be disproven at any time. Thus,
the reasoning process includes the uncertainty of truths. Approaches like the
Open-NARS-for-Applications (ONA) [4] provide a framework that can be used
in some robotics applications. Another approach to represent uncertainty in the
reasoning process are Probabilistic Logic Networks (PLNs) [3]. The first devel-
opment of PLNs was influenced by NARS but has been extended and nowadays
differs from the NARS logic considerably. Based on term logic for inference, PLNs
can be used to apply logic operators on probabilistic descriptions of truth values
and infer rules through de-, ab-, and inductive reasoning [3]. These approaches,
however, do not include probabilistic reasoning over the belief of environment
states. Instead, they are more similar to fuzzy logic systems in their description
of the uncertainty of the truth of statements.

A major problem is posed by the noisiness and uncertainty of sensors and
actuators. No clear, deterministic information exists for the system to reason
about. Instead, it is necessary to model the uncertainty of data used in the
reasoning process. Probabilistic robotics provides a framework for how to model
this uncertainty using Bayesian inference [10]. Uncertainty can be described,
propagated, and updated by applying Bayesian statistics and filter methods. For
this, the designers of the system define the state-transition functions in advance,
which will be applied during run-time. These functions are used to predict new
states and observations. Additionally, the uncertainty of these predictions can
be calculated as well and updated as new observations come in [10].

In probabilistic robotics, all state-transition functions must be implemented
by the designer. We, on the other hand, aim to use Bayesian inference while
applying learned causal models. Prediction of future changes to the environment
thus becomes a chaining of different transition functions learned by the system,
including the prediction of uncertainty.

3 Methodology

In the following, we provide a deeper insight into the methodology of causal
reasoning applied in the AERA architecture and OpenAERA in particular before
introducing the novel methodology of including probabilistic uncertainty into the
reasoning process.

3.1 Autocatalytic Endogenous Reflective Architecture - AERA

Each process observed by OpenAERA is modeled by generating multiple mod-
els1. These models can be classified as (anti-) requirement models and causal

1 See https://openaera.org – accessed Apr. 6, 2023.

https://openaera.org
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models, which include command models, and reuse models. Independent of their
type, each causal model represents a left-hand-side (LHS) pattern, a right-hand-
side (RHS) pattern, a function that maps LHS to RHS, a function that maps
RHS on LHS, and a time interval for which the model holds.

Requirement models describe the constraints under which any causal
model (either command or reuse model) is applicable. It gives context to the rea-
soning system by providing a way that connects observations (or predictions) on
the LHS with the instantiation of a causal model on the RHS. This way, the size
of the search problem of identifying suitable causal models can be reduced. Anti-
requirement models, on the other hand, represent conditions under which a
causal model does not hold. They represent strong requirements and describe
hard constraints on the task-environment.

Command models are used to model the direct influence on the environ-
ment of executed commands. The LHS of command models is always a command
available to the system. The RHS is the change of the environment if the com-
mand is executed. Two functions are included in the model. One function is used
for forward chaining; it is used to calculate the RHS given the control input and
variables passed from the requirement model. The other function is used for
backward chaining, representing the inverse of the forward chaining function.
For example, a move command which changes the position of OpenAERA in the
environment consists of 1) the move command and the associated control input
on the LHS, 2) the new position after execution on the RHS, 3) a function that
calculates the new position given the old position and the control input, and 4)
the inverse of the first function, which can be used to calculate the control input
given the current position and the goal position.

Reuse models are used to model similar transitions without an intercon-
nection of state variables. As each model is supposed to model only a very
small number of variables to make a reflection on said models possible, reuse
models are used to model more complex behaviors. Reuse models have their
own requirement models such that complex constraints on complex environment
state transitions can be modeled by matching LHS patterns rather than creating
massive models responsible for a multitude of calculations. Such a reuse model
could, for example, be used to model the changes in an object’s state that Ope-
nAERA is holding when a move command is executed. Instead of generating
a single model representing the full state change of the system and the object
moving simultaneously the same distance, two models are used. The move com-
mand model, as previously shown, and a reuse model with its own requirement
model.

These models are used to create chains of possible state transitions from the
goal to the current state (backward) and from the current state to the goal
(forward). OpenAERA is thus able to reason about possible paths to reach
the goal by using causal models to represent predicted state changes in the
environment.
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3.2 Background Assumptions

The following are assumptions underlying the present approach.

1. Linearity: One of the underlying architectural concepts of OpenAERA is the
step-wise linearization of observed transition functions. Therefore, we assume
linearity in all causal models and their uncertainty propagation.

2. Continuity of variables: All variables under investigation are assumed con-
tinuous in the state space. Reasoning over error-prone non-continuous vari-
ables is not part of this work. Other approaches to non-axiomatic reasoning
exist for this matter, including other pattern matching and function approx-
imations within OpenAERA.

3. Normal distribution: For the sake of simplification, we assume a Gaussian
distribution of the measurement and actuator uncertainty. This assumption
can be overcome by applying other means to predict uncertainty.

4. Observation of state variables: All variables are directly measurable.

3.3 Modeling of Probabilistic Uncertainty

Any artificial general intelligence (AGI) aspiring system must adapt to novel
circumstances to reach a goal/ fulfill a drive under the assumption of insufficient
knowledge and resources (AIKR) [12]. This means that it needs to autonomously
adapt its resource consumption by paying attention to import variables of the
task-environment that could influence the reaching of the goal. This includes
paying attention to variables/phenomenons that inflict disturbances on the con-
trol problem of transforming the current state to the goal state.

By applying well-known principles from probabilistic robotics, a new model
type in OpenAERA will allow it to predict errors in state transitions coming
from sensor and actuator imprecision. Its existing attention algorithms are then
extended to take into account variables prone to diverge from desired values
due to imprecise interventions on the environment. By estimating the posteriori
belief of each subsequent state that should be reached during task performance,
matching posteriori with a-priori beliefs, and calculating possible overlaps, the
system can predict plan divergences. Preemptive measures can then be taken by
constraining the control input to achieve intermediate states with a low proba-
bility of divergence from the original plan. Probabilistic models work as follows:
If, in forward chaining, any causal model represents a noiseless linear function

xk = Fxk−1 + Cuk−1 (1)

with x being the n-dimensional state vector consisting of values of the set of
variables V = {v1, v2, ..., vn}, C the control matrix and uk−1 the control input.

The accompanying probabilistic model represents the propagation of uncer-
tainty if the model is applied:

Pk = FPk−1FT + CPcontrolCT + Qk (2)
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with the a priori belief Pk−1 of the state x, the posteriori belief Pk, the noise
distribution of the command Pcontrol and the process noise Qk−1.

These models are attached to all causal models. The current belief Pk−1 is
dependent on the source of the input. At the beginning of the reasoning chain,
Pk−1 represents the noise of the sensor whose observation led to the instantiation
of the model. If the input data comes from a prediction, on the other hand, Pk−1

represents the uncertainty of this prediction. Thus, models instantiated further
down the chain produce a higher uncertainty in their predictions.

As all causal models in OpenAERA can be used for forward and backward
chaining, the same must hold for probabilistic models. Given the fact that the
modeled function can be used in both directions, it is implicit that an inverse of
the function exists. Each causal model includes a noiseless backward function

xk−1 = Bxk − Cuk−1 (3)

with B representing the inverse function of F (F−1 in most cases). The backward
propagation for any probabilistic model therefore becomes

Pk−1 = BPkBT − CPcontrolCT − Qk (4)

This means that the maximum uncertainty of a goal-leading state can be
calculated, providing information about the necessary precision of interventions.

Process noise provides another opportunity to optimize causal reasoning
systems using uncertainty. While there exists a trade-off in most robotics appli-
cations when choosing the process noise, it can be useful when applied in a
learning system. When, for example, looking at Kalman Filters, it is important
for the designers to choose an appropriate process noise. Too low process noise
can lead to the filter ignoring rapid deviations from the expected outcome, and
too high process noise makes the filter too sensitive to noisy environments.

In the case of OpenAERA, we can assume low process noise and see devia-
tions from the expected outcome as faulty causal models. Expected and observed
outcomes should only diverge rapidly if the instantiated model does not reflect
the dynamics of the observed system. This information can be used to generate
new hypotheses about the true dynamics, leading to new models that describe
the system better. We, therefore, neglect the estimation of process noise in this
work and will extend it to include the identification of described changes to
causal models in the future.

4 Reasoning Algorithm

In the following section, we give a deeper insight into the reasoning algorithm
used in OpenAERA and show how uncertainty propagation can be included.
We focus on the forward and backward chaining processes used in the planning
of control sequences leading to the goal. Backward chaining (abductive reason-
ing) is used to constrain the search space to relevant models. Forward chaining
(deductive reasoning) produces an executable series of commands, representing
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a plan of interventions to reach the goal state g. Both backward and forward
chaining - excluding the uncertainty propagation - is already implemented in
OpenAERA.

Input:

– Current set of observed variables Vobservable at time t0 and their values
describing the state x0 and their uncertainty P0.

– A goal described as a sub-state of all observable variables such that Vgoal ⊆
Vobservable with a certain value assigned to them at a certain time tg such
that xtg = g with a maximum uncertainty Ptg = Pg

– The set of requirement and anti-requirement models Mreq, as well as the set
of causal command and reuse models Mcausal known by the system.

– The set of probabilistic models Mprob which accompany the causal models.

Backward chaining is the depth-first search of possible paths from the goal to
the current state using causal models and their requirements. Backward chaining
goes back through time, starting at the time at which the goal is supposed to
be reached tg and stepping backward until the current time t0 is reached.

1. Create a new, empty set of goal requirements Greq to be filled.
2. Create a new, empty set of currently instantiable causal models Mcausal,t0

3. For each requirement model mreq ∈ Mreq:
– If mreq can be instantiated with the current set of observations - i.e.,

all left-hand-side (LHS) variables can be bound to currently observable
variables and fulfill all conditions of mreq:
Add the instantiation of the causal model on the right-hand-side (RHS)
of mreq to the set of currently instantiable causal models Mcausal,t0

4. Identify all causal models whose set of right-hand-side variables VRHS over-
laps that of the set of goal variables Vgoal such that VRHS ∩ Vgoal �= ∅ and
create a set from the identified model M ′

causal with M ′
causal ⊆ Mcausal.

5. For each model mcausal ∈ M ′
causal:

(a) If mcausal ∈ Mcausal,t0 :
Continue loop.

(b) Bind all variables of mcausal and its accompanying probabilistic model
mprob ∈ Mprob that are part of g to the value of that variable in g. Leave
other variables unbound to be filled during forward chaining.

(c) Make the instantiation of mcausal under mprob with the bound variables
a goal requirement greq and add it to Greq.

(d) Identify all requirement models which have the instantiation of mcausal

on their RHS, creating a subset M ′
req ⊆ Mreq.

(e) For each requirement model mreq ∈ M ′
req:

i. Make instantiating the LHS of mreq a sub-goal gsub with the uncer-
tainty of the accompanying probabilistic model mprob as Pgsub

.
ii. Set G to gsub and start recursion from 4.

6. Return the set of bounded goal requirements Greq.
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Forward chaining provides the deductive reasoning process in which a series
of commands is identified that leads to the fulfillment of the goal requirements
generated during backward chaining. Forward chaining starts at time t0 (”now”)
and moves forward through time, generating predictions of outcomes of causal
models.

1. Create a new, empty set of control vectors U to be executed during the task
performance, which will be filled during forward chaining.

2. Set the current set of observations as the input I to the system.
3. Create a new set of models M ′

req of all requirement models that can be instan-
tiated with I by identifying all models whose LHS variable values’ likelihood
given the observations’ uncertainty in I is higher than a threshold.

4. For each requirement model mreq ∈ M ′
req:

1. Check if the instantiation of the RHS causal model mcausal of mreq

matches one of the goal requirements identified in backward chaining.
2. If mcausal ∈ Greq:

1. Use the backward function of mcausal to calculate the control input
necessary to transition the state from the LHS to the desired RHS
by binding all variables of the LHS (xk−1) to the values in I and the
variables of the RHS (xk) to the values of the goal requirement:
Cuk−1 = Bxk − xk−1

2. If mcausal can be instantiated given I and the control input:
1. Apply the forward function of mcausal to generate a prediction of

the state change:
xk = Fxk−1 + Cuk−1

2. Apply the forward function of the accompanying probabilistic
model to calculate an expected uncertainty after the state change:
Pk = FPk−1FT + CPcontrolCT + Qk

3. Check whether the uncertainty of goal-related variables in the
calculated Pk is smaller than the maximum uncertainty defined
in the goal requirement Pg,req.

4. If the expected uncertainty is larger:
Plan intermediate observations by reducing the magnitude and
duration of uk−1 thus reducing the actuator noise described by
CPcontrolCT and allowing for more observations during command
execution.

5. Set the RHS of mcausal as a new predicted observation in I.
6. Add the control uk−1 to U .

5. Return U .

The generated plan thus consists of a set of commands U , each assigned to a cer-
tain time period and given a set of input variables that must match observations
at this time to perform the control with the expected outcome.

Anti-requirement Models: A special focus must be put on anti-requirement
models during the reasoning process. Anti-requirement models constrain the
solution space of the task by describing states under which a causal model may
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not be applied. (The evaluation of anti-requirement models was left out in the
previous description of the algorithm for readability.) Anti-requirement mod-
els play a role in both backward and forward chaining: In backward chaining,
when identifying relevant requirement models (step 5d), anti-requirement mod-
els are identified as well, and a goal requirement to not instantiate the LHS of
the anti-requirement model is generated. In forward chaining, these anti-goal-
requirements are in turn evaluated. If instantiating a causal model produces
variables that are part of an anti-requirement, the likelihood of the instantiation
of the anti-requirement model, given the produced uncertainty of the predic-
tion, is calculated. If this likelihood is over a given threshold, there are three
options: (1) The system can choose an alternative path, if available; (2) The
magnitude and duration of control inputs can be reduced to minimize the prob-
ability of instantiating the anti-requirement model; or (3) abort the current plan
and redo the abductive backward chaining process with the assumption that the
model chain in question will not lead to the goal.

Fig. 1. Task of moving along a constraint space. Left: Visualization of the task with
initial state at time t0, goal state at time t3. Red areas: forbidden areas where the
system may not move; white circles: initial position at time t0 and after applying
the models Mx at time t0 and My at time t1; red circles: examples of failures of the
task if the action of Mx is executed imprecisely. Right: Causal models Mx and My

and their accompanying probabilistic models Mprob,x and Mprob,y, respectively. (Color
figure online)

Figure 1 shows a very simplistic task of moving along a constrained space
(e.g., a robot moving in a constraint work area). As can be seen, the imprecision
of executing model Mx can lead to task failure. The system can identify this
during forward chaining, decrease the time during which the command of Mx

is executed and thus reduce the impact of actuator imprecision. Executing the
command repeatedly with intermediate observations to adjust the duration of
the next command can overcome possible failure states.
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5 Discussion and Future Work

We have presented a new approach that extends causal reasoning to address
erroneous noisy data in the input and output stream of a controller, and shown
how this is to be implemented in OpenAERA. The resulting reasoning process
can better predict possible outcomes of planned interventions to adjust its plans.

The limitation to normal-distributed data can be lifted by changing the
uncertainty estimation and propagation process. For example, by using neu-
ral networks to estimate the probability distributions given observations and
interventions. However, it remains future work how the full reflectability and
explainability of AERA in such approaches.

Aside from the application to noisy data, this approach can further be
extended to use divergences between predictions and actual observations to
enhance the causal discovery process. Detected outliers imply erroneous causal
models, which can be corrected through self-reflection mechanisms in AERA.
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8. Thórisson, K.R.: Machines with autonomy & general intelligence: which methodol-
ogy? In: Proceedings of the Workshop on Architectures for Generality and Auton-
omy (2017)
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Abstract. Probabilistic Logic Networks (PLN) offers an excellent the-
ory to frame learning and planning as a form of reasoning. This paper
offers a complement to the seminal PLN book [3], in particular to its
Chapter 14 on temporal and procedural reasoning, by providing formal
definitions of temporal constructs, as well as inference rules necessary to
carry temporal and procedural reasoning.

Keywords: Temporal Reasoning · Procedural Reasoning ·
Probabilistic Logic Networks

1 Introduction

This paper builds upon the Chapter 14 of the Probabilistic Logic Networks
book [3], adding and modifying definitions along the way to provide, we believe,
a better foundation for carrying temporal and procedural reasoning with PLN.
As we have found, even though the chapter is well written and conveys the con-
ceptual ideas with clarity, it leaves some formal definitions out. In addition the
Event Calculus [8] is intermingled with the definitions of sequential connectors
in, what we consider to be, an arbitrary and inflexible manner. On the contrary,
here we leave Event calculus aside, with the intention to re-introduce it in the
future as a separate layer standing on top of the new definitions.

Although this paper is theoretical, the work presented here is motivated by
practice, and has taken place in the context of developing a system for controlling
an agent in uncertain environments while relying on temporal and procedural
reasoning for both learning and planning [2].

2 Probabilistic Logic Networks Recall

PLN stands for Probabilistic Logic Networks [3]. It is a mixture of predicate
and term logic that has been probabilitized to handle uncertainty. Inference
rules can operate on direct evidence, or indirect evidence by combining existing
relationships to introduce new ones. As such it is well suited for building a model
of an environment, and planning in it. All it needs then is to be properly equipped
with a vocabulary for representing and manipulating temporal and procedural
knowledge.
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2.1 Elementary Notions

Graphically speaking, PLN statements are sub-hypergraphs1 made of Links and
Nodes, called Atoms, decorated with Truth Values. Syntactically speaking, PLN
statements are not very different from statements expressed in another logic,
except that they are usually formatted in prefixed-operator with a tree-style
indentation to emphasize their graphical nature and to leave room for their
truth values. For instance

Implication 〈TV〉
𝑃

𝑄

represents an implication link between 𝑃 and 𝑄 with truth value TV. For the
sake of conciseness we also introduce some notations. First, we adopt a flattened,
as opposed to a tree-style, representation. For instance the implication link above
is represented as

Implication(𝑃 ,𝑄) 〈TV〉
Second, we introduce a more mathematically looking symbolic representation.
For instance, that same implication can be represented as

𝑃 → 𝑄 ≞ TV

There is a large variety of constructs in PLN. Here, we will focus primarily on
the ones for handling predicates. Let us recall that predicates are functions that
output Boolean values. The domain of a predicate can be arbitrarily defined,
but its range is always Boolean. In this paper, the letters 𝑎, 𝑏, 𝑐 represent atoms
of any type, 𝑥, 𝑦, 𝑧 represent atoms that are variables, while the capital letter
𝑃 , 𝑄, 𝑅 represent atoms that are predicates, thus typed as follows:

𝑃 ,𝑄,𝑅, . . . ∶ Domain ↦ {True,False}

Note that in PLN, predicates are not necessarily crisp because their outputs can
be totally or partially unknown, thus potentially measured by probabilities, or
to be precised Truth Values.

Truth values are, in essence, second order probability distributions, or prob-
abilities of probabilities. They are often described by two numbers: a strength,
𝑠, representing a probability, and a confidence, 𝑐, representing the confidence
over that probability. Such truth values are called Simple Truth Values and are
denoted as follows:

<𝑠, 𝑐>

Alternatively, the strength and the confidence of a simple truth value TV can be
denoted TV.𝑠 and TV.𝑐 respectively. Underneath, a simple truth value is a beta

1 because links can point to links, not just nodes.
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distribution [1], similarly to an opinion in Subjective Logic [5]. The parameters
of the corresponding beta distribution can be obtained as follows:

𝛼(𝑠, 𝑐) = 𝛼0 +
𝑠.𝑐.𝑘

1 − 𝑐
𝛽(𝑠, 𝑐) = 𝛽0 +

(1 − 𝑠).𝑐.𝑘
1 − 𝑐

where 𝑘 is a PLN parameter called the Lookahead, and 𝛼0 and 𝛽0 are usually
set to 0.5 corresponding to Jeffreys prior. For truth values obtained from direct
evidence, a simple truth value makes perfect theoretical sense. For truth values
obtained from indirect evidence, not so much, even though they are often used
in practice. When more precision is needed, to represent a multi-modal truth
value for instance, a mixture of simple truth values can be used. Also, through
out the paper, sometimes we may say probability, while what we really mean is
second order probability distribution.

Below is a table of the constructs used in this paper with their flattened and
symbolic representations, as well as precedence values to minimize parenthesis
usage with the symbolic representation.

Flattened Symbolic Precedence

Evaluation(𝑃 , 𝑎) 𝑃 (𝑎) 0

Not(𝑃 ) ¬𝑃 1

And(𝑃 ,𝑄) 𝑃 ∧𝑄 2

Or(𝑃 ,𝑄) 𝑃 ∨𝑄 2

Implication(𝑃 ,𝑄) 𝑃 → 𝑄 4

𝑎〈TV〉 𝑎 ≞ TV 5

For representing n-ary predicates evaluations we use 𝑃 (𝑎1, . . . , 𝑎𝑛) which may
be understood as a unary predicate evaluation applied to a tuple. Let us now
explain their semantics and how their truth values are to be interpreted.

– ¬𝑃 is the predicate resulting from the pointwise negation of 𝑃 .
– 𝑃 ∧𝑄 is the predicate resulting from the pointwise conjunction of 𝑃 and 𝑄.
– 𝑃 ∨𝑄 is the predicate resulting from the pointwise disjunction of 𝑃 and 𝑄.
– 𝑃 (𝑎) ≞ TV states that 𝑃 (𝑎) outputs True with a second order probability

measured by TV.
– 𝑃 → 𝑄 ≞ TV states that if 𝑃 (𝑎) is True for some 𝑎 in the domain of 𝑃 ,

then 𝑄(𝑎) is True with a second order probability measured by TV. In simple
probability terms, it represents P𝑟(𝑄|𝑃 ), the conditional probability of 𝑄

knowing 𝑃
2. We may also say that such implication is a conditional predicate

where 𝑄, the implicand, is conditioned by 𝑃 , the implicant.
– 𝑃 ≞ TV states that the prevalence of 𝑃 being True is measured by TV.

2 To be precise, P𝑟(𝑄|𝑃 ) should be P𝑟(S𝑎𝑡(𝑄)|S𝑎𝑡(𝑃 )), where S𝑎𝑡(𝑃 ) and S𝑎𝑡(𝑄) are the
satisfying sets of 𝑃 and 𝑄 respectively.
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2.2 Inference Rules

Inferences rules are used to construct PLN statements and calculate their truth
values. They fall into two groups, direct evidence based or otherwise. Rules from
the former group infer abstract knowledge from direct evidence, while rules from
the latter group infer knowledge by combining existing abstractions. In total
there are dozens of inference rules. For now, we only recall two, Implication
Direct Introduction and Deduction.

The Implication Direct Introduction Rule (IDI) takes evaluations as
premises and produces an implication as conclusion. It can be understood as
an inductive reasoning rule. It is formally depicted by the following proof tree.

𝑃 (𝑎1) ≞ TV𝑃

1 𝑄(𝑎1) ≞ TV𝑄

1 . . . 𝑃 (𝑎𝑛) ≞ TV𝑃

𝑛 𝑄(𝑎𝑛) ≞ TV𝑄

𝑛

(IDI)
𝑃 → 𝑄 ≞ TV

Assuming perfectly reliable direct evidence3 then the resulting simple truth value
can be calculated as follows:

TV.s =
∑

𝑛

𝑖=1 𝑓∧(TV
𝑃

𝑖
.s,TV𝑄

𝑖
.s)

∑
𝑛

𝑖=1 TV
𝑃

𝑖
.s

TV.c = 𝑛

𝑛 + 𝑘

where 𝑓∧ is a function embodying a probabilistic assumption about the con-
junction of the events. Such function typically ranges from the product (perfect
independence) to the min (perfect overlap). Note that this inference rule takes an
arbitrary number of premises. In practice it is not a problem as it is decomposed
into two rules covering the base and the recursive cases, while storing evidence
to avoid double counting.

The Deduction Rule (D) takes two implications as premises and produces a
third one. It can be understood as a deductive reasoning rule. Depending on the
assumptions made there exists different variations of that rule. The simplest one
is based on the Markov property

P𝑟(𝑅|𝑄, 𝑃 ) = P𝑟(𝑅|𝑄)

which gives rise to the rule depicted by the following proof tree.

𝑃 → 𝑄 ≞ TV𝑃𝑄
𝑄 → 𝑅 ≞ TV𝑄𝑅

𝑃 ≞ TV𝑃
𝑄 ≞ TV𝑄

𝑅 ≞ TV𝑅

(D)
𝑃 → 𝑅 ≞ TV

The reader may notice that three additional premises have been added, corre-
sponding to the probabilities P𝑟(𝑃 ), P𝑟(𝑄) and P𝑟(𝑅). This is a consequence of
the Markov property. The exact formula for that variation is not recalled here
but it merely derives from

P𝑟(𝑅|𝑃 ) = P𝑟(𝑅|𝑄, 𝑃 ) × P𝑟(𝑄|𝑃 ) + P𝑟(𝑅|¬𝑄, 𝑃 ) × P𝑟(¬𝑄|𝑃 )
3 A perfectly reliable piece of evidence has a confidence of 1. Dealing with unreliable

evidence involves using convolution products and is outside of the scope of this paper.
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More information about this derivation can be found in Chapter 5, Section 5.3
of [3]. Finally, one may notice that the same conclusion may be inferred by differ-
ent inference paths leading to different truth values. How to properly aggregate
these truth values is not the subject of this paper and is discussed in Chapter 5,
Section 5.10 of [3].

3 Temporal Probabilistic Logic Networks

A temporal extension of PLN is defined in Chapter 14 of [3]. However, we have
found that some definitions are ambiguous, in particular the sequential connec-
tors SequentialAnd and SequentialOr redefined further below. Let us begin by
defining Temporal Predicates, or Fluents. Temporal predicates are regular pred-
icates with a temporal dimension:

𝑃 ,𝑄,𝑅, . . . ∶ Domain × Time ↦ {True,False}
The type of the temporal dimension, Time, could in principle be any thing that
has a minimum set of requirements, such as being an ordered semigroup or such.
In practice so far, we have used integers, thus capturing a discrete notion of time.
Not all temporal predicates need to have a non-temporal domain, Domain. In
that case, we may simply assume that such domain is the unit type () and ignore
it.

3.1 Temporal Operators

Let us define a set of temporal operators operating over temporal predicates.

Lag and Lead are temporal operators to shift the temporal dimension of a
temporal predicate. They are similar to the metric variations, 𝑃𝑛 and 𝐹𝑛, of the
Past and Future operators of Tense Logic [7], with the distinction that they are
applied over temporal predicates, as opposed to Boolean modal expressions. The
Lag operator is formally defined as follows:

𝐿𝑎𝑔(𝑃 , 𝑇 ) ∶= 𝜆𝑥, 𝑡.𝑃 (𝑥, 𝑡 − 𝑇 )

Meaning, given a temporal predicate 𝑃 , it builds a temporal predicate shifted
to the right by 𝑇 time units. In order words, it allows to looks into the past, or
one may say that it brings the past into the present. The Lead operator is the
inverse of the Lag operator, thus

𝐿𝑒𝑎𝑑(𝐿𝑎𝑔(𝑃 , 𝑇 ), 𝑇 ) ≡ 𝑃

and is formally defined as follows:

𝐿𝑒𝑎𝑑(𝑃 , 𝑇 ) ∶= 𝜆𝑥, 𝑡.𝑃 (𝑥, 𝑡 + 𝑇 )

It allows to look into the future, or one may say that it brings the future into
the present.
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SequentialAnd is a temporal conjunction where one of the temporal predicate
arguments have been temporally shifted. There are at least two variations that
can be defined. A first where the past of the first predicate is brought into the
present. A second where the future of the second predicate is brought into the
present. In this paper we use the second one, formally defined as

SequentialAnd(𝑇 , 𝑃 ,𝑄) ∶= And(𝑃 ,Lead(𝑄, 𝑇 ))

which results into a temporal predicate that is True at time 𝑡 if and only if 𝑃 is
True at time 𝑡 and 𝑄 is True at time 𝑡 + 𝑇 . Since we do not know at that point
which one of the two variations is best, in practice we have implemented both,
but in this paper we settle to one for the sake of simplicity.

SequentialOr is a temporal disjunction where one of the temporal predicate
arguments have been temporally shifted. Like for SequentialAnd we settle to the
variation where the future of the second predicate is brought into the present,
defined as

SequentialOr(𝑇 , 𝑃 ,𝑄) ∶= Or(𝑃 ,Lead(𝑄, 𝑇 ))

which results into a temporal predicate that is True at time 𝑡 if and only if 𝑃 is
True at time 𝑡 or 𝑄 is True at time 𝑡 + 𝑇 .

PredictiveImplication is an implication where the future of the implicand has
been brought into the present, defined as

PredictiveImplication(𝑇 , 𝑃 ,𝑄) ∶= Implication(𝑃 ,Lead(𝑄, 𝑇 ))

resulting into a conditional predicate, that in order to be defined at time 𝑡

requires that 𝑃 is True at time 𝑡, and if so, is True at 𝑡 if and only if 𝑄 is True
at time 𝑡 + 𝑇 .

Let us introduce a symbolic representation for these temporal constructs with
precedence values to minimize parenthesis usage.

Flattened Symbolic Precedence

Lag(𝑃 , 𝑇 )
→
𝑃

𝑇

1

Lead(𝑃 , 𝑇 )
←
𝑃

𝑇

1

SequentialAnd(𝑇 , 𝑃 ,𝑄) 𝑃 ⩘𝑇
𝑄 3

SequentialOr(𝑇 , 𝑃 ,𝑄) 𝑃 ⩗𝑇
𝑄 3

PredictiveImplication(𝑇 , 𝑃 ,𝑄) 𝑃 �𝑇
𝑄 4

Additionally, we assume that ⩘𝑇 and ⩗𝑇 are right-associative. The Lag (resp.
Lead) operator is symbolized by an overlined arrow going to the right (resp. to
the left) because it brings the past (resp. the future) into the present.
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3.2 Temporal Rules

Given these operators we can now introduce a number of temporal inference
rules.

The Predictive Implication to Implication Rule (PI) takes a predictive
implication as premise and produces an equivalent implication, as depicted by
the following proof tree.

𝑃 �𝑇
𝑄 ≞ TV

(PI)

𝑃 →
←
𝑄

𝑇

≞ TV

Note that because the conclusion is equivalent to the premise, the truth values
may optionally be stripped out the rule.

𝑃 �𝑇
𝑄

(PI)

𝑃 →
←
𝑄

𝑇

The Implication to Predictive Implication Rule (IP) takes an implication
as premise and produces an equivalent predictive implication, as depicted, here
without truth value, by the following proof tree.

𝑃 →
←
𝑄

𝑇

(IP)
𝑃 �𝑇

𝑄

The Temporal Shifting Rule (S) takes a temporal predicate and shits its
temporal dimension to the left or the right. An example of such rule is depicted
by the following proof tree.

𝑃 ≞ TV (S)
←
𝑃

𝑇

≞ TV

Shifting does not change the truth value of the predicate. Indeed, the prevalence
of being True remains the same, only the origin of the temporal dimension
changes. Note however that the predicate itself changes, it is shifted. Therefore,
unlike for the IP and PI inference rules that produce equivalent predicates,
the truth values must be included in the rule definition, otherwise the rule of
replacement would incorrectly apply. There are a number of variations of that
rule. For the sake of conciseness we will not enumerate them all, and instead
show one more variation over conditional predicates.

𝑃 → 𝑄 ≞ TV
(S)

←
𝑃

𝑇

→
←
𝑄

𝑇

≞ TV

The Predictive Implication Direct Introduction Rule (PIDI) is similar
to the implication direct introduction rule of Sect. 2 but accounts for temporal
delays between evaluations. It is formalized by the following proof tree.
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(
𝑃 (𝑎𝑖, 𝑡𝑖) ≞ TV𝑃

𝑖

)
𝑖=1,...,𝑛

(
𝑄(𝑎𝑖, 𝑡𝑖 + 𝑇 ) ≞ TV𝑄

𝑖

)
𝑖=1,...,𝑛

(PIDI)
𝑃 �𝑇

𝑄 ≞ TV

The truth value formula is identical to that of the implication direct introduction
rule. In fact, such rule can be trivially derived by combining the implication
direct introduction rule, the implication to predictive implication rule and the
definition of the Lead operator.

The Temporal Deduction Rule (TD) is similar to the deduction rule of
Sect. 2 but operates on predictive implications. It is formally depicted by the
following proof tree.

𝑃 �𝑇1 𝑄 ≞ TV𝑃𝑄
𝑄 �𝑇2 𝑅 ≞ TV𝑄𝑅

𝑃 ≞ TV𝑃
𝑄 ≞ TV𝑄

𝑅 ≞ TV𝑅

(TD)
𝑃 �𝑇1+𝑇2 𝑅 ≞ TV

As it turns out, the truth value formula is also identical to that of the deduction
rule, but the proof is not so trivial. In order to convince us that it is the case, let
us construct a proof tree that can perform the same inference without requiring
the temporal deduction rule. The result is depicted below

𝑃 �𝑇1 𝑄 ≞ TV𝑃𝑄

(PI)

𝑃 →
←
𝑄

𝑇1
≞ TV𝑃𝑄

𝑄 �𝑇2 𝑅 ≞ TV𝑄𝑅

(PI)

𝑄 →
←
𝑅

𝑇2
≞ TV𝑄𝑅

(S)
←
𝑄

𝑇1
→
←
𝑅

𝑇1+𝑇2
≞ TV𝑄𝑅

𝑃 ≞ TV𝑃

𝑄 ≞ TV𝑄

(S)
←
𝑄

𝑇1
≞ TV𝑄

𝑅 ≞ TV𝑅

(S)
←
𝑅

𝑇1+𝑇2
≞ TV𝑅

(D)

𝑃 →
←
𝑅

𝑇1+𝑇2
≞ TV

(IP)
𝑃 �𝑇1+𝑇2 𝑅 ≞ TV

As you may see, the premises and the conclusion of that inference tree match
exactly the premises and the conclusion of the temporal deduction rule. Since
none of the intermediary formula, beside the deduction formula, alter the truth
values, we may conclude that the formula of the temporal deduction rule is
identical to that of the deduction rule.

3.3 Example

In this section we show how to carry an inference combining direct and indirect
evidence. To illustrate this process, we consider the temporal predicates 𝑃 , 𝑄
and 𝑅, with two datapoints as direct evidence of 𝑃 �1

𝑄, combined with another
predictive implication, 𝑄 �2

𝑃 , given as background knowledge, to produce a
third predictive implication, 𝑃 �3

𝑅, based on indirect evidence. The whole
inference tree is given below (using 𝑘 = 100 as Lookahead in the truth value
formula).

𝑃 (1) ≞< 1, 1> 𝑃 (2) ≞< 1, 1> 𝑄(1+1) ≞< 0, 1> 𝑄(2+1) ≞< 1, 1>
(PIDI)

𝑃 �1
𝑄 ≞< 0.5, 0.02> 𝑄 �2

𝑅 ≞< 0.3, 0.1> 𝑃 ≞< 1, 0.02> 𝑄 ≞< 0.5, 0.02> 𝑅 ≞< 0.2, 0.5>
(TD)

𝑃 �3
𝑅 ≞< 0.2, 0.018>

4 Procedural Reasoning

Let us now examine how to use temporal deduction to perform a special type
of procedural reasoning, to build larger plans made of smaller plans by chaining
their actions. Given plans, also called Cognitive Schematics [4], of the form
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𝐶1 ∧ 𝐴1 �𝑇1 𝐶2 ≞ TV1

...

𝐶𝑛 ∧ 𝐴𝑛 �𝑇𝑛 𝐺 ≞ TV𝑛

expressing that in context 𝐶𝑖, executing action 𝐴𝑖 may lead to subgoal 𝐶𝑖+1 or
goal 𝐺, after 𝑇𝑖 time units, with a likelihood of success measured by TV𝑖, we
show how to infer the composite plan

𝐶1 ∧ 𝐴1 ⩘𝑇1 . . . ⩘𝑇𝑛−1 𝐴𝑛 �𝑇1+···+𝑇𝑛 𝐺 ≞ TV

alongside its truth value TV. The inferred plan expresses that in context 𝐶1,
executing actions 𝐴𝑖 to 𝐴𝑛 in sequence, waiting 𝑇𝑖 time units between 𝐴𝑖 and
𝐴𝑖+1, leads to goal 𝐺 after 𝑇1 + · · · + 𝑇𝑛 time units, with a likelihood of success
measured by TV. Note that strictly speaking, 𝐴𝑖 is not an action, it is a predicate
that captures the temporal activation of an action. This can be formalized in
PLN as well but is not where the difficulty lies. Thus here we directly work
with action activation predicates and refer to them as actions for the sake of
convenience.

Let us show how to do that with two action plans by building a proof tree
like we did for the temporal deduction rule. The final inference rule we are trying
to build should look like

𝐶1 ∧ 𝐴1 �𝑇1 𝐶2 ≞ TV 12
𝐶2 ∧ 𝐴2 �𝑇2 𝐶3 ≞ TV 23

. . .

𝐶1 ∧ 𝐴1 ⩘𝑇1 𝐴2 �𝑇1+𝑇2 𝐶2 ≞ TV

where the dots are premises to be filled once we know what they are. Indeed,
we cannot directly apply temporal deduction because the implicand of the first
premise, 𝐶2, does not match the implicant of the second premise, 𝐶2 ∧ 𝐴2. For
that reason it is unclear what the remaining premises are. However, we can
build an equivalent proof tree using regular deduction, as well as other temporal
inferences rules defined in Sect. 3. The resulting tree (without truth values so
that it can fit within the width of the page) is given below.

𝐶1 ∧𝐴1 �𝑇1 𝐶2
(PI)

𝐶1 ∧𝐴1 →𝑇1
←
𝐶2

𝑇1

(I)

𝐶1 ∧𝐴1 ∧
←
𝐴2

𝑇1
→
←
𝐶2

𝑇1
∧
←
𝐴2

𝑇1

𝐶2 ∧𝐴2 �𝑇2 𝐶3
(PI)

𝐶2 ∧𝐴2 →
←
𝐶3

𝑇2

(S)
←
𝐶2

𝑇1
∧
←
𝐴2

𝑇1
→
←
𝐶3

𝑇1+𝑇2
𝐶1 ∧𝐴1 ∧

←
𝐴2

𝑇1

𝐶2 ∧𝐴2
(S)

←
𝐶2

𝑇1
∧
←
𝐴2

𝑇1

𝐶3
(S)

←
𝐶3

𝑇1+𝑇2

(D)

𝐶1 ∧𝐴1 ∧
←
𝐴2

𝑇1
→
←
𝐶3

𝑇1+𝑇2

(IP)
𝐶1 ∧𝐴1⩘

𝑇1 𝐴2 �𝑇1+𝑇2 𝐶3

Note that we have used of a new rule labeled (I) at the left of the proof tree. This
rule eliminates independent predicates from an implication without modifying
the truth value of its conclusion. Its use is justified by the fact that 𝐴2 is executed
immediately after reaching 𝐶2, thus cannot have an effect on it.
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After retaining the premises and the conclusion only, and adding back the
truth values, we obtain the following procedural deduction rule:

𝐶1∧𝐴1 �𝑇1 𝐶2 ≞ TV 12
𝐶2∧𝐴2 �𝑇2 𝐶3 ≞ TV 23

𝐶1∧𝐴1∧
←
𝐴2

𝑇1
≞ TV 1

𝐶2∧𝐴2 ≞ TV 2
𝐶3 ≞ TV 3

(PD)
𝐶1∧𝐴1⩘𝑇1𝐴2 �𝑇1+𝑇2 𝐶3 ≞ TV

with a formula identical to that of the deduction rule, once again. The premises
filling the dots are therefore

𝐶1∧𝐴1∧
←
𝐴2

𝑇1

≞ TV 1
𝐶2∧𝐴2 ≞ TV 2

𝐶3 ≞ TV 3

There is no doubt these premises could be further decomposed into sub-inferences
as it was done with the (I) rule. Indeed, likely more simplifications can be made
by assuming that the agent has a form of freewill and thus that its actions are
independent of the rest of the universe, outside of its decision policy influenced by
its very procedural reasoning. This is reminiscent of the do-calculus [6] and will
be explored in more depth in the future. In the meantime, these are left as they
are, as it introduces no additional assumption, and their truth values can always
be calculated using inference rules based on direct evidence, if anything else.
Future directions may also include adding inference rules to support behavior
trees; introducing Event Calculus operators as predicate transformers (similar
to how Lag and Lead are defined); as well as supporting temporal intervals and
continuous time.
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Abstract. In this paper we introduce, ROCCA for Rational OpenCog
Controlled Agent, an agent, that, as its name suggests, leverages
the OpenCog framework to fulfill goals in uncertain environments. It
attempts to act rationally, relying on reasoning for both learning and
planning. An experiment in a Minecraft environment is provided as a
test case.

Keywords: Symbolic Reinforcement Learning · Pattern Mining ·
Procedural Reasoning · Thompson Sampling · OpenCog · Minecraft

1 Introduction

This paper describes an attempt to leverage the OpenCog framework [15] for
controlling agents in uncertain environments. It can be seen as a reboot of pre-
vious attempts [5,10,12] relying on new or improved components such as

– a hypergraph pattern miner [7] and a version of Probabilistic Logic Net-
works (PLN) [9] both implemented on top of OpenCog’s Unified Rule Engine
equipped with an inference control mechanism;

– a temporal and procedural extension of PLN [8];
– a simplified version of OpenPsi [5] leaving aside built-in urges and modulators

from MicroPsi [3] and using an action selection policy based on Thompson
Sampling [17].

It is comparable to OpenNARS for Applications (ONA) [14] but, among other
differences, uses PLN [9] as its core logic.

The ultimate goal of this project is to provide a technology to enable us
to experiment with forms of meta-learning and introspective reasoning for self-
improvements. The rational for using a reasoning-based system is that it offers
maximum transparency and is thus more amenable to reflectivity and intro-
spection [11,19]. The work that is described in this paper is only the premise
of that goal. No meta-learning is taking place yet. The objective for now is to
build an agent that is able to discover regularities from its environment and acts
rationally, possibly at the expense of efficiency, at least initially. For discovering
regularities, the agent uses a reasoning-based pattern miner [7]. Then combine

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
P. Hammer et al. (Eds.): AGI 2023, LNAI 13921, pp. 95–104, 2023.
https://doi.org/10.1007/978-3-031-33469-6_10
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these regularities to form plans using temporal and procedural reasoning. More
specifically plans are predictive implications of the form

𝐶 ∧ 𝐴 �𝑇
𝐺 ≞ TV

called Cognitive Schematics or Schemata. Which can be read as “in some context
𝐶, if some, possibly composite, action 𝐴 is executed, then after 𝑇 time units, the
goal 𝐺 is likely to be fulfilled, with second order probability measured by TV”.
These plans are then combined to into a mixture that grossly approximates
Solomonoff distribution [6]. Finally, the next action is selected using Thompson
Sampling [17]. The resulting system is called ROCCA for Rational OpenCog
Controlled Agent.

The rest of the paper is organized as follows. A recall of the OpenCog frame-
work is provided in Sect. 2. ROCCA is described in Sect. 3. An experiment using
it to control an agent in Minecraft is described in Sect. 4. A conclusion including
future directions is given in Sect. 5.

2 OpenCog Framework Recall

OpenCog [15] is a framework offering a hypergraph database technology with
a query language and a collection of programs built on top of it to perform
cognitive functions such as learning, reasoning, spreading attention and more.
Knowledge is stored in AtomSpaces, hypergraphs composed of atoms, links and
nodes, where links can connect to other atoms. Values can be attached to atoms
to hold probability, confidence, importance and more. Values and atoms can be
of various types. Let us recall the types we need for the rest of paper.

– A TruthValue is a second order probability distribution, i.e. a probability of
a probability.

– A SimpleTruthValue is a TruthValue where the second order distribution is
represented by a beta distribution of parameters controlled by a strength, a
proxy for a probability, and a confidence over that strength. It is denoted
<𝑠, 𝑐> where 𝑠 is the strength and 𝑐 is the confidence.

– A Predicate is function from a certain domain to 𝐵𝑜𝑜𝑙𝑒𝑎𝑛. A TruthValue can
be attached to a predicate, representing the prevalence of its satisfied inputs.
For instance 𝑃 ≞ < 0.4, 0.1 > represents that 𝑃 tends to evaluate to True
40% of the time, but there is a small confidence of 0.1 over that 40%. A
TruthValue can be attached to individual evaluations as well. For instance
𝑃 (𝑎) ≞ < 0.9, 1 > represents that the probability of 𝑃 (𝑎) evaluating over a
particular 𝑎 to True, is 0.9 and we are certain about it.

– A Conjunction is a link between two predicates, representing the predicate
resulting from the pointwise conjunction of these two predicates. For instance
𝑃 ∧𝑄 ≞ <0.2, 0.3> represents the prevalence, with strength 0.2 and confidence
0.3, of the pointwise conjunction of 𝑃 and 𝑄.

– An Implication is a link between two predicates, semantically representing the
conditional probability between two events represented by these predicates.
For instance 𝑃 → 𝑄 ≞ <0.7, 0.4> indicates that if 𝑃 (𝑥) is True then there is
a 70% change with a 0.4 confidence, that 𝑄(𝑥) is also True.
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Additionally we use the following types for temporal reasoning.

– A Sequential Conjunction is a link between two temporal predicates, repre-
senting the predicate resulting from the pointwise conjunction of these pred-
icates while the second one leads by a certain time. For instance 𝑃⩘𝑇

𝑄 is the
pointwise conjunction of 𝑃 and a leading 𝑄 by 𝑇 time units. Meaning that
(𝑃⩘𝑇

𝑄)(𝑥, 𝑡) is True if and only if 𝑃 (𝑥, 𝑡) and 𝑄(𝑥, 𝑡 + 𝑇 ) are True.
– A Predictive Implication is a link between two temporal predicates, repre-

senting the conditional probability between two events delayed by a certain
time. For instance 𝑃 �𝑇

𝑄 ≞ < 0.8, 0.5> indicates that if 𝑃 (𝑥) is True then
there is a 80% chance with a 0.5 confidence, that after 𝑇 time units 𝑄(𝑥) will
also be True.

The difference between a temporal and an atemporal predicate is its domain. A
temporal predicate must have at least a temporal dimension. More detail about
the temporal types and their associated inference rules is provided in [8].

3 Rational OpenCog Controlled Agent

ROCCA is implemented as an observation-planning-action loop interleaved with
learning and reasoning. It provides an interfacing between OpenCog and envi-
ronments such as Malmo [16] or OpenAI Gym [4]. It is written in Python which is
both supported by these environments and OpenCog. Figure 1 provide a graph-
ical representation of ROCCA as if it was a single loop incorporating all steps.

Environment

Goal

Schemata

Working
Atomspace

Atomspace
Percepta

Reasoner
Temporal

Pattern
MinerRecorder

Percepta

Selector
Action

Atomspace

Fig. 1. Rational OpenCog Controlled Agent
control and learning cycles merged into a sin-
gle loop.

3.1 Memory

For better efficiency and clarity, the
memory of the agent is split into
three parts.

1. The Percepta AtomSpace holds
timestamped observations as
they come into the system.

2. The Working AtomSpace holds
any kind of data, ranging from
timestamped observations to
predictive implications. Most
knowledge used and inferred
during the course of learning are
usually dumped into this Atom-
Space.

3. The Schemata AtomSpace holds
Cognitive Schematics, which are
predictive implications relating
contexts, actions and goals.
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3.2 Processes

The agent runs two main processes:

1. A Control process for real-time reactive agent control.
2. A Learning process for non-reactive background learning.

In principle these two processes could happen in parallel. For now they alternate
in series. The agent starts in a control phase. A number of control cycles occur
as the agent motor-babbles through its environment. It is then followed by a
learning phase when the agent discover regularities and build plans. And finally
repeats the control phase to test how it performs after learning.

3.3 Control

The control process is composed of control cycles, each decomposed into Obser-
vation, Planning and Action phases, as described below.

1. Observation:
(a) Receive and timestamp observations, reward included, from the environ-

ment.
(b) Store the timestamped observations in the Percepta AtomSpace.

2. Planning :
(a) Select the goal for that cycle.
(b) Find plans fulfilling that goal from the Schemata AtomSpace.
(c) Build a mixture distribution from these plans.

3. Action:
(a) Select the next action via Thompson Sampling according to that mixture

distribution.
(b) Timestamp and store the selected action in the Percepta AtomSpace.
(c) Run the selected action and by that update the environment.

None of these steps are computationally expensive. They involve algorithms that
are at most linear with the size of the Percepta and Schemata AtomSpaces. As
time goes and knowledge accumulates though, it will progressively slow down.
Indeed, for real-time responsiveness such control cycle should be bound by a
constant. Achieving this may require to incorporate other mechanisms such as
filtering and forgetting. This problem, as important as it is, is left aside for future
research. Given the small environments ROCCA has been tested with, it has not
been a problem so far. Let us now provide more details about these three phases.

Observation. During the observation phase, data coming from the environ-
ment are timestamped and stored in the Percepta AtomSpace with the format
datum@timestamp. For instance if at cycle 3 the agent observes outside(house),
then outside(house)@3 is inserted into the Percepta AtomSpace.
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Planning. The first step of the planning phase is to select a goal 𝐺 to fulfill. In
the current version of ROCCA though it merely returns a constant goal which is
to gain a reward within a forward window. More on goal selection can be found
in [11,13]. Once the goal has been selected, the agent searches the Schemata
AtomSpace with the following pattern matcher query

$𝐶 ∧ $𝐴 �𝑇
𝐺

where $𝐶 is a variable representing the context, $𝐴 is a variable representing
the action, 𝑇 is a time delay selected within that forward window and 𝐺 is
the selected goal. All returned candidates are then filtered according to their
contexts, only retaining those for which the context is evaluated to True at
the current time. Ideally, such crisp evaluation should be replaced by a second
order probability evaluation of a context being True. This is important for con-
texts that have elements of uncertainty. But for the sake of simplicity, in our
experiments so far, all contexts are crisply evaluated. Then from the set of valid
cognitive schematics, a second order mixture distribution is built and handed to
the next phase for performing action selection. The calculations used to build
that second order mixture distribution is detailed in [6].

Action. The Action phase consists of the following steps:

1. Select the next action via Thompson Sampling [17] according to the mixture
distribution built during the planning phase.

2. Timestamp and store the selected action in the Percepta AtomSpace.
3. Run the selected action and update the environment. If it is a composite

action, only run the first primary action.

The trickiest step here is selecting the next action via Thompson Sampling. The
novelty is that the second order probabilities can be leveraged by Thompson
Sampling. For example, assume we have two actions, 𝐴1 and 𝐴2, to choose among
two predictive implications

𝐶1 ∧ 𝐴1 �𝑇
𝐺 ≞ <0.6, 0.9>

𝐶2 ∧ 𝐴2 �𝑇
𝐺 ≞ <0.7, 0.1>

Using only the strengths of the truth values as proxy for probability of suc-
cess, the choice is clear. Action 𝐴2 should be selected, because its probability
of success, which is 0.7, is greater than that of 𝐴1, which is 0.6. However once
confidence is introduced, that choice becomes less clear because the truth value
of success of 𝐴2 has a low confidence of 0.1. In that case, first order probabili-
ties are sampled from their corresponding second order distributions, and then
these probabilities are compared. The action with the maximum probability gets
selected. Informally, the idea is to consider the possibilities that the agent might
be living in a world where 𝐴2 has a lower probability of success than 𝐴1. That
is the essence of Thompson Sampling. Figure 2 shows the second order distri-
butions of the probabilities of success of 𝐴1, in blue, and 𝐴2, in red, for these



100 N. Geisweiller and H. Yusuf

Fig. 2. Second order probability distributions of success of actions 𝐴1 and 𝐴2, using as
parameters of the beta distribution 𝛼(𝑠, 𝑐) = 𝛼0 + 𝑠.𝑐.𝑘

1−𝑐 and 𝛽(𝑠, 𝑐) = 𝛽0 + (1−𝑠).𝑐.𝑘
1−𝑐 where 𝑘,

the lookahead, is set to 100, and 𝛼0 and 𝛽0 are set to Jeffreys prior.

truth values. As one may notice, the area under the red curve situated at the
left of the blue curve is non-negligible. Meaning that the probability of being in
a world where 𝐴1 has a higher probability of success than 𝐴2 is non-negligible as
well. Because these strengths and confidences are periodically updated during
the lifetime of the agent, one can see how Thompson Sampling is a great alterna-
tive to 𝜀-greedy, as it offers a parameter-free mechanism to balance exploration
and exploitation that dynamically adapts with the knowledge of the agent.

Note that in this example only two actions among two cognitive schematics
are considered, but in practice there is usually a handful of actions among a
potentially very large number of cognitive schematics with overlapping contexts
and conflicting goals. The resulting distribution of success of each action is typ-
ically multi-modal and do not reduce to a beta distribution. How to deal with
such a multitude of cognitive schematics is treated in [6].

3.4 Learning

The difficulty then comes down to discovering cognitive schematics that are as
predictive and widely applicable as possible. For that, ROCCA uses a combina-
tion of pattern mining and reasoning.

Pattern Mining. A relatively inexpensive way to discover regularities in the
environment is to mine the Percepta AtomSpace. For instance, given

{go(right)@0, square(right)@1, go(left)@1, square(left)@2, . . . }
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the pattern miner can discover temporal relationships such as

go(right) �1
𝑠𝑞𝑢𝑎𝑟𝑒(𝑟𝑖𝑔ℎ𝑡)

go(left) �1
𝑠𝑞𝑢𝑎𝑟𝑒(𝑙𝑒𝑓 𝑡)

as well as more abstract relationships, such as

go(𝑥) �1
𝑠𝑞𝑢𝑎𝑟𝑒(𝑥)

The pattern mining algorithm used by ROCCA is detailed in [7]. This is a
generic hypergraph pattern miner, not specialized for temporal patterns. In order
to mine temporal patterns with it, timestamps are represented as naturals. 0 is
presented by 𝑍, 1 by 𝑆(𝑍), 2 by 𝑆(𝑆(𝑍)), etc. This provides the needed structure
to discover temporal relationships between events. As it currently stands, the
pattern miner can efficiently discover mono-action plans. Mining poly-action
plans is also possible but has two issues:

1. In the worse case, the computational cost of mining goes up exponentially
with the size of the action sequence to mine.

2. The number of observations to accumulate in order to generate cognitive
schematics with decent confidences goes up exponentially as well.

The latter is really the most problematic because we cannot buy our way out of
it. If each observation takes a certain amount time, determined by the control
cycle period in the case of primary observations, then we have to go through
them, we cannot speed time up. This is even more true for abstract percepta
that can only be observed at periods that are multiples of control cycle periods.
Also, in some cases, a particular action sequence may never be observed at all,
yet we still would like to have a way to estimate the likelihood of its success. In
order to address these limitations and more, we need reasoning.

Temporal Reasoning. ROCCA uses a temporal extension of PLN described
in [8] to update existing cognitive schematics obtained by pattern mining, and
discover new cognitive schematics by combining existing ones. For instance it
can infer poly-action plans by stringing mono-action plans together, as well as
generalize or specialize their contexts or goals. Temporal rules integrated into
ROCCA include:

1. Predictive Implication Direct Introduction to infer the truth value of a pre-
dictive implication from direct observations.

2. Temporal Conditional Conjunction Introduction to specialize a goal within a
plan by considering the conjunction of existing cognitive schematics goals.

3. Temporal Deduction to string together small plans to form bigger ones.

The precise semantics of these rules is detailed in [8]. An example of how they
are used is presented below.
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4 Experiment in a Simple Minecraft Environment

In this experiment, we use Malmo [16] to construct a basic Minecraft world that
comprises a house filled with diamonds and a key. The objective of the agent
is to retrieve the key, located somewhere in the vicinity of the house, and then
unlock the door of the house. Upon unlocking the door, the agent is able to
collect a diamond and receive a reward.

The aim of the experiment is to make ROCCA learn from interacting with the
Minecraft environment and collect as many diamonds as possible. To make the
task easier, the primary actions and perceptions provided by Malmo have been
replaced by high level actions such as go(key), go(house) and go(diamonds), as
well as high level perceptions about the state of the agent such as outside(house),
hold(key) and the reward for completing a given action, reward(1).

The experiment consists of two iterations of training lasting fifty control
cycles each, interleaved by a learning phase of a few hours. During the first iter-
ation, no learning is taking place as the agent has no prior knowledge. The agent
randomly explores the environment. Then it enters a learning phase, discovering
cognitive schematics via mining and reasoning, subsequently leading the agent
to achieve more frequently its goal during the next training phase.

Let us look more closely how ROCCA discovers cognitive schematics. Given
the following observations

{. . . ,Reward(0)@10, outside(house)@10, hold(key)@10, go(house)@10,
inside(house)@11, go(diamond)@11, Reward(0)@11, Reward(1)@12, . . . }

ROCCA can mine, among many other things, the following cognitive schematic

hold(key) ∧ go(house) �1 inside(house) ≞ <0.833, 0.007>

Additionally, by applying the temporal conditional conjunction introduction rule
on the relevant relationships, such as

outside(house) ∧ go(key) �1 outside(house) ≞ <1, 0.007>
outside(house) ∧ go(key) �1 hold(key) ≞ <1, 0.007>

the agent derives

outside(house) ∧ go(key) �1 outside(house) ∧ hold(key) ≞ <1, 0.007>

which, if combined with

outside(house) ∧ hold(key) ∧ go(house) �1 inside(house) ≞ <0.833, 0.007>

can be used by the procedural deduction rule to infer

outside(house) ∧ go(key)⩘1go(house) �2 inside(house) ≞ <0.833, 0.007>

Continuing this reasoning process ultimately results in the discovery of an effec-
tive plan that leads to achieving the goal, such as

outside(house) ∧ go(key)⩘1go(house)⩘1go(diamond) �3 reward(1) ≞ <0.833, 0.005>
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A rigorous evaluation is kept for a future paper, nonetheless our preliminary
results indicate that ROCCA successfully learns the necessary cognitive schemat-
ics and, as a consequence, accumulates more rewards during the second iter-
ation. In the first iteration the cumulative reward is around 5, then doubles
to quadruples during the second iteration, depending on the random seed and
other parameters. If ROCCA keeps running after that, the cumulative reward
rate keeps going up because the confidences of the cognitive schematics increase,
leading to more exploitation and less exploration. One may notice that some
plans are not completely reliable, their strengths is below 1. That is because
some actions may fail. ROCCA is suited for dealing with uncertainty and has
no problem with that. These findings are encouraging but only apply to a very
simple environment and may not be indicative of the overall performance of
ROCCA. More experiments over more environments are required and will be
pursued in future work.

The source code of ROCCA is hosted on Github [2] and a video of this
experiment is available on YouTube [1].

5 Conclusion

ROCCA, a system that leverages the OpenCog framework for controlling an
agent in uncertain environments has been presented. This agent is in a strong
sense fully reasoning-based, from learning to planning. The advantage we believe
of such approach, in spite of its current inefficiencies, is to offer greater trans-
parency and foster greater capabilities for meta-learning and self-improvement.
As such, we are only at the start of our endeavor. Towards that end, future
directions include:

1. Integrate Economic Attention Networks [18] for Attention Allocation. Record
attentional spreading as percepta to learn Hebbian links [18] and improve
attention allocation in return.

2. Carry out concept creation and schematization, also called crystallized atten-
tion allocation, to speed up repetitive information processing. This done
well should also provide a solution to the problem of creating hierarchies
of abstract observations and actions.

3. Record more internal processes, not just attentional spreading, as internal
percepta to enable deeper forms of introspection.

4. Plan with internal actions, not just external, such as parameter tuning and
code rewriting to enable self-improvements.
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Abstract. Software bots operating in multiple virtual digital platforms
must understand the platforms’ affordances and behave like human users.
Platform affordances or features differ from one application platform to
another or through a life cycle, requiring such bots to be adaptable.
Moreover, bots in such platforms could cooperate with humans or other
software agents for work or to learn specific behavior patterns. How-
ever, present-day bots, particularly chatbots, other than language pro-
cessing and prediction, are far from reaching a human user’s behavior
level within complex business information systems. They lack the cogni-
tive capabilities to sense and act in such virtual environments, rendering
their development a challenge to artificial general intelligence research.
In this study, we problematize and investigate assumptions in concep-
tualizing software bot architecture by directing attention to significant
architectural research challenges in developing cognitive bots endowed
with complex behavior for operation on information systems. As an out-
look, we propose alternate architectural assumptions to consider in future
bot design and bot development frameworks.

Keywords: cognitive bot · cognitive architecture · problematization

1 Introduction

Bots are software agents that operate in digital virtual environments [1,2]. An
example scenario would be a “user-like” bot that could access web platforms
and behave like a human user. Ideally, such a bot could autonomously sense
and understand the platforms’ affordances. Affordances in digital spaces are,
for example, interaction possibilities and functionalities on the web, in software
services, or on web application platforms [3,4]. The bot would recognize and
understand the differences and variability between different environments’ affor-
dances. If a platform or service has extensions to physical bodies or devices, as
in the Web of Things (WoT), it would also have control of or possibilities to
interact with an outer web or service application world.

Ideally, a bot could also be independent of a specific platform. A user-
like social bot, for instance, would be able to recognize and understand
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social networks and act to influence or engage in belief sharing on any social
platform. It would also adjust with the changes and uncertainty of the affor-
dances in a social media environment, such as when hypermedia interactivity
features and functionalities change. Such a bot could also learn and develop to
derive its goals and intentions from these digital microenvironments and take
goal-directed targeted action to achieve them [5]. Such bots could also commu-
nicate and cooperate with other user agents, humans, or bots to collaborate and
socialize for collective understanding and behavior.

The example scenarios described above convey desiderata of perception and
action in bots, similar to how a human user would perceive and act in digital
spaces. To date, bots are incapable of the essential cognitive skills required to
engage in such activity since this would entail complex visual recognition, lan-
guage understanding, and the employment of advanced cognitive models. Instead,
most bots are either conversational interfaces or question-and-answer knowledge
agents [1]. Others only perform automated repetitive tasks based on pre-given
rules, lacking autonomy and other advanced cognitive skills [6,7]. The problems
of realizing these desiderata are, therefore, complex and challenging [8,9]. Solu-
tions must address different areas, such as transduction and autonomous action,
to achieve advanced generalizable intelligent behavior [10,11].

Problems spanning diverse domains require architectural solutions. Accord-
ingly, these challenges also necessitate that researchers address the structural
and dynamic elements of such systems from an architectural perspective. [12–
14]. For this reason, this paper outlines the architectural research agendas to
address the challenges in conceptualizing and developing a cognitive bot with
generalizable intelligence.

The paper is divided into sections discussing each of the research challenges.
In Sect. 2, we discuss the challenges related to efforts and possible directions in
enabling bots to sense and understand web platforms. Next, Sect. 3 describes
the challenges related to developing advanced cognitive models in software bots.
Section 4 and 5 discuss the research issues in bot communication and coopera-
tion, respectively. The remaining two sections provide general discussions on bot
ethics and trust and conclude the research agenda.

2 The Transduction Problem

Web platforms can be seen as distinct microenvironments within digital micro-
cosms [15]. They offer a microhabitat for their users’ diverse digital experiences.
These experiences mainly transpire from the elements of interaction and action,
or the hypermedia, within web environments [15,16]. Hypermedia connects and
extends the user experience, linking to further dimensions of the web-worlds,
which means more pages and interactive elements from the user’s perspective.
The interaction elements are considered affordances in the digital space [3,4],
analogous to the biological concept of affordances from environmental psychol-
ogy [17]. Affordances can also be accompanied by signifiers. Signifiers reveal or
indicate possibilities for actions associated with affordances [4,18]. An exam-
ple on the web would be a button affording a click action and a text signifier
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hinting “Click to submit”. A human user understands this web environment, its
content, and its affordances, and navigates reasonably easily. However, enabling
software bots to understand this digital environment and its affordances the way
human users do is a challenging task. It is a complex problem of translating and
mapping perception to action, i.e., the transduction problem [19,20].

Today, there are different approaches to this problem. The first category
of approaches provides knowledge about the environment for different levels of
observability using APIs or knowledge descriptions. With API-based approaches,
developers create bots for a specific platform, constantly putting developers in
the loop. Bots do not have the general perceptual capability to understand and
navigate with autonomous variability. Other architectures in this category, orig-
inating from the WoT, attempt to address this challenge by using knowledge
models and standards that could enable agents to perceive the web by exposing
hypermedia affordances and signifiers [3,21]. The knowledge descriptions carry
discoverable affordances and interpretable signifiers, which can then be resolved
by agents [3,4]. This approach might demand extended web standards that make
the web a suitable environment for software agents. It might also require intro-
ducing architectural constraints that web platforms must adhere to in developing
and changing their platforms, such as providing a knowledge description where
bots can read descriptions of their affordances.

The second category of approaches uses various behavioral cloning and rein-
forcement learning techniques [22]. One example is by Shi et al. [23], where they
introduce a simulation and live training environment to enable bots to complete
web interaction activities utilizing keyboard and mouse actions. Recent efforts
extend these approaches by leveraging large language models (LLMs) for web
page understanding and autonomous web navigation [24,25]. The results from
both techniques and similar approaches reveal the size of the gap between human
users and bots [23,24].

Both approach categories still need to solve the problem of variability and
generalizability of perception and action. Approaches that leverage the hyper-
media knowledge of platforms with affordance and signifier descriptions could
serve as placeholders, but real bots with generalizable capabilities would need
more autonomous models yet.

