
SQL Query Optimization in Distributed
NoSQL Databases for Cloud-Based

Applications

Aristeidis Karras1 , Christos Karras1 , Antonios Pervanas1,
Spyros Sioutas1 , and Christos Zaroliagis1,2(B)

1 Computer Engineering and Informatics Department, University of Patras,
26504 Patras, Greece

{akarras,c.karras,pervanas,sioutas}@ceid.upatras.gr,
zaro@ceid.upatras.gr

2 Computer Technology Institute and Press “Diophantus”, Patras University
Campus, 26504 Patras, Greece

Abstract. A method for query optimization is presented by utilizing
Spark SQL, a module of Apache Spark that integrates relational data
processing. The goal of this paper is to explore NoSQL databases and
their effective usage in conjunction with distributed environments to
optimize query execution time, in order to accommodate the user com-
plex demands in a cloud computing setting that necessitate the real-time
generation of dynamic pages and the provision of dynamic information.

In this work, we investigate query optimization using various query
execution paths by combining MongoDB and Spark SQL, aiming to
reduce the average query execution time. We achieve this goal by improv-
ing the query execution time through a sequence of query execution path
scenarios that split the initial query into sub-queries between MongoDB
and Spark SQL, along with the use of a mediator between Apache Spark
and MongoDB. This mediator transfers either the entire database from
MongoDB to Spark, or transfers a subset of the results for those sub-
queries executed in MongoDB. Our experimental results with eight dif-
ferent query execution path scenarios and six difference database sizes
demonstrate the clear superiority and scalability of a specific scenario.

Keywords: Big Data and the Cloud · Query Optimization ·
SparkSQL · NoSQL databases · Indexes · Big Data Analytics for Cloud
computing

1 Introduction

Data mining and analytics sectors have drawn much attention in our days by
both academic and businesses communities in order to handle massive datasets.
With modern libraries and existing systems such as Hadoop [4,30], which is a
frequently used cloud platform for data mining, the efficient management of big

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Foschini and S. Kontogiannis (Eds.): ALGOCLOUD 2022, LNCS 13799, pp. 21–41, 2023.
https://doi.org/10.1007/978-3-031-33437-5_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33437-5_2&domain=pdf
http://orcid.org/0000-0002-4632-6511
http://orcid.org/0000-0002-4253-7661
http://orcid.org/0000-0003-1825-5565
http://orcid.org/0000-0003-1425-5138
https://doi.org/10.1007/978-3-031-33437-5_2

22 A. Karras et al.

data is no longer a promise. Several machine learning methods based on the
MapReduce [14] architecture have gained popularity as they can be deployed
on the cloud with the use of Apache Spark [6]. In contrast, when similar algo-
rithms are implemented using MapReduce, intermediate results are written to
the Hadoop Distributed File System (HDFS) [4] and read from there. However,
this requires a considerable amount of time for disc I/O operations as well as
vast amounts of resources for communication and storage.

Cloud computing can enhance analytics, machine learning, and other possible
directions as the data are stored in a cloud provider and not locally. However,
traditional relational databases face many challenges when employed in a cloud
setting. There is a constant demand for high concurrent database read/write
operations. In cloud computing, the complex demands of users necessitate the
real-time generation of dynamic pages and the provision of dynamic information;
as a result, the database concurrency rate is excessively high and tends to receive
thousands of reading requests per second. It is difficult for a relational database
to accommodate tens of thousands of SQL data write requests, and the hard drive
cannot support the load. Additionally, there is a huge demand for the efficient
storage and access of massive data. The massive data created dynamically, for
relational databases in a cloud computing environment, has resulted in storing
hundreds of millions of records in a table, making it exceedingly inefficient to
execute an SQL query.

In contrast, complicated SQL queries that need multi-table lookup operations
have led to the development of flexible systems such as the one presented here.
In a system that contains massive amounts of data, we could issue several con-
nected queries across big tables, intelligent data processing, and extensive data
reporting. Although simple conditional paging queries on a single table with a
primary key are often employed in cloud computing scenarios, they produce an
extensive load to the environment, hence, we should seek for other options.

Despite the fact that the prevalence of relational databases (RDBMS) indi-
cates that users often prefer making declarative queries, the relational method
is inadequate for many big data applications. Initially, users want to extract,
transform and load to/from multiple semi or unstructured data sources, which
requires specialized programming. Secondly, customers might do complex ana-
lytics, such as machine learning and graph processing, which are difficult to be
performed in RDBMS. Particularly, the majority of data pipelines shall ideally
be defined using both relational queries and complicated procedural methods.
Up to now, such kinds of systems, relational and procedural, have remained
essentially separate, requiring users to choose between the two methods.

For the aforementioned reasons, we mainly focus in this work on distributed
databases for query optimization including Spark SQL [6] and MongoDB [27]
and show how to utilize both relational and procedural models in MongoDB
and Spark SQL, using Hadoop [4,30,34]. With the use of a MongoDB connector
for Apache Spark, the preceding connection occurs in order to perform speedy
and complex queries. Spark SQL is an extension of Spark for structured data
processing. Spark SQL allows users to effortlessly combine relational and proce-

SQL Query Optimization in Distributed NoSQL Databases 23

dural APIs, rather than requiring them to choose between the two. Furthermore,
frameworks like Hadoop, Apache Spark, and Apache Storm [7], as well as dis-
tributed data storages such as HDFS and HBase [5], are gaining popularity since
they are designed to make the processing of extremely massive volumes of data
almost straightforward. Such systems appear to have a great deal of interest, and
therefore, libraries (such as MLlib of Apache Spark) that enable the development
and application of Machine Learning methods in the cloud are noteworthy.

Spark SQL bridges the gap between the relational and procedural models by
contributing in two ways. Spark SQL offers a DataFrame (DF) API that may
conduct relational operations on external data sources as well as the own dis-
tributed collections of Spark. MongoDB is utilized for speedy index queries. The
API provides Spark applications with extensive relational/procedural interac-
tion. DFs are collections of structured records that can be modified using either
the procedural API of Spark or the new relational APIs that enable more efficient
optimizations. They may be constructed directly from distributed Java/Python
object collections, allowing relational processing in current Spark applications.

