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General Chairs’ Preface

On behalf of the Organizing Committee, we were delighted to welcome attendees to
the 27th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD
2023), held in Osaka, Japan, on May 25–28, 2023. Since its inception in 1997, PAKDD
has long established itself as one of the leading international conferences on data mining
and knowledge discovery. PAKDD provides an international forum for researchers and
industry practitioners to share their new ideas, original research results, and practical
development experiences across all areas of Knowledge Discovery and Data Mining
(KDD). PAKDD 2023 was held as a hybrid conference for both online and on-site
attendees.

We extend our sincere gratitude to the researchers who submitted their work to the
PAKDD 2023 main conference, high-quality tutorials, and workshops on cutting-edge
topics. We would like to deliver our sincere thanks for their efforts in research, as well
as in preparing high-quality presentations. We also express our appreciation to all the
collaborators and sponsors for their trust and cooperation.

We were honored to have three distinguished keynote speakers joining the confer-
ence: EdwardY. Chang (Ailly Corp), TakashiWashio (OsakaUniversity), andWeiWang
(University of California, Los Angeles, USA), each with high reputations in their respec-
tive areas. We enjoyed their participation and talks, which made the conference one of
the best academic platforms for knowledge discovery and data mining. We would like
to express our sincere gratitude for the contributions of the Steering Committee mem-
bers, Organizing Committee members, Program Committee members, and anonymous
reviewers, led by Program Committee Co-chairs: Hisashi Kashima (Kyoto University),
Wen-Chih Peng (National Chiao Tung University), and Tsuyoshi Ide (IBM Thomas J.
Watson Research Center, USA). We feel beholden to the PAKDD Steering Committees
for their constant guidance and sponsorship of manuscripts.

Finally, our sincere thanks go to all the participants and volunteers. We hope all of
you enjoyed PAKDD 2023 and your time in Osaka, Japan.

April 2023 Naonori Ueda
Yasushi Sakurai



PC Chairs’ Preface

It is our great pleasure to present the 27th Pacific-Asia Conference on Knowledge Dis-
covery and Data Mining (PAKDD 2023) as the Program Committee Chairs. PAKDD
is one of the longest-established and leading international conferences in the areas of
data mining and knowledge discovery. It provides an international forum for researchers
and industry practitioners to share their new ideas, original research results, and prac-
tical development experiences from all KDD-related areas, including data mining, data
warehousing, machine learning, artificial intelligence, databases, statistics, knowledge
engineering, big data technologies, and foundations.

This year, PAKDD received a record number of 869 submissions, among which 56
submissions were rejected at a preliminary stage due to policy violations. There were
318 ProgramCommitteemembers and 42 Senior ProgramCommitteemembers involved
in the reviewing process. More than 90% of the submissions were reviewed by at least
three different reviewers. As a result of the highly competitive selection process, 143
submissionswere accepted and recommended to be published, resulting in an acceptance
rate of 16.5%. Out of these, 85 papers were primarily about methods and algorithms and
58 were about applications. We would like to thank all PC members and reviewers,
whose diligence produced a high-quality program for PAKDD 2023. The conference
program featured keynote speeches from distinguished researchers in the community,
most influential paper talks, cutting-edge workshops, and comprehensive tutorials.

We wish to sincerely thank all PCmembers and reviewers for their invaluable efforts
in ensuring a timely, fair, and highly effective PAKDD 2023 program.

April 2023 Hisashi Kashima
Wen-Chih Peng

Tsuyoshi Ide
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Toward Explainable Recommendation
via Counterfactual Reasoning

Haiyang Xia1, Qian Li2, Zhichao Wang3, and Gang Li4(B)

1 Australian National University, Canberra, ACT 2601, Australia
2 Curtin University, Perth, WA 6102, Australia

3 Insurance Australia Group, Sydney, NSW 2000, Australia
4 Strategic Research Center for Cyber Resilience and Trust, Deakin University,

Melbourne, VIC 3126, Australia

gang.li@deakin.edu.au

Abstract. Recently, counterfactual explanation models have shown
impressive performance in adding explanations to recommendation sys-
tems. Despite their effectiveness, most of these models neglect the fact
that not all aspects are equally important when users decide to purchase
different items. As a result, the explanations generated may not reflect
the users’ actual preferences. Furthermore, these models typically rely on
external tools to extract aspect-level representations, making the model’s
explainability and recommendation performance are highly dependent
on external tools. This study addresses these research gaps by proposing
a co-attention-based fine-grained counterfactual explanation model that
uses co-attention and aspect representation learning to directly capture
user preferences toward different items for recommendation and expla-
nation. The superiority of the proposed model is demonstrated through
extensive experiments.

Keywords: Recommendation System · Explainability · Aspect ·
Counterfactual Reasoning · Co-attention

1 Introduction

Explainability as an important factor of recommendation systems has attracted
extensive research interest in recent years [15]. Classical explainable recommen-
dation models are usually equipped with inherent or post-hoc explanations.
Inherent explanation models rely on transparent models to generate explana-
tions [1]. Post-hoc explanation models aim to provide explanations for exist-
ing recommendation models in the form of feature importance or natural lan-
guage [6]. Different from classical explanation models that generate explana-
tions by observing the correlations between recommendation inputs and out-
puts, counterfactual explanation models are proposed to generate explanations
by identifying minimal changes that could alter the recommendation results and
have demonstrated superior performance [12].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. Kashima et al. (Eds.): PAKDD 2023, LNAI 13937, pp. 3–15, 2023.
https://doi.org/10.1007/978-3-031-33380-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33380-4_1&domain=pdf
https://doi.org/10.1007/978-3-031-33380-4_1
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Fig. 1. Inappropriate explanations caused by ignoring the user’s aspect preferences
toward different items. The correct explanation for not purchasing that headphone is
on its price aspect rather than CPU power because CPU power is not considered by
user A when purchasing headphones.

Despite the impressive performance achieved by these explanation models,
there are still two issues to be resolved. To begin with, most of these models
explore user reviews to generate explanations via external sentiment analysis
tools. As a result, the models’ explainability is highly tied to external sentiment
analysis tools [3]. In addition, these models neglect the fact that aspects are
not equally important when users decide to purchase different items [3]. Lead-
ing to the explanations may not reflect the users’ actual preferences. Consider
the scenario shown in Fig. 1, assume that user A mentioned four aspects in his
review - CPU power, sound quality, price, and color. When buying a laptop,
user A cares more about the power of CPU than other aspects. By contrast,
when buying a headphone, user A focus the sound quality and price aspects
rather than CPU power. As overlooking the aspect importance difference between
items, explanations generated by traditional counterfactual models for an item
with aspect importance 0, 0.7, 0.1, 0.2 could be “if the item could improve
its attractiveness on the CPU power aspect, user A who has not
yer bought the item, will purchase it.” This is an intuitive explanation
for a laptop but not for a headphone, because CPU power is not an aspect of
considered when user A purchases headphones.

To alleviate these issues, this paper proposed a co-attention-based Fine-
Grained Counterfactual Explainable Recommendation (FGCR) model. Specifically,
in FGCR an embedding generation subcomponent and an aspect representation
learning subcomponent are designed to learn the aspect-level user and item rep-
resentations directly from review data; and a co-attention-based importance esti-
mation subcomponent is designed to capture users’ aspect preferences toward
different items for recommendation and explanation.

The main contributions of this paper are:

– For the first time, we propose an end-to-end counterfactual explainable rec-
ommendation model, which can extract aspect representations directly from
review data for recommendation and explanation.
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– We introduce the technique of co-attention to model the fine-grained aspect-
level user preferences toward different items for further improving the explain-
ability of existing counterfactual recommendation models.

– We perform extensive experiments on several benchmark datasets to demon-
strate the effectiveness of our proposed model.

2 Related Work

2.1 Classical Explainable Recommendations

Classical explainable recommendation models can be categorized into inherent
and post-hoc explanation models. Popular inherent explanation models include
EFM (Explicit Factor Model) [13], A2CF (Attribute-Aware Collaborative Filter-
ing) [1], and MATM (Multi-modal Aspect-Aware Topic Model) [2]. EFM gener-
ates explanations by aligning the latent dimensions of explicit features with item
aspects extracted from user reviews [13]. A2CF generates explanations by con-
ducting attribute-level comparisons between user-visited items and correspond-
ing alternatives [1]. MATM generates explanations by tracing the prediction
results back to the training data [2].

Different from inherent explanation models that generate explanations during
the recommendation process, post-hoc explanation models generate explanations
for the recommendation results [10]. For instance, Peake and Wang [6] proposed
an association rule-based post-hoc explanation model that generates explana-
tions by analyzing the association rules between recommendation inputs and
outputs. Ribeiro et al. [7] proposed LIME (Local Interpretable Model-agnostic
Explanation) that generates post-hoc explanations by using interpretable linear
models to approximate the nonlinear classifiers. Wang et al. [11] proposed a rein-
forcement learning-based post-hoc explanation model that generates sentence-
level explanations by integrating the explanation generator into a personalized
attention neural network.

2.2 Counterfactual Explainable Recommendations

Different from traditional explanation models that utilize correlations between
inputs and outputs for explanations, counterfactual recommendation models
capture the causality of recommendation behavior for explanation genera-
tion [4,8]. The natural explainability of causality provides higher explanation
performance for counterfactual explanation models [9]. Early counterfactual
explanation models focus on providing explanations for HIN (Heterogeneous
Information Network) and ratings-based recommendation models [5,9]. Exam-
ples of such explanation models include PRINCE (Provider-side Interpretabil-
ity with Counterfactual Evidence) [5] and ACCENT (Action-based Counterfac-
tual Explanations for Neural Recommenders for Tangibility). PRINCE gener-
ates explanations [9] by identifying a minimal set of counterfactual actions on
user-specific HINs [5]. ACCENT provides counterfactual explanations for neural
collaborative filtering-based recommenders that leverage user ratings [9].
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In recent years, the counterfactual explanation research has shifted to pro-
viding explanations for aspect-level review-based recommendation models. For
example, Zhou et al. [14] proposed CNR which relies on BPR loss and coun-
terfactual reasoning to explain why a user prefers a certain aspect of an item
over other items. Xiong et al. [12] used counterfactual reasoning as a data-
augmentation method that could not only improve the recommendation models’
accuracy but also provide pair-wise aspect-level explanations for users. Tan et
al. [8] introduced the concepts of explanation strength and explanation complex-
ity to promote counterfactual explanation models generate simple and efficient
aspect-level explanations.

Although existing aspect-level review-based counterfactual explanation mod-
els have achieved improved explainability, they typically model user and item
importance by static user-aspect and item-aspect matrices [3]. However, in real-
ity, users’ aspect preferences change dynamically across items, and items attract
users to different aspects. Capturing these dynamic and fine-grained aspect inter-
actions to improve the explanation performance of existing models constitutes
the main motivation of this study.

3 Problem Formulation

Across the paper, all the individual elements are denoted as lowercase letters,
such as user u, item v, and aspect a. All sets of elements are denoted as calli-
graphic uppercase letters, such as user set U , item set V, and aspect set A. We
conclude the meaning of key notations in Table 1.

Table 1. Notation table

Notations Meaning

U The set of users

V The set of items

A The set of aspects

Du User review corpus (all reviews of user u)

Dv Item review corpus (all reviews of item v)

ea The embedding vector of aspect a

pu,a The latent representation of user u on aspect a

qv,a The latent representation of item v on aspect a

λu,a The importance of aspect a for user u

λv,a The importance of aspect a for item v

su,v User u’s actual preference sore on item v

ŝu,v User u’s predicted preference sore on item v

Mu,a Aspect level document embedding for user u on aspect a

Δ The changes in item aspect importance scores
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Based on the notations defined, suppose we have a recommendation model
f(A|Du,Dv) that aims to recommend top-k items v ∈ V for user u ∈ U by
ranking the preference score su,v. Specifically, su,v is estimated by synthesiz-
ing learned aspect-level user representation pu,a, item representation qv,a, user
aspect importance score λu,a and item aspect importance score λv,a.

Problem 1 (Aspect-level counterfactual explanation). Assume an item v was not
been recommended to user u in recommendation model f(A|Du,Dv) based on
her/his history reviews. Aspect-level counterfactual explanation aims to find an
“optimal” perturbation vector � = {δ1, δ2, ..., δr} on item v’s aspect importance
score λv,a so that v will be recommended to user u.

Intuitively, the generated explanation is: If item v could be slightly improved on
its attractiveness (i.e., item importance score) in aspects [ δ1, δi, δi+1...], it will
be recommended to user u who previously disliked it.

4 Methodology

Figure 2 shows an overview of FGCR, which consists of an aspect-Level
recommendation component and a counterfactual explanation component.
The aspect-level recommendation component aims to learn the aspect-level
user/item representations and corresponding aspect importance for recommen-
dations. The counterfactual explanation component aims to generate expla-
nations based on the learned aspect representations and importance.

Fig. 2. The overall framework of FGCR.

4.1 Aspect-Level Recommendation Component

The aspect-level recommendation component has four subcomponents: embed-
ding generation, aspect representation learning, co-attention-based importance
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estimation, and recommendation. Among them, the embedding generation sub-
component aims to retrieve embeddings of the words in Du and Dv from
pre-trained embeddings, and transfer Du and Dv into corresponding matrix
Mu ∈ R

n×d and Mv ∈ R
n×d for subsequent analysis. Where n represents

the number of words in the user/item document, d represents the dimension
of embeddings. The Word2Vec1 embeddings are used in this paper to initialize
embeddings. The aspect representation learning subcomponent aims to learn a
set of aspects A ∈ R

K and corresponding user representation Pu = {pu,a|a ∈ A}
and item representation Qv = {qv,a|a ∈ A} over this set of aspects. Since the
sentiment of the same word can be different for different aspects, a learnable
word projection matrix Wa ∈ R

d×h1 is introduced to add variations to Word2Vec
embeddings w.r.t. different aspects. More specifically, for the i-th word Mu[i] in
user u’s review corpus Du, its projected aspect-specific embedding Mu,a[i] is
measured as:

Mu,a[i] = Mu[i]Wa (1)

Accordingly, the projected aspect-specific embedding on aspect a can be rep-
resented as Mu,a ∈ R

n×h1 , where h1 is the hyperparameter that controls the
number of latent factors used in aspect-level representations. Besides, due to the
fact that words in different aspects are not equally important and the impor-
tance of each word is influenced by its surrounding words [3], we then adopted
a local context window zu,a[i] (in which the i-th word is located at the center)
to estimate the importance of the word w.r.t different aspects:

zu,a[i] = (Mu,a[i − c/2], · · · ,Mu,a[i], · · · ,Mu,a[i + c/2]) (2)

where Mu,a[i − c/2], · · · ,Mu,a[i], · · · ,Mu,a[i + c/2] is the concatenated embed-
dings of word Mu,a[i] and its surrounding words. c is a hyperparameter that
determines the width of the local context window. The importance of this word
can then be measured as:

impu,a[i] = softmax(ea(zu,a[i])T ) (3)

where, ea ∈ R
c×h1 is the embedding vector of aspect a, which can be retrieved

from the learned projected embeddings Mu,a.
Given Eq. (1) and Eq. (3) the aspect-level user representation can be esti-

mated as:

pu,a =
i=1∑

n

impu,a[i] · Mu,a[i]. (4)

Similarly, the aspect-level item representation can be estimated as:

qv,a =
i=1∑

n

impv,a[i] · Mv,a[i] (5)

The co-attention-based importance estimation subcomponent aims to model
users’ aspect preferences toward different items via co-attention. Following [3],
1 https://code.google.com/archive/p/word2vec/.

https://code.google.com/archive/p/word2vec/
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an affinity matrix MS ∈ K × K that indicates the affinity between user and item
at the aspect-level is calculated first according to the following formula:

MS = φ(PuWsQ
T
v ) (6)

where Pu ∈ R
K×h1 is the set of aspect-level user representations pu,a (measured

by Eq. (4)), Qv ∈ R
K×h1 is the set of aspect-level item representations qv,a

(measured by Eq. (5)), Ws ∈ R
h1×h1 is a learnable weight matrix, and φ is the

ReLU function. After obtaining the affinity matrix MS , the aspect-level user and
item importance can be estimated as:

λu = softmax(PuWx + ST (QvWy)vx) (7)

λv = softmax(QvWy + ST (PuWx)vy) (8)

where vx, vy ∈ R
h2, Wx,Wy ∈ R

h1×h2 are learnable parameters. Intuitively, both
the aspect-level user representation Pu and item representation Pv are considered
when estimating the aspect-level user and item importance.

The recommendation subcomponent aims to predict the user and item prefer-
ence score ŝu,v, according to the learned aspect-level representations and impor-
tance for recommendations. Formally,

ŝu,v =
∑

a∈A

(λu · λv) · (pu,a · qv,a) + bu + bv + bg (9)

where bu, bv, and bg are user, item, and global biases.
The training of FGCR mainly involves train the aspect-level

recommendation component, which is achieved by gradient descent on mean
squared error loss between estimated and actual user-item preference score, i.e.,
ŝu,v and su,v.

4.2 Counterfactual Explanation Component

The counterfactual explanation component aims to identify item aspects
on which minimal changes in importance (Eq. (8)) will flip the recommendation
result for explanations. Let vector � denote the modifications that counterfac-
tual explanation component applied to the item aspect importance. The coun-
terfactual explanation task can then be formulated as following optimization
problem:

min
�

‖ � ‖22 + γ‖ � ‖0
s.t., ŝu,v� − ŝu,v ≥ ε

(10)

where the first item of the optimization function ‖ � ‖22 represents the total
changes that have been applied to item aspect importance. The second item
of the optimization function ‖ � ‖0 represents the number of aspects whose
importance has been changed. γ is a weight used to balance these two criteria.
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ŝu,v� is the estimated preference score after � is applied to item v’ aspect
importance. More formally,

ŝu,v� =
∑

a∈A

(λu · (λv + �)) · (pu,a · qv,a) + bu + bv + bg (11)

ε is a threshold to ensure the changes of the preference score caused by adding �
could hit an unrecommended item v into user u’s recommendation list. Suppose
the predicted preference score of the k-th item in the original recommendation
list is ŝu,vk

, ε can then be calculated as the margin of the preference score of
user u on the k − 1-th item and item v itself. Formally:

ε = ŝu,vk−1 − ŝu,v. (12)

Thereby, Eq. (10) can be simplified as:

min
�

‖ � ‖22 + γ‖ � ‖0
s.t., ŝu,v� ≥ ŝu,vk−1

(13)

Solving the optimization problem in Eq. (13) is challenging because both the
objective function and constraint are not differentiable. Following [8], to make
the objective convex, we relax the ‖ � ‖0 to l1-norm ‖ � ‖1 and ŝu,v� ≥ ŝu,vk−1

to hinge loss:

L(ŝu,v� , ŝu,vk−1) = max(0, α + ŝu,vk−1 − ŝu,v�) (14)

Adding hinge loss to the total objective, we get the final optimization function
for generating counterfactual explanations as below,

min
�

‖ � ‖22 + γ‖ � ‖1 + λL(ŝu,v� , ŝu,vk−1) (15)

where λ is the balance weight. Because Eq. (15) is convex, it can then be solved
by Adam optimizer.

5 Experiments

5.1 Experimental Setup

Datasets and Baselines. Five of the publicly available Amazon2 datasets
- Cell Phone, Software, CDs and Vinyl, Magazine Subscriptions and
Kindle Store were used in our experiments. Similar to previous studies, we
remove the users with less than 10 reviews for dense datasets Cell Phone,
Software and CDs and Vinyl; and users with less than 5 reviews for relatively
sparse datasets Magazine Subscriptions and Kindle Store. We compare our
model with two state-of-the-art aspect-based explainable recommendation mod-
els CountER [8], A2CF [1], and Random selection - a frequently used baseline to
demonstrate the difficulty of explainable recommendation [8].
2 https://nijianmo.github.io/amazon/.

https://nijianmo.github.io/amazon/
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Evaluation Metrics. Two sets of recently proposed evaluation metrics [8] are
introduced in this paper to measure the explainability of the proposed model.
The first is user-side-evaluation metrics - Precision, Recall and F1 that aim to
measure whether the generated explanations match the user’s actual preferences.
The second is model-side-evaluation metrics - the probability of necessity (PN),
the probability of sufficiency (PS), and FNS that aim to measure whether the
generated explanations could justify the model’s behavior. The higher the values
of these metrics, the better the model.

Implementation. Our proposed model is implemented by PyTorch framework.
The reviews are tokenized using NLTK (https://www.nltk.org/) toolkit. the top
10 000 frequently used words are selected as the corpus for each dataset. The user
and item document length |Du| and |Dv| are set to 500. The ration of training and
testing samples is set to 8 : 2. The pre-trained 300-d Google News3 was used in
our experiments. The number of aspects n for recommendation is set to 5, other
recommendation hyperparameters such as the size of the convolutional filter are
set to the same values as in [3]. The counterfactual reasoning hyperparameter λ,
α, and ρ are set to 250, 0.2 and 1, respectively. The ablation study of parameters
n and λ are presented in Sect. 5.3.

5.2 Experimental Results

We first report the percentage of items that our model can successfully gen-
erate explanations in Fig. 3. We can see that in the five datasets our model
can fully generate explanations for Magazine Subscriptions and Cell Phone
datasets. For datasets CDs and Vinyl, Kindle Store and Software, our model
can generate explanations for more than 98% of the recommended items. These
high percentages of successful explanations demonstrate the effectiveness of our
model in generating explanations.

Fig. 3. The percentage of items that successfully generate explanations

3 https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit?
resourcekey=0-wjGZdNAUop6WykTtMip30g.

https://www.nltk.org/
https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit?resourcekey=0-wjGZdNAUop6WykTtMip30g
https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit?resourcekey=0-wjGZdNAUop6WykTtMip30g


12 H. Xia et al.

Table 2 presents the explainability comparison between our model and base-
lines in user-side-evaluation metrics. Random achieves the lowest Precision,
Recall and F1 in all datasets. This not only demonstrates the difficulty of
explainable recommendation problems but also confirms the effectiveness of
A2CF, CountER, and FGCR in generating meaningful explanations for recommen-
dation models. CountER shows better performance than A2CF in all datasets
in terms of Precision, Recall and F1, its average Precision, Recall and
F1 improvement reach 33%, 15%, and 25% respectively. This demonstrates the
benefit of introducing counterfactual reasoning in improving the explainability of
recommendation models. FGCR achieves the highest Precision, Recall and F1
in all datasets, its Precision, Recall and F1 improvement compared to CountER
reach to 53.4%, 18.5%, and 30.4% respectively. This demonstrates the benefits of
capturing detailed interactions of review data in improving the recommendation
model’s ability to explain user preferences.

Table 2. Performance comparison in user-side-evaluation metrics

Datasets Random A2CF CountER FGCR

Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

Magazine Subscriptions 0.021 0.042 0.028 0.167 0.500 0.250 0.745 0.423 0.540 1.000 0.565 0.704

Cell Phone 0.014 0.032 0.019 0.083 0.167 0.111 0.381 0.468 0.420 1.000 0.575 0.708

Kindle Store 0.033 0.019 0.024 0.167 0.500 0.250 0.574 0.477 0.521 1.000 0.670 0.785

CDs and Vinyl 0.011 0.027 0.016 0.114 0.103 0.108 0.246 0.326 0.280 1.000 0.640 0.762

Software 0.047 0.023 0.031 0.150 0.097 0.118 0.383 0.421 0.401 1.000 0.591 0.720

Average 0.025 0.029 0.024 0.136 0.273 0.182 0.466 0.423 0.432 1.000 0.608 0.736

Table 3. Performance comparison in model-side-evaluation metrics

Datasets Random A2CF CountER FGCR

PN PS FNS PN PS FNS PN PS FNS PN PS FNS

Magazine Subscriptions 0.031 0.043 0.036 0.500 0.500 0.500 0.456 0.572 0.507 0.638 0.965 0.768

Cell Phone 0.022 0.030 0.025 0.133 0.867 0.231 0.864 0.821 0.842 0.869 0.891 0.880

Kindle Store 0.017 0.029 0.021 0.500 0.500 0.500 0.739 0.739 0.739 0.816 0.959 0.882

CDs and Vinyl 0.035 0.035 0.035 0.054 0.946 0.102 0.687 0.883 0.773 0.807 0.953 0.874

Software 0.042 0.021 0.028 0.250 0.500 0.333 0.775 0.850 0.811 0.904 0.928 0.916

Average 0.029 0.032 0.029 0.287 0.663 0.401 0.704 0.773 0.734 0.807 0.939 0.864

Table 3 shows the performance comparison of our model and baselines in
model-side-evaluation metrics. Similarly, we can see that Random achieves the
lowest PN, PS, FNS in all datasets. A2CF achieves significant improvement on PN,
PS and FNS in all datasets than Random. In comparison with A2CF, the average
PN, PS, FNS improvement of CountER reach 41.7%, 11.0%, and 33.3% respec-
tively. FGCR achieves the highest PN, PS, FNS in all datasets, its performance
improved by 10.3%, 16.6%, and 13.0% when compared to CountER. This demon-
strates the effectiveness of FGCR in justifying recommendation model’s behavior.
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5.3 Hyperparameter Sensitivity

Number of Aspects. Figure. 4 shows the performance of our model with vary-
ing the number of aspects between 3 and 11. From Fig. 4a, Fig. 4b and Fig. 4c, we
can see that FGCR achieves slightly higher PN, PS and F NS when the number of
aspects equals 9. However, Fig. 4d and Fig. 4e demonstrate that FGCR achieves
higher Recall and F1 when the number of aspects equals 5. This indicates that
the optimal number of aspects is determined by whether the explanation focuses
on users’ preferences or models’ behavior. We set the number of aspects to 5
across our experiments as we focus more on explaining users’ preferences.

Balance Weight λ. The balance weight λ in Eq. (15) controls the extent to
which the explanation model prefers explanations that have minimal changes
on the aspect importance weights, or explanations that can effectively change
the recommendation results. Namely, explanation complexity (‖ � ‖22+γ‖ � ‖1)
or explanation strength (L(ŝu,v� , ŝu,vk−1)) [8] Small λ indicates the explanation
model emphasizes more on the former, large λ indicates the explanation model
emphasizes more on the later.

Figure 5a shows the changes in explanation complexity with varying λ
between 100 and 300. We can see that the explanation complexity of all datasets
increases with increasing λ. Figure 5b shows the change in F1 with varying λ
between 100 and 300. It is clear that FGCR achieves better F1 when λ equals
250. As such, we set λ to 250 across all experiments.

Fig. 4. The influence of the number of aspects on model and user side evaluations
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Fig. 5. The influence of the number of aspects on model and user side evaluations

6 Conclusions

In this paper, we proposed an end-to-end fine-grained counterfactual explanation
model FGCR. It improves the explainability of traditional counterfactual expla-
nation models by using co-attention technique to capture users’ aspect-level
preferences toward different items. Extensive experiments on publicly available
datasets demonstrated that FGCR leads to state-of-the-art explanation perfor-
mance in terms of several user-side and model-side evaluations. Our proposed
FGCR is not without limitations, in reality, it is not infrequent that the same user’s
preferences toward the same item may change with the lipase of time. Future
studies could explore the possibility of integrating the time dimension of user
preference to further improve counterfactual explanation models’ performance.
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by one SRG grant in the University of Macau.

References

1. Chen, T., Yin, H., Ye, G., Huang, Z., Wang, Y., Wang, M.: Try this instead: per-
sonalized and interpretable substitute recommendation. In: Proceedings of the 43rd
International ACM SIGIR Conference on Research and Development in Informa-
tion Retrieval, pp. 891–900 (2020)

2. Cheng, Z., Chang, X., Zhu, L., Kanjirathinkal, R.C., Kankanhalli, M.: MMALFM:
explainable recommendation by leveraging reviews and images. ACM Trans. Ins.
Syst. (TOIS) 37(2), 1–28 (2019)

3. Chin, J.Y., Zhao, K., Joty, S., Cong, G.: ANR: aspect-based neural recommender.
In: Proceedings of the 27th ACM International Conference on Information and
Knowledge Management, pp. 147–156 (2018)

4. Duong, T.D., Li, Q., Xu, G.: Prototype-based counterfactual explanation for causal
classification. arXiv preprint arXiv:2105.00703 (2021)

5. Ghazimatin, A., Balalau, O., Saha Roy, R., Weikum, G.: PRINCE: provider-side
interpretability with counterfactual explanations in recommender systems. In: Pro-
ceedings of the 13th International Conference on Web Search and Data Mining,
pp. 196–204 (2020)

http://arxiv.org/abs/2105.00703


Toward Explainable Recommendation 15

6. Peake, G., Wang, J.: Explanation mining: post hoc interpretability of latent factor
models for recommendation systems. In: Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, pp. 2060–2069
(2018)

7. Ribeiro, M.T., Singh, S., Guestrin, C.: “Why Should I Trust You?” Explaining the
Predictions of any Classifier. In: Proceedings of the 22nd ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, pp. 1135–1144
(2016)

8. Tan, J., Xu, S., Ge, Y., Li, Y., Chen, X., Zhang, Y.: Counterfactual explainable
recommendation. In: Proceedings of the 30th ACM International Conference on
Information & Knowledge Management, pp. 1784–1793. CIKM 2021, Association
for Computing Machinery, New York, NY, USA (2021). https://doi.org/10.1145/
3459637.3482420

9. Tran, K.H., Ghazimatin, A., Saha Roy, R.: Counterfactual explanations for neural
recommenders. In: Proceedings of the 44th International ACM SIGIR Conference
on Research and Development in Information Retrieval, pp. 1627–1631 (2021)

10. Verma, S., Dickerson, J., Hines, K.: Counterfactual explanations for machine learn-
ing: a review. arXiv preprint arXiv:2010.10596 (2020)

11. Wang, X., Chen, Y., Yang, J., Wu, L., Wu, Z., Xie, X.: A reinforcement learning
framework for explainable recommendation. In: 2018 IEEE International Confer-
ence on Data Mining (ICDM), pp. 587–596. IEEE (2018)

12. Xiong, K., et al.: Counterfactual review-based recommendation. In: Proceedings
of the 30th ACM International Conference on Information & Knowledge Manage-
ment, pp. 2231–2240 (2021)

13. Zhang, Y., Lai, G., Zhang, M., Zhang, Y., Liu, Y., Ma, S.: Explicit factor models for
explainable recommendation based on phrase-level sentiment analysis. In: Proceed-
ings of the 37th International ACM SIGIR Conference on Research & Development
in Information Retrieval, pp. 83–92 (2014)

14. Zhou, Y., Wang, H., He, J., Wang, H.: From intrinsic to counterfactual:
on the explainability of contextualized recommender systems. arXiv preprint
arXiv:2110.14844 (2021)

15. Zhou, Y., et al.: Explainable hyperbolic temporal point process for user-item inter-
action sequence generation. ACM Trans. Inf. Syst. 41, 1–26 (2022)

https://doi.org/10.1145/3459637.3482420
https://doi.org/10.1145/3459637.3482420
http://arxiv.org/abs/2010.10596
http://arxiv.org/abs/2110.14844


Online Volume Optimization
for Notifications via Long Short-Term

Value Modeling

Yuchen Zhang1, Mingjun Zhao2, Chenglin Li2, Weiyu Tou1, Haolan Chen1,
Di Niu2, Cunxiang Yin1(B), Yancheng He1, and Fei Guo1

1 Tencent Inc., Shenzhen, China
{ericyczhang,raintou,haolanchen,jasonyin,collinhe,richardfguo}@tencent.com

2 University of Alberta, Edmonton, Canada
{zhao2,ch11,dniu}@ualberta.ca

Abstract. App push notifications are an essential tool for app develop-
ers to engage with their users actively and provide them with timely and
relevant information about the app. However, determining the proper
volume of notifications sent to each user is a key challenge for improving
user experience, particularly for new users whose preferences on push
notifications are unknown. In this paper, we address the problem of app
notification volume optimization for newly onboarded users and propose
a systematic approach to solve this problem. We incorporate a multi-task
learning technique to accurately modeling both the short-term and long-
term effects of different volumes of push notifications, and utilize online
linear programming to achieve real-time notification allocation with vol-
ume constraints. We have conducted both offline and online experiments
to evaluate the effectiveness of our method, and the results demonstrate
that our approach dramatically improves multiple core metrics of the
user experience, such as daily active users.

Keywords: Notification Volume Optimization · Long-Term Value
Model · Online Linear Program

1 Introduction

Nowadays, the competition among different apps has become increasingly fierce
with the rapid development of the mobile Internet. Attracting users with infor-
mation of their interest into persistent app users has become a fundamental
challenge. Push notifications are one of the most important channels because
they allow apps actively push content to users and guide them to consume and
experience the app’s product, with the goal of improving business metrics such
as daily active users (DAU) and monthly active users (MAU).

One of the biggest challenge in a practical notification system is to deter-
mine the optimal number of notifications to send to each user. On the one hand,
sending more notifications can increase user engagement with the app. However,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. Kashima et al. (Eds.): PAKDD 2023, LNAI 13937, pp. 16–28, 2023.
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some users, especially those just onboard with no attachment to the app, may
become annoyed by excessive notifications and either turn them off or uninstall
the app. On the other hand, many cellphone manufacturers have begun setting
limits on the daily volume of push notifications. In this context, developing intel-
ligent algorithms to optimize notification volume for different users to maximize
business targets becomes a pressing need. Existing studies on the notification
volume optimization problem often focus on short-term metrics such as click-
through rate (CTR) or other business targets using traditional machine learning
models [2,7,11,16], or on long-term business targets using reinforcement learning
[3,4,10,12,15].

However, the problem of notifications for new users has not been adequately
addressed in previous work. Many existing models are inefficient or even inap-
plicable due to the lack of information about new users, such as their interests.
In this paper, we propose a systematic approach to solve the notification volume
optimization problem for new users. In order to fully exploit the potential of
push notifications and avoid excessive usage, we design a multi-task network to
accurately model both the short-term and long-term rewards of different volume
of push notifications. Additionally, we incorporate an online linear programming
algorithm to achieve near real-time optimization of the allocation of the limited
notification volumes to each user. Our proposed method has been deployed in
the Tencent Mobile QQ Browser (QB), involving over 100 million active users,
and currently serves as the main notification strategy. The results of offline
experiments and online A/B tests demonstrate our method greatly improves the
business target via optimizing the strategy of sending notifications to new users.

The contributions of this work are summarized as follows:

– To the best of our knowledge, this is the first attempt to consider long short-
term values when solving notification volumes optimization, and we proposed
a volumes-specified multi-task model called MMOE-ATT.

– We incorporate online linear programming to solve decision policy in real-time
and achieve the optimal total reward under the limited volume constraint.

– The proposed push notification optimization method has been applied to the
Tencent Mobile QQ Browser user onboarding strategy, generating business
benefits.

2 Related Work

Predicting positive responses to push notifications is a well-defined problem and
is most relevant to our work. As senders, we can build models to predict CTR
for each user on push notifications and leverage them to decide the volume. If
users like to interact with push notifications, we can send them more frequently.
But there are still several challenging issues to address, as described in [14].
First, a proper objective function is essential. Second, increasing or decreas-
ing volume typically has a complicated return on the objective function, so
the framework must be able to leverage models to capture this effect. Third,
the optimization algorithm must be very efficient and scalable to handle many
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users. Recently, LinkedIn proposed the problem of email volume optimization
for large-scale online services [2]. This paper presents the strategy of optimizing
notifications to balance various utilities, such as engagement and send volume, by
formulating the problem using constrained optimization. To guarantee the fresh-
ness of push notifications, they implemented the solution in a stream computing
system in near real-time. Zhao proposed a novel machine learning approach that
has been deployed to production at Pinterest [16]. This novel approach computes
weekly notification volume for each user such that long-term user engagement
is optimized and a global volume constraint is met. This significantly reduced
notification volume and improved CTR of notifications and site engagement met-
rics compared with the previous machine learning approach. An adaptive mobile
notification scheduling, which detects opportune timings based on mobile sensing
and machine learning, has been proposed to alleviate users’ limited attentional
resources [11]. As we will explain in the following sections, there are a few lim-
itations of these approaches, which we aim to improve in our new framework.
Besides the difficulty of push notification volume optimization, We can never pre-
dict the requests generated by the pacer in production. The existing approach
for new users, which is the focus of this paper, increases uncertainty. Previous
work fails to address this challenge, so we introduce the OVOLS framework to
address this weakness.

3 Preliminaries

This section discusses the definition and meaning of the variables used in the
following work. Table 1 shows the variables used in this paper and their corre-
sponding interpretations.

Table 1. Variables used in this paper and corresponding explanations

Variables Explanations

I the set of users, described in this paper is the set of new users in QB

i useri, i ∈ I

t time, this paper indicates the hour

μi,t click-through rate for useri at time t

nt the number of push notifications before time t

ni,t the number of push notifications for useri before time t

l(i, ni,t) long-term value for useri on condition of ni,t

α, β, γ parameters to control the importance of each objective in reward r

ri,t reward function for useri at time t

B constraint on the absolute number of push notifications

bt the total number of push notifications before time t

π decision policy
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We depict the definition of the problem proposed in this paper as follows.
Given the total number of push notifications constraint B, the objective is to
find a decision policy π that maximizes the total rewards, which can be expressed
formally as Eq. 1. Decision policy will be applied to each user’s push delivery at
each time, only containing 0 or 1, that is, sending notifications or not, and the
aggregate decision for a user is the result of push notifications volume optimiza-
tion.

max
π(i,t)

∑

i

∑

t

π(i, t) ∗ ri,t

s.t.
∑

i

∑

t

π(i, t) ≤ B

where π(i, t) ∈ {0, 1},∀i, t.

(1)

4 Methods

In this section, we introduce the (Online Volume Optimization for Notifications
via Long Short-Term Value Modeling) OVOLS method proposed in this paper to
generate the volume of push notifications for new users through online linear pro-
gramming and long-term value modeling. The challenge of optimizing the volume
of push notifications for new users lies in balancing exploration and exploitation,
as well as matching long-term value goals. We propose an optimization frame-
work for production that has been applied to the new users at QB and has
produced stable improvement. Figure 1 shows the general flow of the framework,
which consists of three main components, long-term value model, short-term
value, and online linear programming. The following subsections explain each
component in detail.

Users

Long Term
Value Model

Linear 
Program

Short Term
Value

Online
Decision

Push
Notifications

User
Feedback

Dual Variables

Decision Results

Update daily

Update hourly

Reward Store

Online Linear Program

Fig. 1. OVOLS framework in Tencent Mobile QQ browser.

4.1 Short-Term User Value Modeling

New users reveal fewer feedback features and less interaction in the push system
than existing users, such as their interests. In this case, some recommendation
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or decision systems relying on feedback features may bring varying performance
across new users. For example, the system will converge quickly on new users
with abundant feedback features. In contrast, users with fewer feedback features
will perform poorly or even not get traffic or volume. Generally speaking, the
industry gives new users a fixed amount of traffic for exploration during the cold
start period in case the system discriminates against them, i.e., a fixed volume is
given to new users in our system, which is the previous practice. The mentioned
problem of new users is a kind of Exploration-Exploitation (EE) problem. An
imbalance between exploration and exploitation will lead the system into two
extremes. How to balance the two directions has been widely studied. We follow
Upper Confidence Bound (UCB) [6] approach to solving the problem to meet
short-term goals, and the short-term value of rshort

i,t can be described as the
following Eq. 2

rshort
i,t = μi,t +

√
2ln(nt)

ni,t
(2)

4.2 Long-Term User Value Modeling

Our long-term user value model is a multi-task model, which contains two tasks
that reflect the long-term value of users, open rate, and logins(number of days
users are active in a period, and this paper uses seven days as the period). Many
push systems tend to greedily push content to users to improve short-term targets
such as CTR and DAU. For example, increasing the number of push notifications
may increase DAU. However, some users prefer limited or fewer notifications and
might turn off notifications, which greatly jeopardizes the long-term goals and
reduces the opportunities to engage with users, especially for new users.

Figure 3 shows the correlation between the volume of push notifications and
the open rate for new users. Regardless of the number of push notifications sent,
the open rate decreases after several days. Fourteen days after a new user enters
the app, accompanied by 15 push notifications per day, the open rate drops from
97% to 91%. Meanwhile, with the increase in volume, the open rate will also
decrease, which confirms that some users will turn off notifications when there
are too many push notifications. Considering DAU as our primary business goal,
the long-term value model will fit logins. It will also be a fundamental metric
with the long-term impact of open rate. The target l of the long-term value
model can be defined as the following Eq. (3):

l(i, ni,t) = logins(i, ni,t) ∗ openRate(i, ni,t)c, (3)

where logins(i, ni,t) denotes the number of active days on condition of receiving
ni,t push notifications within seven days, and openRate(i, ni,t) indicates whether
the user turns on the push notification after seven days. Both targets are com-
bined by a control parameter c to obtain the final predicted value of the long-term
value model. Long-term value contains two different tasks, so long-term value
models can also be considered multi-task learning.
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Fig. 2. MMoE and MMoE-ATT structure.

Figure 2(a) shows the structure of the MMoE, a multi-task model, which
contains a shared expert network, a gating structure, and a multi-task specified
tower. As described in Fig. 3, the volume significantly impacts the long-term
value. Existing multi-task models do not consider the impact of certain fea-
tures on the task but associate all inputs with the task and obtain the gating
parameters. To capture the impact of certain features on different tasks and to
strengthen the role played by these features in the model. We propose a feature-
specified MMOE-ATT model, as described in Fig. 2(b). Comparing the Input of
the MMOE, we remove the volume feature to get Input*, then take the volume
to make scaled dot-product attention with Input* to get the gating parameters
for subsequent.

Fig. 3. The open rate of notifications for new users under different volume.
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4.3 Online Linear Program

Considering short-term benefits and long-term value, we defined the reward func-
tion ri,t as Eq. 1. From our perspective, it measures the reward of sending the
notification and reflects the tendency of sending it. Generally, there are some
constraints on the daily push volume. For example, for the new users, the daily
push volume is less than B. Combined with constraint B and a time-related
reward ri,t, we transform the problem in this paper into an online linear pro-
gramming(OLP) problem

ri,t = αμi,t + β

√
2ln(nt)

ni,t
+ γl(i, ni,t) (4)

We adopt the Near-Optimal Algorithm for the OLP problem proposed by
[1]. Let λt be the dual variable for each time t, the following allocation principle
is easily derived

π(i, t) =

{
1, if(ri,t ≥ λt−1)
0, otherwise

(5)

Once we know the allocation rules, when the online request arrives, a push
notification is sent to the user if the reward ri,t exceeds the dual price λt−1. The
calculation of λt is a small linear program, as shown below from Eq. (6) to (7),
which the solver calculates, and the calculation process is defined as λt = g(t, bt)

max
π(i,t)

∑

i

π(i, t) ∗ ri,t

s.t.
∑

i

π(i, t) ≤ bt

where π(i, t) ∈ {0, 1},∀i.

(6)

L(x, λ) =
∑

i

π(i, t) ∗ ri,t − λt(
∑

i

π(i, t) − bt) (7)

The pseudo-code of the decision-making policy is shown in the Algorithm
1, which mainly includes three steps. Initializing t and λ is the first step. We
can obtain the initial value of λ from the calculation result of the previous day.
The initial value of t depends on the system’s arrangement. For each time t, the
Algorithm 1 will iterate all users and calculate the reward function of user i.
According to the result derived from the above Eq. (5), when the reward is more
significant than λt−1, it will decide to send the current push; otherwise, it will
not. At the same time, parameters such as μi,t and ni,t are updated depending
on policy results. When the iterator for user polls at time t is completed, process
g solves the λt, which is a standard linear programming process that can be
solved by an APIs such as SciPy.
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Algorithm 1. Decision-making policy of push notifications
t ← t0; λt ← λ0

ni ← 0, ∀i; ni,t ← 0, ∀i, j; μi,t ← αi, ∀i, j
for t = t1, t2, t3... do

for i ∈ I do
if r ≥ λt−1 then

π(i, t) = 1
else

π(i, t) = 0
end if
ni,t+1 ← ni,t + π(i, t); ni ← ni + π(i, t)

end for
t ← t + 1; λt ← g(t, bt)

end for

5 Experiments

Datasets. The long-term value model relies on random (the daily number of
push notifications) experimental data for training, which can reflect the user’s
long-term value under different volume. However, the current push system’s deci-
sion policy on the quantity is a pre-defined result, which does not satisfy the
randomness. Before the experiment, we generated a random volume of push
notifications to some new users every day for a while. The specified number
was randomly determined when the user entered the app for the first time. By
accumulating these data, we finally received a dataset containing over 20k sam-
ples and the corresponding 27 features, with an average open rate of 0.918 and
average logins is 2.241 for the samples.

Measurements. For the offline part of the experiments, the long-term value
described in this paper contains logins and openRate, and their model perfor-
mance is evaluated by MSE and AUC, respectively. As for the online part of
the experiments, the business target DAU is the first to be considered, open
rate indicates the future reward, and CTR is an indirect metric to illustrate the
impact of the strategy on user feedback behavior.

Implementation Details. Implement our long-term value model through the
TensorFlow framework and scipy module solver for the LP problem. We followed
the best setup from their original paper for the multi-task learning model [8,9,13]
compared.

5.1 Compared Methods

Considering our contributions in this paper, we conducted offline and online
experiments and compared the methods described below.
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– Baseline Baseline method considering the fewer features and volume support
for new users, the mentioned above constraint B is divided equally among
users in our push system.

– Offline LP Suppose we set t to the day level. In that case, the solution
becomes an offline linear programming (offline LP), and the optimal daily
volume can be generated directly by the solver when the long-term value and
the fixed short-term reward are given in advance.We can convert ri,t to ri,ni

,
and the variables in the function r become i and ni instead of t.

– PID controller Proportional-integral-derivative controller (PID) [5] achieves
the effect of control traffic by fitting the error, given the constraint B and
the number of push notifications in real-time; the error is calculated by the
control function and then multiplied by ri,t to make decision.

– OVOLS-short, OVOLS-long, OVOLS OVOLS is the method proposed,
we remove the short-term component from ri,t to construct OVOLS-long, and
OVOLS-short is constructed by eliminating the long-term part.

– Multi-task Model Co-optimization of logins and open rate through a multi-
task model is a reasonable way. We compare three efficient multi-task models
in offline experiments, including ESMM, PLE, and MMOE.

5.2 Offline Experiments Results

A time-related short-term value is difficult to simulate by offline experiments,
while modeling long-term value can be evaluated by AUC and MSE with its cor-
responding ground truth. Therefore, for offline experiments, we mainly compare
the performance of the multi-task models on the dataset.

For multi-task models, we report various models’ AUC and MSE metrics,
which are the average over 10 runs. Table 2 shows the results of offline experi-
ments. A seesaw phenomenon appears in models like ESMM, making it outper-
form the baseline on some tasks but underperform on logins due to inter-task
correlation during training. Gating mechanisms alleviate this phenomenon by
adjusting the correlation across several tasks and features with a trainable gat-
ing parameter. MMOE and PLE exceeded the baseline by 2.043% and 2.947%
on two tasks by such mechanisms. As described above, for the MMOE-ATT
model, we introduced the volume feature and its corresponding attention score
with other features as gating parameters. Attention score resulted in the opti-
mal effect we obtained on the target of openRate, which exceeded the baseline of
2.286%; at the same time, there was no decrease in logins (compared to PLE).
Offline results and Fig. 3 illustrate the effect of the push volume on the push-
related target, such as DAU and CTR. The optimal performance demonstrated
by the MMOE-ATT model also shows the impact of our proposed enhanced
gating parameter through the attention mechanism.

5.3 Online A/B Test Results

We tested several of the compared methods described above and our proposed
method under different parameters through 7 days of online experiments. Every
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Table 2. Offline experiments performance on multi-task models

Models AUC MSE Multi-task Gain

openRate logins %Incr. in AUC %Incr. in MSE

Two DNNs 0.8225 0.02172 – –

ESMM 0.8303 0.02243 +0.948 −3.269

MMOE 0.8393 0.02112 +2.043 +2.762

PLE 0.8359 0.02108 +1.629 +2.947

MMOE-ATT 0.8413 0.02108 +2.286 +2.946

day, over 100k users activate the QB for the first time. Once they complete this
motion, our push system will group them into different experimental strategies,
including our proposed method and various compared methods.

The offline A/B tests are carried out in the production environment of the
QB. All the data in this section, such as DAU and CTR, are expressed as rela-
tive increments. Table 3 compares allocation algorithms and ablation studies for
the method proposed in this paper. The comparison metrics specifically include
DAU, CTR, and open rate. Another factor to be considered for the multi-day
push policy for new users is the stability of the above algorithms. Therefore,
metrics in day1, day7, and average are all in our experimental data to illustrate
the performance of algorithm for new users.

Compared with several methods as shown in Table 3, the OVOLS proposed
in this paper gets state-of-the-art in both key metrics DAU and Open-Rate.
Although there are better methods in CTR, it is still optimal for our crucial
business metrics. Among these compared methods, PID outperforms the Offline
LP method, which may come from the time sensitivity of the PID. However, it
does not solve the volume as a linear programming problem. If users and con-
tent keep changing throughout the day, greedy decisions and nearly satisfying
the constraint are very robust practical approaches. Removing some components
from the reward function makes it possible to study the impact of different parts
on the method. An ablation experiment’s results are consistent with our assump-
tions about the functionality of each component. OVOLS-short performs very
strongly on the short-term metric (CTR) and poorly on the long-term metric
(open rate), or OVOLS-long has the opposite performance. The performance
trend of these two methods on DAU can also illustrate the difference between
each component. OVOLS-long is inferior on day1 but exceeds OVOLS-short on
day7, and an enormous difference may be observed through a more extended
online experiment.

We further tested the parameter sensitivity of the OVOLS, containing the
performance of the three parameters α, β, and γ on two key metrics. The most
significant variability in Fig. 4 is openRate, especially for γ, where γ controls
the importance of long-term value in rewards. openRate abrupt change with γ
illustrates the impact of our modeling of long-term. At the same time, the fact
that openRate is not sensitive to α and β also indicates that short-term values
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Table 3. Online A/B test results for several baseline methods and ablation study

Algorithm %Incr. in DAU %Incr. in CTR %Incr. in Open-Rate

day1 day7 avg day1 day7 avg day7

Baseline – – – – – – –

Offline LP +0.70 +0.47 +0.66 +5.19 +4.48 +4.78 +0.9321

PID control +0.89 +0.91 +0.90 +11.77 +10.16 +10.45 +0.9748

OVOLS-short +0.64 +0.64 +0.71 +9.51 +10.53 +10.75 –0.3813

OVOLS-long +0.31 +0.78 +0.68 +2.60 +1.76 +2.42 +0.9639

OVOLS +1.17 +0.91 +0.99 +9.43 +9.03 +10.12 +1.0407

have difficulty influencing long-term values. For DAU, the individual control
parameters appear to be coupled with each other, and the optimal parameters
need to be generated through online a/b tests. In our QB push system practice,
we usually constrain the lower limit of DAU increment and optimize openRate
on this basis, which will derive OVOLS with parameters α = 0.2, β = 0.2, and
γ = 0.6 is our optimal strategy applied to our push system.

Fig. 4. Experimental results of control parameters(α, β, γ) in reward function r on
DAU and open rate

6 Conclusions

We introduced a novel framework optimizing push notification volumes for new
users. The proposed method alleviates the lack of feedback features for new users
and further optimizes long-term values. OVOLS constructs a long-term value
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training component and a dual variables calculation part to form an online deci-
sion system applied to production. Furthermore, offline experiments, online a/b
tests, and long-term observations in QB have shown that OVOLS significantly
outperforms other baseline methods.
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Abstract. An uncertain geo-referenced transactional database repre-
sents the probabilistic data produced by stationary spatial objects
observing a particular phenomenon over time. Useful patterns that can
empower the users to achieve socio-economic development lie hidden
in this database. Finding these patterns is challenging as the exist-
ing frequent pattern mining studies ignore the spatial information of
the items in a database. This paper proposes a generic model of Geo-
referenced Frequent Patterns (GFPs) that may exist in an uncertain
geo-referenced transactional database. This paper also introduces two
new upper-bound constraints, namely “neighborhood-aware prefix item
camp” and “neighborhood-aware expected support”, to effectively reduce
the search space and the computational cost of finding the desired pat-
terns. An efficient neighborhood-aware pattern-growth algorithm has
also been presented in this paper to find all GFPs in a database. Exper-
imental results demonstrate that our algorithm is efficient.

Keywords: frequent patterns · uncertain data · geo-referenced series

1 Introduction

An uncertain geo-referenced transactional database is a basic form of a spa-
tiotemporal database. It represents the probabilistic data generated by station-
ary spatial items observing a particular phenomenon over time. Many applica-
tions naturally produce this data. Examples include air pollution data gathered
by ground monitoring stations, raster data produced by satellites, and traffic
congestion data collected by sensors located at specified fixed locations in a road
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network. However, crucial information that can facilitate the users to achieve
socio-economic development lies hidden in this data. Previous works [3] explored
clustering and classification techniques to discover interesting information in this
data. This paper focuses on finding valuable patterns hidden in this data.

Frequent pattern mining [2,9] involves finding all frequently occurring pat-
terns in a transactional database. Several algorithms [1,7,8] have been described
in the literature to find these patterns effectively in an uncertain transactional
database. However, these studies have found limited practicality in spatial infor-
matics due to the following limitation: “The basic model of frequent pattern
implicitly assumes that the spatial information of the items, if any, will not
determine the interestingness of a pattern in the data. However, this assumption
is too restrictive and often does not reflect reality, as the items’ spatial infor-
mation typically influences the interestingness of a pattern.” With this motiva-
tion, this paper focuses on finding a class of user interest-based patterns, called
geo-referenced frequent patterns (GFPs), that may exist in an uncertain geo-
referenced transactional database.

A GFP represents a set of neighboring items (or an area) in which a particular
phenomenon was frequently observed in a database. Thus, there exists value in
finding these patterns in real-world databases. However, finding these patterns
is a non-trivial and challenging task due to the following reasons:

1. The itemset lattice represents the search space of pattern mining. Thus, the
size of this search space is 2n − 1, where n represents the total number of
items within the database. We must explore new upper-bound measures to
find all GFPs in an itemset lattice effectively. The reason is existing upper-
bound measures [1] for frequent patterning, say tubeP [7] and prefix item cap
[8], ignore the spatial information of the items.

2. Existing studies [1,9] find frequent patterns by performing the conventional
breadth or depth-first search on the itemset lattice. Unfortunately, these con-
ventional search approaches were found to be inadequate for finding GFPs
effectively. Thus, we need to explore alternative search techniques to reduce
the computational cost of finding the GFPs.

The contributions of this paper are as follows. First, this paper proposes a
generic model of GFPs that may exist in an uncertain (binary) geo-referential
transactional database. Our model is generic as it facilitates us to capture spa-
tial items of heterogeneous shapes, such as pixels, points, lines, and polygons.
Second, we introduce two novel upper-bound constraints, namely ‘neighborhood-
aware prefix item cap’ and ‘neighborhood-aware expected support,’ to reduce the
search space and the computational cost of finding the desired patterns. Third,
we explore a new search technique, namely ‘neighborhood-aware pattern-growth
technique,’ and present an efficient depth-first search algorithm to find the com-
plete set of GFPs in a database. We call our algorithm Geo-referential Frequent
Pattern-growth (GFP-growth). Experimental results demonstrate that our algo-
rithm is both memory and runtime efficient.

The rest of the paper is organized as follows. Section 2 describes related work
on finding frequent patterns in uncertain databases and spatiotemporal pattern
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analysis. Section 3 describes a proposed model of GFPs in a database. Section 4
presents the GFP-growth algorithm. Section 5 reports the experimental results.
Finally, in Sect. 6, we conclude and discuss future research.

2 Related Work

Agrawal et al. [2] described frequent pattern mining as a key intermediary step
to discover association rules in a transactional database. Several algorithms [9]
have been described to find these patterns in certain transactional databases.
Chui et al. [4] extended the frequent pattern model to discover regularities in
an uncertain transactional database. Since then, several algorithms (e.g., PUF-
growth [8], CUFP-growth, TubeP, TubeS [7], DISC, and BLIMP [1]) have been
described to find these patterns in uncertain transactional databases. As GFPs
are a subset of frequent patterns, we can develop a näıve geo-referential frequent
pattern mining algorithm by extending anyone of the existing frequent pattern
mining algorithm. The näıve algorithm involves finding all frequent patterns in a
geo-referenced transactional database and selecting a subset of frequent patterns
representing GFPs. Unfortunately, this näıve algorithm was found to be highly
inefficient due to its increased search space and mining costs.

Identifying spatiotemporal association rules in spatiotemporal databases has
received considerable attention from researchers [3,6]. These algorithms typically
segment the data over space and time using a clustering algorithm and apply
traditional association rule mining algorithms on each cluster to find interesting
associations between them. The limitations of these studies are as follows: (i)
These studies suffer from an open problem of determining the total number
of clusters. (ii) Clustering itself is a computationally expensive process. (iii)
Association rules across the multiple clusters (or subsets of the data) will be
completely missed, and (iv) Too many input parameters must be specified by
the user to carry out both clustering and association rule mining algorithms. The
proposed model does not rely on the clustering of spatial items. Consequently,
our model does not suffer from any of the above-mentioned limitations.

Veena et al. [10] recently studied the problem of finding fuzzy geo-referenced
periodic-frequent patterns in a certain quantitative geo-referenced time series
database. It has to be noted that this work ignores the uncertain nature of the
geo-referenced transactional (or time series) data. Overall, the proposed model
of GPFs is novel and distinct from existing studies.

3 Proposed Model

Let I = {i1, i2, · · · , in}, n ≥ 1, be a set of items. A location database,
denoted as LD, is a collection of items and their coordinates. That is, LD =
∪ij∈I(ij , Coorij ), where Coorij represent the set of coordinates of an item ij ∈ I.
Please note that the coordinates of an item can represent a point, a line, or
a polygon. Let X ⊆ I be an itemset (or a pattern). A pattern containing k
number of items is called a k-pattern. A uncertain transaction, ttid, consists of
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Table 1. Uncertain database

Tid Transaction

1 q(0.1) r(0.8) s(0.9)

2 p(0.7) r(0.7) s(0.1)

3 p(0.8) q(0.6) r(0.4)

4 r(0.3) s(0.4) t(0.9)

5 q(0.3) r(0.5) s(0.6) t(0.4)

6 p(0.6) q(0.5) r(0.7) s(0.9) t(0.9)

7 p(0.5) q(0.3) r(0.4) s(1.0)

8 p(0.9) r(0.4) s(0.7) t(0.5)

9 p(0.2) q(0.3) r(0.4) s(0.5)

10 p(0.4) q(0.8) r(0.9) s(0.8) t(0.9)

Table 2. Locations

Item Point

p (9, 4)

q (5, 1)

r (2, 8)

s (4, 1)

t (5, 3)

Table 3. Neighbors

item Neighbors

p −
q s, t

r −
s q, t

t q, s

Table 4. Uncertain frequent patterns and geo-referenced frequent patterns generated
from Table 1. The terms ‘FP’ and ‘GFP’ denote frequent pattern and geo-referenced
frequent pattern, respectively

Pattern Support FP GFP

p 4.1 � �
q 2.9 � �
r 5.5 � �
s 5.8 � �
t 3.6 � �
pr 2.23 � ✗

Pattern Support FP GFP

ps 2.16 � ✗

qr 1.78 � ✗

qs 1.81 � �
rs 3.44 � ✗

rt 2.11 � ✗

st 2.48 � �

a transaction identifier (tid) and a pattern Y . That is, ttid = (tid, Y ). More
importantly, each item ik ∈ Y is also associated with an existential probability
value P (ik, ttid) ∈ (0, 1), which represents the likelihood of the presence of ik in
ttid. A uncertain transactional database, UTDB = {t1, t2, · · · , tm}, m ≥ 1.

Example 1. Let I = {p, q, r, s, t} be a set of fixed sensors (or items). A hypo-
thetical uncertain transactional database constituting these items is shown in
Table 1. The location database storing the spatial information of these items is
shown in Table 2. The set of items p and r, i.e., {p, r} (or pr, in short) is a
pattern. This is a 2-pattern as it contains only two items.

Definition 1 (Expected support of pattern X in a transaction). The exis-
tential probability of X in ttid, denoted as P (X, ttid), represents the product of
corresponding existential probability values of all items in X when these items
are independent. That is, P (X, ttid) =

∏

∀ij∈X

P (ij , ttid). The expected support of

X in UTDB, denoted as expSup(X) =
m∑

tid=1

P (X, ttid).



Discovering Geo-referenced Frequent Patterns 33

Example 2. The pattern pr occurs in transactions with tids of 2, 3, 6, 7, 8, 9, and
10. The existential probability of pr in the second transaction, i.e., P (pr, t2) =
P (p, t2) × P (r, t2) = 0.7 × 0.7 = 0.49. Similarly, P (pr, t3) = 0.32, P (pr, t6) =
0.42, P (pr, t7) = 0.2, P (pr, t8) = 0.36, P (pr, t9) = 0.08, P (pr, t10) = 0.36. The
expected support of pr in the entire database, i.e., expSup(pr) = 0.49 + 0.32 +
0.42 + 0.2 + 0.36 + 0.08 + 0.36 = 2.23.

Definition 2 (Frequent pattern X). A pattern X is said to be frequent if
expSup(X) ≥ minSup, where minSup represents the user-specified minimum
support value.

Example 3. If the user-specified minSup = 1.6, we consider pr a frequent pattern
because expSup(pr) ≥ minSup. Similarly, qs will also be considered as a fre-
quent pattern because expSup(qs) ≥ minSup. The basic frequent pattern model
implicitly assumes that both the patterns, i.e., pr and qs, are equally interesting
irrespective of their items’ spatial locations. However, the user may consider pr
an uninteresting pattern because both items are far apart in a coordinate system
(see Table 2.) In the next definition, we try to prune such uninteresting frequent
patterns whose items are far apart.

Definition 3 (Geo-referenced frequent pattern X). The frequent pattern
X is said to be a GFP if the maximum distance between any two of its items
is less than or equal to the user-specified maximum distance (maxDist) value.
That is, X is a geo-referential frequent pattern if max(dist(ip, iq)|∀ip, iq ∈ X) ≤
maxDist, where dist() is a distance function that satisfies the commutative prop-
erty. The Euclidean and Geodesic are some of the popular distance-measuring
functions that satisfy the commutative property.

Example 4. If Euclidean is considered the distance function, then the dis-
tance between the items p and r, i.e., dist(p, r) = 8.06. If the user-specified
maxDist = 5, then we consider the frequent pattern pr as not a geo-referential
frequent pattern as max(dist(p, r)) > maxDist. In contrast, the pattern qs is
considered as a geo-referential frequent pattern as max(dist(q, s)) ≤ maxDist.
The complete set of frequent patterns and geo-referential frequent patterns dis-
covered from Table 1 are shown in Table 4. It can be observed that several
frequent patterns fail to be GFPs if we consider the spatial information of the
items.

Definition 4 (Problem definition). Given an uncertain transactional
database (UTDB), location database (LD), the user-specified minimum support
(minSup) and maximum distance (maxDist) constraints, find the complete set
of GFPs that satisfy the maxDist and minSup values. Please note that minSup
can also be specified in the percentage of UTDB.

4 Proposed Algorithm

4.1 Basic Idea: Potential Geo-referenced Frequent Patterns

The search space size to find GFPs in a database is 2n − 1, where n represents
the total number of items in a database. We explore the concept of “neighbors”
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and introduce two new tighter upper-bound constraints to reduce this search
space effectively.

Definition 5 (Neighbors of an item ik). The neighbors of an item ik ∈ I,
denoted as Nik , represent the items whose distance is within the maxDist value.
That is, Nik ⊆ I such that ∀ix ∈ Nik , dist(ix, ik) ≤ maxDist.

Example 5. The neighbors for the item s in Table 1 are q and t. It is because
dist(q, s) ≤ maxDist and dist(t, s) ≤ maxDist. Thus, Ns = {q, t}. The neigh-
bors for all items in Table 1 are shown in Table 3.

Definition 6 (Neighborhood-aware prefix item cap). Let ttid.Y = {i1, i2,-
· · · , ik, · · · , il}, 1 ≤ k ≤ l ≤ n be a transaction in a database. The neighborhood-
aware prefix item cap of an item ik, denoted as NPIcap(ik, ttid), represents the
product of P (ik, ttid) and the highest existential probability value among all its
neighboring items from i1 to ik−1 in ttid. That is, NPIcap(ik, ttid) = P (ik, ttid)×
max(P (iy, ttid)|∀iy ∈ {i1, i2, · · · , ik−1} ∩ Nik)).

Example 6. Consider the first transaction shown in Table 1. The neighborhood-
aware prefix item cap of s in this transaction, i.e., NPIcap(s, t1) = P (s, t1) ×
max(P (iy, t1)|∀iy ∈ {q, r} ∩ {q, t}) = P (s, t1) × P (q, t1) = 0.9 × 0.1 = 0.09. The
set of items {q, r} in the above equation represents the items that have appeared
before s in the first transaction. The set of items {q, t} in the above equation
represents the neighboring items of s in the entire database.

Definition 7 (Neighborhood-aware expected support cap of X). The
neighborhood-aware expected support cap of X, denoted as NexpSupcap(X), is
defined as the sum of all neighborhood-aware prefix item caps of ik in all the

transactions containing X, i.e., NexpSupcap(X) =
m∑

j=1

{NPIcap(ik, tj)|X ⊆ tj}.

Example 7. In the pattern qs, s is the last (or kth) item. In Table 1, this pattern
appears in the transactions whose tids are 1, 5, 6, 7, 9 and 10. The item cap of s
in t1, i.e., NPIcap(s, t1) = 0.09 (see Example 6). Similarly, NPIcap(s, t5) =
0.18, NPIcap(s, t6) = 0.45, NPIcap(s, t7) = 0.3, NPIcap(s, t9) = 0.15 and
NPIcap(s, t10) = 0.64. Thus, the neighborhood-aware expected support cap
of qs in the entire database, i.e., NexpSupcap(qs) = 0.09 + 0.18 + 0.45 + 0.3 +
0.15 + 0.72 = 1.89. Since the NexpSupcap(qs) ≥ minSup, we consider qs as a
potential GFP whose supersets may also be GFPs.

The neighborhood-aware expected support cap (see Property 1) satisfies the
downward closure property. Hence, we employ this measure to reduce the search
space effectively.

Definition 8 (Potential geo-referenced frequent pattern X). The pat-
tern X is said to be a potential geo-referenced uncertain frequent pattern if
NexpSupcap(X) ≥ minSup and dist(X) ≤ maxDist.
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Example 8. Continuing with the previous example, qs is a potential geo-
referenced frequent pattern because NexpSupcap(qs) ≥ minSup and q is a
neighbor of s.

Since potential geo-referenced frequent patterns satisfy the downward closure
property, we can employ a conventional breadth-first search or depth-first search
technique to find all GFPs. However, these conventional search techniques were
inefficient as they do not effectively utilize the neighborhood information of the
items. In this context, we propose an alternative neighborhood-aware depth-first
search technique (or neighborhood-aware pattern-growth technique) to find all
GFPs effectively.

Property 1 (The downward closure property [2,8]). If Y is a potential geo-
referenced frequent pattern, then ∀X ⊂ Y and X 
= ∅, X is also a potential geo-
referenced uncertain frequent pattern. That is, if NexpSupcap(Y ) ≥ minSup
and ∀X ⊂ Y and X 
= ∅, NexpSupcap(X) ≥ minSup.

Definition 9 (Neighborhood-aware pattern-growth technique). Let Tr be
a tree generated from an uncertain transactional database. The prefix paths of
an item ij in Tr represents the conditional pattern base. Existing pattern mining
algorithms construct conditional pattern bases for an item ij by considering all
other items in its prefix paths. This approach makes GPF-mining ineffective. To
tackle this problem, we propose a neighborhood-aware pattern-growth technique
that involves constructing conditional pattern bases for an item ij by considering
only its neighboring items in its prefix paths. (This topic is further discussed in
the latter parts of this paper.)

4.2 GFP-growth

The proposed algorithm involves the following three steps: (i) compress the
given uncertain transactional database into a Geo-referenced Frequent Pattern
tree (GFP-tree), (ii) find all potential GFPs by recursively mining the GFP-tree
using NexpSupcap constraint, and (iii) discover all GFPs from potential GFPs
by scanning the database. Before we describe these three steps, we describe the
structure of the GFP-tree.

Step 1: Construction of GFP-tree. Since GFPs satisfy the downward closure
property, geo-referenced frequent items (or 1-length patterns) plays a key role in
the efficient discovery of GFPs in an uncertain database. These 1-length GFPs is
generated when scanning the database for the first time and stored in descending
order of their support, respectively. Let GFP -list denote the sorted set of 1-
length GFPs.

Next, we perform a second scan on the database and construct GFP-tree as
given in Algorithm 1. Figure 1 illustrates the step-by-step process of construct-
ing a GFP-tree by scanning the database. Please note that the node-links are
maintained between the items in GFP-tree for tree-traversal. In this paper, we
are not showing these links for brevity.
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Fig. 1. Constructing the GFP-tree by scanning the uncertain database. (a) After scan-
ning the first transaction. (b) After scanning the second transaction. (c) After scanning
the third transaction. (d) GFP-tree after scanning all the transactions in the uncertain
database.

Fig. 2. Mining GFP-tree. (a) branches containing item q. (b) conditionalGFP-tree of
q. (c) GFP-tree after pruning item q

Step 2: Finding Potential Geo-Referenced Frequent k-patterns. Poten-
tial geo-referenced frequent k-patterns, k ≥ 2, are generated by recursively min-
ing the GFP-tree using bottom-up search as shown in Algorithm 3. Consider item
q, which is the bottom-most item in the GFP-list. The branches containing q in
GFP-tree are shown in Fig. 2(a). Considering q as the suffix item, we construct
its neighborhood-aware conditional pattern base, say CPBq, by considering only
its neighboring items. The resultant CPBq is shown in 2(b). The neighborhood
expected support cap of r in CPBq is 1.89 (= 1.17+0.45+0.09+0.18). But the
r is not a neighbor of q, So r is removed from conditional GFP tree. The neigh-
borhood expected support cap of s is 1.89 (= 1.17+0.45+0.09+0.18). As s is a
neighbor of q, we declare qs as GFP and s is added to CPBq. The neighborhood
expected support cap of qs in CPBq is 1.89. As NexpSupcap(qs) ≥ minSup and
dist(qs) ≤ maxDist, we consider qs as a potential GFP. Similarly, the Neigh-
bourhood expected support cap of t is 1.35 (= 1.17 + 0.18). As t is a neighbor
of q, but the neighborhood expected support cap of qt in CPBq is 1.35. As
NexpSupcap(qt) < minSup, we do not consider qt as a potential GFP. The
conditional GFP-tree after removing the non-neighbors from CPBq is shown in
2(b). Once we complete the mining process of q, we prune it from the origi-
nal GFP-tree as shown in Fig. 2(c). Similar process is repeated for the remain-
ing items in the original GFP-tree to find all potential GFPs. This bottom-up
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neighborhood-aware pattern-growth technique is efficient as it reduces the search
space dramatically.

Algorithm 1. GFP-Tree (UTDB, GFP-list (1-length frequent patterns))
1: Create the root node in GFP-tree, Tree, and label it as “null”.
2: for each transaction t ∈ UTDB do
3: Select the frequent items in t and sort them in L order. Let the sorted list be

[e|E], where e is the first item with its existential probability value and E is the
remaining list. Call insert tree([e|E], tscur, T ree).

4: call GFP-growth (Tree, null);

Algorithm 2. insert tree([e|E], tscur, T )
1: while E is non-empty do
2: if T has a child N such that e.itemName �= N.itemName then
3: Create a new node N . Set N.itemName = e.itemName and N.expSupcap =

NPIcap(e.itemName, tscur). Let its parent link be linked to T . Let its node-
link be linked to nodes with the same itemName via the node-link structure.
Remove e from E.

4: else
5: update N.expSupcap+ = NPIcap(e.itemName, tscur);

Algorithm 3. GFP-growth (Tree, α, neighborList)
1: while item ij in the header of Tree do
2: Generate pattern β = ij ∪ α. Traverse Tree using the node-links of β, and

construct an array, TSβ , which represents the existential probability. Construct
β’s conditional pattern base by checking if item is in neighborList[ij ] and β’s
conditional GFP-tree Treeβ if NexpSup is greater than or equal to minSup.

3: if Treeβ �= ∅ then
4: call GFP-growth (Treeβ , β, neighborList);
5: Remove ij from the Tree.

5 Experimental Results

This section first shows that GFPs are an order of value smaller than the Fre-
quent Patterns (FPs) found in uncertain transactional databases, especially at a
low minSup value. Next, we show that GFP-growth is efficient in memory and
runtime compared to state-of-the-art frequent pattern mining algorithms, such
as PUF-growth, TubeP, and TubeS. Since PUF-growth outperformed the TubeP
and TubeS algorithm in most cases, we confined our experiments to GFP-growth
and PUF-growth algorithms for brevity.

Since no algorithm exists to find GFPs in an uncertain geo-referenced trans-
actional database, we show that GFP-growth is efficient by comparing it against
the PUF-growth [8]. GFP-growth and PUF-growth algorithms were written in
Python 3.7 and executed on a DELL 2U Tower server machine containing two
Intel(R) Xeon(R) Gold 6140 CPUs running at 2.30 GHz. This server machine
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has 32 GB of memory and runs on CentOS 7. The experiments have been con-
ducted on synthetic (T10I4D100K) and real-world (Pollution and Conges-
tion) databases.

The T10I4D100K is a sparse synthetic database generated using the proce-
dure described in [2]. The uncertain values were randomly assigned for every item
in a transaction. This database contains 1,00,000 transactions and 870 items. The
minimum, average, and maximum transaction lengths of this database are 1,
10, and 29, respectively. The Pollution [10] is a dense real-world database con-
taining 30 d of hourly pollution recordings of 1200 ground stations. Thus, this
database contained 720 transactions and 1200 items. This database’s minimum,
average, and maximum transaction lengths are 11, 460, and 971, respectively.
The Congestion is a high-dimensional sparse database provided by an anony-
mous company for Kobe, Japan, for July 2015. It contains 8,928 transactions
and 1,414 items (or road segments). The minimum, average, and maximum
transaction lengths of this database are 1, 58, and 337, respectively. It is to be
noted that in all of the above databases, uncertainty values were randomly set
between 0 to 1. The runtime is calculated in seconds, while the memory is cal-
culated in kilobytes. The code, databases, and other experimental results were
provided in [5] to verify the correctness of our experiments.

Figure 3(1)–Fig. 3(3) shows the number of FPs and GFPs generated in vari-
ous databases at distinct minSup values. In this experiment, the maxDist values
in the T10I4D100K, Congestion, and Pollution databases have been set at 60,
1, and 5, respectively. The following observations can be drawn from these fig-
ures: (i) Increase in minSup has decreased the number of UFPs and GFPs. It
is because many patterns have failed to satisfy the increased minSup value. (ii)
The total number of GFPs generated were relatively smaller than the total num-
ber of UFPs found at any minSup value. (iii) PUF-growth was unable to gener-
ate the patterns at low minSup values in congestion and pollution databases. In
contrast, GFP-growth could generate the desired patterns even at low minSup
values. Some of the interesting patterns discovered in congestion database are
shown in Fig. 4. These patterns represents the neighboring road segments in
which people have frequently faced traffic congestion. When such information is
visualized along with other data sources, say rainfall data of a typhoon inter-
polated along with real world database the produced information may found to
be useful to the users for various purposes, such as monitoring the traffic and
developing smart navigation systems.

Figure 3(4)–Fig. 3(6) shows the runtime requirements of PUF-growth and
GFP-growth algorithms over different databases at distinct minSup values. It
can be observed that GFP-growth is significantly faster than the PUF-growth. It
is because our pruning technique (see Definition 9) effectively reduced the search
space by avoiding all the extensions of patterns which are not at close distance.

Figure 3(7)–Fig. 3(9) shows the memory consumption of both PUF-growth
and GFP-growth algorithms over different databases at distinct minSup values.
The subsequent observation drawn from these figures is as follows: (i) Increase
in minSup has resulted in a decrease in the memory requirements of both PUF-
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Fig. 3. Number of patterns, Runtime, memory evaluation of algorithms PUF-growth
(FPs) and GFP-growth (GFPs) by varying minSup

growth and GFP-growth algorithms. It is because both algorithms have to spend
fewer resources to generate lesser number of FPs and GFPs. (ii) The memory
requirements of GPF-growth were smaller than that of PUF-growth as our algo-
rithm effectively prunes the search space.

At a fixed minSup, an increase in maxDist increases the number of GFPs,
while FPs remain the same. As a result, the runtime and memory requirements
of the GFP-growth algorithm increase with the increase in minSup. At a very
large maxDist value, both algorithms consume similar memory and runtime as
every GFP will also be a frequent pattern. Unfortunately, we were unable to
present the results with varying maxDist due to page limitations.
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Fig. 4. Interesting patterns discovered in Congestion data

6 Conclusions and Future Work

This paper has introduced a generic model to discover regularities in uncertain
geo-referenced transactional databases and also proposed an efficient depth-first
search algorithm named GFP-growth to find the complete set of GFPs from the
uncertain geo-referenced transactional databases. Two novel pruning techniques
have been introduced to reduce the search space and the computational cost of
finding interesting GFPs. We have pruned many uninteresting patterns by taking
into account the spatial information of the patterns, unlike the PUF-growth
algorithm. An in-depth examination of the proposed GFP-growth approach on
synthetic and real-world databases revealed that its memory and runtime are
efficient.

As part of future work, we would like to focus on reducing the search space
and extending it into uncertain data streams.
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Abstract. In the pursuit of accurate and scalable quantitative meth-
ods for financial market analysis, the focus has shifted from individual
stock models to those capturing interrelations between companies and
their stocks. However, current relational stock methods are limited by
their reliance on predefined stock relationships and the exclusive con-
sideration of immediate effects. To address these limitations, we present
a groundbreaking framework for financial market analysis. This app-
roach, to our knowledge, is the first to jointly model investor expecta-
tions and automatically mine latent stock relationships. Comprehensive
experiments conducted on China’s CSI 300, one of the world’s largest
markets, demonstrate that our model consistently achieves an annual
return exceeding 10%. This performance surpasses existing benchmarks,
setting a new state-of-the-art standard in stock return prediction and
multiyear trading simulations (i.e., backtesting).

Keywords: stock trend prediction · trading simulation · expectation
modeling

1 Introduction

The efficient-market hypothesis in traditional finance posits that stock prices
reflect all available market information, with current prices consistently trading
at their fair value [5]. Consequently, predicting future stock prices is challenging
without access to new information. However, markets are often less efficient in
reality [11], with stock market fluctuations driven by behavioral factors such as
expectations, confidence, panic, euphoria, or herding behavior. These inefficien-
cies enable the use of machine learning to predict future stock movements based
on historical trends.

Stock-affecting behavioral factors can be categorized into short- and long-
term factors. Factors like panic, euphoria, or herding behavior are typically short-
term, while subjective expectations and confidence tend to be long-term factors,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. Kashima et al. (Eds.): PAKDD 2023, LNAI 13937, pp. 45–57, 2023.
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only influencing stock prices imperceptibly over extended periods. These factors
do not solely impact individual stocks; their effects often spread to topically
related stocks, which share similarities across various explicit or latent dimen-
sions. Recent stock prediction works [14,15,21] utilize topic stocks to improve
prediction capabilities. However, most of these methods exhibit two key limita-
tions:

(1) Topics are typically assumed to be static and known beforehand. However,
real-world topics can change and new topics may emerge. For example, during the
COVID-19 pandemic, pharmaceutical companies investing in COVID vaccines
(e.g., Pfizer1 and Moderna2) experienced stock price fluctuations under the new
COVID topic.

Fig. 1. The return of Amazon and Facebook (Meta) stocks from 2021-05-03 to 2022-
07-08 with respect to their stock prices at 2021-05-03.

(2) Only the short-term impact between stocks is considered, neglecting the
long-term subjective expectations. Unlike analyst expectations, subjective expec-
tations are based on human psychology and behavior and can be irrational.
Figure 1 illustrates that Amazon and Facebook stock prices often correlate, and
previous methods might reason that a significant drop in Facebook’s price would
also lead to plummeting Amazon stocks. However, in the second half of 2021,
Amazon’s return was lower than Facebook’s, lowering investor expectations for
Amazon. Thus, when Amazon released an unremarkable financial report3 on
February 3, 2022, its stock rose 13.5
1 https://investors.pfizer.com/Investors/Stock-Info/default.aspx.
2 https://investors.modernatx.com/Stock-Info/default.aspx.
3 https://s2.q4cdn.com/299287126/files/doc financials/2021/q4/

business and financial update.pdf.

https://investors.pfizer.com/Investors/Stock-Info/default.aspx
https://investors.modernatx.com/Stock-Info/default.aspx
https://s2.q4cdn.com/299287126/files/doc_financials/2021/q4/business_and_financial_update.pdf
https://s2.q4cdn.com/299287126/files/doc_financials/2021/q4/business_and_financial_update.pdf
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In this paper, we introduce a novel attention-based framework for stock trend
prediction that simultaneously discovers topical relations between stocks and
models both the short-term impact and long-term subjective expectations of top-
ically similar stocks. To the best of our knowledge, our framework is the first
to:

– Model the influence of investors’ subjective expectations on stock prices.
– Automatically identify dynamic topics between stocks without making

assumptions or requiring additional knowledge.

Through comprehensive experiments against 16 well-established baselines,
we demonstrate that our method achieves the current state-of-the-art on the
Qlib [22] quantitative investment platform.

2 Related Work

The stock price prediction and stock selection problems can be easily formed as a
time series forecasting problem. Therefore, traditional and deep-learning-based
machine learning (ML) methods, especially those for sequence learning, have
been directly applied to these tasks are widely used by investment institutions.
Specifically, Qlib [22], a popular quantitative investment platform, benchmarks
models based on the following ML methods: multi-layer perceptron (MLP); Tab-
Net [1]; TCN [2]; gradient boosting models: CatBoost [12], LightGBM [8]; Recur-
rent Neural Network (RNN) based models: long short-term memory (LSTM) [6],
gated recurrent unit (GRU) [3], DA-RNN [13], AdaRNN [4]; and attention-based
models: Transformer [18], and Localformer [7]. To model the co-movement and
relations among stocks, some research, such as MAN-SF [15] and STHAN-SR
[14]), also adopted graph neural network methods like GCN [10] and GATs [19]
to mine the correlation between different stocks.

More recent models include those specifically designed for stock trading. Dou-
bleEnsemble [23] is an ensemble model which utilizes learning-trajectory-based
sample reweighting and shuffling-based feature selection for stock prediction.
ADD [16] attempt to extract clean information from noisy data to improve pre-
diction performances. Specifically, they proposed a method for separating the
inferential features from the noisy raw data to a certain degree using disentan-
glement, dynamic self-distillation, and data augmentation. Xu et al. assume that
inter-dependencies may exist among different stocks at different time series and
propose a method called IGMTF [20] to mine these relations. In their other work,
they propose HIST [21], a three-step framework to mine the concept-oriented
shared information and individual features among stocks.

We use most of the above-mentioned methods as baselines in our experiments.

3 Framework

3.1 Problem Definition

We formulate the stock trend prediction problem as a regression problem. Let
stock1, stock2, ..., stockn denote n different stocks. For each stock stockj on date
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i, the closing price is pricei
j . Given the historical information before date i, our

task is to predict the one-day return ri
j =

pricei
j−pricei−1

j

pricei−1
j

for each stock j on date

i. In the rest of this paper, we use ri to denote (ri
1, ri

2, ..., ri
n).

Fig. 2. Our model’s framework consists of: (a) Extracting Alpha360 features from raw
data: For each stock on a given day, we combine the opening price, closing price, highest
price, lowest price, trading volume, and volume-weighted average price (VWAP) into
a 6-D feature vector. We then concatenate this vector with similar 6-D vectors from
the preceding 59 days to form a 360-D feature vector. (b) The LSTM module processes
the extracted Alpha360 features to learn temporal representations. (c) The left half
of this section represents the topic module, which uses stock embeddings as input to
extract latent topics. The right half illustrates the expectations module, which takes the
Ei−1 output from the expectation LSTM in part (d) as an initial embedding, employs
attention with topics to update it to Êi−1, and feeds it back into the expectation LSTM
as input for day i. (d) The second LSTM module models the evolution of each stock’s
expectation.

3.2 Overview of the Framework

The architecture of our model is shown in Fig. 2. The model consists of three
jointly optimized modules: temporal stock representation (which aims to extract
temporal stock features), topic module (aims to discover the dynamic topics
based on the extracted features), and expectation module (aims to model the
subjective expectations for each stock). Below we describe each module in detail.

3.3 Temporal Stock Representation

The first step of our learning framework is to extract the Alpha360 features
[22] from the raw data. The Alpha360 is a 360-D feature vector that is widely
used in the quantitative investment domain. As shown in Fig. 2(a), for each
stock on each day, we combine the opening price, closing price, highest price,
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lowest price, trading volume and volume-weighted average price (VWAP) as a
6-D feature vector and concatenate it with similar 6-D vectors from the past 59
days to get a 360-D feature vector.

To extract the temporal representation of stocks, we adopt an LSTM layer
shown in Fig. 2(b)). Our framework is trained recursively by date: for each trad-
ing day i, the input is the Alpha360 features Hi of stock1, stock2, ..., stockn for
that day and the output of the LSTM layer is Si, which is comprised of si

1, si
2,

..., si
n, denoting the embeddings of each stock.

3.4 Topic Module

As mentioned before, the relations among stocks may evolve overtime, so our
framework needs to be able to capture the evolution of topics and discover new
topics each day. Figure 2 (c) shows the topic and expectation modules of our
framework.

First, for each day i, we initialize the n topic embeddings Ti = (ti1, ti2, ...,
tin) using the n stock embeddings Si = (si

1, si
2, ..., si

n). Then, we compute the
Tanimoto coefficient (T ) [17] between all pairs of tij1 (topic j1 in day i) and si

j2
(stock j2 in day i), for ∀j1, j2 ∈ [1, n] with the following equation:

T (tij1 , s
i
j2) =

tij1s
i
j2

‖tij1‖2 + ‖si
j2

‖2 − tij1s
i
j2

(1)

We define a function φi(si
j2

) that for each stock embedding, si
j2

, returns the
most similar topic index j1, except for its own topic (i.e., j1 �= j2) in date i,
based on the Tanimoto coefficient:

φi(si
j2) = arg max

j1

(
T (tij1 , s

i
j2), j1 �= j2

)
(2)

In the example shown in Fig. 2(c) (with the dashed lines) φi(si
1) = 1, φi(si

2) = 1,
φi(si

n) = n.
We further construct a set validi that contains “valid” topics for each day i,

i.e., those that are the most related to at least one stock:

validi =
{
x|∃j, x = φi(si

j)
}

(3)

This set denotes the topics we discovered for each day. Only if a topic tij1 is
the most similar topic to at least one stock, it will be include in this set, other
topics (e.g., ti2 in Fig. 2(c)) will be excluded from the following calculations.

To update each topic embedding tij1(j1 ∈ validi), we train the fully connected
layer with weight matrix Wt, bias matrix bt and activation function tanh to
aggregate the stock embeddings using the Tanimoto coefficient:

tij1 = tanh

⎛

⎜
⎝Wt

⎛

⎜
⎝

∑

φi(si
j2

)=j1

T (tij1 , s
i
j2)s

i
j2

⎞

⎟
⎠ + bt

⎞

⎟
⎠ (4)
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3.5 Expectation Module

The expectations of investors change over time and our framework needs to
take that into consideration. As shown in Fig. 2(d), we adopt an LSTM to
model the evolving expectations of each stock. Each Ei consists of n expectation
embeddings ei

1, ei
2, ..., ei

n, we assume that at the first timestamp, the investor’s
expectations are all decided by the stocks themselves, so the initial embedding
E1 = (e11, e

1
2, ..., e

1
n) are initialized as the n stock embeddings S1 = (s11, s

1
2, ..., s

1
n).

The expectation for one stock can also be affected by the performance of
other stocks under related topics. So for day i, we take the output Ei−1 =
(ei−1

1 , ei−1
2 , ..., ei−1

n ) of the LSTM and adopt an attention mechanism to learn
the importance of each topic j1 to the expectations:

α(tij1 , e
i−1
j2

) =
exp

(
T

(
tij1 , e

i−1
j2

))

∑
j∈validi exp

(
T

(
tij , e

i−1
j2

)) (5)

êi−1
j2

= tanh

⎛

⎝W 1
e ei−1

j2
+ W 2

e

⎛

⎝
∑

j1∈validi

α(tij1 , e
i−1
j2

)tij1

⎞

⎠ + be

⎞

⎠ (6)

where α(tij1 , e
i−1
j2

) measures the importance of topic j1 to the expectation of
stock j2, and the updated Êi−1 = (êi−1

1 , êi−1
2 , ..., êi−1

n ) then feed back to the
LSTM (d) as the input of day i.

3.6 Loss Function

The objective of our model is to predict the one-day return r of each stock. The
objective relies on three components: rstock, rtopic, and rexpectation.

The rstock and rexpectation are learnt from the temporal stock embeddings
and the expectation embeddings, respectively:

ri
stock = tanh (WstockSi + bstock) (7)

ri
expectation = tanh (WexpectationEi + bexpectation) (8)

To learn rtopic, we first learn the importance of each topic to the stocks using
a similar attention mechanism as the expectation module:

β(tij1 , s
i
j2) =

exp
(
T

(
tij1 , s

i
j2

))

∑
j∈validi exp

(
T

(
tij , s

i
j2

)) (9)

oi
j2 = tanh

⎛

⎝Ws

⎛

⎝
∑

j1∈validi

β(tij1 , s
i
j2)t

i
j1

⎞

⎠ + bs

⎞

⎠ (10)

where β(tij1 , s
i
j2

) measures the importance of topic j1 to the expectation of stock
j2 on day i. Note that different from the expectation module which includes the
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term W 1
e ei−1

j2
, here oi

j2
measures the impact of all the topics on the stock j2 on

day i, without considering si. This is because si is already included in rstock. We
use Oi to denote (oi

1, oi
2, ..., oi

n); rtopic is learnt as:

ri
topic = tanh

(
WtopicO

i + btopic

)
(11)

The predicted return r̂ is learnt by combining these three components:

r̂i = tanh
(
Wr̂r

i
stock + Wr̂r

i
topic + Wr̂r

i
expectation + br̂

)
(12)

The loss function of our model is defined as the mean squared error between
r̂ and r:

L =

∑
i∈[1,D]

(
ri − r̂i

)� (
ri − r̂i

)

D · n
(13)

where D corresponds to the number of trading days. Algorithm 1 shows the
pseudocode of our method.

