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Preface

The International Symposium on Algorithmic Aspects of Cloud Computing (ALGO-
CLOUD) is an annual international symposium that aims to tackle the diverse new topics
in the emerging area of algorithmic aspects of computing and data management in mod-
ern cloud-based systems interpreted broadly to include edge- and fog-based systems,
cloudlets, cloud micro-services, virtualization environments, decentralized systems, as
well as dynamic networks.

The symposium aims at bringing together researchers, students, and practitioners to
present research activities and results on topics related to the algorithmic, design, and
development aspects of modern cloud-based systems. ALGOCLOUD is particularly
interested in novel algorithms in the context of cloud computing, cloud architectures, as
well as experimental work that evaluates contemporary cloud approaches and pertinent
applications. ALGOCLOUD also welcomes demonstration manuscripts, which discuss
successful system developments, aswell as experience/use-case articles and high-quality
survey papers.

Topics of interest included (non-exclusively):

• Analysis of Algorithms and Data Structures
• Algorithms for Decentralized Systems
• Algorithms for Dynamic Networks
• Game-Theoretic Approaches for Cloud Computing
• IoT and Cloud Computing
• Fog and Edge Computing
• Resource Management and Scheduling
• Data Center and Infrastructure Management
• Privacy, Security and Anonymization
• Cloud-Based Applications
• Virtualization and Containers
• Performance Models
• Cloud Deployment Tools and Their Analysis
• Novel Programming Models
• Storage Management
• Economic Models and Pricing
• Energy and Power Management
• Big Data and the Cloud
• Network and Graph Analysis
• Network Management and Techniques
• Caching and Load Balancing
• Machine Learning for Cloud Computing and Systems
• Cloud Computing and Systems for Machine Learning



vi Preface

ALGOCLOUD 2022 took place on September 6, 2022, in Potsdam, Germany. It was
part of ALGO 2022 (September 6–10, 2022), the major annual congress that combines
the premier algorithmic conference European Symposium on Algorithms (ESA), along
with a number of specialized symposia and workshops, all related to algorithms and
their applications, making ALGO the major European event for researchers, students,
and practitioners in algorithms and their application.

Therewas a positive response to theALGOCLOUD2022 call for papers. The diverse
nature of papers submitted demonstrated the vitality of the algorithmic aspects of cloud
computing. All submissions went through a rigorous peer-review process and were
reviewed by at least three Program Committee (PC) members. They were evaluated on
their quality, originality, and relevance to the symposium. Following their recommenda-
tions, the PC accepted six original research papers covering a variety of topics that were
presented at the symposium.We would like to thank all PCmembers for their significant
contribution to the review process.

Finally, we would like to thank all authors who submitted their research work to
ALGOCLOUD and the Steering Committee for its continuous support.

We hope that these proceedings will help researchers, students, and practitioners
understand and be aware of state-of-the-art algorithmic aspects of cloud computing, and
that theywill stimulate further research in the domain of algorithmic approaches in cloud
computing in general.

April 2023 Luca Foschini
Spyros Kontogiannis
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Cloud-Based Urban Mobility Services

Spyros Kontogiannis1,2 , Paraskevi-Maria Machaira2, Andreas Paraskevopoulos1,2,
Konstantinos Raftopoulos2, and Christos Zaroliagis1,2(B)

1 Computer Technology Institute and Press “Diophantus”, Patras University Campus, 26504
Patras, Greece

2 Computer Engineering and Informatics Department, University of Patras, Patras, Greece
{kontog,machaira,paraskevop,kraft,zaro}@ceid.upatras.gr

Abstract. We present a cloud-based ecosystem for urban mobility services that
involves citizens, authorities, corporations, resources, and services, all working
together towards a common well-being. Our goal is to have a platform that allows
the exploitation of shared mobility-related data sources by harmonically cooper-
ating mobility-related services, and at the same time smoothly balances the com-
putational load across the full cloud continuum. Towards this goal, we present
the relevant orchestration mechanisms, both at service level and at cloud sub-
strate level, which take into account particular characteristics per mobility service,
and real-time performance measurements and availability of computational nodes
within the cloud substrate. Moreover, our ecosystem allows the migration of both
data segments and source-code segments within the cloud infrastructure, towards
optimizing an objective for the entire ecosystem’s performance and sustainabil-
ity. Our core services are based on novel algorithmic approaches that are deemed
necessary for providing real-time query responses.

Keywords: sustainable mobility · multimodal route planning and navigation ·
crowdsourcing · resource sharing · incentives · parking/delivery services

1 Introduction

Urban mobility plays a pivotal role in meeting the objectives of economic competitive-
ness, social cohesion, and sustainable growth. An efficient transportation system should
be at the heart of a human-centric city. The stereotypical approach of building and
expanding the provided infrastructure (e.g., public transport, parking spaces, etc.) over
and over, can’t solve all the challenges related to mobility, since the urban environments
gradually tend to a saturation point with respect to the management of public spaces. It is
nowmore than evident that sophisticated approaches are required to focus on optimizing
the utilization of the existing infrastructure. Moreover, it is also clear that mobility is
a poly-parametric challenge, not just about developing transport infrastructure and ser-
vices, but also about overcoming the social, economic, political, and physical barriers,
and considering the interaction with citizens, and dependence from resources of other
types of services. For instance, urbanmobility is not necessarily only about transport, but
it also accesses core socio-economic services like health, education, and employment.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Foschini and S. Kontogiannis (Eds.): ALGOCLOUD 2022, LNCS 13799, pp. 1–20, 2023.
https://doi.org/10.1007/978-3-031-33437-5_1
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Therefore, mobility services should be integrated and interact with numerous other
types of services related to urban well-being, such as parking, delivery, and sharing,
in an urban ecosystem providing to citizens an entire arsenal of everyday services,
opportunities and resources. For example, citizens do not only commute with public
transport, but they also exploit other means of transportation such as private cars, or
car/bike/bicycle sharing, in an unprecedented blend of all possible means of transport.
Moreover, they also share resources (e.g., private parking spots, their own vehicles,
or even some of their own time) in support of services (e.g., parking, vehicle sharing,
delivery, etc.) for other individuals.

Nevertheless, a prerequisite for having this tremendous blend of diverse urban well-
being services work smoothly together, would be to create a more sophisticated urban
ecosystem than a mere collection of technological advancements. For example, the con-
sideration of the human-in-the-loop is a crucial aspect for the discovery and exploita-
tion in real-time of available shared resources (e.g., shared parking spots, pick-up and
drop-off points for shared vehicles on the move, ongoing or scheduled delivery tasks),
before requesting the commitment of a new resource. As another example, non-fixed-
route public transport is affected, to a certain extent, by the traffic conditions which
are also affected by other parameters, such as either scheduled or unforeseen politi-
cal/cultural/commercial events involving many people, mobility with one’s own means,
weather conditions, etc. Finally, other quite challenging urban services such as on-
demand delivery of goods, require access (as supporting services) to, but also affect the
quality of, the provided services by the mobility platform.

All these directly interacting (existing or envisioned, for future deployment) urban
services to the citizens, can only co-exist in a holistic urban-life orchestration ecosystem,
that will be based on a volatile, scalable, and efficient computing environment, such as
a cloud architecture, and will also allow the exploitation of crowdsourced information
and crowdfunded/shared resources. This ecosystem will provide novel business oppor-
tunities, such as the commercial exploitation of private parking spaces (e.g., of super-
markets, when they are closed), but also a better utilization of idle sources and human
involvement, before considering the deployment of new resources, infrastructures, and
extra human power.

The goal of this paper is to showcase a pragmatic application scenario of such a
holistic urban ecosystem, based on a volatile and scalable cloud-based infrastructure,
that involves citizens, authorities, corporations, resources, and services, all working
together towards a common well-being.

The rest of thiswork is organized as follows. Section 2 presents relatedwork in cloud-
based architectures. Section 3 presents the architecture of our cloud-based ecosystem
for mobility services. Section 4 and Sect. 5 present the frontend APIs and the backend,
respectively, of the mobility services. Section 6 presents the orchestration of the backend
mobility services. Section 7 discusses the data aggregation and analytics methods of our
ecosystem. Section 8 presents the cloud-substrate orchestrator of our ecosystem. We
conclude in Sect. 9.
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2 Related Work in Cloud-Based Architectures

Over the last years, Cloud Computing has played a dominant role in the implementation
ofmassive-scale and complex data computing systems. This is themain reasonwhymany
Cloud-based architectures have arrived at the forefront to confront many challenges that
appeared since the era of the IoT. On the other hand, a variety of IoT devices with some
embedded intelligent applications penetrates our lives and have some very demanding
requirements like real-time processing and responding back to the end-users, which the
solution of Cloud Computing cannot always manage efficiently.

To settle down such demanding requirements of the IoT devices many technologies
have been developed over the last years. For instance, cloudlet, fog computing andmobile
edge computing that follow the concept of the Edge Computing paradigm. Its idea is
to handle the majority of the computing processes and the storage requirements of the
end-devices to some nearby servers which belongs to the edge network. EdgeComputing
satisfies largely the requirements of the latency-sensitive IoT applications, because of the
location of the edge network that makes the network latency to get significantly reduced.
Another aspect of these IoT devices is that they are resource-constrained and they typi-
cally have some fixed embedded software/applications that bring in some difficulties to
provide cross-platform on-demand services. Hence, to eliminate these challenges and
also to use in parallel the reduced processing and storage capabilities of the end devices,
the concept of Transparent Computing is introduced (Zhou and Zhang 2006) (Ju Ren
2017) (Zhang et al. 2020) in combination with Edge Computing, proposing a new IoT
based architecture.

The Transparent Computing paradigm entails the isolation of the software from the
hardware level of the related devices. More specifically, all the software components like
Operating Systems (OS), applications and development tools are deposited to the server
side in the edge or the cloud network and managed centrally, while the computational
process is performed on the end-devices. That simply means that the scalability of the
IoT devices is increased and allow users to extend their functionalities by fetching (using
streaming) every time from the servers the necessary code blocks and the related OSes
that are needed. Additionally, by having knowledge and understanding of the constraints
that the devices usually present and at the same time their real time requirements, a
transparent computing-based architecture can take advantage of the processing power
of the edge servers by sending the more demanding tasks to them.

The proposed transparent computing-based IoT architecture is illustrated in Fig. 1.
The architecture consists of five layers, in which the Edge Server Layer plays a dom-
inating role. It tries to confront the problems of providing real-time and context-aware
data processing while at the same time tries to satisfy the need of dynamic provision
of on-demand applications and services to the end devices. This architecture is multi-
beneficial, since it provides reduced response delay (by enabling data analytics and
service provisioning at the edge), context-aware service support (by fully utilizing local
computing and storage), centralized resource management (services and data are stored
and maintained in edge/cloud servers but are managed centrally), cross-platform and
on-demand service provisioning (by decoupling the hardware and software of the IoT
devices, and by loading desired services and underlying OSes on-demand from the edge
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servers), and enhanced functional scalability (by enabling IoT devices to load the suitable
drivers and services from the edge servers).

Fig. 1. A transparent computing-based IoT architecture

To illustrate the proposed architecture, a case study regarding the implementation
of a transparent computing-based lightweight wearable, called TCwatch, is presented in
(Ju Ren 2017).

TCwatch is embedded with a lightweight hardware, provides scalability, and loads
different third-party services on-demand from the edge server, which is implemented by
a smartphone. In this case study the TCwatch fetches all the required applications and
OSes from the smartphone, if they are stored locally. Otherwise, the smartphone fetches
all the applications and the OSes from the cloud, where they are also stored. The edge
and the cloud servers are also used for computational processes.

Although this case study concerns a preliminary implementation, the evaluation of
its performance is noteworthy, since the TCwatch reduces latency by 60.70–85.50%
and energy consumption by 67.60 – 91.20% in dynamic App execution in relation to a
traditional smart watch under different App sizes.

Another interesting related work concerns the Kubernetes Edge Scheduler (Toka
2021). Future applications over 5G technologies and beyond will pose requests for
low-latency communication and ultra-reliability. In the aforementioned case study of
TCwatch, we can realize that although the edge network can achieve strict delay criteria
and low-latency communication between the end devices and the edge servers, it cannot
meet the requirements of the application’s reliability because the edge servers are gen-
erally prone to failures. Hence, in (Toka 2021), a Kubernetes orchestration tool, called
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Kubernetes Edge Scheduler, is developed and ventures to expand its functionality to be
suited for the edge network and to be able to fulfill the above requirements.

The Kubernetes Edge Scheduler schedules application components on the edge or
the cloud network by considering first their latency requirements and the underlying
network latency, and at the same time provides high reliability by offering back up
resources for node failure cases.

The Edge Scheduler consists of three major components: the online-scheduler, the
re-scheduler, and the node clustering component.

The online scheduler is responsible for the deployment of application components,
called Pods, and the creation of the related placeholders (backup computing resources
on edge nodes) by considering the Pod’s delay and other computational criteria. A
placeholder is computing backup resources on edge nodes that prevent the downtime of
an application in case of a node failure by restarting the related Pods on it. It is crucial
for the scheduler to create efficiently the placeholders in the system and always with
respect of the Pod’s latency requirements and the available resources that exist.

Another interesting characteristic that makes the Edge Scheduler robust is that its
scheduling algorithm always strives to deploy themajority of the incoming Pod requests.
Even in the case of lack of resources, the scheduler tries to free allocated resources on a
specific node by migrating an already deployed Pod that can migrate without negatively
affecting its smooth operation.

Fig. 2. Node Clustering example.

The re-scheduler (second component of the Edge scheduler) works to ensure the
effectiveness of the resource’s allocation. The re-scheduler works in an offline manner
and tries to minimize the amount of the necessary placeholders in the system since as
it is known, the edge network has limited resources. Hence, the careful reservation of
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the backup resources is one of the most critical steps, and it is also the reason for the
importance of the re-scheduler component in the architecture.

The Node Clustering component of the Edge scheduler makes it able to work com-
petently with large topologies, ensuring that the dynamic application placement and the
network delay measurements scale effectively as shown in Fig. 2. More precisely, the
solution creates hierarchically cluster layers of available nodes where each layer is built
on a specific delay requirement. The clustering approach ensures that all nodes inside
a cluster layer fulfill a distinct delay value. This practically means that the scheduling
algorithm do not need to iterate the hole process through all the nodes of the cluster.
After some evaluation experiments, we can conclude that the node clustering component
benefits the process of the online scheduler and the re-scheduler in terms of the execution
time.

To conclude, all the technologies mentioned in this section (Edge Computing and
Transparent Computing) try to meet all the demanding requirements that the era of
IoT applications have brought the last years, and to eliminate their difficulties in their
application settings. Also, the adaption of the aforementioned technologies into new
implementations, like the Kubernetes Edge Scheduler, can offer significantly improved
results in relation to other classical technologies.

3 Architecture of a Cloud-Based Ecosystem for Mobility-Related
Services

The development of a sustainable system for intelligent mobility, within an urban envi-
ronment, needs the integration and the interoperability of diverse mobility-related ser-
vices with emerging technologies such as interconnected commuters and vehicles, cloud
computing infrastructure, and internet of things (IoT).

The typical approach for designing a mobility-related service is to consider it a
master-slave architecture per service, inwhich a frontendAPI (e.g., amobile application)
intervenes between the commuter and the backendmobility service (e.g., a route planner,
a real-time navigation service, a parking service, a tourist-tour planner, or a scheduler
of orders to deliverers). However, modern mobility-related services depend on real-
time aggregation of data (traffic/weather prediction, forthcoming events, accidents, etc.),
which is usually conducted in real-time, independently of the specific mobility service.
Moreover, these services should also interact with each other. For instance, a scheduler
of delivery-requests would exploit the route-planning service as a subroutine, to assess
in real-time the actual cost-metric between the different pickup/delivery points of the
orders. The establishment of elastic cloud-based infrastructures to host master-slave
architectures is not new (Rodrigues et al. 2017).

In this work our main goal is to consider the locality of data which are aggregated
in real-time and are relevant for each of the services, as well as the determination of the
computing requirements; that is, whether a particular backend service should be located
at a remote, cloud server, a nearby edge computer supporting the service, or even our
own terminal device (smartphone). For instance, in route planning in a metropolitan-
scale environment, one could consider a scenario where a cloud server possesses all
the (typically large) preprocessed information which are necessary for responding to
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arbitrary routing queries. On the other hand, local edge servers could also be employed,
to serve routing/rerouting queries for commuters travelling in a particular (limited) geo-
graphical area. As for real-time navigation along an already precomputed route, such a
task could be onloaded to the commuter’s terminal device (e.g., a smartphone), provided
that the necessary data (e.g., precomputed route and updated transportation subnetwork
and map tiles) have already been prefetched or updated.

This type of locality-sensitive arrangement would lead to smaller network latencies
(if at all necessary), a lot of computational effort held either at the edge or even at
the terminal device, and only long-distance queries should be offloaded to the cloud-
based routing server(s), since the nearby edge devices could not possibly possess the
required data or computational power for serving them in acceptable response-times.
Moreover, the deployment of a cloud-based infrastructure that hosts many mobility-
related services, which are organized conceptually in master-slave architectures, would
allow the exploitation of the same mobility-related information (e.g., real-time traffic
conditions and prediction, demand for parking/commuting/delivery, weather conditions,
etc.) which is aggregated via diverse data sources and require computationally intensive
processing and storage.

At ultimatum, our goal is to have a platform that smoothly balances the load among
harmonically cooperatingmobility-related services,which goes beyond traditional cloud
computing rationale that typically offloads heavy computational loads from the edges to
the cloud, and exploits onloading of lighter computational loads to edges closer to the
data sources, exploiting the locality of the edges to the individuals requesting the service
and avoiding the excessive consumption of computational power by the cloud.

To showcase our rationale, we present in this work an ecosystem of individuals, legal
entities, and services, targeting the common well-being of the entire urban environment.
This ecosystem contains:

• Four mobility-related services: (i) route planning and navigation (RPN); (ii) tourist-
tour planning (TTP); (iii) parking (PAR); (iv) delivery services (DEL).

• Three types of actors: individuals (e.g., commuters, tourists, deliverers); (ii) enter-
prises providing mobility-related information (e.g., parking vendors, route-planning
servers, tourist-tour planning operators, delivery services vendors); (iii) public
authorities (e.g., municipalities) regulating the ecosystem.

All these actors and services must be integrated and interact with each other, within
a holistic urban-mobility ecosystem, in a trustworthy, secure, and privacy-preserving
manner.

The overall architecture of the proposed ecosystem is shown in Fig. 3. It is worth
noting that the logical structure of this ecosystem is thatmany frontend interfaces (mobile
APIs for individuals, and dashboards for private vendors and public authorities) interact
with a virtual backend consisting of all the necessary modules to support the envisioned
services.

Apart from the above-mentioned conceptual architecture, in which all services are
considered to operate in a master-slave manner, we proceed further to determine a more
detailed vertical structure of implementation layers (cf. Fig. 4), each of which aims to
determine a different level of refinement in the overall architecture.
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Fig. 3. Overall architecture for an Ecosystem of mobility-related services.

In this layered architecture, there is a vertical flow of information while serving spe-
cific queries. The top layer (Layer 5) provides all frontend APIs which interact with
the actors of the ecosystem. Each frontend API then communicates with a virtual-
backend service of Layer 4, which breaks down the service request into independent
computational tasks that will jointly provide the response to the request. Each of these
service-dependent tasks is then propagated to Layer 3, that will determine for it a group
of eligible computing devices, depending on its computational requirements and the
location of the necessary data for executing them. For instance, a routing task which
needs updated traffic-related data for a particular neighborhood, may be allocated either
to one of the cloud servers dedicated for the routing service over the entire urban area,
or (if locality of the query permits this) to an edge device corresponding to the neigh-
borhood within which the query should be accommodated, in case that the map is also
split among edge devices on a per-neighborhood base. This matchmaking process will
also take into account real-time data gathered in Layer 2. For example, in case of some
emergencies (e.g., some unforeseen accident), for which only specific cloud servers are
aware, affect a pending routing request, this should be reflected in the selection of the
eligible computing devices for the corresponding tasks of this request.

The final allocation of each pending computational task to one of the eligible com-
puting devices is then determined in Layer 1, where various performance indicators
(e.g., already queued tasks and computational power per computing device, or current
network latency estimations) are taken into account, not just for the particular task to
be scheduled, but also for all the actively running tasks and the other pending tasks,
possibly from other service requests that run in parallel within the ecosystem. The over-
all objective of the cloud-substrate orchestrator of Layer 1 may be the total throughput
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of the ecosystem, the energy consumption, or the overall environmental footprint (e.g.,
CO2 emissions equivalent) for the computations, etc.

Fig. 4. Cloud-based infrastructure for the provision of mobility-related services.

4 Frontend APIs of Mobility Services

The proposed ecosystem integrates innovative mobility services, addressing the require-
ments for optimal routes, parking spots and delivery schedules by citizens, tourists,
commuters, and deliverers, through consolidating parking-, traffic-, and availability-
related information across all the transport modes (walking, embarking, disembarking,
driving), means (car, bus, train, metro, ferry, airplane), parking spaces, and delivery
service providers and workers. Each such service is implemented by a virtual-backend
network service (Layer 4), which interacts with client-apps over the corresponding fron-
tend API (Layer 5). The communication between them is performed by HTTPS using a
lightweight and JSON-based request-response messaging pattern.

In Layer 5, all the required routing, parking, tourist-tour planning, or delivery param-
eters are collected by the frontend app, to construct and submit an appropriate query to
the corresponding virtual backend service of Layer 4.

Layer 5 includes a set of frontend APIs for obtaining the corresponding spatio-
temporal transport-aware data, user preferences and desired optimization criteria. In par-
ticular: a) the routing and real-time navigationAPI collects source, destination, departure
time, parking locations for requesting optimal source-destination routes, and building
the corresponding navigation directions; b) the tourist tour planning API collects source-
destination locations, and personalized vacation-plan profiles for requesting optimal tour
journeys; c) the parking and park-sharingAPI collects vehicle records, parking spot loca-
tions and capacities, for requesting parking reservations or parking spot sharing; d) the
delivery service API collects the available deliverers, the pickup-delivery requests and
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a list of constraints for requesting a solution set of routes for each deliverer to carry out
the requests; e) the public-authority dashboard collects modifications with respect to the
public transport network status (e.g. traffic events, road accidents, itinerary delays); and
f) the private vendor’s (i.e., parking site, tour operator, delivery services company) dash-
board collects modifications with respect to real-time information related to the service
status (e.g. the real-time availability of parking spots, ticket and rental costs, availability
and current positions of deliverers, etc.).

5 Virtual Backends of Mobility Services

There are four core virtual-backend services provided in Layer 4: the Route Planning
and Navigation service (RPN), the Tourist-Tour Planning service (TTP), the Parking
service (PAR), and the Delivery service (DEL). On a common basis, the services require
as input the road, pedestrian and public transport network structure along with length
and travel time metrics. Those are provided via the OSM (for road, pedestrian) and the
GTFS (for public transport) input datasets. TheRPN and PAR services can carry out their
tasks in order of milliseconds. In contrast, TTP and DEL concern harder computational
problems, therefore they may need to respond to queries in order of seconds, or even up
to hours, depending on the size of the problem instance to solve.