In this work, we utilize Spark SQL along with MongoDB to efficiently perform
complex queries and improve their runtime. We investigate query optimization
using various query execution paths by combining MongoDB and Spark SQL,
aiming to minimize the average query execution time. We improve the query exe-
cution time by splitting the query into sub-queries, considering various scenarios
that split sub-queries between MongoDB and Spark SQL, along with the use
of the connector between Apache Spark and MongoDB. This mediator transfers
either the entire database from MongoDB to Spark, or transfers a subset of the
results for those sub-queries executed in MongoDB. Our experimental results
with eight different query execution path scenarios and six difference database
sizes (ranging from 500,000 to 20,000,000 records) demonstrate the clear supe-
riority and scalability of a specific scenario.

The remainder of the paper is organized as follows. In Sect. 2 the fundamental
elements of Spark, Resilient Distributed Datasets (RDDs), and MongoDB are
presented. Section 3 describes the implementation of several query execution
plans in MongoDB and Spark. Section 4 highlights the experimental results and
their findings. Section 5 discusses the idea of sharding for further improvements
on the query performance over huge data sets. Finally, conclusions and future
directions of this work are presented in Sect. 6.

2 Preliminaries

Big Data refers to the deluge of digital data from a variety of digital sources,
including sensors, scanners, smartphones, videos, e-mails, and social media.
These data include texts, photos, videos, and sounds, as well as their combina-
tions. In the big data era, applications require a combination of processing algo-
rithms, data sources, and storage formats to accomplish a common goal which
is big data processing. Nowadays this has turned toward big data warehouses
[32] and high-performance computing environments that can handle geospatial

24 A. Karras et al.

big data [21] among others. The initial systems built for these types of work-
loads, such as MapReduce which is offered by Apache Spark, provide users with
a strong yet procedural programming interface. However, such systems are diffi-
cult to program and need manual tuning by the user to get optimal performance.
As a consequence, a number of innovative technologies aimed to deliver a more
productive user experience by providing relational interfaces to large amounts of
data. Systems like Asterix, Hive, Dremel, and Shark [9,26,31,33] all use declar-
ative queries to deliver more robust automated optimizations.

Apache Spark which is utilized in this work is a distributed cluster computing
engine with APIs in Scala, Java, and Python and libraries for streaming, graph
processing, and machine learning [28]. It is one of the most widely-used systems
with a language-integrated API similar to DryadLINQ [18], and the most active
open-source project for big data processing. Spark offers a functional program-
ming API similar to other systems [11,18], where users manipulate distributed
collections called Resilient Distributed Datasets (RDDs) [34]. Each RDD is a set
of Java or Python objects partitioned throughout a cluster. RDDs can handle
operations like map, filter, and reduce, which take functions in the program-
ming language and transfer them to nodes on the cluster. An example of a Scala
code that counts lines starting with “ERROR” within a text file is given below
(Listing 1):

Listing 1: Scala Example Code

lines = spark.textFile ("�hdfs�://...")
errors = lines.filter(s => s. contains ("�ERROR�"))
println(errors.count ())

The preceding example constructs an RDD of strings named lines by reading
an HDFS file, which then transforms it using a filter to obtain another RDD,
named errors, and then performs a count on this data. RDDs are fault toler-
ant meaning that the system can recover lost data using the lineage graph of
the RDDs by rerunning operations such as the filter above to rebuild missing
partitions. They can also explicitly be cached in memory or on disk to support
iteration [34]. One final note about the API is that RDDs are evaluated lazily.
Each RDD represents a “logical plan” to compute a dataset, but Spark waits
until certain output operations, to launch a function. This allows the engine to
perform some simple query optimization, such as pipelining operations.

In particular, Spark will pipeline reading lines from the HDFS file by applying
the filter and computing a running count, so that it never needs to materialize the
intermediate lines and error results. Although such optimizations are extremely
useful, they are also limited because the engine does not understand the struc-
ture of the data in RDDs which are Java/Python objects or the semantics of
user functions that contain arbitrary code. Nonetheless, the most basic data pro-
cessing paradigms are relational queries that RDDs cannot manage. To address
this, Apache Spark requires a number of higher-level libraries. Spark SQL is one

SQL Query Optimization in Distributed NoSQL Databases 25

of the innovative components of the Apache Spark Framework that combines
relational processing with the functional programming API of Apache Spark. It
enables Apache Spark developers to use the advantages of relational processing.

Spark SQL allows a seamless mix of SQL Queries within the environment of
Apache Spark. Spark SQL is capable to perform data processing on structured
data, or on Resource Description Framework (RDFs) stores, or in DataFrames
(DFs). RDF is a graph-based data model, composed of triples (s, p, o); such a
triple denotes a directed arc (s, o) with label p. RDFs can be applied to matrix
computations [13] as well as to knowledge graph representations [2]. Spark SQL
can support batch processing [3] of RDFs in a matter of seconds. It can also sup-
port storage, partitioning, indexing, and information retrieval in the spectrum
of Big Data [12]. A DF is a distributed collection of data organized into named
columns. Users can use a DataFrame API to perform various relational opera-
tions on both external data sources and Spark’s built-in distributed collections
without providing specific procedures for processing data.

Transiting from traditional SQL-based approaches to NoSQL techniques
requires layers that convert relational databases to key-value stores. Numer-
ous studies have suggested alternative layers to convert relational databases to
NoSQL; however, the majority of them focused on just one or two models of
NoSQL and assessed their layers on a single node, not in a distributed environ-
ment. Therefore, Spark-based layers that are able to map relational databases
to NoSQL storage have emerged [1]. Of course, the necessity here is to utilize a
connector that takes advantage of both distributed computing engines such as
Spark and the exceptional speed that MongoDB has to offer as per searches in
documents.

MongoDB [27] is a document-based NoSQL datastore that is commercially
maintained by 10gen. MongoDB in particular is among the most promising
databases existing because of its nature and its superior performance. Despite
being a non-relational database, MongoDB provides several relational database
functions, such as sorting, secondary indexing, range queries, and nested docu-
ment querying. Operators like create, insert, read, update and remove as well as
manual indexing, indexing on embedded documents and indexing on location-
based data are also supported. In such systems, data are kept in documents,
which are entities that offer structure and encoding for the managed data. Each
page is effectively an associative array containing a scalar value, lists, or arrays
nested inside arrays. Every document has a unique special key called “Objec-
tId” that is used for explicit identification, but this key and the document it
corresponds to are conceptually comparable to a key-value pair.