Algorithm 1. Training pseudo-code
Input: H =

{
H1, H2, . . . , H|D|

}
: the Alpha360 features for each trading day

Parameters:
Θ : the initialized model parameters, epochs : the number of training epochs, η :
learning rate

Output: The predicted return r̂

1: for epoch ← {1, . . . , epochs} do
2: for i ← {1, . . . , D} do
3: Si ← LSTMb(Hi)
4: if t == 1 then
5: Ti ← Si

6: Ei ← Si

7: end if
8: T ← Calculate Tanimoto coefficient (Eq. 1)
9: validi ← Calculate the valid topic set according to T (Eq. 3)

10: Ti ← Aggregate information from Si according to T (Eq. 4)
11: α ← Calculate the attention weight (Eq. 5)
12: Êi ← Aggregate information from Ti according to α (Eq. 6)
13: Ei+1 ← LSTMd(Êi)
14: end for
15: Compute the stochastic gradients of Θ (Eq. 13)
16: Update model parameters Θ according to learning rate η and gradients.
17: end for
18: return the predicted return r̂



52 L. Wang et al.

3.7 Model Training

Our model is optimized by minimizing the global loss L. This was done using the
Adam optimizer [9]. The hyper-parameters are set as follows: the embedding size
is set to 128, the learning rate is set to 0.001, the training epoch is set to 300, the
dropout rate is set to 0.1. All experiments are run on a Lambda Deep Learning
2-GPU Workstation (RTX 2080) with 24 GB of memory, and the random seed
is set to 0 at the beginning of each experiment.

4 Experiments

4.1 Datasets

We run comprehensive evaluations of our framework on the China’s CSI 300
financial markets, from 2008 to 2022. We use the data from 01/01/2008 to
12/31/2014 as the training set, the data from 01/01/2015 to 12/31/2016 as the
validation set for hyper-parameter fine-tuning, and the data from 01/01/2017 to
07/10/2022 as the test set.

4.2 Baselines

We compare our framework with a comprehensive list of 16 well-known methods
which are widely used in the financial sector. These methods span six different
categories and are:

– Classic Models - MLP, TCN [2], GATs [19]
– Tabular Learning - TabNet
– Gradient Boosting Models - CatBoost [12], LightGBM [8]
– RNN-Based Methods - LSTM [6], GRU [3], DA-RNN [13], AdaRNN [4]
– Attention-Based Methods - Transformer [18], Localformer [7]
– Financial Prediction Methods - DoubleEnsemble [23], ADD [16], HIST

[21], IGMTF [20]

Note that although our method can mine the latent topics among stocks,
the tasks in our experiments only assume access to price and volume features
(opening price, closing price, highest price, lowest price, VWAP). Several recently
proposed methods require additional information such as company relations [14]
or social media text [15], thus these methods cannot be included as baselines.

4.3 Results

We use stock trend prediction and trading simulation for our experiments.
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Table 1. The results of stock trend prediction on the CSI300 market from 01/01/2017
to 07/10/2022. All the results are averaged after 10 runs, and the standard deviations
are shown. * corresponds to statistically significant differences between a baseline and
our method (p < 0.05 using t-test).

Model Name IC ICIR Rank IC Rank ICIR

Transformer 0.0143±0.0024 * 0.0910±0.0180 * 0.0317±0.0024 * 0.2192±0.0190 *

TabNet 0.0286±0.0000 * 0.1975±0.0000 * 0.0367±0.0000 * 0.2798±0.0000 *

MLP 0.0267±0.0017 * 0.1845±0.0154 * 0.0362±0.0018 * 0.2681±0.0157 *

Localformer 0.0358±0.0036 * 0.2633±0.0334 * 0.0477±0.0019 * 0.3643±0.0218 *

CatBoost 0.0326±0.0000 * 0.2328±0.0000 * 0.0394±0.0000 * 0.2998±0.0000 *

DoubleEnsemble 0.0362±0.0005 * 0.2725±0.0036 * 0.0444±0.0004 * 0.3450±0.0038 *

LightGBM 0.0347±0.0000 * 0.2648±0.0000 * 0.0443±0.0000 * 0.3520±0.0000 *

TCN 0.0384±0.0015 * 0.2834±0.0164 * 0.0455±0.0012 * 0.3546±0.0077 *

ALSTM 0.0413±0.0034 * 0.3166±0.0329 * 0.0504±0.0032 * 0.3974±0.0280 *

LSTM 0.0402±0.0030 * 0.3194±0.0271 * 0.0496±0.0027 * 0.4040±0.0212 *

ADD 0.0370±0.0025 * 0.2669±0.0254 * 0.0511±0.0018 * 0.3756±0.0235 *

GRU 0.0417±0.0029 * 0.3284±0.0367 * 0.0510±0.0014 * 0.4137±0.0224 *

AdaRNN 0.0380±0.0117 * 0.2999±0.1022 * 0.0472±0.0095 * 0.3744±0.0974 *

GATs 0.0430±0.0010 * 0.3221±0.0096 * 0.0543±0.0012 * 0.4217±0.0099 *

IGMTF 0.0419±0.0004 * 0.3152±0.0055 * 0.0538±0.0014 * 0.4213±0.0171 *

HIST 0.0437±0.0012 * 0.2952±0.0108 * 0.0581±0.0013 * 0.3912±0.0096 *

Our Method 0.0489±0.0026 0.3593±0.0143 0.0605±0.0023 0.4514±0.0225

Stock Trend Prediction. This task aims to evaluate the ability of models to
predict the future stock price trend. For each trading day i, we calculate the 1-day
return r̂i of each stock based on its historical information before date i. For the
results, we report the averaged information coefficient (IC), ranked information
coefficient (Rank IC), information ratio of IC (ICIR), and information ratio of
Rank IC (Rank ICIR). ICi is the daily IC that measures the Pearson correlation
between the predicted ratio r̂i and the ground-truth ratio ri:

ICi =
(r̂i − mean(r̂i))�(ri − mean(ri))

n · std(r̂i) · std(ri)
(14)

The IC is calculated for the average of each trading day:

IC =

∑
i∈[1,D] IC

i

D
(15)

The ICIR is used to show the stability of IC, which is calculated by dividing
IC by its standard deviation:

ICIR =
IC

std(IC)
(16)
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Table 2. The results of trading simulation on the CSI300 market from 01/01/2017 to
07/10/2022. All the results are averaged after 10 runs, and the standard deviations are
shown. * corresponds to statistically significant differences between a baseline and our
method (p < 0.05 using t-test).

Model Name Annualized Return Max Drawdown Information Ratio

Transformer 0.0069±0.0181 * -0.2131±0.0868 * 0.0753±0.2138 *

TabNet 0.0719±0.0000 * -0.1139±0.0000 0.8155±0.0000 *

MLP 0.0441±0.0153 * -0.1512±0.0375 * 0.5163±0.1882 *

Localformer 0.0498±0.0228 * -0.1268±0.0235 0.6194±0.2843 *

CatBoost 0.0585±0.0013 * -0.1364±0.0051 0.7270±0.0162 *

DoubleEnsemble 0.0642±0.0112 * -0.0900±0.0103 * 0.8234±0.1398 *

LightGBM 0.0707±0.0000 * -0.0835±0.0000 * 0.9487±0.0000 *

TCN 0.0781±0.0203 * -0.0849±0.0151 * 1.0205±0.2350 *

ALSTM 0.0777±0.0220 * -0.1031±0.0204 1.0226±0.2859 *

LSTM 0.0826±0.0242 * -0.0908±0.0132 * 1.0706±0.2771 *

ADD 0.0759±0.0178 * -0.0939±0.0237 0.9471±0.2101 *

GRU 0.0815±0.0258 * -0.0917±0.0270 * 1.0826±0.3671

AdaRNN 0.0619±0.0589 * -0.1392±0.1622 0.8439±0.7172

GATs 0.0886±0.0115 * -0.1022±0.0184 1.1524±0.1469 *

IGMTF 0.0903±0.0095 * -0.0986±0.0174 1.1825±0.1035

HIST 0.0854±0.0119 * -0.0919±0.0152 * 1.0879±0.1504 *

Our Method 0.1063±0.0187 -0.1191±0.0301 1.3315±0.2169

For the calculation of Rank ICi, we first use Ri = rank(ri), and R̂i =
rank(r̂i) to denote the ranks of the ground-truth and the predicted ratios, respec-
tively:

Rank ICi =
(R̂i − mean(R̂i))�(Ri − mean(Ri))

n · std(R̂i) · std(Ri)
(17)

The Rank IC and Rank ICIR are calculated similarly as before:

Rank IC =

∑
i∈[1,D] Rank ICi

D
(18)

Rank ICIR =
Rank IC

std(Rank IC)
(19)

The results of the stock trend prediction task on the test set of the China
CSI300 market (01/01/2017 to 07/10/2022) are shown in Table 1. Our method
significantly outperforms all the 16 baselines across all four metrics (IC, ICIR,
Rank IC, and Rank ICIR) with around 10% enhancement over the second-place
model for each metric. These results indicate the importance of modeling expec-
tations and dynamic topics in financial market analysis. It is also interesting to
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note that the traditional RNN-based methods (such as GRU and LSTM) achieve
similar or even better results compared to the models specifically designed for
financial analysis (such as ADD, IGMTF, and DoubleEnsemble). This may be
attributed to the low signal-to-noise ratio in the financial market since the sim-
pler models may be more robust to noise. These observations further demonstrate
the hardness of this task.

Trading Simulation. In quantitative investment,”backtesting” refers to apply-
ing a trading strategy to historical data, simulating trading, and measuring the
return of the strategy. For this task, we employ the top-k dropout strategy
for each method, reporting the annualized return4 (the geometric average of
money earned by an investment strategy each year over a given time period),
max drawdown5 (maximum observed loss from a peak to a trough), and the
information ratio6 (ratio of returns above the returns of the CSI300 bench-
mark). The top-k dropout strategy is a straightforward quantitative investment
approach: for each trading day, we hold k stocks, sell d stocks with the worst
predicted 1-day return, and buy d unheld stocks with the best-predicted 1-day
return. In our experiments, k is set to 50, and d is set to 5. The trading simu-
lation task results on the test set of the China CSI300 market are displayed in
Table 2. Our method surpasses all 16 baselines in annualized return and informa-
tion ratio. To improve the stability of profitability, future research could explore
modifications designed to reduce the max drawdown of our approach.

5 Conclusion

In this paper, we introduce a novel framework for stock trend prediction, suitable
for quantitative analysis of financial markets and stock selection. To the best
of our knowledge, our method is the first to consider (1) investors’ subjective
expectations, and (2) automatically mined dynamic topics that do not require
additional knowledge. Through experiments on 16 baselines using the CSI 300
market, we demonstrate that our model achieves a stable annual return above
10%, outperforming all existing baselines and attaining the current state-of-the-
art results for stock trend prediction and trading simulation tasks.

Future work could explore modifications to decrease the max drawdown of our
method, resulting in more stable profitability. Additionally, since expectations
are influenced by external factors such as financial reports or discussions on social
media, future research could investigate incorporating this information into our
model.

4 https://www.investopedia.com/terms/a/annualized-rate.asp.
5 https://www.investopedia.com/terms/m/maximum-drawdown-mdd.asp.
6 https://www.investopedia.com/terms/i/informationratio.asp.

https://www.investopedia.com/terms/a/annualized-rate.asp
https://www.investopedia.com/terms/m/maximum-drawdown-mdd.asp
https://www.investopedia.com/terms/i/informationratio.asp
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Abstract. A complaint frequently expresses the complainer’s dissatis-
faction or objectionable notion to support a belief or claim against a
party or parties. Financial loss, material inconvenience, and distress are
sufficient examples to intensify the need for an automated complaint
analysis tool in the financial domain, particularly on social media with
diverse information-related affairs. Recently, advanced approaches like
complaint detection with machine learning have escalated the research
interest in the area of natural language processing. Earlier, the only
research focus was on how complaints are identified linguistically. Sub-
stantial modern complaint analytical models attempt to bridge the
gap between the interpretability and explainability of financial com-
plaint detection tasks. To address this, we extend an existing complaint
dataset X-FINCORP, with the rationale or cause annotations for the
complaint/non-compliant labels. Each instance in the dataset is now
associated with five labels: complaint, emotion, polarity, severity, and
rationales. Our proposed model addresses the multi-task problem as a
text-to-text generation task by utilizing a generative framework. Addi-
tionally, we introduce commonsense as external information to draw more
informative intuitions and enhance the overall performance of the pro-
posed generative model. The empirical results validate the generality of
our proposed model over several evaluation metrics compared to state-
of-the-art models and other baselines (Resources available at
https://github.com/appy1608/Financial-Complaint-Identification.).

Keywords: Complaint Detection · Cause Analysis · Financial
Complaint Corpus · Deep learning · Emotion Recognition · Multi-task
learning · Severity Level Classification · Sentiment Analysis

1 Introduction

A complaint is an assertion that intensifies firm disappointment with facts and
the unacceptable emotions related to expectations vs actuality entangled with
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it. Previous research studies on real-world financial complaint identification [1]
introduced standard severity levels, i.e., (a) no explicit reproach, (b) disap-
proval, (c) accusation, and (d) blame. Modern complaint analysis studies from
social media [2] are constructed with automatic binary complaint identification.
In finance, Explainable AI can be used to resolve digital service grievances in
government institutions, investment managers, insurance companies, and retail
banks by maintaining loans, credit cards, and other consumer financial prod-
ucts and service-related financial disputes. Recognizing the causal span of the
expressed emotions is a fundamental research development in automatic rea-
soning about human emotions [3]. Using these associated studies as a guide, we
intend to determine the cause or reason for the financial complaints posted on the
social web. Human nature-wise, we tend to depend on commonsense knowledge
and speculate the inferred conclusions. In Fig. 1, facts are demonstrated clearly.
For instance, the complainer shared his information about how his day got ruined
as his debit card stopped working during his payment process. Evidently from
Fig. 1, we can say, though the complainer did not mention his emotions explic-
itly, we can identify the nature of the emotion as Anger(xReact), and he needs a
feasible debit card (xNeed), whereas relying on commonsense we can also infer
that the complainer is about to apply for a new debit card (xWant). Therefore
we believe utilizing external knowledge we could better understand the com-
plainer’s feelings which leads to understanding more informative aspects. More-
over, several multi-tasking approaches have been introduced where auxiliary task
improves the performance of the main primary task [4]. However, this approach
initiates multitasking-related complications, especially in performance optimiza-
tion [5] assign-weights and negative transfer during the training process. To deal
with such multi-tasking issues, we introduce a text-to-text generation technique
where complaint identification, cause extraction, and severity-level categoriza-
tion are the primary tasks and emotion recognition and sentiment classification
are the auxiliaries.

My day just got ruined! My debit card stopped
working exactly when I was paying my fees online

To receive a feasible 
debit card

Apply for a new debit 
card

Oh Noh! That’s unfortunate…you need a new one Have 
you applied yet?

Fig. 1. Sample text from X-FINCORP dataset
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Research Objectives: Following are the research objectives of the current
study:

– At first, we intend to identify the rationale/causes which are responsible for
categorizing financial data having complaints. Next, we try to understand the
effect of using causal information on the financial complaint identification and
severity level classification tasks in the proposed framework.

– We attempt to accomplish an explainable complaint identification task with
additional commonsense knowledge through a text-to-text generation tech-
nique, especially in the financial domain.

Contributions: Our major contributions are as follows:

– Presumably, it is the first study on explainable complaint identification by
focusing on the rationale/cause responsible for categorizing the financial com-
plaints by investigating two aforementioned challenges i) explainable com-
plaint identification and ii) Text-to-text generation as a multitasking prob-
lem.

– We presented X-FINCORP a publicly available dataset with manual anno-
tation of causal spans for complaint/non-complaint labeled sentences and
developed a benchmark approach for complaint cause identification, focusing
on cause detection and extraction.

– We propose a generative modeling approach that jointly learns (a) binary
complaint classification (CI), (b) emotion recognition (ER), and (c) sentiment
categorization (SC) as the first sub-problem, and the second sub-problem
involves (d) severity level classification (SLC), (e) cause extraction (CE) with
a commonsense aware unified generative framework.

As briefly discussed in the result section, utilizing external commonsense infor-
mation and generative modeling enhances the performance of the primary tasks.

2 Related Works

As the financial paradigm dwells with shuffled unstructured data, Singh et al.
[6] introduced a deep learning feature-dependant model to deal with the variety
of financial complaints and extract feedback. On most occasions, transformer-
based models [7] handled the long dependencies from sequence to sequence task
in elaborative financial complaints identification. Recently, for informative sen-
timent computation, several multi-task complaint analysis models [8] have been
developed. The work of Lee et al. [9] on the foundation of the expressed emotion
holds the pivotal research work. Earlier cognitive awareness-related downstream
jobs such as chatbots [10] were designed to express complainers’ feelings. Making
this advanced commonsense knowledge module from ConceptNet [11] allows the
financial complaint detection models to derive implications within the context
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Table 1. Example instances of causal span annotation. Label: class labels for com-
plaint, sentiment, and emotion tasks

Tweet text Cause

< USER > Authorization charge has not
been refunded and it’s more than Authorization charge has
a month now. Can someone help me Have not been refunded
Label: complaint, sadness, negative
< USER > Swap functionality is fantastic,
great job. Can’t wait for the credit card now no cause
Label: non complaint, happiness, positive

explicitly shared by the complainer. ATOMIC [12] is a commonsense knowledge
base that contains everyday if-then events reasoning inferences. Besides sev-
eral generative pre-trained models such as Decoder and Encoder Transformer,
have been proposed to handle multi-tasking in text generation. BART [13], the
decoder-encoder transformer can process the text bidirectionally and handle the
noise simultaneously, as both are trained on bulky shuffled text data.

Even though there are multiple relatable fields in emotional complaint iden-
tification but there are no studies on cause detection and extraction through
generating the texts. In order to address such a challenging task, we propose an
explainable cause analysis localized on the dynamic attention mechanism at the
word and sentence level by implementing a generative approach.

3 Corpus Extension

Numerous financial organizations and services maintain Twitter accounts for
client support. As a result of such accounts and the micro-blogging nature of
Twitter, customers are more comfortable in submitting their grievances and
requesting assistance on Twitter, as opposed to the more time-consuming alter-
natives of sending emails or visiting in person to the businesses. This motivates
us to utilize the FINCORP dataset1, which is a Twitter-based financial com-
plaint dataset and includes 3,133 typed samples of non-complaint and 3,149
complaint-typed samples in English. We selected this publicly available dataset
because, unlike other datasets, it consists of complaints arising between financial
organizations and their customers. Other than the complaint identification axis,
it is also extended on three different associated axes: severity levels (no explicit
reproach, disapproval, accusation, blame, and non-complaints), sentiment (neg-
ative, neutral, positive), and emotion (anger, disgust, fear, happiness, sadness,
surprise and other), the ‘other’ emotion class depicts tweets that do not fall

1 https://github.com/RohanBh23/FINCORP.

https://github.com/RohanBh23/FINCORP
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under the scope of Ekman’s six basic emotions. Our work focuses on strengthen-
ing the available dataset by extending it with the manual annotation of causal
spans for complaint/non-complaint labeled sentences to provide scope for multi-
faceted research.

3.1 Cause Extraction Method

Task Definition. Complaint Cause is defined as a portion of the text that
expresses why the user feels compelled to file a complaint. It is the speech act
used by the individual to describe the circumstances in which their expectations
have been violated.

Annotations. Three annotators (one doctoral and two undergraduate students
in the computer science discipline) with adequate domain knowledge and exper-
tise in developing supervised corpora were entrusted with annotating the causal
span identification task for each sample in the dataset.

Annotators were directed to identify the causal span, X(I), that appropri-
ately represented the basis of the complaint (C) for each instance (I) in the X-
FINCORP dataset. For the non-complaint (NC) class, the annotators marked
the sentence as ‘no cause’2. Table 1 shows a few example instances of causal span
annotation.

Fig. 2. The overall architecture of the proposed model (CS2I). The two variations of
our proposed model, ConCS2I and MergeCS2I are depicted by the enclosed red and
blue dotted boxes, respectively. (Color figure online)

2 The authors of the work [8] mentioned the agreement ratings of complaint, sever-
ity level, emotion, and sentiment tasks as 0.83, 0.69, 0.68, and 0.82, respectively,
suggesting good annotations.
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4 Methodology

In this section, we illustrate our problem statement first then we explore further
the proposed model. The architecture of the model is shown in Fig. 2

4.1 Problem Definition

An explainable financial complaint identification model should be robust enough
to identify the nature of the financial complaint, i.e., whether it’s a complaint or
not, and if the sample belongs to complaint class then identifies its severity level,
emotion category with the corresponding sentiment and most importantly the
cause span responsible for making it a financial complaint. This is the procedural
way of justifying the model’s decision and making the results more interpretable.
Considering customer complaint as input text Xi = {x0, x1, .., xi, .., xn} where
the length of the input complaint is n, we aim to learn five closely related tasks:
(i) complaint identification (c), (ii) sentiment categorization (se), (iii) emotion
recognition (e), (iv) severity level classification (s), (v) cause extraction (ce),
where c ∈ C, C is the set of complaint classes, se ∈ SE, SE is the set of
sentiment classes, e ∈ E, E is the set of emotion classes, s ∈ S, S is the set of
severity levels and ce(Xi) ∈ (Xi) that is relevant to the c, complaint label. Our
proposed methodology is described in the following steps:

4.2 Construction of Text to Text Generation Task from Explainable
Complaint Identification Task

To solve explainable complaint identification and other auxiliary tasks in a single
unified manner, we introduce a text-to-text generation approach. In order to
transform this problem into a text generation problem, we first construct Yi, a
natural language target sequence, with Xi, for the input sentence, we concatenate
all task labels during the training phase. Hence the definition goes 1.

Yi = {< ce(Xi) > [c][s][e][se]} (1)

where c, s, e, se, and ce signify complaint identification, severity level prediction,
emotion recognition, sentiment prediction, and cause extraction, respectively.
After the predictions of each task, we added special characters, as shown in
Eq. 1 so that during testing or inference we can extract task-specific predictions.
Furthermore, we explicate the problem as: given an input sequence Xi, the task
is to generate an output sequence, Y

′
i , that contains all the predictions defined

in Eq. 1 using a generative model G; Y
′
i = G(Xi).

4.3 Extraction of Casual Span

Initially, the CI task distinguishes between complaint and non-complaint tweets.
Following that CE task performs the extraction based on the 0/1 label predicted
by our model corresponding to each word token where 0 ∈ non − complaint
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and 1 ∈ complaint. After that label ∈ {0, 1}, will be mapped correspond-
ingly to each word token in a given tweet text. This way the beginning and
end of the casual span can be directly decoded from the token length in a
sentence. For example: I/[0] have/[0] made/[0] a/[0], merchant/[0] transaction
/[0] but/[0] the/[0] transaction/[1] was/[1] unsuccessful/[1], and/[1] amount/[1]
has/[1] been/[1] debited/[1] from/[1] my/[1] account/[1].

4.4 Commonsense Aware Financial Complaint Identification

We propose CS2I (Commonsense aware Financial Complaint Identification), a
cognitive commonsense unified framework to solve the task of explainable com-
plaint identification. For better understanding, we divide our approach into two
steps: 1) Commonsense aware extraction module, and 2) Commonsense aware
transformer model.

Commonsense Aware Extraction Module. As complaints are often abbre-
viated or not thorough, the commonsense extraction module makes the insight
information more sensible with contextual reasoning. Besides we make use of
the ATOMIC dataset [12] as our knowledge base in the form (e, r, csr) where e
denotes an event, r denotes a commonsense relation, and csr denotes the inferred
commonsense reasoning.

Considering our financial complaint identification as an event, we want to
understand the complainer’s needs and what they want from the filled com-
plaint. Hence we consider only two relations (xNeed and xWant). We applied a
pre-trained BART-based language model, COMET [14] trained on the ATOMIC
dataset to generate reasonable commonsense from the unseen complaints. Ini-
tially, for each complaint Xi, we append two commonsense relation tokens
(xNeed and xWant). Later these concatenated inputs are fed to the pre-trained
COMET model to generate two commonsense reasonings csrrneed and csrrwant

for xNeed and xWant relation tokens, respectively, To obtain the final com-
monsense reasoning CSr for each review Xi, we concatenate the two generated
commonsense reasonings, CSr = csrrneed ⊕ csrrwant .

Commonsense Aware Transfer Module ConCS2I (Context Encoder
CS2I): Following the previous work, ConCS2I generates the target sequence
Y

′
i , with a given complaint input Xi, and corresponding commonsense reason-

ing, CSr; Along with the conditional probability for text generation model:
Pθ(Y

′
i |Xi, cs), where θ is a set of model parameters. Initially, we concatenated

complaint input tokens Xi with the commonsense reasonings CSr and then
applied a unique token separator < SEP > . We get the final input sequence:
Ri = Xi⊕csr. Now, we have a pair of input sentence and target sequence (Ri, Yi).
First feed Ri = {x0, x1, .., xn, < SEP >, csr0.., csrn} to the encoder module to
obtain the hidden input representations; HE = GEnco({x0, x1, . . . , xn, < SEP >
, csr0. . . . , csrn}) here encoder computations are represented by GEncoder.
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Following that, we will feed HE and all the output tokens to the decoder
module till time step t − 1 which is represented as Y<t. For decoder module, at
timestamp t, obtained hidden state will be: Ht

D = GDeco(HE , Y<t) where GDeco

denotes the decoder computations.
Finally applying the softmax function over the hidden state, Ht

DEC , to cal-
culate the output prediction for the given input and previous t − 1 tokens at tth

time step with the conditional probability consideration;

Pθ(Y
′
t |R, Y<t) = Fsoftmax(θT Ht

DE) (2)

where softmax computation is represented by Fsoftmax and θ denotes model
weights.

MergeCS2I (Merged CS2I): We introduce another approach named Merge
CS2I to merge commonsense knowledge in the model by applying a common-
sense aware encoder module. Initially, we feed complaint input, Xi, along with
commonsense reasoning, CSr, to a pre-trained BART encoder to obtain encoded
representations, UBx and UBcsr, respectively. We applied a commonsense aware
encoder, an extension of the original transformer encoder to merge the informa-
tion between UBx and UBcsr representations. Unlike the traditional transformer
encoder where input was projected as query, key, and value, we create UBx and
UBcsr corresponding to two triplets of queries, keys, and values matrices: (Qx,
Kx, Vx) and Qcs, Kcs, Vcs). We also introduce a cross-attention layer that con-
sists of one multi-head-cross attention and normalization layer that exchanges
the key and value by taking (Qx, Kcs, Vcs) and (Qcs, Kx, Vx) as inputs to cross
attention layer. The computed cross-merged vector representation is defined as
follows: Attention(Q,K, V ) = softmax(QKT

√
dk

)V where a set of query, key, and
value is (Q, K, V) and the dimension of query and key is dk.

The exchanged outputs of multi-head-cross attention contain information
about each other (Ux−>cs and Ucs−>x). Following this, we concatenate them
and to obtain the output of the commonsense aware encoder, we pass concate-
nated output Uz through a self-attention layer, normalization layers, and fully
connected layers with residual connections. After concatenation, Z becomes the
final commonsense aware input representation vector. Further, we feed Z to an
autoregressive decoder that follows the same computations defined in Eq. 2.

5 Experimental Results and Analysis

5.1 Baselines Setup

Multitask Systems: Inspired by recent work in multitask CI framework we
aim to develop Baseline1 [8] model as one of the multitask baselines. We imple-
ment the Baseline1 model for the joint learning of CI, SC, and CE with SLC
and ER as additional tasks and also keep the experimental setup the same as
our current work. Furthermore, to understand the impact of different tasks, we
evaluate them by keeping a few of them fixed and gauge their nature of impacted
performance accordingly.
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Table 2. Resultant difference of baselines with ConCS2I and MergeCS2I. For the
CI and SC tasks, the results are in terms of macro-F1 score (F1) and Accuracy (A)
values. F1, A metrics are given in %. JS: Jaccard Similarity, HD: Hamming distance,
and ROS: Ratcliff-Obershelp Similarity. The maximum scores attained are represented
by bold-faced values. The † denotes statistically significant findings.

Complaint (CI) Severity (SC) Cause (CE)

Model F1 A F1 A JS HD ROS

SOTA [15] 86.6 87.6 59.4 55.5 – – –

ConCS2ICI+SC+CE 89.7 90.2 73.3 73.4 83.7 75.0 88.7
ConCS2ICI+SC+CE+ER 90.3 91.6 72.8 73.0 83.4 74.1 88.2
ConCS2ICI+SC+CE+SLC 90.7 91.6 73.8 74.1 83.6 74.5 88.3
ConCS2IAll 91.6† 92.9† 74.7† 74.9† 85.1† 77.2† 89.9†

MergeCS2ICI+SC+CE 89.9 90.1 72.6 73.2 77.4 71.1 85.8
MergeCS2ICI+SC+CE+ER 90.1 90.4 73.1 73.4 77.4 70.7 84.2
MergeCS2ICI+SC+CE+SLC 90.6 91.1 72.9 73.0 78.2 72.1 85.1
MergeCS2IAll 91.2 91.5 73.1 73.5 78.1 71.3 85.3

Baseline1 [8] 81.4 82.8 60.3 62.8 76.1 68.2 81.8

BART 88.9 88.9 62.4 62.6 77.1 69.7 84.2
T5 86.7 86.6 68.7 69.3 84.1 74.1 89.1
SpanBERT – – – – 74.8 70.6 83.5

Cause Extraction Task Baselines: Since the cause span extraction is an
advanced task in the complaint analysis area, we got our inspiration from the
works of [3] in the emotion recognition domain. Exclusively we select the Span-
BERT base model for the CE task though SpanBERT is fine-tuned on the
SQuAD 2.0 dataset [16].

Text to Text Generation Model: We employ BART [13] and T5 [17] as the
baseline text-to-text generation models. We fine-tune both these models on X-
FINCORP dataset with complaint text as the input sequence and concatenated
outputs (defined in Eq. 1) as the target sequence.

We conduct the ablation study to gauge the performance s of ConCS2I and
MergedCS2I models and compare their essential components with the aforemen-
tioned baselines.

5.2 Experimental Setup

We have performed all the experiments on the Tyrone machine with Intel’s Xeon
W-2155 Processor having 196 Gb DDR4 RAM and 11 Gb Nvidia 1080Ti GPU.
Our training data contains 80% of data samples with a nested 10-fold cross-
validation approach. Adam optimizer is used to train the model with an adam
epsilon value of 0.000001. For the CI and SC tasks, accuracy and macro-F1 met-
rics are used to evaluate predictive performance. For the quantitative assessment
of the CE task, we used the Jaccard Similarity (JS), Hamming Distance (HD),
and Ratcliff-Obershelp Similarity (ROS) metrics.
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Table 3. Qualitative study of the CI and SC predictions by the SOTA [15] and the
proposed model (ConCS2I). ’Actual Label’: true labels for CI and SC tasks, the yellow
highlighted text indicates the causal span annotation of the sentence. (Best viewed in
color.)

Tweet text SOTA Proposed Actual Label
8 months now, I have cancelled < USER >

ticket and still did not get any response or complaint complaint complaint
refund. This was not expected! blame disapproval disapproval

Thank you for your response. I already registered
with UPI, it was working fine suddenly it is complaint complaint complaint
showing error and transaction getting failed. blame no explicit reproach no explicit reproach

5.3 Results and Discussions

– Ablation Study: From Table 2, evidently the proposed model ConCS2IAll

outperforms all the other baselines for primary tasks by a noteworthy margin.
ConCS2I can capture more commonsense reasoning information compared to
the other baselines as X-FINCORP dataset is a Twitter-based dataset with
fixed character constraints. Additionally, we fixed the average sentence length
of the used dataset to 15. Sample sentences from the dataset, such as ’Thanks’,
’I need help’ render a lack of contextual information. From Table 2 we can
also observe that all the ConCS2I multitask variants consistently outperform
all the MergeCS2I variants on all the subtasks. Therefore we can illustrate
that the model can learn a better-combined representation of commonsense.
Even for input complaints in a direct concatenation setting, the model works
precisely better than their merged vector encodings. Although both ConCS2I
and MergeCS2I models are able to outperform the SOTA model on CI and SC
tasks ConCS2IAll outperforms the SOTA by a significant margin on CI and SC
tasks, respectively. The prior reasons for such improvements can be implied to
the fact: 1) ConCS2I and MergeCS2I both are leveraging the knowledge of the
pre-trained BART model, which already has been trained on a huge corpus
of data and 2) Having extra context leads them to make better predictions.
Based on the tables mentioned earlier, it is evident that including extra tasks
like ER and SLC enhances the model’s performance. It also indicates that
during the decoding or generating process, the model can learn the mapping
between different tasks.

– Qualitative Analysis: We noticed that due to the imbalance nature of the
higher number of instances from Non-Complaint class, the accurate classifi-
cation shows skewness. Whereas tweets with vital financial complaint signs,
such as accusatory expressions or blame-related terms, are less misclassified.
Table 3 shows the qualitative study of the financial complaint severity predic-
tions obtained by the SOTA [15] and the proposed Contextualizer system on
a few sample test instances. The CE task combined with CI and commonsense
reasoning impressively led to improved predictions where the SOTA system
lacks these elements. It can also be observed from Table 3 that for the given
instances, both the models correctly predict them as a complaint, but the
proposed model only makes the correct prediction for the severity level.
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5.4 Error Analysis

We investigate the possible reasons for the proposed model’s errors:

– Scattered Causes: The proposed model is not able to identify multiple causes
spread across a tweet instance. For example, I requested to update my address
via net banking, was not able to do. I was assured it will be done in 2 working
days. The causal span predicted: I requested to update my address via net
banking, was not able to do. In the current work, the causes are annotated
based on the first encounter with a strong expression of complaint reason in
the tweet. Causes scattered across the complete tweet cannot be identified by
the proposed model.

– Additional Cause Speculation: Instances of small sentences lead to unneces-
sary causual span generation. For example, Credit card transaction failed The
actual span of cause is transaction failed but the model generates additional
speculation like credit limit exceeds, which is not accurate.

6 Conclusion

Through this paper, we attempt to handle the complaint detection problem with
explainability consideration. Enhanced performance of real-time explainable AI
systems increases confidence with loyalty and integrity for robust customer sup-
port in the financial market. Our framework constructs two contributions: (a)
development of the first explainable financial complaint detection dataset, which
consists of the causal span annotations applied in decision-making (b) introduc-
tion of a commonsense-aware unified generative framework to simultaneously
perform five tasks (CD, SC, CE, SLC, and ER). This work demonstrates how
a multitasking problem could be reformulated as a text-to-text generation task
just by utilizing the knowledge of sizable pre-trained sequence-to-sequence mod-
els. All the baselines and the SOTA for the three main tasks based on extensive
evaluation are outperformed by our proposed framework.
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Abstract. Dense embedding-based semantic matching is widely used
in e-commerce product search to address the shortcomings of lexical
matching such as sensitivity to spelling variants. The recent advances
in BERT-like language model encoders, have however, not found their
way to realtime search due to the strict inference latency requirement
imposed on e-commerce websites. While bi-encoder BERT architectures
enable fast approximate nearest neighbor search, training them effec-
tively on query-product data remains a challenge due to training insta-
bilities and the persistent generalization gap with cross-encoders. In this
work, we propose a four-stage training procedure to leverage large BERT-
like models for product search while preserving low inference latency. We
introduce query-product interaction pre-finetuning to effectively pretrain
BERT bi-encoders for matching and improve generalization. Through
offline experiments on an e-commerce product dataset, we show that a
distilled small BERT-based model (75M params) trained using our app-
roach improves the search relevance metric by up to 23% over a baseline
DSSM-based model with similar inference latency. The small model only
suffers a 3% drop in relevance metric compared to the 20x larger teacher.
We also show using online A/B tests at scale, that our approach improves
over the production model in exact and substitute products retrieved.

Keywords: Matching · Retrieval · Search · Pretrained Language
Models

1 Introduction

An e-commerce product search engine typically serves queries in two stages—
matching and ranking, for efficiency and latency reasons. In the matching stage,
a query is processed and matched against hundreds of millions of products to
retrieve thousands of products that are relevant to the query. In the subsequent
ranking stage, the retrieved products are scored against one or more objectives
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and then sorted to increase the likelihood of satisfying the customer query in
the top positions. Matching is therefore a critical first step towards a delightful
customer experience in terms of search latency and relevance, and the focus of
this paper. Lexical matching using an inverted index [1] has been the industry
standard approach for e-commerce retrieval applications. This type of matching
retrieves products that have one or more query keywords appear in their textual
attributes such as title and description. Lexical matching is favorable because
of its simplicity, explainability, low latency, and ability to scale to catalogs with
billions of products. Despite the advantages, lexical matching has several short-
comings such as sensitivity to spelling variants (e.g. “grey” vs “gray”) or mistakes
(e.g. “sheos” instead of “shoes”), proneness to vocabulary mismatch (e.g. hyper-
nyms, synonyms), and lack of semantic understanding (e.g. “latex free exami-
nation gloves” does not match the intent of “latex examination gloves”). These
issues are largely caused by the underlying term-based distributional represen-
tation for query and product that fails to capture the fine-grained relationship
between terms. Researchers and practitioners typically resort to query expansion
techniques to address these issues.

Dense embedding based semantic matching [2] has been shown to significantly
alleviate the shortcomings of lexical matching due to its distributed represen-
tation that admits granular proximity between the terms of a query-product
pair in low dimensional vector space [3]. To fulfill the low latency requirement,
these semantic matching models are predominantly shallow and use a bi-encoder
architecture. Bi-encoders have separate encoders for generating query and prod-
uct embeddings and use cosine similarity to define the proximity of queries and
products. Such an architecture allows product embeddings to be indexed offline
for fast approximate nearest neighbor (ANN) search [4] with the query embed-
ding generated in realtime. Recently, BERT-based models [5] have advanced
the state-of-the-art in natural language processing but due to latency consider-
ations, their use in online e-commerce information retrieval is largely limited to
the bi-encoder architecture [6–8] which does not benefit from the early interac-
tion between the query and product representations.

In this work, we propose a multi-stage training procedure to train a small
BERT-based matching model for online inference that leverages a large pre-
trained BERT-based matching model. A large BERT encoder (750M parameters)
is first pretrained with the masked language modeling (MLM) objective on the
product catalog data (details in Sect. 2.1), we refer to the trained model as ds-
bert. Next, the ds-bert model is pre-finetuned using our novel query-product
interaction pre-finetuning (QPI) task (see Sect. 2.2), the trained model is referred
to as qpi-bert. We find that interaction pre-finetuning greatly improves training
stability of bi-encoders downstream as well as significantly improves generaliza-
tion. qpi-bert is then cloned into a bi-encoder model architecture and finetuned
with query-product purchase signal, we refer to this model as qpi-bert-ft (see
Sect. 2.3). Finally, a smaller qpi-bert bi-encoder student model (75M parame-
ters) is distilled from the qpi-bert-ft teacher by matching the cosine similarity
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score on the query-product pairs used for finetuning (see Sect. 2.4), we refer to
this model as small-qpi-bert-dis.

Through our offline experiments on a large e-commerce dataset, we show that
the small-qpi-bert-dis model (75M) suffers only a 3% drop in search relevance
metric, compared to the qpi-bert model with 20x its number of parameters
(1.5B). This small-qpi-bert-dis model improves search relevance by 23%, over
a baseline DSSM-based matching model [2] with similar number of parameters
and inference latency. Using an online A/B test we also show that the small-
qpi-bert-dis model outperforms the production model with 2% lift in both
relevance and sales metrics.

Our work is closely related to the literature on semantic matching with deep
learning. Some of the initial pre-BERT works include the Deep Semantic Sim-
ilarity Model (DSSM) [2] , that constructs vector representations for queries
and documents using a feedforward network and uses cosine similarity as the
scoring function. DSSM-based models are widely used for real-time matching at
web-scale [9,10]. This was later specialized for online product matching [3]. Post-
BERT techniques leverage Pretrained Language Models (PLMs), such as BERT
[5] to construct bi-encoders for matching tasks [8,11,12]. These techniques have
broadly been applied to question-answering where the question and answer are
from similar domains and interaction pre-finetuning is less essential. A recent
work [13], proposes a multi-stage semantic matching training pipeline for web
retrieval. However, unlike our approach, their focus is on deploying an ERNIE
model (220M), while we study how large bi-encoders (1.5B) can be compressed
to much smaller bi-encoders (70M) at web-scale using interaction pre-finetuning.
In summary, the key contributions of this work are:

– We propose a multi-stage training procedure to effectively train a small
BERT-based matching model for online inference from a much larger model
(750 million to 1.5 billion parameters).

– We introduce a novel pre-finetuning task where a span masking and field
permutation equivariant objective is used on joint query-product input text
to help align the query and product representations. This task helps stabilize
training and improve generalization of bi-encoders.

– We show using offline and online experiments at scale on an e-commerce
website, that the proposed approach helps the small BERT small-qpi-bert-
dis model significantly outperform both a DSSM-based model (by 23%) in
offline experiments and a production model in an online A/B test.

2 Methodology

In this section we describe our proposed four-stage training paradigm that con-
sists of 1) domain-specific pretraining, 2) query-product interaction prefinetun-
ing, 3) finetuning for retrieval, and 4) knowledge distillation to a smaller model.
In the first three stages, we train a large BERT model for product matching
and in the final stage we distill this knowledge to a smaller model that can be
deployed efficiently in production (See Fig. 1).
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2.1 Domain-Specific Pretraining

In the first stage of training, we pretrain a large BERT model on a domain
specific dataset for product matching. The language used to describe products
(catalog fields) in the e-commerce domain significantly differs from the language
used on the larger web. Product titles and descriptions use a subset of the entire
vocabulary, are often structured to follow a specific pattern, and in general have
a different distribution from the sources that publicly available language models
are trained on. Therefore, using an off-the-shelf pretrained BERT-based model
does not perform well when finetuned for the product matching task.

Instead of using an off-the-shelf pretrained BERT model, we construct a BPE
vocabulary [14] from the catalog corpus comprising of billions of products in e-
commerce domain. We then pretrain the model on text from the catalog, and use
all of the catalog text fields such as title and description of products available
by concatenating them along with their field names. Our pretraining objective is
the standard masked-language-modeling (MLM) loss [5,15,16]. We refer to the
model trained with this strategy as the ds-bert model (See Fig. 1a).

(a) Stage 1:
BERT model is
pretrained to
produce ds-bert

(b) Stage 2:
ds-bert is pre-
finetuned to
produce qpi-bert

(c) Stage 3: Bi-encoder
qpi-bert is trained
with three-part hinge
loss to produce
qpi-bert-ft

(d) Stage 4:
qpi-bert-ft is dis-
tilled to produce
small-qpi-bert-
dis

Fig. 1. This figure shows the four stages involved in training an effective deployable
model for semantic matching.

2.2 Query-Product Interaction Pre-finetuning

Bi-encoders are preferred over cross-encoder models with full interaction for
matching due to their efficiency and feasibility at runtime. Bi-encoders are how-
ever notoriously difficult to train on query-product pairs due to training instabil-
ities arising from gradient variance between the two inputs. Losing the capability
to explicitly model the interaction between queries and products also results in
worse generalization than the cross-encoder.

In the second stage of training we propose a novel self-supervised approach
to incorporate query-product interaction in the large encoder which is critical to
improving the performance on the product matching task. We use query-product
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paired data to help the encoder learn the relationship between a query and a
product using full cross-attention. To construct such a dataset, we first identify
query-product pairs that share a relevant semantic relationship, for example,
all products purchased for a given query can be considered relevant or query-
product pairs can be manually labeled for relevance. In this paper, the dataset
is constructed such that the query-product pairs are semantically relevant with
a high probability α > 0.8. The pre-finetuning dataset size (a few million exam-
ples) is much smaller than the pretraining dataset (a billion examples).

To perform pre-finetuning, we perform span MLM on the concatenated query
and product text with a “[SEP]” token between them. At each iteration, we
select spans from either the query text or product text (never both) to mask
tokens. We sample span length (number of words) from a geometric distribution,
till a predetermined percentage of tokens have been masked. The start of the
span is uniformly sampled within the query or the product. During training
we also observed that permuting the fields within the query and product, a
form of field permutation equivariant training, also helped the model generalize
better. We refer to the model trained with this strategy as qpi-bertmodel
(See Fig. 1b). Pre-finetuning with self-supervision on semantically relevant paired
dataset boosts generalization for matching when a large noisy training set is
available. This differs from previous works that use supervision on manually
labeled data.

2.3 Finetuning for Matching

The third stage of training is to finetune the large teacher encoder qpi-bert
model in a bi-encoder setting for matching. We train a bi-encoder teacher as
opposed to a cross-encoder teacher for retrieval as the extreme inefficiency in
generating predictions for evaluation and slow training convergence rate makes
it impractical to train cross-encoders for web-scale data and large models.

Let us denote the qpi-bert model as M , query encoder as Mq, and product
encoder as Mp, where the weights between query encoder and product encoder
are shared. In our experiments sharing weights performed comparably to inde-
pendently training them. For any query-product pair Q and P as inputs, we first
generate the embedding Qemb for query Q using Mq and embedding Pemb for
product P using Mp using their “[CLS]” token representation. A cosine similarity
score sQ,P = cos(Qemb, Pemb) is used to compute relevance between them.

We train the bi-encoder using a three-part hinge loss. This loss requires the
ground-truth data (yQ,P ) to be labeled with one of three possible values referred
to as positive (1), hard negative (0) and random negative (−1). We use the
purchased products for a given query as positive and any product uniformly
sampled from the catalog as random negative. Identifying hard negatives is non-
trivial [12,17], and in this work we choose a simple yet effective approach [3],
where for a given query, all products that were shown to the user but did not
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receive any interaction is a hard negative. The loss takes the following form:

lossQ,P (yQ,P , sQ,P ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

max(δpos − sQ,P , 0), if yQ,P = 1.

max(δ−
hn − sQ,P , 0) if yQ,P = 0.

+ max(sQ,P − δ+hn, 0),
max(sQ,P − δrn, 0), if yQ,P = −1.

(1)

where δpos and δ−
hn are the lower thresholds for the positive and hard negative

data scores respectively and δ+hn and δrn are the upper thresholds for the hard
negative and random negative data scores respectively. We refer to the model
trained with this strategy as the qpi-bert-ft model (see Fig. 1c).

2.4 Distillation and Realtime Inference

The final stage of our framework is to distill the knowledge of teacher qpi-bert-
ft to a smaller student bi-encoder BERT model (75M to 150M parameters) that
meets the online latency constraint. We first pretrain and prefinetune the small
model similar to qpi-bert to generate small-qpi-bert model M . Then we clone
the encoder to create a query encoder M̃Q and a product encoder M̃P . Unlike
the large model case, for the small model we observe that sharing parameters
between encoders helps improve performance significantly. The query embedding
Q̃emb and product embedding P̃emb for the student model are computed by
averaging all token embeddings in the query Q and product P respectively.
The relevance score for a query-product pair is compute using cosine similarity
i.e., s̃Q,P = cos(Q̃emb, P̃emb). The model is trained by minimizing the distance
between the scores generated by qpi-bert-ft teacher and the model using the
mean squared error (MSE) loss function.

lossQ,P (sQ,P , s̃Q,P ) = (sQ,P − s̃Q,P )2 (2)

In practice we observed that simple score matching using MSE outperformed
other approaches such as using L2 loss on the embeddings directly, Margin-MSE
[18] with random negatives, or contrastive losses like SimCLR [19] with ran-
dom negatives. We refer to the model distilled with this strategy as the small-
qpi-bert-ft model (see Fig. 1d). At runtime, for every query entered by the
customer, we compute the query embedding and then retrieve top K products
using ANN search [4]. To serve traffic in realtime, we cache the product embed-
dings and compute only the query embedding online. The retrieved products are
served directly to customers or mixed with other results and re-ranked before
displaying to the customer.
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3 Empirical Evaluation

3.1 Experimental Setup

Data. We use the following multilingual datasets for different stages of training:

Domain-Specific Pretraining Data: We use ∼1 billion product titles and descrip-
tions from 14 different languages. This data is also used to construct a senten-
cepiece [20] tokenizer with 256K vocab size.

Interaction Pre-finetuning Data: We use ∼15M query-product pairs from 12 lan-
guages and use weak supervision in the form of rules to label them as relevant
or irrelevant. ∼80% of the pairs are relevant query-product pairs.

Finetuning for Matching Data: We use ∼330M query-product pairs subsampled
from a live e-commerce service to train the model for matching. We maintain
a positive to hard negative to negative ratio of 1:10:11. The pairs are collected
from multiple countries with at least 4 languages. We use a validation dataset to
compute recall that contains 28K queries and 1M products from the subsampled
catalog. Human evaluation (Sect. 3.1) uses a held-out set of 100 queries.

Models. We experiment with several model variants, both small and large
summarized in Table 1. All large models we train are based on ds-bert, which
is a multilingual BERT model with 38 layers, 1024 output dimensions and 4096
hidden dimensions. When the parameters for the query and product encoder are
not shared, the model has twice the parameters of the encoder. The small models
we train are multilingual BERT models with 2 layers, 256 output dimensions,
and 1024 hidden dimensions. In addition, we use dssm and xlmroberta as
baselines. • xlmroberta: Publicly available XLMRoberta [21] model which is
finetuned for matching as described in Sect. 2.3. • dssm: Bi-encoder model with a
shared embedding layer (output dimension of 256) followed by batch norm and
averaged token embedding to represent the query and product [3]. To ensure
effective use of vocabulary for DSSM, we create a different sentencepiece model
with 300k tokens using the matching training data.

Metrics. R@100: This is the average purchase recall computed on the validation
data for the top 100 products retrieved.

Relevance Metrics: To understand the true improvement in the quality of
matches retrieved by the model, we use Toloka (toloka.yandex.com) to label
the results produced by our models. For every query we retrieve 100 results
and ask the annotators to label them as exact match, substitute, or other. We
report the average percentage of exact (E@100). substitute (S@100), and other
(O@100). We use E@100 + S@100 (E+S) to measure semantic improvement in
the model.
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Table 1. Bi-encoder model variants. Differences are number of parameters (Params),
embedding dimensionality (ED), embedding type (ET), domain-specific pretraining
(DS PT), QPI prefinetuning (QPI PFT), whether encoders share parameters (Shared),
whether model is distilled from qpi-bert-ft (Dis).

Models Params ED ET DS PT QPI PFT Shared Dist

Large Models

xlmroberta 1.1B 1024 CLS N N N N

ds-bert 1.5B 1024 CLS Y N N N

qpi-bert-ft 1.5B 1024 CLS Y Y N N

qpi-bert-ft* 1.5B 1024 CLS Y Ya N N

qpi-bert-ft-sh 750M 1024 AVG Y Y Y N

Smaller Models

small-qpi-bert-ft 150M 256 CLS Y Y N N

small-qpi-bert-ft-avg 150M 256 AVG Y Y N N

small-qpi-bert-ft-sh 75M 256 CLS Y Y Y N

small-qpi-bert-ft-sh-avg 75M 256 AVG Y Y Y N

small-qpi-bert-dis 75M 256 AVG Y Y Y Y

dssm 75M 256 AVG N N Y N
a Classification objective instead of span masking objective on pre-finetuning data.

Training. We use Deepspeed (deepspeed.ai) and PyTorch for training models on
AWS P3DN instances. We used LANS optimizer [22] with learning rate between
1e−4 and 1e−6 based on the model and for all models we use a batch size of
8192. During pre-finetuning, we use validation MLM accuracy to perform early
stopping and for finetuning we use validation recall for stopping. When using
the three-part hinge-loss in Eq. 1, δpos = 0.9, δ+hn = 0.55 and δrn = δ−

hn = 0.2.

3.2 Offline and Online Results

Does our Training Strategy Help Improve Semantic Matching Perfor-
mance Offline? For large models, we compare qpi-bert-ft with xlmroberta,
ds-bert, and qpi-bert-ft*, and for small models, we compare small-qpi-
bert-ft small-qpi-bert-ft-sh with dssm (Table 2). a) qpi-bert outperforms
other approaches both in R@100 and E+S. Among large models, the perfor-
mance of ds-bert is better than xlmroberta and qpi-bert-ft* is better
than ds-bert. This clearly indicates progressive improvement with the different
stages in our approach. b) We observe is that dssm outperforms xlmroberta
in all metrics indicating a vocabulary and domain mismatch between the cata-
log data and web data. Domain-specific pretraining is essential to performance
when training the large models. c) We see that qpi-bert-ft significantly out-
performs qpi-bert-ft* in all metrics, validating the importance of interaction
pre-finetuning over mere supervision alone for matching. d) For small models,
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we observe that the performance of small-qpi-bert-ft is very similar to dssm,
with small-qpi-bert-ft showing ∼45% relative lift in S@100 but, ∼8% rela-
tive drop in E@100, ∼4% relative lift in E+S, and ∼1% relative drop in R@100.
When sharing parameters between the query and product encoder, and averaging
embeddings, small-qpi-bert-ft-sh-avg outperforms dssm by ∼38% relative
lift in S@100, ∼2% relative lift in E@100, ∼10% relative lift in E+S, and ∼2%
relative lift in R@100. The results indicate that our strategy helps improve the
performance overall and the improvements are higher for larger models (∼23%
relative lift in E+S over dssm). This reinforces our proposed approach: train
a large model and distill the knowledge to a smaller model, instead of directly
training a smaller model.

Can Distillation Preserve Large Model Performance? Given the large
improvement in matching metrics for large models, we would ideally like to retain
this improvement in smaller models using distillation. We compare small-qpi-
bert-dis with qpi-bert-ft (Table 2) and observe a ∼3% relative drop in E+S
and R@100. This shows that while there is small gap, it is possible to transfer
most of the information from a 1.5B parameter large qpi-bert-ft model to a
20x smaller small-qpi-bert-dis model (75M parameter) using our approach.

Does Sharing Parameters in the Bi-encoder have an Impact on
Retrieval Task Performance? To understand the effect of sharing parameters
between query and product encoders in the bi-encoder setting, we compare qpi-
bert-ft-sh with qpi-bert-ft among the large models and small-qpi-bert-
ft-shwith small-qpi-bert-ft, and small-qpi-bert-ft-sh-avg, with small-
qpi-bert-ft-avgamong the small models (Table 2). We observe that sharing
encoders has almost no impact on the performance of large models and the

Table 2. Offline metrics of models on a multi-lingual e-commerce dataset

Models R@100 E@100 S@100 O@100 E+S

Large Models

xlmroberta 68.43 29.52 17.46 53.02 46.98

ds-bert 73.98 43.17 17.55 39.28 60.72

qpi-bert-ft 82.2 50.36 20.5 29.14 70.86

qpi-bert-ft* 75.6 48.35 19.66 31.99 68.01

qpi-bert-ft-sh 83.35 51.08 19.81 29.11 70.89

Smaller Models

small-qpi-bert-ft 77.06 40.28 18.16 41.56 58.44

small-qpi-bert-ft-avg 50.84 33.63 13 53.37 46.63

small-qpi-bert-ft-sh 79.3 43.98 18.52 37.5 62.5

small-qpi-bert-ft-sh-avg 80.17 44.45 17.33 38.22 61.78

small-qpi-bert-dis 80 48.04 20.78 31.18 68.82

dssm 78.1 43.56 12.49 43.95 56.05
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maximum relative drop in E+S and recall is ∼1% with qpi-bert-ft-shwinning
marginally. However, in the smaller models we observe that sharing parameters
gives a large boost in performance with a relative lift of upto ∼32% in the E+S
metric and ∼60% in R@100. When the model size is large enough, it is capable
of learning independent encoders for both inputs. But, when the model is small,
the model benefits from sharing parameters.

How Does our Approach Improve over a non-BERT-Based Model?
To visualize the difference in matching quality between our BERT-based model
and DSSM, we look at results for two queries, with DSSM retrieving more rel-
evant products on one query and vice-versa on the other (Fig. 2). We observe
that for query “sailor ink” qpi-bert-ft performs better as all results are rele-
vant products. For this query, dssm behaves like a lexical matcher and fetches
results for both “sailor” and “ink”. For query “omron sale bp monitor machine”,
dssm retrieves all relevant matches. qpi-bert-fthowever, retrieves an irrelevant
product (a fitness watch). While irrelevant, it still falls into the product type of
“personal health” implying an error in semantic generalization. The significantly
higher increase in S@100 compared to E@100 indicates that qpi-bert-ft is a
better semantic model as the representations must incorporate high-level con-
cepts to match substitutes, that token-level exact matches cannot achieve.

What is the Latency Improvement of the Smaller BERT Model Com-
pared to the Large Model? We have seen earlier that the large model can
be effectively compressed to a 20x smaller model that incurs much lower infer-
ence latency. We compare the inference latencies of our models while generating
query embeddings which is representative of realtime latency as the product
embeddings are generated offline and indexed for ANN. We ignore the ANN
latency as modern ANN search can be computed effectively in realtime (∼1 ms)

(a) Query: ”sailor
ink”; Method:
dssm.

(b) Query: ”sailor
ink”; Method: qpi-
bert-ft.

(c) Query: ”omron
sale bp moni-
tor machine”;
Method: dssm.

(d) Query: ”om-
ron sale bp
monitor ma-
chine”; Method:
qpi-bert-ft.

Fig. 2. Top 6 results obtained by dssm and qpi-bert-ft for queries “sailor ink” and
“omron sale bp monitor machine”
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[4]. Figure 3 shows the time it takes to compute query embedding (inference)
for different query lengths (query length computed as number of tokens after
tokenization) on an r5.4xlarge AWS instance. As expected, dssm has the lowest
inference time and qpi-bert has the largest. Both small-qpi-bert and dssm
have embedding generation time of under 1ms upto 32 tokens making it feasi-
ble to serve realtime traffic. small-qpi-bert reduces the latency time by ∼60×
compared to qpi-bert with a relevance metric performance drop of only ∼3%.

Fig. 3. Inference time for qpi-bert, small-qpi-bert, and dssm on r5.4xlarge

Table 3. A/B test results for small-qpi-bert-dis rel. to production system.

PS Units E@16 S@16 E+S@16 SR Latency P99

+2.07% +1.47% −1.19% +3.37% +2.18% −16.9% +4 ms

How Well Does the Approach Perform Online? To measure the impact
of our approach online, we experiment with small-qpi-bert-dis in a multi-
lingual large e-commerce service. The service augments matching results from
several sources like lexical matchers, semantic matchers, upstream machine learn-
ing models, and advertised products. We replace only the production semantic
matcher with our small-qpi-bert-dis and perform an A/B test. We measure
both customer engagement metrics and relevance quality metrics. For customer
engagement metrics, we look at the change in number of units purchased and the
amount of product sales (PS). For quality metric, we look at the change in user
evaluated E@16, S@16, E+S@16 and sparse results (SR) which is the percent-
age of queries with less than 16 products retrieved. We observe (Table 3) that
our approach significantly improves over the production semantic matcher and
lead to a significant drop in SR. The reduction in E@16 and increase in S@16
suggests that our approach is learning latent semantic meaning to increase sub-
stitutes displayed to customers. We also observe that our model does not have
a significant impact on latency (∼4 ms) and can be used at runtime.
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4 Conclusion

In this work we develop a four-stage training paradigm to train an effective BERT
model that can be deployed online to improve product matching. We introduce
a new pre-finetuning task that incorporates the interaction between queries and
products prior to training for retrieval which we show is critical to improving
performance. Using a simple yet effective approach, we distill a large model
to a smaller model and show through offline and online experiments that our
approach can significantly improve customer experience. As future work, it would
be interesting to incorporate other structured data from the e-commerce service
to enhance representation learning, such as brand and product dimensions, as
well as customer interaction data such as reviews.
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Abstract. Embedding-based retrieval has drawn massive attention in
online search engines because of its semantic solid feature expression
ability. Deep Siamese models leverage the powerful dense embeddings
from strong language models like BERT to better represent sentences
(queries and documents). However, deep Siamese models can suffer from
a sub-optimal relevance prediction since they can hardly identify key-
words due to late interaction between the query and document. Although
some studies tried to adjust weights in semantic vectors by inserting some
global pre-computed prior knowledge, like TF-IDF or BM25 scores, they
neglected the influence of contextual information on keywords in sen-
tences. To retrieve better-matched documents, it is necessary to identify
the keywords in queries and documents accurately. To achieve this goal,
we introduce a keyword identification model to detect the keywords from
queries and documents automatically. Furthermore, we propose a novel
multi-task framework that jointly trains both the deep Siamese model
and the keywords identification model to help improve each other’s per-
formance. We also conduct comprehensive experiments on both online
A/B tests and two famous offline benchmarks to demonstrate the signif-
icant advantages of our method over other competitive baselines.

Keywords: Text matching · multi-task learning · Siamese model ·
semantic retrieval · keywords identification

1 Introduction

In the era of information explosion, it is more and more critical to quickly and
accurately find query-related information from a large number of documents.
Representation learning based retrieval has impressively improved the retrieval
accuracy and reformed this critical field researched for decades [25]. Based on
the deep matching models [4] and the state-of-the-art pre-trained frameworks,
semantic retrieval has thrived as a typical application of representation learning.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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An extensive collection of works, especially the deep Siamese models [4,6], have
been proposed to tackle the semantic retrieval task [11]. DSSM [8], CLSM [23],
ARC-I [5] explore adopting the traditional neural networks, while Sentence-
BERT [18], ColBERT [10], TwinBERT [13] take a further step to employ the pre-
trained language models like BERT [2]. All these works highlight the charm of deep
Siamese structures. Especially, pre-trained BERT can effectively capture the con-
textual semantic meanings in the query or document with the self-attention [9],
which significantly enhances the accuracy of the Siamese semantic retrieval model.

However, it is hard for deep Siamese models to directly infer the keywords
in the query since there is no interaction between the query and the document.
Keywords have been proven to play a unique and important role in information
retrieval applications [19]. To realize the pre-computation for massive documents,
the deep Siamese structure has the independent query encoder and document
encoder, which have no interaction until the last layer computing the similar-
ity. But unfortunately, the query encoder itself can have difficulties in adequately
weighting different words in the query without any context information about doc-
uments. And the document encoder has a similar problem without any query infor-
mation. Therefore, semantic representations without keyword identification will
directly impact semantic similarity computing and thus affect the overall match-
ing process.

In many previous studies, the global statics of context information is used to
improve the query representations by introducing some pre-computed prior knowl-
edge, like BM25 [19] or TF-IDF [20] scores. However, such statics can not take the
contextual semantics into consideration to reflect the word weights precisely. A
word is significant in one sentence, but may be not in another. Apparently, if we
use the pre-computed statics as the prior knowledge, it can lead to a sub-optimal
and even poor decision.

To remedy the limitations, we introduce a multi-task learning based key-
words weighted Siamese model (MKSM) for semantic retrieval in this work. We
propose a novel keywords identification model joined with the Siamese retrieval
model to explicitly model the weights of the adaptable keywords and get better
representations for the retrieval. Specifically, we model the keyword identifica-
tion as a regression learning problem to consider contextual semantics instead of
rule-based statistics. Furthermore, The keyword identification model shares the
same neural network model with the Siamese model but has different training
loss functions. Therefore, we train both the keyword identification model and the
deep Siamese model jointly in the style of multi-task learning to improve each
other’s performance. The multi-task learning enables our solution to learn bet-
ter keyword weights from retrieval signals and the regression target. Therefore,
we can get a better representation containing the semantic meaning of keyword
weights to conduct the matching process better.

To verify its effectiveness, we evaluate our proposed MKSM in the online
production environment and on famous and public benchmark datasets. Specifi-
cally, MKSM has been deployed for the online service search scenario of a popular
social application frequently used by over 100 million users. The online A/B test
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in real production shows that MKSM concretely improves the user experiences
for the service search in terms of click-through rate (CTR) and retrieval rate
(RR) for real production. Furthermore, the empirical results on public searching
benchmarks have also demonstrated considerable improvements over baselines.

To summarize, our contributions are three-fold:

– We introduce an adaptable keywords identification model to learn better rep-
resentations for queries and documents.

– We propose a novel semantic retrieval framework MKSM which joins the
keywords identification method to a Siamese model for semantic retrieval in
the form of multi-task learning.

– Extensive experiments on online A/B tests and two offline public benchmarks
verify the effectiveness of our proposed model.

2 Related Works

A variety of deep matching models have been proposed for the information
retrieval problems [15]. Siamese models applied to semantic retrieval started from
the Deep Structured Semantic Model (DSSM) [8], which mapped both query and
document to the same semantic space, and achieved the purpose of retrieval by
maximizing the cosine similarity. Then, ARC-I [5] and CLSM [23] used Convo-
lutional neural networks (CNNs) and max pooling to replace the fully connected
networks to extract features, which could capture more contextual information
for semantic vector representation. Further, LSTM-DSSM [17] proposed to use
Long Short-term Memory (LSTM) networks to replace CNNs to obtain contex-
tual information over longer sequences accurately. Sentence-BERT [18], a modi-
fication of the pre-trained BERT network that used Siamese and triplet network
structures to derive semantically meaningful sentence embeddings that could be
compared using cosine-similarity, which reduced the effort of finding the most
similar pair from 65 h with BERT/RoBERTa to about 5 s, while maintaining the
accuracy from BERT. Recently, TwinBERT [13] used twin-structured BERT-like
encoders to encode the query and document, respectively, and a crossing layer
to combine the two embeddings to produce a similarity score. Additionally, Col-
BERT [10] introduced a late interaction architecture that independently encoded
the query and the document using BERT and then employed a cheap yet power-
ful interaction step that modeled their fine-grained similarity. Furthermore, [14]
proposed a simple neural model that combined the efficiency of dual encoders
with some of the expressiveness of more costly attentional architectures and
explored sparse dense hybrids to capitalize on the precision of sparse retrieval.
Accurately representing the text and its contextual information has always been
a hot research direction, which is our concern in MKSM. Neither the models
mentioned above nor the [7] (Facebook), MOBIUS [3] (Baidu), etc. that have
been applied in the actual business has learned global contextual word weights.
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3 Methods

In this section, we first provide the problem definition of the semantic retrieval
task. Then we propose a comprehensive overview of our framework and further
introduce the implementations of each component in the MKSM framework.
Finally, we describe the multi-task training process of our structure.

Fig. 1. The hierarchical framework of MKSM. The whole framework can be divided
into two parts. the left part, Part A, illustrates the semantic retrieval process, while the
right part, part B, represents the keywords identification task.

3.1 Problem Definition

The semantic retrieval task can be described as a matching problem M that
gives a matching score for each query q and document d pair. Here, we use a
single symbol d to stand the entire document which usually contains not only
one field (e.g., name, description, etc.). Before calculating the matching score
ms, every string needs to be embedded as a semantic vector by some embedding
methods E, like the BERT language model. In our framework, in addition to
simply embedding the query and document, the keywords identification model
can be regarded as an independent function K. Hence, the keywords weighted
Siamese model for semantic retrieval can be represented as Eq. (1).

ms = match(q, d) = M(K(Eq(q)),K(Ed(d))). (1)

3.2 Framework Overview

From a horizontal view, MKSM comprises three parts, BERT semantic repre-
sentation, Keyword weight correction, and Matching score calculation, as shown
in Fig. 1. The framework, divided into semantic retrieval and keywords identifi-
cation parts, starts with the query, document, and text represented by a shared
BERT-pertained language model to get the corresponding embedding (Emb). A
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shared fully connected (FC) layer and softmax are appended to learn the word
weights (Weight) in the keywords identification module. Moreover, the Weight
is utilized for weighing the embeddings of the query and various fields in the
document to get better feature vectors (vec). Then, the contrastive loss (with
L2 normalization) is performed to measure the relevance of the query and doc-
ument representations in the semantic retrieval part. The mean squared error
(MSE) loss is applied as the objective of the keywords identification module.
The total loss is the sum of the contrastive loss and MSE loss weighted by two
hyperparameters, α, and β, respectively.

3.3 The Keywords Identification Model

Unlike other statistical methods or keyword detection methods, we model the
keywords identification task as a regression task that fits word importance
sequence sk from input sequence s.

For the offline public benchmark, we take all positive documents as one click
and negative documents as no click to estimate the clicking rate. As shown in
Fig. 2, we consider the clicking rates ai of documents and all related second-order
queries s′ to generate the keyword weights of the first-order query s. Specifically,
we generate labels as follows:

1. We collect a large amount of high-relevance retrieval logs containing the query
s and remove all stop words in the logs.

2. For the first-order query s, we dig out all clicked documents d and their
corresponding click rates a.

3. For any clicked document dj , we find all second-order queries that retrieve it.
And we think the queries retrieving the same document have similar semantic
meanings.

4. Then we count the word frequency f
dj
wi in the second-order queries of the

document dj and then normalized all word frequencies as f
dj
wi = f

dj
wi/

∑
i f

dj
wi .

5. Finally, we combine all normalized word frequencies of all documents by
weight averaging to generate the keyword weight as fwi

=
∑

j ajf
dj
wi/

∑
i f

dj
wi

Similarly, we generate the document keyword label by assuming that the
clicked documents for the same query have similar semantic meanings. Specifi-
cally, we dig out all queries that retrieve the document and all other documents
related to those queries. We count word frequencies in all related documents and
then normalize the frequency according to click rates and the sum of frequencies.

As presented in the right part of Fig. 1, the keywords identification model
includes three components, (1) representation component, (2) weight layer (Lk),
and (3) loss calculation. We use the embedding of the “[CLS]” token in the BERT
sentence embeddings as the initial representation. Then, a fully connected layer
is supplemented with a hidden size equal to the padding size used to learn the
word weights. Finally, the MSE loss function is computed for optimizing the
parameters in the weight layer by Eq. (2).
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Fig. 2. Keyword weight label mining from second-order queries in history logs

losskeywords =
1
P

P∑

i=1

(
li − Lk(BERT (s)[CLS])i

)2
, (2)

where l stands for the observed values of s.

3.4 The Siamese Retrieval Model

Like most deep matching models [3,7,13,18,24], the retrieval model also employs
a twin-structured Siamese framework as shown in the left part of Fig. 1. The
structure is a two-part design formed by the representation part and the match-
ing part. In the representation part, there are three layers of representation, (1)
initial representation, (2) weighted representation (L′

k), and (3) final representa-
tion (Lf ). The initial representation is the average BERT embeddings of all the
tokens. The weighted representation (L′

k) is the initial representation associated
with the weight layer (Lk) in the keywords identification model. The final repre-
sentation is used as input of the matching part to calculate the matching scores
minimized by a loss function, introduced in the rest of this section. We optimize
the model to acquire a better matching score by minimizing the contrastive loss
(lossmatching) as presented in Eq. (3).

lossmatching =
1

2N

N∑

i=1

y(D(rq, rd)i)2 + (1 − y)max(m − D(rq, rd)i, 0)2, (3)

where y is the relevance label with equals to 1 (relevant) or 0 (irrelevant), D
represents the Euclidean distance, which can be expressed by Eq. (4), and m is
a margin threshold.

D(rq, rd) = ‖rq − rd‖2 =

(
P∑

i=1

(
riq − rid

)2
) 1

2

(4)

3.5 The Multi-task Learning Strategy

As stated in Sects. 1, 3.3 and 3.4, to make the keywords identification model can
learn adaptive keywords weights, we propose to train the keywords identification
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model and the Siamese retrieval model together. The combined loss function can
be represented as Eq. (5).

loss = α × lossmatching + β × losskeywords. (5)

where α and β are two hyper-parameters.
The training repeats the following back-propagation processes until the

Siamese model can learn the representations of queries and documents well.

1. Firstly, back-propagating on the keyword identification model.
2. Secondly, back-propagating on the Siamese retrieval model with fixed param-

eters of shared weight layer.

4 Experiments

In this section, we first introduce the details of the experiment settings. Then we
discuss the experiment results, including offline performance, online evaluation,
and ablation study. Case study results and discussion on our work are in the
supplementary materials.

Table 1. Dataset Statistics

Datasets MS MARCO Private

Training set 367,000 queries
3,200,000 documents

260,000 queries
1,300,000 documents

Validation set 519,300 pairs 80,000 pairs

Fields title
body

account name
service name
service description

Average length 1137 96

4.1 Experiments Setup

Evaluation Datasets. We validate the performance of MKSM on two datasets,
where one is a public benchmark and the other is private. MS MARCO [16]
is a famous benchmark from Microsoft, which is sampled from Bing’s search
query logs. To construct our Private dataset, we extract the daily service search
logs from a popular instant messaging application and manually label the rel-
evance. And we implement a label noise detection method based on confident
learning [12] to purify this dataset. MS MARCO is an English dataset while
Private is a Chinese benchmark. Table 1 summarizes the detailed statistics of
such two datasets from three aspects.
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Evaluation Metrics. Because our approach focuses on the matching stage in
semantic retrieval, we choose Normalized Cumulative Gain (NCG) [22] as the
evaluation metric. It is the best empirical metric for query-document matching,
because it reflects the number of relevant documents returned without casing
the specific ranking. NCG is computed as

NCG =
CG
iCG

, (6)

where CG(Cumulative Gain) is the sum of all the relevance scores in the recall
set, and iCG is the ideal CG, which is the sum of relevance scores of the ideal
document recall set. Specifically, CG is defined as

CG =
T∑

i=1

relevance scorei, (7)

Baselines. We compare our proposed MKSM framework with 6 representative
retrieval baseline models1. Such methods can be categorized into different classes
as follows (the detailed discussion of these methods is presented in Sect. 2),

– Classical retrieval methods: TF-IDF [20] and BM25 [19].
– Deep Siamese models: CLSM [23] and USE [1].
– Pre-trained language model : BERT [2].
– Keywords weighted model : BERT+TF-IDF [21].

Implementation Details All the implementations mentioned in this paper
are based on TensorFlow. We train MKSM with 4 NVIDIA Tesla V100 GPUs
paralleled. The semantic vector representations for queries and documents are
based on BERT pre-trained language model with padding size 128 or 1024 in the
two datasets. The α and β are set as 0.6 and 0.4, respectively. AdamW, as an
improved Adam optimizer, is used in the training processes in the MKSM frame-
work. To make the inference phase more efficient, the embedding of documents
is offline performed ahead. The cosine similarity of the query and document
representations is utilized as the matching score.

4.2 Overall Performance

Table 2 illustrates the comparison results of NCG@T , where underlined numbers
are the best results of baselines and bold numbers are the best results of all
models. The difference between MKSM and MKSMSEP is whether training the
keywords identification model and the Siamese retrieval model separately.

From the results of Table 2, we can conclude the following observations,

1 We don’t compare with other baselines listed in the Sect. 2 since they are not open-
sourced or fine-tuned for different retrieval scenarios.
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– Our proposed MKSM framework obtains the best performance over other
retrieval models in both benchmarks. Specifically, in MS MARCO and Pri-
vate datasets, MKSM receives at least 0.9% and 0.7% promotion in terms
of NCG, respectively. These results indicate the superiority of our proposed
MKSM framework over baselines in both English and Chinese benchmarks,
with different lengths of documents.

Table 2. Overall performance on MS MARCO and Private datasets

Models MS MARCO Private

NCG@10 NCG@20 NCG@50 NCG@100 NCG@5 NCG@10 NCG@20 NCG@30

TF-IDF 0.4154 0.5178 0.6258 0.7158 0.8398 0.8752 0.9190 0.9455

BM25 0.4360 0.5465 0.6736 0.7564 0.8332 0.8674 0.9158 0.9431

CLSM 0.4016 0.5245 0.6541 0.7155 0.7446 0.8146 0.8930 0.9330

USE 0.3746 0.4045 0.6045 0.6620 0.8376 0.8784 0.9253 0.9521

BERT 0.4574 0.5745 0.6920 0.7841 0.8332 0.8763 0.9186 0.9487

BERT+TF-IDF 0.4562 0.5771 0.6938 0.7864 0.8432 0.8773 0.9268 0.9507

MKSMSEP 0.4619 0.5809 0.6992 0.7896 0.8452 0.8841 0.9302 0.9582

MKSM 0.4630 0.5868 0.7041 0.7934 0.8521 0.8904 0.9336 0.9621

Impr 1.2% 1.7% 1.5% 0.9% 1.1% 1.5% 0.7% 1.1%

“Impr.” presents the improvement of MKSM over the best baseline.

(a) Online experimental results of click-
through rate.

(b) Online experimental results of
retrieval rate.

Fig. 3. Online evaluations.

– BERT+TF-IDF performs better than BERT in most empirical metrics, which
indicates that the leverage of prior knowledge in query representations sig-
nificantly improves the retrieval performance. Besides, our proposed MKSM
and MKSMSEP both perform better than BERT+TF-IDF. It demonstrates
that keyword identification performs better than the traditional statistical
information TF-IDF as the prior knowledge, no matter whether in separat-
ing training or multi-task training. It is because that our proposed keywords
identification model can provide the keywords weight information, which is
essential in the retrieval task.

– MKSM performs better than MKSMSEP in terms of all metrics, which indi-
cates that the training strategy of MKSM can influence the performance, and
multi-task learning can introduce the prior knowledge to the Siamese model
effectively.
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4.3 Online Evaluation

We conduct A/B testing in the service retrieval scenario, comparing the proposed
model MKSM with the current baseline, a distilled BERT.

The whole online experiment lasts 15 days. We monitor the results of A/A
testing for the first five days, conduct A/B testing for the following five days, and
conduct A/A testing again in the last five days. 15% of the users are randomly
selected as the experimental group, and another 15% of the users are in the
control group. During A/A testing, all the users are served by the BERT. During
A/B testing, users in the control group are presented with retrieval results by
the BERT, while users in the experimental group are presented with the MKSM
semantic retrieval results. Note that the click experiment of MKSM shares the
same exposure with the distilled BERT to verify whether the improvement is
caused by the new semantic retrieval design.

Figures 3(a) and 3(b) show the improvement of the experimental group over
the control group with respect to click-through rate (CTR) and retrieval rate
(RR), which are defined as Eq. (8). We can see that the system is relatively
stable in terms of CTR and RR during the A/A testing. As for the A/B testing,
which starts from day 6, a significant improvement over the baseline BERT can
be clearly observed. Specifically, the improvements concerning CTR and RR
received by MKSM are at least 2% and 6%, respectively. In the final five days,
we conduct A/A testing again, which replaces the MKSM framework with the
distilled BERT. The improvement obtained by MKSM decays rapidly, which
further proves the effectiveness of A/B testing.

CTR =
#click

#exposure
,RR =

Δexposure

#exposure
, (8)

where # means the number of click and exposure, and Δexposure means the
increment of good results in exposure.

4.4 Ablation Study

In this subsection, to study the effectiveness of each component and certify that
MKSM is the best combination, we conduct several models which are differ-
ent from MKSM in terms of each component, such as MKSMSEP, BERT, and
MKSM[CLS]. Specifically, MKSMSEP trains the keywords identification model
and the Siamese model separately. BERT is the pure pre-trained language model
without any prior knowledge. MKSM[CLS] uses the embedding of the [CLS] token
in BERT as the initial representation of queries and documents. The performance
comparison in Private benchmark is presented in Table 3.

From the results, we can confirm that:

– Compared with MKSMSEP, MKSM shows a better performance, which indi-
cates the multi-task learning manner can make the Siamese model and the
keywords identification model interact more effectively.
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– To demonstrate the superiority of the keywords identification model, we com-
pare MKSM with BERT, a pure pre-trained language model for retrieval tasks
without prior knowledge. The results reflect the effectiveness of our proposed
keywords identification model. Besides, in contrast to fixed statistical informa-
tion(referred to as “BERT+TF-IDF” in Table 2), our proposed MKSM with
keywords identification model shows a better retrieval performance, which
further indicates the superiority of our proposed MKSM framework.

– MKSM achieves better performance than MKSM[CLS]. It means that using
the average of all token embeddings as the initial representation of queries and
documents in MKSM is slightly better than using only [CLS] token embed-
ding. The reason is, compared with [CLS] token embedding, the average
embedding of the BERT Encoder can provide much more useful information
for keyword identification and retrieval.

Table 3. Ablation Study of MKSM

Methods NCG@5 NCG@10 NCG@20 NCG@30

MKSMSEP 0.8452 0.8841 0.9302 0.9582

BERT 0.8332 0.8763 0.9186 0.9487

MKSM[CLS] 0.8447 0.8803 0.9277 0.9547

MKSM 0.8521 0.8904 0.9336 0.9621

5 Conclusion

In this paper, we propose a novel semantic retrieval model MKSM, which utilizes
a keywords identification model and multi-task learning strategy to introduce
practical prior knowledge in a Siamese model. MKSM can automatically learn
the keywords in queries and documents by integrating the keyword weight layer
and providing better final representations for calculating matching scores. We
conduct extensive experiments and rigorous analysis in online A/B tests and
offline public benchmarks to demonstrate that MKSM outperforms other modern
deep matching models on semantic retrieval.
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Abstract. Few-shot knowledge graph completion (FKGC) task aims to predict
unseen facts of a relation with few-shot reference entity pairs. Current approaches
randomly select one negative sample for each reference entity pair to minimize a
margin-based ranking loss, which easily leads to a zero-loss problem if the neg-
ative sample is far away from the positive sample and then out of the margin.
Moreover, the entity should have a different representation under a different con-
text. To tackle these issues, we propose a novel Relation-Aware Network with
Attention-Based Loss (RANA) framework. Specifically, to better utilize the plen-
tiful negative samples and alleviate the zero-loss issue, we strategically select
relevant negative samples and design an attention-based loss function to fur-
ther differentiate the importance of each negative sample. The intuition is that
negative samples more similar to positive samples will contribute more to the
model. Further, we design a dynamic relation-aware entity encoder for learning
a context-dependent entity representation. Experiments demonstrate that RANA
outperforms the state-of-the-art models on two benchmark datasets.

Keywords: Few-shot learning · Knowledge graph completion

1 Introduction

Knowledge graphs (KGs) contain rich triples (facts), where each triple (h, r, t) illus-
trates a relation r between a head entity h and a tail entity t. KGs such as Wikidata [16]
and NELL [3] have been applied to various downstream applications such as relation
extraction [25], named entity recognition [24], and node classification [10].

Knowledge Graph Completion (KGC) is proposed to solve the issue of incomplete-
ness caused by missing entities or relations in the KGs. KG embedding [2,15] has
achieved considerable performance on KGC. These models perform well with enough
training triples, but a large portion of relations in KGs follow a long-tail distribution.
For example, around 10% of relations in Wikidata [4] have no more than 10 triples.
Relations that do not have enough training triples are known as few-shot relations. It is
crucial and challenging for the model to predict relations with limited training triples.

Few-shot knowledge graph completion (FKGC) methods have been proposed to
address the few-shot relation issue. Given the relation r and few-shot reference entity
pairs (h, t), the FKGC aims to rank candidate tail entities t for each query (h, ?).
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These few-shot reference entity pairs form a support set, and queries form a query
set. One line of the existing methods focuses on designing metric learning algorithms
to compute the similarity between entity pairs [18,23]. Another line leverages model
agnostic meta-learning algorithm (MAML) [5] to learn the optimal parameters of the
model [4,9,17].

To train the model, current FKGC methods apply a margin-based ranking loss func-
tion that aims to separate the score of the positive triple from the score of the negative
triple by a margin. One negative triple is formed for each positive triple by replacing
the true tail entity with a randomly selected candidate tail entity. This loss function does
not effectively utilize the negative samples. Furthermore, an irrelevant negative sample
is likely to be selected due to a large number of candidates. These irrelevant negative
samples lead to zero loss because the negative triple is far away from the positive triple.
Therefore these irrelevant negative samples would not contribute to the training and
slow down the convergence rate [11]. For example, given a true triple (Kobe Bryant,
WorkIn, California), the model can select negative tail entities, such as New York, Thai-
land, London, etc. Because Thailand is irrelevant to the true tail entity California, the
distance between California and Thailand is greater than a predefined margin, and the
corresponding loss is zero. Thus Thailand may not contribute to the training.

To address the above limitations, we propose a framework called RANA (Relation-
Aware Network with Attention-Based Loss). To improve the quality of negative sam-
ples, we propose to filter irrelevant candidate tail entities first and then randomly sample
multiple negative samples instead of one. Since the importance of negative samples is
different and depends on their similarities to the positive sample, we apply an attention
mechanism to assign a weight to each negative sample, where the weights of the most
relevant negative samples are higher than the weights of the less relevant negative sam-
ples. The attention-based weighted loss function can enable the model to effectively
avoid zero-loss issues and thus learn a better decision boundary.

Further, we propose a context-dependent dynamic relation-aware entity encoder to
learn different representations of an entity in different relations. Specifically, given a
target relation and its support set, the entity encoder uses the similarities between the
target relation and neighboring relations to differentiate the impact of neighboring enti-
ties and dynamically encode the local connections of the entity. Finally, RANA employs
meta-learning to enable the model to perform well on a new relation with a few training
triples in a small number of gradient steps.

In summary, our main contributions are:

1. We propose a new negative sampling strategy and a novel attention-based loss func-
tion to solve the zero-loss and slower convergence issues.

2. We propose a dynamic entity encoder to learn a context-dependent entity represen-
tation and reduce the influence of unrelated neighboring entities.

3. Experiment results on benchmark datasets show that RANA consistently and signif-
icantly outperforms other baseline methods.
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2 Related Work

2.1 Embedding Based Knowledge Graph Completion

Knowledge graph embedding aims to embed entities and relations into a low-
dimensional continuous vector space while preserve their semantic meaning. Existing
methods can be divided into the following categories: (1) Translation-based models cal-
culate the Euclidean distance between entities and relations as the plausibility of a fact,
such as TransE [2], RotatE [13], and TransMS [20]; (2) Semantic matching-based mod-
els calculate the semantic similarity between entities and relations as the plausibility of
a fact, such as RESCAL [8], DistMult [19], and PUDA [14]; and (3) Neural network-
based models take entities and relations into a deep neural network to fuse the graph
network structure and content information of entities and relations, such as SME [1],
CompLEx [15], and BertRL [22]. All above models require sufficient training triples
and thus impair their performance on few-shot relations.

2.2 Few-Shot Knowledge Graph Completion

FKGC requires the model to predict new facts with a few training facts. Existing meth-
ods fall into two categories: (1) Metric-based models aim to learn the matching metrics
by calculating the similarity between the query set and the support set. GMathching
[18] focuses on one-shot KGC by considering both the learned embeddings and local
graph structures. FSRL [23] and FAAN [12] extend GMatching to few-shot scenar-
ios. (2) Optimization-based models aim to learn a set of good initial model parameters
so that the learned model can be generalized to the new relation quickly. MetaR [4],
GANA [9], and HiRe [17] focus on extracting relation-specific meta information from
the embeddings of entities in the support set and transferring it to the query set.

However, all these methods use a margin-based ranking loss, which can not effec-
tively avoid the low-quality negative sample, leading to a zero-loss issue and influencing
the convergence rate. Negative sampling has been proven as important as positive sam-
pling in determining the optimization objective [21]. Especially under the few-shot set-
ting, given limited positive samples, how to select high-quality negative samples based
on the corresponding positive sample is crucial.

3 Preliminary

3.1 Problem Definition

Knowledge Graph G.A knowledge graph G is a set of triples T = {(h, r, t) ⊆ E×R×
E}, where E and R represent the entity set and relation set, respectively. The relation set
R contains few-shot relations and high-frequency relations. The background knowledge
graph Gbackground is a set of triples associated with all high-frequency relations.

Knowledge Graph Completion. The KGC task is to either predict the tail entity t given
the head entity h and the query relation r: (h, r, ?) or predict unseen relation r between
two existing entities: (h, ?, t). In this work, we focus on tail entity prediction.
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Few-shot Knowledge Graph Completion. Given a relation r ∈ R and its few-shot
support set S = {(hi, ti) ∈ T }, the FKGC task aims to predict tail entity t for each
query Q = {(hi, ?) ∈ T }.
A Few-shot Relation’s Neighborhood. Given a triple (h, r, t) of a few-shot relation
r, the neighborhood of r is defined as {h, t,Nh,Nt}, where Nh and Nt are the sets
of one-hop neighbors of h, t, respectively. All Nh and Nt are from the background
knowledge graph Gbackground. A neighbor in Nh or Nt is composed of a neighboring
relation ri and a neighboring entity ci. We denote the neighbor of each entity (h or t)
as Ne = {(ri, ci)|(e, ri, ci) ∈ Gbackground}.

3.2 Meta-learning Settings

Meta-learning aims to train a model on several related tasks so that the model can
quickly learn a new task using a few training data. We leverage an optimization-based
meta-learning algorithm called MAML [5], which aims to learn a task-specific param-
eter set Θi by using well-initialized meta-model parameter set Θ. It can be divided
into two stages, meta-training and meta-testing. During meta-training, given a task Ti,
a support set Si and a query set Qi are first sampled from Ti. Then, the model learns a
task-specific parameter set Θi by one gradient descent update on the support set Si:

Θi = Θ − η ∗ ∇LSi
(Θ). (1)

Finally, meta-optimization across all query sets of tasks is performed to learn the meta-
model parameter set Θ by using task-specific parameter set Θi. During meta-testing,
the model can quickly adapt to a new task using only a support set S.

In FKGC, each task is defined as predicting new triples for a specific few-shot rela-
tion. All the relations in the meta-training form a meta-training set Rmeta−training .
Since the goal is to predict facts of unseen relations, the relations in meta-validation
Rmeta−validation, meta-testing Rmeta−testing , and Rmeta−training are distinct.

4 Methodology

In this section, we first introduce triple representation, which aims to learn a context-
dependent entity representation and a good initialization few-shot relation representa-
tion. Then we introduce a novel negative sampling strategy, which aims to filter irrel-
evant candidate tail entities and use an attention mechanism to differentiate the impor-
tance of each negative sample. Finally, we introduce meta-learning, which aims to learn
well-generalized parameters so that the model can quickly adapt to a new task using
few reference triples. Figure 1 shows the framework of RANA for a few-shot relation
WorkIn.