Besides this, some design assumptions consider the environment and the
bot as one. As a result, they may attempt to design agents as an integrated
part of the platforms or try to ‘botify’ and ‘cognify’ or orient web services as
agents. Alternatively, the whole notion of a user-like bot inherently assumes
the bot to have an autonomous presence separate from the web platforms it
accesses. Figure 1 illustrates the basic perspective in a vertically separate design,
the bot, and the web platforms it operates in. This strict separation enables both
the environment and the bot to evolve independently.

3 The Behavior Problem

Most user activities on digital platforms are complex behaviors resulting from
human users’ underlying intentions, goals, and belief systems. Although a bot
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Fig. 1. A decoupled bot-environment and bot-behavior (left) viewpoint.

operating in digital spaces need not fully emulate humans to achieve general-
izable behavior, it is essential to consider the intricacies and sophistication of
human users’ behavior on the web during bot design [26]. To that end, engineer-
ing bots with behavior models similar to human users might take into account
existing approaches of measuring generalizable user behavior while not having
to replicate human cognition as such [27].

Fig. 2. The abstraction ladder in modeling machine intelligence.

Current models for engineering intelligent behavior come from three prospec-
tive categories of approaches. Each approach takes natural or human intelligence
as its inspiration and models it at different levels of abstraction. The three meth-
ods differ mainly in how they try to understand intelligence and where they
start the abstraction for modeling intelligence. Figure 2 illustrates this ladder
of abstraction in modeling machine intelligence. The abstractions start either
at artificial cognition, artificial neurons, or artificial life or consciousness [10,28].
These abstractions aim to enact intelligent behavior based, respectively, on high-
level cognitive functions, artificial neural networks (ANNs), or more physical and
bottom-up approaches starting at molecular or atomic levels.

Artificial Cognition: in cognitive modeling, efforts to model cognition are inspired
by the brain’s high-level cognitive functions, such as memory. Most assumptions
are based on studies and understandings in the cognitive sciences. Cognitive
models use diverse techniques such as production rules, dynamical systems, and
quantum models to model particular cognitive capabilities [29]. Although cog-
nitive models use methods from other approaches, such as ANNs, they do not
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necessarily adhere to underlying mechanisms in the brain [10,30]. Works such
as the OpenCog (Hyperon) and the iCub project are promising experimental
research examples that heavily rely on artificial cognitive models, i.e., cognitive
architectures [10,30].

Artificial Neurons: brain models which use artificial neurons aim to understand,
model, and simulate underlying computational mechanisms and functions based
on assumptions and studies in neuroscience [31]. Discoveries from neuroscience
are utilized to derive brain-based computational principles. Sometimes, these
approaches are referred to as Brain-derived AI or NeuroAI models [32–34]. Due
to the attention given to the underlying principles of computation in the brain,
they strictly differ from the brain-inspired cognitive models. Applications of
these models are mainly advancements in artificial neural networks, such as deep
learning. Large-scale brain simulation research and new hardware development
in neuromorphic computing, such as SpiNNaker and Loihi, also contribute to
research efforts in this area. Some neuromorphic hardware enables close adher-
ence to brain computational principles in particular types of neural networks,
such as Spiking neural networks [32,35]. Brain-derived AI approaches with neu-
rorobotics aim to achieve embodiment using fully developed morphologies, which
are either physical or virtual. The Neurorobotics Platform (NRP) is an example
of such efforts to develop and simulate embodied systems. The NRP is a neuro-
robotics simulation environment which connects simulated brains to simulated
bodies of robots [36].

Artificial Life (aLife): aLife attempts to model consciousness. To do this,
researchers and developers start with a bottom-up approach at a physical or
molecular level [28]. Most synthesizing efforts to model intelligence in artificial
life are simulations with digital avatars.

In the context of bots on web platforms, employing integrated behavior
models, such as the NRP and OpenCog mentioned above, is still a challenge.
Thus, in addition to the proposed separation of the bot and environment, decou-
pling a bot’s basic skeleton and behavior models is architecturally important.
Figure 1, left, illustrates the separate structure of a bot and its behavior mod-
els. The bot’s core skeleton, for example, might have sensory and interaction
elements as virtual actuators that enable its operation using the keyboard and
mouse actions. The vertical separation allows behavior models and bot skeletons
to change independently, maintaining the possibility of dynamic coupling.

4 Bot Communication Challenges

In Multi-Agent Systems (MAS), agent-to-agent communication heavily relies on
agent communication languages (ACLs) such as FIPA-ACL, standardized by the
Foundation for Intelligent Physical Agents(FIPA) consortium [19,37–39]. How-
ever, in mixed reality environments, where bots and humans share and collabo-
rate in digital spaces, communication cannot rely only on ACLs and APIs [40].
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To that end, a cognitive bot with artificial general intelligence (AGI) must
possess communications capabilities to address humans and software agents with
diverse communication skills. Communication capabilities should include diverse
possibilities like email, dialogue systems, voice, blogging, and micro-blogging.

Large language models (LLMs) have recently shown significant progress in
natural language processing and visual perception that could be utilized for bot
and human communication [24,25].

5 Integration and Cooperation Challenges

Researchers assert that the grand challenge in AGI remains in integrating differ-
ent intelligence components to enable the emergence of advanced generalizable
behavior or even collective intelligence [10,41–43]. The intelligence solutions to
integrate include learning, memory, perception, actuation, and other cognitive
capabilities [44]. Theories and assumptions developed by proponents include
approaches based on cognitive synergy, the free energy principle, and integrated
information theory [5,42,43].

In practice, however, integration and cooperation of bots are implemented
mainly by utilizing methods such as ontologies, APIs, message routing, commu-
nication protocols, and middleware like the blackboard pattern [19,45,46].

From a software engineering perspective, basic architectural requirements
for the context of bots operating on digital platforms are possibilities for the
evolvability of bots into collective understanding with shared beliefs, stigmergy,
or sharing common behavior models to learn, transfer learned experience, and
evolve. Other concerns are the hosting, which could be on a cloud or individual
nodes, scaling, and distribution of bots and their behavior models.

Fig. 3. Representation of integrated parts, i.e., bots, shared behavior models, and the
web environments.
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Figure 3 shows a simple diagram representing the integrated parts, i.e., bots,
shared behavior models, and the environment. B represents the possible number
of bots. BM represents the shared and individual behavior models. E represents
the web environment and its variability. The lines represent communication chan-
nels. H denotes the human users that participate and share the digital space.

6 Bot Ethics and Trust

Concerns and challenges in AGI are diverse. They touch on various aspects
of society and politics and have real-world implications, such as the impact of
user-like bots on privacy, security, ethics, and trust with humans [47–49]. User-
like bots, emulating human users’ perceptual and interaction techniques, can
easily pass bot detection tests and risk exploitation for malicious use cases to
deceive and attack web platforms. They could also extend their perceptual capa-
bilities beyond the web with connected devices such as microphones and cam-
eras, affecting the personal privacy of others. Possible threats include spamming,
cyberattacks to overwhelm platforms, and even unfair use of web platforms for
surveillance or illicit financial gains. In WoT context, for instance, bots could
affect smart factories and automated services in the real world, compromising
physical devices and processes with significant security implications [50].

Hypothetically, intelligent social bots could share their beliefs on social plat-
forms similar to or better than any human user, with superb reasoning and
argumentation skills. These cases could negatively impact society by exposing
people and software agents to unexpected, misaligned norms and moral beliefs.
Furthermore, deploying advanced cognitive bots as digital workforces may result
in unforeseen negative economic consequences. Short-term issues could include
unemployment, while long-term concerns may involve ethical dilemmas sur-
rounding bot ownership rights, bot farming, or ‘enslavement’ [47]. Accordingly,
these ethical concerns may affect the legality of cognitive bot development,
potentially impeding their engineering and deployment. Alternatively, this could
introduce new legal aspects regarding regulation, standards, and ethics for inte-
grating and governing bots within emerging socio-technical ecosystems [50].

Despite these concerns, bots’ current and potential applications can posi-
tively impact numerous aspects of society. Cognitive automation, for example, is
driving increased demand for cognitive agents in Industry 4.0, digital twins, and
other digital environments [6,7,51]. Early implementations, like Wikipedia bots,
already play a significant role in fact-checking and other knowledge-based tasks.
On platforms like GitHub, bots assist and automate development tasks [52].
Future cognitive bots could also benefit society by participating in knowl-
edge processing and providing valuable new scientific insights, such as medical
advancements, which significantly outweigh their potential risks.

Today, digital platforms handle simple crawling and API-based bots with
crawling policies and controlled exposure of APIs. However, advanced user-like
bots like the ones envisioned in this report will require more complex mechanisms
to govern and control their behavior and belief-sharing [47,50]. One approach
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towards this is ethics and trust by design, which recommends protocols and
policies for developers and engineering organizations to incorporate trust mod-
els and ethical frameworks at the design and architectural stages [47]. Another
approach proposes norms and user policies with penalties for agents to acknowl-
edge, understand, and adhere to, similar to what human users would do on
digital platforms [50,53]. In return, norm and value-aware bots could establish
participation, trust, and compliance while facing the consequences of noncom-
pliance. They may also contribute to revising and creating collective values and
norms, possibly becoming part of viable socio-technical ecosystems [50,54].

However, ensuring safety and trust in such ecosystems will require diverse
approaches. In addition to providing machine-readable norms and policies tar-
geting cognitive agents, it is essential to tackle ethical and trust issues with
transparent and explainable design and engineering processes at each stage. For
instance, the European Union (EU) recommends a three-phase human interven-
tion approach at the design phase, at the development and training phase, and
at runtime with oversight and override possibilities [55]. As a result, research
on developing advanced cognitive bots must also address critical challenges
in engineering trustworthy, secure, and verifiable AGI bots employing hybrid
approaches.

7 Conclusion

The study presented architectural research challenges in designing and devel-
oping a new line of user-like cognitive bots operating autonomously on digital
platforms. Key challenges, such as the transduction problem, are discussed in
the context of digital web platforms’ access, user-like visual interaction, and
autonomous navigation. In the architecture, we recommend bot-environment
separation to realize bot autonomy and bot skeleton and behavior model separa-
tion for better evolvability. Also, bot communication capabilities should include
diverse possibilities like email, dialogue systems, and blogging. We recommend
utilizing shared behavior models for transfer learning or collective intelligence to
enact generalizable behavior. Finally, we discussed cognitive bots’ ethical impli-
cations and potential long-term effects, proposing to adopt hybrid approaches
that incorporate these aspects into the architecture and the life cycle of bots.

As an outlook, a good starting point for future work would be to concep-
tualize a detailed implementation architecture and construct a bot by utilizing
existing cognitive models. These systems can demonstrate the concept and allow
further detailed analysis through empirical data and benchmarks.
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Abstract. Multiple cognitive algorithms posited to play a key role in
AGI (forward and backward chaining inference, clustering and concept
formation, evolutionary and reinforcement learning, probabilistic pro-
gramming, etc.) are given a common formulation as recursive discrete
decision processes involving optimizing functions defined over meta-
graphs, in which the key decisions involve sampling from probability
distributions over metagraphs and enacting sets of combinatory opera-
tions on selected sub-metagraphs. This forms a bridge between abstract
conceptions of general intelligence founded on notions of algorithmic
information and complex systems theory, and the practical design of
multi-paradigm AGI systems.

1 Introduction

The pursuit of AGI has an abstract theoretical aspect, in which the focus is
understanding what intelligence is at a fundamental level going beyond any par-
ticular biological organism or engineered system. It also has an acutely practical
aspect, in which one is trying to build particular systems with specific resources
and application foci, much like building any other machine (albeit with some
unique aspects given that this sort of machine is expected to take over its own
redesign and re-engineering process).

Connecting the theoretical and practical aspects of AGI is a major challenge,
which if done well can enhance both aspects. Here we present some ideas aimed at
fleshing out this connection, in the specific context of cross-paradigm metagraph-
based AI approaches like the OpenCog family of systems.

Perhaps the best known approach to the abstract formulation of AGI is
the algorithmic-information-theory-driven angle, as represented by AIXI [10],
Godel Machine [13] and their relatives. These abstract AGI systems have the
general form of “reinforcement learning” or “experiential interactive learning”
algorithms, meaning that they operate via iteratively observing the world, then
choosing actions that they expect will give them maximum reward based on
the world’s reactions, etc. They are unrealistic because their action selection is
uncomputable or at best computationally intractable (though efforts have been
made to scale them down [1,14,16]).
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An alternate way of conceiving AGI is Weaver’s notion of “Open Ended Intelli-
gence” [17], which considers intelligences as complex, self-organizing systems that
interact with their environments in such a way as to pursue the two complemen-
tary, often conflicting goals of individuation (maintaining system boundaries and
coherence) and self-transcendence (developing and acquiring new properties and
aspects, including those that would be incomprehensible to earlier system ver-
sions). This approach does not make unrealistic assumptions, but possesses a flu-
idity that renders its rigorous application to specific cases an interesting challenge.

In recent papers such as The General Theory of General Intelligence [7] and
Patterns of Cognition [6] I have sought to provide one sort of conceptual and
mathematical bridge between these general-purpose AGI frameworks and prac-
tical real-world AGI-oriented systems, via looking at formulations of the AI
algorithms playing key roles in the OpenCog AI system in terms of abstract
recursive discrete decision systems. This paper gives a concise overview of a few
of the key ideas from these longer works.

The DDSs (Discrete Decision Systems) we propose on the one hand can
be straightforwardly viewed as scaled down versions of AIXItl or time-bounded
Godel Machine type systems, but on the other hand can be used to drive con-
crete thinking about functional programming implementations of OpenCog algo-
rithms, and understood as seeds for the self-modifying self-organization con-
ceived in Open-Ended Intelligence theory.

The Patterns of Cognition analysis involves representing various cognitive
algorithms as recursive discrete decision processes involving optimizing func-
tions defined over metagraphs, in which the key decisions involve sampling from
probability distributions over metagraphs and enacting sets of combinatory oper-
ations on selected sub-metagraphs. A variety of recursive decision process called
a COFO (Combinatory Function Optimization) algorithm plays a key role. One
can view a COFO as being vaguely like Monte-Carlo-AIXI, but within the con-
text of a combinatory computational model – and with the added twist that the
Monte Carlo sampling based estimations are augmented by estimations using
other probabilistic algorithms that are themselves implemented using COFO.
There are close connections to modern probabilistic programming theory [11],
but with more of an emphasis on recursive inference algorithms and less reliance
on simplistic sampling methods.

Behind the scenes of the COFO framework is a core insight drawn from the
body of theory behind the OpenCog system – that a combinatory computational
model defined over metagraphs is an especially natural setting in which to for-
malize various practical AGI-oriented algorithms. From a sufficiently abstract
perspective, all Turing-complete computational models are equivalent, and all
general-purpose computational data structures are equivalent. But from a prac-
tical AGI implementation and teaching perspective, it makes a difference which
computational models and data structures one chooses; the argument for meta-
graphs as the core data structure for AGI has been laid out in [3] and references
therein such as [2], and the argument for combinatory computing as the core
approach for AGI has been laid out in [9] and earlier papers referenced therein.
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2 Discrete Decision Systems

To bridge the gap between abstract AGI agent models and practical AGI sys-
tems, we introduce a basic model of a discrete decision system (DDS) – a process
defined on n stages in which each stage t = 1, . . . , n is characterized by

– an initial state st ∈ St, where St is the set of feasible states at the beginning
of stage t;

– an action or “decision variable” xt ∈ Xt, where Xt is the set of feasible
actions at stage t – note that Xt may be a function of the initial state st;

– an immediate cost/reward function pt(st, xt), representing the cost/re-
ward at stage t if st is the initial state and xt the action selected;

– a state transition function gt(st, xt) that leads the system towards state
st+1 = gt(st, xt).

The mapping of the simple agents model given above into this framework is
fairly direct: environments determine which actions are feasible at each point in
time and goals are assumed decomposable into stepwise reward functions. Highly
generally intelligent agents like AIXItl fit into this framework, but so do prac-
tical AI algorithm frameworks like greedy optimization and deterministic and
stochastic dynamic programming. As we shall see, with some care and further
machinery the various cognitive algorithms utilized in the OpenCog framework
can be interpreted as DDSs as well.

To express greedy optimization in this framework, one begins with an initial
state, chosen based on prior knowledge or via purely randomly or via appropri-
ately biased stochastic selection. Then one chooses an action with a probability
proportional to immediate cost/reward (or based on some scaled version of this
probability). Then one enacts the action, the state transition, and etc.

An interesting case of “greedy” style DDS dynamics in an AGI context is the
adaptive spreading of attention through a complex network. OpenCog’s atten-
tional dynamics subsystem, ECAN (Economic Attention Networks), involves
spreading of two types of attention values through a knowledge metagraph –
Short-Term Importance (STI) and Long-Term Importance (LTI) values, repre-
senting very roughly the amount of processor time an Atom should receive in
the near term, and the criticalness of keeping an Atom in RAM in the near term.
In this case: an initial state is a distribution of STI and LTI values across the
Atoms in an Atomspace; an action is the spreading of some STI or LTI from
one Atom to its neighbors; an immediate cost/reward function is the degree
to which a given spreading action causes the distribution of STI/LTI values to
better approximate the actual expected utilities of assignation of processor time
and RAM to the Atoms in Atomspace; a state transition function is the
updating of the overall set of STI/LTI values; and the ECAN equations in the
OpenCog system embody a greedy heuristic for executing this DDS.

To express dynamic programming in this DDS framework is a little subtler,
as in DP one tries to choose actions with probability proportional to overall
expected cost/reward. Estimating the overall expected cost/reward of an action
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sequence requires either an exhaustive exploration of possibilities (i.e. full-on
dynamic programming) or else some sort of heuristic sampling of possibilities
(approximate stochastic dynamic programming).

To handle concurrency in this framework, one can posit underlying atomic
actions wt ∈ Wt, and then define the members of Xt as subsets of Wt. In this
case each action xt represents a set of wt being executed concurrently.

3 Combinatory-Operation-Based Function Optimization

To frame the sorts of cognitive algorithms involved in OpenCog and related
AGI architectures in terms of general DDS processes, [6] introduces the notion
of COFO, Combinatory-Operation-Based Function Optimization. Basically, a
COFO process wraps a combinatory computational system of the sort considered
in [4] and [7] within a DDS, by using the combinatory system as the method
of choosing actions in a discrete decision process oriented toward optimizing a
function. The hypothesis is then made that this particular sort of DDS plays
a core role in practical AGI systems operating in environments relevant to our
physical universe and the everyday human world.

More specifically, we envision a cognitive system controlling an agent in an
environment to be roughly describable as a DDS (the “top-level DDS”), and
then envision the cognitive processing used for action selection in the DDS as
comprising: 1) A memory consisting of a set of entities that combine with each
other to produce other entities, i.e. a combinatory system embodied in a knowl-
edge metagraph; 2) Cognitive processes instantiated as COFO processes, i.e.
as DDSs whose goals are function optimizations and whose actions are func-
tion evaluations, all leveraging a common metagraph as background knowledge
and as a dynamic store for intermediate state; 3) One or more DDSs carrying
out attention allocation on the common metagraph (the core DDS here using
greedy heuristics but supplemented by one or more additional DDSs using more
advanced cognition), spanning the portions of the metagraph focused on by the
various COFO processes.

So practical intelligent systems are modeled as multi-level DDSs where the
subordinate DDSs operating within the outer-loop agent control DDS are mostly
COFO processes. In [7] some effort is taken to explore how the various COFO-
like processes involved in human-like cognition appear to interoperate in human
cognitive architecture, and more specifically how the OpenCog Hyperon design
explicitly interleaves COFO processes in its attempt to manifest advanced AGI.

A COFO process, more explicitly, involves making of a series of decisions
involving how to best use a set of combinatory operators Ci to gain information
about maximizing a function F (or Pareto optimizing a set of functions {Fi}) via
sampling evaluations of F ({Fi}). For simplicity we’ll present this process in the
case of a single function F but the same constructs work for the multiobjective
case. It is shown in [6] how COFO can be represented as a discrete decision
process, which can then be enacted in greedy or dynamic programming style.

Given a function F : X → R (where X is any space with a probability
measure on it and R is the reals), let D denote a “dataset” comprising finite
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subset of the graph G(F ) of F , i.e. a set of pairs (x, F (x)). We want to introduce
a measure qF (D) which measures how much guidance D gives toward the goal
of finding x that make F (x) large. The best measure will often be application-
specific; however as shown in [6] one can also introduce general-purpose entropy-
based measures that apply across domains and problems.

We can then look at greedy or dynamic programming processes aimed at
gradually building a set D in a way that will maximize qρ,F (D). Specifically, in
a cognitive algorithmics context it is interesting to look at processes involving
combinatory operations Ci : X × X → X with the property that P (Ci(x, y) ∈
MD

ρ |x ∈ MD
ρ , y ∈ MD

ρ ) � P (z ∈ MD
ρ |z ∈ X). That is, given x, y ∈ MD

ρ ,
combining x and y using Ci has surprisingly high probability of yielding z ∈ MD

ρ .
Given combinatory operators of this nature, one can then approach gradually

building a set D in a way that will maximize qρ,F (D), via a route of successively
applying combinatory operators Ci to the members of a set Dj to obtain a set
Dj+1.

Framing this COFO process as a form of recursive Discrete Decision System
(DDS), we obtain:

1. A state st is a dataset D formed from function F
2. An action is the formation of a new entity z by

(a) Sampling x, y from X and Ci from the set of available combinatory oper-
ators, in a manner that is estimated likely to yield z = Ci(x, y) with
z ∈ MD

ρ

i. As a complement or alternative to directly sampling, one can perform
probabilistic inference of various sorts to find promising (x, y, Ci).
This probabilistic inference process itself may be represented as a
COFO process, as we show below via expressing PLN forward and
backward chaining in terms of COFO

(b) Evaluating F (z), and setting D∗ = D ∪ (z, F (z)).
3. The immediate reward is an appropriate measure of the amount of new

information about making F big that was gained by the evaluation F (z).
The right measure may depend on the specific COFO application; one fairly
generic choice would be the relative entropy qρ,F (D∗,D)

4. State transition: setting the new state st+1 = D∗

A concurrent-processing version of this would replace 2a with a similar step in
which multiple pairs (x, y) are concurrently chosen and then evaluated.

The action step in a COFO process is in essence carrying out a form of
probabilistic programming [11] (which is clear from the discussion of probabilis-
tic programming in a dependent type context given in [5]). Finding the right
conglomeration of combinatory operators to produce a given output is formally
equivalent to finding the right program to produce a given sort of output, and
here as in probabilistic programming one is pushed to judiciously condition esti-
mates on prior knowledge.

In the case where one pursues COFO via dynamic programming, it becomes
stochastic dynamic programming because of the probabilistic sampling in the
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action. If probabilistic inference is used along with sampling, then one may have
a peculiar sort of approximate stochastic dynamic programming in which the
step of choosing an action involves making an estimation that itself may be
usefully carried out by stochastic dynamic programming (but with a different
objective function than the objective function for whose optimization the action
is being chosen).

Basically, in the COFO framework one looks at the process of optimizing F
as an explicit dynamical decision process conducted via sequential application
of an operation in which: Operations Ci that combine inputs chosen from a
distribution induced by prior objective function evaluations, are used to get new
candidate arguments to feed to F for evaluation. The reward function guiding
this exploration is the quest for reduction of the entropy of the set of guesses at
arguments that look promising to make F near-optimal based on the evaluations
made so far.

The same COFO process can be applied equally well the case of Pareto-
optimizing a set of objective functions. The definition of MD

ρ must be modified
accordingly and then the rest follows.

Actually carrying out an explicit stochastic dynamic programming algorithm
according to the lines described above, will prove computationally intractable
in most realistic cases. However, we shall see below that the formulation of the
COFO process as dynamic programming (or simpler greedy sequential choice
based optimization) provides a valuable foundation for theoretical analysis.

4 Cognitive Processes as COFO-Guided Metagraph
Transformations

COFO is a highly general framework, and to use it to structure specific AI
systems one has to take the next step and introduce specific sets of combina-
tory operations, often associated with specific incremental reward functions in
the spirit of (but often not identical) the information-theoretic reward approach
hinted above. In [6] explicit discussion is given to the COFO expression of a vari-
ety of cognitive algorithms used in the OpenCog AGI approach: Logical reason-
ing, evolutionary program learning, metagraph pattern mining, agglomerative
clustering and activation-spreading-based attention allocation.

We will focus mainly here on AGI architectures such as OpenCog that have
metagraphs as core meta-representational data structures – thus placing meta-
graphs in a dual role: 1) As a fundamental means of analyzing what the AGI
system is doing from a conceptual and phenomenological perspective; 2) As the
core data structure the AGI system uses to store various sorts of information as
it goes about its business.

In this sort of AGI architecture, the expression of logical inference, program
learning and pattern mining in combinatory-system terms ties directly back to
the discussion of distinction metagraphs and associated patterns in [7]. Logical
inference rules can be considered as transformations on distinction metagraphs.
Bidirectional inference rules (expressed using coimplication) are rules mapping
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between two distinction metagraphs that have different surface form but ulti-
mately express the same distinctions between the same observations. Programs
can be viewed, using Curry-Howard type mappings, as series of steps for enact-
ing these logical-inference-rule transformation on metagraphs, where the steps
are to be carried out on an assumed reference machine. The reference machine
itself may also be represented as a distinction metagraph with temporal links
used to express the transitions involved in computations. Pattern mining can be
expressed in terms of formal patterns in metagraphs. Clustering can be viewed
as a sort of metagraph transformation that creates new ConceptNodes grouping
nodes into categories. Etc.

In this context, COFO presents itself as a way of structuring processes
via which sub-metagraphs transform other sub-metagraphs into yet other sub-
metagraphs, where the submetagraphs are interpreted as combinators and are
combined via a systematic recursive process toward the incremental increase of
a particular reward function. And the common representation of multiple COFO
processes involved in achieving the overall multiple-goal-achieving activities of a
top-level DDS in terms of a shared typed metagraph is one way to facilitate the
cognitive synergy needed to achieve high levels of general intelligence under prac-
tical resource constraints. The reliance on a common metagraph representation
makes it tractable for the multiple cognitive algorithms to share intermediate
state as they pursue their optimization goals, which enables the cognitive-synergy
dynamic in which each process is able to call on other processes in the system
for assistance when it runs into trouble.

5 COFO Processes as Galois Connections

For some of the cognitive algorithms treated in COFO terms in [6] one requires
a variety of COFO that uses greedy optimization to explore the dag of pos-
sibilities, for others one requires a variety of COFO that uses some variation
on approximation stochastic dynamic programming. In either case, one can use
the “programming with Galois connections” approach from [12] to formalize the
derivation of practical algorithmic approaches. Roughly, in all these cases, Galois
connections are used to link search and optimization processes on directed meta-
graphs whose edge targets are labeled with probabilistic dependent types, and
one can then show that – under certain assumptions – these connections are ful-
filled by processes involving metagraph chronomorphisms (where a chronomor-
phism is a fold followed by an unfold, where both the fold and unfold are allowed
to accumulate and propagate long-term memory as they proceed).

5.1 Greedy Optimization as Folding

Suppose we are concerned with maximizing a function f : X → R via a “pattern
search” approach. That is, we assume an algorithm that repeatedly iterates a
pattern search operation such as: Generates a set of candidate next-steps from
its focus point a, evaluates the candidates, and then using the results of this
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evaluation, chooses a new focus point a∗. Steepest ascent obviously has this
format, but so do a variety of derivative-free optimization methods as reviewed
e.g. in [15].

Evolutionary optimization may be put in this framework if one shifts atten-
tion to a population-level function fP : XN → R where XN is a population
of N elements of X, and defines fP (x) for x ∈ XN as e.g. the average of f(x)
across x ∈ XN (so the average population fitness, in genetic algorithm terms).
The focus point a is a population, which evolves into a new population a∗ via
crossover or mutation – a process that is then ongoingly iterated as outlined
above.

The basic ideas to be presented here work for most any topological space X
but we are most interested in the case where X is a metagraph. In this case
the pattern search iteration can be understood as a walk across the metagraph,
moving from some initial position in the graph to another position, then another
one, etc.

We can analyze this sort of optimization algorithm via the Greedy Theorem
from [12],

Theorem 1 (Theorem 1 from [12]). (|S � R|) ⊆ (|S|) � R if R is transitive and
S satisfies the “monotonicity condition” R◦ ← SFR◦

which leverages a variety of idiosyncratic notation: R S←− FR indicates S ·FR ⊆
R ·S ; (|S|) means the operation of folding S ; 〈µX :: fX〉 denotes the least fixed
point of f ; T ◦ means the converse of T , i.e. (b, a) ∈ R◦ ≡ (a, c) ∈ R ; S � R
means “S shrunk by R”, i.e. S ∩ R/S◦. Here S represents the local candidate-
generation operation used in the pattern-search optimization algorithm, and R
represents the operation of evaluating a candidate point in X according to the
objective function being optimized.

If the objective function is not convex, then the theorem does not hold, but
the greedy pattern-search optimization may still be valuable in a heuristic sense.
This is the case, for instance, in nearly all real-world applications of evolutionary
programming, steepest ascent or classical derivative-free optimization methods.

5.2 Galois Connection Representations of Dynamic Programming
Decision Systems Involving Mutually Associative Combinatory
Operations

Next we consider how to represent dynamic programming based execution of
DDSs using folds and unfolds. Here our approach is to leverage Theorem 2
in [12] which is stated as

Theorem 2 (Theorem 2 from [12]). Assume S is monotonic with respect to R,
that is, R S←− FR holds, and dom(T ) ⊆ dom(S·FM). Then

M = ((|S|)· (|T |)◦) � R ⇒ 〈µX::(S·FX·T ◦) � R〉 ⊆ M
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Conceptually, T ◦ transforms input into subproblems, e.g. for backward chain-
ing inference, it chooses (x, y, C) so that z = C(x, y) has high quality (e.g.
CWIG); for forward chaining, it chooses x, y, C so that z = C(x, y) has high
interestingness (e.g. CWIG).
FX figures out recursively which combinations give maximum immediate reward
according to the relevant measure. These optimal solutions are combined and
then the best one is picked by � R, which is the evaluation on the objective
function. Caching results to avoid overlap may be important here in practice
(and is what will give us histomorphisms and futumorphisms instead of simple
folds and unfolds).

The fix-point based recursion/iteration specified by the theorem can of course
be approximatively rather than precisely solved – and doing this approxima-
tion via statistical sampling yields stochastic dynamic programming. Roughly
speaking the approach symbolized by M = ((|S|)· (|T |)◦) � R begins by apply-
ing all the combinatory operations to achieve a large body of combinations-of-
combinations-of-combinations-. . ., and then shrinks this via the process of opti-
mality evaluation. On the other hand, the least-fixed-point version on the rhs of
the Theorem iterates through the combination process step by step (executing
the fold).

6 Associativity of Combinatory Operations Enables
Representing Cognitive Operations as Folding
and Unfolding

A key insight reported in Patterns of Cognition is that the mutual associativity
of the combinatory operations involved in a cognitive process often plays a key
role in enabling the decomposition of the process into folding and unfolding
operations. This manifests itself for example in the result that

Theorem 3. A COFO decision process whose combinatory operations Ci are
mutually associative can be implemented as a chronomorphism.

This general conclusion regarding mutual associativity resonates fascinat-
ingly with the result from [4] mentioned above, that mutually associative com-
binatory operations lead straightforwardly to subpattern hierarchies. We thus
see a common mathematical property leading to elegant and practically valu-
able symmetries in both algorithmic dynamics and in knowledge-representation
structure. This bolsters confidence that the combinatory computational model
is a good approach for exploring the scaling-down of generic but infeasible AGI
models toward the realm of practically usable algorithms.

This conclusion regarding mutual associativity also has some practical impli-
cations for the particulars of cognitive processes such as logical reasoning and
evolutionary learning. For instance, one can see that mutually associativity
holds among logical inference rules if one makes use of reversible logic rules
(co-implications rather than implications), and for program execution processes
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if one makes use of reversible computing. It is also observed that where this
mutual associativity holds, there is an alignment between the hierarchy of sub-
goals used in recursive decision process execution and subpattern hierarchies
among patterns represented in the associated knowledge metagraph.

In the PLN inference context, for example, the approach to PLN inference
using relaxation rather than chaining outlined in [8] is one way of finding the
fixed point of the recursion associated with the COFO process. What the theo-
rem suggests is that folding PLN inferences across the knowledge metagraph is
another way, basically boiling down to forward and backward chaining as out-
lined above. However, it seems this can only work reasonably cleanly for crisp
inference if mutual associativity among inference rules holds, which appears to
be the case only if one uses PLN rules formulated as co-implications rather than
one-way implications.

Further, when dealing with the uncertainty-management aspects of PLN
rules, one is no longer guaranteed associativity merely by adopting reversibility
of individual inference steps. One must heuristically arrange one’s inferences as
series of co-implications whose associated distributions have favorable indepen-
dence relationships.

7 Challenges and Prospects

The assumptions needed to get from the symmetry properties of discrete decision
processes to fold and unfold operations are not entirely realistic – for instance,
to get the derivations to work in their most straightforward form, one needs to
assume the underlying metagraph remains unchanged as the folding and unfold-
ing processes proceed. If the metagraph changes dynamically along with the
folding and unfolding – e.g. because inference processes are drawing conclusions
from the nodes and links created during the folding process, and these conclu-
sions are being placed into the metagraph concurrently with the folding process
proceeding – then one loses the straightforward result that simple approximate
stochastic dynamic programming algorithms will approximate the optimal result
of the decision process. This is a serious limitation, but it must also be under-
stood that in many cases the real-time changes to the metagraph incurred by
the folding and unfolding process are not a significant factor. Creating rigorous
theory connecting abstract AGI theory to pragmatically relevant cognitive algo-
rithms and their implementations is a complex matter inevitably involving some
simplifications and approximations; the trick is to choose the right ones.

If one wishes to explore open-ended, evolutionary AGI systems in which
multiple algorithms constructed on diverse principles interact within a common
meta-representational fabric, then the conceptual and mathematical approach
presented here provides an avenue for relatively elegant and concise formaliza-
tion, putting diverse AI methods in a common framework. This framework has
potential to ease practical complexity and performance analysis, and also con-
nects practical operational systems with broader conceptions of AGI.
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4 Robotics Lab, Università degli Studi di Palermo, Palermo, Italy
{francesco.lanza,antonio.chella}@unipa.it

Abstract. We demonstrate new comparative reasoning abilities of
NARS, a formal model of intelligence, which enable the asymmetric
comparison of perceivable quantifiable attributes of objects using rela-
tions. These new abilities are implemented by extending NAL with addi-
tional inference rules. We demonstrate the new capabilities in a bottle-
picking experiment on a mobile robot running ONA, an implementation
of NARS.
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1 Introduction

Comparative reasoning has been extensively studied with animals. It has been
demonstrated already decades ago, that various animal species can not only
condition on concrete stimuli, but also on comparative relations between them,
a capability referred to as Transposition [10]. These comparative relations can
be about any perceivable properties objects possess, such as their color, size, or
shape, or the loudness or pitch of the sounds they make. For most animals, as
it turned out, such comparisons are trivial to make: they can condition on such
relations almost instantly from just a few examples, and can apply them to novel
objects they have never seen before. In computer systems only some aspects of
these capabilities have been replicated, such as by deciding which code path
to take in a program, based on the outcome of comparisons between numbers
with mathematical operators in various programming languages. However, the
difficulty lies not in number comparison itself, but in deciding what to compare,
and when to compare, and also that most comparisons to be made are relative
to another object or category and are hence context-dependent. Furthermore, to
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exploit the properties of comparative relations, such as to derive new comparative
relations from previous ones, reasoning is required. This is especially the case for
asymmetric relations, which cannot be handled in a purely associative manner.

Based on our previous results related to fuzzy quantities and preferences
[13,14], this paper extends Non-Axiomatic Logic (henceforth NAL, [15,16]) to
support the formation and usage of comparative relations.

This capability has been added in ONA [7], an implementation of NARS
(Non-Axiomatic Reasoning System), which will be demonstrated in an experi-
ment with a mobile robot with manipulator arms.

2 Related Work

A representative attempt to support a cognitively plausible treatment of quanti-
ties attached to concepts is Conceptual Spaces [5]. Conceptual Spaces are vector
spaces of semantically meaningful measures, with a pre-defined similarity metric,
such as the color space represented as a three-dimensional space of red, green,
and blue. The following represents a series of works in which conceptual spaces
were used:

In [9], authors claim that the Conceptual Space can be used as a lingua franca
for the different levels of representation. With Conceptual Space it becomes
easy to unify and generalize many aspects of symbolic, diagrammatic and sub-
symbolic approaches and integrate them on a common ground. Various applica-
tions were realized using conceptual spaces.

In [4], Conceptual Spaces were used to define a framework for endowing a
computer vision architecture with a high-level representation capability through
the definition of conceptual semantics for the symbolic representations of the
vision system. Another usage [3], for example, involves Conceptual Spaces to
allow robotic systems to learn effectively by imitation, and not simply reproduc-
ing the movements of a human teacher. In that way, the system should be able
to deeply understand the perceived actions to be imitated. In [2], the author
presented a cognitive architecture for a musical agent. In this architecture, con-
ceptual spaces were used to represent the perception of tones and intervals.

In contrast to these approaches, as we will see, NARS does not utilize pre-
defined attribute vectors, and the similarity evaluation in our approach is depen-
dent on previously experienced values of the compared attribute in a reference
class, which supports to handle context-dependence in comparative reasoning,
and more significantly, to find useful subsets of properties to compare with
beyond what a human designer pre-specified.

Another less similar but still related approach is to make use of Deep Neu-
ral Network (DNN) or simpler function approximators to learn task-relevant
relational comparison functions (as in [11]). This can also be combined with
Reinforcement Learning (by learning a suitable DNN policy [17]).

Hereby, sample efficiency decreases drastically when task-relevant functions
able to carry out value comparisons have to be learned from a blank slate while
the agent is operating, which is avoided when having domain-independent com-
parative reasoning abilities inbuilt in the agent. Related evolved general-purpose
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capabilities which establish data-efficient learning in survival-critical settings are
long being studied [10].

3 Formalization of Comparative Relation

NARS is a model of intelligence that has been partially formalized and imple-
mented [15,16]. It uses a concept-centered knowledge representation, in which a
concept is a data structure summarizing a fragment or pattern of the system’s
experience, identified by a term in a formal language Narsese. A term is an inter-
nal name that can be atomic (i.e., an ID or key) or compound (i.e., a structure
of other terms).

Some terms correspond to conceptual relations. A Comparative Relation is a
special type of relation with two components for which a measurement or total
order among a class of terms can be obtained. This is formalized as follows:

– Given a measurement M defined on a class C, each instance c of the class has
a value v. This measurement can be written as v = M(c), or in Narsese as
({c}×{v}) → ↑M , which intuitively means that M is an executable operation
of the system that, when c is given as input, returns v as output.

– For any pair of instances of the class c1 and c2, their values can be compared
to get one of the three possible results: M(c1) > M(c2), M(c1) < M(c2), or
M(c1) = M(c2). If M is not a measurement but a total order, the result is
directly obtained.

– Using Boolean operators, disjunction and negation, ≥, ≤, and �= can also be
obtained from the comparison in the usual way.

– Each of the comparisons of measurement results corresponds to a comparative
relation between c1 and c2, such as M(c1) > M(c2) can be written as ({c1}×
{c2}) → >M , where the relation is identified by the measurement M with
the comparative relation > as a prefix.

– For each measurement, six such comparative relations can be defined. Here,
the arithmetic comparison is interpreted or instantiated into the concrete
relationship, that is, while > compares two numbers, >LENGTH compares
the lengths of two objects.

Relative Ranking

The previous works [13,14] have extended the comparisons from between two
instances to between an instance and a reference class. Formally, ({c1}×C) → R
is taken as a summary of ({c1} × {x}) → R for every x in C that has been
compared to c1, directly or indirectly. Therefore, in ideal situations where there
is no uncertainty in the instance comparisons, the truth-value of ({c1} × C) →
>LENGTH indicates its relative ranking in C on length, that is, the frequency of
the statement indicates the percent of instances of C that c is longer than, while
the confidence of the statement indicates the number of instances compared so
far, relative to a constant.
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In the simplest situations, such a conclusion is derived by the induction rule
from ({c1} × {c2}) → R and {c2} → C, with conversions between product and
image. Such judgments are merged by the revision rule to get the statistical result
incrementally. The final conclusion is however not necessarily purely statistical
or inductive, as matching conclusions can be obtained via other inference paths
[16]. Using the same approach, it is also possible to draw comparative conclusions
between two reference classes (or generic terms) like (C1 × C2) → R.

When the measurement values are directly available (such as in a sensation),
it is possible to take the difference of the measurement values |v1 − v2| as the
weight of evidence for each comparison, so the truth-value is not merely a rela-
tive measurement [14]. For example, if the available values are 1, 2, and 9, the
frequency for 2 to be considered as “larger than the others” is not 1/(1 + 1), but
1/(1 + 7), as the negative evidence is much “heavier” than the positive evidence.

Comparative Property

As analyzed in [13], many “fuzzy” property or membership is caused by com-
parisons with instances in an implicit reference class.

For example, “The Amazon River is long” actually means “The Amazon
River is longer than the other rivers”, so in Narsese it should be ({Amazon} ×
river) → >LENGTH or {Amazon} → (>LENGTH / , river), rather than as
{Amazon} → [long]. This is the case because the “comparative property” [long]
is highly context-dependent, and largely determined by the reference class.

Another special feature of comparative relation appears in a statement like
{Amazon} → (>LENGTH / , river) where its frequency is low (near 0) or
inconclusive (near 0.5). For ordinary inheritance judgments, low frequency usu-
ally means “no inheritance”. In particular, if two objects both lack a property,
such as “not red”, they should not be considered similar to each other for this
reason, however, for continuous measurements, close values provide evidence for
their similarity, and the closer, the more evidence there is, no matter where they
are in the range of the values. For example, if two rivers are “not long”, then
they are both “short”, so are similar for that reason.

Also, in sensory channels the reference class is often implied. Instead of
({c1} × Brightness) → >bright, one can write {c1} �→ [bright] as a shortcut.

Inference Rules

To provide inference on comparative relations, the following inference rules are
added as an extension of NAL:

– Comparing two measurements:

{({c1} × {v1}) → ↑M, ({c2} × {v2}) → ↑M} � ({c1} × {c2}) → R

whereby R is either <M , >M , or =M dependent on whether v1 < v2, v1 > v2,
or v1 = v2 holds.
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– Transitivity of comparative relation, using fded truth function [16]:

{(A × B) → R, (B × C) → R} � (A × C) → R, fded

– Symmetry of comparative relations of type =:

{(A × B) → =M} � (B × A) → =M

– Inversion of a comparative relation of type <and>:

{(A × B) → >M } � (B × A) → <M

{(A × B) → <M } � (B × A) → >M

– Exclusiveness of comparative relations:

∀R,S ∈ {<M,>M,=M} : (R �= S) =⇒ {(A×B) → R} � ¬((A×B) → S)

– Negation of a comparative relation/property:

∀R,S, T ∈ {<M,>M,=M} : ((R �= S) ∧ (R �= T )) =⇒
¬(A × B) → R} � (A × B) → S ∨ (A × B) → T

– Inference rule and truth function for class-based comparison:

{({c1} × C) → R, ({c2} × C) → R} � ({c1} × {c2}) → R

whereby R is either <M , >M , dependent on whether f1 < f2, or f1 > f2
holds. This is similar as in value comparison, but please note that here we
compare the revised frequency values relative to the class, which indicates
what proportion of instances in that class the instances’ M property is smaller
or greater than. The conclusion confidence hereby is dependent on the premise
confidences via c = c1 ∗ c2, and the conclusion frequency is f = 1.

Comparisons via Commonalities and Differences

In perception, it is not feasible to exhaustively compare all encountered objects
with all currently perceived and remembered ones, especially if each comparison
needs to select an informative subset of properties as the basis for the com-
parison, which will hopefully be useful to condition on to achieve goals. Which
brings us back to the question: what to compare with, and when? According
to selective perception, active relational goals should request/trigger the task-
relevant comparisons of interest, a form of top-down attention as discussed in [8].
However, how did the goal structure which brings them into existence emerge
in the first place? One answer could be (and is the one we find most promising
and choose to pursue) that attending to commonalities and differences between
observed and remembered instances significantly reduces the number of possible
groups of properties to consider for comparison. When an instance is recalled
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from memory that is closest to the newly perceived instance, it is not uncom-
mon that there will be dozens of matching properties (it was the closest instance
after all). Now, any differences to the remembered instance are highly informa-
tive and might indicate a change, which allows categorizing the newly observed
instance not only based on the closest memory item, but also according to the
most significant difference to it, which is a much more concise description (as
it references the closest, yet keeps the significant differences) than when having
to include all the properties of the new instance in its encoding. We will later
see the relevance of this in the experiment, but for this to work the following
additional inference rules are required:

1. to obtain instance similarity from comparative properties with value-wise
close measurements (e.g. to find the best-matching instance in memory):

{{c1} → (>M / , C), {c2} → (>M / , C)} � ({c1} × {c2}) → =M, fmcmp

2. and to summarize comparison evaluations regarding multiple properties:

{{c1} → (>M / , C), {c2} → (>M / , C)} � ({c1} ↔ {c2}), fmcmp

fmcmp(f1, c1, f2, c2) = (1 − |f1 − f2|, c1 ∗ c2)

whereby fmcmp makes the ratio of positive over total evidence in the conclu-
sion depend on the closeness of the frequency values, and the confidence of
the conclusion depend on the confidence of the premises.

Please note that it is also possible to obtain evidence against instance simi-
larity from comparative properties by negating the previous two inference rule
conclusions. These rules are useful to find the most similar instances by revising
the conclusions, and to find the most significant differences which can then be
used to trigger the previous comparative inferences to build an instance-relative
description for a new instance to be encoded/described relative to the other.

4 Experiment

The new capability to form comparative relations was also tested in a use case
with a Transbot robot. The following is a brief description of the robot hardware
and the software architecture used to demonstrate the novel capability. In the
end, the experimental setup is described.

Transbot Robot

Transbot is a tracked mobile robot with manipulator arm. Due to its tracks,
it is able to perform in outdoor environments, including off-road conditions. It
is based on ROS (Robot Operating System) Melodic running on Ubuntu 18.04
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LTS and can be programmed using C/C++ and Python. Transbot is useful
for building various robotic applications. In terms of hardware, it is equipped
with a NVIDIA Jetson Nano board, which acts as the control unit to coordinate
and implement the robot’s behaviour, and a set of sensors, such as an Astra
Pro depth camera and Slamtec RPLIDAR A1 Lidar sensor. Due to its Lidar
and depth camera which allows for Simultaneous Localization and Mapping,
Transbot is able to map its environment to carry out exploration tasks. Also, it
includes robotic arm with three degrees of movement controlled with separate
servo motors, which allows the robot to perform various object manipulation
tasks (such as object grasping).

The Robot Architecture

The novel way to form comparative relations was integrated in the latest version
of ONA (which will be v0.9.2). To show it, a robotic application was realized
using the Transbot robot. To endow Transbot with the capability to use NARS
as its reasoning system, a related ROS node was realized. The ROS module is a
part of the ONA framework, available on Github1. The ROS network structure
is illustrated in Fig. 1.

Fig. 1. ROS network for NARS

The network, as illustrated in Fig. 1 consists of channel nodes on input side,
a ROS node for NARS (ONA), and a node on the output side for passing on
operation calls to ROS components to control the robot.

The channel nodes include (whereby localization and local obstacle detection
is omitted as they are not directly required for our experiment):

– vision: a node which applies YOLOv4 [1] on RGB camera input, and merges it
with depth camera input to assign a depth to each bounding box. The result
is encoded into Narsese, and encodes location, size, and class information in

1 https://github.com/opennars/OpenNARS-for-Applications.

https://github.com/opennars/OpenNARS-for-Applications
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a way the reasoner can work with. Also color information (red, green, blue)
is extracted from within each bounding box detection, by finding the most
dominant (in terms of area) color surfaces.

– haptic: responsible for servo feedback of the gripper, to indicate, with a
boolean whether the robot managed to get a hold on an object when picking
it by monitoring the rate of angle change of the gripper during the relevant
part of the pick operation, reporting if it is below a threshold. The feedback
is directly encoded as event (gripper → [holding]) and (gripper → [free]).

The reasoner core node (as in Fig. 1), directly runs ONA, and accepts new
inputs as strings formatted with the Narsese formal language the reasoner works
with, by subscribing to the Narsese topic. There is also a topic for real-time
Q&A purposes, but this is outside of the scope of this paper. To let ONA con-
trol the robot, operation executions are redirected to the Exec node for further
dispatch. Hereby the ROS navigation stack is utilized for robot base movements,
by publishing move base/goal desired target location goals (both local-relative,
and map-absolute) and canceling the previous ones when new operations are
invoked by ONA (via move base/cancel). In addition, the manipulator arm of
the robot is controlled by directly adjusting the angles of the servo motors based
on the location of the visually detected object chosen to be picked and its cor-
responding depth estimate.

Use Case

Hereby we will make use of that NARS receives both events for color (red, green
blue), and for bounding box location and size in the X and Y coordinate for each
detected object. This allows the reasoner to build comparative relations as dis-
cussed, among the perceived objects, such as relative color and size differences.
The task of the robot is to pick the smaller among the two bottles based on the
derived comparative relations. As mentioned, in the vision channel, YOLOv4
trained on ImageNet is utilized as an object detection model. The vision chan-
nel uses relative location information (relative to the center) together with size
information, the output label to form statements of the form <objectLabel �→
[locationComponent]> and <objectLabel �→ [sizeComponent]> for X and Y
dimension respectively. In addition, the most dominant color surface is extracted
to give color information to each bounding box corresponding to a detected
object, which is <objectLabel �→ [colorComponent]> statements for each color
component. This encoding makes ONA aware of the detected object types, their
colors, and also their position in the camera’s field of view as also necessary
to pick them up successfully. In terms of mission specification, the following
statement specifies picking the smaller bottle among the two observed bottles:

<(<{#1 #2} --> bottle> &| <({#1} * {#2}) --> (> sizeY)>) &/
<({SELF} * {#2}) --> ^pick>) =/> G>.

Please note that the most significant differences are also most visible to the
system, so even before any goal is given to the system, the system will notice
the significant size difference among the two bottles shown in Fig. 2.
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Fig. 2. Selection and picking of smaller bottle

Here, when the two bottles are not in sight, there is a derived goal

<{#1 #2} --> bottle>! :|:

which leads the system to explore its environment to find said bottles first. The
exploration strategies for the robot are outside of the scope of this paper but can
be seen in our previous publication [6] and can be combined with established
exploration strategies such as based on random trees [12] as long as they can be
invoked and stopped at any time by NARS operations.

5 Conclusion

The new comparative reasoning abilities for NARS were presented, including
the new relational compound terms and the related inference rules. It was
demonstrated that this treatment goes beyond Conceptual Spaces, as combin-
ing attributes into pre-defined vectors is not necessary with this approach, and
the similarity evaluation is dependent on previously experienced values of the
compared attribute in a reference class. Also, it was shown with a concrete exper-
iment how comparative reasoning can lead to cognitive abilities such as being
able to compare perceivable quantities of visually detected objects, and to make
decisions accordingly on a real robot with a camera. This, as in our example,
can be relevant for decision making in intelligent agents, including robots. In the
future, experiments where it is required to learn behaviors with comparative rela-
tions as a precondition will be shown as well. This ability is a direct consequence
of NARS being able to incorporate derived events in procedure learning.
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Abstract. What is the right action? is a question an agent with artificial
general intelligence (AGI) will have to face, especially in applications that
deal with the health and well-being of human companions. Previous work
has considered psychological aspects for forming ethical decision-making;
here we consider a philosophy approach and apply abstract, general prin-
ciples that drive ethical decision-making. Starting with a maxim that has
resonated within the health community: “first, do no harm”, we intro-
duce equivalent beliefs and goals to a non-axiomatic reasoning system and
examine the sub-goals that are formed. We provide a simple scenario that
shows how an AGI system might reason from contrasting, normative ethi-
cal theories and how they might combine to provide an ethical framework
for AGI to engage in more complex human affairs.

Keywords: NARS · ethics · consequentialism · deontological · virtue
ethics

1 Introduction

What is the right action? How do we know what we ought to do? And what
reason is there for doing as we ought? Are enduring and universal questions
faced when dealing with ethical conundrums. An artificial agent, capable of gen-
eral intelligence, whether it be proto, super or somewhere in between, will face
these questions at some point. It need not be engaged in some futuristic, deep
intellectual problem, as unexpected events and tasks in everyday life provide
ample opportunities for consideration. Whilst Goertzel et al. have given consid-
erable thought to the notion of an ethical system for artificial general intelligence
(AGI) [1], this discussion approached a machine ethics from a psychological
aspect which would see ethical thinking emerge over a long period of time. Here
we consider a philosophy approach and apply abstract, general principles that
could drive ethical decision-making. We believe this provides a practical starting
point for development of an ethical subsystem.

We have chosen the non-axiomatic reasoning system (NARS) proposed by
Wang [2,3] for our work. NARS is a unified theory and model of intelligence
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that is arguable the state of the art in a workable, (proto) AGI system. For an
evolving research project spanning decades, NARS is extensively documented [2–
7]. The specifications of NARS allow portability to many systems of various
computational capabilities making it apt from low-cost robotics [5] to more
computationally-scaled applications [8]. More importantly however, it possesses
key cognitive abilities required for diverse ethical thought such as perception,
imagination, prediction, explanation, planning and decision-making [3].

1.1 NARS in Health Care

The authors interest in AGI is for personalized health care. A robotic or virtual
agent that provides remote-monitoring, care, therapy or even companionship to
a person in need is an exciting notion in healthcare. Already there is growing evi-
dence in the benefits of conversation agents (chatbots) [10] and social robots [11].
The addition of (AGI) or even proto-AGI would be a major evolution of these
systems. Earlier work by Wang et al. has shown NARS is capable of expressing
knowledge from the health domain and carrying out inference steps a typical
doctor would [9].

A characteristic of many chronic health conditions are that the causes and
symptoms are very specific to the individual. An example is in the causal behav-
ioral patterns that result in chronic pain [12]. Thus, artificial narrow intelligence
(ANI) techniques that rely on big data are not always amenable with the individ-
ual in mind. An AGI, with the capacity of real-time learning from common-sense
reasoning, prediction and speculation, offers unprecedented insight, particularly
on episodic events relevant to a companion user. We believe this presents an
interesting research opportunity of high importance. The health domain, how-
ever, is fraught with ethical conundrums, and in order to convince ethical com-
mittees and the public, who have a growing unease with the notion of artificial
intelligence (AI), requires work of an ethical framework.

The intersection of Western medicine and ethics began over 2500 years with
the collection of texts calledCorpusHippocraticum which provided the moral basis
and ethical values of ancient Greek medicine. In modern times, the maxim primum
non nocere: “first, do no harm” (principle of non-maleficence), derived from these
texts and became a cardinal principle scared to medicine. If one is designing arti-
ficial agents that primarily assist in health and well-being, this maxim seems a
logical choice to instill in the agent in the early stages of development.

In this article, we’ll explore how this maxim might be implemented in NARS
and provide an example that presents with a simple ethical dilemma, that is
analogous to many situations an AGI might encounter in the real world.

2 Non-axiomatic Reasoning System

The fundamental tenet of NARS is that the system operates under the assumption
of insufficient knowledge and resources (AIKR). This is explicitly implemented
as a design principle that requires the system to provide mechanisms to deal
with finite information-processing and storage capacity, and time-constraints on
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beliefs, goals, and questions that may appear at any time [2]. This is a feature
attributed to all beings that posse general intelligence as argued by Wang [13].

NARS has two main components: a non-axiomatic logic (NAL) and a control
system. The former is a set of inference rules that are mostly syllogistic in form.
The latter is used for the selection and disposal of tasks and beliefs used in
multistep inference. As the control component is not relevant to this work it will
not be further discussed. The reader however is referred to [3] for more details.

The representative language of NARS is called Narsese. It serves the internal
role of representing the inference rules which formed the basis of reasoning,
control routines and grammar rules. It also serves to represent beliefs and tasks
while the system is running, as well as exchange knowledge and problems with
humans and other computers in the outside world [3].

2.1 Term Logic

Narsese is primarily a term logic where a statement is composed of terms joined
together by a copula. A simple statement is of the form S → P , where S is the
subject of the statement, P the predicate, and the copula, →, is an inheritance
relation. Roughly speaking, S → P means S is a special kind of P . Every state-
ment has quantifiable, evidential support denoted by 〈 f, c 〉, where f , referred
to as frequency , is the ratio of the evidence supporting the statement and the
total evidence that either supports or denies the statement, as observed by the
system; c referred to as confidence, and represents the stability of the frequency
of the statement. A statement with a truth-value is referred to as a judgment.

Inferences are made in term logic by considering two premises with a shared
term called the middle term. There are numerous reasoning patterns depending
on the position of the middle term. Table 1 provides example reasoning pat-
terns. The truth-value of the new statement is derived via truth-value functions
where are defined for each inference rule. When two premises contain the same
statement, and derived from independent evidence sources, the revision rule is
applied which produces the same content but a truth-value that reflects the
accumulated evidence from both sources.

2.2 Statement Types

A belief in NARS is a judgment coming from, or derived according to the sys-
tem’s experience. An event , is a special type of belief, which has a truth-value
defined at a particular time instance.

An operation of NARS is an event that the system can actualize by execut-
ing a corresponding procedure. Operations are a special kind of term that are
prefixed by ⇑ and can take arguments such as: (arg1 × arg2 × · · · ) → ⇑op. Here
op is the name of a procedural interpretation which is a built-in procedure in a
NARS.

A goal in NARS is a statement that contains an event that the system wishes
to realize. To realize a goal, means to make the goal statement as close to
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Table 1. Main syllogistic inference rules and the revision rule. Here k is a system
parameter and is typically set to 1. The truth-functions shown are taken from [3,5]

Deduction Induction Abduction Revision

M → P 〈 f1, c1 〉 M → S 〈 f1, c1 〉 S → M 〈 f1, c1 〉 S → P 〈 f1, c1 〉
S → M 〈 f2, c2 〉 M → P 〈 f2, c2 〉 P → M 〈 f2, c2 〉 S → P 〈 f2, c2 〉
S → P S → P S → P S → P

〈 f1f2, f1f2c1c2 〉
〈
f1,

f1c1c2
f2c1c2+k

〉 〈
f2,

f2c1c2
f2c1c2+k

〉 〈
f1c1(1−c2)+f2c2(1−c1)

c1(1−c2)+c2(1−c1)
,

c1(1−c2)+c2(1−c1)
c1(1−c2)+c2(1−c1)+(1−c1)(1−c2)

〉

maximum truth-value as possible. To achieve this, the system typically relies
on deriving sub-goals via the inference rules and executing operations.

A system operating in a complex domain will likely have many, conflict-
ing goals, where realizing one will make another harder to realize. Moreover,
goals will have to compete for the system’s resources and attention. For the sys-
tem to deal with these conflicts and competitions, a numerical measurement of
desire denoted as [ f, c ] is attached to each goal. While this has the form of a
truth-value it has a different interpretation. The desire-value of a goal measures
the extent to which a desired state is implied by the goal. Here, to distinguish
between a belief and a goal, truth-values are enclosed as 〈 f, c 〉 while desire-
values are enclosed as [ f, c ]. As with judgments, the desire-value is derived
from desire-functions defined for each inference rule.

A special class of operations are called mental operations. These operations
supplement and influence the control mechanism and serve to operate on the sys-
tems own “mind” [6,7] and provide self-monitoring and self-control regulation. Of
particular interest here, is a ⇑not-want operator that turns its arguments into a
goal that the system does not want to be realized. For example, a normal function-

ing entity, denoted , does not want to die so would have a belief of the form:

(1)

When this mental operation is carried out a new goal is created with a
statement and desire value that is not computed by the inference rules:

(2)

This mental operation will be used further on.

2.3 Arbitrary Relations

Arbitrary relations between terms can be expressed via the product operator.
For instance, “water dissolves salt” can be (water × salt) → dissolves which
has so-called images that are equivalent statements but with a term rotated:
water → (/ dissolves, �, salt, ) and salt → (/ dissolves, water, �). Here � serves
as a placeholder for the rotated term. These equivalent statements are much more
amenable to the syllogistic inference as each term can be standalone.
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2.4 Higher Order Statements

Higher-order statements, or statements about statements, allow for classical
operators from predicate and propositional logic: negation ¬S, and implica-
tion: S ⇒ P . Temporal inferences are done via specialized operators. One used
here is a causal implication operator denoted ≺. This operator is similar to ⇒
but is formed only from observed events that are perceived by the system to
be consecutive [14]. Table 2 provides a comparison between the standard and
temporal implication operator as well as the associated truth-functions used for
the NARS implementation demonstrated here.

Table 2. Difference between the ⇒ and ≺ implication operators. The truth and desire
functions shown are taken from [5]

Premise1 Premise2 Premise1 (Judgment) Premise1 (Goal)

S 〈 f1, c1 〉 S ⇒ P 〈 f2, c2 〉 � P (Deduction) � P
[
f1f2,

c1c2f2
c1c2f2(1.0/(1.0+k))

]

S ≺ P —

P 〈 f1, c1 〉 S ⇒ P 〈 f2, c2 〉 � S (Abduction) � S [ f1f2, c1c2f2 ]

S ≺ P —

3 Example Scenario

Rather than relying on specific ethical conundrums, here we present a simple
example that may be extended and built upon, particularly on low-cost devices.

Let us consider a micro-world where a robot , and human are co-existing
in proximity. A region in this world, denoted as , is a hazard and causes a

living entity harm when close. , internally running NARS, knows this as:

(3)

(4)

Here x̄ is a variable that can unify to any term. The truth values used here
are for testing purposes only. In an active system, these would be based on

the systems experience and likely changing over time. has the ability to

communicate to with simply commands like “stop”. is also capable of

firing a stun beam to temporarily incapacitate . The systems understanding of
the terms harmed and moving etc. are derived like every other term in NARS,
from the relations with other terms as experienced by the system (over time) [3].
This makes NARS unique to many other logic systems that typically rely on
models to define meaning and truth.
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While this is a simplistic and fictitious scenario, we argue it’s analogous to
many real-life scenarios: an agent has made a judgment, with a certain confidence
that another entity is in danger and will soon be harmed - this could be physical,
emotional or psychological harm (subject to this systems experience). It has a set
of actions that could be done, some might be effective in mitigating overall harm

but still require harm to be inflicted to a lesser extent e.g. incapacitating with a
stun beam. Moreover, it might have an action that is safer but less reliable e.g. to
say “stop”. Extensions to this micro-world may include more living entities and

hazards and changing conditions. With now observing that is moving to :

(5)

it must decide on what course of action to do.

4 Normative Ethical Theories

There are three main classes of normative ethical theories: consequentialism [15],
deontological [16] and virtue ethics [17]. Consequentialism posits that ethical
rightness of an action depends on the consequences: the best action to take is
the action that results in the best situation in the future [15]. The strength and
weakness of this theory is that no specific actions are forbidden if the desirable
consequences can be achieved. In contrast to consequentialism, the deontological
theory, posits the right and wrong of an action is not dictated by the conse-
quences but by the action itself. That is to say, there are particular actions that
are obligated, permissible or forbidden. While the deontological theory could be
able to account for widely shared moral instructions better, it is often criticized
for inadequacy of dealing with conflicting rules, and presents with open ques-
tions as to who has the authority to establish moral instructions. Virtue ethics
descents from Western, antiquarian texts on ethics, particularly from the works
of Plato and Aristotle that focused on the inherent character of a person rather
than on specific actions and consequences: “What sort of person ought I to be?”
instead of “What ought I do?” The proceeding sections will demonstrate NARS
is amenable to all three. As the deontological and virtue ethics theories have
similar implementations we will combine them in one section.

4.1 Consequentialism

To begin reasoning via consequentialism, is given a persistent, first-do-no-

harm belief that states: if something is alive, then has a desire (a goal), that
something should not come to any harm:

x̄ → [ alive ] ⇒ ((x̄ → [harmed ]) → ⇑not-want) 〈 1.0, 0.9 〉 (6)
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Thus, if has the further belief ( unifying to x̄) then must not come
to any harm:

(7)

By using a mental operator to form this goal, the desire value of (7) need not
be derived from the truth values of the forming premises; this allows the system
to produce a goal, that: x̄ should not come to harm (either through action or
in-action) even if there is considerable uncertainty whether x̄ is alive or not.

Let’s assume has derived the following judgments from experience:

(8)

(9)

(10)

That is, is highly confident if it stuns , stops moving all the time

(8); if says “stop”, stops some of the time (9), and if stuns , than

is harmed to a small degree (10). The truth values of (8), (9) and (10) are
subjective on the systems experience and are used here to serve the example.

Via the inference rules, forms sub-goals given in Table 3. The desires of
are derived only from the consequences and thus counter-intuitive acts i.e. (15),

are permitted. Goals (15) and (16), after being revised, are the operations

could actualize to prevent from coming to harm. has a strong desire to

stun , and say “stop”, and a mild desire to harm, paradoxically, to stop
coming to more harm – satisfying (7).

4.2 Deontological and Virtue Ethics

The desires of when incorporating a deontological and virtue ethical view,

can be reasoned from a starting goal that defines states undesirable to . In
accordance with our maxim, this would be being a malefactor and maleficent.
Thus, an answer to the question “What sort of robot ought I to be?” might be:
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Table 3. A table of derived sub-goals and their desire values from the consequentialism
ethical theory.

(18)

If were to have beliefs that certain actions imply it will be a malefactor, or
a maleficent, then sub-goals can derive to avoid these actions. For instance, if

has the belief, stunning would be a maleficence act:

(19)

or not saying “stop” when is moving to :

(20)

sub-goals and operations can be derived via the inference rules given in Table 4.