Documents in MongoDB are serialised as Javascript Object Notation (JSON)
objects and saved using a binary encoding of JSON known as BSON. MongoDB,
like other NoSQL systems, has no schema limits and can allow semi-structured
data, as well as multi-attribute lookups on records that may contain multiple
types of key-value pairings [22]. Documents are often semi-structured files such
as XML, JSON, YALM, and CSV. There are two methods for storing data:
a) nesting documents inside each other, which may accommodate one-to-one

26 A. Karras et al.

or many-to-many relationships, and b) reference to documents, in which the
referred document is only obtained when the user requests data from this doc-
ument.

Cloud computing can be integrated with MongoDB databases along with
modern technologies such as the Internet of Things (IoT) for streaming applica-
tions [16], or for IoT Data Management on the Cloud [15]. Cloud-based applica-
tions that promote and support smart cities and overall well-being in societies
can enhance information management as a service [10].

3 Query Execution Plans

3.1 Indexing in MongoDB

Having previously discussed the use of Apache Spark and Spark SQL, we shall
now provide a simple example of constructing an index and demonstrate how
it influences the query runtime. For this purpose, we shall use the following
example (Listing 2) of a MongoDB database, consisting of one million records.

Listing 2: Index Construction in MongoDB

{
"_id":{"$oid":"61 a6540c3838fe02b81e5338 "},
"Region":"Sub -Saharan�Africa",
"Country":"South�Africa",
"Item�Type":"Fruits",
"Sales�Channel":"Offline",
"Order�Priority":"M",
"Order�Date":{"$date":"2012 -07 -26 T21 :00:00.000Z"},
"Order�ID":443368995 ,
"Ship�Date":{"$date":"2012 -07 -27 T21 :00:00.000Z"},
"Units�Sold":1593,
"Unit�Price":9.33,
"Unit�Cost":6.92,
"Total�Revenue":14862.69 ,
"Total�Cost":11023.56 ,
"Total�Profit":3839.13

}

Instead of storing the data in the form of tables with columns and rows, the
data is stored as documents. Each document can be one of the relational matrices
of the numerical values, or the overlapping interrelated arrays or matrices. These
documents are serialized as JSON objects and stored internally using JSON
binary encryption known as BSON in MongoDB. The data is partitioned and
stored on several servers called shard servers for simultaneous access and effective
read/write operations.

SQL Query Optimization in Distributed NoSQL Databases 27

Assume that the following SQL query (Listing 3) is to be executed within
the given database.

Listing 3: SQL Query

SELECT Country , Region , Unit Price , Unit Cost
FROM sales
WHERE Unit Price > 600
AND Unit Cost < 510
ORDER BY Region

The aforementioned query is well formatted in SQL, making it easy to com-
prehend. In order to execute the query in MongoDB, we make use of mongosh,
a component of the MongoDB Compass tool1 to construct the database.

The previous query can now be executed utilizing an equivalent function
(Listing 4):

Listing 4: MongoDB Aggregation Function

db.myBigCollection.aggregate ([{ $project: {
Country: 1, Region: 1, ’Unit�Price ’: 1,
’Unit�Cost’: 1}},
{$match: {’Unit�Price ’: {$gt: 600},
’Unit�Cost’: {$lt: 510}}} ,
{$sort: {Region: 1}}])
.explain ()

By utilizing the explain() function, we observed an average query execution
time of 860 milliseconds (ms) for the specific database.

To improve the execution time of a certain query by creating an index, it
is reasonable to believe that this index should be based on the columns “Unit
Price” and “Unit Cost” on which the majority of the searches is performed.

Utilizing the following command (Listing 5), one compound index for the
“Unit Price” and “Unit Cost” values are constructed in ascending order:

Listing 5: MongoDB Index Construction

db.myBigCollection.createIndex ({"Unit�Price": 1,
"Unit�Cost": 1})

Now, the preceding query is re-executed and measured in terms of time. The
execution time has been drastically lowered, varying from 250 to 270 ms. An

1 Available at: https://www.mongodb.com/products/compass.

https://www.mongodb.com/products/compass

28 A. Karras et al.

additional single-field index, depending on the field that is being used to sort
the data, may be established. The following command (Listing 6) constructs a
new index based on the “Region” field:

Listing 6: MongoDB New Index Construction

db.myBigCollection.createIndex ({"Region": 1})

If the same query is re-executed utilising both indexes constructed, the aver-
age query execution time drops further to 220 ms. This demonstrates the sig-
nificance of indexes, since the average execution time of a very basic query was
lowered to roughly one fourth with the proper use of indexes.

3.2 Integration of MongoDB and Apache Spark

In this subsection, the information about MongoDB is applied to examine various
instances of the MongoDB-Spark integration described in the previous Section.
We will determine how to use the connection and how to apply our indexing
methods, using the database and indexes described previously.

To highlight the differences among Spark SQL and MongoDB in terms of
query execution, different operations must be considered. In general, MongoDB
tends to be quicker for INSERT/UPDATE operations [17], while SQL appears to be
faster for SELECT operations, but this is not a general rule. To investigate this
problem, an identical database using DataFrames is constructed in Spark. We
will execute the query from Sect. 3, and monitor its execution time.

Recall that without indexing, it took MongoDB an average of 860 ms to
perform the query. Spark SQL executes the identical query in 310 ms without
indexing, which is much faster than MongoDB. This already is a significant
improvement in terms of time. The main reason that the execution time can
be further improved in Spark SQL using indexing is that Apache Spark does
not necessarily allow indexing in the same way as SQL does. Apache Spark is
compatible with a range of data storage formats, some of which enable indexing
while others do not. For instance, Spark along with PostgreSQL enables the
usage of PostgreSQL indexes.

Having observed that Spark SQL executes certain queries faster than Mon-
goDB, it becomes pretty clear that it is better to utilise a URL to get the data,
rather than recreating a database in Apache Spark. Initially, Apache Spark is
executed, including the link package named MongoDB Connector for Spark2.
The initial objective here is to access the database generated previously in Mon-
goDB and to transfer it to Spark. Using the following command (Listing 7), the
data is transferred into a DataFrame, denoted by df.