4.1 Triple Representation

Dynamic Relation-Aware Entity Encoder. The entity representation should be
context-dependent. For example, (Kobe Bryant, California) can involve in two different
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relations, such as WorkIn and DieIn, so Kobe Bryant should have different embeddings
in these two different relation contexts.

Besides, given a few-shot relation, different neighbors should have a different
impact on the entity itself. For example, in Fig. 1, given the few-shot relation WorkIn
and the head entity Kobe Bryant, its neighbor (AthleteOf, Lakers) should get more atten-
tion since it reveals work information about Kobe Bryant, but the neighbor (HasSpouse,
Vanessa) should get less attention since it reveals family information of Kobe Bryant
which is irrelevant to the few-shot relation WorkIn.

Fig. 1. The framework of RANA for a few-shot relation WorkIn

To address these issues, we design a dynamic relation-aware entity encoder, which
incorporates neighboring relations to learn different embeddings of an entity in different
relations and differentiates the importance of each neighbor by an attention mechanism.

Given an entity pair (h, t) from a support set S, the embedding of few-shot relation
r is defined as:

r = t − h, (2)

where h and t are the pretrained embeddings by TransE [2].
Here, we use the head entity h as an example to illustrate the entity encoding pro-

cedure, and this procedure also holds for the tail entity t.
To differentiate the impact of each neighbor, we use a Multilayer Perceptron (MLP)

network to calculate the relevance score between the few-shot relation r and each neigh-
boring relation ri.

The relevance score is defined as follows:

m(r, ri) = W2[tanh(W1[r ⊕ ri])], (3)

where ⊕ denotes the concatenation operation, ri denotes the embedding of neighboring
relations, and W1 and W2 are trainable parameters. A higher relevance score between
the neighboring relation and the few-shot relation means that this neighboring relation
is more important to the few-shot relation.
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To learn the different representations of an entity in different relations, we design a
dynamic neighbor embedding Ari,ci

of the head entity h as follows:

Ari,ci
=

∑

(ri,ci)∈Nh

αiW3[ri ⊕ ci], (4)

where W3 are trainable parameters, and αi is the attention score of each neighbor:

αi =
exp(m(r, ri))∑

ri∈Nh
exp(m(r, ri))

. (5)

When the neighboring relation is more relevant to the few-shot relation, the higher
attention αi is given to the corresponding neighbor. Then this neighbor will play a more
important role in neighbor embedding.

Since the information of entity h itself is still valuable, we combine the embedding
of entity h with Ari,ci

to get the final representation h′ as follows:

h′ = σ(W4(h + Ari,ci
)), (6)

where W4 are trainable parameters and σ(·) is a sigmoid function.

Few-Shot Relation Representation. The same entity pair may involve in different rela-
tions, so the learning of relation representation is necessary, and it can further help triple
representation learning.

The relation representation from a specific entity pair in the support set S is:

R(hi,ti) = FCσ
W5

[h′
i ⊕ t′

i], (7)

where the fully connected layer FCσ
W5

is parameterized by W5 and activated by a
LeakyReLU function σ(·).

The relation representation from the support set Rs is then the average of all repre-
sentations from entity pairs in S,

Rs =
∑I

i=1 R(hi,ti)

I
, (8)

where I is the number of entity pairs in the support set S.

4.2 Negative Sampling

Since the positive sample is limited under the few-shot setting, how to take advantage of
negative samples is more critical. Previous FKGC methods use a margin-based ranking
loss and randomly select one negative sample for each positive sample [4,9,12,18,23].
But the random selection is likely to select an irrelevant negative sample and lead to a
zero-loss issue. Further, regardless of their relevance to the positive samples, all nega-
tive samples will have the same impact on the model training. To address these issues,
RANA filters irrelevant negative samples and uses an attention mechanism to distin-
guish the importance of each negative sample.
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Candidate Pruning. The candidate set of negative samples constructed by [18] lim-
its the candidate entities to those have the same types as the true tail entities in the
support set, but this broad candidate set includes many irrelevant candidates as nega-
tive samples. For example, given a fact (Kobe Bryant, WorkIn, California), the previous
candidate set is limited to location and company types of entities because the types of
tail entities in the support set are company or location. However, a candidate such as
Thailand is irrelevant to California and thus is not helpful in the model training.

To reduce the number of irrelevant candidates and enable the model to select high-
quality negative samples during the training stage, RANA filters irrelevant candidates
by the similarity of the true tail entity t and a candidate tail entity t−. The similarity is
calculated by:

f(t, t−) = t−Tt, (9)

where t is the embedding of a true tail entity and t− is the embedding of a candidate
tail entity. If f(t, t−) < τ , where τ is a threshold, then t− should be filtered.

Attention of Negative Samples. To fully utilize the negative samples, RANA selects
multiple negative samples instead of one and differentiates each negative triple’s con-
tribution by an attention mechanism.

Intuitively, if a negative sample is more relevant to the positive sample, this negative
sample should play a more important role in model training. Therefore, higher attention
should be given to this negative sample. As shown in Fig. 1, given a positive sample
(Kobe Bryant, California), the negative sample (Kobe Bryant, New York) is more rele-
vant to the positive sample than the negative sample (Kobe Bryant, London), and thus
the model should pay more attention to the former.

We define a scaled-dot product function f(pi,nij) to calculate the similarity
between the positive sample (hi, ti) and each of its negative sample (hi, t

−
ij):

pi = hi ⊕ ti, nij = hi ⊕ t−
ij , f(pi,nij) =

nT
ijpi√
|p|

, (10)

where |p| is the dimension of pi. The attention of each negative triple is defined by:

βij =
exp f(pi,nij)∑J

j=1 exp f(pi,nij)
, (11)

where J is the number of negative samples.

The Loss of RANA.Negative sampling is as valuable as positive sampling in determin-
ing the optimization object, but it has been overlooked in the margin-based ranking loss
[21]. To alleviate zero-loss and slower convergence issue, we sample multiple negative
triples instead of one to increase the probability of generating a relevant negative triple.

Motivated by TransE [2], we first calculate the distance of each entity pair (hi, ti)
as follows:

d(hi,ti) = ||hi + R − ti||L2, (12)
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Because the smaller distance indicates the triple is more likely to be true, the triple
should lead to a higher score. The score function of each triple is designed as:

s(hi,ti) = γ − d(hi,ti), (13)

where γ is a hyperparameter.
Our log-based loss function is:

L = −
I∑

i=1

log σ(s(hi,ti)) −
I∑

i=1

J∑

j=1

βij log σ(−s(hi,t
−
ij)

), (14)

where σ(·) is a sigmoid function, and βij is the attention of each negative triple calcu-
lated by Eq. (11). Since a more relevant negative triple has higher attention (βij), this
loss function will make those relevant negative triples impact more in model training.

4.3 Meta Learning

To learn a new relation quickly with a support set, RANA employs MAML [5] to opti-
mize the model parameters that can be adapted for few-shot relations.

Algorithm 1. Training framework
Input: Training tasks Rmeta−training , initial model parameter Θ

Pre-trained KG embedding (excluding relation inRmeta−training)

1: while not done do
2: Sample a task Ti = {Si, Qi} from Rmeta−training

3: Get Rs from Si by Eqs. (2)–(8)
4: Get negative sample of Si by Eqs. (9)–(11)
5: Calculate the loss of Si by Eqs. (12)–(14)
6: Update the embedding of the task-specific relation Rq with gradient descent by Eq. (15)
7: Get negative samples of Qi by Eqs. (9)–(11)
8: Calculate the loss of Qi by Eqs. (12)–(14)
9: Update whole model parameters Θ ← Θ − μ∇L
10: end while

Support Learner. Support learner aims to learn a representation Rs of the few-shot
relation and Rs can be calculated by Eqs. (2)–(8).

Query Learner. Following the MetaR [4] assumption, the relation is the key common
information between support and query set. So we aim to transfer the support relation
Rs to the query relation Rq by minimizing a loss function via gradient descending.

In RANA, the relation embedding Rq can be updated by the gradient descent,

Rq = Rs − η ∗ ∇Ls, (15)

where the hyperparameter η refers to the step size and Ls refers to the loss of the
corresponding support set, which is calculated by Eqs. (12)–(14).
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To update all parameters of RANA, we use the updated relation embedding Rq to
calculate the loss of the corresponding query set Lq by Eqs. (12)–(14) as well.

Objective and Training Process. During the meta training-stage, the objective of
RANA is to minimize the sum of query loss for all tasks, and the overall loss is:

L = argmin
Θ

∑
Lq, (16)

where Θ represents all trainable parameters.

4.4 Algorithm of RANA

We summarize the overall training procedure in Algorithm 1.

4.5 Difference from RotatE

RotatE [13] is an embedding-based KGC method that uses a self-adversarial negative
sampling technique to effectively optimize the model. Our approach differs from RotatE
in a major way: We consider the similarity between the positive triple and negative triple
as the weight of each negative triple, but RotatE considers the distribution of negative
triples and treats the probability as the weight of each negative triple. Therefore, the
weights of the negative samples in RotatE are independent of the positive samples. As
we will show in the experiments (Sect. 5.5), RANA can achieve a better performance
than RotatE’s self-adversarial negative sampling under the few-shot setting.

Table 1. Statistics of the Datasets. Columns 2-7 represent the number of entities, relations, triples,
relations in Rmeta−training , relations in Rmeta−validation, and relations in Rmeta−testing ,
respectively.

Dataset #Ent #Rel #Triples #Train Rel #Valid Rel #Test Rel

NELL-One 68, 545 358 181, 109 51 5 11

Wiki-One 4, 838, 244 822 5, 859, 240 133 16 34

5 Experiments

5.1 Datasets and Evaluation Metrics

We conduct experiments on NELL-One and Wiki-One, constructed by [18]. In both
datasets, relations with more than 50 but less than 500 triples are selected as few-
shot relations, and the remaining relations are treated as background relations. We use
51/5/11 and 133/16/34 few-shot relations for training/validation/testing in NELL-One
and Wiki-One, respectively. The statistics of both datasets are shown in Table 1.

To evaluate the performance of RANA and all baselines, we utilize two metrics:
mean reciprocal rank (MRR) and Hits@K. MRR is the mean reciprocal rank of correct
entities, and Hits@K is the proportion of correct entities ranked in the top k.
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5.2 Baseline

Traditional embedding-based methods aim to learn entity and relation embeddings
by modeling relational structure in KG.We consider the following widely used methods
as baselines: TransE [2], DistMult [19], ComplEx [15], SimplE [6], and RotatE [13].
All these methods require sufficient training triples for each relation and do not use
local graph structure to update entity embeddings.

FKGC methods aim to learn long-tail and unseen relations by utilizing deep neural
networks to explore the connection between the support set and the query set. We con-
sider the following models as baselines: GMatching [18], MetaR [4], FSRL [23], FAAN
[12], GANA [9], and HiRe [17]. We run RANA 5 times and report the average results.

5.3 RANA Setups

The pre-trained entity and relation embeddings are obtained from TransE. The embed-
ding dimension is set to 50 and 100 for NELL-One and Wiki-One, respectively. We
use Adam [7] with the initial learning rate of 0.01 to update parameters. The number
of negative samples is 5, the margin γ is 12.0, the step size η is 1, and the number of
neighbors is 25 on both datasets. The model with the highest MRR on the validation set
is applied as the final model. The optimal hyperparameters are tuned on the validation
set by grid search. We conduct RANA on a server with a Tesla V100 GPU (32G).

5.4 Overall Evaluation Results and Analysis

The performances of all models on NELL-One and Wiki-One are reported in Table 2.
Compared to the traditional embedding-based methods, incorporating graph neighbors
is effective for learning entity embedding. RANA outperforms the other FKGC models
on both datasets. Compared with the runner-up results, the improvements obtained by
RANA in terms of MRR, Hits@10, Hits@5, and Hits@1 are 4.9%, 10.2%, 8.2%, 2.8%
on NELL-One, and 2.2%, 2.3%, 4.3%, 3.1% on Wiki-One, respectively.

Table 2. Results of 5-shot KGC. Bold numbers represent the best results and underline numbers
denote the runner-up results. † cites the result from [12], ∗ cites the result from their original
papers.

NELL-One Wiki-One

Model MRR Hits@10 Hits@5 Hits@1 MRR Hits@10 Hits@5 Hits@1

TransE† 0.174 0.313 0.231 0.101 0.133 0.187 0.157 0.100

DistMult† 0.200 0.311 0.251 0.137 0.071 0.151 0.099 0.024

ComplEx† 0.184 0.297 0.229 0.118 0.080 0.181 0.122 0.032

SimplE† 0.158 0.285 0.226 0.097 0.093 0.180 0.128 0.043

RotatE† 0.176 0.329 0.247 0.101 0.049 0.090 0.064 0.026

GMatching† 0.176 0.294 0.233 0.113 0.263 0.387 0.337 0.197

MetaR† 0.209 0.355 0.280 0.141 0.323 0.418 0.385 0.270

FSRL† 0.153 0.319 0.212 0.073 0.158 0.287 0.206 0.097

FAAN† 0.279 0.428 0.364 0.200 0.341 0.463 0.395 0.281

GANA∗ 0.344 0.517 0.437 0.246 0.351 0.446 0.407 0.299

HiRe∗ 0.306 0.520 0.439 0.207 0.371 0.469 0.419 0.319

RANA 0.361±0.011 0.573±0.009 0.475±0.010 0.253±0.013 0.379±0.008 0.480±0.012 0.437±0.008 0.329±0.011
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5.5 Ablation Study

RANA is composed of two modules, including a dynamic relation-aware entity encoder
and negative sampling. To investigate the contributions of each component, we conduct
the 5-shot KGC with different settings. The results are summarized in Table 3.

Entity Encoder Variants:We analyze the impact of the neighboring relation in Eqs. (4)
and (5) by removing ri from Eq. (4) or adding ci in Eq. (5). Besides, we remove the
attention mechanism in Eq. (4). The results show that neighboring relation and atten-
tion mechanism can benefit model performance. It illustrates semantic information of
relations can improve the entity representation, and different relations should have dif-
ferent impacts on the entity itself. Since the effect of the attention mechanism depends
on neighbors, Wiki-One has much sparser neighbors than NELL-One [9], so the atten-
tion mechanism plays a small role in Wiki-One.

Negative Sampling Variants: To inspect the effectiveness of the negative sampling
and attention-based loss functions, we conduct five different experiments. (A) We use
only one negative sample in Eq. (14). (B) We remove the negative attention mechanism
in Eq. (14). (C) We remove the candidate pruning stage. (D) We remove the candidate
pruning stage and negative attention mechanism. (E) We replace Eq. (14) with RotatE
[13] self-adversarial negative sampling loss. Experimental results show that the negative
sampling strategy plays a key role in the success of RANA.

5.6 Influence of Size of Few-shot Support Set and Negative Sample

To analyze the impact of support set size, we compare RANA with GANA on NELL-
one. Figure 2a shows the performances with support set size from 1 to 8. RANA outper-
forms GANA under different sizes of support sets, showing the effectiveness of RANA.
After the 5-shot, the improvement of RANA is not significant. We randomly select 20
facts from the relation teamcoach to analyze the errors in the 5-shot setting. RANA
predicts 12 out of 20 true tail entities in top 10. Among the other 8 facts, 4 of them
have incorrect ground truth tail entities, and 3 of them have neighbors fewer than 10.
For these cases, increasing the size of the support set is unlikely to change the results.

Table 3. Ablation Study

NELL-One Wiki-One

Model MRR Hits@10 Hits@5 Hits@1 MRR Hits@10 Hits@5 Hits@1

whole model 0.372 0.580 0.477 0.257 0.387 0.486 0.443 0.339

Eq. (4) w/o ri 0.339 0.535 0.427 0.222 0.362 0.468 0.410 0.299

Eq. (5) with ci 0.358 0.573 0.471 0.256 0.367 0.477 0.424 0.302

Eq. (4) w/o αi 0.326 0.526 0.407 0.235 0.377 0.483 0.433 0.315

Eq. (14) with one negative sample 0.294 0.520 0.428 0.210 0.349 0.451 0.417 0.311

Eq. (14) w/o negative attention 0.293 0.494 0.416 0.213 0.298 0.387 0.371 0.257

w/o candidate pruning 0.298 0.507 0.425 0.217 0.311 0.445 0.360 0.243

w/o candidate pruning and negative attention 0.257 0.447 0.396 0.192 0.286 0.363 0.321 0.242

RotatE self-adversarial negative sampling 0.268 0.479 0.365 0.165 0.310 0.389 0.401 0.255
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Fig. 2. (a) Influence of Few-shot Support Set Size,(b) Influence of Negative Sample Size

We conduct an experiment to analyze the influence of the negative sample size.
Figure 2b shows the performance of RANA on NELL-One with the negative sample
size from 1 to 10. The performance improves initially when increasing the negative
sample size. After size 6, the performance begins to drop due to the class imbalance
issue. Empirically, we recommend a negative sample size of 3 to 5.

6 Conclusion

In this paper, we propose a relation-aware network with attention-based loss for FKGC
tasks. We strategically select multiple negative samples instead of one and propose an
attention-based loss to differentiate the importance of each negative sample. A dynamic
relation-aware entity encoder is designed to learn a context-dependent entity represen-
tation. The experimental results demonstrate that RANA outperforms other SOTA base-
lines on two benchmark datasets.
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Abstract. In the domain of question-answering in NLP, the retrieval
of Frequently Asked Questions (FAQ) is an important sub-area which is
well researched and has been worked upon for many languages. Here, in
response to a user query, a retrieval system typically returns the relevant
FAQs from a knowledge-base. The efficacy of such a system depends on
its ability to establish semantic match between the query and the FAQs
in real-time. The task becomes challenging due to the inherent lexical
gap between queries and FAQs, lack of sufficient context in FAQ titles,
scarcity of labeled data and high retrieval latency. In this work, we pro-
pose a bi-encoder-based query-FAQ matching model that leverages mul-
tiple combinations of FAQ fields (like, question, answer, and category)
both during model training and inference. Our proposed Multi-Field Bi-
Encoder (MFBE) model benefits from the additional context resulting
from multiple FAQ fields and performs well even with minimal labeled
data. We empirically support this claim through experiments on propri-
etary as well as open-source public datasets in both unsupervised and
supervised settings. Our model achieves around 27% and 23% better
top-1 accuracy for the FAQ retrieval task on internal and open datasets,
respectively over the best performing baseline.

Keywords: Information Retrieval · FAQ Retrieval ·
Question-Answering · Multi-field · BERT · Bi-encoder

1 Introduction

Customer support (CS) is critical to any business and plays an important role in
customer retention, new customer acquisition, branding, and in driving a better
experience. In a typical online customer support setting, customers reach out
with their queries and are attended to by human agents. This requires busi-
nesses to hire and maintain a team of CS agents that scales as a function of the
query volume and the productivity of agents that, in turn, translates to oper-
ational cost for the business. Customer support automation [19] can help save
on this operational cost by providing automated responses to queries and by

D. Banerjee and M. Jain—These authors contributed equally to this work.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. Kashima et al. (Eds.): PAKDD 2023, LNAI 13937, pp. 112–124, 2023.
https://doi.org/10.1007/978-3-031-33380-4_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33380-4_9&domain=pdf
http://orcid.org/0000-0001-9773-776X
http://orcid.org/0000-0002-6389-9629
http://orcid.org/0009-0009-5081-7338
https://doi.org/10.1007/978-3-031-33380-4_9


MFBE 113

improving support agent productivity. One of the ways businesses typically try
to achieve this is by automatically responding to customer queries from a repos-
itory of frequently asked questions (FAQs), thereby, insulating human agents
from high query volumes. The success of such a system, measured as the frac-
tion of customer queries that it automatically responds to, then depends on the
effectiveness of the user query to FAQ matching.

Given a collection of FAQs where, each FAQ is a multi-field tuple 〈Q,A,C〉
of question Q, answer A, and question category C, the problem of FAQ retrieval
[6,9,24,25] is to retrieve the top-k FAQs in response to a user query q. Similar to
a typical retrieval problem, FAQ retrieval too suffers from the problem of lexical
gap between a user query expressed in natural language and the corresponding
matching FAQs. This is typically addressed by learning a relevance function
between user queries and FAQs using labeled query-FAQ pairs for supervision.
Unfortunately, such labeled data is often unavailable or scarce, especially in low-
resource settings like Japanese query-FAQ retrieval, which is the domain of our
interest. Curating large amounts of such labeled data through manual labeling
is often expensive and requires domain knowledge for labeling.

The main contributions of this paper are summarized as follows:

– We propose a bi-encoder based retrieval model - MFBE that leverages multi-
field information (question, answer and/or categories) in FAQs.

– We use different combinations of user query and FAQ fields to create an
extended set of pseudo-positive pairs for training.

– We employ multiple FAQ representations during inference for query-FAQ
scoring.

2 Related Work

Question answering [10,16] task has been the area of interest in NLP community
for a long time and shares the concepts of Information Retrieval (IR) where
relevant information from a corpus of documents is retrieved in response to a
search query. FAQ retrieval is an example of IR which is the focus of this work.
Traditional retrieval methods [12,23] mainly depend on lexical features for the
retrieval task which limits them to capture the semantics of the query. In order
to address the challenge of lexical gap between user queries and answers, there
is a body of work [3,17,29] that trains a semantic retrieval model from labeled
data in the form of user queries and matching responses. In recent years, there
has been an increasing research [8,14] on unsupervised learning techniques for
text-encoder training eliminating the need for annotated data. They propose
augmentation techniques based on paraphrases of input sentences to generate
positive and negative samples for an anchor that are then used to train the
retrieval model using a contrastive learning strategy [4].

The performance of FAQ retrieval task depends upon the (i) choice and
design of model architecture and (ii) retrieval and re-ranking algorithms used.
A combination of bi-encoder and cross-encoder is seen in [13,20], where the
authors start with an unsupervised setting with zero labelled data. Then they
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Fig. 1. Example of an FAQ in Japanese Language (JA).

iterate between bi-encoder and cross-encoder models generating more labelled
samples in each iteration. This gives a powerful text-encoder model along with
annotated dataset. The retriever and the re-ranker can also be jointly trained
with the goal of achieving mutual improvement [22].

Previous works [6,24,25] on FAQ retrieval problem focused on query-question
(q-Q) similarity using BM25 [23] and query-answer (q-A) similarity using BERT
[5], where the BERT model parameters are fine-tuned on FAQ question-answer
(Q-A) pairs. Sakata et al. [24] (close to our work) employ a two-stage method
where they first retrieve a set of FAQs based on q-Q similarity and then re-rank
these based on q-A similarity to obtain the final list of top-k FAQs as response.
Here, question (Q) and answer (A) are typically referred to as fields. Fields can
vary depending upon the dataset. For example, Wikipedia page title, content,
abstract, etc. have been considered as fields in [16].

Dutta et al. [6] propose a seq-2seq model for extracting keywords in user
queries to identify the intent of a user query for better retrieval of relevant
FAQs. Another close work by Assem et al. [2] uses two separate deep learning
architectures. They first learn latent lexical relationships between FAQ questions
and their paraphrases to generate top-k most relevant similar questions from the
collection. These top-k candidates are then fed to an LSTM-based architecture
that captures fine-grained differences in semantic context between FAQ questions
and their paraphrases thereby improving the accuracy@1. Liu et al. [15] discuss
the difficulty in determining the relevance of query-answer pairs due to their
heterogeneity in terms of syntax and semantics and propose to use synthetic data
for increasing the positive training examples. Tseng et al. [26] cites that existing
methods fail to attend to the global information specifically about an FAQ task
and propose a graph convolution network-based method to cater to all relations
of question and words to generate richer embeddings. They also explore domain
specific knowledge graphs for improving question and query representations.

Some unsupervised sentence embedding methods that closely aligns with our
work are [14] and [8], which are based on contrastive learning using augmentation
techniques. Alternate representations of input sentences provide strong positives
to the model. [11] is a self-supervised fine-tuning of BERT, which redesigned the
contrastive learning objective to account for different views of the input sentence.
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3 FAQ Retrieval for User Queries

FAQs are a pre-defined list of question-answer pairs available on web portals
(e.g., banking, e-commerce, telecom, etc.) that help in addressing user queries
without human intervention. In some cases, FAQs are also associated with some
hierarchical categories or tags. Figure 1 shows a sample FAQ that consists of
question (or title), answer (or description) and hierarchical categories. In this
paper, we mainly focus on improving the retrieval of FAQs conditioned on user
queries using a neural text encoder [7]. In general, neural text encoders can be
categorized into two types: bi-encoders [18] and cross-encoders [28]. Bi-Encoder
(BE): It consists of two encoder branches (with optional weight sharing), where
two sentences Sa and Sb are independently passed through each branch, resulting
into two sentence embeddings fa and fb respectively. Their similarity can then
be computed using a distance metric like cosine or dot-product of fa and fb.

Cross-Encoder (CE): The two sentences are first concatenated and then
passed through an encoder. The resulting embedding vector is input to a clas-
sification head that is typically implemented as a shallow feed forward network.
Here, computation of similarity between the two input sentences is modelled as
a binary classification task with 1 (0) indicating as similar (not similar).

Generally, cross-encoders outperform bi-encoders in performance by lever-
aging the mutual attention among all the words in the concatenated sentence,
but they also suffer from high inference latency. The bi-encoder architecture is
inherently suited for the FAQ retrieval task as it allows for pre-computation and
indexing of sentence embeddings of the FAQs before-hand, which is not possible
with cross-encoders. We introduce Multi-Field Bi-Encoders (MFBE) with the
aim of improving the performance of bi-encoders for the FAQ retrieval task by
leveraging additional context from FAQ titles, description and categories. In this
section, we first explain the notations, followed by our proposed approach.

Notations - Let F = {Fi}Ni=1 be the set of FAQs, where each FAQ Fi consists
of a 3-tuple 〈Q,A,C〉 of question (or title) Q, answer (or description) A and
categories (or tags) C. We define M = {Q, A, QA, QC, CA, QCA} as the set of
fields, where, each field m ∈ M is obtained by concatenating one or more of Q,A
or/and C. Let Ms = {Q,QC} ⊂ M be a subset of fields present in M and Q be
the set of all user queries. For a query q ∈ Q, let F and F̃ denote the matching
and non-matching FAQs, respectively, such that (q, F ) forms a matching query
FAQ pair and (q, F̃ ) corresponds to a non-matching pair. We denote the field
m (or ms) of an FAQ as Fm (or Fms). For example, the field QA of an FAQ
is denoted by FQA. In this case, for a query q, (q, FQA) and (q,F̃QA) are the
matching and non-matching query FAQ pairs. We denote the text encoder as
E(·), which maps any text to a d-dimensional real-valued vector. For every FAQ
field Fm

i , we compute E(Fm
i ) = fm

i and stack them in a matrix Tm, where row
i in Tm corresponds to vector fm

i . For a query q the corresponding embedding
is computed as E(q) = fq.
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Fig. 2. Illustration of the working of MFBE model across different stages - training,
pre-computation and inference.

Proposed Approach - We propose to learn the relevance function rel(x, y; θ)
(where x ∈ {q, Fms}; when x = q, then y ∈ ∪m∈MFm, else y ∈ ∪m∈M\Ms

Fm)
using a pre-trained neural language model [7] as the text encoder with θ as the
model parameters.

As shown in Fig. 2, MFBE consists of Language-agnostic BERT Sentence
Embedding (LaBSE) [7] model as text encoder in two branches with shared
weights.

We compute the similarity between a query q and an FAQ field Fm using the
cosine-similarity, i.e., sim(q, Fm) = cosineSim(fq, fm). As mentioned in [9], the
similarity function should be decomposable and facilitate the pre-computation of
representations of the FAQs. L2, inner product and cosine-similarity are some of
the widely used similarity functions that are decomposable in nature. We choose
cosine-similarity function, which is equivalent to inner product for normalized
vectors.

Training Stage - The goal is to learn a latent space following metric learning
[27], where matching query and FAQ pairs shall have smaller distance compared
to the non-matching pairs. Let Dtrain = {(xi, y

+
i , y−

i,1, . . . , y
−
i,n)}Ni=1 be the train-

ing data that consists of N instances, where each instance contains one query or
an FAQ field xi ∈ {qi, F

ms
i }, a matching (positive) FAQ field y+

i ∈ ∪m∈MFm
i ,

when xi = qi (or y+
i ∈ ∪m∈M\Ms

Fm
i , when xi = Fms

i ), along with n non-
matching (negative) FAQ fields y−

i,j .
We employ the contrastive loss function (Eq. 1) for fine-tuning the parameters

of the MFBE.

L(xi, y
+
i , y−

i,1, . . . , y
−
i,n) = −log

esim(xi,y
+
i )

esim(xi,y
+
i ) +

∑
j esim(xi,y

−
i,j)

(1)
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We train three variants of unsupervised and supervised MFBE models -
MFBEunsup, MFBEsup, and MFBEsup∗ . Triplets used for each variant are as
follows:

tripletsunsup =
⋃

ms∈Ms

{(FA, Fms , F̃ms), (Fms , FA, F̃ms)} (2)

tripletssup =
⋃

m∈M

{(q, Fm, F̃m), (Fm, q, F̃m)} (3)

tripletssup∗ = tripletsunsup ∪ tripletsup (4)

Positive and Negative FAQs - In FAQ datasets, positive examples are explic-
itly present from the manual annotation of query-FAQ, i.e., (q, Fm) pairs. For
boosting the number of training samples, we consider both the pairs (FQ, FA)
and (FQC , FA) from an FAQ as proxy for (q, Fm). But, negative examples are
not explicitly present. However, the choice of negative samples play a decisive
role in learning an effective text encoder. So, we consider Gold negatives [9], i.e.,
positive FAQs paired with other non-matching queries that appear in the train-
ing set. In order to make the training computation more efficient, we make use
of Gold FAQs from the same mini-batch as negatives, termed as in-batch neg-
atives [9]. In addition, we consider one negative FAQ sample for each matching
query-FAQ pair.

Pre-computation of FAQ Embeddings - After training the text-encoder
E(·), we use it to pre-compute and store Tm (Eq. 5) corresponding to the field m.
We use the best performing field mbest ∈ M (Eq. 6), in terms of Acc (accuracy@1,
Eq. 7), evaluated on the test set Dtest for the query-FAQ matching task.

Tm =
[
fm
1 fm

2 . . . fm
N

]T (5)

where fm
i = E(Fm

i ), for i = 1, 2, . . . , N .

mbest = arg max
m∈M

Acc(Dtest) (6)

In Eq. 6, test set Dtest = {(q, F )|F ∈ F is a matching FAQ for query q ∈ Qtest},
where Qtest ⊂ Q. As each FAQ consists of different FAQ fields Fm (∀m ∈ M),
we define Acc(·) as below.

Acc(Dtest) =
1

|Qtest|
∑

q∈Qtest

1[{arg max
i

cosineSim(fq, fm
i )} ∩ gt(q) 	= Φ] (7)

Here, gt(q) denotes the set of FAQ indexes present in the ground truth labels
corresponding to query q.

Inference - During inference stage, for a given query q, we first compute the
input query embedding fq. Then, we calculate cosine similarity scores of fq and
row vectors of Tmbest (which are pre-computed embeddings of FAQs) and return
the top-k candidates, sorted in descending order of their scores.
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Table 1. Datasets used in this paper. For open datasets queries are separated into five
folds. (JA = Japanese, EN = English)

Type Name Language #FAQs #Queries #Avg. sentence length

Train Test Query FAQ-Q FAQ-A

Internal IDS1 JA 795 1782 825 28.5 24.8 166.6

IDS2 JA 510 481 139 28.6 31.3 514.6

IDS3 JA 1129 528 152 14.9 33.1 473.8

IDS4 JA 661 505 145 17.6 33.4 471.8

Open LocalGov JA 1786 749 26.1 31.1 357.2

Stack-FAQ EN 125 1249 73.3 55.7 513.8

COUGH EN 7115 1201 74.4 76.5 711.7

4 Experiments, Implementation and Results

Datasets - We conduct experiments on both internal proprietary and open
datasets. Table 1 shows the list of datasets and their details used in this work.

Internal Datasets - IDS1, IDS2, IDS3 and IDS4 are Japanese language com-
pany internal datasets related to e-commerce, leisure, communication and pay-
ment domains respectively. These are carefully prepared by majority voting by
five native Japanese speakers across query-FAQ annotations.

Open Datasets - LocalGov, introduced in [24], is a Japanese language dataset
which is constructed from Japanese administrative municipality domain. Stack-
FAQ is described in [1] as an English language dataset prepared from threads
in StackExchange website concerning web apps domain. COUGH is another
English dataset [30] constructed by scraping data from 55 websites (like, CDC
and WHO) containing user queries and FAQs about Covid-19.

ImplementationDetails - We use single NVIDIA A100 GPU with 40G VRAM
for all experiments. In all our experiments, we set maximum sequence length as 256
(for training and testing) and batch size as 32 which are constrained by the choice
of GPU. For all datasets, the number of training epochs is set as 15. The choice
of optimizer, learning rate and embedding dimension follows from [21] for all the
experiments except for multi-domain fine-tuning experiments (Table 4 last 4 rows)
where learning rate is set as 2e − 7. We set weight decay ω = 1e − 5 by employ-
ing grid search between 1e−1 and 1e−10 (reducing by 0.1×). For each matching
query-FAQ pair, we consider 10 negative FAQs (i.e., n = 10 after experimenting
with other values, such as 5, 10, and 20). All our baseline experiments follow same
settings as the proposed models and are initialized with LaBSE checkpoint1. Code
and relevant material of this work can be found here2.

Results and Discussion - We report accuracy@1 (Acc), mean reciprocal
rank @5 (MRR) and normalized discounted cumulative gain @5 (NDCG) and
compare our proposed models with multiple baselines, such as, BM25 (lexical

1 https://huggingface.co/sentence-transformers/LaBSE/tree/main.
2 https://github.com/mausamsion/MFBE.

https://huggingface.co/sentence-transformers/LaBSE/tree/main
https://github.com/mausamsion/MFBE
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Table 2. Results on internal datasets.

Model IDS1 IDS2 IDS3 IDS4

Acc MRR NDCG Acc MRR NDCG Acc MRR NDCG Acc MRR NDCG

Baselines

BM25 [23] 23.5 29.8 30.6 36.0 43.2 30.3 38.2 47.3 31.7 35.9 46.0 31.8

LaBSE [7] 29.9 38.6 40.1 36.0 48.4 35.8 49.3 59.2 41.7 51.0 59.0 40.4

DPR [9] 41.5 51.7 20.5 47.5 55.9 34.6 46.7 57.9 37.0 46.9 57.9 35.3

Proposed

MFBEunsup 33.2 43.9 46.2 51.1 60.3 44.7 51.3 59.7 43.8 51.0 61.7 43.3

MFBEsup 51.0 60.6 62.4 60.4 71.3 58.1 57.9 67.8 52.8 64.1 72.2 54.9

MFBEsup∗ 59.2 66.4 66.8 61.2 69.8 55.1 57.9 68.9 53.9 65.5 74.9 57.8

Table 3. Results on open datasets.

Model LocalGov Stack-FAQ COUGH

Acc MRR NDCG Acc MRR NDCG Acc MRR NDCG

Baselines

BM25 [23] 26.4 33.4 26.5 40.0 49.1 52.9 39.1 48.0 26.1

LaBSE [7] 26.3 35.9 28.8 43.6 55.6 60.6 23.0 31.7 17.7

DPR [9] 46.5 55.2 44.7 88.8 91.9 93.0 42.8 51.5 29.3

Proposed

MFBEunsup 53.8 63.5 54.9 85.9 91.0 92.8 46.0 57.7 35.5

MFBEsup 61.3 72.0 64.8 98.0 98.8 99.0 53.1 65.2 40.3

MFBEsup∗ 62.9 72.3 65.7 96.5 98.0 98.5 50.1 61.0 37.7

feature-based IR model), LaBSE (heavy-weight dense multilingual text encoder),
and DPR (dense bi-encoder with independently learned encoders). Across all
baselines, we keep the train settings related to field combinations same as our
MFBEsup∗ model. From Table 2, BM25 is the worst performing model, because
of dependence on lexical features, hence fails to capture semantics among queries
and FAQs. MFBEsup∗ outperforms all baselines across different datasets. In
Table 3, we report 5-fold cross validation results. MFBEsup and MFBEsup∗ shows
the best performance across all the baselines. MFBEunsup, which has zero query
knowledge, performs better than DPR, which is the best performing baseline of
all, in two datasets out of three. Table 5 illustrates sample input query and output
top-1 prediction of DPR and MFBEunsup models where we see that DPR fails
to capture the semantic meaning of the input thus returning irrelevant response.

Cross-Domain - Table 4 shows the cross-domain results of MFBEsup∗ where
the model is trained on one dataset and evaluated on completely unknown ones
(zero-shot setting). For example, the first row corresponds to the case where
MFBEsup∗ is trained on IDS1 and evaluated on IDS2, IDS3, and IDS4. We
observe that the zero-shot performance of MFBEsup∗ is the best, when trained
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Table 4. Results of cross- and multi-domain experiments using MFBEsup∗ model.

Model IDS1 IDS2 IDS3 IDS4

Acc MRR NDCG Acc MRR NDCG Acc MRR NDCG Acc MRR NDCG

Cross-domain

IDS1 – – – 47.5 62.2 55.2 55.3 66.0 53.0 53.1 65.7 53.6

IDS2 37.3 48.3 50.3 – – – 47.4 56.9 39.2 48.3 58.3 40.5

IDS3 42.4 53.1 55.5 44.6 57.0 44.2 – – – 57.2 63.6 45.8

IDS4 40.5 51.9 54.3 44.6 58.5 44.8 50.0 61.4 46.1 – – –

Multi-domain

IDS∗ 55.5 64.2 65.5 62.6 71.2 54.8 55.3 66.2 50.8 59.3 67.9 50.8

Cross and Multi-domain

IDS∗
1 55.0 64.0 65.2 62.6 71.3 54.9 55.3 66.2 50.7 59.3 68.0 50.7

IDS∗
2 54.4 63.3 64.7 63.3 71.9 55.4 54.6 65.6 50.6 59.3 68.2 51.6

IDS∗
3 54.8 63.8 65.1 61.9 70.5 54.5 55.9 67.1 51.4 57.9 67.2 51.0

IDS∗
4 54.2 63.0 64.2 61.2 70.3 53.4 56.6 67.0 50.6 61.4 69.8 52.9

Table 5. Example input and outputs from COUGH (EN) and LocalGov (JA) datasets
of two baseline models and our MFBEsup∗ model. In all the examples, MFBEsup∗

returns the most relevant response in top-1.

Input
Top FAQ (question) prediction

DPR MFBEsup∗

Is personal protective equipment
sufficient to protect others?

Are there exemptions to who has
to wear a face covering?

Are cloth face coverings the same
as personal protective equipment
(PPE)?

How should i adjust my feeling
during pendemic period?

I traveled and have been sick ever
since I got back. What should I
do?

During this time, it is important
to be S.M.A.R.T. about staying
active

国民年金の納付書を誤って捨てて
しまいました。どうしたらいいで
しょうか？

【児童手当現況届】間違って記入
した場合は、どうしたらいいです
か。

国民年金保険料を支払いたいので
すが納付書をなくしてしまいまし
た。

納税証明書が必要なのですが、ど
こで入手できますか？

介護保険料の納付書を紛失してし
まった。再交付してほしいのです
が？

納税証明書（法人市民税、事業所
税を除く）を取得したい。

on IDS1, compared to others. This is because IDS1 consists of a large number
of labelled user queries (nearly 1.7k) in the train split.

Multi-domain - Here MFBEsup∗ model is trained on all the internal datasets
IDS[1–4] denoted as IDS∗. The average drop in Acc is only 4%, compared to the
last row of Table 2. The model trained on IDS∗ is more robust across multiple
domains with better performance in some cases (e.g., IDS2), making it useful
for leveraging cross-domain knowledge.

Cross and Multi-domain - In this case, the model is first trained on IDS∗,
then fine-tuned on one dataset, and finally evaluated on all datasets. For exam-
ple, the sixth row corresponds to the case, where MFBEsup∗ is first trained on
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Fig. 3. Ablation experiments with MFBEsup∗ model. (a) Variation across multi-field
combinations on internal datasets (b) Variation across multi-field combinations on open
datasets (c) Variation in the number of training query-FAQ pairs

IDS∗, then fine-tuned on IDS1 (denoted as IDS∗
1), and finally evaluated on all

the datasets, i.e., IDS[1–4] (same for the last three rows). There is no significant
change in performance when compared to results of fifth row because of prior
exposure to the corresponding datasets.

Ablation Experiments - We train MFBEsup∗ , ∀m ∈ M (taking one at a
time) and varying the number of labelled queries. In Fig. 3-(a) and (b) we show
the performance of our model as FAQ field combinations are changed (which
consistent at both training and testing). It is observed that using category infor-
mation adds noise and degrades performance which can be due to the inefficient
usage of this field. The category field has keywords and hierarchy which needs to
be leveraged but in this work, for simplicity, we concatenated these keywords to
other input fields making it as a part of input string. The ’proposed’ numbers are
the best numbers across all of our proposed models (as discussed in Table 2 and
3). From Fig. 3-(c) it is observed that our MFBEsup∗ model is a good candidate
for the scenarios where there is less annotated data with the accuracy flattening
after around 300 query-FAQ pairs. This makes it suitable for bootstrapping to
new domains where there are FAQ documents and no or less query-FAQ pairs.
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5 Conclusion

In this paper, we proposed MFBE, a bi-encoder based retrieval model that make
use of information from multiple fields in FAQs to improve the text embedding
quality and thus better sentence matching. We also create an extended set of
pseudo-positive training pairs by using various combinations of user-query and
FAQ fields. Then we use these multiple FAQ representations to make inference
on input queries. Our model outperforms the baselines by 27% and 23% (in
terms of accuracy@1) on internal and open-datasets, respectively. Cross-domain
experiment results for the MFBEsup∗ model over our internal datasets shows the
potential of this kind of proposed approach to be useful in cold-start settings,
which is common in real-world scenarios. Also, multi-domain experiment proves
the possibility of multi-domain knowledge sharing using a single model which
performs good across most of the datasets it is trained on. We also do ablation on
semi-supervised setting (queries variation) and effect of FAQ field combinations.
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Abstract. The latest Dense Retrieval (DR) models typically encode
queries and documents using BERT and subsequently apply a cosine
similarity-based scoring to determine the relevance. BERT representa-
tions, however, are known to follow an anisotropic distribution of a nar-
row cone shape and such an anisotropic distribution can be undesirable
for relevance estimation. In this work, we first show that BERT repre-
sentations in DR also follow an anisotropic distribution. We adopt unsu-
pervised post-processing methods of Normalizing Flow and whitening to
cope with the problem, and develop a token-wise method in addition to
the sequence-wise method. We show that the proposed methods can effec-
tively enhance the isotropy of representations, thereby improving the per-
formance of DR models such as ColBERT and RepBERT. To examine the
potential of isotropic representation for improving the robustness of DR
models, we investigate out-of-distribution tasks where the test dataset
differs from the training dataset. The results show that isotropic repre-
sentation can certainly achieve a generally improved performance (The
code is available at https://github.com/SNU-DRL/IsotropicIR.git).

Keywords: Dense Retrieval · Isotropic Representation · Normalizing
Flow · Whitening · Robustness

1 Introduction

Recently, many Dense Retrieval (DR) models encode representations of queries
and documents using BERT and estimate the relevance scores based on the
simple similarity function such as cosine similarity or dot product. The repre-
sentations of language models such as BERT, however, are known to follow an
anisotropic distribution [5,15,17,27,29,32]. Anisotropic distribution refers to a
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(a) Isotropy (b) Isotropy and ID per-
formance

(c) Isotropy and OOD
performance

Fig. 1. Isotropy and re-ranking performance of ColBERT. For increasing isotropy, three
post-processing methods are studied. In (a), a metric of isotropy (I(W)) is shown for
BERT representations of three dense retrieval datasets. (b) and (c) show isotropy and
re-ranking performance of ColBERT on MS-MARCO for In-Distribution (ID) setting
and Out-Of-Distribution (OOD) setting, respectively.

directionally non-uniform distribution, such as a narrow cone [16]. If representa-
tions are anisotropically distributed, relevance estimation of DR models can be
misleading. Because DR employs simple similarity functions for efficient compu-
tation, it is important to alleviate this anisotropy problem. In this study, we aim
to show that BERT representations of DR also follow an anisotropic distribution
and to improve the performance of BERT-based DR by enforcing isotropy to the
representations.

To enhance the isotropy of DR representations, we adopt post-processing
methods used in the field of sentence embedding such as Normalizing Flow [16]
and whitening [23] and apply them on two representative DR models, Col-
BERT [12] and RepBERT [33]. Since the post-processing methods used for sen-
tence embedding transform the representation of each sequence (i.e. sentence),
they cannot be directly applied to multi-vector DR models, for example Col-
BERT, that compute cosine similarity among the token representations. There-
fore, we consider a token-wise transformation of representations in addition to
the sequence-wise transformation. As we will show later, the token-wise trans-
formation turns out to be useful even for RepBERT that is a single-vector DR
model. We empirically show the effectiveness of post-processing methods and
compare the token-wise and the sequence-wise transformations when applicable.

By enforcing isotropy to the BERT representations, we show that we can sig-
nificantly improve the re-ranking performance of both ColBERT and RepBERT.
Adopting Normalizing Flow or whitening increases the performance of ColBERT
by 5.2%–8.1% and the performance of RepBERT by 8.5%–23.3% on NDCG at
10 (NDCG@10) across three datasets. In the experiment of RepBERT, we have
found that either token-wise method or sequence-wise method can perform bet-
ter depending on the characteristics of the dataset.

To examine the potential of isotropic representation beyond the basic re-
ranking task in the In-Distribution (ID) setting where the source data used
for training and the target data used for the test are the same, we additionally
investigate Out-Of-Distribution (OOD) setting where the source data is different
from the target data. We evaluate the robustness of DR models for OOD tasks
following Wu et al. [30]. With our experiments, we have found that enforcing
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isotropy on BERT representations can improve the robustness of DR by 5.0%–
25.0% for NDCG@10. OOD performance of ColBERT trained on MS-MARCO
can even surpass the ID performance of Robust04 and ClueWeb09b when the
post-processing methods are applied.

We summarize our contributions in Fig. 1. In this paper, we focus on improv-
ing both ID and OOD performances of DR models by enforcing representation
isotropy.

2 Related Works

2.1 Dense Retrieval and Similarity Function

Depending on whether DR uses a single vector or multiple vectors for encod-
ing each of queries and documents, DR models are divided into single-vector
and multi-vector models. RepBERT [33], ANCE [31], and RocketQA [22] are
examples of single-vector DR models. ColBERT [12] and COIL [6] are examples
of multi-vector DR models, and they are generally known to perform better.
Both types of DR models estimate the relevance score using a similarity func-
tion between the representation vectors of query and document. For efficient
computation, the similarity function needs to be decomposable such that the
representations of the documents can be pre-computed and stored [11], and an
efficient Approximate Nearest Neighbor (ANN) retrieval [9] can be performed.
Most of the decomposable similarity functions are based on cosine similarity [20].

In this paper, we focus on two representative DR models, RepBERT and
ColBERT1. RepBERT encodes sequence representation for each query and doc-
ument by summing up token representations and estimates the relevance score
using the dot product between the sequence representations. On the other hand,
ColBERT estimates the relevance score by summing up the cosine similarity
values between token representations.

2.2 Anisotropic Distribution of BERT Representations

Representations of large-scale language models are known to follow anisotropic
distributions [5,15,17,27,29,32]. For example, some studies [15,17,27] show the
existence of outlier dimensions having extreme values in representation vectors
and attribute the anisotropic distribution to the outlier dimensions. As this
anisotropic distribution can negatively affect the performance of sentence embed-
dings, Li et al. [16] and Su et al. [23] applied Normalizing Flow and whitening
respectively for the sentence embedding, where the cosine similarity between
two sentences’ BERT representations is used for the relevance estimation. DR
is different from sentence embedding in that query and document have distinct
characteristics, and some multi-vector DR models utilize token-wise similarity. In

1 To clearly compare RepBERT and ColBERT, we simplify ColBERT to use the same
encoders for both queries and documents and skipped the final projection layer that
reduces the representation dimension. Also, we use cosine similarity instead of the
dot product for RepBERT.
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(a) Fine-tuning (b) Normalizing Flow (c) Whitening

Fig. 2. Train and test procedures of Normalizing Flow and whitening. To apply a post-
processing method to DR, we first fine-tune the BERT for DR as shown in (a). In (b),
we train a Normalizing Flow network while keeping the fine-tuned BERT frozen. For
whitening in (c), we pre-compute the mean and covariance using the fine-tuned BERT
and apply the whitening filter during the test time. “ggregator” in the test figures refers
to the computation of the relevance score based on cosine similarity. For (b) and (c),
the source and target data are the same for the ID re-ranking, and they are different
for the OOD re-ranking.

this DR study, we show that the representations of BERT-based DR models also
suffer from the anisotropic distribution and consider token-wise transformation
as well as sequence-wise transformation.

2.3 Robustness of Ranking Models

The robustness of ranking models refers to the ability of models to operate
properly in abnormal situations, which is an essential factor for ranking models
in the real world [30]. While the robustness of the ranking models can be defined
with multi-dimensional factors [7], OOD generalizability can be regarded as one
of the most important factors for NRMs, which tend to show relatively poor
performance for OOD tasks compared to the traditional ranking models [30].
Some of the existing works have focused on improving OOD generalizability of
ranking models [26,30]. However, it was difficult to show a case where the OOD
performance surpasses the ID performance. In this study, we show that the OOD
performance of NRMs can be sufficiently improved by enforcing representation
isotropy such that OOD outperforms the baseline ID.
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3 Methodology

3.1 Enforcing Isotropy

The baseline method of training a BERT-based DR model is shown in Fig. 2(a).
In our work, we enhance the isotropy of BERT representations with Normaliz-
ing Flow or whitening as shown in Fig. 2(b) and 2(c). The two post-processing
processes follow entirely unsupervised frameworks.

Normalizing Flow. Normalizing Flow transforms a simple and tractable dis-
tribution into the target data distribution by applying a series of invertible
and (almost everywhere) differentiable mappings [14,24,25]. By doing this, flow-
based models can easily infer the target density as in Eq. (1) and perform sam-
pling from it as in Eq. (2).

pX(x) = pZ(f(x)) |detDf(x)| (1)
x = g(z) where z ∼ pZ(z) (2)

where Z and X are random variables of the simple and target distributions
respectively, and pX and pZ are the densities of X and Z, respectively. f is a
function that maps X to Z, g is the inverse of f , and Df(x) = ∂f

∂x is the Jacobian
matrix of f .

As illustrated in Fig. 2(b)-left, we aim to transform BERT representations of
query and document into the standard Gaussian distribution using the Normal-
izing Flow’s density estimation. To do so, in Eq. (1), we set pZ as the density of
the standard Gaussian distribution. Then, we maximize the likelihood of repre-
sentations, that is, pX in Eq. (1). Consequently, the flow function f is trained to
transform the representations X to follow the standard Gaussian distribution.
Among the various flow-based models, we use NICE [2] and Glow [13].

For DR, we propose two different implementations of Normalizing Flow. In
token-wise implementation, Normalizing Flow is applied to each token represen-
tation of BERT. In sequence-wise implementation, Normalizing Flow is applied
to sequence representations made by aggregating token representations. Both
implementations are applicable to single-vector models, such as RepBERT, but
only the token-wise method is applicable to multi-vector models, such as Col-
BERT, because they do not utilize the sequence representation.

Whitening. Whitening is a linear transformation that renders the data dis-
tribution spherical. That is, it eliminates the structures of location, scale, and
correlations in the distribution [4]. Let {xi}N

i=1 be a set of BERT represen-
tations where each xi is a D-dimensional row vector. To apply whitening, a
mean vector μ and an unbiased covariance matrix Σ of {xi}N

i=1 are computed as
μ = 1

N

∑N
i=1 xi and Σ = 1

N−1

∑N
i=1(xi − μ)T (xi − μ). By SVD and with some

following calculations, the whitened representation vector zi can be presented as

zi = (xi − μ) U
√

Λ−1, (3)
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where Λ ∈ R
D×D is a diagonal matrix with positive diagonals, U ∈ R

D×D is an
orthogonal matrix, and each zi follows a distribution of zero mean and identity
covariance [23].

For DR, we first pre-compute the mean and covariance using a train set of
the source data as shown in Fig. 2(c)-left. For the inference shown in Fig. 2(c)-
right, we obtain the whitened output zi in Eq. (3) using the pre-computed mean
and covariance. The following aggregator then computes the cosine similarities
between those zi’s from queries and documents. As in the Normalizing Flow, we
consider both token-wise and sequence-wise implementations of whitening.

Metrics. For a set of given representations, we measure the degree of isotropy
by utilizing two metrics. Following Yu et al. [32] and Wang et al. [29], we employ
I(W) suggested by Mu et al. [19] for measuring the isotropy of representation
vectors. The value of I(W) ranges from 0 to 1, and representations having higher
I(W) tend to follow nearly isotropic Gaussian distribution.

Additionally, the average cosine similarity between representations, avgcos,
is adopted for measuring isotropy following Ethayarajh et al. [3]. Representations
vectors that are isotropically spread around the origin would have avgcos values
close to zero.

3.2 Robustness for Out-of-Distribution Data

Under the hypothesis that NRMs having representations that follow isotropic
distribution are less likely to overfit to the characteristics of the training dataset,
we compare OOD performances of DR models with and without post-processing
methods. In each case, we train the DR model on the source data and eval-
uate the re-ranking performance on the different target data. As we consider
three different datasets in this work, we investigate six different combinations
of OOD experiments where the source data differs from the target data. This
concept of evaluating robustness is commonly addressed as OOD generalizability
on an unforeseen corpus [30], and we will interchangeably use the terms OOD
robustness and OOD generalizability in this work.

4 Experiments

4.1 Experimental Settings

Models, Datasets, and Ranking Metrics. We investigate two DR mod-
els, ColBERT [12] and RepBERT [33]. As for the datasets, we examined
three popular document re-ranking datasets, Robust04 [28], WebTrack 2009
(ClueWeb09b) [1], and MS-MARCO [21] as in [18]. For Robust04, we used the
document collections from TREC Disks 4 and 52 For ClueWeb09b, the document
collections from ClueWeb09b3 of WebTrack 2009 were used. We also used the
2 520K documents, 7.5K triplet data samples, https://trec.nist.gov/data-disks.html.
3 50M web pages, 4.5K triplet data samples, https://lemurproject.org/clueweb09/.

https://trec.nist.gov/data-disks.html
https://lemurproject.org/clueweb09/
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large document collections4 from MS-MARCO. To evaluate the ranking models,
we used NDCG@10 and MRR@10 as the performance metrics.

Training and Optimization. Following Huston et al. [8], we divided each
of Robust04 and ClueWeb09b into five folds: three folds for training, one for
validation, and the remaining one for the test. For MS-MARCO, we divided the
dataset into training, validation, and test data. Using the three performance
values for three different random seeds, we conducted one-tailed t-test under the
assumption of homoscedasticity.

For fine-tuning BERT, we used a learning rate of 1e−4, batch size of 16,
and an Adam optimizer. Following the advice from [34], we set the maximum
epoch to be 30 for Robust04 and ClueWeb09b and 10 for MS-MARCO. We
then selected the model with the highest validation performance among the
checkpoints recorded after each epoch during training.

To train Normalizing Flow, we stack a Normalizing Flow network at the
top of the fine-tuned BERT and train it in an unsupervised manner for either
ten epochs (Robust04 and ClueWeb09b) or three epochs (MS-MARCO) with a
learning rate of 1e−4, while keeping the fine-tuned BERT weights frozen. For
the NICE network, we used a five-layer network with 1000 units in each layer.
For the Glow network, we used two levels and depth of three following [16]. For
both NICE and Glow, we used a learning rate of 1e−4.

For whitening, we pre-compute mean and covariance. As different documents
are selected in each epoch, we collect training data for ten epochs (Robust04
and ClueWeb09b) or three epochs (MS-MARCO) and use the collected repre-
sentation vectors for the pre-computation of mean and covariance. For all the
experiments, we tuned the hyper-parameters only lightly.

Our experiments are implemented with Python 3.8, Torch 1.9.0, Transformers
4.12.5, and Huggingface-hub 0.2.1. We fine-tuned the pre-trained BERT-base-
uncased model provided by the huggingface transformers. We used RTX3090
GPUs, each of which has 25.6G memory.

4.2 Experimental Results

Isotropic Representations Improve Re-Ranking Performance. In
Table 1, we compare the re-ranking performance of fine-tuned ColBERT before
and after applying Normalizing Flow or whitening to the BERT representa-
tions. Because ColBERT computes the cosine similarity between a query and
a document’s multiple token representations, we perform the token-wise post-
processing. The results demonstrate that the degree of isotropy is enhanced
and the re-ranking performance is improved after the post-processing. Across all
three datasets, all of whitening, NICE, and Glow methods improve the re-ranking
performance of the fine-tuned ColBERT by from 2.4% to 8.1% on NDCG@10.
It can be confirmed that transforming BERT token representations to follow an
isotropic distribution consistently improves the performance of ColBERT.

4 22G documents, 372K triplet data samples, https://microsoft.github.io/msmarco/
TREC-Deep-Learning-2019.

https://microsoft.github.io/msmarco/TREC-Deep-Learning-2019
https://microsoft.github.io/msmarco/TREC-Deep-Learning-2019
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Table 1. Re-ranking performance of ColBERT. We compare the performance of a
fine-tuned model before and after post-processing BERT representations. NDCG at 10
(NDCG@10) and MRR at 10 (MRR@10) are used as re-ranking metrics, and I(W)
and avgcos(W) are used to measure the isotropy of representations. Note: ∗p ≤ 0.05,
∗∗p ≤ 0.01 (1-tailed).

Dataset Method NDCG@10 MRR@10 I(W) avgcos(W)

MS-MARCO Fine-tuning (Ft) 0.590 0.866 0.611 0.223

Ft → Whitening 0.630 (6.8%)∗ 0.901 (4.0%)∗ 0.918 0.009

Ft → NICE 0.622 (5.4%)∗ 0.890 (2.8%) 0.636 0.191

Ft → Glow 0.638 (8.1%)∗ 0.914 (5.5%)∗ 0.837 0.027

Robust04 Fine-tuning (Ft) 0.402 0.622 0.602 0.225

Ft → Whitening 0.423 (5.2%)∗∗ 0.654 (5.2%)∗ 0.891 0.016

Ft → NICE 0.412 (2.4%)∗ 0.643 (3.4%)∗∗ 0.769 0.064

Ft → Glow 0.412 (2.4%)∗ 0.637 (2.4%)∗ 0.824 0.031

ClueWeb09b Fine-tuning (Ft) 0.288 0.514 0.614 0.219

Ft → Whitening 0.301 (4.7%)∗∗ 0.521 (1.4%) 0.915 0.009

Ft → NICE 0.305 (6.1%)∗∗ 0.529 (3.0%) 0.757 0.074

Ft → Glow 0.300 (4.2%)∗∗ 0.522 (1.5%) 0.857 0.020

Table 2. Re-ranking performance of RepBERT. We compare the performance of a
fine-tuned model before and after enforcing isotropy on BERT representations. For
RepBERT, we compare the performances of token-wise and sequence-wise representa-
tion transformation methods. Note: ∗p ≤ 0.05, ∗∗p ≤ 0.01 (1-tailed).

Dataset Method Token-wise Method Sequence-wise Method
NDCG@10 MRR@10 NDCG@10 MRR@10

MS-MARCO Fine-tuning (Ft) 0.330 0.675 0.330 0.675
Ft → Whitening 0.388 (17.3%)∗∗ 0.724 (7.3%)∗ 0.406 (22.8%)∗∗ 0.724 (7.3%)∗
Ft → NICE 0.339 (2.6%) 0.695 (2.9%) 0.337 (2.1%) 0.687 (1.9%)
Ft → Glow 0.365 (10.4%)∗ 0.718 (6.4%) 0.398 (20.4%)∗∗ 0.728 (7.9%)∗

Robust04 Fine-tuning (Ft) 0.344 0.543 0.344 0.543
Ft → Whitening 0.373 (8.5%)∗ 0.601 (10.6%)∗∗ 0.347 (0.8%) 0.575 (5.8%)∗
Ft → NICE 0.352 (2.4%) 0.572 (5.2%)∗ 0.333 (-3.1%) 0.535 (-1.5%)
Ft → Glow 0.371 (7.8%)∗ 0.589 (8.3%)∗ 0.354 (2.9%) 0.566 (4.2%)

ClueWeb09b Fine-tuning (Ft) 0.193 0.373 0.193 0.373
Ft → Whitening 0.237 (23.3%)∗∗ 0.451 (20.9%)∗∗ 0.219 (13.9%)∗ 0.429 (14.9%)∗∗
Ft → NICE 0.208 (8.0%) 0.403 (8.1%) 0.183 (-5.2%) 0.374 (0.1%)
Ft → Glow 0.233 (21.0%)∗∗ 0.440 (17.9%)∗∗ 0.228 (18.2%)∗ 0.434 (16.4%)∗∗

Table 2 presents the results for RepBERT. We compare the performance
improvement of both token-wise and sequence-wise post-processing methods.
The results in Table 2 show that the performance is improved for all the cases
except for when NICE is applied as a sequence-wise processing method for
Robust04 or ClueWeb09b. Between token-wise and sequence-wise methods, it
can be observed that token-wise performs better for Robust04 and ClueWeb09b
and sequence-wise method performs better for MS-MARCO. We provide a dis-
cussion on this issue in Sect. 5.2. Among the three post-processing methods,
whitening almost always achieves the best performance for each dataset as long
as a token-wise method is used for Robust04 or ClueWeb09b and a sequence-wise
method is used for MS-MARCO. Overall, whitening improves the performance
of the fine-tuned model by 8.5%–23.3% on NDCG@10 over the three datasets.
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Table 3. Out-of-distribution generalizability of ColBERT. Performance and isotropy
are evaluated on the target data using the models trained with the source data. Note:
∗p ≤ 0.05, ∗∗p ≤ 0.01 (1-tailed).

Source data Target data Method NDCG@10 MRR@10 I(W) avgcos(W)

MS-MARCO Robust04 Fine-tuning (Ft) 0.343 0.561 0.588 0.248

Ft → Whitening 0.412 (19.9%)∗∗ 0.644 (14.7%)∗∗ 0.849 0.022

Ft → NICE 0.412 (20.1%)∗∗ 0.632 (12.7%)∗∗ 0.677 0.138

Ft → Glow 0.429 (25.0%)∗∗ 0.658 (17.2%)∗∗ 0.799 0.041

MS-MARCO ClueWeb09b Fine-tuning (Ft) 0.296 0.535 0.546 0.323

Ft → Whitening 0.310 (4.6%) 0.546 (2.1%) 0.894 0.012

Ft → NICE 0.311 (5.0%) 0.551 (3.0%)∗∗ 0.656 0.165

Ft → Glow 0.307 (3.7%) 0.551 (2.9%)∗ 0.835 0.028

Robust04 MS-MARCO Fine-tuning (Ft) 0.383 0.666 0.627 0.206

Ft → Whitening 0.417 (8.9%)∗∗ 0.708 (6.2%)∗ 0.809 0.037

Ft → NICE 0.419 (9.2%)∗∗ 0.710 (6.6%)∗ 0.761 0.065

Ft → Glow 0.419 (9.4%)∗∗ 0.716 (7.6%)∗∗ 0.786 0.048

Robust04 ClueWeb09b Fine-tuning (Ft) 0.219 0.408 0.618 0.219

Ft → Whitening 0.242 (10.2%)∗∗ 0.445 (9.0%)∗∗ 0.787 0.047

Ft → NICE 0.245 (11.4%)∗∗ 0.453 (11.0%)∗∗ 0.746 0.074

Ft → Glow 0.243 (10.6%)∗∗ 0.447 (9.5%)∗∗ 0.769 0.057

ClueWeb09b MS-MARCO Fine-tuning (Ft) 0.451 0.795 0.611 0.232

Ft → Whitening 0.469 (4.1%)∗ 0.804 (1.5%) 0.901 0.011

Ft → NICE 0.476 (5.7%)∗∗ 0.820 (3.2%)∗ 0.765 0.069

Ft → Glow 0.470 (4.3%)∗ 0.814 (2.4%)∗ 0.852 0.021

ClueWeb09b Robust04 Fine-tuning (Ft) 0.359 0.571 0.606 0.237

Ft → Whitening 0.402 (12.1%)∗∗ 0.623 (9.1%)∗∗ 0.842 0.024

Ft → NICE 0.398 (10.8%)∗∗ 0.610 (6.7%)∗ 0.743 0.080

Ft → Glow 0.405 (12.8%)∗∗ 0.620 (8.4%)∗∗ 0.800 0.041

Isotropic Representations Make DR Models Robust to OOD Data.
We show the effectiveness of isotropic representations for OOD generalizability
in Table 3. In this result for ColBERT, it can be observed that the baseline
OOD generalizability of a fine-tuned model is always improved by applying a
post-processing method that enforces isotropy to the BERT representations.
Performance of NDCG@10 is improved by 5.0%–25.0%, and MRR@10 by 3.0%–
17.2%, across the three datasets. The overall result indicates that isotropically
distributed BERT representations are robust in the sense that they can perform
better for an OOD dataset that has been unseen during the training.

In particular, when ColBERT is trained with MS-MARCO as the source data
and tested with the target data of either Robust04 or ClueWeb09b, the OOD
performance with isotropy enhancement even surpasses the ID performance. For
example, an ID performance on NDCG@10 of ColBERT fine-tuned on Robust04
is 0.402, and the OOD performance when the source data is MS-MARCO is
0.343. However, when we post-process the model using Glow, the performance
is improved to 0.429, which is even higher than the baseline ID performance.
This result can be interpreted to be surprising because the OOD models trained
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without the target data outperformed the ID models that were trained with the
target data. Although we did not include the results for RepBERT, similar results
can be obtained for RepBERT as well. We present the OOD generalizability
result for RepBERT in the supplementary material.

5 Discussion

5.1 Handling of Outlier Dimensions

The existence of outlier dimensions with extreme values has been known for
BERT and other language models’ representations [15,17,27]. For example, Luo
et al. [17] pointed out that the outlier dimensions can have a negative impact
on task performance and showed that an improvement was possible by simply
clipping the outliers. In this study, we show that the outlier dimensions can also
be observed in BERT representations fine-tuned for DR as shown in Fig. 3(b).
Even though we didn’t explicitly aim to handle such outlier dimensions, it can be
seen in Fig. 3(c) and 3(d) that the outlier dimensions are tempered and become
hardly observable after enforcing isotropy.

5.2 Token-wise Vs. Sequence-wise Transformation

As explained in Sect. 3.1, isotropy can be enforced with either token-wise or
sequence-wise transformation. For RepBERT, which is a single-vector DR model,
both methods can be applied. The results for RepBERT in Table 2 show that
the token-wise method outperforms the sequence-wise method on Robust04 and
ClueWeb09b, and vice versa on MS-MARCO. A possible explanation for the
results is the length of the queries. While MS-MARCO tends to have long queries
of complete sentences, Robust04 and ClueWeb09b tend to have keyword-based
short queries [10]. Because the representations of the queries play an important
role in NRMs, it might be natural for token-wise transformation to perform well
on Robust04 and ClueWeb09b having short queries.

(a) Pre-training (b) Fine-tuning (Ft) (c) Ft → Glow (d) Ft → Whitening

Fig. 3. Visualization of sequence representation vectors of RepBERT: representations
of a randomly sampled triplet of a query, positive document, and negative document
from Robust04 are shown. The outlier dimensions with spiky values shown in represen-
tations of pre-trained BERT (a) and fine-tuned BERT (b) are tempered by enforcing
isotropy as shown in (c) and (d).
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5.3 Robustness and OOD Generalizability

As explained in Sect. 2.3, robustness is essential for DR, and OOD generalizabil-
ity can be considered as one of the most important factors of robustness. From
Table 3, it can be confirmed that a significant improvement in OOD generalizabil-
ity can be attained by enforcing isotropy. When the source data is MS-MARCO,
we were able to make the OOD performance with isotropy enhancement even
surpass the baseline ID performance. While we have analyzed only the most
fundamental scenarios, the results imply that it might be possible to further
improve the robustness of DR models by enforcing isotropy and concurrently
considering more complex schemes such as the use of multiple source datasets,
advancement of the methods for enforcing isotropy, etc.

6 Conclusion

In this work, we have confirmed that the representations of BERT-based DR
models are anisotropically distributed. Such an anisotropy can negatively affect
the performance of DR models. We applied post-processing methods such as
Normalizing Flow and whitening and have shown how to apply the methods in
token-wise and sequence-wise manners in DR. With the proposed methods, we
were able to improve the re-ranking performance of ColBERT and RepBERT
for all the cases that we have studied. In addition to the commonly studied
re-ranking with an in-distribution dataset, we have shown that isotropy of rep-
resentations can be an essential factor for enhancing robustness of DR models.
For the out-of-distribution tasks, we were able to achieve large improvements in
many cases. Based on our results, isotropy can be deemed to be a crucial element
for studying and improving the representations of DR models.
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Abstract. Few-shot relation classification (RC) aims to determine the
labeled relation between two entities in a given sentence using only a
few training instances. Previous studies integrate models with explicit
triple knowledge, using the inherent concepts of entities to improve the
instance representation. However, these studies neglect the implicit struc-
tural knowledge present in the knowledge graph (KG). In this paper,
we present SKProto, a knowledge-enhanced prototypical network that
leverages deep structured semantic knowledge from the multi-hop neigh-
bors of entity-linked concepts. Specifically, we propose a concept-guided
hybrid attention mechanism to learn implicit structural semantic knowl-
edge for enhancing the context-aware instance representation. To further
distinguish subtle semantic differences among the concepts, the multi-
granularity semantic distinction approach is proposed to construct the
negative samples with various difficulties (i.e. hard, medium, and easy)
based on the conceptual hierarchical structure. Experimental results on
the FewRel 2.0 benchmark show that SKProto outperforms state-of-the-
art models. We also demonstrate that SKProto has better robustness
than other competitive models in low-shot scenarios.

Keywords: Relation Classification · Few-shot Learning · Knowledge
Graph · Contrastive Learning

1 Introduction

As the cost of data annotation grows and the long-tail distribution problem
becomes more pronounced [8], few-shot relation classification (RC) [15] has
been proposed as a solution for low-resource scenarios. This approach allows
for the classification of relations using only a small amount of annotated data.
Unlike data-driven methods [18,24,30], few-shot RC relies on discovering com-
mon implicit structures across a collection of similar tasks and then using learned
internal knowledge to generalize to new scenarios [26].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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Fig. 1. Examples of the few-shot RC without external knowledge and the knowledge-
enhanced few-shot RC methods. Existing knowledge-enhanced methods only utilize
the explicit triple concepts, neglecting the implicit structural knowledge generated by
structural multi-hop relation-based concepts. (Best viewed in color)

In the literature, few-shot RC methods can be divided into two categories:
methods without external knowledge and knowledge-enhanced methods. The
former relies on raw sentences, while the latter incorporates prior knowledge to
improve performance. (1) Few-shot RC methods without external knowledge
make inferences based solely on raw text, as there is insufficient labeled data
to use. While these methods can work well in some cases [2,12,15], the limited
information in raw text can reduce their performance. (2) Knowledge-enhanced
few-shot RC methods incorporate external data as prior knowledge, such as
textual descriptions [3,29] and structural knowledge graph (KG). In particular,
conceptual graphs play a crucial role in semantic search, serving as a unique
type of KG. It contains more stable implicit relations, providing richer seman-
tic information to the text. Therefore, recent studies [28,29] integrate models
with conceptual graphs, using entity-linked concepts to refine the instance rep-
resentation. However, existing knowledge-enhanced few-shot RC methods only
incorporate explicit triple knowledge, neglecting the multi-hop relation-based
implicit structural knowledge present in the conceptual graphs. As shown in
Fig. 1, incorporating 2-hop, 3-hop, or even higher-level concepts can provide
more implicit structural semantic information than using only 1-hop concept
information. Moreover, the subtle differences between similar concepts make it
challenging for the model to inject knowledge accurately [5].

To alleviate the lack of semantic information and improve the accuracy
of knowledge injection, we present a knowledge-enhanced prototypical network
(SKProto) that incorporates implicit structural knowledge into the model. The
two main modules are presented as follows:

Concept-Guided Hybrid Attention. We propose a hybrid attention mech-
anism to capture the implicit structural knowledge inherent in the concep-
tual graphs. The concept-level attention incorporates structural-semantic and
textual-semantic information through multi-hop fusion for entity-linked con-
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cepts. The entity-level attention calculates the importance scores of entity-linked
concepts for the given entities, encouraging the model to focus on the most rel-
evant concepts.

Multi-Granularity Semantic Distinction. To obtain more accurate distinc-
tions between fine-grained semantic differences, we leverage contrastive learn-
ing [14,22] to pull the information of positive samples and push the differences
of negative samples. Concretely, we construct three types of negative samples
with varying difficulty based on the conceptual hierarchical structure and the
different domains1 to which the concepts belong. This method of distinguishing
semantic differences improves the robustness of the model.

We evaluate the effectiveness of our method on the Fewrel 2.0 benchmark,
and experiment results show the superiority over other methods (by 2.21% on 1-
shot and 0.99% on 5-shot). We further show that SKProto has better robustness
than other competitive models in the low-shot scenarios.

2 Related Work

Few-Shot RC Without External Knowledge. Existing basic few-shot
RC methods can be classified into two categories: metric-based methods and
gradient-based methods.

• Metric-Based Methods focus on representing instances in a metric space
to enable classification based on the distance between instances. Typically,
Prototypical Networks [23] learn a metric space and take the average of the
instance representation for each class of relation as its prototype representa-
tion. GMatching [27] uses a matching network to seek similar instances for
the given instance. RSN [7] propose a siamese convolutional network to build
the relation metric model.

• Gradient-Based Methods generalize the relation classifier and rapidly
adapt the model to a new task via a few gradient update steps. MAML [11]
adopts a model-agnostic gradient update strategy to produce class-agnostic
initialization that can fast adapt to new relations. As an improvement of
MAML, Reptile [19] reduces computational complexity by using first-order
derivatives, which allows for faster and more efficient training of the model.
Based on the above technologies, MLRC [21] and MLLRE [20] apply MAML
and Reptile, respectively, to train a relation classifier.

These two types of few-shot RC methods do not completely resolve the prob-
lem of inadequate labeled training data. The raw sentences only provide lim-
ited semantic information, and further improvements of performance are mostly
based on the following three methods, including knowledge-enhanced methods,
pre-trained language model (PLM) based methods [1,24], and semi-supervised
learning methods [6].
1 Following KEFDA, we adopt a conceptual graph containing a general domain part

and a specific domain part.
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Knowledge-Enhanced Few-Shot RC. Based on the basic methods men-
tioned above, many methods introduce external knowledge to further improve
the text understanding of the model. The external knowledge includes the struc-
tural conceptual graph, and textual descriptions of entities, relations, or con-
cepts.

• Concept-Enhanced Methods introduce external conceptual graphs as
prior knowledge for the model and incorporate them into the instance rep-
resentation, allowing the model to understand the text precisely. Concept-
FERE [28] selects the most suitable concepts for the entities by calculating
the semantic similarity between instances and concepts. Meanwhile, a self-
attention-based fusion module is proposed to bridge the gap between concept
and sentence representation. KEFDA [29] adopt a two-view KG (includes the
entity-level part and the concept-level part) embedding model proposed by
JOIE [3], mainly utilizing the conceptual graph to capture semantic informa-
tion.

• Description-Enhanced Methods regard textual descriptions as a feature
to jointly optimize the text encoder and the knowledge-enhance module.
KEFDA [29] fuses the entity description features with the sentence represen-
tation and uses concept descriptions to learn a relation-meta. CP+Proto [31]
leverage relation descriptions to build prototype representation of the rela-
tions, jointly training both a prototype encoder and a sentence encoder.

In this paper, we propose a knowledge-enhanced few-shot RC method, to learn
deep structured and fine-grained semantic knowledge from the conceptual graph
to enhance the knowledge injection.

3 Method

3.1 Model Overview and Notations

The main architecture of the SKProto is shown in Figure 2. The model frame-
work mainly includes two components: (1) Concept-guided hybrid attention,
which enriches the implicit structural knowledge of concepts into the instance
representation. (2) Multi-granularity semantic distinction, which distinguishes
fine-grained semantic differences.

Definition 3.1 (Conceptual Graph). A conceptual graph can be represented as
G = {(eh, et, r) ∈ E × E × RG}, where E is the set of concepts, RG is the set of
relations.

Definition 3.2 (Few-Shot RC). Following the N-way K-shot setting, each task
T = {R,S, q} contains a support set S, a query instance q and a relation set
R. The goal of few-shot RC predicts the relation r ∈ R for query instance q
based on the S. In details, support set S = {S1, S2, ..., SN} has N relations and
each relation r has Sr = {s1r, s

2
r, ..., s

K
r } containing K instances. Each instance

s = (x, eh, et) contains sentence x, head entity eh and tail entity et.
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Fig. 2. Model overview of the SKProto. Part (a) is the model architecture. Part (b)
and part (c) show the details of the multi-granularity semantic distinction module and
the concept-guided hybrid attention module, respectively. (Best viewed in color)

3.2 Concept-Guided Hybrid Attention

We use the conceptual graph to enhance the instance representation. Concept-
level attention captures implicit structural knowledge for each linked concept,
fusing structural-semantic and textual-semantic information from the superclass
concepts. Entity-level attention calculates the importance scores of the linked
concepts for the given entities, prompting the model to pay more attention to
the crucial concepts.

Concept-Level Attention. For the given concept ci, we calculate the rep-
resentation of its superclass concepts of τ -hop as hτ =

∑
cj∈Sτ (ci)

hcj
, where

Sτ (ci) is the set of superclass concepts of ci of τ -hop, and hci
is the concept rep-

resentation encoded by graph encoder. Then, we fuse the structural and textual
information to calculate the concept-level attention scores α′

τ using hτ and the
transformed concept mention-span representation hspan

ci
as follows:

hspan
ci

= LN (σ (fsp (h1,h2, . . . ,hn))) ,

α′
τ = tanh

(
hτWt + hspan

ci
Wt′

)
Wa,

where (h1,h2, . . . ,hn) is the hidden representation of concept mention-span
encoded by the BERT model [17], LN is the LayerNorm function [10], fsp is
the self-attentive pooling [4] to generate the mention-span representation, σ is
the non-linear activation function GELU [16]. Wt ∈ R

d2×d2 , Wt′ ∈ R
d1×d2 and

Wa ∈ R
d2×1 are the weight matrix.
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Finally, the concept-level attention weights α for the linked concept ci are
obtained by normalizing the attention score α′

τ . The weighted concept represen-
tation of concept ci is calculated as follows:

ĥci
=

d∑

τ=1

∑

cj∈Sτ (ci)

ατhcj

where d is a hyperparameter that represents the maximum number of hops we
consider, Sτ (ci) is the superclass concepts set of ci of τ -hop.

Entity-Level Attention. For the given entity e, we calculate the semantic
attention β for the linked concepts as:

β′
ci

=

(
ĥci

Wq

)
(hspan

e Wk)T
√

d2

βci
=

exp
(
β′

ci

)

∑
cj∈C(e) exp

(
β′

cj

)

where hspan
e = LN (σ (fsp (h1,h2, . . . ,hn))) is the transformed entity mention-

span representation, ĥci
is the multi-hop relation-based concept representation

calculated by the concept-level attention. C(e) is the set of linked concepts of
entity e. Wq ∈ R

d2×d2 and Wk ∈ R
d2×d2 are the weight matrix. The represen-

tation of all linked concepts of entity e is aggregated in hC(e) =
∑

cj∈C(e) βcj
hcj

.

Instance Representation. For the instance s = (x, eh, et), given its contextual
sentence representation hsent extracted from the BERT encoder, we calculate the
concept representation as:

hcnpt = σ
((
hC(eh) ⊕ hC(et)

)
Wc + bc

)

where Wc ∈ R
d2×d2 is the weight matrix, bc ∈ R

d2 is the bias vector. Then,
we concatenate the sentence representation hsent and the aggregated concept
representation hcnpt, fusing them into the feedforward neural network (FFN) as:

h′ = LN
(
FFN

(
hsent ⊕ hcnpt

))

3.3 Multi-granularity Semantic Distinction

In order to make knowledge injection more accurate, we propose multi-
granularity semantic distinction to enhance fine-grained semantics discrimina-
tion of the model. Specifically, based on the conceptual hierarchical structure
between concepts and the domain to which the concept belongs, we construct
three types of negative samples with various difficulties. Meanwhile, for the con-
cept ci ∈ C(e), we take the other concept cj ∈ C(e) as the positive sample.
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Constructing Negative Samples. Among the three types of negative sam-
ples, the hard samples are the most similar to the positive samples, followed by
the medium samples, and the easy samples are the least similar.

3.3.1 Hard Sample is the concept that has at least one same direct superclass
with the positive sample. Formally, the hard sample cHard satisfy:

S(cHard) ∩ S(cPositive) �= ∅

where S(c) is the set of direct superclass concepts directly related to c.

3.3.2 Medium Sample is the concept that exists within the same domain as the
positive sample but does not have a common direct superclass concept. Formally,
cMedium satisfy:

S(cMedium) ∩ S(cPositive) = ∅

S∗(cMedium) ∩ S∗(cPositive) �= ∅

where S∗(c) denotes the set of superclass concepts of c without a limit on the
number of hops. As shown in Fig. 2, the two concepts have no common superclass
concept indicating that they belong to different domains.

3.3.3 Easy Sample is constructed as the concept cEasy that is not in the same
domain as the positive sample. Formally, cEasy satisfy:

S∗(cEasy) ∩ S∗(cPositive) = ∅

As shown in Fig. 2, two concepts have a common superclass concept indicating
that they belong to the same domain.

InfoNCE Loss. We employ the InfoNCE [25] loss function, which maximizes
the similarity and minimizes the differences between positive and negative sam-
ples.

LInfo = −
∑

i

log
exp

(
cos

(
ĥci , ĥcPositive

)
/t

)

∑
cn∈N exp

(
cos

(
ĥcn , ĥ

cPositive

)
/t

)

where N = {cHard, cMedium, cEasy} is the set of negative samples. ĥcPositive and
ĥcn are the multi-hop relation-based concept representation of the positive sam-
ple and negative samples. cos (·) is the cosine similarity function and t is the
temperature coefficient.

3.4 Prototypical Network

We calculate the prototype for each relation that exists in the support set by
averaging the representation of all instances of relation r in the support Sr as
h′

r = 1
|Sr|

∑
s∈Sr

h′
s. Then, the probability that the query instance q belongs
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to relation r can be calculated based on the distance between query instance
representation h′

q and the relation prototype h′
r,

pφ(y = r | q) =
exp

(
−dis

(
h′

q,h
′
r

))

∑
r′∈R exp

(
−dis

(
h′

q,h′
r′

)

where dis (·) is squared Euclidean distance function. We adopt the negation of
distance as the scoring function and calculate the cross-entropy loss LCE as

LCE = −
∑

(S,R,q)∈Ttrain

∑

r∈R
Ir log pφ(y = r | q)

where Ir is an indicator function. If the relation r is the ground-truth result,
Ir = 1; otherwise, Ir = 0. Hence, the total loss function of SKProto can be
denoted as LTotal = λLCE + (1 − λ)LInfo, where λ is a hyperparameter.

4 Experiments

4.1 Data Source

Conceptual Graph. Similar to KEFDA, we use the general and domain-specific
conceptual graph constructed on the Wikidata2 and UMLS3 knowledge bases.
The embeddings of concepts in our model are generated by the open source
toolkit OpenKE4. Details of the conceptual graph can be found in Table 1.

Table 1. Statistics of the conceptual graph. “Concept”, “Relation”, and “Triple” rep-
resent the number of concepts, relations, and triples, respectively.

Conceptual Graph Domain Concept Relation Triple

WikiData General 6,409 39 8,057

UMLS Specific 127 54 5,890

Benchmark Dataset. We use the FewRel 2.0 benchmark5 to evaluate our
model. Training tasks, validation tasks, and test tasks have no relation intersec-
tion. Table 2 shows the details of this benchmark.

4.2 Baselines

In this work, we compare our model with competitive baseline models.
(1) “Proto” denotes the Prototypical Networks [23], which simply uses the
raw sentence context semantic information to predict relation classes. “(CNN)”
2 https://www.wikidata.org.
3 https://www.nlm.nih.gov/research/umls/index.html.
4 https://github.com/thunlp/OpenKE.
5 https://github.com/thunlp/FewRel.

https://www.wikidata.org
https://www.nlm.nih.gov/research/umls/index.html
https://github.com/thunlp/OpenKE
https://github.com/thunlp/FewRel
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Table 2. Statistics of FewRel 2.0 benchmark. “Relation”, “Instance”, and “Entity”
represent the number of relation classes, instances, and entities. “Concept.Link.” rep-
resent the proportions of entities with concept links.

Task Relation Instance Entity Concept.Link.

Training 64 44,800 89,600 99.54%

Validation 10 1,000 2,000 98.70%

Testing 15 1,500 3,000 99.01%

and “(BERT)” denote using CNN and BERT as encoder [15]. The model with
“-ADV” use adversarial training [13]. (2) Bert-Pair [2] utilizes the BERT
sequence-pair model to measure the similarity between two instances. The
model first concatenates the query instance with all support instances as a
sequence of pairs, then identifies the relation class by the similarity of each
pair. (3) KEFDA [29] incorporates general and domain-specific conceptual
graphs, using a knowledge-enhanced prototypical network to conduct instance
matching and a relation-meta learning network for implicit relation matching.
(4) CP+Proto [31] leverage relation descriptions to build prototype representa-
tion of the relations, jointly training both a prototype encoder from the descrip-
tions and a sentence encoder.

4.3 Experiment Settings

We experimented on the four few-shot settings: 5-way 1-shot, 5-way 5-shot, 10-
way 1-shot, and 10-way 5-shot. We use classification accuracy to evaluate the
model performance. To sufficiently learn the information in the training tasks,
we set the number of training iterations to 30,000. For every 1000 training iter-
ations, we validate the model 1000 iterations using the validation tasks and
simultaneously save the model that performs best on the validation set. We
use BERTBASE

6 as the sentence encoder, which has a text dimension of 768
and a maximum sequence length of 128, the dimensions d1 = 768, d2 = 256.
The temperature coefficient t = 0.5, the hyperparameter λ is 0.8. Also, we use
DistMult [9] as the graph encoder, with node embedding of dimension 256.

4.4 Overall Results

Experiment results are shown in Table 3. From the results, we observe that:
(1) On the Fewrel 2.0 benchmark, the performance of our SKProto model out-
performs all strong baseline models, achieving a new state-of-the-art result.
(2) The performance of SKProto is improved compared with the strongest
baseline KEFDA on the four few-shot settings (i.e. +2.25%, +2.17%, +0.83%,
+1.15%). Additionally, when switching to the low-shot scenarios, the accuracy
of SKProto only decreases by 6.77% in comparison to the 7.99% decrease of
KEFDA. The above improvement proves the effectiveness of capturing deep-
structured semantics for the model to infer relation classes.
6 https://github.com/huggingface/transformers.

https://github.com/huggingface/transformers
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Table 3. Accuracy (%) of models on FewRel 2.0 testing tasks under N-way K-shot
settings. “Cnpt”. and “Desc.” denotes conceptual graphs and descriptions, respectively.
“�” indicates the use of the above external data.

Model External.Data. 1-Shot 5-Shot

Cnpt. Desc. 5-Way 10-Way Avg. 5-Way 10-Way Avg.

Proto (CNN) – – 35.09 22.98 29.04 49.37 35.22 42.30

Proto (BERT) – – 40.12 26.45 33.29 51.50 36.93 44.22

Proto-ADV (BERT) – – 41.90 27.36 34.63 54.74 37.40 47.40

Proto-ADV (CNN) – – 42.21 28.91 34.63 58.71 44.35 51.53

BERT-PAIR – – 67.41 54.89 61.20 78.57 66.85 72.71

CP+Proto – � 83.11 73.02 78.07 90.80 83.08 86.94

KEFDA � � 87.81 81.84 84.83 95.00 90.63 92.82

SKProto � – 90.06 84.01 87.04 95.83 91.78 93.81

4.5 Detail Analysis

Table 4. Accuracy (%) of models on FewRel 2.0 validation tasks under N-way K-shot
settings, and the best results are in bold. “w/o Distinction.”, “w/o Concept.” denote
the absence of multi-granularity semantic distinction and the concept-guided hybrid
attention, respectively.

Model 1-Shot 5-Shot

5-Way 10-Way Avg. 5-Way 10-Way Avg.

SKProto 88.48 82.94 85.71 95.69 92.57 94.13

w/o Distinction 88.05 81.67 84.86 94.85 91.78 93.32

w/o Concept 85.84 80.03 82.94 93.85 90.34 92.10

Ablation Study. To verify the effectiveness of our framework, we conduct abla-
tion experiments on the Fewrel 2.0 validation tasks. Specifically, we remove the
following contributions to evaluate their impact on performance: the concept-
guided hybrid attention and the multi-granularity semantic distinction. The final
results are shown in Table 4. From the results, we observe that: (1) The impact of
multi-granularity semantic distinction on model performance is 1.07% on aver-
age (0.85% for 1-shot and 1.28% for 5-shot). This proves that the performance
of the model can be improved by learning the fine-grained semantics differ-
ences. (2) The impact of concept-guided hybrid attention on model performance
is 2.1% on average (2.17% for 1-shot and 2.03% for 5-shot). This proves that
concept-guided hybrid attention learns the implicit structural knowledge in the
conceptual graph, providing clues for the model to infer the relation class.