5.1 Route Planning and Navigation Service

The RPN service is responsible for computing optimal time-dependent, multimodal and
multicriteria (earliest arrival, minimum number of transfers, least walking time, vehicle
type exclusions, etc.) source-destination routes, and for providing a real-time naviga-
tion along a precomputed route. It consists of the car routing subservice C-RPN (using
OSM datasets) over road networks, and the public transport routing subservice P-RPN
(using OSM and GTFS input datasets) over public transport and pedestrian networks.
The routing is done by advanced algorithmic approaches, based on sophisticated exten-
sions of Dijkstra’s algorithm, such as the CFLAT oracle (Kontogiannis et al. 2017) and
the ALT algorithm (Goldberg and Harrelson 2005). The fast response time is ensured
by using cache-friendly data structures (sequence heap, data-compact and efficiently
ordered vectors) and efficient heuristics (search-pruning and goal directed methods).

The overall functionality is carried out with a preprocessing (offline) phase generat-
ing traffic-related data structures and heuristic metadata, and afterwards with a routing
query (online) phase, where the preprocessed heuristic metadata are exploited. The pre-
processing is computationally demanding and thus should be conducted at dedicated
routing cloud servers. These servers compute numerous optimal route trees from a set L
of high importance nodes (e.g., highway hubs), called landmarks, in road and pedestrian
networks. For each landmark l ∈ L, a set of the nearest stops/stations SL and parking
spots PL are computed within secondary optimal route subtrees.

For each user query, providing a source point o, a departure time to and a destination
point d , C-RPN and/or P-RPN compute a starting forward optimal route tree To from o,
and a backward optimal route tree Td from d within the underlying transport networks.
The tree expansion is limited so that it includes small-sized sets Lo (within To) and
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Ld (within Td ) of nearby landmarks from the source and the destination, respectively.
Furthermore, depending on the type of the query, for each landmark the precomputed
optimal route trees between landmarks, stops, parking spots, source point and destination
point are added. Additionally, for computing time-dependent multimodal paths, P-RPN
runs multi-source Dijkstra from the nearest stops SLo and/or parking spots PLo in the
vicinity of the source, at the corresponding earliest arrival times to them, and/or multi-
target Dijkstra to the stops SLd and/or parking spots PLd in the vicinity of the destination.
The union of the optimal routes forms a subgraph consisting of the candidate optimal
od -routes. Consequently, the routing algorithm post-preprocesses them, to choose those
that minimize the user’s objective function.

PRN also supports tasks of computing the nearest stops (by shortest walking time)
to each GPS-generated track-point and, for each such stop, the list of available public
transport itineraries within a requested time window.

5.2 Tourist-Tour Planning Service

The TTP service is responsible for computing complete packages of time-dependent
tourist-tour solutions for visiting several places within a few days, starting from a source,
and ending to a destination, in such a way that tourist’s personalized preferences are
satisfied as much as possible (this is the NP-hard Vacation Planning Problem). The
service maintains a list of Points of Interest (POIs) consisting of tourist-attractive places,
such as museums, monuments, etc.; and a list of user criteria (e.g., POI categories,
intermediate destinations, journey and hotel residential duration, budget, etc.).

The tourist-tour planning algorithm, provided by the TTP virtual backend service,
runs in two phases. In the first phase, it searches for candidate cities and the most
interesting POIs per area, and then it designs daily itineraries in such a way to maximize
the acquired aggregate user preference score from each POI, while distributing the
available days of stay to the different intermediate destinations. In the second phase,
the algorithm computes daily itineraries that consist of visits to the most interesting
POIs accessible from the city centers (Tourist Trip Design Problem).

The algorithm uses a novel hierarchical and agglomerative-based clustering scheme,
where each parent cluster is created by combining two child clusters. The next clusters
to combine are those at minimum distance of their medoids. Each cluster is populated
with metadata describing the POI members of the cluster, such as the sum of scores of
all POIs, expected time to visit the cluster’s POIs and expected score that will be gained
if a tourist visits this cluster. The clustering is mostly static and thus, it is constructed
during a preprocessing phase (i.e., offline). For guaranteeing performance, the offline
cluster also keeps metadata that speed up the involved computations (e.g., to speed up
the aggregate score computation per POI category). When the service is invoked, the
backend is responsible for traversing the hierarchical clustering andfinding the best nodes
a tourist wouldmost probably like to visit, considering the overall vacation duration (e.g.,
more days mean a greater area can be explored).

Also, the user preferences per POI category are considered, and that is done by a
novel recursive algorithm based on dynamic programming. The main idea is to find a
fixed number of itineraries visiting interesting locations, when the score and visiting time
of each location is known. Since the Tourist Trip Design Problem is NP-hard, heuristics
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are employed. One such heuristic is the Iterated Local Search (ILS) algorithm, which
can provide very fast high-quality solutions.

5.3 Parking Service

The PAR service supports the management of parking spaces that belong either to com-
mercial parking sites, or to a self-organized closed group of commuters with their own
shared parking spaces, (e.g., commuters with disabilities sharing within the group their
own parking spaces). The service is responsible for the provision of real-time informa-
tion to commuters about the availability of the parking spaces in the vicinity of a targeted
location, and for handling parking space reservations on behalf of the commuters.

For the commercial parking sites, PAR is informed about the availability of parking
spaces, upon the entry or the exit of a new vehicle. This is done either manually, via
the parking site’s dashboard (cf. Layer 5), or automatically (provided that the infras-
tructure of the parking site permits it). For the self-organized parking spaces, parking
space owners inform PAR about the availability of their parking space interacting with
the corresponding frontend API of Layer 5. PAR uses then the parking space availabil-
ity information to serve requests for parking space reservations and/or cancelations of
existing reservations.

5.4 Delivery Service

The DEL service performs optimal crew schedules for serving pickup-delivery requests.
It solves a variant of the NP hard Vehicle Routing Problem, defining a realistic and
advanced parameterization on several aspects of the problem. Its output is a set of feasible
time-dependent pickup-delivery routes for each connected deliverer, which minimizes a
customizable objective function (e.g., total travel distance), satisfying simultaneously the
spatio-temporal constraints for the deliverers (e.g., work-shifts, starting/ending points,
vehicle type and capacity), and for the orders (e.g., earliest pickup / latest delivery times,
commodity capacity and required vehicle type for each good to be delivered, etc.).

A preprocessing step is required, involving the use of the RPN service, for com-
puting optimal routes between each deliverer’s starting/ending point, and each request’s
pickup/delivery points. Then the DEL backend service solves an appropriate mixed
integer linear program using heuristic approaches (e.g., branch-and-bound, branch-and-
price, or column-generation) to deal with the exponential search of the solution space.
The basic approach includes a gradual expansion of a search tree where each node exam-
ines a subspace of the problem. The algorithm iteratively focuses on feasible solutions
(schedules), keeping the currently best performing ones. To trace better solutions and
integrate their subspace in the search tree, a dual linear integer program and a dynamic
program (on dual LP reduced costs) are solved.

The DEL service provides both static schedules from scratch (when knowing all
the orders and active deliverers beforehand) and dynamic reschedules (i.e., in online
fashion) from a current feasible solution, to fit newly arrived orders. In the latter case,
DEL receives in real-time the emergent order requests and/or the new deliverers. The
DEL service also provides real-time tracking of the active deliverers who are currently
serving some of the active orders.
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6 Orchestration of Virtual Backend Mobility Services

The role of the orchestrators in Layer 3 of our ecosystem’s architecture is to take over the
mapping of the computationally demanding virtual backend services into independent
tasks to be executed within the so-called Pods1, and then determine all the eligible Pods
per task, given the task’s characteristics (computational demands, access to raw-data,
relative location of each Pod, etc.).

Upon completion of all the independent tasks for a particular virtual backend service,
the service itself acts as the reducer that collects the produced outputs and exploits
them to respond appropriately to the submitted request. The distribution of the heavy
computational burden per virtual backend service as uniformly among all edge devices
and cloud servers as possible, demands some metadata to be generated and maintained,
that will allow the execution of these tasks to these devices.

6.1 Orchestration of Route Planning and Navigation Service

We assume that the entire transportation network (multimodal, including walks and
private cars) is divided into small (geographical) areas. The entire preprocessed data
for responding efficiently to arbitrary routing queries are located at (one or more) cloud
servers dedicated for the routing service. We also envision the use of dedicated routing
edge devices, one per geographical area, possessing all the required preprocessed data
for responding efficiently to queries which are confined in this area.

Upon arrival of a new query, a geographic 2D-grid is used to indicate a bounding
box where the source and the destination are located. The spherical distance between
source and destination (ranking into a low/medium/long range query), and the involved
transport means, determine the computational requirements for the query at hand. If an
edge device has the minimum CPU speed and memory requirements to respond to the
query at hand, as well as the required preprocessed data within the specific bounding
box, then a routing Pod residing at this edge would be considered as eligible for this
task. On the other hand, if an edge device does not possess the required preprocessed
data, or some unforeseen incident (e.g., a car accident that occurs in real-time) makes
this preprocessed data temporarily invalid, the task must be served by a Pod residing at
cloud server dedicated for the routing service.

Simple (unimodal, single criteria) public-transport routing queries can be carried out
by a Pod residing at an edge device. More complex (e.g., multi-modal, multi-criteria)
public-transport routing queries could be split into four tasks, to be executed possibly
in different Pods, that involve: a) a forward optimal route tree To from the source o
and the search for the nearest landmarks Lo, stops SLo and parking spots PLo ; ;; b)
a backward optimal route tree Td from destination d and the search for the nearest
landmarks Ld , stops SLd and parking spots PLd ; ;; c1) the collection of a superset of
the nearest stops SLo ⊇ SLo and/or parking spots PLo ⊇ PLo in the neighborhood of
o, and a superset of the nearest stops SLd ⊇ SLd and/or parking spots PLd ⊇ PLd in
the neighborhood of d , provided that all of them can be predetermined using spherical
distance metrics; c2) the execution of multimodal-multicriteria profile queries, using: i)

1 Collection of containers with shared storage and network resources (cf. Sect. 7).
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each point in SLo and/or PLo as candidate intermediate source, where for each of them
the time window of departure times can be predetermined using free-flow and congested
travel time metrics, and ii) each point in SLd and/or PLd as candidate intermediate
destination; and d) the integration of all optimal subroutes and the selection of the best
combinations that constitute od-paths, based on user’s objective function. The first three
tasks can be computed independently of each other, possibly at different Pods. The last
task should begin only after the completion of the other tasks, as part of the reducer’s
job for responding to the query at hand.

6.2 Orchestration of the Tourist-Tour Planning Service

The TTP service could be split in two task groups. The first group contains light (for
short-range queries) to heavy (for medium-long range queries) tasks that can be carried
out independently of each other. They can be distributed among all edge devices, the
most appropriate probably being the ones closer to the tourist-tour related data (e.g., an
edge device located at a tour-operator’s office). Those tasks concern: searching POIs
per city and user preferences, computing pairwise car/multimodal travel time profiles
and journeys among POIs, clustering of POIs over cities and areas, and searching of
clusters that match the user-defined preferences. The second group contains heavy tasks
that can be carried out only when the tasks of the first group are finished. Those tasks
concern computing optimal journeys over the preferred POI clusters and integrating and
composing the best POI combinations into complete optimal tourist tour solutions.

For efficiently responding to arbitrary TTP queries, the entire transportation network
alongwith the POI clusters is divided into (geographical) areas, and the preprocessed POI
datasets are hosted in one ormore cloud servers dedicated for the TTP service.Moreover,
we envision the use of a dedicated edge device per geographical area, possessing all the
required POI clusters per city, the tourist-aware criteria and ranking metadata, and the
multi-modal travelling profiles that concern this area.

Upon arrival of a new TTP query, a hierarchical geographically based partition of the
network and the user-defined vacation duration (radius) are used to indicate the candidate
tour areas between source and destination. In that context, the spherical distance between
source and destination, the vacation duration, and the estimated number of the involved
POIs with respect to the user preferences predetermine the computational requirements
for the query at hand. If an edge device has the minimum CPU speed and memory
requirements with respect to computational demands of the query at hand, and all the
required data within the candidate tour areas, then a Pod residing at this edge is eligible
for carrying out the first-group tasks. Otherwise, the task should be sent to a Pod residing
at a cloud server dedicated for the TTP service.

On the other hand, the second-group tasks, whenever they obtain the complete list
of the candidate POIs and the optimal multi-modal routes between the POIs, can start
the composition of the tour journeys and perform a search of the best ones in a parallel
fashion.



Cloud-Based Urban Mobility Services 15

6.3 Orchestration of the Parking Service

For the parking service, we consider a partition of the road network into small geo-
graphical areas, each one hosting lists of the available parking spots and sites, organized
in categories (e.g., with or without washing, supporting or not individuals with special
needs). The service includesmanagement, reservation and sharing tasks of private/public
parking spots and self-organized user groups that can be done independently per area
and they can be hosted on multiple cloud servers without dependencies over the oper-
ations between them (excluding the pricing or rewarding synchronization tasks). Tasks
of this kind have low computational requirements; thus, the eligibility is limited to data
validity.

We also envision the use of a dedicated parking edge device per geographical area,
possessing all the required updated data for responding efficiently to queries which are
within this area. Upon arrival of a new query, if the parking edge device has a valid
snapshot (with respect to the availability of the parking spots) within the required area,
then a parking Pod residing at this edge would be eligible for this task. Otherwise, the
task is sent to a Pod residing at a master cloud server dedicated for the parking service.

6.4 Orchestration of the Delivery Service

The DEL service is split into: a) routing tasks for obtaining the deliverers’ optimal
distances among the pickup and delivery points; b) solving tasks for finding the best
optimal and feasible (based on constraints) routes within a specific search subspace
(through search tree branches); and c) a cumulative task to integrate the optimal routes
and select the best ones with respect to the defined objective function within the overall
search space.

The solving tasks can begin when all routing tasks that concern the search subspace
will have completed. The solving tasks focus on disjoint search subspaces and thus they
can be carried out independently of each other. Both routing and solving tasks can be
distributed uniformly amongall eligible edgedevices or/and cloud servers. The eligibility
is in relation to the computational complexity and the data consistency and completeness.
The solving tasks are computationally demanding; thus, only cloud servers are eligible
to undertake them.

For responding efficiently to arbitrary order-scheduling queries, a cloud database
maintains a full list of the deliverer starting/ending, pickup (stores, depots) and delivery
(client) points and among them the shortest distances. If a query considers a point which
does not exist in the database, or the computed shortest distance between a pair of points
is outdated, then the routing subtask to be carried out requires an edge device or a cloud
server with sufficient computational resources.

7 Data Aggregation and Analytics

Participation of end-users is crucial for the sustainability of a cloud-based ecosystem
for mobility-related services. This is achieved in our case via a crowdsourcing mech-
anism (cf. Layer 2) that allows end-users to provide live-traffic information regarding
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emergencies (e.g., accidents, road works) as well as parking availability information. To
ensure that the information provided by mobile users is reliable and of high-quality, we
establish an incentive-based scheme that uses virtual credits (points) to reward users for
providing truthful information. Apart from incentivizing truthful behavior, our reward-
ing scheme caters for point circulation, does not allow point over-accumulation, and
prevents malicious users to aggregate points by misreporting.

Our ecosystem caters also for the active participation of commercial vendors and
public authorities that provide parking services. It aggregates parking availability infor-
mation for each individual parking site and creates its detailed business profile. Then,
for a specific parking site P, it compares its business profile and geographic position
with the corresponding business profiles of every other parking site in its vicinity and
makes targeted business-oriented recommendations based on best practices of the simi-
lar parking sites. Comparing the performance, pricing policies and business plans of the
parking sites of P’s direct competitors, P’s owner its prices, create special offers, add
extra services etc., to make P more attractive to subgroups of more relevant in their own
geographical area.

8 Cloud-Substrate Orchestrator

Our cloud-substrate orchestrator is based on Kubernetes2. Kubernetes is a powerful
container orchestration platform,which has become the last years one of themost popular
cluster managers. Its main functionality refers to the automated deployment, scaling
and management of containerized applications which are deployed in the well-known
components of Kubernetes, the Pods. Technically speaking, a Pod is a collection of one
ormore containerswith shared storage and network resources and represents the smallest
execution unit of Kubernetes.

Since it constitutes an open-source tool, we venture to reshape and expand Kuber-
netes functionality by giving transparency characteristics which improve the computa-
tion processes by avoiding transmitting massive data to the cloud servers, as they cannot
possibly satisfy all the requirements of real-time applications due to the observed net-
work latency, and there is a need to better explore the computational capabilities of edge
and terminal devices within the cloud infrastructure.

In particular, to overcome the excessive overloading of remote cloud servers due to
uncontrolled migration of raw-data towards them (a.k.a. off-loading), it would be more
efficient for the users to adopt the migration of computational tasks (a.k.a. on-loading
schemes) towards the raw-data sources, that would then be processed by nearby edge
devices, so as to avoid network latency and improve user experience.

The motivation of the Transparent Computing (TC) is to isolate the computation and
the storage for the servers and the terminals. We consider that all the software including
Operating Systems (OSes), application programs and management tools are deposited
on the server’s repositories and can be easily loaded via the network during the execution
on terminals (Zhang et al. 2020).

2 https://kubernetes.io/

https://kubernetes.io/
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In our architecture, the software is run by Kubernetes Pods, which are located within
the entire cloud infrastructure, including the edge devices. The advantage of the Kuber-
netes Pods is that we can easily replicate a Pod, so we can have a cluster of multiple
replicas of the same software simultaneously on many nodes and that can make the user
able to decide which device is the best one to offload the produced data. At the same
time, all these Pods are bundled together under a Kubernetes service as shown in Fig. 5.
By default, Kubernetes uses the service which is a way to expose an application running
on a set of Pods as network.

Fig. 5. Service Functionality

Exactly at this point our architecture intervenes to change the service’s logic for the
selection of a particular Pod to be served, among the Pods which are eligible for it. This
gives us the ability to choose in real-time a specific Pod, located at a specific node, for
the computation process that it needs to take place, based on the current measurements
of all the alternatives for the execution of the service at hand. More specifically, with
the contribution of the Kubernetes services, the scheduler can be informed during the
orchestration phase about the available Pods and their locations in the cluster where these
locations are represented by the nodes which are the target of the scheduler, and their
characteristics (aka CPU,Memory) are crucial in order to choose finally the eligible Pod
to offload the data and execute the request.
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By considering our architecture, the terminals with the contribution of Kubernetes,
and by considering some important metrics that we present later, we can determine an
appropriate node within the cloud substrate hosting an execution Pod for the service,
and collaborate with it, sending all the required data and/or the necessary code that are
needed for responding to a service request, based on the following concepts:

• Data Off-loading: Migration of the missing service-related data, produced mostly
in real-time, to a nearby edge device which already possesses the required Pod for
the service at hand, or to a cloud server dedicated for the particular service. The
computation on behalf of the particular service request then takes place into that
specific Pod.

• Code On-loading: The application program which must be executed, as a response to
a particular service request, is migrated closer to the raw-data, by migrating the Pod
from a cloud server or another edge device, to the edge device that is closer to the
raw-data, or even to the terminal device that collects the raw-data. Then, the actual
service computation takes place at this particular Pod.

Themain idea of our architecture is tomake theKubernetes rationale considermetrics
such as the actual network latency, by measuring the communication delay between the
nodes of the cluster, as was implemented for the needs of the Kubernetes Edge Scheduler
(Toka 2021).

Another important metric that we consider is the actual computational capabilities of
each node of the cloud substrate, like CPU performance characteristics, so as to calculate
an estimated execution time for a given task, taking into account the time complexity of
the code that is going to be executed and the input data.

Finally, our orchestrationmechanism takes into account also the tasks alreadywaiting
in line for execution by each node in the cloud substrate. Overall, our orchestration
mechanism uses the criterion of estimated completion time for each emergent service.
In particular, upon arrival of a new service to be executed by the cloud infrastructure,
we need to compare the estimated completion time for all the pending tasks in each
Pod that is eligible for it, with the measured network latency induced by transferring
the required raw-data and/or source-code to the corresponding computational (cloud or
edge) device for the execution of this service, and add to this maximum the estimated
execution time of the service at hand, to make the final decision for the allocation of the
emergent service to a specific Pod like presented in Fig. 6.

After this computation that is implemented for each eligible Pod (and its hosting
node) in the cloud, we can decide which is the best migration strategy to follow, i.e.,
an offloading or an onloading migration process, given the selection of the appropriate
node and Pod to assign the service.
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Fig. 6. Service Allocation to Specific Pod

9 Conclusions and Future Work

We presented a volatile, scalable, and efficient cloud architecture for materializing an
ecosystemofmobility-related services involving amultitude of stakeholders.We showed
how the necessary orchestration of various services across all layers of our cloud archi-
tecture can be executed. Our backend services are based on novel algorithmic approaches
that are deem necessary for providing real-time query responses.
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Abstract. A method for query optimization is presented by utilizing
Spark SQL, a module of Apache Spark that integrates relational data
processing. The goal of this paper is to explore NoSQL databases and
their effective usage in conjunction with distributed environments to
optimize query execution time, in order to accommodate the user com-
plex demands in a cloud computing setting that necessitate the real-time
generation of dynamic pages and the provision of dynamic information.

In this work, we investigate query optimization using various query
execution paths by combining MongoDB and Spark SQL, aiming to
reduce the average query execution time. We achieve this goal by improv-
ing the query execution time through a sequence of query execution path
scenarios that split the initial query into sub-queries between MongoDB
and Spark SQL, along with the use of a mediator between Apache Spark
and MongoDB. This mediator transfers either the entire database from
MongoDB to Spark, or transfers a subset of the results for those sub-
queries executed in MongoDB. Our experimental results with eight dif-
ferent query execution path scenarios and six difference database sizes
demonstrate the clear superiority and scalability of a specific scenario.

Keywords: Big Data and the Cloud · Query Optimization ·
SparkSQL · NoSQL databases · Indexes · Big Data Analytics for Cloud
computing

1 Introduction

Data mining and analytics sectors have drawn much attention in our days by
both academic and businesses communities in order to handle massive datasets.
With modern libraries and existing systems such as Hadoop [4,30], which is a
frequently used cloud platform for data mining, the efficient management of big
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data is no longer a promise. Several machine learning methods based on the
MapReduce [14] architecture have gained popularity as they can be deployed
on the cloud with the use of Apache Spark [6]. In contrast, when similar algo-
rithms are implemented using MapReduce, intermediate results are written to
the Hadoop Distributed File System (HDFS) [4] and read from there. However,
this requires a considerable amount of time for disc I/O operations as well as
vast amounts of resources for communication and storage.

Cloud computing can enhance analytics, machine learning, and other possible
directions as the data are stored in a cloud provider and not locally. However,
traditional relational databases face many challenges when employed in a cloud
setting. There is a constant demand for high concurrent database read/write
operations. In cloud computing, the complex demands of users necessitate the
real-time generation of dynamic pages and the provision of dynamic information;
as a result, the database concurrency rate is excessively high and tends to receive
thousands of reading requests per second. It is difficult for a relational database
to accommodate tens of thousands of SQL data write requests, and the hard drive
cannot support the load. Additionally, there is a huge demand for the efficient
storage and access of massive data. The massive data created dynamically, for
relational databases in a cloud computing environment, has resulted in storing
hundreds of millions of records in a table, making it exceedingly inefficient to
execute an SQL query.

In contrast, complicated SQL queries that need multi-table lookup operations
have led to the development of flexible systems such as the one presented here.
In a system that contains massive amounts of data, we could issue several con-
nected queries across big tables, intelligent data processing, and extensive data
reporting. Although simple conditional paging queries on a single table with a
primary key are often employed in cloud computing scenarios, they produce an
extensive load to the environment, hence, we should seek for other options.