2 Available at: https://www.mongodb.com/docs/spark-connector/current/.

https://www.mongodb.com/docs/spark-connector/current/

SQL Query Optimization in Distributed NoSQL Databases 29

Listing 7: Dataframe Creation from MongoDB to Apache Spark

val df = spark.sqlContext.read.format
("com.mongodb.spark.sql.DefaultSource")
.option("uri",
"mongodb ://127.0.0.1/ myDb.myBigCollection")
.load()

Once the data are imported, a temporary SQL view of the “sales” DataFrame
can be constructed utilizing the following command (Listing 8).

Listing 8: Temporary SQL View

df.createOrReplaceTempView ("sales")

At this point, Spark SQL can be utilized to execute numerous queries on
the database. We execute the query from Sect. 3 and measure its execution
time for evaluation. To execute and measure the execution time of the query,
the spark.sql() and spark.time() methods are used respectively as follows
(Listing 9).

Listing 9: Spark SQL Query Time Measurement Command

spark.time(spark.sql(
SELECT Region , Country , ‘Unit Price ‘, ‘Unit Cost ‘

FROM sales
WHERE ‘Unit Price ‘ > 600 AND ‘Unit Cost ‘ < 510
ORDER BY Region).show ())

The average execution time of the aforementioned query is 580 ms, which
is much slower than the 220 ms of MongoDB. This is due to the fact that
the connection transfers data in real-time, resulting in a significant increase in
the average execution time required to move data from MongoDB to Spark. In
particular, the entire database is transferred from MongoDB to Spark, while the
query is executed, and the results are derived at the end.

Therefore, we should consider how we might save time by moving the
database so that the query execution times are not that lengthy. One way to
improve the query time is to execute the query on MongoDB and transfer only
the results to Spark. That is, instead of transferring the entire database in the
DataFrame, the portion of the database is simply transferred that pertains to
the given query. This is done by utilizing the following commands (Listing 10).

30 A. Karras et al.

Listing 10: MongoDB Query Execution and Transferring the
Results to Spark

val df = spark.sqlContext.read.format
("com.mongodb.spark.sql.DefaultSource")
.option("uri",
"mongodb ://127.0.0.1/ myDb.myBigCollection")
.option("pipeline",
{$project: {Country: 1, Region: 1,
’Unit�Price ’: 1, ’Unit�Cost’: 1}},
{$match: {’Unit�Price ’: {$gt: 600 },
’Unit�Cost’: {$lt: 510}}} , {$sort: {Region: 1}}). load()

Once the necessary information in the DataFrame exists, the results can be
examined. After creating a temporary SQL view of the DataFrame with the same
name “sales” (for convenience), a single query is executed to return all fields,
as the DataFrame includes the required information. This is done through the
following query (Listing 11):

Listing 11: Spark SQL Query Execution

spark.time(spark.sql(SELECT * FROM sales).show ())

As anticipated, the average query execution time now drops to 180 ms. This
time is lower than that of the MongoDB (220 ms) and this is due to the following
reasons.

Recall first the two query scenarios. In the first scenario, the query is executed
in MongoDB and the results are reported in MongoDB. In the second scenario,
the query is executed in MongoDB, the data are transferred to Spark, and then
the results are reported there. The obvious question is how the query execution
time of the second scenario turns out to be faster than that of the first scenario,
given the fact that the second scenario (and its corresponding execution path)
requires more time due to the transfer of data.

The reason appears to be in the speed at which the query is executed using
a SELECT operation in Spark SQL against the operations of MongoDB, as previ-
ously noted. Performing more experiments in the whole database in both Mon-
goDB and Spark SQL (after transferring it), it appears that Spark SQL performs
the SELECT operation significantly faster. In the second scenario, the complete
database transfer is not required, but only a tiny portion of it that contains the
results which are sent after the queries. Hence, the overall execution time will be
much less. In the particular example used, around 83,000 records are returned
out of the total of one million records in the database.

SQL Query Optimization in Distributed NoSQL Databases 31

A subsequent question is whether the query execution time can be further
reduced by exploiting the speed of the SELECT(Spark SQL) operation against that
of the $project(MongoDB) operation. To investigate this idea, we divide the query
into sub-queries. In particular, we split the query so that the WHERE($match) and
the ORDER BY($sort) operations are executed in MongoDB, while the operation
SELECT($project) is executed on Spark.

To execute the operations WHERE($match) and ORDER BY($sort) in MongoDB
the following commands (Listing 12) are used.

Listing 12: MongoDB WHERE and ORDER BY Query Execu-
tion

val df = spark.sqlContext.read.format
("com.mongodb.spark.sql.DefaultSource")
.option("uri",
"mongodb ://127.0.0.1/ myDb.myBigCollection")
.option("pipeline", {$match: {’Unit�Price ’: {$gt: 600},
’Unit�Cost’: {$lt: 510}}} , {$sort: {Region: 1}}). load()

To execute the operation SELECT($project) in SparkSQL the following com-
mands (Listing 13) are used.

Listing 13: Spark SQL SELECT Command Execution

spark.time(spark.sql(SELECT Region , Country ,
‘Unit Price ‘, ‘Unit Cost ‘ FROM sales).show ())

Measuring now the average query execution time, we observe that it has been
further reduced to approximately 105 ms. Spark SQL appears to be faster than
MongoDB when executing the operation SELECT from $project.

Based on this additional improvement, a natural attempt would be to migrate
the ORDER BY($sort) portion of the query to Spark SQL. This is done in two
steps.

First, the operation WHERE($match) is executed in MongoDB using the fol-
lowing commands (Listing 14).

32 A. Karras et al.

Listing 14: MongoDB WHERE Command Execution

val df = spark.sqlContext.read.format
("com.mongodb.spark.sql.DefaultSource")
.option("uri",
"mongodb ://127.0.0.1/ myDb.myBigCollection")
.option("pipeline", {$match: {’Unit�Price ’:
{$gt: 600}, ’Unit�Cost’: {$lt: 510}}})
.load()

Then, the operations SELECT($project) and ORDER BY($sort) are executed
in Spark SQL using the following commands (Listing 15).