Impact of the Maximum Number of Hops. As the number of hops in the
conceptual graph increases, the semantics of the concepts become more abstract,
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Fig. 3. Performance comparison of the maximum concept level under four settings.

and the subclass concepts it can cover also increase exponentially. When the max-
imum number of hops is set too large, excessive concepts may cause the model
to become confused. Conversely, if the maximum number of hops is too small,
the conceptual graph may not be able to provide enough semantic information.
To investigate the effect of the number of hops on model prediction accuracy,
we designed an experiment. As shown in Fig. 3, the model achieved its highest
prediction accuracy when the maximum number of hops is set to 3.

5 Conclusion

In this paper, we propose a knowledge-enhanced prototypical network for few-
shot RC, incorporating implicit structural knowledge from the conceptual graph.
Specifically, we propose a concept-guided hybrid attention mechanism to learn
implicit structural semantic knowledge. Meanwhile, we propose multi-granularity
semantic distinction to make the model distinguish subtle semantic differences.
As for future work, we attempt to use reinforcement learning methods for the
dynamical knowledge injection of entities.
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Abstract. Previous video object detection methods focus on aggregat-
ing the features of other frames into the current frame to alleviate the
image degradation, but they rarely focus on multi-class scenes. Aggre-
gating features of different classes will generate confusing information
and affect network performance. This problem can be solved by using
a classifier to divide the features. However, classifier method has three
problems: (a) Heterogeneous high-similarity objects and homogeneous
low-similarity objects affect the accuracy of the classifier. (b) Two objects
whose positions overlap also affect the classifier. (c) Previous classifier
method did not exploit sufficient global information. Therefore, we pro-
pose a new method that divides the features of different instances to
deal with the problems of (a) and (b). Then we designed two new mem-
ories (one is Init Memory and the other is MDR) to solve problem (c).
These three parts constitute the MIDFA network. Experiments show that
our method achieves 83.76% mAP on the ImageNet VID dataset based
on ResNet-101, and 84.6% mAP on ResNeXt-101. In addition, we also
conduct experiments on a custom-designed multi-class VID dataset, and
adding Instance Division and MDR can increase the mAP of the network
by 0.6% compared to using only Init Memory.

Keywords: Video Object Detection · Instance Division · Memory ·
Feature Aggregation

1 Introduction

The core task of the object detection is to identify and locate one or more objects
in an image or a video. However, many studies have shown that object detection
in images is very different from that in videos. Compared with image, video has
an additional dimension of time. Therefore, video object detection network can
gather temporal context information to enhance the feature representation of
the current frame. As mentioned by FGFA [23], when encountering unfavorable
factors such as motion blur, rare poses, defocusing, occlusions, etc., the current
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(a) Conventional feature aggregation (b) Divided feature aggregation

Fig. 1. Comparison of two memory-based feature aggregation methods. (a) This will
produce confusing ROI features. (b) This will achieve pure feature aggregation.

frame will be extremely degraded, and the image object detection network cannot
effectively handle it.

In recent years, A mechanism utilizing memory is proposed to solve the video
object detection problem. The mechanism uses a memory structure to store the
features of previous frames. The features stored in memory can be provided to
the current frame to achieve feature enhancement. For example, Chen et al. [3]
proposes a memory structure called LRM to support the current frame cap-
ture longer-distance temporal semantic information. Considering the existence
of redundant information in memory, Sun et al. [19] proposed a memory bank
method to store features in a more fine-grained manner. However, none of these
memory-mechanism methods take into account the multi-class video scenarios.
As shown in Fig. 1(a), if features of different classes (different colors represent fea-
tures of different classes) are mixed in memory, the enhanced features obtained
after feature aggregation will contain confusing information. This will affect the
accuracy of the network in multi-class videos.

For this problem, Han et al. [8] uses a classifier to divide the features. It can
make feature aggregation more pure and no longer generate mixed features. But
when encountering features with heterogeneous high similarity, the classification
accuracy of the classifier will drop. Assuming that there is a perfect classifier, the
features of the same class can always be put together. However, if the semantic
information they contain is quite different, the purpose of pure feature aggrega-
tion will also be defeated. In addition, if there are two objects of different classes
and their positions overlap, the classifier will also not be able to accurately give
the right category information of these two objects. From another point of view,
object tracking can find all bounding boxes of the same instance in a video.
Similarly, if we can find all ROI features of the same instance, putting them into
the same memory can achieve pure feature aggregation. Therefore, we propose
an Instance Division method, and store the features after feature division in the
Memory Division Repository (MDR), as shown in Fig. 1(b). In addition, there
is no need to store its features in memory after detecting the current frame. We
can capture and store all the required features in memory before detecting a
video. The contributions of this paper are as follows:
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1. We propose an Instance Division method to enable the video object detection
network to better handle multi-class videos. Specifically, we divide all the ROI
feature according to the positional proximity and the appearance similarity.

2. We propose an MDR structure to store the ROI features of different instances
to support the Instance Division method. Through the memory mechanism,
the network can perceive more global temporal semantic information.

3. We design a new feature storage method to construct a new structure called
Init Memory. Init Memory can allow the network to obtain rich global seman-
tic information while occupying less GPU memory.

4. We have conducted extensive experiments on the ImageNet VID dataset and
multi-class datasets. Results show that our method achieves good perfor-
mance in terms of accuracy and speed.

2 Related Work

2.1 Video Object Detection

So far, video object detection tasks can be roughly divided into three categories:
box-level, frame-level, and feature-level.

Box-Level. Connect bounding boxes across frames. Seq-NMS [10] re-scores
all boxes in the video to obtain the best bounding box links. The BLR (Box
Linking with Relations) method in RDN [5] is similar to seq-nms. Although the
Box-Level method can effectively improve the detection frame, it will increase
the calculation time and cannot achieve online detection due to the need to use
future frames.

Frame-Level. The detection results are concatenated by trajectories across
frames to provide the final prediction. STL [2] detects sparse keyframes and prop-
agates predicted bounding boxes to non-keyframes through motion and scaling.
DorT [15] combines detection results and tracking results to achieve efficient
detection.

Feature-Level. Aggregate feature maps from neighboring frames. Due to
the image difference between frames, the feature maps of adjacent frames need
to be aligned before aggregation. FGFA [23] use FlowNet [6] to generate optical
flow fields for feature map alignment, so as to adjust the adjacent frame fea-
ture maps to align to the current frame. Specifically, there are many methods
[3,5,24] proposing to use attention mechanism to find suitable other frame fea-
tures for feature aggregation for current frame features. These methods make a
breakthrough in video object detection.

3 Method

3.1 Framework Overview

The proposed network framework is based on the traditional image object detec-
tion network Faster R-CNN. The right half of Fig. 2 can be divided into three
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Fig. 2. Framework overview. The left half of the figure is the half process of Faster
R-CNN. The right half is our design. The two parts together constitute our MIDFA
network. The loss function of MIDFA is the same as Faster R-CNN. (Color figure
online)

parts: Init Memory(marked by red dashed box), Instance Division Process, and
ROI Feature Enhancement(RFE) module. Init Memory provides time-global
semantic information. The purpose of the Instance Division process is to aggre-
gate the features of different instances separately. The RFE module aggregates
the ROI features provided by the Init Memory and Instance Division processes
into the ROI features of the current frame.

3.2 Init Memory Sampling Strategy

The Memory Bank [19] method provides a more fine-grained feature storage
method. But it needs to store the features of the current frame after each detec-
tion. In reality, it is very likely to have videos that are several hours or even
a dozen hours long. Therefore, the original method is likely to have significant
limitations. We propose Init Memory to solve this problem.

As shown in red dashed box of Fig. 2, the video has a total of T frames, and
the i * T (default i = 5% in the experiment) frame are used to construct the
Init Memory. The video is divided into i*T regions. Each region has 1/i frames,
and one frame is randomly sampled from one region at a time. Since i = 5% in
default, then 1/i = 20, that is, random sampling is performed every 20 frames.
20 frames is about one second in the video. We don’t need to collect too many
repeated frames in one second, one frame is enough. This strategy can quickly
collect diverse features from the global scope and there is no need to increase
the memory size subsequently.
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3.3 Memory-Based Instance Division and Feature Aggregation

ROI Feature Enhancement Module. Previous methods [3,5,20,24] cannot
divide features into different groups and then aggregate them. Therefore, we
introduce the ROI Feature Enhancement(RFE) module. Regarding the specific
implementation, given the ROI feature set Q = {q0, q1, ..., qN} of a certain
class at time t and the ROI feature set Sc from any memory, calculate the M
relational features between qi ∈ Q and Sc, obtained by calculating the semantic
similarity between qi and Sc, the m-th relational feature formula of qi is defined
as follows:

fr
m(qi, Sc) =

∑

j

ωij · (WV
m · Scj ),m = 1, ...,M (1)

ωij =
exp(Sim(qi, Scj ))∑n
j=1 exp(Sim(qi, Scj ))

, Sim(qi, Scj ) =
(Wm

K Scj )
T (Wm

Q qi)
∥∥Wm

K Scj

∥∥
∥∥∥Wm

Q qi

∥∥∥
(2)

where Wm
V , Wm

K , Wm
Q are the linear transformation matrix, ωij is the weight of

the relationship between qi and Scj . Sim( ·) calculates the degree of similarity
between two vectors. Finally, by connecting M relational features and adding
them to the original ROI feature qi, the enhanced ROI feature at time t can be
obtained:

RFE(qi, Sc) = qi + concat[{fr
m(qi, Sc)}Mm=1] (3)

where the RFE( ·) is the enhanced feature. Therefore, whether such memory is
an Init Memory or a sub-repository in the MDR, the RFE operation can be
directly applied.

Instance Division Method. We propose a novel feature division method that
makes up for the inadequacies of previous classifier methods. It contains four
modules, which are RoI Feature Division(RFD), Memory Update(MU), Key Fea-
ture Sample(KFS) and Instance List Update(ILU). And includes two structures,
namely MDR and Instance List.

ILU Module. We propose to separate the ROI features of different instances.
The bounding boxes and ROI features of different instances at the previous
moment are stored separately in the Instance List, which are represented as IL
= {insY0, ..., insYi, ..., insYn}, insYi = (boxi, ri). Each insY represents a tuple
of box and ROI feature. At the frame t, we define the Detected Instance List
of current frame from the Outputs in Fig. 2 as DIL ={insX0, ..., insXj , ...,
insXm}, insXj = (boxj , rj). We use DILt to update ILt as follows:

ILt = {insY t
0 , ..., insY t

i , ..., insY t
n} (4)

insY t
i = Max(IoU(insY t−1

i , Sim(insY t−1
i ,DILt))) (5)

where the update of ILt consists of the above two steps. Find the insXt
i in

the DILt that has a high feature similarity (Sim(·)) and highest box IoU value
(Max(IoU(·))) with each insY t−1

i of ILt−1. And then the insXt
i becomes the
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insY t
i instead of insY t−1

i . All insY of the previous moment in IL are replaced by
insX of this moment. An instance may disappear from the video over time. Then
an insY in IL cannot find a matching insX. Thus this insY should be removed
from the IL until the vanished instance comes back or a new one appears.

RFD Module. The process of RFD and ILU is the same, though the differ-
ence is the source of their input and the destination of the output. RFD matches
the ROI features of the intermediate process with each insY in IL through the
same instance division step as ILU. RFD will label these ROI features with
instance numbers. RFD stores these features in MDR according to their num-
bers. RFD also feeds these features into RFE so that they can be aggregated
with features of the same instance number in MDR.

MU Module. The MU process is very simple, just store the grouped ROI
features passed by RFD into the corresponding sub-repository of MDR.

KFS Module. KFS is shared between MDR and Init Memory. A small
number of ROI features are randomly sampled from the memory structure, which
is consistent with the Memory Bank [19] method.

4 Experiments

4.1 Dataset and Evaluation Setup

We evaluate the proposed method on the ImageNet VID and the subset of DET
dataset [17] with the same categories as VID. The ImageNet VID dataset is
dedicated to the task of video object detection and has a total of 30 categories.
The ImageNet VID dataset has a total of 3,862 video clips for training, 555 video
clips for validation. Following the standard of previous methods, we evaluate the
model on the validation set of the VID dataset using mean precision (mAP) with
an IoU threshold of 0.5.

4.2 Implementation Details

Detection Network. ResNet-101 [12] and ResNeXt-101 [21] are used as feature
extractors. Notably, the input to the RPN head is the output of the penultimate
layer of the feature extraction network. The anchors of RPN have 3 aspect ratios
{1:2, 1:1, 2:1} and 4 scales {642, 1,282, 2,562, 5,122}, a total of 12 different
anchors for each spatial position. During training and inference, 300 proposal
boxes per frame are generated with an NMS threshold of 0.7 IoU. After gener-
ating the boxes, we apply the ROI Align layer and the 1024-dimensional fully
connected layer after the last layer of the feature extraction network to extract
the ROI features of each proposal box.

Experiment Setting. Following the previous experimental configuration,
we train the proposed model weights on the training sets of the VID dataset and
DET dataset. During training and inference, the input images are resized to 600
pixels on the short side and 1,000 pixels on the long side. The network is trained
on 4 RTX 3060 GPUs, the optimizer is SGD, each GPU has a mini-batch, and
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each mini-batch contains two images (the current frame and a randomly sampled
frame). The training process goes through 120k iterations, and the learning rates
for the first 80k and the last 40k are 10−3 and 10−4, respectively. Duplicate boxes
were suppressed using NMS with a 0.5 IoU threshold.

4.3 Main Results

Table 1. End-to-end method comparison on the ImageNet VID validation set. “sym-
metric” represents the symmetric model of LRTR. † denotes using data augmentations.

Methods Backbone mAP(%)

Faster R-CNN [16] ResNet-101 75.4
FGFA [23] ResNet-101 76.3
THP [22] ResNet-101+DCN 78.6
STSN [1] ResNet-101+DCN 78.9
OGEMN [4] ResNet-101+DCN 80.0
SELSA [20] ResNet-101 80.3
LRTRsymmetric [18] ResNet-101 81.0
TCENet [11] ResNet-101 81.0
RDN [5] ResNet-101 81.8
SELSA [20]+TROI [7] ResNet-101 82.0
LSTS [13] ResNet-101 82.1
CFANetins [8] ResNet-101 82.6
MEGA [3] ResNet-101 82.9
CSMN [9] ResNet-101 83.1
DSFNetins [14] ResNet-101 83.3
MAMBAins [19] ResNet-101 83.7
RDN [5] ResNeXt-101 83.2
LRTRsymmetric [18] ResNeXt-101 84.1
MEGA [3] ResNeXt-101 84.1
CSMN [9] ResNeXt-101 84.3
SELSA [20]+TROI [7] ResNeXt-101 84.3
MAMBAins ResNeXt-101 84.36
MIDFA(ours) ResNet-101 83.76
MIDFA (ours) ResNeXt-101 84.6
MIDFA† (ours) ResNeXt-101 85.22

We compare our method with previous “SOTA” methods in Table 1. In order to
maintain the fairness of the result comparison, we use the same backbone. When
the backbone is ResNet, our method is higher than the second Memory Bank
method by 0.06% mAP. When the backbone is changed to ResNeXt, MIDFA
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outperforms the second place by 0.24% mAP. Since only the ROI features are
stored in our memory, we compare it with all the “ins” level networks (“ins”
means that memory only stores ROI features). Compared with the MAMBAins

model, Init Memory carries fewer features and can also capture enough global
information. When compared with CFANet, which also aims to solve the multi-
class situation, MIDFA can perceive more global information and have a higher
accuracy due to the memory mechanism. After adding random crop and random
scale data augmentation during MIDFA training, its mAP can reach 85.22%
based on ResNeXt101.

4.4 Ablation Study

Table 2. Ablation study of MIDFA Network based on a single-frame baseline network.

Strategy a b c d

Init Memory
√ √ √

Instance Division
√ √

MDR
√

mAP(%) 75.40 83.72↑8.32 83.73↑8.33 83.76↑8.36
Runtime(ms) 55.56 86.2 103.1 104.17

In Table 2, the effects of Init Memory, Instance Division method and MDR are
investigated by gradually adding them. ResNet101 is used as the backbone.

(a) Baseline: When no components are added, the mAP reaches 75.4%.
This shows the lack of image object detection network in VID task. The inference
speed of the Baseline network reached the fastest, that is, 55.56ms per frame.

(b) Effectiveness of Init Memory: When only Init Memory is added, the
network improves mAP by 8.35% compared to the baseline. It can be seen that
with the help of a small amount of time global features, the overall accuracy of
the network can be improved a lot.

(c) Effectiveness of Instance Division: After adding Instance Division
processing, the network performance improved slightly, but the processing speed
dropped a lot. MDR and Instance Division can be separated, because insY in
the IL also stores the ROI features. Without MDR, the ROI features of the
current frame are aggregated with the features in the IL.

(d) Effectiveness of MDR: After continuing to add MDR, the mAP value
improves about 0.04% compared to strategy b. With the help of Instance Division
and MDR, the accuracy of object detection can be further improved. However,
since the proportion of multi-class videos in the VID dataset is not very high (23
of the 555 videos have multi-class objects, accounting for 4.1%), the improvement
effect of MDR in the complete VID dataset is not obvious.
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Table 3. Multi-class video object detection results. “ALL” indicates test the MIDFA
in the complete multi-class dataset.

Video Set Memory Bank Init Memory Init Memory+MDR

ILSVRC2015_val_00004000 44.81 44.88 46.90
ILSVRC2015_val_00022000 93.98 94.01 94.24
ILSVRC2015_val_00025000- ILSVRC2015_val_00025001 80.38 80.36 80.67
ILSVRC2015_val_00026000- ILSVRC2015_val_00026003 76.61 76.55 76.67
ILSVRC2015_val_00037000- ILSVRC2015_val_00037008 99.57 99.66 99.67
ILSVRC2015_val_00123000- ILSVRC2015_val_00123004 57.90 57.94 58.02
ILSVRC2015_val_00130000 93.41 93.26 94.09
ALL 70.48 70.56 71.16

4.5 Experiment on Multi-class Dataset

We design a new multi-class dataset to test MIDFA, which comes from the
full VID dataset and only contains multi-class videos. It includes a total of
23 videos, 10,258 pictures. Each video is grouped according to the scene, and
the objects appearing in the same group are of the same class and back-
ground. For example, the videos in the middle of ILSVRC2015_val_00025000-
ILSVRC2015_val_00025001 are all in the same group. In Table 3, after adding
MDR, the accuracy for all videos is improved by 0.6% mAP compared to Mem-
ory Bank [19] and Init Memory. Init Memory can provide global information,
while MDR can make different classes of ROI features more distinguishable from
each other.

4.6 Comparison of GPU Memory Consumption of Different
Memory

Table 4. Comparison of GPU memory consumption of different memory.

Memory LRM MB IM

Size(MB) s m l s m l s m l
20 20 20 18 86 94 4 20 44

mAP(%) 82.9 83.7 83.72

In this part, we compared the GPU memory consumption of different memories.
These memories are LRM [3] (Long Range Memory of MEGA), MB [19] (instance
Memory Bank of MAMBA) and IM (Init Memory). As shown in Table 4, we
tested these three memories in short, medium and long videos. Firstly, the LRM
is not affected by the video duration, and the GPU usage has been kept at 20MB.
Though the mAP of the MEGA is lower than the latter two methods. Although
the GPU usage of MB is smaller than LRM in short videos, it far exceeds LRM
in medium and long videos. Compared with the first two, IM not only surpasses



162 Q. Chen et al.

LRM in terms of accuracy, but also occupies much less GPU memory than MB
in all lengths of video. The duration of long videos in Table 4 is only 1min and
35 s, which is relatively long to the VID dataset. The video length in the real
scene is generally much longer than this.

4.7 Analysis of How RFE Handles Key Sets of Two Memories

Table 5. Results of different ways RFE handles Key Sets of Init Memory and MDR.

Different Ways Init Memory first MDR first Together

mAP (complete dataset) 83.61 83.71 83.76
mAP (multi-class dataset) 70.98 71.16 71.09

The MIDFA network will send the Key Sets of two memories into the RFE
module. Here, it is necessary to determine which key sets of two kinds of memory
are aggregated with the original ROI feature by the RFE module first, or both
are aggregated at the same time. In Table 5, the best results can be achieved
by concatenating the two Memory Key Sets together in complete VID dataset.
The MDR-first approach is optimal in multi-class datasets. Given that feature
diversity has a higher priority in the full dataset, the more features captured in
the RFE module, the higher the mAP value.

4.8 Comparison of Different Methods for Instance Division

Fig. 3. Comparison of different methods for Instance Division.

Instance Division method can effectively distinguish two overlapping objects.
We visually compare the reality detection results of the two different feature
division methods. In Fig. 3, each row represents a feature division method, and
each column is a chronologically captured video frame containing detection boxes
from a video. The labels of the boxes marked squirrel and cat in the first row
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are cat, so that the purpose of aggregating the features of multi-class objects
separately cannot be achieved. The results in the second row show that the
Instance Division method can more effectively distinguish different instances
when they are overlapped. In the first frame in row 2, the squirrel is marked as
object 3. And it is still marked as object 3 in subsequent frames.

5 Conclusion

We explore how to solve the multi-class problem in the video object detection
task. In order to avoid several defects of the classifier method, we propose an
Instance Division method to more effectively divide ROI features. Combining
the two kinds of memory, our MIDFA network can perform better than previous
methods on both the ImageNet VID dataset and the custom multi-class dataset.

The MIDFA network mainly relies on Init Memory to achieve good perfor-
mance on the complete VID dataset. However, Instance Division and MDR can
only play an obvious role in multi-class videos. In the maritime ship object detec-
tion scene, it is often encountered that various kinds of ships appear in the same
shot, so our method will be very useful in such task.
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ogy Innovation Action Plan” Venus Project (Sailing Special Project) under Grant
23YF1412900.
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Abstract. Computational Pathology (CPATH) systems have the poten-
tial to automate diagnostic tasks. However, the artifacts on the digitized
histological glass slides, known as Whole Slide Images (WSIs), may ham-
per the overall performance of CPATH systems. Deep Learning (DL)
models such as Vision Transformers (ViTs) may detect and exclude arti-
facts before running the diagnostic algorithm. A simple way to develop
robust and generalized ViTs is to train them on massive datasets. Unfor-
tunately, acquiring large medical datasets is expensive and inconvenient,
prompting the need for a generalized artifact detection method for WSIs.
In this paper, we present a student-teacher recipe to improve the clas-
sification performance of ViT for the air bubbles detection task. ViT,
trained under the student-teacher framework, boosts its performance by
distilling existing knowledge from the high-capacity teacher model. Our
best-performing ViT yields 0.961 and 0.911 F1-score and MCC, respec-
tively, observing a 7% gain in MCC against stand-alone training. The
proposed method presents a new perspective of leveraging knowledge
distillation over transfer learning to encourage the use of customized
transformers for efficient preprocessing pipelines in the CPATH systems.

Keywords: Artifact Detection · Computational Pathology · Deep
Learning · Knowledge Distillation · Vision Transformer · Whole Slide
Images

1 Introduction

Histological examination of tissue samples is conducted by studying thin slices
from a tumor specimen mounted on a glass slide. During the laboratory pro-
cedures, the preparation of glass slides may introduce artifacts and variations
causing loss of visual features [15,27]. Artifacts, such as air bubbles, occur when
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air is trapped under the cover slip due to improper mounting procedure [16].
Eventually, the presence of air bubbles leaves an altered and fainted appear-
ance [16,27]. During the manual assessment, pathologists usually ignore regions
containing artifacts as they are irrelevant for diagnosis.

Computational Pathology (CPATH) systems are automated systems working
with a digitized glass slide, called Whole Slide Image (WSI), as input. CPATH
systems have the potential to automate diagnostic tasks and provide a second
opinion or localize the Regions of Interest (ROIs) [14]. Different types of artifacts,
like air bubbles, might be present on the WSI [16] and can deteriorate diagnostic
CPATH results if included in the analysis. Therefore it has been proposed to
detect and exclude artifacts as a first step before using more relevant tissue in a
diagnostic or prognostic system [15,16]. The detection and exclusion of artifacts
can be regarded as (a part of) a preprocessing pipeline, which also might include
color normalization and patching [16]. A complete preprocessing pipeline should
detect folded tissue, damaged tissue, blood, and blurred (out of focus) areas, as
well as air bubbles [16]. This might be done by an ensemble of models, one for
each artifact, or by a multiclass model. In this paper, we consider detecting air
bubbles artifact, which is not given much attention in the literature.

Deep Learning (DL) methods have shown promising results in various med-
ical image analysis tasks [4,28], and can be used for detecting artifacts in a
preprocessing pipeline. Supervised learning for generalized DL models requires
a significant amount of data and labels. In CPATH literature, little effort has
been made to annotate artifacts; thus, publicly available datasets for histological
artifacts are unavailable. Transfer Learning (TL) has been widely used for med-
ical images to deal with the lack of labeled training data [6,21]. TL methods use
the existing knowledge, such as ImageNet [2] weights, and fine-tune the model
for a different task. Although TL on ImageNet weights is useful to cope with a
lack of data, ImageNet weights are mostly available for complicated Deep Con-
volutional Neural Networks (DCNN) architectures and carry a strong texture
bias [5]. However, such DCNNs are typically computationally complex, whereas
a preprocessing pipeline, being a first step prior to diagnostic or prognostic mod-
els, should have generalized and efficient DL models with high throughput. This
is especially true with an ensemble of DCNN models for the different artifacts.

After the success in natural language processing tasks, transformers have
been given attention for vision tasks [3,17]. Vision Transformers (ViTs), using a
convolution-free approach, have surpassed DCNNs in accuracy and efficiency on
image classification benchmarks [1,3]. Unlike the convolution layer in DCNNs,
which applies the same filter weights to all inputs, the multi-head attention [30]
in ViTs attends to image-wide structural information [20]. Interestingly, ViTs
are also shown to be more robust and generalized than DCNNs [1,20]; Unfor-
tunately, the robustness and generalizability come from training on extremely
large datasets [1,3,29], which contrasts with the biomedical scenario. These lim-
itations bring us to the question: how can we train generalized ViTs on a small
histopathological dataset?.
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Fig. 1. An overview of our proposed air bubbles detection method by knowl-
edge distillation: Predefined size patches for air bubbles and artifact-free classes are
extracted from the WSI. A ViT student model is trained with the help of a DCNN
teacher model by leveraging the transference of knowledge during the training process.
The student-teacher recipe weights the teacher and student’s outputs by the tempera-
ture (T ). The overall training objective is to minimize the final loss, which is a linear
combination of student loss and distillation loss. Finally, the student model is used to
perform predictions for binary air bubbles detection task.

One possible answer lies in Knowledge Distillation (KD) [10], which transfers
knowledge from a usually large teacher model to another, typically smaller, stu-
dent model. Motivated by the KD idea, we present a student-teacher recipe, as
shown in Fig. 1. We propose to use KD in combination with TL for detecting air
bubbles on WSIs using a small training set. In short, we let the teacher model be
a complex ImageNet pretrained DCNN and using KD, we train a small student
model, which is a ViT. In the inference stage, we only need the small ViT, which
is computationally efficient enough for a preprocessing pipeline implementation.

Our contributions in this paper can be summarized as follows:

– We train several state-of-the-art DCNNs and ViTs to compare their per-
formance on a binary air bubbles detection task. Later, we choose suitable
architectures to test our student-teacher framework.

– We conduct an in-depth comparison by initializing models with and without
ImageNet weights and training ViT under a standalone vs. a student-teacher
framework. We also assess the improvements in ViT’s generalization capabil-
ity over ImageNet transfer learning.
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– We run extensive experiments to test the student ViT’s performance under
different teacher models and distillation configurations on unseen data.

2 Related Work

Artifact and Air Bubbles Detection: The detection of histopathological arti-
facts has largely been overlooked during the development of CPATH systems,
and the literature on air bubbles is scarce. Shakhawat et al. [11], in their quality
evaluation method, detected air bubbles in two steps. First, the non-overlapping
affected patches were detected using a Support Vector Machine (SVM) classi-
fier. Later, the remaining patches with fainted appearance were separated using
handcrafted Gray-level Co-occurrence Matrix (GLCM) features. This work was
later extended in [24], where a pretrained VGG16 [25] network was used to
compare the handcrafted features against the CNN-based method. Their exper-
iments concluded that handcrafted features provide stable classification, but
their evaluation was based on a relatively smaller dataset. Recently, Raipuria
et al. [22] performed stress testing for common histological artifacts, including
air bubbles, using a vision transformer [29] and a ResNet [9] model. Though,
MobiletNet [12] and VGG16 [25] have been popular DCNN choices for artifact
detection [15]. DCNNs are found to be less robust than ViTs and exhibit strong
texture bias [20,22].

Knowledge Distillation (KD): Originally proposed by Hinton et al. [10] for
model compression, KD sought to extract knowledge from an ensemble of CNN
experts to a smaller two-layer CNN generalist network to make it perform equally
well. In short, KD aims to train a small student model under the guidance of a
complicated teacher model, where the student model optimizes its learning by
absorbing the hidden knowledge from the teacher. This transference of knowl-
edge can be accomplished by minimizing output logits of student and teacher
networks through some distillation methods, such as logit-based, feature-based,
and relationship-based distillation methods [19].

KD helps make computationally friendly deployment algorithms, making it
interesting for many biomedical imaging algorithms. Lingmei et al. [18] proposed
a CNN model for glioma classification. They used the KD approach to compress
the model and make it suitable for deployment on medical equipment. Salehi et
al. [23] used a VGG16 [25] cloner network to calculate multi-level loss from a
source network for detecting anomalies. Their method relied on distilling inter-
mediate knowledge from the ImageNet pretrained source network. In a similar
approach, He et al. [8] used the KD technique to boost the performance of CNN
for ocular disease classification. They used fundus images and clinical informa-
tion to train a ResNet [9] teacher first and used only the fundus images to train
a similar student network later. Guan et al. [7] detected Alzheimer’s disease
by leveraging multi-modal data to train a teacher network. Their distillation
scheme improved the prediction performance of the ResNet [9] student using a
single imaging modality.
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However, all these works focused on using only CNN as a student network
and did not explore the effects of different configurations and teacher networks
on the final classification outcome. In addition, the use of KD for histological
artifacts has not been investigated yet.

3 Data Materials and Method

Figure 1 provides an overview of our air bubbles detection method using KD [10]
in a student-teacher recipe. We exploit KD for data-efficient training by leverag-
ing the transference of knowledge from the teacher model to the student model.
Our proposed method uses a complex DCNN as the pre-trained teacher and a
small ViT as the student when a small histological dataset is available. We are
doing a logit-based distillation [19] since our teacher and student models are
very different. The steps of our method are further described below.

3.1 Dataset

The air bubbles dataset was prepared from 55 bladder biopsy WSIs, provided
by Erasmus Medical Center (EMC), Rotterdam, The Netherlands. The glass
slides were stained with Hematoxylin and Eosin (H&E) dyes and scanned with
Hamamatsu Nanozoomer at 40× magnification. WSIs are stored in ndpi format
with a pixel size of 0.227 µm × 0.227 µm. These WSIs were manually annotated
for air bubbles and artifact-free tissue by a non-pathologist who has received
training for the task. To prevent data leakage, the dataset was later split into
35/10/10 training, validation, and test WSIs, respectively.

3.2 Foreground Segmentation and Patching

Let I40x
WSI(i) correspond to a WSI at magnification level 40x (sometimes referred

to as 400x). I40x
WSI are very large gigapixel images, and it is not feasible to pro-

cess the entire WSI at once. As such, all CPATH systems resort to patching
or tiling of the image, or the ROI in the image, before further processing. Let
T : I40x

WSI(i)∈R → {xi
j ; j = 1 · · · J} represent the process of patching a ROI

denoted by R of the image I40x
WSI(i) into a set of J patches, where xi

j ∈ R
W×H×C

and W , H, C present the width, height, and channels of the image, respectively.
In the patching process, foreground-background segmentation was performed
first by transforming (Red, Green, Blue) RGB images to (Hue, Saturation, Value)
HSV color space. Later, Otsu thresholding was applied to the value channel to
obtain the foreground with tissue. The extracted foreground was later divided
over a non-overlapping square grid, and patches with at least 70% overlap to the
annotation region (R) were extracted.

Let D = (X,y) = {(xn,yn)}N
n=1 denote our prepared dataset of N patches

from a set of WSIs and yn ∈ {0, 1} is the binary ground truth for the n-th
instance, where 1 indicates a patch within a region marked as air bubbles.
Figure 1 (step 1) shows the patches xn of 224 × 224 × 3 pixels with air bub-
bles and artifact-free classes obtained from a WSI at 40x magnification.
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3.3 Selecting Student-Teacher Architectures

Let’s symbolize the student model ξ with parameters θ providing the prediction
output logits sn = ξθ(xn), and correspondingly, the teacher model ϕ parame-
terized by φ providing the output logits tn = ϕφ(xn).

Our student model is a ViT, similar to the pioneering work [3], which lever-
ages multi-head self-attention mechanism [30] to capture content-dependant rela-
tions across the input patch. At the image pre-processing layer, the patches of
224×224 pixels are split into the non-overlapping cells of 16×16 pixels. Later, the
linear embedding layer flattens these cells, and positional encodings are added
before feeding the embeddings to the pile of transformer blocks, as illustrated
in Fig. 1 (step 2). Since convolutional networks have shown their efficacy in
image recognition tasks, transferring knowledge from a DCNN network can help
the ViT absorb inductive biases. Therefore, we rely on popular state-of-the-art
DCNNs for selecting teacher architecture. Nevertheless, we systemically dis-
cover appropriate student and teacher candidates during the experiments later
to demonstrate the approach’s effectiveness over TL.

3.4 Training Student Under Knowledge Distillation

After selecting student and teacher architectures, we begin the process of training
the student ξ. The goal is to train ξ with the assistance of a ϕ to improve the
ξ’s generalization performance using additional knowledge beyond the labels.
Our approach is similar to Hinton et al. [10] where model outputs s, and t are
normalized by a temperature T parameter before using the softmax function σ.
The increasing value of T softens the impact of the fluctuations in the output
probability distribution; therefore, more knowledge can be devolved with each
input xn. Instead of using softmax on sn, we take advantage of the log-softmax
function σ∗, which stabilizes the distillation process by penalizing for incorrect
class. σ∗ also adds efficiency by optimizing gradient calculations.

The output logits for input patch xn can be written as:

sn = ξθ(xn) and tn = ϕφ(xn) (1)

Let the log-softmax and softmax on logits, σ∗(s/T ) and σ(t/T ), for each
element can be defined as (see Eq. (2)):

σ∗(si/T ) = log

(
exp (si/T )∑c

j=1 exp (sj/T )

)
and σ(ti/T ) =

exp (ti/T )∑c
j=1 exp (tj/T )

(2)

where c is the total number of classes and T is the temperature. The class
probabilities at the output of the ξ and ϕ model can thus be written as:

pξ = σ∗(s/T ) = σ∗(ξθ(x)) and pϕ = σ(t/T ) = σ(ϕφ(x)) (3)

The student loss Lstudent (Eq. (4)) provides hard targets and is obtained by
applying cross entropy LCE on ground truth y, and s when T is set to 1:
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Lstudent = LCE(y, s) = −
c∑

i=1

yi · log(σ∗(si)) (4)

Distillation loss Ldistillation provides the soft targets and is computed from the
pξ and pϕ by applying Kullback-Leibler divergence KLD. Since the outputs from
ξ and ϕ were normalized by T , we multiply the loss with T 2 to maintain their
relative contribution:

Ldistillation = T 2 × KLD(pξ‖pϕ) = T 2 ·
c∑

i=1

pξi
log

pξi

pϕi

(5)

The final loss function, as shown in Eq. (6), is a weighted average of student and
distillation losses where α ∈ [0, 1):

LFinal = α × Lstudent + β × Ldistillation · : β = 1 − α (6)

High entropy in soft targets offers significantly more information per training
patch than hard targets [10], allowing the student ViT to train with fewer data
and a higher learning rate. Therefore, using a smaller alpha can be beneficial if
the ξ is trained from scratch. Our standalone training setup for baseline compar-
ison can be obtained by putting α and T equal to one and replacing log softmax
with softmax function.

3.5 Prediction

Once the final loss is minimized based on the experimental setup (defined in
Sect. 4), we find predictions from the student ξ by setting T equal to one. For
an unseen test patch x∗, output can be defined as (7):

ŷs = arg max(σ(s∗)) = arg max(σ(ξθ(x∗))) ∈ {0, 1} (7)

4 Experimental Setup

Implementation Details: The patch extraction was accomplished using the
HistoLab library. Extracted patches were normalized to ImageNet [2] mean and
standard deviation. We augmented data at every training epoch using random
geometric transformations, such as rotations, horizontal and vertical flips. ViTs
were borrowed from Timm Library, and the experimental setup was built on
the Pytorch. We used four variants of ViTs with different parametric depths
from [3,29], where the classifier was replaced by a fully connected (FC) layer.
We used four state-of-the-art DCNNs with varying parametric complexity. All
DCNN backbones were initialized with ImageNet [2] weights, and classifiers were
replaced with three-layer FC classifiers. All classifiers were initialized with ran-
dom weights. After hyper-parameter exploration, the final parameters were set
to a batch size of 64, SGD optimizer, ReduceLROnPlateau scheduler with a
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Table 1. Results from Exp. 1: Four variants of Deep Convolutional Neural Networks
(DCNNs) and Vision Transformers (ViTs), with increasing parametric complexity, are
trained for the air bubbles detection task. The best outcomes in every section are
bolded. ViT-tiny and MobileNet architectures provide the best results on the test set.

Architecture Param. (#) Validation Set Test Set

Acc.(%) F1 MCC(⇑) Acc.(%) F1 MCC(⇑)

Deep Convolutional Neural Networks (DCNNs)

MobileNetv3 [12] 3.52M 98.28 0.983 0.965 93.88 0.945 0.876

EfficientNet [26] 20.89M 96.52 0.966 0.931 92.54 0.935 0.851

DenseNet161 [13] 27.66M 98.12 0.982 0.962 91.32 0.925 0.828

VGG16 [25] 136.42M 98.34 0.984 0.966 92.31 0.932 0.846

Vision Transformers (ViTs)

ViT-tiny [29] 5.52M 98.67 0.987 0.973 92.35 0.933 0.847

ViT-small [29] 21.66M 97.01 0.971 0.941 91.16 0.922 0.822

ViT-large [3] 303.30M 98.12 0.982 0.962 92.08 0.928 0.839

ViT-huge [3] 630.76M 95.85 0.962 0.918 91.43 0.925 0.829

Results from Literature (Validation Accuracy (%))

DeiT-S in [22] 91.5-92 ResNet-50 in [22] 88-89 VGG16 in [24] 87.33

learning rate of 0.001, dropout of 0.2, cross-entropy loss, and early stopping
with the patience of 20 epochs on validation loss to prevent over-fitting. For KD
parameters, values of T ∈ {2, 5, 10, 20, 40} and α ∈ {0.3, 0.5, 0.7} were explored.
The best model weights are used to report the results. The NVIDIA GeForce
A100 SXM 40GB GPU was utilized for training all models.

Evaluation Metrics: We evaluate the presented method using accuracy, F1-
score, and Mathew Correlation Coefficient (MCC). Let TP, FN, FP, and TN
describe true positive, false negative, false positive, and false negative predic-
tions. The accuracy, termed as (TP + TN)/(TP + FN + FP + TN), is the
ratio of correct predictions by the model. F1 is the harmonic mean, defined as
2 ·(precision ·recall)/(precision+recall) where Recall = TP/(TP +FN) and Pre-
cision = TP/(TP +FP ). MCC is an informative measure in binary classification
over imbalanced datasets and is defined as Eq. (8):

MCC =
TP · TN − FP · FN

√
(TP + FP ) · (TP + FN) · (TN + FP ) · (TN + FN)

∈ [−1, 1] (8)

5 Results and Discussion

5.1 Exp. 1 : Baseline Experiments for Architecture Decision

In this experiment, we only apply TL to a set of architectures. We evaluate state-
of-the-art DCNNs, namely MobileNetv3 [12], EfficientNet [26], DenseNet161 [13]
and VGG16 [25] architectures and a family of four ViTs [3,29], with increasing
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Table 2. Results from Exp. 2: Knowledge Distillation (KD) outcome for selected
teacher and student candidates from Exp.1. The values of α, T are fixed at 0.5 and 10,
respectively. The best results in every part are marked in bold, and the second best
is underlined. ViT-tiny, with scratch and ImageNet initializations, is used for baseline
comparisons. Two teachers (MobileNet and VGG16) with air bubbles knowledge are
used. While MobileNet is also initialized with knowledge of other domains to evaluate
the importance of teachers’ knowledge.

Architecture (Initial.) Validation Set Test Set

Acc.(%) F1 MCC(⇑) Acc.(%) F1 MCC(⇑)

Baseline (Initial.) - Standalone training

ViT-tiny (Scratch) 96.13 0.963 0.922 91.51 0.925 0.829

ViT-tiny (ImageNet [2]) 98.67 0.987 0.973 92.35 0.933 0.847

Teacher (Initial.) - Student [ViT-tiny (Scratch)]

MobileNet (Scratch) 96.13 0.962 0.924 87.92 0.889 0.756

MobileNet (ImageNet [2]) 95.58 0.957 0.914 92.31 0.927 0.848

MobileNet (Damaged [15]) 76.8 0.785 0.533 49.23 0.608 -0.075

MobileNet (Air bubbles) 98.01 0.981 0.960 95.25 0.957 0.904

VGG16 (Air bubbles) 97.18 0.973 0.944 93.42 0.940 0.867

Teacher (Initial.) - Student [ViT-tiny (ImageNet)]

MobileNet (Scratch) 98.73 0.983 0.971 93.38 0.941 0.866

MobileNet (ImageNet [2]) 98.62 0.987 0.972 93.40 0.942 0.867

MobileNet (Damaged [15]) 50.08 0.211 0.09 35.51 0.116 -0.294

MobileNet (Air bubbles) 98.61 0.987 0.973 95.60 0.961 0.911

VGG16 (Air bubbles) 98.67 0.986 0.972 94.19 0.948 0.882

architecture size. Exp 1 provides a baseline as well as helps to choose archi-
tectures for the KD setup in later experiments. Table 1 reports the results of
the validation and test set. DCNNs largely exceed the performance of ViTs,
where top-performing ViT lags the generalization performance of top-performing
DCNNs by 3% in MCC. Moreover, architectures with sizeable parameters like
VGG16 and ViT-tiny, and MobileNet, despite being architectures with fewer
parameters, emerge as appropriate student and teacher candidates, respectively,
based on the test results and outperform the results from the literature.

5.2 Exp. 2 : How Important is Teacher’s Knowledge?

This experiment evaluates the impact of existing teacher knowledge in the KD
process to assess the real-life analogy where good teachers make good students.
Therefore, we initialize MobileNet teachers with no knowledge (scratch), knowl-
edge from a general domain (ImageNet), knowledge from another WSI arti-
fact (damaged tissue [15]), and finally, domain-relevant knowledge (air bubbles)
from the previous experiment. In addition, we also select VGG16 with air bub-
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ble knowledge as a teacher to assess the effect of highly parametric DCNN in
the KD process. For this experiment, the α, T values are fixed at 0.5 and 10,
respectively. The student is a ViT-tiny architecture initialized with random and
ImageNet weights separately.

Table 2 exhibits that KD remarkably improves ViT’s classification ability.
Even without ImageNet knowledge, ViT-tiny, under the KD framework, sur-
passes all metrics under both MobileNet and VGG16 teachers. However, the
best results are obtained using the MobileNet teacher, ascertaining that hid-
den knowledge can be easily distilled from a simpler architecture. Interestingly,
teachers with knowledge other than the relevant domain (air bubbles) produce
poorly performing student. Although the student with ImageNet knowledge does
not indicate gain on the validation results relative to the baseline, it achieves 3%
and 7% improvement in F1 and MCC scores on the test set, respectively.

Overall, the test results demonstrate that the KD is promising to train gen-
eralized ViT-tiny with little data, even without pretrained weights. ViT sig-
nificantly enhances its generalization against the baseline when trained in a
standalone setting. Especially when the teacher is enriched with the knowledge
related to the task. KD, on top of ImageNet TL, provides a marginal gain in the
performance of ViT-tiny, overcoming the reliance on pretrained weights.

5.3 Exp. 3 : Influence of KD Parameters

Since the initialization of teachers with air bubbles knowledge has been shown
to improve the learning process, it would be interesting to assess the influence
of DCNN teachers under the different KD parameters (T and α). In this exper-
iment, we chose T ∈ {2, 5, 10, 20, 40} and α ∈ {0.3, 0.5, 0.7} to estimate the
influence of teacher’s output on ViT student, trained from scratch. The baseline
experiment corresponds to α, T = 1 and uses sigmoid on ViT outputs. Figure 2
(a) and (b) show MCC values as the effect of temperature on simple DCNN
like MobileNet and complex DCNN like VGG16. Though the ViT-tiny student
trained under the VGG16 teacher scores better on the validation set when T is
high, the MobileNet teacher reveals better transference of hidden knowledge on
all T values on the test set. Figure 2 (c) depicts the effect of α on ViT’s gener-
alization results. All α values give better results than the baseline, concluding
that including distillation loss improves training compared to only student loss.

To sum up, the teacher’s outcome strongly influences the student’s general-
izability in the KD process. Most of the T and α values deliver a noticeable gain
over the standalone training in our case. However, intermediate T values and
assigning equal weight to student and distillation loss is the most advantageous.
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Fig. 2. Results from Exp. 3: Knowledge Distillation (KD) improves the perfor-
mance of the Vision Transformer (ViT-tiny) under the supervision of both MobileNet
and VGG16 teachers. (a) and (b) shows an improved performance from the baseline
(standalone training from scratch), under all temperature (T ) values, on validation and
test set. (c) depicts the influence of giving higher/lower weightage to distillation loss
from the teacher network (see Sect. 3). The MobileNet teacher, despite being simpler
architecture, enriches ViT-tiny’s generalization capability on all chosen α and T values.

6 Conclusion and Future Work

This paper presents the Knowledge Distillation (KD) to boost the generalization
performance of small Vision Transformers (ViTs) on a small histopathological
dataset. The main motivation is to create a well-performing and efficient prepro-
cessing pipeline that requires a generalized and computationally-friendly model.
We evaluated various pretrained DCNNs and ViTs for the air bubbles artifact
detection task. ViTs, trained in a standalone setting, underperform DCNNs on
unseen data. Our approach exploits the KD, in the absence of pretrained weights,
to enhance the performance of ViT by training under the guidance of a DCNN
teacher. Our analysis found that KD provides significant gain under most dis-
tillation settings when the teacher holds the knowledge of the same task. In
conclusion, the ViT, when trained under KD, outperforms its state-of-the-art
DCNN teacher and its counterpart in standalone training.

In future work, the method can be developed and tested on larger cohorts
of histological data with stain variations and to detect multiple artifacts. More-
over, artifact detection by ViT trained under the student-teacher recipe can be
combined as a preprocessing step with a diagnostic or prognostic algorithm in
the computational pathology system.
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Abstract. While recent advances in large-scale foundational computer
vision models show promising results, their application to the medical
domain has not yet been explored in detail. In this paper, we progress
into the realms of large-scale modeling in medical synthesis by proposing
Cheff - a foundational cascaded latent diffusion model, which generates
highly-realistic chest radiographs providing state-of-the-art quality on
a 1-megapixel scale. We further propose MaCheX, which is a unified
interface for public chest datasets and forms the largest open collection of
chest X-rays up to date. With Cheff conditioned on radiological reports,
we further guide the synthesis process over text prompts and unveil the
research area of report-to-chest-X-ray generation.

Keywords: latent diffusion model · chest radiograph · image synthesis

1 Introduction

Chest X-ray examinations are one of the most common, if not the most common,
procedures in everyday clinical practice. This not only enables the collection of
large databases but paves the way for lots of great opportunities to advance
medical AI assistance in clinical workflows. Automated lung disease diagnosis
[21], for example, can help to accelerate an examination and assist radiologists
by reducing human error in a high-stress environment. Despite the availability of
public datasets, many challenges in practical usefulness remain, partly induced
due to inherent class imbalances and noisy labels. One possible approach to tackle
this problem is by synthesizing underrepresented classes via generative modeling
[30]. Generative models provide various other opportunities to improve clinical
routines by, e.g., modeling the characteristics of diseases in different degrees
using the patient’s original thoracic scan [34] or suppressing bones to enhance
soft tissue within the lung [8].

The basis for these methods is a stable and high-quality synthesis process.
While previous evaluations in clinical practice focus on generative adversarial net-
works (GANs; see, e.g., [27]), the trend of generative architectures moves away
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Fig. 1. High-resolution synthetic chest X-rays generated with our cascaded latent dif-
fusion pipeline Cheff.

from an adversarial setting. Current state-of-the-art approaches tend to employ
large-scale autoencoders with a focus on generating a prior in their latent space
[5,24]. Moreover, diffusion models [10,29] have shown immense potential in image
synthesization [4,17] resulting in a variety of proposed large-scale models including
GLIDE [18], DALL·E 2 [22], Imagen [25] or Stable Diffusion [24].

Recently, GoogleAI released an APICXRFoundationTool offering chest radio-
graph embeddings based on a contrastive neural network [28]. The underlying
training dataset contains a significant proportion of non-disclosed proprietary
data, though. The imminent risk of biases in foundational chest X-ray models has
been recently discussed in [7] warning about the consequences in real-world appli-
cations. While these biases are inherent in the existing data, closed-source analyses
make it difficult for the research community to counteract these problems.

Our Contributions. In this paper, we adapt large-scale learning concepts and
models of general computer vision synthesis to chest radiography. To make this
possible, our first contribution is to provide a unified interface to a massive
collection of public chest X-ray datasets (MaCheX ) with over 650,000 scans.1

This dataset allows the training of Cheff, a cascaded chest X-ray latent diffusion
pipeline, our second contribution.2 The basis for Cheff are two foundational
chest X-ray models: (i) an autoencoder for obtaining chest X-ray embeddings
and (ii) a super-resolution diffusion model for refining low-resolution scans. A
task-specific diffusion process in the latent space of the autoencoder leads to
high-fidelity and diverse synthesis (see, e.g., Fig. 1). This further enables variable
conditioning mechanisms while reducing computational training costs due to
the usage of shared foundational models in the full pipeline. Finally, our model
provides realistic report-to-chest-X-ray conversion by applying our model stack
in a text-to-image setting by conditioning on radiologists’ reports. Overall, our

1 MaChex: https://github.com/saiboxx/machex.
2 Cheff: https://github.com/saiboxx/chexray-diffusion.

https://github.com/saiboxx/machex
https://github.com/saiboxx/chexray-diffusion
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approach pushes the limits in state-of-the-art synthesis of radiological images
and fosters development of downstream clinical AI assistance tools by making
both our model and dataset publicly accessible.

2 Related Work

In recent years, the rising popularity of generative models resulted in various
approaches focusing on chest X-ray synthesis. [27] investigate the class-guided
synthesis of targeted pathologies over classifier gradients. Their training is, how-
ever, only based on a single-center dataset while using a progressive-growing
GAN ([13]; PGAN) known to be less capable than other more recently proposed
algorithms. [34] obtain chest scan embeddings by applying GAN inversion to the
generator of [27] and investigate characteristics of pathologies in this latent space.
[9] utilize privacy-free synthetic chest X-rays for federated learning to ensure data
protection across hospitals. [31] proposes a decomposition of diseases, ultimately
producing anomaly saliency maps, by adding a second generative network exclu-
sive for abnormal scans to produce a residual for a healthy version of this scan.
Other use cases of generative methods include bone suppression [8] or improving
classifier performance on underrepresented classes [30].

Apart from the classic adversarial literature, there is a surge in diffusion
model research that also deals with chest X-rays. [35] propose a routine training
on normal data and then utilizes a partial denoising process to detect anomalies.
[3] fine-tune the foundational Stable Diffusion on a few thousand scans. While
the synthesized scans lack a realistic style, it allows for a first glimpse into how
report-to-scan generation can be used in medical imaging. [20] promote the usage
of diffusion models over PGANs by fitting a latent diffusion model (LDM; [24])
on chest X-rays and observing a performance boost in a synthetically aided
classifier. Additionally, the synthesizing process ensures anonymity with respect
to the patient retrieval problem by employing a privacy-enhancing sampling
algorithm [19]. A different strategy involves prompting DALL·E 2 to investigate
zero-shot capabilities for medical imaging synthesis, however with limited success
[1]. Generative modeling for automated radiological reports from chest X-rays
is another highly active research area (cf. [14,15]), whereas the topic of creating
images from reports is still an underrepresented, if not an unexplored, subject.

3 Methods

In the general framework of diffusion models [10,29], a Markov chain (Xt)t=1,...,T

with joint distribution defined by the density q(x1:T ) :=
∏T

t=1 q(xt|xt−1) is used
to model a diffusion process of an uncorrupted image x0 ∈ X . This is done
by assuming (Xt | Xt−1 = xt−1) ∼ N (

√
1 − βtxt−1, βtI) with time-varying

variance βt ∈ (0, 1), which is chosen by a pre-defined variance schedule. In other
words, this autoregressive process incrementally applies Gaussian noise to an
input x0 for a number of timesteps T . The learning task then is to revert this
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so-called forward process, i.e., inferring xt−1 from its corrupted version xt for
t = 1, ..., T . For large T the result xT will approximate isotropic Gaussian noise
and the learned reverse process can be utilized as a powerful iterative generative
model to model structured information from noise.

A simplified training objective (c.f. [10,24]) can be formulated by minimizing

Et∼U(1,T ),x0∈X ,εt∼N (0,1)

[‖εt − εθ(xt, t)‖22
]

, (1)

where εθ usually is a time-conditional U-net [6] parameterized with θ to predict
the noise εt in xt as a function of x0 for uniformly drawn t from {1,. . . ,T} using
the fact that xt =

√
ᾱtx0 +

√
1 − ᾱtεt with ᾱt =

∏t
s=1(1 − βs).

Cheff. We now present our method Cheff to iteratively generate high-resolution
images. Our multi-stage synthesis approach can be decomposed into three cas-
cading phases: (i) Modeling a diffusion process in latent space, (ii) translating
the latent variables into image space with a decoder, (iii) refinement and upscal-
ing using a super-resolution diffusion process. Phase (i) and (ii) together define
an LDM. Figure 2 summarizes this multi-stage approach again.

Every model can be trained in an encapsulated fashion as described in the
subsequent subsections. In the following, we denote xHR as a high-resolution
image and xLR as its lower-resolution variant (in our model stack these are 1024
and 256 pixels, respectively). We start by explaining the second (reconstruction)
part of our model first.

Autoencoder Training. It has been shown that applying diffusion in a semantic
latent space instead of a high-dimensional data space leads to a notable reduc-
tion in computational costs due to reduced input size with a neglectable loss in
synthesis quality [24]. We construct a latent space by training an autoencoder
with an encoder E and decoder D. The autoencoder’s task is to reconstruct
xLR, where the reconstruction is D(E(xLR)) and z = E(xLR) ∈ Z represents a

Fig. 2. Flow of our cascaded synthesis pipeline. A first diffusion model generates a
latent sample z ∈ Z from zT ∼ N (0, I) through its reverse process. Optionally, an
embedded conditioning τφ(y) can be added, where y in our application could, e.g., be
pathology labels, radiological reports, or radiologist’s annotations. The decoded image
xLR = D(z) is subsequently refined by a second diffusion model to a high-resolution
image xHR. Foundational models are marked in red, whereas blue components are
task-specific.
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latent sample. We follow [5,24] for the autoencoder training and use a pixel-wise
reconstruction loss next to a perceptual loss [36] and an adversarial objective.

Semantic Generation. The actual synthesis diffusion model is trained by first
obtaining z = E(xLR) and modifying the optimization objective for the semantic
generation as

Et∼U(1,T ),z0∼Z,εt∼N (0,1)

[‖εt − εθ(zt, τφ(y), t)‖22
]

. (2)

where εθ again is a time-conditional U-net. The diffusion process in (2) is the
same as described before, but operates only on samples in the latent space.
Additionally, we allow the conditioning on some modality y to guide the synthesis
process. y can represent information of various kinds, e.g., radiological reports,
class conditioning, or annotations. This information is fed into the model using
a conditioning embedding, which is obtained by τφ(y), where τφ is a neural
network tasked with creating an embedding for y.

Super-Resolution. After synthesizing z and reconstructing xLR from it, we apply
an additional iterative refinement procedure to not only counteract blurriness,
which is induced by the autoencoder but also to advance to realistic resolution
domains in clinical practice. Inspired by SR3 [26], we condition a diffusion model
with xLR to infer an optimal high-resolution output xHR. Thus, the training
objective is:

Et∼U(1,T ),xHR∼XHR,εt∼N (0,1)

[‖εt − εψ(xHR,t,xLR, t)‖22
]

, (3)

where εψ is a denoising time-conditional U-net with conditioning on xLR.

4 MaCheX: Massive Chest X-ray Dataset

We present a large-scale, open-source, diverse collection of chest X-ray images
using a common interface for a major selection of open datasets and unify them
as Massive Chest X -Ray Dataset(MaCheX ). With MaCheX we provide the
largest available openly accessible composition of chest X-ray data and hope to
support fair and unbiased future research in the area. The multi-centric setup of
the MaCheX collection encourages diversity with sources from across the world
and aims to be less prone to local biases. Fostering a global data collection
and increasing data fidelity is an important step toward offering a generalized
solution without gender or racial prejudice. Our multi-centric collection includes
various datasets described and summarized in Table 1.

In the current version of MaCheX, only frontal AP/PA scans are considered.
By inclusion of the lateral position, another 250,000 chest X-rays could be added
to the collection, totaling nearly a million samples. The present work, however,
focuses on the analysis and synthesis of a frontal viewing position. All scans
are rescaled so that the shortest edge meets a 1024px resolution and are then
center-cropped to 1024 × 1024px. We do not apply histogram equalization or
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Table 1. Overview of the components of MaCheX.

Dataset No. patients No. samples % Origin

Train Test ∈ MaCheX

ChestX-ray14 [33] 23,152 86,523 25,595 86,523 13,28% Bethesda, MD, USA

CheXpert [11] 65,240 223,414 235 191,027 29,32% Palo Alto, CA, USA

MIMIC-CXR [12] 65,379 377,110 - 243,334 37,35% Boston, MA, USA

PadChest [2] 67,625 160,868 - 96,278 14,78% Alicante, Spain

BRAX [23] 18,529 40,967 - 19,309 2,96% São Paulo, Brazil

VinDr-CXR [16] - 15,000 3,000 15,000 2,30% Hanoi, Vietnam

other standardization techniques. By combining the designated train subsets of
the respective datasets, the full MaCheX dataset amounts to 651,471 samples.
This includes over 440,000 labels, over 220,000 free-text radiological reports, and
15,000 coordinate bounding boxes for radiologist annotations.

We open-source our implementation of the pre-processing setup and pro-
vide an easy-to-use interface to access MaCheX in a deep learning setting with
PyTorch. The structure of MaCheX is clear and simple, allowing to straightfor-
wardly adapt the code to different frameworks and use cases.

5 Experiments

Our model stack effectively contains three models: The semantic diffusion model
(SDM), the autoencoder (AE), and the super-resolution diffusion model (SR).
AE and SR form a foundational basis that is trained on full MaCheX with a
separate test set of size 25,000. A full description of our training routine and
hyperparameter setup can be found in the supplementary material. For AE we
use a KL-regularized continuous variational AE (VAE) with a downsampling
factor 4 as in [24]. In SR, we found that conditioning on bicubic downsampled
versions of xHR as xLR as in [26] does not perfectly reflect the structure of
recovered latent samples D(z) and results in artifacts and slight blurriness. To
align SR with the synthesis pipeline, we fine-tune SR on D(z).

SDM in the lower-dimensional (latent sample) domain is trained with a task-
specific data subset of MaCheX. To guide the synthesis process for chosen condi-
tionings, we induce the respective conditioning embedding τφ(y) into the model
over cross-attention [32] in the attention layers of the time-conditional U-net.

Reconstruction Quality. Using our AE and SR, a high-resolution image can
be converted to the latent space and successfully reconstructed (cf. Figure 3).
Despite a compression factor of 16, even small details are recovered in fine-
grained quality and limited blurriness, some structures even gaining sharpness.
Reconstruction of text annotations and small numbers, however, still proves
to be difficult. Table 2 additionally provides a quantitative assessment, i.e., the
efficacy of the various transitions in Cheff as well as the effect of fine-tuning
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Fig. 3. Original images (the respective left image) compared to their reconstructions
(the respective right image) from the latent space Z.

Table 2. Test set performance for different reconstruction workflows. 1© symbolizes
the encoding of xHR and retrieval from z in the full Cheff pipeline, whereas 2© and 3©
analyze the reconstruction capacity of AE and SR separately.

Reconstruction workflow MSE ↓ PSNR ↑ SSIM ↑

1© xHR
bicubic−−−−→ xLR

E−→ z
D−→ x̂LR

SRbase−−−−→ x̂HR 0.0039 24.05 0.9512

xHR
bicubic−−−−→ xLR

E−→ z
D−→ x̂LR

SRfine−−−−→ x̂HR 0.0026 25.77 0.9510

2© xLR
E−→ z

D−→ x̂LR 0.0005 36.80 0.9926

3© xHR
bicubic−−−−→ xLR

SRbase−−−−−−−−−−−−−−−→ x̂HR 0.0035 24.59 0.9540

xHR
bicubic−−−−→ xLR

SRfine−−−−−−−−−−−−−−−→ x̂HR 0.0025 26.09 0.9559

SR, by analyzing the mean squared error (MSE), the structural similarity index
measure (SSIM), and the peak signal-to-noise ratio (PSNR) on the test data set.
The fine-tuned SR performs better than the base SR in almost every aspect,
even in naive upscaling, while all transitions show high-quality reconstructions
in general.

Unconditional Synthesis. Scaling up the data and model stack leads to a realistic
synthesis with high fidelity and realism (Fig. 4e) in a 1-megapixel resolution
setting including a variety of medical devices, e.g., chest tubes, pacemakers, ECG
leads, etc. This is a major improvement over previously proposed approaches for
chest X-ray synthesis (Fig. 4). The PGAN of [27] misses the capacity of medical
devices (cf. [34]). While synthetic samples of [1] by prompting DALL·E 2 are
comparatively realistic for a non-medical zero-shot setting, they involve color
jittering. In contrast, Stable Diffusion is not able to generate clinically realistic
chest X-rays, clearly showing its artistic style even when fine-tuned [3]. LDM
training of [20] involves only a 256-pixel resolution of a single data source.

In comparison to our latent diffusion-based pipeline, we investigate a fully
cascaded stack of diffusion models in the style of Imagen [25] and DALL·E 2
[22] with U-net configurations from [26] (see Fig. 4d). The cascade involves three
models in an upscaling chain: 64px → 256px → 1024px, where the first model
synthesizes samples from noise. This uncovers a potential downside of utilizing
models with a progressive growing backend (same as in [27]). While the samples
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(a) PGAN [27]
(b) Finetuned Stable Diff.
[3]

(c) Zero-shot DALL·E 2
[1]

(d) Triple cascaded diffusion model.

(e) Cheff (Ours).

Fig. 4. Synthesized chest X-rays using different methods.

maintain high quality, there is also an abundance of medical devices and minor
foreign objects. This fact also reflects in the Fréchet Inception Distance (FID ↓)
and Kernel Inception Distance (KID ↓), which is 46.54 and 0.0530 for the full
cascade but reaches 11.58 and 0.0099, respectively, using Cheff. We hypothesize
that details of this granularity are lost when synthesizing on the low-resolution
levels of ≤ 64 pixels. The subsequent upsampling models cannot recover these
already disregarded elements. Our approach works on semantic features instead
of low-resolution images and thus is able to compress necessary information in
a meaningful way, successfully circumventing this issue (Fig. 4e).

In- and Outpainting. The iterative nature of diffusion models allows for simple
adaption of inpainting tasks, where the model is used to fill a designated marked
area. This method can be utilized to, e.g., remove occluding and distracting ele-
ments like medical devices from a thoracic scan (Fig. 5). While Cheff has the
ability to synthesize removed parts such as devices, object removal works well
since the rest of the image is provided and acts as a prior. Thus Cheff fills the
removed parts with the most likely content – a clear lung – and not the original
devices. In Cheff or LDMs in general, this kind of masking is possible as the
commonly used autoencoder implementation produces a spatially-aware convo-
lutional embedding, which, despite living in a latent space, maintains structural
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Fig. 5. Removal of support devices via image inpainting.

Fig. 6. Comparison of origi-
nal image (left) with latent
embedding (right) shows spa-
tial coherency.

Fig. 7. Outpainting variations of the high-
lighted area in the upper left image.

information of the input data (Fig. 6). In another formulation, masking as out-
painting serves to interpolate the remaining parts of an image. As seen in Fig. 7,
a variety of chest X-rays can be synthesized sharing the same initial provided
area. Notably, Cheff does not collapse to one solution but is able to explore
various in-distribution options.

Radiological Report-to-Image Synthesis. MIMIC-CXR provides a range of radi-
ological text reports for every study (over 220,000), which can be utilized as
conditioning y. The sections Findings and Impressions are extracted from the
raw reports and concatenated before applying a tokenizer. Following [24], τφ

is a trainable BERT-style encoder-only transformer. Examples in Fig. 8 show
that the model has learned concepts of various pathologies and allows for a
customized synthesis of a patient’s condition. Conditioning on both Findings
and Impressions allows controlling not only pathologies but also the creation of
external devices like pacemakers. Furthermore, the freedom of text inputs allows
for specifying the localization of the targeted disease or item.
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(a) “Large pleural effusion is in the right lower lung. A pacemaker is in the left upper
chest.”

(b) “Acute
cardiomegaly.”

(c) “Prominent
left-sided atelecta-
sis.”

(d) “Mass filling is
in the upper zone
of the right lung.”

(e) “Pneumonia is
in the right lung.”

Fig. 8. Prompting a text-conditioned Cheff via radiological findings.

6 Conclusion

In this paper, we advance the state-of-the-art in Chest X-ray synthesis by propos-
ing a multi-stage foundational cascaded latent diffusion model called Cheff. A
success factor for the quality of Cheff is MaCheX - our large-scale multi-centric
Chest X-ray collection from numerous, publicly available datasets with high
diversity in phenotypes, medical conditions, diseases, and medical devices.

Approaching the terrain of indistinguishable synthetic patient samples, Cheff
requires an increased awareness of potential harms and responsible utilization.
Further, despite being able to generate realistic-looking 1-megapixel radiographs,
modern X-ray scanners produce images with an up to 7-megapixel resolution and
14-bit depth, which is a requirement for radiological reading on dedicated moni-
tors and is still out of reach for current chest X-ray synthesis. When developing
downstream applications with Cheff for a clinical context, this should be kept in
mind and potential biases should be addressed, e.g., through rigorous evaluation
on real-world data.

By proposing Cheff, we offer a high-capacity generator for chest radiographs
that forms the basis for a variety of use cases, e.g., image inpainting for removal
of distracting medical devices or aiding existing efforts to increase reliability
in classifiers by generating underrepresented classes. Our method does not only
offer traditional synthesis but also enters the exciting area of radiological report-
to-chest-X-ray generation, which allows fine-grained control over the diffusion
process via text prompts.



190 T. Weber et al.

Acknowledgments. The authors gratefully acknowledge LMU Klinikum for provid-
ing computing resources on their Clinical Open Research Engine (CORE). This work
has been partially funded by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) as part of BERD@NFDI - grant number 460037581.

References

1. Ali, H., Murad, S., Shah, Z.: Spot the fake lungs: generating synthetic medical
images using neural diffusion models. arXiv:2211.00902 [cs, eess] (2022)

2. Bustos, A., Pertusa, A., Salinas, J.M., de la Iglesia-Vayá, M.: PadChest: a large
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Abstract. Drug recommendation is anAI healthcare task that has become increas-
ingly important during the current COVID-19 pandemic. At present, the accumu-
lation of a large number of electronic health records (EHR) provides strong data
support for medical and scientific researchers. Most existing work uses splicing
diagnosis and procedure to complete the recommendation task while ignoring the
problem that the patient’s diagnosis and procedure information are recorded in
different levels of detail. Moreover, the splicing of different medical records can-
not accurately characterize the patient’s condition, thus reducing the accuracy of
recommended drugs. In this paper, we propose a drug recommendation model,
DKFM, which introduces a molecular knowledge-guided dual-level drug fusion
mechanism. DKFM can integrate a patient’s diagnosis and procedure important
information and determine the impact on the current condition. Then the diagno-
sis and procedure information was respectively injected into the drug functional
group encoder to obtain two candidate drug sets. Finally, select the drugs that are
really suitable for the patient’s condition at the sets level and the score matrix
level as the final recommended drugs. We validate DKFM on the public MIMIC-
III dataset, and experimental results show that the proposed model can outperform
the state-of-the-art approaches.

Keywords: Drug recommendation · Electronic health record · Healthcare ·
Molecular knowledge

1 Introduction

In recent years, the accumulation of electronic health records (EHR) has provided
researchers and doctorswith a large number of referencematerials and research data. The
task of drug recommendation has also emerged as the times require [1, 2]. Especially in
the context of the current COVID-19 pandemic, the drug recommendation task is becom-
ing increasingly important because it is not convenient to go out for medical treatment
due to the control in some areas. A good drug recommendation model can make it safer
and more secure for patients to seek medical treatment at home, especially for patients
with complex health conditions [2, 3]. The early drug recommendation model was based
on examples and only on the current medical conditions of patients [4, 5], which was
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unreasonable. The current status of the patient is important, but the drug recommended
for the patient without regard to previous visit information may be inappropriate and
may even have irreversible consequences. In order to remedy this deficiency, a number
of longitudinal approaches [3, 6] are proposed. Those approaches integrated diagnosis
and procedure information and relied on various clinical records of actual visits (e.g.,
diagnosis [2, 4, 7, 8], laboratory tests [11], and procedures [1, 3, 12–14]).

Through our investigation, it is found that doctors, in order to improve the efficiency
of medical treatment, often write diagnosis records briefly. On the contrary, the specific
symptoms and treatment methods in the records of the procedure are more detailed but
not as comprehensive as the diagnosis records. We present an example of diagnosis
and procedure information in MIMIC-III. As shown in Fig. 1, there is only one item
in the patient’s diagnosis record related to esophageal cancer, and it was very brief. In
contrast, various procedure information about esophageal cancer is recorded in detail in
the procedure record. Therefore, the twomay interact with each other due to the different
levels of detail. Eventually, this leads to reduces accuracy of the recommended drugs.

Diagnosis Procedure
esophageal 

URTI

partial esophagotomy

intracolonic replacement
esophagostomy

partial colon separation

42.55/42.65

45.52

42.4145.2

06.01

B group Salmonella
enteritis 27.001

Fig. 1. An example of an electronic health record.

In addition, the chemical properties of the drug are determined by its molecular
substructure [15]. What really plays an important role in the treatment of patients’
diseases is the functional group of the drug. However, many current studies [16, 17]
focus on patient character-drug interactions to learn drug representation while ignoring
the molecular substructure information of drugs. Different drugs may overlap in the
molecular substructure so that patients can be given a wider variety of recommended
drugs. When a patient has antagonistic action on a molecular substructure, drugs with
the same substructure can be excluded from the recommended drugs for the patient [1].
Thus, the drugs recommended for the patient can be as safe as possible.

For the above mention problems, we propose a drug recommendation model that
uses a molecular knowledge-guided dual-level drug fusion mechanism. This model is
also equipped with Taylor binary cross entropy loss. Our contribution is as follows:

• We propose a drug recommendation model, DKFM, which introduces a molecular
knowledge-guided dual-level drug fusionmechanism. DKFMcan handle the problem
of the unbalanced distribution of diagnosis and procedure information.

• We designed a dual-level drug fusion mechanism that first obtains the initial two
drug candidate sets through diagnosis and procedure information. Then the final
recommended drugs set is selected at the sets level and the score matrix level.

• We conduct comprehensive experiments on a public dataset MIMIC-III to demon-
strate the effectiveness of the proposed DKFM.
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2 Related Works

Due to the current environment of COVID-19, the implementation of the drug recom-
mendations model has received more andmore attention. According to the data used, the
existing methods are roughly divided into rule-based methods, instance-based methods,
and longitudinal methods.

2.1 Rule-Based Methods

Rule-based methods [18–21] rely on artificially designed recommendation protocols.
For example, Chen et al. [19] used answer set programming (ASP) to code a complete
set of clinical practice guidelines for chronic heart rhythm failure and generate treatment
recommendations.

2.2 Instance-Based Methods

Instance-based methods [4, 8] only inject the information of the current visit as input
into the model for the recommendation. For example, Gong et al. [8] constructed high-
quality heterogeneous maps by bridging EMR and medical knowledge graphs (ICD-9
ontology and DrugBank) and decomposed recommendations into link prediction pro-
cesses. However, they ignore the fact that the patient’s historical visit information is
inextricably linked to the patient’s current visit status.

2.3 Longitudinal Methods

These methods [1, 3, 12, 13] use historical patient information and explore sequential
dependence between visits.Most of these essential models use RNN to code longitudinal
patient information (integrated diagnosis and procedures information). Le et al. [6] and
Shang et al. [3] combined memory networks with RNNs to enhance memory. Yang et al.
[1] further combined the molecular information of the drug and proposed a molecular
graph encoder to represent the drug better. Yang et al. [12] explicitly modeled changes
in patients’ health status to strengthen the correlation between multiple visits through
repeated residual learning. However, RNN approaches are challenging to deal with
the tight relationship between multiple visits, and integrated diagnosis and procedure
information also will reduce the accuracy of recommended drugs.

In this paper, inspired by Yang et al. [1], DKFM exploits the relationship between
multiple visits and uses the molecular knowledge-guided dual-level drug fusion
mechanism to obtain the recommended drug set.

3 The DKFMModel

As shown in Fig. 2, our DKFM consists of three components: (1) a patient represen-
tation encoder module, which captures important features of diagnosis and procedure
information, respectively; (2) a molecular knowledge-guided drug candidate sets gener-
ation module, which respectively injects the diagnosis and procedure information into
the drug functional group encoder to obtain the two initial candidate drug sets; (3) a
dual-level drug fusion module, which does a rational fusion of the two at sets level and
score matrix level.
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Fig. 2. An overview of our proposed DKFM.

3.1 Patient Representation Encoder

In order to capture the critical information in diagnosis and procedure and the strong
correlation betweenmultiple visits of patients, we used theGRU-Attentionmodel, which
can extract the important features of both to get embedding.

3.1.1 Diagnosis Embedding

Diagnosis information d(t) plays an indispensable role in the process of drug recommen-
dation.Apatientmayhave one ormoremedical records. For example, it is not appropriate
to recommend the same drug for patients newly diagnosedwith hyperglycemia and those
diagnosed with hyperglycemia for as long as three years. Therefore, in order to recom-
mend appropriate drugs to patients, historical diagnosis information must be integrated.
We design a learnable diagnosis embedding table Td(n) for each patient, which can
record and train all historical diagnosis information

Td(n) = d(1)catd(2)cat . . . d(n) (1)

where cat is a connect operation.
Time series information is one of the most important attributes of diagnosis infor-

mation. The whole diagnosis is meaningless if the time series information is wrong.
Therefore, it is sent to the positional encoder layer after obtaining the diagnosis embed-
ding table. After this, a representation of a unique location is assigned to all diagnosis
information.

In thismodel, we use an independentGRU-Attention architecture to embed diagnosis
informationdynamically. Thediagnosis embedding tableTd(n)of the embeddedposition
information will be injected into the GRU, and the corresponding output dh1, dh2, . . . dhn
will be obtained after the reset gate and update gate of the GRU,

dhn = GRUd(Td(n),Td(n − 1)) = GRUd(Td(n), . . . ,Td(1)) (2)

Then, the Attention Layer is introduced into the next sub-layer to calculate the
attention probability distribution value of each input and further extract the diagnosis
features. And highlight the key historical information and mutual connections for this
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visit in the diagnosis embedding table. Given three inputs matrix, Q ∈ R
LQ×s,K ∈

R
LK×sandV ∈ R

LV×s where LK = LV , the attention function is defined as:

Attention(Q,K,V) = Softmax

(
QKT

√
s

)
V (3)

Multi-head attention layer MH will further project the input to multiple representa-
tion subspaces and capture the interaction information from multiple views. Thus, the
diagnosis representation of the patient h(t)

d is obtained.

MH(Q,K,V) = [head1; . . . ; headh]WO (4)

headi = Attention
(
QWQ

i ,KWK
i ,VWV

i

)
(5)

WQ
i ,WK

i ,WV
i ∈ R

s×s/h andWO ∈ R
s×s are the parameters to learn. h is the number

of heads.

3.1.2 Procedure Embedding

The procedure information p(t) also plays a very important role in the process of rec-
ommending drugs to patients. The procedure information records the patient’s oper-
ation records in the hospital, which can directly reflect the patient’s symptoms. We
also designed a procedure embedding table Tp(n) for each patient, which records the
important procedure information of the patient,

Tp(n) = p(1)catp(2)cat . . . p(n) (6)

Like the diagnosis information,we also addposition coding to each program informa-
tion so that it maintains a relative position during the training process. The corresponding
output ph1, ph2, …… phn Will be obtained after passing through the GRU model.

phn = GRUp
(
Tp(n),Tp(n − 1)

) = GRUp
(
Tp(n), . . . ,Tp(1)

)
(7)

After the last layer of Attention, the attention probability distribution value of each
input is calculated, and the procedure representation h(t)

p is further extracted.

3.2 Molecular Knowledge-Guided Drug Candidate Sets Generation Module

3.2.1 Molecular Knowledge Encoder

Actually, some functional groups play a major role in drug molecules, and the rest of
the molecular structure is its carrier or auxiliary. Therefore, functional groups can best
reflect the function of drugs. Based on this, we designed a drug functional group encoder.
Firstly, the BRICS molecular dismantling method was used to obtain the functional
groups of drug molecules. Compared with other molecular resolution methods (RECAP,
ECFP), the BRICS resolution method is different in that it is based on whether chemical
bonds can be synthesized. So that it will not destroy the original molecular structure



DKFM: Dual Knowledge-Guided Fusion Model 197

and get the wrong functional groups. This method returns a list after deduplication,
with serial numbers on the atoms corresponding to specific reaction types ([1∗]C(=
O)C(C)C; [4∗]C(= O)NN(C)C).

Then, we will generate a two-dimensional matrix M ∈ {0, 1}|D|×|G| to represent the
correspondence between drugs and functional groups, where D represents the number
of drugs, G represents the number of crown groups,Mij = 1 representing the i-th drug
with the j-th functional group.

3.2.2 Encoding Patient Representation

TheM is a better representation of the drug and its efficacy, andwehope it can help predict
recommended drugs. Firstly, the diagnosis representation h(t)

d and procedure represen-

tation h(t)
p obtained above are converted into the same dimension as M through a Linear

layer. The query representation qd, qp are obtained through the activation functions
σ1, σ2,

qd = σ1

(
Linear

(
h(t)
d ,M

))
(8)

qp = σ2

(
Linear

(
h(t)
p ,M

))
(9)

qd and qp represent the current condition of the patient and the combination of drugs
required by the patient. Therefore, the qd is continuously pruned through the feedforward

neural network FNN1(·) to obtain the currently recommended drug set sm
(t)
d in the diag-

nosis background. Similarly, qp gets the recommended drug set sm
(t)
p in the background

of the procedure through FNN2(·),

sm
(t)
d = FNN1(qd;W1 � M) (10)

sm
(t)
p = FNN2

(
qp;W2 � M

)
(11)

whereW1 andW2 are trainable parameters. TheM is used as a mask matrix in the neural
network to dynamically encode the drug combination required by the patient.

3.3 Dual-Level Drug Fusion Module

In the molecular knowledge-guided drug candidate sets generation module, we obtain

two sets of drug recommendations, sm
(t)
d and sm

(t)
p , by injecting patient representations

into a drug functional group encoder. Obviously, it is indispensable to make a reasonable
selection of the two to recommend a drug set that really fits the patient’s condition. In

this section, we design a drug selection module to select the drugs in sm
(t)
d and sm

(t)
p .
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3.3.1 Selection at Sets Level

While a patient’s condition is documented in varying degrees of detail in diagnosis and
procedure, some severe illnesses are certainly documented in both. Therefore, there

must be some same drugs in sm
(t)
d and sm

(t)
p , and these drugs are likely to be the drugs

that patients really need. We take the intersection of the two s

(
m(t)
d ,m(t)

p

)
∩ as the fixed part

sm
(t)
fi of the final recommended drug sm

(t)
f , and the XOR set s

(
m(t)
d ,m(t)

p

)
⊕ as the candidate

drug sets.

s

(
m(t)
d ,m(t)

p

)
∩ = sm

(t)
d ∩ sm

(t)
p (12)

s

(
m(t)
d ,m(t)

p

)
⊕ = sm

(t)
d ⊕ sm

(t)
p (13)

where ∩ is an intersection operation,⊕ is an XOR operation.

3.3.2 Selection at Score Matrix Level

In the XOR set of sm
(t)
d and sm

(t)
p , there are also drugs that are essential to the patient’s

condition, so we design a score matrix to select drugs. h(t)
d and h(t)

p are the patient
conditions, which also represent the drug combination required by the patient. Therefore,
we use h(t)

d and h(t)
p as drug reselection criteria and operate it with the candidate drug

set s

(
m(t)
d ,m(t)

p

)
⊕ to get the drug reselection score matrix Mscore.

Mscore = FNN3

((
h(t)
d ,h(t)

p

)
; s

(
m(t)
d ,m(t)

p

)
⊕

)
(14)

We select the top j items with higher scores in the matrix Mscore as supplementary

drugs and add them to the final recommended drugs sm
(t)
f ,

sm
(t)
fj = max(j,Mscore) (15)

sm
(t)
f = σ3

(
cat

(
sm

(t)
fi ; sm(t)

fj

))
(16)

where max is the operation that takes the first j of the set, and cat is the operation of the
connection.

3.4 Training

We denote the recommendation task of this model as a multi-label classification task.
Given the total number of drugs |D|, we denote the real drug by m(t)

r and the drug
predicted by this model by m(t)

f . We treat each patient visit as a classification task and
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backpropagate based on the average loss of all visits for the current patient and use
a Taylor binary cross-entropy loss (Taylor_bce), treating the loss function as a linear
combination of polynomial functions. After a lot of experiments, we show that when the
number of polynomials is 1, the loss function is more suitable for the model.

Lbce = −
|D|∑
i=1

m(t)
ri log

(
m(t)
fi

)
+

(
1 − m(t)

ri

)
log

(
1 − m(t)

fi

)
(17)

LTaylor_bce = Lbce + E ·
(
1 − P(t)

)
(18)

P(t) = sum
(
onehot

(
m(t)
r , size

(
m(t)
r

))
· softmax

(
m(t)
f

))
(19)

where E is the hyperparameter, · is the product between the scalars, onehot is the con-
version of the drug representation into a one-hot tensor, size is the operation of getting
the dimensions of the drug representation, and P(t) is the model’s prediction probability
of the target ground-truth class.

In order to ensure the correctness of the results, we also adopt multi-label hinge loss
to ensure that the truth labels have at least 1 margin larger than others,

Lmulti =
∑

i,j:m(t)
ri =1,m(t)

rj =0

max
(
0, 1 − m(t)

fi + m(t)
fj

)
|D| (20)

a standard approach to training with multiple loss functions is by the weighted sum of
the loss measuring terms [10],

L = αLTaylor_bce + (1 − α)Lmulti (21)

where α is usually pre-defined hyperparameter.

4 Experiments

4.1 Dataset and Metrics

The experiments were conducted on the part of the datasetMIMIC-II [9], which contains
26 tables. We use three tables in it: DIAGNOSES_ICD (Diagnosis Information), PRO-
CEDURES_ICD (Procedure Information) and PRESCRIPTIONS (Drug Information)
to conduct research. After many experiments, we set the hyperparameter E in Formula
18 to 0.995 and the hyperparameter α in Formula 21 to 0.96 to achieve the best per-
formance. We use three efficacy metrics: Jaccard similarity, F1 score, and PRAUC to
evaluate the recommendation efficacy.
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4.2 Baselines

We evaluate the performance of our approach by comparing DKFM to several different
baseline models:

• LR, standard Logistic Regression;
• ECC [22], Ensemabled Classifier Chain, which uses the SVM classifier.
• LEAP [4], which prediction by instance-based LSTM model;
• DMNC [6], which proposes a new longitudinal memory enhancement network;
• GAMENet [3], which adds the graph neural networks to the model to predict drugs;
• SafeDrug [1], which adds molecular information to the prediction model by a bi

molecular encoder.

4.3 Performance Comparison

Table 1 shows the results of some of the methods. Overall, the DKFM model outper-
formed all baseline models in terms of Jaccard, f1 scoring, and PRAUC. LR, ECC, and
LEAP performed relatively poorly because they only considered the current patient’s
condition. DMNC, GAMENet and SafeDrug performed relatively well because they
utilized longitudinal patient information in different ways. DKFM uses a molecular
knowledge-guided dual-level drug fusion mechanism to make full use of the patient’s
historical visit information, so DKFM outperforms existing baseline models.

Table 1. Performance Comparison of Different Models

Model Jaccard F1-score PRAUC

LR 0.4865 0.6434 0.7509

ECC 0.4996 0.6569 0.6844

LEAP 0.4521 0.6138 0.6549

DMNC 0.4864 0.6529 0.7580

GAMENet 0.5067 0.6626 0.7631

SafeDrug 0.5213 0.6768 0.7647

DKFM 0.5327 0.6855 0.7723

4.4 Ablation Study

To verify the effectiveness of each module of DKFM, we design the following ablation
models:

• DKFMw/oPA: We remove the positional encoder and attention module from the
model, which means that, like SafeDrug, only the GRU is retained to encode the
patient’s longitudinal medical records.

• DKFMw/oD: We remove the diagnosis information for each patient, which means
the drug selection module is useless.
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• DKFMw/oP: We remove the procedure information of each patient.
• DKFMw/oDDF : We remove the dual-level drug fusion mechanism, which means

that we merge diagnosis and procedure information before injecting it into the drug
functional group encoder, as in the previous model.

• DKFMw/oTaylor_bce:We remove theTaylor binary cross-entropy loss,whichmeans
setting E in Formula 18 to 0.

Table 2. Ablation Study for Different Components of DKFM on MIMIC-III.

Model Jaccard F1-score PRAUC

DKFMw/oPA 0.5215 0.6753 0.7578

DKFMw/oD 0.4923 0.6529 0.7439

DKFMw/oP 0.5117 0.6670 0.7505

DKFMw/oDDF 0.5185 0.6743 0.7583

DKFMw/oTaylor_bce 0.5301 0.6812 0.7685

DKFM 0.5327 0.6855 0.7723

Table 2 shows the results for the different variants of DKFM. As expected, the
results of DKFMw/oPA demonstrate that the Positional Encoder and Attention module
is effective in integrating patients’ longitudinal historical medical record information.
The results of DKFMw/oD and DKFMw/oP are the worst among all ablation models,
which indicates that both diagnosis and procedure information plays an important role
in drug recommendation. The results of DKFMw/oDDF show that the dual-level drug
fusion mechanism brings significant improvement to the base model. The results of
DKFMw/oTaylor_bce show that our designed loss function makes the model converge
better. Overall, the full DKFM outperforms all ablation models, implying that every
component of our model is meaningful.

4.5 Case Study

We present an example patient in MIMIC-III and illustrate the effectiveness of the dual-
level drug fusion mechanism in improving drug recommendations by comparing DKFM
with several variants. We use Anatomical Therapeutic Chemical (ATC)5 classification
system to represent medications. As shown in Table 3, the patient had two visits, in
which the drugs marked in bold were the same as the actual drugs. According to the
analysis, the drugs of the patient on the second visit overlapped with the first visit, and
the quantity increased, indicating that the patient’s previous disease was not cured and
he also suffered from new diseases.

By contrast, we found that the correct drug A12B predicted by DKFMw/oD is not
reflected in DKFMw/oDDF , but it is successfully predicted inDKFM. Moreover, the
prediction accuracy of DKFM is the highest among several variants. Therefore, the
dual-level drug fusion mechanism has improved the drug recommendation task.
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Table 3. Analysis of DKFM and its variants

Models Visit1 Accuracy Visit2 Accuracy

Actual Drugs A01A,A02B,A06A,B05C,A12A
A12C,C01C,A07A,C07A,C03C
A12B,J01M,B01A,C01B

— N02B,A01A,A02B,A06A,B05C
A12A,A12C,C01C,A07A,N01A
C03C,A12B,N07A,N02A,R03A
R01A,N04B,S01E,M03B,H04A

—

DKFMw/oP A01A,A02B,A06A,B05C,J01D
R03A,C03B,VO4C,C07A,C03C
CO3X,M01C,P02B,C01B

50.0% H04A,A01A,A02B,N05B,B05C
A12A,R05C,C01C,D06A,N01A
A03F,A12B,N07A,G04B,A07D
R01A,N04B,P01A,M03B,H02A

55.0%

DKFMw/oD A01A,A02B,A06A,G03C,N06B
A12C,LO1C,H03B,RO3D,C03C
A12B,L01D,B01A,A11D

42.9% H04A,A01A,A02B,L01X,B05C
A12A,J05A,C01C,J02A,C03D
C03C,P01A,J01F,N02A,D04A
D06B,V03A,S01E,D01A,H04A

45.0%

DKFMw/oRR A01A,A02B,A06A,B05C,A16A
A12C,A10B,N06D,C07A,C03C
M03B,C08D,B01A,C01B

64.3% H04A,A01A,A02B,N06D,B05C
A12A,H05B,C01C,C08D,N01A
C03C,A12B,N07A,M04A,R03A
R01A,N04B,S01E,S01A,H04A

75.0%

DKFM A01A,A02B,A06A,B05C,J01D
A12C,C01C,N06D,C07A,C03C
A12B,C08D,B01A,C01B

78.6% H04A,A01A,A02B,N06D,B05C
A12A,A12C,C01C,C08D,N01A
C03C,A12B,N07A,C09X,R03A
R01A,N04B,S01E,M03B,H04A

80.0%

5 Conclusion

In this paper, we propose a new drug recommendation model, DKFM, to handle the
problem of different levels of detail in recording diagnosis and procedure information.
DKFM uses a molecular knowledge-guided dual-level drug fusion mechanism which
first obtains the initial two drug candidate sets and then obtains the final recommended
drugs set by selecting the two at the sets level and score matrix level. Experiment results
on MIMIC-III show that DKFM is superior to existing drug recommendation models.
Further ablation study and case study results also show that each module of DKFM is
effective.
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Abstract. The healthcare industry has a wealth of data that can be
used by researchers and medical professionals to infer a patient’s con-
dition and intention to receive treatment using machine learning mod-
els. However, this line of research generally suffers from some limita-
tions: (1) struggling to leverage structural interactions among patients;
(2) attending to learn patient representations from electronic medical
records (EMRs) but rarely considering supplementary contexts; and (3)
overlooking EMR data imbalance issue. To address these limitations, in
this paper, we propose a hierarchical graph neural network for patient
treatment preference prediction. Doctors’ information and their viewing
activities are first integrated as external knowledge with EMRs to con-
struct the hierarchical graph, where a dual message passing paradigm
is then devised to perform intra- and inter-subgraph aggregation to
enrich patient representations and advance label propagation. To mit-
igate patient data imbalance issue, a community detection method is
further designed to better prediction. Our experimental results demon-
strate the state-of-the-art performance on patient treatment preference
prediction.