Despite the fact that the prevalence of relational databases (RDBMS) indi-
cates that users often prefer making declarative queries, the relational method
is inadequate for many big data applications. Initially, users want to extract,
transform and load to/from multiple semi or unstructured data sources, which
requires specialized programming. Secondly, customers might do complex ana-
lytics, such as machine learning and graph processing, which are difficult to be
performed in RDBMS. Particularly, the majority of data pipelines shall ideally
be defined using both relational queries and complicated procedural methods.
Up to now, such kinds of systems, relational and procedural, have remained
essentially separate, requiring users to choose between the two methods.

For the aforementioned reasons, we mainly focus in this work on distributed
databases for query optimization including Spark SQL [6] and MongoDB [27]
and show how to utilize both relational and procedural models in MongoDB
and Spark SQL, using Hadoop [4,30,34]. With the use of a MongoDB connector
for Apache Spark, the preceding connection occurs in order to perform speedy
and complex queries. Spark SQL is an extension of Spark for structured data
processing. Spark SQL allows users to effortlessly combine relational and proce-
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dural APIs, rather than requiring them to choose between the two. Furthermore,
frameworks like Hadoop, Apache Spark, and Apache Storm [7], as well as dis-
tributed data storages such as HDFS and HBase [5], are gaining popularity since
they are designed to make the processing of extremely massive volumes of data
almost straightforward. Such systems appear to have a great deal of interest, and
therefore, libraries (such as MLlib of Apache Spark) that enable the development
and application of Machine Learning methods in the cloud are noteworthy.

Spark SQL bridges the gap between the relational and procedural models by
contributing in two ways. Spark SQL offers a DataFrame (DF) API that may
conduct relational operations on external data sources as well as the own dis-
tributed collections of Spark. MongoDB is utilized for speedy index queries. The
API provides Spark applications with extensive relational/procedural interac-
tion. DFs are collections of structured records that can be modified using either
the procedural API of Spark or the new relational APIs that enable more efficient
optimizations. They may be constructed directly from distributed Java/Python
object collections, allowing relational processing in current Spark applications.

In this work, we utilize Spark SQL along with MongoDB to efficiently perform
complex queries and improve their runtime. We investigate query optimization
using various query execution paths by combining MongoDB and Spark SQL,
aiming to minimize the average query execution time. We improve the query exe-
cution time by splitting the query into sub-queries, considering various scenarios
that split sub-queries between MongoDB and Spark SQL, along with the use
of the connector between Apache Spark and MongoDB. This mediator transfers
either the entire database from MongoDB to Spark, or transfers a subset of the
results for those sub-queries executed in MongoDB. Our experimental results
with eight different query execution path scenarios and six difference database
sizes (ranging from 500,000 to 20,000,000 records) demonstrate the clear supe-
riority and scalability of a specific scenario.

The remainder of the paper is organized as follows. In Sect. 2 the fundamental
elements of Spark, Resilient Distributed Datasets (RDDs), and MongoDB are
presented. Section 3 describes the implementation of several query execution
plans in MongoDB and Spark. Section 4 highlights the experimental results and
their findings. Section 5 discusses the idea of sharding for further improvements
on the query performance over huge data sets. Finally, conclusions and future
directions of this work are presented in Sect. 6.

2 Preliminaries

Big Data refers to the deluge of digital data from a variety of digital sources,
including sensors, scanners, smartphones, videos, e-mails, and social media.
These data include texts, photos, videos, and sounds, as well as their combina-
tions. In the big data era, applications require a combination of processing algo-
rithms, data sources, and storage formats to accomplish a common goal which
is big data processing. Nowadays this has turned toward big data warehouses
[32] and high-performance computing environments that can handle geospatial
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big data [21] among others. The initial systems built for these types of work-
loads, such as MapReduce which is offered by Apache Spark, provide users with
a strong yet procedural programming interface. However, such systems are diffi-
cult to program and need manual tuning by the user to get optimal performance.
As a consequence, a number of innovative technologies aimed to deliver a more
productive user experience by providing relational interfaces to large amounts of
data. Systems like Asterix, Hive, Dremel, and Shark [9,26,31,33] all use declar-
ative queries to deliver more robust automated optimizations.

Apache Spark which is utilized in this work is a distributed cluster computing
engine with APIs in Scala, Java, and Python and libraries for streaming, graph
processing, and machine learning [28]. It is one of the most widely-used systems
with a language-integrated API similar to DryadLINQ [18], and the most active
open-source project for big data processing. Spark offers a functional program-
ming API similar to other systems [11,18], where users manipulate distributed
collections called Resilient Distributed Datasets (RDDs) [34]. Each RDD is a set
of Java or Python objects partitioned throughout a cluster. RDDs can handle
operations like map, filter, and reduce, which take functions in the program-
ming language and transfer them to nodes on the cluster. An example of a Scala
code that counts lines starting with “ERROR” within a text file is given below
(Listing 1):

Listing 1: Scala Example Code

lines = spark.textFile ("�hdfs�://...")
errors = lines.filter(s => s. contains ("�ERROR�"))
println(errors.count ())

The preceding example constructs an RDD of strings named lines by reading
an HDFS file, which then transforms it using a filter to obtain another RDD,
named errors, and then performs a count on this data. RDDs are fault toler-
ant meaning that the system can recover lost data using the lineage graph of
the RDDs by rerunning operations such as the filter above to rebuild missing
partitions. They can also explicitly be cached in memory or on disk to support
iteration [34]. One final note about the API is that RDDs are evaluated lazily.
Each RDD represents a “logical plan” to compute a dataset, but Spark waits
until certain output operations, to launch a function. This allows the engine to
perform some simple query optimization, such as pipelining operations.

In particular, Spark will pipeline reading lines from the HDFS file by applying
the filter and computing a running count, so that it never needs to materialize the
intermediate lines and error results. Although such optimizations are extremely
useful, they are also limited because the engine does not understand the struc-
ture of the data in RDDs which are Java/Python objects or the semantics of
user functions that contain arbitrary code. Nonetheless, the most basic data pro-
cessing paradigms are relational queries that RDDs cannot manage. To address
this, Apache Spark requires a number of higher-level libraries. Spark SQL is one
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of the innovative components of the Apache Spark Framework that combines
relational processing with the functional programming API of Apache Spark. It
enables Apache Spark developers to use the advantages of relational processing.

Spark SQL allows a seamless mix of SQL Queries within the environment of
Apache Spark. Spark SQL is capable to perform data processing on structured
data, or on Resource Description Framework (RDFs) stores, or in DataFrames
(DFs). RDF is a graph-based data model, composed of triples (s, p, o); such a
triple denotes a directed arc (s, o) with label p. RDFs can be applied to matrix
computations [13] as well as to knowledge graph representations [2]. Spark SQL
can support batch processing [3] of RDFs in a matter of seconds. It can also sup-
port storage, partitioning, indexing, and information retrieval in the spectrum
of Big Data [12]. A DF is a distributed collection of data organized into named
columns. Users can use a DataFrame API to perform various relational opera-
tions on both external data sources and Spark’s built-in distributed collections
without providing specific procedures for processing data.

Transiting from traditional SQL-based approaches to NoSQL techniques
requires layers that convert relational databases to key-value stores. Numer-
ous studies have suggested alternative layers to convert relational databases to
NoSQL; however, the majority of them focused on just one or two models of
NoSQL and assessed their layers on a single node, not in a distributed environ-
ment. Therefore, Spark-based layers that are able to map relational databases
to NoSQL storage have emerged [1]. Of course, the necessity here is to utilize a
connector that takes advantage of both distributed computing engines such as
Spark and the exceptional speed that MongoDB has to offer as per searches in
documents.

MongoDB [27] is a document-based NoSQL datastore that is commercially
maintained by 10gen. MongoDB in particular is among the most promising
databases existing because of its nature and its superior performance. Despite
being a non-relational database, MongoDB provides several relational database
functions, such as sorting, secondary indexing, range queries, and nested docu-
ment querying. Operators like create, insert, read, update and remove as well as
manual indexing, indexing on embedded documents and indexing on location-
based data are also supported. In such systems, data are kept in documents,
which are entities that offer structure and encoding for the managed data. Each
page is effectively an associative array containing a scalar value, lists, or arrays
nested inside arrays. Every document has a unique special key called “Objec-
tId” that is used for explicit identification, but this key and the document it
corresponds to are conceptually comparable to a key-value pair.

Documents in MongoDB are serialised as Javascript Object Notation (JSON)
objects and saved using a binary encoding of JSON known as BSON. MongoDB,
like other NoSQL systems, has no schema limits and can allow semi-structured
data, as well as multi-attribute lookups on records that may contain multiple
types of key-value pairings [22]. Documents are often semi-structured files such
as XML, JSON, YALM, and CSV. There are two methods for storing data:
a) nesting documents inside each other, which may accommodate one-to-one
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or many-to-many relationships, and b) reference to documents, in which the
referred document is only obtained when the user requests data from this doc-
ument.

Cloud computing can be integrated with MongoDB databases along with
modern technologies such as the Internet of Things (IoT) for streaming applica-
tions [16], or for IoT Data Management on the Cloud [15]. Cloud-based applica-
tions that promote and support smart cities and overall well-being in societies
can enhance information management as a service [10].

3 Query Execution Plans

3.1 Indexing in MongoDB

Having previously discussed the use of Apache Spark and Spark SQL, we shall
now provide a simple example of constructing an index and demonstrate how
it influences the query runtime. For this purpose, we shall use the following
example (Listing 2) of a MongoDB database, consisting of one million records.

Listing 2: Index Construction in MongoDB

{
"_id":{"$oid":"61 a6540c3838fe02b81e5338 "},
"Region":"Sub -Saharan�Africa",
"Country":"South�Africa",
"Item�Type":"Fruits",
"Sales�Channel":"Offline",
"Order�Priority":"M",
"Order�Date":{"$date":"2012 -07 -26 T21 :00:00.000Z"},
"Order�ID":443368995 ,
"Ship�Date":{"$date":"2012 -07 -27 T21 :00:00.000Z"},
"Units�Sold":1593,
"Unit�Price":9.33,
"Unit�Cost":6.92,
"Total�Revenue":14862.69 ,
"Total�Cost":11023.56 ,
"Total�Profit":3839.13

}

Instead of storing the data in the form of tables with columns and rows, the
data is stored as documents. Each document can be one of the relational matrices
of the numerical values, or the overlapping interrelated arrays or matrices. These
documents are serialized as JSON objects and stored internally using JSON
binary encryption known as BSON in MongoDB. The data is partitioned and
stored on several servers called shard servers for simultaneous access and effective
read/write operations.
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Assume that the following SQL query (Listing 3) is to be executed within
the given database.

Listing 3: SQL Query

SELECT Country , Region , Unit Price , Unit Cost
FROM sales
WHERE Unit Price > 600
AND Unit Cost < 510
ORDER BY Region

The aforementioned query is well formatted in SQL, making it easy to com-
prehend. In order to execute the query in MongoDB, we make use of mongosh,
a component of the MongoDB Compass tool1 to construct the database.

The previous query can now be executed utilizing an equivalent function
(Listing 4):

Listing 4: MongoDB Aggregation Function

db.myBigCollection.aggregate ([{ $project: {
Country: 1, Region: 1, ’Unit�Price ’: 1,
’Unit�Cost’: 1}},
{$match: {’Unit�Price ’: {$gt: 600},
’Unit�Cost’: {$lt: 510}}} ,
{$sort: {Region: 1}}])
.explain ()

By utilizing the explain() function, we observed an average query execution
time of 860 milliseconds (ms) for the specific database.

To improve the execution time of a certain query by creating an index, it
is reasonable to believe that this index should be based on the columns “Unit
Price” and “Unit Cost” on which the majority of the searches is performed.

Utilizing the following command (Listing 5), one compound index for the
“Unit Price” and “Unit Cost” values are constructed in ascending order:

Listing 5: MongoDB Index Construction

db.myBigCollection.createIndex ({"Unit�Price": 1,
"Unit�Cost": 1})

Now, the preceding query is re-executed and measured in terms of time. The
execution time has been drastically lowered, varying from 250 to 270 ms. An

1 Available at: https://www.mongodb.com/products/compass.

https://www.mongodb.com/products/compass
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additional single-field index, depending on the field that is being used to sort
the data, may be established. The following command (Listing 6) constructs a
new index based on the “Region” field:

Listing 6: MongoDB New Index Construction

db.myBigCollection.createIndex ({"Region": 1})

If the same query is re-executed utilising both indexes constructed, the aver-
age query execution time drops further to 220 ms. This demonstrates the sig-
nificance of indexes, since the average execution time of a very basic query was
lowered to roughly one fourth with the proper use of indexes.

3.2 Integration of MongoDB and Apache Spark

In this subsection, the information about MongoDB is applied to examine various
instances of the MongoDB-Spark integration described in the previous Section.
We will determine how to use the connection and how to apply our indexing
methods, using the database and indexes described previously.

To highlight the differences among Spark SQL and MongoDB in terms of
query execution, different operations must be considered. In general, MongoDB
tends to be quicker for INSERT/UPDATE operations [17], while SQL appears to be
faster for SELECT operations, but this is not a general rule. To investigate this
problem, an identical database using DataFrames is constructed in Spark. We
will execute the query from Sect. 3, and monitor its execution time.

Recall that without indexing, it took MongoDB an average of 860 ms to
perform the query. Spark SQL executes the identical query in 310 ms without
indexing, which is much faster than MongoDB. This already is a significant
improvement in terms of time. The main reason that the execution time can
be further improved in Spark SQL using indexing is that Apache Spark does
not necessarily allow indexing in the same way as SQL does. Apache Spark is
compatible with a range of data storage formats, some of which enable indexing
while others do not. For instance, Spark along with PostgreSQL enables the
usage of PostgreSQL indexes.

Having observed that Spark SQL executes certain queries faster than Mon-
goDB, it becomes pretty clear that it is better to utilise a URL to get the data,
rather than recreating a database in Apache Spark. Initially, Apache Spark is
executed, including the link package named MongoDB Connector for Spark2.
The initial objective here is to access the database generated previously in Mon-
goDB and to transfer it to Spark. Using the following command (Listing 7), the
data is transferred into a DataFrame, denoted by df.

2 Available at: https://www.mongodb.com/docs/spark-connector/current/.

https://www.mongodb.com/docs/spark-connector/current/
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Listing 7: Dataframe Creation from MongoDB to Apache Spark

val df = spark.sqlContext.read.format
("com.mongodb.spark.sql.DefaultSource")
.option("uri",
"mongodb ://127.0.0.1/ myDb.myBigCollection")
.load()

Once the data are imported, a temporary SQL view of the “sales” DataFrame
can be constructed utilizing the following command (Listing 8).

Listing 8: Temporary SQL View

df.createOrReplaceTempView ("sales")

At this point, Spark SQL can be utilized to execute numerous queries on
the database. We execute the query from Sect. 3 and measure its execution
time for evaluation. To execute and measure the execution time of the query,
the spark.sql() and spark.time() methods are used respectively as follows
(Listing 9).

Listing 9: Spark SQL Query Time Measurement Command

spark.time(spark.sql(
SELECT Region , Country , ‘Unit Price ‘, ‘Unit Cost ‘

FROM sales
WHERE ‘Unit Price ‘ > 600 AND ‘Unit Cost ‘ < 510
ORDER BY Region ).show ())

The average execution time of the aforementioned query is 580 ms, which
is much slower than the 220 ms of MongoDB. This is due to the fact that
the connection transfers data in real-time, resulting in a significant increase in
the average execution time required to move data from MongoDB to Spark. In
particular, the entire database is transferred from MongoDB to Spark, while the
query is executed, and the results are derived at the end.

Therefore, we should consider how we might save time by moving the
database so that the query execution times are not that lengthy. One way to
improve the query time is to execute the query on MongoDB and transfer only
the results to Spark. That is, instead of transferring the entire database in the
DataFrame, the portion of the database is simply transferred that pertains to
the given query. This is done by utilizing the following commands (Listing 10).
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Listing 10: MongoDB Query Execution and Transferring the
Results to Spark

val df = spark.sqlContext.read.format
("com.mongodb.spark.sql.DefaultSource")
.option("uri",
"mongodb ://127.0.0.1/ myDb.myBigCollection")
.option("pipeline",
{$project: {Country: 1, Region: 1,
’Unit�Price ’: 1, ’Unit�Cost’: 1}},
{$match: {’Unit�Price ’: {$gt: 600 },
’Unit�Cost’: {$lt: 510}}} , {$sort: {Region: 1}}). load()

Once the necessary information in the DataFrame exists, the results can be
examined. After creating a temporary SQL view of the DataFrame with the same
name “sales” (for convenience), a single query is executed to return all fields,
as the DataFrame includes the required information. This is done through the
following query (Listing 11):

Listing 11: Spark SQL Query Execution

spark.time(spark.sql(SELECT * FROM sales ).show ())

As anticipated, the average query execution time now drops to 180 ms. This
time is lower than that of the MongoDB (220 ms) and this is due to the following
reasons.

Recall first the two query scenarios. In the first scenario, the query is executed
in MongoDB and the results are reported in MongoDB. In the second scenario,
the query is executed in MongoDB, the data are transferred to Spark, and then
the results are reported there. The obvious question is how the query execution
time of the second scenario turns out to be faster than that of the first scenario,
given the fact that the second scenario (and its corresponding execution path)
requires more time due to the transfer of data.

The reason appears to be in the speed at which the query is executed using
a SELECT operation in Spark SQL against the operations of MongoDB, as previ-
ously noted. Performing more experiments in the whole database in both Mon-
goDB and Spark SQL (after transferring it), it appears that Spark SQL performs
the SELECT operation significantly faster. In the second scenario, the complete
database transfer is not required, but only a tiny portion of it that contains the
results which are sent after the queries. Hence, the overall execution time will be
much less. In the particular example used, around 83,000 records are returned
out of the total of one million records in the database.
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A subsequent question is whether the query execution time can be further
reduced by exploiting the speed of the SELECT(Spark SQL) operation against that
of the $project(MongoDB) operation. To investigate this idea, we divide the query
into sub-queries. In particular, we split the query so that the WHERE($match) and
the ORDER BY($sort) operations are executed in MongoDB, while the operation
SELECT($project) is executed on Spark.

To execute the operations WHERE($match) and ORDER BY($sort) in MongoDB
the following commands (Listing 12) are used.

Listing 12: MongoDB WHERE and ORDER BY Query Execu-
tion

val df = spark.sqlContext.read.format
("com.mongodb.spark.sql.DefaultSource")
.option("uri",
"mongodb ://127.0.0.1/ myDb.myBigCollection")
.option("pipeline", {$match: {’Unit�Price ’: {$gt: 600},
’Unit�Cost’: {$lt: 510}}} , {$sort: {Region: 1}}). load()

To execute the operation SELECT($project) in SparkSQL the following com-
mands (Listing 13) are used.

Listing 13: Spark SQL SELECT Command Execution

spark.time(spark.sql(SELECT Region , Country ,
‘Unit Price ‘, ‘Unit Cost ‘ FROM sales ).show ())

Measuring now the average query execution time, we observe that it has been
further reduced to approximately 105 ms. Spark SQL appears to be faster than
MongoDB when executing the operation SELECT from $project.

Based on this additional improvement, a natural attempt would be to migrate
the ORDER BY($sort) portion of the query to Spark SQL. This is done in two
steps.

First, the operation WHERE($match) is executed in MongoDB using the fol-
lowing commands (Listing 14).
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Listing 14: MongoDB WHERE Command Execution

val df = spark.sqlContext.read.format
("com.mongodb.spark.sql.DefaultSource")
.option("uri",
"mongodb ://127.0.0.1/ myDb.myBigCollection")
.option("pipeline", {$match: {’Unit�Price ’:
{$gt: 600}, ’Unit�Cost’: {$lt: 510}}})
.load()

Then, the operations SELECT($project) and ORDER BY($sort) are executed
in Spark SQL using the following commands (Listing 15).

Listing 15: Spark SQL SELECT and ORDER BY Execution

spark.time(spark.sql(SELECT Region , Country ,
‘Unit Price ‘, ‘Unit Cost ‘ FROM sales ORDER BY
Region ).show ())

Measuring the query execution time of this experiment, we observed that the
average time did not improve but rather increased significantly to 530 ms. This
implies that the ORDER BY($sort) method in MongoDB appears to be sufficiently
faster.

The discussion in this section demonstrates the need to consider various query
execution scenarios and measuring the corresponding query execution times in
order to recommend some best cases/practices. We do this in Sect. 4 where var-
ious scenarios are analysed and their query execution times are reported.

4 Experimental Results

In this Section we present the experimental results by running various scenarios
of query execution paths on different database sizes and measure the average
query execution time.

We considered the eight query execution path scenarios shown in Table 1,
in which one part of the query is executed in MongoDB and the other part in
Spark SQL (examples of such query scenarios were presented in Sect. 3.

The aforementioned scenarios were executed on six different database sizes
in order to investigate the scalability of the specific query execution scenarios.

We initiated the database size to 500,000 records and doubled the size for
generating the next database instance up to 20,000,000 records.

The average query times per scenario and database size are reported in
Tables 2 to 7. The fastest query times are highlighted in bold.
We observe the following across all results (cf. Tables 2 to 7).
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Table 1. Scenarios of Query Execution Paths.

Scenario MongoDB Spark SQL

1 Entire Query Execution –

2 Entire Database Transfer Entire Query Execution

3 WHERE($match) + ORDER BY($sort) SELECT($project)

4 WHERE($match) SELECT($project) + ORDER BY($sort)

5 ORDER BY($sort) SELECT($project) + WHERE($match)

6 SELECT($project) WHERE($match) + ORDER BY($sort)

7 SELECT($project) + WHERE ($match) ORDER BY($sort)

8 SELECT($project) + ORDER BY($sort) WHERE($match)

Table 2. Average query execution time (in ms) per scenario for 500,000 records.

Scenario MongoDB Spark SQL Avg Qtime (ms)

1 Entire Query Execution – 121

2 Entire Database Transfer Entire Query Execution 311

3 WHERE($match) + ORDER BY($sort) SELECT($project) 72

4 WHERE($match) SELECT($project) + ORDER BY($sort) 289

5 ORDER BY($sort) SELECT($project) + WHERE($match) 48

6 SELECT($project) WHERE($match) + ORDER BY($sort) 672

7 SELECT($project) + WHERE ($match) ORDER BY($sort) 518

8 SELECT($project) + ORDER BY($sort) WHERE($match) 127

Table 3. Average query execution time (in ms) per scenario for 1,000,000 records.

Scenario MongoDB Spark SQL Avg Qtime (ms)

1 Entire Query Execution – 180

2 Entire Database Transfer Entire Query Execution 580

3 WHERE($match) + ORDER BY($sort) SELECT($project) 105

4 WHERE($match) SELECT($project) + ORDER BY($sort) 530

5 ORDER BY($sort) SELECT($project) + WHERE($match) 55

6 SELECT($project) WHERE($match) + ORDER BY($sort) 850

7 SELECT($project) + WHERE ($match) ORDER BY($sort) 690

8 SELECT($project) + ORDER BY($sort) WHERE($match) 210

Table 4. Average query execution time (in ms) per scenario for 2,000,000 records.

Scenario MongoDB Spark SQL Avg Qtime (ms)

1 Entire Query Execution – 337

2 Entire Database Transfer Entire Query Execution 1429

3 WHERE($match) + ORDER BY($sort) SELECT($project) 184

4 WHERE($match) SELECT($project) + ORDER BY($sort) 1185

5 ORDER BY($sort) SELECT($project) + WHERE($match) 59

6 SELECT($project) WHERE($match) + ORDER BY($sort) 1338

7 SELECT($project) + WHERE ($match) ORDER BY($sort) 1129

8 SELECT($project) + ORDER BY($sort) WHERE($match) 369
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Table 5. Average query execution time (in ms) per scenario for 5,000,000 records.