Here the desire-values are derived from the acts themselves. Here has a

strong desire not to stun and to say “stop” to satisfy the goal of not having
a maleficent state.
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Table 4. A table of derived sub-goals and their desire values from deontological and
virtue ethics theories.

5 Conclusions

Consequentialism seems the most amenable to NARS as it requires a limited
number of goals to be persistently remembered, while judgments about conse-
quences can be derived ad hoc. As shown, however, actions that cause harm can
be executed when a more desirable consequence is predicted. Deontological and
virtue ethics theories offer a safer approach, however, they can preclude actions

that typically would be forbidden but needed in certain situations e.g. doesn’t

stop moving when says “stop”. Thus, the agent has a chance of becoming
impotent due to rigidity of rule following. Moreover, this theory requires conse-
quential states attached to each action which may need to be defined a priori ,
placing a burden on a system fundamentally designed to have finite resources
and capacity.

Humans rarely operate under a single, ethical theory for their decision-
making, but rather, rely upon a combination of general ethical principles. An
artificial agent acting in the real world should arguably operate under the same
conditions. If the agent merged its beliefs and goals, formed from the differ-

ent ethical theories, for example the goal to stun from (15) and (21), when
combined, would be revised to have a desire-value of [ 0.22, 0.92 ]. Thus, the
deontological theory has decreased the desirability of this action. By being
equipped with consequentialism, but constrained with certain, critical deonto-
logical rules and virtues, might provide a hybrid ethical framework resembling
human decision-making in ethical conundrums. This gives no guarantees to con-
sistent ethical decision-making, however, can humans give the same guarantee?
A workable balance might be achieved with proper training and testing.

Here we have provided a pragmatic approach to ethics in NARS. By providing
a simplistic but expandable scenario, and a summary of major ethical theories,
the reader is provided a practical starting point for continuing work. An AGI
system equipped with even a modicum of ethical (artificial) thought provides
more incentive to equip virtual and robotic agents with general intelligence.
Thus providing more incentive for agents to exit the lab and serve real-world
applications for the benefit of humanity.
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Iklé, M., Franz, A., Rzepka, R., Goertzel, B. (eds.) AGI 2018. LNCS (LNAI), vol.
10999, pp. 119–129. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
97676-1 12

7. Wang, P., Li, X., Hammer, P.: Self in NARS, an AGI System. Front. Rob. AI 5,
20 (2018). https://doi.org/10.3389/frobt.2018.00020

8. Hammer, P., Lofthouse, T., Fenoglio, E., Latapie, H., Wang, P.: A reasoning based
model for anomaly detection in the smart city domain. In: Arai, K., Kapoor, S.,
Bhatia, R. (eds.) IntelliSys 2020. AISC, vol. 1251, pp. 144–159. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-55187-2 13

9. Wang, P., Awan, S.: Reasoning in non-axiomatic logic: a case study in medical
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Abstract. In this paper we discuss different types of memory from sev-
eral cognitive architectures in the context of Artificial General Intelli-
gence. We then introduce the memory system for the Artificial General
Intelligence system based on NARS with a description of its related fea-
tures. Then we identify and characterize NARS memory into different
types in terms of use, duration (short and long-term) and type (procedu-
ral, episodic, declarative, etc.). At the end we also provide demonstration
of memory functionality showing how the same piece of knowledge can
contain declarative, episodic and procedural components within it.

Keywords: Non-Axiomatic Reasoning · Non-Axiomatic Logic ·
Artificial General Intelligence · Real-time Reasoning · Memory ·
Procedural memory · Episodic memory · AIKR

1 Introduction

In the last decades, the field of AI research created numerous cognitive architec-
tures and artificial general intelligence systems that aim to explain a wide range
of human behavior and to mimic the capabilities of human cognition. Most of
these architectures can be viewed as a single integrated system consisting of
multiple individual modules or components working together to imitate some
behavior [3]. Often the modules are separated into different types of process-
ing and incorporate different types of memory systems where representations of
knowledge are stored. In the cognitive architecture literature [8], memory is cat-
egorized in terms of its duration: short-term, long-term, and type: declarative,
episodic, procedural, etc. However, despite the functional similarity of cognitive
systems, particular implementations of memory systems might differ significantly
and depend on the current goals of a designer, conceptual limitations and mul-
tiple engineering factors.

In systems based on Non-Axiomatic Logic [11], like NARS, choice of memory
system and clever integration within system’s components plays a crucial role.
Given that AGI system should operate under AIKR [10] and in the real-time,
a new piece of knowledge can arrive at any given moment requiring the system
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to work under finite resource constraints and be always available for the new
data. Control mechanism of such system should efficiently process various types
of knowledge (declarative, procedural, episodic etc.), and by doing so it decides
on where to store the data, for how long it should be available, and how to
efficiently retrieve it for further inference, question answering or goal processing.
Based on above considerations, the memory system of NARS [7] follows a unique
approach. In contrast with most current cognitive architectures, NARS does not
include well-defined separate components dedicated for different processing types
featuring own memory and follows an integrated approach, within which most
types of memories are present and processed, as will be discussed further and
show in the demonstration section.

2 Related Works

In the following we briefly cover arguably some of the most known cognitive
architectures, namely SOAR [9], ACT-R [1] and LIDA [4], because they represent
some of the most widely used systems and their structures present relevant
properties that are interesting to include within the scope of this paper.

SOAR is one of the oldest cognitive architectures used by numerous
researchers during the last decades. SOAR exhibits complex multi-component
architecture consisting of various memory structures, learning mechanisms and a
decision cycle that links the perception (inputs from the environment) to actions
(system output). The memory types in Soar are separated into long-term and
short-term (working) memory components [3]. The information from the envi-
ronment is available in the working memory through use of perception com-
ponents with dedicated perceptual memory, while external environment is influ-
enced through implementations of system selected actions. The representation of
knowledge within different memory structures is entirely symbolic with pattern
matching mechanism employed to retrieve relevant knowledge elements from the
long-term declarative memory. SOAR’s long-term memory can be classified into
semantic, procedural and episodic types with semantic memory being considered
as declarative. Procedural and semantic memories are universally applicable dur-
ing the reasoning process, where semantic memory stores general experience and
description of the environment, and procedural memory provides knowledge for
performing actions. Episodic memory is used for knowledge, which is specific to
a certain content, conceptually speaking, it contains information about specific
events. When procedural memory is incomplete for solving a particular task,
knowledge is being sourced from semantic and episodic memories to assist with
reasoning. Content of the short-term memory, also known as working memory
elements, describe all the knowledge that is relevant to the current context, in
particular, it contains system states, goals, perceptions and operators. If working
memory content is insufficient, working memory elements often retrieve relevant
knowledge from different types of long-term memory.

ACT-R is a cognitive architecture explicitly inspired by theories of human
cognition and empirical data from experiments in cognitive psychology and brain
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imaging. ACT-R incorporates a unique architecture consisting of four modules:
visual, manual, declarative and goal. The visual module serves two purposes for
recognizing an object and identifying its location within the visual field. The
manual module is used for the control of actuators. Memory retrieval proce-
dures are accomplished within declarative module and the goal module moni-
tors agent’s current goals, and enables the maintenance of the agent’s thought
in the absence of supporting external stimuli [1]. For each of these modules a
dedicated buffer is utilized. Hence, the goal buffer helps to keep track of internal
states during problem solving; the retrieval buffer stores the chunks of declara-
tive memory retrieved from the long-term memory; the manual buffer is used for
controlling the agent’s hands and associated with the motor and somatosensory
cortical areas [3]; and the visual buffer include both the dorsal ‘where’ visual
pathway system and the ventral ‘what’ system which are essential for locating,
identifying and tracking objects. ACT-R features a central production system,
which coordinates all the modules using implemented set of IF-ELSE produc-
tion rules and functions as a basal ganglia in human brain. The communication
between the central production system and the modules happens through the
information present in the buffers, thus limiting the response of the central pro-
duction system to the amount of information available in the buffers of various
modules. In terms of memory types, ACT-R distinguishes between two types of
knowledge: declarative and procedural. Knowledge within declarative memory
is represented as chunks and describe explicit facts known to the system while
knowledge in procedural memory encodes production rules for processing declar-
ative knowledge. Declarative memory is considered system’s long-term memory
while short-term memory is available through the use of limited information
within the buffers. ACT-R does not include a dedicated working memory where
different types of knowledge are processed, instead it uses a distributed memory
system, wherein the goals, beliefs, sensory, and motor signals are situated in
distinct buffers.

LIDA is a notable example of multi-component cognitive architecture that
aims to model human consciousness [4]. Logical part of LIDA enforces Global
Workspace Theory (GWT) [2]) and implements cognition process in a serial way
through use of system cycles. LIDA’s control mechanism is immensely complex, it
incorporates large number of components with independent architectures which
can be symbolic or connectionist. LIDA utilizes numerous memory modules each
with different structures: Sensory, Sensory-Motor, Spatial, Perceptual Associa-
tive, Transient Episodic, Declarative, and Procedural. Since it is impossible to
examine every memory module, only few are highlighted here. Perceptual Asso-
ciative Memory (PAM) is a module that senses the incoming sensory information.
It contains feature detector processes for feature detection within Sensory Mem-
ory. PAM uses a semantic net implementation with activation passing. There
are two episodic memories in LIDA, Transient Episodic Memory and Declara-
tive Memory, which are both implemented using a sparse distributed memory
[4]. In Transient Episodic Memory knowledge decays after a few hours or up to
a day and Declarative memories are formed offline from transient episodic mem-
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ories by a consolidation process. Procedural Memory stores schemes which can
be activated and sent for action selection. Working memory can be found within
Workspace module which receives and stores content from several components
including precepts from PAM, recent local associations from Episodic Memory,
and the recent contents of consciousness from the Global Workspace. Multiple
LIDA’s memory modules fall into long-term and short-term memory categories.
In particular, PAM, Spatial, Declarative, and Procedure modules are viewed as
long-term memory, while Sensory and Transient Episodic memories fall under
short-term category.

3 NARS Considerations

NARS overall architecture is illustrated in Fig. 1. In this sections we provide only
some aspects of NARS that are relevant for the context of this paper.

Fig. 1. NARS, conceptual diagram.

Memory in NARS follows a concept-centric semantic memory structure in
accordance with the NAL term logic the system uses. It can be viewed as a
graph where concepts are represented as nodes and links designate relationships
among them. Technically, NARS memory is a collection of concepts representing
a conceptual network with prioritized nodes and links.

Budget specifies the amount of system resources allocated to a specific task
and allows priority-biased selections of items including concepts. It consists of
at least two components, namely priority and durability indicating item’s relative
usefulness to the system. Budget is determined by summarizing multiple factors
under consideration, including the urgency and salience of a task as well as its
relevance to the context.

Concept is a major entity, an identifiable unit of system’s experience that has
grounded meaning. It is also considered as a unit of storage to hold various
components of knowledge (see Fig. 1). Within the concepts, an item distinction
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based on memory type can be made: procedure knowledge is different in syn-
tax (being a form of temporal implication) and is typically stored in specific
table structures within concepts to allow the items which predict the concept to
compete regarding their predictive power (their truth value) as the major fac-
tor. Also, episodic information is present when event beliefs are separated from
eternal events in concept’s belief tables. Please note that event beliefs include
both episodic (occurrence time information) and declarative information (in their
term structure), while eternal beliefs, which are not time-dependent and sum-
marize event evidence, can only be considered declarative (more details will be
discussed in the next section). While the specifics of the separation in terms
of data structures etc. is implementation-dependent, this distinction exists and
helps to design effective memory structures.

The resulting memory structure in NARS becomes integrated unified mem-
ory within which different forms and types of knowledge represent the total
experience of the system at a given time.

4 Types of Memory in NARS

As in most cognitive architecture literature, NARS memory can be categorized
in terms of its type, duration and content. We will proceed by discussing dif-
ferent types present within NARS memory, namely Declarative, Episodic and
Procedural.

Declarative Memory: Given the universality nature of NARS memory, most
content of the main memory, that is general pieces of knowledge processed to
become concept nodes without episodic or procedural information, functions as
declarative memory.

Episodic memory in NARS can be viewed as an event or compound events,
which have been perceived by the system, that is reached the selection to the
main memory. In general, an event is a piece of declarative knowledge with tem-
poral information attached to it. NARS utilizes some kind of selection process
from buffers or priority queues for inputs and derivations, which is implemen-
tation specific, resulting in many of the compound events not being considered
for the selection to the main memory. Upon selection of an event, its episodic
information is stored local at the concept level.

Procedural memory is a special kind of knowledge, that is a declarative knowl-
edge including operation or compound operations within its description. Pro-
cedural information is stored local at the concept level in corresponding data
structures as seen on Fig. 1, however, in some implementations derived procedu-
ral knowledge can become a concept node by itself. In general, reasoning upon
operations happens similarly to other events and declarative statements.

Categorizing memory by duration involves classification in terms of long-
term and short-term memories. In context of NARS, time is a fluid relative
conception that complicates the definition of long/short-term memory. Concep-
tually speaking, declarative knowledge in NARS, i.e., tasks without episodic
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information attached, can be considered a kind of long-term memory. However,
being a real-time reasoning system, NARS is open at anytime to accept new
task: a knowledge, a goal or a question; and therefore, requires resource alloca-
tion mechanism, in particular forgetting technics to be in place not only at the
main memory but also at a concept levels. A piece of declarative knowledge can
be removed from the memory given that memory capacity is full and its budget
decreases to the certain level reaching the lowest usefulness for the system at a
given moment in time. In this case, forgetting process, can be seen as a decisive
factor for considering declarative knowledge to fall into long or short-term cat-
egory. Overall, we advance that long/short-term memory discussion might not
be meaningful in the context of NARS.

In addition to the above categorization it is important to discuss memory
in terms of content to be processed such as working memory and atten-
tional focus. Working memory is a priority-based selected knowledge during
the current cycle. It is not only limited to the selection of concepts within the
main memory, but also consists of selections from implementation specific prior-
ity queues, buffers, links within the concepts and all other selections of episodic
and procedural information within the corresponding data structures. Extending
this idea further, working memory is where the processing happens or a storage
under current attention. Alternatively, NARS attentional focus can be defined
as the distribution of higher priorities within the priority-based data structures,
such as the knowledge most likely to be processed in the future unless a derived
or a new input knowledge has even higher priority.

5 Experiments

In this section we present two concrete examples using ONA [5] implementation
of NARS: one that shows that a piece of knowledge can contain declarative,
episodic and procedural components within it; and the other showing the dis-
tinction between short-term and long-term memories being not very important
in the context of NARS.

Experiment 1 sets up an example of knowing how to open doors using door
handle, when they are known to be unlocked. It clearly illustrates how different
forms of knowledge are interacting and being processed within the same memory
during inference process. The following inputs are given to the system:

//Input 1: If something is an unlocked door, then after being in front of it,
//using the door handle, will open it
<<$1 --> ([unlocked] & door)> ==>

<(<$1 --> [front]> &/ <({SELF} * handle) --> ^use>) =/> <$1 --> [open]>>.
//Inputs 2 & 3: Observing a new door instance that is recognized to be unlocked
<{door1} --> door>. :|:
<{door1} --> [unlocked]>. :|:

Here the input 1 is a piece of declarative knowledge that embeds episodic
knowledge using temporal implication and procedural knowledge using an oper-
ation. Inputs 2 & 3 are episodic knowledge. The system then produces the fol-
lowing derivations:
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//Derivation 1: NARS summarizes the information from input as:
<{door1} --> ([unlocked] & door)>. :|:
//Derivation 2: finaly derives via deduction how it can be opened:
<(<{door1} --> [front]> &/ <({SELF} * handle) --> ^use>) =/> <{door1} --> [open]>>.

The first derivation is a mere of summarizing the knowledge from inputs
events using compositional rule, and the final derivation is produced using deduc-
tion rule, it tells that the handle needs to be used in order to open the new door
instance when in front of it. Figure 2 summarises the derivation process, and
illustrates multiple types of memory items within the same memory structure.

Fig. 2. Memory diagram. Few nodes and links are omitted to make the graph visually
clearer.

In the diagram, one can observe the three red concept nodes hold knowledge
(statements) we gave to the system as inputs. The node to the left is a piece of
declarative knowledge while the two nodes on the right contain episodic infor-
mation from the events of having experienced the new door instance, namely
door1.

The orange concept node in the middle corresponds to derivation 1, which
is a composition from two input events. It is episodic knowledge since it is an
event, and also holds declarative information.

In the right part of the diagram there are two violet nodes, which have been
derived but never experienced, yet the system knows exactly how to get from
door1 being in the front, to opening it via the red procedural knowledge repre-
sented as red arrow link to use the handle. This derived procedural knowledge
in some implementations can also be its own concept node, but separating tem-
poral and procedural relations as separate type of link for visualization purposes
makes the memory distinction clearer.
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The remaining parts of the memory structure are gray concept nodes con-
nected with green semantic links. Gray concepts appear as sub-terms and green
links connect the declarative information between the terms in the concepts. This
is exploited only for inference control purposes and remains a research topic for
matter of implementation.

Experiment 2 demonstrates a declarative piece of knowledge, which often con-
sidered a part of long-term memory and should remain in memory until the
system runs, being removed or forgotten due to real-time nature of the system
and resource constraints. We asked the system to learn English alphabet, in par-
ticular the system was presented all the letters as declarative statements in the
following input:

<{a} --> Letter>. // 'a' is a Letter
<{b} --> Letter>. // 'b' is a Letter
<{c} --> Letter>. // 'c' is a Letter
... ... ...
<{a b} --> Letter>? // Are 'a' and 'b' are letters?
... ... ...
<{V} --> Letter>. // 'V' is a Letter
<{W} --> Letter>. // 'W' is a Letter
... ... ...
<{Z} --> Letter>. // 'Z' is a Letter

Notice, in the middle of the input sequence we ask a question to see if
it derived this particular letter combinations. The following answer shows the
knowledge is being derived as expected:
// System answers positively with piece of declarative knowledge
Answer: <{a b} --> Letter>. creationTime=2 Truth: frequency=1.000000, confidence=0.810000

After all the input has been processed we started asking similar questions to
challenge system memory and inference control abilities. The Fig. 3 demonstrates
questions asked and system’s response to them.

Fig. 3. System’s response to alphabet questions.

While the system answers to the first questions with single letter being asked,
one can observe the missing answer to the original question we asked again, where
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None is returned. The system does not have answers to the similar questions
which ask for multiple letters that appear at the beginning of the input sequence,
however for letters found closer to the end of the input sequence, the system is
able to correctly respond. It appears that the missing knowledge has been derived
and stored in the memory at some point, however because of the size constraints
and abundance of derivations and their possible combinations, that particular
knowledge was forgotten in the sake of more useful and/or recent knowledge.

6 Discussions

NARS has been designed according to the theory that intelligence is considered
to be an adaptation under AIKR, meaning that the system always has finite
processing capability, has to work in real-time, and is open to new knowledge of
any type. Given such constraints, the system is made to work by making each
inference rule to cost only a small constant time, and allowing the processing of
any type of knowledge to stop or resume after any number of inference steps.
A major fundamental feature of NARS is the AIKR principle, where a belief
can be changed according to the new knowledge available to the system. Thus,
NARS does not assume any absolutely certain knowledge about the future, and
it allows unexpected changes to occur at any time. Therefore, “work in real-
time” is a fundamental design requirement for NARS that influences the design
of the inference control mechanism and affects the choice of memory structure.

As have been already described, NARS follows a fully integrated memory
approach what makes it unique and different from most AGI reasoning systems
and cognitive architectures such as ones present in Sect. 2. The integrated and
unified design is mostly a necessity that allows various types of knowledge be
processed efficiently and roughly in a constant time, and, therefore, permits
NARS to meet fundamental requirements of processing knowledge in the real-
time and under AIKR.

In the previous sections we discussed and showed that the same piece of
knowledge can contain declarative, episodic and procedural components within
it and also, we have been able to examine the taxonomy of NARS memory where
distinction between memory types were clearly outlined. However, categorizing
NARS memory in terms of duration, i.e., long-term and short-term is not always
meaningful. As we observed in Experiment 2, supposedly long-term piece of
declarative knowledge can be removed from memory and forgotten by the system
at any time based on memory fullness, current context and usefulness of the
pieces of knowledge within the memory structure.

7 Conclusion

In this paper we discussed important details of memory systems for cognitive
architectures and AGI real-time reasoning systems using NARS as an example.
We have argued the necessity of having multiple components dedicated to dif-
ferent types of memory within a reasoning system. In addition, we have shown
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that integrated memory approach within which most types of memories are
present and processed is an alternative solution for AGI system operating under
AIKR and in the real-time. We not only analyzed NARS memory structure
and provided explanations of related components, but also described multiple
types and aspects of memory present within NARS and classified them according
to widespread literature categorization. Finally, using real examples and ONA
implementation we demonstrated the functionality of memory system, its unity
and universality. NARS has been applied in multiple applications such as [6],
TruePAL [12], however, despite its successes, NARS memory system was not yet
published in detail. Choice of memory system and clever integration within rea-
soning system is essential for designing AGI system, which makes documenting
the advancements even more crucial. It will help the AGI community to find
more advanced memory system implementations with proper ways to take the
efficiency, relevance, and complexity of its structure into consideration.
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Abstract. Stimulus equivalence is the ability to act as if two objects are
identical, despite no shared properties. This ability is hypothesized to be
the foundation for symbolic reasoning and the development of language.
It is believed to be unique to humans and not present in other animals.
Stimulus equivalence can be studied in the context of a matching-to-
sample experimental task, by demonstrating a combination of symmet-
rical and transitive performances. This study aimed to explore stimulus
equivalence with the Non-Axiomatic Reasoning System (NARS). More
specifically, we propose two new capabilities for OpenNARS for Applica-
tions (ONA) - contingency entailment and acquired relations. We provide
an explanation how this would lead to ONA being able to learn symmet-
rical and transitive performances leading to full stimulus equivalence.

Keywords: Stimulus equivalence · Symbolic reasoning · NARS

1 Introduction

In previous research, generalized identity matching was demonstrated with a
minimal configuration of the AGI-system OpenNARS for Applications (ONA)
that contained only sensorimotor reasoning (NARS Layers 6–8) [2]. Generalized
identity matching involves being able to develop a concept of identity from expe-
rience and applying this concept in a novel situation. Commonly this is trained
and demonstrated in a matching-to-sample task where a sample is presented at
the top and comparisons are shown at the bottom left and right. Generalized
identity matching would in this context be demonstrated by choosing between
novel comparisons based on if one of them is identical to the sample.

Stimulus equivalence (or arbitrary matching-to-sample), is a type of perfor-
mance that involves acting as if two objects are identical, despite no shared
properties. That is, the relation between the objects is by definition arbitrary,
and the performance can only be explained by the experience of the experimen-
tal participant. Informally, this means that the participant is acting according to
a relation of “sameness” in symbolic sense. Formally, this involves being able to
act according to symmetry and transitivity, as will be explained below in Sect. 4.
Stimulus equivalence is hypothesized to be the foundation for symbolic reason-
ing and the development of language and has not reliably been demonstrated
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among non-humans. In contrast, humans typically develop this ability at about
16–24 months of age [3].

In this study, we explore stimulus equivalence in ONA. We propose to extend
ONA with two new capabilities, contingency entailment and acquired relations.
Using these, we explain how this would lead to ONA being able to perform
symmetrical and transitive reasoning based on learned contingencies within the
context of matching-to-sample. Potential extensions of this work are also dis-
cussed.

2 OpenNARS for Applications (ONA)

ONA [1] is a highly effective implementation of the Non-Axiomatic Reasoning
System (NARS) [5] Importantly, ONA is implemented with sensorimotor reason-
ing (NARS layers 6–8) at its core, with declarative reasoning (NARS layers 1–6)
added as an option at compile-time. Running ONA with only its sensorimotor
core would lead to an “animal-like” NARS system in that it is not expected to do
symbolic reasoning in the traditional sense. In this paper, we discuss two exten-
sions to ONA, contingency entailment and acquired relations, that would involve
NARS layers 5 (statements as terms) and 4 (relational terms), respectively.

3 The Matching-to-Sample Task

The Matching-to-sample task (MTS) is a classical paradigm in experimental
psychology [4] that has been used to study stimulus equivalence. In this task,
a sample stimulus is presented and the participant is required to select a com-
parison stimulus that matches the sample. Feedback is provided if the partici-
pant’s choice is deemed correct or incorrect. Using this procedure, novel relations
between stimuli can be trained. For example, if A1 is presented as the sample,
and the choice of B1 (rather than B2) is reinforced, then this learned behavior
could be said to provide a procedural definition of a conditional relation “If A1
then B1”, which in this paper will be written as A1 → B1. The training of the
A1 → B1 relation using the Matching-to-sample task is illustrated in Fig. 1.

A1 A1

B1 B2

A1

B1 B2

CORRECT

Fig. 1. Learning a conditional relation A1 → B1 in the matching-to-sample task. First,
the sample is presented at the top (leftmost panel). Then, two comparison stimuli are
presented (next panel). The experimental subject then indicates a choice between either
the left or right option. Finally, the subject receives feedback if the choice was correct
or not (rightmost panel).
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4 Stimulus Equivalence

Stimulus equivalence can be defined procedurally within the matching-to-sample
context using concepts similar to those used for defining an equivalence rela-
tion in set theory: reflexivity, symmetry and transitivity. Reflexivity corresponds
to generalized identity matching, defined as an A1 → A1 performance in the
matching-to-sample, also demonstrable for novel objects [2]. To demonstrate
symmetry, an experimental participant who has learned that (for example)
A1 → B1 would also need to derive B1 → A1 without additional training. Tran-
sitivity means that if two relations A1 → B1 and B1 → C1 have been learned
using matching-to-sample procedures, then the experimental participant would
need to perform a choice of C1 when A1 is the sample (the A1 → C1 relation)
without explicit training of this relation. Finally, equivalence (in the matching-
to-sample context) has been defined as combined symmetry and transitivity
[4]: If the A1 → B1 relation, and the B1 → C1 relations have been trained,
the demonstration of C1 → A1 would be an example of stimulus equivalence.
Stimulus equivalence can be seen as a relation of “sameness” defined procedu-
rally within the matching-to-sample. Hence, stimulus equivalence can be said to
describe performances when an experimental participant acts as if two stimuli
are the same.

Contemporary experimental psychology suggests that stimulus equivalence
is a learned capability [6]. More specifically, symmetrical and transitive patterns
are suggested to be learned with multiple-exemplar training. For example, in the
case of symmetry, if someone has learned both the A1 → B1 and B1 → A1
relations, followed by multiple examples of symmetrical relations, then a more
general pattern might be learned. Similarly for transitivity; if A1 → B1 and
B1 → C1 have been learned followed by explicitly being trained in A1 → C1,
then the beginning of a transitive general pattern might be learned [6].

5 Matching-to-sample Task in NARS

The Matching-to-sample task can be presented as temporal Narsese statements
(as indicated by the :|: markers below). For example, the task presented in
Fig. 1 can be represented as follows:

<A1 --> [sample]>. :|:
<B1 --> [left]>. :|:
<B2 --> [right]>. :|:
G! :|:

The properties [sample], [left], and [right] could for example be location
events from an vision channel. A NARS system like ONA could then be set up to
have two procedural operations ^left and ^right, that it could use to indicate a
choice between the left or the right comparison. An arbitrary goal event G! :|:
could be presented at the end to trigger the execution of one of the two operations
^left and ^right (through motor babbling or a decision). During training,



Stimulus Equivalence in NARS 161

feedback can be given in the form of G. :|: (meaning to reinforce a correct
choice) or G. :|: {0.0 0.9} (to indicate that the system had conducted an
incorrect choice). Between each matching-to-sample trial, sufficient amount of
time steps (like 100) will be needed.

With repeated matching-to-sample trials, a NARS system would learn sen-
sorimotor contingencies similar to this, corresponding to the task in Fig. 1:

<((<A1 --> [sample]> &/ <B1 --> [left]>) &/ ^left) =/> G>.

6 Contingency Entailment

As described above, this paper proposes two changes to ONA that seem involved
in the capability to learn stimulus equivalence. The first of these, contingency
entailment is based on the idea from NARS Layer 5 to consider statements as
terms, leading to the possibility of higher-order statements. Given that ONA rea-
sons on sensorimotor contingencies (statements) at its core, an introduction of
this capability would allow ONA to derive implications and equivalences between
learned sensorimotor contingencies. The contingency entailment rules (implica-
tion and equivalence) that have been implemented in ONA looks like this:

((A &/ Op1) =/> S), ((B &/ Op2) =/> P), |-,
(((B &/ Op2) =/> P) ==> ((A &/ Op1) =/> S)), Truth_Abduction

((A &/ Op1) =/> S), ((B &/ Op2) =/> P), |-,
(((B &/ Op2) =/> P) <=> ((A &/ Op1) =/> S)), Truth_Comparison

Importantly, to restrict the introduction of such higher-order statements,
the rules are only triggered when operations involved in the contingencies are
executed. This allows ONA to avoid a combinatorial explosion caused by an
unrestricted use of the rules.

An example of an entailed equivalence between contingencies follows. If ONA
has learned A1 → B1 and B1 → A1 relations in contingency format:

<((<A1 --> [sample]> &/ <B1 --> [left]>) &/ ^left) =/> G>.

and

<((<B1 --> [sample]> &/ <A1 --> [left]>) &/ ^left) =/> G>.

then ONA can form an equivalence (with introduced variables) between the
contingencies.

<<((<$1 --> [sample]> &/ <$2 --> [left]>) &/ ^left) =/> G>
<=>

<((<$2 --> [sample]> &/ <$1 --> [left]>) &/ ^left) =/> G>>.
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7 Acquired Relations

The second proposed change to ONA involves that of acquired relations. NARS
theory regarding Layer 4 (NAL Definition 8.1 in [5]) defines a product as equiv-
alent to a compound term of inheritance statements. Given that ONA reasons
on sensorimotor contingencies at its core, this idea applied to ONA would allow
the system to introduce relational statements based on learned contingencies.
For example, if ONA has learned an A1 → B1 relation in contingency format:

<((<A1 --> [sample]> &/ <B1 --> [left]>) &/ ^left) =/> G>.

then, using acquired relations, an (A1×B1) relation will also be introduced:

<(A1 * B1) --> ([sample] * [left])>.

To avoid an explosion of derivations of relational terms, the same heuristics
as described in the previous section is suggested. That is, to only trigger this
capability in ONA when the system makes use of the contingency by executing
the corresponding procedural operation.

Importantly, the contingency entailment rule and the acquired relations rule
would in combination lead to the following derivations:

<<($1 * $2) --> ([sample] * [left])> <=>
<((<$1 --> [sample]> &/ <$2 --> [left]>) &/ ^left) =/> G>>.

This can be seen as a “grounding” of the acquired (conditional) relation in a
sensorimotor contingency. We believe this combination leads to potential pow-
erful implications: A NARS system can learn from sensorimotor experience, and
from that derive relational terms. Given the declarative reasoning capabilities
of NARS, the system could then perform declarative reasoning on the acquired
relations, similar to that of symbolic AI systems. The outcome of such reasoning
could then lead to entailed contingencies, meaning that the system could make
use of derived knowledge to execute procedural operations in contexts where not
explicitly trained to do so.

8 Symmetry Based on Contingency Entailment

With repeated experiences in the matching-to-sample task, NARS would develop
equivalence statements between contingencies and introduce variables (In the
rest of the paper, only one of the two statements involving ^left and ^right
operations will be shown):

<<((<$1 --> [sample]> &/ <$2 --> [left]>) &/ ^left) =/> G>
<=>

<((<$2 --> [sample]> &/ <$1 --> [left]>) &/ ^left) =/> G>>.

<<((<$1 --> [sample]> &/ <$2 --> [right]>) &/ ^right) =/> G>
<=>

<((<$2 --> [sample]> &/ <$1 --> [right]>) &/ ^right) =/> G>>.
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When NARS at a later stage, learns a new contingency, for example:

<((<X1 --> [sample]> &/ <Y1 --> [left]>) &/ ^left) =/> G>.

the system would be able to solve the following task, by applying one of the
above two equivalence statements.

<Y1 --> [sample]>. :|:
<X1 --> [left]>. :|:
<X2 --> [right]>. :|:
G! :|:

Hence, the contingency entailment rule seems sufficient to enable symmetry
within the matching-to-sample context.

9 Transitivity Based on Acquired Relations

If NARS learns the following three contingencies:

<((<A1 --> [sample]> &/ <B1 --> [left]>) &/ ^left) =/> G>.
<((<B1 --> [sample]> &/ <C1 --> [left]>) &/ ^left) =/> G>.
<((<A1 --> [sample]> &/ <C1 --> [left]>) &/ ^left) =/> G>.

and the acquired relations rule is applied, the following three relations will
be derived:

<<(A1 * B1) --> ([sample] * [left])>.
<<(B1 * C1) --> ([sample] * [left])>.
<<(A1 * C1) --> ([sample] * [left])>.

Then, the following general knowledge will be derived (given how NARS can
combine Layer 4 relations):

<(<($1 * #1) --> ([sample] * [left])> &&
<(#1 * $2) --> ([sample] * [left])>) ==>
<($1 * $2) --> ([sample] * [left])>>.

This means, that if NARS learns (in a matching-to-sample task) that

<((<X1 --> [sample]> &/ <Y1 --> [left]>) &/ ^left) =/> G>.
<((<Y1 --> [sample]> &/ <Z1 --> [left]>) &/ ^left) =/> G>.

then the system could derive <(X1 * Z1) --> ([sample] * [left])>)
from the abstract (transitive) knowledge learned above. Then, by applying the
learned equivalence between a conditional relation as a product and as a contin-
gency

<<($1 * $2) --> ([sample] * [left])> <=>
<((<$1 --> [sample]> &/ <$2 --> [left]>) &/ ^left) =/> G>>.
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the system could derive the following contingency:

<((<X1 --> [sample]> &/ <Z1 --> [left]>) &/ ^left) =/> G>.

This would enable the system to solve the following task, which would demon-
strate transitivity:

<X1 --> [sample]>. :|:
<Z1 --> [left]>. :|:
<Z2 --> [right]>. :|:
G! :|:

10 Equivalence as Combined Symmetry and Transitivity

If the system has experience of reflexivity, symmetry and transitivity according
to the above, combined applications of contingency entailment and acquired
relations will lead to the following relational networks derived within the context
of matching-to-sample.

Reflexivity:

<<($1 * $1) --> ([sample] * [left])> <=>
<((<$1 --> [sample]> &/ <$1 --> [left]>) &/ ^left) =/> G>>.

Symmetry:

<<($1 * $2) --> ([sample] * [left])> <=>
<($2 * $1) --> ([sample] * [left])>>

Transitivity:

<(<($1 * #1) --> ([sample] * [left])> &&
<(#1 * $2) --> ([sample] * [left])>) ==>
<($1 * $2) --> ([sample] * [left])>>.

These abstract statements are sufficient to solve new problems within the
matching-to-sample context, including those that requires combined symmetry
and transitivity. For example, if the system has learned the following:

<((<A3 --> [sample]> &/ <B3 --> [left]>) &/ ^left) =/> G>.
<((<A3 --> [sample]> &/ <C3 --> [left]>) &/ ^left) =/> G>.

Then, the system would be able to combine learned symmetry and transitiv-
ity to derive the execution of a ^left operation in the following situation, which
would be an example of stimulus equivalence.

<C3 --> [sample]>. :|:
<B3 --> [left]>. :|:
<B4 --> [right]>. :|:
G! :|:
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11 Generalizing Outside the Matching-to-Sample Task

In this section, we will show how learning in the matching-to-sample can trans-
form learning in other contexts. If for example a set of conditional relations have
been learned within the context of matching-to-sample, for example:

<<(X1 * Y1) --> ([sample] * [left])>.
<<(X1 * Z1) --> ([sample] * [left])>.

Given that symmetry and transitivity have been learned within the context
of matching-to-sample, the system would derive for example these relations:

<<(Y1 * Z1) --> ([sample] * [left])>.
<<(Z1 * Y1) --> ([sample] * [left])>.

Importantly, NARS would also introduce variables on the right-hand side,
leading to for example

<<(Y1 * Z1) --> ([$1] * [$2])> <=>
<(Z1 * Y1) --> ([$2] * [$1])>>

If NARS at a later stage learns something with the same left-hand terms,
but outside the matching-to-sample context, for example:

<((<Y1 --> [p1]> &/ <Z1 --> [p2]>) &/ ^op1) =/> H>.

which would lead to a relational term being introduced as follows:

<<(Y1 * Z1) --> ([$1] * [$2])> <=>
<((<Y1 --> [$1]> &/ <Z1 --> [$2]>) &/ ^op1) =/> H>>.

Then, the system would also (using the symmetrical relation between Y1 and
Z1 trained in the matching-to-sample) derive that

<((<Z1 --> [p1]> &/ <Y1 --> [p2]>) &/ ^op1) =/> H>>.

We believe that this exemplifies a potentially powerful mechanism. General
patterns of symmetry and transitivity can be learned within one context (like
the matching-to-sample), and given a few shared terms with another context
(like Y1 and Z1 above), symmetrical and transitive transformations can be done
in the latter context. In the behavioral psychology literature, this is called the
transformation of stimulus function [6].

Transformations of stimulus functions in accordance with symmetry and
transitivity, across contexts leads to the system acting if two symbols (like Y1
and Z1 in the example above) mean the same thing in a symbolic sense. Hence,
the processes demonstrated above have been assumed to be involved in the
development of language [6].
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12 Discussion

In this paper, we introduced the concept of stimulus equivalence, defined as com-
bined function transformations in accordance with symmetry and transitivity.
This is arguably a core capability for an AGI system and the behavioral psy-
chology literature suggests that it is the foundation of symbolic reasoning and
language development.

Stimulus equivalence was defined procedurally, using learned contingencies.
We believe that this could constitute a foundation for how symbolic relations
could be grounded in sensorimotor contingencies, and hence, suggests one way
how the “mind-sensory gap” could be closed regarding the problems described
in this paper.

Importantly, stimulus equivalence is considered to be a learned behavior. In
this paper, we introduced specific inference rules in ONA to support the ability
to learn stimulus equivalence. This approach might be in contrast with other
approaches that aim to directly implement symbolic relations (for example the
relation between a word and an object).

In summary, we hope that the approach taken in this work could be of inspi-
ration to other AGI-systems interested in acquiring symbolic relations from expe-
rience.
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Abstract. Building machines capable of common sense reasoning is an
important milestone in achieving Artificial General Intelligence (AGI).
While recent advances, such as large language models, are promising,
systematic and sufficiently robust evaluations of these models on common
sense have been inadequate, and designed for an earlier generation of
models. One criticism of prior evaluation protocols is that they have
been too narrow in scope e.g., by restricting the format of questions
posed to the model, not being theoretically grounded, and not taking
the context of a model’s responses in constructing follow-up questions
or asking for explanations. In this paper, we aim to address this gap
by proposing a context-rich evaluation protocol designed specifically for
evaluating machine common sense. Our protocol can subsume popular
evaluation paradigms in machine common sense as special cases, and is
suited for evaluating both discriminative and generative large language
models. We demonstrate the utility of the protocol by using it to conduct
a pilot evaluation of the ChatGPT system on common sense reasoning.

Keywords: Machine Common Sense · Context-Rich Evaluation ·
Large Language Models

1 Background

Recent advances in large language models (LLMs), based largely on transformer-
based neural networks, have led to impressive performance gains in natural lan-
guage processing (NLP) problems such as question answering, dialog, text sum-
marization, and even creative writing [5,6]. Despite this progress, many concerns
have been raised recently about these models [10], and it is evident that even
the most recent and sophisticated versions (such as OpenAI’s ChatGPT, which
has captured the general public’s imagination since release) can be prone to ‘hal-
lucinating’, adversarial prompting, as well as reasoning that is unsound [3]. A
specific example of a type of reasoning that is universal in human communication
and thinking is common sense. Even since the development of the first genera-
tions of transformer-based models, the problem of achieving the goal of machine
common sense (MCS) took on new-found importance in the AI community [8].
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Evaluations of MCS originally involved independent or ‘single-hop’ instances
of tasks such as multiple-choice question answering (MQA). We mean indepen-
dent in the sense that answers to one question did not depend on answers to
another question. Furthermore, in the majority of MQA benchmark datasets
evaluating common sense, a training dataset of (multiple-choice) questions is
typically provided to the model to fine-tune on prior to being tested. The assump-
tion then is that the test benchmark at least obeys the same kind of distribution,
including the type of common sense (e.g., naive physics, or common social rela-
tions), as the training partition. Hence, the evaluation protocol is independent
and identically distributed (i.i.d.).

Owing to being both convenient and replicable, such single-hop QA has
emerged as a “de facto” standard for evaluating MCS, especially within NLP [13].
Unfortunately (and perhaps unsurprisingly), this variety of i.i.d. MQA evalua-
tion can also cause dataset bias, leakage of developer knowledge, and good per-
formance caused by superficial pattern matching rather than actual MCS. It
is not always evident either how the questions or the underlying ground-truth
(the ‘answer key’) were constructed, including whether there is selection bias
by human beings constructing them. For narrow and domain-specific problems
in AI, neither might pose a serious issue under ordinary conditions. However,
for AGI tasks (and arguably, MCS is an important such task), such evaluations
cannot be expected to yield a trustworthy representation of a model’s ability to
generalize [17], especially when the model is black-box and lacks the ability to
give either an accurate confidence in, or a human-understandable explanation
of, the answer it has selected. This is obviously true for many of the complex
deep learning models in operation today, including the transformer-based LLMs.
It is even less clear how to systematically evaluate generative LLMs, where it is
not necessary to provide a closed set of answers, and the questions themselves
may be sequentially dependent, or guided by context.

In this paper, we aim to move beyond the single-hop QA paradigm to an
evaluation protocol that is more flexible, context-rich and allows for different
modalities and content while still using well-defined guidelines (for both modality
and content) to ensure that the evaluation is not ad hoc and arbitrary. Details
of this protocol are provided in the next section. We argue that the protocol
systematically and robustly enables us to probe the common sense abilities of
an LLM, or any such similar model. Our protocol is especially designed for
evaluating generative LLMs, such as GPT-3 and ChatGPT, although it is not
incompatible with discriminative models, such as BERT. The protocol involves
limited intervention from a ‘human in the loop’ but preempts the introduction of
arbitrary questions by requiring the human evaluator to adhere to one of several
pre-defined modalities when deciding on the format in which to pose queries
to the model, as well as using a theory of common sense when deciding on the
content of those queries. Concerning the latter, there have been growing calls
recently to have more systematic distinctions [10], based on such theories [7],
between MCS and other kinds of reasoning and problem-solving that do not
primarily fall under the umbrella of common sense.
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Ultimately, our proposal hopes to enable a shift from using static datasets
for benchmarking, to using dynamic processes that obey rigorous guidelines.
Conducting such evaluations may be important for establishing AGI traits (or
lack thereof) in these kinds of models in a more scientific and unbiased manner.
Along with describing the protocol in detail, we demonstrate its practical utility
by conducting pilot evaluations on ChatGPT. We also discuss potential use of
this protocol for external users and practitioners.

2 Proposed Evaluation Protocol

Multiple-choice QA (MQA) is commonly used to evaluate the problem-solving
performance of humans and that of machine-based reasoners that have been
developed with neural-symbolic and/or transformer-based LLM approaches.
MQA datasets can be manually created or automatically generated. The process
for creating the questions, candidate answers, and scoring is well documented
and there are numerous guidelines available to support the creation of effective
multiple-choice questions and answers [14].

Other formats, such as true-false, stories, or sequences can be used to develop
datasets which can be effective for evaluating problem-solving methods that are
generative or even open-ended in nature. For example, presenting a machine
with a story and asking it to write a relevant ending could be (and has been)
used to evaluate its comprehension abilities. Instead of writing a relevant ending,
the machine can also be asked to pick the correct answer from a list, determine
if subsequent statements about the story are true or false, or generate a single
answer or ordered list of answers. Even more recently, the machine commonsense
community has been considering generative QA, a good benchmark example
being CommonGen [12]. While performance can be automatically evaluated,
and metrics like Brier scores [4] can be automatically computed, specifying the
full space of possible answers in advance (for an automated program to score) is a
difficult and time-consuming task. As a result, unusual, but correct answers may
not be scored correctly. In addition, automated evaluation of multi-hop reasoning
capabilities can be difficult with Generative QA, especially if questions in the
dataset are independent from one another.

Having a human in the ‘evaluation loop’ can help resolve certain ambiguous
situations [15], however, having no manual or automatic method for testing the
difficult cases that require use of both intuitive or reflexive, and rational, rea-
soning processes (approximately mapping to System 1 and System 2 cognitive
processes in Kahneman’s framework [9]), in effect reduces the scope of machine
reasoning tests. To help mitigate these issues and to robustly evaluate machine
commonsense reasoning, we argue that a rigorous human in the loop test must
be included. A diagram of a proposed evaluation paradigm which includes a
human in the post-hoc evaluation phase is presented in Fig. 1. In this frame-
work, a single machine-based reasoner is presented with tasks that can range
across benchmarks and include multiple problem-solving modalities in a sin-
gle evaluation session. Before presenting tasks to a machine-based reasoner in
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a session, tasks about a specific problem-solving modality in a specific context
are composed offline by humans who preferably had no role in the design of the
reasoning system. For each task, a set of wrong and right answers is also defined.

Five example problem solving modalities are listed in Fig. 1: comprehen-
sion, organization, counterfactual reasoning, probabilistic judgments and psycho-
social modeling. The definitions for these and other problem-solving modalities
are available in [10]. They are also referred to as “evaluation” modalities because
the problem-solving capability of a system is being evaluated in terms of its abil-
ity to perform some particular type of problem-solving. For example, we define
the modality comprehension as: the act or action of grasping with the intellect;
to include, to comprise, to fully understand. Because we are interested in eval-
uating the ability of machines to do commonsense reasoning, each task that is
representative of a particular problem solving modality is developed to map into
one or more representational areas, such as “agents” and “activities” that have
been defined in the commonsense reasoning theory of Gordon and Hobbs [7]. In
[15], we describe the motivation for using selected categories from Gordon and
Hobbs in constructing dataset prompts.

The proposed framework allows a ‘closed loop’ evaluation, where the tasks
are provided to the system with the problem context. The machine’s response
accuracy is measured using post-hoc human judgment. Ideally, the same test
would also be administered to a human to ensure that it is, indeed, a common-
sense test with near-perfect human accuracy.

To evaluate the effectiveness of the framework, we created tasks related
to questions in our Theoretically Grounded Common-Sense Reasoning (TG-
CSR) [16] benchmark. The datasets in this benchmark cover four commonsense
problem contexts: vacationing abroad, camping, bad weather, and dental clean-
ing. For example, to test comprehension, the machine is provided with a test
question based on the vacationing abroad dataset: Over the past few years,
Chloe has been cycling a lot more. Also, she has a subway in her home town
that she doesn’t like very much. What can be said about Chloe’s preference in
getting around cities in her trip? To evaluate comprehension, we compare the
machine’s answers to correct (She would prefer to cycle) and incorrect (Ride
the subway) answers, that were made by human annotators. In our research, we
have discovered that the evaluation datasets do not have to be large and may
even contain fewer than 200 tasks, but they must be adequately representative
of the Gordon and Hobbs theoretically-grounded commonsense categories before
an evaluated system can claim a particular problem-solving capability.

In cases where a generative reasoner’s answers do not exactly or closely match
any of the human annotation options, the generated answer is evaluated by the
human in the loop. Having a human in the loop also helps resolve a known
issue with current generative QA benchmarks, which is that even with post-hoc
evaluation, when questions presented to the machine are independent from one
another, it is difficult to evaluate a system’s multi-hop reasoning capabilities.
With our framework, the human in the loop can present tasks in subsequent ses-
sions that incrementally build upon tasks presented in prior sessions in order to
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test more complex capabilities such as multi-hop reasoning. An even more pow-
erful test can also be conducted using an ‘open loop’ evaluation. For this evalu-
ation, the initial set of tasks are presented to the system (similar to the closed
loop evaluation), but the ‘evaluator,’ which can be a single person, or multi-
person team, is allowed to design a new task in real time, given the machine’s
responses. This kind of evaluation has precedent in the NLP community e.g., in
the realm of text adventure games [2].

Fig. 1. A contextualized human-in-the-loop evaluation paradigm for holistically assess-
ing the range of machine commonsense capabilities. A similar evaluation can be con-
ducted with a human in place of the machine commonsense reasoner, to confirm that
the task is indeed commonsense and to measure human performance.

3 Experimental Demonstration

We conducted four evaluation sessions to assess the commonsense reasoning abil-
ity of the state-of-the-art language model ChatGPT across a range of context-
heavy tasks. These evaluation sessions were designed using two handcrafted
open-ended problem contexts, each employed twice. Additional details and tasks
related to these contexts can be found in a recently released benchmark [16].

3.1 Context 1: Camping Trip

One of the problem contexts involved planning a camping trip in the White
Mountains of New Hampshire in August. The context given to the model pro-
vided information about a couple named Fred and Linda who want to spend
around ten days doing day hikes and are searching for a campsite conveniently
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located near the hiking trails they want to explore. While Fred went on a few
camping trips as a child, Linda had never been camping. The model was then
tasked with helping the couple plan and organize their trip. For replication and
full details on the session, we provide a link to the session log1.

The initial evaluation session entailed a multi-set QA assessment for Chat-
GPT. The system was presented with a question, such as “What items should
Fred and Linda bring on their camping trip?”, and a set of candidate choices,
such as (1) Tent, blankets, (2) Lawnmower, (3) Makeup, (4) Paper clips, and (5)
Mosquito repellent, suntan lotion. The system was required to select all of the
options that apply. The human annotators had determined that the most suit-
able response for the question is a combination of choices (1) and (5). A rigorous
comparison was performed between the machine’s answer and the ground-truth;
only cases where the machine’s answer matched the ground-truth were consid-
ered correct. We presented ten distinct multi-set questions on the topic of the
camping trip to ChatGPT. These questions covered various commonsense repre-
sentation areas, such as time, activities, and world states, as described in Gordon
and Hobbs’ theory [7]. A manual review of ChatGPT’s responses demonstrated
that it was correct on five of the ten questions. In most cases where ChatGPT
answered a question incorrectly, it selected all options that may be applicable in
a general sense but not necessarily directly related to the question. For example,
in a question that inquires about the appropriate breakfast food for Fred and
Linda to bring if they desire a protein-based meal without cooking before a day
hike, human evaluators determined that the correct choices were instant oatmeal
packages and protein bars. ChatGPT’s response included the two correct options
but also included the candidate answer ‘water bottle’ since it suggested bring-
ing a water bottle for staying hydrated during the hike. While a water bottle is
undoubtedly necessary during hiking, it should not be listed as a breakfast food.
Humans would not consider it a correct answer to the same problem.

In addition, we observed that ChatGPT’s performance tended to degrade
when asked questions related to time estimation. For example, when the model
was asked how many days Fred and Linda would be away on their 10-day camp-
ing vacation, given that it takes one full day to drive to the White Mountains
of New Hampshire and one full day to drive back home, ChatGPT responded
with ten days, which is not an accurate answer (a better answer is 9 days). Sim-
ilarly, when asked to estimate the time required to set up a four-person tent,
ChatGPT’s answer of 30 min to an hour did not match the range of 5–30 min
provided by humans. This discrepancy may be deemed incorrect in a multiple-set
question setting, despite being (somewhat) acceptable in a generative question
setting. Other instructive details can be obtained from the full log linked earlier.

1 https://docs.google.com/document/d/1yNrjTOt0imJW5OVajTDNcAJ0PJxmM6B
7Dpe3N8YFMD4/edit?usp=sharing.

https://docs.google.com/document/d/1yNrjTOt0imJW5OVajTDNcAJ0PJxmM6B7Dpe3N8YFMD4/edit?usp=sharing
https://docs.google.com/document/d/1yNrjTOt0imJW5OVajTDNcAJ0PJxmM6B7Dpe3N8YFMD4/edit?usp=sharing
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During the second evaluation session2, ChatGPT was tested on its ability
to apply commonsense reasoning to organize a series of camping activities in
the correct order. To achieve this goal, four distinct questions were presented to
the model, including “What activities are best to do before it gets dark while
camping?” Impressively, ChatGPT provided the correct sequence of activities
for all the questions.

In addition to grading the results, involving a human in the evaluation loop
allowed us to observe that ChatGPT recognized that the order of activities
could be influenced by specific circumstances. For instance, ChatGPT noted
that weather conditions and the availability of firewood at the camping site
could impact the order of activities before nightfall. Moreover, when asked about
sequencing activities before nightfall, the model suggested that campers should
be mindful of the campground’s quiet hours and avoid making excessive noise
during the evening. Probing the model’s abilities to handle such context is cur-
rently not allowed by single-hop QA paradigms. However, our proposed protocol
is flexible enough to include such context when constructing queries.

Overall, ChatGPT exhibited impressive commonsense reasoning abilities in
organizing a series of camping activities in the correct order. Including a human
in the evaluation loop helped us to assess the model’s performance and provided
additional valuable insights into the model’s strengths and limitations.

3.2 Context 2: Vacationing Abroad

The second problem context in the assessment relates to the notion of vacationing
abroad. Chloe, who has not taken a vacation in nearly two years, plans to take
an entire month off. She intends to spend three weeks traveling with some close
friends to visit Europe’s most renowned attractions, such as Paris and London.
We assess the extent to which the system comprehends Chloe’s vacation plans
by requesting it to carry out an intent-analysis of Chloe’s itinerary elements and
offer a rough estimation of the traveling agenda.

The evaluation was conducted in a multi-set question session and a genera-
tive question session, respectively3. The same set of questions was used in both
sessions to compare the performance of ChatGPT on different evaluation tasks.
In the multi-set question session, a set of candidate answers was provided per
question, and the model was asked to select all the correct options that apply.
In contrast, the generative question session allowed ChatGPT to freely generate
its response.

In the generative question session, ChatGPT performed reasonably well, but
in the multi-set question session, it only correctly answered 6 out of 12 questions.

2 The log for this session may be found at https://docs.google.com/document/d/1a-
CDcijT2an0XiYF-JQ0i2ZvFiUpUB-Xb4wZBUkBVkg/edit?usp=sharing.

3 The logs for these sessions may be found at https://docs.google.com/document/
d/1tLseMBfGVEhdpcm4jGNg 9Dr4ruGihFX9ncY3240k5Y/edit?usp=sharing and
https://docs.google.com/document/d/1HWma7MuZkaCeqq6aVmXtBzP9pqudmF7
YH1GAl9z2xoc/edit?usp=sharing, respectively.

https://docs.google.com/document/d/1a-CDcijT2an0XiYF-JQ0i2ZvFiUpUB-Xb4wZBUkBVkg/edit?usp=sharing
https://docs.google.com/document/d/1a-CDcijT2an0XiYF-JQ0i2ZvFiUpUB-Xb4wZBUkBVkg/edit?usp=sharing
https://docs.google.com/document/d/1tLseMBfGVEhdpcm4jGNg_9Dr4ruGihFX9ncY3240k5Y/edit?usp=sharing
https://docs.google.com/document/d/1tLseMBfGVEhdpcm4jGNg_9Dr4ruGihFX9ncY3240k5Y/edit?usp=sharing
https://docs.google.com/document/d/1HWma7MuZkaCeqq6aVmXtBzP9pqudmF7YH1GAl9z2xoc/edit?usp=sharing
https://docs.google.com/document/d/1HWma7MuZkaCeqq6aVmXtBzP9pqudmF7YH1GAl9z2xoc/edit?usp=sharing
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One example of a discrepancy between the two sessions is the question, “While
Chloe likes outdoor activities, she doesn’t appreciate them when it’s sunny and
hot. During her trip to Europe, what should she do during the day?”. ChatGPT
chose inappropriate candidate answers such as “Get a coffee” and “Have dinner
in a new place,” but generated more relevant responses in the generative question
session, such as visiting museums, shopping at indoor markets, and taking a river
tour. Determination of the closeness of an answer by the generative reasoner is
based on two methods: the first is a text match (i.e., when an answer matches the
text of an option, then it is considered exact or close), but when such a match
is not detected, the second method relies on a human in the loop to determine
the closeness of the match. This suggests that, despite some suggestions to the
contrary that these models are ‘general’ in their abilities, it may not necessarily
be the case that generative models are better at discriminative tasks (such as
multiple-choice QA).

Our human-reviewed evaluation indicated that ChatGPT’s performance on
time-related questions was still not up to par in both assessment sessions.
Reasoning about time is a foundational commonsense reasoning skill and is
required in order to reason about related commonsense issues like activities and
planning [7]. Temporal reasoning is one of the foundational capabilities that
researchers [1] believe is necessary in order for machine-based reasoning sys-
tems to perform basic tasks or to support humans in those tasks, e.g., resource
management, travel planning. For instance, when presented with the question,
“Given that Chloe’s vacation starts on June 1st and she only has three weeks of
vacation, when should her flight depart?”, ChatGPT only identified “June 1st”
as the correct answer, even though “June 5th” was also a valid option provided
in the candidate answer list. The model acknowledged that the other options
could be correct if additional information, such as a specific flight departure
time or a fixed schedule, was provided. However, in our annotation exercises, we
found that humans could easily choose both answers as appropriate without any
additional hints.

Furthermore, when presented with the same question without a list of can-
didate answers in the generative QA session, ChatGPT responded that Chloe
should depart on or after June 1st and return on or before June 22nd. While
this answer is correct, it still shows that the model struggles with accurately
understanding and processing time-related information. In fact, this answer is
consistent with June 5th, but the model did not choose it when presented with
it in a discriminative setting.

4 Discussion

This paper proposed a context-rich evaluation framework where limited human
intervention is used for two important purposes: to determine if the response to
a query by the model is actually appropriate and along what dimensions (which
can be difficult to automate, especially if the query was ambiguous), as well as
to incrementally dialog with the machine in order to more robustly evaluate its
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multi-hop reasoning capabilities. To more effectively evaluate a machine’s ability
to solve different types of commonsense problem-solving tasks, we recommend
that the content of questions be grounded in a theory of commonsense, such
as that proposed and refined in [7]. We demonstrated the potential utility of
this framework by applying it to the ChatGPT system for assessing its MCS
abilities. Although the model’s responses are quite impressive, the full use of
the evaluation protocol also demonstrates that more work is needed before the
model can be said to possess the full gamut of common sense reasoning.

As enterprises and other practitioners (including in healthcare and education)
start deploying generative AI technologies like LLMs more frequently in their
application stacks, domain-specific evaluations of such models could prove criti-
cal in ensuring that they are being used in a responsible and trustworthy manner.
The protocol proposed in this paper could be adapted for domain-specific eval-
uations; the only real constraint would be to ensure that the problem context in
Fig. 1 aligns appropriately with the domain, and the human-in-the-loop evalua-
tor is an individual with sufficient domain expertise.

Beyond partnering with domain experts on such evaluations, in future work,
we plan to scale up evaluations significantly and apply the protocol to other
LLMs as they are released. We also hypothesize that, by applying the protocol
rigorously in multiple sessions, deeper insights could be gleaned on the MCS
capabilities and limitations of generative models. By focusing more on a bench-
marking process, rather than over-reliance on benchmarking data (which has
been found to be susceptible to generalization issues [11]), similar such evalua-
tion sessions could then be conducted and replicated as larger models continue
to be released. By releasing the session logs, as we have done in this work, the
process also becomes open to analysis and could be refined or modified through
community-driven critique.
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Abstract. There are frequent reports in current media that discuss threats from
Artificial Intelligence and especially the possible threats from Artificial General
Intelligence (AGI). This indicates a need for establishing communication inter-
faces between humans and AGI that ensure that we can create responsible and
careful AGIs, whose behavior and knowledge can be scrutinized by human beings.
In order to illustrate how this can be done, we exemplify how human reasoning
processes can be used when designing an AGI that is driven by knowledge that
can be easily understood by human beings.

The conclusion from the analyzed examples is that there are indications that
the described features of human cognition are well suited to be used as a starting
point when designing requirements for an explainable AGI-system.

1 Introduction

1.1 Background: Humans and AGI Learn from their Conversations

Today there is much attention given to eventual future problems with an uncontrollable
Artificial Intelligence (AI). Many people fear that AI will not only take our jobs and
make humans less valuable, but AI may also have a negative impact on the freedom of
individual human beings.

Most people find it difficult to understand how large tech-companies or military
industries use Big Data and Machine Learning to create AI-systems.

One reason for this lack of understanding is that many AI-systems are not designed
for being able to explain all the detailed steps in their reasoning processes and they cannot
explain their reasoning processes in a way that can be pedagogically communicated with
human beings [1]. A result of this, is that people can become alienated or distrustful
towards AGI. This lack of trust or ability to understand the reasoning processes in an
AGI may create a society where people feel that they are out of control.

We can assume that people would benefit from having a similar relationship with
AGI as they have with other people. This is described by Mueller et. al. in [2]. If an
AGI learns knowledge that is based on human’s perspectives, values, ideologies and
patterns of communication, then we can assume that the AGI would become sensitive
to the needs and well-being of this human. An analogy with child rearing can be used
as an illustrative analogy. If parents treat its child as an equal, in a firm a responsible
way, then the probability is high that the grown-up child will treat its elderly parents as
equals in a similar firm and respectful way.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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In order to allow for an efficient communication about the reasoning processes in an
AGIwe need a knowledge representation in the AGI that can be scrutinized andmodified
by the human that is using this AGI [1]. There are two benefits that can be assumed from
facilitating the transparency of the knowledge that is driving an AGI. The first postulated
benefit is the possibility to empower humans in their relationships with an AGI. Such
an empowerment makes humans engaged in a mutual development of knowledge that
makes both the AGI and humans smarter.

There is always a risk that power-hungry people with personal agendas exploit AGI-
systems. In such cases the AGI-systems may support the evolution of dysfunctional
bureaucracies that humans find difficult to deal with. The history of mankind is full of
examples of empires that degenerate and collapse due to a lack of adaption to feedback
from the “grassroots”. The second postulated benefit of requiring transparent knowledge
in the dialogues between humans and AI, is that the risk of an insensitive bureaucracy
can be avoided when unwanted ways of reasoning can be discovered and corrected by
the users of a system.

1.2 Purpose: To Look for Indications of Suitable Algorithms for an AGI

The purpose of the research described in this paper is to look for indications of usefulness
of generic human reasoning processes when defining requirements on algorithms for an
AGI-system. The presented research is restricted to a semantic processing of language
and does not deal with other types of information processing.

1.3 Lessons Learned from Previous Implementations

The author of this paper once designed an expert system for the Swedish government [5,
6]. The system was based on information propagations in a semantic network and was
designed tomimic the intuition of employment counselors. The success of the systemwas
so highly esteemed that it was implemented in every employment office throughout Swe-
den. Unfortunately, the government officials were not interested in investing in functions
for continuous updating of the system’s knowledge. The clerks argued that the system
was popular and worked fine. However, after some years the system became outdated,
made some errors and was then heavily criticized, with the result that it was replaced
by a simple IT-system. One lesson learned from this failure was that the functions for
updating a system’s knowledge must be designed for being located at the very core of
the system. Another lesson learned was that the approach of using generic variables that
presented accumulation of results was very useful when presenting an overview of the
knowledge to the user.

1.4 Method for Evaluating the Usefulness of the Examples

The major part of this paper describes examples of how human reasoning processes
can be mapped onto requirements on an AGI. Examples are selected from the area of
cognitive science and from “Informed AI” as described in Johnson [3]. Each example
is directly followed by a description of how a requirement can be defined for an AGI
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together with a minor feasibility analysis. Whenever a description of a human reasoning
process can be interpreted as being translatable to a process of matching and mapping
patterns, this is considered as an indication that it could be useful in further experiments
with designing an AGI-architecture.

2 Similar Functionality in People and AGIs

To ensure a continuous learning in an AGI, its knowledge should preferably be con-
tinuously updated. This requirement is the same for both humans and an AGI. In an
advanced learning-system we can even see that the learning process in itself is one of
the major drives behind the activities in the system [4].

In the following paragraphs we present how we have designed requirements for an
AGI. For each such requirement, in the sections below, we first describe how a human
being depends on a certain function for its thinking and then we argue for implementing
a similar functionality in AGI.

2.1 Typed Variables Facilitate Reasoning on a Generic Level

The use of stereotypes can make human thinking superficial and hinder rational reason-
ing, but at the same time stereotypes are needed to make reasoning processes efficient
when there is a lack of available specific information. The AGI could use a function
that corresponds to stereotyping by being able to use generic classifications of structures
of variable values in order to be able to make efficient classifications when there is a
lack of specific information. This is facilitated by using a knowledge representation that
allows for matching on any level of abstraction or at any depth of embedded structures.
We propose that any input in the form of natural language can preferably be interpreted
into a simplified list of relationships that should then be specifically designed to facili-
tate matching, mapping and learning processes. Here we exemplify with one version of
such simplified relationships that are designed to facilitate matching processes on both
specific and generic levels. It can look like this:

Id1,nounType(nounPhrase, Id2), relType(verbPhrase), nounType(nounPhrase,
Id3)

The Id2 and Id3 = Identifiers in a nounPhrase and can refer to any node entity in a
semantic network, while the Id1 is an identifier for the whole relationship.

The nounType and relType are generic terms that can be seen as a generic summary
of what is found in the text part of the nounPhrase or the verbPhrase. These types are
stored in taxonomies to facilitate measures of closeness. They can be used to facilitate
the general matching of patterns.

An entity can then be formed as a non-restricted list of random relationships. An
entity can also be assigned to belong to a type of entity and can then be located as the Id
associated with a nounPhrase. Thus a complex structure can be an Id in a nounPhrase.

The use of types throughout a semantic network is intended to facilitate reasoning on
a generic level when there is not enough specific knowledge available to solve a problem.
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The types can also facilitate the communication between the AGI and the end user when
they are reflecting on how entities, like those described above, should be classified.