Keywords: Hierarchical graph neural network · Oncology
treatments · Preference prediction · Healthcare · Community detection

1 Introduction

In many oncology treatments, doctors and patients generally adopt watch-and-
wait strategy [12]. After confirmed diagnoses, patients can wait for a long time
to take aggressive treatment. For example, it takes 5 to 10 years on average for
a Chronic Lymphocytic Leukemia (CLL) patient before taking treatment. But
the treatment decision is highly dependent on patient condition and doctors’
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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scrutiny. Some patients may only take a short period of time on watch-and-wait.
Estimating and predicting if a patient has been ready to take a treatment can
serve as reminders and assist doctors and patients to make the right decisions.
However, due to the high variation of treatment patterns in oncology area, pre-
dicting the likelihood for a patient to take treatment is a challenging problem.

With the rapid development in machine learning and deep learning [19], the
healthcare industry has started to exploit these data-driven concepts and the-
ories into practical products and applications to predict patient conditions and
propensity for treatment and medication [10,22,29], which in turn facilitate doc-
tors’ analyses and decisions to plan treatments for patients. One of the widely
used data for such tasks is electronic medical record (EMR), which maintains
rich and important patient information, and keeps growing in its volume and
diversity. This has thus attracted researchers in the healthcare industry to take
EMRs as inputs to train machine learning models and make patient-specific pre-
dictions through them [31,32,35,37]. Though with the promising performance,
these models trained on EMRs provide the successful principles to solve the
high variation issues in patients, their inputs are inherently self-contained, and
struggle to leverage structural interactions with other patients.

Graph neural networks (GNNs) have recently emerged as one of the most
powerful techniques for graph mining [5,16,18]. These GNNs perform informa-
tion aggregation to extract high-level features from the nodes and their neighbor-
hoods [4], which have boosted the performances for various tasks over graphs.
Therefore, a surge of effective research works build GNNs to learn structural
semantics from EMRs and advance patient-specific models [3,8,9,24,26]. For
example, GRAM [8] and KAME [26] constructed the knowledge graph over
EMRs to depict the hierarchy of medical concepts in the form of a parent-
child relationship and utilized GNNs to embed medical code to characterize each
patient. Liu et al. [24] analyzed EMR using heterogeneous GNN to capture more
diverse patient information (e.g., profile, symptoms, and visit history). However,
these structured approaches still suffer from two limitations. (1) While attend-
ing to depict patients and learn higher-level patient representations from EMRs,
this line of research rarely utilizes any supplementary contexts. As indicated by
some surveys and case studies [7], the doctor-patient relationship may essentially
impact on patients’ treatment preferences; in other words, the external knowl-
edge (e.g., doctor information) can be extracted to further assist in predicting
if a patient would like to take treatment or not. (2) EMR data imbalance issue
has been completely overlooked by current researches as well. Due to laborious
process and delay effect on data annotation, the imbalance issue exists across
common and rare diseases, and the downstream patient treatment distribution,
which naturally enforces data-driven models to favor the majority class over the
minority class and degrade their prediction performances. With this in mind, our
goal here is to investigate how much patient treatment preference prediction can
benefit from a structured imbalanced learning model with external knowledge.

To this end, in this paper, we propose a novel hierarchical graph neu-
ral network model with external knowledge for patient treatment preference



206 Q. Li et al.

prediction that can effectively mitigate the impact of data imbalance as well. More
specifically, we introduce the doctors’ information and their viewing activities
(captured by website topics) as external knowledge to be integrated with EMRs to
enrich patient representations and advance the structured learning model for bet-
ter prediction performance. The hierarchical graph is first constructed to abstract
the interactions of patients, doctors, and topics, where a dual message passing
paradigm is devised to perform intra-subgraph and inter-subgraph neighborhood
aggregation for node representation refinement and label propagation. To cope
with imbalanced patient data, a community detection method is further designed
to cluster the higher-level embeddings of negative and unlabeled patients to derive
community-preserving patient graph, where the treatment preference predictions
for patients are produced through communities.

2 Problem Statement

EMRs contain the medical and treatment history of the patients in differ-
ent practices, which allow us to predict the propensity of patients to take
treatments for different diseases. In this paper, we focus on the prediction of
patient oncology treatments. Without loss of generality, we represent our data
as X = {(xpi, yi)}li=1 ∪ {xdi}mi=1 ∪ {xti}ni=1 consisting l +m + n samples, where l
is the number of patient records, m is the number of doctor records, and n rep-
resents the number of topics retrieved from website data. Unlike existing works
[3,11,25] that merely use EMRs to train the models for performing patient-
specific tasks, we constructively consider doctor information out of EMRs to
interact with patients and facilitate our prediction. Each patient record xp is
annotated with a ground truth y ∈ {0, 1} for a specific treatment preference,
where y = 1 indicates that the patient prefers to take the treatment and y = 0
denotes that the patient has no such intention. Note that, positives are much
smaller than negatives in our data and also in the real-world scenario. We ini-
tially map X including patients, doctors, and topics into k-dimensional feature
vectors and learn a patient representation function φ through hierarchical graph
neural network to aggregate information from patients, doctors, and topics to
obtain higher-level Xp = φ(Xp,Xd,Xt), Xp ⊆ R

l×k. Resting on patient repre-
sentations, we aim to learn a classification model f : Xp → Y to perform our
prediction task. Thus, the treatment preference label for a given patient data x
can be predicted as:

y∗ = argmax
y∈{0,1}

fy(xp) (1)

where fy(xp) is the confidence score of predicting patient xp as treatment pref-
erence label y using the classification model f . From Eq. (1), we can see that
the final label assigned to the input is the one with the highest confidence score.

3 Proposed Model

In this section, we present the technical details of our proposed model as follows,
the overview of which is illustrated in Fig. 1.
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Fig. 1. The overview of our proposed model.

3.1 Hierarchical Graph Construction

To proceed with patient representation learning using GNNs, the first step is
to construct the graph. As we introduce doctors’ information and the website
topics they have viewed as external knowledge, here we design a hierarchical
graph to integrate patients, doctors, and topics.

Hierarchical Graph Notations. This hierarchical graph can be formalized as
G = (V,E,X), where V is the node set (i.e., patients, doctors, and topics), E is
the edge set to connect the node pairs, and X is the initial feature matrix. More
specifically, G can be further refined into three subgraphs: G = {Gp, Gd, Gt}.
Gp is the patient graph with nodes Vp and edges Ep, Gd is the doctor graph
with nodes Vd and edges Ed, and Gt is the topic graph with nodes Vt and edges
Et. In addition, Epd connects patient graph and doctor graph when patients and
doctors are associated with national patient identifiers (NPIs), and Edt connects
doctor graph and topic graph when doctors view the website topics.

Node Representations. The node feature matrix X is composed of three
matrices Xp, Xd, and Xt such that X = {Xp,Xd,Xt}, where Xp, Xd, and
Xt embed the feature spaces for patients, doctors, and topics respectively. Each
patient feature vector xp is initialized as xp = 〈xp1, xp2, xp3, · · · , xpk〉, where
xpi ∈ {0, 1} is a binary value indicting the absence or presence of a disease symp-
tom i in patient xp. Each doctor xd is represented as a set of profile attributes,
where each attribute is directly converted into numerical feature values using
one-hot encoding. Each topic xt is represented as either a word or a phrase; in
this regard, we leverage SBERT [28] to derive a fixed-size embedding for each
topic. In order to keep the dimensionality of all nodes consistent for message
passing yet the dimension of xd and xt is smaller than xp, we zero-pad xd and
xt to be k-dimensional, and hence the node feature matrix X ⊆ R

(l+m+n)×k.

Patient Graph. Given a set of patient records Xp, we construct a fully-
connected graph Gp = (Vp, Ep,Xp) to associate patients (both labeled and
unlabeled). Manifold learning [23] is non-linear dimensionality reduction process
which reveals the low-dimensional manifold embedded in the high-dimensional
space, which can be feasibly exploited to build up the intrinsic neighborhood
among patient representations. Thus, we formulate each edge ep ∈ Ep between
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Fig. 2. Topic dependency in the topic graph.

vpi and vpj in Gp by a layerwise non-linear combination of distance between xpi

and xpj :

ep = gΘ (xpi,xpj) = σ(· · · σ(|xpi − xpj |Θ(0)) · · · Θ(L−1))Θ(L) (2)

where σ(·) is a non-linear activation function (e.g., ReLU), and Θ is learnable
weight matrix for each layer. As the constructed structure behaves differently
regarding different patient representations, the learned edges do not specify a
fixed patient graph, suggesting the graph can be refined when the embedding
space across patient nodes is updated.

Doctor Graph. In addition to doctors’ profile attributes, our collected doctor
data Xd also record the numbers of patients shared with other doctors, which can
be directly exploited to build the doctor graph. To be specific, if two doctors vdi
and vdj share greater than or equal to one patient in common, we create an edge
ed ∈ Ed between vdi and vdj in Gd, such that the doctor graph Gd = (Vd, Ed,Xd)
can be easily derived with fixed structure. Afterwards, the doctor nodes Vd are
further associated with the patient nodes Vp through epd ∈ Edp when the doctor
vd is the patient vp’s primary care doctor identified by NPI.

Topic Graph. To better characterize doctors, we integrate doctors’ viewing
activities into their profile attributes for doctor presentation learning, where
these activities are captured by the website topics viewed by doctors. To this end,
we build a topic graph Gt = (Vt, Et,Xt) to model this data. As demonstrated in
Fig. 2, all the topics are organized through layer-wise dependency; for example,
a topic may contain another one or more subtopics, where some other topics
may be listed under a subtopic. An edge et ∈ Et between vti and vtj in Gt can
be thus formulated when vtj is vti’s subtopic. Naturally, the topic nodes Vt can
be associated with the doctor nodes Vd through their viewing records.

3.2 Hierarchical Graph Neural Network with Dual Message Passing

Considering the constructed hierarchical graph with intra-subgraph and inter-
subgraph neighborhood structures, we propose a hierarchical graph neural net-
work to perform the dual message passing for node representation refinement and
label propagation, including intra-message passing and inter-message passing.

Intra-message Passing. Intra-message passing is the propagation mechanism
that aggregates the information from neighbors inside the patient graph, doctor
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graph, and topic graph, respectively, the data flow paths of which are specified as
black lines in Fig. 1. A regular graph convolutional network (GCN) [16] is imple-
mented for a single subgraph. Specifically, given a subgraph (i.e., patient graph,
doctor graph, or topic graph), we build the adjacency matrix A(h) using its edge
information (edge matrix needs to be normalized first for patient graph). The
message passing can be then formalized as multi-layer neighborhood information
aggregation, which receives an input X(h) and produces X(h+1):

X(h+1) = σ(˜A(h)X(h)W(h)
intra) (3)

where at layer h, Wintra is weight matrix, ˜A = D− 1
2 ÂD− 1

2 , Â = A+ I, and D
is the diagonal degree matrix defined on Â, i.e., Dii =

∑n
j=1 Âij .

Inter-message Passing. Inter-message passing mechanism is used to propagate
the information between two subgraphs, including patient-doctor and doctor-
topic neighborhoods in our hierarchical graph, the data flow paths of which are
specified as red lines in Fig. 1. Similarly, a GCN is implemented for a single inter-
subgraph neighborhood, where an adjacency matrix A(h) is first constructed
based on the node set from both subgraphs and the edge set (i.e., Epd or Edt)
connecting subgraphs, and then the message passing is performed:

X(h+1) = σ(˜A(h)X(h)W(h)
inter) (4)

where at layer h, Winter is weight matrix for inter message passing. Different
from intra-message passing, we do not add self-loops to the adjacency matrix in
Eq. (4) to allow better aggregation of heterogeneous information.

Optimization. With dual message passing from topic graph to doctor graph,
and then from doctor graph to patient graph, the output of the final GCN layer
for intra-message passing over the patient graph can be defined as:

Z = fW(A,Xp) = softmax(X(H)
p ) (5)

where W refers to the complete trainable weights raised by intra- and inter-
message passing. Therefore, the optimization of hierarchical GNN model can be
formulated to minimize the training loss as follows:

W∗ == argmin
W

L(Z,y) + λ‖W‖22 (6)

where L is the cross-entropy loss, and λ is the regularization parameter. This
model can be applied under inductive and transductive settings. In this paper,
we focus on transductive patient treatment preference prediction where all node
connections and features are accessible during training.

3.3 Community Detection for Data Imbalance

As discussed in Sect. 1, another significant challenge for patient treatment pref-
erence prediction is the EMR data imbalance issue. This enforces GNN models
to aggregate information from majority-class nodes and become less sensitive
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to under-represented positive samples, which leads to less-accurate prediction
performance. Accordingly, different paradigms have been presented to address
this issue, such as oversampling [1,14], undersampling [2,17], and cost-sensitive
learning [13,21]. Due to the fact that sampling techniques tend to generate mod-
els with relatively low generalizability that either overfit on oversampled data or
underperform for discarding potentially useful data, and cost-sensitive learning
is easily impacted by weights, making it hard to select optimal cost values, these
methods are still limited for our task.

In this paper, we explore a community detection method to cope with imbal-
anced patient data. The motivations behind this choice are that: (1) community
detection [27,34] is one of the widely used approaches to analyze complex net-
works involving social interactions, which is perfectly applicable to the patient
graph; (2) individuals are known by the community they keep, while patients in
EMRs are natural individuals whose treatment behaviors and preferences can be
represented by a group of others with very similar symptoms; and (3) commu-
nity detection works as undersampling but can effectively mitigate the impact
of information loss [20]. More specifically, the proposed community detection
method to address data imbalance consists two steps:

– Detecting Communities. If we start community detection over the graph
using the initial patient representations, we need to traverse the graph
to reveal the community structure using algorithms such as infomap [30].
Instead, here we follow the strategy to first learn the higher-level patient
representations using hierarchical GNN with dual message passing to embed
semantics from patients and doctors, and abstract graph structure, such that
we can then simply apply standard clustering algorithm such as k-means
to cluster the embeddings of negative patients into K distinct communities,
where K is equal to the number of positive patients, and cluster the embed-
dings of unlabeled patients into N communities, where N is dependent on
test data size (we evaluate the impact of N on prediction performance in
Sect. 4.4). Afterwards, all the edges ending with the patient nodes in a com-
munity are adjusted to be connected with this community as one node.

– Training GNN using community-preserving patient graph. With the
new community-preserving patient graph, we continue performing dual mes-
sage passing over hierarchical graph and train the hierarchical GNN by min-
imizing the cross-entropy loss in Eq. (6). During testing, the prediction label
of a community node will be assigned to all patients in this community.

4 Experiments and Results

4.1 Experiment Setup

Datasets. Our experiments are tested on EMRs for CLL patients with doctor
data and website topics provided by IQVIA. The patient data retain patients’
records including their different symptom features and NPIs for their primary
care doctors. The doctor data include doctors’ profiles (e.g., age, gender, location,
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Table 1. Statics of datasets

Dataset #Distinct data #Features #Positives #Negatives

Patients 93,474 2,016 773 92,701

Doctors 2,134 112 – –

Website Topics 300 – – –

etc.) and the number of patients shared with other doctors. The topic data
contain topics of websites viewed by doctors. The data statistics are shown in
Table 1, illustrating that there are 93,474 patients (773 positives and 92,701
negatives), 2,134 valid doctors, and 300 website topics, respectively.
Baselines. To the best of our knowledge, we are the first to predict patient
treatment preference; no previous work can thus be used as baselines. We select
rare disease prediction models, traditional classification models, GNN models,
and imbalanced learning models as our baselines. Note that, for GCN, GRAM,
and RA-GCN designed for single graph, we only use the patient graph as input.

– Support Vector Machine (SVM): This is one of the supervised learning
methods which can be used to find a hyperplane for classification.

– Random Forest (RF): This is an ensemble learning method for classifica-
tion by constructing a number of decision trees.

– Multi-Layer Perceptron (MLP): This is a fully connected class of artifi-
cial neural network, which is a traditional supervised classification model.

– Graph Convolutional Network (GCN) [16]: This is a semi-supervised
learning model on graph-structured data with graph convolutional layers.

– GRAM [8]: GRAM is a graph-based attention model for healthcare repre-
sentation learning, which leverages graph attention network [33] to get the
information from neighbors with different importance. We use their attention
mechanism to build the graph neural network and set it as our baseline.

– HSGNN [24]: Heterogeneous similarity GNN is designed for heterogeneous
graphs with healthcare data. We reconstruct the graph with our patient and
doctor data and set their model as our baseline.

– Oversampling [14]: This is an approach to deal with imbalanced data by
increasing the minority class in the dataset. In our experiments, we simply
add the minority class repeatedly for oversampling.

– Undersampling [17]: This is an approach to deal with imbalanced data by
randomly removing the data from the majority class in the dataset.

– XGBoost [6]: It is one of the state-of-the-art and widely used machine learn-
ing models. It becomes the powerful machine learning model of many data
scientists and can deal with irregularities of data, which has been justified as
one of the most popular methods for dealing with imbalanced data.

– Pseudo-labeling [36]: This approach generates pseudo-labels from unlabeled
data, which are injected into training data to address data imbalance.

– RA-GCN [15]: It sets different weights to different classes to address the
data imbalance problem with GCN for disease prediction.
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Table 2. Evaluation results with different baselinesb

Model Precision (%) Recall (%) F1-score

Support Vector Machine 45.60 50.00 0.4769

Random Forest 45.73 50.10 0.4781

Multi-Layer Perceptron 46.30 50.24 0.4818

GCN 45.64 49.88 0.4744

GRAM 46.70 50.00 0.4952

HSGNN 46.58 48.20 0.4738

Oversampling 75.28 50.21 0.6024

Undersampling 23.40 50.03 0.3188

XGBoost 52.28 59.24 0.5554

Pseudo-labeling 53.41 51.86 0.5262

RA-GCN 47.22 42.46 0.4471

Our Model 77.72 59.80 0.6759

4.2 Data Preprocessing and Setting

We preprocess the data by filtering out those patient records whose primary
doctors cannot be found in the doctor data and removing doctors whose profiles
are missing, which leads to 19,176 patients (351 positives) and 2,134 doctors
left, respectively. Due to resource limitation, we select all positives and 3,510
negatives as experimental data and randomly split it by 8:2 for training and
testing. We use precision, recall, and F1-score as evaluation metrics, which are
typically used for healthcare data. All the GCNs used for intra- and inter-message
passing are set as a two-layer structure with 16 hidden units.

4.3 Comparisons with Baselines

In this section, we compare our model with the selected baselines. The compet-
itive result is illustrated in Table 2. We can observe that among baselines, the
traditional models (i.e., SVM, RF, and MLP) have the worst performance on
the patient treatment preference prediction with single patient data input. GNN
models perform slightly better than traditional ones with the precision increases
by around 1%, which is limited for data imbalance issue. Most of the models
dealing with imbalanced data achieve better performance than others, where
oversampling delivers the best results, XGBoost also provides some promising
performance boost, but undersampling significantly underperforms for informa-
tion loss. Obviously, our model completely outperforms baselines with a large
improvement margin of precision (2% – 30%), recall (0.6% – 11%), and F1-score
(0.07 – 0.36). This confirms that (1) doctor information and viewing activities
can serve as external knowledge to enrich patient representations; (2) community
detection performed on negatives and unlabeled patients can effectively mitigate
the data imbalance issue and better prediction performance.
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(a) (b)

Fig. 3. Evaluation on model: (a)Number of Communities N (b) Different components

4.4 Impact of Community Number over Test Data

The community number K over negatives is decided by the number of positives,
but the community number N over test data is adjustable. In this section, we
analyze the impact of N on prediction performance. The results are shown in
Fig. 3(a): the prediction results increase when N falls in the range of [40,70], then
keep stable at [70,90], and decrease drastically when N rises to 110. The reason
behind this could be that when N ∈ [70, 90], the positive data and negative data
are in a relative equilibrium, which alleviates the data imbalance impact and
prevents the model from favoring any majority class; when N is too small, some
unique patients tent to get misrepresented by communities; when N is too large,
the imbalance issue may emerge to degrade the predictions.

4.5 Ablation Study

In this section, we conduct the ablation study to evaluate the performance con-
tributed by different design parts. As our model proceeds with (1) hierarchical
graph construction and (2) community detection, we construct three alternative
models: (1) MLP: feeds patient features directly to MLP without any graph
or community detection; (2) Graph Model: applies the hierarchical graph with
dual message passing; (3) Graph + Community Detection (Graph + CD): lever-
ages community detection to build community-preserving graph and trains the
hierarchical GNN over that. The results are reported in Fig. 3(b).

As shown in Fig. 3(b), the performance becomes better with the components
added to the model. The graph model increases the precision, recall, and F1-score
from multi-layer perceptron by about 8%, 1%, and 4% respectively. Our model
with hierarchical graph and community detection is able to further improve
precision, recall, and F1-score to a higher level, which are around 77%, 60%,
and 67% respectively. This reaffirms that the hierarchical graph enables doctor
information and activities to be propagated to patients through dual message
passing and increases the expressiveness of patient representations, while com-
munity detection successfully alleviates the effect of data imbalance and makes
the model more effective on patient treatment preference prediction.
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5 Conclusion

In this paper, we propose a novel hierarchical GNN for patient treatment pref-
erence prediction. We first leverage external knowledge (i.e., doctor information
and their viewing activities) in addition to EMR patient records to construct the
hierarchical graph, where a dual message passing paradigm is then devised to
perform intra- and inter-subgraph neighborhood aggregation to enrich patient
representations and advance label propagation. We further introduce community
detection to alleviate patient data imbalance issue. The state-of-the-art results
validate its effectiveness and superiority to the current widely used baselines.
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Abstract. Emotion recognition (ER) from speech signals is a robust
approach since it cannot be imitated like facial expression or text based
sentiment analysis. Valuable information underlying the emotions are sig-
nificant for human-computer interactions enabling intelligent machines
to interact with sensitivity in the real world. Previous ER studies through
speech signal processing have focused exclusively on associations between
different signal mode decomposition methods and hidden informative
features. However, improper decomposition parameter selections lead to
informative signal component losses due to mode duplicating and mix-
ing. In contrast, the current study proposes VGG-optiVMD, an empow-
ered variational mode decomposition algorithm, to distinguish meaning-
ful speech features and automatically select the number of decomposed
modes and optimum balancing parameter for the data fidelity constraint
by assessing their effects on the VGG16 flattening output layer. Various
feature vectors were employed to train the VGG16 network on differ-
ent databases and assess VGG-optiVMD reproducibility and reliability.
One, two, and three-dimensional feature vectors were constructed by con-
catenating Mel-frequency cepstral coefficients, Chromagram, Mel spec-
trograms, Tonnetz diagrams, and spectral centroids. Results confirmed
a synergistic relationship between the fine-tuning of the signal sample
rate and decomposition parameters with classification accuracy, achiev-
ing state-of-the-art 96.09% accuracy in predicting seven emotions on the
Berlin EMO-DB database.

Keywords: Speech emotion recognition (SER) · Variational mode
decomposition (VMD) · Sound signal processing · Convolutional neural
network (CNN) · Acoustic features

1 Introduction

Word meaning is often conveyed by the tone of voice, although human emotions
are not solely conveyed through the words used, but also through by modify-
ing facial expressions and vocal tone. Thus, changing voice characteristics is how
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most humans express different emotions [25]. Consequently, considerable human-
computer interaction research has analyzed speech signal emotion recognition
(ER) where using other popular semantic analysis methods like wav2vec2.0 [5]
are not trustworthy. Several applications employed variational mode decompo-
sition (VMD) [11] in different fields such as medical science, structural engineer-
ing, and sound engineering [2,17,23]. Signal based ER employs various instan-
taneous signals, including electrodermal activity, blood volume pulse, galvanic
skin response, electrocardiogram (ECG), Electroencephalography (EEG), and
speech, are commonly categorized into several decomposed modes due to the
complexity and nonstationary nature of them, which allows latent factors and
patterns to be extracted more easily. Nonstationary signal properties and its
components make mean short time Fourier transform (STFTs) are not always
suitable, and previous studies have mostly considered these approaches in isola-
tion [8]. VMD decomposes signals into modes with a narrowband around a cen-
ter frequency; it can overcome STFT limitation and EMD mode mixing effects.
Therefore, we were motivated to apply VMD for speech signal processing.

Acoustic feature selection is essential for SER to describe various voice sig-
nal aspects captured from different features [6]. Acoustic features include time-
frequency, time, and frequency domain representations. Extracted features from
time-frequency domains carry more informative data than the other domains,
and better capture latent emotion content from speech signals [28]. Several pre-
vious studies used VMD method to analyze signals, extracting features from the
decomposed signals. However, we proposed VGG-optiVMD, utilizing a VMD
based feature augmentation method to enrich predictors and maximize emotion
classification accuracy. Results from the proposed VGG-optiVMD approach on
several common publicly available databases confirm significant ER improvement
compared with previous approaches. The main contributions from this study can
be summarized as follows.

– To our best knowledge, this study is the first to employ VMD as a dynamic
acoustic feature augmentation method for SER performance.

– The proposed VGG-optiVMD algorithm automatically selects optimum
decomposition parameters for VMD.

– A robust classification accuracy was achieved with a state-of-art result
96.09%.

2 Related Works

Dendukuri et al. [10] decomposed the speech signal into three components sam-
pling 16000 Hz over 20 ms frames, then input various mode central frequency sta-
tistical parameters to a support vector machine (SVM) classifier. Lal et al. [20]
empirically demonstrated VMD advantages to decompose speech signals in the
correct central frequency and subsequently estimated epoch locations from noise
degraded emotional speech signal. Zhang et al. [33] proposed multidimensional
feature extraction for EEG signal emotion recognition combining wavelet packet
decomposition (WPD) with VMD to break down an EEG signals and extract
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wavelet packet entropy, modified multiscale sample entropy, fractal dimension,
and first difference of each emotional variational mode functions as feature com-
ponents. They subsequently demonstrated robust results using a random forest
(RF) classifier on the DEAP dataset [18]. Khare et al. [17] reduced reconstruc-
tion error using meta-heuristic techniques to condensing from 16 to 1 dimension
using eigenvector centrality method channel selection on EEG signals. They sub-
sequently improved Optimized variational mode decomposition (O-VMD) accu-
racy by 5% compared with traditional VMD on the dataset of four emotions
that built by themselves.

Pandey [24] proposed subject-independent emotion recognition using VMD
and deep neural networks (VMD-DNN) on the benchmark DEAP dataset. Two
features, first difference and power-spectral-density used since were sufficient
to recognize calm, happy, sad, and angry emotions. SVM and DNN classifier
accuracy was improved by employing VMD based feature extraction.

Several previous studies considered STFT signal decomposition techniques
for SER. Few previous studies employed VMD to analyze speech signals mainly
processing EEG signals through VMD for ER. To the best of our knowledge,
the current study is the first to employ VMD to enrich multidimensional feature
vectors to enhance VGG-16 network learning.

3 Proposed Methodology

The main aim for decomposition-based speech signal processing via VMD
method is to constrain noise and interference frequencies to enhance signal data
decoding.

3.1 Variational Mode Decomposition

Variational mode decomposition is a popular technique for decomposing non-
stationary signals into sub-signals or modes, where mode contains a specific
meaningful property from the original signal in a narrow bandwidth around the
center frequency. The VMD adaptive algorithm reduces the original signal com-
plexity [11]. The VMD algorithm applies the Wiener filter, Hilbert transform,
analytical signals, and frequency mixing. The two main VMD objects are to con-
strain the bandwidth for each IMF center frequency and reconstruct the original
signal from the sum of all modes. First, the Hilbert transform filters frequencies
on the negative side of the spectrum, and then shifts the obtained bandwidth
to the modes central frequency. Second, the obtained spectrum is shifted to the
baseband region via a modulator function to obtain bandwidth around central
frequency ω. Finally, H1 Gaussian smoothness for the demodulation signal is
used to estimate the bandwidth. Thus, constraining the L2 norm squared gradi-
ent [11] defines the optimization problem (1),

min{gk},{ωk}

{∑K
k=1

∥∥∥ ∂
∂t

[(
δ(t) + j

πt

) ∗ gk(t)
]
e−jωkt

∥∥∥2

2

}
,

subject to:
∑K

k=1 gk(t) = g(t),
(1)
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where the partial derivative ∂
∂t

[.] minimizes variation in the obtained bandwidth;
g(t) is the original speech signal frame; gk(t) is the kth mode for g(t); K is the
total number of modes; ωk = {w1, . . . , wk} is the mode center frequency, and a
convenient way to reference the center frequencies for the set of K modes; e−jωkt

is a modulator function to shift the spectrum for each mode to the baseband.
The analytical signal generated by applying the Hilbert transform j

πt and unit
impulse function δ(t) as shown in equation (1). The δ(t) denotes to the Dirac
delta distribution known as a unit impulse so that its value is zero everywhere and
infinite at original signal. The original voice signal can be reproduced by solving
the constraint optimization (1), which can be simplified using an augmented
Lagrangian multiplier to transform it into an unconstrained problem (2),

L (gk, ωk, λ) := α
∑K

k=1

∥∥∥ ∂
∂t

[((
δ(t) + j

πt

) ∗ gk(t)
)
e−jωkt

]∥∥∥2

+
∥∥∥g(t) − ∑K

k=1 gk(t)
∥∥∥2

2
+

〈
λ(t), g(t) − ∑K

k=1 gk(t)
〉

,
(2)

where, λ is a time-dependent Lagrangian multiplier, and α is a bandwidth control
parameter. The unconstrained Lagrangian problem (2) can be solved to obtain
the frequency and the modes using the alternate direction method of multipli-
ers (ADMM) [11,14,27] optimization in spectral domain. However, optimization
outcomes are the same for the frequency and time domains. Hence, mode gk(ω)
can be updated in the spectral domain,

ĝn+1
k (ω) ← ĝ(ω) − ∑

i<k ĝn+1
i (ω) − ∑

i>k ĝn
i (ω) + λ̂n(ω)

2

1 + 2α (ω − ωn
k )2

. (3)

Updating is obtained using the Wiener filter for the current residual using
the signal prior 1/(ω − ωk)2 to restrain variation across the central frequency
minimum, providing the updated mode center frequency ωk as

ω̂n+1
k =

∫ ∞
0

ω
∣∣∣Ĝk(ω)

∣∣∣2 dω

∫ ∞
0

∣∣∣Ĝk(ω)
∣∣∣2 dω

(4)

where Ĝk(ω) is the Fourier transformed for gn+1
k (t). A better decomposed signal

can be obtained by reconstructing the original signal as the sum of modes and
estimating bandwidth using the Wiener filter. Details of the VMD algorithm are
provided in [11]. To leverage VMD effectiveness, we proposed the VGG-optiVMD
algorithm for automatically selecting optimum α and K by analyzing different
decomposition parameter effects on classification accuracy.

3.2 Proposed VGG-optiVMD

Reconstruction error for a decomposed signal can be reduced by selecting opti-
mum K and α. Improper decomposition parameter selection will create dupli-
cate modes, causing signal information losses consequently reduced classifier
performance.
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Algorithm 1. Proposed VGG-optiVMD algorithm
Input: g(t) is a preprocessed speech signal converted to feature vectors.
Output: Decomposes of signal g(t) and Optimum value of α and K

Initialization : The value of modes K and α;
the tolerance of convergence criterion τ ;

{
ĝ1
k

}
,
{
ω̂1
k

}
, λ̂1; n = 0

Repeat:
1: n = n + 1,
2: for k=1 : K do
3: update ĝk for all ω ≥ 0 by Eq. (3) and ωk by Eq. (4)
4: end for
5: Upgrade the Lagrangian multiplier λ for the dual accent ∀ω0:

λn(ω) = λn + τ(g(ω) −
∑

k

gn+1
k (ω))

Until:
6: convergence:

∑K
k=1 ‖ĝn+1

k − ĝn
k ‖2

2/‖ĝn
k ‖2

2 <∈.
7: return {g1(t), g2(t), . . . , gK(t)}= IMFs; subtract of all sub signals
8: Set Parameters τ=0; DC=0; init=1; tol=1e-9; K=2; α=2000
9: Decompose signal g(t)

10: Record training set accuracy, and F1 score in VGG16 classifier.
11: while max(ACC) do
12: if ACC==max; α ≤ 6000; K ≤8 then
13: The optimum value of K and α is obtained.
14: else

K = K + 1; α=α+1000 go to step 9
15: end if
16: end while
17: Identify optimum value of decomposition parameters α and K while tol=1e-9,

DC=0, init=1, and τ=0

One drawback for VMD is that finding decomposition parameters K and α to
provide optimum performance challenging. In contrast, in our method we auto-
mate optimum VMD decomposition parameter selection using a feedback loop
from the VGG16 flattening output layer. Algorithm 1 shows the proposed opti-
mized VMD algorithm (VGG-optiVMD). The key strength for VGG-optiVMD
is generality and reproducibility across different databases for real-world multi-
media applications, e.g., ER for customer satisfaction analysis.

3.3 Feature Extraction, Data Augmentation, and Classification

Essential and informative acoustic features in the time-frequency domain include
the Mel spectrogram, chromograms, spectral contrasts, tonnetz, and Mel-
frequency cepstral coefficients (MFCCs) [1,13] are extracted and subsequently
employed in various combinations to generate multidimensional feature vectors.
Figure 1 shows the proposed framework to train CNN-VGG16 [29] to extract
enriched feature vectors and classify seven emotions: anger, boredom, happy, neu-
tral, disgust, sadness, and fear on two databases EMODB [7] and RAVDESS [21].
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Fig. 1. Proposed model development workflow: extracted features are enriched using
the VGG-optiVMD to automatically identify K and α.

Figure 1 shows the model development proceeds. First, the voice signal is sam-
pled 88400 Hz and five well-known acoustic features extracted and reshaped into
a single (128 × 128 × 3) feature vector and second the SMOTE [21] oversam-
pling strategy is applied to compensate for minority classes and reduce model
bias. Furthermore, the testing and training features are randomly partitioned
into 20% and 80% sets, respectively. Subsequently, the proposed VGG-optiVMD
algorithm is applied to decode frequency statistical properties at specific times
that distinguish emotions within the feature vector. Finally, the VGG network is
trained on the augmented feature vector to classify emotions into seven classes.

4 Experiment Setup

Several experiments were performed on nine different feature vectors to iden-
tify the proposed VGG-optiVMD algorithm effectiveness using. The details of
network implementations are available in our GitHub repository1.

4.1 Modelling

The aim of modeling was to enhance informative data within the feature vec-
tors and avoid overfitting. Augmentation effects on classification accuracy were
assessed using diverse K and α sets. Optimal K and α was assessed iteratively
until robust classification accuracy was achieved or the break loop condition
reached. K and α were set to a wide range of 3–8 and 1000–6000, respectively,
based on empirical experiments since there was no significant improvement in
prediction accuracy outside those ranges. The VGG16 architecture used the
ADAM optimizer with learning rate = 0.0001; six fully connected hidden layers
with ReLU, SELU, and TanH activation functions; epochs = 50, batch size = 4;
and SoftMax function for the output layer.
1 https://github.com/DavidHason/VGG-optiVMD.

https://github.com/DavidHason/VGG-optiVMD
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5 Result and Discussion

To assess the effectiveness of our VMD-based feature augmentation method sev-
eral evaluation metrics were employed including F1 score, training set accuracy,
and confusion matrix. Analyzing the results of the baseline model, which is built
with the same framework simply without VMD-based feature vector augmenta-
tion, helps us to justify the power of the VGG-optiVMD in SER. Therefore, we
attempted to evaluate the model performance through variation of sample rate,
window size, K and α without using VMD (baseline model) and with VMD (pro-
posed model). As shown in Fig. 2, unlike the baseline model, the proposed model
performed better with a larger sampling rate and window size. Moreover, the
highest train set accuracy and F1 score were obtained via VGG-optiVMD, prov-
ing that our VMD-based feature augmentation method significantly improved
the classification accuracy.

Fig. 2. The model performance is assessed by different signal sampling rates and VMD
parameters K and α. Graph (a) The VGG-optiVMD identified the set of K = 6 and α
= 2000 as optimum value. Graph(b) represents the effect of various ranges of sample
rate and window size on the proposed and baseline model in EMODB. The highest
accuracy can be achieved by SR = 88200 and WS = 2048.
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Based on the experiment results shown in Table 1, there is a correlation
between the number of modes K, bandwidth control parameter α and classifi-
cation accuracy. The different acoustic features are enriched with various sets of
decomposition parameters. Results indicated that higher accuracy was obtained
for K (4–6) and α (2000– 4000) in both datasets, although VGG-optiVMD
is set to a limited range of α (1000–10000) and K (2–8) due to increasing a
heavy computational load when K value is over 8 with sample rate 88400. This
limitation can be considered a functional constraint of VGG-optiVMD. Nev-
ertheless, a state-of-the-art result was achieved with the accuracy of 96.09%
with K=6 and α=2000 as demonstrated in Table 1. The Fig. 3 shows the effi-
cient functionality of VGG-optiVMD on the feature vector 3D-Mel Spectro-
gram+MFCCs+Chromagram. Figure (a) represents the feature before applying
VMD based data augmentation, and figure (b) clearly shows that the informa-
tive frequencies are distinguished on the feature vector by acquiring higher dis-
tinction energies represented in time-frequency domain after applying the data
augmentation method. Therefore, the implications of this finding can improve

Table 1. Empirical results (%) of emotion classification accuracy (ACC) and F1-score
(F1) are demonstrated through different sets of decomposition parameters α and K,
that are selected automatically by the VGG-optiVMD algorithm.

Features: VMD Decomposition Parameters

Databases K=4, α=2000 K=4, α=4000 K=6, α=2000 K=6, α=3000 K=6, α=4000

EMO/RAV Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

CH EMODB 68.54 68.37 81.63 81.47 94.05 94.88 94.90 91.10 95.41 95.11

RAVDESS 70.23 70.55 82.73 82.96 85.21 85.92 79.81 79.79 47.49 46.53

MS EMODB 91.84 91.86 93.15 93.07 95.19 95.07 95.34 94.98 95.92 94.89

RAVDESS 64.21 64.69 71.36 71.55 75.28 75.95 84.19 84.68 87.25 88.11

MF EMODB 48.1 46.92 65.16 64.42 64.87 65.18 56.12 56.57 67.64 66.9

RAVDESS 42.64 41.77 53.29 52.14 55.61 56.80 51.81 51.44 41.86 40.46

SP EMODB 94.27 93.11 93.01 92.95 93.88 93.07 93.44 93.37 94.02 93.87

RAVDESS 89.25 90.11 78.48 79.21 91.28 92.88 90.70 90.10 92.14 93.55

TZ EMODB 74.93 75.11 91.25 90.89 88.92 88.91 91.84 91.12 92.44 92.10

RAVDESS 48.21 48.26 51.04 51.67 52.07 52.12 49.06 49.12 51.98 52.23

MS+SP EMODB 89.62 90.85 88.76 89.08 88.2 88.13 95.92 96.11 95.41 95.12

RAVDESS 78.33 78.12 74.37 74.79 78.52 78.78 81.38 81.42 81.84 81.91

MF+SP EMODB 58.1 58.2 66.91 66.98 65.16 65.11 62.54 62.13 67.64 67.21

RAVDESS 53.08 53.12 56.25 56.68 60.28 60.94 58.21 58.14 54.7 54.06

MF+CH EMODB 85.21 85.2 84.35 84.36 90.14 90.13 87.41 87.52 90.82 90.82

RAVDESS 51.29 51.35 54.25 54.89 53.65 54.66 55.13 55.12 56.08 56.84

M+M+C EMODB 86.56 86.42 87.41 87.35 96.09 96.04 93.54 93.42 94.73 95.98

RAVDESS 60.28 60.11 60.28 60.84 61.55 62.36 59.25 60.87 57.70 57.56

Features abbreviation: M+M+C: 3D-Mel Spectrogram+MFCCs+Chromagram;
MS+SP: 2D-Mel Spectrogram+Spectral; CH: Chromagram; MF: MFCCs; TZ: 1D-
Tonnetz;
The best results on both databases are indicated in bold font.
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Table 2. Visualization of the model performance with confusion matrix (%) for the 3D-
Mel Spectrogram+MFCCs+Chromagram with test accuracy = %96.09 on the Berlin
EMO-DB dataset.

Emotion: Anger Boredom Disgust Fear Happiness Neutral Sadness

Anger 95.24 0 0 0 4.76 0 0

Boredom 0 95.24 0 0 0 0 4.76

Disgust 0 0 100.00 0 8 0 0

Fear 0 0 0 94.05 0 0 0

Happiness 8.33 0 0 0 91.67 0 0

Neutral 0 2.38 0 0 1.19 96.43 0

Sadness 0 0 0 0 0 0 100

Fig. 3. The efficient functionality of VGG-optiVMD on the feature vector 3D-Mel
Spectrogram+MFCCs+Chromagram clearly shows a higher distinction in the energy
magnitude of frequencies in (b).

the learning process in VGG16 and result in better prediction accuracy. The con-
fusion matrix in Table 2 demonstrates the high performance of the classification
model with accuracy above 90% for all classes. Nevertheless, the model performs
poorly when predicting happiness and anger emotions due to the similarity of
signal attributes such as intensity, frequency and harmonic structure. The VGG-
optiVMD method is compared with the most recent works, shown in Table 3, that
our method outperforms previous models and achieves a state-of-the-art result
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Table 3. Comparison of the proposed method with previous works on the EMODB
and RAVDESS databases.

Method proposed by Feature extraction strategy Learning Net. Acc(%)

Badshah et al. [3] log Mel spectrogram CNN 52

Dendukuri et al. [10] 45d- Mode statistical+MFCCs+Spectral SVM-VMD 61.2

Zamil et al. [32] 13 MFCCs Tree Model 70

Popova et al. [26] Mel spectrograms VGG16 71

Hajarol. et al. [12] Mel spectrograms+MFCCs CNN 72.21

Wang et al. [30] Fourier Parameter+MFCCs SVM 73.3

Kown et al. [19] Spectrogram Deep SCNN 79.50

Badsha et al. [4] Spectrogram CNN 80.79

Huang et al. [15] Spectrogram CNN 85.2

Issa et al. [16] MFCCs+Chroma.+Mel spec.+Contrast+Tonnetz VGG16 86.10

Meng et al. [22] log Mel spec.+1st & 2nd delta(log Mel spec.) CNN-LSTM 90.78

Wu et al. [31] Modulation Spectral Features (MSFs) SVM 91.60

Rudd et al. [28] Harmonic-Percussive (HP)+log Mel spec VGG16-MLP 92.79

Demircan et al. [9] LPC+MFCCs SVM 92.86

Zhao et al. [34] log Mel spectrogram CNN-LSTM 95.89

VGG-optiVMD 3D-Mel spectrogram+MFCCs+Chromagram VGG16-VMD 96.09

in terms of accuracy. Moreover, the main advantage of the VGG-optiVMD is its
generality, which can be employed independently for other acoustic features and
different databases.

6 Conclusion

Speech signal processing is employed in some applications when we only have
access to speech voice to detect emotions which is the first aim of this study, the
second aim of this study is to introduce specific data augmentation techniques to
enrich the extracted acoustic features by design of VGG-optiVMD, an extended
VMD algorithm to improve SER performance.

The findings provide solid empirical confirmation of the key role of the sam-
pling rate, the number of the decomposed mode, K and the balancing param-
eter of the data-fidelity constraint, α, in the performance of the emotion clas-
sifier. Taken together, these findings suggest that VMD decomposition param-
eters K (2–6) and α (2000–6000) are and EMODB databases. The proposed
VGG-optiVMD algorithm improved the emotion classification to a state-of-the-
art result with a test accuracy of 96.09% in the Berlin EMO-DB and 86.21%
in the RAVDESS datasets. Further work needs to be done to establish whether
extracting acoustic features only from informative decomposed modes can reduce
computational load constraints. Therefore, the study should be repeated using
the VMD algorithm before acoustic feature extraction process.



An Extended Variational Mode Decomposition Algorithm 229

Acknowledgement. This work is partially supported by the Australian Research
Council under grant number: DP22010371, LE220100078, DP200101374 and LP1701
00891

References

1. Aizawa, Kiyoharu, Nakamura, Yuichi, Satoh, Shin’ichi (eds.): PCM 2004. LNCS,
vol. 3331. Springer, Heidelberg (2005). https://doi.org/10.1007/b104114

2. Alshamsi, H., Kepuska, V., Alshamsi, H., Meng, H.: Automated facial expression
and speech emotion recognition app development on smart phones using cloud
computing. In: 2018 IEEE 9th Annual Information Technology, Electronics and
Mobile Communication Conference (IEMCON), pp. 730–738. IEEE (2018)

3. Badshah, A.M., Ahmad, J., Rahim, N., Baik, S.W.: Speech emotion recognition
from spectrograms with deep convolutional neural network. In: 2017 International
Conference on Platform Technology and Service (PlatCon), pp. 1–5 (2017)

4. Badshah, A.M., Rahim, N.: Ullah: Deep features-based speech emotion recognition
for smart affective services. Multimedia Tools and Applications 78(5), 5571–5589
(2019)

5. Baevski, A., Zhou, Y., Mohamed, A., Auli, M.: wav2vec 2.0: A framework for self-
supervised learning of speech representations. In: Advances in Neural Information
Processing Systems, vol. 33, pp. 12449–12460 (2020)

6. Basharirad, B., Moradhaseli, M.: Speech emotion recognition methods: A literature
review. In: AIP Conference Proceedings, vol. 1891, p. 020105. AIP Publishing LLC
(2017)

7. Burkhardt, F., Paeschke, A., Rolfes, M., Sendlmeier, W.F., Weiss, B., et al.: A
database of german emotional speech. In: Interspeech. vol. 5, pp. 1517–1520 (2005)

8. Carvalho, V.R., Moraes, M.F., Braga, A.P., Mendes, E.M.: Evaluating five different
adaptive decomposition methods for eeg signal seizure detection and classification.
Biomed. Signal Process. Control 62, 102073 (2020)

9. Demircan, S., Kahramanli, H.: Application of fuzzy c-means clustering algorithm
to spectral features for emotion classification from speech. Neural Comput. Appl.
29(8), 59–66 (2018)

10. Dendukuri, L.S., Hussain, S.J.: Emotional speech analysis and classification using
variational mode decomposition. Int. J. Speech Technol, pp. 1–13 (2022)

11. Dragomiretskiy, K., Zosso, D.: Variational mode decomposition. IEEE Trans. Sig-
nal Process. 62(3), 531–544 (2013)

12. Hajarolasvadi, N., Demirel, H.: 3d cnn-based speech emotion recognition using
k-means clustering and spectrograms. Entropy 21(5), 479–495 (2019)

13. Harte, C., Sandler, M., Gasser, M.: Detecting harmonic change in musical audio.
In: Proceedings of the 1st ACM Workshop on Audio and Music Computing Mul-
timedia, pp. 21–26 (2006)

14. Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5),
303–320 (1969)

15. Huang, Z., Dong, M., Mao, Q., Zhan, Y.: Speech emotion recognition using cnn.
In: Proceedings of the 22nd ACM International Conference Media, pp. 801–804
(2014)

16. Issa, D., Demirci, M.F., Yazici, A.: Speech emotion recognition with deep con-
volutional neural networks. Biomed. Signal Process. Control 59, 101894–101904
(2020)

https://doi.org/10.1007/b104114


230 D. Hason Rudd et al.

17. Khare, S.K., Bajaj, V.: An evolutionary optimized variational mode decomposition
for emotion recognition. IEEE Sens. J. 21(2), 2035–2042 (2020)

18. Koelstra, S., Kolestra, S., et al.: Deap: a database for emotion analysis; using
physiological signals. IEEE Trans. Affect. Comput. 3(1), 18–31 (2011)

19. Kwon, S.: A cnn-assisted enhanced audio signal processing for speech emotion
recognition. Sensors 20(1), 183 (2019)

20. Lal, G.J., Gopalakrishnan, E., Govind, D.: Epoch estimation from emotional speech
signals using variational mode decomposition. Circ. Syst. Signal Process. 37(8),
3245–3274 (2018)

21. Livingstone, S.R., Russo, F.A.: The ryerson audio-visual database of emotional
speech and song (ravdess): a dynamic, multimodal set of facial and vocal expres-
sions in north american english. PLoS ONE 13(5), e0196391 (2018)

22. Meng, H., Yan, T., Yuan, F., Wei, H.: Speech emotion recognition from 3d log-mel
spectrograms with deep learning network. IEEE access 7, 125868–125881 (2019)

23. Mousavi, M., Gandomi, A.H.: Structural health monitoring under environmental
and operational variations using mcd prediction error. J. Sound Vib. 512, 116370
(2021)

24. Pandey, P., Seeja, K.: Subject independent emotion recognition from eeg using vmd
and deep learning. J. King Saud University-Comput. Inform. Sci. 34(4), 1730–1738
(2019)

25. Pierre-Yves, O.: The production and recognition of emotions in speech: features
and algorithms. Int. J. Hum Comput Stud. 59(1–2), 157–183 (2003)

26. Popova, A.S., Rassadin, A.G., Ponomarenko, A.A.: Emotion recognition in sound.
In: International Conference on Neuroinformatics, pp. 117–124 (2017)

27. Rockafellar, R.T.: A dual approach to solving nonlinear programming problems by
unconstrained optimization. Math. Program. 5(1), 354–373 (1973)

28. Rudd, D.H., Huo, H., Xu, G.: Leveraged mel spectrograms using harmonic and
percussive components in speech emotion recognition. In: Pacific-Asia Conference
on Knowledge Discovery and Data Mining, pp. 392–404. Springer (2022). https://
doi.org/10.1007/978-3-031-05936-0 31

29. Russakovsky, O., Russakovsky, O., et al.: Imagenet large scale visual recognition
challenge. Int. J. Comput. Vision 115(3), 211–252 (2015)

30. Wang, K., An, N., Li, B.N., Zhang, Y., Li, L.: Speech emotion recognition using
fourier parameters. IEEE Trans. Affect. Comput. 6(1), 69–75 (2015)

31. Wu, S., Falk, T.H., Chan, W.Y.: Automatic speech emotion recognition using mod-
ulation spectral features. Speech Commun. 53(5), 768–785 (2011)

32. Zamil, A.A.A., Hasan, S., Baki, S.M.J., Adam, J.M., Zaman, I.: Emotion detec-
tion from speech signals using voting mechanism on classified frames. In: 2019
International Conference on Robotics, Electrical and Signal Processing Techniques
(ICREST), pp. 281–285. IEEE (2019)

33. Zhang, M., Hu, B., Zheng, X., Li, T.: A novel multidimensional feature extraction
method based on vmd and wpd for emotion recognition. In: 2020 IEEE Inter-
national Conference on Bioinformatics and Biomedicine (BIBM), pp. 1216–1220.
IEEE (2020)

34. Zhao, J., Mao, X., Chen, L.: Speech emotion recognition using deep 1d & 2d cnn
lstm networks. Biomed. Signal Process. Control 47, 312–323 (2019)

https://doi.org/10.1007/978-3-031-05936-0_31
https://doi.org/10.1007/978-3-031-05936-0_31


An Extended Variational Mode Decomposition Algorithm 231

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/


Dynamically-Scaled Deep Canonical
Correlation Analysis

Tomer Friedlander(B) and Lior Wolf

Tel Aviv University, Tel Aviv, Israel

tomerf1@mail.tau.ac.il, wolf@cs.tau.ac.il

Abstract. Canonical Correlation Analysis (CCA) is a method for fea-
ture extraction of two views by finding maximally correlated linear pro-
jections of them. Several variants of CCA have been introduced in the lit-
erature, in particular, variants based on deep neural networks for learning
highly correlated nonlinear transformations of two views. As these mod-
els are parameterized conventionally, their learnable parameters remain
independent of the inputs after the training process, which limits their
capacity for learning highly correlated representations. We introduce a
novel dynamic scaling method for an input-dependent canonical corre-
lation model. In our deep-CCA models, the parameters of the last layer
are scaled by a second neural network that is conditioned on the model’s
input, resulting in a parameterization that is dependent on the input
samples. We evaluate our model on multiple datasets and demonstrate
that the learned representations are more correlated in comparison to the
conventionally-parameterized CCA-based models and also obtain prefer-
able retrieval results.

Keywords: Multimodal learning · Information retrieval · CCA

1 Introduction

Given two domains, the goal of CCA methods [2,20] is to recover highly cor-
related projections between them. The output of such methods is pairs of 1D
projections, where each pair contains a single projection of each domain. Collec-
tively, all projections from a single domain are uncorrelated, similarly to PCA.

All existing CCA models are parameterized by conventional static parame-
ters, i.e. their learnable parameters remain independent of the inputs after being
optimized in the training process. In this work we propose to apply dynamic
scaling, i.e. scaling the parameterization of the feature extractors based on the
specific inputs. Such dynamic scaling is able to increase the expressiveness of
the model in a way that adjusts the learned representations specifically to the
inputted paired views, resulting in more correlated representations. Importantly,
to remain faithful to the CCA line of work, the representation of a vector in the
first domain cannot be dependent on the input of the second domain. Each
projection (linear or non-linear) has to be performed independently of the other
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. Kashima et al. (Eds.): PAKDD 2023, LNAI 13937, pp. 232–244, 2023.
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domain. Otherwise, the settings of the projection changes, and the complexity of
performing, for example, retrieval, become quadratic in the number of samples.

The usage of dynamic scaling is shown to lead to favorable results in com-
parison to existing CCA methods, both classical [16,17,20] and modern deep
CCA approaches [2,4,15,21,23]. Specifically, we observed an increase in total
correlation scores across the standard benchmarks of the field. In addition, we
were able to surpass the performance of the state-of-the-art CCA-based retrieval
model, Ranking CCA [7], on the task of image to text retrieval.

1.1 Related Work

Many extensions of the CCA model [11] have been introduced in the litera-
ture [1,2,4,5,15–17,19–21,23]. Regularized CCA [20] employs ridge regression
and Kernel CCA (KCCA) [1] applies non-linear transformations using kernel
functions. Scalable KCCA versions such as FKCCA and NKCCA [16] employ
random Fourier features and the Nyström approximation, respectively. Deep
CCA (DCCA) by [2] models the transformation functions using deep neural
networks. CorrNet is an encoder-decoder architecture for maximizing the corre-
lation between the projections of two views [3], but it does not compute canon-
ical components. Deep canonically-correlated Autoencoder (DCCAE) [23] was
proposed in parallel as an encoder-decoder model that optimizes the CCA for-
mulation together with reconstructing the input views. NCCA [17] is a non-
parametric CCA model, which was demonstrated to match the performance of
DCCA on some datasets without using neural networks. Soft-CCA [4] replaces
the hard decorrelation constraint of the DCCA formulation with a softer con-
straint. Soft-HGR [21] is a neural framework for optimizing a softer formulation
of the Hirschfeld-Gebelein-Reónyi (HGR) maximal correlation, which generalizes
Pearson’s correlation. CCA [11] can be regarded as optimizing the HGR objec-
tive in the restricted case of linear projections. �0-CCA [15] is a sparse variant
of DCCA that multiplies the input views. The gates are static (independent of
the inputs) and multiply the inputs and not the parameters of the model.

In the task of cross-modality retrieval, there is a source sample of one view
and a set of target samples of another view. The goal of this task is to find
the matching target sample of the source sample out of the set of all target
samples. While retrieval can be successful even if it relies on capturing limited
aspects of the data, CCA-based retrieval methods strive to construct a shared
embedding space, which captures the maximal correlation of the two views. Deep
CCA was used in [26]. Later, [7] proposed Ranking-CCA as an end-to-end CCA-
based model that explicitly minimizes the pairwise ranking loss for retrieval and
achieves improved retrieval results.

Dynamic Networks [10] are neural networks that adapt their parameters or
architecture to the inputs. For example, Hypernetworks [9] use one neural net-
work to generate the weights of another network.
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2 Method

We first present the dynamically scaled layer and then discuss its use in Deep-
CCA and Ranking-CCA models. For the purpose of parameterizing a layer with
input-dependent parameters, we train another neural network, denoted by h.
The outputs of this neural network are used as scaling factors for dynamically
adjusting the parameters of the conventional layer. We name such a layer a
Dynamically-Scaled Layer (DSL). A schematic illutration of a DSL within a
neural network is depicted in Fig. 1.

Fig. 1. Schematic illustration of a DSL following other neural network layers. Input vec-
tors and the parameterization are represented by horizontal and vertical lines, respec-
tively.

Suppose a given layer of a neural network is a DSL and it is modelled by the
transformation function g. Denote the parameters of this layer after applying the
dynamic scaling by θ̂. These parameters are obtained by scaling the conventional
parameters of the layer, θc, with the outputs of the scaling network, h.

The scaling network h is formally defined by h(z(x);θh), where θh are the
conventional parameters of the scaling network itself. z(x) is the vector of acti-
vations from the previous layer, which serves as the input of the DSL layer g,
similarly to the way information is passed between layers, and is the input of the
scaling network h. The notation of the original input of the network, denoted
by x, is explicitly used in order to emphasize that the vector z is a function
of x. The outputs of the scaling network, h, are the same size as the conven-
tional parameters, θc. The scaling network scales the conventional parameters
according to the following equation:

θ̂(x) = h(z(x);θh) � θc (1)

where � is the element-wise product operation. After applying the dynamic
scaling, the parameters of g become input-dependent, i.e. dependent on x. For
a concrete example, let g be a fully-connected layer. Denote by SW ∈ R

din×dout

and Sb ∈ R
dout the outputs of the scaling network for adjusting the weight
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matrix, W, and the bias vector, b, respectively. The parameters of the fully-
connected DSL are computed by the following equation:

θ̂(x) = (Ŵ, b̂) = (SW � W,Sb � b) (2)

The limitation of the DSL is the increased number of parameters and the training
time due to the scaling network as a function of the dimension of z and the total
number of parameters to be scaled.
Optimization. The optimization process consists of two phases. Firstly, the
warm-up period is performed and the model is optimized similarly to a neural
network that is conventionally-parameterized, i.e. the scaling network is not
included in the model and θ̂(x) = θc is used instead of Eq. 1. The warm-up
period allows to obtain a better initialization of the conventional parameters
(θc) prior to optimizing the scaling network. After a predefined number of T
epochs, the scaling network is added to the model and its optimization starts as
well. The optimization of the scaling network (θh) is done by gradient descent
as for any other parameter since the scaling network is a differentiable neural
network and the scaling operator is the product operator.

We next move from a single layer to introducing a novel Deep CCA model,
whose transformation functions are parameterized by input-dependent param-
eters. Let x1 ∈ R

n1 and x2 ∈ R
n2 be random vectors of two views. The d-

dimensional projections of the first and second views are computed by the trans-
formation functions f∗

1 : Rn1 → R
d and f∗

2 : Rn2 → R
d, respectively. Each trans-

formation function f∗
j consists of a neural network feature extractor (fj) followed

by a projection matrix (Aj), as will be detailed next. In our method, the last
layer of each feature extractor is modelled by a DSL, making them parameterized
by input-dependent parameters.

Formally, denote the mapping function represented by the first stage of the
feature extractor fj , i.e. without the final DSL, by f̃j and its conventional static
parameters by θ̃c

j . The output of the first stage of the feature extractor of the
jth view for the input xj is denoted by zj(xj) = f̃j(xj ; θ̃c

j).
The DSL scaling networks h1 and h2 with the conventional static parameters

θh
1 and θh

2 are defined for the first and second views, respectively. In addition,
the mapping function of the DSL of fj and its conventional static parameters
are denoted by gj and θc

j , respectively. The scaling network hj scales the corre-
sponding conventional parameters θc

j according to Eq. 1, resulting in the scaled
parameters θ̂j(xj). In total, the extracted features of the jth view are computed
by fj(xj ; Θ̂j(xj)) = gj

(
zj ; θ̂j(xj)

)
, where the total parameterization is denoted

by Θ̂j(xj) =
{
θ̃c
j , θ̂j(xj)

}
and zj was omitted for a convenient notation. Finally,

the total projection of the jth view to the shared space is computed by projecting
the extracted features by Aj as follows:

f∗
j (xj ; Θ̂j(xj)) = A�

j fj(xj ; Θ̂j(xj)) (3)

The projection matrices, A1 and A2, ensure that the projected vectors satisfy
the constraint that all projections of the same domain are uncorrelated.
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We present following extension of the Deep CCA optimization problem, which
includes transformation functions with dynamically-scaled parameterization:

argmax
{Θ c

j ,θ
h
j ,Aj}2

j=1

tr

(

cov
(
f∗
1 (x1; Θ̂1(x1)), f∗

2 (x2; Θ̂2(x2))
)
)

s.t.

cov
(
f∗
1

(
x1; Θ̂1(x1)

)
, f∗

1

(
x1; Θ̂1(x1)

))
= I

cov
(
f∗
2

(
x2; Θ̂2(x2)

)
, f∗

2

(
x2; Θ̂2(x2)

))
= I

(4)

where tr is the trace operator and cov is the computation of the covariance
matrix. The conventional static parameters of the entire fj network, without the
parameters of the scaling network, are denoted by Θc

j = {θ̃c
j ,θ

c
j}.

Optimization. For training the Dynamically-Scaled Deep CCA, we follow the
optimization process of the original Deep CCA [2], but with our extended formu-
lation of dynamically scaled transformation functions, as described next. Sup-
pose a set of paired instances of the two views is given, i.e. {(xi

1,x
i
2)}Ni=1, where

xi
1 ∈ R

n1 and xi
2 ∈ R

n2 . The obtained extracted features of the views are denoted
by {f1(xi

1; Θ̂1(xi
1))}Ni=1 and {f2(xi

2; Θ̂2(xi
2))}Ni=1, respectively. These projections

are normalized to have a zero mean with respect to averaging across the sam-
ple index i, i.e. f̄j(xi

j ; Θ̂j(xi
j)) = fj(xi

j ; Θ̂j(xi
j)) − 1

N

∑N
n=1 fj(x

n
j ; Θ̂j(xn

j )). Let
F̄1 ∈ R

d×N and F̄2 ∈ R
d×N be matrices, whose columns are {f̄1(xi

1; Θ̂1(xi
1))}Ni=1

and {f̄2(xi
2; Θ̂2(xi

2))}Ni=1 respectively.
The estimated cross-covariance matrix of the extracted features of each

view is computed by Σ1,2 = 1
N−1 F̄1F̄T

2 . Similarly, define the estimated auto-
covariance matrices of each view by Σ1,1 = 1

N−1 F̄1F̄T
1 + r1I and Σ2,2 =

1
N−1 F̄2F̄T

2 + r2I, where r1 > 0 and r2 > 0 are fixed hyperparameters used
to ensure that Σ1,1 and Σ2,2 are positive definite. The optimization problem
from Eq. 4 in terms of the estimated covariance matrices becomes as follows:

argmax
{Θ c

j ,θ
h
j ,Aj}2

j=1

tr(A�
1 Σ1,2A2)

s.t. A�
1 Σ1,1A1 = I, A�

2 Σ2,2A2 = I
(5)

Let Ψ = Σ
−1/2
1,1 Σ1,2Σ

−1/2
2,2 and let {εk}dk=1 be the set of the top d singular

values of the matrix Ψ . In order to find the optimal parameters of the feature
extractors in Eq. 5, we minimize the same loss used in the original Deep CCA
formulation [2], given by

Ldcca = −
d∑

k=1

εk (6)

The Deep CCA loss can be optimized effectively by a gradient descent optimizer
on sufficiently-large mini-batches [22,23], using the gradients that are detailed in
[2]. We apply our suggested two-stage optimization scheme. The first stage is the
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warm-up period, for which our model consists of only conventional parameters
(θc

1 and θc
2). In this stage, these parameters are optimized by minimizing the

Deep CCA loss (Eq. 6) using a gradient descent optimizer. After a predefined
number T of training iterations, the scaling networks (h1 and h2) are added to
the model in order to scale the conventional parameters. The learnable parame-
ters of the scaling networks (θh

1 and θh
2 ) are optimized simultaneously with the

conventional parameters in order to minimize the same loss (Eq. 6).
The optimal projection matrices, A1 and A2, are computed only after opti-

mizing the feature extractors, by A1 = Σ
−1/2
1,1 U and A2 = Σ

−1/2
2,2 V, where the

matrices U and V consist of the left and right singular vectors of Ψ , which
correspond to {εk}dk=1.

Finally, we use dynamic scaling for the purpose of improving a CCA-based
retrieval and present a dynamically-scaled variant of the Ranking-CCA model [7],
which was specifically designed for the cross-modal retrieval task. A successful
cross-modality retrieval model has to be able to distinguish well enough between
mismatched samples. For this purpose, we propose to input the scaling networks
of the DSL with the concatenation of both z and the original raw input to the
network, x. The additional input is able to add more context for learning how to
dynamically scale the parameters, such that the resulting embedding vectors are
distinguishable. In particular, h(z(x);θh) in Eq. 1 is replaced by h([z(x),x];θh).
Let f∗

1 and f∗
2 be the dynamically-scaled transformation functions for the first

and second views, respectively, as denoted in Eq. 3.
Following the original Ranking-CCA, the feature extractors and the pro-

jection matrices are not trained separately as done in Deep CCA, but they are
trained concurrently at each training iteration. In particular, for each mini-batch
of training samples, the projection matrices are explicitly computed as described
above. In addition, instead of minimizing the Deep CCA loss Ldcca for optimizing
the feature extractors, [7] suggests to optimize the entire architecture by end-
to-end minimization of the pairwise ranking loss. This loss is tailored for the
cross-modality retrieval task, by encouraging matching samples to be closer in
the embedding space than mismatching samples. Each projection matrix serves
as a differnetiable linear layer on top of the feature extractors and allows back-
propagation of the gradients of the optimized loss to the previous layers. The
pairwise ranking loss is computed as follows:

∑

i,j �=i

1
(
m − s

(
f∗
1 (xi

1), f
∗
2 (xi

2)
)

+ s
(
f∗
1 (xi

1), f
∗
2 (xj

2)
))

(7)

where s is a scoring function of two input vectors, e.g. the cosine similarity, and
1(u) = max(0, u). The hyperparameter m is the margin. Summing over j is done
across all mismatching samples of xi

1 within the batch. A symmetric pairwise
loss, is defined by switching each notation of 1 by 2 in Eq. 7, and vice versa. The
parameterization is omitted in Eq. 7 in order to simplify the notations, but both
f∗
1 and f∗

2 are dynamically-scaled in contrast to the original formulation.
For a given source instance of one view and a set of target instances of the

other view, all instances are projected using the corresponding f∗
j . The k closest
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projected target samples to the projected source sample in terms of the cosine-
distance, are chosen as the top-k suggestions by the model.

3 Experiments

In order to evaluate the contribution of dynamic scaling, we perform two sets
of experiments. One is focused on the total canonical correlation score, which
is often used in the CCA literature. The second set focuses on the retrieval
application.

Following the CCA literature, the neural networks consist of fully-connected
layers. The number of layers and their widths are detailed in the supplementary
material, where we follow [24] for MNIST and XRMB. For a given dataset, we
train all neural network-based transformation functions with the same architec-
ture for the same number of training epochs, after being initialized by the same
seed. For a fair comparison, models that do not require a two-phase optimization
process which includes a warm-up period, are trained for a number of iterations
that is equal to the total number of iterations of models that do require two opti-
mization phases. After each training epoch, the loss of the current checkpoint of
the model is computed. The learnable parameters that achieve the lowest loss
on the validation set are chosen as the parameters of the model. The hyperpa-
rameters of each model are tuned by evaluating, on the validation set, the total
canonical correlation and recall measurements for the total canonical correla-
tion and retrieval experiments, respectively. Regarding our proposed DS-DCCA
and DS-Ranking CCA, we model the conventionally static layers of the mapping
functions with neural networks, which are identical to the networks modelling
the mapping functions in the network-based baselines. The scaling networks are
fully connected layers followed by a batch normalization and a ReLU activation
function. See supplementary material for more details in https://tomerfr.github.
io/DynamicallyScaledDeepCCA/supplementary.pdf.

3.1 Total Canonical Correlation

We first evaluate our Dynamically-Scaled Deep CCA (DS-DCCA) model with
respect to the total canonical correlation score on the common benchmarks of the
CCA literature and compare it with several CCA-based models. These exper-
iments directly test the performance of the model with respect to the main
objective of the CCA formulation.
Baselines. We compare our proposed DS-DCCA model to well-known CCA-
based models from the literature. In particular, methods modeled by classical
approaches with no neural networks: (1) regularized CCA [20], (2) FKCCA [16],
(3) NKCCA [16], (4) NCCA [17]. In addition, we compare our method to CCA
methods, which are modelled by neural-networks: (5) DCCA [2], (6) DCCAE
[23], (7) Soft-CCA [4], (8) Soft-HGR [21], (9) �0-CCA [15].
Datasets. Three datasets were used for evaluation: MNIST, Wisconsin X-Ray
Microbeam (XRMB), and Flickr8k MNIST [14] consists of 28 × 28 grayscale
images of handwritten digits. We employ a variant of MNIST that is used in the

https://tomerfr.github.io/DynamicallyScaledDeepCCA/supplementary.pdf
https://tomerfr.github.io/DynamicallyScaledDeepCCA/supplementary.pdf
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Table 1. Total correlation of top d canonical components. Means and standard devi-
ations of the test sets obtained in k-folds cross validation are reported, as well as the
p-value computed via a paired t-test vs. our DS-DCCA.

Model MNIST XRMB Flickr8k

MEAN±STD P-VALUE MEAN±STD P-VALUE MEAN±STD P-VALUE

Up Bound (d) 50.00±0.00 - 112.00±0.00 - 128.00 ± 0.00 -

CCA 28.88 ± 0.27 1.76E-12 15.88 ± 0.07 3.34E-13 41.58 ± 0.61 2.07E-13

FKCCA 41.71 ± 0.07 1.78E-12 95.45 ± 0.18 1.04E-09 39.24 ± 0.60 7.31E-13

NKCCA 45.10 ± 0.04 6.45E-11 103.49 ± 0.14 1.10E-08 68.49 ± 1.00 4.31E-11

DCCA 46.76 ± 0.03 2.18E-08 108.73 ± 0.10 1.01E-07 67.65 ± 1.28 2.60E-10

DCCAE 46.75 ± 0.02 1.07E-08 108.71 ± 0.09 3.17E-08 67.75 ± 1.18 1.29E-10

NCCA 40.98 ± 0.12 1.37E-11 107.57 ± 0.18 5.11E-07 57.47 ± 4.07 1.27E-07

Soft-CCA 44.55 ± 0.18 1.38E-08 84.85 ± 1.43 2.50E-06 60.55 ± 1.05 5.92E-11

Soft-HGR 46.86 ± 0.04 1.54E-07 106.12 ± 0.11 5.68E-08 54.41 ± 4.35 1.42E-07

�0-CCA 47.17 ± 0.03 3.13E-06 108.72 ± 0.11 1.99E-07 72.83 ± 1.11 1.08E-09

DS-DCCA 47.50 ± 0.03 - 110.88 ± 0.06 - 86.06 ± 1.28 –

Table 2. Ablation study - The total correlation (TC) is reported as well as the percent
of the remaining gap to the upper bound, which is improved by the full configuration
of our DS-DCCA.

Dataset Upper
Bound

DCCA DS-DCCA

Original Wide 2 Wide
1&2

Global
Scale

Scaling
Out-
puts

w/o θc No
Warm-up

Full
Config.

MNIST TC 50.00 46.71 46.90 46.86 46.70 47.22 47.42 47.36 47.56

% - 26 21 22 26 12 5 8 -

XRMB TC 112.00 108.69 109.67 109.29 108.63 110.12 110.78 110.47 110.84

% - 65 50 57 66 39 5 24 -

Flickr8k TC 128.00 67.51 76.74 76.15 67.65 79.11 80.25 80.65 85.57

% - 30 17 18 30 13 11 10 -

CCA literature [3,4], which defines the two different views of a given image to
be its left and right halves, respectively. [3] splits the dataset to 50k/10k/10k
for training/validating/testing. The dimension of the projections is selected to
be d = 50 as used in the CCA literature. XRMB [25] consists of simultaneously
recorded speech (112d) and articulatory measurements (273d). [16] splits the
dataset to 30k/10k/10k for training/validating/testing. The dimension of the
projections is selected to be d = 112 as used in the CCA literature. Flickr8k [13]
is a dataset consisting of 8,000 images from Flickr.com and five textual captions
per each image. We encode each image to a 2048d vector by the penultimate
layer of ResNet50 [12] pre-trained on ImageNet [6]. After removing stop-words
and applying the SpaCy lemmatization, each set of five captions is embedded to
a single 300d vector by mean-pooling the Word2Vec [18] embedding vectors.
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Table 3. Recall rates for Flickr8k, Flickr30k and IAPR TC-12. Bold and underlined
results are first and second places, respectively.

Model
IMG→TXT TXT→IMG

R1 R5 R10 R1 R5 R10

Flickr8k:

CCA 27.3 57.0 68.3 24.5 55.5 68.4

FKCCA 17.4 42.9 56.5 17.3 43.6 55.4

NKCCA 27.0 58.5 73.8 26.5 57.8 71.2

DCCA 31.8 65.7 77.7 29.3 62.8 76.1

DCCAE 33.6 65.9 76.6 30.0 63.0 76.0

NCCA 8.0 25.5 34.6 8.5 24.3 34.7

Soft-CCA 28.8 61.6 73.5 27.1 60.1 72.3

Soft-HGR 25.4 55.1 69.0 21.5 54.3 68.8

�0-CCA 30.7 62.4 76.7 28.5 61.2 74.9

RCCA 33.6 66.9 78.0 31.9 64.6 78.6

DSRCCA

z only 33.7 68.1 79.9 33.1 67.1 79.5

x only 33.9 69.8 79.8 34.7 66.9 80.0

z & x 35.3 70.7 82.7 34.4 68.3 82.3

Model
IMG→TXT TXT→IMG

R1 R5 R10 R1 R5 R10

Flickr30k:

RCCA 40.2 72.8 83.2 40.0 70.7 82.7

DSRCCA

z only 41.3 74.2 82.8 40.7 73.4 84.7

x only 44.1 74.0 84.1 43.9 73.1 85.4

z & x 43.9 75.0 84.5 44.2 73.4 84.2

IAPR TC12:

RCCA 48.6 81.1 90.0 49.0 80.5 89.1

DSRCCA

z only 48.9 80.3 90.2 49.5 80.3 89.0

x only 49.1 82.7 90.2 51.1 81.3 91.1

z & x 49.6 82.7 91.4 50.0 82.0 90.9

Total Canonical Correlation Results. The results for the total correlation
scores are presented in Table 1. Each model is trained on the training set to
learn a d-dimensional representation of each view. Following prior works [2,17],
another regularized linear CCA [20] is trained on the projected training samples
of each view, which ensures that the top d canonical components of each repre-
sentation are extracted. The hyperparameters of each model are selected to be
those that achieve the best total canonical correlation on the validation set. The
total correlation is measured by summing the correlation coefficients between
each pair of corresponding canonical components. Each model with its best per-
fomring hyperparameters is then evaluated using k-fold cross validation, which
preserves the above mentioned subset ratios, i.e. 7, 5 and 8 folds for MNIST,
XRMB and Flickr8k, respectively. For example, for each testing fold out of the
7 folds for MNIST, the remaining 6 folds are randomly split to 50k and 10k
samples for training and validating.

For each model and each dataset, we report in Table 1 the mean and stan-
dard deviation of the model’s results on the test set after performing k-fold
cross validation. In addition, we report for each baseline the p-values computed
via a paired t-test vs. our DS-DCCA. The mentioned upper bound of the total
canonical correlation for each case is equal to the total number of canonical com-
ponents (d). Evidently, the proposed DS-DCCA learns canonical components of
the input views, which are more correlated on average in comparison to both
classical and modern CCA-based models on the compared benchmarks. In par-
ticular, DS-DCCA improves the second best result by 11.7%, 65.9% and 24.0%
of the remaining gap to the upper bound for MNIST, XRMB and Flickr8k,
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respectively. Moreover, the very low p-values emphasize that the leading results
of our DS-DCCA are statistically significant.
Ablation. We compare our proposed DS-DCCA model (full config.) to: (1)
The original variant of DCCA, (2) DCCA with a wider middle layer and (3)
DCCA with wider first and second layers, reaching a comparable number of
added parameters as the scaling networks, (4) DCCA, whose parameters of the
last layer for each view are scaled by learnable scaling factors, which are indepen-
dent of the inputs and remain static after the training (DCCA + Global Scaling).
(5) A dynamically-scaled DCCA with a similar capacity to our proposed model,
but its scaling networks scale the outputs of the last layer instead of its param-
eters (Scaling outputs), (6) DCCA model, whose last layer is parameterized by
a hypernetwork, i.e. this layer is not parameterized by conventional parameters
(θc) scaled by another network. Instead, the parameters are generated directly
by the outputs of another network for the input z (w/o θc). (7) DS-DCCA,
whose scaling networks were trained from the beginning of the process without
a warm-up period (No warm-up).

The results are provided in Table 2. For each scenario, we report the total
correlation, obtained on a single test set, and the percent of the remaining gap to
the upper bound, which is improved by the full configuration of our DS-DCCA.
As can be seen, the full configuration of our model, outperforms the compared
variants. Our added scaling networks outperform the addition of neurons to each
of the first layers of DCCA for reaching a comparable number of parameters. The
added neurons have static and input-independent parameters, in contrast to our
dynamically-scaled ones. The global scacling struggles to improve the original
DCCA and even worsens the results on some datasets. These learnable scaling
factors, which are independent of the inputs, are found not beneficial and make
the training process more difficult. Similarly, our approach of dynamically scaling
the parameters of the transformation functions is superior than dynamically
scaling only their outputs. We note that scaling the parameters provide many
more degrees of freedom than scaling the output vector. It is also evident that the
warmup-period improves the results since it allows to initialize the conventional
static parameters better, prior to optimizing the scaling networks. The lower
result of the full hypernetwork model (no θc) also indicates that the scaling
requires a network with weights that are not dynamic.

3.2 Cross-Modality Retrieval

We evaluate our dynamically-scaled variant of Ranking CCA (DS-R. CCA) in a
cross-modality retrieval task on several image-text datasets. Given one sample
of a modality, the goal of the cross-modality retrieval task is to retrieve the
matching sample of the other modality from a set of samples. We evaluate the
models on image annotation (IMG → TXT ), for which an image is given and the
matching textual caption should be retrieved, and vice versa (TXT → IMG),
where a textual caption is given and the matching image is to be found. The
performance is measured by recall statistics: the score Rk is computed as the
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percent of source samples for which the model retrieved the correct target sample
as one of its top k suggestions from the total number of source samples.
Datasets. Three datasets were used for evaluating the retrieval task: (1)
Flickr8k, (2) Flickr30k and (3) IAPR TC-12. All datasets were pre-processed
and encoded to embedding vectors as described for Flickr8k in the total canon-
ical correlation experiment. The projections’ dimension of each view is selected
to be d = 128 for all datasets. Flickr8k [13] was split as described in the previ-
ous section. Flickr30k [27] is an extended version of the Flickr8k dataset and
consists of 31,784 images from Flickr.com. Following [26], random 1k and 1k
samples are selected for validation and testing, respectively. IAPR TC-12 [8]
contains 20k images and one detailed caption per image. Following [7], random
2k and 1k samples are selected for validation and testing, respectively.
Baselines. For Flickr8k, the full configuration of our dynamically-scaled vari-
ant of Ranking CCA (DS-R.CCA) is compared to all CCA-based baselines from
the total canonical correlation experiment. In addition, our variant is compared
to the original non-dynamically scaled variant of Ranking CCA (R. CCA) [7],
which was proposed specifically to learn representations for the purpose of the
cross-modality retrieval task. For Flickr30k and IAPR TC-12, our model is com-
pared to Ranking CCA (R. CCA). In order to demonstrate the effectiveness of
inputting the concatenation of both z and x to the scaling networks, we compare
this full configuration to variants of our DS-R.CCA, whose scaling networks are
conditioned only on either z or x.
Retrieval Results. The recall results in the cross-modality retrival task on
Flickr8k, Flickr30k and IAPR TC-12 are presented in Table 3, where the best
performing model and the second one are in bold and underlined, respectively.
For each measurement of Rk, the reported results are the Rk obtained on the test
set by the hyperparameters, which achieved the best Rk on the validation set.
As expected, Ranking-CCA outperforms all CCA-based models, which are not
designed specifically for the retrieval task. Evidently, the full configuration of our
DS-R.CCA (z and x) achieves the best recall retrieval rates in 13 measurements
out of 18, and achieves the second best values in 4 out of the remaining 5
measurements. Evidently, both the embedding space of the deep CCA method
(z) and the input (x) have relevancy to the scales. We note that the combination
of the two can be seen as a form of a skip connection. The second best performing
model among the compared ones is the x-only variant of our DS-R.CCA, which
emphasizes the importance of conditioning the dynamically scaled parameters
on the raw inputs for learning distinguishable embedding vectors.

4 Conclusion

CCA methods learn orthogonal directions or, more generally, non-linear scalar
mappings, in each of the views. In this work, we show the advantage of having
computed weights, which vary based on the input pair, for scaling these scalar
features so that matching between the two views is maximized. The method is
based on a new type of layer that is applied as the last layer of the deep CCA
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method and that receives the activations of the previous layer. Our experiments
demonstrate a clear advantage with regards to the total correlation score. The
per-class behavior of the scales, as depicted in the visualization on MNIST,
emphasizes the advantage of our method in cases where the input presents class-
based variability that requires the ability to adjust the transformation function.
Moreover, our approach is suited for the cross-modality retrieval task, since it
adjusts the parameterization of the transformation functions conditioned on the
given query. Correspondingly, our method achieves better recall rates for for the
cross-modality retrieval task.
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Abstract. With the widespread popularity of user-generated short
videos, it becomes increasingly challenging for content creators to
promote their content to potential viewers. Automatically generating
appealing titles and covers for short videos can help grab viewers’ atten-
tion. Existing studies on video captioning mostly focus on generating fac-
tual descriptions of actions, which do not conform to video titles intended
for catching viewer attention. Furthermore, research for cover selection
based on multimodal information is sparse. These problems motivate the
need for tailored methods to specifically support the joint task of short
video title generation and cover selection (TG-CS) as well as the demand
for creating corresponding datasets to support the studies. In this paper,
we first collect and present a real-world dataset named Short Video Title
Generation (SVTG) that contains videos with appealing titles and cov-
ers. We then propose a Title generation and Cover selection with atten-
tion Refinement (TCR) method for TG-CS. The refinement procedure
progressively selects high-quality samples and highly relevant frames and
text tokens within each sample to refine model training. Extensive exper-
iments show that our TCR method is superior to various existing video
captioning methods in generating titles and is able to select better covers
for noisy real-world short videos.

Keywords: Title generation · Cover selection · Multimodal learning

1 Introduction

Video titles and covers are two critical elements for capturing users’ attention
when using an app (e.g., TikTok). However, many short videos do not have well-
edited titles beyond plain descriptions or a cover image other than the first frame.
The sheer volume of daily video uploads further makes it hard for the platform
to edit video covers in a timely manner. Therefore, there is an apparent demand
for using artificial intelligence to improve the quality of video titling and cover
image selection, especially with the objective of increasing user engagement.

Various video description generation techniques have been studied and devel-
oped recently, including video captioning [5,15], video-based summarization
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[6,7], etc. They are mainly designed for objectively describing actions and inter-
actions of objects in a video. For example, for a video of a woman doing yoga,
a generated caption is usually “a woman is exercising while her cat keeps dis-
turbing her”, which is correct but unvarnished. However, a video uploader would
rather title the scene as “My cat sees me as his toy” in a hilarious way in order
to attract viewers’ attention. Therefore, there is still a gap in the literature to
generate appealing and human-like video titles. However, a lack of open-sourced
short video datasets from real-world social media platforms hinders the devel-
opment of techniques for human-like video title generation. Furthermore, little
work has been done on video cover selection [12], which is another challenge,
again due to the lack of video cover selection dataset.

To address the issues mentioned above, we collect a Short Video Title Gener-
ation (SVTG) dataset that consists of 8,652 short video samples with a human-
edited appealing title and a visual cover selected by the original content creator.
To the best of our knowledge, SVTG is the first publicly available dataset that
is designed for joint video title generation and cover selection (TG-CS) on real-
world short videos, especially with a purpose of boosting click-throughs in mind
rather than plainly describing the scene.

Furthermore, we propose a novel video Title generation and Cover selection
with Refinement (TCR) approach that integrates a title-cover generator with
cross-attention-based refinement learning for TG-CS task based on the multi-
modal information in short videos. Specifically, we use a multimodal title-cover
generator to capture the temporal dependency between modalities. In order to
handle noisy modality data extracted from real-life short videos, we further pro-
pose a refinement learning strategy to refine model training.

Our main contributions are summarized as follows: (1) We construct a new
short video dataset, SVTG, which can facilitate research on short video title
generation beyond generating the unvarnished factual description of objects, and
research on video cover selection based on multimodal information. Our objective
is to generate eye-catching video titles and covers, with the goal of engaging
online user attention; (2) We propose the TCR method that can simultaneously
generate appealing titles and covers by fully capturing the dependency between
modalities and refinement training; (3) We evaluate TCR on the SVTG dataset
as well as on the public How2 dataset. TCR has demonstrated its effectiveness
on title generation across the two datasets and on cover selection under SVTG.
We open-source the dataset and code along with supplementary materials to
facilitate future research on generating titles and selecting covers for real-world
social media videos1.

2 Related Work

2.1 Text Generation

Text generation mainly includes text summarization and video captioning. The
former aims to generate a short summary for a long document while preserv-
1 https://github.com/PipiZong/TCR.git.

https://github.com/PipiZong/TCR.git
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Table 1. The statistics of the SVTG dataset.

#Videos #Categories #Authors #Sentences Vocab

Train 8,052 37 3,478 155,826 100,361

Valid 200 25 172 3,802 6,770

Test 400 27 288 7,352 10,494

All 8,652 37 3,618 166,980 105,487

ing the main idea of the document. The latter focuses on describing the visual
content of a video using condensed text.

Conventional text summarization utilizes a single text modality to generate
summaries [10,16]. Recent works [6,7] show promising results on summarization
with the help of other modalities, e.g., the visual modality. For instance, Liu et
al. [9] propose both RNN-based and Transformer-based encoder-decoder models
with the input of videos and its ground-truth/ASR transcripts. Encoder-decoder
networks are widely used in video captioning where the encoder converts the
input into high-level contextual representations before the decoder takes the
representations and generates words as the caption. For example, Tan et al.
[15] propose a RNN-based encoder-decoder model with three visual reasoning
modules to generate video captions.

The above methods perform well on generating factual descriptions of a video
scene given the video and the corresponding well-edited transcripts, yet fail when
they intend to generate titles beyond factual descriptions based on noisy mul-
timodal information. In contrast, our method can handle noisy modality data
and capture the subtle relations between modalities, thus being able to generate
both factual descriptions and appealing titles.

2.2 Cover Selection

Cover selection aims to find a representative frame that conveys the main idea
of a video. Song et al. [14] propose a thumbnail selection system using clus-
tering methods. Ren et al. [12] select the best frame based on the prediction
scores. They utilize only the visual modality, which is insufficient for real-world
short videos where the keyframe should be determined by multiple modalities.
Though Li et al. [7] propose VMSMO, to train a cover selection model based on
multimodal information, i.e., news video and news article pairs, their model’s
performance is highly dependent on the quality of news articles that are well-
edited by humans. However, the SVTG dataset does not provide such manually-
created articles. Therefore, it is inappropriate to apply their method to our task
for comparison. Moreover, we extract covers using a unified model instead of an
independent cover selection model, which is more straightforward.
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Fig. 1. Comparison between (a) SVTG data example and (b) Other benchmark dataset
examples. SVTG example has the continuous frames on the top, title on the middle,
and transcripts extracted by ASR/OCR on the bottom. Other examples show their
ground truths (GT) and user-generated descriptions.

3 The SVTG Dataset

To the best of our knowledge, SVTG is the first publicly available Chinese dataset
that designed for the joint TG-CS for short videos. We regard a title as appealing
if it expresses the video maker’s desire to attract viewers with some sentiment
words in addition to describing the factual information (e.g., the interactions
between objects). See Supplementary A for SVTG data collection. Table 1 shows
the statistics of our dataset.

To show the uniqueness of SVTG, we compare it with four other bench-
mark datasets, as shown in Fig. 1. Compared with these datasets, SVTG has
three unique characteristics. First, SVTG videos have more appealing titles,
which can promote the study of deep learning models to generate short video
titles beyond plain factual descriptions. As we observe in Fig. 1(a), SVTG videos
usually contain strong sentiment words (e.g., “must” and “nutritive”) to draw
viewers’ attention except simply describing the video scene. In contrast, from
Fig. 1(b), we can see that the captions, summaries, and titles in other bench-
mark datasets usually emphasize on the actions of objects (e.g., “stand”) and
the interaction between objects (e.g., “a man using a bar”). These descriptions
tend to be unvarnished and objective without any sentiments. If we annotated
the video from Fig. 1(a) in the way as the other datasets do, the title would
sound like “pour milk and add fruit to make cake” and would be less attractive
to online viewers.