Listing 15: Spark SQL SELECT and ORDER BY Execution

spark.time(spark.sql(SELECT Region , Country ,
‘Unit Price ‘, ‘Unit Cost ‘ FROM sales ORDER BY
Region).show ())

Measuring the query execution time of this experiment, we observed that the
average time did not improve but rather increased significantly to 530 ms. This
implies that the ORDER BY($sort) method in MongoDB appears to be sufficiently
faster.

The discussion in this section demonstrates the need to consider various query
execution scenarios and measuring the corresponding query execution times in
order to recommend some best cases/practices. We do this in Sect. 4 where var-
ious scenarios are analysed and their query execution times are reported.

4 Experimental Results

In this Section we present the experimental results by running various scenarios
of query execution paths on different database sizes and measure the average
query execution time.

We considered the eight query execution path scenarios shown in Table 1,
in which one part of the query is executed in MongoDB and the other part in
Spark SQL (examples of such query scenarios were presented in Sect. 3.

The aforementioned scenarios were executed on six different database sizes
in order to investigate the scalability of the specific query execution scenarios.

We initiated the database size to 500,000 records and doubled the size for
generating the next database instance up to 20,000,000 records.

The average query times per scenario and database size are reported in
Tables 2 to 7. The fastest query times are highlighted in bold.
We observe the following across all results (cf. Tables 2 to 7).

SQL Query Optimization in Distributed NoSQL Databases 33

Table 1. Scenarios of Query Execution Paths.

Scenario MongoDB Spark SQL

1 Entire Query Execution –

2 Entire Database Transfer Entire Query Execution

3 WHERE($match) + ORDER BY($sort) SELECT($project)

4 WHERE($match) SELECT($project) + ORDER BY($sort)

5 ORDER BY($sort) SELECT($project) + WHERE($match)

6 SELECT($project) WHERE($match) + ORDER BY($sort)

7 SELECT($project) + WHERE ($match) ORDER BY($sort)

8 SELECT($project) + ORDER BY($sort) WHERE($match)

Table 2. Average query execution time (in ms) per scenario for 500,000 records.

Scenario MongoDB Spark SQL Avg Qtime (ms)

1 Entire Query Execution – 121

2 Entire Database Transfer Entire Query Execution 311

3 WHERE($match) + ORDER BY($sort) SELECT($project) 72

4 WHERE($match) SELECT($project) + ORDER BY($sort) 289

5 ORDER BY($sort) SELECT($project) + WHERE($match) 48

6 SELECT($project) WHERE($match) + ORDER BY($sort) 672

7 SELECT($project) + WHERE ($match) ORDER BY($sort) 518

8 SELECT($project) + ORDER BY($sort) WHERE($match) 127

Table 3. Average query execution time (in ms) per scenario for 1,000,000 records.

Scenario MongoDB Spark SQL Avg Qtime (ms)

1 Entire Query Execution – 180

2 Entire Database Transfer Entire Query Execution 580

3 WHERE($match) + ORDER BY($sort) SELECT($project) 105

4 WHERE($match) SELECT($project) + ORDER BY($sort) 530

5 ORDER BY($sort) SELECT($project) + WHERE($match) 55

6 SELECT($project) WHERE($match) + ORDER BY($sort) 850

7 SELECT($project) + WHERE ($match) ORDER BY($sort) 690

8 SELECT($project) + ORDER BY($sort) WHERE($match) 210

Table 4. Average query execution time (in ms) per scenario for 2,000,000 records.

Scenario MongoDB Spark SQL Avg Qtime (ms)

1 Entire Query Execution – 337

2 Entire Database Transfer Entire Query Execution 1429

3 WHERE($match) + ORDER BY($sort) SELECT($project) 184

4 WHERE($match) SELECT($project) + ORDER BY($sort) 1185

5 ORDER BY($sort) SELECT($project) + WHERE($match) 59

6 SELECT($project) WHERE($match) + ORDER BY($sort) 1338

7 SELECT($project) + WHERE ($match) ORDER BY($sort) 1129

8 SELECT($project) + ORDER BY($sort) WHERE($match) 369

34 A. Karras et al.

Table 5. Average query execution time (in ms) per scenario for 5,000,000 records.

Scenario MongoDB Spark SQL Avg Qtime (ms)

1 Entire Query Execution – 670

2 Entire Database Transfer Entire Query Execution 8800

3 WHERE($match) + ORDER BY($sort) SELECT($project) 1270

4 WHERE($match) + SELECT($project) ORDER BY($sort) 6300

5 ORDER BY($sort) SELECT($project) + WHERE($match) 65

6 SELECT($project) WHERE($match) + ORDER BY($sort) 3048

7 SELECT($project) + WHERE ($match) ORDER BY($sort) 2438

8 SELECT($project) + ORDER BY($sort) WHERE($match) 844

Table 6. Average query execution time (in ms) per scenario for 10,000,000 records.

Scenario MongoDB Spark SQL Avg Qtime (ms)

1 Entire Query Execution – 1237

2 Entire Database Transfer Entire Query Execution 11469

3 WHERE($match) + ORDER BY($sort) SELECT($project) 2543

4 WHERE($match) + SELECT($project) ORDER BY($sort) 12894

5 ORDER BY($sort) SELECT($project) + WHERE($match) 102

6 SELECT($project) WHERE($match) + ORDER BY($sort) 5671

7 SELECT($project) + WHERE ($match) ORDER BY($sort) 4179

8 SELECT($project) + ORDER BY($sort) WHERE($match) 1636

Table 7. Average query execution time (in ms) per scenario for 20,000,000 records.

Scenario MongoDB Spark SQL Avg Qtime (ms)

1 Entire Query Execution – 3659

2 Entire Database Transfer Entire Query Execution Out of memory

3 WHERE($match) + ORDER BY($sort) SELECT($project) 6784

4 WHERE($match) + SELECT($project) ORDER BY($sort) Out of memory

5 ORDER BY($sort) SELECT($project) + WHERE($match) 285

6 SELECT($project) WHERE($match) + ORDER BY($sort) 11074

7 SELECT($project) + WHERE ($match) ORDER BY($sort) 8514

8 SELECT($project) + ORDER BY($sort) WHERE($match) 4855

The ORDER BY($sort) operation in MongoDB is exceptionally fast, faster
than any other operation.