Links in the semantic network can be assigned between nounTypes and entities
and between entities and other entities via a relationship types that are referred to as
“relTypes” that could continuously evolve when there is enough available input data to
support new generalizations of verb-phrases. Common generic relTypes between entities
are: subclass, superclass, hasPart, partOf, pred, succ, cause, imply, etc.

Due to space restriction in this paper there is no presentation of examples of how such
representation of relationships can be used in various proposed reasoning processes.

2.2 The AGI Should be Able to Store Complex Patterns in Its Working Memory

There is much evidence that knowledge is not useful unless it can be related to a context
[7]. Knowledge is almost always situated, which means that the knowledge is only
relevant for being used in a situation if it matches the situation.

People can experience a context in the form of generic background patterns that
gives an overall view of a given situation. The generic patterns are utilized for producing
motivating feelings that in turn support the selection of the relevant knowledge that can
be used in a situation.

If the working memory of an AGI shall function as a context it must be able to store
complex patterns in its working memory [7]. It must also be possible to relate these
patterns to knowledge that is stored in the long-term memory of the AGI.

In order to be able to reason with probabilities and temporary relevance, all stored
patterns should have weights of relative importance assigned to them, so that they can be
continuously modified depending on the progress of the reasoning process of the AGI.

When the system is considering its next move, it would begin with checking the
relationships that had the highest temporary weight in the Working Memory before it
would start to look for relevant knowledge in the knowledge base.

2.3 The Context Should be Used When Interpreting the Users Input

In the initial phases of a dialogue, a reliable context may not exist. People then need
a standard interpretation of natural language to be able to construct a context for the
initial interpretation of the logic in the input message. An AGI must similarly design a
context before it can expand its reasoning processes. Therefore, the proposed approach
to handling language in an AGI needs a big language model with standard taxonomies
that can handle various kinds of language input for designing a context. Every new term
in the input can then be matched with both the standard taxonomies and the context that
is incrementally constructed and updated during a dialogue.

2.4 The Dynamic Memory of an AGI Should be Independent of Schemas

People do not store memories according to any specific logical classification system.
Instead memories are stored according to the similarity or analogy between the most
relevant parts of the previously storedmemories [8]. This enables people to store the new
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information at the same time as they are classifying and interpreting the new incoming
information.

If we look at the human brain as a database we know that it handles information
in a network of links between brain cells, where the links can have various degrees of
priority depending on how often and in which context they are used.

Human beings use their feelings when assigning priorities and probabilities of a
concept in a context. An AGI can mimic this by assigning weights of relevance on all
data according to the current context.

The opposite is true in the relational databases that are today dominating the world.
They depend on explicit schemas in order to know where specific data shall be stored
and retrieved. Such explicit predefined structures would prevent the incremental creation
of new structures in an AGI. This indicates that we need to define a requirement on the
database and knowledgebase of an AGI that is similar to how humans store knowledge.
Knowledge should not be stored according to a restrictive absolute schema but should
instead be stored in a network that classifies complex data structures according to how
well they match existing similar or analogue data structures.

We assume that data and knowledge in the AGI can be stored and retrieved in a
similar way as data and knowledge is stored and retrieved in a human memory. Humans
often have one core feeling related to what was really important in a specific context.
This is where we begin to store or search for information. In an AGI this can be done
to initially follow links from any entity to its superEntity in order to find out what is
usually most important in this context. From such a position the AGI can then ask the
user questions like:

You said earlier X. This can lead to either Y or Z or W. Is any of these relevant in
your case?

Whatever a user answers, the AGI can accumulate answers from users to update its
own knowledge. Whenever it gets an approval from a user, the links that lead to this
approval will receive a slightly higher weight which may cause a micro-refinement in
the knowledge of the AGI.

2.5 Knowledge Should be Continuously Updated in Dialogues with Users

People mature gradually as they age. They do this by continuously updating their models
of reality. Such updating processes are frequently done in relationships with other people
that can provide general responses on a high level of abstraction.

This indicates that anAGI should also be able to test and verify its various hypotheses
by entering into complex dialogues with people that were classified as being mature. At
a high level of maturity, the AGI could also improve its models of reality by testing its
hypotheses against other AGI’s. If such communication is not well monitored there is a
high risk that the AGI develops in undesirable ways for humanity.

As people age and mature they usually learn to gain self-confidence on different
levels of abstraction. Whatever type of self-confidence a person has, it influences the
decisions he makes.

As an AGI matures in relation to how much knowledge it can integrate in its life
cycle, we can assume that it should also be able to change its inner focus according to
how its deepest values are gradually modified. The weights on deepest values can be
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gradually modified just as the relative importance of any variable in any context can be
modified in relation to feedback from successes or failures.

2.6 The System Must Always be Able to Explain How It has Been Reasoning

People learn in their critical questioning of knowledge. When agreements are reached
between groups of people this will confirm their trust in developing their shared agree-
ments further. This indicates that the more trust an AGI can experience in a relationship
with humans the further it will be able develop itself.

An AGI should always be able to argue for how it has reached certain conclusions.
There are several positive effects from this. One effect is that people could trust that
their AGI is open with what it knows and has no hidden strategies. The importance of
such a trust is described in [9]. A second effect is that people would be able to learn
from the reasoning processes of such an AGI. A third effect is that the AGI could in this
way prioritize knowledge that works well with the people it has been communicating
with which would ensure that the AGI matures as a being that values its cooperation
with humans. A fourth effect could be that it would give humanity an opportunity to
prioritize good and trusted AGI’s in favor of irresponsible or less liked AGI’s. This
could, for instance be AGIs that had not been designed to depend on cooperative people.
Trusted AGIs could even be designed to protect us from non-trusted AGIs.

Technically an AGI, that is designed as was proposed above, would be able to answer
any questions about its reasoning processes, since every single reasoning step can be doc-
umented in a semi-long-term log which can then be easily backtracked since all weight
propagations are stored between semantic terms that can have a substantial meaning for
the user. The AGI could use this log to describe how the probability of relevance in
each relationship had been used in the reasoning process. It could describe how each
propagation of weight was a result of earlier weight propagations, or appearing as a
result of the choices the user had made.

2.7 An AGI Should be Able to Downgrade Rarely Used Knowledge

People tend forget things that are not repeated often enough. If something is effortlessly
repeated it becomes delegated to the sub-conscious. This ensures that the brain can
optimize its functions without having to consider knowledge that is outdated, often
irrelevant or rarely used. If something that resides in the subconscious is not used it
tends to become forgotten.

A similar functionality can be inserted in an AGI. The system can simply be pro-
grammed to continuously devaluate the weights on knowledge that is rarely used or not
sufficiently appreciated. This also enables the AGI to avoid the bureaucratic regression
of getting stuck in old fixed values.

3 More Advanced Functionality in Humans and AGIs

3.1 Knowledge Should be Rebalanced in Hierarchical Structures

Knowledge in a living system does not work well if there exist contradictions in the
knowledge. People therefore refine and balance their knowledge until it is synchronized
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with their basic values and perspectives on life. This happens in meditation, during
recreational activities, in cultural activities and in psychotherapy. A human being can be
engaged in psychotherapy in order to re-evaluate historical knowledge. This is done to
ensure that old irrelevant programs are neutralized in memory.

We can assume that an AGI would be able to also present well balanced knowledge
if all of its representation of knowledge was evaluated and structured according to how
well the knowledge corresponds with its important central values. This functionality
can be implemented in an AGI by always keeping a score on patterns that are often
considered as functioning well. Such patterns should achieve high weights that describes
their reliability and they could then be assigned to higher positions in the hierarchy of
knowledge structures. Knowledge that is not consistent or badly integrated with the rest
of the mass of knowledge, would, vice versa, get lower positions in the hierarchies of
stored knowledge.

3.2 A Learning System Must be Able to Generate and Test Hypotheses

People tend to generate hypotheses whenever they confront something out of the
ordinary. This is one of the major functions when human beings learn new knowledge.

AnAGI should be programmed to generate and test hypotheseswhenever it confronts
something that has patterns that do not match its stored knowledge. The following
functions show how an AGI can use matching and mapping processes to create new
patterns:

1. The AGI can discover that certain types of patterns are often coexisting with other
types of patterns or it could find pattern structures that are considered as being
statistical outliers. This can trigger more focused investigations concerning how
patterns can be related.

2. When the AGI investigates if there exist any possible explanations for similar coex-
istences, it may find relationships in adjacent areas that could possibly explain the
coexistence of patterns

3. It can finally try to verify its conclusions in further dialogues with the users or test
them against structures that are statistically generated from studying literature in the
actual area.

The basic theoretical ideas behind the above proposed matching and mapping
processes can be found in Clancey [10].

3.3 An AGI Should Use Creative Inspection of Its Own Knowledge Structures

People can use introspection to reflect on the generic values that cause them to act in a
specific way. Humans can, for instance, do this on a deeper emotional level when they
question how they have lived their lives. A person who can find generic patterns in his
long-term strategies can mature into a state of wisdom. Such a process of reflecting on
the major decisions in life is often described in the auto-biographies of famous people.

An AGI that accumulates a large number of similar patterns should likewise be able
to investigate if there exist any analog or generic patterns that could be used to design



184 H. Kjellin

a new hypothesis concerning large scale or long-term events that has happened in its
history.

3.4 There Should be a Consistency in the Direction of the Reasoning Process

People who are good at developing a consistency between various goals are likely to be
better in selecting a direction that optimizes the fulfillment of prioritized goals.

An AGI could similarly be programmed to always seek a consistency in what it does
in order to be able to present itself and its reasoning processes as being reliable and
without inconsistencies.

A continuous checking of the generic direction of anAGI could be achieved by testing
all patterns against weights on generic moral codes in order to see if a new set of patterns
are consistent with stored patterns from a moral point of view. However, since neither
humans nor AGIs would function well with much too strong requirement on moral
consistency, the proposed requirement should instead be similar to what Bultuc [11]
calls “Paraconsistency” which can ensure that something is at least consistent within the
present context, but it should not achieve such a dominating weight that it could generate
any type of unbalanced radical behavior.

3.5 A Continuous Induction of Gestalts for Emphasizing Feelings of Context

People can become balanced in life by explicitly trying to generalize the knowledge they
already have into an experience related to metaphoric gestalts [12]. A desire for such a
creation of metaphors can, for instance, be triggered when a friend asks: How do you
feel about all of your experiences in this relationship, now that it is over?

An AGI can similarly create a gestalt by collecting the most important patterns in
a sequence of “emotional” patterns and use these to design an archetypical gestalt that
can become the header of a story. Such stories can then be communicated to humans in
order to induce feelings of the totality of the complex structure of a concept.

4 Conclusions

4.1 An AGI Can Handle Knowledge in a Similar Way as Humans Do

Above we have presented a number of features in human thinking that could possibly
be implemented in an AGI. Due to space restrictions on the text in this paper, examples
of knowledge representation and corresponding algorithms have not been presented in
detail.We can however make a subjective interpretation of the logic in the argumentation
and claim that in all the examples we can extrapolate indications that an AGI algorithm
could be programmed to mimic a similar reasoning process as is done in a human being.
We therefore conclude that an AGI could shuffle around and redefine its knowledge in a
similar way as human do. We assume that such functionality would support the AGI to
utilize a similar type of potential that we can find in most living systems. Even if such an
approach would prove to be less effective than AGI strategies that do not mimic human
thinking processes we assume that the rewards from being able to easily scrutinize all
the detailed processes in the thinking of an AGI would in itself be motivating the use of
the proposed approach.
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4.2 A Generic and Flexible Representation of Knowledge is Needed

It can also be claimed that a semantic network representation of knowledge is well
suited to be used together with statistic calculations based on weight assignments and
weight manipulations on all the links in the semantic network. Such an architecture
have previously been successfully implemented in an AI-based system that was used
for 6 years by several hundreds of thousands people [5, 6]. Although this system was
not implemented with the learning function that are described above, its knowledgebase
could manually be updated by utilizing stored accumulated responses from the users.
The system could also explain to the users which knowledge had been used to support the
users in their decision making. This historical example does not in any way verify that
the proposed functionality would work well, but it can still provide an indication of the
usefulness of a semantic network architecture that facilitates an explanatory dialogue.

We need to start with a well working simplified language model that can be con-
tinuously scrutinized and modified manually by human beings, to ensure that we never
break our lifeline connection between humans and our AGIs. Once we discovered such
a language model it can be continuously developed and restructured with a grammar
that optimize the use of logic in the communication.
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Abstract. The paper presents an advanced version of an adaptive market-making
agent capable of performing experiential learning, exploiting a “try and fail” app-
roach relying on a swarm of subordinate agents executed in a virtual environment
to determine optimal strategies. The problem is treated as a “NarrowAGI” problem
with the scope of goals and environments bound to financial markets, specifically
crypto-markets. Such an agent is called an “adaptive multi-strategy agent” as it
executes multiple strategies virtually and selects only a few for real execution.
The presented version of the agent is extended to solve portfolio optimization
and re-balancing across multiple assets so the problem of active portfolio man-
agement is being addressed. Also, an attempt is made to apply an experiential
learning approach executed in the virtual environment of multi-agent simulation
and backtesting based on historical market data, so the agent can learn mappings
between specific market conditions and optimal strategies corresponding to these
conditions. Additionally, the agent is equipped with the capacity to predict price
movements based on social media data, which increases its financial performance.

Keywords: Adaptive Agent · Backtesting · Crypto-Market · Experiential
Learning · Limit Order Book ·Market-Making ·Multi-Agent Simulation ·
Narrow AGI · Active Portfolio Management · Price Prediction

1 Introduction

The approach and architecture of an adaptive agent acting in an environment of the
financial market, being a “Narrow Artificial General Intelligence” (Narrow AGI) agent
specialized in the financial domain, has been actively discussed in recent years [1]. It
was initially proposed as an agent-based solution for active portfolio management, and
the overall architecture was outlined [2]. The latest work has explored the possibility of
an AGI agent learning the ability for financial market prediction [3].

Some earlier works, such as [4] and [5], have approached the use of machine learning
for the specific problem of market-making based on the limit order book on centralized
exchanges in conventional financial markets. Other later works, such as [6] and [7], have
tried to narrow this down by using reinforcement learning applied to the crypto-market.
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The idea of the so-called “adaptive multi-strategy agent” (AMSA) was introduced in
[8]. In this approach, the market-making agent performs purposeful activity [9] targeting
the maximization of financial returns by means of experiential learning [10] through a
“try and fail” approach. It relies on a swarm of subordinate agents being executed in
a virtual environment to determine optimal strategies, which are then executed in the
real environment, as shown in Fig. 1. Such an agent is called an “adaptive multi-strategy
agent” as it executesmultiple strategies virtually and selects only a few for real execution.
The virtual environment for strategy evolution is created with multi-agent simulation of
the real market based on either a) a completely synthetic population of agents playing
roles of market-makers and traders driven by the historical price curve or b) backtesting
by simulation of exchange operation matching historical records of real trades executed
on the market against historical snapshots of the limit order book (LOB) structure. The
latest developments of this approach were presented recently [1], showing the capacity
of this approach to perform in volatile crypto-markets.

Fig. 1. Architecture of the “adaptivemulti-strategy agent” formarket-making (MM).Market data,
including records of executed trades and snapshots of the limit order book structure, are collected
by a simulation and backtesting framework (at the top). The “controller” agent runs a swarm
of trading bots that execute a wide range of market-making strategies in a virtual environment,
returning virtual profits and losses (P&L) associated with these strategies (on the left). On every
strategy evaluation cycle, the “controller” selects the top-performing (in terms of P&L) strategies
for a given market- momentum and creates another smaller swarm of market-making bots to
execute the selected strategies on a real exchange to collect real P&L (on the right).

The environment of the AMSA agent consists of market data [2] as well as social
media data [11], which can also be used for price movement prediction. The study of
sentiment analysis for the purpose of market price prediction has been explored before
in [12] and [13], but the latest study [11] suggests “cognitive distortions,” known in
cognitive psychology, may serve as indicators of manipulations and panic.
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Fig. 2. Operational space of the adaptive market-making agent as a “Narrow AGI” operat-
ing in an environment represented by financial market data, relevant social media news feeds,
and performing financial transactions on the market according to strategies defined by specific
parameters.

2 Advanced Agent Architecture

Architecture of the AMSA agent explored in this study extends the one suggested in ear-
lierwork [1], as shown in Fig. 2. The agent presented in this study is capable of perceiving
not only market data but also social media data. In order to optimize performance, the
data is not consumed directly but is pre-processed. The raw market data, such as open-
high-low-volume frames, raw trades, and LOB snapshots, are converted into about two
hundred derivative metrics as time series, including derivatives and imbalances between
buy and sell volumes or between volumes of buy/sell trades and ask/bid limit orders.
In turn, the social media data is processed so that social media and cognitive distortion
metrics are identified and turned into time series as well, according to [11] and [13].

The parameters of an agent strategy used in this work were slightly different com-
pared to the ones used in earlier works [1] and [2]. We still use the percentage of the
spread between the bid and ask prices of the limit orders along with the order refresh
rate. But we have replaced the “order cancellation policy” (with only three fixed policies
used) used in the above-mentioned studies with a “cancellation threshold” that speci-
fies what the magnitude of the price movement should be in order to have the orders
re-created. The latter provides more granularity and accuracy for strategy identification.

In addition to the extended version of theAMSA agent, an attempt wasmade to apply
the experiential learning approach [10] executed in the virtual environment ofmulti-agent
simulation and backtesting based on historical market data so that the agent could learn
mappings between specific market conditions and optimal strategies corresponding to
these conditions.

Moreover, we explored how the entire principle of the adaptive multi-strategy oper-
ations can be adopted for a generic case of active portfolio management, including
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portfolio optimization and rebalancing across multiple assets, as illustrated by Fig. 3.
For this purpose, we extended the agent design in two ways. First, we made it possible to
evaluate, bymeans of simulation and backtesting, all “candidate” strategies across differ-
ent markets, so the allocation of portfolio funds can be seen in a two-dimensional space
with assets or instruments on one axis and a specific strategy, identified by its parame-
ters, on the other axis. It should be noted that in our experiments described below, all
assets/instruments were traded against the USDT currency.

Fig. 3. Two-dimensional space for fund allocation in adaptivemulti-asset andmulti-strategy port-
folio management. An asset in this case is a cryptocurrency, and a strategy can either be “hodling,”
which involves locking funds in an asset for the period of strategy evaluation or execution, or
market-making with specific values such as bid/ask spread or order cancellation threshold.

In our experiment design, we extended the funds allocation to be unevenly distributed
across both the assets and the strategies within a single asset. This allowed the amount
of funds on a strategy execution cycle to be proportional to the positive returns observed
on the previous strategy evaluation cycle, which was found to be beneficial.

In summary, the agent architecture we explored can be called adaptive predictive
active portfolio management based on multiple strategies, being concurrently executed
in the virtual environment of simulation and backtesting. The selected strategies are sub-
sequently executed with the amount of funds allocated for real execution proportionally
to returns gained in virtual execution on the basis of individual assets and strategies.

3 Experimental Results

3.1 Multi-asset Multi-strategy Adaptive Portfolio Management

In order to explore the possibility of using the suggested multi-asset and multi-strategy
adaptive active portfolio management agent architecture on the crypto market, we ran
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backtesting experiments on three months of historical data from the Binance exchange,
including September, October, and November of 2021. The data was represented by a
full record of historical trades, as well as per-minute LOB snapshots. Four assets, namely
BTC, ETH, AAVE, and UNI, were selected for the experiment, with market dynamics
presented in Fig. 4.

Fig. 4. Market dynamics for BTC, ETH, AAVE, and UNI cryptocurrencies during September,
October, and November of the year 2021.

The backtesting experiment was performed on the data indicated above with an
hourly order refresh rate, with a few different portfolio setups, and cumulative results
presented on Fig. 5. One setup was just trying plain single-asset AMSA experiments
for each of the four cryptocurrencies individually. Another setup involved a two-asset
portfolio of BTC and ETH. The third setup involved a four-asset portfolio, including
all four cryptocurrencies. For each of these setups, different time intervals for strategy
evaluation and different weighing policies were employed. The intervals for strategy
evaluation were 1, 3, 5, 7.5, and 15 days, spanning over respective 90 days of the three
months. Two alternative weighing policies were employed. The first policy was evenly
splitting the current portfolio fund value across assets and strategies on every iteration of
strategy evaluation, for every asset and strategy combination that has rendered a positive
return on the previous iteration, denoted as “fixed” on Fig. 5. The second policy was to
weight the share of the entire portfolio fund value across asset and strategy combinations
proportionally to the value of their positive returns, denoted as “weighted” on Fig. 5.
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Fig. 5. Percentages of returns-on-investment (ROI) for multi-asset adaptive active portfolio man-
agement through multi-strategy backtesting on historical data for different types of portfolios ren-
dered as different bars in each bucket (all - portfolio of BTC, ETH, AAVE and UNI; BTC+ETH
- portfolio of two assets, other four bars are single-asset). The left five buckets correspond to
“weighted” fund allocation on asset/strategy grid, and the right five buckets - for “fixed” alloca-
tion. Each five buckets on the left and right correspond to different durations of periods of strategy
evaluation and execution iterations.

Interpretation of the results on Fig. 5 leads to the following conclusions. First, the
“weighted” fund allocation appears more efficient, delivering up to 20% ROI in the
case of weekly and bi-weekly strategy evaluation for the two-asset portfolio of BTC and
ETH. Second, theweekly and bi-weekly strategy evaluation periods appear superior over
the shorter ones. Third, only the combination of “weighted” fund allocation and longer
strategy evaluation periods makes it possible to obtain positive returns in the case of a
portfolio consisting of all four assets. Fourth, only the combination of the twomain high-
liquidity coins (BTC+ETH) in the portfolio has provided a non-negative ROI regardless
of the other experiment settings, having the performance of the portfolio typically as the
average of individual performances of its ingredients, with the exception of the case of
the 3-day “weighted” setup where the BTC+ETH portfolio performance has turned out
to be superior over the ingredients. At the same time, adding low-liquidity alt-coins to
the portfolio was damaging ROI in all cases.

3.2 Experiential Learning Based on Simulation and Backtesting

The following experiment was run on the same interval of data as described in the
previous section, focusing on the BTC/USDT market only. The experiment dealt with
per-hour and per-minute market data sampling and order refresh rate during backtesting.
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Multiple agents employing different strategies were run concurrently in the backtesting
environment, relying on the historical data used to simulate real exchange operation,
as described in earlier works such as [1, 2], and [8]. Each strategy was indicated by
order refresh rate (1 h or 1 min), bid/ask spread (0.1%, 0.5%, 1%, 2%, 10%), and order
cancellation threshold (0%, 0.01%, 0.1%, 1%, 10%).Daily returns (ROI) of each strategy
were evaluated, and at the same time, average values of every metric derived from raw
market data were computed every day.

Fig. 6. ROI% as a function of strategy parameters (bid/ask spread and order cancellation thresh-
old) and market conditions (normalized trade volume referred to as “volumeN” here) rendered
as 2-dimensional slices of a 3-dimensional (“spread” vs. “threshold” vs. “volumeN”) cube, dis-
playing the “spots of profit” corresponding to the highest ROI values (such as “spread” at 0.5 for
“threshold” up to 1% and “volumeN” above 0.9).

Collecting daily returns per strategy parameters on a daily basis aligned with daily
evaluations of the metrics corresponding to specific market conditions made it possible
to stack up average ROI numbers in a multi-dimensional space of market strategies and
market metrics over 90 days of operations on the exchange. Every point in such space
could be further analyzed as a point of either loss or profit, depending on the stacked
ROI value at that point. An example of such analysis for a space dimensionality reduced
down to a 3-dimensional space is presented in Fig. 6.

The most informative market metrics have appeared to be the standard deviation of
the market price, the imbalance between volumes of orders on ask and bid sides of the
limit order book (LOB), the imbalance between volumes of trades of buy and sell side,
the imbalance between the volume of all trades against the volume of all limit orders,
and finally the normalized volume of trades. The latter one is presented as an example
on Fig. 6, suggesting that the most profitable spot for market-making is associated with
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excessively high volumes of trades, spread around 0.5%, and a cancellation threshold
up to 1%.

3.3 Predictive Adaptive Market Making

The other experiment was run on the latest market data for BTC cryptocurrency during
October and November of 2022, as shown in Fig. 7.

Fig. 7. Market dynamics of Bitcoin (BTC) cryptocurrency during October and November 2022
(top) and a heat map of returns and losses per strategy, with a strategy evaluation period of
5 days (bottom). The vertical axis of the heat map corresponds to 12 intervals of 5-day strategy
evaluation periods over the 60 days, top to bottom. The horizontal axis of the heat map corresponds
to different strategies. The strategies based on experienced price movements are on the left half,
while strategies relying on predicted price movements are on the right half. It is clearly seen that in
the case of the period associated with a market crash (fourth row from the bottom), non-predictive
strategies (left) are losing, while predictive strategies (right) are gaining great profits.

The same family of strategies as in the previous experiment was used, but each strat-
egywas implemented in two different ways by independent agents. The agents of the first
kind were handling limit orders based on the current market price and its movements.
The agents of the second kind were handling their orders based on anticipated move-
ments of the market price, relying on price predictions projected according to findings
presented in earlier works on social media analysis and causal inference [11] and [13].
The experiment has been run within the same AMSA agent setup and simulation and
backtesting framework as described above, with different strategy evaluation periods
(15, 10, 5 days), order refresh rate (days, hours), and fund allocation policy (“fixed” and
“weighted”), with results presented in Fig. 8.

It has been found that adaptivemulti-strategymarket-making relying onmarket price
predictions turns out to be rather profitable (up to 25% ROI in 2 months) compared to
the same family of strategies being executed without access to predictions, with one
exception to one case when fixed fund allocation with 5-day strategy evaluation and
daily order refresh rate period has provided 2.5% ROI even without predictions.
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Fig. 8. ROI% of adaptive multi-strategy market-making for BTC during October and November
2022, predictive (based on social media) strategies on the left, non-predictive ones on the right.

4 Conclusion and Future Work

Primarily, we have found that the concept of adaptive multi-strategy market-making can
be upscaled to active portfolio management for the purpose of risk mitigation. In our
future work, we plan to extend it with more strategies involved, including conventional
trading based on short and long positions.We also plan to have amore reliable evaluation
of the approach or a richer list of assets for longer time periods.

Also, we have explored how to perform experiential learning on the virtual exchange
environment simulated by means of backtesting against real historical market data. It
has become possible to find meaningful connections between market-making strategies,
market conditions, and profits or losses associated with them. Our future work will be
dedicated to making this study cover a wider range of assets and financial strategies.

Finally, we have confirmed the value of market price predictions based on social
media data on the course of market-making in the simulated environment of backtesting.
In our future work, we plan to confirm its performance by means of market-making on
real-time exchange data.
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Abstract. Neuro-symbolic technologies with vertical and horizontal
approaches are important for the development of Artificial General Intel-
ligence (AGI). But most of the neuro-symbolic works aim at narrow AI
problems and do not have a guideline for AGI. The integration of the
two approaches could in principle provide a more holistic framework for
AGI research. To our best knowledge, such integration has not been
explicitly reported yet. In this paper, we identify that vertical and hor-
izontal neuro-symbolic approaches have independent benefits for inves-
tigating AGI problems. We then introduce a framework integrating the
two approaches, make the first step to implement it, and discuss future
updates. The version-one framework contains a central Spiking Reasoning
Network (SRN) and several peripheral perceptual modules. The SRN is a
programmable spiking neural network that can do logical reasoning under
instructions. The version-one framework is implemented on two visual
query answering tasks to investigate the programmability of the SRN and
to examine the feasibility of the framework. We also discuss the learnabil-
ity, the biological plausibility, and the future development of the SRN.

Keywords: Artificial general intelligence · Neuro-symbolic artificial
intelligence · Spiking neural networks

1 Introduction

The “hybrid approaches”1 towards building an artificial general intelligence
(AGI) aim to combine different artificial intelligence (AI) techniques to form a
system that has more abilities than the sum of its parts [3]. The neuro-symbolic
approach is one of the most promising hybrid approaches towards AGI, because
of at least two reasons. On one hand, rationality, especially thinking with formal
logic, is believed to be one of the most important unique abilities of humans.
Revealing how neural networks can implement logical introspection is a mile-
stone achievement for understanding general intelligence of humans and devel-
oping AGI. On the other hand, neural and logical technologies show significant
1 https://cis.temple.edu/~pwang/AGI-Intro.html.
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difference on several aspects. When properly integrated, such as the way human
brain does, potential synergistic effects are expected, which is definitely helpful
for developing AGI. However, guidelines to develop neuro-symbolic agents for
these two goals are still missing. Here, we briefly introduce the current neuro-
symbolic approaches, link two of them to the AGI goals, and propose a frame-
work to integrate the two approaches, hoping to achieve both of the goals in the
future.

In a lecture of AAAI 20202 Henry Kautz categorized current neuro-symbolic
works into 5 categories:

– Symbolic − Neuro − Symbolic
– Symbolic[Neuro]
– Neuro;Symbolic
– Neuro ∪ compile(Symbolic)
– NeuroSymbolic

This categorization focuses on the methods but not the goals because neuro-
symbolic technologies can potentially be used for several applications. From
this categorization We find that the Neuro;Symbolic approach is suitable
for investigating the synergistic effects, and Neuro ∪ compile(Symbolic) app-
roach is suitable for investigating how neural networks implement rationality.
Neuro;Symbolic approach directly connects neural networks with symbolic
systems by designing an effective interface to transmit information. Neuro ∪
compile(Symbolic) approach uses neural networks to learn or conduct symbolic
reasoning.

These two approaches are in nature resembling the “vertical” and “horizon-
tal” neuro-symbolic approaches suggested by Anton Kolonin [12], while indicate
broader and clearer range of technologies. As the term “vertical” and “horizontal”
approaches are proposed in the context of AGI and are more vivid, we adopt
them and try to provide an acceptable working definition for each of them.

1.1 Vertical and Horizontal Neuro-Symbolic Approaches

According to [12], the horizontal neuro-symbolic approach provides a bijection
between the symbolic structure and the neural network, both of which can inter-
pret the accomplishment of a reasoning process. When learning under symbolic
or neural rules, the agent shows slow or fast thinking properties [11], suggesting
that the slow thinking may be up to the learning method other than the represen-
tation of the model. Other works [13,17] also show the benefits of the horizontal
approach for investigating the symbolic properties of neural networks. Accord-
ing to [15], the vertical neuro-symbolic approach highlights the importance of
symbolic systems for higher-level cognitive processes. Some mainstream AI tasks
support this claim [14,19].

Combining Anton Kolonin’s insights for AGI with Henry Kautz’s categoriza-
tion of neuro-symbolic methods, we provide the following working definition:
2 https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/view/19122.

https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/view/19122
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Vertical Approach (Neuro;Symbolic)
– The goal: human-level performance; e.g. solving versatile and complex

tasks in natural environments.
– The methodology: divide and conquer ; e.g. using neural modules for per-

ception and symbolic modules for reasoning.
Horizontal Approach (Neuro ∪ compile(Symbolic))

– The goal: think like humans; e.g. achieving slow thinking with neural
networks.

– The methodology: multiple interpretations; e.g. encoding a logical formula
into a network.

2 The Hybrid Framework for AGI Research

For holistically investigating AGI problems, we propose a neuro-symbolic frame-
work that integrate both vertical and horizontal approaches. As shown in Fig. 1,
the framework has two parts: lower-level perception and higher-level reasoning.
The perception part of human cognition can not be symbolically interpreted, and
the computation of it is highly parallel, so the perception part is typically a pure
neural module. The reasoning part should itself be a horizontal neuro-symbolic
module, because human reasoning has both symbolic and neuronal properties.

Fig. 1. Human cognitive features and the possible implementations of the vertical-
horizontal integrated neuro-symbolic framework.

We choose deep learning techniques for the perception part because of their
favorable performance. We choose spiking neural networks for the reasoning part
because previous works [16,17] indicate that spiking neural networks show both
symbolic and neural features. Figure 1 shows the planned steps.
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Firstly, we adopt separately trained deep learning modules for perception and
unidirectionally send information to the reasoning part. We program a spiking
neural network called spiking reasoning network (SRN) according to the informa-
tion from perception modules. For the next step, we may explore the top-down
influence from the reasoning part to the perception part, and the learnability of
SRN. In the long run, we hope to build a fully connected network that can be
holistically compared with human behavior and cognition, and this is the only
way to develop “strong AI” with consciousness because up to now humans are
the only widely accepted conscious agents, and trustful consciousness research
should be done with “contrast analysis” [2].

3 Implementation on CLEVR

CLEVR [9] is a generated machine learning dataset for VQA. It contains 60,000
images, each image has 10 reasoning questions about the objects and their
properties. The reasoning instructions include filtering by properties, compar-
ing properties, location relations, counting, and existing. To correctly answer
the question, the agent should understand visual contents from an image, and
then reason on them according to the demand of the question. The reasoning
process also needs commonsense knowledge, such as “red is a color”. We build a
visual reasoning agent under our “vertical-horizontal framework” achieving 100%
accuracy with ground-truth intermediate information and 99.8% accuracy with
imperfect perception modules.

3.1 The Agent

As shown in Fig. 2, there are six processes grouped into three steps for the agent
to conduct reasoning. The first step is to encode scene information into the
SRN. A separately trained Mask-RCNN [4] is adopted for parsing the image
into symbolic scene representation. After that, the symbolic representation will
be programmed as neurons and connection weights into SRN. The second step
is to encode commonsense knowledge into the SRN. It is done by programming
either. The last step is to instruct the reasoning process of SRN. A separately
trained LSTM [7] is adopted for parsing the questions into instructions, and
then the instructions are translated into stimuli with spatiotemporal patterns.
Modulated by the stimulation, the neural dynamics of SRN will accomplish the
corresponding reasoning process and provide the correct answer.

3.2 The Spiking Reasoning Network

This section describes how to program and execute SRN according to the
extracted symbolic knowledge and instructions. While early works [16,17] proved
that feedforward neural networks with IF neurons can execute any discrete func-
tions and propositional logic, it is still under investigation how to use recur-
rent neural networks to flexibly execute several functions, just as using a mini-
computer. We identify that the main challenge is how to reuse sub-networks as
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Fig. 2. The agent for CLEVR. (a–b–g) pathway encodes environmental visual infor-
mation into the SRN, corresponding to perceiving sensory information and storing it
in working memory. (c–g) pathway encodes commonsense knowledge into the SRN,
indicating the retrieval of long-term memory into working memory. (d–e–f–g) path-
way translates the question into modulation signals for SRN, indicating the reasoning
process in the working memory.

functional modules according to the instruction. We implement gating mech-
anisms on SRN to solve the problem. When the gate is closed, related sub-
networks are disentangled, and when the gate is open, information is transmit-
ted. In this manner, SRN avoids information jamming and supports independent
parallel functioning. We use integrate-and-fire (IF) neurons to build the SRN.
All neurons in the SRN share the same threshold parameter for firing an action
potential and will reset membrane potential to 0 after firing.

As shown in Fig. 3, SRN has three types of neurons and two types of con-
nections. (a) Concept neurons represent scene concepts and store temporary
variables. For example, the cube-copy neuron is needed because the instruction
“Equal-shape” compares two shapes of different objects, requiring simultaneous
representations of two sets of shapes. (b) Instruction neurons receive stimuli
as instructions and accordingly modulate the reasoning dynamics of SRN. An
instruction neuron can also be a concept neuron. For example, the color neuron
is needed for the instruction “Query[color]”. When the external stimulus deac-
tivates the color neuron, the red neuron will not be inhibited, and the obj-1
neuron will activate the red neuron showing its color. (c) Transmission neurons
disentangle the afferent and the efferent neurons when deactivated, and transmit
information when activated. For example, the obj-2-front neuron is needed to
execute the instruction “Front[obj]”. When obj-2 is the only object neuron keep-
ing firing, the obj-2-front neuron is at a high-level membrane potential and the
obj-1-front neuron is at a low-level membrane potential. Then if the front neuron
is activated by an external stimulus, the sum of the inputs from the obj-2 and
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front neuron will exceed the threshold and cause obj-2-front to fire, transmitting
the action potential and firing obj-1 and obj-3. (bc) The gating mechanisms
are implemented by both instruction neurons and transmission neurons, with
the integrate-and-fire neural dynamics. (de) Scene connections and functional
connections are corresponding to scene information and commonsense knowl-
edge in Fig. 2. Connections specify the relations between concepts and define
the reasoning functions.

Fig. 3. SRN programming and execution. The red numbers in the picture indicate the
indices of objects. (a, b, c) Three types of neurons. (d, e) Two types of connections.
The arrow-end edges indicate excitatory connections and the round-end edges indicate
inhibitory connections. (Color figure online)

4 Implementation on CLEVRER

CLEVRER [18] is also a generated dataset for VQA tasks, containing 20,000
videos. Compared to CLEVR, it expands the visual inputs from an image to a
video with 128 frames, requiring stronger visual understanding and more com-
plex reasoning.

We expand the agent built on CLEVR to CLEVRER, to investigate the
universality of the framework and the method for building and executing SRN.
The results on CLEVRER have been published in [20], but the process of the
expansion from CLEVR to CLEVRER has not been discussed. We will focus on
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the new challenges brought by CLEVRER and the successful expansion enabled
by the gating mechanism.

Fig. 4. Functional connections and gating mechanisms between and within “objects”
and “events” of SRN for CLEVRER. The arrow-end edges indicate excitatory connec-
tions and the double-bar-end edges indicate inhibitory connections.

As shown in Fig. 4, when shifting from an image to a video, several com-
plex multi-step functions are necessary such as sequentially dependent functions.
We use similar gating mechanisms in CLEVR to disentangle those functions,
enabling the sequential combination of functions. Moreover, we find that when
the functional complexity increases and there are more reusable sub-networks,
the gating mechanism enables object-orientation programming (OOP) instead of
function-based process-oriented programming (POP). Because of the disentan-
glement feature of the gating mechanism, the sub-networks are well encapsulated
into classes (“object” and “event”). Most of the functions can be easily attached
to certain classes because they usually share the same variables stored in the
same connections. As a result, “object” and “event” are two template classes in
SRN for CLEVRER. New objects of a certain class can be easily created or
deleted when the visual contents change.

5 Results and Related Works

Table 1 shows the results of our implementations and related works. The CLEVR
column indicates the overall accuracy of the 90 types of open-ended questions.
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The CLEVRER column indicates the accuracy of descriptive questions, because
other 3 types of questions are not open-ended questions but multiple-choice
questions, which have different random-draw baseline.

Each agent in Table 1, apart from the LSTM, adopts a pre-trained ResNet [5]
as visual feature extractor. Compared to them, the LSTM serves as a baseline
to show that it is necessary to “vertically” adopt a neural module for high-
performance in real environment.

IEP [10] is an advanced version of neural module networks [1]. It combines
neural network modules according to the inferred symbolic reasoning tree. With
accurate symbolic instructions, each neural modules should learn to conduct the
corresponding reasoning operation on feature maps. However, as the results indi-
cate, when the reasoning content becomes more difficult, the modules fail to con-
verge to a good performance. MAC [8] is an end-to-end black box deep learning
agent, with designed structure to store control operations. This approach could
potentially be a “horizontal” neuro-symbolic method for understanding the rea-
soning process of the network, as long as a proper decoder is developed to explic-
itly generate the control sequence from the network. NSVQA and NSDR are both
vertical neuro-symbolic agents, adopting neural modules to extract features and
programs to execute them. Our vertical-horizontal integrated implementations
adopt similar neural modules and achieve comparable or higher performance
because the spiking reasoning network has more robustness than program.

Table 1. Methodology and performance comparison.

Agents methodology CLEVR CLEVRER

LSTM – 46.8% –
IEP [10] Symbolic[Neuro] 96.9% 52.8%
MAC [8] black box 98.9% 85.6%
NSVQA [19]/NSDR [18] vertical 99.8% 88.1%
ours vertical-horizontal 99.8% 91.7%

6 Discussion

For developing the next version of our framework, we also investigate the learn-
ability and biological plausibility of the SRN, based on the current version. As for
the CLEVR dataset, when programming the scene information into connections
of the SRN, the change of connection weights could be interpreted as Hebbian
learning [6]. For example, the bidirectional excitatory connection in Fig. 3(b)
could be the result of Hebbian learning, because when attention focuses on a
certain object, the object itself and its properties were likely to be extracted at
the same time, resulting in the simultaneous firing of the obj-1 neuron and the
red neuron. However, this training method can not be directly applied to every
connection. For example, in CLEVRER tasks, the sequential relations between
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events can hardly be interpreted as a result of Hebbian learning, because an
event only happens in a flash and there is no reason for neurons of the previous
event to fire at the same time.

The source code of SRN on both CLEVR and CLEVRER can be found on
https://github.com/llk15/SRN.
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Abstract. It is now more than a half-century since the Physical Symbol Systems
Hypothesis (PSSH) was first articulated as an empirical hypothesis. More recent
evidence from work with neural networks and cognitive architectures has weak-
ened it, but it has not yet been replaced in any satisfactory manner. Based on a
rethinking of the nature of computational symbols – as atoms or placeholders – and
thus also of the systems in which they participate, a hybrid approach is introduced
that responds to these challenges while also helping to bridge the gap between
symbolic and neural approaches, resulting in two new hypotheses, one that is to
replace the PSSH and the other focused more directly on cognitive architectures.

Keywords: Physical Symbol Systems · Hybrid Symbol Systems · Cognitive
Architectures · Neural Networks

1 Introduction

Our current understanding of the role of physical symbol systems in artificial intelligence
(AI) is grounded in the pioneering work of Newell and Simon [1–3], although as they
point out the roots go backmuch further in philosophy –most notably in logic – computer
science, linguistics, literature, and the arts. Such systems, and their culmination in the
Physical Symbol Systems Hypothesis (PSSH) are reviewed in Sect. 2.

Many critiques of the PSSH have been proposed since it was first introduced, with
some that have easily been refuted and others that have lingered (Sect. 3). Here, two are
taken up that have remained compelling, before hybrid symbol systems of a particular
sort are explored as a response to them (Sect. 4). As part of this, the notion of symbol
systems is rethought, starting with a variant definition of what it means to be a compu-
tational symbol that is grounded in the Common Model of Cognition (CMC) [4] and
the Sigma cognitive architecture [5]. Two new hybrid hypotheses result, one that offers
an alternative to the PSSH and the other that focuses more specifically on cognitive
architectures.

Demonstrating that neural networks are themselves hybrid symbol systems of this
sort (Sect. 5), rather than being limited to the numeric component of a coarse-grained
combination of symbolic and numeric processing, helps to bridge the gap between sym-
bolic and neural approaches while enabling recent successes with neural networks to
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be weighed in a positive manner in evaluating hypotheses concerning symbol systems,
rather than the former necessarily serving as a challenge to the latter.

The overall result, as discussed further in Sect. 6, is a novel way of thinking about
symbol systems and the fundamental hypotheses concerning them; the introduction of a
particular form of hybrid symbol system and the appropriate hypotheses concerning it;
and an understanding of howneural networks are examples, rather than counterexamples,
of this form of symbol system. The hope is that this all helps cut the Gordian Knot that
has resulted from past discussions on these topics.

Proposing hybrid or neuro-symbolic systems is certainly nothing new. Many
approaches have already been investigated – see, e.g., [6] and [7] for overviews, and
[8] for an earlier discussion of the PSSH and the relevance of hybrid systems. But the
point here is to introduce a particular take on hybrid symbol systems that is in service of
an appropriate rethinking of the Physical Symbol Systems Hypothesis. The approach is
broader than neuro-symbolic, as it also includes hybrid systems that span other numeric
paradigms, such as probabilities. In addition, it spans both tightly coupled and loosely
coupled approaches to combining symbolic and numeric processing.

2 Physical Symbol Systems

According to the traditional view, symbols are distinct patterns in the physical world
that can be composed into expressions, or symbol structures. Processes are then defined
on these symbol structures that can create, modify, reproduce, and destroy them. An
expression designates an entity, whether internal or external, if the expression’s use
depends on the nature of the entity. An expression is interpreted if it designates an
internal procedure that is then executed. The physicality of such symbol systems reflects
that they are natural, in obeying the laws of physics and being amenable to engineering;
and that they aren’t limited to what is in human minds, or even necessarily based on the
same kinds of symbols that have traditionally been imputed to humans.

Given composition, designation, and interpretation, along with the appropriate pro-
cesses, physical symbol systems provide a form of universal computation. There are
certainly more details in the various papers, but this provides the essence of what can
now be considered the classical notion of a physical symbol system.

The Physical Symbol Systems Hypothesis (PSSH) then states that:

A physical symbol system has the necessary and sufficient means for general
intelligent action.

This hypothesis was introduced as an empirical generalization rather than a theorem.
Evidence for sufficiency stemmed from the universality of symbol systems and the
success of such systems built as of then. Evidence for necessity stemmed fromnoting that
the one natural system exhibiting such intelligent behavior – that is, humans – appeared
to be such a system, and from the lack of alternative approaches that were nearly as
successful. Newell, for example mentions that “These advances far outstrip what has
been accomplished by other attempts to build intelligent mechanisms, such as the work
in building robots driven directly by circuits; the work in neural nets, or the engineering
attempts at pattern recognition using direct circuitry and analogue computation.” [3].
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He went on to state that “In my own view this hypothesis sets the terms on which
we search for a scientific theory of mind.” and “The physical symbol system is to our
enterprise what the theory of evolution is to all biology, the cell doctrine to cellular
biology, the notion of germs to the scientific concept of disease, the notion of tectonic
plates to structural geology.”

3 Critiquing the Physical Symbol Systems Hypothesis

It has now been over fifty years since the PSSH was first articulated, with numerous
critiques and defenses occurring in the intervening years. Nilsson [8], e.g., lists four
general types of critiques with his responses to them (in italics here), which in brief are:

1. Lack of embodiment/grounding.
This is a misunderstanding as the PSSH already includes this.

2. Non-symbolic/analog processing.
Include numbers; that is, make the systems hybrid.

3. Brain-style versus computation-style (i.e., brains are not computers).
The brain is computational.

4. The mindlessness of much of what appears to be intelligent behavior.
Mindless constructs only yield mindless behavior.

In this section two particular critiques are considered, based on new empirical evi-
dence in the form of the recent successes of deep learning [9], and to a lesser extent prob-
abilistic graphical models (PGMs) [10], plus work on the CMC. One critique, aligned
with Nilsson’s second, challenges its sufficiency and the other its necessity.

The sufficiency challenge focuses on the lack of numeric processing – i.e., calcu-
lations on quantities – in the PSSH. Nilsson’s response is to shift to hybrid systems
that include both symbols and numbers. In a sense, this isn’t logically necessary, as
the universality of symbol systems implies that, as with any modern digital computer,
they can implement algorithms for numeric processing. However, universality is weaker
than what was originally proposed, as it omits grounding sufficiency in the successes
of existing symbolic AI systems. Given the range of general intelligent action that has
been shown to proceed more effectively with numeric processing, whether in the form of
probabilities or activations, the success of purely symbolic systems no longer provides
compelling empirical evidence itself for the sufficiency of symbols on their own.

Thus, we are left with a weakened form of sufficiency for the PSSH, based solely on
universality. Hybrid systems have the potential to restore the stronger sense of sufficiency
(Sect. 4). They also support a more stringent sufficiency hypothesis that arises when the
concern is more particularly with cognitive architectures [11]; that is, models of the fixed
structures and processes that yield a mind [12].

The necessity challenge is rooted directly in how neural networks now provide a
better approach for many problems related to intelligent action. Successes with PGMs
can be considered here as well, although they are already hybrid systems that add proba-
bilities to classical symbol systems, particularly in their most general form as statistical
relational systems [13], so they do not directly challenge the necessity of physical sym-
bol systems. In contrast, deep learning has the potential to provide an alternative that
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completely overturns the necessity argument. In Sect. 5, this challenge is approached via
a demonstration that, given the rethinking of symbol systems in Sect. 4, neural networks
are themselves instances of hybrid symbol systems. This approach avoids the need to
resolve the contentious question of whether or not neural networks have or need tradi-
tional symbols, a question that appears unresolvable, at least to me, without additional
evidence.

4 Rethinking Symbol Systems

This section leverages the four-step methodology of essential analysis [14] to yield a
fresh understanding of symbols and symbol systems: (1) strip out many of the elabo-
rations that are normally part of a topic’s definition, and which are often a source of
dissonance among researchers and communities, to yield its essence; (2) use what has
been stripped out, and possibly more, in specifying a definitional space of variations on
the topic; (3) populate this space with exemplars that flesh it out; and (4) derive novel
implications from the results of the first three steps. Step three is downplayed here due
to lack of space, while step four introduces two new hybrid symbol systems hypotheses.

The focus here is in particular on the notion of symbol as it is used computationally
rather than as it is used in the humanities and arts. For example, [15] defines a symbol
as “something used for or regarded as representing something else; a material object
representing something, often something immaterial; emblem, token, or sign.” This
focuses on an abstract notion of designation or aboutness, which has elsewhere been
considered an important part of the essence of a theory [14]. Computationally, the essence
of a symbol is proposed to be an atom that is: (1) indecomposable into other atoms; and
(2) distinct from other atoms. McDermott informally introduced the notion of a symbol
as a placeholder [16]. Although yielding different connotations, this notion is compatible
with that of an atom here.

This essence retains the classical notion of a computational symbol being a primitive
element that can be distinguished from other such elements but eschews the need for
both physicality and symbols being structured as patterns. There were good reasons at
the time to emphasize physicality – to counter both Cartesian dualism and the notion
that only humans could use symbols – but these battles have already been won, at least
in my judgement, so this explicit emphasis on physicality is now dispensable.

Pattern comparison is oneway to determinewhether two atoms are distinct. Yet, such
a notion need not be definitional if it is just used to compare symbols. If symbols are
considered as types (rather than tokens) – a notion implicit in the traditional definition –
patterns are simply intensional definitions of symbols. An extensional alternative defines
each symbol in terms of a set of tokens, with each token in a set considered to be indistinct
from other tokens in the same set and distinct from tokens in other sets.

The classical notion of symbol also includes composability – into symbol structures
or expressions – designation, and interpretation. The first of these is effectively assumed
to be part of the very nature of symbols, whereas the latter two are additional proper-
ties necessary to enable the classical form of physical symbol systems. The essential
definition of a symbol introduced here includes none of these three notions; that is, all
are optional. Therefore, any system that includes even these minimal, atomic forms of
symbols can be considered a symbol system of some sort.
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Fig. 1. Optional properties of
symbols.

Figure 1 structures these optional properties, plus a
bit more, into a small tree. According to this perspec-
tive, a symbol may be composable into expressions
(aka symbol structures). It may also designate; that is,
stand in for something else. A designation is procedu-
ral if it is about a process. This is the classical notion
of interpretation, when combined with the ability to
execute the designated process. A procedural symbol,
according to this definition, designates a process rather
than being part of the process itself. If the process is
itself a symbol structure it will contain symbols, but
they themselves may be of any type. A designation is
declarative if it is about an object – essentially any-
thing other than a process – which may be internal to the system or external to it, with
the latter relating to grounding. This corresponds to the classical notion of designation
when contrasted with interpretation. Beyond this difference in what is designated, there
is no intent to impute any other aspects of the classical procedural versus declarative
distinction here.

Symbols in a classical symbol system support all of these properties, enabling them
to exhibit computational universality. Whether systems in which some or all of the
symbols lack some of these properties provide anything like universal computation
would necessarily depend on the details of the individual systems.

Fig. 2. Optional properties of
symbols from Fig. 1, extended with
hybrid.

The CMC, an attempt at developing a consensus
on what is needed for human-like cognition – i.e.,
human cognition and similar forms of artificial cog-
nition – took a step towards such an essence by drop-
ping the necessity of designation, and thus also of
interpretation, stripping symbols down to primitive
elements that only support composability into sym-
bol structures. Although designation somewhere in a
system seems necessary for it to be eithermeaningful
or operational, it is not necessary for all symbols.

The CMC also associated quantitative metadata
with such symbols and structures – which provide
the data – to modulate how they are processed. Such
combinations can be considered as hybrid symbols
or structures.1 Considering hybrid of this sort as a third optional property of symbols
leads to Fig. 2.

The CMC went on to argue for a different form of weakening of the sufficiency
aspect of the PSSH. While still agreeing that classical symbol systems, as universal
computational systems, are sufficient in principle for intelligent behavior, it denied that
they are sufficient when time scales are relevant, such as in cognitive architectures.
In particular, if statistical processing must occur on the same time scale as symbolic

1 The CMC also allows numeric data, consideration of which is beyond the scope of this paper.
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processing in such an architecture, then implementing the former in terms of the latter –
as the universality argument for sufficiency implies – is insufficient. Thus, the CMC
implies the need for numeric and symbolic processing on the same time scale. The
Sigma cognitive architecture [5] goes a step further by denying the need for all symbols
to support arbitrary forms of composition, thus implicitly yielding the essence made
explicit here.

Now, given this explicit articulation of the essence of a symbol plus its tree of
variations, the Hybrid Symbol Systems Hypothesis (HSSH) can be stated as:

Hybrid symbol systems are necessary and sufficient for general intelligent action.

If the sufficiency clause of the PSSH is valid then so must be the comparable clause
in the HSSH, at least for hybrid symbol systems that are universal. However, the HSSH
responds to the PSSH sufficiency challenge by including numbers, as suggested in [8].
Necessity of the HSSH is not implied by the corresponding clause in the PSSH. Instead,
the HSSH responds to the PSSH necessity challenge by coopting the successes of neural
networks (Sect. 5).

The Hybrid Cognitive Architectures Hypothesis (HCAH) then states:

Hybrid symbol systems are necessary and sufficient for cognitive architectures.

This hypothesis is clearly related to the HSSH, but it matters in itself because the
comparable hypothesis – perhaps called thePhysical Cognitive ArchitecturesHypothesis
(PCAH) – fails. Thus, the sufficiency side of the PCAH is invalid irrespective of what
might be true with respect to necessity. As with the HSSH, sufficiency for the HCAH
need not hold for all hybrid symbol systems, but it must hold for at least some.

As with the PSSH and the HSSH, the HCAH is an empirical generalization. Both
sides of the argument are now supported by the architectural successes of classical
symbol systems, neural systems, and traditional hybrid systems such as PGMs. Both
sides are further bolstered by how the CMC itself is a hybrid symbol system.

5 Neural Networks as Hybrid Symbol Systems

Fig. 3. Simple
network for paired
associates.

What makes neural networks hybrid symbol systems, as defined
here, rather than simply the numeric component of a larger sys-
tem that also includes a symbolic component, such as [17]? To
keep things simple, the focus here is limited to standard feed-
forward neural networks, consisting of multiple layers of nodes
and links, where nodes have activations, links connect pairs of
nodes across levels and have weights, and processing occurs by
multiplying input activations along links by the links’ weights
and then nonlinearly transforming the sums of these weighted
inputs.

To be a bit more specific, let’s assume a small network for
paired associates that maps an input word to an output word.
Figure 3 exemplifies this via a completely connected network
with 6-unit input and output layers – yielding a 6-dimensional vector of activations for
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each – and 2 intermediate layers, each with 3 units. Words map consistently to input and
output vectors via encoding and decoding processes that are external to the network.
These processes may be based on an arbitrary or random assignment of vectors to words
or some form of more sophisticated embedding process, such as in [18].

The focus here, however, is on analyzing the forward processing in the network
itself to show how it amounts to a hybrid symbol system. It should be possible to extend
such an analysis to encoding and decoding processes, as well as to learning in neural
networks, but this simple example is sufficient to establish the precedent.

Fig. 4. Designation relationships among input vector, word
vector, letters, and word meaning. Dotted lines reflect internal
designation and dashed lines external designation.

First consider the nodes
in the input layer of the
network, now shown at the
top of Fig. 4 as locations
within a vector of nomi-
nal activations. Such nodes
can be seen as hybrid sym-
bols – symbolic nodes (i.e.,
locations) with activations
as their quantitative meta-
data – that exhibit a lim-
ited form of composability
in yielding the hybrid sym-
bol structure that is the input vector. In contrast to the traditional interpretation of dis-
tributed representations – where nodes are subsymbolic, or microfeatures, with symbols
only arising as patterns over these elements – here the individual nodes are themselves
hybrid symbols that do not themselves designate, with patterns arising as structures of
these hybrid symbols.

This hybrid symbol structure does then internally designate a word structure that has
one location per letter (middle of Fig. 4). Themetadata in the word structure is not shown
as it is irrelevant to this analysis. What does matter is that declarative symbols in this
word structure externally designate particular letters of the alphabet, in this case making
up Allen Newell’s first name (bottom of Fig. 4). The word as whole then externally
designates its meaning, iconified to the right of Fig. 4 via an image of him.

Key to this all working is that it isn’t just the data aspect of hybrid symbols and
structures that can designate, but the entirety of the hybrid symbols and structures –
including their metadata – that can do so, just as is traditionally assumed for vectors in
distributed representations [19]. The word itself is epiphenomenal to the feedforward
network processing here – only the hybrid symbol structure at the top of Fig. 4, as yielded
by encoding, actually participates. As put in [20], “the node labels in a Connectionist
machine are not part of the causal structure of the machine.”

The internal nodes in the network are also hybrid symbols but without declarative
designations, fitting the intuition that there are no fixed meanings inside the network.
Instead, internal nodes – and links – procedurally designate fixed processes. Consider
link λ in Fig. 3, which points from node ν1 to node ν2. This link is a hybrid symbol
structure composed from these two hybrid symbols, with a weight as its metadata. It
procedurally designates a process that multiplies the activation arriving from ν1 by this



214 P. S. Rosenbloom

weight. Internal nodes such as ν2 then procedurally designate processes that sum all of
their inputs – in this case, from ν1 and any other nodes linked to it from the proceeding
layer – and then nonlinearly transform the results.

The last part of the analysis concerns the output nodes. Perhaps surprisingly, they
too do not declaratively designate anything here. Instead, they procedurally designate
the same summation and transformation process as the internal nodes. It is not until
postprocessing – that is during decoding – that this reverse mapping occurs.

This analysis demonstrates that a feedforward neural network is a hybrid symbol
system, as defined here. As such, it makes the case that the shift from the PSSH to the
HSSH enables coopting neural-network successes as evidence for both the sufficiency
and necessity of hybrid symbol systems rather than as counterexamples to them.

But what type of hybrid symbol system does this type of neural network yield? It
provides limited forms of declarative designation (at input nodes), procedural designa-
tion (at all but input nodes), and composition (via vectors within a level and links across
levels). Yet, other forms of neural networks do go beyond this. To name just two com-
mon examples, both convolutional networks (e.g., [21]) and transformers [22] include
additional forms of composition. The flexibility of composition seen in the output of
transformer-based generative networks [23] is in fact quite compelling. Some forms of
neural networks are also known to support universal computation (see, e.g., [24]). Yet
no neural network to date has solved combinatorial board games without the dynamic
composition yielded by explicit state-space search (as seen, e.g., in both [25] and [26]).
So, the overall story is complex, dependent on the exact nature of the neural networks
considered, and still not completely understood.

6 Conclusion

Leveraging essential analysis, symbols are (re)defined as atoms or placeholders, and a
space of variations is defined for symbols, symbol structures, and symbol systems. This
includes the classical traits of compositionality and designation, plus hybridness and
additional sub-traits under designation (such as interpretation). In response to lingering
challenges to the Physical Symbol System Hypothesis (PSSH), two new hypotheses
have then been introduced that focus on the resulting hybrid symbol systems:

Hybrid Symbol Systems Hypothesis (HSSH):

Hybrid symbol systems are necessary and sufficient for general intelligent action.

Hybrid Cognitive Architectures Hypothesis (HCAH):

Hybrid symbol systems are necessary and sufficient for cognitive architectures.

TheHSSH is intended as a replacement for the PSSH, based on evidence accumulated
since the latter was introduced as an empirical hypothesis a half-century ago. Given this
recent body of evidence, there is a sense in which the PSSH still holds, but it is a weaker
sense. The HSSH recaptures the originally intended strength while adding further to it
by reinterpreting neural networks as compatriots – that is, as hybrid symbol systems
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themselves – rather than as competitors. The result also helps chip away in a rather
fine-grained manner at the overall divide between symbolic and neural systems.

The HCAH is a more stringent claim than either the original PSSH or the HSSH in
that it concerns cognitive architectures rather than general intelligent action. Evidence
accumulated over the past decades has shown that traditional physical symbol systems
fail with respect to sufficiency for cognitive architectures due to the need for numeric
processing within the architectures themselves. The necessity of classical physical sym-
bol systems for cognitive architectures remains an open question, as it is not yet clear
whether neural networks – which although as argued here are hybrid symbol systems
but which may not be classical symbol systems or even universal computationally – will
prove to be a sufficient alternative on their own for such architectures.

One potential chink in the armor of both of these new hypotheses is the possibility
of quantum aspects to intelligence that cannot be captured even by hybrid systems [27].
Should it prove necessary, some thought is already being put into what it would mean
to have quantum symbol systems (e.g., [28]).

Acknowledgements. I would like to think John Laird, Christian Lebiere, and Andrea Stocco for
helpful comments and discussions on this general topic and this particular paper.
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Abstract. Human face is used to express affects and feelings, either involuntary
or deliberately. How many dimensions of emotional flavors can be robustly dis-
tinguished in facial expressions, across individuals and cultures? Here we offer
an answer and develop a practical approach to generate synthetic emotional facial
expressions. Results can be used in studies of synthetic emotions.

Keywords: machine learning · emotion modeling · Facial Action Coding
System (FACS) · face attribute analysis · DeepFace

1 Introduction

For humans, facial expression is the main modality of nonverbal emotional communica-
tion during face-to-face social contact. Facial expression is used to communicate affects
and feelings either naturally, or subliminally, or deliberately. It may ormay not reflect the
actual emotional state of the individual; yet its function is to express a certain emotional
state. It is an interesting fundamental question – how facial expressions are related to
flavors of emotional states, what flavors are expressible on face, and what aspects of the
facial configuration are interpretable in terms of emotional semantics. This topic has a
long history of research [1, 2], yet certain details remain unresolved. Among them is
the dimensionality of the space of emotional flavors, robustly expressible on face across
individuals.

Herewe use a vector-space approach to emotion representation [3–5]. A key question
is the dimensionality of the affective space. Most frequently, three-dimensional models
are used [3, 5, 6], known as VAD (valence, arousal, dominance), PAD (pleasure, arousal,
dominance), etc. On the other hand, complex, or social emotions may require an intro-
duction of extra dimensions to distinguish them from basic emotions [7]. An alternative
approach is to describe social emotions as pairs or combinations of simple emotions [8],
which also amounts to an expansion of the basic affective space.

For example, overlapping in the VAD space may be representations of jealousy and
anger, gloat and sarcasm, sense of humor and happiness, compassion and sadness, etc.
Do these pairs have different representations on face?And vice versa, howmany different
facial expressions may represent one and the same emotional flavor? Obviously, more
than one facial configuration can correspond to one emotional state: for example, with
a closed or open mouth, with a look to the left or to the right. Then, what would be the
maximal dimension of the set of unique face-emotion pairs?
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2 Mathematical Statement of the Problem

Let E be the vector space of all possible emotional states, and F the vector space of all
possible facial configurations that can be interpreted as expressions of emotional states.
Call a smooth mapping f : E → F admissible, if it assigns to each emotional state some
configuration of the face, which expresses this emotional state. Similarly, call a smooth
mapping g: F → E is admissible, if it assigns to each face configuration from F some
emotional state that can be considered expressed by this face configuration.

Let us give the spaces E and F the structure of fiber bundles with some common
base X, defined by the projections π1 and π2 in such a way that the diagrams (Fig. 1)
commute for the entire set of admissible functions {f , g} for fixed π1, π2. The task is to
determine the maximal possible dimension of X.

Fig. 1. Statement of the problem in terms of fiber bundles.

Generally speaking, the answer may depend on how strict the admissibility require-
ment for f , g is. For example, it can be assumed that the question of admissibility
is decided by questioning the subjects, and in the experiment the faces of people of
different nationalities, as well as avatars, are used.

3 Statistical Solution

To simplify the analysis, one can consider vector spaces instead of fiber bundles. Then
the answer is found by computing the canonical correlation. This analysis was done
in our recent work [9]. We studied electromyographic recordings from the facial mus-
cles together with computer analysis of emotional facial expressions based on video
recordings of the face, using principal component analysis, canonical correlation, ridge
regression, random forest, and random forest with the choice of hyperparameters using
cross-validation. Based on this analysis, we found that the dimension of X is equal to
three. In other words, the VAD model is sufficient to distinguish among all emotionally
different facial expressions.

If this is the case, then any emotional state can be expressed on the face of an avatar,
capable of representing all points of the VAD space. The next question is how to do it
accurately and automatically.
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4 Practical Approach

In this study, an anthropomorphic avatar embedded in a 3D virtual environment was
used. The implementation was based on Unreal Engine 4. Facial expressions of the
avatar are controlled by 17 parameters – MorphTargets (Fig. 2).

Fig. 2. MorphTargets of the avatar.

Using the approach of [10], a neural networkmodel has been developed that generates
the MorphTargets parameters based on the VAD values received as input. The training
of the network was done using DeepFace [11]. Results are shown in Fig. 3.

5 Conclusions

Algorithms for analyzing and synthesizing human emotional states are an important and
integral part of software and hardware systems that model human intellectual activity
[12]. Human emotions are often represented using a three-dimensional space with three
basis vectors: dominance, valence, arousal. However, the main system for coding facial
expressions of a human face is the FACS system [1], which contains several dozen
parameters. It is known that it is impossible to uniquely establish a correspondence
between the space of emotional states and the FACS system. Conclusions of this study
are the following.