Second, SVTG is more challenging for video title generation, and closer to
real-life videos. As demonstrated in Fig. 1(b), the existing benchmark datasets
contain human-annotated video descriptions, subtitles or articles as the text
modality. However, it is expensive or even infeasible to have such human-
annotated video descriptions in real-world applications. In real-world settings,
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Position Encoding
Segment Encoding

Decoder

y2 ym

Text Frames Pred

Te
xt

Fr
am

es
Pr
ed

Text

Pr
ed

Tokenizer

ASR OCR

Frame Title

Video

Text
Video

Pr
ed

Generate attention maps

Select text/frames
Select samples

Refined 
FrameRefined TextTitle

Fig. 2. The overall architecture of the proposed TCR method including data prepro-
cessing in the black box, a title-cover generator in the blue dotted box, and a mul-
timodal cross-attention-based refinement module in the orange dotted box. “Title”
means the ground truth title. “Pred” in the attention map represents the predicted
title. And “[M]” in the tokenized sequence stands for a masked token. (Color figure
online)

when a content creator uploads a short video to the platform, the platform needs
to select a cover and generate a title based on the video itself. All information in
SVTG comes from the video itself without any other human annotations. Thus
SVTG is closer to real-world applications. However, ASR- and OCR-detected
text can be highly noisy in contrast to human-annotated summaries or descrip-
tions, making SVTG more challenging than other datasets.

Third, to our best knowledge, SVTG is the first dataset that includes the
video covers for facilitating the joint TG-CS on short videos. We argue that
the combination of two tasks, title generation and cover selection, is crucial for
attracting viewers’ attention and thus should not be separated for consideration.
Furthermore, having a unified dataset encourages the model to learn the shared
connection of this joint task. See Supplementary B for more details about these
benchmark datasets.

4 Method

We propose a self-attentive method named TCR for the joint TG-CS under the
SVTG dataset. Figure 2 shows the structure of the TCR method. It consists
of a multimodal title-cover generator and a refinement module. The generator
generates titles and extracts covers by fully exploiting the dependency between
modalities. The refinement module helps refine model training by selecting high-
quality samples and highly relevant tokens/frames within each sample. We will
explain the TCR method in detail below.

4.1 Title Generation and Cover Selection

Since the frames and the text inputs are both temporally ordered, we can directly
combine them to explicitly learn the dependency between all pairs of text tokens
and frames. We first preprocess the training data into the following formats:
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– Text Representation: given the transcripts extracted by ASR and OCR from
a video, the combined ASR and OCR text is tokenized into a sequence of
WordPieces [17], i.e., T = (t1, t2, ..., tn), where n is the number of tokens in
the sequence.

– Title Representation: the title is represented as a sequence of tokens Y =
(y1, y2, ..., ym), where m denotes the number of tokens in Y .

– Video Representation: given a sequence of video frames of length L, we feed it
into a pre-trained ResNet-101 2D convolutional neural network [3] to obtain
visual features V = {vl}Ll=1 ∈ R

L×dv , where dv is the feature dimension of
the pretrained ResNet model.

The title-cover generator is composed of three embedding layers, 12-layer
transformer encoders, and a language modeling (LM) head on top as the decoder.
On the one hand, we regard the frames as L virtual tokens {vi}Li=1 and concate-
nate them with text tokens T to form a new sequence of length L + n. We
also add a special token [CLS] at the start of the sequence and another special
token [SEP] at the sequence end. These tokens, including Y, are embedded by
three embedding layers that are trainable: token-level embedding, position-level
embedding, and segment-level embedding.

On the other hand, we feed the frame features V into a fully connected (FC)
layer to project it into the same lower-dimensional space as the text token embed-
dings and regard the projected frame features as the frame token embeddings.
To establish a connection between the text tokens and frames so that they could
attend to each other, we combine their respective embeddings by simply replac-
ing the virtual token embeddings with the frame embeddings. Therefore, the final
representations for text tokens and video frames can be obtained by summing
up their corresponding three embeddings. We then feed these representations as
the input to the transformer encoders.

Assume the input is XV T ∈ R
L′×dh where dh is the hidden size of our

model, the output of the i -th transformer encoder is denoted as Oi ∈ R
L′×dh .

Each encoder aggregates the output of the previous encoder using multiple self-
attention heads, thus Oi is computed by:

Oi =

{
XV T , i = 0;
Encoderi(Oi−1), i > 0.

In this way, we can obtain visual-language fusion representations at different
encoder layers. Let Ai denotes the attention score of each head in the i -th encoder.

Ai = Dropout(Softmax(
QiK

T
i√

dh/12
+ Attention Mask)),

Qi, Ki = Oi−1WQi
, Oi−1WKi

.

(1)

Q and K are the queries and keys linearly transformed from the input of each
encoder. Attention Mask ∈ R

L′×L′
(elements ∈ {0,−∞}) is used to make sure

the target token to be generated only attending to the leftward information
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including itself, the generated tokens, frames and text tokens [2]. The LM head
consists of two dense layers and a layer normalization (LN) layer in between to
calculate the vocabulary distribution for decoding. Once the generator is well-
trained, we select a frame with the highest attention score obtained in Eq. 1 as
the video cover.

4.2 Attention-Based Model Refinement

Considering redundant noise may exist in the ASR/OCR transcripts and con-
tinuous frames, noise filtering is intuitive to help improve the quality of the
generated titles. To this end, we propose an attention-based refinement module,
which will automatically select not only the key parts of the multimodal input
within each sample but also select higher-quality samples. Moreover, the module
can interact with the above generator to find the best combination of different
input tokens for progressively refining the generator.

Token-Level Refinement. Given a title-cover generator, we could first gen-
erate titles for the training data. We then acquire the cross-attention scores
between the generated titles and the inputs, i.e., the ASR/OCR tokens and
the frame tokens, through Eq. 1. We assume the tokens that the generated titles
attend to a lot are critical for building a generator with good performance. There-
fore, we extract them as refined sentences/frames. For sentence refinement, we
first locate the sentence that has the highest attention score with each generated
token. Then, the top u sentences which the generated title attends to frequently
are naturally selected as the key sentences.

Video titles always contain some words (e.g., “alley-oop” in a basketball
game video) that frequently appear in the ASR/OCR text but are rarely related
to video frames. Therefore, we need to select the related frames at a higher
granularity than the way we select related sentences. To achieve this, we first
assign a weight ∈ [0, L] to each frame according to its attention scores with each
generated title token, then calculate the total weights for each frame. Higher
weights indicate greater contributions to title generation. We finally pick out
the top v frames with the highest weights as the refined frames or keyframes for
the video.

Sample-Level Refinement. In addition to refining the tokens within each
sample, we denoise the data by selecting higher-quality data at the sample level.
A training data will be deemed high-quality if the generated title by the generator
M is similar to its ground truth title. The similarity is computed by the Rouge
score [8].

Apparently, with refinement at both token-level and sample-level, we could
refine the title-cover generator multiple times until we get the best test results.
See the detailed refinement algorithm in Supplementary C.

5 Experimental Results

5.1 Baseline Models

We compare our proposed method with the following baseline models:



252 Y. Yu et al.

Lead-3 directly selects the first three sentences from the text as the title [10].
HSG constructs a heterogeneous graph with sentence nodes and word nodes,

then selects sentences as the summary for a document by node classification [16].
MAST is a model consists of encoder layers, a hierarchical attention layer,

and a decoder that generates a textual summary on multimodal inputs [6].
NMT is an RNN-based model [1] designed for sequence-to-sequence tasks

and modified for video description tasks.
MFN generates a summary based on video and its ASR or ground-truth

transcript through a multistage fusion model with a forget gate module to remove
the redundant information [9].

Bert2Bert contains a text BERT encoder, a video transformer encoder and
a BERT decoder, which is a popular framework used in recent video/image +
language works [4].

5.2 Implementation Details

We evaluate the above baseline models and our TCR model on the SVTG
dataset following the split criteria in Table 1. We implement our experiments using
PyTorch [11] on an NVIDIA V100 GPU. To preprocess the videos, we sample 25
frames for each video and extract visual features from these sampled frames.

Our multimodal generator is adapted from a text pretrained model architec-
ture [2]. The vocabulary size is 21,128. We use AdamW optimizer with a learning
rate of 1e− 5. Linear warmup schedule is set for the first 10% of the total train-
ing steps with linear decay. Dropout is adopted for regularization. The batch
size is set to 16, and the maximum input sequence length is set to 512. During
training, we only mask 20% of the title tokens, and the maximum number of
masked tokens is set to 20. We train up to 20 epochs with the cross-entropy
loss computed by the predicted title tokens and the ground truth tokens. The
validation set is used to select the best model with the highest mean score of the
evaluation metric. For testing, we use beam search with beam size 5 to report
the final test results. For refinement, we select the top 3 sentences/frames and
perform one iteration.

In addition, we evaluate the TCR on the publicly available How2 dataset
[13] to further validate its generation ability. The How2 dataset consists of
79,114 videos accompanied by corresponding user-generated descriptions and
summaries. It has a train set of 73,993 samples, a validation set of 2,965 sam-
ples, and a test set of 2,156 samples. Since the TCR method is designed for
handling real-world short videos with noisy multimodal information, we use the
ASR transcripts instead of the provided descriptions following the work of Liu
et al. [9] for a fair comparison.

5.3 Results

Here we first report the performance of the baseline models and our proposed
TCR for title generation. Then we show the evaluation results of cover selection.
Later, we present the ablation tests from different aspects.
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Table 2. Rouge score comparison with the baselines for SVTG.

Model R-1 R-2 R-L

Lead-3 29.44 18.40 37.35

HSG 41.06 27.45 40.59

NMT 41.20 28.74 41.91

MFN-rnn 16.64 1.47 14.36

MAST 39.73 27.42 41.00

MFN-transformer 19.24 3.99 18.40

Bert2Bert 24.84 5.75 22.58

TCR w/o Text 8.53 0.31 9.30

TCR w/o Visual 46.35 32.67 46.07

TCR 47.62 33.98 47.08

Title Generation Performance. We evaluate the quality of the generated
titles by the standard Rouge F1 matric [8] following previous works [6,7,9,10,
16]. R-1, R-2, and R-L refer to the unigram, bigram, and longest common sub-
sequence overlap with the ground truth title, respectively.

We first compare the results of our method and the baseline models on SVTG,
as listed in Table 2. We can observe from the table that TCR outperforms all the
baseline models in terms of all Rouge scores. Specifically, TCR outperforms the
best baseline model by 6.42 R-1 points, 5.24 R-2 points, and 5.17 R-L points,
indicating its superior ability to learn video titles when given noisy ASR/OCR
text and frames. Though these baseline models perform well in generating sum-
maries and captions given user-annotated text descriptions, they are incapable
of generating titles in social media language and handling noisy text informa-
tion. In contrast, TCR can generate more accurate titles by fully exploiting the
dependency between all text/frame tokens and denoised training.

Table 3. Rouge score comparison for How2.

Model R-1 R-2 R-L

S2S 48.1 28.2 43.4

FT 51.1 31.0 45.8

HA-rnn 53.9 34.2 48.7

HA-transformer 55.1 36.0 50.1

MFN-rnn 60.0 43.6 56.1

MFN-transformer 59.3 42.1 55.0

TCR 60.9 44.2 60.6

To further examine the generation ability of TCR, we apply it to a public
dataset, How2, that is designated to generate a factual summary for videos.
Table 3 presents the results on How2. We use the dataset and baseline models in
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Table 4. Evaluation scores on the selected frames and the default covers that come
with the videos.

Pictures Superior Informativeness

Our selected frames 31.5% 15.5%

Default covers 25.5% 15.5%

Cannot tell 43.0% 69.0%

the work [9] for a fair comparison. See Supplementary D for model details about
these baselines. We can observe from Table 3 that TCR outperforms the baseline
models in all Rouge scores. Notably, it outperforms the best baseline MFN-rnn
model by 4.5 R-L points. This finding again indicates that TCR is excellent
at generation both within factual descriptions (e.g., summaries in How2) and
beyond factual descriptions (e.g., titles in SVTG). Moreover, by comparing the
performance of MFN in Table 2 and Table 3, we can conclude that MFN is unable
to generalize to SVTG that is distinct from traditional video summary/caption
datasets.

Cover Selection Performance. We compare the selected cover images with
the default cover that comes with the videos by human judgments from the
following aspects : Informativeness (which picture corresponds to the topic con-
veyed by the video title), and Superior (which picture is better to be a video
cover that attracts you). See Supplementary E for more details about the human
evaluation.

The results are reported in Table 4. We can observe from the table that
participants cannot tell which one is better in most cases because the two pictures
are almost identical. Moreover, our selected covers outperform the default covers
by 23.5% in terms of Superior while they are equivalent in Informativeness,
which demonstrates the effectiveness of our method to automatically select the
cover image from a series of frames.

Ablation Studies. All ablation studies are performed on the SVTG dataset.
The last three rows in Table 2 show the ablation results on the effect of differ-
ent modalities. From this table, we can see that TCR outperforms TCR w/o
Visual and TCR w/o Text, which demonstrates that multimodal information
can benefit title generation more than a single modality. It can also be easily
observed that the text modality is dominant while the visual modality has less
contribution in title generation because ASR- and OCR-detected text usually
contains words that describe the highlights of stories in short video cultures.
Supplementary F further provides the ablation tests on the number of selected
sentences/frames and refinement iterations.

5.4 Qualitative Analysis

Figure 3 shows examples including the generated titles by baseline models and
our proposed model, as well as the cover selection comparison. The results from
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Fig. 3. Examples of (a) the generated titles by the baselines and TCR (b) the selected
frame and its default cover that comes with the video. The video title is “Kobe Bryant
pump fakes Vince Carter”.

Fig. 3(a) demonstrate that our proposed model could generate a more accurate
title than the baselines. Furthermore, as shown in Fig. 3(b), the selected frame
is better than the default cover that comes with the video since the selected
frame captures the jumping moment of the defence player while the default cover
does not. To better understand the refinement process and what our model has
learned, we also visualize the attention scores in Supplementary G.

6 Conclusion

In this paper, we first collect a real-world dataset named SVTG to specifically
support the joint TG-CS task for short videos. To our best knowledge, SVTG is
the first short video dataset that contains appealing titles instead of unvarnished
factual captions or summaries like other benchmark datasets. Then we propose
a TCR method that consists of a title-cover generator and a model refinement
module. The title-cover generator generates the title and extracts the cover image
by fully exploiting the dependency between modalities. The refinement module
further selects high-quality training samples and relevant text/frames within
each sample to refine the generator progressively. Experiments on the SVTG
dataset and the public How2 dataset show the effectiveness of the proposed
TCR method on title generation when given noisy data. Furthermore, the cover
selection evaluation results suggest that our selected covers are preferred com-
pared to the default covers. This further demonstrates the effectiveness of the
TCR method on cover selection.
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Abstract. Benefiting from the superiority of the pretraining paradigm
on large-scale multi-modal data, current cross-modal pretrained mod-
els (such as CLIP) have shown excellent performance on text-to-image
retrieval. However, the current research mainly focuses on the scenarios
with strong matching of images and texts, which is not always available
in practice. For example, in social media content or daily communica-
tion, the text is not always completely related to the image and may also
contain some irrelevant content, which introduces non-negligible noise
to text-to-image retrieval. The noisy multi-modal setting is significantly
different from the current cross-modal pretraining corpus, which may
lead to significant degradation of the retrieval performance of the gen-
eral image-text retrieval models. In this paper, we focus on the task of
noisy text-to-image retrieval and propose an iterative retrieval framework
which firstly retrieves the key-semantic information from the noisy text
with knowledge distillation, followed by retrieving the relevant image
from the image pool with the key-semantic clue. Experiments on Noisy-
MSCOCO and PhotoChat datasets confirm the superiority of the pro-
posed iterative retrieval framework in the task of noisy text-to-image
retrieval compared with the general retrieval models.

Keywords: Image-text retrieval · Knowledge distillation · Extractive
summarization

1 Introduction

The task of cross-modal image-text retrieval is to retrieve samples from one
modal with the guidance of the samples from the other modal. With the rapid
growth of the data from various modalities, cross-modal image-text retrieval has
a wide range of applications, helping users quickly locate data from a specific
modal that is relevant to the current query. In general, cross-modal image-text
retrieval consists of two sub-tasks, which are image-to-text (I2T) and text-to-
image (T2I) retrieval respectively. In this paper, we focus on T2I retrieval which
aims at retrieving the most relevant image according to the textual context.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. Kashima et al. (Eds.): PAKDD 2023, LNAI 13937, pp. 257–268, 2023.
https://doi.org/10.1007/978-3-031-33380-4_20
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As a cross-modal task, the major challenge of T2I retrieval is how to bridge
the semantic gap between different modals. To tackle that, the transformer-
based cross-modal pretraining models have been successfully applied to vari-
ous tasks. By pretraining on large-scale image-text datasets, different modalities
are encoded into a common semantic space, yielding modal-agnostic semantic
representations. CLIP [1] is one of the most representative models, the zero-
shot retrieval performance of which on the commonly-used image-text dataset
MSCOCO [12] is competitive with the finetuning performance of the previous
pretraining models.

Despite the outstanding performance of the methods based on large-scale
cross-modal pretraining, it is often overlooked that most of the current research
on T2I retrieval assumes that the query-key data is strongly correlated. Never-
theless, the image-text matching relationship may be weakly correlated in real
scenarios. For example, on social media platforms such as Twitter, people tend to
share their daily life in a combination of images and texts, where the text may
involve some content that is irrelevant to the image. As a matter of fact, the
image-text scenarios can be very noisy in practice. Figure 1 shows an example in
the PhotoChat dataset from the photo sharing task [19]. The motivation of the
photo sharing task is the popularity of photo-sharing in online chat, the goal of
which is to retrieve the corresponding image of the conversational context, most
of which is irrelevant chat. In this case, applying the CLIP model directly fails to
retrieve the correct image, as the CLIP model obviously ignores the information
of “strawberry” and “blueberry” in the dialogue.

paired image

wrongly-retrieved image

hey you know what i'm making a cake 
for the first �me?

oh yeah?

what flavor?

strawberry

blueberry

Haha sounds like it

i am so curious

awesome

i'm making a different cake that no 
one can make..

haha

I’m almost done

Wanne see my cake?

Fig. 1. An example in the PhotoChat dataset. The top right image is the image relevant
to the left dialog context, and the bottom right image is retrieved with the CLIP model.

To further analyze why the CLIP model fails to retrieve the correct image in
the above example, we conduct a simple investigation. Specifically, we construct
a simple noisy T2I scenario named Noisy-MSCOCO by injecting noise to the
dataset MSCOCO. We generate some noisy sentences according to the captions
from MSCOCO and then mix them to get the final noisy text. Figure 2 shows the
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Fig. 2. The retrieval results and the similarity between image-text pairs on Noisy-
MSCOCO given the number of noisy sentences. The results are reported in the zero-
shot setting with CLIP.

retrieval performance based on CLIP as the number of noisy sentences grows.
We also report the cosine similarity, i.e. the image-text alignment score between
the representations of the two modalities calculated by CLIP. It can be seen
that with the increasing noise, the image-text similarity between the text and
the corresponding image decreases as expected, which results in a significant
degradation in the retrieval performance. This poses an interesting problem in
the retrieval task, which is motivated to capture the relevant information from
raw data, whereas the noisy sentences are obviously harmful to the T2I retrieval
performance.

In this paper, we focus on text-to-image retrieval where the text may contain
a lot of noise, and define the problem as noisy text-to-image retrieval (NT2I).
We propose an iterative retrieval framework assisted with knowledge distilla-
tion (ItrievalKD). Essentially, to alleviate the influence of irrelevant textual con-
tent on the retrieval performance, it is necessary to extract the image-related
content from the noisy text as the key-semantic text. Unfortunately, the supervi-
sion information of key-semantic text is not available for training the extractor in
most cases. Therefore in our iterative retrieval framework, we start with exploit-
ing CLIP to obtain the key-semantic annotations, and then proceed to retrieve
the relevant image from the image pool with the key-semantic clue. Further-
more, due to the lack of image annotations during testing, we propose to adopt
knowledge distillation to distill the image-text matching knowledge from the
cross-modal model CLIP to the plain-text model BERT [3], which can be used
to obtain the key-semantic information in the testing phase. The relevant image
can then be retrieved with the key-semantic clue from the image pool.

In summary, the main contributions of the work are:

– We propose an iterative retrieval framework for the noisy T2I task, where the
text contains noise in text-to-image retrieval.
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– We adopt knowledge distillation to transfer the image-text matching knowl-
edge from the cross-modal model to the plain-text model to alleviate the lack
of image annotations in the testing stage.

– The experimental results on the Noisy-MSCOCO and PhotoChat datasets
demonstrate the superiority of the proposed method.

2 Related Work

Most early cross-modal retrieval methods adopt separate encoders to encode
images and texts respectively [18]. While being efficient, these independent
feature-encoding models usually produce sub-optimal performance due to the
lack of interactions between modals. [11] is the first attempt to consider the
dense pairwise cross-modal interactions which achieves tremendous accuracy
improvements. After that, various cross-modal interaction methods [2,8] have
been proposed to extract the features of both text and image. On the other
hand, methods with only global cross-modal are restricted in the sense that
text descriptions usually contain fine-grained correlations with images, which are
easily smoothed by global alignment. To address that, some works [7,17] pro-
pose to explore the region (or patch) to word correspondences. An alternative
solution is the pretrain-then-finetune paradigm driven by the global alignment
method [1,9], which can achieve satisfactory results with improved robustness,
with the help of the large-scale pretraining data.

3 Methodology

In this section, we elaborate on the iterative retrieval framework for the noisy
text-to-image retrieval task. We start with the problem definition and a brief
overview of the CLIP model which is employed in the iterative retrieval process.
Then the architecture of the proposed model will be described in detail.

Problem Definition. Given a parallel image-text dataset (T, V ), each sam-
ple pair consists of a noisy text ti and a relevant image vi, where ti =
{t1i , t

2
i , . . . , t

k
i , . . . , t

m
i } is composed of multiple sentences and tki represents the

k-th sentence. The task is to retrieve the most relevant image vi to the noisy text
ti from the image pool V with the proposed iterative retrieval model R(ti, V ).

3.1 Preliminaries: CLIP

CLIP is trained to learn visual representations with natural language supervi-
sion. As shown in Fig. 3, it consists of a text encoder T which is a GPT [15]
style Transformer model, and an image encoder V which can be either a Vision
Transformer (ViT) [4] or a Residual Convolutional Neural Network (ResNet) [5].
Then the dot product between the two outputs of the above two encoders will
be used as the alignment score of the input image and the text. The model is
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Image
Encoder

Text
Encoder

a very big bull elephant 
walking through some 
thick brush.

Fig. 3. The framework of the CLIP model.

pretrained to distinguish aligned image-text pairs from randomly combined ones
with a contrastive loss,

LNCE = −
(
log

exp(sim(vi, ti)/α)∑
j exp(sim(vi, tj)/α))

+ log
exp(sim(ti, vi)/α)∑
j exp(sim(ti, vj)/α))

) (1)

where α is the temperature coefficient to be learned in CLIP. The image-text
alignment score sim(vi, ti), which is the similarity mentioned above, is calculated
as follows,

sim(vi, ti) =
T(ti) ∗ V(vi)

||T(ti)||2 ∗ ||V(vi)||2 (2)

3.2 Model Architecture

The overall framework of the proposed model is shown in Fig. 4, which is com-
pared to the general method in the left panel. Instead of directly taking the noisy
text as the query to retrieve the most relevant image from the image pool, which
may degrade the retrieval performance as discussed above, our proposed method
ItrievalKD first extracts the key-semantic information from the noisy text to
alleviate the influence of irrelevant textual content on the retrieval performance,
followed by retrieving the relevant image according to the key-semantic clue.
Below we will describe the iterative retrieval framework in detail.

Retrieving the Key-Semantic Text in the Noisy Text. Due to the lack
of ground truth regarding the key-semantic annotations in most NT2I cases as
supervision, it is necessary to retrieve the key-semantic content in the noisy
text at first. Here we propose a simple yet effective annotation strategy. We
consider each sentence as a basic unit of semantic information in the noisy text.
In the NT2I scenario, the key-semantic content in the noisy text should be
highly-related to the corresponding image, and the rest should be irrelevant.
Hence, the choice of key-semantic text heavily depends on the corresponding
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Retrieved Image 

Image Pool
V

CLIP
Visual Encoder 

CLIP
Text Encoder 

As usual I would like to take a moment to
explain some of the. A grey and silver fire
hydrant. the man was looking forward to
another day\u2026. a fire hydrant near
two small poles on the curb of a street.

CLIP
Text Encoder 

CLIP
Visual Encoder BERT

A grey and silver fire hydrant between 
two barriers. a fire hydrant near two 
small poles on the curb of a street. 

Image Pool
V

CLIP
Text Encoder 

CLIP
Visual Encoder 

Retrieved Image 

training/testing flow

only training flow

Freezed

Trainable

General CLIP-based Retrieval ItrievalKD

similarity score

As usual I would like to take a moment to
explain some of the. A grey and silver fire
hydrant. the man was looking forward to
another day\u2026. a fire hydrant near
two small poles on the curb of a street.

Fig. 4. An illustration of the general retrieval method with the CLIP model (the left
panel) and the proposed ItrievalKD framework (the right panel). The underlined part
of the input text corresponds to the key-semantic content, and the rest are noisy
sentences.

image. Therefore, we calculate the score ski for each sentence tki using Eq. (2)
as ski = sim(vi, tki ), which represents the similarity score between the image vi
and the sentence tki . The higher the score is, the more likely the sentence is key-
semantic to the image. We then take κ sentences with the highest scores as the
key-semantic sentences t̂i of the noisy text ti.

Knowledge Distillation for Key-Semantic Extraction. Nevertheless, the
lack of the image information paired with the noisy text makes it impossible to
directly apply the above strategy to select the key-semantic content during the
testing stage, when only the noisy text is available. To resolve that, we need to
transfer the image-text correlation knowledge of the CLIP model to a plain-text
model, based on which the key-semantic text can be obtained from the plain-text
model during the testing stage.

Specifically, we adopt the Knowledge Distillation (KD) technique [6] to distill
the knowledge of the image-text content relevance from the teacher model (i.e.,
CLIP) to the student model (i.e., BERT). The student model BERT is required to
mimic the behaviors of the teacher network CLIP when calculating the image-text
content relevance scores, followed by ranking the sentences according to the scores.

Since the BERT model picks sentences in unit of sentence, we follow the
same input form as BERTSUM [13], which is a method for the extractive sum-
marization task. We insert a [CLS] token before each sentence and a [SEP] token
after each sentence. Interval segment embedding is used to distinguish multiple
sentences within a text. Finally, we obtain the input to the BERT model by com-
bining the token embeddings, interval segment embeddings and position embed-
dings. The vector hk

i , which is the corresponding vector of the k-th [CLS] token
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from the top BERT layer, will be used as the representation of the sentence tki .
After obtaining the sentence representation hk

i from BERT, we build a linear
layer and a sigmoid layer on the top of the BERT outputs to learn the sentence-
image matching scores,

ŝki = σ(Whk
i + b) (3)

where σ is the activation function (sigmoid in this work).
We use the Kullback-Leibler (KL) divergence [10] to quantify the discrep-

ancy between the ranking score distributions of the plain-text model BERT and
the multi-modal model CLIP. Via knowledge distillation, the plain-text model
BERT directly imitates the score distribution from the teacher model CLIP.
Formally, the training objective is to minimize the following loss functions with
temperature τ ,

LKL = −p ln
q

p

p(ŝki , τ) =
exp(ŝki /τ)∑
k exp(ŝ

k
i /τ)

q(ski , τ) =
exp(ski /τ)∑
k exp(s

k
i /τ)

(4)

Image Retrieval with the Key-Semantic Clue. After obtaining the key-
semantic text t̂i according to the scores, we can take it instead of the noisy text
ti for cross-modal retrieval. We can adopt Eq. (1) to finetune the CLIP model
to further augment the performance.

3.3 Training and Inference

Training. The BERT model is trained with the knowledge distilled from the
CLIP model by minimizing LKL, while the parameters of the CLIP model are
frozen. It is optional to finetune the CLIP model with LNCE for further per-
formance when retrieving the relevant image with the key-semantic clue. We
report the performance both in the zero-shot setting and finetuning setting. As
the CLIP model is prone to overfitting when finetuning, we use the noisy text
for training to alleviate this problem in the finetuning setting.

Inference. We first retrieve the key-semantic text from the noisy text with the
BERT model, and proceed to retrieve the relevant image from the image pool
with the key-semantic clue.

4 Experiments

4.1 Datasets

Noisy-MSCOCO. Given the lack of available datasets in the NT2I sce-
nario, we extend the MSCOCO dataset with additional noise to construct the
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Noisy-MSCOCO dataset. Specifically, we randomly select 10,000, 1000 and 1000
image-text pairs from MSCOCO for training, validation and test respectively.
Noisy sentences are generated with the GPT-2 [16] model by extending each cap-
tion with a prompt “and” where the maximum length is set as 35. Finally, we ran-
domly sample nkey and nnoise sentences from the original captions and noisy sen-
tences separately, followed by shuffling them to construct the Noisy-MSCOCO
dataset. In practice, nkey is set to 3, and nnoise is selected from {0, 1, 2, 3}.

PhotoChat. PhotoChat is a multi-modal conversation dataset, where each dia-
logue is paired with an image that is shared during the conversation. Following
previous works, we only consider the conversation content of the party who sends
the image, because only this party can see the image before sending it.

4.2 Evaluation Metrics

We use Recall@K (R@K), computed as “the fraction of times a correct item was
found among the top K results” as the evaluation metric. Specifically, we choose
R@1, R@5, and R@10, as well as the sum of them which we denote as “SUM”
as [19] to evaluate the proposed method.

4.3 Implementation Details

The proposed model mainly consists of modules based on BERT and CLIP. For
BERT, we adopt the “bert-base-uncased” version. We set the batch size to 32, the
maxinum input length to 256 and the temperature coefficient τ in Equation (4)
to 1. During the validation and test stages, for the Noisy-MSCOCO dataset, we
directly adopt nkey as κ which is the number of key sentences extracted; and
for the PhotoChat dataset, we set κ to 3 in the zero-shot setting and 4 in the
finetuning setting as this work best. The best BERT model is chosen according
to the accuracy in predicting the key-semantic sentences on the validation set.
We employ CLIP (ViT-B/32) and CLIP (RN50) from the series of the CLIP
models, and set CLIP (ViT-B/32) as the default. During finetuning, the batch
sizes of CLIP (ViT-B/32) and CLIP (RN50) are set as 128 and 64 respectively,
and we scale the max input length of the CLIP model to 128 as the original
CLIP model limits the text input length to 77 which may be exceeded by the
text length in the PhotoChat dataset. The random seed is set to 1 and the Adam
optimizer is employed with the learning rate of 1e − 5.

4.4 Baselines

We mainly compare the proposed framework with the general CLIP-based
retrieval model. In addition, since the stage of extracting key sentences from
the noisy text is similar to the extractive summarization task, we also select
two classical unsupervised extractive summarization methods: 1) TF-IDF [10],
a statistical method used to assess the importance of words in a document of a
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Table 1. The zero-shot retrieval results on the Noisy-MSCOCO dataset. Key-CLIP,
CLIP and ItrievalKD correspond to CLIP retrieval with the ground truth key-sentences,
with the noisy text and iterative retrieval with the predicted key-sentences respectively.

nnoise CLIP
(ViT-B/32)

zero-shot for CLIP CLIP
(RN50)

zero-shot for CLIP

R@1 R@5 R@10 SUM R@1 R@5 R@10 SUM

0 Key-CLIP 56.3 80.5 88.8 225.6 Key-CLIP 55.2 79.9 87.3 222.4
1 CLIP 48.4 74.7 84.5 207.6 CLIP 49.7 73.8 83.1 206.6

ItrievalKD 52.9 80.4 88.8 222.1 ItrievalKD 53.7 79.0 87.4 220.1
2 CLIP 37.9 66.7 78.0 182.6 CLIP 44.6 70.8 80.3 195.7

ItrievalKD 53.6 80.4 88.4 222.4 ItrievalKD 54.0 79.5 88.1 221.6
3 CLIP 25.7 48.4 63.4 137.5 CLIP 32.3 59.1 71.3 162.7

ItrievalKD 53.9 79.8 88.4 222.1 ItrievalKD 54.0 77.7 86.4 218.1

Table 2. The zero-shot and finetuning retrieval results on the PhotoChat dataset.

CLIP
version

model zero-shot for CLIP finetuning for CLIP

R@1 R@5 R@10 SUM R@1 R@5 R@10 SUM

CLIP
(Vit-B/32)

CLIP 23.3 42.9 52.3 118.5 38.5 64.0 72.3 174.8

TF-IDF-CLIP 13.1 27.2 35.2 75.5 27.2 49.3 57.8 134.3
TextRank-CLIP 12.8 27.9 35.7 76.4 22.5 42.5 50.9 115.9
ItrievalKD 26.7 46.3 55.5 127.6 41.2 64.0 72.1 177.3

CLIP
(RN50)

CLIP 25.8 43.6 52.0 121.4 31.6 58.7 67.6 157.9
TF-IDF-CLIP 13.5 27.1 34.4 75 24.1 43.7 54.2 122.0
TextRank-CLIP 10.6 20.6 27.2 58.4 19.0 37.1 47.9 104.0
ItrievalKD 26.3 45.2 55.6 127.1 34.5 59.3 68.8 162.6

corpus. Specifically, we take the maximum TF-IDF value of the words in a sen-
tence as the importance score of the sentence; 2) TextRank [14], a graph-based
ranking algorithm, in which we construct the graph by treating each sentence
as a node. We extract the key sentences from the noisy text with the above
two extractive summarization methods, based on which we retrieve the relevant
image, which are named as TF-IDF-CLIP and TextRank-CLIP.

4.5 Retrieval Results

The retrieval results on the Noisy-MSCOCO dataset are shown in Table 1. As
CLIP is prone to overfitting on the MSCOCO dataset, we only report the results
in the zero-shot setting. In the experiments, we compare the retrieval perfor-
mance of the CLIP model with the ground truth annotations (Key-CLIP) to the
one with the noisy text as the query, where we can observe that the retrieval
performance of CLIP degrades significantly with the noise increases, compared
to the model with no noise. In comparison, the proposed method ItrievalKD
can effectively eliminate the influence of the noisy sentences by extracting the



266 Z. Liu et al.

Table 3. The accuarcy in retrieving key sentences in the noisy text with the sentence-
image matching scores calculated by CLIP on the Noisy-MSCOCO dataset.

nnoise CLIP (ViT-B/32) CLIP (RN50)

1 0.9823 0.9843
2 0.9760 0.9793
3 0.9653 0.9643

key-semantic content from the noisy text and achieve comparable results with
the noise-free performance of Key-CLIP. For example, R@1 drops from 56.3 to
25.7 when nnosie increases to 3 in the zero-shot setting with CLIP (ViT-B/32),
while reaching 53.9 when ItrievalKD is applied.

Table 2 shows the zero-shot and finetuning results on the PhotoChat dataset.
The retrieval results of the proposed ItrievalKD surpasses the CLIP model in
both zero-shot and finetuning settings, demonstrating its effectiveness. Espe-
cially, SUM increases from 118.5 to 127.6 in the zero-shot setting over CLIP (Vit-
B/32). In addition, it can be observed that both of the two unsupervised sum-
marization methods (i.e., TF-IDF-CLIP and TextRank-CLIP) even degrade the
retrieval performance, which implies that the conventional unsupervised sum-
marization methods are not suitable for key-semantic extraction in the NT2I
task.

The results of the ItrievalKD framework based on CLIP (ViT-B/32) and
CLIP (RN50) follow the similar trend, which demonstrates the effectiveness and
robustness of the proposed method.

4.6 The Effectiveness of Retrieving the Key-Semantic Text
in the Noisy Text with CLIP

We proceed to verify the effectiveness of retrieving the key-semantic sentences in
the noisy text with CLIP. We show the performance of adopting CLIP to retrieve
key sentences on the Noisy-MSCOCO dataset in Table 3. As the Noisy-MSCOCO
dataset has key-sentence labels, we use accuracy to evaluate the performance of
retrieving key sentences by CLIP. It is observed that, although the accuracy
decreases slightly with the noise increases, the accuracy over CLIP (ViT-B/32)
on the Noisy-MSCOCO dataset remains 96.53% even when nnoise is set to 3. It
validates that the strong ability of retrieving the key sentences from the noisy
text enables ItrievalKD to achieve comparable results with the noise-free perfor-
mance of Key-CLIP as shown in Table 1.

4.7 Case Study

An example on the Noisy-MSCOCO dataset is given in Table 4. The general
retrieval method given the entire noisy text as the query would return the wrong
image, while the ItrievalKD method can retrieve the truly-relevant image. In this



An Iterative Retrieval Framework for Noisy Text-to-Image Retrieval 267

Table 4. Case study on the Noisy-MSCOCO dataset in the zero-shot setting over
CLIP. The underlined department of the text is the key-semantic clue.

case, if the noisy text is used, the general retrieval model may pay attention to
the key information “fire hydrant” while ignoring the details such as “forest”,
“tree”, and “in the background”. By capturing the key-semantic information in
the noisy text, the proposed method can avoid this problem.

5 Conclusion

In this paper, we propose an iterative retrieval framework assisted with knowl-
edge distillation ItrievalKD for the text-to-image retrieval task when the query
text contains noise unrelated to the relevant image. As the irrelevant informa-
tion in the text is harmful to the capturing of key-semantic part for the general
retrieval model, the proposed method ItrievalKD first obtains the key-semantic
information from the noisy text, followed by retrieving the relevant image from
the image pool based on the key-semantic clue. We verify the effectiveness of the
proposed method on the Noisy-MSCOCO and PhotoChat datasets.
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Abstract. Although cross-domain recommender systems (CDRSs) are
promising approaches to solving the cold-start problem, most CDRSs
require overlapped users, which significantly limits their applications. To
remove the overlap limitation, researchers introduced domain adversarial
learning and embedding attribution alignment to develop non-overlapped
CDRSs. Existing non-overlapped CDRSs, however, have several draw-
backs. They ignore the semantic relations between source and target
items, leading to noisy knowledge transfer. Moreover, they learn knowl-
edge from both domain-shared and domain-specific preferences and are
hence easily misled by the source-domain-specific preferences. To over-
come these drawbacks, we propose a novel semantic relation-based knowl-
edge transfer framework (SRTrans). We semantically cluster the source
and the target items and calculate their similarities to extract relational
knowledge between domains. To transfer the relational knowledge, we
develop a new two-tier graph transfer network. Last, we introduce a task-
oriented knowledge distillation supervision and combine it with a predic-
tion loss to alleviate the negative impact of the source-domain-specific
preferences. Our experimental results on real-world datasets demonstrate
that SRTrans significantly outperforms state-of-the-art models.

Keywords: non-overlapped cross-domain recommendation · graph
neural network · knowledge distillation

1 Introduction

The cold-start problem is a general challenge in practical recommender systems
[8,14,15]. Cross-domain recommendation (CDR) is a promising solution to alle-
viate the cold-start problem, because it utilizes sufficient data from a source
domain as prior knowledge to support the recommendation in the sparse target
domain [7,10,17]. Most cross-domain recommender systems (CDRSs) require
overlapped users to transfer individual-level knowledge across domains. These
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. Kashima et al. (Eds.): PAKDD 2023, LNAI 13937, pp. 271–283, 2023.
https://doi.org/10.1007/978-3-031-33380-4_21
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methods consider different categories of items in one service (e.g., books and
movies on Amazon’s e-commerce platform) as different domains [17]. In this sce-
nario, overlapped users are easily collected and can serve as a bridge to connect
different domains and also to transfer knowledge. However, matching users in
different services is infeasible, particularly when services are provided by differ-
ent companies. The aforementioned CDRSs cannot make use of source data from
external services because of a lack of overlapped users.

To make use of data from external services, non-overlapped CDRSs were
developed. These systems transfer statistic-level knowledge and hence can
remove the requirement for overlapped users. Domain adversarial learning (DAL)
and embedding attribution alignment (EAA) are two mainstream approaches to
constructing these CDRSs. DAL basically introduces a domain discriminator to
extract domain-independent user and item embeddings [13]. By doing so, users’
preferences are better modeled by utilizing both source and target interactions.
EAA aligns the attribution of user and item embeddings between source and
target domains to guide the target embedding learning with the source knowl-
edge [1,6,10]. However, the state-of-the-art DAL and EAA methods [1,10,13]
ignore semantic relations between source and target items and transfer knowl-
edge from all source data. This introduces noisy source knowledge and results
in a negative transfer and performance degradation, because user preferences
contain both domain-shared and domain-specific parts [9].

Motivated by the above observations, we propose a novel semantic relation-
based knowledge transfer framework (SRTrans) for non-overlapped CDRSs. Dif-
ferent from the state-of-the-art DAL and EAA methods, which extract and trans-
fer knowledge from all source data including irrelevant noise, SRTrans introduces
a new two-tier graph transfer network to transfer only the relational knowl-
edge from the source to target domains (i.e., to alleviate the negative impact
of domain-specific preferences). SRTrans combines a prediction loss with a new
task-oriented knowledge distillation supervision. This distills the domain-shared
preferences from the knowledge learned by the two-tier graph transfer network.
By transferring only the source-domain-shared preferences, SRTrans can mitigate
the negative impact of the source-domain-specific preferences and can transfer
knowledge better than the state-of-the-art methods. In summary, our contribu-
tions are three-fold:

1 We propose a semantic relation-based graph transfer framework, namely
SRTrans, for non-overlapped CDRSs. SRTrans is robust against noisy source
data and can extract useful source knowledge.

2 To mitigate the negative impact of source-domain-specific preferences, we
introduce a new task-oriented knowledge distillation supervision and combine
it with a prediction loss. This approach improves the final performance of
SRTrans.

3 We conduct extensive experiments on real-world datasets, and the results
demonstrate that SRTrans outperforms the state-of-the-art methods.
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2 Related Work

User-overlapped CDR. Most CDRSs bridge source and target domains
through overlapped users. These systems transfer individual-level knowledge
learned in the source domain to the target domain. For example, BiTGCF [9]
and GA-DTCDR [16] respectively introduced a graph neural network and an
attention mechanism as a cross-domain feature transfer layer to fuse overlapped
users’ source and target latent features. However, the assumption of overlapped
users limits their applications.

Another research direction is to learn mappings between source and tar-
get user embeddings. EMCDR [11] proposed a multi-layer perceptron to map
source user embeddings to target embeddings. PTUPCDR [17] further improved
EMCDR by learning personalized meta-transfer mappings.
Non-overlapped CDR. To remove the limitation of overlapped users, non-
overlapped CDRSs were developed, and domain adversarial learning (DAL) for
non-overlapped CDRSs was introduced. For example, RecSys-Dan [13] devised
a discriminator and minimized the divergence of the predictions between source
and target domains. Some studies proposed embedding attribution alignment
(EAA), which aligns embedding attributions between source and target domains.
MMT-Net [6] developed a contextual CDRS and regularized the contextual-
jointed target user and item embedding learning with learned source embedding
distributions. ESAM [1] and CFAA [10] removed the requirement for domain-
shared contextual features and aligned the attribution distribution and correla-
tion between source and target domains.

However, existing DAL and EAA approaches ignore the relations between
source and target and leverage all source data to transfer knowledge, resulting
in an impaired transfer or even a negative transfer. These approaches, moreover,
learn from both domain-shared and domain-specific preferences and yield sub-
optimal performances. The above drawbacks motivate us to propose SRTrans,
which extracts relational knowledge and alleviates the negative impact of the
domain-specific preferences in the source domain.

3 Method

Problem Formulation. We first formulate the cross-domain recommendation
task as the top-K recommendation in a sparse target domain Dt, under the
assumption of the existence of an auxiliary dense domain Ds that is considered
to be the source. Let Ut and Vt denote sets of users and items in Dt, respectively.
The interaction set between Ut and Vt is denoted as Rt = {(u, v)|u ∈ Ut, v ∈ Vt}.
Analogously, we denote the user set, item set, and interaction set in Ds as Us,
Vs, and Rs, respectively. It is important to note that there is no overlap of user
and item between Ds and Dt. Given a user u ∈ Ut, the top-K recommendations
aim to predict a preference score ŷu,v for each item v ∈ V̄u = {v|v ∈ Vt, v /∈ Vu},
where Vu is the set of items that interacted with u. The preference score ŷu,v is
defined as ŷu,v = f(eu, ev), where f(·) is a user preference estimator, eu is the
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Fig. 1. Overview of our proposed SRTrans

user embedding, and ev is the item embedding. The K items with the largest
scores are recommended to u.
Overview. Motivated by the previous non-overlapped CDRSs that ignore the
relations among interactions and are easily misled by the source-domain-specific
preferences, we propose a novel semantic relation-based graph transfer frame-
work (SRTrans) that extracts and transfers cluster-based relational knowledge
while alleviating the misleading source-domain-specific preferences. SRTrans is
depicted in Fig. 1. The numbers below correspond to the ones in Fig. 1.

(1) We first semantically cluster items and calculate cluster embeddings
through an adaptive cluster approach. (2) Then, we calculate similarities of
these clusters to measure their relations. We also propose a novel two-tier graph
transfer network that extracts and transfers relational knowledge based on the
cluster relations, where the relational knowledge is finally aggregated into target
items by graph neural networks. (3) After that, we design a new task-oriented
knowledge distillation supervision that can be combined with a prediction loss
to avoid learning the source-domain-specific preferences.

3.1 Adaptive Semantic Item Cluster

To learn semantic item clusters, we first compute the semantic embeddings of
items. Given the item texts, i.e., item descriptions, we apply the semantic token
embeddings from a pre-trained BERT model [2] to represent the tokens in the
item texts. Let Tv denote the text of an item v, and the semantic embedding of
v is the tf-idf weighted aggregation of token embeddings:

vtxt =
∑

w∈Tv

tf -idf(w) · BERT(w), (1)

where BERT(w) and tf -idf(w) are respectively the embedding and the tf-idf
score for token w ∈ Tv. The tf-idf score is calculated with combination of the
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source and target item text corpora. By doing so, we can focus on important
tokens and alleviate the negative impact of noisy tokens. The dimension of the
BERT semantic embeddings (768) is so high and may lead to tremendous com-
puting costs and over-fitting issues in our sparse target domain. We hence assign
a dense layer φemb with output dimension d � 768 to encode vtxt. The encoded
item embedding v is given by

v = φemb(vtxt). (2)

After that, we calculate semantic embeddings for all source and target items,
which are denoted as Vs and Vt, respectively.

To get semantic item clusters that can facilitate the final recommendation
task, we borrow the idea of DE-RRD [4]. Formally, given the cluster number
Nc, we calculate the cluster assignment probability vector p ∈ R

Nc with a small
network φca, where the vector of an item v is given by

pv = φca(v). (3)

Each element pv,j of pv represents the probability that the item v is assigned to
the cluster j. With the help of pv, we assign a binary gradient vector mv ∈ R

Nc

to indicate the cluster of item v, where the element j of mv is given by

mv,j ∼ Bern(
exp(pv,j)∑

k∈Nc
exp(pv,k)

), (4)

where Bern(·) represents the Bernoulli distribution. We use the Gumbel-Softmax
reparameterization trick to differentiate through the Bernoulli sampling process:

mv,j =
exp((pv,j) + gj/τ)∑

k∈Nc
exp((pv,k + gk)/τ)

, g ∼ Gumbel(0,1) (5)

where g ∈ R
Nc is the Gumbel noise drawn from Gumbel(0,1) distribution. Note

that gj is the j-th element of g and τ is the temperature parameter. The sampling
process is separated from pv, so the cluster assigning network φca can be end-
to-end updated through backpropagations. Let Ms ∈ R

|Vs|×Nc (Mt ∈ R
|Vt|×Nc)

denote the binary gradient matrix for the source (target) domain, where each row
in Ms (Mt) indicates the cluster of a source (target) item and can be computed
by Eqs.s (3) and (5).

We next declare source cluster embeddings Cs and target cluster embeddings
Ct as the average semantic embeddings of the items assigned to the correspond-
ing cluster:

Cs = (M̃s)TVs and Ct = (M̃t)TVt, (6)

where M̃s and M̃t respectively are assignment matrices normalized by the num-
ber of items in each cluster, i.e., M̃s

[:,i] = Ms
[:,i]/

∑
i M

s
[:,i].
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3.2 Two-tier Graph Transfer

We propose a novel two-tier graph transfer network to extract and transfer
cluster-based relational knowledge from the source to the target. This network
consists of a cluster-level relational graph transfer and a cluster-item relational
graph transfer. The former transfers knowledge from the source to the target
clusters by constructing a relational graph whose adjacency matrix is denoted
as the similarities between the source and target clusters. Analogously, the latter
transfers knowledge from the target clusters to the target items by building a
graph whose adjacency matrix is denoted as the similarities between the target
clusters and items. With these similarity-based adjacency matrices, the graph
transfer network can transfer the most relevant source knowledge from source
clusters into the target items and thus alleviate the negative impact of irrelevant
noises. Therefore, we can remove the drawbacks of the state-of-the-art methods
(transferring all source knowledge, including domain-specific knowledge).
Cluster-level Relational Graph Transfer. To extract and transfer cluster-
level relational knowledge from the source to the target, we first define a cluster-
based relational graph Gc to represent the relations between clusters from differ-
ent domains. Let C = (Cs;Ct) ∈ R

(2Nc)×d denote the fused source and target
cluster representations and serve as vertices in graph Gc. We further define the
edges and the corresponding edge weights. The edge weight S(ci, cj) between
clusters ci and cj is measured by the cosine similarity with softmax and is for-
mulated by:

S(ci, cj) = softmax(
ci · cj

‖ci‖‖cj‖ ). (7)

For simplicity, we denote the cluster-based relational graph as Gc = (C,A),
where C = {ci|i ∈ [1, 2Nc]} ∈ R

2Nc×d represents the set of vertices and each
vertex corresponds to a cluster, whereas A = {S(ci, cj)|ci ∈ C, cj ∈ C} is
the adjacency matrix, which indicates the relations between clusters. Note that
A = {S(Cs,Cs),S(Cs,Ct);ST (Cs,Ct),S(Ct,Ct)} contains cluster relations
within and across domains.

After constructing the cluster-based relational graph Gc, we use the graph
convolutional network (GCN) [5] to transfer relational knowledge from source
clusters Cs to target clusters Ct, where the GCN is formulated as:

C(l+1) = ReLU
(
D̃− 1

2 ÃD̃− 1
2C(l)W(l)

c

)
. (8)

Here Ã = A+ I, where I is the identity matrix, corresponds to adding self loops
to the graph. Also, D̃ is the degree matrix with elements D̃ii =

∑
j Ãij , and W(l)

c

is a trainable weight matrix for layer l. The input C(0) = C. After aggregating
Lc GCN layers, we get the relational enhanced target cluster representations as
the last Nc rows of C(Lc), which is denoted as Ct(Lc) = {ct(Lc)

i |i ∈ [1,Nc]}. By
fusing and aggregating source and target clusters together, the enhanced target
clusters can refine relational knowledge within and across domains.
Cluster-item Relational Graph Transfer. After calculating the enhanced
target clusters Ct(Lc), we further construct a cluster-item relational graph Gv to
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measure the relations between enhanced target clusters Ct(Lc) and the target
items Vt. With Gv and cluster-item relations, the useful knowledge from the
most relevant Ct(Lc) is aggregated into the target items, while the irrelevant
noise is alleviated. To fuse knowledge from both target clusters and items, we
concatenate Ct(Lc) and Vt to serve as vertices in the graph Gv, where the ver-
tex set is denoted as H = (Ct(Lc);Vt) ∈ R

(Nc+|Vt|)×d. Analogously, the edge
weight S(hi,hj) between vertex hi and hj is defined as the cosine similarity
with softmax:

S(hi,hj) = softmax(
hi · hj

‖hi‖‖hj‖ ). (9)

The cluster-item relational graph Gv is denoted as Gv = (H,B), where the
vertex set and the adjacency matrix are H = {hi|i ∈ [1,Nc + |Vt|]} and
B = {S(hi,hj)|hi ∈ H,hj ∈ H}, respectively.

By leveraging Gv, we next transfer relational knowledge via a GCN, which is
formulated as:

H(l+1) = ReLU
(
D̃− 1

2
v B̃D̃− 1

2
v H(l)W(l)

v

)
. (10)

Here, B̃ is the adjacency matrix with self loops, and D̃v is the degree matrix
on B̃. W(l)

c is a trainable weight matrix for layer l. Also, we define H(0) = H.
After aggregating Lv GCN layers, we get the knowledge-enhanced target item
embeddings Vt(Lv) as the last |Vt| rows of W(Lv)

c .

3.3 Task-oriented Knowledge Distillation

Existing non-overlapped CDRSs [1,10,13] are easily misled by domain-specific
preferences, because the source and target embedding space is directly aligned.
Motivated by this finding, we combine a knowledge distillation with the target
prediction by introducing a new task-oriented knowledge distillation supervision.
In this way, the target prediction loss can supervise the knowledge distillation
to learn the domain-share preferences. As a result, the negative transfer issues
incurred by the misleading source-domain-specific preferences can be alleviated.

Formally, we first define the user embeddings of source and target domains
as trainable parameter matrices Us and Ut, respectively. Each row in Us (Ut)
corresponds to a source (target) user and can be retrieved with the user ID.
The prediction score of the target user ut for the target item vt before and after
knowledge enhancement in Sect. 3.2 are then given by:

ŷt
u,v = f(ut,vt) and ỹt

u,v = f(ut,vt(Lv)), (11)

respectively, where vt and vt(Lv) are respectively the item embedding before and
after knowledge enhancement. For a user preference estimator f(·), we adopt
inner product [12] and LGC [3] to evaluate the performance of our SRTrans on
different models. After that, the task-oriented knowledge distillation is defined
as the KL-divergence between ŷt

u,v and ỹt
u,v, which is formulated by:

LKD(ŷt|ỹt) =
∑

(u,v)∈Rt

(
ŷt
u,v log

ŷt
u,v

ỹt
u,v

+ (1 − ŷt
u,v) log

(1 − ŷt
u,v)

(1 − ỹt
u,v)

)
. (12)
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We use the pair-wise BPR loss [3] to measure the loss of predictions. To achieve
this, we randomly sample a negative item for each source and each target inter-
action. Taking the target domain as an example, a new interaction rt ∈ Rt is
a triplet rt = (u, v, v′), where u ∈ Ut, v ∈ Vt, and v′ ∈ V̄u. Then, the pair-wise
BPR loss is given by

LBPR = −
⎛

⎝
∑

(u,v,v′)∈Rt

ln σ (ŷuv − ŷuv′) +
∑

(u,v,v′)∈Rs

ln σ (ŷuv − ŷuv′)

⎞

⎠ . (13)

The total loss is measured by combining the knowledge distillation loss LKD

and the prediction loss LBPR, that is

L = LBPR + λLKD, (14)

where λ is a hyper-parameter used to balance the weights of different losses. By
combining LKD and LBPR, the negative impact from the source-domain-specific
preferences can be alleviated under the supervision of the prediction loss.

4 Experiment

4.1 Experiment Setting

Datasets. We used two public and two private datasets to investigate the rec-
ommendation performance of SRTrans in practical applications and for bench-
marking purposes.

The public datasets were MovieLens25M1 and Amazon2. For MovieLens25M
(ML), we used the movie ratings from 30/9/2016 to 1/10/2018, where the movie
descriptions were collected from TMDB3. For Amazon, we built the Amazon-
Book (AB) subset containing ratings for books from 30/9/2016 to 3/10/2018.

The private datasets have an online advertisement dataset (AD) and an e-
commerce dataset (E-com). AD contains Web browsing records from 1/8/2017
to 31/8/2017 on an ads platform and the textual content of Web pages. E-com
has the purchase records on an e-commerce platform and the textual descriptions
of products; purchase records in E-com have the same period as that of AD.

Each CDR scenario consisted of a source domain and a relatively sparse
target domain. The CDR scenario from domain A to domain B is denoted as
A→B, where A and B are the source domain and the target domain, respectively.
All the CDR scenarios included: (1) AD→E-com and E-com→AD; (2) ML→AB
and AB→ML. For each source domain, we selected users with 3 to 10 interaction
records and items with 10 to 15 interaction records to adapt to a dense setting.
Inversely, for each target domain, we selected users with 3 to 5 interactions and
items with 5 to 15 interactions to form a relatively sparse environment. Some
basic information on the pre-processed datasets is summarized in Table 1.
1 grouplens.org/datasets/movielens/25m/.
2 jmcauley.ucsd.edu/data/amazon/.
3 www.themoviedb.org/documentation/api.

www.themoviedb.org/documentation/api
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Table 1. Basic information on the datasets we used

Dataset #users #items #interactions avg. #interactions per user

As
source

ML 18,232 14,435 421,803 23.14

AB 27,662 12,708 129,899 4.70

AD 18,829 12,253 360,880 19.17

E-com 17,418 6,142 81,499 4.68

As
target

ML 6,298 9,873 31,445 4.99

AB 13,350 10,477 61,004 4.57

AD 11,010 12,031 55,050 5.00

E-com 12,558 5,118 46,871 3.73

Evaluation Criteria. For each user in the target domains, we took her last and
second-last interactions to form the test and validation sets, respectively. The
remaining interactions were used as the training set. Then, we ranked her test
item with 99 randomly sampled negative items as the candidate recommenda-
tions, where negative items are items that have no interaction with this user. We
employed widely used Hit Ratio (HR) and Normalized Discounted Cumulative
Gain (NDCG) to measure the accuracy of the top-K recommendation.
Baselines. We compared SRTrans4 with the single-domain baseline (BASE )
and the following state-of-the-art non-overlapped CDRSs: RecSys-DAN [13],
ESAM [1], and CFAA [10]. Because these baselines and our SRTrans are model-
agnostic frameworks, we adopted two base models for them: BPR-MF [12] (an
MF-based model) and LightGCN [3] (a GNN-based model). For fair comparison,
the embedding module of the baselines was replaced with our semantic encoded
item embedding that can be calculated by Eq. (2).
Implementation Details. We adopted the same L2 penalty and mini-batch
trick for the evaluated methods and set them to 0.01 and 2048, respectively. The
GCN layer for the base model LightGCN was set to 3. The embedding dimension
d was 32 and 16 for public and private datasets, respectively. For SRTrans, the
temperature parameter τ was 0.0001 and the weight of the knowledge distillation
loss λ was 0.1. The number of graph transfer layers Lc and Lv was 1. The number
of clusters Nc was 32. We implemented MF- and LightGCN-based SRTrans,
RecSys-DAN, ESAM, and CFAA with PyTorch framework, using the Adam
optimizer where the learning rate was set to 0.01. The above hyper-parameters
were fine-tuned according to the performance on the validation set.

4.2 Experiment Results

Comparison. Table 2 shows the comparison results. We find that: (1) SRTrans
outperforms the baselines w.r.t. HR@5 and NDCG@5 in most cases, especially
when the base model is LightGCN. This is because SRTrans transfers rela-
tional knowledge into the individual item, and GNN-based models can further
fuse knowledge in these items by structurally aggregating them. (2) Although

4 https://github.com/ZL6298/SRTrans/.

https://github.com/ZL6298/SRTrans/
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Table 2. Comparison between our proposal and state-of-the-art. Performances ± 95%
confidence intervals are reported. Bold shows the winner.

AD→E-com E-com→AD

Method HR@1 NDCG@5 HR@1 NDCG@5

MF BASE 0.224 ± 0.033 0.310 ± 0.014 0.180 ± 0.008 0.299 ± 0.006

RecSys-DAN 0.269 ± 0.025 0.356 ± 0.015 0.046 ± 0.010 0.102 ± 0.014

ESAM 0.283 ± 0.035 0.365 ± 0.016 0.125 ± 0.012 0.239 ± 0.013

CFAA 0.251 ± 0.036 0.336 ± 0.014 0.140 ± 0.008 0.257 ± 0.007

SRTrans (ours) 0.243 ± 0.028 0.331 ± 0.011 0.187 ± 0.005 0.307 ± 0.004

LightGCN BASE 0.297 ± 0.012 0.372 ± 0.009 0.190 ± 0.008 0.315 ± 0.008

RecSys-DAN 0.254 ± 0.016 0.277 ± 0.016 0.043 ± 0.006 0.065 ± 0.007

ESAM 0.216 ± 0.033 0.314 ± 0.023 0.114 ± 0.010 0.221 ± 0.012

CFAA 0.282 ± 0.035 0.375 ± 0.021 0.042 ± 0.004 0.114 ± 0.007

SRTrans (ours) 0.312 ± 0.011 0.384 ± 0.009 0.191 ± 0.010 0.306 ± 0.009

ML→AB AB→ML

Method HR@1 NDCG@5 HR@1 NDCG@5

MF BASE 0.072 ± 0.003 0.136 ± 0.004 0.031 ± 0.002 0.076 ± 0.002

RecSys-DAN 0.021 ± 0.006 0.048 ± 0.007 0.005 ± 0.001 0.019 ± 0.002

ESAM 0.034 ± 0.006 0.079 ± 0.008 0.032 ± 0.003 0.083 ± 0.004

CFAA 0.055 ± 0.004 0.109 ± 0.006 0.029 ± 0.003 0.076 ± 0.004

SRTrans (ours) 0.075 ± 0.005 0.142 ± 0.005 0.030 ± 0.002 0.075 ± 0.003

LightGCN BASE 0.122 ± 0.008 0.194 ± 0.006 0.085 ± 0.007 0.165 ± 0.008

RecSys-DAN 0.042 ± 0.009 0.084 ± 0.009 0.013 ± 0.001 0.041 ± 0.004

ESAM 0.046 ± 0.010 0.119 ± 0.011 0.070 ± 0.011 0.166 ± 0.018

CFAA 0.049 ± 0.010 0.121 ± 0.012 0.016 ± 0.001 0.049 ± 0.002

SRTrans (ours) 0.129 ± 0.011 0.204 ± 0.009 0.107 ± 0.008 0.202 ± 0.009

cross-domain baselines transfer user preferences (RecSys-DAN) or align embed-
dings spaces (ESAM and CFAA) from the source domain to the target domain,
they often perform worse than the single-domain method (BASE). This result
indicates that domain-specific preferences and noisy source data incur negative
transfer issues. (3) SRTrans achieves comparable performance or outperforms
the single-domain model (BASE) in most scenarios. This observation confirms
that SRTrans remarkably alleviates the negative transfer issue.
Visualization. To better show the knowledge transfer process and explain the
learned cluster relations, we visualize the cluster-based relational graph by sam-
pling a mini-batch of interactions from the training data. The result of ML→AB
is shown in Fig. 2.

Figure 2(a) depicts a heatmap of an adjacency matrix that describes the
relation between the source and target clusters. The colors indicate cosine simi-
larities between clusters. From this figure, we can find that highly related source
and target clusters (indicated by light colors) and irrelevant ones (indicated by
dark colors) are identified. Figure 2(b) gives a sub-graph constructed by using
10 most related source-target cluster pairs. This figure shows how the knowledge
in source clusters is transferred to target clusters. For example, target cluster 23
receives more knowledge from its highly relevant source clusters 13, 30, 7, and 14,
compared to other irrelevant clusters. This example highlights the mechanism
of alleviating negative transfer issues.
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Fig. 2. Visualization result on a mini-batch of data from the ML → AB scenario

Table 3. Performances of variants of SRTrans

Method AD→E-com E-com→AD

HR@1 NDCG@5 HR@1 NDCG@5

w/o SI 0.292 ± 0.008 0.351 ± 0.006 0.090 ± 0.005 0.140 ± 0.005

w/o AC 0.310 ± 0.012 0.376 ± 0.009 0.194 ± 0.009 0.310 ± 0.008

w/o KD 0.297 ± 0.012 0.372 ± 0.009 0.190 ± 0.008 0.315 ± 0.008

SRTrans 0.312 ± 0.011 0.384 ± 0.009 0.191 ± 0.01 0.306 ± 0.009

ML→AB AB→ML

w/o SI 0.101 ± 0.008 0.159 ± 0.007 0.060±0.004 0.115±0.005

w/o AC 0.130 ± 0.011 0.207 ± 0.009 0.097±0.007 0.188±0.009

w/o KD 0.122 ± 0.008 0.194 ± 0.006 0.085±0.007 0.165±0.008

SRTrans 0.128 ± 0.011 0.201 ± 0.009 0.107 ± 0.008 0.202 ± 0.009

Ablation Study. To study how each module of SRTrans contributes to the final
performance, we compared SRTrans with its several variants, namely (1) w/o SI,
which replaces semantic item embeddings with randomly initialized ones, (2) w/o
AC, which removes adaptive cluster module and directly calculates similarities
between single source and target items to build knowledge transfer graph, and
(3) w/o KD, which is SRTrans without knowledge distillation and is equal to
the single-domain BASE model. Table 3 reports the result.

We see that w/o SI has the lowest performance. This result indicates that the
semantic features are essential to extracting the relational knowledge. Moreover,
w/o AC shows a comparable performance to SRTrans in some cases, suggesting
that transferring item-based relational knowledge can also alleviate the perfor-
mance degradation caused by source noise data.

5 Conclusion

This work proposed a novel semantic relation-based knowledge transfer frame-
work (SRTrans) for non-overlapped cross-domain recommendations. SRTrans
introduces a new two-tier graph transfer network that extracts relational knowl-
edge from a source domain to enhance the target item embeddings. With these
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embeddings, SRTrans combines a task-oriented knowledge distillation loss with a
prediction loss to adaptively learn from domain-shared preferences and to allevi-
ate the negative impacts of source-domain-specific preferences. Our experimental
results demonstrate the superiority of SRTrans.

Acknowledgement. This work partially supported by JST CREST Grant Number
JPMJCR21F2.
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Abstract. In session-based recommendations, to capture user interests,
traditional studies often directly embed item sequences. Recent efforts
explore converting a session into a graph and applying graph neural
networks to learn representations of user interests. They rely on pre-
defined principles to create edges, e.g., co-occurrence of item pairs in
the sequence. However, in practice, user interests are more complicated
and diverse than manually predefined principles. Adjacent items in the
sequences may not be related to the same interest, while items far away
from each other could be related in some scenarios. For example, at the
end of shopping, the user remembers to purchase items associated with
the one purchased at the beginning. While using predefined rules may
undermine the quality of the session graph, it is challenging to learn a
reasonable one that is in line with the user interest. Sessions are diverse
in length, the total number of interests, etc. Signals for supervision are
not available to support graph construction. To this end, we explore
coupling the session graph construction with user-interest learning, and
propose a novel framework - PIGR. It recognizes items with similar rep-
resentations learned based on sequential behavior and preserves their
interactions. Related items reside in the same induced subgraph and are
clustered into one interest. A unified session-level vector is retrieved from
the different granularity of interests to guide the next-item recommen-
dation. Empirical experiments on real-world datasets demonstrate that
PIGR significantly outperforms state-of-the-art baselines.

1 Introduction

Session-based recommendation has received considerable attention [17] because
online users may not log in for fear of breach of privacy, making tracing the
historical behaviors of users infeasible. Conventional sequential recommendation
is based on rich explicit user-item interactions to reveal user preferences [5].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. Kashima et al. (Eds.): PAKDD 2023, LNAI 13937, pp. 284–296, 2023.
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Session-based recommendation targets at predicting the next item choice given
an anonymous sequence clicked in one session [6]. Early studies on this emerg-
ing domain mainly focus on mining actionable patterns from the chronologically
ordered items. Multi-layer recurrent neural networks [8] and co-attention mech-
anism [3] are designed to process consecutive clicks.

Graph neural networks (GNNs) have been under broad research in session-
based recommendation. One-way sequence modeling only captures adjacent
dependency among consecutive items. The transition may be too sparse to effec-
tively derive user preferences. In many scenarios, distant items might be rele-
vant and nonadjacent dependency could reduce the overfitting brought by the
sparsity of sessions. GNNs have been intensively explored to resolve mentioned
problems [19]. The basic idea is to convert each click sequence into graphs to
enable message passing between distant items. Along this line, advanced models
are proposed to better capture collaborative signals. For example, researchers
develop dual graph neural networks to exploit both global-level and local-level
item transitions [18] or hypergraphs to learn the inherent dependency of items
across all sessions [20]. Unanimously, these GNN-based methods express the
connectivity of graph structure by manually predefined principles. A dominant
heuristic principle is to use co-occurrences of item pairs as edges [2,7,22].

Fig. 1. A running example of two approaches of construct-
ing the session graph, where dashed rectangle indicates one
interest.

Despite the effec-
tiveness, we argue that
user interests are natu-
rally far more compli-
cated and diverse than
manually predefined prin-
ciples. Adjacent items
may not have a strong
semantic relation, while
distant items not adja-
cent to the same pivot
item might still be seman-
tically related in some
scenarios. As illustrated
in Fig. 1, because the user casually clicks Airpods after wok, there is an edge
from wok to Airpods in the graph based on the principle. But wok and pot are
more related compared with Airpods. When GNNs recursively aggregate repre-
sentations of connected items, features not in the same interest will propagate
to the same node. Consequently, it may generate inaccurate summary of user
interests and lead to suboptimal model performance.

Motivated by the aforementioned issues, we explore the viability of coupling
the session graph construction from scratch with distilling user interests. The
items yearn for beneficial information from proximal nodes that share similar
features and are clustered into different granularity of interests. The larger mag-
nitude of interest is more possibly being the reason that drives the user to con-
sume next item. However, it is a non-trivial and challenging task. First, the
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supervision signal indicating item node linkage is unobservable. Items belonging
to the same interest are expected to be recognized and resided into the same
induced subgraph. But sequences do not have underlying intrinsic graphs that
discriminate whether two items in the session should interact or not. The graph
structure modification has to take on the opportunity of maximizing the predic-
tion performance. Second, user interests are diverse. Sessions have differentiated
sequence structures in terms of session length, distinct items, and interest num-
ber. Moreover, user personalized interests evolve from historical actions. The
proposed solution is agnostic regarding the specifics of interest distribution for
each session in advance. It is demanding to specify an appropriate number of
interests for each session ahead of training.

To this end, we propose a novel method dubbed Personalized Interest Graph
Recommender (PIGR) to construct session graph structure driven by distill-
ing user interests. The model finds a reasonable graph in the absence of side
information with only user-item interactions available. Our main contributions
are summarized below: (1) Instead of using predefined principles, we propose a
differentiable framework PIGR to enable session graph construction and adap-
tive interest extraction simultaneously. (2) We propose a session graph structure
learning module to preserve the connection between similar items inferred by
sequential behavior and cluster them centered around the same interest node.
(3) We propose a unified interest retrieval module to propagate item features
to the selected interest node and utilize node centrality to aggregate different
granularity of interest nodes into one unified session-level vector. (4) We evalu-
ate our model on three public datasets and the experimental results validate the
superiority of PIGR.

2 Personalized Interest Graph Recommender - PIGR

Problem Formulation. Session-based recommender system aims to predict
the next item based on an anonymous session. A session contains a series of
consecutive items sorted by clicked timestamps in ascending order. Gathering
items from all sessions forms the item set I, where |I| represents cardinality size.
For inference, given a session s with m present items, session-based recommender
system predicts the probability of item q being picked as the next item, i.e.,
p(q|s). Among the candidate set I, the item with the highest probability will
then be selected as the next one.

Our Solution. Figure 2 provides a pipeline illustration of the PIGR framework.
In detail, it is composed of two modules as follows: (i) Session graph structure
learning module: It infers item similarity by taking sequential behavior into con-
sideration and explicitly guides the session graph construction by clustering sim-
ilar items centered around the same interest node; (ii) Unified interest retrieval
module: It propagates features to the interest node and formulates an adaptive
number of interests. Then it encodes interest nodes over the entire graph to a
unified session-level vector.
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Fig. 2. The circles of the same color belong to the same interest. The first module
evaluates the node similarities and converts the session to a graph. The second module
propagates neighbor features along learned edges and outputs a unified session-level
interest embedding.

2.1 Session Graph Structure Learning Module

At the beginning, the model may not accurately estimate node pairwise strength
with only initial embedding. The item order underlying the sequence acts as prior
knowledge of graph construction and is beneficial to node connection exploration.
The absolute order is designed to depict the dependency contained in the abso-
lute position of items in the sequence while the relative pattern emphasizes
the correlation between the current item and prefix items. We use the position
embeddings and Gated Recurrent Units (GRU) to model the absolute and rela-
tive order of items. The hidden representation of item j processed by GRU is as
follows:

h
(0)
j = GRU(h(0)

j−1, [ej ⊕ pj ]), (1)

where ⊕ is the concatenation function; pj ∈ R
d denotes as a trainable position

vector; embedding ej is from learnable parameter matrix E ∈ R
|I|×d. Then we

leverage items that integrate sequential information to learn the edges. Given
the hidden representations of m nodes at the k-th layer

[
h
(k)
1 ,h

(k)
2 , . . . ,h

(k)
m

]
, we

measure edge strengths by the cosine similarity metric:

Ã
(k)
ij = cos(h(k)

i ,h
(k)
j ) + ε · τ(wnh

(k)
i ), (2)

where ε ∼ N (0, 1) is a scalar independently sampled from the standard normal
distribution, τ is the softplus activation function, and wn ∈ R

d is a learnable
vector shared across layers. At the early training stage, it struggles to yield sat-
isfactory item hidden representations. Each node may not selectively determine
the optimal neighbors. Therefore, we add the trainable noise which slightly dis-
turbs neighbor weights. Empirically, a node may interact with only a sparse set of
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nodes. To improve computing efficiency and remove edges with low information
density, we pool a sparsified adjacent matrix from the previous fully connected
graph by keeping each item with top t neighbors as follows:

A
(k)
i: = Softmax(Topt(Ã(k)

i: , t)),

T opt(Ã(k)
i: , t)j =

{
Ã

(k)
ij , if Ã

(k)
ij is in the top t values

−∞, otherwise
.

(3)

After this, we obtain a reasonable graph structure A(k). In this matrix, items
that select to send messages to the same neighbor are clustered into the same
subgraph and the neighbor node serves as the interest node, which will inform
the downstream interest extraction process.

2.2 Unified Interest Retrieval Module

The former step finds related nodes for each selected interest node. Then we
aggregate neighbor representations by performing message passing strategy on
the built adjacent matrix A(k) and the hidden representations H(k). The (k+1)-
th step message passing is computed by:

H(k+1) = MLP (A(k)H(k)) + H(k), (4)

where MLP (·) represents a two-layer perceptron network to integrate non-linear
signal to each node and generate more expressive hidden representations. In such
a manner, semantically similar node features are fused into the same coarsened
node along learned edges. These coarsened nodes implicitly denote a set of clus-
ters of multiple scales and propagation operation actually forces each node map-
ping to one interest then aggregate each interest. In particular, compared with
efforts assigning soft cluster assignment matrix to nodes [23], we provide a gen-
eral recipe to extract an adaptive number of interests without explicitly claiming
ahead of training. Then we encode all interest nodes over the entire graph to
the output and obtain a composite interest vector. First, the node centrality,
i.e., sum of weighted in-degrees indicates the importance of each interest node in
the dynamically learned graph structure formulated as o

(k+1)
i =

∑
j∈N (i) A

(k+1)
ij .

Second, we attend interest nodes obtained from k layers with pooling to preserve
the varying locality. The graph-level representation is then expressed by:

h =
1

k + 1

k∑
i=0

m∑
j=1

o
(i+1)
j · h

(i+1)
j . (5)

The summarized interest ignores dependency contained in the linear order of
items along time step. So we refine the graph-level representation with sequential
information h̃, which is the last item output from Eq. (1) to learn the unified
session-level vector as follows:

α = σ(Wα[h̃ ⊕ h]),

x = α � h̃ + (1 − α) � h,
(6)
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where σ is the sigmoid activation function; Wα ∈ R
2d×d is a transformation

matrix and α balances the relative importance.

2.3 Training Objective

Our training target for session s is to minimize the following learning objective:

L = Lc(ŷ, y) + βLreg(h, h̃), (7)

where β controls the magnitude of the second loss. The Lc is the cross-entropy
loss where y ∈ R

|I| is the ground truth vector of session s and ŷ ∈ R
|I| repre-

sents the estimated next item clicked probability. The next clicked probability
concerning all items is given by: ŷ = softmax(xE�). And we treat the recom-
mendation task as a classification problem:

Lc = −
|I|∑
i=1

yi log(ŷi) + (1 − yi) log(1 − ŷi). (8)

The Lreg acts as a regularization loss with data augmentation following [20]:

Lreg = − 1
|B|

(
log σ(h � h̃) + Eĥ∼P

(
log σ(1 − h � ĥ)

))
, (9)

where σ is the sigmoid function, |B| is the batch size and ĥ is the derived embed-
ding from h̃ with random permutation P. The h̃ is regarded as congruent linear
view of the graph. Maximizing the mutual information through regularization
loss provides additional supervision signal and guarantees the interest in com-
pliance with the sequential behaviors.

3 Experiments

In this section, we aim to answer five research questions: RQ1: How effective is
PIGR compared with the state-of-the-art baselines? RQ2: How much do differ-
ent components utilized by PIGR contribute to the whole model performance?
RQ3: How is the capability of the methods in handling sessions with different
lengths? RQ4: What is the influence of hyper-parameters on the PIGR? RQ5:
What is the distribution of the interest number learned by PIGR?
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Table 1. Detailed datasets statistics.

Datasets Items num Training num Test num Avg length Length range

LastFM 24,699 799,884 206,723 17.26 Long

Gowalla 57,995 1,064,565 323,593 7.13 Medium

Yoochoose 17,390 312,527 91,428 4.24 Short

3.1 Experimental Setup

Datasets Processing. To study the property of the proposed framework
PIGR, we conduct experiments on three real-world datasets LastFM1, Gowalla2

and Yoochoose3 with different average length ranges. We summarize detailed
dataset statistics in Table 1. Following previous experimental protocol [24], we
filter sequences whose lengths are smaller than 2 in each dataset. Similar to
[2], we use the most recent 20% of the original sequences as test sets and leave
the rest as training set. And we split the last 20% subset of training set to tune
hyper-parameters. Moreover, we apply the segmentation preprocessing technique
to each sequence. For an anonymous sequence with elements [s1, s2, . . . , sl], we
generate a series of subsequence and label pairs for model input, i.e., [[s1], [s2]],
[[s1, s2], [s3]], . . . , [[s1, s2, . . . , sl−1], [sl]].

Table 2. Overall performance comparison w.r.t. Recall@N and NDCG@N scores on
the three benchmark datasets where p-value <0.01.

Methods LastFM Gowalla Yoochoose

Recall@20 NDCG@20 Recall@20 NDCG@20 Recall@20 NDCG@20

STAMP 22.53 9.95 35.38 19.57 59.35 32.10

MIND 25.73 15.74 25.13 13.55 54.86 27.30

Comirec-SA 16.48 6.95 27.06 16.81 53.46 26.24

CO-SAN 25.92 11.59 48.25 28.32 71.02 40.20

FGNN 25.59 11.65 47.19 27.76 67.14 36.72

GC-SAN 28.27 13.89 51.67 31.22 69.11 38.41

SR-GNN 25.47 12.20 49.29 29.51 68.51 38.32

LESSR 28.33 13.93 52.50 32.82 70.04 40.18

DHCN 27.35 12.47 52.79 31.04 69.52 38.73

PIGR w/ SI 29.02 13.86 52.70 31.78 71.21 40.64

PIGR w/ FG 28.75 13.18 51.18 31.65 70.25 39.20

PIGR 31.07 14.53 54.73 33.54 71.81 40.92

Improvement(%) +9.7% +4.3% +3.67% +2.19% +1.11% +1.79%

1 http://ocelma.net/MusicRecommendationDataset/index.html.
2 https://snap.stanford.edu/data/loc-gowalla.html.
3 https://www.kaggle.com/datasets/chadgostopp/recsys-challenge-2015.

http://ocelma.net/MusicRecommendationDataset/index.html
https://snap.stanford.edu/data/loc-gowalla.html
https://www.kaggle.com/datasets/chadgostopp/recsys-challenge-2015
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Experimental Settings. We consider the following representative methods to
compare with PIGR. (i) To verify the usefulness of modeling distant item tran-
sition, two sequential models (STAMP [11], COSAN [12]) and two multi-interest
models (MIND [9], Comirec-SA [1]) are included; (ii) To prove the superiority of
learning personalized interest graph structure, GNN-based models (FGNN [14],
GC-SAN [22], SR-GNN [19], LESSR [2], DHCN [20]) with predefined princi-
ples are included. Besides, we also incorporate two variants of PIGR to verify
our motivation. PIGR with fixed-graph (PIGR w/ FG) removes Eqs. (1), (2), (3)
and constructs a fixed graph using popular co-occurrence rules. PIGR with static
interest (PIGR w/ SI) excludes Eqs. (4), (5), (6) and employs the self-attention
technique to capture static long-term and short-term interests. For the imple-
mentation details, we implement PIGR with Pytorch, where the learning rate is
set to 0.0005 and the batch size is set to 512. The Adam optimizer is adopted.
We apply the grid search strategy following [20] to tune hyper-parameters based
on the validation performance. Each method is independently run five times
and reported the average performance. And we adopt two standard evaluation
metrics Recall@N and NDCG@N to measure model performance.

3.2 Comparison with Baselines (RQ1 & RQ2)

Table 2 summarizes all methods performance in terms of Recall@20 and
NDCG@20 scores on three datasets. We have the following observations. First,
the traditional sequential methods generally behave worse than the GNN mod-
els. These cases confirm the necessity of modeling distant item transition in
sessions and the power of graph neural networks. Second, the performance of
graph neural network competitors is inferior to PIGR. These methods construct
the session graph based on the manually predefined principles and may easily
introduce unnecessary edges in the sequence. As the session length extends, the
relationships among items are more complex than predefined principles. There-
fore, PIGR outperforms GNN models by a large margin. Besides, PIGR extracts
diverse interests from the learned session graph and consistently outperforms
PIGR w/ SI. And PIGR takes advantage of the learnable graph-structured infor-
mation and achieves better performance than PIGR w/ FG. These results sug-
gest that a promising direction is to learn a personalized graph structure from
the session to extract an adaptive number of interests.
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Table 3. Performance comparison with different session length ranges in terms of
Recall@N and NDCG@N scores on Gowalla dataset.

Methods Long Medium Short

Recall@20 NDCG@20 Recall@20 NDCG@20 Recall@20 NDCG@20

STAMP 34.91 19.83 39.08 22.91 33.62 17.34

MIND 20.72 10.44 28.36 15.84 27.86 15.45

Comirec-SA 26.79 16.19 27.85 17.49 26.85 17.04

CO-SAN 51.80 29.80 49.98 29.06 45.36 27.10

FGNN 45.03 24.65 46.98 26.92 44.41 26.77

GC-SAN 54.54 32.07 54.03 32.87 47.70 29.47

SR-GNN 51.81 30.22 51.01 30.62 45.95 28.15

LESSR 55.73 33.97 55.26 34.90 47.91 30.48

DHCN 56.35 32.10 54.52 31.93 48.68 29.51

PIGR 58.43 35.26 57.30 35.37 49.82 30.89

3.3 The Influence of Session Length (RQ3)

Table 4. Length range definition on Gowalla dataset.

Length range Min length Max length Number

Long 15 200 114,540

Medium 6 14 86,339

Short 1 5 122,714

To specifically explore pre-
vious baselines performance
on sessions in different length
ranges, we partition the pre-
diction results of test ses-
sions on Gowalla dataset
following the definition in
Table 4 in line with each ses-
sion length. There is a relatively balanced sequence length distribution on
Gowalla dataset and it could fairly manifest all models capability of coping
with different length ranges. The separate results are reported in Table 3. First,
graph neural network models perform equally well or considerably better than
the sequential models. It proves the importance of depicting item topological
dependency. Second, PIGR has better improvement in the long sessions than in
the short sessions and medium sessions. Since the user’s complete preference is
much more diverse in the long sessions, manually designing the graph structure
is not an appropriate choice. It demonstrates the superiority of PIGR handing
session lengths in different ranges.
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Fig. 3. Empirical training loss and corresponding Recall@20 score with different neigh-
bor number t.

3.4 Hyper-parameter Sensitivities (RQ4)

To evaluate the impact of hyper-parameters, we conduct two groups of hyper-
parameter sensitivity experiments. In the first group, to study the impact of
the neighbor number t on the training convergence rate, we draw Fig. 3, which
characterizes the empirical training loss and performance in terms of Recall@20
scores curve over epoch on LastFM dataset. We have the following observations.
First, they do not exhibit a faster convergence rate considering Recall scores
ranging t from 1 to 3. Remarkably, the loss curve illustrates that growing neigh-
bor number does not turn the model to converge to a better global minimum.
Overall, these observations collectively indicate that increasing neighbor number
enhances the model generalization ability and does not impact the convergence
rate.

In the second group, we examine joint effects of two hyper-parameters: neigh-
bor number t and embedding dimension d. The prediction results on LastFM
dataset are drawn in three-dimensional map in Fig. 4(a). We observe that the per-
formance is consistently better while continuously increasing embedding dimen-
sions. And the model achieves substantial improvement when t and d equals 2
and 150 respectively and marginal improvement with larger values.

3.5 Adaptability Analysis (RQ5)

To prove that PIGR extracts an adaptive number of interests, we select all ses-
sions whose lengths are longer than ten on Yoochoose dataset and calculate the
extracted interest number. The visualization is shown in Fig. 4(b), where each
cell represents the occurrence ratio of different interest numbers among the same
session length. We observe that PIGR extracts different interest numbers within
the same session length. And the assigned probability mass is not all concen-
trated in one cell, proving that PIGR learns an adaptive number of interests.

4 Related Work

Session-based Recommendations. Li et al. [10] incorporate an attention
mechanism to calculate each item score to user current interest. Then Yuan
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Fig. 4. (a) Test performance under joint impacts of embedding dimension d and neigh-
bor number t. (b) Heat map of extracted interest probability distribution among session
lengths.

et al. [24] incorporate α-entmax technologies to filter redundant items. Wu et
al. [19] introduce graph gated neural networks to fully explore topological prop-
erties of the sequence. Pan et al. [13] add star nodes to link nonadjacent items.
However, several works think that current sequences only focus on explicit item
dependencies in a single session, ignoring implicit global information between
sessions. Wang et al. [18] propose to construct a global item-item graph based
on each pair of item occurrences in all training sessions. To capture dynamic user
preferences. Qiu et al. [15] propose to utilize a sample reservoir to store valuable
samples while Zhou et al. [25] propose to capture temporal information.

Multi-interest Recommendations. A user’s sequence may display different
users’ intents. A next item choice may be due to the influence of multiple interest
factors. Cen et al. [1] propose two multi-interest extraction mechanisms: self-
attention and dynamic routing. Similarly, Li et al. [9] leverage capsule network
to model multi-interests of users at Tmall. Xiao et al. [21] propose a Transformer-
based framework to capture diverse interests expressed by the user behaviors.
Tan et al. [16] only select the most related k interests from the prototype pool
for each user. Cho et al. [4] set up K general proxy to encode general interests
shared by multiple sessions.

5 Conclusions and Future Work

In this paper, we propose a novel framework named PIGR for session-based rec-
ommendations. Compared with existing GNN-based solutions, PIGR learns a
reasonable graph structure from the session instead of directly extracting the
co-occurrence of item pairs as edges. This learning process is driven by extract-
ing adaptive interest for each session. Items with similar representations learned
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by sequential behavior will be clustered to center around the same interest node.
The different granularity of interests at each layer can be retrieved as one unified
session-level vector of the user. Extensive experiments demonstrate that PIGR
achieves significant performance improvement over the state-of-the-art baselines
on real-world datasets. Our future work is to explore the applicability of embed-
ding item multiple attributes to graph structure learning.
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Abstract. The traditional recommendation approaches learn the rep-
resentations of users and items utilizing only a single type of behav-
ior data, which results in them facing the data sparsity issue. To alle-
viate the dilemma, multi-behavior recommendations leverage different
types of behaviors to assist in modeling users’ preferences. Despite their
remarkable effectiveness, two significant challenges have remained less
explored: 1) Effectively distinguishing the contributions of different types
of behaviors during capturing users’ preferences; 2) Sufficiently exploit-
ing the temporal information of user-item interactions. To tackle these
challenges, we develop a new model named Multi-behavior Guided Tem-
poral Graph Attention Network (MB-TGAT) to discriminate the diverse
influence of various behaviors and to explore the evolutionary tendencies
of users’ recent preferences. In particular, we propose a behavior-aware
attention mechanism to differentiate the strengths of different behav-
iors in the user-item aggregation phase. Furthermore, we tailor a phased
message passing mechanism based on GNNs and design an evolution
sequence self-attention to extract the users’ preferences from static and
dynamic perspectives, respectively. Extensive experiments on three real-
world datasets demonstrate the superiority of our model, noticeably with
37.27%, 37.31% and 14.63% performance gain over the state-of-the-art
baselines on the Taobao, IJCAI-15 and YooChoose datasets, respectively.

Keywords: Multi-behavior Recommendation · Collaborative
Filtering · Graph Neural Network

1 Introduction

In the era of information clutter, recommender systems have emerged as effective
approaches to alleviate the information overloading issue, which aim to recom-
mend as precisely as possible the user’s preferred contents. Collaborative filtering
(CF) is a fundamental recommendation method that models users’ preferences
by capturing the collaborative signals hide in user-item interactions. Early CF
methods [6,12] utilize matrix factorization to learn the latent feature repre-
sentations of users and items. With the flourishing of graph neural networks
(GNNs) [9,14], they are introduced into recommendation [5,10,15,16] to dig the
high-order relationships among nodes in the user-item interaction graph, which
efficiently capture the hidden collaborative signals and obtain excellent node
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. Kashima et al. (Eds.): PAKDD 2023, LNAI 13937, pp. 297–309, 2023.
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representations. However, these methods often face the data sparsity problem
since they use user-item interactions limited to a single type of behavior (e.g.,
purchase).