Scenario MongoDB Spark SQL Avg Qtime (ms)

1 Entire Query Execution – 670

2 Entire Database Transfer Entire Query Execution 8800

3 WHERE($match) + ORDER BY($sort) SELECT($project) 1270

4 WHERE($match) + SELECT($project) ORDER BY($sort) 6300

5 ORDER BY($sort) SELECT($project) + WHERE($match) 65

6 SELECT($project) WHERE($match) + ORDER BY($sort) 3048

7 SELECT($project) + WHERE ($match) ORDER BY($sort) 2438

8 SELECT($project) + ORDER BY($sort) WHERE($match) 844

Table 6. Average query execution time (in ms) per scenario for 10,000,000 records.

Scenario MongoDB Spark SQL Avg Qtime (ms)

1 Entire Query Execution – 1237

2 Entire Database Transfer Entire Query Execution 11469

3 WHERE($match) + ORDER BY($sort) SELECT($project) 2543

4 WHERE($match) + SELECT($project) ORDER BY($sort) 12894

5 ORDER BY($sort) SELECT($project) + WHERE($match) 102

6 SELECT($project) WHERE($match) + ORDER BY($sort) 5671

7 SELECT($project) + WHERE ($match) ORDER BY($sort) 4179

8 SELECT($project) + ORDER BY($sort) WHERE($match) 1636

Table 7. Average query execution time (in ms) per scenario for 20,000,000 records.

Scenario MongoDB Spark SQL Avg Qtime (ms)

1 Entire Query Execution – 3659

2 Entire Database Transfer Entire Query Execution Out of memory

3 WHERE($match) + ORDER BY($sort) SELECT($project) 6784

4 WHERE($match) + SELECT($project) ORDER BY($sort) Out of memory

5 ORDER BY($sort) SELECT($project) + WHERE($match) 285

6 SELECT($project) WHERE($match) + ORDER BY($sort) 11074

7 SELECT($project) + WHERE ($match) ORDER BY($sort) 8514

8 SELECT($project) + ORDER BY($sort) WHERE($match) 4855

The ORDER BY($sort) operation in MongoDB is exceptionally fast, faster
than any other operation.

The SELECT($project) operation in Spark SQL is faster compared to the
same operation in MongoDB.

The combination of the SELECT($project) and WHERE($match) operations in
Spark SQL are exceptionally fast, faster than any other operation.

Scenario 5 is the fastest across all database sizes, due to the above facts.
Scenario 3 is the second fastest scenario for database sizes up to 2, 000, 000

records, followed by scenarios 1 and 8 (cf. Tables 2 to 4).
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As soon as the database size exceeds 2, 000, 000 records (cf. Tables 5 to 7),
the transfer of a large amount of data between MongoDB and Spark begins to
have a significant effect on the query execution time. This is also evident by the
query execution time of scenario 2, in which the entire database is transferred
to Sparl SQL, and which has the largest value, while the memory exceeded its
limit in the case of the database with 20, 000, 000 records (cf. Table 7).

For database sizes beyond 2, 000, 000 records, scenario 1 (i.e., just run the
entire query in MongoDB) is the second fastest, followed by scenarios 8 and 3
(cf. Tables 5 to 7).

Scenario 5 has an exceptional scalability not only because it is the fastest
across all database sizes, but also due to the very good scaling of the average
query execution time as the size of the database doubles from one instance to
the next (cf. Tables 2 to 7).

The log-scaled results across all 8 different test scenarios and the 6 different
database sizes are shown in Figs. 1 and 2.

Figure 1 presents the results across all databases sizes for scenarios 1–4. As
we can see, scenarios 1 and 2 have similar behavior across all database sizes. The
only difference appears in the case of scenario 2 and database size of 20,000,000
records, where the memory exceeded its limits. Scenario 3 remains the fastest
execution plan across all database sizes, while we see an increase in time at
20,000,000 records. Lastly, scenario 4 has similar performance to scenario 2, but
once again when the size of the database reaches 20,000,000 records the memory
exceeded its limits.

Fig. 1. Query Runtime for Scenarios 1-4 for 0.5, 1, 2, 5, 10 and 20 million records.
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Fig. 2. Query Runtime for Scenarios 5-8 for 0.5, 1, 2, 5, 10 and 20 million records.

Figure 2 presents the results across all databases sizes for scenarios 5–8. As we
can see, scenario 5 is the fastest as per query execution time across all database
sizes. Scenario 6 appears to be the slowest. Scenario 8 is the second best. Both
scenarios 7 and 8 have similar behavior across all database sizes. We also observed
that scenarios 5–8 did not cause the memory to reach its limits.

5 Further Extensions

In this section, we shall discuss a technique known as sharding that can be used
to further improve the query performance of huge data sets.

Recall that MongoDB stores data as documents, instead of storing data as
tables with columns and rows. Every document may be represented by one of the
relational matrices of numerical values or the overlapping connected arrays or
matrices. These documents are serialised as JSON objects and saved internally
using JSON binary encryption (known as BSON in MongoDB).

The data are partitioned and stored on many servers known as shards or
shard servers to facilitate simultaneous read/write operations.

This connection integrates MongoDB with Apache Spark using a cluster
assignment function C : X → {1, 2, . . . ..,K}, where K refers to the number
of clusters across all documents, X refers to a set of N objects (documents), and
d ∈ IR+

0 refers to a distance function (symmetric, non-negative and obeying the
triangle inequality) between all pairs of objects in X.

Then, the goal is to partition X into K disjoint sets

X1,X2, . . . , XK

such that
∑

x,x′∈Xp
d (x, x′) is minimized for each 1 ≤ p ≤ K, while the distance

d(y, y′) between any two points y ∈ Xi and y′ ∈ Xj , i �= j, is maximized.
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The number of all possible distinct cluster assignments S(N,K) is given by

S(N,K) =
1
K!

K∑

p=1

(−1)K−p

(
K
p

)

pN (1)

The function S(N,K) can be used to determine the optimal cluster assign-
ment function C for a given set of data, by finding the value of p that minimizes
the value of S(N,K). In the context of sharding, this could be used to find the
optimal number of shards (corresponding to clusters) for a database or any other
distributed system by minimizing the number of shards needed to store a given
amount of data.

Sharding is a way to distribute data across multiple devices, to deal with
applications that use huge databases and structures. A database may have a
mix of sharded collections and unsharded collections.

Collection 1

1 TB

Shard A Shard B Shard C Shard D

256 GB256 GB 256 GB 256 GB

Fig. 3. Sharding Phase of MongoDB

Sharding in MongoDB uses subsets of data which are later moved from one
shard to another; cf. Fig. 3. One way to identify which subset is being moved is
by the selected key. For example, if we were to split a collection of users based on
the field username, then the data is split into chunks (parts of a file) of predefined
ranges e.g., [“a”,“f”)3. Then“a”, “charlie”, and “ezbake” could be in the set,
but “f” could not.

A MongoDB shard cluster is comprised of two or more shards, one or more
configuration servers, and an arbitrary number of routing processes. Each com-
ponent is detailed below.

3 The standard range notation is used where “[” and “]” denote inclusive bounds and
“(” and “)” denote exclusive bounds.
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– Shard : each shard consists of one or more servers and uses MongoDB processes
to store data. Each shard in a production environment will consist of a replica
set to ensure availability and automated fail-over.

– Configuration server : it stores the metadata of the cluster, which includes
basic information about each shard server and the chunks it contains.

– Mongos (Routing Processes): they concernt the routing and coordination pro-
cesses. When MongoDB receives a request from a client, it routes the request
to the appropriate server and merges the results before sending them back to
the client.

Sharded sets are divided into clusters and spread throughout the shards,
using a cluster assignment function, as discussed above. Unsharded collections
are stored on the main shard.

MongoDB measures the theoretical maximum collection size as follows. Let
Bmax be the maximum BSON document size (in MB) and let Yavg be the average
size of shard key values (in bytes). Then, the maximum number M of splits is
given by M = Bmax/Yavg. Assuming a chunk size of H (in MB), we have that
the maximum collection size MB (in MB) is given by

MB =
M · C

2
(2)

The size of the chunks, which is the basic unit of data movement in sharded
clusters, also plays a significant role in the performance of operations such as
migrations. Adjusting the chunk size can help to balance the trade-offs between
the need for data movement and the need to keep chunks small enough to prevent
hotspots4.

An additional technique concerns zone sharding that allows the assignment of
ranges of shard keys to different shards, or a group of shards. This technique can
be used to distribute data based on access patterns; for instance, assigning fre-
quently accessed data to a specific set of shards can improve query performance.
Furthermore, complex queries can be split and executed on specific shards based
on their complexity and the capacity of the selected shard.

In order to achieve optimal performance in MongoDB, it is essential to con-
stantly monitor and optimize the sharding configuration by considering the usage
of sharding in the query execution plan, monitoring and optimizing the shard-
ing configuration, choosing the right shard key, indexes, chunk size, and using
techniques like zone sharding. These steps can greatly improve the performance
of MongoDB in a large and complex data environment.

6 Conclusions and Future Work

We presented an approach for query optimization in terms of average query
execution time for NoSQL databases and Spark SQL. The query execution path
4 Hotspots in sharded clusters refer to situations where a specific chunk of data receives

a disproportionate amount of read and write operations, causing performance issues.
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scenarios that were examined demonstrate that our results are promising. By
examining the aforementioned database instances and scenarios, the objective
of this work was to determine how the connection among MongoDB and Apache
Spark operates and therefore to investigate potential optimization possibilities
using the connector and the indexing algorithms offered by MongoDB. One of our
findings is that the SELECT operation in Spark SQL is typically faster compared
to the same operation in MongoDB.

To further substantiate this finding, one could investigate as many potential
scenarios as possible, in order to either discover the optimal answer to a given
question, or to detect optimization tendencies. Naturally, the integration of all
conceivable scenarios and conditions is endless and therefore it is impossible
to map all feasible improvements for each specific instance. This work can be
considered as a useful step forward to SQL query optimization in distributed
systems utilizing NoSQL databases. Based on our current approach, our out-
comes and the evaluated methodologies, we also believe that this work can be
further expanded.

Future directions include collaborating with major organisations, businesses,
and cooperatives that can provide a portion of their vast amounts of real-world
data, in order to develop a variety of optimization models based on the current
work. Hence, it will be possible to detect broad optimization tendencies based
on the used databases and the frequency of queries. Thus, the database adminis-
trators (used to establish their own database) will be able in the future to utilize
these models and adjust their database and query path execution plans to them.

The preceding directions may be performed automatically by using a smart
query optimizer as the ones presented in [8,19,20,23–25,29]. However, the imple-
mentation of such a tool should combine query evaluation and optimization
methods along with machine learning techniques. We strongly believe that these
methods would be interesting to be used on specific use cases, where after several
experiments the appropriate cost functions can be found in order to create one
highly efficient query execution scheduler able to scale and adapt.

To further improve the query execution time, one approach is to distribute
a given complex query to sharded queries on RDDs (cf. Sect. 5) based on the
operations contained within it so as to improve the time, and then to collect the
sub-results from RDDs and merge them to construct the answer to the initial
query. Ultimately, a fine-tuning direction would be to utilize modified indexes
such as R-trees, Quad-trees, kD-trees and LSM-trees, which have been already
implemented, for integration with this work rather than using the MongoDB
B-tree index.
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Abstract. In recent years, maintaining the history of graphs has become
more and more imperative due to the emergence of related applications
in a number of fields like health services, social interactions, and map
guidance. Historical graphs focus on being able to store and query the
whole evolution of the graph and not just the latest instance. In this
paper we have two goals: 1) provide a concise survey of the state-of-
art with respect to systems in historical graph management since no
such comprehensive discussion exists and 2) propose an architecture for
a distributed historical graph management system (named MAGMA -
MAssive Graph MAnagement) based on previous research work of the
authors.

Keywords: temporal graphs · graph management systems · query
engine

1 Introduction

In recent years there is a rapid increase of time-evolving networks that produce
a considerable amount of data. Networks, such as citation networks, traffic net-
works, and social networks are, naturally represented as graphs and they are
usually dynamic. For example, in a citation network, new nodes and edges are
constantly added due to the publication of new papers. An important challenge
that arises in these time-evolving networks is the efficient management of their
history in order to be able to reason about its whole evolution and not only about
its latest state. This allows us to answer queries such as “what is the average
connectivity of author X in the citation network between 2010 and 2015”.

There have been quite a lot of systems developed since 2016 for historical
graph management. Most of them are distributed, since evolving large graphs
an extremely demanding with respect to space usage and query/update time.
A rather outdated (since 2016) related survey can be found in [41]. They focus
mainly on the models used for temporal graphs and the techniques available to
query them. Another recent survey is [2] (2021) which analyzes graph streaming
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systems, where the differences and similarities between graph streaming systems
and historical graph systems are explicitly given. In general, graph streaming
systems tend to use snapshots as the stable (latest) instance of the graph, since
it may be the case that recent updates have not been registered. However, in
principle these snapshots may be stored and allow for historical queries as well.
Some graph streaming systems explicitly - although it is controversial to what
extent - support historical queries on such (small number) snapshots of their
evolution.

Our contribution in this paper is twofold. First, we provide a concise but
comprehensive discussion on the systems developed up to today after 2016 that
is covered by the survey of [41]. Due to space limitations, we do not discuss
extensively these systems. At the same time, we focus mainly on distributed
systems making a simple reference to non-distributed ones. To the best of our
knowledge, there is no other up-to-date comprehensive reference to such sys-
tems. Our second contribution, which required this state-of-the-art review, is
the proposal of the high-level architecture of a distributed system for managing
time-evolving graphs. The architecture is based on the ideas set by the authors
in previous papers [22,23,38] as well as by the most recent developments in the
area of historical graph management, as laid out in our small survey.

The rest of the paper is structured as follows. In Sect. 2 we provide a review of
historical graph management systems after 2016. In Sect. 3 we discuss the high-
level architecture of the system we intend to implement for managing historical
graphs. Finally, we conclude in Sect. 4.

2 A Review of Historical Graph Management Systems

Historical graphs have to utilize multiple dimensions resulting in many possible
directions for such a system. Most systems are concerned with the storage and
query of the evolution of the attributes as time evolves and some try to utilize
the evolution of the topology for better partitioning or for reasons related to effi-
ciency. In Table 1, we provide, without further discussion, some basic characteris-
tics of non-distributed historical graph management systems. Some terminology
is in order to understand the following tables:

1. transaction time vs valid time: Transaction time represents the time that
an event takes place (i.e. the moment that a node is stored or deleted from
a network) whereas valid time signifies the time period in which an object
was valid (i.e. the time interval that a node existed in a database). In the
transaction time setting updates can only occur in an append-like manner
(i.e. an update in a field changes the value of the most recently stored value)
whereas in the valid time setting updates can refer to any time point.

2. time as a property vs snapshots: in a rather crude manner, we get basi-
cally two different representations of time-evolving networks: a) snapshots,
which correspond to a copy+log method; that is, the network is stored at
specific time instances and in between a log is kept with the changes and b)
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time as a property, which correspond to incorporating the notion of time as
another special property of the objects/properties within a network. There
are many variations of these two basic representations.

3. offline vs online vs streaming: In an offline setting, we get all the history
of the graph beforehand. In an online setting, the graph evolves and with it
the database, while queries can be made at any time. In a streaming setting,
we have an online setting with restrictions as to how much space and time
is allowed for each update. In the literature, streaming is not usually related
to historical information but more to computational restrictions on the pro-
cessing of the stream due to its high velocity and massiveness. One can get
as a by-product a rudimentary transaction time temporal graph processing
system.

4. Time-dependent and Time-independent algorithms: If the algorithm
on the temporal graph can be applied without time constraints then it is time-
independent (e.g., pagerank computation at time instance t). If there are time
constraints, then the algorithm is time-dependent (e.g., shortest path that
respects time intervals on nodes/edges and the journey is time-consistent).

In Table 2 we show all distributed systems for historical graph management
after the year 2016. Since our proposed system falls under this category we are
going to discuss briefly some of these systems, which according to our opinion
are quite important and have nice properties.

Table 1. Non-distributed systems for historical graph management.

Summarizing the Characteristics of Non-Distributed Temporal Graph Management Systems

Systems Memory Storage Model Time-related characteristics

InteractionGraph [10] Main Memory (old graph in
disk)

Custom Transaction time

STVG [28] Main Memory Neo4j valid time, offline, restricted
to transit networks

ASPEN [7] In-Memory/parallel extends Ligra Streaming

GraphOne [24] in-memory NVMe SSD Custom Streaming, can’t get
arbitrary historic views if
transaction time is assumed

Auxo [12] Main and External Memory Custom Transaction time

[3] Main Memory Custom Transaction time,
Snapshot-based, focus on
space savings

[1] Main Memory Neo4j Valid time, In addition to
entity evolution it supports
schema evolution

TGraph [15] Main and External Memory Neo4j Support ACID Transactions,
slow topological updates but
fast property updates,
Transaction time

VersionTraveller [18] Main Memory based on PowerGraph static
graph management system

Offline Snapshot-based,
Focus on switching between
snapshots

NVGraph [27] Non-Volatile Main Memory
and DRAM

Custom Online Snapshot-based,
Transaction time
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Table 2. Distributed systems for historical graph management.

Summarizing the Characteristics of Distributed Temporal Graph Management Systems

Systems Storage Model Time-related characteristics

Portal [33] Spark Offline, time as a property, Valid time

GDBAlive [29] Cassandra Transaction time

Graphsurge [37] Custom offline snapshots, focus on differential
computation across multiple snapshots

TEGRA [17] Custom Transaction time, based on persistent
trees, incremental computation model,
window analytics

GraphTau [16] Spark Streaming

Immortalgraph [30] Custom Transaction time, Snapshot-based, Focus
on locality-aware (w.r.t. time and
topology by replication) batch scheduling
for computation

HGS [21] Cassandra Transaction Time, Sophisticated
Snapshot-based

SystemG-MV [40] IBMs SystemG Relaxed transaction time

Raphtory [39] Custom + Cassandra for
archiving

Transaction time, streaming

Chronograph [5] MongoDB offline, time as a property, Focus on
graph traversals

Graphite [9] Apache Giraph offline, Time-dependent and
time-independent algs

Granite [34] Based on Graphite focus on temporal path queries, partition
techniques to keep everything in main
memory

Tink [26] Apache Flink Online, Valid time

Gradoop - TPGM [6,35,36] Apache HBase/ Accumulo Valid and Transaction time (bitemporal),
Fully-fledged system ranging from a
graph analytical language to the storage
model

Greycat [14] NoSQL Database + custom Valid time, No edge attributes

PAST [8] based on key/value stores
(e.g., Cassandra)

Streaming Spatio-temporal graphs,
bipartite graphs, only edges with
time-points, spatiotemporal-specific
query workloads

HINODE [22,23,38] Custom (other versions are
based on Cassandra and
MongoDB)

Online, time as a property, Valid time
(allows more general notions of time),
pure vertex-centric storage model

HINODE was the first pure vertex-centric system with respect to the storage
model. It was introduced in [23] and supports valid time as well as extensions like
multiple universes. It was implemented within the G∗ system [25] by replacing
its storage subsystem. They showed gains in space usage, which is an immediate
consequence of the pure vertex-centric approach. They supported local queries
(e.g., 2-hop queries) as well as global queries (e.g., clustering coefficient). In
addition, this vertex-centric model was also adapted for NoSQL databases by
creating two models, SingleTable (ST) and MultipleTable (MT). In the former,
all data fit in one table and a row has the data of a Diachronic Node, while in the
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latter, data are split in different tables. Two implementations were made, one in
Cassandra [22] and later one in MongoDB [38] for comparison reasons, while in
MongoDB we tried also to take advantage of indexes and iterative computation
to reduce memory usage.

Portal. In [33] they discuss about interval-based and point-based models pre-
ferring the interval-based model with sequenced semantics. As a data model,
they talk about TGraph that uses the property graph model while they also dis-
cuss about sequenced semantics in a distributed environment (e.g. partitioning,
time-window operations). In PhD Thesis [32] they propose a Temporal Graph
Algebra (TGA) and a temporal graph model (TGraph) supporting TGA In
addition, in [31] they propose a declarative language (Portal) based on the pre-
vious model and built on top of a distributed system (Apache Spark). Portal
has SQL-like syntax following SQL:2011 standard. They also discuss about pos-
sible algorithms on temporal graphs among which are node influence over time,
graph centrality over time, communities over time, and spread of information.
TGraph is a valid time model that extends the property graph model (each edge
and vertex is associated with a period of validity), while all relations in Graph
must meet 5 criteria (uniqueness of vertices/edges, referential integrity, coa-
lesced, required property, constant edge association). TGA is both snapshot and
extended snapshot reducible presenting a new primitive (resolve) while contain-
ing operators like trim, map, and aggregation. Portal uses Spark for in-memory
representation and processing while it uses Apache Parquet for on-disk data
layout using node files and edge files (but it doesn’t support an index mecha-
nism). They experimented with different in-memory representations, Snapshot-
Graph(SG) that stores the graph as individual snapshots, MultiGraph(MG) that
stores one single graph by storing one vertex for all periods and one edge for
every time period and OneGraph that stores each edge and vertex only once
(also exists MGC and OGC). It has distributed locality like Immortalgraph,
experimenting with different partitioning methods (the equi-depth partinioning
is more efficient in most experiments) but stores materialized node/edges instead
of deltas and they also experimented with both structural and temporal locality,
concluding that temporal locality is more efficient (among other reasons due to
the lack of sufficient discrimination in the temporal ranges of the datasets).

ImmortalGraph. [30] is a parallel in-memory storage and computation system
for multicore machines and distributed settings designed for historical graphs. It
focuses more on locality optimizations, both in saving the data and in the execu-
tion of the queries using locality-aware batch scheduling (LABS). They make a
clear distinction and a very nice discussion between the time-centric layout and
the structure-centric layout. It supports parallel temporal graph mining using
iterative computations while they prefer those computations to be in memory.
ImmortalGraph supports both global and local queries at a point in time or a
time window. Data are stored in snapshot groups with the use either of edge
files or vertex files, depending on the application. A snapshot group organizes
together snapshots of a time interval by storing the first one and the changes that
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happened to the rest. This can be stored either with the use of time locality by
grouping activities associated with a vertex (and a vertex index) or with the use
of structure locality by storing together neighboring vertex (and a time index).
Instead of choosing between the possible trade-off from structure and time local-
ity, they replicate the needed data and decide which technique to use according
to the type of query and how far is the starting point from the start of the
snapshot group. LABS favors partition-parallelism from snapshot-parallelism,
so they prefer batch operations of vertex/edges achieving better locality and less
inter-core communication. They also experimented with iterative graph mining
and iterative computations. In the former they reconstruct the needed snapshots
in memory favoring time locality (and they compare both push, pull, and stream
techniques), while in the latter they compute the first snapshot and the later
N − 1 snapshots in batch (achieving better locality). They also implemented
both low-level and high-level query interfaces, the latter used for iterative com-
putations. An earlier implementation of ImmortalGraph is Chronos [13] with
the main difference being that it only focuses on time locality. Finally, they pro-
vide a low-level as well as a high-level programming interface (APIs) that in
fact define their analytics engine. They also experiment on Pagerank, diame-
ter, SSSP, connected components, maximal independent sets, and sparse-matrix
vector multiplication.