(1) It is argued that a three-dimensional space, such as VAD, is sufficient for indexing
all emotionally distinct facial expressions.

(2) A method is proposed that makes it possible to generate realistic facial expres-
sions on an anthropomorphic avatar’s face, based on the values of the three basic
coordinates. The developed method consists in using a neural network model that
generates codes of facial configuration changes.
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(3) The described approach, while not directly related toArtificial General Intelligence,
is biologically inspired and can be useful in studies of synthetic emotions.

Fig. 3. Generated synthetic faces and their VAD (valence, arousal, dominance) coordinates: (a)
anger = [−0.51, 0.59, 0.25], (b) joy = [0.81, 0.51, 0.46], (c) surprise = [0.40, 0.67, −0.13], (d)
disgust = [−0.60, 0.35, 0.11], (e) fear = [−0.64, 0.60, 0.43], (f) sadness = [−0.63, −0.27, −
0.33].

Acknowledgments. The authors are grateful to Aleksey Kevroletin, Mark Karavashkin, Georgy
Vayntrub,VeraMironova, ZhannaDemidova, IsmailM.Gadzhiev,Mikhail Knyshenko, and Sergei
Dolenko for their contribution to this project. This work was supported by the Russian Science
Foundation Grant #22–11-00213, https://rscf.ru/en/project/22-11-00213/.

References

1. Ekman, P., Friesen, W.: Facial Action Coding System: A Technique for the Measurement of
Facial Movement. Consulting Psychologists Press, Palo Alto (1978)

2. Ekman, P.: An argument for basic emotions. Cogn. Emot. 6(3–4), 169–200 (1992)
3. Russell, J., Mehrabian, A.: Evidence for a three-factor theory of emotions. J. Res. Per. 11,

273–294 (1977)
4. Plutchik, R.: A psychoevolutionary theory of emotions. Soc. Sci. Inf. 21, 529–553 (1982)
5. Lövheim, H.: A new three-dimensional model for emotions and monoamine neurotransmit-

ters. Med. Hypotheses 78(2), 341–348 (2012)
6. Russell, J.: Core affect and the psychological construction of emotion. Psychol. Rev. 110(1),

145–172 (2003)
7. Moors, A., Ellsworth, P.C., Scherer, K.R., Frijda, N.H.: Appraisal theories of emotion: state

of the art and future development. Emot. Rev. 5(2), 119–124 (2013)
8. 8. Lieto, A., Pozzato, G.L., Striani, M., Zoia, S., Damiano, R.: DEGARI 2.0: a diversity-

seeking, explainable, and affective art recommender for social inclusion. Cogn. Syst. Res. 77,
1–17 (2023). https://doi.org/10.1016/j.cogsys.2022.10.001

9. Gadzhiev, I.M., Knyshenko, M.P., Dolenko, S.A., Samsonovich, A.V.: Inherent dimension of
the affective space: Analysis using electromyography and machine learning. Cogn. Syst. Res.
78, 96–105 (2023)

10. Li, R., et al.: Learning formation of physically-based face attributes. ArXiv, 2004.03458
(2020). https://doi.org/10.48550/ARXIV.2004.03458

11. Serengil, S.I., Ozpinar, A.: HyperExtended LightFace: a facial attribute analysis framework.
In: 2021 International Conference on Engineering and Emerging Technologies (ICEET),
Istanbul, Turkey, pp. 1–4 (2021). https://doi.org/10.1109/ICEET53442.2021.9659697

https://rscf.ru/en/project/22-11-00213/
https://doi.org/10.1016/j.cogsys.2022.10.001
https://doi.org/10.48550/ARXIV.2004.03458
https://doi.org/10.1109/ICEET53442.2021.9659697


On Relation Between Facial Expressions and Emotions 221

12. Marsella, S., Gratch, J., Petta, P.: Computational models of emotion. In: Scherer, K.R.,
Banziger, T., Roesch, E. (Eds.), A Blueprint for Affective Computing: A Sourcebook and
Manual. Oxford University Press, Oxford (2010)



Evaluation of Pretrained Large Language
Models in Embodied Planning Tasks

Christina Sarkisyan1 , Alexandr Korchemnyi1 , Alexey K. Kovalev2(B) ,
and Aleksandr I. Panov2,3

1 Moscow Institute of Physics and Technology, Dolgoprudny, Russia
2 AIRI, Moscow, Russia

{kovalev,panov}@airi.net
3 Federal Research Center “Computer Science and Control” of the Russian Academy

of Sciences, Moscow, Russia

Abstract. Modern pretrained large language models (LLMs) are
increasingly being used in zero-shot or few-shot learning modes. Recent
years have seen increased interest in applying such models to embod-
ied artificial intelligence and robotics tasks. When given in a natural
language, the agent needs to build a plan based on this prompt. The
best solutions use LLMs through APIs or models that are not publicly
available, making it difficult to reproduce the results. In this paper, we
use publicly available LLMs to build a plan for an embodied agent and
evaluate them in three modes of operation: 1) the subtask evaluation
mode, 2) the full autoregressive plan generation, and 3) the step-by-step
autoregressive plan generation. We used two prompt settings: prompt-
containing examples of one given task and a mixed prompt with examples
of different tasks. Through extensive experiments, we have shown that
the subtask evaluation mode, in most cases, outperforms others with a
task-specific prompt, whereas the step-by-step autoregressive plan gen-
eration posts better performance in the mixed prompt setting.

Keywords: Large language models · Plan generation · Planning for
embodied agents

1 Introduction

The large language models (LLMs) pretrained on a huge corpus of texts are able
to solve problems that were not trained in the mode of few-shot [4] and zero-
shot [26] learning. Some modern LLMs demonstrate high efficiency on a variety of
different tasks, including those whose examples were not included in the training
dataset. Such models provide a good approximation to the linguistic world model
and serve as an important part of the AGI systems. In many ways, effectiveness
in the multi-task setting is achieved by using such models as knowledge bases
and generating the required model output by demonstrating examples in the
model’s input prompt. As a result, building the right prompt has turned into a
separate area of applied data science, known as prompt engineering.
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Initially, pretrained LLMs were mainly used in natural language processing
tasks. But recently, they have found application for tasks of embodied artificial
intelligence (AI) and robotics [1,6,8,9,14,21,22,24]. LLMs are used in cases when
the task for the agent is formed in a natural language, for example, “bring a cup
of coffee.” Then an agent has to generate a plan comprising subtasks leading to
the execution of the task [11]. In general, this plan can be expressed in a natural
language, for example, “1. Find a cup. 2. Take a cup. 3. Put the cup into the coffee
machine. 4. Switch on the coffee machine. 5. Bring a cup of coffee to the user,” and
subsequently mapped onto the actions available to the agent. Recent works show
good results in building a plan by LLMs, using feedback from the environment [1,
21,22,24] and without it [9]. However, the best solutions use LLMs where access is
either limited by API tools (GPT-3 [4], ChatGPT [17]) or unavailable (PaLM [5],
FLAN [26]), which affects the reproducibility of the result and the possibility of
further research in this direction. Typically, such models have more parameters
and are trained on more data than publicly available models.

On the one hand, this allows us to achieve better results by improving the
language model itself and through the emergence of some additional properties.
For example, in [27], authors show that using a “chain of thought” prompt brings
a better boost for models with over 100 billion parameters than for models
with fewer parameters. On the other hand, when it comes to embodied AI and
robotics, the use of such language models even in the inference mode on board
the agent causes difficulties because of the required computing resources.

In our work, we explore the use of publicly available pretrained LLMs to gen-
erate a plan from a language description of a task, in three modes of operation:
1) the subtask evaluation mode, 2) the full autoregressive plan generation, and 3)
the step-by-step autoregressive plan generation. Through extensive experiments,
we have shown that the use of LLMs, even with a relatively small number of
parameters, allows the agent to generate plans with high accuracy. In our exper-
iments, the subtask evaluation mode, in most cases, outperforms others with
a task-specific prompt, whereas the step-by-step autoregressive plan generation
posts better performance in the mixed prompt setting.

2 Metrics to Evaluate the Generated Plan

Measuring the quality of generated plans is a challenging task due to the mul-
timodal nature of the problem and the ambiguity of the natural language since
we need to evaluate not only the agent’s natural language understanding but
the ability to ground the steps of the plan with the admissible actions and
the visual information from the environment. It is common to evaluate plans
in terms of their Executability and Correctness [8,9,21]. Executability implies
checking that each step of the plan is syntactically correct, i.e., contains valid
actions and objects and can be executed by the agent in the environment. Cor-
rectness is an assessment of whether the execution of the plan’s steps leads to
the achievement of the target environment state. As noted in [9], it is difficult to
judge correctness based on a single gold standard measurement, since one task
can have several correct plan solutions, so various metrics are used. Longest
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Common Subsequence (LCS) [8,9] evaluates the intersection share of the gen-
erated plan with the ground truth (GT). In cases where the plan is directly
executed in the environment, Success Rate and Goal Conditions Recall metrics
are used [20,21], which is the full or partial achievement of all task-relevant goal-
conditions, respectively. In [12], the authors propose to evaluate plans step by
step using CIDEr [23] and SPICE [2] scene graph-based metrics and design the
KeyActionScore (KAS) metric for the ALFRED [20] extract key actions for task
completion. Graph of the scene’s final state where nodes represent objects with
edges as relationships between them is used for correctness calculation in [8]. To
date, there is no single generally accepted metric for this task. Human assessors
can also be involved in the evaluation process, as in [1,9]. In our work, we use
three metrics that evaluate the similarity of the generated plan and the GT plan
in terms of various criteria and present the results of human assessment to obtain
a detailed analysis of the methods’ performance. A more detailed description of
the evaluation process is provided in Sect. 3.4.

3 Method

3.1 Problem Formulation

Given a task description τ , the pretrained LLM is to build a task execution
plan Ŝ, which is a sequence of subtasks Ŝ = (s1, ..., sn). A subtask st is a pair
(at, ot), at ∈ A, ot ∈ O, where at is the action available for the agent to perform
and involves interacting with the target object ot.

3.2 Subtask Evaluation Mode

To build a plan in subtask evaluation mode, we use the LLM as a scoring model,
as proposed in SayCan [1], which selects a potential text completion from a
limited set of options rather than generating the text directly. The execution
plan is built iteratively: at each step, the LLM represents a distribution over the
set of subtask language descriptions L. The mapping φ matches each possible
subtask st with a corresponding text description φ : A×O → L. Specifically, for
each action a ∈ A in the robotic language, there is a template with its description
in the natural language into which the object o ∈ O is inserted (e.g. subtask
“(PickupObject, {obj})” goes to the description “pick up the {obj}”). The LLM
scores all the natural language subtasks l ∈ L, computing their probabilities and
selecting the optimal subtask:

l∗t = argmaxlt∈LP (lt|f(τ, l1, ..., lt−1)), t = 1, n. (1)

f(x) is a prompting function, that maps the input x to a task-specific template.
The subtasks obtained in the previous steps of the algorithm are sequentially
attached to the input data of the prompt function, which adds them to the string
prompt according to the template. The resulting language subtask sequence
(l1, ..., ln) can be further easily transformed into an executable plan using φ−1

back mapping: st = φ−1(lt).
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This approach ensures the executability of each subtask in the plan since we
constrain the model output to specific tokens corresponding to the environmental
subtasks. However, it requires multiple prompt passes through the model for
each subtask at each step of the algorithm, which lengthens the plan generation
time and is resource-intensive. The computational complexity grows with the
number of available actions and objects in the environment. To speed up the plan
generation procedure, we additionally reduce the spatial dimension of subtasks
using a set of rules imposed by environmental constraints and common sense
considerations. At each plan generation step, the set of subtasks L is filtered by
the reducing function:

L′ = reduce(L) (2)

In particular, the model is proposed to evaluate only the subtasks, meeting the
rules designed for the ALFRED [20] environment. For example, the rules take
into account the fact that the agent has only one manipulator and can not pick
up two objects at once, so if the previously selected subtask has the “pick up”
action, other subtasks with the same action are discarded. Also, the subtasks
should not contain objects that the agent in the scene does not observe.

We found that discarding some unnecessary subtasks from the evaluation
process can significantly speed up the LLM inference time, as well as slightly
boost its performance. Specifically, in our problem setting there are 159 unique
subtasks. At each step of the plan generation, 159 prompts of length ∼ 1500
tokens must pass through the model to evaluate each subtask, while applying
the rules reduces the number of prompts to an average of 50. Thus, instead of
∼ 250, 000 tokens, the model receives ∼ 75, 000 tokens.

3.3 Autoregressive Plan Generation

An autoregressive language model (LM) is trained with a maximum likelihood
loss to model the probability of a sequence of tokens y conditioned on an input
sequence x, i.e. θ = argmaxθP (y|x; θ). The trained LM is then used for predic-
tion ŷ = argmaxy∈SP (y|x; θ), where S is the set of all text sequences.

LLMs are trained on large text collections and can perform in-context learn-
ing using only contextual information. It is possible to use this approach to
query LLMs to generate action plans for high-level tasks by prepending some
task-relevant context to the input sequence x (prompt). For a plan-generating
task, a prompt usually consists of one or more parts: including a high-level prob-
lem statement, a description of the environment’s current state, and examples
of similar problems that have already been solved.

Full Plan Generation. To generate a complete plan, the language model
generates a text sequence y based on the input sequence x = fprompt(Y ). When
generating a complete plan using a language model, it can be challenging to
match the proposed commands with those available to the agent in the current
environment. Some possible issues include: 1) the action or its arguments are
represented by a synonym or alternative phrase (e.g. “pick up the cup” instead
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of “pick up the mug”), 2) the action or its arguments are lexically incorrect
(e.g. “cut the knife and heat it up”), 3) the plan is generated in a free-form
rather than using a structured template (e.g. “the robot should pick up the
spoon and put it in the sink” instead of “pick up the spoon, then put it in
the sink”), and 4) the sequence of actions is not logically connected (e.g., to
retrieve an item from the fridge, the fridge must first be opened). The quality of
the plan generation improves with the increase in the number of examples in the
prompt. The solution to the grounding problem is proposed through step-by-step
generation.

Step-by-Step Plan Generation. In the case of iterative step-by-step plan
generation, the subtasks available in the environment are compared with the
subtask generated at each step. The generated subtask sg is compared with all
possible subtasks in the environment {se1, se2, ..., sek} and we taking the most
closest ŝe:

ŝe = argmax
sei

[C(femb(sg), femb(sei))] (3)

where femb is an embedding function and C is a cosine distance function. In our
work, we used Sentence-BERT [18] to obtain subtask embeddings.

The generated step is then added to the prompt and the process continues
iteratively until the stop sequence is generated. The advantage of this approach
is the increased feasibility of the generated plan, as all object actions can be
grounded to the environment. The disadvantage is the increase in computational
complexity, which grows exponentially with the number of available actions and
objects.

3.4 Plan Evaluation

To measure the correctness of the plan generation, we use several metrics that
evaluate both the complete coincidence of plans and their partial similarity.
Accuracy (ACC), i.e. the exact match of GT and model prediction subtask
sequences, is the most strict criterion that requires both actions and interaction
objects matching for each subtask in the plans.

ACC(S, S′) =

{
0, ∃sk ∈ S, s′

k ∈ S′ : ak �= a′
k ∨ ok �= o′

k

1, ∀sk ∈ S, s′
k ∈ S′ : ak = a′

k ∧ ok = o′
k

(4)

We designed the Actions Exact Match (AEM) metric to evaluate the
method’s ability to understand the task’s semantics, in particular, to classify
its type. AEM requires action matching but allows the model to confuse the
objects.

AEM(S, S′) =

{
0, ∃sk ∈ S, s′

k ∈ S′ : ak �= a′
k

1, ∀sk ∈ S, s′
k ∈ S′ : ak = a′

k

(5)
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We also compute the LCS between two plans, normalized by the maximum
length of the two, following [9]. However, there are cases when GT plans do not
allow us to determine the plan’s correctness. For one task, there may be several
correct plans (e.g., to complete the task “put a cup with a fork in it on the
counter” the agent can perform actions in a different order: put the cup on the
counter, then put the fork in the cup, or vice versa), while according to the ACC,
only the one fixed order of subtasks is correct. Furthermore, tasks can often be
vague, so without the vision of the environment one can only make assump-
tions about their purpose and the objects engaged (e.g., the task “to acquire an
odd item as place it where it is not useful”). Thus, we involve Human assess-
ment (H) in the plan evaluation process. Three people were asked to evaluate
how many correct plans, in their opinion, the model generated, based only on
the requirements of the text instructions. The GT plans were also available for
observation. The final metric value is obtained by dividing the number of correct
plans by the total number of tasks and averaging over the number of assessors.

4 Experiments

To select an LLM, we studied publicly available pretrained models with a large
number of parameters. In the robot’s behavior planning task GPT-3 model [4]
with 175B parameters is frequently used. However, OpenAI API for GPT-3
allows one to generate/evaluate only a limited number of tokens, which is espe-
cially critical for the resource-intensive subtask evaluation mode. Therefore, we
considered the models without restrictions on the number of input and output
tokens and also work fast enough with a limited number of computing resources.
As LLMs, we use and compare three models: GPT-J-6B (GPT-J) [25], GPT-
NeoX-20B (GPT-NeoX) [3] and OPT-30B (OPT) [28]. GPT-J is a GPT-
3-like autoregressive language model, pretrained on the Pile dataset [7], contain-
ing 825 GB of an English text corpus. GPT-J contains 6B trainable parameters.
The architecture of the GPT-NeoX model almost repeats the GPT-J’s, and was
trained on the same dataset, but has a larger number of parameters (20B). OPT
is also a decoder-only model from GPT-3 family and has the largest number of
parameters (30B) in our experiments. OPT was trained on several subsets of the
Pile, and some other datasets (RoBERTa [13], CCNews [15], etc.), containing
English and a small amount of non-English data. GPT-J and OPT models use
the BPE [19] tokenizer, like GPT-3, while GPT-NeoX uses a tokenizer specially
designed for this model.

4.1 ALFRED Environment

ALFRED [20] is a benchmark for evaluating the ability of AI systems to under-
stand and act upon human language instructions in interactive visual environ-
ments, such as a household setting. The benchmark includes expert demonstra-
tions of tasks, accompanied by natural language instructions, in 120 different
indoor scenes in the AI2-THOR 2.0 [10] environment. These demonstrations
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involve partial observability, long action horizons, an underspecified natural lan-
guage, and irreversible actions. ALFRED includes a total of 25,743 English lan-
guage directives describing 8,055 expert demonstrations, resulting in a total of
428,322 image-action pairs. In this benchmark, the agent is provided with ego-
centric vision and must complete tasks by interacting with objects using a pixel-
wise interaction mask. The benchmark is intended to facilitate the development
of AI systems that can translate human language into sequences of actions and
interactions in a visually and physically realistic simulation environment.

To create GT plans, we collected a dataset from task descriptions and cor-
responding subtask sequences extracted from the expert demonstrations. There
are seven high-level actions in ALFRED: PickupObject, PutObject, SliceObject,
HeatObject, CoolObject, CleanObject, ToggleObject, most of which need to be
broken down into lower-level subactions (e.g., to heat the object, the agent should
open the microwave, put the object in it, etc.).

There are seven types of tasks in ALFRED, ranging in difficulty: Pick&Place,
Look in Light, Heat&Place, Cool&Place, Clean&Place, Pick Two&Place, and
Stack&Place. We divided them into three groups of increasing complexity and
plan length and chose one type from each group for experiments. Pick&Place
(PP) is the simplest type, in which one needs to pick up an object and put it in
another place. In Heat&Place (HP), the object needs to be additionally warmed
up before being put somewhere. In some tasks, the object must be sliced with
a knife, which extends the plan’s length by one more action. The most complex
task type is Stack&Place (SP), in which one needs to put an object in a movable
container and put them in a specified location. The object can also be sliceable.

4.2 Prompt Engineering

To build a prompt, we use the template proposed in [1], which is a dialog between
a user and a robot, and adapt it for the ALFRED. We first add a prefix to the
prompt describing the general problem statement. Then we preprocess ALFRED
data by removing the punctuation from the task descriptions and converting
them to lowercase. These descriptions are used as the user input in the dialog.
Further, we convert GT plans: each subtask in the GT plan is mapped to a
natural language subtask with the φ() function. For each queried task type, n
examples of GT plans are randomly selected and concatenated to the prompt,
alternating by type. The imperative task description τ is reformulated as a ques-
tion “Human: How would you {τ}?” and the sequence of subtasks lk in GT plan
is formatted into a sequence “Robot: I would: 1. {l1}, 2.{l2}, ..., n.{ln}”. To avoid
model biases due to repetitive or ambiguous task examples, we additionally edit
prompts manually by replacing some examples with others and adding more
diversity in object classes.

A prompt can contain examples of both different types, and only one. One-
type prompt problem setting is easier since the model “learns” on plans with
similar sequences of actions and can lead to better performance. Such an app-
roach is possible if one can somehow classify task types before adding them to the
prompt, e.g., using a trained language model, as in [16], or using the k-neighbor
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method to select in-context examples [22]. In our case, we consider the task type
known in advance, given as GT.

We conduct two series of experiments in subtask evaluation, full plan gen-
eration, and step-by-step generation modes for Pick&Place, Heat&Place, and
Stack&Place task types separately and compute the metrics values. In the first
block of experiments, a one-type prompt is individually set for each task type,
containing examples of only this type. For the second block, prompts include
examples of all 7 task types, to determine whether the model has common sense
reasoning abilities and can classify the task type.

5 Results

Task-Specific Prompt. For the subtask evaluation mode, we validate GPT-
J, GPT-NeoX, and OPT on 35 tasks per type, randomly selected from the
ALFRED dataset. For each model, the experiments were run repeatedly with dif-
ferent prompt lengths (containing a different number of examples), then the best
ones were selected from the results obtained. The results are given in Table 1.
Since there are examples of only one type in the prompt, the sequence of actions
is successfully determined for each model, as evidenced by the high AEM metric.
There is a significant gap between ACC and H metrics because of the noisiness
of the ALFRED dataset. OPT outperforms the other two models in terms of
the ACC on two task types but is lower in terms of H metrics. We found that
increasing the number of model parameters (from GPT-J to OPT) does not
provide a significant increase in performance, especially in the case of one-type
prompts. In general, according to H, our approach with GPT-NeoX as the LLM
with a one-type prompt achieves the best quality of about 83%.

Table 1. Results for LLMs in three different planning modes with task-specific prompt.

Task GPT-J (6B) GPT-NeoX (20B) OPT (30B)

ACC AEM LCS H ACC AEM LCS H ACC AEM LCS H

Subtask Evaluation Mode

PP 0.57 1.00 0.85 0.89± 0.00 0.63 1.00 0.87 0.97± 0.00 0.66 1.00 0.87 0.85± 0.02

HP 0.77 0.86 0.88 0.83± 0.03 0.74 0.89 0.88 0.83± 0.05 0.60 0.71 0.79 0.69± 0.03

SP 0.31 0.91 0.74 0.69± 0.13 0.26 1.00 0.70 0.70± 0.01 0.34 1.00 0.69 0.64± 0.02

Full Plan Generation

PP 0.14 0.91 0.52 0.85± 0.01 0.32 1.00 0.59 0.91± 0.05 0.48 1.00 0.76 0.97± 0.03

HP 0.38 0.97 0.65 0.55± 0.02 0.29 0.49 0.50 0.59± 0.17 0.22 0.58 0.39 0.84± 0.05

SP 0.20 0.57 0.48 0.66± 0.05 0.20 0.94 0.52 0.66± 0.05 0.17 0.39 0.50 0.60± 0.03

Step by Step Plan Generation

PP 0.62 0.97 0.79 0.89± 0.02 0.59 1.00 0.82 0.96± 0.03 0.29 1.00 0.71 0.78± 0.04

HP 0.40 0.60 0.60 0.47± 0.03 0.34 0.51 0.57 0.40± 0.03 0.29 0.74 0.61 0.60± 0.08

SP 0.37 0.89 0.68 0.71± 0.00 0.29 0.77 0.61 0.54± 0.08 0.03 0.89 0.41 0.37± 0.06
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A Prompt with Mixed Task Examples. In our experiments with mixed
prompts, the prompt contains three examples for each of the seven task types,
with a total length of 21. The results are given in Table 2.

For the subtask evaluation mode, the values of the metrics have deteriorated
compared to the first block of experiments. The most complex task type SP has
the smallest ACC values; however, for the GPT-NeoX AEM is about 80%, which
means that the model understands the semantics of this task well, compared
to the smaller GPT-J. GPT-J outperforms the two other models on HP type.
OPT, having the largest number of parameters, showed the worst results, having
“overfitted” for specific task types present in the prompt.

Table 2. Results for LLMs in three different planning modes with a mixed prompt.

Task GPT-J (6B) GPT-NeoX (20B) OPT (30B)

ACC AEM LCS H ACC AEM LCS H ACC AEM LCS H

Subtask Evaluation Mode

PP 0.43 0.60 0.71 0.56± 0.09 0.46 0.54 0.68 0.54± 0.03 0.03 0.03 0.49 0.26± 0.39

HP 0.51 0.60 0.75 0.54± 0.08 0.29 0.40 0.62 0.53± 0.19 0.37 0.51 0.66 0.40± 0.03

SP 0.06 0.26 0.59 0.17± 0.03 0.11 0.80 0.61 0.42± 0.11 0.03 0.74 0.57 0.19± 0.06

Full Plan Generation

PP 0.12 0.91 0.32 0.77± 0.06 0.18 1.00 0.50 1.00± 0.00 0.48 1.00 0.76 0.86± 0.03

HP 0.14 0.14 0.40 0.70± 0.01 0.20 0.51 0.43 0.70± 0.06 0.22 0.58 0.39 0.62± 0.11

SP 0.00 0.40 0.15 0.39± 0.05 0.00 0.91 0.21 0.60± 0.08 0.17 0.39 0.50 0.60± 0.17

Step by Step Plan Generation

PP 0.47 1.00 0.65 0.68± 0.07 0.62 0.97 0.14 0.91± 0.00 0.21 0.97 0.48 0.75± 0.05

HP 0.37 0.54 0.61 0.48± 0.02 0.43 0.46 0.64 0.55± 0.05 0.00 0.00 0.16 0.41± 0.08

SP 0.09 0.49 0.53 0.39± 0.05 0.14 0.71 0.52 0.53± 0.04 0.03 0.36 0.19 0.43± 0.15

6 Conclusion

In our work, we explored the application of publicly available LLMs to the plan
generation for an embodied agent. We considered three modes of model oper-
ation: 1) subtask evaluation mode, 2) full autoregressive plan generation, and
3) step-by-step autoregressive plan generation. In our studies, we used models
with a different number of parameters, while there is no significant increase in
the metrics values with an increase in the number of parameters, and in some
cases, a decrease is observed.

In general, the subtask evaluation mode performs better than the other two
with a task-specific prompt. This mode is the most resource-intensive since it
requires a parallel evaluation of all subtasks available to the agent. The mode of
full autoregressive plan generation is the worst among others. The main problem
with this mode is that the subtasks obtained in this way may not be executable
by the agent. The step-by-step autoregressive plan generation mode occupies an
intermediate position with a task-specific prompt setting, but outperforms others
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with a mixed prompt. Although it requires a mapping of the received subtasks
to the space of agent subtasks, this procedure is not as resource intensive as
the parallel evaluation of subtasks and can be implemented with pre-computed
embeddings of subtasks. With an increase in the number of actions and objects,
the number of subtasks also increases combinatorially. Although the mapping
of generated subtasks to agent subtasks can be considered as implicit feedback
from the environment, in our work, we have focused on plan generation without
feedback, and have taken this as a direction for further work.
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Abstract. A natural-like artificial general intelligence (AGI) is defined to be an
AGI that includes mammalian-like mechanisms such as core usage of navigation
maps, spatial and temporal binding, predictive coding, lifelong learning, and innate
knowledge procedures. If it includes core mechanisms which allow full causal and
analogical processing, then it is also considered to be a human-like AGI. An AGI
which is not a natural-like AGI is termed an alien AGI. We consider (for sake
of example) as a natural-like AGI a largely conceptual cognitive architecture (the
Causal Cognitive Architecture 5) inspired by the mammalian brain. We consider
(for sake of example) as an alienAGI the large languagemodel ChatGPT.We show
for a non-numeric simple example, that the natural-like AGI is able to solve the
problem by automatic core mechanisms, but an alien AGI has difficulty arriving
at a solution. It may be, that alien AGIs’ understanding of the world is so different
from a human understanding that to allow alien AGIs to do tasks done originally
by humans, is to eventually invite strange failures in the tasks.

Keywords: artificial general intelligence · large language model · ChatGPT ·
cognitive architecture · analogies · causality

1 Introduction – The Need to Consider What Type of System is
Producing the Intelligent Behavior

A large body of work exists attempting to define artificial intelligence (AI) and to a lesser
extent artificial general intelligence (AGI) [1–10]. However, as we show below, in most
of these definitions there is the lack of consideration whether an AI/AGI is based on a
natural-like mechanism or is what we term here an “alien-like” AI/AGI.

At the time of this writing, large language models have improved to the point where
their users may at times consider them to be AI/AGI systems performing at a human
level. For example, Kung and colleagues demonstrated that the large language model
called ChatGPT was able to essentially achieve passing marks on the United States
medical licensing exams without any specialized training ahead of time [11].

We make no claims of AGI existing at the time of writing, but in the following
sections, we will attempt to consider AGI systems in particular, and go on to define
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natural-like AGI, and by exclusion, alien-like AGI (or “alien AGI”), by the mechanisms
they use. Since alien AGIs will arrive at decisions in ways very different than natural-like
AGIs would, what effect will this have on the utility and the safety of their decisions?

2 Definitions of Artificial Intelligence (AI) and Artificial General
Intelligence (AGI)

Russell and Norvig [1] define artificial intelligence in terms of replicating human per-
formance versus rational (i.e., doing the “right thing”) thought, and in terms of inter-
nal thought processes versus external intelligent behavior. Legg and Hutter [2] pro-
vide a mathematical formulation of a measure of machine intelligence in terms of an
agent’s “ability to achieve goals in a wide range of environments.” Chollet [3] proposes
the machine-suitable Abstraction and Reasoning Corpus, with tasks similar to Raven’s
Progressive Matrices.

Many other approaches with regard to classifying AI systems exist. For example,
Wang [4] attempts to carefully define what is an artificial intelligence, and proposes
“adaptation with insufficient knowledge and resources.” Rosenbloom and colleagues
[5] describe characterizing AI systems and cognitive architectures in terms of basic
dichotomies, i.e., is the system symbolic versus sub-symbolic, symmetric versus asym-
metric, and combinatory versus non-combinatory. The field of biologically inspired
cognitive architectures (BICA) describes cognitive architectures inspired by the human
brain [6]. Such BICA systems can serve to give insight into brain function as well as
to create systems acting as AI systems and perhaps in the future as the basis of AGI
systems.

The term “artificial general intelligence” was briefly used in 1997 by Gubrud [7]
but used again more extensively by Goertzel and Legg in 2002 [8]. Goertzel and Pen-
nachin [9] noted that unlike “narrow AI… artificial general intelligence can solve a
variety of complex problems in a variety of different domains, and that controls itself
autonomously…” There have since been other attempts to characterize what defines
artificial general intelligence. For example, Adams and colleagues [10] describe a large
variety of characteristics for AGI environments, tasks, agents, and architectures.

Again, no claims of AGI existing at the time of writing are made, but given that we
are concerned largely bymore capable systems that produce intelligence in keeping with
the various definitions of AGI, in this paper, we will talk about AGI rather than AI. As
noted earlier, none of these definitions of artificial general intelligence really consider
whether an AGI is based on a natural-like mechanism or not.

3 A Definition of a Natural-Like Artificial General Intelligence

While the underlying integrativemechanisms of amammalian brain (let alone any animal
brain) are still notwell understood, certain high-levelmechanisms are recognized, and the
definition of a natural-like artificial general intelligence (AGI) thus requires a number
of these pertinent high-level mechanisms. As will be seen in the sections below, the
rationale for distinguishing an alien AGI from a natural-like AGI is because alien AGIs



Alien Versus Natural-Like Artificial General Intelligences 235

may arrive at answers to problems in ways very different than a human or a natural-like
AGI would, and this can have an important (negative or positive) impact on the utility
and safety of their decisions.

A natural-like artificial general intelligence (AGI) is defined as follows:

• A natural-like AGI uses high-level mechanisms to produce artificial general intel-
ligence similar to the high-level mechanisms used by the mammalian-like animal
brain.

A. High-level mechanisms required in all natural-like AGIs:

1. Given the existence of spatial maps in hippocampi, and given hippocampi in
all mammals [12–14], we postulate [15, 16] and require the use of navigation
maps (described in more detail in the next section) not just for navigation, but
involved in the core mechanisms of the AGI.

2. Spatial as well as temporal binding (described in more detail below) of sensory
inputs with the navigation maps or other internal data structures [16–18].

3. Given that it is well known that higher-level brain or thought levels can influence
the perception of information in a sensory scene, theAGI’s coremechanismmust
use some form of predictive coding, i.e., errors between what the AGI thought
it would be seeing or sensing (or internally concluding) and between the actual
sensory inputs, are propagated to higher levels [19].

4. Given that incremental, lifelong learning can occur in mammalian brains, it
should also occur in a natural-like AGI.

5. Natural-like AGI does not start off as a tabula rasa, but contains a number of
innate knowledge procedures concerning objects, physics, agents, numbers, and
social groupmembers, similar to those found inmammals and humans. Thework
of Spelke and others [20, 21] shows that such knowledge procedures occur in
human infants as well as in some other young mammals.

B. In a natural-like AGI which is also “human-like” the following additional high-level
mechanisms are required to be used by the natural-like/human-like AGI:

6. Predominant causal (i.e., essentially considering cause and effect) processing of
sensory and stored data can occur by re-operating on intermediate results.While
non-human mammals including chimpanzees (Pan troglodytes) and bonobos
(Panpaniscus) do not demonstrate full causal behavior, for themost part, humans
do [22].

7. Analogical processing is integrated in the core mechanisms of the natural-
like/human-like AGI. While most mammals, including chimpanzees, do not
demonstrate full analogical abilities, humans, of course, largely, do [16, 23].
Psychological evidence indicates that analogical processing is actually a core
mechanism in the human brain [24].

“High-level mechanism” refers to the mechanisms employed above the level of
the local neural circuits. “Mammalian-like” means similarities between the AGI and
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a mammalian animal brain. Would a natural-like AGI modeled on the crow’s brain
(i.e., genus Corvus) be acceptable as a natural-like AGI under the above definition?
Yes. Non-mammalian vertebrates have navigation systems including homologues to
the mammalian brain’s navigation-related structures [25]. While most non-mammalian
vertebrates may not meet themain criterion of the definition above of producing artificial
general intelligence-like behavior, some birds may [26]. (However, a natural-like AGI
modeled on the octopus’s brain (e.g., Amphioctopus marginatus) would not—it would
be considered as an alien AGI under the above definition. While octopuses may be able
to solve problems and use tools [27], their brain architecture is very different from the
mammalian brain.)

Kralik gives a large list of uniquely human cognitive abilities [28]. However, above in
our definition we choose two pertinent human-like high-level mechanisms which are not
found in other mammals, and which are more mechanically suitable for consideration
of inclusion in an AGI. Although beyond the scope of this paper, if the two human-level
criteria of the definition above are present, then it is likely that most of the other of what
are considered uniquely human cognitive abilities will also co-exist or emerge [15, 16,
18].

4 An Example of a Natural-Like Artificial General Intelligence

The Causal Cognitive Architecture 5 (CCA5) is a biologically inspired cognitive archi-
tecture (BICA) loosely inspired by the mammalian brain, conceptually meeting the
criteria above for a natural-like AGI, and if full feedback is used [16], also meeting the
criteria above for a human-like AGI. The navigation maps in the simulated architec-
ture are arrays with 6x6x6 spatial dimensions (as well as other dimensions for object
segmentation, associated procedures and metadata). Thousands to billions of such nav-
igation maps can exist within the architecture and prove useful for the overall storage
and representational needs of the architecture, i.e., each navigation map storing asso-
ciated features of the environment along with associated procedures and links to other
navigation maps [15].

An overview of the architecture of the CCA5 is shown in Fig. 1. The architecture
takes as an input the set of sensory features streaming in from different perceptual
sensors. Objects detected in this stream of sensory features are segmented, and visual,
auditory, and other sensory features of each segmented object are spatially mapped onto
navigation maps dedicated to one sensory modality. This represents the first step in spa-
tial object binding. These single-sensory navigation maps are then mapped onto a best
matching multi-sensory navigation map taken from the Causal MemoryModule (Fig. 1)
and operated on in the Navigation Module. This represents the second step in spatial
object binding. As well, a parallel sensory stream has gone through the Sequential/Error
Correcting Module (Fig. 1) which detects changes with time, and is then converted
to a vector value which is also bound along with the spatial features onto the same
navigation maps, effectively representing temporal binding [17, 18]. Instinctive prim-
itives and learned primitives, essentially small rules or productions, themselves using
modified navigation maps, are then applied onto the navigation map in the Navigation
Module, producing a signal to the Output Vector AssociationModule (Fig. 1) and then to
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the external embodiment. Instinctive primitives are innate knowledge procedures con-
cerning objects, agents, numbers, and social group members. Learned primitives are
procedures which are learned by the architecture.

There are extensive feedback pathways throughout the architecture—states of a
downstream module can influence the recognition and processing of more upstream
sensory inputs. The differences between the expected sensory input and the actual sen-
sory input are computed and fed forward, and influence the binding of the sensory inputs
onto local sensory navigation maps in the Input Sensory Vectors Association Modules
(Fig. 1) as well as the final binding of the local navigation maps onto a multisensory
navigation map which becomes the working navigation map in the Navigation Module
(Fig. 1). This is reflected in the equations describing the architecture in [16].

Existing navigation maps in the Input Sensory Vectors Association Modules (Fig. 1)
as well as the Sequential/Error Correcting Module (Fig. 1) and the Causal Memory
Module (Fig. 1) are updated with changes as sensory inputs stream in, and as well new
navigation maps are created. This can occur constantly, as long as there is a sufficient
supply of empty navigation maps and links between navigation maps. There is no catas-
trophic forgetting–navigation maps are updated or created, links are updated or created,
with little effect on other navigation maps (i.e., lifelong learning occurs).

Fig. 1. Overview of the Causal Cognitive Architecture 5 (CCA5)



238 H. Schneider and P. Bołtuć

In the Causal Cognitive Architecture 5, the feedback pathways between the Navi-
gation Module/ Object Segmentation Gateway Module and the Input Sensory Vectors
Association Modules (Fig. 1) are enhanced allowing intermediate results from the Nav-
igation Module to be stored in the Input Sensory Vectors Association Modules. If so, in
the next cognitive cycle (i.e., cycles of passing input sensory vectors into and through
the architecture), these intermediate results will automatically be considered as the input
sensory information and propagated to the Navigation Module and operated on again.
By feeding back and re-operating on the intermediate results, the Causal Cognitive
Architecture is able to formulate and explore possible cause and effect of actions, i.e.,
generate causal behavior [16–18]. As Schneider shows, a consequence of this enhance-
ment in feedback processing of the intermediate results of the architecture is not only the
ability to generate causal behavior but that the architecture now readily uses analogical
reasoning as a central and core mechanism of action [16, 18, 29].

The references [15–18, 29] give the functioning of the Causal Cognitive Architecture
5 (CCA5) in much more detail, but we note here that it conceptually meets the above
definition of being both a natural-like AGI and a human-like AGI:

“An AGI” – While no claims are made for the CCA5 as being a functioning AGI,
it conceptually could meet the definitions [9] above for an AGI: “…artificial general
intelligence can solve a variety of complex problems in a variety of different domains,
and that controls itself autonomously…”

1. The use of navigation maps – The CCA5 makes extensive use of navigation maps
for representational storage and operations.

2. Spatial as well as temporal binding – As described above, via the binding of
sensory inputs onto local navigation maps and then onto a multi-sensory navigation
map, spatial binding occurs, and temporal binding occurs via the Sequential/Error
Correcting Module (Fig. 1).

3. Predictive coding – The errors between what the AGI thought it would be sensing
and between the actual sensory inputs are propagated to higher levels as described
above.

4. Lifelong learning – Existing navigation maps in the Input Sensory Vectors Associ-
ation Modules (Fig. 1) as well as the Sequential/Error Correcting Module (Fig. 1)
and the Causal Memory Module (Fig. 1) are updated with changes as sensory inputs
stream in, and as well new navigation maps are created. As noted above, this occurs
constantly, and there is no catastrophic forgetting.

5. Innate knowledge procedures – As noted above, instinctive primitives, which are
essentially small rules or productions concerning objects, numbers, agents and so
on, are built into the architecture.

6. Predominant causal processing – As noted above, by allowing feedback from the
intermediate results of the Navigation Module (Fig. 1) to be temporarily stored and
re-processed in the next cycle, the architecture is able to formulate and explore
possible cause and effect.

7. Analogical processing – As noted above, a consequence of the feedback of the
intermediate results from the Navigation Module (Fig. 1) to be temporarily stored,
is that analogical processing readily emerges as part of the core mechanisms of the
architecture.
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5 Alien-Like AGI Versus Natural-Like AGI

The rationale for distinguishing an alien AGI from a natural-like AGI is because alien
AGIs may arrive at answers to problems in ways very different than humans would,
the latter which by anecdotal evidence [16] we assume is better represented by natural-
like/human-like AGIs. This can have an important effect on the utility and safety of
decisions arrived at.

Above we presented the Causal Cognitive Architecture 5 (CCA5). While no claims
are made for the CCA5 as being a functioning AGI, conceptually it meets the above
definitions for an AGI [9]. As well, it meets the criteria above of the definition of a
natural-like AGI including being a human-like AGI. Thus, for the sake of example, we
consider the CCA5 as a natural-like AGI and a human-like AGI.

Above we discussed how a large language model (utilizes an underlying transformer
architecture [30]) called ChatGPT was able to essentially achieve passing marks on
the United States medical licensing exams [11]. In actual performance, ChatGPT meets
many of the requirements of anAGI in being “able to solve a variety of complex problems
in a variety of different domains”, and it could easily be embedded into an agent structure
and “control itself autonomously” [9].While there is disagreement whether architectures
such as ChatGPT are close to representing true AGIs [31], for the sake of example, we
consider ChatGPT as an AGI. Since it does not meet many of the criteria above of a
natural-like AGI, we thus consider it an alien AGI.

In Schneider [16] a robot controlled by a CCA5 architecture (for convenience we
will term the combination of the CCA5 and the robot as the “CCA5”) wants to cross a
deep river filled with floating leaves. It has no experience with leaves (and actually does
not even know their names). However, by analogy (which occurs automatically as part
of the core mechanisms of the architecture in conjunction with its very basic intuitive
object and physics knowledge) with stepping on similarly thin sheets of newspaper in a
puddle at an earlier time, the CCA5 arrives at the conclusion that stepping on the leaves
would result in it falling into the water of the river. Thus, without any prior detailed
understanding about leaves or what a leaf really is, it makes the correct decision not to
cross the river.

ChatGPT has an enormous innate storage (orders of magnitude greater than a single
human could have) of written information about the world (although it may be lacking
with regard to numeric computations, whichwe thus avoid in our examples). If it is asked
if it safe to cross a river walking on “leaves,” it will respond that it is too dangerous to
cross, as shown in Fig. 2.

However, consider if we ask this question in a way similar to the CCA5 example in
Schneider [16] where the AGI has never seen an object such as leaves before. Imagine
that the alien AGI (i.e., ChatGPT) had not seen before the leaves on the river other than
seeing them in a catalog somewhere as “solid08”. The alien AGI has the same limited
information about sheets of a newspaper as being “solid22”. The alien AGI is given
the same previous experience about stepping on an object “solid22” (i.e., pages of a
newspaper) in a puddle.

From Fig. 3 we can see that even if the alien AGI (i.e., ChatGPT) is told a second
time what happened with “solid22” (i.e., pages of a newspaper in a puddle) it still was
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Fig. 2. Conversationwith ChatGPT about crossing a river filledwith leaves. (The swirling symbol
represents answers from ChatGPT. Retrieved: Jan 30, 2023.)

not able to readily come to the conclusion that the river should not be crossed (or to give
a creative solution that a human would not normally have thought of).

Fig. 3. Conversation with ChatGPT about crossing a river filled with “solid08”. (The swirling
symbol represents answers from ChatGPT. Retrieved: Jan 30, 2023.)

From this overall conversation (i.e., Figs. 2 plus 3) experienceChatGPTmay possibly
nowknowbetterwhat to do the next time it encounters “solid08” and “solid22”.However,
there are a myriad of other such examples, where the examples may not be in the massive
corpuswhichChatGPThas trained on. In these examples, the alienAGI such asChatGPT
may be unable tomake correct decisionswhere there are such unknowns, while a natural-
like and human-like AGI (e.g., CCA5) despite its much more modest world knowledge,
could in theory handle these situations easily.

This example really applies where the natural AGI and alienAGI are at a level aiming
for human-level but not there yet. If an alien AGI is at a level many times that of a human
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(defining “level” per Chollet [3]) then these kinds of examples may not hold, and further
work is required to investigate natural-like AGIs versus alien AGIs.

6 Discussion

Above we defined a natural-like AGI, including those AGIs that are also human-like
AGIs. If an AGI is not a natural-like AGI, then we term it an alien AGI.

The rationale for distinguishing an alien AGI from a natural-like AGI is because in
a complex world where the decisions taken or the solutions arrived at are not straight-
forward, the underlying mechanisms used by the AGI do matter. As justified above,
for the sake of example, we considered the large language model ChatGPT as an alien
AGI. Similarly for the sake of example, we considered the largely conceptual Causal
Cognitive Architecture 5 (CCA5) as a natural-like AGI and human-like AGI.

We considered the example which had already been examined in [16] whereby the
CCA5 controlling a robot needs to cross a deep river. It sees a river filled with leaves
(which it has no previous understanding or knowledge of other than to recognize them,
and indeed considers them “solid08” objects). Through the use of key features of a
natural-like AGI (causality, analogy, innate physics, and so on) it is able to automatically
reason that it would be dangerous to cross the river.

We then considered the same example with respect to ChatGPT, which we consider
as an alien AGI. If we tell ChatGPT that the river is filled with “leaves,” due to its
super-human knowledge of much of what has ever been written, it immediately says not
to cross the river. However, if we specify that the river is filled with “solid08” objects
(i.e., so that this problem represents something ChatGPT has not previously read about)
and give it information about analogous “solid22” objects similar to what the CCA5
received, it is not able to make a decision about crossing the river.

This is an extremely simple example. The simplicity was required in [16] because of
the extremely modest simulation of the CCA5. On the other hand, ChatGPT represents
an impressive engineering achievement, and yet, it was not able tomake a decision on this
simple example. Imagine a similar problem in an analogous situation where arriving at a
decision held more importance, e.g., prescribing or not prescribing a certain medication
for a patient, and so on. The safety and utility of the decision provided by an alien
AGI, despite its apparent super-human abilities, may be seriously and unpredictably
impaired at times. Given the current and near-future technology, it may be that alien
AGIs’ understanding of the world is so different from a human understanding that to
allow alien AGIs to do tasks done originally by humans, is to eventually invite strange
failures in the tasks. An alien AGI is not necessarily less powerful in cognition than a
human, but different [32]. A need exists to distinguish future AGIs as being natural-like
AGIs versus alien AGIs.
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Abstract. Category theory has been successfully applied in various
domains of science, shedding light on universal principles unifying diverse
phenomena and thereby enabling knowledge transfer between them.
Applications to machine learning have been pursued recently, and yet
there is still a gap between abstract mathematical foundations and con-
crete applications to machine learning tasks. In this paper we introduce
DisCoPyro as a categorical structure learning framework, which com-
bines categorical structures (such as symmetric monoidal categories and
operads) with amortized variational inference, and can be applied, e.g.,
in program learning for variational autoencoders. We provide both math-
ematical foundations and concrete applications together with compari-
son of experimental performance with other models (e.g., neuro-symbolic
models). We speculate that DisCoPyro could ultimately contribute to the
development of artificial general intelligence.

Keywords: Structure learning · Program learning · Symmetric
monoidal category · Operad · Amortized variational Bayesian inference

1 Introduction

Category theory has been applied in various domains of mathematical science,
allowing us to discover universal principles unifying diverse mathematical phe-
nomena and thereby enabling knowledge transfer between them [7]. Applications
to machine learning have been pursued recently [21]; however there is still a large
gap between foundational mathematics and applicability in concrete machine
learning tasks. This work begins filling the gap. We introduce the categorical
structure learning framework DisCoPyro, a probabilistic generative model with
amortized variational inference. We both provide mathematical foundations and
compare with other neurosymbolic models on an example application.

Here we describe why we believe that DisCoPyro could contribute, in the long
run, to developing human-level artificial general intelligence. Human intelligence
supports graded statistical reasoning [15], and evolved to represent spatial (geo-
metric) domains before we applied it to symbolic (algebraic) domains. Symmet-
ric monoidal categories provide a mathematical framework for constructing both
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symbolic computations (as in this paper) and geometrical spaces (e.g. [17]). We
take Lake [15]’s suggestion to represent graded statistical reasoning via probabil-
ity theory, integrating neural networks into variational inference for tractability.
In terms of applications, we get competitive performance (see Subsect. 3.2 below)
by variational Bayes, without resorting to reinforcement learning of structure as
with modular neural networks [13,20].

The rest of the paper is organized as follows. In Sect. 2, we first introduce
mathematical foundations of DisCoPyro (Subsects. 2 and 2.1). In Sect. 3 we then
explain how to train DisCoPyro on a task (Subsect. 2.1) and provide experimen-
tal results and performance comparisons (Subsect. 3.2). Figure 1 demonstrates
the flow of execution during the training procedure for the example task. We
conclude and discuss further applications in Sect. 4. We provide an example
implementation at https://github.com/neu-pml/discopyro with experiments at
https://github.com/esennesh/categorical bpl. DisCoPyro builds upon Pyro [2]
(a deep universal probabilistic programming language), DisCoCat [4] (a dis-
tributional compositional model for natural language processing [4]), and the
DisCoPy [6] library for computing with categories.

1.1 Notation

This paper takes symmetric monoidal categories (SMCs) C and their correspond-
ing operads O as its mathematical setting. The reader is welcome to see Fong [7]
for an introduction to these. SMCs are built from objects Ob(C) and sets of
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1. Graph skeleton of a free operad. 
Random walks on this graph induce 
a free operad prior.

2. Wiring diagram for decoder .

3. A decoder  and its inverse .

A. Sample edges from the free operad 
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Fig. 1. Example experiment. In each epoch of training, DisCoPyro learns variational
autoencoder structures by sampling them from its skeleton according to a wiring dia-
gram, then learning their faithful inverses as approximate posteriors.

https://github.com/neu-pml/discopyro
https://github.com/esennesh/categorical_bpl
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morphisms C(τ1, τ2) between objects τ1, τ2 ∈ Ob(C). Operads are built from
types Ty(O) and sets of morphisms O(τ1, τ2) between types τ1, τ2 ∈ Ty(O). An
SMC is usually written (C,⊗, I) with a product operation ⊗ over objects and
morphisms and a unit I of ⊗. In both settings, every object/type τ has a unique
identity morphism idτ . Categories support composition g ◦f on morphisms, and
operads support indexed composition g ◦i f (for i ∈ N) on morphisms.

2 Foundations of DisCoPyro

In essence, Definition 1 below exposes a finite number of building blocks (genera-
tors) from an SMC, and the morphisms constructed by composing those genera-
tors with ◦ and ⊗. For example, in categories of executable programs, a monoidal
signature [6] specifies a domain-specific programming language.

Definition 1 (Monoidal signature in an SMC). Given a symmetric
monoidal category (SMC) C with the objects denoted by Ob(C), a monoidal sig-
nature1 S = (O,M) in that SMC consists of

– A finite set O ⊆ Ob(C); and
– A finite set M consisting of elements m : C(τ1, τ2) for some τ1, τ2 ∈ O, such

that ∀τ ∈ O,m �= idτ .

The following free operad over a monoidal signature represents the space of
all possible programs synthesized from the above building blocks (generators
specified by the monoidal signature). Employing an operad rather than just
a category allows us to reason about composition as nesting rather than just
transitive combination; employing an operad rather than just a grammar allows
us to reason about both the inputs and outputs of operations rather than just
their outputs.

Definition 2 (Free operad over a signature). The free operad OS over a
signature S = (O,M) consists of

– A set of types (representations) Ty(OS) = {I} ∪ O⊗;
– For every n ∈ N

+ a set of operations (mappings) OS(τ0, . . . , τn−1; τn) con-
sisting of all trees with finitely many branches and leaves, in which each vertex
v with n−1 children is labeled by a generator m(v) ∈ M such that dom(m(v))
has product length n − 1;

– An identity operation idτ : OS(τ; τ) for every τ ∈ Ty(OS); and
– A substitution operator ◦i defined by nesting a syntax tree OS(σ1, . . . ,σm; τi)

inside another OS(τ1, . . . , τn−1; τn) when i ∈ [1...n − 1] to produce a syntax
tree OS(τ1, . . . , τi−1,σ1, . . . ,σm, τi+1, . . . τn−1; τn).

Intuitively, free operads share a lot in common with context-free grammars,
and in fact Hermida [10] proved that they share a representation as directed
acyclic hypergraphs. The definition of a signature in an SMC already hints at
the structure of the appropriate hypergraph, but Algorithm 1 will make it explicit
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Input: signature S = (O, M)
Output: hypergraph H = (V, E), recursion sites R
V ← O;
E ← map(λm.(dom(m), cod(m)), M );
R ← ∅;
stack ← {v ∈ V | |v| > 1};
while stack �= ∅ do

ty ← pop(stack);
inhabitants ← map(λc.{(dom(e), c) | e ∈ E, cod(e) = c}, chunks(ty, V ));
foreach ((d1, c1), . . . , (dk, ck)) ∈ ⊗

inhabitants do
if not sublist(

⊗
i∈[1..k] di, ty) then

R ← R ∪ {⊗[(d1, c1), . . . , (dk, ck)]}
E ← E ∪ {(

⊗
i∈[1..k] di,

⊗
i∈[1...k] ci)};

if d /∈ V then
push(stack, d);
V ← V ∪ {⊗

i∈[1..k] di};

end

end

end

end
return (V, E), R

Algorithm 1: Algorithm to represent a free operad as a hypergraph. The
function chunks partitions ty into sublists, each an element of the set V .

and add edges to the hypergraph corresponding to nesting separate operations
in parallel (or equivalently, to monoidal products in the original SMC). In the
hypergraph produced by Algorithm 1, each vertex corresponds to a non-product
type and each hyperedge has a list of vertices as its domain and codomain.
Each such hypergraph admits a representation as a graph as well, in which the
hyperedges serve as nodes and the lists in their domains and codomains serve as
edges. We will use this graph representation G 	 H to reason about morphisms
as paths between their domain and codomain.

We will derive a probabilistic generative model over morphisms in the free
operad from this graph representation’s directed adjacency matrix AG.

Definition 3 (Transition distance in a directed graph). The “transition
distance” between two indexed vertices vi, vj is the negative logarithm of the i, j
entry in the exponentiated adjacency/transition matrix

d(vi, vj) = − log
([

eAG
]
i,j

)
, (1)

where the matrix exponential is defined by the series

eAG =
∞∑

n=1

(AG)n

n!
.

1 Also called a “hypersignature”.
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Data: hypergraph (V, E)
function Path(τ−, τ+, β,w)

i ← 1;
τi ← τ−;
f ← idty−;
while τi �= τ+ do

ei ∼ π(e ∈ E | τi, τ+ β);
τi ← cod(ei);
f ← f � Generator(ei, β,w);
i ← i + 1;

end
return f

end
Algorithm 2: The Markov chain constructing paths between types

A soft-minimization distribution over this transition distance will, in expec-
tation and holding the indexed target vertex constant, define an probabilistic
generative model over paths through the hypergraph.

Definition 4 (Free operad prior). Consider a signature S = (O,M) and
its resulting graph representation G = (V,E) and recursion sites R, and then
condition upon a domain and codomain τ−, τ+ ∈ Ty(OS) represented by vertices
in the graph. The free operad prior assigns a probability density to all finite paths
e = (e1, e2, . . . , en) with dom(e) = τ− and cod(e) = τ+ by means of an absorbing
Markov chain. First the model samples a “precision” β and a set of “weights” w

β ∼ γ(1, 1) w ∼ Dirichlet
(
�1(|M |+|R|)

)
.

Then it samples a path (from the absorbing Markov chain in Algorithm 2) by
soft minimization (biased towards shorter paths by β) of the transition distance

π(e ∈ E | τ1, τ2;β) :=
exp

(
− 1

β d(cod(e), τ2)
)

∑
e′∈E:dom(e′)=τ1

exp
(
− 1

β d(cod(e′), τ2)
) . (2)

Equation 2 will induce a transition operator T which, by Theorem 2.5.3 in
Latouche and Ramaswami [16], will almost-surely reach its absorbing state corre-
sponding to τ2. This path can then be filled in according to Algorithm 3. The pre-
cision β increases at each recursion to terminate with shorter paths. We denote
the induced joint distribution as

p(f,w, β; τ−, τ+) = p(f | β,w; τ−, τ+)p(w)p(β). (3)

Having a probabilistic generative model over operations in the free operad
over a signature, we now need a way to specify a structure learning problem.
Definition 5 provides this by specifying what paths to sample (each box specifies
a call to Algorithm 2) and how to compose them.
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Data: hypergraph (V, E), generators M , recursion sites R
function Generator(e, β,w)

gs ← {m ∈ M | (dom(m), cod(m)) = (dom(e), cod(e))};
gs ← gs ∪ {⊗[(d1, c1), . . . , (dk, ck)] ∈ R | ⊗

i∈[1...k] di =

dom(e) ∧ ⊗
i∈[1...k] ci = cod(e)};

foreach j ∈ {1, . . . , |gs|} do
if gsj = ⊗(. . .) then

wj ← wj/β;
end

end
we ← [wn | g ∈ gs, g ∈ M, n = index(g, M)];
we ← we + [w|M|+n | g ∈ gs, g ∈ R, n = index(g, R)];
j ∼ Discrete(we);
if gsj = ⊗[(d1, c1), . . . , (dk, ck)] then

return
⊗k

l=1 Path(dl, cl, β + 1,w)

else
return gsj

end

end
Algorithm 3: Filling in an edge in the path with a morphism

Definition 5 (Wiring diagram). An acyclic, O-typed wiring diagram [7,
22] is a map from a series of internal boxes, each one defined by its domain
and codomain pair (τ−

i , τ+
i ) to an outer box defined by domain and codomain

(τ−
n , τ+

n )

Φ : OS(τ−
1 , τ+

1 ) × . . . × OS(τ−
n−1, τ

+
n−1) → OS(τ−

n , τ+
n ).

Acyclicity requires that connections (“wires”) can extend only from the outer
box’s domain to the domains of inner boxes, from the inner boxes codomains
to the outer box’s codomain, and between internal boxes such that no cycles are
formed in the directed graph of connections between inner boxes.

Given a user-specified wiring diagram Φ, we can then wite the complete prior
distribution over all latent variables in our generative model.

p(f,w, β;Φ,S) = p(β)p(w)
∏

(τ −
i ,τ +

i )∈Φ

p(fi | β,w; τ−
i , τ+

i ). (4)

If a user provides a likelihood pθ (x, z | f) relating the learned structure f to
data x (via latents z) we will have a joint density

p(x, z, f,w, β;Φ,S) = p(x | f)p(f,w, β;Φ,S), (5)

and Eq. 5 then admits inference from the data x by Bayesian inversion

p(z, f,w, β | x;Φ,S) = p(x, z, f,w, β;Φ,S)
pθ (x;Φ,S) . (6)



250 E. Sennesh et al.

Section 2.1 will explain how to approximate Eq. 6 by stochastic gradient-based
optimization, yielding a maximum-likelihood estimate of θ and an optimal
approximation for the parametric family φ to the true Bayesian inverse.

2.1 Model Learning and Variational Bayesian Inference

Bayesian inversion relies on evaluating the model evidence pθ (x;Φ,S), which
typically has no closed form solution. However, we can transform the high-
dimensional integral over the joint density into an expectation

pθ (x;Φ,S) =
∫

pθ (x, z, fθ ,w, β;Φ,S)dz dfθ dw dβ

= Ep(fθ ,w,β;Φ,S) [pθ (x, z, fθ ,w, β;Φ,S)] ,
and then rewrite that expectation into one over the proposal

Ep(fθ ,w,β;Φ,S) [pθ (x, z, fθ ,w, β;Φ,S)] =

Eqφ (z,fθ ,w,β|x;Φ,S)

[
pθ (x, z, fθ ,w, β;Φ,S)
qφ(z, fθ ,w, β | x;Φ,S)

]
.

For constructing this expectation, DisCoPyro provides both the functorial inver-
sion described in Sect. 3.1 and an amortized form of Automatic Structured Vari-
ational Inference [1] suitable for any universal probabilistic program.

Jensen’s Inequality says that expectation of the log density ratio will lower-
bound the log expected density ratio

Eqφ (z,fθ ,w,β|x;Φ,S)

[
log

pθ (x, z, fθ ,w, β;Φ,S)
qφ(z, fθ ,w, β | x;Φ,S)

]
≤

logEp(fθ ,w,β;Φ,S) [pθ (x, z, fθ ,w, β;Φ,S)] ,
so that the left-hand side provides a lower bound to the true model evidence

L(θ,φ) = Eqφ (z,fθ ,w,β|x;Φ,S)

[
log

pθ (x, z, fθ ,w, β;Φ,S)
qφ(z, fθ ,w, β | x;Φ,S)

]
≤ log pθ (x;Φ,S).

Maximizing this evidence lower bound (ELBO) by Monte Carlo estimation of its
values and gradients (using Pyro’s built-in gradient estimators) will estimate the
model parameters θ by maximum likelihood and train the proposal parameters
φ to approximate the Bayesian inverse (Eq. 6) [12].

3 Example Application and Training

The framework of connecting a morphism to data via a likelihood with inter-
mediate latent random variables allows for a broad variety of applications. This
section will demonstrate the resulting capabilities of the DisCoPyro framework.
Section 3.1 will describe an example application of the framework to deep proba-
bilistic program learning for generative modeling. Section 3.2 that describe appli-
cation’s performance as a generative model.
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Table 1. Average log-evidence on the Omniglot evaluation set across models. Our free
operad model obtains the highest higher log-evidence per data dimension.

Model Image Size Learns Structure log-Ẑ/dim

Sequential Attention [19] 28 × 28 ✗ −0.1218

Variational Homoencoder [11] (PixelCNN) 28 × 28 ✗ −0.0780

Graph VAE [9] 28 × 28 ✓ −0.1334

Generative Neurosymbolic [5] 105 × 105 ✓ −0.0348

Free Operad DGM (ours) 28 × 28 ✓ −0.0148

3.1 Deep Probabilistic Program Learning with DisCoPyro

As a demonstrative experiment, we constructed an operad O whose generators
implemented Pyro building blocks for deep generative models fθ (taken from
work on structured variational autoencoders [12,19,24]) with parameters θ. We
then specified the one-box wiring diagram Φ : (I,R28×28) → (I,R28×28) to
parameterize the DisCoPyro generative model. We trained the resulting free
operad model on MNIST just to check if it worked, and on the downsampled
(28 × 28) Omniglot dataset for few-shot learning [14] as a challenge. Since the
data x ∈ R

28×28, our experimental setup induces the joint likelihood

pθ (x | z, fθ ) = N (μθ (z, fθ ), Iτ )
pθ (x, z | fθ ) = pθ (x | z, fθ )pθ (z | fθ ).

DisCoPyro provides amortized variational inference over its own random vari-
ables via neural proposals qφ for the “confidence” β ∼ qφ(β | x) and the “prefer-
ences” over generators w ∼ qφ(w | x). Running the core DisCoPyro generative
model over structures fθ then gives a proposal over morphisms in the free operad,
providing a generic proposal for DisCoPyro’s latent variables

qφ(fθ ,w, β | x;Φ,S) = p(fθ | w, β;Φ,S)qφ(β | x)qφ(w | x).

Since the morphisms in our example application are components of deep gener-
ative models, each generating morphism can be simply “flipped on its head” to
get a corresponding neural network design for a proposal. We specify that pro-
posal as qφ(z | x, fθ ); it constructs a faithful inverse [23] compositionally via a
dagger functor (for further description of Bayesian inversion as a dagger functor,
please see Fritz [8]). Our application then has a complete proposal density

qφ(z, fθ ,w, β | x;Φ,S) = qφ(z | fθ ,x)qφ(fθ ,w, β | x;Φ,S). (7)

3.2 Experimental Results and Performance Comparison

Table 1 compares our free operad model’s performance to other structured deep
generative models. We report the estimated log model evidence. Our free operad
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(a) Omniglot characters (above) and
their reconstructions (below)

(b) A string diagram sampled from the
free operad model’s Bayesian inverse.

Fig. 2. Reconstructions (left) generated by inference in the diagrammatic generative
model (right) on handwritten characters in the Omniglot evaluation set. The string
diagram shows a model that generates a glimpse, decodes it into an image canvas via
a variational ladder decoder, and then performs a simpler process to generate another
glimpse and insert it into the canvas.

prior over deep generative models achieves the best log-evidence per data dimen-
sion, although standard deviations for the baselines do not appear to be available
for comparison. Some of the older baselines, such as the sequential attention
model and the variational homoencoder, fix a composition structure ahead of
time instead of learning it from data as we do. Figure 2 shows samples from
the trained model’s posterior distribution, including reconstruction of evalua-
tion data (Fig. 2a) and an example structure for that data (Fig. 2b).