In fact, in the real-world scenarios, we can effortlessly collect various types of
interaction behaviors data, such as click, add-to-cart and purchase in e-commerce
platforms. Different types of behaviors express users’ diverse intentions and pref-
erence levels, hence it is valuable to consider behavior multiplicity during learn-
ing the representations of users and items. Early effort [11] expands from BPR
to discriminate the contributions of multiple types of feedback. NMTR [4] arti-
ficially constrains the cascading relationship among different types of behaviors.
EHCF [3] correlates the prediction of each behavior in a transfer way for multi-
relational recommendation. Newer approaches [2,8,18] are designed based on
GNNs, which utilize the message passing mechanism to capture the high-order
connectivity in the user-item multi-behavior interaction graph and adopt atten-
tion weight to differentiate the influence of various behaviors.

Despite their remarkable success, we observe that these studies still face two
challenges: First, distinguishing the contributions of different types of behav-
iors is challenging but worthwhile for multi-behavior recommendation [8], which
ensures that multiple types of behaviors can be sufficiently leveraged. Second, we
should consider the changes in the temporal dimension of the items interacted
with users in a short-term, which reveals the evolutionary trends of their recent
preferences. In other words, when we model the complicated user-item multi-
behavior relationships, the fact that users’ preferences evolve over time should
be taken into account. However, this is not an effortless challenge.

To address the above challenges, we propose a novel Multi-behavior Guided
Temporal Graph Attention Network (MB-TGAT) to differentiate the contribu-
tions of different behaviors and to explore the short-term preferences evolution of
users. Specifically, we devise a behavior-aware attention mechanism to discrimi-
nate the importance of various behaviors in the user-item aggregation phase. On
this basis, we distill the users’ preferences from both static and dynamic per-
spectives, as we consider that all items a user interacting with express his/her
long-term static intrinsic preferences, while the diversity of items interacted with
the user in a short-term implies his/her recent dynamic preferences, and both
perspectives mutually complement with each other. We first customize a phased
message passing mechanism based on GNNs to learn users’ static preference rep-
resentations. Then we construct an evolution sequence based on the temporal
order of user-item interactions and design an evolution sequence self-attention to
capture the potential dependencies between items within the evolution sequence
to uncover the evolution propensity of users’ short-term preferences.

To sum up, the main contributions of this work are summarized as follows:

– We propose a novel framework named MB-TGAT for multi-behavior recom-
mendation, which emphasizes the importance of distinguishing the contribu-
tions of different types of behaviors and effectively extracts users’ preferences
from both static and dynamic perspectives.
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– In MB-TGAT, we first design a behavior-aware attention mechanism to dis-
criminate the influence of diverse behaviors, and then a tailored phased mes-
sage passing pattern and an evolution sequence self-attention are devised to
distill user preferences from static and dynamic views, respectively.

– We conduct extensive experiments on three real-world datasets to demon-
strate the effectiveness of our model. Comparing with various state-of-the-
art single-behavior and multi-behavior recommendations, our MB-TGAT
achieves remarkable improvements. Furthermore, the ablation studies are per-
formed to illustrate the indispensability of each sub-module.

2 Related Work

2.1 Graph-Based Recommendation

In recent years, the superior performance of GNNs [9,14] for graph representation
learning has attracted widespread focus. In recommender systems, the user-item
interactions constitute a bipartite graph, and a number of works [5,10,15,16,19]
have shown bright promise in applying GNNs to recommendation tasks. For
instance, NGCF [15] utilizes the high-order connectivity in the graph and a
message passing mechanism to encode the collaborative signals. LightGCN [5]
simplifies the message passing mechanism of GCN [9] to make it more concise
and appropriate for recommendation. Additionally, STAM [19] encodes tempo-
ral information into the representation of items to express the order of items
interacted with users. Recently, SGL [16] and NCL [10] develop a class of model-
agnostic contrastive learning frameworks for GNN-based recommendation, which
markedly alleviate the data sparsity issue. However, all of these methods only
leverage a single type behavior to learn the representations of user and item.

2.2 Multi-behavior Recommendation

Multi-behavior recommendations [2–4,8,17] are devised to leverage multiple
types of user-item interactions to remedy the limitations caused by sparse target
behavior data in the representation learning of users and items. To be spe-
cific, MC-BPR [11] assumes that different levels of user feedback reflect differ-
ent degrees of preference. NMTR [4] proposes a prior constraint on the prefer-
ence strength by defining the cascading relationship among multiple behaviors.
EHCF [3] transfers the prediction of different behaviors from low-level behavior
to high-level behavior to exploit the complicated relations among them. GHCF
[2] encodes both nodes and relations in the graph and utilizes GCN propaga-
tion layer to capture the collaborative high-hop signals. Furthermore, recently
emerged numerous methods [8,17,18] adopt behavior-aware attention mecha-
nisms to distinguish the strengths of different types of behaviors. Specifically,
they first learn the representations of users and items under the specific behav-
ior, then use attention weights to integrate the representations learned from each
behavior space to express the final user preferences. Nevertheless, none of those
approaches involve the temporal information of user-item interactions.



300 W. Xu et al.

Fig. 1. The overall framework of MB-TGAT.

3 Preliminaries

Different from single-behavior recommendations, which contain only one type
of interaction behavior, multi-behavior recommendations involve multiple types
of behaviors, such as click, add-to-cart, purchase, etc. in e-commerce platforms.
Specifically, among the various behaviors, as the purchase behavior is highly
related to the revenue of platforms, which is regarded as the target behavior
that we aim to predict, while other behaviors are considered as the auxiliary
behavior.

Suppose there exist N users U = {u1 , u2 , . . . , uN }, M items V =
{v1 , v2 , . . . , vM } and K behaviors B = {b1 , b2 , . . . , bK}, among which bK is
presented for the target behavior and {b1 , b2 , . . . , bK−1} are expressed for the
auxiliary behaviors. Here we utilize the triplet (u, b, v) to represent user-item
multi-behavior interaction, and the multi-behavior interaction graph can be
denoted as G = {(u, b, v)|u ∈ U , v ∈ V, b ∈ B}, where each triplet indicates that
the user u interacts with item v under the behavior b. Note that G is an undi-
rected graph, which means that (u, b, v) and (v, b, u) represent the same user-item
interaction with behavior b. In addition, from the perspective of user-item inter-
action sequences, all interactions of each user (regardless of behavior types) can
constitute a sequence in chronological order, as the items can. Formally, they
are presented as Su =

{
v1, v2, . . . , v|Su|

}
, Sv =

{
u1, u2, . . . , u|Sv|

}
, respectively.

Finally, we define three matrices EU ∈ R
N×d, EV ∈ R

M×d and EB ∈ R
K×d to

represent the initial embeddings of all users, items and behaviors separately.

4 Methodology

In this section, we introduce the proposed MB-TGAT in detail, the overall frame-
work of which is shown in Fig. 1, and it is composed of four vital parts: 1) Multi-
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behavior attention; 2) Behavior-wise static user and item aggregation pattern;
3) Behavior-wise dynamic interaction evolution learning; 4) Joint prediction.

4.1 Multi-behavior Attention

Here, we design a behavior-aware attention mechanism to distinguish the contri-
butions of various behaviors during learning representations of users and items.

Since the user-item interaction is described by a triplet (u, b, v), we can draw
on the idea of TransE [1] to calculate the triplet’s plausibility score ŷu,b,v as
follows:

ŷu,b,v = ‖eu + eb − ev‖22 , (1)

where eu ∈ R
d, eb ∈ R

d and ev ∈ R
d represent the initialized embedding of

user, behavior type and item, respectively. A smaller ŷu,b,v indicates the triplets
more likely to exist in the user-item multi-behavior interaction graph (as shown
in Fig. 1), i.e., a higher likelihood that user u interact with item v under the
behavior b, and vice versa. Therefore, we cleverly take the reciprocal of ŷu,b,v as
the behavior-aware user-item correlation, i.e., C(eu, eb, ev) = 1/ŷu,b,v .

To enhance the expression of ŷu,b,v, we adopt a pairwise ranking loss:

Lpc =
∑

(u,b,v,v′)∈ ˜G
− lnσ (ŷu,b,v′ − ŷu,b,v) , (2)

where G̃ = {(u, b, v, v′) | (u, b, v) ∈ G, (u, b, v′) /∈ G}, and v′ is a randomly sam-
pled item that user u not interacts with under b and σ(·) is the sigmoid function.

However, C(eu, eb, ev) can only describe the correlation between users and
items under the specific behavior, but cannot express the distinction between
multiple behaviors. Hence, we exploit the self-attention mechanism to explore
the dependencies among all types of behaviors, which is formally presented:

Wb = f

(
(EBQB) (EBKB)

�
√

d

)

, ηbj = f

(
K∑

i=1

Wbi,j

)

, (3)

where QB ∈ R
d×d and KB ∈ R

d×d are learnable transformation matrices for
embedding projection and f(·) denotes the softmax(·) function. Since the j-th
column elements in Wb ∈ R

K×K indicate the impact of behavior bj ∈ B on
other behaviors, we regard their summation as the importance of bj .

Further, we incorporate the importance of each behavior with the user-item
correlation to indicate the contributions of behavior bj for user u interacting
with item v, the behavior-aware attention function as follows:

Attn(eu, eb, ev, bj) = ηbj · C(eu, eb, ev). (4)

4.2 Behavior-Wise Static User and Item Aggregation Pattern

The general GNN-based recommendations [5,15] are prone to overfitting as the
layers of GNNs stack up and the actual number of neighbors aggregated is



302 W. Xu et al.

restricted. Therefore, we split the propagation process into two phases and pro-
pose a customized phased message passing framework. To be specific, it leverages
a local user-item aggregation layer to aggregate the first-order neighbors of the
users/items, followed by accessing higher-hop neighbors via a global user/item
propagation layer. In this way, more neighbors of users/items are explored.

Behavior-Wise Local User-Item Aggregation Layer. We adopt the
behavior-aware attention to aggregate the first-order neighbors of users and items
in the user-item multi-behavior interaction graph, which can be represented as:

zu = eu +
∑

(u,b,v)∈G
ξ(u,b,v)ev, zv = ev +

∑

(u,b,v)∈G
ξ(v,b,u)eu, (5)

where zu ∈ R
d and zv ∈ R

d denote the local preference representations of users
and items separately. In addition, ξ(u,b,v) and ξ(v,b,u) express the behavior-wise
attentive aggregation weights, which are formally calculated as:

ξ(u,b,v) = f(ξ̄(u,b,v)), ξ(v,b,u) = f(ξ̄(v,b,u)), ξ̄(u,b,v) = Attn(eu, eb, ev, b), (6)

where Attn(·) denotes the behavior-aware attention function defined in Eqn (4).
Note that we consider the multi-behavior interaction graph to be an undirected
graph, hence we present ξ̄(v,b,u) = ξ̄(u,b,v).

Global User and Item Propagation Layer. As mentioned above, all of a
user’s interactions can constitute an item sequence Su according to the chrono-
logical order of user-item interactions. Thus, all users’ interaction sequences nat-
urally form a global user context graph Gglobal

u = {(u, e)|u ∈ U , e ∈ Eu}, where Eu

is the set of edges and edge ei,j exists if Sui
and Suj

share at least one item, and
the edge’s weight is ϕui,j

=
∣
∣Sui

∩ Suj

∣
∣ /

∣
∣Sui

∪ Suj

∣
∣. Next, we follow LightGCN

[5] to get the weight matrix ϕ′
u = D

1
2AD

1
2 , where Ai,j = ϕui,j

, Di,i =
∑

jAi,j ,
and to yield the static preference representation z̃stu of user as follows:

z(l+1)
ui

=
∑

uj∈Nui

ϕ′
ui,j

z(l)uj
, z̃stu =

1
L + 1

L∑

l=0

z(l)u , (7)

where z(l+1)
ui , Nui

denote the embedding of user ui at the (l+1)-th propagation
layer and the set of its neighbors in Gglobal

u , respectively. Here we let z(0)u = zu.
L denotes the total number of GNNs propagation layers. Similarly, the item’s
representation z̃stv can be obtained in the same approaches.

4.3 Behavior-Wise Dynamic Interaction Evolution Learning

To capture the dynamic preference variations of users, we construct a short-
term user-item interaction evolution sequence to express the evolution of users’
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recent preferences. Specifically, based on the user-item interaction sequence Su,
we can construct the user’s short-term interaction evolution sequence Hu ={
e1v + p1, . . . , etv + pt, . . . , eTv + pT

}
, where T is the length of Hu. If the length

of sequence Su is longer than T , we truncate Su to the last T items to build Hu.
Otherwise, we repeatedly add a ’padding item’, a zero embedding, to the left
until the length is T . pt ∈ R

d indicates the untrainable positional embedding of
the t-th position in Hu, which is encoded by the positional encoding in [13]. Cor-
responding to Hu, there exists a behavior sequence Hb

u =
{
e1b , . . . , e

t
b, . . . , e

T
b

}
,

where eib expresses the behavior type of user u interacting with the i-th item in
Hu. Finally, we pack Hu together into an embedding matrix Hu ∈ R

T×d.

Evolution Sequence Self-Attention. Inspired by [7,13], we design an unidi-
rectional multi-head self-attention for evolution sequence to mine the potential
relationships between items. In the user’s evolution sequence graph (shown in
Fig. 1), we specify that the t-th item in the evolution sequence can only attend
over the items before and including t, and cannot attend to the future items
(> t), as the future interacting items should not be of reference value to it.

We use a multi-head attention equipped with a mask matrix M ∈ R
T×T to

implement the above unidirectional attention paradigm. Here, we take Hu as the
keys, values and queries in [13] and project them into different spaces through the
linear projection matrices Kh ∈ R

d× d
H ,Vh ∈ R

d× d
H and Qh ∈ R

d× d
H separately,

where H denotes the number of attention heads. Further, the Scaled Dot-Product
Attention is adopted to get the attention weight matrix ωh, formalized as follows:

H̃u =
H

‖
h=1

ωh(HuVh), ωh
i,j = f

((
(HuQh)(HuKh)�

)
i,j√

d/H
+ mi,j

)

, (8)

where H̃u ∈ R
T×d is the new embedding matrix of users’ evolution sequence and

‖ denotes concatenation operation. ωh
i,j is the element of attention weight matrix

ωh and mi,j ∈ {0,−∞} is the entry of mask matrix M. When mi,j = −∞, we
get a zero attention weight ωh

i,j = 0, which guarantees that the j-th item cannot
attend to the i-th item behind it in the evolution sequences (i.e. j < i).

Behavior-Wise Fusion. In the previous statements, each item in the users’
evolution sequence has a corresponding behavior type. We dexterously leverage
the behavior-aware attention to yield the users’ dynamic preference represen-
tation z̃dynu through integrating the items’ embedding into the embedding of
specific user interacting with them, which is formulated as:

z̃dynu = eu +
T∑

i=1

αih̃i
u, αi =

exp (ᾱi)
∑T

t=1exp (ᾱt)
, ᾱi = Attn

(
eu, eib, h̃

i
u, b

)
, (9)

where h̃i
u ∈ R

d represents the i-th item’s new representation in the evolution
sequence of user u and eib ∈ R

d is the embedding of corresponding behavior type.
Similarly, the items’ dynamic preference representation z̃dynv can be derived

by performing the above operations on the evolution sequence of items.
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Table 1. Statistical information of datasets.

Datasets #Users #Items #Click #Cart #Purchase #Avg.length
Taobao 28,201 15,885 549,124 59,830 154,724 27.08
IJCAI-15 34,193 14,102 1,124,515 817 249,536 40.21
YooChoose 42,476 7,868 550,078 − 284,628 19.65

4.4 Joint Prediction and Model Training

We concatenate the static and dynamic preference representations and use a
nonlinear transformation to yield the final user/item embedding z̃u/z̃v as follows:

z̃u = LeakyReLU
((
z̃stu ‖z̃dynu

)
W1

)
, z̃v = LeakyReLU

((
z̃stv ‖z̃dynv

)
W2

)
,

(10)
where W1 ∈ R

2d×d, W2 ∈ R
2d×d are trainable parameters and LeakyReLU(·)

is an activation function. ‖ is the concatenation operation. Thereafter, we apply
the inner product to predict user and item matching score ŷu,v = z̃�

u z̃v.
Finally, We integrate the Lpc with the BPR loss [12] to optimize our model:

L = Lpc +
∑

(u,v,v′)∈O
− lnσ (ŷu,v − ŷu,v′) + λ‖Θ‖22, (11)

where O = {(u, v, v′) | (u, b, v) ∈ G, (u, b, v′) /∈ G} denotes the training data, v′ is
a randomly sampled item that user u not interacts with (regardless of behavior
type) and σ(·) is the sigmoid function. Θ is all trainable parameters in the model
and λ controls the weight of L2 regularization to prevent model overfitting.

In addition, our model could achieve comparable time complexity with the
GNN-based multi-behavior recommendations (details in supplement1).

5 Experiments

5.1 Experimental Settings

Datasets. We conduct experiments on three real-world datasets and the
detailed statistical information of them is summarized in Table 1. i) Taobao2.
This dataset is collected from the e-commerce platform Taobao. ii) IJCAI-
153. This dataset is from IJCAI 2015 Contest. iii) YooChoose. This dataset is
released in the RecSys Challenge 2015. Following [2,8], we regard purchase as the
target behavior and other types of behaviors are considered as auxiliary behavior.
We adopt the widely used leave-one-out strategy [2,3] to split the datasets.

1 https://github.com/XiaoLangLangY/MB-TGAT.
2 https://tianchi.aliyun.com/dataset/649.
3 https://tianchi.aliyun.com/dataset/42.

https://github.com/XiaoLangLangY/MB-TGAT
https://tianchi.aliyun.com/dataset/649
https://tianchi.aliyun.com/dataset/42
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Table 2. The performance comparison of all models. All the numbers are percentage
with ’%’ omitted. The best result is bolded and the runner-up is underlined.

Model Taobao IJCAI-15 YooChoose
H@20 H@50 N@20 N@50 H@20 H@50 N@20 N@50 H@20 H@50 N@20 N@50

BPR 5.33 8.00 2.55 3.07 2.59 3.67 1.32 1.54 60.01 69.00 33.97 35.77
NeuMF 4.99 7.38 2.40 2.87 2.33 3.40 1.18 1.39 60.74 68.74 34.08 35.68
LightGCN 7.11 10.72 3.35 4.07 4.21 6.10 2.03 2.40 62.36 72.76 34.46 36.54
SGL 7.29 10.78 3.43 4.12 4.52 6.59 2.16 2.57 61.35 73.01 33.00 35.33
NCL 6.92 10.33 3.31 3.98 3.84 5.74 1.82 2.20 62.61 72.78 36.60 38.63
STAM 6.85 9.99 3.20 3.83 4.55 6.37 2.19 2.55 43.89 54.12 22.54 24.58
MC-BPR 7.72 13.05 3.05 4.10 4.05 8.54 1.41 2.29 46.18 62.80 19.17 22.49
NMTR 15.52 23.23 5.66 7.19 11.05 20.46 3.91 5.77 52.82 70.05 20.70 24.14
MBGCN 7.48 11.05 3.53 4.24 4.12 6.14 1.94 2.34 54.34 62.94 31.58 33.30
EHCF 13.07 19.58 6.18 7.47 10.53 17.42 4.48 5.84 57.46 70.64 28.58 31.23
GHCF 14.81 21.47 6.95 8.27 11.66 19.43 4.85 6.38 63.70 77.06 28.86 31.57
MB-TGAT 20.58 27.11 9.54 10.85 16.01 26.90 6.45 8.61 73.02 80.72 39.70 41.27
%Improv 32.60 16.70 37.27 31.20 37.31 31.48 32.99 34.95 14.63 4.75 8.47 6.83

Baselines. To demonstrate the superiority of our MB-TGAT, we compare
it with several state-of-the-art models, which are divided into two categories:
Single-behavior Recommendation: BPR [12] optimizes the pairwise BPR
loss to learn the latent features of users and items. NeuMF [6] combines tra-
ditional MF and MLP to capture user-item interaction signals. LightGCN [5]
simplifies GCN to make it more concise and appropriate for recommendation.
SGL [16] introduces self-supervised learning to enhance GNN-based collabora-
tive filtering. NCL [10] constructs node-level contrastive objectives based on two
types of neighbors from graph structure and semantic space. STAM [19] incorpo-
rates temporal information into neighbor embedding learning. Multi-behavior
Recommendation: MC-BPR [11] extends from BPR to account for the levels
of user feedback in multi-behavior data. NMTR [4] constrains the cascading rela-
tionship among various behaviors. MBGCN [8] distinguishes behavior strength
by an user-item propagation layer. EHCF [3] links the prediction of each behavior
in a transfer manner and applies non-sampling optimization. GHCF [2] encodes
both nodes and relations for multi-relational prediction.

Evaluation Metrics and Implementation Details. We adopt two metrics
called HR@K and NDCG@K, where K is set to 20 and 50. Following [5,10],
we apply the full-ranking strategy to report the metrics. We implement our
MB-TGAT in PyTorch and the learning rate is set 1e−3. We set the embedding
dimension to 64 and tune the length of evolution sequence T in {5, 10, 20, 30, 40}.
L is searched in the range of {1, 2, 3, 4} and H in {1, 2, 4, 8}. For the baselines,
we refer to the setting of original papers and follow their tuning strategies.

5.2 Performance Comparison

We show the performance of all models on all datasets in Table 2, from which
we summarize the following observations:
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Fig. 2. Performance of MB-TGAT and three variants on three datasets.

First, our MB-TGAT shows overwhelming superiority over all state-of-the-
art single-behavior and multi-behavior recommendations and achieves remark-
able improvements of 32.60% on Taobao, 37.31% on IJCAI-15 and 14.63% on
YooChoose in terms of the HR@20. We attribute the outstanding performance
to the following reasons: 1) Benefiting from the behavior-aware attention mech-
anism, we effectively distinguish the contributions of different behaviors during
modeling users’ preferences. 2) The evolution sequence self-attention adequately
exploits the temporal information of user-item interactions to explore the evolu-
tionary trends of users’ short-term preferences. Second, most of multi-behavior
recommendations outperform single-behavior recommendations, since they lever-
age auxiliary behaviors to assist the target behavior in characterizing users’
preferences from different behavior dimensions to achieve better recommenda-
tion performance. However, the opposite is true on the YooChoose. The possible
reasons are that there are fewer auxiliary behavior interactions in YooChoose
and the type of auxiliary behavior is only Click, which is noisy and weakens
the recommendation performance. Third, we carefully observe that GNN-based
methods (e.g., LightGCN, NCL) work well than the traditional CF models (e.g.,
BPR, NeuMF) in single-behavior recommendations. This phenomenon reveals
the helpfulness that GNNs capture the potential collaborative signals through
mining the high-order connectivity in the user-item interaction graph.

In addition, experiments indicate that our model alleviates the data sparsity
issue of target behavior by using the auxiliary behaviors (details in supplement4).

5.3 Ablation Study

To verify the effectiveness of each essential component, we design three vari-
ants for comparing with our MB-TGAT: w/o MB-Attn replaces the ξ(u,b,v)
and ξ(v,b,u) in Eq. (5) with the degree normalization weight 1/

√|Nu||Nv| and
the mean pooling is adopted in the Eq. (9) to integrate the items within the
evolution sequence and removes the loss Lpc. w/o St-View discards the static
user and item aggregation pattern and just characterize users’ preferences from
the dynamic view. w/o Dyn-View does not include the dynamic interaction
evolution learning and models users’ preferences from a single static perspective.

4 https://github.com/XiaoLangLangY/MB-TGAT.

https://github.com/XiaoLangLangY/MB-TGAT
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Fig. 3. Performance comparison w.r.t. different T , L and H on three datasets.

As shown in Fig. 2, we can observe that all three variants perform worse than
vanilla MB-TGAT, with w/o St-View performing the worst, which indicates
that each part of the model is indispensable and the long-term static intrin-
sic preference of user is the dominant factor in determining user’s subsequent
interactions. In addition, the fact that w/o MB-Attn performs slightly infe-
rior to MB-TGAT confirms that we successfully distinguish the contributions of
different behaviors during modeling user’s preferences.

5.4 Hyper-parameter Analysis

To explore the impact of different hyper-parameter settings on the performance
of MB-TGAT, we select three significant hyper-parameters for demonstration
and the results are reported in Fig. 3. 1) The length of evolution sequence T . We
observe that a suitable T is beneficial to improve the performance of MB-TGAT,
as it implies the evolutionary trends of users’ short-term preferences. Specifically,
the best result is achievable when T is 20 on Taobao and YooChoose, and 10
on IJCAI-15. 2) The number of global propagation layers L. The result shows
that our model achieves excellent performance with layers L in {2, 3} on all
datasets. Nevertheless, stacking too many layers leads to performance degrada-
tion, because it introduces noise to the representations of user and item and
causes the over-smoothing issue. 3) The number of heads H for multi-head self-
attention. We are surprised to observe that H = 1 achieves a slightly better
performance. We speculate on the primary reason is that the embedding dimen-
sion d is only 64 in our model, which is not suitable for splitting into smaller
subspaces.

6 Conclusion

In this paper, we propose a new multi-behavior guided temporal graph atten-
tion network for recommendation. To be specific, we first design a behavior-aware
attention to discriminate the contributions of multiple behaviors during learn-
ing representations of users and items. Further, we fully consider both static
and dynamic perspectives of users’ preferences, and then develop a customized
phased message passing mechanism and an evolution sequence self-attention to
capture users’ intrinsic preferences and recent dynamic preferences, respectively.



308 W. Xu et al.

We conduct comprehensive experiments on three real-world datasets to demon-
strate the effectiveness and superiority of our MB-TGAT over various state-of-
the-arts.
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Abstract. The use of graph convolution in the development of recom-
mender system algorithms has recently achieved state-of-the-art results
in the collaborative filtering task (CF). While it has been demonstrated
that the graph convolution operation is connected to a filtering oper-
ation on the graph spectral domain, the theoretical rationale for why
this leads to higher performance on the collaborative filtering problem
remains unknown. The presented work makes two contributions. First,
we investigate the effect of using graph convolution throughout the user
and item representation learning processes, demonstrating how the latent
features learned are pushed from the filtering operation into the subspace
spanned by the eigenvectors associated with the highest eigenvalues of
the normalised adjacency matrix, and how vectors lying on this subspace
are the optimal solutions for an objective function related to the sum of
the prediction function over the training data. Then, we present an app-
roach that directly leverages the eigenvectors to emulate the solution
obtained through graph convolution, eliminating the requirement for a
time-consuming gradient descent training procedure while also delivering
higher performance on three real-world datasets.

Keywords: Collaborative filtering · Graph convolution · Spectral
methods

1 Introduction

Graph convolutional networks (GCN) are a form of deep learning network which
leverages the structural information in a graph representation of the training
data [9]. The convolutional layers of the network aggregate each nodal feature
with those of its neighbours in the graph. By constructing a network of h con-
volutional layers, the node embedding becomes dependent on the features of
nodes that are h-hops away from it in the network. We focus on the Light-
GCN algorithm [8] that has received a lot of attention recently due to the fact
that it has demonstrated that, given only user-item interaction data without
rich user and item features, the convolutional layers can be greatly simplified.
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In particular, it argues that the non-linear activation and the trainable weights
of the full GCN can be removed from the convolution without any degradation
to the accuracy of the model and a substantial saving in the complexity of train-
ing. LightGCN has been shown to obtain state-of-the-art performance in terms
of top-N performance measures on a number of recommender datasets. In this
paper, we address the question of why LightGCN achieves good performance,
despite its simple convolutional layers. While it is surely true that LightGCN
is less complex than a regular GCN [9], it is also true that it requires train-
ing by gradient descent and that each update to the model parameters is much
more complex than the updates of standard matrix factorisation algorithms,
such as BPR. Hence, we ask if LightGCN is fundamentally better at capturing
features in the dataset that a standard matrix factorisation model will miss.
We show that, without the non-linear activation functions, the convolutions of
LightGCN can be understood as graph filters that have the effect of generating
features that are largely embedded in a subspace spanned by the eigenvalues
of the normalised interaction matrix corresponding to its largest eigenvalues.
We show why this is a suitable subspace in which to find quality solutions to
solve the top-N recommendation problem. With this spectral interpretation of
LightGCN, we proceed to build spectral recommender model, which we call
Pure Spectral Graph Embeddings (PSGE) that leverages the principles behind
LightGCN, while having a closed-form solution that can be found through an
eigen-decomposition of the interaction matrix, rather than through a gradient
descent algorithm. Given that fast algorithms for eigen-decomposition of sparse
matrices are available [5], PSGE can be learned in a fraction of the time that it
takes to train LightGCN. We demonstrate that PSGE out-performs LightGCN
on a number of recommendation datasets. We also test its performance against
the other leading linear algorithms in the literature and show that PSGE can
be configured to achieve high recommendation performance while reducing the
popularity bias that is evident in these other similar algorithms.

2 Preliminaries

Let U be a set of users of size |U| = U and I be a set of items of size |I| = I. Given
a U × I interaction dataset R = {rui} where rui represents implicit feedback
given by user u on item i, the top-N recommendation problem is to recommend
a set of N > 0 items that the system predicts are relevant to a given user
u. Typically, a prediction function computes a relevance score r̂ui, the items are
ranked according to r̂ui and the top items in this ordering are recommended. We
focus on latent space methods, where, for each user and item, a f -dimensional
embedding, denoted respectively as pu and qi is learned from the interaction
data, and the prediction function is the inner product of the user and item
embeddings. Write P for the U × f matrix whose rows are the user embeddings
pu and Q for the I × f matrix whose rows are the item embeddings qi.

Graph convolution methods interpret user-item interactions as edges of a
graph. More formally, the interaction data R can be represented as an undirected
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bipartite graph GR = (V, E) with nodes V = U ∪ I and edges E = {(u, i)|u ∈
U , i ∈ I, rui �= 0} connect user nodes u to item nodes i whenever there is an
interaction between them in R.

2.1 Graph Signals and the Graph Fourier Transform

Given an undirected weighted graph of order n, with adjacency matrix A =
{aij} ∈ R, a signal over the graph is a function f : V → R. For any signal,
we can form the n-dimensional vector x ∈ R

n such that the ith component of x
represents the value of the signal at the ith vertex of V. Notice how concatenating
the embedding matrices, P and Q into a single (U +I)×f dimensional matrix X,
we obtain a matrix in which each column represents a signal over the bipartite
graph GR. From this alternative point of view, the learning process involves the
learning of f different signals over the graph which can be thought as latent
features constructing the user and item representations.

A graph convolution operation on a signal is a weighted sum of the signal
at a node with its values in a neighbourhood of up to (n − 1)-hops from the
node and can be represented as a polynomial over a propagation matrix S with
weights gi:

conv(x,g) =
n−1∑

i=0

giSix ≡ g ∗ x .

A common choice for the propagation matrix S is the normalised Laplacian Δ,
of a graph with adjacency A, defined as Δ = I − D−1/2AD−1/2 , where D is
the diagonal matrix of node degrees with diagonal elements dii =

∑
j aij . Δ is

a symmetric positive semi-definite matrix, so that its eigenvalues λi are non-
negative and its eigenvectors form an orthogonal basis, allowing the decomposi-
tion, Δ = UΛU�, where U is the matrix whose columns are the n orthonormal
eigenvectors and Λ = diag(λ1, . . . , λn) is the diagonal matrix of the eigenvalues,
assumed ordered such that 0 = λ1 ≤ λ2 ≤ · · · ≤ λn. Note that, while Δ is a
common choice, any real symmetric matrix associated with the graph can be
chosen to define the graph spectrum.

The Graph Fourier Transform [16] x̂ of a graph signal x is defined as its
projection into the eigenvector basis U, i.e., x̂ = U�x, with inverse operation
defined as x = Ux̂. In the Fourier domain of the eigenvector basis, a convolution
is a simple element-wise multiplication, such that ĝ ∗ x = ĝx̂, where1,

ĝi = ĝi(λi) =
n−1∑

j=0

gjUi
j

This shows that the spectral coefficient x̂i(λi) reflecting the correlation of the
signal x with the ith eigenvector, is scaled by ĝi(λi) and hence ĝ can be thought
of as a spectral filter, which can enhance or diminish certain frequencies of the
1 A polynomial p(A) has the same eigenvectors as A, with eigenvalues given by p(λ),

where λ is an eigenvalue of A.
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signal. We can understand the impact of the convolution on a signal most easily
by studying ĝi(λi) in the Fourier domain.

In the collaborative filtering problem only the historical user-item interac-
tions are available, making impossible to seed the initial representations (signals)
for the user and item nodes. In [20], it is proposed to initialise the node embed-
dings as free parameters and learn jointly the representations and filters from
the training data. The complexity of this approach has been shown to down-
grade the quality of the user and item representations learnt [3,8]. To overcome
this problem, in [8], the “light convolution” method, LightGCN, is proposed,
where the only free parameters correspond to the user and item representations.
In the following, we show that the chosen propagation matrix corresponds to a
fixed high-pass filter in the spectral domain defined by the normalised adjacency
matrix.

3 LightGCN as a High-Pass Filter

LightGCN [8] is a state-of-the-art graph convolution model for the top-N recom-
mendation task. It uses S = D−1/2AD−1/2 as a propagation matrix to exchange
information along the edges of the graph, where A is the adjacency matrix of
the user-item interaction graph GR. At the first step, the latent features of user
and items (signals) X(0) = [P(0); Q(0)] ∈ R

(U+I)×f are randomly initialised and
then updated at every convolution step as X(k) = SX(k−1) . The final user and
item latent features are then computed as a weighted combination of the signals
at each convolution step:

X = α0X(0) + . . . + αkX(k) =
(
α0I + α1S + . . . + αkSk

)
X(0)

The authors reported that learning the signals and the coefficients αi jointly
lead to worse results than assigning the uniform weights, α0 = α1 = . . . = αk =
1/(k + 1).

By carrying out an analysis over the spectrum defined from the symmetric
normalised Laplacian Δ, in [15], the convolution operation is shown to corre-
spond to a low-pass filter. If we instead consider the spectrum defined by the
propagation matrix S = I − Δ -i.e. the symmetric normalised adjacency matrix-
we show how the convolution correspond to an high-pass filter.

ĝi(λi) =
1

k + 1
(1 + λi + λ2

i + . . . + λk
i )

where λi are the eigenvalues of S. Applying the sum of the geometric series, we
can express it more concisely as:

ĝ(λ) =

{
1

k+1
1−λk+1

1−λ λ < 1
1 λ = 1

(1)

In Fig. 1, ĝi is plotted against λi for different values of the convolution depth
k. It illustrates that the convolution acts as a high-pass filter over the spectrum
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Fig. 1. LightGCN spectral filter for different values of k.

defined by S, reducing the strength of the lower frequencies, with stronger filter-
ing as k increases. This implies that the convolution operation transforms the
input signals so that they are focused in a subspace spanned by the eigenvectors
corresponding to the high eigenvalues of the normalised adjacency S.

4 A Spectral Interpretation of LightGCN

We have highlighted how the final latent features learnt from LightGCN are
substantially contained in the span of the largest eigenvectors of the normalised
adjacency matrix. The theoretical underpinnings for why this is beneficial for
the recommendation task are discussed in this section. We show that leveraging
vectors lying in this subspace as latent features, leads to the optimisation of a
target function which is a weighted summation of the prediction function over
the training data.

When the problem is rating prediction, the goal of a recommendation algo-
rithm is to learn a prediction matrix, R̂ which well approximates the rating
matrix R. This can be formulated in terms of finding R̂ which is close to R in
the Frobenius norm:

min
R̂

(‖R − R̂‖2F
)

= min
R̂

(
Tr((R − R̂)(R − R̂)T )

)

= min
R̂

(
Tr(RRT ) − 2Tr(RR̂T ) + Tr(R̂R̂T)

)
= min

R̂

( − 2Tr(RR̂T ) + ‖R̂‖2F
)
.

However, when the problem is top-N recommendation where the requirement is
to learn a score to sort the items in order of preference, the scale of the prediction
function is irrelevant to the order and can be fixed to any arbitrary value. Hence,
we can write the target objective as:

max
R̂

(
Tr(RR̂T )

)
s.t. ‖R̂‖2F is fixed.

In fact, for implicit binary datasets, the trace has a natural interpretation as
the sum of the predictions over the positive interaction data. Furthermore, note
that the trace can be written as a quadratic form over the adjacency matrix of
the user-item interaction graph.
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Proposition 1. The quadratic form QA(x) induced by the adjacency matrix of
the user-item interaction graph, on a signal x = [p; q], corresponds to twice
the sum of the prediction function over all positive interactions in the training
dataset.

QA(x) = xT Ax =
∑

�,k

a�kx�xk = 2
∑

{(u,i)|rui �=0}
puqi .

This can be generalised to a (U + I) × f matrix X of f signals as:

QA(X) = Tr
(
XT AX

)
= Tr

(
AXXT

)
= 2Tr

(
PT RQ

)
= 2

∑

{(u,i)|rui �=0}
pT

uqi .

such that the sum of the prediction functions over the training data positive
interactions is the trace of a quadratic form on the interaction data.

This is an intuitive objective for the top-N recommendation task,as opposed to
the rating prediction task. Note that any rank f , symmetric matrix XXT can be
written as YΣYT where Y is orthogonal (i.e. YT Y = If ) and Σ is a f×f diagonal
matrix. So we can equivalently write the trace as QA(X,Σ) = Tr

(
XT AXΣ

)
, for

orthogonal X. As such, we recognise that the problem of learning f signals (latent
features) to construct the user and item embeddings which maximises the sum
of the prediction function over the training data is solved by the generalised
Rayleigh-Ritz theorem [12].

Theorem 1 (Rayleigh-Ritz). For a real symmetric n × n matrix A:

max
X

{Tr
(
XT AX

)
s.t. XT X = If} = λ1 + · · · + λf

and the maximising matrix is X = [v1, . . . , vf ] where λi are the f largest eigen-
values of A and vi the corresponding orthonormal eigenvectors. Furthermore
[19], the quadratic form Tr

(
XT AXΣ

)
, where Σ = diag(σi) is a fixed diagonal

matrix, is optimised by the same matrix of orthonormal eigenvectors, such that

Tr
(
XT AXΣ

)
=

f∑

i=1

λiσi . (2)

4.1 Inverse Propensity Control

It is well recognised that recommender system datasets tend to exhibit biases
in the manner in which the interaction data is observed [2]. Propensity scor-
ing provides one means of taking such biases into account during model learning
[14,21]. The propensity score is an estimate of the probability that any particular
interaction is observed. The contribution of each observed interaction to the loss
function is multiplied by its inverse propensity score, prior to model learning.
The symmetric normalised adjacency matrix of the LightGCN method can be
viewed as an inverse propensity weighted adjacency. In particular, each observed
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aui is weighted by a term depending on the user and item degrees: d
−1/2
u d

−1/2
i .

The quadratic form over this normalised matrix, Ã is a weighted sum of the pre-
dictions on the training data, where each prediction is down-weighted according
to the user and item degree:

QÃ(x) = Tr
(
XT ÃX

)
= Tr

(
XT D−1/2AD−1/2X

)
= 2

∑

{(u,i)|rui �=0}

1

d
1/2
u d

1/2
i

pT
uqi .

Without such normalisation, the target function can be trivially maximised by
giving larger embedding weights to the users and items with many interactions in
the training set. The normalisation should therefore have the effect of increasing
the embedding weights of unpopular items and users with short profiles.

The eigenvectors with largest eigenvalues of the normalised adjacency provide
the optimal solution for this modified target objective. Hence, we can conclude
that to a large extent the LightGCN method is effective because the convolution
focuses on embeddings that are largely contained in the subspace spanned by the
eigenvectors of largest eigenvalues of the normalised adjacency; and that these
eigenvectors provide an optimal solution to the target objective of maximising
the propensity-weighted sum of the predictions over the training data. It is note-
worthy that, in the maximisation of the quadratic form, each eigenvector con-
tributes proportionally to its associated eigenvalue (Theorem 1), meaning that
is reasonable to assume that the latent features associated to higher eigenvectors
should have more weight with respect to those associated to lower eigenvectors.
The shape of the high pass filter employed by LightGCN throughout the learning
process, Fig. 1, can deliver such a spectrum.

5 Pure Spectral Graph Embeddings Model

Given the interpretation of LightGCN in terms of the spectrum of the adjacency
matrix, it is worth asking if spectral methods can be developed that are com-
petitive with LightGCN on accuracy. Firstly, we show how the PureSVD [4] can
be interpreted under a trace maximisation problem. Explaining the doubts pre-
sented in the original paper regarding how a method devised for rating prediction
is performing so well with implicit feedbacks.

5.1 PureSVD

QA(X,Σ) is maximised when X = [P;Q] are the eigenvectors of A and the
prediction function is then R̂ = PΣQT , where Σ = diag(σi). Writing u for
a U × 1-dimensional eigenvector of RRT , and v for the corresponding I × 1-
dimensional eigenvector of RT R, with eigenvalue λ2 ≥ 0, the eigenvectors of A
are x = 1√

2
[u;v] and x = 1√

2
[u;−v] with eigenvalues ±λ. Moreover, u = Rv/λ

or, gathering all f eigenvectors into the columns of P and Q, we have P = RQΛ−1

where Λ = diag(λi). The eigenvectors u and v can be obtained from a singular
value decomposition of R [10].
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The coefficients σi in the above expression can be interpreted as a weight
given to each of the f signals from which the embedding is formed. Now,
‖R̂‖2 = ‖PΣQT ‖2 =

∑f
i=1 σ2

i and it follows that the best choice of σi to max-
imise

∑f
i=1 λiσi, under a fixed constraint on its norm is σi ∝ λi. The prediction

function is then PQT Σ = RQΛ−1ΛQT = RQQT which is exactly the PureSVD
method. We have arrived at this method through trace maximisation under a
norm constraint on the prediction function, as opposed to the Frobenius norm
minimisation approach, appropriate for rating prediction. The trace maximi-
sation perspective allows for the development of other methods, which differ
from PureSVD in the manner in which the norm of the prediction matrix is
constrained.

5.2 Propensity Weighted Norm Constraint

Given that we wish to control the size of the embeddings of highly active users
or popular items, it is useful to consider a constraint on the prediction function
that controls the embedding size in proportion to the degree in the interaction
dataset. In particular, we consider the following trace maximisation problem:

max
R̂

(
Tr(RR̂T )

)
s.t. ‖Dα

U R̂Dβ
I ‖2F is fixed .

where DU is the diagonal matrix of user degrees and DI the diagonal matrix of
item degrees. By scaling the contribution of each prediction r̂ui = pT

uqi in this
fixed norm by the degrees dα

udβ
i , the effect, as α and β get larger will be that

the size of high degree embeddings gets smaller. Here we have generalised the
exponent used in LightGCN to allow for two tuneable parameters α and β such
that we can explicitly control the propensity score attributed to the users and
items. With a change of variables P̃ = Dα

UP and Q̃ = Dβ
I Q, we have

Tr(RR̂T ) = Tr(RQPT ) = Tr(RD−β
I Q̃P̃T D−α

U )

= Tr((D−α
U RD−β

I )Q̃P̃T ) =
1
2

Tr(X̃T (DAD)X̃)

where D is the (U + I) × (U + I) diagonal matrix diag(D−α
U ,D−β

I ). Writing
Ã = DAD as the normalised adjacency, the trace is maximised by choosing P̃
and Q̃ from the PureSVD solution on the normalised interaction matrix R̃ =
D−α

U RD−β
I .

Having found P̃ and Q̃, one way to proceed is to rescale them back to the
required factors P and Q, to obtain a fully popularity-controlled prediction
matrix. On the other hand, it is well known that to achieve high recommen-
dation accuracy, some popularity bias in the model’s predictions is required [17].
So, instead, we complete the prediction function by noting that, since the embed-
dings are produced from the SVD of R̃:
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Table 1. Recommendation performance. bold and underline indicate the first and the
second best performing algorithms.

Model Ml1M Amazon Gowalla

NDCG Recall NDCG Recall NDCG Recall

@20 @5 @20 @20 @5 @20 @20 @5 @20

BPR-MF 0.2602 0.1191 0.2756 0.0439 0.0377 0.0928 0.1021 0.0763 0.1721

LightGCN 0.2679 0.1254 0.2898 0.0446 0.0357 0.0956 0.1277 0.0980 0.2050

PureSVD 0.2621 0.1203 0.2755 0.0299 0.0229 0.0682 0.1162 0.0860 0.1836

EASE 0.2969 0.1415 0.3164 0.0509 0.0435 0.1028 0.1469 0.1114 0.2319

SGMC 0.2830 0.1369 0.3070 0.0528 0.0443 0.1087 0.1514 0.1167 0.2328

PSGE 0.2951 0.1418 0.3230 0.0533 0.0458 0.1087 0.1641 0.1265 0.2519

Statistics

# users 5 949 9 279 29 858

# items 2 810 6 065 40 988

# inter 571 531 158 979 1 027 464

1. P̃ = R̃Q̃Λ̃−1, and
2. P̃Λ̃Q̃T = R̃Q̃Q̃T ≈ R̃.

Hence

D−α
U RD−β

I Q̃Q̃T ≈ D−α
U RD−β

I (from (1) and (2) above)

RD−β
I Q̃Q̃T ≈ RD−β

I (dividing by D−α
U )

RD−β
I Q̃Q̃T Dβ

I & ≈ R (multiplying by Dβ
I ) .

So, we set R̂ = RD−β
I Q̃Q̃T Dβ

I , as the prediction matrix that directly approxi-
mates the observed interaction data, while being constructed in a manner that
accounts for user and item propensity. It is worth noting that, although α does
not appear explicitly in this formula, the eigenvectors in Q̃ depend on α, as they
are computed from the user- and item-degree normalised matrix. In fact, using
(1) we can equivalently write the prediction matrix as

R̂ = Dα
U P̃ΛQ̃T Dβ

I . (3)

We name this method Pure Spectral Graph Embeddings (PSGE).

6 Experiments

We conduct experiments on three real-world datasets: Movielens1M [6], Amazon
Electronics [7] and Gowalla [11]. Following [8,20], we perform a k -core prepro-
cessing step setting kcore = 10. We randomly split the interaction data of each
user in train (80%), validation (10%) and test set (10%), we use the validation
data to determine the best algorithm hyperparameters, subsequently, we assess
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their final performance on the test set by training the models with both train
and validation data. We compare the proposed algorithm with BPR [13] and
LightGCN [8] as well as the spectral methods PureSVD [4] and SGMC [1] and
the linear model EASE [18]. The code used to produce the presented experiments
is publicly available on github2.

6.1 Recommendation Performance

To evaluate the algorithm’s recommendation performance under the two dif-
ferent aspects of ranking and accuracy we report NDCG@20 and Recall@N
using two different cutoffs, N = {5, 20} and present the results in Table 1.
Except for the NDCG on Movielens1M, where it is the second best performer,
PSGE gets the best results on the Recall and NDCG metrics for both cut-
offs in all datasets studied, demonstrating its effectiveness in comparison to
well-known, high-performing baselines from the graph convolution and spectral
research domains. When compared to LightGCN, the model that inspired the
study, PSGE consistently outperforms it in all datasets, with a minimum gain
of 11% on the NDCG@20 on Movielens1M and a maximum increment of 29%
on NDCG@20 on Gowalla. We conclude that in the context of implicit interac-
tion data, we can mimic the effect of graph convolution without resorting to a
costly gradient-based optimisation approach. PSGE corresponds to the SGMC
algorithm with the setting α = β = 0.5. We can see that in all the datasets
and for all metrics and cutoffs, the introduction of the two tuneable parameters
accounting for the propensity scoring of users and items, is capable of delivering
substantial improvements over its hypergraph counterpart formulation in which
the exponent is set to a fixed value.

6.2 Controlling Popularity Bias

PSGE reintroduces both user and item popularity to approximate the inter-
action matrix by rescaling the norm of the user and item embeddings by their
respective degree (see Eq. 3). We note that rescaling on the users has no influ-
ence on the ranking at prediction time, but rescaling on the items increases the
popularity on the recommendations. This enables us to control the popularity
in the predictions by trading it off against recommendation performance- we
achieve this by changing the value of β used to estimate R̂. To evaluate the
algorithm’s efficacy from this standpoint, in Fig. 2 we show the average popu-
larity in the PSGE prediction against the performance when the exponent β
(associated with the item degree rescaling) is varied. We also show a compari-
son to the behaviour of the baseline. The average popularity in the prediction
is defined as the mean of the popularity of the items recommended, while the
item popularity is defined as popi = di/U , where di indicates the item degree.
For clarity, we refer to β̃ as the manipulated parameter while β refers to the
value used in computing the normalised interaction matrix R̃. We vary β̃ in the

2 https://github.com/damicoedoardo/PSGE.

https://github.com/damicoedoardo/PSGE
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Fig. 2. Manipulation of the hyperparameter β regulating the item degree norm rescal-
ing. The tradeoff between accuracy and popularity in the predictions is reported plot-
ting the NDCG@20 against the average popularity on the recommendations.

range [0, 1] with a step size of 0.1. The mean popularity of the recommendation
increases monotonically with β̃, while the NDCG peaks at a value of β̃ close to
β. On Movielens1M and Amazon the peak is observed exactly at β̃ = β, while
on Gowalla we reach the best performance at β̃ = 0.3 while β = 0.4. From the
presented results we have empirically demonstrated how our algorithm can effec-
tively trade off recommendation performance in favour of lowering popularity in
the recommendations. It is worth mentioning that in all datasets, PSGE rec-
ommendations associated with peak performance have lower average popularity
when compared to the second best performing algorithm, highlighting how the
algorithm is capable of generating high quality predictions.

7 Conclusion

We presented a study on the graph convolution approach employed by Light-
GCN proving how the convolution acts as a fixed, high-pass filter in the spectral
domain induced by the normalised adjacency matrix. We presented a detailed
explanation of why this operation is beneficial to the top-N recommendation
problem. Exploiting this spectral interpretation, we presented a scalable spectral
algorithm based on the singular value decomposition of the propensity weighted
interaction matrix. We empiracally showed how the presented model is able to
emulate the behaviour of the light convolution by achieving better performance
than LightGCN, requiring only a fraction of the training time and enabling the
control of the tradeoff between accuracy and popularity on the set of provided
recommendations.

Acknowledgments. This research was supported by Science Foundation Ireland
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5. Garzón, E.M., Garćıa, I.: Parallel implementation of the lanczos method for sparse
matrices: Analysis of data distributions. In: International Conference on Super-
computing, pp. 294–300. ACM (1996)

6. Harper, F.M., Konstan, J.A.: The movielens datasets: History and context. ACM
Trans. Interact. Intell. Syst. 5(4), 19:1–19:19 (2016)

7. He, R., McAuley, J.J.: Ups and downs: Modeling the visual evolution of fashion
trends with one-class collaborative filtering. In: WWW, pp. 507–517. ACM (2016)

8. He, X., Deng, K., Wang, X., Li, Y., Zhang, Y., Wang, M.: Lightgcn: Simplifying
and powering graph convolution network for recommendation. In: SIGIR, ACM
(2020)

9. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. In: ICLR (Poster). OpenReview.net (2017)

10. Kunegis, J.: Exploiting the structure of bipartite graphs for algebraic and spectral
graph theory applications. Internet Math. 11(3), 201–321 (2015)

11. Liang, D., Charlin, L., McInerney, J., Blei, D.M.: Modeling user exposure in rec-
ommendation. In: WWW, pp. 951–961. ACM (2016)

12. Magnus, J.R.: Handbook of matrices: H. lütkepohl, john wiley and sons, 1996.
Econometric , pp. 379–380 (1998)

13. Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: BPR: bayesian
personalized ranking from implicit feedback. In: UAI, AUAI Press (2009)

14. Schnabel, T., Swaminathan, A., Singh, A., Chandak, N., Joachims, T.: Recom-
mendations as treatments: Debiasing learning and evaluation. In: ICML. JMLR
Workshop and Conference Proceedings, vol. 48, pp. 1670–1679. JMLR.org (2016)

15. Shen, Y., et al.: How powerful is graph convolution for recommendation? In: CIKM,
ACM (2021)

16. Shuman, D.I., Narang, S.K., Frossard, P., Ortega, A., Vandergheynst, P.: The
emerging field of signal processing on graphs: Extending high-dimensional data
analysis to networks and other irregular domains. IEEE Signal Process. (2013)

17. Steck, H.: Item popularity and recommendation accuracy. In: RecSys, pp. 125–132.
ACM (2011)

18. Steck, H.: Embarrassingly shallow autoencoders for sparse data. In: WWW, pp.
3251–3257. ACM (2019)

19. Trendafilov, N.T.: P.-A. absil, r. mahony, and r. sepulchre. optimization algorithms
on matrix manifolds. Found. Comput. Math. 10(2), 241–244 (2010)

20. Wang, X., He, X., Wang, M., Feng, F., Chua, T.: Neural graph collaborative fil-
tering. In: SIGIR, pp. 165–174. ACM (2019)

21. Zhu, Z., He, Y., Zhang, Y., Caverlee, J.: Unbiased implicit recommendation and
propensity estimation via combinational joint learning. In: RecSys, pp. 551–556.
ACM (2020)



Meta-learning Enhanced Next POI
Recommendation by Leveraging
Check-ins from Auxiliary Cities

Jinze Wang1, Lu Zhang2(B), Zhu Sun3,4, and Yew-Soon Ong3,5

1 Macquarie University, Balaclava Rd, Macquarie Park,
Sydney, NSW 2109, Australia

2 Chengdu University of Information Technology, Chengdu, China
zhang lu010@outlook.com

3 Centre for Frontier AI Research, A*STAR, Singapore, Singapore
4 Institute of High Performance Computing, A*STAR, Singapore, Singapore

5 School of Computer Science and Engineering, Nanyang Technological University,
Singapore, Singapore

Abstract. Most existing point-of-interest (POI) recommenders aim to
capture user preference by employing city-level user historical check-ins,
thus facilitating users’ exploration of the city. However, the scarcity of
city-level user check-ins brings a significant challenge to user preference
learning. Although prior studies attempt to mitigate this challenge by
exploiting various context information, e.g., spatio-temporal information,
they ignore to transfer the knowledge (i.e., common behavioral pattern)
from other relevant cities (i.e., auxiliary cities). In this paper, we inves-
tigate the effect of knowledge distilled from auxiliary cities and thus
propose a novel Meta-learning Enhanced next POI Recommendation
framework (MERec). The MERec leverages the correlation of check-in
behaviors among various cities into the meta-learning paradigm to help
infer user preference in the target city, by holding the principle of “paying
more attention to more correlated knowledge”. Particularly, a city-level
correlation strategy is devised to attentively capture common patterns
among cities, so as to transfer more relevant knowledge from more corre-
lated cities. Extensive experiments verify the superiority of the proposed
MERec against state-of-the-art algorithms.

Keywords: Next POI Recommendation · Meta learning

1 Introduction

Next POI recommendation, which aims to recommend POIs for users that they
are most likely to visit in the future, benefits both location-based social network
services, e.g., Foursquare (foursquare.com), and individuals. As users’ activities
typically limit within a city, most existing studies exploit the city-level user
check-in records to develop next POI recommenders. Table 1 shows the statistics
of user-POI interactions for four cities on Foursquare, which are widely explored
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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https://doi.org/10.1007/978-3-031-33380-4_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33380-4_25&domain=pdf
https://doi.org/10.1007/978-3-031-33380-4_25


Meta-learning Enhanced Next POI Recommendation 323

Table 1. Statistics of four datasets from Foursquare.

#Users #POIs #Check-ins #Categories Density

Calgary (CAL) 435 3,013 13,911 293 1.06%

Phoenix (PHO) 2,945 7,247 47,980 344 0.22%

Singapore (SIN) 8,648 33,712 355,337 398 0.12%

New York (NYC) 16,387 56,252 511,431 420 0.05%

in prior studies [20,21]. We can observe that CAL with relatively higher density
being 1.06%, while the extremely lower density is 0.05% in NYC. Obviously, the
sparsity of user-POI interactions in many cities severely hinders the capability
of existing approaches for more accurate user preference learning.

To ease this issue, various context information, e.g., spatial and temporal
contexts, has been widely exploited in existing next POI recommenders. Specif-
ically, most current research devotes to capturing the spatio-temporal relations
between users and POIs. They are built upon various techniques, ranging from
matrix factorization [9,16], Markov chain models [2], to advanced deep learning
frameworks, e.g., recurrent neural networks [20] and graph neural networks [12].
However, they are restricted by insufficient training data for more accurate user
preference learning due to the sparse user-POI interactions within a city.

Intuitively, users’ check-in behaviors among different cities may share com-
mon patterns. This motivates us to conduct an in-depth analysis of the check-in
records across different cities (i.e., auxiliary cities), and transfer useful knowl-
edge from such cities for assisting user preference inference within the target city.
However, non-overlapping visited POIs between different cities bring challenges
in knowledge transfer, that is, blindly leveraging check-in behaviors from auxil-
iary cities to augment the target city may result in harmful knowledge transfer.
We thus seek to investigate two fundamental problems when transferring knowl-
edge from auxiliary cities to the target city as follows.

(1) What to transfer? In e-commerce, overlapping items can be found
on shopping sites in different regions. While in the city-level location recom-
mendation scenario, non-overlapping visited POIs across different cities present
a challenge to transferring common behavioral knowledge. Fortunately, mining
users’ check-in behavioral knowledge over the categorical context (i.e., common
category-level patterns) helps address this challenge. For example, the category
transition Shop&Service→Food are common to all four cities, which indicates
that users in different cities are most likely heading to a restaurant after shop-
ping. By contrast, the transition Travel&Transport→Shop is quite common only
in SIN due to the developed public transportation. (2) How to transfer?
Although the common category-level patterns captured from auxiliary cities
may enhance the recommendation quality for the target city, this inevitably
introduces noise if we ignore the cultural diversity and geographical property of
such cities. Hence, determining what extent we can transfer knowledge from the
auxiliary cities to the target city is of great significance.
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Accordingly, we propose a novel Meta-learning Enhanced next POI Recom-
mendation (MERec) framework, which delicately considers the correlation of
category-level behavioral patterns among different cities into the meta-learning
paradigm, that is, paying more attention to more correlated knowledge. Specifi-
cally, MERec mainly consists of two components: a two-channel encoder to cap-
ture the transition patterns of categories and POIs, whereby a city-correlation
based strategy is devised to attentively capture common knowledge (i.e., pat-
terns) from auxiliary cities via the meta-learning paradigm; and a city-specific
decoder to aggregate the latent representations of the two channels to perform
the next POI prediction on the target city.

Overall, our main contributions lie in three folds: (1) we are the first to study
to what extent we can transfer knowledge from auxiliary cities to the target city
via differentiating the correlation of category-level behavioral patterns; (2) we
propose a novel meta-learning based framework – MERec, which exploits both
the transferred knowledge and user behavioral contexts within the target city to
alleviate the data sparsity issue; and (3) we conduct extensive experiments on
four datasets to validate the superiority of MERec against state-of-the-arts.

2 Related Work

Next POI Recommendation. It predicts future POI visits for users based on
their historical successive check-in behaviors. Early studies generally employ the
property of Markov chain to model the sequential influence [2,5,18]. Recently,
recurrent neural network (RNN) based methods show great capability in cap-
turing long-term sequential dependencies. Existing studies based on RNN and
its variants mainly tend to exploit users’ sequential check-ins by incorporating
various context information, such as ST-RNN [11], SERM [17], MCARNN [10]
ATST-LSTM [8], and iMTL [20]. Despite the great success of these methods,
most of them suffer from the issue of insufficient user check-ins in many cities,
which heavily limits their performance improvements. In this sense, transferring
knowledge from auxiliary cities to the target city brings the possibility to further
enhance the user preference learning for the next POI recommendation.

Meta-learning for Next POI Recommendation. Transfer learning (TL)
aims to transfer knowledge from source domains to the target domain, which
has shown strong capability in resolving the sparsity issue. Existing TL-based
approach [4] focuses on the cross-city POI recommendation task due to the lack
of large amount of overlapping user-POI interactions across cities. Meta-learning
(ML) is able to transfer the knowledge learned from multiple tasks to a new task
and has been recently introduced in next POI recommendation. For example,
Chen et al. [1] proposed CHAML by fusing hard sample mining and curricu-
lum learning into a meta-learning framework. Sun et al. [13] devised MFNP
to integrate user preference and region-dependent crowd preference tasks in a
meta-learning paradigm. Cui et al. [3] designed Meta-SKR by using sequential,
spatiotemporal, and social knowledge to recommend next POIs. Meanwhile, Tan
et al. [15] developed the METAODE which models city-irrelevant and -specified
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information separately to achieve city-wide next POI recommendation. However,
the aforementioned ML-based next POI recommenders ignore to attend the cor-
relation of user behavioral patterns when transferring knowledge from auxiliary
cities to the target city, i.e., paying more attention to more correlated knowledge.

Fig. 1. The distribution of POIs at category level among four cities.

3 Data Analysis

There is a great necessity to analyze the correlation among different cities w.r.t.
user check-in behaviors (see Table 1), so as to better guide the knowledge transfer
from auxiliary cities to the target city. It is, however, non-trivial due to the non-
overlapping visited POIs across cities. Fortunately, POIs in various cities share
the same categories, which inspires us to study the POI distribution and user
behavioral patterns at the category level to uncover the correlation among cities.

POI Distribution at Category Level. The number of POIs under each cate-
gory varies a lot across cities due to different cultures and geography. Hence, we
first study the nature of POI distributions among four cities to help explore the
correlation of user behavioral patterns. Specifically, all POIs are characterized
by ten first-level categories [14], including Arts & Entertainment (AE), College
& University (CU), Drink (DR), Food (FO), Nightlife Spot (NS), Outdoor &
Recreation (OR), Professional & Other Places (PO), Residence (RE), Shop &
Service (SS), and Travel & Transport (TT). Figure 1 depicts the POI distribution
at category level, where we note that cities exhibit high similarity in some cat-
egories while show dissimilarity in others. For example, the proportion of POIs
under FO is relatively higher across the four cities, whereas the proportion of
POIs under, e.g., AE, is lower than POIs under FO and SS. On the other hand,
different cities show their unique characteristics, such as the higher proportion of
CU-related POIs in SIN and the higher proportion of AE-related POIs in NYC.

Correlation of Cities w.r.t POI Distribution. The POI distribution of each
city enables us to further explore the correlation between cities, i.e., measuring
the similarity of cities from the aspect of POI distribution. Specifically, given any
two cities, Apoi = [Apoi

1 , Apoi
2 · · · Apoi

|C| ] and Bpoi = [Bpoi
1 , Bpoi

2 · · · Bpoi
|C| ] denote the

POI distributions among |C| categories within city A and city B, respectively.
We thus derive their similarity γA,B via the Pearson correlation coefficient, and
the results are shown in Fig. 2(a). We find that NYC shows the highest similarity
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with PHO while the lowest similarity with SIN, implying that cities in the same
country (i.e., USA) may have a higher correlation due to the similar property of
culture. Besides, CAL (i.e., Canada) shows relatively higher similarity with NYC
and PHO, which means that the geography property is also an important factor
when measuring the correlation of cities. Although the correlation of cities can
be measured from the aspect of POI distribution, the user behavioral transition
pattern is a significant factor in the next POI recommendation task, we thus
further explore such correlation from the angle of user sequential behaviors.

Fig. 2. (a-b) the correlation of four cities w.r.t POI distribution and behavioral patterns
at category level; (c-d) two most correlated and least correlated cities.

Correlation of Cities w.r.t Behavioral Patterns. We examine the correla-
tion of cities w.r.t. the categories of users’ successive POI visits. In particular,
given any two cities, Acat = [Acat

1 , Acat
2 ...Acat

|S| ] and Bcat = [Bcat
1 , Bcat

2 ...Bcat
|S| ]

refer to the category transition distributions among S transition types, e.g.,
Acat

1 denotes the ratio of transition type FO → SS within city A. Analogously,
the similarity among different cities can be calculated via the Pearson correla-
tion coefficient, shown in Fig. 2(b). Interestingly, we observe that the correlation
of cities w.r.t behavioral patterns is quite different from that w.r.t POI distri-
bution. Specifically, PHO and CAL still keep higher similarity, whereas NYC
shows comparably lower similarity with PHO and CAL. To further dig out how
the four cities are correlated and different over the behavioral patterns, we com-
pare the two most correlated cities (i.e., CAL and PHO) and the two least
correlated cities (i.e., NYC and SIN). For ease of presentation, we select the
10 most frequent category transitions for comparison as shown in Fig. 2(c-d),
where the x-axis denotes the category transitions, e.g., AE → CU (AE2CU),
and the y−axis shows the proportion of such a transition within a city. We find
that the more correlated cities possess consistent distributions over the frequent
category transitions and vice versa. The above observations depict the various
correlations between cities, which inspire us to differentiate their influence when
transferring knowledge from auxiliary cities to the target city.
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4 The Proposed MERec

This section presents the proposed MERec, which leverages the correlation of
behavioral patterns when transferring knowledge from auxiliary cities to the
target city, i.e., paying more attention to more correlated knowledge.

Problem Formulation. Each city has its unique user set U and POI set P
without sharing any common users and POIs. For user u, all his check-in records,
i.e., r = (p, c, g, t), are ordered by timestamps as in [22], where p, c, g, t denote
POI p, category c, coordinate g (i.e., longitude and latitude) and timestamp t.
We then split his historical records into sequences by day and obtain two types of
sequences: 1) the i-th category sequence denoted by a set of category tuples, i.e.,
Cu,i = {Cu

t1 , C
u
t2 , · · · , Cu

tn}, where Cu
tk

= (cu
tk

, tuk), and 2) the i-th POI sequence
denoted by a set of POI tuples, i.e., Pu,i = {Pu

t1 , P
u
t2 , · · · , Pu

tn}, where Pu
tk

=
(pu

tk
, du

tk
, tuk), and dtk is the distance between successive POIs calculated by their

coordinates. Given Cu,i, Pu,i, auxiliary cities YA = {y
(m)
aux|m ∈ 1, 2, · · · ,M} and

the target city YT = {ytar}, our goal is to predict user u’s next POI ptn+1 at
time tn+1 by transferring knowledge from the auxiliary cities to the target city.

Fig. 3. The overall framework of our proposed MERec.

Overview of MERec. The overview of MERec is outlined in Fig. 3, mainly
composed of a two-channel encoder (i.e., category- and POI-level encoders) with
the embedding layer and a city-specific decoder. In particular, the category-level
encoder exploits meta-learning to capture the common user check-in transition
patterns at the category level in each city by holding the principle of “paying
more attention to more correlated knowledge”. The goal of the POI-level encoder
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is to learn the accurate POI transition patterns in the target city. Lastly, the
city-specific decoder performs the next POI predictions by concatenating the
hidden states of the above two encoders.

Embedding Layer. It maps each check-in record into an embedding vector.
Specifically, in the category-level encoder, the embedding of a category tuple
eC ∈ R

2d is the concatenation of the category embedding ec ∈ R
d and time

embedding et ∈ R
d; thus the embedding of a category sequence Cu,i is formed as

ECu,i = [eC
t1 , e

C
t2 , · · · , eC

tn ]. Analogously, in the POI-level encoder, the embedding
of a POI sequence is denoted by EPu,i = [eP

t1 , e
P
t2 , · · · , eP

tn ], where eP is the
embedding of POI tuple represented by the concatenation of POI embedding
ep ∈ R

d, distance embedding edist ∈ R
d and time embedding et ∈ R

d.

Cateogry-level Encoder. To distil knowledge from auxiliary cities and employ
category-level user behavioral patterns, we extend model-agnostic meta-learning
(MAML) [6] with LSTM as the framework for the meta-learning update. In
particular, we devise a correlation strategy that can transfer knowledge based
on the correlation of user behavioral patterns among cities. Meanwhile, freezing
layers and model fine-tuning are exploited to obtain a generic model while better
adapting to the data of the target city.

Meta-learning Setup. Following [1], the recommendation within each city, includ-
ing the auxiliary and target cities, can be viewed as a single task (with its own
dataset D) in a meta-learning paradigm. Thus, the check-in sequences of auxil-
iary cities YA are denoted as D

(aux)
meta , and the check-in sequences of target city

YT are divided as training set D
(tar)
train and test set D

(tar)
test . We treat each city ym

as a meta-learning task, where each task has support set Dspt
ym

for training and
a query set Dqry

ym
for testing. Finally, our goal is to leverage the data from both

auxiliary cities and the target city, i.e., Dtrain = D
(aux)
meta ∪D

(tar)
train, to learn a meta-

learner Fw, where w is its parameters. Accordingly, given the support sets, Fw

predicts the parameters θ of recommender fθ to minimize the recommendation
loss on the query sets across all cities as follows,

w∗ = arg min
w

∑

ym∈{YA∪YT }
L(fθ,Dqry

ym
|Dtrain,Dspt

ym
), s.t. θ = Fw(Dspt

ym
|Dtrain).

(1)
Specifically, each iteration of MAML includes local update and global update

on the sampled task batch, where the first phase updates θ locally on Dspt of each
task, and the second phase globally updates θ by gradient descent to minimize
the sum of loss on Dqry of all tasks.

– Local update: we first sample a batch of cities, and then randomly sample N
category sequences Dspt

ym
and Dqry

ym
for each sampled city. Thus, we calculate

the training loss on Dspt
ym

and locally update θ by one step:

θ′
ym

= θ − α∇θLym
(fθ,Dspt

ym
), (2)

where L is the cross-entropy loss; α is the local learning rate, and θ′
ym

is the
locally updated parameters of recommender for each city.
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– Global update: we calculate the testing loss on each Dqry
ym

with the correspond-
ing θ′

ym
and then update the initialization θ by one gradient step on the sum

of testing losses across all cities, where β is the global learning rate.

θ = θ − β∇θ

∑
ym∈{YA∪YT } Lym

(fθ′
ym

,Dqry
ym

). (3)

Correlation Strategy. From the data analysis in Sect. 3, we observe that there
exist various correlations w.r.t different aspects among different cities. Directly
transferring user check-in behaviors from auxiliary cities to the target city may
introduce noise thus hurting the recommendation performance. By holding the
principle of “paying more attention to more correlated knowledge”, we further
consider the correlation of behavioral patterns at category level in different cities
when conducting the global update. To be specific, we obtain the city-level cor-
relation (e.g., γcor) based on behavioral patterns, and then attentively adapt
the gradient across cities by employing their correlations. In other words, if the
auxiliary city is more correlated to the target city, we adapt the gradient so that
it updates faster in that direction. Therefore, Eq.(2) is reformulated as:

θ′
ym

= θ − α∇θ[Lym
(fθ,Dspt

ym
) × γcor]. (4)

Freezing Layers and Model Fine-Tuning. Inspired by [19], the network with
freezing layers and fine-tuning is generalized better than the one trained directly
on the target dataset. Therefore, after obtaining the well-trained category-level
encoder for the target city (i.e., LSTM tar

cat ) by the meta-learning paradigm, we
further consider fine-tuning it. In doing this, we can deliver a network that not
only accommodates knowledge distilled from the auxiliary cities but also better
adapts to the target city. Specifically, assuming LSTM tar

cat contains L layers, we
freeze its first l (1 ≤ l ≤ L) layers, while adding n layers after the l layers. The
newly constructed model is denoted by LSTM

tar

cat , which is further fine-tuned via
category sequences from the target city, i.e., D(tar)

train. As such, the freezing-layers
help generate a network that can better balance parameters between auxiliary
cities and the target city after the fine-tuning. Accordingly, the hidden state h

u

tk
of category at tk is given by,

h
u

tk
= LSTM

tar

cat(e
C
tk

,h
u

tk−1
). (5)

POI-level Encoder. It aims to model users’ sequential check-in behaviors and
the spatio-temporal context in the target city by using the LSTM model. As
illustrated in the Embedding Layer, the embedding of a POI sequence is repre-
sented by EPu,i = [eP

t1 , e
P
t2 , · · · , eP

tn ], where each embedding eP
tk

is feed into the
LSTM tar

poi to infer the hidden state hu
tk

of POI check-in at tk, given by,

hu
tk

= LSTM tar
poi (eP

tk
,hu

tk−1
). (6)

City-specific Decoder. The city-specific decoder aims to perform the next POI
prediction based on the last hidden states learned from the two-channel encoder
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(i.e., h
u

tn ,hu
tn). Accordingly, the probability distribution on all candidate POIs

is calculated by the softmax function, given by,

ŷ = softmax(f(h
u

tn ;hu
tn)), (7)

where f is a fully connected layer to transform (h
u

tn ;hu
tn) into a |P|-dimensional

vector; and |P| is the number of POIs in the target city. Hence, the objective
function for the next POI recommendation is defined by:

J = −
∑|P|

i=1
y[i] · log(ŷ[i]), (8)

where y is a one-hot embedding of the ground-truth POI. Algorithm 1 shows
the training process of MERec, consisting of meta training (lines 3–9), freezing
layers and model fine-tuning (lines 10–12), as well as next POI prediction (lines
13–14).

5 Experiments and Results

We conduct experiments to answer three research questions: (RQ1) does MERec
outperform state-of-the-art baselines? (RQ2) how do different components of
MERec affect its performance? (RQ3) how do essential hyper-parameters affect
MERec? The code is available at https://github.com/oli-wang/MERec.

Datasets and Evaluation Metrics. The four datasets shown in Table 1 are
used in our experiment, where we take one of the cities as the target city and
the rest as auxiliary cities each time. Following [8], we chronologically divide the

Algorithm 1: The training process of MERec
Input: Dtrain, YA, YT , α, β, Iter, N, l, n
Output: A list of recommended next POIs

1 Randomly initialize parameters θ;
2 Calculate the correlation of behavioral patterns at category level;
3 for (iter = 1; iter ≤ Iter; iter + +) do
4 for each city ym ∈ {YA ∪ YT } do
5 Sample N category sequences from D

spt
ym

as the adapt batch;
6 Evaluate: ∇θLym(fθ, Dspt

ym
) using the adapt batch;

7 Calculate the gradient update of θ′
ym

by Eq.(4); // local update

8 Sample N category sequences from D
qry
ym

as the eval batch;

9 Update θ using eval batch by Eq.(3); // global update

10 Freeze the first l layers and add n layers as the new LSTM
tar
cat model;

11 Fine-tune LSTM
tar
cat via the training category sequences of the target city;

12 Get the last hidden states of the two-channel encoder shown in Eqs. (5-6);
13 Predict the next possible POI via Eq.(7);
14 Calculate the prediction loss for each check-in record via Eq.(8);

https://github.com/oli-wang/MERec


Meta-learning Enhanced Next POI Recommendation 331

dataset of the target city into training, validation, and test sets with a ratio of
8:1:1. Note that we remove users and POIs with less than five and three check-
ins, respectively. Two commonly-used metrics, i.e., HR@K and NDCG@K are
adopted by following [1], where the former measures whether the ground-truth
POI can be found in the top-K recommendation list, and the latter measures
the ranking quality of the ground-truth POI in the recommendation list.

Compared Baselines. We compare the MERec with seven state-of-the-art
approaches. (1) MostPop recommends the next POI based on the popularity of
POIs; (2) BPRMF is a matrix factorization method optimized via Bayesian person-
alized ranking; (3) NeuMF [7] generalizes the matrix factorization by employing
a multi-layer perceptron to model the user-item interactions; (4) ATST-LSTM [8]
is an attention-based LSTM method by considering spatio-temporal contextual
information; (5) iMTL [20] is a multi-task learning framework for next POI recom-
mendation, which consists of a two-channel encoder and a task-specific decoder;
(6) MAML [6] is a model-agnostic meta-learning for few-shot learning tasks; (7)
CHAML [1] is a meta-learning based framework for next POI recommendation,
which considers both city- and user-level hardness during meta training.

Hyper-parameter Settings. The optimal hyper-parameter settings for all
methods are empirically found out based on the performance on the validation
set. Specifically, the embedding size is searched from {32, 64, 128, 256}. For base-
lines (2–5), the learning rate is selected from {0.1, 0.05, 0.01, 0.005, 0.001, 0.0001},

Table 2. Comparative results of all approaches on the four datasets, where ‘H’ refers
to ‘HR’ and ‘N’ means ‘NDCG’; the best results are highlighted in bold; the runner
up is underlined; and the column ‘Improve’ indicates the improvements achieved by
MERec relative to the runner up.

Traditional Deep Learning Meta Learning Improve

MostPop BPRMF NeuMF ASTA-LSTM iMTL MAML CHAML MERec

CAL H@5 0.0988 0.1304 0.1431 0.2924 0.2652 0.3987 0.3995 0.4274 6.98%

H@10 0.1547 0.2349 0.2368 0.3705 0.3184 0.4618 0.4777 0.5054 5.80%

N@5 0.0632 0.0928 0.0989 0.2134 0.1857 0.3178 0.3093 0.3378 6.29%

N@10 0.0814 0.1672 0.1669 0.2383 0.2299 0.3362 0.3315 0.3564 6.01%

PHO H@5 0.0682 0.1093 0.1316 0.2366 0.2410 0.3549 0.3660 0.3928 7.32%

H@10 0.1068 0.1584 0.1852 0.3125 0.3370 0.4508 0.4419 0.4531 0.51%

N@5 0.0419 0.0688 0.0869 0.1635 0.1753 0.2633 0.2648 0.2796 5.59%

N@10 0.0547 0.0848 0.1042 0.1883 0.2065 0.2949 0.2891 0.2993 1.49%

SIN H@5 0.0365 0.0848 0.1004 0.2165 0.2388 0.2991 0.3571 0.3784 5.96%

H@10 0.0635 0.1450 0.1696 0.2879 0.3080 0.3816 0.4486 0.4557 1.58%

N@5 0.0231 0.0452 0.0697 0.1532 0.1696 0.2188 0.2650 0.2749 3.73%

N@10 0.0318 0.0648 0.0925 0.1760 0.1922 0.2451 0.2981 0.3015 1.14%

NYC H@5 0.0214 0.0558 0.0959 0.1763 0.2187 0.2456 0.2745 0.2991 8.96%

H@10 0.0336 0.0994 0.1495 0.2455 0.2879 0.3373 0.3526 0.3995 13.30%

N@5 0.0134 0.0265 0.0595 0.1257 0.1484 0.1652 0.1865 0.2107 12.98%

N@10 0.0173 0.0237 0.0770 0.1485 0.1705 0.2072 0.2118 0.2436 15.01%
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and the batch size is set as 256. For meta-learning based baselines (6-7) and
MERec, the learning rates α, β are searched from {0.5, 0.1, 0.01, 0.001, 0.0001};
and the batch size is set as 256 for a fair comparison. For MERec, the number
of freezing layers l is searched in the range of [1, 4] stepped by one, where the
best setting is 3 for all cities; and Iter = 500, N = 32, n = 2 across all cities.

Performance Comparison (RQ1). The results are presented in Table 2.
Across the four datasets, the traditional methods (MostPop, BPRMF) gener-
ally perform worse than deep learning methods (NeuMF, ATST-LSTM, iMTL)
demonstrating the efficacy of neural networks on more accurate recommenda-
tion. RNN based methods (ATST-LSTM, iMTL) outperform NeuMF, which
indicates the capability of RNN on modeling the sequential dependency. iMTL
defeats ATST-LSTM, as it leverages multi-task learning (MTL) framework to
jointly learn user preference on both categories and POIs, exhibiting the superi-
ority of MTL on better next POI recommendation. Meta-learning based meth-
ods (MAML, CHAML, MERec) bring further enhancement compared with other
methods, showcasing the efficacy of knowledge transfer in alleviating the data
sparsity issue. Overall, our MERec consistently achieves the best performance
across all the datasets, with an average lift of 6.3% and 6.53% w.r.t. HR and
NDCG, respectively. This helps confirm the benefits of (1) leveraging check-ins
of auxiliary cities to augment the target city, and (2) paying more attention to
more correlated knowledge when transferring knowledge from auxiliary cities.

Ablation Study (RQ2). To check the impacts of various components in
MERec, four variants are compared. (1) MERecw/o cor removes the correla-
tion strategy from the meta-learner; (2) MERecw/o frz removes the freezing
layers and fine-tuning from the category-level encoder; (3) MERecw/o cor−frz

removes both correlation strategy, freezing layers and fine-tuning; and (4)
MERecw/o cat removes the category-level encoder, but only retains the POI-
level encoder. The results are shown in Fig. 4. We note that MERecw/o cor−frz

performs worse than both MERecw/o cor and MERecw/o frz, suggesting that
both the correlation strategy, freezing layers, and fine-tuning operation indeed
improve the recommendation performance. Generally, the performance decrease
of MERecw/o frz far exceeds that of MERecw/o cor, implying that the freezing
layers and fine-tuning operation play more important roles than the correlation
strategy. Besides, MERecw/o cat underperforms MERec, which helps verify the
advantages of both the meta-learning paradigm with auxiliary check-ins and the
correlation strategy.

Parameter Sensitivity Analysis (RQ3). We study the influence of two essen-
tial hyper-parameters, i.e., the number of local-update steps in Eq.(2) and the
number of freezing layers. Figure 5 only reports the results on the CAL dataset
and similar trends can be observed on the rest three datasets. Figures 5 (a-
b) depict the model performance w.r.t. the number of local-update steps. We
empirically find out that updating only one step is sufficient to obtain better
recommendation accuracy, which also increases the model efficiency. Figures 5
(c-d) display the influence of the number of layers frozen on the model perfor-
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Fig. 4. Performance comparison for variants of MERec on the four datasets.

Fig. 5. Parameter sensitivity analysis on CAL.

mance. As observed, with the layer increasing, the performance first goes up and
then drops slightly. The best setting for the number of freezing layers is 3 on the
four datasets.

6 Conclusion

In this paper, we propose a Meta-learning Recommendation (MERec) framework
for the next POI recommendation by leveraging check-ins from auxiliary cities
to augment the target city, and holding the principle of “paying more attention
to more correlated knowledge”. In particular, we devise a two-channel encoder to
capture the transition patterns of categories and POIs, whereby a city-correlation
based strategy is devised to attentively capture common knowledge (i.e., pat-
terns) from auxiliary cities via the meta-learning paradigm. The city-specific
decoder then concatenates the latent representations of the two-channel encoder
to perform the next POI prediction for the target city. Extensive experiments on
four real-world datasets demonstrate the superiority of our proposed MERec.
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Abstract. The sequential recommender plays a major role in contempo-
rary recommendation systems, which shows the strong ability to model
sequential patterns among the dataset. The classic sequential recom-
menders utilize the convolutional neural network, recurrent neural net-
work, and self-attention mechanism to model the user’s preferences of
items. However, these existing sequential recommendation models face
the “Filter Bubble” issue by putting too much attention on each user’s
own historical sequence, and they also ignore the feature-level item-
item relationship. To address the existing challenges, we propose a novel
global-aware external attention deep model (EDM) to learn both the
global and local user preferences. The proposed EDM mainly contains a
multi-embedding layer, an external attention layer, a feature-wise feed-
forward network, and the candidate matching layer. Specifically, the
external attention layer uses two external memory units shared across
the entire input set to model the global interests of users. Then, by apply-
ing the feed-forward network to each feature dimension, the feature-wise
feed-forward network is capable to learn the feature-level dependencies
and properly model the local user preferences. In the experiments, three
benchmark datasets are used with various validation metrics to show
that our proposed EDM outperforms the state-of-the-art methods.

Keywords: Sequential Recommendation · External Attention · Global
Interest

1 Introduction

With the continued development of mobile technology, many enterprises are
focusing on expanding their online business, such as advertising, smart transport,
and social media. The recommendation system is the core function of these online
services [18]. By mining the user’s previous interactions (e.g., purchases, and
clicks), the recommender system can provide the personalized recommendation
that the user may be interested in. The major benefits of the recommendation
system are: (1) helping users to discover their potential needs for products, (2)
increasing user loyalty for the company and creating more profit.

At present, owing to the revolutionary modeling ability of the neural net-
work, sequential recommendation (SR) systems are becoming popular in both
the research community and the business sector. In SR, the user’s historical
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. Kashima et al. (Eds.): PAKDD 2023, LNAI 13937, pp. 335–347, 2023.
https://doi.org/10.1007/978-3-031-33380-4_26
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interaction is treated as the chronological sequence determined by the times-
tamp. The purpose of SR is to capture the user’s dynamic preferences and then
predict their future preferred items. Recurrent neural network-based models use
long short-term memory (LSTM) or gated recurrent units (GRU) to capture
the user interests [8]. SasRec employs dot-product self-attention to retrieve the
item-item representations for each user [9].

Although the existing recommendation models have gained the significant
success in the area of SR, there are some issues that may affect the recommen-
dation performance. On one hand, the “Filter Bubble” issue occurs in many
previous SR models by focusing too much on the user’s own historical sequence
[1]. For example, suppose that there is a short video recommendation scenario,
a user’s historical watching sequence is mainly about surfing techniques. SR sys-
tem might keep recommending him more surfing videos and fail to offer him
some content following the current trend. The item preferences from other users
may considered as well. On the other hand, the RNN or attention-based models
ignore learning the feature-level dependencies between items. For instance, self-
attention focuses on the instance-level correlation weights by addressing item-
item product and ignores the item-item relationship in the latent feature-level
locally [13].

To this end, we propose the Global-Aware External Attention Deep Model
(EDM) to tackle the addressed issues without using the self-attention and
other complex DNN structures (e.g., convolutional layer). Figure 1 depicts the
structure of our proposed model, which consists of a Multi-Embedding Layer
with Positional Embedding, an External Attention Layer, a Feature-Wise feed-
forward network (FFN) layer, and the candidate matching layer. Through this
design, our proposed method can effectively model user’s global and local pref-
erences.

Specifically, the external attention layer calculates the feature map by two
external memory units (external Key and Value) independent of the individual
user. Unlike self-attention, which uses the same input item representations from
the user him/herself, the two external memories are shared across the whole
dataset [5]. Optimized by the back-propagation, these two memory units are
able to capture the global representations of the entire dataset. Through this
design, our EDM can explicitly consider the global interest of the entire input
set when modeling each individual user’s interests. Additionally, to model users’
own (local) preference from his/her historical sequence, the feature-wise FFN
layer is used. We apply the FFN to each feature dimension to model the feature-
level dependencies for the user. The appealing features can be highlighted under
the feature-wise FFN layer. In the candidate matching layer, a point-wise FFN
is employed to merge user’s local and global feature representation. In the end,
the model is optimized by the Bayesian personalized ranking objective function
[14]. In the experiments, we evaluate our proposed EDM with many state-of-
the-arts via various metrics including precision, MAP, and nDCG. The results
demonstrate that our model has the advent performance against other baselines.
The ablation analysis also indicates that EDM effectively models the users’ global
and local preferences.
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The main contributions of this paper is specified as follows:

– We propose the global-aware external attention deep model (EDM) for
sequential recommendation to learn both the users’ global and local pref-
erences to achieve comprehensive recommendations.

– We introduce the external attention to quantify the global interest correla-
tions across the whole dataset.

– We employ the feature-wise feed-forward layer to capture the user’s local
preference by modeling the feature-level dependencies between items.

– The experiments under three benchmark datasets verify that our EDM out-
performs the state-of-the-art models via four metrics.

2 Related Work

2.1 General Recommendation

The conventional recommendation system discovers users’ general interests based
on their historical interactions. A classical branch uses collaborative filtering
(CF) to extract users’ possible preferences from other strongly correlated users
[16]. Matrix factorization (MF) is another typical approach that uses the shared
latent space to represent the user and item, and optimize the inner product
between user and item latent representations [10]. BPR, proposed by Rendle et
al., introduces the Bayesian personalized ranking method to the matrix factor-
ization to handle the implicit feedback data [14].

Recently, the research on the DNN-based recommendation model has got-
ten much attention. For example, NeuMF employs the multi-layer perception
to improve the recommendation performance of MF [6]. xDeepFM uses a uni-
fied DNN structure to learn both the explicit and the implicit feedback [12].
Further more, many approaches consider the graph neural network (GNN) in
the CF-based model. IGCN applies a GNN to learn the historical and temporal
information to improve the embedding representations of user and item [23].

2.2 Sequential Recommendation

The objective of the sequential recommendation (SR) is to learn users’ historical
sequence to predict their next behaviors. The early approaches of SR use the
Markov Chain to capture item-item transition patterns and predict the users’
next items based on their last interactions [15]. After that, many SR models con-
sider the DNN structures. Caser applies the horizontal and vertical convolution
layer to capture item patterns [20]. GRU4Rec, proposed by Jannach et al., is a
recurrent neural network-based recommender that uses the gated recurrent units
to model the entire input session [8]. MANN fuses the user memory matrix into
the user embedding [2]. On contrast, our proposed EDM consider the memory
network on item embedding side. SASRec firstly adopts the self-attention struc-
ture to learn the users’ long-term interests based on the historical user actions
[9]. After the success of SASRec, many variants expanded the flexibility in this
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Fig. 1. The main structure of our proposed model: EDM.

direction [7,17,27]. For example, TiSASREC introduces the temporal informa-
tion into self-attention that considers the transition time between two successive
items [25]. SSE-PT proposes the self-attention structure with personalized user
embedding [22]. STOSA models the user sequences with the stochastic Gaussian
distribution that considers the uncertainty of input sequence [4].

3 Problem Formulation

The training data used in this paper is the users’ implicit feedback on items.
Firstly, the user and item set are defined as: U = {u1, u2, u3, . . . , uM}, and
I = {i1, i2, i3, . . . , iN}, where M is the total number of users, and N is the total
number of items. Then, for each user ui ∈ U , the user-item interaction sequence
is denoted as Si = (Si

1,Si
2,Si

3, . . . ,Si
|Si|), where Si

t ∈ I is the item index that
user i interacted with.

In order to model the sequential recommendation task, the problem can be
specified as: given the earlier subsequence with length |L|, how likely all other N
items will be interacted in future. In the training process, for each user, we use
each |L| successive item interactions (Si

j , . . . ,Si
j+|L|−1) as the input, and their

next |T | records as the targets to predict. A sliding window with size |L + T | is
applied to the user’s sequence to extract the training objects. Each user i will
generate ||Si| − (L + T ) + 1| training objects with length |L + T |.

4 Our Proposed Method

In this section, we discuss our proposed global-aware external attention deep
model for sequential recommendation (EDM). EDM utilizes the external atten-
tion mechanism to learn global user interests of items and the Feed-forward Net-
work (FFN) Layer to capture local user preferences. Figure 1 shows the design
of our proposed model. EDM is composed of four main components: (1) Multi-
Embedding Layer, (2) External Attention Layer (middle upper side) for captur-
ing the global user preferences on items, (3) Feature-Wise FFN Layer (middle
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bottom side) for modeling the local user interests, and (4) the Candidate Match-
ing Layer to generate the recommendations. In the next pages, we will discuss
the details of our EDM.