Historical Graph Store (HGS). [21] is a cloud parallel node-centric distributed
system for managing and analyzing historical graphs. HGS consists of two major
components, Temporal Graph Index (TGI) that manages the storage of the graph
in a distributed Cassandra environment, and Temporal Graph Analysis Frame-
work (TAF) that is a spark-based library for analyzing the graph in a cluster
environment. TGI combines Partitioned Eventlists, which stores atomic changes,
with Derived Partitioned Snapshots, which is a tree structure where each parent
is the intersection of children deltas (used for better structure locality storing
neighborhoods), both of them are partitioned, while they are also combined with
Version Chain to maintain pointers to all references of nodes in chronological
order. TGI divides the graph into time spans (like snapshot groups of Immortal-
Graph) with micro-deltas which are stored as key-value pairs contiguously into
horizontal partitions at every time span. In that way, it can execute in parallel
every query to many Query Processors and aggregate the result to Query Man-
ager or to client. It can work both on hash-based and locality-aware partitioning
by projecting a time range (time-span) of the graph in a static graph. TAF
supports both point in time queries and time-window, some of the supported
queries are subgraph retrieval with filtering, aggregations, pattern matching,
and queries about the evolution of the graph. An earlier implementation of TGI
is DeltaGraph [20] which focuses on snapshot retrieval

ChronoGraph. [5] is a temporal property graph database built by extending
Tinkerpop and its graph traversal language Gremlin so as to support tempo-
ral queries. It stores the temporal graph in persistent storage (MongoDB), and
then loads the graph in-memory and traverses it. Their innovation is not in the
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storage model but in how they support traversal queries efficiently on top of it.
It exploits parallelism, the temporal support of Tinkerpop to increase efficiency,
and lazy evaluations to reduce memory footprints of traversals. Its main focus
is on temporal graph traversals but can also return snapshots of the graph.
They distinguish point-based events and period-based events because of their
semantics and their architectural needs. They use aggregation to convert point-
based events to period-based events so as not to have two different semantics in
order to improve time efficiency in query execution. They achieve this by using a
threshold as the max time interval that might exist between time instants so as
to group them. A graph is composed of a static graph, a time-instant property
graph, and a time-period property graph. They also use event logic, where an
event might be either a vertex or an edge, on a period or a time instant. They
applied temporal implementation of BFS, SSSP, and DFS, while they don’t rec-
ommend DFS on their system because of Gremlins recursive logic. One more
thing they discuss is that when you store the temporal graph in snapshots there
will be some loss of information because a snapshot might contain data of an
hour, day e.t.c according to the needs of the problem, while when you store
them using time interval, you have a more accurate representation of the graph.
An extension of Chronograph by using time-centric computation for traversals
is given in [4].

Tink. [26] is an open-source parallel distributed temporal graph analytics library
built on top of the Dataset API of Apache Flink and uses Gelly as a language. It
extends the temporal property graph-model focusing on keeping intervals instead
of time-points by saving nodes as tuples. It depends on Flink to use parallelism,
optimizations, fault tolerance, and lazy-loading and supports iterative process-
ing. It also uses functions from Flink like filtering, mapping, joining, and group-
ing. Most algorithms use Gelly’s Signal/Collect (scatter-gather) model which
executes computations in a vertex-centric way. It also provides temporal ana-
lytics metrics and algorithms. For the latter, they implemented shortest path
earliest arrival time and shortest path fastest path while for temporal metrics
they provide temporal betweenness and temporal closeness.

Gradoop (TPGM). TPGM [6,35,36] is an extension of Gradoop’s EPGM model
(model for static graph processing, presented in a series of papers from 2015, e.g.,
see [19]) to support temporal analytics on evolving property graphs (or collection
of graphs) that can be used through Java API or with KNIME. Gradoop is an
open-source parallel distributed dataflow framework that runs on shared-nothing
clusters and uses GRALA as a declarative analytical language and Temporal-
GDL as a query language. Gradoop supports Apache HBase, and Apache Accu-
mulo to provide storage capabilities on top of HDFS, while other databases can
also be used with some extra work. TPGM supports bitemporal time by adding
to vertex, and edges as well as to graph the logical attributes for start and end
time for both valid and transaction time (but it allows to not use some of them).
While TPGM provides an abstraction, Apache Flink is used for handling the
execution process in a lazy way and it provides several libraries. GRALA pro-
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vides operators both for single graphs and graph collections, it supports retrieval
of snapshots, transformations of attributes or properties, subgraph extraction,
the difference of two snapshots, time-dependent graph grouping, temporal pat-
tern matching, and others. For some more complex algorithms, it also supports
iterative execution using Apache Flink’s Gelly library.

Lastly, they have implemented a set of operations for their analytics engine
and have implemented them in Flink - by using Flink Gelly. For further inves-
tigation, it should be mentioned that they provide an extensive description of
their architecture while they also provide a Lessons Learned section that contains
valuable information with respect to their design choices.

SystemG-MV. In [40] they propose an OLTP-oriented distributed temporal
property graph database (dynamically evolving temporal graphs). It is built
on top of IBM’s SystemG, which is a distributed graph database using LMDB
(B-tree based key-value store). Data are stored in tables with key/value pairs
allowing to query part of the graph efficiently without retrieving whole snap-
shots. Different tables exist for vertices, edges, and properties, while it supports
updates only on present/future timestamps like transaction-time models. There-
fore, changing previous values of the graph is not allowed explicitly, but it is
possible to change past events by using low-level methods. In this model, they
save two timestamps for the creation/deletion of vertices/edges but while they
don’t allow edges to be recreated with the same id, although multiple edges can
exist between a pair of vertices. For vertices, they keep the deleted vertices in a
different table, while for properties they keep it simplified by keeping only one
timestamp for the update as the rest can be calculated. Alongside the historic
tables, they keep one table with the current state of the graph for more efficient
queries.

GraphOne. [24] is an in-memory data store with a durability guarantee on exter-
nal non-volatile memory NVMe SSD, while it was solely implemented in C++.
Its objective is to be able to perform both real-time analytics or diverse data
access while synchronous updates are applied to the database. To achieve that,
GraphOne uses a hybrid model which is composed of a circular edge log and an
adjacency store. The adjacency store has a multi-versioned degree array and an
adjacency list with chained edges, which is used to permanently store the data
taking regard to snapshots. On the other hand, edge log is used to temporary
store the incoming data as edges so as to later move them in parallel to the
adjacency store and improve the ingestion time. In brief, an epoch in GraphOne
is consisted of 4 stages logging, archiving, durable, and compaction. At logging
phases, records are inserted in the edge log at their arrival order, when the
inserted edges reach the archiving threshold the multi-threaded archiving phase
starts in parallel with the logging phase. At the start of the archiving phase, it
shards non-archived edges to multiple local buffers so as to keep the data order-
ing intact, then the edges are being archived in parallel to the adjacency store,
while also new degree nodes are allocated. In short, in the durable phase data
are being appended to a file, while in the compaction phase deleted data are
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being removed. One thing that needs to be noticed is that GraphOne despite
that is designed to store evolving graphs, it is not designed for getting arbitrary
historic views from the adjacency store.

TEGRA. [17] is a distributed system with a compact in-memory representation
(using their own storage model) both for graph and intermediate state. Its main
focus is on time window analytics for historical graphs, but it can also be used
for live analytics as the data are ingested in the database. An interesting feature
is the ICE computational model that takes advantage of the intermediate state
of computations saving it, so as to use it in the same or different queries. Compu-
tations are being made only in subgraphs affected by updates at each iteration.
This has some overhead on finding the correct state and also the extra entities
that should be included in the query when there is large number of updates at
each iteration or while trying to use ICE on different queries. Tegra also uses
TimeLapse, an API for high-level abstraction which also allows what-if questions
that change the graph creating different histories, suited for data analytics pur-
poses. The storage model behind TEGRA is DGSI, which uses persistent data
structures to maintain previous versions of data when modified. It uses persis-
tent adaptive radix trees to store edges and nodes separately with path copying.
It uses simple partitioning strategies to distribute the graph to nodes. Each node
has two pART for nodes and edges respectively. Log files are being used to store
updates between snapshots, which are stored in turn in the two pARTs. The
branch and commit primitives are really interesting as well as the GAS (Gather
- Apply - Scatter) model [11]. It allows also changing any version thus leading
to a branched history (like a tree - full persistence). Lastly, TEGRA also uses
an LRU policy to periodically remove versions that have not been accessed for
a long time.

STVG. [28] is a prototype framework that focuses on fast-evolving graphs. It is
built on top of Neo4j and supports both point and time-window queries while
its main use is to analyze evolutionary transit networks. It is based on the
whole-graph model for representing the graph, which is composed of subgraphs
that facilitate the conceptual modeling of the connectivity between entities and
the time-graph of Neo4j that is responsible for keeping track of time evolution.
Subgraphs are connected to the time-graph to keep track of the evolution of
the whole-graph, while nodes belonging to different subgraphs are linked with
complementary connectivity edges. Since this framework is used for evolutionary
transit networks it is demanded that the graph needs to be connected while edges
can’t recur over time. Projected graphs are used to materialize and retrieve
the graph both at a time-window or a sliding window. They have implemented
also graph metrics used to analyze a transit network, graph density, network
diameter, and average path length having in mind their specific application.
In general, this framework has some good ideas but it is tailored for transit
networks.
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Graphite. [9] is a distributed system for managing historical graphs (fully evolved
and using valid time) by using an interval-centric computing model (ICM) built
over Apache Giraph. They assume data are given in ascending time order and any
vertex can exist only once for a contiguous time-interval. It also has the ability to
execute both time-independent and time-dependant historical queries (temporal
queries on a time-window), while they tried to create a unifying abstraction
that scales to both and ease algorithm design and detach user logic using ICM
and time-warp operator. ICM uses Bulk Synchronous Parallel (BSP) execution
for every active vertex of a query until it converges. They use two stages of
logic, compute and scatter, where compute does the computations needed for a
vertex, and scatter transfers it with messages to neighbor vertexes as needed.
Time-warp operator happens at the alternating compute scatter steps to help
sharing of calls and messages across intervals. A key aspect of it, is that it groups
input guaranteeing correctness of grouping and no duplication, while it returns
as minimal as possible triples. They also designed and constructed a plethora
of time independent (TI) and time dependent (TD) algorithms for their system.
with a very detailed evaluation

Granite. [34] is a distributed engine for storing and analyzing temporal prop-
erty graphs (supports temporal path queries) made on top of and as a sequel
to Graphite focusing on path queries. It is made an assumption for infrequent
updates and frequent queries. They extend the previous model by adding a tem-
poral aggregation operator, indexing, query planning and optimization, while
they prefer to relax ICM so as to work beyond time respecting algorithms. Gran-
ite handles both static temporal graphs and dynamic temporal graphs while it
uses interval-centric features only in the latter. An interesting point is that to
optimize path queries they split them and execute them concurrently, while they
also keep statistics about the active nodes at each time point so as to optimize
the query planning. While Graphite makes hash partitioning at query execution,
Granite first partitions every entity according to its type and later it performs
a topological partition to its independent group of entities of the same type and
splits them into workers using the round-robin technique. They also use a result
tree so as not to send duplicate paths across the system (some parts of the path
might be the same). Lastly, they propose a query language for path queries.

NVGRAPH. A rather interesting system from a hardware perspective.
NVGRAPH [27] is an in-memory data structure focused on exploiting the dif-
ferent advantages of NVMM and DRAM, combining them into a C++ library
implementation. The major issue they try to tackle in NVMM is providing crash
consistency while they argue that simply using NVMM without considering its
issues is a sub-optimal solution. They focus on creating an architecture that uses
both DRAM and NVMM to hide the issues of NVMM while they are exploiting
its advantages. NVGraph stores the graph as a series of continuous snapshots
by storing the first snapshot and deltas for the next snapshots. They also imple-
mented 4 algorithms for evaluation Pagerank, BFS, influence maximization, and
rumor source detection.
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3 Architecture of MAGMA

Fig. 1. A view of MAGMA with the possible storage directions.

In this section, we describe the general characteristics of the proposed histor-
ical graph management and processing system (MAGMA), the possible direc-
tions we could take implementing it as well as the possible obstacles we need to
overcome.

An immediate observation from the previous systems is that each one of
them focuses on different aspects of historical graph management, resulting in
a different appropriate solution for each application. This is because the man-
agement and processing of historical graphs span multiple design dimensions
forbidding the existence of one system to rule them all. Our approach is towards
creating a purely vertex-centric and storage optimal (asymptotically) distributed
system called MAGMA with the ability to update/query efficiently the history
and apply graph algorithms on arbitrary time periods rather than on speci-
fied snapshots. Following HiNode, MAGMA will be more efficient in local than
global queries due to its vertex-centric structure. However, we also wish to effi-
ciently execute global queries (e.g., pagerank) by exploiting our vertex-centric
architecture and implementing modern techniques (e.g., thinking like a vertex)
for efficient and effective parallel computation. Another important aspect that
needs to be addressed in a later stage of the development of MAGMA, is the
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system’s API. In particular, we need to design the system in a way that guaran-
tees its simplicity with respect to use, its efficiency, its scalability, its flexibility
with respect to its functionality, and its compatibility with existing libraries (for
static or temporal graphs).

The key part of the system is the efficient and effective vertex-centric storage
of the graph. A diachronic node contains the whole history of a particular node
in the sense that it stores all changes and their time intervals related to this node,
such as a change in an incoming edge or a change in a property of the node. To
this end, we employ three fundamental operations in order to update and query
the diachronic nodes: write, read and delete. All three operations are applied on
diachronic nodes that contain all relevant information (edges, properties, etc.).
More complex updates and query operations can be built on these fundamental
operations that will serve mainly the online management and processing of the
historical graph.

Regarding the storage model, we have narrowed our options into either creat-
ing a custom database for storing the historical graph into servers or by extend-
ing an existing database and applying our model to them. In any case, we will
always stick to the pure vertex-centric approach proposed in HiNode and adapt
it appropriately to fit the design choice of the storage model. In the case of cre-
ating a custom database, we have complete freedom with respect to designing
the storage model to fit HiNode, but on the other hand, it will require con-
siderably more effort for the implementation as well as to ensure compatibility
with existing libraries. On the other hand one could use an existing database,
either a NoSQL database like Cassandra and MongoDB or a Graph database
(e.g., GraphX and SystemG). In this case, it is easier to build the system and
take advantage of the optimizations and functionality that already exist within
this database (e.g., fault-tolerance and partitioning), but there is less freedom in
applying the storage model of HiNode. Another option, in this case, is to extend
an existing graph database (e.g., GraphX) to support natively the management
and processing of historical graphs based on a pure vertex-centric approach. This
is a harder task, but it has the merit of sharing and using existing libraries within
this particular graph database. In addition, the visibility of such a solution will
be much higher across the community.

Since MAGMA is a distributed system, the partitioning strategy is of
paramount importance for the efficiency of the system. Most systems use either
a simple hash-based partition or a chronological or topological partitioning. In
our case, the topological partitioning is more natural but we also need to take
into account the temporal evolution of the graph. In topological partitioning,
we want to place in the same machine, nodes that are connected or that are
relatively close to each other. One problem we might encounter with topological
partitioning is that in different timestamps, the distance between nodes changes,
and as a result, different partitions may be more appropriate in different time
instances. This is problematic in our case since a diachronic node contains all the
history of the node and thus naturally all history is stored in a single machine.
Two possible solutions for this issue are either by using different metrics for
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partitioning combining the whole history of the graph or by dividing parts of a
node to different machines. Another possible solution, which could also be com-
bined with the previous one, is the duplication of some nodes across machines.
However, in this case, care should be taken with respect to space usage.

Another critical part of the system is the query engine and the libraries that
will be available. Regarding the libraries, we intend to implement algorithms on
temporal graphs like temporal shortest path (journeys) or community detection
and evolution while also supporting algorithms for static snapshots. This can be
achieved either by using the abstraction provided from the API or by exploiting
the system’s architecture and creating them from scratch. For the former task,
we first want to create a query engine able to handle more demanding tasks that
supports parallelism and provides the user with an easy-to-use API. To do so,
our processing unit needs to apply one of the following approaches: “thinking like
an edge” (TLAE), “thinking like a vertex” (TLEV), “thinking like a neighbor-
hood” (TLAN), “thinking like a subgraph” (TLAS) or “thinking like an interval”
(TLAI). We need to further investigate these approaches and decide which one
would be more efficient in our system, although we can deduce straightforwardly
that some of these will probably not fit our vertex-centric architecture. On the
other hand, TLEV techniques seem as the most promising at the moment, in
order to take advantage of Hinode’s vertex-centric structure, while TLAN or
TLAS approaches could also fit our model depending on the partition strategy
used. At a later stage, these approaches will be used for iterative computations.

4 Conclusions

In this paper, we provide a small review of contemporary historical graph man-
agement systems and propose an architecture for such a system based on our
previous research work. We intend to extend the very preliminary results con-
tained in this paper as follows: 1) A survey on systems for historical graph man-
agement. This survey will cover all historical graph management systems and
will provide researchers as well as developers information as to the pros and cons
of these systems in order to help them choose correctly. 2) The development of
a system (called MAGMA) for managing and processing historical graphs. The
high-level architecture of this system and basic options for its implementation
are described in this paper.
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Abstract. In this paper, we discuss new algorithmic results for bin min-
imization in the subset-constrained variant of Priority-based bin packing
(PBBP-SC). This problem was introduced in [21], as an abstract model
for capturing certain issues in database migration and palleting. This
paper focuses on new fine-grained complexity results for the bin mini-
mization problem (BMP) under two distinct parameterizations. We also
provide a detailed empirical analysis of integer programming formula-
tions for the problems discussed in this paper.

1 Introduction

This paper is concerned with the design and analysis (both theoretical and
empirical) of the bin minimization problem (BMP) in the Priority-based bin
packing with subset constraints (PBBP-SC) problem. The PBBP-SC problem
was introduced in [21] and finds applications in Security Aware Database Migra-
tion (SADM) [1,18,19], palleting [2,14] and a host of other domains, where there
are constraints restricting the placement of items into bins.

Typically, when companies merge, their data must be unified in some fash-
ion. Data migration is a process that achieves precisely this end [11–13]. Data
migration involves transferring data between storage types and computer sys-
tems [7,9]. The migration process is labor-intensive and hence companies prefer
to automate the process [5] and free up human resources. Database migration is
a variant of the data migration problem in which the data have to be migrated in
form-preserving fashion. For instance, if the data is stored in relational databases,
then the databases themselves have to be migrated. A variant of the database
migration problem is the Security Aware Database Migration problem (hence-
forth SADM). This problem was introduced in [18]. In this problem, we are
given a collection of databases (Di) of various sizes that need to be assigned
to migration shifts (Si). The shifts have varying sizes themselves. Furthermore,
each database is constrained by the shifts to which it can be assigned. This fea-
ture models the fact that the expertise for addressing the issues associated with
a database can be found only in certain shifts. For instance, it could be the case
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that database D1 can be migrated only in shifts S4 and S7. We need to assign
the databases to the shifts so that these shift assignment constraints for each
item are met. At the same time, we wish to minimize the number of shifts used
in the assignment, since shifts correspond to man-hours used and are therefore
expensive.

The palleting problem (also known as the Pallet Loading Problem (PLP) is a
fundamental problem in Air-Force logistics [14]. The objective in pallet loading is
to maximize the number of boxes that can be placed on a rectangular pallet [17].
This problem can be thought of as a cross between the traditional bin-packing
problem and the traditional knapsack problem [3,16]. The palleting problem also
involves object to pallet constraints, i.e., each object has a set of pallets onto
which it can be loaded.

A formal framework for the specification of database problems was specified
in [19]. That paper focused exclusively on test-cost minimization. In [18], the
security-aware database migration problem was introduced. The Priority-based
bin packing model was detailed in [21]. In this paper, we extend the work in [21]
by considering the fine-grained complexity of bin minimization problems in the
PBBP-SC framework.

As is the case with traditional bin-packing (TBP), the problem of minimizing
the number of used bins in Priority-based bin packing is also NP-hard [10,21].
In the case of NP-hard problems, a profitable avenue of investigation is fine-
grained complexity [4,6,8]. In case of traditional bin-packing, it is not profitable
to investigate the design of efficient algorithms using the number of bins as a
parameter [15]. This is because it is NP-hard to decide whether 2 bins are
adequate to pack the given items in an instance of TBP. In this paper, we use
alternate parameterizations and show that it is unlikely that the BMP variant
of PBBP-SC will have fixed parameter algorithms.

The rest of this paper is organized as follows: A formal description of the
problems under consideration in this paper is given in Sect. 2. Two distinct
parameterizations of the bin minimization problem and their associated com-
plexities are discussed in Sect. 3. We discuss integer programming formulations
for BMP and a number of cuts in Sect. 4. A detailed empirical profile of inte-
ger programming approaches for the BMP problem is provided in Sect. 5. We
conclude in Sect. 6, by summarizing our contributions and outlining avenues for
future research.

2 Statement of Problems

As defined in [21], an instance of Priority-based Bin Packing with Subset Con-
straints (PBBP-SC) consists of the following:

1. A set of bins B where each bin bj ∈ B has capacity cj .
2. A set of unit-size items O where each item oi ∈ O has priority pi.
3. For each item oi ∈ O, a set Bi ⊆ B such that item oi can be packed into any

bin in the set Bi, but not into any bin in the set B \ Bi.
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There are several problems associated with PBBP-SC. These are the feasi-
bility problem (FP), the priority maximization problem (PMP), and the bin-
minimization problem (BMP). These problems are defined as follows:

Definition 1 (FP). The Feasibility Problem (FP): Given a PBBP-SC
instance P, can we pack the items in set O into the bins in set B such that,
every item oi ∈ O is packed into a bin in set Bi, and every bin bj contains no
more than cj items?

Definition 2 (PMP). The Priority Maximization Problem (PMP):
Given a PBBP-SC instance P, what is the maximum total priority of items
in set O that can be packed into the bins in set B, such that every item oi ∈ O
can only be packed into bins in set Bi, and every bin bj contains no more than
cj items?

Definition 3 (BMP). The Bin Minimization Problem (BMP): Given a
PBBP-SC instance P, what is the smallest cardinality subset B∗ ⊆ B such that
every item oi ∈ O is packed into a bin in set Bi ∩ B∗, and every bin bj contains
no more than cj items?

In this paper, we focus exclusively on the BMP problem. The three principal
contributions of this paper are as follows:

1. BMP is W[2]-complete when parameterized by the minimum number of
bins used in any packing.

2. BMP is paraNP-complete when parameterized by the maximum number
of items that can be packed into a bin (maxbj∈B |{oi|bj ∈ Bi}|).

3. An empirical analysis of several cuts for an integer programming formulation
of BMP.

3 BMP Parameterizations

In this section, we examine the parameterized complexity of BMP under two
different parameters. These are:

P1: The minimum number of bins used in any packing.
P2: The maximum number of items that can be packed into a bin

(maxbj∈B |{oi|bj ∈ Bi}|).

3.1 BMP Parameterized by P1

We now examine BMP when parameterized by the minimum number of bins
used. We show that BMP is W[2]-complete under this parameter. This is done
by reductions to and from the Set Cover (SC) problem. It is known that SC is
W[2]-complete, when parameterized by the number of sets in the minimal
cover (see Theorem 13.28 of [6]).
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Definition 4. Set Cover: Given a set S of size n, m subsets S1 through Sm

of S, and an integer k, is there a set C ⊆ {1, . . . , m} such that |C| ≤ k and⋃
j∈C Sj = S?