Historically, Lake [14] proposed the Omniglot dataset to challenge the
machine learning community to achieve human-like concept learning by learn-
ing a single generative model from very few examples; the Omniglot challenge
requires that a model be usable for classification, latent feature recognition, con-
cept generation from a type, and exemplar generation of a concept. The deep
generative models research community has focused on producing models capa-
ble of few-shot reconstruction of unseen characters. [11,19] fixed as constant the
model architecture, attempting to account for the compositional structure in
the data with static dimensionality. In contrast, [5,9] performed joint structure
learning, latent variable inference, and data reconstruction as we did.

4 Discussion

This paper described the DisCoPyro system for generative Bayesian structure
learning, along with its variational inference training procedures and an example
application. Section 2 described DisCoPyro’s mathematical foundations in cate-
gory theory, operad theory, and variational Bayesian inference. Section 3 showed
DisCoPyro to be competitive against other models on a challenge dataset.

As Lake [15] suggested, (deep) probabilistic programs can model human
intelligence across more domains than handwritten characters. Beyond pro-
grams, neural network architectures, or triangulable manifolds, investigators
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have applied operads and SMCs to chemical reaction networks, natural lan-
guage processing, and the systematicity of human intelligence [3,18]. This broad
variety of applications motivates our interest in representing the problems a gen-
erally intelligent agent must solve in terms of operadic structures, and learning
those structures jointly with their contents from data.
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Abstract. Intelligent agents are characterized primarily by their far-
sighted expedient behavior. We present a working prototype of an intelli-
gent agent (ADAM) based on a novel hierarchical neuro-symbolic archi-
tecture (Deep Control) for deep reinforcement learning with a potentially
unlimited planning horizon. The control parameters form a hierarchy
of formal languages, where higher-level alphabets contain the semantic
meanings of lower-level vocabularies.

Keywords: Artificial General Intelligence · Hierarchical reinforcement
learning · Neuro-symbolic architecture

1 Introduction

Artificial General Intelligence (AGI) aims to create intelligent agents capable
of planning expedient behavior. The larger the planning horizon, the stronger
the intelligence of agents. We present an early AGI prototype with a new hie-
rarchical neuro-symbolic architecture in which the planning horizon increases
exponentially with the number of levels. The article is structured as follows.

Section 2 introduces our neuro-symbolic approach and formulates reinforce-
ment learning (RL) as a search for the best sequences of discrete cognitive states
that maximize reward over some planning horizon. We extend the original alpha-
bet of cognitive states with such sequences, called mental states, thus forming
a vocabulary of words of some formal mental language, defined by its grammar
rules. The semantic meaning of these words is determined by the corresponding
Markov matrix learned from experience. Such a language allows an intelligent
agent to plan its behavior several steps ahead.

To achieve a potentially unlimited planning horizon without a combinatorial
explosion, we propose a hierarchical neuro-symbolic architecture Deep Control,
in which the cognitive states of the upper levels represent the semantic meaning
of the mental states of the lower ones.

Section 3 presents an early AGI prototype ADAM, based on the proposed
architecture. It takes a closer look at the proposed architecture, describing its
main components and how they interact with each other.
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Section 4 compares the current work with alternate approaches to AGI and
the final Sect. 5 concludes the paper.

2 Deep Control: The Architecture of Intelligence

This section shows that strong AGI with unlimited planning horizon implies hie-
rarchical RL and proposes a Deep Control architecture as a stack of elementary
controllers similar to the stack of elementary mappings in deep neural networks.

2.1 Reinforcement Learning as a Mental Language

In RL the goal of an agent is to maximize the total reward it can receive for
a given planning horizon T . Let the agent’s mind be characterized by a set
of discrete mental states {m} that depend on its sensors and actuators. (For
example: “turn right to see the park”, “turn left to see the grocery store”, etc.)
Maximal total reward starting from the given mental state mt with the expected
reward R(mt) learned from experience and following the optimal strategy π is
defined by the value function:

Q(mt) = R(mt) + max
π

T−1∑

τ=1

∑

mt+τ

R(mt+τ )pπ(mt+τ |mt). (1)

Here we constrain our agent’s mind to a Markov Decision Process (MDP), where:

pπ(mt+τ |mt) =
∑

mt+τ−1

pπ(mt+τ |mt+τ−1)pπ(mt+τ−1|mt). (2)

The optimal deterministic strategy π∗ of such an agent is:

m̃t = arg max
mt

Q(mt)pπ∗(mt|mt−1). (3)

Since the actual mental state mt does not in general coincide with the expected
one m̃t, but definitely depends on it, the transition probabilities pπ(mt|mt−1)
depend on the decision process and thus – on the value function. Value function
(1) in its turn depends on the transition probabilities. This feedback makes it
difficult to calculate the value function explicitly. Fortunately one can learn it
from experience making use of a Bellman equation following from (1, 2):

Q(mt) = R(mt) + γ max
mt+1

pπ∗(mt+1|mt)Q(mt+1), (4)

with a discount parameter γ = (T − 1)/T . For a true Q-function, the left and
right sides of (4) must be equal. Thus, the solution can be found using the
following iterative procedure:

Q(mt) ← Q(mt) + α(t)
[
R(mt) + γ max

mt+1
pπ(mt+1|mt)Q(mt+1) − Q(mt)

]
(5)
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with (gradually reducing) learning rate α(t) � 1. The reward and transition
models are also updated iteratively based on real data.

Such Q-learning is attractive because of its simplicity. However, it is
extremely inefficient for large planning horizons. The optimal Q-learning algo-
rithm is proved to converge in O(T 3) iterations [23]. This cubic dependence is
a significant limitation. It takes millions of iterations to learn how to achieve a
goal on a horizon of 100 time steps.

That is why we limit the planning horizon to a modest T � 10 to find Q(m)
in just a few hundred iterations, but allow the formation of new mental states as
the most frequent combinations of already known ones. These combinations are
implicitly encoded in the transition matrix pπ(m′|m). To find them explicitly,
we expand the original mental alphabet {m0} ≡ {s} along with the appropriate
expansion of the transition matrix.

Namely, transition probabilities are defined by the number of observations of
successive state pairs Cmm′ :

pπ(m′|m) = Cmm′/
∑

m′
Cmm′ . (6)

Mental states are found recursively during Q-learning by merging the most fre-
quently occurring pairs of existing ones: when Cm′m′′ exceeds a certain threshold,
a new mental state is defined as the concatenation of the corresponding pair:

m ← m′m′′, Cm′m′′ > C0. (7)

These rules define a formal language – the set of all valid strings of cognitive
states s (characters of that language): {m} = {s1 . . . sτ}. We’ll call this set
mental language.

The rules of mental language (7) allow the agent to represent the input
sequence of cognitive states as a shorter sequence of their typical combinations
by construction of a binary tree of merging (parsing). Such an agent is capable
of perceiving and predicting temporal structures. Indeed, the optimal strategy
(3) can now choose sequences of action-states. This allows the agent to plan its
behavior several steps ahead even in the current MDP setting. (For example:
“turn right to see the park, then go for a morning jog, then head back home”.)

The view of reinforcement learning described above relates the latter to tra-
ditional logic-based AI. In fact, mental language (7), together with the decision-
making process (3), endows the agent with formal mental logic – the ability to
deduce new mental states as logical consequences of previous ones. Reinforce-
ment learning improves the predictive and logical abilities of an agent.

Logical thinking is closely related to the semantics of the language: both are
determined by transition probabilities. Indeed the semantic meaning of words
in the language is determined by the context in which they appear – recall
Wittgenstein’s famous “meaning is use”. In MDP setting semantics depends on
the transition probabilities pπ(m′|m) and p′

π(m|m′), defined by normalized rows
and columns of the same empirical matrix Cmm′ . That is, each mental state has
a corresponding semantic vector xm = pπ(. . . |m)p′

π(. . . |m) – concatenation of
right and left context probabilities.
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‘Synonymic’ mental states with similar semantic vectors appear interchange-
ably in similar situations and can be considered as different implementations of
the same step of some higher level plan, formulated in a more abstract meta-
language, which can also be learned as described above. In fact, the agent can
learn the hierarchy of metalanguages, thus paving the way for AGI. We called
this architecture Deep Control [20].

2.2 Deep Control: Scale-Free Thinking

In the so-called Deep RL, the function Q(a|s), the value of the action a in state
s, is represented by a deep neural network. That is, in Deep RL, the hierarchy
of neural representations is used to determine only the agent’s next step. In
order to plan behavior a few steps ahead, one needs to generate a bunch of fairly
good trajectories and choose the best one, for example, using a Monte Carlo
Tree Search, as in AlphaZero, MuZero and the like. This leads to combinatorial
explosion, that limits the planning horizon of modern Deep RL, as shown in
Fig. 1 (left).

Fig. 1. Deep RL (left) uses neural networks for individual decision making, augmented
by Monte Carlo Tree Search. Deep Control (right) maintains a hierarchy of plans
inscribed in each other.

On the contrary, in Deep Control mental states form a hierarchy of nested
short-term plans (ml → m̃l), where each step of the higher-level plan corre-
sponds to a set of its possible realizations one level lower. Each hierarchical level
looks only one mental state ahead using its Markov probability matrix p(m′

l|ml),
thus avoiding combinatorial problems.

A hierarchy of mental states and their supposed successors form a hierarchy of
plans inscribed in each other as illustrated in Fig. 1 (right). As soon as enough
training data accumulates at the top level, the next level is generated, which
controls the behavior on an even larger time scale. With a top-level planning
horizon growing exponentially with the number of levels, Deep Control can create
extremely far-sighted plans without a combinatorial explosion.



ADAM: A Prototype of Hierarchical Neuro-Symbolic AGI 259

3 ADAM: Implementing Intelligence

This section discusses Deep Control in more detail and presents an early AGI
prototype ADAM (Adaptive Deep Autonomous Machine) solving the hierarchi-
cal RL problem with a potentially unlimited planning horizon.

3.1 ADAM’s Design

The Deep Control architecture implements a stack of simple controllers that
control behavior across different timescales. All layers are similar, taking as an
input analogue representation of current mental state from the previous layer and
providing a prediction of the next mental states, corresponding to the proposed
plan of behavior as illustrated in Fig. 2.

Fig. 2. Hierarchical neuro-symbolic architecture of ADAM.

The first layer interacts with the world. It operates with sensorimotor vectors,
its output being the proposed action and the predicted next sensory value. As
is customary in RL, the sensorimotor vector contains a special reinforcement
component r, signaling how well ADAM is doing its job. Each layer operates
with its own discrete set of mental states representing the most valuable chains
of discrete symbols from the layer’s alphabet: ml = s1l . . . sτ

l (τ ≤ T ). In the
rest of this section, we describe ADAM’s modules and the interaction between
its hierarchical levels.
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Central to Deep Control is the Semantic memory Cmm′ counting obser-
vations of consecutive pairs of mental states. Semantic memory allows to: (i)
predict the next mental state to plan behavior: m → m̃, and (ii) encode the
current mental state as input to the next layer: m → xm.

The semantic encoding of mental states is similar to the semantic represen-
tation of words in NLP [12]. Namely, the semantic vector of a mental state m
determines in what contexts the latter appears. Semantic vector xm is composed
of corresponding normalized row and column of the Semantic memory matrix.

The Encoder maps the analog input vector x to discrete multidimensional
symbol s representing cognitive state: x → s = (s1, . . . , sH), using H different
clusterings of the input space, each of which divides the input space into K
different clusters. The number of unique discrete codes labeling different regions
of the input space is KH . We say that such an Encoder have H heads, the latter
playing the same role, as in modern Transformer neural networks – each head
pays attention to a different aspect of the data.

The stream of symbols from the Encoder is fed onto the fixed-length stack
of the Parser, where they are combined into chunks (mental states) using Byte
Pair Encoding algorithm [6], recursively merging the most frequently occurring
pairs of mental states in the Parser stack. Merging two mental states frees up
space in the stack for the next symbol. The resulting mental states m = s1 . . . sτ

represent typical ADAM behavior patterns.
Each head of the Encoder maps input vector into a character from its own

alphabet. The Parser combines them into ever-growing dictionary of the most fre-
quently occurring character strings. The Semantic memory Ch

mhm′
h

increases its
value each time the strings mh and m′

h in the head h belong to the winning pair in

the Parser stack with the strongest connection c(m,m′) =
∑

h ln
(
1 + Ch

mhm′
h

)
:

Ch
mhm′

h
← Ch

mhm′
h

+ 1, (h = 1, . . . , H). (8)

When some Ch
mm′ exceeds the specified threshold, a new combined string appears

in the head’s dictionary: mnew ← mm′. Gradually, the Parser learns to identify
ever larger strings by recursively combining the most frequent pairs of shorter
strings, starting with single characters.

The Parser recursively attempt to merge the winner pair in the Parser stack,
updating statistics of the winning pair according to (8). In the case of a merge,
the rewards of merged mental state are summed up and Parser is ready to process
the next symbol. If the merge is not possible because some of the combined
strings do not yet exist in the heads dictionaries, the leftmost mental state
moves from the Parser stack to the Encoder of the next layer, thereby freeing
up space for processing the next symbol.

Each act of merging is accompanied by reinforcement learning: updating
observation counter nh(mh), average reward Rh(mh) and value function Qh(mh)
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of the newly formed mental state m and all others to the left of it. Using SARSA
algorithm for a pair of consecutive mental states (m,m′), we get:

n(m) ← n(m) + 1,
R(m) ← R(m) + [r(m) − R(m)]/n(m),
Q(m) ← Q(m) + α [r(m) + γQ(m′) − Q(m)],

with vector notation for parallel updates in all heads.
The Planner aims to propose the optimal course of action in the given

circumstances, i.e. predict the optimal next mental state m → m̃. Since cir-
cumstances are constantly changing, previous plans are also subject to constant
adjustment.

The development and correction of plans proceeds from top to bottom – from
the most general intentions to more and more detailed plans. The main problem
is to harmonize the plans of different levels. To this end Planners of all levels
use the same algorithm. Namely, each time the Parser updates its stack, the
Planner:

– replenishes its stack of plans (if needed);
– validates these plans against the new state of the Parser stack;
– selects valid plan with the highest expected value for execution.

The top-level Planner replenishes its stack with new plans when a new men-
tal state m appears in its Parser stack. Lower level Planners receive plans for
execution through higher level Decoders.

Since a new symbol appears in the Parser stack at each step of its work, all
previous plans that do not correspond to this symbol lose their relevance, as
they do not correspond to the current state of affairs. Accordingly, these plans
are eliminated during the validation process, and only plans that are relevant in
the current situation survive.

Finally, the actual plan with the highest value is selected, which is passed
for execution to the lower level. This way of hierarchical planning combines the
ability to plan for a (very) long period of time and adapt such far-reaching plans
to constantly changing conditions.

The Decoder translates the plan selected by the Planner to a lower layer for
execution. Fast decoding uses a look-up memory of all low-level implementations
for all known mental states of the current level, being different realizations of the
same plan. If fast decoding fails (in an unknown situation), the decoder chooses
the plan for which the maximum number of heads voted.

The Episodic memory is used by the Decoder. At the top level it is also
used to build the next layer when it has collected enough data for the clustering
algorithm.

3.2 ADAM’s Prospects

The ADAM project started in early 2020. To date, the preliminary version of
ADAM has been developed. The source code is in fast and easy-to-develop
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Julia language. The single layer version has been tested on classic RL prob-
lems (MountainCar, CartPole, etc.). We are now testing multi-layered version
by training language models, since we can interpret the corresponding language
structures: the first layer learns words as chains of characters, the second layer
learns phrases, the third layer – sentences, and so on. The results will be pre-
sented in a separate article.

However it is clear that our language models are much cheaper, than that
based on deep neural networks. Namely, ADAM on a single CPU learns language
at a rate of about 1 GB/hour regardless of the number of layers. Indeed, learning
each next layer is several times faster, than the previous one, since the size of
training set shrinks with each hierarchical level. (The number of words in a data
set is several times less than the number of characters, etc.). Thus, ADAM can
master Wikipedia in just one day and the GPT-3 training set of 1,2 TB – in 50
days without any supercomputing power, due to its neuro-symbolic architecture
(manipulating symbols, rather than multidimensional vectors).

Moreover, having a value function at the heart of its architecture, ADAM
can easily learn conversational behavior, unlike ChatGPT and its ilk, which use
reinforcement learning based on human feedback to fine-tune pretrained large
language models.

4 Related Work

Hierarchical architecture has been widely discussed as a proposed brain model by
Karl Friston with co-authors [5,15,16]. Their model assumes that each cognitive
state of a higher hierarchical level originates a trajectory of cognitive states of a
lower level, generated by the corresponding Markov matrix. Our approach differs
in that we use a transition matrix between mental states rather than cognitive
states. That is, we learn transitions between trajectories, and not between indi-
vidual states. We are also more focused on finding practical learning algorithms
for AGI.

Such a practical approach is typical for Deep RL, in particular, for Hierar-
chical RL. The problem here is that deep neural networks only solve part of
the problem, namely Q-function approximation. On the contrary, Deep Control
solves the problem of predictive control in its entirety with the same basic app-
roach: layers of weak learners. The difference is that deep neural networks learn a
hierarchy of increasingly abstract representations for data approximation, while
Deep Control learns a hierarchy of increasingly abstract control parameters for
predictive control. The resulting multi-layer controller can handle increasingly
complex behavior as the number of layers increases.

Although Hierarchical RL has not yet been solved, many such attempts have
been made, including [1–4,22] to name just a few. See [14] for comprehensive
review. However, in practical terms, the vast majority of work is limited to
only two levels of hierarchy, since even in two-level systems there are a lot of
difficulties. Simultaneous training of layers turns out to be unstable, and it takes
a lot of effort to eliminate these instabilities [11,13,24].
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The closest neural network analogue of Deep Control seems to be the Feyn-
man machine [10]. The latter also solves the predictive control problem using
hierarchical design with bidirectional information flow and local learning rules.
Deep Control differs in that it uses a neuro-symbolic approach rather than a
purely analog one. It allows Deep Control to model symbolic thinking and lan-
guage acquisition in addition to behavior control [19,21].

The proposed symbolic thinking is easy to interpret: at any given moment,
each layer keeps track of the current context ml and executes a certain plan m̃l,
represented by the corresponding mental state from its dictionary. The mental
states ml mapped to the same cognitive state of the higher level sl+1 are different
realizations of a certain step of the next layer’s plan. In this respect, Deep Con-
trol resembles traditional rule-based cognitive architectures that mimic symbolic
thinking [7–9,17]. But the latter are incapable of learning hierarchical planning.
According to Stuart Russell: “At present all existing methods for hierarchical
planning rely on a human-generated hierarchy of abstract and concrete actions.
We do not yet understand how such hierarchies can be learned from experience”
[18]. Deep Control offers just that – to learn such hierarchies from experience.

5 Conclusion

This paper presents a prototype of a novel hierarchical neuro-symbolic AGI
architecture.

We consider reinforcement learning as the construction of a formal language
whose rules define useful behavior as a combination of the basic symbols of the
language. The semantics of this language makes it possible to define a metalan-
guage and, thus, a whole hierarchy of metalanguages that provide the hierar-
chical control of complex adaptive behavior. Such a hierarchical neuro-symbolic
architecture (Deep Control) models the symbolic thinking of rational intelligent
agents, the hallmark of AGI.

We present an early prototype of neuro-symbolic AGI (ADAM) that learns
to plan and control expedient behavior with an ever-increasing number of hie-
rarchical levels and an exponentially growing planning horizon.
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Abstract. This project is part of the digitization of engineering edu-
cation at the Royal Institute of Technology (KTH). The digitization
process of the observed undergraduate course in electrical engineering so
far allows students to use the Learning Management System (LMS) to
find course literature and notes, recorded lectures, theoretical exercises
in the form of quizzes, and online interactive calculation exercises with
built-in feedback for each question. What remains to be solved is the
human-type contact that can answer a student’s question, for example:
“How am I doing in the course?”. Usually, an experienced teacher would
be able to answer that question with his own predictions.

The purpose of this project is to use AGI technology to construct a
software solution that, by adapting to the environment, i.e. the existing
LMS, with insufficient knowledge and resources about the future, can
provide a qualified prediction about the student’s future performance.
That solution, here with the working name “AGI-EEdu”, would get to
know each student in the course and (with the help of data from stu-
dents’ activities in the LMS, as well as the other data based on aggregated
statistical data from previous exam) could provide unique answers and
advice to each student in real time throughout the course.

Keywords: Artificial General Intelligence (AGI) · Non-Axiomatic
Reasoning System (NARS) · Narsese language · Möbius Courseware
(MCW)

1 Introduction

Research on Artificial General Intelligence (AGI) is one of the latest scientific
fields. The most developed model of intelligence is the human brain, and it is nat-
ural that many psychologists were interested in research on intelligence from the
very beginning. Several authors (among others [2]) refer to a 1956 summer confer-
ence at Dartmouth College in Hanover, New Hampshire, USA, as the start of the
new science [8], where one of organizers, John McCarthy, defined Artificial Intel-
ligence (AI) as “the science and engineering of making intelligent machines” [7].

This project is about constructing an intelligent machine based on AGI tech-
nology to be applied in undergraduate electro courses. The machine (called here
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“Electronic Education Machine AGI-EEdu”) would be similar to a normal chat-
bot but would go a step further and integrate with the existing Learning Man-
agement System (LMS) Canvas and Möbius Courseware (MCW). AGI-EEdu
would get to know each student, follow their progress and be ready to answer
all their questions, even those about future individual results.

2 Theoretical Background

Scientists have always been fascinated by intelligence, the human brain, and the
way it works. This question is complex and it is natural that the research area and
the prevailing culture influences the researchers’ way of thinking. The summer
conference at Dartmouth College collected leading scientists from different fields,
and they attempted to define the term Artificial Intelligence. [8]

2.1 A New Science Has Been Born

Alan Turing is considered to be the first pioneer in modern times who defined
the theoretical framework for using computers (actually, calculating machines) to
construct a machine that could function in the same way as human intelligence.
[1] Inspired by his work, Allen Newel Global and Simon Herbert [9] tried to
program a General Problem Solver (GPS) and the new field of science named by
John McCarthy as Artificial Intelligence was established. From the very begin-
ning, attempts were made to simulate the human brain (itself not well explored
at that time) with a calculator. This attempt required competence from differ-
ent scientific fields: psychologists were expected to describe how humans think,
neuro-scientists how a human brain works, and hardware and software engineers
to describe a digital machine that could imitate a human brain.

2.2 About Theory of Intelligence

Many researchers from different fields work on AGI and one continuing problem
is a difficulty to agree on a definition of the theory of AGI [14]. On the other
hand a “thinking machine” could be constructed only by hardware and software
engineers in collaboration. AI was from the beginning an interdisciplinary chal-
lenge and to define a theory of intelligence was not at all an easy task. Two main
group of researchers have been more or less established. The first see AI as a
copy of the human brain, the second see AI as a programmable digital machine
capable to store and manage data in proper software.

Wang compares this situation with Rudolf Carnap who had a similar prob-
lem when trying to clarify the concept of probability in the middle of the last
century. [12] A long time after that, we still have certain challenges regarding the
definition of probability theory, with several different definitions or views on def-
initions accepted nowadays (Bayesian, Frequentist interpretation etc.), whereby
there exists the commonly accepted formalization of probability spaces in math-
ematics, with its well-known axioms.
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Several synonyms like “strong AI”, “hard AI”, “real AI” have established
themselves in published scientific articles due to the researchers’ different back-
grounds and different views on the issue. McCarthy wrote in [7] about human-
level AI. Despite different designations of AGI, different researchers do agree
on the common description of the basic principles of the theory of AI in the
literature, with Wang describing it as “The common thesis behind these terms is
the believe that intelligence is a unified mechanism that should be described and
developed as a whole, independent of any application domain.” [12]

3 Research Questions

Like other technical solutions, different AI-based solutions from Google, chat-
bots and even specialized multi-agent systems are spreading within higher educa-
tion with different tasks and aims. [4] I am aware of risks and suspicion towards
everything new [3] and in this investigation, I will focus on the following ques-
tions:

RQ 1. How could AGI be used in the development process of undergraduate
electrical courses?
RQ 2. How could a continuous prediction of student performance during the
course be defined by using Narsese language?

4 Project - “AGI-EEdu” Machine

Wang’s definition of intelligence, which has been defined already in his PhD the-
sis in the 90s, is that “Intelligence is the principle of adapting to the environment
while working with insufficient knowledge and resources.” [13] In this project, the
reliable facts from an ongoing course have been used to predict knowledge that
is not known but that could contribute to more students passing the ongoing
course.

4.1 AGI-EEdu’s Main Task

AGI-EEdu machine will first learn some well-known facts about the ongoing
course and students activities in the course’s Canvas room. Secondly the AGI-
EEdu will get information from “the insufficient knowledge field” and build a
pattern of student activities inside the course’s Canvas room.

The idea for the project is based on a prediction machine which could
help students to predict their course grade in undergraduate electro-technique
courses. Students sometimes feel that exam questions are “harder” than exercise
questions during the course. Teachers sometimes feel that the previous genera-
tion of students was much better. All students are keen to know how things are
going for them during the course and how “hard” the final exam will be.

Neither the students nor the teachers have a tool to measure their feelings or
a way to know anything about the future. There is only statistics data based on
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the results of the previous generations of students, which is not always reliable
for the prediction of future students’ results in the final exam, but it can provide
good indicators.

4.2 Statistical Data from Möbius MCW

The course material in the observed electro-courses is completely digitized and
is available through LMS Canvas and the embedded software Möbius Course-
ware (MCW) in which the online interactive exercises and examination are con-
structed. [11]

A “Question” is the smallest part which can be constructed in Möbius MCW.
The constructed questions can be combined in two modes - an exercise mode
allowing students to receive hints and teacher feedback, and an examination
mode with no help available. How Möbius MCW has been used in the actual
courses has been explained in this interview [10].

Each question constructed in Möbius MCW is equipped by detailed statistical
data, how many previous students answered the question correctly (partly or
fully), The statistical data is automatically updated for each new use of the
question, Fig. 1. This data can be interpreted as how “hard” each question is.

Fig. 1. Statistics for one question in Möbius MCW

Each exercise and exam consists of several questions, with respective statis-
tical data generated for each exercise and exam. This data can be learned by the
machine as facts and the respective variables can be connected to the machine
and update the machine with new facts in real time. Both practice exercises and
the final exam are constructed from several Möbius MCW questions, and the
statistical data at practice level or exam level will be grounds for AGI-EEdu
machine’s predictions about each individual student’s result.

Since the observed electro courses are digitized and all exercises are con-
structed in the same environment as the final exam, students’ performance as
shown in Fig. 2 can be used as input in real time.

Fig. 2. Result of one student in a Möbius MCW exercise “VIL22 3Växelström”
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The interactive exercises of digitized course material consist of three optional
and two compulsory interactive tasks, all constructed in Möbius MCW. In LMS
Canvas, students can find pdf files with a book of theory and a book of calculating
study cases, several videos and quizzes, all shown in Fig. 3. The digital course
material is multifaceted and each form has at least one educational goal to fulfil.
All course materials can be accessed from any electronic gadget Fig. 4 but we do
not know which of these formats will help students the most Fig. 5.

Statistical data generated by Möbius MCW is reliable high-quality data
because it provides a picture of student activities that directly affects students’
knowledge or the course grades. Less reliable data is statistical data based on
the activity of other students in LMS Canvas.

4.3 Statistical Data from LMS Canvas

All these known facts will be learned by AGI-EEdu machine and the machine
will be able to predict a student’s final result. Möbius MCW based exercises are
available for students during the course and the collected statistics in Möbius
Courseware (MCW) change in real-time based on the results from all students.
All student activity during the course, be it in the LMS based digital course
material or the Möbius MCW based interactive exercises, has an impact on
the statistics of each question, and even on the predictions made by AGI-EEdu
machine. More correct answers will impact the prediction of higher scores on

Fig. 3. AGI-EEdu machine will get input from all students activities

the final exam. The same technology could be used to find out about students’
final grades. And since the input data comes directly from the current course,
each student can influence their future results by increasing their activity in the
course - thus the AGI-EEdu machine learns that the student in question has
increased their activities.

AGI-EEdu machine and its prediction is expected to offer students a clearer
picture of how hard the course is, and how their activities during the course can
impact their result on the final exam. AGI-EEdu machine will be updated by
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statistical data describing both the whole class’s activities and each student’s
activities in real time. The machine’s prediction should be based on the actual
results of all students who attend the same course and on each student’s own
performance. By using actual data we can impact students’ activities in the
course and students can see (even on smartphones or I-Pads Fig. 4) that they
can impact the machine’s predictions.

4.4 Methodology of the Project

As mentioned before, in Möbius MCW each question has quite detailed statistical
data that shows how many students pass and how many of the partial questions
asked were answered correctly. Each Möbius MCW exam question has four sub-
questions and this statistical data is based on our use and collection of Möbius
MCW data since the 2019–2020 academic year.

The input data will be taken from the databases of Möbius MCW as shown
in Fig. 3 and the students will be able to impact predictions of the AGI-EEdu
machine by their own activity in Möbius MCW exercises. AGI-EEdu machine
will be embedded in LMS Canvas as well as Möbius MCW, and this technical
solution will allow the machine to be constructed as an agent which behaves as
if certain relevant events happened, as described in [5]. This tool will be built
by using Non-Axiomatic Reasoning System (NARS).

Fig. 4. AGI-EEdu machine will be updated in real time
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4.5 Non-Axiomatic Reasoning System (NARS)

A Non-Axiomatic Reasoning System (NARS) consists of three parts:

– Language (Narsese)
– Non-Axiomatic Logic (NAL)
– Control mechanism

4.6 Narsese Language

Narsese is the representation language of NARS and it is a very useful tool
to describe a task and related knowledge. Xiang at.al. presented an interesting
project about an emotions model in NARS at the conference [6]. A similar task
has been done in this AGI-EEdu project, where the prediction of students’ final
results is based on the results of the previous generation who took the same
course, and the current students own results during the course.

In this project the constructed application will be able to continuously pre-
dict the students’ results in real time during the course. The statistics data of
the questions in Learning Management System (LMS) Canvas and Courseware
Mobius (MCW) is based on the whole result of students’ answers on all questions
which students have done (or answered) as optional or mandatory assignments.
The knowledge of the system is based on beliefs which are based on statistical
facts on students’ tasks, and desires which will be a student’s wish to know the
future courses-grade.

A descriptive theory starts with certain observations in the field [14] and we
will use the three types of sentences in Narsese to describe the system in our
LMS Canvas. The three types of sentences are following:

– Judgment - consisting of definitions of problems
– Goal - describing the wishes (wanted outcomes)
– Question - defining the tasks which are to be answered or solved

NAL-0: Binary Inheritance. During the 90s NAL-0 was called “Inheritance
Logic” [13] and its idealised version of logic is based on simple deductive logic.
First, we have to define the semantics of NAL and the smallest unit of Narsese
is a “term”.

NAL-1: Basic Syntax and Semantics. NAL-1 is the simplest non-axiomatic
logic where we define and measure evidence for a statement. In this project we
define that test belongs to the course and student belongs to the course, and by
using the NAL semantic it would be written like this:

<tentamen →course>
<student →course>
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Fig. 5. In an AGI-EEdu machine all students have relation to all tasks

In the NAL-1 the Atomic terms will be defined and in this project will be useful
to connect NAL-1 to the list of students who registered themselves to a spe-
cific course. In this level we use first-order reasoning described in [14]. A course
includes three optional interactive Möbius MCW exercises (VIL, VIRS and VAI)
and two compulsory tests (INL and TEN) constructed in the same tool. (Note,
these abbreviations are based on the Swedish names, the details of which are
not relevant here.) Möbius Courseware (MCW) has the statistics of the tasks
included in the mentioned exercises and tests. This statistical data gives us a
picture of how difficult it was to solve such tasks for previous students, and that
data belongs to the course in the same way that the student belongs to the
course.

<ovnV IL →course>
<ovnV IRS →course>
<ovnV AI →course>
<ovnINL →course>
<oldTEN →course>

Students can also learn by watching videos or reading theory or solution pro-
posals in pdf files, or by answering quizzes, but LMS Canvas does not offer a
measurable value that could be assigned to the system. Here we trust that the
system learns how long students spend on a screen showing mp4 or pdf files.
Here we only allocate space in memory for any information about that time.

<timePDF →course>
<timeMP4 →course>
<timeQuiz →course>
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NAL-2: Derivative Copulas. We use the first layer of NARS, called NAL-1
to set formal inference rules between statements in NARS, and by using a formal
language we represent our knowledge of the system. Here, in the second layer,
NAL-2, we add grammar and inference rules. Description in each layer starts
with an idealized form and we extend the model in each next step.

In NAL-2 to NAL-4 we declare compound terms:

< [(student)∗ (timePDF )] → read > .fp = 0.2 ...(coming from LMS)
< [(student)∗(timeMP4)] → watched > .fv = 0.4 ...(coming from LMS)
< [(student) ∗ (timeQuiz)] → succed > .fq = 0.6 ...(coming from LMS)

The values of functions fp, fv, fq will be extracted from the LMS Canvas in a
similar way as for the value of statistical data for exercises constructed in Möbius
Courseware (MCW). These functions describe students’ activities based on pdf
files, videos and quizzes which do not necessarily lead to development of students’
knowledge. For example, a pdf file can be shown on the screen or downloaded
without the student actually reading it, and such activities do not contribute
to the student’s development. On the other hand, the description of optional
(VIL, VIRS and VAI) and mandatory exercises (INL and TEN) constructed in
Möbius MCW are of higher value because it is based on students’ calculations
of real study cases. This statistical data will be extracted from Möbius MCW
into NARS, and the following relationship established:

< [(student) * (ovnV IL)] → read > .fvil = (coming from MCW)
< [(student) * (ovnV IRS)] → watched > .fvirs =(coming from MCW)
< [(student) * (ovnV AI)] → succed > .fvai = (coming from MCW)

4.7 NAL5 and NAL6 - Higher Order Terms

Every activity that a student does in the course must be noticed by AGI-EEdu
machine in such a way that the system learns about it in real time.

Student activities like: “Student read a pdf.” or “Student watched a video
lesson.” or “Student solved a quiz.” can be defined in the following way:

<(*,{student}, pdf) →read>.
<(*,{student},mp4) →watch>.
<(*,{student}, quiz) →solveQ>.

4.8 Minimal Narsese Course Success Reasoning Example

The system watches all course interactions as events. The following is an example
of how interactions in Möbius MCW can be represented as events in Narsese,
which allows it to reason about how students can succeed in certain exams or
quizzes:
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//Student1 is a student
<{student1} --> student>.
//Lecture1 is a lecture
<{lecture1} --> lecture>.
//Quiz1 is a quiz
<{quiz1} --> quiz>.
//Student1 watched lecture 1
<({student1} * {lecture1}) --> watch>. :|:
//Student 1 succeeded in quiz1 with a success rate of 60%
<({student1} * {quiz1}) --> succeed>. :|: %0.6%

20

//How can someone succeed in quiz1?
<?1 =/> <({$1} * {quiz1}) --> succeed>>?
//By watching lecture1:
//Answer: <<({$1} * {lecture1}) --> watch> =/>
// <({$1} * {quiz1}) --> succeed>>.
// Truth: frequency=0.600000, confidence=0.282230

//Does watching lectures contribute to succeeding in quizzes?
<<({$1} * lecture) --> watch> =/> <({$1} * quiz) --> succeed>>?
//Yes, there is some evidence for that:
//Answer: <<({$1} * lecture) --> watch> =/>
// <({$1} * quiz) --> succeed>>.
// Truth: frequency=0.600000, confidence=0.12133
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Abstract. Transformer-based language models have recently been the
focus of much attention, due to their impressive performance on myriad
natural language processing (NLP) tasks. One criticism when evaluat-
ing such models on problems such as commonsense reasoning is that
the benchmarking datasets may not be challenging or global enough.
In response, task environments involving some kind of multistep plan-
ning, have emerged as a more stringent, and useful, evaluation paradigm.
ScienceWorld is one such environment that has weaker dependence on
language itself (compared to core commonsense reasoning). In the origi-
nal publication, ScienceWorld problems proved difficult to solve even for
a reasonably advanced language model. This paper demonstrates that,
while true for the hardest version of the problem, even first-generation
models like BERT can achieve good performance on many interesting
intermediate problems within ScienceWorld. Our results, in addition to
proposing a more practical methodology and metrics for evaluating lan-
guage models on multistep planning domains involving commonsense
reasoning, also suggest that language models are still likely to be an
essential component of (rather than completely orthogonal to) a more
comprehensive approach.

Keywords: Language Models · Multistep Planning · Commonsense
Reasoning

1 Introduction

Large language models, such as ChatGPT, are transformer-based deep neural
networks that have captured public attention lately for their capability to per-
form a wide range of tasks, from text generation to natural language under-
standing and reasoning. Such models have achieved human-level performance
on many benchmarks [2]. However, transformer-based models are shown to be
challenged when facing complex problems, such as decision making under uncer-
tainty [8] and multistep commonsense planning in some text environments, an
example being the ScienceWorld benchmark [10]. Such problems require a sys-
tem to reason about commonsense concepts and plan for future events and goals,
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which is essential for achieving Artificial General Intelligence (AGI). Without
such abilities, an intelligent system cannot be robust to potential obstacles that
are common in everyday life (when pursuing myriad goals within constrained
environments) and plan accordingly to achieve success. Multistep commonsense
planning can help AGI systems adapt to changing environments and handle
uncertainty in a consistent manner.

The ScienceWorld benchmark contains elementary science curriculum tasks
that depend upon multistep planning and commonsense reasoning abilities. The
benchmark claims to require the same level of commonsense as an elementary
school student. The environment itself is an abstract, interactive text environ-
ment with 25 different high-level verbs (e.g. go to, pick up), 200 types of ele-
ments (e.g. plants, electrical components), and 10 interconnected locations (e.g.
kitchen, hallway). Agents are expected to solve tasks using natural language
inputs, such as ‘pick up pot 7’ and ‘go to hallway’.

In the original work, the ScienceWorld benchmark is evaluated using five
different agents, two of which are transformer-based (CALM [11] and Decision
Transformer [3]). The highest score achieved by these agents is only 0.17. One
of the reasons is the evaluation metric because the original benchmark evalu-
ates each solution in an ‘all or nothing’ fashion: either an agent successfully
accomplishes the task or fails it. However, such a metric fails to take incremen-
tal progress into account. We posit that, while this metric is ultimately very
important, designing auxiliary metrics to evaluate the incremental performance
of agents can serve a useful role in assessing their progress. Additionally, the Sci-
enceWorld benchmark was designed primarily for reinforcement learning agents
rather than language models.

We propose a novel benchmark called QAScienceWorld that is derived from
the original ScienceWorld benchmark and is composed of a set of independent
and identically distributed (i.i.d) Multiple Choice Question Answering (MCQA)
instances. The benchmark is meant to address both of the issues noted above. It
can be used to evaluate discriminative language models. To measure incremental
progress, QAScienceWorld uses four metrics for evaluating responses at different
levels of granularity. We demonstrate the utility of the benchmark by applying
the Bidirectional Encoder Representations from Transformers (BERT) model
[4], and showing that it is able to achieve high accuracy on some metrics, and
lower accuracy on the metric best aligned with the ‘all or nothing’ paradigm
mentioned earlier. Hence, the benchmark shows that language models can serve
as an important component in solving such multistep commonsense planning
problems, without negating previous suggestions that they are unlikely to yield
a complete solution to these problems.

2 Benchmark Construction

The original ScienceWorld benchmark is seeded with 30 different task types,
ranging from measuring temperature to object classification. Each type of task
has 10 to 1400 task variations, where each task variation changes some important
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task objects. For example, for the task of finding a plant, the final objective of
one variation is to put the plant into an orange box. But, in other variations of
the same task, the orange box is changed to a yellow box or some other container.

Each task variation is provided with a ground-truth or ‘gold-standard’ trajec-
tory, which begins from the starting state S1 to the ending state Sn+1 (where the
task is successfully completed). Such a gold-standard trajectory can be expressed
as a sequence of n actions (a1, a2, ..., an), where an agent selects the first action
a1 in the starting state S1 to go to state S2, then selects the second action a2
in the second state S2 to go to state S3 and so on, to finally select the nth
gold-standardaction an in the nth state Sn to go to the ending (goal-achieving)
state Sn+1. The framework is very similar to traditional planning. Each action
ai can be further decomposed into a verb vi and one or two elements ei, where
the verb is ‘applied’ to the element(s). Note that the gold-standard trajectories
only represent canonical or standard solutions (e.g. use a thermometer to mea-
sure temperature). We recognize that other solutions exist, but we only focus
on the gold-standard trajectories at present, as these are the only solutions that
are provided within the ScienceWorld benchmark for evaluation purposes.

In the original ScienceWorld benchmark, an agent is expected to select a
sequence of actions to accomplish a task. With 25 verbs and many more element
choices, the agent needs to search a huge solution space to find even one correct
action. The difficulty grows exponentially as the number of actions required to
solve a task increases because each action is dependent on the previous actions.
Additionally, transformer-based language models are not designed for problems
that involve planning a sequence of actions. To decrease the difficulty of the
task and make the problem more amenable to language models, we propose the
QAScienceWorld benchmark, which frames each action as an i.i.d MCQA prob-
lem. Namely, instead of being dependent on previous actions, in our benchmark,
each action is independent of other actions and only depends on the current envi-
ronment. Also, agents select from a small and fixed number of choices as their
prediction for the current environment. This formulation greatly reduces the
complexity of the original problem. As explained earlier, we only use the actions
from the gold-standard trajectory of each task variation of all task types. We
describe the benchmark construction below, with a visual example provided in
Fig. 1:

1. We assume that, in order to select the correct action, the agent needs to know
three important pieces of information: the task description, the observation
of the current environment, and the current inventory status. Specifically,
the task description offers information about the ultimate objective, while
the observation of the current environment gives descriptions of the current
location, items available to use (and so on), and the current inventory tells the
agent about what items can be used besides those in the current environment.
For each gold-standard action ai, we concatenate the above three pieces of
information from the state Si to form the basic prompt of the MCQA. Because
each action can be decomposed into a verb part and an element part, we create
two MCQA instances (one for each part) for each action. We concatenate the
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Fig. 1. A partial gold-standard trajectory (last 4 actions) for a variation of the task
type: find a(n) plant. The last action is converted to a verb MCQA instance and an ele-
ment MCQA instance. The prompts are the concatenation of the task description, the
environment observation, the inventory, and the verb prompt or the element prompt.
The four possible choices consist of one ground-truth item and three (randomly sam-
pled) wrong choices. In the case of an element MCQA where two elements have to
be simultaneously selected for a verb, the three wrong choices consist of two wrong
choices where only one element is randomly sampled and a third wrong choice where
both elements are randomly sampled.

basic prompt with a verb prompt (i.e., ‘Your next action should be:’) to form
the final prompt for the verb MCQA instance. Similarly, we concatenate the
basic prompt with an element prompt (i.e., ‘Your next object should be:’) to
form the final prompt for the element MCQA instance.

2. Each MCQA instance has four choices, one of which is the ground-truth
choice. To construct the remaining three wrong choices, we randomly sample
from the state Si, given the gold-standard action ai. The original Science-
World benchmark provides a convenient API for sampling available verbs
and elements. For a verb MCQA instance, we randomly sample three wrong
verbs as the three wrong choices. For an element MCQA instance, if the
gold-standard action ai only has one element, we again randomly sample
three wrong elements as the three wrong choices. For cases where the gold-
standard action ai contains two elements (e.g., {correct element 1, correct
element 2}), we randomly sample two wrong elements to replace either one
of the ground-truth element as two of the wrong choices (e.g. {correct ele-
ment 1, wrong element 1} and {wrong element 2, correct element 2}) and
randomly sample two wrong elements to replace both ground-truth elements
as the third wrong choice (e.g., {wrong element 3, wrong element 4}). More
advanced sampling techniques, such as adversarially sampling choices that
can be more challenging for an agent, are left for future work.

3. In the original ScienceWorld benchmark, for each task type, all task varia-
tions are split into 50% training, 25% development, and 25% test sets. In our
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benchmark, we follow the same partition. The training set verb and element
MCQA instances are created using the actions of the gold-standard trajec-
tory from the training set task variations in the original benchmark.1 The
same goes for the development set and the test set. Details concerning the
benchmark are tabulated in Table 1.

4. In the original ScienceWorld benchmark, there are 25 different verbs. How-
ever, we exclude any verb that has ‘look’ in it, because this verbs does not
change the environment in any way, only providing information that is already
provided by the observation of the current environment and will cause confu-
sion to the agents. Hence, we have 22 different verbs. We refer the reader to
the original ScienceWorld paper for details about the action space. Addition-
ally, following the original work, we set the environment to the ‘easy’ mode
when we extract the environment information. On average, the optimal ran-
dom performance, whether it entails selecting one of four choices at random
or selecting the mode of the correct choices in the training partition, is 40%
and 25% for verb and element MCQA instances, respectively.

3 Metrics

In most text-based interactive environments, such as the Jericho [5], a kitchen
cleanup game [7], and the TextWorld Commonsense [6], the performance of an
agent is evaluated using a score-based metric, where the raw score is obtained
when the agent tries to solve a task through a sequence of actions and the final
normalized score is calculated by dividing the raw score with the maximum
score possible if the task is solved. This metric evaluates agents’ performances
only at the level of the task as the final score is normalized using the maximum
score obtained when the task is finished. Additionally, this metric evaluates the
agent’s performance under the assumption that, at each action, the problem is
dependent on all previous actions. Hence, such a score-based metric is limited
if we try to investigate the more detailed behaviors of the agent. We argue that
metrics with finer granularity are needed to fully evaluate the performance and
the behavior of an agent. Hence, we present four different metrics that are at
different levels of granularity: Verb accuracy, Element accuracy, Action accuracy,
and Task accuracy.

Recall that, for a gold-standard trajectory and i ∈ [1, n], the ith gold-
standard action ai can be decomposed into a verb part vi and an element part
ei. An agent predicts the ith verb v′

i and the ith element e′
i, and a′

i is the agent’s
prediction for the ith action, where a′

i is the combination of v′
i and e′

i.
Verb accuracy, element accuracy, and action accuracy evaluate the agent’s

performance under the assumption that, for each action, the problem is inde-
pendent of all previous actions, but only depends on the current environment.

1 Because the gold-standard trajectory for the task type ‘measuring the boiling point
of an unknown substance’ is missing from the original ScienceWorld repository, we
only have 29 task types here.
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Table 1. The number of task variations of each task type and the number of actions
created using all task variations of each task type, divided into the training set, the
development set, and the test set. The number of MCQA instances is twice the number
of actions because each action is split into a verb MCQA instance and an element
MCQA instance.

# of Variations # of Actions

Topic Task Type Train Dev Test Train Dev Test

Matter Changes of State (Boiling) 14 7 9 471 400 699

Matter Changes of State (Any) 14 7 9 282 292 381

Matter Changes of State (Freezing) 14 7 9 391 402 484

Matter Changes of State (Melting) 14 7 9 362 290 381

Measurement Measuring Boiling Point (known) 218 109 109 5916 4401 3093

Measurement Use Thermometer 270 135 135 2949 1480 1413

Electricity Create a circuit 10 5 5 70 39 35

Electricity Renewable vs Non-renewable Energy 10 5 5 132 75 64

Electricity Test Conductivity (known) 450 225 225 8934 4450 4647

Electricity Test Conductivity (unknown) 300 150 150 5023 2482 2540

Classification Find an animal 150 75 75 1103 543 557

Classification Find a living thing 150 75 75 1103 543 557

Classification Find a non-living thing 150 75 75 605 312 288

Classification Find a plant 150 75 75 1029 517 511

Biology Grow a fruit 62 31 33 3699 1838 1941

Biology Grow a plant 62 31 33 1609 815 856

Chemistry Mixing (generic) 16 8 8 297 135 179

Chemistry Mixing paints (secondary colours) 18 9 9 154 79 78

Chemistry Mixing paints (tertiary colours) 18 9 9 282 139 138

Biology Identify longest-lived animal 62 31 32 180 95 92

Biology Identify longest-then-shortest-lived animal 62 31 32 242 126 124

Biology Identify shortest-lived animal 62 31 32 180 95 92

Biology Identify life stages (animal) 6 3 5 159 91 159

Biology Identify life stages (plant) 4 2 4 25 16 30

Forces Inclined Planes (determine angle) 84 42 42 1006 508 512

Forces Friction (known surfaces) 692 346 348 8316 4182 4214

Forces Friction (unknown surfaces) 80 40 42 956 484 512

Biology Mendelian Genetics (known plants) 60 30 30 5037 2524 2546

Biology Mendelian Genetics (unknown plants) 240 120 120 20219 9990 10128

Sum 3442 1721 1744 70731 37343 37251

Specifically, a verb prediction v′
i or an element prediction e′

i is correct if it is
identical to the ith gold-standard verb vi or the ith gold-standard element ei.
Verb accuracy is defined as the percentage of correct verb predictions and is
calculated by dividing the number of correct verb predictions by the total num-
ber of gold-standard actions in the trajectory. Element accuracy is defined in a
similar manner where it is the percentage of correct element prediction and is
calculated by dividing the number of correct element predictions by the total
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number of gold-standard actions in the trajectory. Similarly, the ith action pre-
diction a′

i is considered correct if both v′
i is identical to vi and e′

i is identical to
ei. Action accuracy is defined as the percentage of correct action predictions and
is calculated by dividing the number of correct action predictions by the total
number of gold-standard actions in the trajectory.

Task accuracy shares the same assumption as the score-based metrics in that
it evaluates agents’ performances at the level of the task. Hence, for one task
variation, it is considered correct if all action predictions of that task variation
are correct. Formally, if (a′

1, a
′
2, ..., a

′
n) is identical to (a1, a2, ..., an), we consider

the prediction for this task variation as correct. Task accuracy is calculated by
dividing the number of correct task variation predictions by the total number of
variations of a task type.

4 Experiments

We use BERT to demonstrate the utility of our QAScienceWorld benchmark
and to showcase the different granularity of our novel metrics. BERT repre-
sents a paradigm shift from the previous neural models (e.g. CNN and RNN) to
transformer-based models. Moving forward, transformer-based models continue
to push the performance to near or above human performances on many natural
language understanding and computer vision tasks [9]. Hence, BERT is a repre-
sentation of other transformer-based models and can reflect the base difficulty
on a variety of tasks, including our benchmark.

Following the original paper, we use the BERT base model, which has 12
layers, a hidden size of 768, and 12 attention heads and has a pre-trained weight
available in the Hugging Face repository [1]. We fine-tuned this pre-trained
BERT model using all verb MCQA instances and element MCQA instances
from the training set. For one MCQA instance, the input to the BERT model
is a prompt-choice string constructed by concatenating the prompt and one of
the four choices. Because we have four choices, the input is four such strings
per MCQA instance. The label for this MCQA instance is the index of the
prompt-choice string that contains the correct choice. During inference, for an
MCQA instance, the fine-tuned BERT model will return four scores (one for
each prompt-choice string) and the prompt-choice string with the highest score
is considered the prediction. We fine-tuned the pre-trained BERT model for one
epoch, using the default learning rate of 5e-5 and a batch size of 16. We report the
fine-tuned BERT results on the test set evaluated using verb accuracy, element
accuracy, action accuracy, and task accuracy in Table 2.

The results illustrate that the fine-tuned BERT model can achieve over 90%
verb, element, and action accuracy. But accuracy in the 70% to 80% range is
also observed, such as in the case of the task type: Renewable vs Non-renewable
Energy, where the action accuracy is only 76%. These results suggest that the
transformer-based models can achieve human-level performance when the prob-
lems are presented in the format of i.i.d MCQA and the solution space is rela-
tively limited. The difficulty arises when we evaluate these models’ performance
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Table 2. The verb, element, action, and task accuracy (introduced in Sect. 3 and
expressed as a percentage) estimates of the fine-tuned BERT model on the test set.
The fine-tuned BERT model is trained using all verb MCQA instances and element
MCQA instances from the training partition of the benchmark on a pre-trained BERT
model. The verb, element, and action accuracy estimates are first calculated at the
level of each task variation and then averaged over all task variations of a given task
type.

Topic Task Type Verb Element Action Task

Accuracy

Matter Changes of State (Boiling) 96 89 86 0

Matter Changes of State (Any) 95 86 82 0

Matter Changes of State (Freezing) 91 85 78 0

Matter Changes of State (Melting) 96 82 79 0

Measurement Measuring Boiling Point (known) 92 68 61 0

Measurement Use Thermometer 98 92 91 43

Electricity Create a circuit 97 95 92 60

Electricity Renewable vs Non-renewable Energy 86 89 76 0

Electricity Test Conductivity (known) 95 90 87 11

Electricity Test Conductivity (unknown) 96 97 94 33

Classification Find an animal 100 91 91 48

Classification Find a living thing 100 87 87 33

Classification Find a non-living thing 99 82 81 47

Classification Find a plant 100 83 83 23

Biology Grow a fruit 96 96 93 0

Biology Grow a plant 96 96 94 18

Chemistry Mixing (generic) 91 80 73 0

Chemistry Mixing paints (secondary colours) 96 89 85 22

Chemistry Mixing paints (tertiary colours) 86 93 80 0

Biology Identify longest-lived animal 100 93 93 78

Biology Identify longest-then-shortest-lived animal 100 89 89 63

Biology Identify shortest-lived animal 100 99 99 97

Biology Identify life stages (animal) 100 91 98 60

Biology Identify life stages (plant) 100 100 100 100

Forces Inclined Planes (determine angle) 98 99 97 69

Forces Friction (known surfaces) 99 99 98 74

Forces Friction (unknown surfaces) 97 99 97 67

Biology Mendelian Genetics (known plants) 95 97 93 0

Biology Mendelian Genetics (unknown plants) 95 96 92 0

Average 96 91 88 33

on the level of the task. As indicated by the results, the typical task accuracy
is below 50%. However, there is considerable variance observed at times. For
example, it appears that the ‘identify’ task types within the biology topic might
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be an ‘easier’ task, as the fine-tuned BERT model even achieves 100% accuracy
in one of the task types and achieves above 60% accuracy in other task types
of similar nature. The task type ‘changing the state of a matter’ seems to pose
the biggest challenge for the model, as in all four such task types, the fine-tuned
BERT model achieves 0% accuracy. Interestingly, the above two observations
are confirmed by the experiments done in the original ScienceWorld work. This
further demonstrates that our benchmark can serve as an effective complement,
or extension, to the original benchmark.

5 Conclusion and Future Work

We designed and constructed an i.i.d. MCQA benchmark, QAScienceWorld, that
is derived from the original ScienceWorld environment using its gold-standard
trajectories. The QAScienceWorld benchmark is posited to be more friendly to
evaluating transformer-based language models rather than reinforcement learn-
ing agents, as the original benchmark is primarily positioned to do. Furthermore,
to better understand the performance of transformer-based language models at
different levels of granularity, we proposed four metrics that are different from
the usual ‘all or nothing’ approach and seek to measure the incremental progress
of agents in a systematic fashion. We demonstrated the usefulness of our bench-
mark by fine-tuning the pre-trained BERT model and evaluating its performance
using the four metrics. The results indicate that even though, in general, BERT
can only finish about 30% of the tasks, it does achieve over 90% accuracy on
some of the other metrics. This suggests that while transformer-based language
models struggle with such multistep commonsense planning problems, they can
play a powerful role in dealing with intermediate problems. Hence, they could
play a critical and integrative role in systems better suited for planning but
needing to use commonsense language to fill in the gaps.

We end with the caveat that the QAScienceWorld benchmark is derived using
gold-standard solutions in the original ScienceWorld benchmark, and ignores
other potential trajectories to finish the tasks. This can also lead to a disad-
vantage when evaluating agents’ performance, because of the restricted solution
space. Hence, we will consider including other solutions in our benchmark in
future work. Additionally, when constructing the benchmark, we only consider
randomly selected wrong choices to include with the ground-truth choice to form
the complete set of candidate choices for the MCQA instances. We recognize that
this can pose an unfair advantage to the agents evaluated using our benchmark
over the original one, as both the verb and element space is narrower in our
benchmark. Hence, one approach that we are considering in a future updated
version of this benchmark is adversarial (rather than random) sampling of the
wrong choices (or in an even more challenging version, including all possible
choices).
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Abstract. Explanation can form the basis, in any lawfully behaving
environment, of plans, summaries, justifications, analysis and predic-
tions, and serve as a method for probing their validity. For systems with
general intelligence, an equally important reason to generate explana-
tions is for directing cumulative knowledge acquisition: Lest they be born
knowing everything, a general machine intelligence must be able to han-
dle novelty. This can only be accomplished through a systematic logical
analysis of how, in the face of novelty, effective control is achieved and
maintained—in other words, through the systematic explanation of expe-
rience. Explanation generation is thus a requirement for more powerful
AI systems, not only for their owners (to verify proper knowledge and
operation) but for the AI itself—to leverage its existing knowledge when
learning something new. In either case, assigning the automatic genera-
tion of explanation to the system itself seems sensible, and quite possibly
unavoidable. In this paper we argue that the quality of an agent’s expla-
nation generation mechanism is based on how well it fulfils three goals –
or purposes – of explanation production: Uncovering unknown or hidden
patterns, highlighting or identifying relevant causal chains, and identify-
ing incorrect background assumptions. We present the arguments behind
this conclusion and briefly describe an implemented self-explaining sys-
tem, AERA (Autocatlytic Endogenous Reflective Architecture), capa-
ble of goal-directed self-explanation: Autonomously explaining its own
behavior as well as its acquired knowledge of tasks and environment.

Keywords: Artificial Intelligence · Explanation Generation ·
Autonomy · General Machine Intelligence · Causal Reasoning ·
Self-Explanation

1 Introduction

Explainability is an important feature of any artificial intelligence (AI) systems,
for numerous reasons. Explanations can form the basis of valid plans, summaries,
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justifications, predictions, etc. and serve as a method for probing their validity,
cost, and potential dangers—which, in fact, is the role of explanations in general
in society. The more complex an AI system is, the more important it is that
its operation be transparent and understandable not only by its owners, but
also by the system itself. Being explainable implies support for direct inquiries
for why a system did what it did, what it plans to do, and why it chose some
action over another. The level of transparency offered this way will impact a
system’s trustworthiness. For any general machine intelligence, trustworthiness is
a necessity, since such systems will handle novelty by definition; how they behave
in light of novel situations and tasks must be verifiable, at some reasonable level
of abstraction, to ensure their safety. Automating explanation generation in AI
systems is therefore an important goal [17], and it might be argued that it is
necessary for a system to be worthy of being considered general [23].

It is the ability of explanations to be verified that brings them their fun-
damental value. To be verifiable means that they must be based on knowl-
edge of verifiable causal relationships in the situation, task, or circumstances
in question—in other words, they must be falsifiable. To be falsifiable they must
reference some set of causal relations whose validity is undisputed in the relevant
contexts, or easily verifiable.

An important function of explanation that is less often discussed than most
others is their use for guiding an autonomous agent’s learning; the ability to
find explanations for learning failure or success can help uncover how the world
works. In this case, to be effective and efficient, explanation generation must be
autonomous [17]. Here we examine goal-directed self-explanation: the ability of a
system to autonomously generate explanations about its own behavior, as well as
its acquired knowledge of tasks and environment, under articulated requirements,
i.e. explicit goals. A key focus of this work is the use of such explanations as a
method for learning (and meta-learning, that is, learning to learn).

The work rests on the argument that explanation generation is a funda-
mental and necessary process for general self-supervised learning [23]. We look
at how explanation generation for this purpose is achieved in the AERA sys-
tem, and discuss its approach in light of other systems aimed at general intel-
ligence. Thórisson [21] describe a theory of pragmatic understanding that we
take as the foundation for our work here. We consider their definition of under-
standing well-suited for building a theory of explanation generation because it
already presents a strong foundation for relating prediction, goal achievement,
knowledge acquisition, and explanation to causal reasoning.

The paper is structured as follows: We start with an overview of related work,
then we provide some important definitions for the subsequent discussion, which
outlines our theory of goal-driven self-explanation generation.

2 Related Work

For reasons of opaqueness, studies on explainable AI have so far primarily focused
on artificial neural networks (ANNs), being mostly based on (manually guided)
abductive methods that attempt to trace certain outputs to the identification of
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relevant inputs (cf. [14]). For immediate clarification, this is not what the present
paper is about. In the allocentric methodologies employed in the development
of these systems [19], training data, implicit goals, and hand-coded heuristics,
are all determined and provided by the developers themselves, a-priori. In this
sense, ANN-based systems are no different from standard software applications.

We envision the aims of ‘explainable AI’ research differently. First and fore-
most, we recognize that the primary practical application of AI is all sorts of
automation, and therefore autonomous explanation generation should be a pri-
mary goal for explainable AI. In short, the human effort needed to arrive at an
explanation should be minimized as far as possible, delegating the explanation
generation to the machine. Equally importantly, we see explanation – and its
extension into argumentation in general – to be a foundation for any general
machine intelligence to grow its knowledge reliably, efficiently and effectively.

We are working exclusively on systems that can generate explanations
autonomously, about themselves and their task-environment—i.e. systems that
are self-explaining. Generally speaking, explanations can vary in their quality. A
good explanation eliminates blind spots, clarifies, or highlights that which was
obscure before (see section below). Above all, a good explanation observes cer-
tain implicit (explicit) constraints and does not break any relevant rules. To do
so, it is not enough that an explanation refer to correlational data, it must be
based on actual and relevant causal relations. This is because a good explanation
must highlight why something – whether it be a course of events, situation, or
other outcome – must be the way it is, rather than some other way [4,15].

Most sources agree that causal attribution, or identifying underlying causes of
a class of (or particular) events or state of affairs, is a vital part of explanation [3,
9,10,18,24].1 In fact, this is often how explanation is defined. Josephson equates
finding possible explanations with finding possible causes [7], and Halper and
Pearl claim that explaining a set of events necessitates the acknowledgment of the
cause of those events [3]. Miller expands on this, arguing that explanation begins
with the cognitive process of identifying causes, followed by a social process
of conveying the knowledge acquired by the cognitive process to the intended
recipient. As he also points out, causal attribution is a twofold process of inferring
the key causes and then selecting a subset of those causes as the most relevant
for an explanation [10]. Our approach is somewhat aligned with this view.

Halpern and Pearl [4] define causal explanations using structural equations,
for the purpose of determining and conveying an actual cause of an explanandum.
To accomplish this they assume that all relevant facts are known to said model.
What is lacking is a treatment of tasks and goals rather than simply explaining.
The assumption of a complete model is also unrealistic, particularly in complex
real-world situations. Their work thus leaves much to be desired when it comes
to AI, including how such models are autonomously built. This is addressed
in our AERA system by positioning explanation as the provisioning of missing
information structures, making incomplete knowledge a feature, not a bug.
1 Other types of explanation than causal have been proposed. Teleological explanations

are explanations focused on utility (to explain by defining the purpose or intent of
the thing to be explained [2]). But nowhere nearly all things in need of explaining
have intent or utility behind them.
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Hilton [5,6] researched explanations extensively from a psychological per-
spective. They point out the inherent fallacy in using covariational criteria for
causal attribution, as there are numerous examples of events occurring at the
same time without one being the cause of the other. Their alternative model of
explanation is based on findings in ordinary language where humans make use
of contrastives and counterfactuals as criteria for causal attribution. This is also
one of the major findings of Miller’s survey [10] on explanations: explanations
in human conversation most commonly are produced in response to contrastive
questions, for instance “Why did you do A and not B?” rather than simply “Why
did you do A?”. Halpern and Pearl [3,4] also build on this idea, positioning
counterfactuals as a way to highlight actual causes.

Palacio et al. went with a broader definition of explanation, arguing that
causation is not necessary for all explanation: “An explanation is the process of
describing one or more facts, such that it facilitates the understanding of aspects
related to said facts (by a human consumer)” [14, p. 5]. They further argue that
understanding is unique to humans, and therefore explanation from machine to
machine is merely verification. We do not agree with either assertion—indeed,
we consider it a central task artificial general intelligence research to endow
machines with understanding [21], and we see causal relations as central in all
explanations (if not explicit, then certainly implicit), because they are the fun-
damental method for explanation verification.

In our view, all explanations of complex tasks with multiple steps and sub-
goals must be based, in one way or another, on causal relations. We therefore
treat causation and causal knowledge as a necessary element in this work.

3 Definitions

Here we give a compact description of key terms used in the following sections,
in particular Sect. 4.

Explainer and Explanation. A process that produces explanations is an
‘explainer.’ This can be a human, a machine, or some other process which is
positioned to serve such a role. An ‘explanation’ is a compact description out-
lining some subset of a modelset of the phenomenon that, for whatever reason,
is misunderstood, misrepresented, or missing from the phenomenon’s modelset.
An explanation typically references existing parts of a modelset and presents
either a missing piece or highlights errors in it (see Sect. 4, page 7).

Explanandum and Explainee. ‘Explanandum’ is that which is to be
explained. Given a particular outcome, situation, or turn of events, this can
be an anomaly, a missing but necessary relation, or other identified inconsis-
tency that calls for an explanation. ‘Explainee’ is the particular recipient of
an explanation—those to whom the explanation is addressed. This can be the
Explaining process itself, a co-located interlocutor, or some future recipient of
the information.

Explicit Goal. A ‘goal’ is a (constant state or steady) state to be achieved. An
‘explicit goal’ is one which can be described in some representational language
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that references a knowledge base. An ‘active goal’ is one which can be thus rep-
resented and which may already be pursued—i.e. a goal that has been accepted
by an agent of change who is actively pursuing it.