The SELECT($project) operation in Spark SQL is faster compared to the
same operation in MongoDB.

The combination of the SELECT($project) and WHERE($match) operations in
Spark SQL are exceptionally fast, faster than any other operation.

Scenario 5 is the fastest across all database sizes, due to the above facts.
Scenario 3 is the second fastest scenario for database sizes up to 2, 000, 000

records, followed by scenarios 1 and 8 (cf. Tables 2 to 4).

SQL Query Optimization in Distributed NoSQL Databases 35

As soon as the database size exceeds 2, 000, 000 records (cf. Tables 5 to 7),
the transfer of a large amount of data between MongoDB and Spark begins to
have a significant effect on the query execution time. This is also evident by the
query execution time of scenario 2, in which the entire database is transferred
to Sparl SQL, and which has the largest value, while the memory exceeded its
limit in the case of the database with 20, 000, 000 records (cf. Table 7).

For database sizes beyond 2, 000, 000 records, scenario 1 (i.e., just run the
entire query in MongoDB) is the second fastest, followed by scenarios 8 and 3
(cf. Tables 5 to 7).

Scenario 5 has an exceptional scalability not only because it is the fastest
across all database sizes, but also due to the very good scaling of the average
query execution time as the size of the database doubles from one instance to
the next (cf. Tables 2 to 7).

The log-scaled results across all 8 different test scenarios and the 6 different
database sizes are shown in Figs. 1 and 2.

Figure 1 presents the results across all databases sizes for scenarios 1–4. As
we can see, scenarios 1 and 2 have similar behavior across all database sizes. The
only difference appears in the case of scenario 2 and database size of 20,000,000
records, where the memory exceeded its limits. Scenario 3 remains the fastest
execution plan across all database sizes, while we see an increase in time at
20,000,000 records. Lastly, scenario 4 has similar performance to scenario 2, but
once again when the size of the database reaches 20,000,000 records the memory
exceeded its limits.

Fig. 1. Query Runtime for Scenarios 1-4 for 0.5, 1, 2, 5, 10 and 20 million records.

36 A. Karras et al.

Fig. 2. Query Runtime for Scenarios 5-8 for 0.5, 1, 2, 5, 10 and 20 million records.

Figure 2 presents the results across all databases sizes for scenarios 5–8. As we
can see, scenario 5 is the fastest as per query execution time across all database
sizes. Scenario 6 appears to be the slowest. Scenario 8 is the second best. Both
scenarios 7 and 8 have similar behavior across all database sizes. We also observed
that scenarios 5–8 did not cause the memory to reach its limits.

5 Further Extensions

In this section, we shall discuss a technique known as sharding that can be used
to further improve the query performance of huge data sets.

Recall that MongoDB stores data as documents, instead of storing data as
tables with columns and rows. Every document may be represented by one of the
relational matrices of numerical values or the overlapping connected arrays or
matrices. These documents are serialised as JSON objects and saved internally
using JSON binary encryption (known as BSON in MongoDB).

The data are partitioned and stored on many servers known as shards or
shard servers to facilitate simultaneous read/write operations.

This connection integrates MongoDB with Apache Spark using a cluster
assignment function C : X → {1, 2,,K}, where K refers to the number
of clusters across all documents, X refers to a set of N objects (documents), and
d ∈ IR+

0 refers to a distance function (symmetric, non-negative and obeying the
triangle inequality) between all pairs of objects in X.

Then, the goal is to partition X into K disjoint sets

X1,X2, . . . , XK

such that
∑

x,x′∈Xp
d (x, x′) is minimized for each 1 ≤ p ≤ K, while the distance

d(y, y′) between any two points y ∈ Xi and y′ ∈ Xj , i �= j, is maximized.

SQL Query Optimization in Distributed NoSQL Databases 37

The number of all possible distinct cluster assignments S(N,K) is given by

S(N,K) =
1
K!

K∑

p=1

(−1)K−p

(
K
p

)

pN (1)

The function S(N,K) can be used to determine the optimal cluster assign-
ment function C for a given set of data, by finding the value of p that minimizes
the value of S(N,K). In the context of sharding, this could be used to find the
optimal number of shards (corresponding to clusters) for a database or any other
distributed system by minimizing the number of shards needed to store a given
amount of data.

Sharding is a way to distribute data across multiple devices, to deal with
applications that use huge databases and structures. A database may have a
mix of sharded collections and unsharded collections.

Collection 1

1 TB

Shard A Shard B Shard C Shard D

256 GB256 GB 256 GB 256 GB

Fig. 3. Sharding Phase of MongoDB

Sharding in MongoDB uses subsets of data which are later moved from one
shard to another; cf. Fig. 3. One way to identify which subset is being moved is
by the selected key. For example, if we were to split a collection of users based on
the field username, then the data is split into chunks (parts of a file) of predefined
ranges e.g., [“a”,“f”)3. Then“a”, “charlie”, and “ezbake” could be in the set,
but “f” could not.

A MongoDB shard cluster is comprised of two or more shards, one or more
configuration servers, and an arbitrary number of routing processes. Each com-
ponent is detailed below.

3 The standard range notation is used where “[” and “]” denote inclusive bounds and
“(” and “)” denote exclusive bounds.

38 A. Karras et al.

– Shard : each shard consists of one or more servers and uses MongoDB processes
to store data. Each shard in a production environment will consist of a replica
set to ensure availability and automated fail-over.

– Configuration server : it stores the metadata of the cluster, which includes
basic information about each shard server and the chunks it contains.

– Mongos (Routing Processes): they concernt the routing and coordination pro-
cesses. When MongoDB receives a request from a client, it routes the request
to the appropriate server and merges the results before sending them back to
the client.

Sharded sets are divided into clusters and spread throughout the shards,
using a cluster assignment function, as discussed above. Unsharded collections
are stored on the main shard.