Let SC be an instance of set cover. From SC, we construct a PBBP-SC
instance P as follows:

1. For each subset Sj , create the bin bj . Let cj = |Sj |.
2. For each element xi ∈ S, create the item oi. Let Bi = {bj |xi ∈ Sj}.

Lemma 1. Let SC be an instance of set cover and let P be the PBBP-SC
instance constructed from SC. SC has a cover of size at most k, if and only
if P has a packing using at most k bins.

Proof. First, assume that SC has a cover C such that |C| ≤ k. We create a
packing of P as follows: For each item oi, let Sj ∈ C be a set such that xi ∈ Sj .
Since C is a cover, this set is guaranteed to exist. Pack item oi into bin bj .

We now show that this is a valid packing for P . Note that the item oi is
packed into bin bj , only if xi ∈ Sj . By construction, bj ∈ Bi. Thus, each item is
packed into a valid bin. The capacity cj of bin bj is equal to the size of set Sj .
Thus, there are at most cj items packed into bin bj . Consequently, the packing
does not fill any bin beyond its capacity. This means that we have constructed
a valid packing for P . Note that a bin bj is used by the packing, only if the set
Sj ∈ C. Thus, this packing uses at most |C| ≤ k bins.

Now assume that P has a packing using at most k bins. We create a cover
C of SC as follows: For every set Sj , add j to C, if and only if the bin bj is
used by the packing of P . Consider the element xi ∈ S. The item oi was packed
into a bin bj such that xi ∈ Sj . By construction, j ∈ C. Consequently, the
element xi is covered by C. Since the element xi ∈ S was chosen arbitrarily, C
is a cover of SC. Note that the number of sets in C is the number of bins used
by the packing. Since the packing uses at most k bins |C| ≤ k as desired. ��

The SC problem is W[2]-complete when parameterized by the number of
sets in the cover. Thus, we have the following result.

Theorem 1. BMP is W[2]-hard when parameterized by the minimum number
of bins used.

Proof. The SC problem is W[2]-complete when parameterized by the number
of sets in the cover. Thus, by Lemma 1, BMP is W[2]-hard when parameterized
by the minimum number of bins used. ��

To show that BMP is in W[2], we reduce BMP to the SC problem. From a
PBBP-SC instance P, we construct a set cover instance SC as follows:

1. For each item oi, add the item xi to S.
2. For each bin bj , create the set Sj = {xi|bj ∈ Bi}.
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Lemma 2. Let P be a PBBP-SC instance and let SC be the set cover instance
constructed from P. SC has a cover of size at most k, if and only if P has a
packing using at most k bins.

Proof. First, assume that P has a packing using at most k bins. We create a
cover C of SC as follows: For every set Sj , add j to C, if and only if the bin bj is
used by the packing of P . Consider the element xi ∈ S. The item oi was packed
into a bin bj such that xi ∈ Sj . By construction, j ∈ C. Consequently, the
element xi is covered by C. Since the element xi ∈ S was chosen arbitrarily, C
is a cover of SC. Note that the number of sets in C is the number of bins used
by the packing. Since the packing uses at most k bins |C| ≤ k as desired.

Now assume that SC has a cover C such that |C| ≤ k. We create a packing
of P as follows: For each item oi, let Sj ∈ C be a set such that xi ∈ Sj . Since C
is a cover, this set is guaranteed to exist. Pack item oi into bin bj .

We now show that this is a valid packing for P . Note that the item oi is
packed into bin bj , only if xi ∈ Sj . By construction, bj ∈ Bi. Thus, each item is
packed into a valid bin. Note that a bin bj is used by the packing, only if the set
Sj ∈ C. Thus, this packing uses at most |C| ≤ k bins. ��

From Lemma 1 and Lemma 2, BMP is W[2]-complete when parameter-
ized by the minimum number of bins used. Thus, BMP is not fixed-parameter
tractable (FPT) unless FPT = W[2]. Note that both reductions used in this
section are parameterized reductions [6].

3.2 BMP Parameterized by P2

We now examine BMP when parameterized by the maximum number of items
that can be packed into a bin (maxbj∈B |{oi|bj ∈ Bi}|). We show that BMP is
paraNP-complete under this parameter. In fact, we show that BMP is NP-
complete when maxbj∈B |{oi|bj ∈ Bi}| = 4. This is done by a reduction from
SAT.

Let Φ be a CNF formula, from Φ, we construct a PBBP-SC instance P as
follows:

1. For each variable xi ∈ Φ, create the bins b2·i−1 and b2·i. Let di be the number
of clauses that use the variable xi. Set c2·i−1 = c2·i = di + 1.

2. For each variable xi ∈ Φ, create the item oi. Let Bi = {b2·i−1, b2·i}.
3. For each clause φj , create the item on+j . If φj uses the literal xi, add the bin

b2·i−1 to Bn+j . If φj uses the literal ¬xi, add the bin b2·i to Bn+j .

Lemma 3. Let Φ be a CNF formula and let P be the PBBP-SC instance con-
structed from Φ. Φ is satisfiable, if and only if P has a packing using at most n
bins.

Proof. By construction, the sets B1 through Bn are mutually disjoint. Thus,
the items o1 through on must be packed into separate bins. This means that
no packing of the items in O uses fewer than n bins. Additionally, for each
i = 1 . . . n, either bin b2·i−1 or bin b2·i must be used.
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First, assume that P has a packing P that uses n bins. Observe that, if for
any i = 1 . . . n both bin b2·i−1 and bin b2·i are used, then P must use at least
(n + 1) bins. Thus, P cannot use both of these bins.

From P , we construct an assignment x to Φ as follows: For each i = 1 . . . n

1. If P uses bin b2·i−1, set the variable xi to true.
2. If P uses bin b2·i, set the variable xi to false.

Now consider a clause φj ∈ Φ. The item on+j is either packed into bin b2·i−1

or bin b2·i for some i = 1 . . . n. If item on+j is packed into bin b2·i−1, then by
construction, clause φj contains the literal xi. Additionally, bin b2·i−1 is used by
packing P . Thus, the assignment x sets the variable xi to true. Consequently,
φj contains a true literal and is satisfied by x.

If item on+j is packed into bin b2·i, then by construction, clause φj contains
the literal ¬xi. Additionally, bin b2·i is used by packing P . Thus, the assignment
x sets the variable xi to false. Consequently, φj contains a true literal and is
satisfied by x.

Since x satisfies every clause of Φ, Φ is satisfiable.
Now assume that Φ is satisfiable. Thus, there exists an assignment x that

satisfies every clause in Φ. From x, we construct a packing P of P as follows:

1. For each variable xi, if xi is true, then pack item oi into bin b2·i−1. Otherwise,
pack item oi into bin b2·i.

2. For each clause φj ∈ Φ, let lj be a literal in φj set to true by x. If lj is the
literal xi for some variable xi, then pack item on+j into bin b2·i−1. If lj is the
literal ¬xi for some variable xi, then pack item on+j into bin b2·i.

The constructed packing P has the following properties:

1. If x set the variable xi to true, then the literal ¬xi is false. Thus, no item
will be packed into bin b2·i. If x set the variable xi to false, then the literal
xi is false. Thus, no item will be packed into bin b2·i−1. This means that for
each variable xi, P does not use both bin b2·i−1 and bin b2·i. Consequently,
P uses at most n bins.

2. By construction, every item oj in P is packed into a bin in Bj .
3. The literal xi appears in at most di clauses. Thus at most di + 1 = c2·i−1

items are packed into bin b2·i−1. Similarly, the literal ¬xi appears in at most
di clauses. Thus, at most di + 1 = c2·i items are packed into bin b2·i. Conse-
quently, no bin is packed beyond its capacity.

Thus, P is a valid packing of PBBP-SC instance P. Consequently, P has a
packing that uses n bins. ��

Note that SAT remains NP-complete when each variable appears in at
most 3 clauses [20]. This gives us the following result.

Theorem 2. BMP is paraNP-complete when parameterized by the maximum
number of items that can be packed into a bin.
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Proof. SAT is NP-complete when each variable appears in at most 3 clauses
[20]. Note that the construction utilized by Lemma 3 creates an instance of
PBBP-SC in which each bin can hold at most 4 items. Thus, BMP is still NP-
hard when each bin can hold at most 4 items. Consequently, BMP is paraNP-
complete when parameterized by the maximum number of items that can be
packed into a bin. ��

From this result, we know that BMP is NP-hard when maxbj∈B |{oi|bj ∈
Bi}| = 4. In other words, BMP is unlikely to admit a O(nf(k)) time algorithm
where f is a computable function and k = maxbj∈B |{oi|bj ∈ Bi}|.

4 Integer Programming Formulations

Given a PBBP-SC instance P, BMP is equivalent to the integer program IBMP

constructed as follows:

1. For each item oi and bin bj , if item oi can be assigned to bin bj (bj ∈ Bi),
then create the variable xi,j ∈ {0, 1}.

2. For each bin bj , create the variable yj ∈ {0, 1} and create the constraint∑
i|bj∈Bi

xi,j ≤ cj · yj . This constraint represents the fact that at most cj
items can be packed into bin bj . Additionally, the variable yj = 1, if any item
was packed into bin bj .

3. For each item oi, create the constraint
∑

bj∈Bi
xi,j = 1. This constraint rep-

resents the fact that item oi has to be packed and can be packed into at most
one bin.

4. Add the objective function min
∑m

j=1 yj . This objective function ensures that
the number of bins used is minimized.

Theorem 3. Let P be a PBBP-SC instance and let IBMP be the integer program
associated with BMP for P. P has a packing that uses b∗ bins, if and only if
IBMP has a feasible assignment with objective value b∗.

Proof. First, assume that P has a packing P that uses at most b∗ bins. Let
P (oi) represent the bin used to pack item oi. From packing P , we construct an
assignment (x,y) to IBMP as follows:

1. For each item oi, let bj = P (oi). Set xi,j = 1 and xi,j′ = 0 for j′ �= j.
2. For each bin bj , if there is an item oi such that P (oi) = bj , then set yj = 1.

Otherwise, set yj = 0.

Let oi be an item in P. By construction, exactly one of the xi,j variables is
1. Thus

∑
bj∈Bi

xi,j = 1. Thus, each constraint of the form
∑

bj∈Bi
xi,j = 1 in

IBMP is satisfied.
Let bj be a bin in P. By construction, if any item was packed into bin bj ,

yj = 1. For any item oi, if oi was packed into bj , xi,j = 1. Since P packs at most
cj items into bin bj ,

∑
i|bj∈Bi

xi,j ≤ cj = cj · yj .
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If no items were packed into bj , then yj = 0. Additionally, for each item oi,
xi,j = 0. Thus,

∑
i|bj∈Bi

xi,j = 0 = cj · yj . Consequently, each constraint of the
form

∑
i|bj∈Bi

xi,j ≤ cj · yj in IBMP is satisfied. Thus, every constraint in IBMP

is satisfied by (x,y).
For each bin bj , yj = 1, if and only if P packs an item into bj . Thus,

∑m
i=j yj =

b∗. Consequently, IBMP has a feasible assignment with objective value b∗.
Now assume that IBMP has a feasible assignment (x,y) with objective value

b∗. From this assignment we construct a packing P of P as follows: For each
item oi, let bj ∈ Bi be a bin such that xi,j = 1 (if one exists). Set P (oi) = bj .

Consider an item oi. From the constraint
∑

bj∈Bi
xi,j = 1, we have that

xi,j = 1 for exactly one bin bj ∈ Bi and xi,j′ = 0 for all j′ �= j. Thus, P (oi) is
defined for each item oi. Consequently, P packs every item in P.

Consider a bin bj . If yj = 1, then from the constraint
∑

i|bj∈Bi
xi,j ≤ cj · yj ,

we have that
∑

i|bj∈Bi
xi,j ≤ cj . Thus, there are at most cj items such that

xi,j = 1. Consequently, P packs at most cj items into bin bj . Since the objective
is to minimize

∑m
i=j yj ,

∑
i|bj∈Bi

xi,j ≥ 1. Otherwise, this constraint (the only
constraint to use yj) could have been satisfied by setting yj = 0. Thus, at least
one item is packed into bin bj .

If yj = 0, then from the constraint
∑

i|bj∈Bi
xi,j ≤ cj · yj , we have that

∑
i|bj∈Bi

xi,j = 0. Thus, no items are packed into bin bj . Consequently, yj = 1,
if and only if an item was packed into bin bj .

For each bin bj , P packs item into bj , if and only if yj = 1. Recall that,
b∗ =

∑m
j=1 yj . Consequently, P uses b∗ bins. ��

4.1 Cuts

From Sect. 4, BMP for a PBBP-SC instance P with n items and m bins can be
modeled using the IP in System (1).

min
∑

yj
∑

bj∈Bi

xi,j = 1 i = 1 . . . n

∑

i|bj∈Bi

xi,j ≤ cj · yj j = 1 . . . m (1)

xi,j ∈ {0, 1} i = 1 . . . n, j = 1 . . . m

yj ∈ {0, 1} j = 1 . . . m

We will now describe several new forms of constraint that can be added to
System (1) to strengthen this formulation.

Let S ⊆ B be a set of bins. We define the following functions of S:

1. c(S) =
∑

bj∈S cj is the total capacity of the bins in S.
2. I(S) = |{oi : Bi ∩ S = ∅}| is the number of items which cannot be packed

into the bins in S.
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For each item oi and each bin bj ∈ Bi, we can add the following cut to System
(1):

1.) xi,j ≤ yj . If item oi is packed into bin bj , then bj is used. We refer to this as
an item-bin cut.

For each item oi, we can add the following cut to System (1):

2.)
∑

bj∈Bi
yj ≥ 1. Item oi has to be packed into a bin in Bi. Thus, every valid

packing needs to use at least one bin in Bi. We refer to this as an item-subset
cut.

Example 1. Let P the following PBBP-SC instance:

1. B = {b1, b2} where c1 = c2 = 2. O = {o1, o2, o3} where B1 = {b1}, B2 =
{b1, b2}, and B3 = {b2}.

BMP for P has the following IP representation:

min
∑

yj

x1,1 = 1
x2,1 + x2,2 = 1

x3,2 = 1
x1,1 + x2,1 ≤ 2 · y1

x2,2 + x3,2 ≤ 2 · y1

x1,1, x2,1, x2,2, x3,2 ∈ {0, 1}
y1, y2 ∈ {0, 1}

If we ignore the restriction to integers, then (y1, y2, x1,1, x2,1, x2,2, x3,2) =
(0.75, 0.75, 1, 0.5, 0.5, 1) is a valid fractional solution to this formulation. For
item o1, we generate the item-subset cut y1 ≥ 1. For item o3, we generate the
item-subset cut y2 ≥ 1. These cuts make the optimum solution
(y1, y2, x1,1, x2,1, x2,2, x3,2) = (1, 1, 1, 1, 0, 1).

For each set OS of items, we can add the following cut to System (1):

3.)
∑

bj∈⋃
oi∈OS

Bi

cj ·yj ≥ |OS |. This ensures that for each subset of items, the total

capacity of the used bins which can pack the items is enough to pack all of
those items. We refer to this as an item-capacity cut.

For each set S of bins, we can add the following cuts to System (1):

4.) If c(S) ≤ n, add the constraint
∑

bj �∈S yj ≥ 1. In this case, the bins in S do not
have enough capacity to contain all of the items. Thus, every valid packing
needs to use at least one bin not in S. We refer to this as a bin-capacity
cut.
In the above example, if S = {b1}, then c(S) = 2 < 3 = n. Thus, we generate
the capacity cut y2 ≥ 1. This is enough to cut out the fractional optimum as
a valid solution.
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5.) If I(S) ≥ 1, add the constraint
∑

bj �∈S yj ≥ 1. In this case, there exists an
item oi which cannot be packed into any bin in S without violating a subset
constraint. Thus, every valid packing needs to use at least one bin not in
S. We refer to this as a bin-subset cut. For each item oi, if we choose
S = B \ Bi, then the bin-subset cut for S is the item-subset cut for oi.
In the above example, if S = {b1}, then I(S) = |{o3}| = 1. Thus, we generate
the bin-subset cut y2 ≥ 1. This is enough to cut out the fractional optimum
as a valid solution.

6.) Consider the PBBP-SC instance P′ with set of items O and set of bins S. If
there is no feasible packing for P′, add the constraint

∑
bj �∈S yj ≥ 1. In this

case, there is no way to pack all of the items in O into the bins in S. Thus,
every valid packing needs to use at least one bin not in S. We refer to this as
a packing cut.
Note that every capacity cut and bin-subset cut is a packing cut. However,
generating a packing cut is more computationally expensive than generating
either a capacity or bin-subset cut.

For the PBBP-SC instance P, there are n item-subset cuts, at most 2m capac-
ity cuts, at most 2m bin-subset cuts, and at most 2m packing cuts. Thus, it is
straightforward to generate all of the item-subset cuts for P but computationally
expensive to generate all of the capacity, bin-subset, or packing cuts.

In the case of packing cuts, generating all of the packing cuts is equivalent
to solving BMP outright. Thus, generating all of the packing cuts makes the IP
formulation unnecessary.

5 Experiments

Experiments were executed to compare the average runtimes of solving the BMP
problem with each cut type proposed (including no cuts). These experiments
were run on an Intel(R) Xeon(R) Gold 6126 CPU at 2.60 GHz with 120 GB
memory running Red Hat Enterprise Linux Server 7.9 (Maipo).

Connectivity is selected uniformly at random, selecting numConnections for
each item. We consider number of items n to be 100, 200, 300, 400, number of
bins m to be log n,

√
n, n/10, capacities c to be n/2 or n/m. For choosing the

subset S, we uniformly randomly sample m′ = n/c number of bins, each one is
drawn uniformly at random from [m] until |S| = m. Subsets of at most n − 1
items in O are chosen uniformly at random from the set [n] until |O| = n. For
I(S), we randomly choose subsets of at most m − 1 bins until |I(S)| = m.

Results can be seen in Figs. 1, 2, and 3 for the cases where the number of bins
m is log n,

√
n, and n/10. Spikes in some of the curves are due to the inherent

stochasticity of random problem generation and the empirical complexity of
solving integer linear programs for certain problem formulations.
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Fig. 1. Average runtimes (in seconds) over at least 100 random instances for each
curve, where the number of bins m = log n for the given number of items n.
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Fig. 2. Average runtimes (in seconds) over at least 100 random instances for each
curve, where the number of bins m =

√
n for the given number of items n.
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Fig. 3. Average runtimes (in seconds) over at least 100 random instances for each
curve, where the number of bins m = n/10 for the given number of items n.
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6 Conclusion

This paper focused on fine-grained complexity results for variants of the Priority-
based bin packing problem with subset constraints. In the case of the bin min-
imization variant, we showed W[2]-completeness when the parameter is the
minimum number of bins used and paraNP-completeness when the parame-
ter is the maximum number of items that can be packed into any bin. Finally,
we provided a detailed empirical analysis of the integer programming models
associated with the BMP problem. In this process, several non-trivial cuts with
various efficacies were designed. From our perspective, a more detailed empirical
analysis would be worthwhile.
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Abstract. Privacy preserving record linkage refers to the problem of
matching records from two or more data holders without revealing any
personal identifiers, thus, maintaining the privacy of the individuals
described by these records. While parallel processing has been deployed
in the context of privacy preserving record linkage for handling big data,
in this paper, we further explore parallel methods based on Apache Spark
and phonetic codes and propose improvements, which manage to achieve
superior performance with respect to time efficiency and privacy char-
acteristics. To support our claims, we provide extensive experimental
results and a rigorous discussion.

Keywords: Big Data · Privacy-Preserving Record Linkage · Soundex

1 Introduction

Contemporary times are characterized by a mix of situations that are unprece-
dented. We are experiencing a pandemic for the last years, while, at the same
time, military conflicts emerge throughout the world contributing to the already
existing refugee crisis. These facts lead governments to take action, enforcing
strict measures in order to address these issues. As such, there is the need to
transfer personal data between organizations and companies for a variety of pur-
poses, ranging from tracing COVID-19 infection cases to identifying refugees.
This is, however, not a trivial task. Identifying the same individual across
databases of different organizations poses a series of technical, ethical, and as a
result of the latter, legal challenges.

Beginning with the technical challenges, as databases originate from different
organizations, they do not exhibit the same schemas and may not have common
candidate keys. Thus, their records cannot be matched using a common unique
identifier and alternative solutions have to be examined. To this end, combina-
tions of fields, usually consisting of strings, that contain personal information
may be used to uniquely identify an individual across different databases. Such
fields are called quasi-identifiers and the problem in this case is that they are
error-prone, since they are usually the result of manual input.

What we have just described is the traditional record linkage problem, per-
taining more than a century, when Soundex [20], a phonetic encoding scheme that
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matches similarly sounding names, was created for this purpose. Record linkage
is an inherently complicated problem. Considering the case of two data hold-
ers, all their records have to be compared. Furthermore, the use of approximate
matching techniques, to handle errors in data, usually increases computational
complexity. This, however, does not occur with Soundex, as it is a generaliza-
tion technique with the capacity of absorbing errors and, as such, its output is
suitable for exact matching.

Nowadays, there are additional complications that make solving this task
even more challenging. First of all, the volumes of data that have to be pro-
cessed has increased to extents that single computers may not suffice for this
purpose. To this end, big data processing frameworks have been employed so as
to distribute computation among multiple computers. On top of that, ethical
and legal concerns regarding personal data processing are raised by modern leg-
islation as GDPR and HIPAA. Consequently, data may not be transferred as free
text between organizations, as such an action would reveal personal information,
uniquely identifying individuals using the quasi-identifiers described earlier. This
leads us to seek techniques that will allow as to perform record linkage without
harming the privacy of these individuals.

This is the privacy-preserving version of the record linkage problem. In
privacy-preserving record linkage we aim at identifying the same real world
entity, e.g. a person, among distinct data holders, also requiring that these data
holders gain no additional knowledge apart from the matching entities and no
information regarding all entities in the datasets should be further disclosed.

In this paper, we build upon the Parallel Soundex method [12] which relies
on Apache Spark. The main points of this method are the following. Soundex is
used as an approximate string matching operator. Privacy is preserved through
a combination of measures. First, Soundex inherent generalization properties are
exploited, as more than one strings map to the same Soundex code. Then, each
of these codes is encoded by a secure hash function. The next measure taken is
noise injection, so as to shuffle original records with fake ones rendering them
indistinguishable. Finally, a third matching party is employed so as to mediate
between data holders. This third party leverages the benefits of secure multiparty
computation, where multiple parties cooperate to perform a calculation with
each of them having access only to a part of the required data.

In our work, we make the following contributions. First, we provide speedups
to Parallel Soundex of more than 3. Second, we achieve superior privacy charac-
teristics. For this purpose, we propose two methods: Parallel Soundex, Partition-
wise Shuffling (PSPS) and Parallel Soundex, Partition-wise Shuffling, Single
Hash (PSPSSH). PSPS speeds up Spark-based computation of arbitrary sized
datasets, while PSPSSH achieves even further speedups and improved privacy
characteristics, given certain constraints in the dataset and noise sizes.

The rest of this paper is organized as follows. In Sect. 2, we provide the
necessary background to deploy our approach. The methodology we follow is
laid in Sect. 3, while Sect. 4 includes a detailed privacy analysis of our meth-
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ods. Section 5 holds the experimental evaluation of our proposed approaches. In
Sect. 6, we present works related to ours, and we conclude in Sect. 7.