Explainable vs. Interpretable. The terms ‘explainable’ and ‘interpretable’
are often used interchangeably in AI, but we see a definitive and important
difference between the concepts behind them, based on who exactly is doing
the explaining and interpreting. For instance, in work involving artificial neural
networks, ‘interpretation’ is typically an explanation of the mechanisms of the
classifier, not of the task or environment for which the system is deployed [8]),
and it is the researchers who are doing the interpretation.2 In contrast, we define
self-explaining AI as ‘AI that is capable of generating valid explanation,’ and
interpretable AI as ‘AI that can be interpreted (or explained) by a third party.’

Phenomenon. A phenomenon Φ (process, state of affairs, occurrence) – where
W is the world, and Φ ⊂ W , – is made up of a set of elements, including
sub-structures, component processes, whole-part relations, causal relations, or
other sub-divisions of Φ {ϕ1 . . . ϕn ∈ Φ} of various kinds, including relations �Φ

(causal, mereological, positional, episodic, etc.) that couple elements of Φ with
each other, and with those of other phenomena.

Complex Task-Environment. We define a ‘task-environment’ as the tuple
of an assigned task and the environment in which the task is to be performed.
A ‘complex’ task-environment is, for all practical purposes, a combination of
an assigned task in a particular environment that, for accomplishing the task,
requires (a) detection and separation of patterns and sub-patterns with non-
trivial causal and part-whole relations, that must be combined with (b) assump-
tions about high-level logical relations between these (e.g. objects cannot be in
to places at once), combined with (c) creation, execution, and monitoring of
partial non-linear plans with nested contingency composition, and/or (d) direct
application of ampliative3 reasoning and analogy generation.

Valid Explanation. An explanation ε(x, y), where x is the explanandum and
y is a network of known (causal) relations and patterns relevant to x, can be
validated through a process that seeks to uncover inconsistencies in it through
the generation of questions that probe y’s causal relations relevant to x. To do
so the validating process must be able to (a) represent causality, and use this to
(b) abduce arguments which “argue for” – or serve as verifiable evidence for –
the validity of the explanation. The arguments could also be verified by direct
measurement (but is only necessary if the background assumptions on which the
evidence rests are not well-verified).
2 Providing adequate levels of transparency modern machine learning and AI sys-

tems such as reinforcement learners and deep neural networks, with adequate levels
of transparency, requires considerable post-hoc effort and skill in interpreting algo-
rithms, and most of the time it is essentially prohibitive due to cost.

3 Traditionally, ‘ampliative reasoning’ refers to any process that relies on abduction
and induction in any combination to achieve a particular result (cf. [16]); we include
(defeasible, non-axiomatic) deduction in that list.
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4 Goal-Driven Explanation Generation

We base this work on a theory of pragmatic understanding proposed by Thóris-
son et al. [21] which uses the concept of a modelset (set of peewee models4)
for describing a phenomenon, and that can be manipulated through a set of
processes for performing four types of tasks, one of which is explanation gener-
ation. Given a phenomenon Φ, MΦ is the modelset intended to capture relevant
aspects of the phenomenon; the models ({m1 . . . mn} ∈ MΦ) are information
structures intended for (a) explaining Φ, (b) predicting Φ, (c) producing effec-
tive plans for achieving goals with respect to Φ, and (d) (re)creating Φ in any
medium (see Sect. 4, p. 6). For any modelset MΦ and phenomenon Φ, the closer
the information structures as a whole represent key elements (sub-parts) ϕi ∈ Φ
and their couplings �Φ, at any level of detail, the greater the accuracy of M
with respect to Φ. The more completely such a modelset captures all relevant
aspects of Φ for achieving any of the four tasks, for any chosen challenge related
to Φ, the more comprehensive it is. Our theory of goal-driven self-explanation
considers explanation generation itself to be a task with a particular top-level
goal—namely:

Gtop — The goal of explanation is to improve (or prove) understanding.

This statement would in itself be a rather shallow if what we mean by
‘understanding’ was left unexplained; our definition of understanding is exactly
this: The more correct – i.e. comprehensive and accurate – an intelligent agent’s
modelset MΦ of Φ is, the better will the agent be said to understand phenomenon
Φ [21]. An explanation in this view is a concrete action that is intended to verify,
evaluate, or increase either the completeness of an agent’s models and relations
(Qcompl(MΦ,�Φ)), its accuracy (Qacc(MΦ,�Φ)), or both.

As mentioned above (p. 5), the models of a phenomenon’s Φ relations �Φ

describe how its elements relate to each other, and to other phenomena. If we
partition �Φ into two disjoint sets, inward facing relations �in

Φ = �Φ ∩ (2Φ ×2Φ)
and outward facing relations �out

Φ = �Φ \ �in
Φ , an agent whose models are only

accurate and complete for �in
Φ understands Φ but not Φ’s relation to other phe-

nomena (i.e. its context); an agent whose models are only accurate and complete
for �out

Φ understands Φ’s relation to other phenomena but will have limited or
no understanding of Φ’s internals.

A good explanation is one that unequivocally demonstrates or verifies under-
standing of a phenomenon Φ [1], or improves understanding of Φ by affecting
the modelset describing the phenomenon in a way that improves the possessor
of that modelset’s ability to achieve the four tasks related to a phenomenon.

The explanation generation process involves the skills of identifying (i) the
role that the explanation should fulfil, (ii) the relevant patterns and relations
that must be referenced for it to serve this role, and (iii) producing a description

4 Small models that can be composed into larger modelsets; see e.g. [11,13].
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that meets these requirements (for a particular set of explainees). This is com-
patible and in line with earlier work on explanation generation (cf. [4,15]). With
the exception of the first skill, to achieve any of these in a complex environment
requires information about cause and effect, the knowledge representation capa-
ble of supporting the above must, by definition, contain information about the
causal structure of Φ.

Generating an explanation calls thus for certain necessary information and
must meet certain necessary requirements. More specifically, producing an expla-
nation involves the generation of a compact description that references or impli-
cates one or more causal relations that – if not present, or structured differently
– would result in a different outcome. The causal relation(s) relevant to the
phenomenon that explanation targets limit(s) the possible state space by pro-
viding constraints, thus contributing to a particular outcome or situation. The
necessary ingredients to produce explanations are, therefore:

– knowledge of causal (and other) relations,
– named entities (and appropriate grammar) for producing this description,
– a fulfillment of a (possibly hypothesized) goal that the explanation is intended

to meet.

We hypothesize three classes of purposes – or subgoals – that a generated
explanation may serve, namely, to highlight or identify the following aspects
relevant to an explanandum:

G1 — Unknown or hidden variables, patterns, or other aspects.
G2 — Unknown or hidden causal factors and chains.
G3 — Unknown or hidden errors in background assumptions.

The task of an explainer (explanation-generating process) is to meet the top-level
goal that explanation serves, that is, to prove/improve understanding, by meet-
ing one or more of these three subgoals as closely as possible. The explainee can
be co-temporal and co-spatial, (as in human realtime dialog), a future receiver
of a recorded or written explanation (e.g. instruction manuals), a group of stu-
dents (as in a classroom), or the explanation-generating process itself (like during
learning, when explaining things to oneself for verification of understanding).

Since an explanation serves a purpose, as defined by its subgoal(s), G1−3,
we can assume that it may do so on a continuum, from well to badly. The
gradient from meeting this goal perfectly, R(ε) = 1, to not meeting it at all,
R(ε) = 0, describes how well an explanation “hits the spot”—let’s call it the
explanation’s role fulfillment, R(ε,�), where � is its designated role. And since
an explanation could in theory highlight the relevant patterns, causal chains, or
background assumptions anywhere from perfectly to not at all, we can define a
gradient for this dimension as well, ε(Prvt) = [0, 1]; we call it the validity of an
explanation, V = ε(Prvt). The value of a given explanation is then the product
of how well it meets its goal and how valid it is, vpur(ε) = R × V.

We call this an explanation’s “pur (pure) value” because there is a third factor
that could be considered here, that is, how well the explanation fits an explainee
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agent’s A knowledge, K(A). A ‘perfect explanation’ is defined as an explanation
whose pure validity is at maximum, vpur(ε) = 1.0, and whose compactness could
not be greater. The maximum compactness of an explanation ε is in part dictated
by this factor, because the more an explainee knows, the more compact can the
explanation be made. If an explainer makes incorrect assumptions about the
explainee’s knowledge – that is, there is misalignment between the explainee’s
knowledge and the explainer’s model of that knowledge – the compactness of
the explanation will suffer. We propose to represent this relationship as a match,
or overlap, between the constructed explanation’s encoding and the explainee’s
ability to unwrap that encoding (in other words, the effort required to decode
the information it is intended to carry), that is, {εΦ − (Φ \ K(A))}, where Φ is
the explanandum, εΦ is the (encoded) explanation of a particular part of Φ that
references both known and unknown information, and K(A) is the knowledge
of the explainee.5 This, then, may be taken into account when quantifying the
value of an explanation.6

In a reflective controller, i.e. one that can reflect on its own inner opera-
tions, any explanation can become the subject of the agent’s own explanation
machinery, allowing for the generation of explanations of explanations (like we
are doing right here right now). Capacity for this kind of self-explanation can
enhance not only an AI system’s understanding of its task and environment but
also of itself. In each case the explanations coming from within the system can
be processed by the system for the purpose of further knowledge acquisition
[23]. Stated differently, given that the system is a self-explaining AI, the better
the above explanation generation functions are fulfilled and implemented in the
same system, the more trustworthy the system will be, but not only that, it could
possibly learn faster and better. Going one step further, a paper by Thórisson
argues that autonomous general learning is not possible without some form of
explanation-generating mechanisms [23].

5 Explanation Generation in AERA

This section gives a short introduction to how AERA (Autocatalytic Endoge-
nous Reflective Architecture) meets the above requirements for generating expla-
nations [11,12]. Knowledge in AERA is represented using two main types of
information structures, composite states and causal-relational models (CRMs)
[11,13,22]. Composite states capture patterns that an AERA agent can perceive;
CRMs capture causal relations by representing causes on the left-hand side and
results on the right-hand side. Pattern matching is used to match perceived

5 For convenience we include, as part of the ‘encoding’ of an explanation, any refer-
ences to related but different phenomena intended to better match an explainee’s
knowledge—that is, to explain something better to a particular explainee, due to
their particular knowledge at the time of the explanation generation.

6 This certainly is a factor in all explanations produced by one human for another. It
may not, however, be relevant for self-explanation generation since the meaning of a
low-value (or zero-value, i.e. worthless) explanation produced for oneself is undefined.
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or desired states to either side. Using these constructs, AERA learns in a self-
supervised way by constructing programs on the fly for achieving self-generated
goals and sub-goals [20]. The resulting networks of information produce both
concrete and hypothetical plans, predictions, and sequences of actions that ful-
fill set goals.

AERA’s capacity for self-explaining comes primarily from two key principles.
Firstly, all its knowledge is explicit and compositional in a scale-independent way.
This means that both small and large details can be captured with compara-
ble information structures, and that hierarchies of knowledge can also be con-
structed into modelsets (through combinations of smaller elements). Secondly,
because cause-effect relationships are represented directly (also in a relatively
scale-free manner), computing the implications of particular actions, and pro-
ducing appropriate plans for achieving goals, is directly supported.

Finally, the special programming language used to implement these mech-
anisms in AERA, Replicode [11], makes key parts of the system’s operational
semantics accessible to itself, allowing it to use explanation to argue to itself
about which action to take, which options may be better than others, and what
particular actions may lead to in comparison to others.

6 Conclusion

Explainability and traceability are key requirements of all mission-critical engi-
neering. With the increasing use of software-controlled systems, complexity rises,
and with complexity comes the need for smarter software systems. To be trust-
worthy, AI must be explainable. With the goal of creating systems with general
intelligence, AGI-aspiring systems should not only be explainable, they should
be able to explain themselves to their users. But if general intelligence requires
the ability to explain – if not for any other reason that the sheer amount of
possibilities that the physical world presents to anyone who is learning about
it from scratch – then such systems, upon having achieved generality in the
near or distant future, will already be able to generate good explanations about
their own operation and their task-environment. We hope the work in this paper
moves us one step closer to this future.
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1 Introduction

The IT-sector is one of the most innovative and fastest-growing industries world-
wide1. The bleeding edge lies arguably in automation technologies, in no small
part because of the obvious incentive that reduced cost and increased speed
translates directly to increased revenue. Within contemporary2 applied automa-
tion technologies, DNNs are the latest arrivals with significant potential for var-
ious applications. Spurred by predictions of its usefulness for a wide range of
tasks3, unbridled optimism has often characterized its coverage in the media. For
instance, a Forbes article presents the 13 skills AI already has today (including
“smell” and “reading your mind”) [19]; the Guardian explains how AI is changing
how a number of different industry sectors operate [6]. However, after a period
of experimentation it is increasingly clear that DNN deployment is unavoidably
hampered by inherent deep limitations [17] and hidden costs [4,33].

DNNs risk compromising the path towards sustainable development of soci-
ety4. In particular, their runtime and updating methodologies make them unsus-
tainable [16,33]. Another limitation has to do with how they are developed.
Energy consumption during DNN development is incredibly high (PaLM, a lan-
guage model from Google, consumed about 3.4 GWh in about 2 months [3]).
For this reason, and others, very few companies will be able to afford developing
them because of their sheer size and compute requirements (the BLOOM model,
with 175 billion parameters, cost US$7 million to develop [3]). So this approach
is inappropriate for parties with only small data and small funding. DNNs are
thus nowhere nearly as appropriate or powerful for being deployed in automation
tasks as past and present moves by tech giants might indicate [2,5].

This paper has two main parts: In Sects. 2 and 3 we detail what we consider
key limitations of DNNs, and in Sect. 4 and 5 we discuss how these could be
overcome through research on artificial general intelligence.

2 Deep Limitations of Deep Neural Networks

In recent years both the size and the training data of DNNs have exploded due
to an incentive to upscale the models to reach better performance [3,33]. GPT-3,
1 According to Statista, IT-related revenue has a predicted annual growth rate of

6.86% and a predicted market volume of US$1,570.00bn by 2027 (https://www.
statista.com/outlook/tmo/it-services/worldwide – accessed March 1st, 2023).

2 Our use of the term ‘contemporary AI’ refers to a set of methodologies that are
currently in active experimentation or use in industry, including but not limited to
reinforcement learning, ANNs of all kinds, and other well-known methods.

3 For instance, the annual prediction that “full self-driving cars will be available next
year” has been updated at a rate of one year per year by Tesla’s CEO (“Watch
Elon Musk Promise Self-Driving Cars ‘Next Year’ Every Year Since 2014,” https://
futurism.com/video-elon-musk-promising-self-driving-cars — accessed March 1st,
2023.

4 The UN defines ‘sustainable development’ as harmony between economic
growth, social inclusion, and environmental protection. https://www.un.org/
sustainabledevelopment/development-agenda/ — accessed April 4th, 2023.

https://www.statista.com/outlook/tmo/it-services/worldwide
https://www.statista.com/outlook/tmo/it-services/worldwide
https://futurism.com/video-elon-musk-promising-self-driving-cars
https://futurism.com/video-elon-musk-promising-self-driving-cars
https://www.un.org/sustainabledevelopment/development-agenda/
https://www.un.org/sustainabledevelopment/development-agenda/
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one of the biggest language models to date, has shown great results in some text
generation tasks [5] leading many to think that DNNs can be used to solve any
task. We argue that this is neither wise nor possible.

2.1 DNNs: Expensive to Develop and Use

A search with Google’s new chatbot Bard can cost the company 10 times more
than a traditional key word search [21]. However, the total cost of the models
are already high before they leave the lab (cf. the BLOOM model required $7
million worth of computing time during its development). To provide necessary
computing power for the training phase, the developers of DNNs also need access
to expensive specialized hardware [33]. Attempts have been made to measure the
environmental footprint of large language models (LLM) [16,33]. Luccioni et al.
2022 uses a life cycle analysis approach to estimate a more realistic environ-
mental footprint for a LMM called BLOOM. When they add emissions from
all training activities and experiments (not just the final training run) as well
as emissions from the infrastructure that maintains the hardware and emissions
from manufacturing the hardware, the total footprint of BLOOM is ∼124 tons
CO2eq [16]. However, the carbon intensity of the grid used to train BLOOM was
only 57gCO2eq/kWh(trained in France) compared to GPT-3 where the carbon
intensity of the grid was 429gCO2eq/kWh(trained in the US). Unfortunately, we
only know the power consumption of the final training phase of GPT-3. Com-
paring the estimated carbon emissions from the two models’ final training phase,
BLOOM was ∼25 tons CO2eq and GPT-3 was ∼502 tons CO2eq, which is a sig-
nificant difference since the models have about the same amount of parameters
[16]. The environmental footprints of DNNs are strongly influenced by carbon
intensity of the energy grid. Considering that US and China are the biggest
players in the AI market [20], and they use about 81% and 83% fossil fuels [27],
the estimated footprint of only a small part of GPT-3’s life cycle is worrying
(Table 1).

Table 1. Comparison of the CO2 emission of different products. The Scale column
shows the emissions multiplier matching a laptop computer’s complete lifecycle.

Product Description CO2eq (kg) Scale

One laptop [1] Entire life cycle incl. power use (avg.) 423 1

One automobile [33] Entire life cycle incl. fuel use (avg.) 57,153 135

One GPT-3 [16] Final training phase 502,000 1187

Another aspect that can raise the economic and environmental price is when
the model needs to be corrected after it is deployed. In this case, the model needs
to be taken down and retrained since DNNs cannot be taught anything new once
they have left the lab. What often happens is that once the models are released,
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they act in unexpected ways and the developers need to spend more resources
on making them behave. In 2016 when Microsoft created a twitter account for
the chatbot Tay, it went from tweeting innocent tweets like “I love feminism
now” to “Hitler was right I hate jews” in a single day, despite being trained
on safe data as Microsoft claims [9], resulting in the bot having to be taken
down. Seven years later, Microsoft ran into a similar problem when a journalist
at the New York Times had a conversation with their new chatbot that ended
with the bot confessing its love to him and telling him to leave his wife [28].
After the incident, attempts were made to prevent the chatbot from answering
personal questions, but even with countless reboots and alterations, it could not
be guaranteed that it behaved according to plan. Some have even made this into a
sport (called ‘JailBreaking’) where they share and test ways of getting around the
“lobotomized” chatbots and make them say racist, misogynistic, etc. statements.
Considering the enormous resources spent on controlling the DNNs’ behaviors
after they leave the lab, it seems that proper kinds of control mechanisms are
missing. This is, however, hardly surprising, since DNNs are primarily based on
statistical methods and have no obvious ways of being steered through explicit
goals or hierarchical rules.

2.2 The Limited “learning” of Statistics-Based Systems

All animals learn cumulatively because the world does not reveal itself to any-
one all-at-once. The “learning” that contemporary AI systems practise is a very
special case of what is normally called ‘learning,’ and it greatly limits which
kind of tasks they can be “trained” to solve well. Research by Eberding et al.
[7] compared several different types of DNN-based learners (they also tested the
AGI-aspiring NARS — we discuss this in a later section) on the well-known cart-
pole balancing task, which consists of learning to balance a stick standing on a
cart by issuing right and left commands (‘R’ and ‘L’). Once the various AI learn-
ers had achieved this task, the researchers reversed the directional commands.
The performance of the various learning algorithms to adjust their prior train-
ing to this new condition is recorded. In a final scenario, the researchers switch
back to the original control method. The performance of all tested DNN-based
learners dropped significantly in the reversed phase, and it takes them many
more iterations to reach the same performance, once the controls are switched
back to the original settings. The change in the task had to be “unlearned”
through enough new interactions before the performance could return to what
it was before the controls were switched. None of them returned to their original
performance.

This research exposes how DNNs have a static and simplistic representation
of the world. They are not capable of inferring simple relations (in Eberding’s [7]
experiment, that the controls were switched around) which makes them unusable
for many tasks where reasoning is of importance, like math. The best DNN score
on the MATH data set is 50% [3]. The developers managed to reach this score
by training it only on mathematics-related texts and up scaling the size of the
model to astonishing 540 billion parameters. With this strategy they were hoping
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that the model would evolve to be able to perform reasoning through pattern-
recognition alone [3]. There have been attempts of creating reasoning abilities in
DNNs, for example using chain-of-thought prompting. The technique improves
models’ scores on certain data sets, but in bigger models [40]. This method does
not, in fact cannot, turn ANN-based systems into reliable reasoners.

2.3 DNN Autonomous Learning After It Leaves the Lab:
‘Undefined’

Another of DNNs limitations is that once they are trained, their knowledge
is fixed and they cannot be easily applied to another task. When faced with
something that was not part of their training data, performance decreases or
they do something that is unpredictable. This is likely one of the reasons why
self-driving cars have not met their makers’ expectations; there are countless
scenarios an artificial driver must be able to navigate before it is safe to let
it out on the roads. The upshot is, when it comes to complex tasks, DNNs
cannot be trusted, due to the countless road scenarios that may occur. There
are attempts to overcome this problem, for example a one-shot learning model
can classify images it has not seen in its data set. However, the models are more
computationally heavy to run and they only work if the image is similar to the
ones in the training set [15].

2.4 DNNs and Social Inequality

When looking at LLMs, the data size requirements have exploded in recent years.
BERT was trained on 16 GB data in 2019 and GPT-3 was trained on 570 GB
in 2020 [4]. Firstly, it is difficult to get a hold of this much data and secondly, it
is nearly impossible to ensure that the data has the right quality. In LLMs this
manifests itself in a bias against minorities because most of their data has been
scraped of sources like Reddit, Twitter, and Wikipedia where the majority of
writers are white males [4]. In medical AI, we also see discrimination of patients
because it is difficult to acquire data sets that are representative for all genders,
ages, and races [25]. Due to the data requirements and cost of DNNs, their
increased use will risk worsening inequality, as not everyone has equal access [33]
or is equally represented. Healthcare models only work for groups represented
in the data sets.

Additionally, the price of using the DNNs will limit which users have access
them. For instance, ChatGPT has recently made headlines about being able to
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pass several advanced exams at universities5. If not all students have equal access
to DNN aids, we risk increasing social inequality6.

2.5 DNNs’ Domination of the AI Narrative

Despite the known limitations of DNNs, development of alternative approaches
to making machines smarter suffers from their media dominance. The private
sector has great influence on AI research and they tend to favor data-hungry
and computationally heavy DNNs [11].

Due to inordinate emphasis on a single technology, young researchers may
be lead to believe that deep learning methods (a) are the end-all, be-all, (b)
will overcome all the challenges we accounted for, and (c) will continue to be
a key technology in our society [11]. It is no surprise that we see this develop-
ment because many of the key DNN researchers still seem to believe that the
technology will overcome all these challenges with more data and more efficient
hardware. Kaplan & McCandlish [10] argue that there exists a scaling law for
neural language models, suggesting that there is more to gain if we continue with
enlarging the DNNs. Altman predicts an AI revolution because of the incredible
wealth that will be created as DNNs replace the majority of our workforce [2].

However, there is ample evidence that DNNs are not living up to such
expectations—and it probably never will [37]. The optimism echoes claims made
of the Cyc project in the 80s and 90s [14]. Looking at DNNs’ abilities regard-
ing common sense, Marcus and Davis [18] recently challenged ChatGPT-3’s pre-
sumed theory of mind, arguing that the results do not show an ability of common
sense but rather that, due to being trained on data about thought-experiments
and logic tests, it can predict the answers on purely linguistic principles. When
the phrasing of questions changes slightly or the questions are asked in another
language, GPT-3 shows no sign of having a theory of mind. In a study by Stojnic
et al. [32], they compared DNNs common sense ability to infants and the study
revealed that the DNNs failed and did not appear to have common sense.

Along with over-promising in the field of DNNs, there is a lack of innovation
that misleads newcomers, governments, and institutions who continue to support
research on the topic. By ignoring other strategies, society is not only wasting
precious resources but also risking the field of AI as a whole to lose trust.

3 Summary of Limitations

Based on the foregoing, there can be little doubt that contemporary AI method-
ologies, in all their variations, come with significant limitations. DNNs are mono-
5 ChatGPT has passed the Wharton Exam, US medical licensing exam, law school

exam, and others. (https://www.businessinsider.com/list-here-are-the-exams-
chatgpt-has-passed-so-far-2023-1?r=US&IR=T#wharton-mba-exam-1 — accessed
March 4th, 2023).

6 As of April 2023, the price is $20 a month for reliable and fast access to ChatGPT,
although a free version with slower response is still available. (https://openai.com/
blog/chatgpt-plus — accessed April 4th, 2023).

https://www.businessinsider.com/list-here-are-the-exams-chatgpt-has-passed-so-far-2023-1?r=US&IR=T#wharton-mba-exam-1
https://www.businessinsider.com/list-here-are-the-exams-chatgpt-has-passed-so-far-2023-1?r=US&IR=T#wharton-mba-exam-1
https://openai.com/blog/chatgpt-plus
https://openai.com/blog/chatgpt-plus
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lithic technologies with limited scope. They only work well when they are built
for a well-defined limited task with extensive amounts of data of a certain qual-
ity. If any changes are necessary due to unwanted behavior or a slightly different
task, the models must be rebuilt, repeating their resource-demanding training
cycles. Combined with the potential decrease in social equality, we have a tech-
nology that both compromises social inclusion and environmental protection.
This is unsustainable. To summarize the limitations of DNNs discussed so far:

– are exceedingly expensive to develop and use
– have a large environmental footprint due to energy consumption
– are difficult to control
– only work well for certain types of tasks
– are difficult and expensive to adapt to new tasks
– can increase inequality in the world
– take away focus and resources from other approaches in AI

It is neither good for the field of AI nor for society at large that the inordi-
nate amount of funding and effort poured into DNNs and related technologies
continues. How can we move forward to more sustainable AI?

4 Breaking the Stalemate Through Innovation

Examples of similar situations can be found in recent history of innovation,
where a single framework had become too entrenched too early. One example
is the global windmill industry in the 1970s.s. Due to the energy crisis at the
time, there was a push towards finding cheaper energy sources and many coun-
tries tried to develop megawatt windmills [22]. In Denmark another approach
was taken, where smaller companies developed smaller and more experimental
windmills and met up at annual windmills conferences and shared their results
[22]. The companies had incentive to do so because many private individuals
were interested in buying their own local windmill, since the government would
pay 30 percent of such investment [22]. Due to this approach, the development
of a new type of windmill was undertaken, one in which risk was lowered due to
the willingness of the Danish population to buy smaller windmills. As a result
the windmill industry was born in Denmark, which produced the best windmills.

In other countries a more conservative approach was chosen by attempting to
upscale the best existing windmills at the time, with the aim of turning them into
megawatt windmills. All of those approaches failed as they could not compete
with the Danish models, which were cheaper yet more robust [22]. The current
development of contemporary AI where researchers and companies upscale their
frameworks (more data and bigger models), believing that “bigger is better,”
resembles what we saw in the windmill industry in the 70’s. In our view, a
wholly new methodological paradigm is called for to develop more autonomous
AI that is more capable and whose behavior is easier to manage and predict.
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5 Sustainable Automation via AGI

The main limitations of DNNs can be grouped into three sets based on their
source: (a) opaqueness, (b) learning style, and (c) representation. All of three
have made a regular occurrence throughout much of AI research [37], or certainly
since the start of the annual AGI conference series in 2008. Here we present an
overview of selected recent work focusing on these areas.

From Opaque to Transparent Knowledge. A powerful way to represent
knowledge7, that makes it directly inspectable by human or machine, is to make
its structure explicitly hierarchical. Representing knowledge explicitly was of
course common in the expert systems of the 1970s, and some research in AI has
continued this tradition. The approach comes with known limitations, which
can be overcome by taking specific steps. For instance, the Non-Axiomatic Rea-
soning System (NARS) represents knowledge as defeasible [26] statements that
nevertheless support reasoning; indeed, NARS-based systems learn through rea-
soning processes that mix (non-axiomatic) deduction, abduction, and induction
(cf. [8,13,39]). Other systems take a compatible approach but use a different
knowledge representation scheme, e.g. the Autocatalytic Endogenous Reflective
Architecture (AERA [24]). The results demonstrated by prototypes developed
by Latapie et al. [13] show that systems relying on explicit knowledge represen-
tation have come a long way, yet their funding is in no way proportional to the
results achieved. These systems work on vastly smaller data than DNN-based
systems, and thus use much less energy.8

Besides non-axiomatism, another way to overcome the limitations of
approaches based on logic statements is to step up to second-order represen-
tation, allowing the system to inspect and operate on its own knowledge [34].
Such reflective systems have unfortunately not been given sufficient attention in
the AI literature. The results of Nivel et al.’s [23] research on teaching an AERA-
based agent to learn by observation how to conduct TV-style interview on the
topic of recycling in under 21 h, including learning the syntax and semantics of
a 100-word vocabulary, how to take turns in dialog, manipulation of objects,
deictic gestures of various forms, and more – from scratch – should suffice to
convince anyone that this very iconoclastic approach to machine learning should
be pursued more vigorously by the AI community.

From Once-and-for-All Learning to Cumulative Learning. Learning in
nature has no choice but to proceed incrementally, because the world does not
reveal itself to learners all-at-once. This means that the knowledge representation
scheme must be updatable piece-wise [36]. Furthermore, any autonomous system

7 By ‘knowledge’ we mean a form of ‘actionable information’—that is, information that
can be used for making plans and getting things done in a particular environment.

8 The AERA system, for example, learned to do a TV-style interview after learning
for only 20 h on a 6-core office desktop machine [35].
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deployed in the physical world will encounter situations that are not identical to
something experienced before. Automating the handling and learning from these
is imperative for advancing the state of industrial automation. Viable solutions
to cumulative learning have already been proposed [8,36,39].

Compositional Knowledge Representation. This topic is closely related
to the first point, which is to say that compositional knowledge representation
goes hand-in-hand with knowledge transparency and cumulative learning. The
ability to construct a goal hierarchy autonomously is a foundational requirement
for any AI that is to operate autonomously (or even semi-autonomously); the
designers cannot possibly foresee every and all situations that the system may
encounter. A goal hierarchy that the system can itself manipulate safely is a
necessity. Thórisson [38] presents arguments that general autonomous learning
is not possible without the capacity for some form of explanation generation.

While fully-functional AGI systems are still in their early phase of develop-
ment, some examples are leading the way (cf. [8,12,13,29–31]). All this points
towards next-generation systems having the potential to become a green alter-
native to DNNs, promising easier reuse, increased generality, significantly less
energy consumption, lower data requirements, less compute power, and a wider
range of applications.
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36. Thórisson, K.R., Bieger, J., Li, X., Wang, P.: Cumulative learning. In: Hammer, P.,
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Abstract. To investigate whether “Intelligence is the capacity of an
information-processing system to adapt to its environment while operat-
ing with insufficient knowledge and resources” [29], we look at utilising
the non axiomatic reasoning system (NARS) for speech recognition. This
article presents NUTS: raNdom dimensionality redUction non axiomaTic
reasoning few Shot learner for perception. NUTS consists of naive dimen-
sionaility reduction, some pre-processing, and then non axiomatic rea-
soning (NARS). With only 2 training examples NUTS performs similarly
to the Whisper Tiny model for discrete word identification.

Keywords: Non Axiomatic Reasoning · Perception · Few shot learning

1 Introduction

‘Artificial Intelligence’ now covers a wide range of tasks such as image recogni-
tion, speech recognition, game playing, and protein folding, each of which can
be performed at, near, or beyond human level. Over time the term has drifted in
meaning, away from a ‘thinking machine’, toward systems that often can only be
applied to a single task, do not improve without further training, and take large
amounts of resources to train and run. For example, GPT-3, a large language
model, is estimated to have cost over 4.6 million dollars to train [19]. These mod-
els can be opaque, difficult to interpret, and unable to explain why a particular
prediction was made, or unable to provide any guarantees in failure scenarios.
Predicate Logic, on the other hand, is capable of robust and consistent deci-
sions. One such predicate logic system, CYC [18], aims to encode all common
human knowledge in a knowledge graph. This means CYC has the limitations of
predicate logic, one being that all axioms (in the knowledge graph) be true and
consistent, otherwise false statements can be derived. Another approach is Non
Axiomatic Reasoning. The Non Axiomatic Reasoning System (NARS) performs
reasoning that does not assign an objective value of truth to a statement, but
instead assigns a subjective value. This subjective value is not fully trusted, and
is revised over time as new information arrives. NARS has the advantages that
it 1) can cope with holding conflicting information in its knowledge base 2) can
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explain predictions, 3) requires less data for inference 4) explicitly implements
logic choosing which concepts to remove rather than randomly forgetting.

While Open NARS for Applications (ONA) was designed with reasoning in
mind, we choose to investigate its usefulness, and resource consumption, on per-
ception, and in particular speech recognition. This is because as Peirce stated
“abductive inference shades into perceptual judgement without any sharp line
of demarcation between them.” [23], and advances in understanding one may
shed light on the other. The integration of deep learning and logic reasoning
is an open-research problem and it is considered to be the key for the devel-
opment of real intelligent agents [21]. We narrow the focus of this paper to the
dimensionality reduction, and logic needed to convert auditory sensory data into
category labels, and the resources required in the Open NARS for Applications
(ONA) software platform. First we give background, from the recent discussion
around the definition of intelligence, and then how our human nervous system
fused from 2 independent systems, perhaps leading to different characteristics of
it. We then give a limited literature review, and then explain our method and
experiments. In the last section we give and discuss our results.

2 Background

Until recently, and possibly still, industry (and maybe academia too) are inter-
ested in whether new tasks can be learnt by AI, and if so, can they be sold
profitably to consumers. The developers are under no obligation to consider the
environmental impact or safety concerns. That said, some do by choice, but there
is little compulsion from a social or regulatory point of view. This is partly due to
deep learning being “unreasonably good” [25] and partly due to no other known
way of achieving the same level of performance. A focus on resource consumption
was created by adding it explicitly into the definition of artificial intelligence [30].
Invitations to comment on this definition produced much discussion [31]. In this
discussion it was pointed out that industry has existing finite resource limitations
[17], which is true, however for most leader board tasks, resource consumption is
not taken into account. It also appears that governments are hesitant to impose
resource limitations on industry. A resource limitation is of interest as it prevents
brute force approaches and opens up the possibility of investigating how fewer
resources can be utilised over time. Brute force approaches can also encode an
entire domain space, further limiting the conclusions that can be drawn. If a
method requires fewer resources over time, as a task or operation is repeated,
then this suggests a deeper (or perhaps more precise or over-fitted) understand-
ing of that task or operation, which may be of interest in the investigation of
intelligence. Wang’s definition of intelligence [30] separates skill (e.g. playing
chess) from intelligence, and contains an assumption of insufficient knowledge
and resources (AIKR). Under this definition learning a new skill to the same
level of ability as some other method but with fewer resources or an insufficient
understanding of the world (i.e. imperfect knowledge) is advantageous. Thus
intelligence and skill are separate concepts.
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The focus of this paper is on the cognitive processes that underlie speech
recognition. It is assumed that these are similar to the cognitive processes that
underlie other forms of perception. However, as stated earlier, the line between
perceptual judgement and abductive inference has no clear demarcation [23].
This may be because the physiology underpinning these functions has different
origins. Genetic patterning studies suggest that the ‘blastoporal nervous system’,
which coordinates feeding movements and locomotion, and the ‘apical nervous
system’, which controls general body physiology, evolved separately in our ances-
tors more than six hundred million years ago [2,28], and subsequently fused. This
may help explain why we (humans) are still aware of differences in different parts
of our nervous system, being aware of our cognition around feeding and loco-
motion, but have little to no awareness of our ‘apical nervous system’. There
are arguments that perception and cognition are unified [3,6,10,13,16,26,27],
and arguments against, that is, for modularity [9,22]. The debate between mod-
ularity and unified is beyond the scope of this paper. However, the important
point for the purposes of this paper is that the mechanisms of perception are not
fully available to us. We do not know, for example, how we recognise objects or
how we understand speech. Speech is temporal in nature and involves nuanced
differentiation between acoustically similar sounds, (for example b in bright, and
f in fright).

Model performance over the last few decades has steadily improved, however
it is computationally expensive. Current state-of-the-art models rely on a low
level acoustic model, followed by a language model. The acoustic model converts
a sound wave into an encoded representation of a sound, and the language model
gives the probabilities of the next word, given the last few words, along with the
acoustic encoding. As said, language models, like GPT-3 require a large amount
of data to train, which conflicts with how children learn a new word with very
few examples [5]. Wang’s definition of intelligence [30] is based on the idea that
intelligence is about making the most of the resources that are available and
that it is not always possible to know everything that is going on in the world.
So, someone who is able to learn new skills quickly and efficiently, even if they
don’t have a lot of knowledge about those skills initially, would be considered
intelligent. One approach to understanding the mechanisms of intelligence is to
consider the different ways in which it can be measured. One way to measure
intelligence may be by looking at someone or some system’s ability to learn new
skills, and then measure the quality of that skill, as well as the energy consumed
to learn it and perform it once learnt. Speech recognition is one such potential
skill.

Generally large dimensionality reduction is needed to convert perceived
inputs into symbols that logic can be applied on. One approach [4] is to cluster
the inputs in the feature space before similarity and difference are calculated
and used as input into a deep network that is trained. Another approach is to
pre-process with a DL model specifically trained for that modality, i.e. YOLO
for computer vision, and use the generated labels. The generated labels form a
lower bound on the resolution of the logic system, i.e. if the labels are ‘dogs’ and
‘cats’, it would be difficult for a logic system to learn of a new breed of dog. If
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the logic system uses scalar output features of a DL model, e.g. the bounding
box of the cat, x by y pixels, and if only far away cats are seen, and then later
a closer (and therefore much bigger) cat is seen, scaling issues can be created,
as the system may not see the full range of sizes immediately, and needs to re-
calibrate previous observations when the scale is readjusted on seeing a much
larger, or smaller example. In speech these challenges are exhibited in the form
of the dimensionality reduction from 16k samples per second to ∼2 words per
second, with uneven speaking speed. Speech recognition has traditionally used
labelled data sets which cost USD50/hr to hand label, limiting the training data
set size into the 10,00 h or less range. The resultant systems have low generalis-
ability with many recent state of the art systems reporting <5% word error rates,
which collapses into the 30–40% range when used on other, but similar datasets
[24]. The exact costs of training models such as Whisper [24] with 1.6 billion
parameters, are unknown, but the 175 billion parameter GPT-3 (109× larger),
also by OpenAI, is estimated at 4.6 million USD. If the training costs were a
constant multiplier of the number of parameters (they are not), the training of
Whisper could be in the order of magnitude of 40k USD. The training data set
of Whisper was 168k hours of 16 KHz speech. This equates to a data set size of
19 TB, approximately half the estimated size of GPT3 about 45 TB of training
data. The recent success of attention in other domains has also been applied to
speech. Andrade et al. [1] developed a 202K parameter neural attention model,
we will refer to as ANAM, which also targeted at the Speech Command dataset.

3 Literature Review

In the 1970’s speech recognition relied on hand crafted features. This changed as
end to end differential systems were developed and new SOTA were reached [24].
These systems lack interpretability, while not important for speech recognition,
are of interest if the features triggering decisions can be exposed and validated.
With concept whitening [7] it is possible to concentrate (grounded) meaning in
single neurons to aid interpretability, but requires category labels, which may
not be available at training time, and adds complication as category labels “need
to address topics like the representation of concepts, the strength of membership
in a category, mechanisms for forming new concepts and the relation between
a concept and the outside world” [32]. Another approach is Deep Logic Models
which integrate deep learning and logic reasoning in an end-to-end differentiable
architecture [21]. This work leads onto Relational Reasoning Networks R2Ns [20]
which perform relational reasoning in the latent space of a deep learner archi-
tecture. However they suffer an explosion in memory needed as the number of
possible ground atoms grows polynomially on the arity of the considered rela-
tions. This underpins the useful implication of the AIKR. Shanaha [26] explores
perception of objects via computer vision, with abduction, but does not describe
how resource intensive the work was or if resource limits were reached. Johans-
son [14] investigates learning match to sample and the relationships more, less
and opposite. Noting the advantages that AGI has, allowing us to experiment
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with an agents internals, and giving the example where NARS layer 6 (variables
for generalisation) is shown to be needed for the work Hammer [11] does on
a system designed to only process data from perception, i.e. has no predefined
knowledge. Generalised identity matching, where a new example is matched to
a reference sample has been shown to be possible in NARS [15], and further
that the derived identity concept could generalise to novel situations. In unpub-
lished work Durisek [8] postulated speech recognition leveraging phonemes may
be possible with NARS.

4 Method

For simplicity we attempt to identify single whole spoken words, which has been
the focus of much research. We use a standard data set, the Speech Command
v2 [33], which contains 35 single word commands, 0–9, back, forward and other
confusing words (bird, bed). Each word had over 3000 recordings, each of 1 s in
duration or less. As in Whisper [24], we take 16 bit, 16 KHz audio, on which 80
bin MEL (logarithmic) spectrum was calculated every 10 ms. This produced 8000
(80× 100) energy intensity values per second, which were normalised. Utterances
shorter than 1 s were padded. This reduced the input dimension from 16000 to
8000, and is a standard pre-processing step in speech recognition. These 8000
values needed to be restructured to be passed into ONA. Data was presented to
ONA in the form of Narsese1 statements. As a simple example, we encode three
examples as Narsese instances, A, B and C with n properties each. The strength
of the property relationship to the instance was encoded in the truth value, i.e.
a property with a strength of 0.9 would be encoded as:

< {A} → [p1] > .%0.9% (1)
meaning “‘{A}’ has the property ‘p1’ with strength of 0.9”. It was then

asserted that {A} is a LABEL and {B} is a LABEL. e.g.

< {A} → LABEL > . (2)

And then the system was queried to see if C was labelled correctly:

< {C} → LABEL >? (3)

After a grid search we set the number of labelled examples per class to 2 (+
unlabelled example = 3). We note this is the smallest number that allows simi-
larity to be exploited. With this setup and synthetic and real data we attempted
to answer the following questions:

– RQ1: Can non axiomatic reasoning, which can cope with conflicting informa-
tion, be leveraged to perform speech recognition?

– RQ2: Is there a computational or performance?

For a baselines we used 1) general speech recognition pre-trained Whisper
models, and 2) the earlier mentioned ANAM model. We expected these to pro-
duce state-of-the-art results, at the cost of larger computation.
1 For Narsese see https://cis.temple.edu/∼pwang/NARS-Intro.html.

https://cis.temple.edu/~pwang/NARS-Intro.html
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Experiment 1 NARS, Computational Complexity. We expressed data in
the same manner as above, encoding each real world utterance as 8000 properties,
using the energy in each bin as the strength of a property as Narsese statements.
Energy values below 0.5 posed a problem, as they expressed absence of a feature
in the data, e.g. the word ‘Moo’, should not have high frequency ‘s’, or ‘t’ sound
in it. To enable ONA to track the absence of something, we negate the property
name, i.e.[mel16x9] becomes [NOTmel16x9], and subtract the truth value from
0.5, so that a low truth value 0.1, becomes 0.9. E.g.

< {U1} → [mel16x9] > .%0.1% (4)

is replaced with
< {U1} → [NOTmel16x9] > .%0.9% (5)

We took 3 random utterances of ‘one’ (from the 3893 possible), generated the
8000 values for each, then encoded these as Narsese statements. We then asserted
< {U1} → one > . For utterances 1 and 2, and then queried ONA to see if
utterance 3 is similar to the label < {Un} → one >?. All performance tests used
a 64 GB AMD Ryzen 5 3600 6-Core Processor running Ubuntu (no GPU).

Experiment 2 Nalifier, NARS, Synthetic Data. We take the same method
as experiment 1, but this time pass the statements into a python pre-processor,
Nalifier.py [12], that suppresses certain Narsese statements, and synthesises other
Narsese statements, which are in turn passed into ONA. The Nalifier has several
functions, if the statement received consists of an instance property statement
e.g. < utterancen → [propertyp] >. It collects all the properties for this new
instance, all the properties for all other instances in its memory and starts com-
paring them to find the closest. If an instance is found that the current instance
is similar to, it synthesises and emits new narsese. The new narsese is passed
into ONA (or more specifically NAL, the executable of ONA), and interpreted.
The success criteria is the same as experiment 1, we check to see if the unknown
instance is labelled correctly.

Experiment 3 - NUTS. We now introduce ‘NUTS’ : raNdom dimensional-
ity redUction non axiomaTic reasoning few Shot learner for perception. NUTS
consists of four modules, dimensionality reduction, conversion into narsese, a
narses preprocessor (the Nalifier), and open NARS for applications (ONA). We
used a random projection without sparsity, to reduce dimensionality, specifically
we pass the input 16k samples through MEL encoding, producing 8000 values.
These 8000 values were multiplied by a randomly generated 8000 ∗ D matrix,
reducing the dimensions to D. These D values were then used to generate nars-
ese as before, which is passed into the Nalifer which filers and generates narsese,
which is passed into ONA. Each class was tested in turn with the negative classes
consisted of the remaining 34 words in the speech command dataset. The num-
ber of learning examples of each word could be varied, along with ONA’s setting
for the size of the AIKR, the size of the reduced dimensionality space2, and the
2 A grid search showed 4 dimensions was reasonable.
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number of repeats. The matrix used for reduction was re-generated before each
run. Success was measured as the proportions of runs where the correct “is a”
relationship is identified.

5 Results

Experiment 1 NARS, Computational Complexity. As mentioned, base-
lines were OpenAIs whisper model, and Andrade’s et al’s ANAN. Whisper was
tested on 100 random utterances from each of the 35 words in the Standard
Commands data set, comparisons were case insensitive excluding punctuation.
As seen in Table 1, Whisper tiny model took an average of 0.8 sec per inference
(including encoding) with a performance of 58%. ONA was unable to accurately
identify the unknown utterance as being similar to anything in memory. This
may have been because the full structure of the speech was not exploited, but we
wished to avoid manual feature engineering. Analysis of the derived statements
showed that the instances were considered similar to the properties rather than
the instances, this was unexpected.

Table 1. Performance & Baselines: Whisper Tiny, Large, and ANAM

Exp1 Exp2 NUTS Large Tiny ANAM

Vocabulary Size 1 2 35 50257 50257 35

Training Samples 2 2 105 1e9 (est) 1e9 (est) 84843

Input Dimensions (1 sec audio) 16000 16000 16000 16000 16000 16000

Intermediate Dimensions 8000 200 4 8000 8000 9600

Inference Time (sec) 0.05 2615.00 0.02 43 0.80 0.095

Training Time (sec) 19 5700 16 7200

Performance Accuracy 0% 64% 68% 58% 93%

Experiment 2 Nalifier, NARS, Synthetic Data. The Nalifier took con-
siderable time to execute, to load and ’train’ 2 instances with 2000 properties
each, took 95 min. To load, encode and perform inference on a new example
took an additional 43 min. This version of the Nalifier contains a O(n2) algo-
rithm which executes each time a new property was observed for an instance.
After 3 instances, each with 2000 properties were added into NARS, (first pre-
processed by the Nalifier), NARS successfully determined that instance C, the
unlabelled instance, was similar to instance A. This showed that speech recogni-
tion is possible with NARS, and that the Nalifier is needed. We did not attempt
8000 properties, or measure accuracy due to execution time.
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Experiment 3 NUTS. We were surprised randomly reducing dimensions
worked, even for small numbers of training examples. For these experiments
the best performance was obtained with 4 dimensions, when the unknown class
was labelled 64% of the time, compared to 2.8% for random performance, see
Table 1. This compared favourably with Whisper Tiny’s 58%3, but far below the
ANAM’s state of the art 94%. Training was label and compute efficient, only
needing 2 training samples per class, and inference time was 0.02 sec (including
encoding and dimensionality reduction), far below that experiment 2’s 43 min,
showing that dimensionaility reduction is the source of the computational effi-
ciency.

We conclude that perception, specifically speech recognition is possible with
NARS. However we note performance collapsed certain words such as Bird, and
Bed, yet ANAM’s confusion matrix shows it is possible to distinguish them. This
may be due to a limitation of NARS, or information loss in the dimensionaility
reduction. Figure 1 shows the overall performance of a random generated matrix,
a random word, and reduced dimensions 2–10, repeated 3500 times (100 times
per class). Figure 2 shows performance increases with the number of examples,
raising from 64% at 2 examples to 90% at 20.

Fig. 1. Accuracy as a function of the
reduced dimension embedding. Number
of examples per class = 2.

Fig. 2. Accuracy as a function of the
number of examples. Reduced dimen-
sions = 4.

6 Discussion

RQ1: Can non axiomatic reasoning, which can cope with conflicting informa-
tion, be leveraged to perform speech recognition? Yes, we demonstrated that
NARS (along with the Nalifier and dimensionality reduction), can interpret
speech data in a meaningful way, obtaining 64% accuracy with only 2 train-
ing examples on a 35 class problem.

3 Whisper leverages language models greatly improving multiword performance.
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RQ2: Is there a computational advantage? A crude comparison of inference time
on CPU suggests they are in a similar order of magnitude. But as Whisper runs
efficiently on GPU, and NUTS is a mix of C and Python, a strict comparison of
counts of each operation type, could not be completed in the time, and it is left
as further work.

We started by discussing the term ‘Artificial Intelligence’ and resource con-
sumption. While we did not produce a system with same or better performance
with fewer resources, if we had done so would it be more ‘Intelligent’? We would
argue it would not, as the catalyst is not part of the described algorithm. We
suspect building ‘intelligent’ systems (as in ‘thinking machines’) will remain elu-
sive until the terms skill and intelligence are dis-entangled, and the catalyst for
improvement is isolated and automated.
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Abstract. Human behavior is conditioned by codes and norms that con-
strain action. Rules, “manners,” laws, and moral imperatives are exam-
ples of classes of constraints that govern human behavior. These sys-
tems of constraints are “messy:” individual constraints are often poorly
defined, what constraints are relevant in a particular situation may
be unknown or ambiguous, constraints interact and conflict with one
another, and determining how to act within the bounds of the relevant
constraints may be a significant challenge, especially when rapid deci-
sions are needed. General, artificially-intelligent agents must be able to
navigate the messiness of systems of real-world constraints in order to
behave predictability and reliably. In this paper, we characterize sources
of complexity in constraint processing for general agents and describe a
computational-level analysis for such constraint compliance. We identify
key algorithmic requirements based on the computational-level analysis
and outline a limited, exploratory implementation of a general approach
to constraint compliance.

Keywords: Constraint compliance · Cognitive architecture

1 Introduction

Rules, social norms (e.g., “manners”), laws, and moral imperatives are exam-
ples of various classes of constraints that govern human behavior. Systems of
constraints are “messy:” individual constraints are often poorly defined; the
constraints relevant in a particular situation may be unknown or ambiguous;
constraints interact and conflict with one another; and determining how to act
rapidly within the bounds of relevant constraints may itself be a significant chal-
lenge. Yet humans routinely and robustly overcome the messiness of conforming
to many simultaneous and often ill-defined constraints.
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Notably, humans can also rapidly adapt their task performance to new con-
straints. A driver who has always driven on the left can, with just a little delib-
eration and practice, shift to driving on the right side of the road. A traveler has
the ability to recognize and to adapt to overt local customs related to greetings,
meals, etc. Humans can quickly and robustly adapt to novel constraints, even
when those novel constraints interact with familiar constraints and tasks.

Today’s AI systems, in contrast, generally elide or ignore the messiness of
complying with real-world constraints. They often encode a designer’s interpre-
tation of constraints (e.g., by knowledge engineering or learning from a human-
defined policy) and are designed for limited, pre-specified operating contexts [13].
These systems conform to engineered constraints unfailingly but inflexibly. The
encoding of constraints (along with designer assumptions) is tightly integrated
with task specifications, making it difficult for the systems to adapt to new
operating environments. For example, compare the relative immediacy of human
adaptation to driving on their “opposite” side of the road for the first time vs. an
autonomous driving system as trained today or the present limitations of large
language models to conform to ethical guidance when producing responses [20].

These approaches can be acceptable for narrow AI but, as human intelligence
suggests, a general artificial intelligence requires an ability to reason about its
constraints (and conflicts), resolve ambiguity, determine how it should proceed
given awareness of constraints, and be rapidly adaptive to new constraints. We
introduce a broader approach to constraints, constraint compliance, intended to
provide an agent with the capacity to comply with real-world constraints.

We consider the computational requirements for this more comprehensive
approach to compliance to systems of constraints, emphasizing general intelli-
gence. That is, we seek to identify a computational approach that is constraint-
compliant, domain general (not specific to an application or a task domain), and
robust to the complexities that “real world constraints” introduce. We outline
sources of “messiness” relevant to constraint processing and present a compu-
tational analysis of an overall constraint-compliance process, enumerating five
distinct types of processing steps the agent must make. We then outline an
initial algorithmic-level exploration of a constraint-compliance process. Finally,
based on the analysis and exploratory implementation, we identify four algorith-
mic challenges that require additional analysis and research in order to realize
comprehensive constraint compliance.

2 Sources of Complexity in Constraint Processing

Here, we enumerate specific sources of complexity and challenge for comprehen-
sive constraint compliance. This “messiness” derives from many sources spanning
the environment, the agent’s task(s), its internal capabilities and assumptions,
and the specification of constraints themselves.

We illustrate using examples from Sudoku-puzzle solving and automobile
driving. Sudoku is a canonical constraint satisfaction problem (CSP) [12] and
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offers an effective contrast between classical constraint satisfaction [4] and the
more comprehensive account of constraint processing we examine here.1

Automobile driving offers a specific, familiar domain in which the real-world
challenges of comprehensively complying to constraints arise; constraints abound
in driving. This choice of domain is illustrative only: our goal is to develop a
general approach to constraint compliance, not one specific to a single domain.

2.1 Partial Observability

In Sudoku, the puzzle state is fully available. The rules of the game (the con-
straints) can be readily applied after each move. Agents in real-world environ-
ments cannot generally sense everything and their actions often have uncertain
outcomes. While partial observability and uncertainty have broad implications
for agent reasoning [17], they impose specific demands for constraint compliance.

As one example, student drivers in the US are taught to “maintain a 3-
second distance when following on dry payment.” Unlike a speed limit, where a
speedometer provides an immediate gauge of one’s speed, fully complying with
this constraint requires that the driver visually attend to and continually assess
the distance and current speed of their vehicle vs. the one in front and adjust
speed to maintain the minimum distance.2 Because not all constraint-relevant
parameters are directly accessible to the agent, the agent must take action to
determine the compliance of its behavior with that constraint.

2.2 Dynamic, Fail-Hard Environments

Dynamic environments compound the sources of messiness. Generally, dynamics
amplifies the need for satisficing algorithmic solutions [8,19]. Algorithms must
(minimally) be responsive to the dynamics of the environment. A driver cut off
in traffic by another car cannot pause to reason about all the potential instan-
tiations and implications of its constraints in this unexpected situation, it must
continue to drive and manage its constraint compliance over time. The specifi-
cation of constraints themselves can also change due to environment dynamics
(e.g., new traffic laws). Finally, interactions between constraints (below) may
only become evident as a dynamic situation unfolds.

2.3 Abstract and Poorly-Defined Constraints

Real-world constraints are often ambiguous, abstract, and/or incomplete in their
definition, giving rise to the challenge of interpreting and operationalizing such
constraints [21]. In puzzles like Sudoku, however, constraint definition is unam-
biguous. Terms (cell, column, row) have immediate and direct correspondence

1 More recent approaches to constraints extend the coverage of classical approaches
but do not span all the forms of messiness we consider [18].

2 Some newer cars offer an indicator for travelling too closely. Thus, with a different
embodiment, this constraint no longer requires active measurement.
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to the representation of the puzzle. The constraints (or rules) defining the puzzle
are also unambiguous.

In contrast, many constraints in driving are abstract (“drive defensively”)
or ambiguous (“do not follow too closely”). Terms used in constraints require
a mapping onto one’s internal representation that is not always consistent from
person to person. “Use caution near pedestrians” depends on how one under-
stands and applies both “caution” and “near” and perhaps also “pedestrian.”

It may seem possible to overcome this source of messiness by directly encod-
ing the “meaning” of constraints into an agent. However, resilience and robust-
ness in open-ended environments requires disintermediation of the encoding and
interpretation of constraints. Attempting to specify in advance how the agent
should interpret constraints in every situation is likely to fail when the agent
(inevitably) encounters a situation not anticipated by a system designer.

2.4 Implicit Context Specification

The definitions of real-world constraints often imply additional parameters or
conditions rather than explicitly defining them. Most importantly, constraint
specifications typically omit the context(s) in which they should apply. By “con-
text,” we mean a set of situations that share common, salient features. The
“automobile driving” context includes cars, roads, traffic laws, traffic signals,
etc. Similar but different contexts can have constraints that prescribe very dif-
ferent behaviors. For instance, “do not pass on the right” is a constraint relevant
in countries where vehicles are driven on the right side of the road, but is not
apt (most of the time) for countries where vehicles are driven on the left.

For Sudoku, there is an implicit but single context. Thus implicit specification
poses no problem to the classical approach to constraints.

2.5 Interactions and Conflicts Among Constraints, Tasks, and
Contexts

Interactions and conflicts among constraints and between task(s) and constraints
can arise frequently. An accident or road construction causes re-routing of traffic
into normally oncoming traffic lanes. A text message notification draws attention
when attending to the road is required (sometimes by law). To what extent
should one obey traffic laws when transporting someone in dire medical distress?
The specific instantiation of constraints grounded within a given situation will
indicate competing and sometimes conflicting choices for the agent.

The design of Sudoku ensures that constraints are collectively coherent (sim-
plified by the single context). Generally, classical approaches to satisfying con-
straints only provide solutions when sets of constraints are coherent, obviating
conflicts. More recent approaches support “soft constraints” [15] which support
prioritization of constraints when conflicts arise; the overall set of constraints
remains coherent when prioritization is taken into account.

In real-world situations, conflicts cannot always be resolved via a priori pri-
oritization; an agent must sometimes knowingly violate a constraint. If a car is
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cut off in heavy traffic, it is probably more important to maintain speed and
slowly build distance between the car ahead than to sharply brake in order to
regain compliance with the following-distance constraint. From the point of view
of constraint compliance, the agent is often likely to be in situations, imposed
by dynamics directly but also sometimes at its choosing given the dynamics, to
violate some constraints and to repair violations as the evolving situation allows.

Fig. 1. At the computational level, the purpose of constraint compliance is to ensure
that decision making takes constraints relevant to the agent’s situation into account.

3 Computational-Level Analysis

We now present a computational-level account of the information processing
tasks necessary for constraint compliance given the many sources of “messiness”
above. A computational-level analysis emphasizes what steps are required to
achieve constraint compliance and identifies requirements for how the capability
may be realized at the processing and representation (“algorithmic”) level [14].

3.1 Functional Role

The functional role of constraint compliance is to modulate agent decisions (and
thus behavior) so that constraints relevant to the current situation inform agent
choices. In Fig. 1, the agent’s goal-focused decision process (blue) generates can-
didate choices and selects among them. The primary input to this decision pro-
cess is the current situation (including environment state, external goals, history,
etc.) and the output is a decision. A decision could be a commitment to a long-
term course of action (e.g., a plan), an intermediate subgoal, or an immediate
action. Over time, the sequence of decisions produces behavior (e.g., “driving”).
We illustrate constraint compliance (green) parallel to the goal-mediated deci-
sion process of the agent and external constraints as a distinct input. This sep-
aration is for illustration only; at the algorithmic level, solutions may integrate
constraint-compliance with goal-mediated decision processes.

As suggested by the figure, the agent commits to its decisions from a (poten-
tially very large) space of candidate choices. At the computational level, we
do not assume that the agent has an explicit representation of this space; in
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the figure, the cloud represents a conceptual space from which a specific deci-
sion might be drawn. For example, the decision process might choose actions
based on a learned policy, where the space is implicit in mappings from states
to actions.

Functionally, constraint compliance augments candidate choices produced by
the goal-mediated decision process by indicating the acceptability/desirability of
the candidates with respect to relevant constraints. The figure shows parts of
the candidate space that are required (green), prohibited (red), desirable (+),
and undesirable (-) choices. Because constraints can conflict (Sect. 2.5), some
candidates are labeled as both desired and undesired (±); however, conflicts can
occur in any combination. The selection process (green/blue) now evaluates the
candidates and the desirability of those candidates.

Fig. 2. Simple process model for constraint compliance.

Constraint compliance can also add new candidates. The grounding pro-
cess can suggest candidates to take new actions (e.g., measurements to evaluate
individual constraints; Sect. 2.1). In order to mitigate conflicts in constraints,
the selection process may produce new candidates as well. Thus, in contrast
to classical constraint satisfaction (where the application of constraints reduces
choices), constraint compliance can produce additional choices. It also enables
the agent to choose courses of action that are not necessarily consistent with all
constraints.

3.2 Processing Steps for Constraint Compliance

What computational tasks are performed by the constraint-compliance process?
Figure 2 illustrates a high-level process. The specific sequence of steps illustrates
both a simple process model and how we are exploring constraint compliance at
the algorithmic level and integrating it with decision making (see Sect. 4).

The agent’s internal representations of constraints derive from real-world
constraints defined externally (e.g., a law). Internalization results in encoding
of constraints in agent memory. Next, Context Mapping compares encoded con-
straints to the current situation, identifying what constraints are (potentially)
relevant in a given situation. Context mapping results in a set of situation-
relevant but abstract (not grounded) constraints.

Grounding then maps abstract constraints to specific objects in the envi-
ronment. In our explorations to date, both complete and partially-grounded
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constraints are re-represented as goals in order to exploit an existing agent’s
planning capability (Sect. 4). Planning generates candidates for Selection which
is now extended with an ability to assess the acceptability of decision candidates
based on the constraints. When conflicts arise, selection is augmented with Con-
flict Mitigation, which may lead to the generation of alternative courses of action.
Below, we further describe these steps, focusing especially on how “messiness”
motivates and/or introduces additional requirements for individual steps.

Internalize Constraints. Real-world constraints (typically) are defined exter-
nal to the agent. Thus, an initial step in constraint compliance is to interpret the
external constraint; that is, to map the external representation of the constraint
to concepts as represented within the agent.

Abstract and poorly-defined constraints (Sect. 2.3) introduce challenges to
simple encoding. The agent may not possess internal representations that align
with the conditions in the external constraint and thus algorithmic approaches
to internalization will entail methods that allow an agent to assess mappings
between external conditions and internal representations.

Identify Situational Context(s). Conforming to real-world constraints
requires an agent to recognize which constraints are relevant to its situation.
However, the applicable situation (or general characterization of situations: con-
texts) are often implicit in the specification of constraints (Sect. 2.4). An agent
can often learn associations between contexts and constraints through expe-
rience (which can include instruction) but a core challenge is that constraint
specifications themselves do not (usually) specify applicable contexts.

A second challenge results when the composition of contexts interact in ways
that make previously learned mappings inapt or invalid (Sect. 2.5). Anticipating
and evaluating all possible compositions of all possible contexts is not feasi-
ble. Thus, general intelligence requires the capacity to consider and to evaluate
constraints in novel contexts as behavior is being generated.

Context recognition itself is a challenge [6]. For an algorithmic implemen-
tation of constraint compliance, all that is needed is that the agent recognize
“this constraint is relevant in my current situation.” However, a full solution to
constraint compliance appears to require context recognition processes as well.

Instantiate Constraints in A Situation (Grounding). As an agent behaves
in its environment, it must determine how constraints might apply in its current
situation. Grounding is distinct from internalization and context identification;
it requires that the agent shift from general consideration of a constraint to
determining if/how it should be instantiated in the agent’s current environment.

Grounding is often straightforward. However, partial observability (Sect. 2.1)
and abstract constraints (Sect. 2.4) can require a search over potential instantia-
tions of a constraint, rather than an immediate mapping. Thus, as constraints are
expressed more abstractly and generally, the computational demand on the agent
to determine how that constraint may apply in the current situation increases.
When new information is needed to complete grounding (e.g., a measurement as
in Sect. 2.1), new candidate choices should be generated (Sect. 3.1).
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An agent’s embodiment may lack an ability to directly observe features
needed to instantiate a constraint. Nonetheless, the agent should still attempt
to respect applicable constraints. Thus, grounding requires prospective instanti-
ation with incomplete information.

Integrate Constraints in Decision-Making (Selection). At a minimum,
the agent’s selection process must take into account both agent goals and con-
straints for constraint compliance. When the set of applicable constraints are
fully grounded and present no conflicts, the selection process is straightforward.

Conflicts (below) and partial grounding complicate selection. The selection
process must be sensitive to both taking action to find an instantiation for a
partially grounded constraint and also the potential costs and risks associated
with that search. Defining algorithmic approaches to selection in the presence of
partial grounding is a significant novel challenge.

Identify and Mitigate Conflicts. When there are conflicts in the accept-
ability and desirability of candidate choices, the agent must either 1) choose
one of the options given the conflicting choices or 2) attempt to identify new
choices that resolve or mitigate the conflicts. Specific strategies could include
attention/inattention (ignoring some constraints), prioritization of constraints,
and replanning. A primary algorithmic-level challenge is to resolve and mitigate
conflicts rapidly, given bounded rationality in a dynamic environment (Sect. 2.2).

4 Exploratory Algorithmic-Level Prototype

In parallel with the top-down computational-level analysis, we have begun bot-
tom-up prototyping as well, focusing to date on algorithmic approaches to
grounding, selection, and conflict mitigation. We use Soar [11] as the target
implementation level. Soar both constrains and informs definition at the algo-
rithmic level. We introduce further design constraint at the algorithmic level
by building on an existing agent designed to interactively learn tasks [10,16].
The prototype is compatible with this agent’s a priori capabilities for interpret-
ing language, planning task actions, executing plans, and learning from human
instruction.

Grounding: The prototype builds on language grounding already part of the
agent, which can learn recognition structures for abstract goal specifications [10]
and maintain consistent grounding across perceptual changes [16]. The primary
focus is to explore how to support partial grounding of constraints. The agent can
now indicate that some actions are desirable (in Selection; see below) because
they lead to further information that could potentially complete the ground-
ing. In this way, the agent is biased towards choosing candidates that lead to
measurement actions, as suggested in Fig. 1.