MongoDB measures the theoretical maximum collection size as follows. Let
Bmax be the maximum BSON document size (in MB) and let Yavg be the average
size of shard key values (in bytes). Then, the maximum number M of splits is
given by M = Bmax/Yavg. Assuming a chunk size of H (in MB), we have that
the maximum collection size MB (in MB) is given by

MB =
M · C

2
(2)

The size of the chunks, which is the basic unit of data movement in sharded
clusters, also plays a significant role in the performance of operations such as
migrations. Adjusting the chunk size can help to balance the trade-offs between
the need for data movement and the need to keep chunks small enough to prevent
hotspots4.

An additional technique concerns zone sharding that allows the assignment of
ranges of shard keys to different shards, or a group of shards. This technique can
be used to distribute data based on access patterns; for instance, assigning fre-
quently accessed data to a specific set of shards can improve query performance.
Furthermore, complex queries can be split and executed on specific shards based
on their complexity and the capacity of the selected shard.

In order to achieve optimal performance in MongoDB, it is essential to con-
stantly monitor and optimize the sharding configuration by considering the usage
of sharding in the query execution plan, monitoring and optimizing the shard-
ing configuration, choosing the right shard key, indexes, chunk size, and using
techniques like zone sharding. These steps can greatly improve the performance
of MongoDB in a large and complex data environment.

6 Conclusions and Future Work

We presented an approach for query optimization in terms of average query
execution time for NoSQL databases and Spark SQL. The query execution path
4 Hotspots in sharded clusters refer to situations where a specific chunk of data receives

a disproportionate amount of read and write operations, causing performance issues.

SQL Query Optimization in Distributed NoSQL Databases 39

scenarios that were examined demonstrate that our results are promising. By
examining the aforementioned database instances and scenarios, the objective
of this work was to determine how the connection among MongoDB and Apache
Spark operates and therefore to investigate potential optimization possibilities
using the connector and the indexing algorithms offered by MongoDB. One of our
findings is that the SELECT operation in Spark SQL is typically faster compared
to the same operation in MongoDB.

To further substantiate this finding, one could investigate as many potential
scenarios as possible, in order to either discover the optimal answer to a given
question, or to detect optimization tendencies. Naturally, the integration of all
conceivable scenarios and conditions is endless and therefore it is impossible
to map all feasible improvements for each specific instance. This work can be
considered as a useful step forward to SQL query optimization in distributed
systems utilizing NoSQL databases. Based on our current approach, our out-
comes and the evaluated methodologies, we also believe that this work can be
further expanded.

Future directions include collaborating with major organisations, businesses,
and cooperatives that can provide a portion of their vast amounts of real-world
data, in order to develop a variety of optimization models based on the current
work. Hence, it will be possible to detect broad optimization tendencies based
on the used databases and the frequency of queries. Thus, the database adminis-
trators (used to establish their own database) will be able in the future to utilize
these models and adjust their database and query path execution plans to them.

The preceding directions may be performed automatically by using a smart
query optimizer as the ones presented in [8,19,20,23–25,29]. However, the imple-
mentation of such a tool should combine query evaluation and optimization
methods along with machine learning techniques. We strongly believe that these
methods would be interesting to be used on specific use cases, where after several
experiments the appropriate cost functions can be found in order to create one
highly efficient query execution scheduler able to scale and adapt.

To further improve the query execution time, one approach is to distribute
a given complex query to sharded queries on RDDs (cf. Sect. 5) based on the
operations contained within it so as to improve the time, and then to collect the
sub-results from RDDs and merge them to construct the answer to the initial
query. Ultimately, a fine-tuning direction would be to utilize modified indexes
such as R-trees, Quad-trees, kD-trees and LSM-trees, which have been already
implemented, for integration with this work rather than using the MongoDB
B-tree index.

References

1. Abdel-Fattah, M.A., Mohamed, W., Abdelgaber, S.: A comprehensive spark-based
layer for converting relational databases to NoSQL. Big Data Cogn. Comput. 6(3),
71 (2022). https://doi.org/10.3390/bdcc6030071

2. Ali, W., Saleem, M., Yao, B., Hogan, A., Ngomo, A.-C.N.: A survey of RDF stores
& SPARQL engines for querying knowledge graphs. VLDB J. 31, 1–26 (2021).
https://doi.org/10.1007/s00778-021-00711-3

https://doi.org/10.3390/bdcc6030071
https://doi.org/10.1007/s00778-021-00711-3

40 A. Karras et al.

3. Anusha, K., Usha Rani, K.: Performance evaluation of spark SQL for batch pro-
cessing. In: Venkata Krishna, P., Obaidat, M.S. (eds.) Emerging Research in Data
Engineering Systems and Computer Communications. AISC, vol. 1054, pp. 145–
153. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-0135-7 13

4. Apache: Hadoop. https://hadoop.apache.org/. Accessed 17 Jan 2023
5. Apache: HBase. http://hbase.apache.org/. Accessed 17 Jan 2023
6. Apache: Spark. https://spark.apache.org/. Accessed 17 Jan 2023
7. Apache: Storm. https://storm.apache.org/. Accessed 17 Jan 2023
8. Babcock, B., Chaudhuri, S.: Towards a robust query optimizer: a principled and

practical approach. In: Proceedings of the 2005 ACM SIGMOD International Con-
ference on Management of Data, pp. 119–130 (2005)

9. Behm, A., Behm, A., et al.: ASTERIX: towards a scalable, semistructured data
platform for evolving-world models. Distrib. Parall. Databases 29(3), 185–216
(2011)

10. Celesti, A., et al.: Information management in IoT cloud-based tele-rehabilitation
as a service for smart cities: Comparison of NoSQL approaches. Measurement 151,
107218 (2020). https://doi.org/10.1016/j.measurement.2019.107218

11. Chambers, C., et al.: Flumejava: easy, efficient data-parallel pipelines. ACM SIG-
PLAN Notices 45(6), 363–375 (2010)

12. Chawla, T., Singh, G., Pilli, E.S., Govil, M.: Storage, partitioning, indexing and
retrieval in big RDF frameworks: a survey. Comput. Sci. Rev. 38, 100309 (2020).
https://doi.org/10.1016/j.cosrev.2020.100309

13. Chen, Y., Özsu, M.T., Xiao, G., Tang, Z., Li, K.: GSmart: an efficient
SPARQL query engine using sparse matrix algebra - full version. arXiv preprint
arXiv:2106.14038 (2021)

14. Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clus-
ters. Commun. ACM 51(1), 107–113 (2008). https://doi.org/10.1145/1327452.
1327492

15. Eyada, M.M., Saber, W., El Genidy, M.M., Amer, F.: Performance evaluation
of IoT data management using MongoDB versus MySQL databases in different
cloud environments. IEEE Access 8, 110656–110668 (2020). https://doi.org/10.
1109/ACCESS.2020.3002164

16. Gupta, A., Jain, S.: Optimizing performance of real-time big data stateful
streaming applications on cloud. In: 2022 IEEE International Conference on Big
Data and Smart Computing (BigComp), pp. 1–4 (2022). https://doi.org/10.1109/
BigComp54360.2022.00010

17. Győrödi, C., Győrödi, R., Pecherle, G., Olah, A.: A comparative study: MongoDB
vs. MySQL. In: 2015 13th International Conference on Engineering of Modern
Electric Systems (EMES), pp. 1–6. IEEE (2015)

18. Isard, M., Yu, Y.: Distributed data-parallel computing using a high-level program-
ming language. In: Proceedings of the 2009 ACM SIGMOD International Confer-
ence on Management of Data, pp. 987–994 (2009)

19. Izenov, Y., Datta, A., Rusu, F., Shin, J.H.: COMPASS: Online sketch-based query
optimization for in-memory databases. In: Proceedings of the 2021 International
Conference on Management of Data, pp. 804–816 (2021)

20. Karras, A., Karras, C., Samoladas, D., Giotopoulos, K.C., Sioutas, S.: Query opti-
mization in NoSQL databases using an enhanced localized R-tree index. In: Pard-
ede, E., Delir Haghighi, P., Khalil, I., Kotsis, G. (eds.) Information Integration and
Web Intelligence, pp. 391–398. Springer Nature Switzerland, Cham (2022)

https://doi.org/10.1007/978-981-15-0135-7_13
https://hadoop.apache.org/
http://hbase.apache.org/
https://spark.apache.org/
https://storm.apache.org/
https://doi.org/10.1016/j.measurement.2019.107218
https://doi.org/10.1016/j.cosrev.2020.100309
http://arxiv.org/abs/2106.14038
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1109/ACCESS.2020.3002164
https://doi.org/10.1109/ACCESS.2020.3002164
https://doi.org/10.1109/BigComp54360.2022.00010
https://doi.org/10.1109/BigComp54360.2022.00010

SQL Query Optimization in Distributed NoSQL Databases 41

21. Li, Z.: Geospatial big data handling with high performance computing: current
approaches and future directions. In: Tang, W., Wang, S. (eds.) High Performance
Computing for Geospatial Applications. GE, vol. 23, pp. 53–76. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-47998-5 4

22. Makris, A., Tserpes, K., Andronikou, V., Anagnostopoulos, D.: A classification
of NoSQL data stores based on key design characteristics. Procedia Comput. Sci.
97, 94–103 (2016). https://doi.org/10.1016/j.procs.2016.08.284, 2nd International
Conference on Cloud Forward: From Distributed to Complete Computing

23. Marcus, R., Negi, P., Mao, H., Tatbul, N., Alizadeh, M., Kraska, T.: Bao: making
learned query optimization practical. ACM SIGMOD Rec. 51(1), 6–13 (2022)

24. Marcus, R., et al.: Neo: a Learned Query Optimizer. Proc. VLDB Endow. 12(11),
1705–1718 (2019). https://doi.org/10.14778/3342263.3342644

25. Markl, V., Lohman, G.M., Raman, V.: LEO: An autonomic query optimizer for
DB2. IBM Syst. J. 42(1), 98–106 (2003)

26. Melnik, S., et al.: Dremel: interactive analysis of web-scale datasets. Proceed.
VLDB Endow. 3(1–2), 330–339 (2010)

27. MongoDB Inc.: MongoDB. https://www.mongodb.com/. Accessed 24 Dec 2022
28. Salloum, S., Dautov, R., Chen, X., Peng, P.X., Huang, J.Z.: Big data analytics on

Apache Spark. Int. J. Data Sci. Anal. 1(3), 145–164 (2016). https://doi.org/10.
1007/s41060-016-0027-9

29. Sellami, R., Defude, B.: Complex queries optimization and evaluation over rela-
tional and NoSQL data stores in cloud environments. IEEE Trans. Big Data 4(2),
217–230 (2017)

30. Shvachko, K., Kuang, H., Radia, S., Chansler, R.: The Hadoop distributed file
system. In: 2010 IEEE 26th Symposium on Mass Storage Systems and Technologies
(MSST), pp. 1–10. IEEE (2010)

31. Thusoo, A., et al.: Hive-a petabyte scale data warehouse using Hadoop. In: 2010
IEEE 26th International Conference on Data Engineering (ICDE 2010), pp. 996–
1005. IEEE (2010)

32. Vaisman, A., Zimányi, E.: Recent Developments in Big Data Warehouses. In:
Data Warehouse Systems. Data-Centric Systems and Applications, pp. 561–631.
Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-662-65167-4 15

33. Xin, R.S., Rosen, J., Zaharia, M., Franklin, M.J., Shenker, S., Stoica, I.: Shark:
SQL and rich analytics at scale. In: Proceedings of the 2013 ACM SIGMOD Inter-
national Conference on Management of Data, pp. 13–24 (2013)

34. Zaharia, M., et al.: Resilient distributed datasets: a fault-tolerant abstraction for
in-memory cluster computing. In: 9th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 12), pp. 15–28 (2012)

https://doi.org/10.1007/978-3-030-47998-5_4
https://doi.org/10.1016/j.procs.2016.08.284
https://doi.org/10.14778/3342263.3342644
https://www.mongodb.com/
https://doi.org/10.1007/s41060-016-0027-9
https://doi.org/10.1007/s41060-016-0027-9
https://doi.org/10.1007/978-3-662-65167-4_15

	SQL Query Optimization in Distributed NoSQL Databases for Cloud-Based Applications
	1 Introduction
	2 Preliminaries
	3 Query Execution Plans
	3.1 Indexing in MongoDB
	3.2 Integration of MongoDB and Apache Spark

	4 Experimental Results
	5 Further Extensions
	6 Conclusions and Future Work
	References