2 Problem Formulation and Background

In this section, we formally define the problem we are solving and provide the
necessary background for laying out our solution.

2.1 Problem Formulation

Without loss of generality, let us consider two data sources, called Alice (A) and
Bob (B), who respectively hold rA and rB records each. We denote as rAi and rBi
the i-th record of Alice and Bob, respectively. We represent the j-th attribute
of these records as rAi .j and rBi .j.

Privacy preserving record linkage is the problem of identifying (linking) all
pairs of rA and rB records that refer to the same real world entity, so that no
more information is disclosed to either A, B or any third party involved in the
process besides the identifiers of the linked rAs and rBs.

Presumably, Alice and Bob use different schemas in their databases. As such,
their records have different attributes and share no common candidate key. Let
RA be Alice’s schema and RB be Bob’s schema and let us assume that in these
schemas m of the attributes are common between the two sources forming a
composite key. These attributes are quasi-identifiers and might consist of names,
surnames, addresses, birth dates. As such, none of these on its own can be
used to identify a record. We refer to these attributes as matching attributes or
matching fields. The composite key is used to determine when two records match,
i.e., when they refer to the same entity, by comparing the respective attributes.
Considering that our data is often dirty, matching should rely on a similarity or
distance function.

Let us consider D as the domain of each matching attribute, a similarity
function simj() : D × D → [0..1] and a threshold tj > 0. Given records rAi and
rBi with matching attributes ri.1, . . . , ri.m for both Alice and Bob, we define the
following matching function M : D × D → {0, 1}:

M(rAi , r
B
i ) =

{
1, iff simj(rAi .j, r

B
i .j) ≥ tj ,∀j ∈ [1,m]

0, otherwise.
(1)

If M(rAi , r
B
i ) = 1, then the pair (rAi , r

B
i ) is a match.

This process is the matching process. To preserve privacy, i.e., ensure pri-
vacy preserving matching (PPM), after the completion of this process, the only
information revealed is the identifiers of the matched records.
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Table 1. Soundex conversion table.

a, e, h, i, o, u, w, y → 0 l → 4

b, f, p, v → 1 m, n → 5

c, g, j, k, q, s, x, z → 2 r → 6

d, t → 3

2.2 Phonetic Algorithms for String Matching

Equation 1 is applicable to any attribute type. However, the majority of quasi-
identifiers used to compare records in the context of linking sensitive databases
contain textual values [4]. Thus, in this work, we focus on string matching
attributes, e.g. names, addresses, that offer identifying information for individ-
uals. For numerical fields, matching methods such as [24] may be used.

A phonetic algorithm is a method for mapping a word to its pronunciation.
Such algorithms have been widely used in the past when performing record
matching on names. Their key feature is that they can achieve fault tolerance
against spelling errors through clustering similar sounding letters and suppress-
ing information as multiple names may map to the same code. Using phonetic
algorithms for matching may be formalized via Eq. 1. The formula’s similarity
function simj will have as input two phonetic codes and examine if these match,
returning 1, when the two codes are identical and 0, otherwise. As such, the
matching threshold tj is set to 1.

2.3 The Soundex Algorithm

Soundex, based on English language pronunciation, is the oldest (patented in
1918 [20]) and one of the most popular phonetic encoding algorithms. Soundex
maintains the first letter of a string, commonly a name, and converts the rest
into numbers, using predefined mappings shown in Table 1. All zeros (vowels,
‘h’, ‘w’ and ‘y’) are then removed and sequences of the same number are merged
to a single one (e.g. ‘44’ is replaced with ‘4’). The final code is the original first
letter and three numbers. Longer codes are stripped off, while shorter codes are
padded with zeros.

Now, let us get some insights on Soundex operation. Soundex for either
SMITH or SMYTH yields S530. The same occurs for BAGBY and BISCHOFF,
with B210. Most probably the first pair of surnames is a misspelling and the fact
that Soundex results in the same encoding indicates its error absorbing capacity.
On the other hand, the second pair of surnames are undoubtedly different. Yet,
Soundex yields the same code, which indicates its generalization property.

2.4 Apache Spark

Apache Spark [33] is an open source, memory-based framework, designed for big
data processing. It is considered state-of-the-art, overtaking Hadoop MapRe-
duce. Spark performs better in many ways [29]: it is faster, easier to program,
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and it goes far beyond batch applications to support a variety of compute-
intensive tasks. Also, it supports rich APIs in several languages (Scala, Java,
Python, SQL and R) for performing complex operations on distributed data.
Furthermore, Spark’s memory model, leverages the use of main memory, thus
outperforming Hadoop’s MapReduce [26].

Its design is based on a data abstraction called Resilient Distributed Dataset
(RDD). Users create RDDs by defining transformations to their data. Transfor-
mations return new RDD objects representing the result of computations. But
computations do not take place immediately, but only after specific commands
called actions are defined. Thus, Spark is coined to follow lazy evaluation.

A Spark cluster comprises of a set of key entities [26]. The driver is a program
that considers Spark as a library and describes the computation operations to be
performed. The workers provide resources to the Spark application, namely CPU,
memory and storage, hosting executors which are distinct Java Virtual Machine
processes that perform computation. A set of computations is referred to as a
job. This is launched in a cluster by Spark and concludes with the results, which
are returned to the driver program. A Spark application may consist of multiple
jobs. Each time a job is provided to Spark, it forms a directed acyclic graph of
stages. Each stage, in its turn is a collection of tasks, each of which comprises
the smallest unit of work that Spark sends to an executor. To enable parallel
processing by executors, RDDs are partitioned into chunks across the cluster.
These partitions are the in-memory equivalents of Hadoop HDFS blocks, where
data are usually stored in such setups, while they can also be created at runtime
by the driver. Some transformations are applied within each partition, named
narrow transformations, while others require data exchanges among partitions,
and as a result, workers, named wide transformations. The latter lead to data
shuffles and network traffic between nodes.

3 Methodology

In this section, we first describe Parallel Soundex (PS) as introduced in [12].
Then, we present two enhancements. The first one, called Parallel Soundex
Partition-wise Shuffle (PSPS) performs per-partition shuffling. The second one,
called Parallel Soundex Partition-wise Shuffle with Single Hash (PSPSSH) builds
upon PSPS and reduces execution time while improving privacy.

3.1 Parallel Soundex

In Sect. 2, we illustrated two properties of Soundex. The first one is that it
manages to absorb misspellings. This shifts the approximate string matching
problem to exact Soundex matching. The second one is that it manages to act
as a generalization mechanism. Based on these properties, we will now describe
a protocol for parallel privacy-preserving record linkage.
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In this protocol, we assume two data holders, named Alice and Bob, and
a third party called Carol who will mediate between them for the privacy-
preserving matching process. We further assume that all three parties are oper-
ating their own Spark clusters for data processing. Initially, Alice and Bob agree
on a set of common fields in their schemas to be used as matching fields. As
Alice and Bob’s data do not have to conform to the exact same schema and usu-
ally exhibit heterogeneity, to privately determine matching attributes, privacy
preserving schema matching algorithms [5,27] may be deployed.

Fig. 1. PS workflow at Alice and Bob.

Each of the data holders performs for each matching field of each row a
Map operation which performs the following narrow transformations: Data −→
Soundex Code −→ Hash resulting in an RDD with hash codes. A map operation
is also performed so as to generate an RDD with random noise. The transfor-
mations in this case are: Random Soundex Code −→ Hash. This can be done
according to [15] where k-anonymity is ensured. Then, a union operation between
these two RDDs takes place and the rows of the resulting RDD are randomly
ordered by performing an orderBy(random) operation. This results in globally
shuffling all records within all RDD partitions in the cluster. This step concludes
data preparation for Alice and Bob. The entire process is illustrated in Fig. 1.

Next, as illustrated in Fig. 2(A), Alice and Bob deliver the resulting datasets,
through a secure channel, to Carol. Carol, upon receiving the datasets, trans-
forms them into RDDs to perform the join operation in her Spark cluster. Each
party’s records participating in the resulting RDD are then securely delivered
to Alice and Bob (Fig. 2(B)) respectively, who independently join the received



More Sparking Soundex-Based Privacy-Preserving Record Linkage 79

records with their own datasets to phase out noise and eventually securely deliver
matching records to each other (Fig. 2(C)).

3.2 Parallel Soundex, Partition-Wise Shuffling

To maintain privacy in PS, original data has to be mixed with generated noise
and shuffled. Nevertheless, this comes at a cost. In contrast with the sequential
case, data to be sorted are dispersed in different workers. As a result, for a Spark
orderBy operation to take place, data shuffle between partitions, usually residing
within different workers, has to take place. Moving data between workers is not
the most efficient way to go.

Fig. 2. Overview of the phonetic matching protocol.

To address this issue, we consider the following alternative, as illustrated in
Fig. 3. Instead of shuffling in a cluster-wide manner the entire dataset, we per-
form partition-wise shuffling. In this case, data are shuffled locally, per-partition,
avoiding data transfers among workers. This is expected to decrease overall trans-
formation time at Alice and Bob. However, shuffling is a crucial step for the pri-
vacy of the method making noise and real records indistinguishable. The question
rising here is how partition-wise shuffling affects privacy. To answer this, we rely
on Lemma 1 to calculate the probabilities of randomly identifying a true tuple
of the dataset. Let us consider a dataset D of size equal to |D| that is dispersed
within |P | partitions. Let us also consider a noise multiplication factor N which
designates the amount of additional noise injected.

Lemma 1. The probability PPS of randomly selecting a real record using Paral-
lel Soundex is equal to the probability PPSPS of randomly selecting a real record
using Parallel Soundex, Partition-wise Shuffling.

Proof. For the case of PS, the encoded dataset DENC size is |DENC | = |D| +
N · |D| = (N + 1) · |D|. As such, the probability of randomly selecting a real
record is equal to PPS = |D|

|DENC | = |D|
(N+1)·|D| = 1

(N+1) .
Now, for the case of PSPS, we consider that D is divided into |P | partitions.

Similarly, for each partition, after noise injection, |DENC | = |D|
|P | + N · |D|

|P | =
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(N + 1) · |D|
|P | . The probability of randomly selecting a real record in one of the

|P | partitions is PPSPS =
|D|
|P |

(N+1)· |D|
|P |

=
|D|
|P |

(N+1)· |D|
|P |

= 1
(N+1) .

3.3 Parallel Soundex, Partition-Wise Shuffling, Single Hash

PSPS offers an enhancement to PS exploiting the capabilities of the Spark frame-
work. Now, we will move a step further and describe an alteration to the pro-
tocol, also applicable to the sequential approach presented in [14]. We call this
enhancement Parallel Soundex, Partition-wise Shuffling, Single Hash (PSPSSH).

Fig. 3. PSPS/PSPSSH workflow at Alice and Bob.

In PS and PSPS, each field is transformed to its Soundex equivalent and then
it is hashed through a secure hash function to create a ciphertext, as shown on the
left branch of Fig. 4. This way, the number of ciphertexts created is equal to the
number of matching fields. In PSPSSH, we propose concatenating all Soundex
encodings of a record’s matching fields, and hashing the entire concatenation
resulting in a single ciphertext, as illustrated on the right branch of Fig. 4. This
approach has the following benefits. First, hashing occurs only once, instead of
hashing equal times to the number of m matching fields. This also reduces the
number of transferred hashes over the network by a factor of m. This reduction
in the workload also holds for Carol, who performs join on a single field instead
of m. These benefits can be exploited under the limitations outlined in Lemma 2.
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Fig. 4. Transformations at Alice and Bob.

Lemma 2. Given a dataset of size |D| where N times noise is added and
a uniform secure hash function of b bits, PSPSSH may be used when
(1 + N) · |D| < 2b.

Proof. Using PSPSSH, a single ciphertext for all matching fields per record is
used, resulting into |D| ciphertexts. Adding noise equal to N times the dataset
size results into |D| + N · |D| = (1 + N) · |D| records. These should be encoded
without collisions by the hash function. As such, (1 + N) · |D| < 2b.

In terms of privacy, as the noise generation method and record shuffling in
PSPSSH are the same with PSPS, Lemma 1 also holds for PSPSSH. However,
PSPSSH comes with enhanced privacy characteristics. These stem from the fact
that all Soundex codes are concatenated before being hashed into a single field.
As such, even in the case that an adversary recovers a real record, they will have
to overcome a series of problems in order to succeed in a brute force attack.
First of all, the attacker will not know the number of matching fields encoded
within the hash. As such, they will have to guess the number of fields used, thus
increasing the time required for the attack. Even in the case that they manage
to identify the number of fields used, they will not be aware of the order that
these fields have been concatenated.

4 Privacy Analysis

In this section, we provide a rigorous privacy analysis of our protocol, focusing on
the PSPSSH approach to showcase its enhanced privacy characteristics. First, we
lay out a brief description of possible attacks against privacy-preserving record
linkage. Then, we prove the resilience of our protocol, considering the partici-
pating entities, the data holders (Alice and Bob) and the third party (Carol).
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4.1 Attacks on Record Linkage

A series of attack types may occur against privacy-preserving record linkage
[32]. Here, we provide a brief overview so as to discuss how our method behaves
against these attacks. In any case, the procedure followed by an adversary con-
sists of two steps. The first step is attribute reidentification. The second step is
identity reidentification. For these to occur, a series of attacks may be employed.

Dictionary Attack. In a dictionary attack, an adversary attempts to identify a
sensitive value by utilizing a publicly available dictionary and encoding its values
so as to match a dataset’s encoded values. In the case of privacy-preserving
record linkage, where quasi-identifiers are usually demographic data as names,
addresses etc., a phonebook or a voters registration list may be exploited for
such a purpose.

Frequency Analysis Attack. In this type of attack, the adversary has access,
as in the previous case, to a publicly available plain text dataset. They then study
the distribution of this dataset and compare it with the attribute distributions
of the encoded dataset so as to identify quasi-identifier attributes.

Similarity Attacks. According to Eq. 1 of the privacy-preserving matching
definition, matching is performed using similarity thresholds over encoded fields.
Similarity attacks are based on the fact that distributions of similarities between
encoded and plain text fields are maintained. Thus, an adversary may exploit
this observation so as to relate plain text values with encoded values.

Linkage and Ciphertext-only Attacks. These attacks are not directly
related to privacy-preserving record linkage but rather with privacy-preserving
data publishing. The core of the Linkage attack relies on linking publicly avail-
able information so as to reveal due to the uniqueness of these values, the quasi-
identifiers. Such an attack may be facilitated under collusion between a data
holder and a third party. Nevertheless, such attacks have not been reported [32].
In Ciphertext-only attacks, the adversary analyses ciphertexts to recover plain
texts. However, this is not usual in privacy-preserving record linkage, as certain
values may change over the time.

4.2 Behavior Against Attacks

We first prove some of the PSPSSH protocol’s properties that we will use to
evaluate the method’s behavior against the aforementioned attacks. Some of the
properties pertain to all our PS-based protocols, i.e., PS, PSPS and PSPSSH,
while some apply only to the latter. All properties stem from the fact that all
participants in our protocol are Honest but Curious. They will try to infer as
much information as possible from the protocol without attacking it, as they
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would not wish to jeopardize their reputation. We begin our analysis with the
case of the data holders and then proceed to Carol. Finally, we examine what
information may be leaked to an external attacker.

Proposition 1. In all PS-based protocols, Alice and Bob gain no further infor-
mation on each other’s dataset beyond matching record identifiers.

Proof. Alice and Bob have no direct access to each other’s data, and they interact
with each other directly only after matching has been performed by Carol. In
particular, according to step (5) of the PPRL protocol (Sect. 2.3), Alice and Bob
exchange their matching rows. Thus, no other data is leaked as defined by the
objective of PPRL. The only case of unwanted leakage information here is that
of a false positive match.

Carol, on the other hand, has direct access to encrypted data of both data
holders. As such, it would be interesting to examine her success on each of the
attack types.

Proposition 2. In PSPSSH, a dictionary attack by Carol, or an external adver-
sary, is equivalent to a Ciphertext-only attack.

Proof. Carol receives a set of hashes. Each hash contains a padded concatenation
of the Soundex-encoded matching attributes in an arbitrary order. For Carol
to effectively recover a value, she first has to access the padded value, which,
however, is not disclosed to her. Beyond the padding, the encoding is row-wise,
as in a single hash all matching attributes are encoded. Thus, a dictionary attack
is impossible and Carol has to perform a brute force attack in order to recover
any values.

Proposition 3. In PSPSSH, a frequency attack by Carol, or an external
attacker, is equivalent to a Ciphertext-only attack.

Proof. To perform a successful frequency attack, Carol has to analyze the fre-
quencies of the received hashes. Nevertheless, each of these hashes corresponds
to a single record, while all records are deduplicated, thus each of them is unique.
Therefore, Carol cannot perform a frequency analysis, neither on a field, nor on
an entire record. On top of that, noise is injected, refraining Carol from discern-
ing real from noise records.

Proposition 4. All PS-based protocols are immune to Similarity attacks.

Proof. The proposed Soundex-based protocol matching used in all PS-based
approaches is not based on similarity thresholds, but on joins, thus being immune
to this type of attack, as there are no similarity distributions.
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Proposition 5. PSPSSH is immune to Ciphertext-only attacks.

Proof. Let us assume that Carol tries a brute-force attack. As noise is used in all
PS-based protocols, Carol is not aware of which records correspond to real data,
thus having to analyze the entire dataset. Having the entire dataset analyzed,
she does not know the matching fields used and particularly for PSPSSH neither
their number, nor the order these have been concatenated, thus being without
any context. For PS and PSPS, she does know the number of matching fields
used, but in any case, she will not succeed in launching a dictionary or frequency
attack, neither on a field, nor on an entire record, as noise records exist.

Even if she attempts to perform a linkage attack on a decrypted record, she is
not able to know whether this record is real or noise. And as she does not know
the context of each of the concatenated fields and their order her confidence
will be equal to 1

Perm(m) , where Perm(m) is the number of permutations of the
matching fields. Even in this case, she is not be able to revert to the original plain
texts, as Soundex exhibits a generalization mechanism, where a single encoding
maps to more than one plain texts.

5 Experiments

In this section, we present experimental evidence supporting the efficiency and
efficacy of our approach. Initially, we describe our experimental setup, then we
provide experiments regarding matching and time performance.

5.1 Setup

We rely on real world data originating from North Carolina’s publicly avail-
able voter’s database. We determined five matching fields, namely: ‘last name’,
‘first name’, ‘midl name’, ‘res street address’, ‘res city desc’. The first three
fields are self-descriptive. The two last ones hold the person’s address and city
of residence. As addresses start with a number, we converted all numbers in this
field into the corresponding verbals. The database was deduplicated using these
fields so that all five of them comprise a candidate key.

To evaluate the scalability of our techniques, we uniformly sampled this
database, ending up with three datasets for Alice and Bob of sizes: 800K, 1600K
and 3200K records, i.e., for instance, 800K denotes that Alice and Bob hold
800,000 records each. For all sizes, Alice’s and Bob’s datasets overlap by 25%,
i.e., for the 800K one, 200,000 records should be matched. Furthermore, since
we focus on approximate matching, Bob’s records that match Alice’s have been
corrupted by randomly choosing a field of each row and randomly performing
a character deletion, insertion or transposition with another, so that join oper-
ations between Alice’s and Bob’s data yield zero matching records. Regarding
noise, we generate fake records at each data holder as a percentage of the size
of the original dataset, each of them consisting of fake Soundex codes. As such,
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producing 100% noise means that we produce the same number of fake records
as the original dataset. In our evaluation, we experiment with 100%, 200%. 400%
and 800% of noise.

To conduct our experiments, we have setup a cluster hosted in the cloud
by the IaaS service of GRNET1 consisting of 11 virtual machines, each having
16 GB of RAM and 8 Xeon CPUs at 2.3 GHz. The cluster features distributed
storage supported by Apache Hadoop 2 HDFS, while the computation engine
is Apache PySpark 2.4.7. One virtual machine has been used as a dedicated
master, while the rest of them were operating as workers. We have fixed the
driver’s memory to 12 GBs, while we have allocated 2 GBs of memory and one
core to each executor, totaling to 70 executors. Finally, we have fixed the number
of data partitions to 100 so as to exploit the number of available executors.

(a) Transformations speedup. (b) Transformations time.

(c) Overall speedup. (d) Overall time.

Fig. 5. Results for time performance evaluation.

5.2 Matching Performance

We assess matching performance in terms of F1-Score, which is a measure of
accuracy defined as the harmonic mean of precision and recall: F1-Score =

TP
TP+0.5(FP+FN) . Our evaluation indicates that alterations made on PS had no

1 https://okeanos-knossos.grnet.gr/home/.

https://okeanos-knossos.grnet.gr/home/
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practical impact on its matching quality, providing identical results for all three
methods, i.e., PS and the improved PSPS and PSPSSH. In all cases, the F1-
Scores remained identical and equal to 0.752, even in the extreme case of injecting
noise equal to 800% of the dataset size. These outcomes show that our methods
are scalable and their performance remains consistent.

5.3 Time Performance

We evaluate time performance of the alternative methods we propose by mea-
suring elapsed clock time and indicating the incurred speedup of each approach
with respect to PS. Besides measuring the overall time of the entire process, to
better assess the benefits incurred by the proposed transformation methods, we
also measure the time required for both Alice and Bob to generate the datasets
to be sent to Carol and write them to HDFS, omitting the rest of the process,
i.e., the required joined. Note that when measuring the total time, we assume
that after generating the datasets they directly send them to Carol without writ-
ing them to HDFS, thus we measure the time for data generation by Alice and
Bob, and join by Carol.

Transformations Speedup. The incurred speedups for the novel transfor-
mation methods we have introduced against PS are illustrated in Fig. 5a. The
horizontal axis stands for the additional noise we have injected, while the ver-
tical one for the resulting speedup. Solid lines with vertical indicators stand
for PSPS, while dashed-dotted lines with ‘X’ points represent PSPSSH. In all
cases, both PSPS and PSPSSH manage to speedup transformation times. This
happens since global shuffling leads to record exchanges between workers, while
partition-wise shuffling saves time by solely operating within each partition.

To delve into more details, both methods exhibit increasing speedups as
noise size increases. This is directly related to the previous observation, since
increasing noise levels increase the number of records that have to be globally
shuffled in the PS case, while for PSPS and PSPSSH, shuffle is performed locally.
Furthermore, speedup increases as dataset sizes increase. PSPSSH outperforms
PSPS in all cases. Marginally, speedup exceeds 3, for the largest 3200K dataset.
This is because the PSPSSH provides a shorter, more compact representation.
As such, only a single hash code has to be written to HDFS, opposed to the
PSPS case.

Elapsed clock times are illustrated in Fig. 5b. The horizontal axis stands again
for the percentages of additional noise injected, while the vertical one represents
elapsed time in seconds. Dashed lines with star points illustrate PS behavior,
dotted lines with crosses are for PSPS, while dashed-dotted lines with ‘X’ points
are for PSPSSH. Here, we observe the linear time behavior of the dataset trans-
formations for PS; when doubling the added noise, processing time doubles. For
PSPS and especially for PSPSSH this behavior becomes sublinear, as the slopes
are less steep. Here, doubling the noise injected increases transformation time
by a factor less than two.
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Overall Speedup. Let us now examine the overall speedup achieved, i.e.,
including join time by Carol as well. As illustrated in Fig. 5c, the behavior is
similar with the one exhibited in Fig. 5a. This is expected, as the only differences
with the previous set of experiments is that Alice and Bob’s transformations are
not written to HDFS but immediately joined. This is the reason for the lower
overall times illustrated in Fig. 5d compared to Fig. 5b. However, we observe in
Fig. 5c that for PSPSSH, speedup is further elevated reaching 3.25. This occurs
for the following two reasons. First, with PSPSSH’s compact representation, less
data have to be transferred across the network. Second, joins require less time.
For PSPSSH joins are reduced to comparing a single field, as opposed to PS and
PSPS that involve multiple fields (here, five fields).