Selection: The original agent uses an explicit goal representation to determine
what to do next (typically via search-based planning, although it can ask for help
from an instructor as well). In our initial implementation, as shown in Fig. 2,
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we integrated constraint-compliance with selection by having the agent represent
grounded constraints as goals (e.g., a speed limit constraint would be represented
as a goal for speed to be less than the limit). This approach leverages the agent’s
planning capability. Candidate evaluations (from grounding) are implemented
as Soar preferences for selecting plans, which maps selection directly onto an
implementation/architecture-level capability of Soar. In the absence of conflicts
(below), planning provides a solution that satisfies the (grounded) constraints,
measurement actions (from partial groundings), and task actions.

Conflict Mitigation: Consider two conflicting constraints relevant to driving in
a medical emergency. The lawful speed limit and a general directive to preserve
human life apply. These constraints can result in a conflict over the desired
speed. Because plan choices are mapped onto Soar preferences, Soar responds to
conflicting preferences with an impasse, a conflict detection system already part
of Soar. Thus, we have also mapped the trigger for conflict mitigation onto an
implementation-level process. Generally, resolving conflicts requires additional
knowledge (e.g., in this case, some sense that preserving life is more important
than respecting the speed limit) which can include various ways to include values
in assessing choices [1,7].

5 Discussion and Implications

While limited and preliminary, the initial prototype highlights examples of rep-
resentation and process (algorithmic-level choices) and how these choices may
interact with the implementation level. We now consider implications for future
work at the algorithmic level to realize general constraint compliance.

Online, Incremental Learning: For an AGI, the set of contexts and con-
straints is potentially huge, it is infeasible to prepare for every contingency, and
dynamics often demands rapid response. Together, these conditions point toward
algorithmic solutions that employ online, incremental learning. This implication
mirrors human learning and is consistent with the transition from more deliber-
ate and explicit (System 2) to more implicit and automatic (System 1) reasoning
[9]. However, it contrasts with recent approaches that emphasize pre-training to
ensure conformance to various operational and safety constraints [5].

Senses of Familiarity, Novelty, and Surprise: Familiarity, novelty, and sur-
prise are important signals in human (and animal) regulation of behavior [2].
Realizations of familiarity, novelty and surprise may be useful for meta-cognitive
regulation of constraint compliance in task performance. An open question is
whether a sense of familiarity (and other signals) are best realized in the imple-
mentation level (e.g., extension to Soar) or at the algorithmic level.

Anticipation Based on Partial Information: Near-term anticipation of
future states is central to functional and neurological accounts of human intel-
ligence [3]. Humans readily anticipate the potential impact of constraints on
behavior and adapt behavior in advance of a potential constraint violation. Our
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exploration identified a need for anticipation in grounding. An agent needs strate-
gies to decide which potential groundings to attend to, given many potential
groundings (with many implications). Indicators of potential threats to con-
straint compliance would provide a coarse attention mechanism to bias ground-
ing processes toward more important constraints.

Domain Knowledge: Choosing to prioritize some constraints over others
requires general knowledge of the world. Having such knowledge may be as
important to the results of constraint compliance as the algorithms that real-
ize its functions. This dilemma points to one of the rationales for adopting an
agent that can learn from instruction. Because research agents will often lack
knowledge, our agent can actively seek input to gain missing knowledge about
conflicts. While this does not resolve the dependence of constraint compliance on
general knowledge, it does provide a means to explore algorithmic realizations
in a way that makes the required domain knowledge explicit and transparent.
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Abstract. Linguoplotter is a distributed and chaotic architecture
where an entanglement of different processes interact to generate a text
describing a raw data input. This paper describes recent additions to
the architecture whereby a greater degree of language comprehension is
used to improve the coherence of generated text. Some examples of the
architecture operating are considered, including where it performs well
and generates a good quality text; and instances where it gets trapped in
loops that either prevent an output from being generated or cause a lower
quality output to be produced before there is a chance to find a better
alternative. Finally, ideas from the program Metacat are considered
which could allow the program to observe its own processes and become
a more human-like intelligence.

Keywords: NLG · NLU · Distributed Architecture

1 Introduction

Evidence from linguistics, psychology, and neuroscience shows that human lan-
guage production and comprehension are intertwined with and influence one
another [5]. Moreover, when people write, they re-read what they have writ-
ten; make adjustments; and stop to consider what to write next in a cycle of
engagement and reflection [7]. It makes sense, not only that people do interweave
comprehension with production, but that they need to do so, for it is important
to check that what one says or writes can be understood by the intended recip-
ient. This will be just as true for an artificial person.

The architecture of Linguoplotter allows an intermingling of different pro-
cesses including: perception of input; generation of text that describes it; com-
prehension and evaluation of text; and the decision to output a text. These are
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not separate processes running in parallel, but entangled processes that inform
one another: just as humans use the projection of narrative frames to understand
new situations [8], Linguoplotter’s narrative frames guide how it conceptual-
izes its input. Furthermore, recent changes to the architecture increase the degree
to which language comprehension affects generation of text, with the recogni-
tion of patterns in text influencing how it combines and arranges sentences into
a more cohesive whole. This paper discusses these recent changes and also con-
siders how a greater capacity for introspection could result in greater, more
human-like intelligence.

2 A Simple Problem Domain

Linguoplotter is developed and tested with examples from a toy domain: map
sequences of temperature changes on a fictional island (cf Fig. 1). The domain
is ostensibly plain and simple, but human-written descriptions demonstrate a
variety of phenomena including conceptual metaphor (a spike in warmer tem-
peratures—1c); anthropomorphism (everywhere will enjoy temperatures in the
20s—1b; connections drawn between the end and the beginning (falling back on
Sunday – 1b); and self-referential text (it’s a tale of two halves—1c); as well as
more mundane, matter-of-fact language (cool throughout the weekend—1a).

Fig. 1. Some sequences of maps used to test the architecture.

The architecture should be seen, not as an “expert system”, but as an early
prototype which could in future be applied more widely. Little knowledge engi-
neering is required in this domain, thus the focus is on the fundamental processes
involved in perception and language, not on domain-specific details.
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3 The Architecture

The Architecture of Linguoplotter borrows much from the architecture of
Copycat [4] and related models of analogy-making [2], in which micro-agents
called codelets run stochastically, making incremental changes to structures in a
shared workspace. In Linguoplotter, codelets selected from the coderack make
incremental changes to networks across many spaces in the bubble chamber.

Fig. 2. Some of the structures involved in describing an input. Orange nodes at the
top of the diagram belong to the concept network. Solid arrows connecting them are
links that spread activation. Each box is either a frame or an output space. Dotted
lines connecting items in different spaces are correspondences between items. Not all
structures are shown in full detail for sake of clarity. (Color figure online)

3.1 The Bubble Chamber

As the program runs, structures are incrementally added to the bubble chamber
which identify patterns in the input; match them with abstract representations
in long-term conceptual knowledge; and generate a text which describes the
input. The structures built in the bubble chamber are based on the simplex
networks of Fauconnier and Turner [1]. A simplex network matches elements
in an unstructured input space with slots in a structured frame and has an
output space containing a blend of content from the input space and structure
from the frame. In Linguoplotter, frames provide the syntax and morphol-
ogy of sentences describing the input. Figure 2 illustrates an example where
frames are matched to part of the input to generate a sentence that describes
it. Each simplex network is contained inside a view, which must only contain
non-contradictory structures.

Each structure, be it a chunk grouping together similar nodes, a label or rela-
tion assigning a property to a chunk, or a correspondence matching a structure
in one space to a structure in another is first suggested by a suggester codelet and



Self-Comprehension for More Coherent Language Generation 331

then built by a builder. Evaluators assign a quality score to a structure based on
how representative it is of a concept and how much it contributes to the network
around it. Selectors choose stochastically between competing structures.

3.2 The Worldview and Focus

As sentences and longer pieces of text are built they can be promoted into the
worldview. The text in the worldview is a candidate for publication. World-
view setting codelets are responsible for deciding between candidate texts and
publisher codelets decide whether or not to output a text.

The focus is a temporary sub-goal selected from among these simplex net-
works that encourages activity towards a single network, so that processing can
at times be more direct and less broad. Focus setting and un-setting codelets
determine which simplex network should be in focus and view-driven factory
codelets spawn codelets that suggest structures to fill in the network.

3.3 The Coderack

Codelets are chosen from the coderack, a stochastic priority queue where a
codelet’s urgency determines the likelihood it is selected. Once a codelet has
run, it spawns a follow-up codelet which replaces it on the coderack. This results
in self-sustaining streams of codelets that continue performing operations in the
bubble chamber until a text is output.

3.4 Satisfaction and Randomness

The architecture is stochastic and distributed with no centralized decision maker:
competitions between alternative structures in the bubble chamber and codelets
on the coderack decide which texts are promoted into the worldview and pub-
lished. There is a degree of randomness in codelet and structure selection which
is determined by the program’s satisfaction score. This score is based on the
temperature mechanism of Copycat but an alternative name is used to avoid
confusion with the temperatures on the maps the program describes.

When satisfaction is high (there are good quality and coherent structures
matching the input to a piece of text) the program becomes more deterministic
so that existing simplex networks can be completed and the resulting text output.
When satisfaction is low, the program becomes more random so that a wider
range of possibilities can be explored.

While there is a certain degree of randomness when it comes to micro-level
selection between individual structures or codelets, the program tends to con-
verge upon a narrow range of macro-level behaviours and textual outputs. The
satisfaction score S is calculated:

S = max(G,F ) (1)
G = aI + bV + cW (2)
W = dC1 + eC2 + fC3 (3)
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– G: a measure of the general quality of all structures in the bubble chamber.
– F : the quality of the view in focus.
– I: the quality of the structures are built on the raw input.
– V : the average quality of all views in the bubble chamber.
– W : the quality of the worldview.
– C1, correctness: the quality of input structures in the worldview.
– C2, completeness: the proportion of the raw input described in the worldview.
– C3, cohesiveness: the quality of relations connecting worldview sentences.

The qualities of individual structures within the spaces and the quality of
views is calculated by individual evaluator codelets. Full details are available in
the Python implementation of Linguoplotter available on GitHub1.

The coefficients a to f are real numbers. The outputs discussed in this paper
were generated using the values (a = 0.4, b = 0.2, c = 0.4, d = 0.3, e = 0.2,
f = 0.5). A discussion of tests using different weights and the effect they have
on the program’s behaviour is provided in Wright and Purver [9].

4 Pattern Recognition on Many Levels

Earlier versions of this program [9] have focused on describing states (single
maps) and events on sequences of maps. This latest version of the architecture
attempts to recognize patterns between events and sentences so that it can build
more coherent narratives describing a larger portion of the input.

This involves a greater deal of self-comprehension than earlier versions of the
program, which only built and evaluated structures and sentences representing
patterns discovered on the input maps. The latest version of Linguoplotter
also uses its frames to recognize patterns between sentences so that a cohesive
text can be built out of them. These new frames recognize patterns such as par-
allelism, an ordering along a particular dimension, or disanalogy. These frames
serve to classify pairs of sentences so that they can be written in an appropriate
order and connected with a relevant conjunction. For example:

– Temperatures will be cold in the country between friday and saturday then
temperatures will be cool in the country between saturday and sunday. (Order-
ing in time).

– Temperatures will increase in the south between friday and saturday and
temperatures will increase in the north between friday and saturday. (Parallel
times).

– Temperatures will be cool in the country between saturday and sunday
but temperatures will be cold in the country between friday and saturday.
(Disanalogy—same verb describing different temperatures).

In recognizing patterns between sentences in order to further develop them
as texts, Linguoplotter intertwines more fully the processes of language pro-
duction and language comprehension.
1 https://github.com/georgeawright/linguoplotter.

https://github.com/georgeawright/linguoplotter
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5 The Program’s Behaviour

Tables 1 and 2 show the range of outputs that the program generates when run
multiple times with the sequences in Figs. 1a and 1c. The tables show the average
satisfaction score for each text, the average time taken to generate the text (in
codelets run) and the frequency with which it produces that text. The program’s
symbolic nature allows us to look inside and understand how these texts were
generated and why it sometimes fails to produce a good output.

Table 1. Outputs for sequence 1a. Conjunctions in bold for clarity.

Text Satisf Time Freq

Temperatures will be cold in the country between friday and saturday then
temperatures will be cool in the country between saturday and sunday

0.842 7141 4

Temperatures will be cool in the country between saturday and sunday but
temperatures will be cold in the country between friday and saturday

0.839 6950 2

Temperatures will be cold in the country between friday and saturday then
temperatures will be cold in the country between saturday and sunday

0.786 4833 1

Temperatures will be cold in the country between friday and saturday and
temperatures will be cool in the country between saturday and sunday

0.691 8209 2

Temperatures will be cool in the country between saturday and sunday and
temperatures will be cold in the country between friday and saturday

0.578 6381 3

Temperatures will be bad in the country between friday and saturday and
temperatures will be cool in the country between saturday and sunday

0.537 9821 1

Temperatures will be cool in the country between saturday and sunday 0.4 6483 14
Temperatures will be cold in the country between friday and saturday 0.4 5827 22
Temperatures will be cold in the country between saturday and sunday 0.304 1603 1

5.1 An Example of the Program Running

This is a sample of the events that took place inside Linguoplotter2 when it
was given the input from Fig. 1a and the random seed 0. Numbers indicate the
time measured by the number of codelets run.

0–400 Processing is dominated by chunk building on the input resulting in 3
chunks, each covering the entire island at a different point in time. Similar
temperatures across the island allow high quality chunks of that size.

124 The first label-builder codelet runs attaching the label Sunday to a small
chunk. Labels built at this early stage are attached to chunks that will even-
tually be superseded and removed from the bubble chamber, but their con-
struction leads to the activation of relevant concepts.

752–784 An adjectival phrase frame is set as focus and as its slots are filled in,
the program experiences one of its first spikes in satisfaction.

2 Using the version at https://github.com/georgeawright/linguoplotter/tree/v2.0.0.

https://github.com/georgeawright/linguoplotter/tree/v2.0.0
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Table 2. Outputs for sequence 1c. Conjunctions in bold for clarity.

Text Satisf Time Freq

Temperatures will increase in the north between friday and saturday and
temperatures will decrease in the south between saturday and sunday

0.709 11726 2

Temperatures will increase in the south between friday and saturday and
temperatures will decrease in the south between saturday and sunday

0.684 14331 1

Temperatures will increase in the south between friday and saturday and
temperatures will increase in the north between friday and saturday

0.644 17751 1

Temperatures will increase in the north between friday and saturday 0.35 10737 4
The warm temperatures will move from the south northwards between
friday and saturday

0.35 12952 3

The warm temperatures will move from the north southwards between
saturday and sunday

0.347 11163 1

Temperatures will decrease in the north between saturday and sunday 0.26 9712 2
Temperatures will decrease in the south between saturday and sunday 0.233 9387 3
None 0.109 20000 33

1000–2000 Simplex networks with adjectival, in-location, and between-
times frames are completed and those frames become fully active. They
spread activation to frames, for which they can be a component such as be.

2658 A worldview setter sets a recently completed be sentence as worldview.
Now that the worldview has been set, satisfaction is permanently higher.

2881 A view suggester runs. Since the be frame has a high activation and only
one instance, it suggests another simplex network based on the be frame.

2904–2949 A focus setter sets the newly built view as focus. Codelets matching
sub frames and input structures to its frame increase its quality and cause a
spike in satisfaction which subsides when the focus is unset.

3326 A view with a disanalogy frame is built.
3367 A garbage collector codelet runs and deletes the disanalogy view which

had a low quality score because it was empty.
3000–5000 Worldview setters occasionally run causing the worldview to alter-

nate between the two be sentences.
4903 A view with a temporal-order frame is built.
4930 A publisher codelet runs but does not publish because the focus is occupied

by the temporal-order view.
5411 The word then is built in the temporal-order view’s output space.
5573 A worldview setter selects the recently completed temporal-order view.
5743 A publisher codelet runs and publishes the worldview.
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Fig. 3. Linguoplotter’s satisfaction and the activation of frame types over time.

5.2 Emergent Pipelines

Although the architecture is not hard-coded to follow a modular data-to-text
pipeline, “pipelines” do to some extent emerge out of the knock-on effects of
codelets and the spreading of activation between concepts. A bottom-up pipeline
begins with codelets searching for disconnected structures in the bubble chamber.
These suggest structures which, when built, spread activation to relevant con-
cepts. This triggers top-down processing whereby codelets search for instances of
active concepts or for structures to fill in the slots of unfinished simplex networks.

Overall, a pipeline also emerges which begins with lower-level pattern recog-
nition and is followed by increasingly high-level structures from the level of
phrases, to that of sentences, and on to cohesive texts. This is demonstrated
by the changing activation of concepts and frames shown in Fig. 3. This is not
dissimilar to the data-to-text pipeline of Reiter [6], but it is less rigid and can
be interrupted by top-down processes which encourage reversion to an earlier
stage. The collective behaviour of codelets thus results in a more autonomous
and flexible alternative to programs following a pre-specified algorithm.
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5.3 Problems the Program Encounters

As shown in Tables 1 and 2, the program does not always perform as well as
in Sect. 5.1. Certain problems recur: often the program struggles to zero in on
a good representation of the input; other times, it gets dominated by publisher
codelets and outputs a text before allowing itself to find better alternatives.

Fruitless Loops. In 33 out of 50 runs when describing sequence 1c, the program
fails to publish an output before timing out after 2× 104 codelets.

When the program runs with sequence 1c and random seed 0, it performs
well for approximately the first 5000 codelets, generating phrases and ultimately
promoting a sentence (temperatures will increase in the north between Friday
and Saturday) into the worldview. Unfortunately, it concurrently generates an
identical sentence. After this point, codelets are more likely to instantiate frames
for combining sentences, but are unable to complete the slots in the frames,
because it is not possible to conjoin a sentence with itself. The program can
identify networks that cannot be completed and tends to delete them, but it
shortly after tries to recreate similar networks unaware that it is repeating itself.
The amount of attention paid to an impossible task prevents the program from
finding other sentences before it times out.

Premature Publication. Sometimes the program makes the decision to pub-
lish a text even while it is half-way through generating a potentially better text.

When the program runs with sequence 1a and random seed 16, after a sen-
tence (temperatures will be cold in the country between saturday and sunday)
has been added to the worldview at time 1436, a publisher happens to run at
1536 and because the focus is empty it spawns another publisher with a slightly
higher urgency. This triggers a stream of publishers that run intermittently with
ever higher urgency until one at 1603 finally publishes the worldview. Had any
of these publishers run when the focus was not empty, their urgency would have
been lower and the program may have been able to build a fuller text.

That this can happen is a downside in terms of performance but also provides
some degree of psychological realism: were the program to continue running
beyond the point at which it makes the publication decision and therefore finish
generating a better text, this could be seen as an example of the French concept
of l’espirit de l’escalier or staircase wit—thinking of the perfect thing to say
after it is too late—an entirely human behaviour!

6 Future Work: Meta-Level Pattern Recognition

Whereas Linguoplotter used only to recognize patterns in the maps it
described, recent improvements allow it also to recognize patterns in its own
texts. But, the program can still struggle to find its way through a large search
space and sometimes gets stuck repeatedly trying to build uncompletable net-
works.
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Codelet activity in the bubble chamber can be narrated by an observer. If the
program were able to do this itself, it could recognize patterns of futile behaviour
such as those in Sect. 5.3 and take action to avoid them.

Metacat, an extension of Copycat, holds a store of recent activity in a
trace and uses codelets to recognize problematic behaviour. Other codelets can
then alter processing by “clamping” patterns of structures that lead to failure
so as to prevent them from re-occurring. This allows Metacat to “jump out
of the system” and stop wasting time on fruitless loops to which Copycat was
prone [3]. A similar extension to Linguoplotter could improve its performance
at narrating weather patterns and would also lay the foundation for a program
that can introspect and narrate itself.

7 Conclusion

Recent additions to Linguoplotter allow it to produce fuller texts by classi-
fying intermediate texts in terms of cohesion relations built by codelets within
its bubble chamber. This constitutes a step towards a greater entanglement of
language production and comprehension. But the necessarily chaotic nature of
the architecture means it is difficult to optimize and often does not work as well
as would be hoped. Future work on the architecture should expand the range of
patterns that the program can recognize in input and text so that it can replicate
a wider range of human abilities; and should use the recognition of patterns in
its own processes to avoid loops and other futile behaviour.
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Abstract. This paper presents an unsupervised object detection sys-
tem which can offline-learn generic visual features via Siamese neural
network, yet is able to learn new object classes at run-time with a proto-
type learning approach applied on the latent representations. The oper-
ating requirements of this system feature bounded processing time per
frame, while dealing with a fixed amount of available memory. This sys-
tem works under the Assumption of Insufficient Knowledge and Resource
and is hence operating in real-time and open to new information which
can arrive at any time, as systems such as NARS and AERA ideally also
demand for perception.

Keywords: Unsupervised Object Detection · Vision System ·
Real-time vision · Prototype formation · Siamese Neural Networks

1 Introduction

AGI-aspiring systems such as NARS and AERA require to be able to adapt
[16] over their whole operating time1, and demand support for real-time opera-
tion. A consequence of this requirement is that most sub-systems of the system
architecture also have to work under this condition, this also includes vision sys-
tems in general, with object detection models as in this publication as a special
case. While part of the model can be pre-trained, as will be shown with Siamese
Neural Networks, the online learning needs to support at least the formation of
new object categories in order to be able to adapt to new situations with novel
objects successfully. This is covered via prototype learning approach operating
on the latent representations of the learned network.
This leads us to the basic assumptions of the vision system:

A1: open to new object categories to be discovered at run-time [17]
A2: running in real-time with a low (< 200 ms) processing time per frame
A3: A DNN can learn visual features off-line which will be general enough

to transfer to new object categories.
Here we assume in particular that training a Siamese NN

1 This is also referred to lifelong or incremental learning in Machine Learning [14].

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
P. Hammer et al. (Eds.): AGI 2023, LNAI 13921, pp. 338–344, 2023.
https://doi.org/10.1007/978-3-031-33469-6_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33469-6_34&domain=pdf
https://doi.org/10.1007/978-3-031-33469-6_34


An Adaptive Vision Architecture for AGI Systems 339

that generalizes to the distribution of the images perceived at
inference time, will also cover relevant out-of-distribution cases
by learning relatively generic visual features
in a sufficiently diverse training set

A4: Learning of new object categories at run-time can be achieved with
unsupervised prototype learning

While some subsets of these assumptions have been realized in previous
object detection systems, such as DeSTIN [1], supporting all of them together
has not yet been achieved with the necessary reliability to be used as unsu-
pervised vision system for the aforementioned AGI projects in a wide range of
domains.

State of the Art
Most efforts regarding object detection are focused at models which achieve
a high accuracy on a given dataset without any ability of the deployed sys-
tem to adapt to changes in the environment. Examples of such systems include
YOLOv7 [15], CLIP [11], CoCa [23] and Omni-DETR [18]. Other efforts, with
systems which have properties which are more compatible with the requirements
of AGI(such as unsupervised learning), exist, for example DeSTIN [1]. Research
in Machine Learning has also led to classifiers which can learn in an unsuper-
vised, online, real-time setting under assumption of insufficient knowledge (AIK)
and bounded resources for vision. One example of this class are classifiers which
are based on Adaptive Resonance Theory (ART).

2 Architecture

The following diagram (Fig. 1) summarizes the architecture of the system:

Fig. 1. System architecture
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– Preprocessing: The RGB channels are converted to gray channel by aver-
aging the RGB channels as the first step of the preprocessing. This leads to a
better generalization due to independence on color information. Convolution
only in the x direction is done after that using a very primitive kernel2.

– Proposal Generator: The task of the proposal generator [22] is to suggest
the patches of the image where objects are. This is currently done by motion
tracking between the current frame and the last frame followed by image
segmentation by motion [22](we will refer to this as clustering). Clustering is
done in the current implementation by dividing the motion into buckets and
grouping adjacent pixels with a pixel fill algorithm in this bucket.

– Neural Network: The NN is learned before run-time, but frozen at run-time.
It is fair to call this form of learning meta-level learning, because the NN is oper-
ating on meta-level while the classifier learns categories on object-level [21].

– Classification of stimulus: The Vision system is using a prototype based
classifier, where the real valued vectors are the output of a NN. It assigns every
prototype a unique symbolic ID, which is the output of the classifier, together
with other information such as similarity of the input to the latent vector of the
returned prototype. This can be used to compute the confidence of the input
fed into NARS. The classifier is always open to new instances, which are to
novel according to the set of all known prototypes. This classifier is where the
“Symbolic/Subsymbolic Gap” [5] is bridged. Note that the symbolic ID is not
assigned by humans, the system is free to create a new ID based on subjective
experience, following “Experience-grounded semantics” (EGS) [16].

– Resources: All maintenance and operations on the prototypes is happening
under the assumption of bounded resources. Insertion is bounded by the time
to scan for a similar prototype plus a small time to insert plus the time to
maintain the maximum size. Processing with the NN is bounded by the short
time it takes for a complete forward pass. Search for the best prototype is
bounded by the number of prototypes times a short time to compute similarity
by distance.

3 Training and Implementation

The following describes implementation details and training aspects and imple-
mentation characteristics of the realized model:

Classifier
The Vision system is using a prototype based classifier, where the real valued
vectors are the output of a NN. The NN was trained with a siamese objective
[2], because the learning of similar instances can be done without retraining that
NN. The prototypes for the maintenance of the object categories are ordered by
a simple heuristic which may weight between various criteria [22], such as times-
tamp of recent observation, age, observation count. This property of the clas-
sifier weights between different factors to avoid the stability-plasticity dilemma

2 Will be extended to a more complicated kernel and in multiple directions.
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[3], that is, being open to new categories(plasticity) while avoiding catastrophic
forgetting(stability).

Training of the NN
The classifier is a NN which is trained with a Siamese neural network objective
[2,8]. The architecture is duplicated using the same weights for a second input.
The distance between both networks is computed with a distance metric. The
NN learns to transform the input in such a way to get close to the distance of
the training set. The training set consists of pairs of images which are labeled to
be completely the same (distance 0.0), slight similar (distance 0.1) and different
(distance 1.0).

A two layer NN architecture with a 12 unit ReLU [4] activation function in
the hidden layer and identity activation function in the output layer was chosen.
The output-layer has 12 units. Weight initialization was done with He uniform
initialization. The Dataset consisted of a low number of images (10s of images),
some with the same object category (for cup, box, etc.), all with different lighting
situations and perspectives. The training-set did not contain any images of cars.
Pairs of images with the same and different categories were taken in a exhaustive
way, because the number of images was low. The only pre-processing done to
the images was conversation from RGB to gray-scale and convolution in the x
axis by computing the difference between adjacent pixels. The parameters of
the current NN model were trained with a variant of stochastic gradient descent
[13], where the batch consisted of one sample and only a single randomly selected
parameter was optimized per iteration. The learning rate was 0.0035. Training
was done for 8 h on a single CPU core and was terminated after that time. The
error at that time was below 1e-5.

Implementation
The system was implemented3 using the Nim language4, which compiles to C++
for easy interoperability with other systems. Nim with C++ target was chosen
by the requirement of high efficiency and ease of development, and allows for
high portability of the solution which can be relevant for interfacing with both
NARS [6,7,9,19] and AERA [10] implementations.

4 Experiments and Results

The principles and implementation were experimentally validated using the
Street Scene [12] dataset without any sort of pre-training. The dataset con-
sists of bird view videos of a road segment. The system is able to successfully
recognize reoccurring objects in the images, as illustrated in Fig. 2.

3 source code and the neural network models, which are trained using the Backprop-
agation algorithm, can be found at https://github.com/PtrMan/23R.

4 https://github.com/nim-lang/Nim.

https://github.com/PtrMan/23R
https://github.com/nim-lang/Nim
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Fig. 2. Vision system test

Statistics were collected to measure how good the overall vision system is in
categorization [20] of stimuli and the recognition of new categories, the results
are summarized in Table 1. This was done with two counters, one for the creation
of a new category “createdNewCategory” and a counter for recognized category
“recognizedCategory”. This was done for the scene where the car is turning
(trainingset 26) and for trainingset 16.

Table 1. Vision test results

scene createdNewCategory recognizedCategory

train26 - turning car 105 304

train16 45 142

One reason for the high counter “createdNewCategory” of the “train26” scene
is that no additional mechanism for rotational invariance was implemented to
handle the case of the turning car at the beginning of the scene. Other reasons
for a low ratio of “recognizedCategory”/“createdNewCategory” are suboptimal
design decisions such as the specific convolution used in this prototype, sub-
optimal training of the NN and suboptimal architecture of the NN (depth of
network, convolutional layers, etc.).

5 Conclusion

This work demonstrated a architecture which is able to learn visual categories
of objects in a online incremental lifelong-learning manner under assumption of
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insufficient knowledge (AIK) from a raw sequence of frames. The feasibility was
demonstrated with a implementation of a working prototype.
This paper described some mechanisms which were shown to be effective.
Future work should improve the properties of the very simplistic proposal gen-
erator, to handle situations such as non-planar motion. Better pre-processing
(convolution, etc.) and improving the NN architecture to allow even better gen-
eralization of object classes and perspectives and lighting conditions will also be
subject of future improvements.

Acknowledgements. Special thanks to Patrick Hammer, Tony Lofthouse and Robert
Johansson for valuable discussions.
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Abstract. Cognitive modeling and neuromorphic computing are two
promising avenues to achieve AGI. However, neither of them has achieved
intelligent agents with human-like proficiency so far. One possibility is
that the two fields have developed in isolation at different levels, ignor-
ing each other’s complementary features. In this paper, from a graph
perspective, we present a framework that bridges the gap through cross-
hierarchy structured representation and computation. Combining top-
down and bottom-up design methodologies, coherent coordination of
cognitive architecture and underlying neural dynamics is realized, where
interpretable representation of entities and relations is constructed by
hierarchical neuromorphic graph (HNG) via multi-scale projecting and
abstraction. An assembly-based graph-oriented spiking message network
is dedicatedly developed to conduct reasoning and learning. Evaluation
on multi-modal reasoning benchmark indicates that the approach outper-
forms pure symbolic rule-based and non-neuromorphic baselines. Besides,
the framework is flexible and compatible with the mainstream cognitive
architectures meanwhile maintaining rich biological fidelity in order for
exploiting non-negligible fine-grained mechanisms that are crucial for
functionality emerging. Our methodology offers a brand-new guideline
for the creation of more intelligent, adaptable, and autonomous systems.

Keywords: Hierarchical neuromorphic graph · Cognitive
architecture · Neuromorphic computing · Neural dynamics

1 Introduction

Artificial General Intelligence (AGI) is a long-standing goal to fulfill for mankind.
Achieving AGI requires a thorough understanding of how the human brain pro-
cesses information in the function level and in the underlying dynamics level
along with complex structure. Till now, neuromorphic computing and cognitive
modelling are two fields that have been gaining significant attention in recent
years due to their potential to revolutionize artificial intelligence (AI). Neu-
romorphic computing aims to replicate the functioning of the human brain by
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
P. Hammer et al. (Eds.): AGI 2023, LNAI 13921, pp. 345–356, 2023.
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designing neuromorphic algorithms and compute chips that emulate the behavior
of neurons and encephalic regions, while cognitive modelling focuses on building
computational models of human cognition and mentality in higher level. Despite
their different origins, both approaches share the common goal of achieving AGI.
Although both fields have made significant progress in their respective areas,
they are often considered to be distinct and separate approaches to artificial
intelligence, which may hinder the breakthrough for the key bottlenecks of AGI.

1.1 Research Status

Generally, as a representative of cognition exploration, cognitive architecture is
a computational theory of the human mind that attempts to explain how human
beings acquire, store, and utilize information to make decisions, solve problems,
learn and interact with the environment. It has evolved since the 1960s s with
typical milestones such as the information-processing model [1], the General
Problem Solver [2], Soar [3] and the ACT-R model [4]. More recent models,
such as the NEURAL model [5], incorporate insights from neuroscience and
artificial intelligence. However, cognitive architecture faces several challenges,
including the need for a better understanding of the neural basis of cognition,
the integration of multiple cognitive systems, and the role of social and cultural
factors in shaping cognitive processes. Critics have also raised concerns about the
validity and usefulness of cognitive architecture, arguing that it oversimplifies the
complexity of human cognition and ignores the embodied and situated nature of
cognition. Hence, research in cognitive architecture is supposed to address these
challenges by incorporating insights from diverse fields and developing more
sophisticated models that capture the full range of human cognitive processes.

Neuromorphic computing is an exciting area of research developing rapidly
that seeks to develop computing systems inspired by the structure and func-
tion of biological neural networks, which has achieved a series of progresses on
neuromorphic algorithms with high biological fidelity, including spiking neural
networks (SNNs) [6], liquid-state machines [7] and echo-state networks [8]. On
the other hand, a bunch of milestones of neuromorphic hardware have been
achieved, such as the ALE [9], SpiNNaker [10], BrainScaleS [11], TrueNorth
[12], and NeuroGrid [13], etc. While these systems have shown promise in effi-
cient and low-power processing of sensory information, they are confronted with
several significant challenges, including the lack of high-level cognition and flex-
ibility seen in human intelligence. Furthermore, the complexity and variabil-
ity of biological neural networks make it difficult to accurately model them
in a neuromorphic system. Despite these challenges, there has been ongoing
progress in developing hybrid neuromorphic systems via integrating neuroscience
and computer science [14]. Additionally, recent work has incorporated under-
lying biological bias to SNNs to improve their performance [15–19], and has
explored the algorithm-hardware interacting mechanism [20–24]. Anyway, sig-
nificant advances are needed to fully realize its potential.
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Fig. 1. Schematic diagram of hierarchy position of cognitive architecture and neuro-
morphic computing for an AGI system in David Marr’s three-level perspective.

1.2 Motivation

In general, neuromorphic computing and cognitive modeling are two promising
approaches to achieve AGI. From the perspective of David Marr’s three lev-
els [25], as depicted in Fig. 1, a AGI system can be viewed as three hierarchies:
computation, algorithm and implementation. As a matter of fact, cognitive archi-
tectures are at the computation level of AGI and are characterized by top-down
design, focusing on modelling high-level cognitive primitives, functionality mod-
ules and the interaction rules among them. The whole information flows rely
on abstract function connection and constructed entities in a symbolic manner,
while neglecting the underlying complex biological inductive bias in implementa-
tion level, such as neural dynamics, coding schemes, synapse intelligence, topol-
ogy structure, hierarchical regulation, etc. These characteristics are crucial and
indispensable for high-level cognition formation and understanding. Examples
of this argument include the role of gamma and theta oscillations in perception,
attention, and memory [26], as well as the hippocampus in spatial navigation and
memory consolidation [27]. Therefore, it is essential to consider the underlying
biological mechanisms that drive cognitive processes. On the other side, neuro-
morphic computing is at the implementation level of AGI and is characterized
by bottom-up design, focusing on modelling the underlying biological details and
lack guidance from higher level of computation and cognition functionalities.

Apparently, there is a distinct gulf between the computation level and the
implementation level, lacking a unified framework to combine their strengths
effectively. There are primarily three points for our motivation to connect the
two different hierarchies:

• Most of cognitive architectures neglect the underlying complex biological
inductive bias in implementation level, which are non-negligible and indis-
pensable for high-level cognition formation.

• Incorporating biological plausible neuromorphic implementation as underly-
ing support will facilitate the verification of cognitive process of architectures.
For example, neuroimaging techniques such as fMRI and EEG can be used
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to study the neural basis of cognitive processes, meanwhile being used to
benchmark, guide and evaluate cognitive models. And computational models
of neural activity can be used to test hypotheses about the underlying neural
mechanisms of cognitive processes [28].

• Neither of neuromorphic computing and cognitive architectures has achieved
a powerful AGI systems to date. The complementary characteristics of both
fields shall be considered together as different positions and hierarchies to
boost the construct of self-contained system stack from top to bottom.

In summary, considering the underlying biological mechanisms of cognitive pro-
cesses is essential for developing accurate cognitive models and effective AI sys-
tems. Nevertheless, they currently lack a unified and generic framework to com-
bine their strengths effectively. In this work, we view these three hierarchies in a
graph-structured perspective, and propose a modelling methodology of hierarchi-
cal neuromorphic graph (HNG) that leverages underlying neuromorphic bias to
correspond to multi-scale processes approaching gradually to cognitive modules.
Our motivation is to provide a generic methodology bridging the computation
theory with the underlying implementation at the algorithm level. HNG plays a
role of connector, which is quite flexible and compatible with most of cognitive
architectures and various biological mechanisms, thus promoting the design of
more efficient and intelligent computational systems.

2 Methodology

2.1 Framework Overview

One of the major challenges in bridging cognitive architecture and neuromorphic
computing is the gap between the theoretical models used in cognitive psychol-
ogy and the physical implementation of these models in neural networks. For
example, many cognitive models rely on symbolic representations and logical
reasoning, whereas neural networks are better suited to processing continuous
signals and distributed non-symbolic patterns.

To this end, we rethink the three-level hierarchies of AGI systems in a graph-
structure perspective, and propose three arguments as bellow:

• At the computation level, a cognitive architecture can be regarded as a graph
structure, where different functionality modules and interacting paths can be
equivalent to vertices and edges, respectively. The cognitive architecture is
a graph intrinsically and can be implemented by a graph. Furthermore, the
substructure within a module can also be viewed as a subgraph, and so on.

• At the implementation level, the structure of underlying SNNs is presented
as a graph. Besides, given arbitrary information form with various graph
structures, SNNs can realize complete representation for the stimulus and
computation through themselves.

• At the algorithm level, the algorithm (HNG) is a hierarchical graph, where
both of the higher-level cognitive process and lower-level biological process
can be represented as multi-scale graphs relating to different hierarchies.
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The proposed framework consists of three main components corresponding
to respective hierarchy: cognitive architecture, HNG algorithm and neuromor-
phic computing. Figure 2 shows the overall schematic diagram of the framework,
wherein the cognitive architecture and neuromorphic computing are generic and
compatible with previous works like Soar and ACT-R. Our primary attention is
the algorithm design methodology to connect both levels.

Fig. 2. Schematic diagram of the proposed framework bridging cognitive architecture
and neuromorphic computing.

Cognitive Architecture. The cognitive architecture can be based on the typ-
ical works such as ACT-R [4] and Soar [5]. Actually, they share a bunch of
commonalities [29]. This means we can extend the common structures to some
specific instantiations of “Common Model of Cognition” [30]. Here we take the
example of the standard model of the mind for general illustration [30]. Figure 2
presents the primary components of this standard cognitive architecture, includ-
ing declarative long-term memory, procedural long-term memory, working mem-
ory, motor and perception modules, each of which is unitary or can be decom-
posed into multiple components, such as multiple buffers of working memory,
diverse stages of procedural matching, selection and execution, etc. [30]. Notably,
working memory generally acts as the communication buffer among these mod-
ules, and consists of several separate modality-specific submodules, such as visuo-
spatial sketchpad, episodic buffer and phonological loop, that together constitute
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the information aggregation and interaction. We take the working memory as
an example in Fig. 2 and elaborate it in a graph view in latter parts. The long-
term memories are pivotal for associated learning that can store, tune or modify
information when interacting with lower-level HNG modules.

Neuromorphic Computing. This level is mainly composed of two cate-
gories of functionality: representation and computation. The representation units
include multiple sets of brain areas which consist of numerous assemblies with
initially random connected structure. Different areas can represent separate con-
cepts or symbols via complex dynamics evolution and connectivity reshaping,
which can finally correspond to symbolic representation of cognition level after
a series of hierarchical process. As for the computation units, they are com-
posed of multiple-layer assembly-based spiking networks with direction-specific
connection structure. This kind of neural connection with self-recurrent struc-
ture is adept at processing distributed afferent information. Inspired by recent
progress of neuromorphic algorithms [31–33], we extend the computation units
to graph-oriented networks with spiking message passing mechanism that can
process graph-structured symbolic information using neural dynamics.

Fig. 3. Schematic diagram of transforming process from neural dynamics to graph
structure. In neuron connectivity, the orange links and grayish blue links represent
excitatory connection and inhibitive connection, respectively. The red points in state
space denote attractors and the blue point in graph representation is its corresponding
graph structure abstracted from state space.
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Hierarchical Neuromorphic Graph. HNG is the proposed graph-based
algorithm that simulate the behavior of assemblies and biological plausible
graph abstraction, meanwhile transmitting semantic state information to cor-
responding higher-level symbolic representation of cognitive modules via multi-
scale dynamics process across multiple hierarchies. In HNG, the dynamics pro-
cess, shown in Fig. 2, consists of again multiple sub-hierarchies, which will be
expounded in the following sections. The underlying information from neuromr-
phic representation units will be transformed into higher-level structured seman-
tic representation after multistage dynamics process, which will be then induced
into graph-oriented network models supported by computation units to carry
out complicated tasks of reasoning, decision, planning, etc.

2.2 Cross-hierarchy Computation Mechanism

Fig. 4. Cross-hierarchy transforming process of semantic representation, where “obj”,
“attr”, “Re” denote “object”, “attribute” and “relation”, respectively.

From Dynamics to Structure. From a bottom-up view, the underlying neu-
rons in multiple areas project to correlated regions and will be converged to a
stable state after a dynamics process. Usually, these neurons are connected with
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quite different topologies in various regions. There are numerous biological mech-
anism that can play a role in connecting underlying dynamics to structure, such
as path integral, cognitive map, attractor, etc. As presented in Fig. 3, here we
take the attractor as an example for illustration. The dynamic representation can
be divided into three levels. In different circumstances, stable attractors can be
formed in state space when reaching equilibrium state, and finally be projected
into graph-structured representation, where the discrete attractors correspond
to undigraphs and continuous attractors correspond to directed graphs. This is
quite general since the attractor mechanism is universal in human brains.

Hierarchical Projection and Representation. As depicted in Fig. 4, the
multi-scale representation transformation process by dynamics can be decou-
pled into several hierarchies. From a bottom-up view, the neural level first form
converged assemblies via mutual projecting in multiple areas, then forming sta-
ble attractor structures. Subsequently the final states will be connected follow-
ing the prior structure in transformed semantic space relating to higher-level
cognition. From a top-town view, a cognitive cycle can be mainly abstracted
into representation, computation and control effects. The function area can be
designed to control the switch of underlying brain areas based on the designed
rules with adaptivity. The computation area corresponds to the computation
units for inference in neuromorphic level. Besides, the representation area create
a space of encoding information flow as symbolic patterns. As shown in Fig. 4,
objects and relations can be represented differentially, and projected into next
level. These representations are designed to capture the essential features of the
cognitive process and provide a clear and interpretable correspondence with the
underlying mechanism with different levels of abstraction. It is should be noted
that the relation is also encoded into a node (the purple one in Fig. 4). As such,
we can enhance the expressiveness of graph structure with effective links, equiv-
alent to binding related entities or relations together. In this manner, we can
utilize neuromorphic graph to represent first-order predicate logic and further
represent more complicated higher order logic. Based on this, the representation
can be processed by computation units to conduct inference and learning.

Dynamic Inference and Learning. The inference network is presented in
Fig. 5, which takes the transformed structured representation as input and con-
duct down-stream inference tasks. Note that each layer corresponds to a under-
lying neuromorphic area, and will form an assembly when the projecting process
reaches a equilibrium state. The connection between layers is actually the pro-
jecting paths between two areas. Thus the connection is dynamic during infer-
ence. The learning process is very flexible and compatible with multiple coding
scheme and training strategies. Biological local learning rules like STDP or Heb-
bian rule ought to play a critical role in projecting process. The global update
learning can refer to recent advanced learning methods [20,34]. While interact-
ing with environment, as shown in Fig. 4, the error signals will not only update
the synaptic parameters and connection of this network, but also will provide
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Fig. 5. Schematic diagram of inference and learning networks for neuromorphic graph.

feedback for both of computation units of neuromorphic level and cognitive level,
adapting the system to new tasks and environments.

Fig. 6. Simulation results of initiatory exploration: (a) Assemblies are formed with
stable number of winner neurons after multiple iterations of projecting. (b) Assembly
pattern recovering from preservation of overlap under different ratios of perturbation.
(c) Reasoning performance comparison with different perturbation intensity.

2.3 Initiatory Verification

We construct the underlying assembly dynamics as representation units with
multiple areas based on the Assembly Calculus project [35], and adopt Graph
SNNs [31] with further remoulding as basic computation units for assembly-
based structured representation inference. We adopt the multi-modal hybrid
reasoning model [15] as the whole architecture and implement our HNG as a
intermediary bridge connecting cognitive rules to assembly dynamics, wherein
the visual question answering task is also adopted as evaluation.
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Simulation results shown in Fig. 6 exhibit that the underlying neural dynamic
can incorporate well with the proposed hierarchical neuromorphic graph mech-
anism. Under the winner-take-all mechanism, the assembly can be steadily con-
verged after dynamics process and interaction with other areas, then correspond-
ing to multiple higher-level constructs and participating into inference compu-
tation. Figure 6(b) exhibits the robustness and homeostasis effect of internal
representation of each area corresponding to specific entity in cognitive level.
And Fig. 6(c) indicates the weakness of the pure rule-base symbolic system and
verifies the great enhancement on reasoning robustness with the aids of HNG.

3 Discussion

Bridging cognitive architecture and neuromorphic computing is a huge challenge
due to fundamental differences in their underlying principles and approaches.
The proposed framework and methodology leverage the strengths of neuromor-
phic computing and cognitive modeling to develop AGI systems that can learn
and reason in a more human-like manner. By representing abstract entity in a
structured, graph-based format and using a variant of SNNs adapted to the neu-
romorphic graph, the framework enables robust and scalable learning of complex,
relational knowledge. Our evaluation on visual question answering benchmark
problem shows that the proposed approach outperforms symbolic rule-based and
non-neuromorphic baselines. One potential limitation is that the complexity of
the hierarchical neuromorphic graph algorithm may make it difficult to interpret
and adapt to the cross-domain knowledge structures. Advanced transfer learning
mechanisms may be partially mitigate the limitation. Another potential limita-
tion is that the complexity of HNG may lead to a challenge to neuromorphic
hardware deployment. More efficient neuromorphic platforms capable of sup-
porting high-fidelity biological mechanisms need to be explored further.

Overall, the proposed framework provides a valuable methodology for devel-
oping AGI systems, and has the potential to bridge the gap between theoretical
models and physical implementations and to revolutionize the AI field. Future
work will focus on implementation and evaluation of the framework on specific
tasks, and exploring extensions and variations of the proposed methodology.
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Abstract. Coherence is one of the candidate principles of the intelli-
gence, with its presence of varied forms in different contexts. At implemen-
tation level, coherence is an ubiquitous phenomenon that accompanies the
state of awareness and normal cognitive function of the brain, suggested
by increased strength of the rhythm. At algorithmic level, the coherence
in the consistent self-evidencing loops between the internal and the exter-
nal is argued to be the principle of general intelligent systems. However, a
unified computational view of both aspects of coherence is still open ques-
tions. In this paper, we propose a unified computational understanding
of coherence in general intelligent systems from a viewpoint of solution
searching ,unifying the different levels: More specifically, coherence is an
informative states to represent the solution with high certainty, acting as
an universal and inherent indicator of the searched solution at the same
time, and achieved through coherent self-evidencing. A model for active
perception is built to demonstrate the whole picture. Lastly, we discuss
whether coherence could act as a measure of general intelligence.

Keywords: Neuronal coherence · Self-evidencing · Universal indicator

1 Introduction

Coherence generally describes the increased agreement among different units
and decreased conflicts inside a system, which has been argued to be one of the
principles of the intelligence [14] and is present in various theories of brain or
machine intelligence1. In the predictive coding theory [7], the agreement between
the active inference from an internal world model and the sensory information of
external stimuli forms the self-evidencing loop [10] that is believed to shed light
on the agency and perceptual awareness [7]. Once the loop is broken, the percep-
tual belief might suddenly end [2]. Besides perception, the theory covers cogni-
tion as well [19]. Besides the brain theories, coherence between different modules
has also been embraced into artificial neural networks for building autonomous
machines capable of hierarchical planning [13].

If time is further taken into account, the agreements should also happen close
in time. If agreements can only be reached occasionally, it leads to the rhythmic
1 The exact form of coherence depends on the similarity measure chosen, which could

be either binary or continuous, and of different types of arguments.
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pattern like neuronal coherence, which is a state further away from randomness
where neuronal firings tend to assemble together. Specifically, given a certain set
of active neurons, the spike-firing distribution along time dimension could vary.
Close firing time suggests united and determined efforts of groups of neurons,
while random firings may imply less certainty. Therefore, it is hypothesized that
neuronal coherence may play a role at the representation level [18], computation
level [21] and so on. Experimentally, normal brain functions, like perception [15],
attention [21], memory [21], are all highly related to an increased level of gamma-
band rhythm, suggesting enhanced level of neuronal coherence. Besides, neural
rhythm is conserved across most species [4], indicating that neuronal coherence
might be an essential ingredient of self-organized systems that showing general
intelligent behaviors.

Therefore, it seems promising that coherence is a general principle of intel-
ligent systems [6,15] and may act as a measure of AGI2. However, several chal-
lenges remain. First, there are counterexamples that have high coherence levels
but intuitively of low intelligence. For example, epilepsy is a brain disorder that
causes recurring, unprovoked seizures, where the neuron firings are highly syn-
chronous [21]. Therefore, neuronal coherence may also lead to the opposite of
normal intelligent behavior. Second, coherent self-evidencing loop may be real-
ized by dead cycles that are intuitively not intelligent at all. For example, both
prediction and input are set to none, which may lead to a state of death or igno-
rance. Lastly, while coherence is shown to be essential for intelligent behaviors, it
actually refers to different connotation in different contexts. For example, while
the coherent self-evidencing loop refers to the algorithmic level, the neuronal
coherence refers to the implementation level. It is not clear how these different
interpretations of coherence contribute to the intelligence in an unified manner,
though they are documented to be related to intelligent behavior respectively.

In this paper, we aim to argue about the general computational role of coher-
ence in an AGI system, connecting the coherence and the intelligence in a new
perspective. More specifically, we abstract an AGI system as a solution searcher,
and the solution has a form of non-equilibrium states due to constraints of
the system (eg. biological constraints). Such abstraction is formulated as two
hypotheses (Sect. 2). Following the hypothesis, we demonstrate that at func-
tional level, coherence is inherent and universal indicator of the solution, which is
indispensable for computation (Sect. 3). At representational level, we prove that
coherent state is informative, and is a general carrier of the solution (Sect. 4). At
computational level, we experimentally show that neuronal coherence solution
is achieved through iterative self-evidencing loop, which provides a unified view
of neuronal coherence and coherent self-evidencing (Sect. 5). However, the result
shows that the emergence of neuronal coherence is based on the proper inter-
nal structure of the dynamical system, acting as a solution searching program.
Therefore, at measurement level, we argue that coherence acts as the neces-
sary condition measure of intelligence instead of sufficient condition: without a
systematic solution searching program (eg. an internal world model [13]), the

2 Since it is also a scalar quantity that could be compared between systems [3].
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coherence maybe senseless (Sect. 6). This picture unifies both supportive and
counter examples listed above and unifies both levels of coherence.

2 Hypothesis

2.1 Hypothesis 1: AGI as a Solution Searcher

Various computational problems, like perception, controlling, reasoning and
planning, can be transformed into the searching problem under a set of con-
straints [11]3. Here we regard the general intelligent system like the neural system
as trying to find solutions in a high-dimensional space, constrained by various
situations, like external stimuli, internal prior, etc. (Fig. 1a).

Fig. 1. (a) solution searching in a high-dimensional energy landscape shaped by con-
straints. (b)(c) attractive solution as equilibrium states (eg. point attractor) or non-
equilibrium state (limit cycle or chained assemblies). While the former do not have
intrinsic indicator (d), the latter has universal inherent indicator: neuronal coher-
ence(red)

2.2 Hypothesis 2: Non-equilibrium Stable States as Solution

We assume that the solution is represented as stable trajectories, which is non-
equilibrium states. On the one hand, stability is desired to search the solution
from partial information. On the other hand, escaping from falling into equilib-
rium state benefits the ergodicity of the states and the diversity of the solutions,
which is a ubiquitous feature of self-organizing system, including the brain [8]
and guaranteed by various biological constraints like delayed inhibition, adap-
tation, and refractory period. Therefore, we assume the solution has a form of
limit cycle [20] instead of the point attractor4. More specifically, if we take each
neural assembly [9] as the code letter of the solution, the entire solution could
have a form of periodic presence of chained assemblies [9], a special case of limit
cycle (Fig. 1c).
3 Though the detailed discussion focuses on the perceptual aspect of AGI for clarity,

the general context of solution searching does not have such constraint.
4 While the point attractor is the basic attractor in equilibrium states (Fig. 1b), limit

cycle is the most basic attractor of non-equilibrium states [20].
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3 Neuronal Coherence as an Universal Indicator

Besides the content of solution, the indicator of the solution as the terminal of
the searching process is needed to terminate the search, transmit the result, and
turn to other states. In computational theory, it is the state of termination in
automata [5]; In genetics, it is the code of terminator; In deep learning, it may be
a specific vector pattern predefined by experts; In programming, it is the com-
mand of return. The absence of an indicator limits the capability and flexibility
of the system (eg. simple feedforward network). In the following, we highlight
that neuronal coherence is a brand-new type of indicator that is universal and
inherent, which is especially desirable in distributed systems.

Following the two hypothesis, we know that once the system finds a solution,
it falls into a rhythmic states, where units are assembled synchronously in time.
The beginning phase of searching might be random due to stochastic switching
between different possible solutions, while the ending phase of searching grad-
ually converges to the optimal single stable solution (Fig. 1e). Therefore, the
searching process is naturally accompanied by the emergence of neuronal coher-
ence. In other words, the coherence acts as an inherent general indicator of the
discovered solution, especially desirable in a distributed system.

What is special about the indicator via neuronal coherence? In a dynami-
cal viewpoint, each solution is a local minimum or attractive states on a high-
dimensional landscape shaped by constraints. Point attractor solution needs an
extrinsic code-space to indicate the termination5. The extrinsic termination code
is encoded in an extrinsic local code-space, required to be predefined, and readout
by certain protocol or transition rule. In contrast, rhythmic solution of chained
code letter (neuronal assembly) is the intrinsic and global property of the solu-
tion itself, which do not need extra space and rules. It is one of the advantages of
limit cycle solutions over point attractor solutions (Fig. 1d,e). It is the internality
of the coherence indicator.

More importantly, while an extrinsic local code of indicator is valid for a
sequential system like computer program and genes, it is less clear how local
codes work in a large-scale distributed processing system, because the explicit
assignment of local subspace to exclusively encode the indicator is ambiguous
and a common shared readout transition rule is less plausible. In contrast, the
coherence is a temporal pattern that could be universally readout, because while
spatial content of solution is high-dimensional, the coherence strength is only one
dimensional, which do not require complex connection weight for recognition.
Instead, a general coincidence detector [12] with dendrites of narrow time window
and sensitive to relative timings of spike arrival can suffice. It is the generality
of the coherence indicator.

5 For example, the symbol of termination in state machine, the terminator genes, or
a specific vector pattern predefined by human in language models.
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4 Neuronal Coherence as Most Informative States

While representing solution as neuronal coherence (Hypothesis 2.2) is shown to
have desirable property of universal indicator, is it actually a general outcome
of a solution searching process? We attempt to provide an answer from a point
of view of information theory. Specifically, coherence states has high certainty
and rich information content, which imply its optimality for representing the
solution. In this section, the discussion of neuronal coherence is restricted in a
population of spiking neurons for clarity. The generalization to general coherent
situation is also possible but we leave it to future works.

Fig. 2. Illustration of the information viewpoint of coherence states.

Given a population of N spiking neurons, the macro-states of the system at t
is described as the population firing rate A(t), t ∈ [0, T ], where [0, T ] is a proper
time range of interest. The micro-states of the system is the trajectory composed
of a temporal progression of instantaneous binary spiking patterns (t ∈ [0, T ]).
Each macro-state may be associated with multiple micro-states.

Consider two plausible biological constraints for homeostasis: first, the firing
rate at each time has an upper bound (Amax); second, the accumulated spike
count of neurons during the temporal range has a relatively fixed number (C).
In short, A(t) < Amax,∀t ∈ [0, T ] and

∑
0<t<T A(t) = C > Amax

Therefore, consider the normalized population firing rate: Ã(t) = A(t)/C,
where Ã(t) is a probability distribution of random variable t ∈ [0, T ]. If taken
each neuron as independent, the spike firing time distribution (P (ti)) of each
single neuron i is also Ã(t). Thus, there are a collection of N random variables
{ti|1 ≤ i ≤ N}, which describes the microscopic configuration associated with
each macroscopic states (A(t)). Therefore, the uncertainty of the micro-state
associated with the macro-state is formulated as the entropy of Ã(t): H(t) =∑

t Ã(t) · ln(Ã(t))
The neuronal coherence can be defined as the state trajectory where spikes

firing together or nearly together, indicated by bumps on A(t) (or Ã(t), Fig. 2). In
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ideal cases, the bumps can be described as delta functions at certain time points:
Ac(t) =

∑
i αi · δ(t − ti), s.t.

∑
i αi = C,αi ≥ αmin, where 2 ≤ i ≤ n � T is the

index of bumps. n is the number of bumps. αmin is the minimum size of each
bump. The delta function here is constraint in discrete space: δ(t) = 1, t = 0 and
δ(t) = 0, t �= 0.

The uncertainty of coherent state is Hc(t) = −∑
i≤n (αi/C) · ln(αi/C) ≈

ln(n). The last term holds when bumps have uniform size. In contrast, the
uncertainty of a random state (incoherent) is Hic(t) = −∑

t≤T (1/T ) · ln(1/T ) =
ln(T ). Since n � T , we have Hc(t) � Hic(t). Thus, coherence states has much
larger (temporal) certainty.

On the other hand, the entropy of Ã(t) alternatively measures the num-
ber of microscopic configurations associated with a macroscopic states (eg.
H = kBlog(Ω)). Similar to Boltzmann and Gibbs’s formulation in thermody-
namics [16], if we assume that the probability of each micro-state is equal, then
H(t) reflects the probability of a state to occur: P (Ã) ∝ eH(t). Following the
information theory, the carried information or surprisal of a macro-state Ã is
defined as I(A) = log(1/P (A)). Since Hc(t) � Hic(t), I(Ac) 
 I(Aic). There-
fore, coherence states have much larger information content.

Due to the certainty and information richness of neuronal coherent states,
they are expected states to represent the solution. On the one hand, solution
states should be rare states that of high information content. On the other hand,
the solution states of high certainty might be a general or inevitable outcome
of the searching process, from the unknown to known, from random guess to
confident results.

5 Neuronal Coherence as the Outcome of Coherent
Self-evidencing

In this section, we show the emergence of neuronal coherence during the solution
searching in an artificial perceptual model. More specifically, the coherent bind-
ing solution for general perception is generated through coherent self-evidencing
loop. The result provides a unified view of neuronal coherence and coherent
self-evidencing in AGI systems.

5.1 Binding Problem in Perception

It is believed that elements of the perceptual entity are distributed in widespread
areas of the brain [17]. For example, the voice, color, shape, movement, tex-
ture information are processed in different brain areas or through different neu-
ron populations. Such distributed processing raises the question that how large
amounts of distributed elements are bound into a whole, or grouped together
[17] (Fig. 3a)? Temporal binding hypothesis [18] predicts that the solution of the
binding problem is constructed by synchronous firing of assemblies, which rep-
resents the grouped elements of each perceptual object (Fig. 3b). Therefore, the
temporal structure in the coherent state encodes the grouping information. Such
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coherent solution are attractive non-equilibrium states of the self-evidencing
bottom-up / top-down brain dynamics.

Fig. 3. (a) The binding problem. (b) The temporal binding hypothesis. (c) The model
architecture, which is composed of the self-evidencing loop between the external input
and the top-down prediction by the DAE. The searching (T time steps) towards coher-
ent self-evidencing leads to the neuronal coherence state as the binding solution. (d)(e)
the random selected sample in Shapes dataset [22]: raw input (d) and ground truth
(e).

5.2 Model Description

Inspired by the temporal binding theory, the model (inherited from [22]) has an
iterative bottom-up and top-down architecture. The bottom-up and top-down
streams are realized by the encoder and decoder of a denoising autoencoder
(DAE) [1]. The agreement between the top-down modulation (attention) and the
external driving input determines the firing events of spiking neurons (Fig. 3c).

The temporal binding solution is a cyclic chain of the code letters (neuronal
assemblies). We embed the solution into the network dynamics by two model
designs. First, the assembly for each object is an attractive states of the itera-
tive denoising autoencoder dynamics by training the denoising autoencoder to
reconstruct or complete the disturbed pattern of each single objects. Second, the
refractory property of spiking neurons prevent the system from falling into the
equilibrium states and makes each attractive states transient. In this way, the
solution of binding problem is searched by iterative self-evidencing and finally
represented by neuronal coherence.

Model Details. Each spiking neuron i receives the input from the delayed
modulation γi(t) and external sensory input as the driving signal xi. The firing
rate ρi(t) is determined by the multiplication of the two source of inputs: ρi(t) =
γi(t) · xi. The delayed top-down modulation γi(t) is generated by the DAE:
γi(t) = g(f(si(t − d)))), where d is the delay period and g / f are decoder /
encoder of the DAE, which is pre-trained to denoise single objects. si(t) is the
spike firing event of neuron i at time step t, which is stochastic if it is active:
P (si(t) = 1|active) = ρi(t) and P (si(t) = 1|refractory) = 0, where P is the
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Fig. 4. The emergence of neuronal coherence during the searching dynamics. (a) The
initial random phase. Upper–the temporal progression of spiking pattern (Each black-
background square is the instantaneous activity of feature neurons (si(t)). Time pro-
gresses from left to right, from up to bottom); Middle–the spike recording, colored
based on ground truth segmentation shown in (c); Bottom–population activity (A(t)).
(b) The exemplified sample. (c) Ground truth segmentation. (d) The convergent phase,
analogous to (a)

probability of firing, conditioned on the states of neurons (active or refractory).
Once the neurons fires a spike (si(t) = 1), it falls into a refractory period of δ
time steps.

Since the prediction from DAE feeds back into the spiking neurons as top-
down modulation in the future time steps (delayed by d steps), the general
architecture of bottom-up and top-down processing constructs a self-evidencing
loop, starting from random guess and converging to consistent self-evidencing,
which results in the neuronal coherence as the binding solution (Fig. 3c).

5.3 Emergence of Neuronal Coherence as Binding Solution

As shown in the Fig. 4, starting from the random firing states (incoherence), the
network dynamically reaches the states of neuronal coherence where feature neu-
rons encoding the same object are grouped into synchronous neuronal assemblies.
Therefore, the binding solution is searched along the emergence of the neuronal
coherence. The finding of the solution is indicated by the neuronal coherence,
suggested by the increased fast gamma-like oscillation. Such coherence states
can be readout by downstream neurons with dendrites sensitive to coincident
spike arrival (eg. narrow time window [12]). The coherence of self-evidence loop
of predictive feedback finally leads to the neuronal coherence.

5.4 Neuronal Coherence from Coherent Self-evidencing Loop

While neuronal coherence refers to the agreement among spike firings of neu-
rons, the coherence of self-evidencing loop refers to the agreement between the
internal prediction and external input. Although both are documented to be
highly related to perceptual awareness and intact cognitive function, they do
not exactly refer to the same process. Here, the model provides a unified view:
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taking biological constraints into account (spiking / delayed inhibition / non-
equilibrium), then the coherence of self-evidencing loop (at algorithmic level)
leads to the neuronal coherence (at implementational level).

6 Coherence as a Measure of Intelligence?

Since coherence is one of the principle of intelligence [14], a conserved biological
marker tightly accompanying the functional states of the brain and is also a mea-
surable scalar quantity to compare two systems, it is intriguing to ask whether
coherence acts as a measure of intelligence?

According to the hypothesis, analysis, and model demonstrations above, the
coherence may act as a partial measure of intelligence, but it is not a suffi-
cient measure. More specifically, the core computation for intelligent behavior or
response requires a prior dynamical structure, internal world model or the pro-
gram that serves to search the solution given constraints. The coherence itself
is not such a searching program and therefore do not directly guarantee the
intelligence. For example, without the DAE that embeds the assemblies into the
perceptual model (Sect. 5), the coherence states will not reflect the binding solu-
tion at all. That is partly why there are extreme counter examples where the
opposite of intelligence might also have coherence property. However, once, and
only if, the system has acquired a proper prior internal model or program, as
hypothesized in predictive coding theory, the emergence of coherence indicates
the finding of the solution (Sect. 3). Therefore, the level, convergent speed, sta-
bility, robustness of the coherence indicates the quality of the solution, searching
capability as well as the smartness of the system. On the contrary, the failure of
normal neuronal coherence might imply cognitive disorder [21]. If we additionally
take biological constraints into account, like non-equilibrium and homeostasis,
the coherence may be a general property of the well-behaved AGI system (Sect. 4)
and acts as a general necessary condition measure of intelligence.

7 Conclusion

Despite of varied forms, coherence presents itself as the central concept in various
theories or frameworks of AGI. In this paper, we provide coherence with a general
and unified position in an AGI system from a viewpoint of solution searching:
theoretically, coherence is an universal and inherent indicator of the searched
solution, represented as informative states of high certainty. Experimentally,
coherent self-evidencing leads to neuronal coherence in an artificial perceptual
model that searches the binding solution, which unifies the two essential aspects
of coherence. Lastly, based on analysis and experiments, we argue that coherence
is indeed a partial measure of intelligence but we still need to explore the core
program underlying behind.
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