(a) Datasets without noise. (b) 800K dataset+Noise.

Fig. 6. Comparison with Postgres.

Comparison with RDBMS. We also employ PostgreSQL for comparison.
Alice and Bob’s data are retrieved, encoded and then stored into separate tables.
For Carol to perform her joins, an index is built on matching attributes.

Let us now compare the performance of our initial PS implementation in
Spark to that of PostgreSQL, so as to examine the benefits of a parallel archi-
tecture. There are two aspects in our comparison. First, we examine how these
two methods compare when no noise is employed for various dataset sizes, and
then, we keep the size of the dataset fixed and compare how the two implemen-
tations behave in terms of noise addition. Time, in all cases, represents the time
required to read the initial datasets, transform them, join them and count the
number of joinned records.

Let us begin with the case where no noise is added, as illustrated in Fig. 6a.
Here, we have used smaller datasets, as the processing capacity of the RDBMS
is expected to be inferior of that of the clustered Spark implementation. The
horizontal axis of the plot stands for the dataset size employed, while the ver-
tical one for the overall elapsed time in seconds. As we can see, Spark’s time
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performance remains practically unchanged, regardless of the increase in the
size of the dataset. This indicates two things. First, that our cluster’s capacity
exceeds the processing power required for these datasets. Second, that even in the
basic implementation of PS, the utilization of cluster resources is according to
the corresponding workload. With regard to the implementation of PostgreSQL,
we observe that, thanks to the indexes used for matching, the behavior of this
method is almost linear. Yet, as the size of the dataset increases, processing time
is more than doubled.

Moving on to Fig. 6b, we have illustrated the processing time required for
both engines, PostgreSQL and Apache Spark, when adding noise to the 800K
dataset. As such, in this case, the X axis represents the percentage of noise
added to the initial dataset, while the Y axis represents, again elapsed time.
Starting our evaluation again from Spark’s performance, we see here that, as
the size of data to be processed doubles, execution time increases sublinearly,
indicating the basic method’s scalability. On the other hand, for the PostgreSQL
implementation, the behavior is almost linear to the dataset size, after noise has
been added. Yet, as the dataset size increases, the difference between Spark and
PostgreSQL in execution time increases. Utilizing the improvements of PSPSSH
the difference in performance is further increased.

5.4 Utilization of Resources

Another aspect worth investigating, regarding the novel methodologies we intro-
duce in this paper, is the utilization of the cluster’s resources. First, we will
examine CPU utilization achieved by each of the three methods: PS, PSPS and
PSPSSH. To proceed with this evaluation, we have employed Delight2, and relied
on its Efficiency Ratio metric which is defined in Delight’s manual as “The ratio
of Spark tasks over CPU uptime, indicating the portion of the time that the
provisioned cores were utilized to run Spark tasks”. It is evident that higher
Efficiency values are better. We report the corresponding results when using the
1600K dataset in Fig. 7a, where the horizontal axis stands for the percentage of
additional noise injected, while the vertical axis represents Efficiency Ratio. The
results illustrated in these sets of experiments depict average measures of five
executions.

For the PS method (dotted lines with crosses), at the beginning, Efficiency
increases with noise. However, it soon starts deteriorating, indicating that cluster
cores remain unused due to the global sorting featured in this method. On the
other hand, PSPS (dashed line with stars) and PSPSSH (dashed-dotted line with
X’s) exhibit better efficiency which is almost the same, even without the injec-
tion of noise. As noise is injected, efficiency increases with PSPSSH superseding
PSPS.

Let is now examine what happens in terms of total CPU time, indicating
the total time in seconds that the CPUs where employed, represented by the
vertical axis of Fig. 7b. Again, the horizontal axis stands for the additional noise

2 Available at:https://github.com/datamechanics/delight.

https://github.com/datamechanics/delight
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(a) CPU Efficiency score vs. noise. (b) Total CPU time.

(c) On heap JVM Memory vs. noise. (d) Off heap JVM Memory vs. noise.

Fig. 7. Spark engine resources utilization.

injected. We may observe that the PS measures increased time usage compared
to the PSPS and PSPSSH methods, a fact which also aligns with the results of
execution time we discussed earlier in this Section. In all three cases, CPU time
is proportional to the additional noise injected. However, the PS method’s line
exhibits a steeper slope than PSPS and PSPSSH. Last but not least, we observe
that PSPSSH also outperforms PSPS in terms of scalability, as it requires less
overall CPU time.

Combining the observations resulting from Fig. 7a-b, we may conclude that
the cluster-wide sorting employed in PS leads to a lower Efficiency Ratio and
CPU time as a result of the under-utilization of CPU cores, a situation that is
remedied, however, by PSPS and PSPSSH.

We will examine, now, for the same set of experiments, memory utilization.
In Fig. 7c-d, we illustrate the amount of on heap and off heap JVM memory
used when noise is added. We may discern that, for all approaches, increasing
noise leads to increased memory consumption. On the other hand, it is easy to
see that both proposed approaches, PSPS and PSPSSH, exhibit a significantly
lower memory footprint compared to PS. Considering the case of no noise, for on
heap JVM memory usage, PS consumes approximately 409 MB of memory on
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average, while PSPS manages to drop this number to 270 MB. PSPSSH further
reduces memory consumption to 219 MB of RAM. On the other hand, when
injecting 800% noise, PS requires at maximum 533 MB of on heap RAM, PSPS
454 MB and PSPSSH 381 MB. Moving on to off heap memory consumption,
PS requires from 81 to almost 84 MB, while the consumption of PSPS ranges
between 75.8 and 80 MB of RAM. PSPSSH achieves an even better performance,
between 70 and 77.5 MB.

To sum up, the newly proposed methods manage to be more CPU efficient,
better utilizing the cluster’s resources. What is more PSPSSH also exhibits the
best scalability characteristics out of all three methods.

6 Related Work

Soundex [20] is the oldest, the best known and most widely used Phonetic Encod-
ing Algorithm [3]. More recently, MetaSoundex [18] has emerged, attempting to
combine Metaphone [21] and Soundex for privacy-preserving record linkage, fea-
turing, however, low performance.

For the problem of Privacy-Preserving Record Linkage, recent advancements
may be found in [10]. Bloom filters [6,28] comprise a very popular approach in
this area. Bloom filters are combined with n-grams and the resulting bit vectors
are ANDed to determine whether they match. It has been shown that such solu-
tions are vulnerable, requiring additional hardening measures [9]. Alternative
techniques include the ones of Smith [30], who proposes encoding sensitive data
into bit vectors and applying Locality Sensitive Hashing, with the drawback of
increased computational cost [4]. Ranbaduge et al. [23] propose a two-step hash
method where quasi-identifiers are converted into n-grams beforehand. How-
ever, all bit-vector based approaches cannot be indexed for fast joins, requiring
blocking techniques [13] to improve efficiency.

Furthermore, in the last few years, methods based on cryptographic primi-
tives have emerged. These methods include homomorphic encryption [7], known,
however, for its high computational cost [1] and susceptibility to certain types
of attacks [11], garbled circuits [2], needing to be further investigated in terms
of execution time, size and reusability in this context [25] and Fuzzy Vaults [19]
relying on polynomial reconstruction through interpolation.

Differential privacy has also been used in the context of privacy-preserving
record linkage as a means of providing formal bounds on privacy. At the moment,
solutions on differential privacy for privacy-preserving record linkage only focus
on categorical and numerical attributes [24], while our work focuses on string
attributes, which is the most common type of quasi-identifiers [3].

Now, when it comes to big data volumes and privacy-preserving record link-
age, there are particular challenges that need to be addressed, such as improving
scalability and privacy [31]. To address these challenges, the use of distributed
and parallel processing engines has been extensively used in the literature. In
[17], a Hadoop-based tool for defining linkage workflows including both matching
and indexing steps is proposed. Karakasidis et al. [12] provide a first work utiliz-
ing Spark and Soundex. This is the work we are building upon. Karapiperis et al.
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[16] use Hadoop for privacy-preserving record linkage for an LSH-based method.
Franke et al. [8] use Spark and Flink for an LSH-based method. Hadoop has
been outperformed by Spark, while LSH-based methods need parameter config-
uration. Pita et. al [22] present a first approach that exploits the Spark platform
so as to create data marts for the Brazilian Public Health System using large
databases from the Ministry of Health and the Ministry of Social Development
and Hunger Alleviation using a Bloom filter-based method. Although providing
speedup by parallelizing computation, Bloom filter problems described earlier
still pertain.

7 Conclusions and Future Work

In this paper, we have presented two methods for further increasing the
speedup offered by employing Spark for privacy preserving record linkage
using Soundex. PSPS (Parallel Soundex, Partition-wise Shuffling) speeds up PS
(Parallel Soundex) up to 3x while maintaining the same privacy characteris-
tics. PSPSSH (Parallel Soundex, Partition-wise Shuffling, Single Hash) offers
enhanced privacy characteristics and further speeds up PS, but with limitations
proportional to the dataset size. Our future research directions are aimed at
providing an adaptive method to trade off between PSPS and PSPSSH that will
combine the advantages of both approaches.
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Abstract. Consider a user with a very limited hardware and internet
connection who wants to query a shortest path distance from a web
service, but doesn’t want to reveal the source and destination to the
server. Using state-of-the-art methods, we show that we can privately
query shortest path distances in this case, if we are allowed to use three
non-cooperating servers of moderate compute and communication power.
We argue that this is not possible with classical shortest path algorithms.
Finally, we give some experiments showing the feasibility of the approach.

Keywords: Privacy Preserving Computation · Shortest Path · Web
Service

1 Introduction

Accessing services over the world wide web endanger the privacy of the user.
If a user queries a shortest path to some destination, the web service can draw
the conclusion that the user plans to travel to that destination and can use
this assumption e.g. to personalize advertisements. In this paper, we consider
the question whether it is possible to query shortest path distances from a web
service without revealing the endpoints.

Privacy preserving computations are a very active research field at the
moment. For example, there is plenty of work being done trying to make machine
learning methods privacy preserving (e.g. [2,3,11,14] for a few very recent
papers). Most of the approaches are based either on homomorphic encryption
[6] or on secret sharing approaches [7]. For both approaches there are libraries
for the basic operations. Our approach is based on secret sharing.

Both methods allow at least addition and multiplication as basic operations.
As all computation can be reduced to these two operations, every computable
function can be evaluated privately, but a direct use of this leads to approaches
that are way too slow for almost all interesting functions. Hence, there is a lot
of work to find approaches for more advanced basic functions that can be used
in different applications.

The methods get very inefficient if we want to keep private which variables
are involved in the computation, e.g. a variable that is stored in an array and
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indirectly accessed by a private index. Accessing the value of such a variable
requires a private information retrieval (explained below). As such an operation
is very frequent in Dijkstra’s algorithm, we will argue that it can not be made
privacy preserving while remaining efficient. Hence, in order to make shortest
path queries privacy preserving, we need other, more suitable algorithms to com-
pute the shortest path. Most efficient methods to compute shortest path in road
networks are hub-label approaches [1], contraction hierarchies [9] or combina-
tions of both [5]. As hub-label approaches have the smallest query time, we use
these in the paper.

In the following, we will assume that the graph in which the shortest path
queries take place is publicly known, but the user has very little memory and
compute power and hence can not store the graph and/or compute shortest path
in the graph. Furthermore, we assume that the connection to the web service
is slow. To achieve acceptable query times, we will make use of three servers in
the so called honest-but-curious setting, i.e. the servers stick to the protocol and
do not cooperate to harm the privacy of the user. Still, they use all information
they get through the protocol to learn the query of the user and hence, we have
to ensure that the endpoints of the query are not revealed.

In our setting, two servers will store the graph and both compute hub-labels
for it (explained in more detail later). These servers are called the main servers.
A third server is used to lower the amount of traffic between the user and the
main servers and is called the helper server.

The rest of the paper is organized as follows. In Sect. 2, we give some back-
ground on secret sharing and hub-label approaches. Our approach is presented
in detail in Sect. 3. Finally, we give some experimental results in Sect. 4 and
conclude the paper.

2 Background and Related Work

2.1 Secret Sharing

In secret sharing approaches, the input data and the intermediate results for the
computations are not stored explicitly at some servers, but for each number, the
servers get some shares that together can be used to reconstruct the number,
but look as random numbers individually. The most simple approach is the
additive secret sharing in Zp for a prime number p with exactly three servers
s1, s2 and s3. To share a number x, each server gets a share x1, . . . , x3 such that
x1+x2+x3 ≡ x mod p. To add two numbers x and y, the servers can simply add
their shares. Notice that no communication is necessary for an addition. This is
different for the multiplication, which can be done as follows. Server s1 sends its
shares to s2, server s2 to s3 and server s3 to s1 so that each server has now two
of the three shares. Server s1 computes z1 := x1y1+x2y1+x1y2 while s2 and s3
perform symmetric computations. Notice that xy = z1 + z2 + z3 mod p. After
a multiplication, a so-call resharing is done, e.g. by creating random shares for
zero (which we do not explain here) and adding them, so that the shares of the
result are distributed uniformly.
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A private information retrieval (PIR) protocol enables a user to request the
u-th entry of a public database D[1..n] without revealing u. There are no privacy
concerns for the database. PIR is very well studied (see e.g. [8]) and it is known
that in the two server setting, a traffic of Θ(

√
n) is sufficient and necessary. This

is done by partitioning the database in
√

n blocks and querying a block with
the following approach to access an element with linear traffic. To access D[u]
out of an array D[0, . . . , n], the user generates an n-bit vector h1 and sends h1

to server s1 and h2 := h1 ⊕ eu to server s2, where eu is the u-th unit vector.
Server si computes di := ⊕w|ew⊕hi �=0D[w] and sends di to the user. The user
computes D[u] as d := d1 ⊕ d2. Notice that h1 and h2 are bit-vectors which
were chosen uniformly at random and hence no server learns anything on which
entry is accessed. Furthermore, d equals D[u] as D[u] appears in d exactly once
whereas all other D[v] appear exactly twice or not at all.

In our setting, we directly query an entry without building blocks, as each
data point is quite large and the amount of traffic for the user is minimized
without building blocks, as explained in Sect. 3.

2.2 Infeasibility of Dijktra’s Algorithm

If we do not preprocess the graph, Dijkstra’s algorithm to compute shortest path
distances is the most commonly used method if there are no privacy concerns.
In this section, we argue that this algorithm can not made privacy preserving
with current hardware even for relatively small graphs. As an example, we will
consider a graph with 1 million vertices.

Dijkstra’s algorithm iterates over all vertices in increasing distance to the
source of the query. For each vertex, its adjacency list is scanned and distances
are updated. As we want to preserve the privacy of the source, the servers are not
allowed to get any information on the order in which the vertices are handled.
Hence, in order to iterate over an adjacency list, one has to do a PIR over the
graph. We ignore all communication that is needed to update distances and
to query the vertex with smallest distance. Nevertheless, this iteration has to
be done for all vertices (even if the target is found early, we can not stop the
iteration as otherwise the servers could exclude some source-destination pairs),
and therefore we have 1 million PIR-rounds. Even for a network with infinite
bandwidth and a latency of 1ms, a single query would take more than 15min.

Notice that the Bellman-Ford-algorithm can be made privacy preserving very
easily as the order in which the edges are traversed can be made public, but this
algorithm is too slow to compute shortest path distances even in the non-private
setting and the number of rounds would be at least the number of vertices of
the graph, too.

2.3 Hub-Label Approaches

In this section, we very briefly restate the hub-label approach to compute shortest
path distances (see e.g. [1] for details).
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Consider a directed graph G = (V := {0, . . . , n − 1}, E). For a vertex u ∈ V ,
a forward label D+[u] for u is a list of pairs (v, d) where v ∈ V and d is the
length of the shortest path from u to v. A backward label D−[u] for u is a list
of pairs (v, d) such that d is the distance from v to u. A set (D+[u],D−[u])u∈V

is a hub-labeling for G, if for all pairs of vertices u and v, there is a vertex
w ∈ D+[u] ∩ D−[v] such that the distance from u to v is d(u,w) + d(w, v).

Given a hub-labeling, shortest path distances can be computed almost
trivially. Given a pair of vertices u, v, we compute the minimum value of
d(u,w) + d(w, v) for all w ∈ D+[u]∩ D−[v]. Storing the hub-labels in increasing
index, this can be done in time linear in the size of the larger hub-label.

Interestingly, there are methods to compute hub-labelings of real world graphs
in reasonable time such that all hub-labels remain reasonably small (see e.g. [1]).

2.4 Existing Approaches for Privacy-Preserving Computation
of Shortest Path

There are several previous approaches to compute shortest paths under differ-
ent privacy constraints. However, all we are aware of consider only significantly
smaller graphs (i.e. at most a few thousand of vertices and not several million).

We assume that the graph is public, while most existing approaches assume
that either the complete graph or at least the weights of the edges are private
[4,13]. To hide the length of the edges in our approach, the computation of
the minimum of d(u,w) + d(w, v) for all w ∈ D+[u] ∩ D−[v] would have to be
computed privately, for which many methods are known (see e.g. [10])

Many approaches are based on a computation of all-pairs shortest paths
[12,16] and hence can not scale to graphs with several million vertices. The
setting in [16] is similar to ours, i.e. a user who is concerned with their privacy
and several honest-but-curious servers computing the shortest path, but they do
not report experimental results.

Anagreth et al. [4] proposed a method that is based on a parallelization
of the Bellman-Ford algorithm. Their approach is based on secure multiparty
computation and experimental results are reported for graphs with up to 10.000
vertices and 1.5 million edges, using several days of parallel computation. For
the serial version, a running time of about a day is reported for a graph with
900 vertices and 20.000 edges.

Wu et al. [15] guarantee the privacy of user and the weights of edges held
by the server. They report on experimental results of city maps of big US cities
with up to 7000 vertices. The running time for a distance query takes between
four and five seconds in this graph, giving also the predecessor vertex. As the
maximal number of edges of a shortest path in this graph is 165, we can repeat
the approach with the predecessors 165 times (the user is not allowed to stop
early as this would reveal the number of edges on the shortest path of the user
query) to get the path itself. The total time was reported to be 784 seconds. In
this paper, we only compute the length of the shortest path, but clearly, we could
use the same approach to obtain the path itself. However, the maximal number
of edges on a shortest path is even larger in the graphs we are considering.
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3 Privately Querying Shortest Path Distances Using
Hub-Labels

We assume that the two main servers store the graph G = ({0, . . . , n − 1}, E)
and possible hub-labels D+[0, . . . , n − 1] and D−[0, . . . , n − 1]. The number n of
vertices of the graph and the bit length m of the longest hub-label is assumed
to be known by all servers and the user.

We assume that the user knows u and v. If he only has a geographic location
or an address, getting u and v requires a further PIR operation for each endpoint.

From the discussion above, to compute the shortest path distance between u
and v, the user has to do a PIR for D+[u] and D−[v] and a trivial computation
with D+[u] and D−[v]. Directly using the PIR protocol as explained above would
require the user to send two bit-vectors of n bits. However, this can be reduced
in the following way. Let h be the helper server and s1 and s2 be the two main
servers.

The main idea is to cyclically shift the indices of the vertices by a random
number r. The helper computes the vectors h1 and h2 for the shifted index
(without getting r) and the main servers get the shifting r and either h1 or h2

for the query with shifted index.
Consider the source u of the query. Instead of computing and sending h1

and h2, the user generates a random number r ∈ Zn and sends r + u mod n
to h and r to servers s1 and s2. Here we slightly abuse notation and interpret
x mod n as the integer number between 0 and n − 1. The helper h generates
a random n-bit vector h1, computes h2 := h1 ⊕ er+u mod n and sends hi to si.
The servers compute di := ⊕w|ew+r mod n⊕hi �=0D

+[w] and send di to the user.
The user computes the hub-label D+[u] as d1 ⊕ d2.

For the destination v, we generate a new random number and replace u by
v and D+ by D− in the computation. As the helper only gets the randomly
shifted index of the query, it does not learn the query itself. The main servers
get the random shift, but h1 or h2 do not give any additional information and
hence, they can not infer any information on the query. The correctness directly
follows from the correctness of the PIR protocol.

Notice that the user sends two log n-bit numbers to each of the servers and
gets two hub-labels in two shares each, hence only 4m bits have to be transferred.
It only has to compute two xor’s of the shares and scan the hub-labels. This is
a feasible communication and computation even for very restricted users.

The helper server gets two log n-bit numbers and sends four n-bit vectors
it generates randomly. Even for large graphs, this is feasible with a reasonable
internet connection of the helper.

The main servers get two n-bit vectors and send two shares of hub-labels,
which is feasible with a reasonable internet connection. The main bottleneck is
the computation of the shares di for the source and the target of the query. For
that, roughly half of the hub-labels have to be xor’ed. In the next section, we
report on the time required.
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Table 1. We give the time in seconds, the size and the bit-length of the longest
hub-label for different graphs. These numbers were known from previous papers on
the hub-label approach. In the last column, we give the average time with standard
deviation of a shortest path query for our approach.

Instance Graph Preprocessing Query
|V| |E| Time Size m Time ± sd

(in hh:mm:ss) (in seconds)

Germany 25,115,477 91,898,003 55:44 38,168MB 15,488 3.963 ± 0.0549
Great-Britain 23,464,670 82,354,087 26:02 37,104MB 16,128 3.833 ± 0.0376
Switzerland 4,548,106 16,513,098 06:12 3,736MB 8,768 0.942 ± 0.0459
South-America 62,562,908 252,966,975 01:03:49 75,224MB 20,288 9.275 ± 0.0577

4 Experiments

We report the running times of preprocessing the graph and handling queries
for different graphs of road networks. To measure the query time, we repeatedly
selected two random vertices for 100 times. We believe that this number of rep-
etitions is sufficient, as the query time does not depend on the source and target
vertex at all. We implemented the approach in the Rust programming language
(www.rust-lang.org) and let all parties run on different docker (https://www.
docker.com/) on the same computer, containing an AMD Ryzen 5 5600x CPU
(6 × 3.7GHz) with 128GB of RAM. As there is only very little communication,
we ignored the fact that our network is much faster than one may expect from
a web service. Running the servers on different machines would require to either
run the preprocessing on two machines or copy the hub-labels from one machine
to an other. The query times should be roughly halved in this case. We encode
each integer number by 32bit, i.e. we waste some bits for smaller graphs.

Table 1 shows the results of our experiments in terms of preprocessing time,
size of the hub-labels and query time. The most computation time was spent
on the xor over half of the hub-labels of the two main servers. Nevertheless, the
approach is feasible for all graphs where the hub-labels fit into the main memory.
The main bottleneck is the memory requirement of the hub-label approach.

5 Conclusion

We showed that using state-of-the-art methods for computing shortest path
allows to privately query shortest path distances even in relatively large graphs
using known methods to privately query databases.

In future work, we plan to extend the method to enable the user to compute
the path itself and not only its distance. Furthermore, we want to investigate,
whether approaches for the shortest path problem that need less memory can
be made privacy preserving while remaining efficient.

www.rust-lang.org
https://www.docker.com/
https://www.docker.com/
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