4.1 Multi-embedding Layer

The input of our proposed model is a subsequence with |L| items from user i’s
historical interaction sequence, and each item is represented by a unique index.
At the embedding layer, We propose a multi-embedding layer that allows the
external attention layer and the feature-wise FFN layer to learn the separate
item embeddings. The input item embeddings of user i are represented as: Ei,l

for the external attention layer, and Fi,l for the feature-wise FFN layer, where
Ei,l, Fi,l ∈ RL×d, d is the embedding dimension, and l means the embedding is
the l-th subsequence of user.

Positional Embedding: Like the attention-based sequential recommender, the
proposed EDM does not contain any recurrent or convolutional module, which
means it is not able to memorize the positions of each item [21]. Hence, the
positional embedding (PE) is adopted to represent the input item position:

PE(p,2i) = sin(p/1000
2i
d ),

PE(p,2i+1) = cos(p/1000
2i
d ), (1)

where p is the item position, i s the i-th embedding dimension, and d is the size of
the embedding dimension. After constructing the positional embedding matrix,
the operation of addition is applied to add PE to two input item embeddings.

4.2 Learning User Preference Globally and Locally

External Attention: The external attention mechanism has reached success
in the computer vision task, which employs two shared memory linear matrices
(external keys and values) to capture the most critical information across the
dataset [5]. Inspired by this research, we design the external attention module
suitable for the sequential recommendation scenario, which learns the globally
important item features in the sequential recommendation model. In the external
attention, the weight map is generated by the multiplication between the input
item embedding (query) and an external linear unit Uk ∈ RL×d. Another linear
unit Uv ∈ RL×d is applied to extract the attention score with the weight map.
The structure of the external attention is on the middle-upper side of Fig. 1, and
the equations can be formulated as follows:

Q = ReLU(Ei,l · Wq),

Gmap = softmax(Q · UT
k /

√
d),

Gatt
i,l = G map · Uv,

(2)
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where Ei,l ∈ RL×d is the input item embedding; Wq ∈ Rd×d is the trainable
weight matrix; ReLU(·) is the rectified linear unit used to provide non-linearity;
d is the embedding size; [·] represents the matrix multiplication operation; Uk

and Uv ∈ RL×d are the external key and value, they can be considered as two
shared parameter matrices among the whole training dataset.

Feature-Wise Feed-Forward Layer: When considering the feature-level
(local) information between items, existing researches applies the depthwise
CNN to capture the local importance of each feature dimension from the input
sequence [11,20]. Unlike the previous approaches, we propose a simple feature-
wise FFN to capture user’s local preferences on items to deal with the disad-
vantage (2) of the self-attention, which utilizes the feed-forward layer to every
feature dimension (item embedding dimension). Each feature dimension has a
shared set of parameters, which save the memory when the size of item embed-
ding increases. Our proposed feature-wise FFN is on the middle-bottom side of
Fig. 1, and the formula is as follows:

LFFN
t,∗ = Zt,∗ + Wf2·ReLU(Wf1 · Zt,∗), for t = 1, 2, · · · d, (3)

where the Zt,∗ ∈ RL is the t-th dimension of the input item embedding, which
belongs to a transposed input item embedding FT

i,l ∈ Rd×L; Wf1 ∈ RL and
Wf2 ∈ RL are two shared learnable parameters among all feature dimensions;
LFFN

t,∗ denotes the t-th dimension of the output sequence embedding LFFN ∈
Rd×L. In the end, another transposing is used to extract the output:

Lout
i,l = (LFFN )T . (4)

4.3 Candidate Matching Layer

Point-Wise Feed-Forward Network. Through the above two branches of
neural networks, we get two weighted item embeddings that represent the global
and local user interests. In order to better refine the information in the two
item representations, we apply a point-wise FFN with concatenating Gatt

i,l and
Lout

i,l ∈ RL×d, via:

Ci,l = [Gatt
i,l Lout

i,l ],

Ĉi,l = ReLU(Ci,l · Wc1 + bc1) · Wc2 + bc2, (5)

where Ci,l ∈ RL×2d is the concatenated matrix of Gatt
i,l and Lout

i,l ; Wc1 ∈ R2d×2d

and Wc1 ∈ R2d×d are weight matrices; bc1 and bc2 are the bias vectors. After the
point-wise FFN, Ĉi,l ∈ RL×d represents the output preference representation of
user i’s l-th input sequence.

Ranking Candidates. Two factors are considered when ranking item candi-
dates: (a) the correlation between user i’s output preference and the target item



Global-Aware External Attention Deep Model 341

embedding; (b) the correlation between user i’s embedding and the target item
embedding. The correlation is measured by the euclidean distance: the smaller dis-
tance the two matrices has, the more related they are. Given user i’s l-th output
preference, the predicted ranking score of item j can be denoted as follows:

ˆyi,j = (1 − α)‖mean(Ĉi,l) − Tj‖ + α‖Vi − Tj‖, (6)

where the Tj is the target embedding of item j; Vi is the user i’s embedding;
α denotes the weight factor; mean(·) is the mean operation that is used to
aggregate the output weighted representation. The other aggregation operation,
such as sum and max, can also be considered when ranking item candidates.

4.4 Model Learning

With the ranking score ˆyi,j , we apply the Bayesian Personalized Ranking loss
function to train the model [14], which is suitable for implicit feedback:

arg min
Θ

∑

j∈U+

∑

k∈U−
− ln σ( ˆyi,j − ˆyi,k) + λ(‖Θ‖2), (7)

where ˆyi,k and ˆyi,j represent the prediction score of the negative samples and
the positive samples, respectively; σ(x) denotes the sigmoid function 1

1+ex ; the
parameter Θ contains the set of parameters: {T, V,Wq,Wc1,Wc2,Wf1,Wf2},
which is learned by the loss function in Eq. (7).

Instead of using all items in the candidate set to train the network, |T | item
interactions following |L| input items are used in the training session, which
lowers the training cost. For each target item, we randomly select the same
number of negative instances.

4.5 Computational Complexity

The computational complexity of our proposed EDM is based on three parts:
the external attention, the feature-wise FFN, and the point-wise FFN, which is
O(3nd2). Compared with SASRec, whose computational complexity is O(n2d +
nd2), our model has better scalability when the input length increases.

5 Experiments

In the experiments, we first evaluate the performance between our proposed
EDM and the state-of-the-arts. Then, we further explore the effect of EDM’s
core components and hyperparameters.

5.1 Experiment Settings

Dataset: We conduct our experiments with three real-world datasets: Movie-
Lens, Foursquare [24] and the Gowalla [3], which contain implicit feedbacks. For
each dataset, we ignore the rating score of each data sample and transform it
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Table 1. The Statistics of Three Datasets.

User Item Interactions Sparsity Avg. user Ints.

Foursquare 1083 9989 227428 97.68% 210.00

Gowalla 2267 19358 284067 99.35% 125.3

MovieLens 6040 3416 999611 95.16% 165.5

into implicit feedback of 1. Meanwhile, we remove inactive users with fewer than
5 check-in records and inactive POIs that have interacted fewer than 5 times
for MovieLens and Foursquare datasets. We set the inactive users and items
threshold for Gowalla to 10 and 10. Table 1 shows the statistics of datasets.

Then, in the training procedure, the first 70% of the user interaction sequence
is used to train the model, and the next 10% of interactions is used as the
validation set for the hyperparameter searching. The last 20% of interactions is
the test set for evaluating the model performance.

Metrics: To comprehensively evaluate the performance of the state-of-the-art
methods and our proposed model, we select four metrics: precision (Prec@K ),
mean average precision (MAP@K ), and normalized discounted cumulative gain
(nDCG@K ). For each user, Prec@K is what percentage of the K predicted items
are in the test item set. MAP@K is the average of AP for all users, where AP is
the average precision at all possible thresholds (from 1 to K). nDCG@K consid-
ers the ranking position of the predicted item with the normalization technique.

Baseline Models: We select the following state-of-the-art methods to compare
with EDM. The matrix factorization-based model (BPR [14]), the RNN-based
model (GRU4Rec [19]), the CNN-based model (Caser [20]), the attention-
based model (SasRec [9], AttRec [26], and LSAN [11]).

5.2 Implementation Configuration

Our experiments are running by PyTorch1 with a Nvidia GeForce GTX 3060.
For our proposed EDM, we set |L| = 5 as the input sequence length of the
model, and set |T | = 3 for model learning purpose. The model embedding size d
is set to 128, 128, and 256 for Foursquare, Gowalla, and MovieLens, respectively.
The learning rate and The L2 regularization λ are both 0.001. The batch size
is 512, and the weight factor α is set to 0.1 in Eq. (6). The dropout rate for
the point-wise feed-forward network is 0.5. All the above hyper-parameters are
tuned by grid search.

For the baseline models, the following configuration is the same as our pro-
posed model: the embedding dimension, the training batch size, the learning
rate, and the λ. The models with CNN components (Caser and LSAN) use the
kernel size of 3. The other hyperparameters are set by the original papers.

1 https://pytorch.org/.

https://pytorch.org/
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Table 2. Performance Comparison

Dataset Metric BPR GRU4Rec Caser SasRec AttRec LSAN EDM Improv.

Foursquare Prec@5 0.044 0.068 0.075 0.081 0.077 0.083 0.089 7.2%

Prec@10 0.024 0.050 0.054 0.055 0.060 0.051 0.061 10.9%

MAP@5 0.031 0.041 0.044 0.046 0.039 0.051 0.058 13.7%

MAP@10 0.015 0.024 0.027 0.026 0.025 0.028 0.033 17.9%

nDCG@5 0.048 0.076 0.081 0.088 0.078 0.092 0.102 10.9%

nDCG@10 0.039 0.060 0.067 0.066 0.067 0.067 0.078 16.4%

Gowalla Prec@5 0.034 0.061 0.058 0.072 0.070 0.066 0.079 9.7%

Prec@10 0.028 0.050 0.049 0.058 0.055 0.053 0.062 6.9%

MAP@5 0.021 0.039 0.041 0.050 0.044 0.047 0.058 16.0%

MAP@10 0.015 0.031 0.029 0.037 0.036 0.035 0.041 10.8%

nDCG@5 0.034 0.069 0.066 0.083 0.074 0.076 0.093 12.0%

nDCG@10 0.033 0.066 0.068 0.076 0.072 0.070 0.083 9.2%

MovieLens Prec@5 0.141 0.215 0.218 0.223 0.219 0.225 0.237 5.3%

Prec@10 0.118 0.193 0.199 0.201 0.194 0.206 0.210 1.9%

MAP@5 0.082 0.149 0.148 0.149 0.151 0.154 0.162 5.2%

MAP@10 0.054 0.110 0.114 0.120 0.118 0.124 0.129 4.0%

nDCG@5 0.147 0.231 0.224 0.229 0.228 0.233 0.246 5.6%

nDCG@10 0.136 0.208 0.213 0.223 0.218 0.227 0.234 3.1%

5.3 Performance Comparison

The performance between our proposed EDM and the baseline models is summa-
rized in Table 2. As the non-sequential recommenders, BPR has the worst per-
formance among all baselines. Although BPR can effectively learn the long-term
preference of the user, it fails to model the sequential information. Caser shows
a promising result on Foursquare and MovieLens datasets in terms of MAP@K,
but this CNN-based model has the second worst result on Gowalla. The possible
reason is that Caser has a limitation on capturing users’ general interest in a
sparser dataset. GRU4Rec have a usual performance on three datasets. It uses
the mini-batch strategy in the training session to improve their performance scal-
ability. AttRec and SasRec are two self-attention approaches that show a strong
ability for sequential behavior modeling. LSAN has the second-best performance
on Foursquare and MovieLens, whose twin-attention structure can capture long-
term and short-term users’ preferences.

For our proposed model, the performance surpasses all baseline methods on
three datasets, demonstrating EDM’s effectiveness. The main reason is two-fold:
(1) The external attention branch successfully models the global interests of the
entire dataset and provides a positive supplement when predicting users’ poten-
tial interests; (2) The feature-wise FFN considers the feature-level information
that successfully learns the users’ local preferences. The following Sect. 5.4 pro-
vides a detailed analysis of the components of EDM.
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Fig. 2. The effect of the embedding
dimension d

Table 3. Ablation Analysis (MA@5 and
nD@5)

Foursquare Gowalla
MA@5 nD@5 MA@5 nD@5

1) EA (PE

\

) 0.048 0.089 0.019 0.031

2) FW (PE

\

) 0.049 0.089 0.047 0.079

3) EA + PE 0.051 0.093 0.023 0.038

4) FW + PE 0.053 0.094 0.051 0.082

5) EDM (PE

\

) 0.053 0.094 0.056 0.091

6) EDM 0.058 0.102 0.058 0.093

Fig. 3. The effect of item length L

5.4 Ablation Study

In this part, we perform the ablation study on the following three compo-
nents: the external attention layer (EA), the feature-wise FFN layer (FW), and
the positional embedding (PE). In order to test the stability, a denser dataset
(Foursquare) and a sparser dataset (Gowalla) are used with the metrics MAP@5
(MA@5 ) and nDCG@5 (nD@5 ). The other parameters are set to the optimal
model’s configuration.

Table 3 shows the performance of EDM and two main components with and

without the positional embedding (shown as PE

\

in the table). According to
the results in Table 3, the model performance decreases when we remove the
positional embedding part. That is because both the external attention and the
feature-wise FFN cannot encode the item position in the sequence. Such uncer-
tainty of the positional relationship can lead to perturbations in the model per-
formance. In addition, the external attention part performs similarly or slightly
better on the denser dataset (Foursquare) but performs worse on a sparser
dataset (Gowalla). The reason might be that the sparser dataset increases the
uncertainty of user interests. Moreover, the large number of users might make
it hard for the two linear units to memorize suitable global preferences for users
(Fig. 2).



Global-Aware External Attention Deep Model 345

5.5 Influence of Hyperparameters

The Embedding Dimension d: We examine the size of the item embedding d from
16 to 256. Figure 3 depicts the result of the evaluation in terms of nDCG@K.
The result indicates that a small dimension size is insufficient to preserve latent
information of items. When the embedding size increases, the model performance
grows steadily. The best performance comes when d equals 128, 128, and 256 for
Foursquare, Gowalla, and MovieLens, respectively.

The Influence of the Input Sequence Length |L|: We test the effect of the input
sequence length |L| on Foursquare and Gowalla. Figure 3 shows the performance
in terms of MAP@K. The trends for other metrics are similar. The result indi-
cates that the |L| successive items determine the users’ future item interactions,
and our model gets the highest MAP with a moderate value of |L| (|L| = 5).
The trend illustrates that the input item sequence with smaller the |L| does
not contain enough information. Meanwhile, the model does not get the extra
performance with larger |L| (|L| > 5). The longer input sequence may contain
irrelevant and noisy information for a sparse dataset.

6 Conclusion

In this paper, we propose a novel global-aware external attention-based sequen-
tial recommender, EDM, for modeling both the global and local preferences
of users. In our proposed model, we use the external attention layer with two
shared linear memory units to capture the global interests of the entire dataset.
At the same time, we also develop a feature-wise feed-forward network that con-
siders the feature-level information dependency to capture the local preference
of each user. The experiments demonstrate that EDM outperforms the state-of-
the-art models in terms of four evaluation metrics. The ablation study indicates
that external attention performs worse in the sparser dataset. Hence, we plan
to explore the hierarchical structure and clustering method to deal with this
potential drawback of external attention in future.

References

1. Chen, J., Dong, H., Wang, X., Feng, F., Wang, M., He, X.: Bias and debias in rec-
ommender system: a survey and future directions. arXiv preprint arXiv:2010.03240
(2020)

2. Chen, X., et al.: Sequential recommendation with user memory networks. In: Pro-
ceedings of the Eleventh ACM International Conference on Web Search and Data
Mining, pp. 108–116 (2018)

3. Cho, E., Myers, S.A., Leskovec, J.: Friendship and mobility: user movement in
location-based social networks. In: Proceedings of the 17th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, pp. 1082–1090
(2011)

http://arxiv.org/abs/2010.03240


346 T. Wang and C. Wang

4. Fan, Z., et al.: Sequential recommendation via stochastic self-attention. In: Pro-
ceedings of the ACM Web Conference 2022, pp. 2036–2047 (2022)

5. Guo, M.H., Liu, Z.N., Mu, T.J., Hu, S.M.: Beyond self-attention: external attention
using two linear layers for visual tasks. arXiv preprint arXiv:2105.02358 (2021)

6. He, X., Liao, L., Zhang, H., Nie, L., Hu, X., Chua, T.S.: Neural collaborative
filtering. In: Proceedings of the 26th International Conference on World Wide
Web, pp. 173–182 (2017)

7. He, Z., Zhao, H., Lin, Z., Wang, Z., Kale, A., McAuley, J.: Locker: locally con-
strained self-attentive sequential recommendation. In: Proceedings of the 30th
ACM International Conference on Information & Knowledge Management, pp.
3088–3092 (2021)

8. Jannach, D., Ludewig, M.: When recurrent neural networks meet the neighbor-
hood for session-based recommendation. In: Proceedings of the Eleventh ACM
Conference on Recommender Systems, pp. 306–310 (2017)

9. Kang, W.C., McAuley, J.: Self-attentive sequential recommendation. In: 2018 IEEE
International Conference on Data Mining (ICDM), pp. 197–206. IEEE (2018)

10. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender
systems. Computer 42(8), 30–37 (2009)

11. Li, Y., Chen, T., Zhang, P.F., Yin, H.: Lightweight self-attentive sequential recom-
mendation. In: Proceedings of the 30th ACM International Conference on Infor-
mation & Knowledge Management, pp. 967–977 (2021)

12. Lian, J., Zhou, X., Zhang, F., Chen, Z., Xie, X., Sun, G.: xDeepFM: combining
explicit and implicit feature interactions for recommender systems. In: Proceedings
of the 24th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pp. 1754–1763 (2018)

13. Ma, C., Kang, P., Liu, X.: Hierarchical gating networks for sequential recommen-
dation. In: Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pp. 825–833 (2019)

14. Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: BPR: Bayesian
personalized ranking from implicit feedback. In: Proceedings of UAI 2009, pp.
452–461. AUAI Press (2009)

15. Rendle, S., Freudenthaler, C., Schmidt-Thieme, L.: Factorizing personalized
Markov chains for next-basket recommendation. In: Proceedings of the 19th Inter-
national Conference on World Wide Web, pp. 811–820 (2010)

16. Schafer, J.B., Frankowski, D., Herlocker, J., Sen, S.: Collaborative filtering rec-
ommender systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive
Web. LNCS, vol. 4321, pp. 291–324. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-72079-9 9

17. Sun, F., et al.: Bert4rec: sequential recommendation with bidirectional encoder
representations from transformer. In: Proceedings of the 28th ACM International
Conference on Information and Knowledge Management, pp. 1441–1450 (2019)

18. Tan, Q., et al.: Sparse-interest network for sequential recommendation. In: Proceed-
ings of the 14th ACM International Conference on Web Search and Data Mining,
pp. 598–606 (2021)

19. Tan, Y.K., Xu, X., Liu, Y.: Improved recurrent neural networks for session-based
recommendations. In: Proceedings of the 1st Workshop on Deep Learning for Rec-
ommender Systems, pp. 17–22 (2016)

20. Tang, J., Wang, K.: Personalized top-n sequential recommendation via convolu-
tional sequence embedding. In: Proceedings of the Eleventh ACM International
Conference on Web Search and Data Mining, pp. 565–573 (2018)

http://arxiv.org/abs/2105.02358
https://doi.org/10.1007/978-3-540-72079-9_9
https://doi.org/10.1007/978-3-540-72079-9_9


Global-Aware External Attention Deep Model 347

21. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information
Processing Systems, pp. 5998–6008 (2017)

22. Wu, L., Li, S., Hsieh, C.J., Sharpnack, J.: SSE-PT: sequential recommendation
via personalized transformer. In: Fourteenth ACM Conference on Recommender
Systems, pp. 328–337 (2020)

23. Xia, J., Li, D., Gu, H., Lu, T., Zhang, P., Gu, N.: Incremental graph convolutional
network for collaborative filtering. In: Proceedings of the 30th ACM International
Conference on Information & Knowledge Management, pp. 2170–2179 (2021)

24. Yang, D., Zhang, D., Zheng, V.W., Yu, Z.: Modeling user activity preference by
leveraging user spatial temporal characteristics in LBSNs. IEEE Trans. Syst. Man
Cybern. Syst. 45(1), 129–142 (2014)

25. Ying, H., et al.: Time-aware metric embedding with asymmetric projection for
successive poi recommendation. World Wide Web 22(5), 2209–2224 (2019)

26. Zhang, S., Tay, Y., Yao, L., Sun, A.: Next item recommendation with self-attention.
arXiv preprint arXiv:1808.06414 (2018)

27. Zhou, K., et al.: S3-Rec: self-supervised learning for sequential recommendation
with mutual information maximization. In: Proceedings of the 29th ACM Inter-
national Conference on Information & Knowledge Management, pp. 1893–1902
(2020)

http://arxiv.org/abs/1808.06414


Aggregately Diversified Bundle
Recommendation via Popularity

Debiasing and Configuration-Aware
Reranking

Hyunsik Jeon, Jongjin Kim, Jaeri Lee, Jong-eun Lee, and U Kang(B)

Seoul National University, Seoul, South Korea
{jeon185,j2kim99,jlunits2,kjayjay40,ukang}@snu.ac.kr

Abstract. How can we expose diverse items across all users while sat-
isfying their needs in bundle recommendations? Diversified bundle rec-
ommendation is a crucial task since it leads to great benefits for both
sellers and users. However, there have been no studies on aggregate diver-
sity in bundle recommendation, while they have been intensively stud-
ied in item recommendation. Moreover, existing methods of aggregately
diversified item recommendation are not fully suitable for bundle rec-
ommendation. In this paper, we propose PopCon (Popularity Debiasing
and Configuration-aware Reranking), an accurate method for aggregately
diversified bundle recommendation. PopCon mitigates the popularity
bias of a recommendation model by a popularity-based negative sampling
in training process, and maximizes accuracy and aggregate diversity by
a configuration-aware reranking algorithm. We show that PopCon pro-
vides state-of-the-art performance on real-world datasets, achieving up
to 60.5% higher Entropy@5 and 3.92× higher Coverage@5 with compa-
rable accuracies compared to the best competitor.

Keywords: Bundle Recommendation · Aggregate Diversity ·
Popularity Debiasing · Configuration-aware Reranking

1 Introduction

How can we expose diverse items across all users as well as satisfying their
needs in bundle recommendations? Recommender systems [9,10,13,16] have
been indispensable techniques in online platforms providing customers with sev-
eral relevant items from numerous ones [20]. Bundle recommendation aims to
suggest sets of items instead of individual ones to users. It has been gaining
attention in online platforms due to its advantage of providing items that cus-
tomers need with one-stop convenience [14]. Furthermore, bundles are ubiquitous
in real-world scenarios because they provide effectual marketing strategies (e.g.,
discount sales) which are appealing to customers [6]. However, traditional bun-
dle recommendation models [3–6,8,14,18] have focused only on accuracy without
paying attention to diversity. Figure 1 compares the traditional bundle recom-
mendation and an aggregately diversified bundle recommendation. Note that
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. Kashima et al. (Eds.): PAKDD 2023, LNAI 13937, pp. 348–360, 2023.
https://doi.org/10.1007/978-3-031-33380-4_27
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Fig. 1. Illustrative comparison of (b) traditional bundle recommendation and (c) aggre-
gately diversified bundle recommendation when the (a) ground-truth preferences of
users are given.

aggregate diversity is measured by the degree of fair exposure of items (i.e.,
coverage and entropy) in recommendation results across all users. As shown in
Fig. 1(b), the traditional bundle recommendation, despite achieving high accu-
racy, results in a low aggregate diversity by recommending bundles that contain
a popular item (e.g., the red shoes). On the other side, as shown in Fig. 1(c), the
aggregately diversified bundle recommendation (our task) further aims to achieve
high aggregate diversity by exposing diverse items across all users.

In the last decade, there have been several studies for aggregate diversity in
item recommendation. Reranking-based methods [2,7,11,15], which rerank the
recommendation results of a trained model to achieve both high accuracy and
high aggregate diversity, are the most prevailing approaches in aggregately diver-
sified item recommendation owing to their effectiveness in handling aggregate
diversity. However, they are not fully suitable for bundle recommendation due
to the following two limitations. First, a bundle recommendation model used as
a backbone is easily overfitted to some popular bundles, and thus relying on the
backbone model’s results inevitably results in sacrificing a lot of accuracies to
increase aggregate diversity. Second, they do not consider the configuration of
bundles which is pivotal information to address the diversity of item exposure
in bundle recommendation.

We propose PopCon (Popularity Debiasing and Configuration-aware
Reranking), an accurate method for aggregately diversified bundle recommen-
dation. PopCon consists of two phases, model training and reranking. In the
training phase, PopCon trains a bundle recommendation model as a backbone
with a popularity-based negative sampling to mitigate the popularity bias of the
model. In the reranking phase, PopCon reranks the recommendation result of
the models to maximize both accuracy and aggregate diversity. PopCon exploits
each bundle’s configuration to effectively deal with the aggregate diversity in the
reranking phase. The contributions of PopCon are summarized as follows.

– Problem. To the best of our knowledge, our work is the first study that
focuses on aggregately diversified bundle recommendation, which is of large
importance in real-world scenarios.
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– Method. We propose PopCon, an accurate method for aggregately diver-
sified bundle recommendation. PopCon mitigates the popularity bias of a
backbone model via a popularity-based negative sampling and maximizes the
accuracy and aggregate diversity by a configuration-aware reranking.

– Experiments. Extensive experiments on three real-world datasets show that
PopCon provides state-of-the-art performance achieving up to 60.5% higher
Entropy@5 and 3.92× higher Coverage@5 with comparable accuracies com-
pared to the best competitor.

2 Problem Definition and Related Works

2.1 Problem Definition

Bundle recommendation aims to predict sets of items, instead of individual items,
that users would prefer. In this work, we focus on aggregate diversity in the
bundle recommendation. We give the formal definition of the problem, namely
aggregately diversified bundle recommendation, as Problem 1.

Problem 1 (Aggregately diversified bundle recommendation). Let U , I, and B
be the sets of users, items, and bundles, respectively. We have matrices of user-
bundle interactions, user-item interactions, and bundle-item affiliations which
are denoted as X = [xub] ∈ R

|U|×|B|, Y = [yui] ∈ R
|U|×|I|, and Z = [zbi] ∈

R
|B|×|I|, respectively. xub, yui, zbi ∈ {0, 1} are binary values, indicating an obser-

vation or a non-observation of interaction or affiliation. Then, the problem is to
recommend a list of k bundles to each user u as ru(k) ⊂ {b|b ∈ B, xub = 0},
which have not been observed in the user-bundle interactions. The goal is to
make ru(k) accurate for each user u, and to make the overall recommendation
results R(k) = (r1(k), · · · , r|U|(k)) aggregately diverse.

The aggregate diversity is evaluated for the items in R(k) by two metrics.

– Coverage measures how many different items are contained in the results.

Coverage@k =
1

|I|
∑

i∈I
app(i,R(k)), (1)

where app(i,R(k)) = [i ∈ ⋃
b∈R(k) Ωb] indicates whether item i appears in

R(k). Ωb = {i|i ∈ I, zbi = 1} is the set of bundle b’s constituent items. The
Iverson bracket [·] returns 1 if the statement is true, 0 otherwise.

– Entropy measures how evenly all items appear in the results.

Entropy@k = −
∑

i∈I
p(i,R(k)) log p(i,R(k)), (2)

where p(i,R(k)) = Freq(i,R(k))∑
j∈I Freq(j,R(k)) . Freq(i,R(k)) =

∑
u∈U freq(i, ru(k))

where freq(i, ru(k)) =
∑

b∈ru(k)
[i ∈ Ωb] indicates item i’s frequency in user

u’s recommended bundles ru(k).
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2.2 Related Works

Bundle recommendation. Bundle recommendation aims to recommend a set
of items instead of an individual one to users. Existing bundle recommendation
methods are mainly divided into matrix factorization-based approaches [3,5,18]
and graph learning-based approaches [4,6,14]. BR [18] and EFM [3] jointly fac-
torize user-item and user-bundle interactions to predict unseen user-bundle inter-
actions. DAM [5] further introduces an attention mechanism to effectively learn
bundle embeddings. With the proliferation of graph learning approaches, sev-
eral studies [4,6,14] formulate the bundle recommendation in a tripartite graph
with nodes of users, items, and bundles. BundleNet [6] learns a graph convolu-
tional network to predict interactions between the nodes, while BGCN [4] further
decomposes user preferences into item-view and bundle-view to effectively pre-
dict the interactions. CrossCBR [14] captures cooperative association between
the item-view and bundle-view by a contrastive learning method to improve per-
formance. However, such previous works for bundle recommendation focus only
on accuracy. In this work, we further address aggregate diversity which is of
great importance but makes the problem more challenging.

Aggregately Diversified Recommendation. Aggregately diversified recom-
mendation aims to increase diversity of recommendations across all users [2,12].
It is important to accomplish high aggregate diversity because it alleviates the
long tail problems and maximizes the profit of the sales platform. Most exist-
ing methods for aggregately diversified recommendations modify the results of
a backbone model to achieve high aggregate diversity since it is difficult to opti-
mize the model both for accuracy and diversity. Kwon et al. [2] rerank the recom-
mendation results of a backbone model based on item popularity and heuristic
thresholds of scores. Karakaya et al. [11] replace recommended items with simi-
lar ones through a random walk on an item co-occurrence graph. FairMatch [15]
finds high-quality but less frequently recommended items in a recommendation
list by solving the maximum flow problem. UImatch [7] constrains the limit
of each item and solves the matching problem with a greedy strategy. However,
there has been no study of aggregate diversity for bundle recommendation, which
is crucial in practical scenarios but more challenging to address.

3 Proposed Method

In this section, we propose PopCon (Popularity Debiasing and Configuration-
aware Reranking) to address the aggregately diversified bundle recommendation.

3.1 Overview

We concentrate on the following challenges to achieve high aggregate diversity
with comparable accuracy in bundle recommendation.

C1. Mitigating popularity bias of a backbone model. A bundle recom-
mendation model easily overfits to some popular bundles. How can we mit-
igate the popularity bias of the backbone model?
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Fig. 2. Overview of PopCon which consists of training and reranking phases.

C2. Fitting two opposite criteria, accuracy and diversity. It is challeng-
ing to fit accuracy and diversity simultaneously since they are opposite
criteria. How can we satisfy both opposite criteria?

C3. Simultaneously considering how many items appear and how
evenly items appear. To achieve high aggregate diversity, we need to
consider not only whether items appear or not, but whether items appear
evenly. How can we consider both simultaneously?

The main ideas of PopCon are summarized as follows.

I1. Popularity-based negative sampling. It mitigates the popularity bias
of a backbone model and enables us to effectively leverage the user-bundle
relationship scores.

I2. Accuracy-prioritized coupling. It enables us to retain high-scored bun-
dles in recommendation results and replace low-scored bundles with more
diverse ones.

I3. Maximizing the gains of coverage and entropy. It encourages bundles
that have not been recommended and that are less recommended to be
recommended more.

Figure 2 shows the overall process of PopCon. PopCon consists of two
phases, model training phase and reranking phase. In the training phase, Pop-
Con trains a bundle recommendation model such as DAM [5] or CrossCBR [14]
as a backbone while mitigating its popularity bias by a popularity-based negative
sampling. In the reranking phase, PopCon selects candidate bundles for each
user and reranks the candidates by a configuration-aware reranking algorithm
to maximize both accuracy and aggregate diversity.

3.2 Training Phase with Popularity Debiasing

The objective of the training phase is to train a model f(u, b) that accurately
predicts the score between user u and bundle b. We first investigate the popular-
ity bias of traditional models and propose a popularity-based negative sampling
to mitigate the popularity bias of the models.
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Real-world datasets for bundle recommendation commonly entail popularity
bias because of various factors such as exposure mechanisms and public opin-
ions. Accordingly, bundle recommendation models suffer from the popularity
bias in their output [1]. Figure 3 shows the popularity bias of real-world datasets
and that of trained models. We train DAM [5] and CrossCBR [14] which are
state-of-the-art bundle recommendation models on real-world datasets. For each
dataset, we split bundles into 50 groups in the order of their popularity, and
sum up the number of incorrect recommendations for each group’s bundles in
the top-5 recommendation of the model. As shown in the figure, the real-world
datasets entail the popularity bias (i.e., long-tail problem [17]) and the trained
recommendation models emphasize popular items, showing their vulnerability
to the popularity bias. The popularity bias of the model gives incorrect infor-
mation about user-bundle relationships because popular bundles easily receive
high scores regardless of user preferences, and makes it challenging to achieve
high aggregate diversity when using the predicted scores in the reranking phase.

We propose a popularity-based negative sampling in training process to mit-
igate the popularity bias of a backbone model. Assume we have matrices of
user-bundle interactions, user-item interactions, and bundle-item affiliations as
X=[xub]∈R|U|×|B|, Y=[yui]∈R|U|×|I|, and Z=[zbi]∈R|B|×|I|, respectively. U , B,
and I are the sets of users, bundles, and items, respectively. Then, a bundle
recommendation model f aims to predict the scores of user-bundle pairs. Specif-
ically, the model f is defined as matrix factorization-based [3,5,18] or graph-
based frameworks [4,6,14] to utilize X, Y, and Z. Then, the model f is trained
by minimizing the Bayesian Personalized Ranking (BPR) loss [19] as follows:

∑

(u,b,b′)∈D

− ln σ
(
f(u, b) − f(u, b′)

)
, (3)

where D = {(u, b, b′)|u ∈ U , b ∈ B, b′ ∈ B, xub = 1, xub′ = 0}, and σ(·) is
the sigmoid function. In Equation (3), b is a positive sample which user u has
interacted with, whereas b′ is a negative sample which user u has not interacted
with. However, the previous works [3–6,14,18] sample the negative bundles b′

from the uniform distribution although popular bundles are more likely to be
picked as positive samples. This makes the model overfit to some popular bundles
and causes the popularity bias as in Fig. 3. To mitigate the popularity bias, we
increase the probability that popular bundles are selected as negative samples.
We propose the probability of sampling negative bundle b′ as follows:

p(b′) = α
freq(b′)∑
j∈B freq(j)

+ (1 − α)
1

|B| , (4)

where freq(j) is the number of bundle j’s interactions (i.e., number of non-
zeros in X’s jth column), α ∈ [0, 1] is a balancing hyper-parameter between
the popularity-based distribution and the uniform distribution. If α is large, the
sampling probability of a bundle is largely affected by its popularity, whereas if
α is small, a bundle is selected almost uniformly regardless of its popularity.
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Fig. 3. Popularity bias of real-world datasets (NetEase, Youshu, and Steam) and that
of trained models on them. The datasets entail popularity biases, and the trained
models have more severe ones.

3.3 Reranking Phase with Configuration-Awareness

The objective of the reranking phase is to maximize both accuracy and aggregate
diversity using the trained backbone model f . We first select top-N candidate
bundles for each user u using the scores f(u, b) = x̂ub ∈ R of all bundles b ∈ B.
Then, we rerank the candidate bundles to recommend k bundles (N � k) for
each user. Specifically, we select the most suitable bundle among the candidates
for each user and repeat it k times. The main challenge in the reranking phase
is to measure which bundle is the best for user u at each time in terms both of
accuracy and aggregate diversity.

It is straightforward to select the best bundle using a single criterion: accu-
racy or aggregate diversity. Assume we consider the candidate bundle b for user
u currently. We compare σ(x̂ub) of each candidate to obtain the best accuracy
because it measures how bundle b is appropriate for user u. To obtain the best
aggregate diversity, we simultaneously measure the gains of coverage and entropy
when recommending a bundle and select the one that maximizes it. Specifically,
we propose to compare DivGain(b, R̂(k)) ∈ R, which considers the appearance
of new items and the fair appearance of items, as follows:

DivGain(b, R̂(k)) =
1

2
CovGain(b, R̂(k)) +

1

2
EntGain(b, R̂(k)), (5)

where DivGain(b, R̂(k)), CovGain(b, R̂(k)), and EntGain(b, R̂(k)) ∈ R denote
the gains of aggregate diversity, coverage, and entropy, respectively, and R̂(k)
is the current recommendation results for all users. CovGain(b, R̂(k)) ∈ [0, 1]
and EntGain(b, R̂(k)) ∈ [−1, 1] are measured as the changes of Equations (1)
and (2), respectively, when adding a bundle b to the current recommendation
result R̂(k); we obtain EntGain(b, R̂(k)) by dividing the original entropy gain
by the maximum entropy so that the resulting value is in [−1, 1].

However, the main difficulty of the reranking is to select the best bundle by
measuring the accuracy and aggregate diversity simultaneously. For example,
for user u, if σ(x̂ub) > σ(x̂ub′) and DivGain(b, R̂(k)) < DivGain(b′, R̂(k)),
it is difficult to decide which bundle should be recommended. It is essentially
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challenging because the accuracy and aggregate diversity are opposite in most
cases. For instance, popular bundles usually provide high accuracy scores but
less aggregate diversity scores.

Desired Properties. To deal with this conflict, we propose three desired prop-
erties for a measurement function g(u, b, R̂(k)), which is used to select the best
bundle b for user u and the current recommendation results R̂(k).

Property 1 (Increasing for accuracy). The function should satisfy g(u, b, R̂(k))≥
g(u, b′, R̂(k)) if σ(x̂ub) > σ(x̂ub′) and DivGain(b, R̂(k)) = DivGain(b′, R̂(k)).

Property 2 (Increasing for diversity). The function should satisfy g(u, b, R̂(k))≥
g(u, b′, R̂(k)) if σ(x̂ub) = σ(x̂ub′) and DivGain(b, R̂(k)) > DivGain(b′, R̂(k)).

Properties 1 and 2 are essential because they allow fair comparisons for accuracy
and aggregate diversity when the other metrics are the same. One candidate
measurement function to satisfy both Properties 1 and 2 are as follows.

g(u, b, R̂(k)) = (1 − β)σ(x̂ub) + βDivGain(b, R̂(k)), (6)

where β∈[0, 1] is a balancing hyper-parameter. Equation (6) is a weighted sum
of the accuracy and aggregate diversity terms to measure two criteria together.

On the other hand, it is also necessary to ensure that bundles that users like a
lot are recommended regardless of the gains of aggregate diversity to satisfy the
users. This is challenging in our task because accuracy and aggregate diversity
are opposite in most cases. Thus, we need to reduce the influence of the gain
of aggregate diversity as the accuracy increases. In this regard, we propose a
property of accuracy priority as follows.

Property 3 (Accuracy priority). The function should satisfy ∂g(u,b,R̂(k))

∂DivGain(b,R̂(k))
<

∂g(u,b′,R̂(k))

∂DivGain(b′,R̂(k))
if σ(x̂ub) > σ(x̂ub′).

Accuracy-prioritized coupling. We propose a measurement function g
that satisfies all the desired properties by prioritizing accuracy as follows.

g(u, b, R̂(k)) = σ(x̂ub)
β + (1 − σ(x̂ub)

β)DivGain(b, R̂(k)), (7)

where β ≥ 1 is a balancing hyper-parameter. If β is small, the recommendation
result is highly dependent on accuracy, and if β is large, it is highly dependent
on aggregate diversity because σ(x̂ub) ∈ [0, 1]. We show in Lemmas 1, 2, and 3
that Equation (7) satisfies all the desired properties. In the Lemmas, we denote
σ(x̂ub) as A(b), DivGain(b, R̂(k)) as D(b), and g(u, b, R̂(k)) as G(b) for brevity.

Lemma 1. Equation (7) satisfies Property 1.

Proof. If A(b) > A(b′) and D(b) = D(b′), then G(b) − G(b′) = (A(b)β −
A(b′)β)(1 − D(b)). Thus, G(b) ≥ G(b′) because A(b)β > A(b′)β and D(b) ≤ 1.
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Table 1. Summary of bundle recommendation datasets. U, B, and I indicate users,
bundles, and items, respectively.

Dataset #U #B #I #U-B (dens.) #U-I (dens.) #B-I (dens.) Avg. B size

Steama 29,634 615 2,819 87,565 (0.48%) 902,967 (1.08%) 3,541 (0.20%) 5.76

Youshub 8,039 4,771 32,770 51,377 (0.13%) 138,515 (0.05%) 176,667 (0.11%) 37.03

NetEasec 18,528 22,864 123,628 302,303 (0.07%) 1,128,065 (0.05%) 1,778,838 (0.06%) 77.80
a https://github.com/technoapurva/Steam-Bundle-Recommendation
b https://github.com/yliuSYSU/DAM
c https://github.com/cjx0525/BGCN

Lemma 2. Equation (7) satisfies Property 2.

Proof. If A(b) = A(b′) and D(b) > D(b′), then G(b)−G(b′) = (1−A(b)β)(D(b)−
D(b′)). Thus, G(b) ≥ G(b′) because A(b)β ≤ 1 and D(b) > D(b′).

Lemma 3. Equation (7) satisfies Property 3.

Proof. ∂G(b)
∂D(b) = 1 − A(b)β . Thus, ∂G(b)

∂D(b) < ∂G(b′)
∂D(b′) if A(b) > A(b′).

Note that Equation (6) does not satisfy Property 3 because its ∂G(b)
∂D(b) is a

constant value β, although it satisfies Properties 1 and 2.

Reranking Algorithm. We repeat recommending the most suitable bundle
among the candidate bundles to each user, k times. Specifically, let the current
recommendation results be R̂(k) = (r̂1(k), r̂2(k), · · · , r̂|U|(k)), where r̂u(k) is the
current recommendation result for user u; r̂u(k) for every u ∈ U is empty at the
initial state. In random order of users u ∈ U , we add b′ = arg maxb g(u, b, R̂(k))
to r̂u(k) among u’s candidate N bundles. We adopt a mini-batch technique that
randomly selects m users in every step. We repeat this process k times, and
finally obtain the recommendation results R(k).

4 Experiments

In this section, we perform experiments to answer the following questions.

Q1. Performance Trade-off (Sect. 4.2). Does PopCon provide the best
trade-off between accuracy and aggregate diversity?

Q2. Ablation Study (Sect. 4.3). How do the main ideas in PopCon help
improve the performance?

Q3. Effects of number of candidates (Sect. 4.4). How does the number N
of candidates affect the performance of PopCon?

4.1 Experimental Setup

Datasets. We use three real-world datasets of bundle recommendation as sum-
marized in Table 1. Steam [18] is constructed from Australian Steam community,

https://github.com/technoapurva/Steam-Bundle-Recommendation
https://github.com/yliuSYSU/DAM
https://github.com/cjx0525/BGCN
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a video game distribution platform. Youshu [5] is constructed from Youshu, a
book review site. Netease [3] is constructed from Netease, a cloud music service.

Baselines. We compare PopCon with six baselines of aggregately diversified
recommendation. Given a recommendation list of size N(N > k) for each user,
Reverse and Random pick bottom-k bundles and random-k bundles, respec-
tively. Kwon [2] heuristically replaces the popular bundles of a recommendation
list with unpopular ones. Karakaya [11] replaces bundles in a recommendation
list with other bundles through random walk on an item co-occurrence network.
Fairmatch [15] handles the maximum flow problem to replace bundles in a recom-
mendation list with other bundles. UImatch [7] assigns capacity of each bundle
to be recommended and generates a recommendation list in a greedy manner.

Backbone Models. We leverage two existing bundle recommendation models,
DAM [5] and CrossCBR [14], as backbone models of PopCon and the baselines.
DAM and CrossCBR are the state-of-the-art models among matrix factorization-
based methods and graph learning-based methods, respectively.

Evaluation Metrics. We employ leave-one-out protocol [5] where one of each
user’s interactions is randomly selected for testing. We evaluate the performance
in two criteria, accuracy and aggregate diversity. We use mean average precision
(MAP@k) for the accuracy, and Coverage@k and Entropy@k for the aggregate
diversity. MAP@k considers highly ranked bundles more importantly for accu-
racy. Coverage@k and Entropy@k are explained in Sect. 2.1. We investigate the
trade-off curve between accuracy and aggregate diversity. We set the number k
of bundles to 5, which is the most widely used setting.

Hyperparameters. We set the embedding dimensionality of DAM and Cross-
CBR to 20. We set the batch size m in the reranking phase to 10. For both DAM
and CrossCBR, we set α to 0.1, 0.05, and 0.02 on Steam, Youshu, and NetEase,
respectively. In Sects. 4.2 and 4.3, we set N to 100, 1, 000, and 1, 000 on Steam,
Youshu, and NetEase, respectively. For each curve, β is not a fixed value but
controls the trade-off between accuracy and aggregate diversity.

4.2 Performance Trade-Off (Q1)

We compare PopCon and baselines on real-world datasets in Fig. 4. As shown
in the figure, PopCon outperforms the baselines noticeably, drawing better
trade-off curves between accuracy and aggregate diversity than all baselines in
most cases. Especially, PopCon using DAM backbone achieves up to 60.5%
higher Entropy@5 with comparable MAP@5, and up to 56.3% higher MAP@5
with comparable Entropy@5 compared with the best competitor Karakaya on
Steam dataset. Furthermore, PopCon using CrossCBR achieves 3.92× higher
Coverage@5 than Karakaya with similar MAP@5 on Steam dataset.
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Fig. 4. PopCon outperforms baselines in most cases using the two different backbone
models (a) DAM [5] and (b) CrossCBR [14].

Fig. 5. All the main ideas of PopCon help improve the performance.

4.3 Ablation Study (Q2)

Figure 5 provides an ablation study that compares PopCon with its three
variants PopCon-debias, PopCon-rerank, and PopCon-linear on Steam and
Youshu datasets. PopCon-debias adopts the proposed popularity debiasing in
the training phase, but utilizes Karakaya in the reranking phase. PopCon-rerank
does not adopt the popularity debiasing in the training phase while utilizing
the proposed reranking algorithm in the reranking phase. PopCon-linear uses
Equation (6) instead of Equation (7) in the reranking phase. As shown in the
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figure, PopCon outperforms all the variants, which verifies all the main ideas
help improve the performance. Especially, PopCon-linear shows a severe per-
formance drop compared with PopCon, justifying the importance of satisfying
Property 3 (accuracy priority) in aggregately diversified bundle recommenda-
tion.

Fig. 6. The performance improves as N increased and reaches a plateau eventually.
CrossCBR is used as the backbone of PopCon.

4.4 Effects of Number of Candidates (Q3)

Figure 6 shows the effects of the number N of candidates for the performance of
PopCon using CrossCBR on Steam and Youshu datasets. We set N up to 200
on Steam dataset because Steam contains much fewer amount of bundles than
Youshu. As shown in the figure, Entropy@5 and Coverage@5 are significantly
improved as N increased, and finally reaches a plateau. Thus, we set N to 100
and 1, 000 on Steam and Youshu, respectively, since they provide sufficient high
performance despite being far lower than the total number of bundles.

5 Conclusion

In this paper, we propose PopCon, an accurate method for aggregately diversi-
fied bundle recommendation. PopCon mitigates the popularity bias of a back-
bone model using a popularity-based negative sampling, and reranks the rec-
ommendation results of the backbone model by a configuration-aware reranking
algorithm to simultaneously maximize accuracy and aggregate diversity. Pop-
Con provides the state-of-the-art performance in aggregately diversified bundle
recommendation, achieving up to 60.5% higher Entropy@5 and 3.92× higher
Coverage@5 with comparable accuracies compared to the best competitor.

Acknowledgments. This work was supported by Jung-Hun Foundation. The Insti-
tute of Engineering Research and ICT at Seoul National University provided research
facilities for this work. U Kang is the corresponding author.
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Abstract. When recommending personalized top-k items to users, how
can we recommend them diversely while satisfying users’ needs? Aggre-
gately diversified recommender systems aim to recommend a variety of
items across whole users without sacrificing the recommendation accuracy.
They increase the exposure opportunities of various items, which in turn
increase the potential revenue of sellers as well as user satisfaction. How-
ever, it is challenging to tackle aggregate-level diversity with matrix fac-
torization (MF), one of the most common recommendation models, since
skewed real-world data lead to the skewed recommendation results of MF.

In this work, we propose DivMF (Diversely Regularized Matrix Factor-
ization), a novel matrix factorization method for aggregately diversified
recommendation. DivMF exploits novel coverage regularizer and skewness
regularizer which consider the top-k recommendation results of an MF
model to aggregately diversify the recommendation results. We also pro-
pose a carefully designed training algorithm for effective training. Exten-
sive experiments on real-world datasets show that DivMF gives the state-
of-the-art performance, improving up to 34.7% aggregate-level diversity in
the similar level of accuracy, and up to 27.6% accuracy in the similar level
of aggregate-level diversity compared to the best competitors.

Keywords: Diversified Recommendation · Aggregate-level Diversity ·
Matrix Factorization

1 Introduction

When recommending personalized top-k items to users, how can we recommend
them diversely while satisfying users’ needs? Customers heavily rely on recom-
mender systems [10,12,15] to choose items due to the flood of information nowa-
days. Thus, it is desired to expose as many items as possible to users to maximize
the potential revenue of sales platforms [2] while improving users’ experience [3].
Achieving aggregate-level diversity means fairly distributing items for the over-
all recommendation results. It requires that the results are of high coverage and
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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(a) Users’ ground-truth preferences (b) Three different recommendation results

Fig. 1. Comparison of three different recommendation results. Note that all three
results achieve high accuracy by recommending the ground-truth item to each user.
However, the aggregate-level diversities (i.e., coverage and non-skewness) of the results
(I), (II), and (III) are significantly different. Aggregately diversified recommendation
aims to achieve high coverage and non-skewness while maintaining high accuracy as in
the result (III).

low skewness; coverage indicates the proportion of recommended items among all
items, and skewness indicates the degree of unfair frequencies of recommended
items. Figure 1 demonstrates the coverage and non-skewness of three different
recommendation results. Note that all three results achieve high accuracy but
only the result (III) obtains high aggregate-level diversity by recommending
every item twice. In other words, only the result (III) achieves a high aggregate-
level diversity, recommending each item by the same amount, maximizing the
potential revenue of sales platforms.

Matrix factorization (MF) [16] is the most widely used collaborative filtering
method due to its powerful scalability and flexibility [13,19]. However, the tra-
ditional MF has a limitation in achieving high aggregate-level diversity on real-
world data because it is vulnerable to the skewness of data [23]. To overcome this
problem, previous works on aggregately diversified recommendation rerank the
recommendation lists or recommendation scores of a given MF model [1,5,14,17].
However, these approaches do not give the best diversity since they focus only
on post-processing the results of MF, which is already trained with skewed data.
Thus, it is desired to deal with aggregate-level diversity in the training process
of MF to achieve both high accuracy and diversity.

In this work, we propose Diversely Regularized Matrix Factorization
(DivMF), a novel approach for aggregately diversified recommendation. DivMF
regularizes a recommendation model in its training process so that more diverse
items appear uniformly on top-k recommendations. DivMF effectively maxi-
mizes the coverage and non-skewness of the recommendation by utilizing two
regularizers: coverage and skewness regularizers both of which consider the item
occurrences in top-k recommendation list. This allows the model to achieve opti-
mal aggregate-level diversity in the training process. We also propose a carefully
designed training algorithm that first focuses on accuracy and then on diversity,
and an unmasking mechanism for accurate and effective learning of DivMF.
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Our contributions are summarized as follows:

– Method. We propose DivMF, a method for aggregately diversified recom-
mendation. DivMF provides a new way to accurately and efficiently optimize
an MF model to achieve both high accuracy and aggregate-level diversity for
top-k recommendation.

– Theory. We theoretically prove that DivMF provides an optimal solution to
maximize the aggregate-level diversity in top-k recommendation.

– Experiments. Extensive experiments show that DivMF achieves up to 34.7%
higher aggregate-level diversity in the similar level of accuracy, and up to
27.6% higher accuracy in the similar level of aggregate-level diversity in per-
sonalized top-k recommendation compared to the best competitors, resulting
in the state-of-the-art performance (see Fig. 2). The code and datasets are
available at https://github.com/snudatalab/DivMF.

2 Aggregately Diversified Recommendation

In recent years, diversification has attracted increasing attention in recommen-
dation research [11,25]. We focus on increasing diversity at the aggregate-level.
Aggregate-level diversity considers the diversity in the overall recommendation
results of all users to improve the potential profit of service platforms [2].

Aggregately diversified recommendation aims to improve two aspects of rec-
ommendation: coverage and non-skewness. Coverage is the total number of
unique items recommended at least once. Non-skewness is the balance between
frequencies of recommended items. The details of their evaluation are as follows.

– Coverage. Coverage measures how many different items a recommendation
result contains from the whole items. It is defined as follows:

Coverage =
∣
∣Uu∈UL(u)

∣
∣/

∣
∣I

∣
∣, (1)

where k is the number of items recommended, and L(u) is the set of recom-
mended items for user u. U and I are sets of users and items, respectively.
Coverage ranges from 0 to 1, and a higher value represents better coverage.

– Gini index. Gini index measures the inequality between item frequencies in
recommendation results. It is defined as follows:

Gini =
1

|I| − 1

|I|
∑

j=1

(2j − |I| − 1)pj , (2)

where pj is the j-th least value in { f(i)∑
j∈I

f(j) |i ∈ I} and f(i) indicates the
frequency of item i in the recommendation results for whole users. Gini index
ranges from 0 to 1, and a lower value represents better non-skewness.

3 Proposed Method

In this section, we propose DivMF (Diversely Regularized Matrix Factorization),
a matrix factorization method for accurate and aggregately diversified recom-
mendation.

https://github.com/snudatalab/DivMF
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3.1 Overview

We address the following challenges to achieve high performance of aggregately
diversified recommendation:

– Coverage maximization. Matrix factorization (MF) is prone to obtaining
top-k recommendations with low coverage where only a few items are recom-
mended. How can we train MF to recommend every item at least once?

– Non-skewed frequency. MF is liable to achieving skewed top-k recommen-
dations. How can we train MF to recommend all items with similar frequen-
cies?

– Non-trivial optimization. It is difficult to simultaneously handle both
accuracy and diversity which are disparate criteria. How can we train MF
to optimize both the accuracy and diversity?

The main ideas to address the challenges are as follows:

– Coverage regularizer. The coverage regularizer evenly balances the recom-
mendation scores at the item-level, enabling us to recommend each item to
at least one user.

– Skewness regularizer. The skewness regularizer equalizes all the recom-
mendation scores to assist the coverage regularizer to make the model recom-
mends all items by the same numbers of times.

– Careful training. We carefully design a training algorithm which first
focuses on accuracy and then on diversity. This allows a model to be trained
stably and efficiently, despite the conflict between accuracy and diversity. We
also propose an unmasking mechanism for effective training.

3.2 Definition of Diversity Regularizer

Coverage Regularizer. We design a coverage regularizer to maximize the
coverage. Focusing on the recommended items in the score matrix, we mask the
scores of non-recommended items for each user to zero. After masking, a column
filled with zeros corresponds to an item that is not recommended to any user.
Hence, the coverage regularizer is required to distribute the remaining values
in the masked matrix among all columns. In the following, we show how we
construct the coverage regularizer from the fact that the equality condition of
the arithmetic-geometric mean inequality states the equal distribution of values.

Assume that R̂ = [r̂ui] ∈ R
|U|×|I| is the recommendation score matrix where

r̂ui is a dot product between user u’s embedding and item i’s embedding. For u ∈
U, consider S = [sui] where Su = softmax(R̂u), which means (su1, ..., su|I|) =
softmax(r̂u1, ..., r̂u|I|). Then, we keep top-k elements of each row in S while
masking others to zero to construct a matrix T = [tui]. Note that the nonzero
tui implies that the top-k recommendation list of user u includes item i. Then,
the coverage regularizer Regcov is defined as follows:

Regcov = − log

(
∏

i∈I

∑

u∈U

tui

)

= −
∑

i∈I

log

(
∑

u∈U

tui

)

.
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This regularizer is useful to maximize coverage, as shown in Theorem 1.

Theorem 1. If Regcov is minimized, then coverage is maximized.

Proof.
∑

u∈U
tui ≤ ∑

u∈U
sui for all i ∈ I since 0 ≤ tui ≤ sui for all u ∈ U and

i ∈ I. Thus, using the fact that
∑

i∈I
sui = 1 for all u ∈ U,

∑

i∈I

∑

u∈U

tui ≤
∑

i∈I

∑

u∈U

sui =
∑

u∈U

∑

i∈I

sui = |U|.

We thus obtain
exp(−Regcov) =

∏

i∈I

∑

u∈U

tui ≤ (
|U|
|I| )|I|, (3)

from the arithmetic geometric mean inequality. Equality holds if and only if for
all i,

∑
u∈U

tui = |U|/|I|. In this case, every column of T has at least one nonzero
element. Thus, every item is included in at least one user’s top-k recommendation
list, so the coverage is 1. ��

Skewness Regularizer. Although the condition to minimize the cover-
age regularizer guarantees the coverage of the model to be 1, this does
not guarantee the non-skewness to be maximized. For example, assume that
(t11, t21, ..., t|U|1) = (12 , 1

2 , 0, 0, ..., 0) and (t12, t22, ..., t|U|2) = (13 , 1
3 , 1

3 , 0, 0, ..., 0).
In this case,

∑
u∈U

tu1 =
∑

u∈U
tu2 but the item 1 is recommended twice while

the item 2 is recommended three times. In other words, it is possible to meet
the equality condition of Equation (3) even if the non-skewness of the model is
not maximized, since the value of each nonzero element could vary.

To address this problem, we propose a skewness regularizer. Since the problem
occurs because of the variance of nonzero elements, we design the skewness
regularizer to equalize values of nonzero tui. After equalization,

∑
u∈U

tui and∑
u∈U

tuj would be equal if and only if items i and j are recommended for the
same number of times, so the coverage regularizer would also optimize the non-
skewness in recommendation lists.

Let T′ = [t′ui] be a row-normalized T which means t′ui = tui/
∑

j∈I
tuj . The

skewness regularizer Regskew is defined as follows:

Regskew =
∑

u∈U

∑

i∈I

t′
ui log t′

ui = −
∑

u∈U

entropy(Tu).

Since each entropy function is maximized if and only if nonzero elements of each
Tu are equal, Regskew is minimized if and only if all nonzero elements of each
row of T are equal.

Diversity Loss Function. Finally, we define the loss function for aggregate-
level diversity in DivMF as Ldiv(R̂) = Regcov + Regskew. This loss function
satisfies the Theorem 2.
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Theorem 2. If Ldiv(R̂) is minimized, then coverage and non-skewness are both
maximized.

Proof. The condition to minimize Regcov is
∑

u∈U
tui = |U|/|I| for every item

i, and the condition to minimize Regskew is that nonzero elements of Tu are
equal for every user u. Thus, the condition to minimize Regcov + Regskew is
that each row of T contains k nonzero elements with value of 1

k , and each
column of T contains |U|k

|I| nonzero elements. In this case, every item appears in
the recommendation results with equal frequency. Therefore, both coverage and
non-skewness are maximized if Ldiv(R̂) is minimized. ��

3.3 Model Training

Objective Function and Training Algorithm. In order to maximize accu-
racy and aggregate-level diversity of recommendation results simultaneously, we
propose the following objective function.

Ltotal(θ;R) = Lacc(R̂) + Ldiv(R̂),

where Ltotal(·) is the total loss to be minimized, Lacc(·) and Ldiv(·) are losses for
accuracy and aggregate-level diversity, respectively, R is the observed interaction
matrix, R̂ is the recommendation score matrix, and θ is the parameter to be
optimized. We use BPR loss function as an accuracy loss since it is known to
show the best performance in top-k recommendation [21]. Thus,

Lacc(R̂) =
∑

u∈U,(i,j)∈Z(u)

log
(

1 + exp
(

R̂uj − R̂ui

))

,

where Z(u) = {(i, j)|Rui = 1,Ruj = 0}.
A challenge in minimizing the loss Ltotal is that directly minimizing Ltotal

or optimizing Lacc and Ldiv in an iterative, alternating fashion leads to poor
performance (see Sect. 4.4). We presume that this problem happens because the
gradients of accuracy loss and diversity regularizer cancel each other out. The
accuracy loss tries to increase the gap between recommendation scores of high
scored items and low scored items, while the diversity regularizer tries to decrease
the gap. Thus, the net gradient is not large enough to prevent the model from
being trapped in bad local optima.

Our idea to avoid this issue is to train DivMF model with only accuracy loss
Lacc until the accuracy converges, and then train the model with the diversity
regularizer Ldiv. In this way, the gradients of accuracy loss and diversity regu-
larizer do not cancel each other out since the optimizer minimizes only one loss
at a time. To adjust the trade-off between accuracy and diversity, we control the
number nep of epochs to optimize Ldiv, since the model achieves higher diversity
and lower accuracy as we increase nep.

Unmasking Mechanism. Gradients from Ldiv(R̂) do not flow directly into
unrecommended items since T masks |I|− k items with the lowest scores in S of



DivMF 367

each user. Thus, a straightforward gradient descent with Ldiv(R̂) has limitation
to find new items for diversity, optimizing only k scores of initially selected items.

We propose an unmasking mechanism to overcome this problem. The idea is
to keep additional unmasked elements in each row of S when building T. In this
way, rarely recommended items have an opportunity to be unmasked. DivMF
finds new rarely recommended items by a gradient descent with this unmasking
mechanism. DivMF unmasks a fixed number of the highest-scored items other
than already recommended items during each iteration of training, which is the
best unmasking scheme as experimentally shown in Sect. 4.5.

4 Experiments

We perform experiments to answer the following questions:

Q1. Diversity and accuracy (Section 4.2). Does DivMF show high
aggregate-level diversity without sacrificing the accuracy of recommenda-
tion?

Q2. Regularizer (Section 4.3). How do the diversity regularization terms
Regcov and Regskew of DivMF help improve the diversity of DivMF?

Q3. Training algorithm (Section 4.4). Does the training algorithm of DivMF
prevent the training from being trapped in bad local optima?

Q4. Unmasking mechanism (Section 4.5). How does the unmasking mech-
anism of DivMF affect the performance?

4.1 Experimental Setup

We introduce our experimental setup including datasets, evaluation protocol,
baseline approaches, evaluation metrics, and the training process.

Datasets. We use five real-world rating datasets as summarized in Table 1. We
preprocess extremely sparse datasets (Yelp, Gowalla, and Epinions) as core-15
following a previous work [17]. In other words, we make the datasets include
only users and items that have at least 15 interactions. MovieLens-10M and
MovieLens-1M datasets [9] contain movie ratings constructed by the GroupLens
research group. Yelp-15 contains 15-core restaurant rating data collected from a
restaurant review site with the same name. Epinions-15 [18] contains 15-core rat-
ing data of products constructed from a general consumer review site. Gowalla-
15 [4] contains 15-core data of a friendship network of users constructed from a
location-based social networking website. We remove the rating scores of datasets
and obtain user-item interaction data which indicate whether the user has rated
the item or not.

Evaluation Protocol. We employ leave-one-out protocol where one of each
user’s interaction instances is removed for testing. If the dataset includes times-
tamp, the latest instance of each user is removed, and if not, randomly sampled
instances are removed.

Baselines. We compare DivMF with existing methods for aggregately diversi-
fied recommendation.
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Table 1. Summary of datasets.

Dataset Users Items Interactions Density(%)

Yelp-15 a 69,853 43,671 2,807,606 0.0920

Gowalla-15 b 34,688 63,729 2,438,708 0.1111

Epinions-15 c 5,531 4,286 186,995 0.7888

MovieLens-10M d 69,878 10,677 10,000,054 1.3403

MovieLens-1M e 6,040 3,706 1,000,209 4.4684
ahttps://www.yelp.com/dataset.
bhttps://snap.stanford.edu/data/loc-gowalla.html.
chttp://www.trustlet.org/downloaded epinions.html.
dhttps://grouplens.org/datasets/movielens/10m/.
ehttps://grouplens.org/datasets/movielens/1m/.

– Kwon. Kwon et al. [1] adjust recommendation scores of items based on their
frequencies to achieve aggregate level diversity.

– Karakaya. Karakaya et al. [14] replace items on recommendation lists with
infrequently recommended similar items.

– Fairmatch. Fairmatch [17] utilizes a maximum flow problem to find impor-
tant items.

– UImatch. UImatch [5] assigns recommendation capacity to each item and
greedily constructs recommendation lists.

Evaluation Metrics. We evaluate the performance of the methods in two cat-
egories: accuracy and diversity. Accuracy metric checks whether a model recom-
mends correct items or not, and diversity metrics evaluate aggregated diversity
of the recommendation. For each experiment, a list of recommendation to each
user is created and evaluated by the following metrics.

– Accuracy.
• nDCG@k. nDCG@k measures the overall accuracy of the top-k recom-

mendation. It ranges from 0 to 1, where the value 0 indicates the lowest
accuracy and the value 1 represents the highest accuracy.

– Diversity.
• Coverage@k. The coverage of the top-k recommendation.
• Negative Gini index@k. The negative value of the Gini index of the

top-k recommendation.

Training Details. We first train the MF model until convergence. Then, we
apply each baseline and DivMF on the trained MF model. We min-max nor-
malize the recommendation scores for Kwon and Karakaya since they need pre-
diction ratings on a finite scale. We use reverse prediction scheme [1] and set
TH = 0.8, TR = 0.9 for Kwon. We vary t in {30, 50, 75, 100} and set α = 0.5
for FairMatch. We unmask 50 items in Epinions-15 dataset, 100 items in ML-
1M/ML-10M datasets, and 500 items in Gowalla-15/Yelp-15 datasets to apply

https://www.yelp.com/dataset.
https://snap.stanford.edu/data/loc-gowalla.html.
http://www.trustlet.org/downloaded_epinions.html.
https://grouplens.org/datasets/movielens/10m/.
https://grouplens.org/datasets/movielens/1m/.
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DivMF. All the models are trained with Adam optimizer with learning rate
0.001, l2 regularization coefficient 0.0001, β1 = 0.9, and β2 = 0.999. We vary k
in {5, 10} for all datasets.

4.2 Diversity and Accuracy (Q1)

We show the change of accuracies and diversities of DivMF and the competitors
on five real-world datasets in Fig. 2. For each method, we adjust hyperparameters
to mark points on the plot and connect them to obtain the trade-off curve. We
mark the point with the highest accuracy and the highest diversity in each plot
as the ‘best’ point of the plot. Note that DivMF achieves the highest diversity
while sacrificing the least accuracy compared to other baselines considering the
balance of coverage and non-skewness.

Fig. 2. Accuracy-diversity trade-off curves of top-5 and top-10 recommendations on
five real-world datasets. DivMF achieves the highest aggregate-level diversity while
sacrificing minimal accuracy.
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4.3 Regularizer (Q2)

To verify the impact of coverage regularizer and skewness regularizer, we exam-
ine how much the diversity of top-5 recommendation results improves. We com-
pare DivMF, DivMF-Regskew, and DivMF-Regcov on ML-1M and Gowalla-15
datasets; DivMF-Regskew and DivMF-Regcov are DivMF without the skewness
regularizer and the coverage regularizer, respectively. For the fair comparison,
we train each model until the nDCG is dropped by 5% compared to MF.

Figure 3 shows that DivMF increases both the coverage and the non-skewness
the most, compared to other models. This verifies that both regularizers con-
tribute to improving the aggregate-level diversity.

4.4 Training Algorithm (Q3)

To prove the effectiveness of our training algorithm, we compare top-5 recom-
mendation performances of DivMF and DivMF alter on ML-1M dataset during
training. Instead of sequentially optimizing accuracy loss and diversity loss as in
DivMF, DivMF alter alternately optimizes two losses.

Figure 4 shows that DivMF significantly increases the diversity compared to
DivMF alter while sacrificing a similar amount of accuracy. This proves that our
training algorithm prevents the model from being trapped in bad local optima.

Fig. 3. Diversities of DivMF and its variants on ML-1M dataset compared to MF when
nDCG is decreased by 5%. DivMF improves diversity the most.

Fig. 4. Change of nDCG and Gini index of DivMF and DivMF alter during training
on ML-1M dataset. DivMF improves diversity better by avoiding bad local optima.
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Fig. 5. Accuracy-coverage (left) and accuracy-negative Gini index (right) trade-off
curves of different unmasking policies. ‘Top’ shows the best overall performance.

4.5 Unmasking Mechanism (Q4)

To find the best unmasking policy for DivMF, we compare three policies: No
unmasking, Top, and Random on ML-1M dataset. In addition to top-k items,
Top unmasks n items with the highest prediction scores while Random unmasks
random n items. We set n = 100 since it shows the best performance in both
schemes. No unmasking does not unmask any item other than top-k items.

Figure 5 shows performances of the three policies in top-5 recommendation.
We have two observations. First, No unmasking fails to increase aggregate-
level diversity, while Top and Random further improve both coverage and non-
skewness. Second, Top performs better than Random since it achieves higher
coverage while non-skewnesses of the two schemes are comparable in the case.
In summary, Top is the best unmasking scheme to achieve high aggregate-level
diversity.

5 Related Works

Individually diversified recommendation. Individually diversified recom-
mendation recommends diversified items to each user [25]. Maximizing individ-
ual diversity can maximize item novelty in each user’s view, but it may recom-
mend already known items in overall recommendation list for all users. Thus,
maximizing individual-level diversity does not guarantee the improvement in
aggregate-level diversity [1].

Fair Recommendation. Fair recommendation aims to design an algorithm
that makes fair predictions devoid of discrimination [8]. Fairness in recommen-
dation could be observed between different item groups [6] or between distinct
items with similar attributes [20]. Aggregately diversified recommendation does
not require any group or attribute of items, which is the main difference com-
pared to the fair recommendation.

Popularity Debiased Recommendation. Popularity debiased recommenda-
tion aims to improve the quality of recommendation for long-tail items. Tradi-
tional recommender systems tend to show poor accuracy for infrequently appear-
ing items because of the skewness in dataset [22]. There are researches to elim-
inate the popularity bias to achieve high accuracy in recommending long-tail
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items as well as popular items [7,24]. Aggregately diversified recommendation
focuses on increasing the frequencies of long tail items instead of their accuracies,
which is the main difference from popularity debiased recommendation.

6 Conclusion

We propose DivMF, a matrix factorization method which maximizes aggregate-
level diversity while sacrificing minimal accuracy in top-k recommendation.
DivMF exploits coverage regularizer and skewness regularizer for MF via a care-
fully designed training algorithm. Experiments on five real-world datasets show
that DivMF achieves the state-of-the-art performance in aggregately diversified
recommendation, outperforming the best competitor with up to 34.7% reduced
Gini index in the similar level of accuracy and up to 27.6% higher nDCG in
the similar level of diversity. Future works include extending DivMF for other
recommendation models beyond the matrix factorization.
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tute of Engineering Research and ICT at Seoul National University provided research
facilities for this work. U Kang is the corresponding author.
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Abstract. Candidate retrieval is the first stage in recommendation sys-
tems, where a light-weight system is used to retrieve potentially relevant
items for an input user. These candidate items are then ranked and
pruned in later stages of recommender systems using a more complex
ranking model. As the top of the recommendation funnel, it is important
to retrieve a high-recall candidate set to feed into downstream ranking
models. A common approach is to leverage approximate nearest neigh-
bor (ANN) search from a single dense query embedding; however, this
approach this can yield a low-diversity result set with many near dupli-
cates. As users often have multiple interests, candidate retrieval should
ideally return a diverse set of candidates reflective of the user’s multiple
interests. To this end, we introduce kNN-Embed, a general approach to
improving diversity in dense ANN-based retrieval. kNN-Embed repre-
sents each user as a smoothed mixture over learned item clusters that
represent distinct “interests” of the user. By querying each of a user’s
mixture component in proportion to their mixture weights, we retrieve
a high-diversity set of candidates reflecting elements from each of a
user’s interests. We experimentally compare kNN-Embed to standard
ANN candidate retrieval, and show significant improvements in over-
all recall and improved diversity across three datasets. Accompanying
this work, we open source a large Twitter follow-graph dataset (https://
huggingface.co/datasets/Twitter/TwitterFollowGraph), to spur further
research in graph-mining and representation learning for recommender
systems.

Keywords: candidate retrieval · embedding · nearest neighbor,
diversity

1 Introduction

Recommendation systems for online services such as e-commerce or social net-
works present users with suggestions in the form of ranked lists of items [5].
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Often, these item lists are constructed through a two-step process: (1) candidate
retrieval, which efficiently retrieves a manageable subset of potentially relevant
items, and (2) ranking, which applies a computationally-expensive ranking model
to score and select the top-k candidates to display to the user.

During candidate retrieval, we are primarily concerned with the recall of the
system [11], as opposed to the ranking model which typically targets precision.
Ensuring high recall for users with multiple interests is a challenging problem,
which is exacerbated by the way we typically perform retrieval. The dominant
paradigm for candidate retrieval is to embed users and items in the same vec-
tor space, and then use approximate nearest-neighbor (ANN) search to retrieve
candidates close to the user [5,14]. However, ANN search will often return can-
didate pools that are highly intra-similar (e.g., all candidates pertain to one
“topic” only) [27]. A side effect of training embeddings to place users close to
relevant items, is that similar items are also placed close to each other. During
ANN-based candidate retrieval, this unfortunately leads to similar candidates
that may not reflect a user’s diverse multi-topic interests, and hence low recall.

In this paper, we introduce kNN-Embed, a new strategy for retrieving a
high-recall, diverse set of candidates reflecting a user’s multiple interests. kNN-
Embed captures multiple user interests by representing user preferences with
a smoothed, mixture distribution. Our technique provides a turn-key way to
increase recall and diversity while maintaining user relevance in any ANN-based
candidate retrieval scheme. It does not require retraining the underlying user
and item embeddings; instead, we build directly on top of pre-existing ANN
systems. The underlying idea is to exploit the similarity of neighboring users to
represent per-user interests as a mixture over learned high level clusters of item
embeddings. Since user-item relevance signal is typically sparse, estimating the
mixture weights introduces significance variance. Thus, we smooth the mixture
weights with information from similar users. At retrieval time, we simply sample
candidates from each cluster according to mixture weights. Within each cluster,
we perform ANN search using a smoothed per-user per-cluster embedding.

Our contributions in this paper are (1) a principled method to retrieve a
high-recall, diverse candidate set in ANN-based candidate retrieval systems and
(2) a large open-source graph dataset for studying graph-mining and retrieval.

2 Related Works

Traditionally, techniques for candidate retrieval rely on fast, scalable approaches
to search large collections for similar sparse vectors [1,3]. Approaches apply
indexing and optimization strategies to scale sparse similarity search. One such
strategy builds a static clustering of the entire collection of items; clusters are
retrieved based on how well their centroids match the query [20,25]. These meth-
ods either (1) match the query against clusters of items and rank clusters based
on similarity to query or (2) utilize clusters as a form of item smoothing.

For embedding-based recommender systems [28], large-scale dense similarity
search has been applied for retrieval. Some approaches proposed utilize hashing-
based techniques such as mapping input and targets to discrete partitions and
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selecting targets from the same partitions as inputs [26]. With the advent of fast
approximate nearest-neighbor search [13,21], dense nearest neighbor has been
applied by recommender systems for candidate retrieval [5].

When utilizing graph-based embeddings for recommender systems [8], some
methods transform single-mode embeddings to multiple modes by clustering
user actions [23]. Our method extends upon this idea by incorporating nearest
neighbor smoothing to address the sparsity problem of generating mixtures of
embeddings for users with few engagements.

Smoothing via k-nearest-neighbor search has been applied for better language
modeling [16] and machine translation [15]. We smooth low-engagement user
representations by leveraging engagements from similar users.

3 kNN-Embed

3.1 Preliminaries

Let U = {u1, u2, . . . un} be the set of source entities (i.e., users in a recom-
mender system) and I = {i1, i2, . . . im} be the set of target entities (i.e., items
in a recommender system). Let G constitute a bipartite graph representing the
engagements between users (U) and items (I). For each user and item, we define
a “relevance” variable in {0, 1} indicating an item’s relevance to a particular
user. An item is considered relevant to a particular user if a user, presented
with an item, will engage with said item. Based on the engagements in G, each
user, uj , is associated with a d-dimensional embedding vector uj ∈ R

d; similarly
each target item ik is associated with an embedding vector ik ∈ R

d. We call
these the unimodal embeddings, and assume that they model user-item rele-
vance p(relevance|uj , ik) = f(uj, ik) for a suitable function f .

Given the input user-item engagement graph, our goal is to learn mixtures
of embeddings representations of users that better capture the multiple interests
of a user as evidenced by higher recall in a candidate retrieval task.

Unimodal User and Item Embeddings: While kNN-Embed presupposes
a set of co-embedded user and item embeddings and is agnostic to the exact
embedding technique used (the only constraint is that the embeddings must
satisfy p(ik|uj) = g(uj

T ik) for monotone g), for completeness we describe a
simple approach we applied to co-embed users and items into the same space. We
form a bipartite graph G of users and items, where an edge represents relevance
(e.g., user follows content producer). We seek to learn an embedding vector
(i.e., vector of learnable parameters) for each user (uj) and item (ik) in this
bipartite graph; we denote these learnable embeddings for users and items as
uj and ik respectively. A user-item pair is scored with a scoring function of the
form f(uj, ik). Our training objective seeks to learn u and i parameters that
maximize a log-likelihood constructed from the scoring function for (u, i) ∈ G
and minimize for (u, i) /∈ G. For simplicity, we apply a dot product comparison
between user and item representations. For a user-item pair e = (uj , i), this is
defined by:
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f(e) = f(uj , ik) = uj
ᵀik (1)

As seen in Eq. 1, we co-embed users and items by scoring their respective
embedded representations via dot product and perform edge (or link) predic-
tion. We consume the input bipartite graph G as a set of user-item pairs of the
form (u, i) which represent positive engagements between a user and item. The
embedding training objective is to find user and item representations that are
useful for predicting which users and items are linked via an engagement. While a
softmax is a natural formulation to predict a user-item engagement, it is imprac-
tical due to the cost of computing the normalization over a large vocabulary of
items. Following previous methods [10,22], negative sampling, a simplification
of noise-contrastive estimation, can be used to learn the parameters u and i. We
maximize the following negative sampling objective:

arg max
u,i

∑

e∈G

⎡

⎣log σ(f(e)) +
∑

e′∈N(e)

log σ(−f(e′))

⎤

⎦ (2)

where: N(u, i) = {(u, i′) : i′ ∈ I} ∪ {(u′, i) : u′ ∈ U}. Equation 2 represents
the log-likelihood of predicting a binary “real” (edges in the network) or “fake”
(negatively sampled edges) label. To maximize the objective, we learn u and i
parameters to differentiate positive edges from negative, unobserved edges. Neg-
ative edges are sampled by corrupting positive edges via replacing either the user
or item in an edge pair with a negatively sampled user or item. Following previ-
ous approaches, negative sampling is performed both uniformly and proportional
to node prevalence in the training graph [4,18].

3.2 Smoothed Mixture of Embeddings

To use embeddings for candidate retrieval, we need a method of selecting relevant
items given the input user. Ideally, we would like to construct a full distribution
over all items for each user p(ik|uj) and draw samples from it. The sheer number
of items makes this difficult to do efficiently, especially when candidate retrieval
strategies are meant to be light-weight. In practice, the most common method
is to greedily select the top few most relevant items using an ANN search with
the unimodal user embedding as query. A significant weakness of this greedy
selection is that, by its nature, ANN search will return items that are similar
not only to the user embedding, but also to each other; this drastically reduces
the diversity of the returned items. This reduction in diversity is a side-effect
of the way embeddings are trained – typically, the goal of training embeddings
is to put users and relevant items close in Euclidean space; however, this also
places similar users close in space, as well as similar items. We will repeatedly
exploit this “locality implies similarity” property of embeddings in this paper to
resolve this diversity issue.
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Clustering Items: Since neighboring items are similar in the embedding space,
if we apply a distance-based clustering to items, we can arrive at groupings that
represent individual user preferences well. As such, we first cluster items using
spherical k-means [6] where cluster centroids are placed on a high-dimensional
sphere with radius one. Given these item clusters, instead of immediately col-
lapsing the distribution p(ik|uj) to a few items as ANN search does, we can write
the full distribution p(ik|uj) as a mixture over item clusters:

p(ik|uj) =
∑

c

p(c|uj) · p(ik|uj , c)

where in each cluster, we learn a separate distribution over the items in the
cluster p(ik|uj , c). Thus, we are modeling each user’s higher level interests p(c|u),
and then within each interest c, we can apply an efficient ANN-search strategy
as before. In effect, we are interpolating between sampling the full preference
distribution p(ik|uj) and greedily selecting a few items in an ANN.

Mixture of Embeddings via Cluster Engagements: After clustering target
entities, we learn p(c|uj) through its maximum likelihood estimator (MLE):

pmle(c|uj) = count(ui, c)/
∑

c′∈Mj

count(uj , c
′) (3)

where, count(uj , c) is the number of times uj has a relevant item in cluster c. For
computational efficiency, we take Mj to be uj ’s top m most relevant clusters.
We normalize these counts to obtain a proper cluster-relevance distribution.

Nearest Neighbor Smoothing: Unfortunately, we typically have few user-
item engagements on a per-user basis; thus, while the MLE is unbiased and
asymptotically efficient, it can also be high variance. To this end, we introduce
a smoothing technique that once again exploits locality in the ANN search, this
time for users.

Figure 1 illustrates identifying k nearest-neighbors (Kj) to the query user
uj ’s, and leveraging the information from the neighbors’ cluster engagements to
augment the user’s cluster relevance. We compute this distribution over item
clusters by averaging the MLE probability for each nearest neighbor (item clus-
ters that are not engaged with by a retrieved neighbor have zero probability).

pkNN (c|uj) =
1

|Kj |
∑

u′∈Kj

pmle(c|u′) (4)

We apply Jelinik-Mercer smoothing to interpolate between a user’s MLE
distribution with the aggregated nearest neighbor distribution [12].

psmoothed(c|uj) = (1 − λ)pmle(c|uj) + λpkNN (c|uj), (5)

where λ ∈ [0, 1] represents how much smoothing is applied. It can be manually
set or tuned on a downstream extrinsic task.
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Fig. 1. Example of retrieving two candidates. In an ANN, items 4 and 5 would be
deterministically returned for user 1. In our proposed kNN-Embed, even though the
distances to cluster 2 are larger, smoothing means that we will sometimes return items
from that cluster, yielding more diverse items. Note in this case, we don’t even require
that user 1 has previously relevant items in cluster 2.

Sampling within Clusters: Within each cluster there are many ways to
retrieve items on a per user basis. A simple, but appealing, strategy is to repre-
sent each user as a normalized centroid of their relevant items in that cluster:

centroid(c, uj) =

∑
m∈R(c,uj)

im
‖∑

m∈R(c,uj)
im‖ , (6)

where R(c, uj) is the set of relevant items for user uj in cluster c. However, since
we are applying smoothing to the cluster probabilities p(c|uj), it may be case
that uj has zero relevant items in a given cluster. Hence, we smooth the user
centroid using neighbor infomation to obtain the final user representation uc

j :

uc
j = (1 − λ) centroid(c, uj) +

λ

|Kj |
∑

u′∈Kj

pmle(c|u′) centroid(c, u′) (7)

Equation 7 shows the kNN-smoothed user-specific embedding for cluster c.
This embedding takes the user-specific cluster representations from Eq. 6, and
performs a weighted averaging proportionate to each user’s contribution to
psmoothed(c|uj). The final vector is once again normalized to unit norm.

4 Evaluation Datasets and Metrics

We evaluate on three datasets which we describe below:

HEP-TH Citation Graph: This paper citation network is collected from
Arxiv preprints from the High Energy Physics category [9]. The dataset con-
sists of: 34,546 papers and 421,578 citations.
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DBLPCitationGraph: This paper citation network is collected fromDBLP [24]
and consists of 5,354,309 papers and 48,227,950 citation relationships.

Twitter Follow Graph: We curate Twitter user-follows-user (available via
API) by first selecting a number of ‘highly-followed’ users that we refer to as
‘content producers’; these content producers serve as ‘items’ in our recommender
systems terminology. We then sampled users that follow these content producer
accounts. All users are anonymized with no other personally identifiable infor-
mation (e.g., demographic features) present. Additionally, the timestamp of each
follow edge was mapped to an integer that respects date ordering, but does not
provide any information about the date that follow occurred. In total, we have
261M edges and 15.5M vertices, with a max-degree of 900K and a min-degree
of 5. We hope that this dataset will be of useful to the community as a test-bed
for large-scale retrieval research.

Metrics: We evaluate kNN-Embed on three aspects: (1) the recall (2) diversity
and (3) goodness of fit of retrieved candidates. Below, we formalize these metrics.

Recall@K: The most natural (and perhaps most important) metric for comput-
ing the efficacy of various candidate retrieval strategies is Recall@K. This metric
is given by considering a fixed number of top candidates yield by a retrieval sys-
tem (up to size K) and measuring what percent of these candidates are held-out
relevant candidates. The purpose of most candidate retrieval systems is to collect
a high-recall pool of items for further ranking, and thus recall is a relevant metric
to consider. Additionally, recall provides an indirect way to measure diversity
– to achieve high recall, one is obliged to return a large fraction of all relevant
documents, which simple greedy ANN searches can struggle with.

Diversity: To evaluate the diversity among the retrieved candidates, we mea-
sure the spread in the embeddings of the retrieved candidates by calculating the
average distance retrieved candidates are from their centroid. The underlying
idea is that when ‘locality implies similarity’; as a corollary, if candidates are
further in Euclidean distance, then they are likely to be different. As such, for a
given set of candidates C, we compute diversity D as follows:

D(C) =
1
|C|

∑

ik∈C
‖ik − î‖ (8)

where C denotes the set of retrieved candidates and î =
∑

ik∈C ik/|C| is the mean
of the unimodal embeddings of the retrieved candidates.

Goodness of Fit: In addition to diversity of retrieved items, we need to ensure
that a user’s mixture representation is an accurate model of their interests – that
is the mixture of embeddings identifies points in the embedding space where rel-
evant items lie. Thus, we compare held out relevant items to the user’s mixture
representation we use to query. We measure this “goodness of fit” by computing
the Earth Mover’s Distance (EMD) [19] between a uniform distribution over a
user’s relevant items and the user’s mixture distribution. The EMD measures
the distance between two probability distributions over a metric space [7,17].
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We measure the distance between a user’s cluster distribution (e.g., Eq. 3 and
Eq. 4), to a uniform distribution over a held-out set of relevant items: p(i|uj)
over a Euclidean space. We compute EMD by soft assigning all held-out rele-
vant items of a user to clusters, minimizing the sum of item-cluster distances,
with the constraint that the sum over soft assignments matches p(c|uj). As seen
in Fig. 2, with standard unimodal representations, a single embedding vector is
compared to the held-out items and the goodness of fit is the distance between
the item embeddings and the singular user embedding. In comparison, for mix-
ture representations (Fig. 2, each user multiple user embeddings who each have
fractional probability mass that in total sums to 1. The goodness of fit is then
the distance achieved by allocating the mass in each item to the closest user
embedding cluster with available probability mass. Observing unimodal repre-
sentations in Fig. 2, a single unimodal embedding is situated in the embedding
space and compared to held-out relevant items. As shown, some held-out items
are close to the unimodal embedding, while others are further away. In contrast,
for mixture representations, each user has multiple user-embeddings and each of
these embeddings lies close to a cluster of relevant items. The intuition is that if
a user has multiple item clusters they are interested in, multiple user embeddings
can better capture these interests.

Fig. 2. Goodness of fit of unimodal representation vs mixture representation.

5 Experiments

Experimental Setup: For our underlying ANN-based candidate retrieval sys-
tem, we start by creating a bipartite graph between source entities and target
entities for each dataset, with each edge representing explicit relevance between
items (e.g., citing paper cites cited paper or user follows content producer). We
then learn unimodal 100-dimensional embeddings for users and items by training
over 20 epochs and cluster them via spherical k-means over 20 epochs [2].

Evaluation Task: We evaluate three candidate retrieval strategies – baseline
ANN with unimodal embeddings (which is how most ANN-based candidate
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retrieval systems work), mixture of embeddings with no smoothing [23], and
mixture of embeddings with smoothing (i.e., kNN-Embed). For each strategy,
we compute the Recall@K, diversity, and fit in a link prediction task.

Research Hypotheses: We explore two research hypotheses (as well as achieve
some understanding of the hyperparameters): (1) Unimodal embeddings miss
many relevant items due to the similarity of retrieved items. Mixtures yield
more diverse and higher recall candidates. (2) Smoothing, by using information
from neighboring users, further improves the recall of retrieved items.

Table 1. Recall of Retrieved Candidates

HEP-TH DBLP Twitter-Follow

Approach R@10 R@20 R@50 R@10 R@20 R@50 R@10 R@20 R@50

Unimodal 20.0% 30.0% 45.7% 9.4% 13.9% 21.6% 0.58% 1.02% 2.06%

Mixture 22.7% 33.4% 49.3% 10.9% 16.1% 25.1% 3.70% 5.53% 8.79%

kNN-Embed 25.8% 37.4% 52.5% 12.7% 18.8% 28.3% 4.13% 6.21% 9.77%

Recall of unimodal vs mixture vs kNN-Embed- higher is better. HEP-TH (λ = 0.8,
2000 clusters, 5 embeddings). DBLP (λ = 0.8, 10000 clusters, 5 embeddings). Twitter-
Follow (λ = 0.8, 40000 clusters, 5 embeddings).

Recall: In Table 1, we report results when evaluating recall on citation predic-
tion tasks. Results support the first hypothesis that unimodal embeddings may
miss relevant items if they don’t lie close to the user in the shared embedding
space. Mixture of embeddings with no smoothing, yields a 14% relative improve-
ment in R@10 for for HEP-TH, and 16% relative improvement for DBLP. Our
second hypothesis (2) posits that data sparsity can lead to sub-optimal mix-
tures of embeddings, and that nearest-neighbor smoothing can mitigate this.
Our experiments support this hypothesis, as we see a 25% relative improve-
ment for HEP-TH in R@10, and 35% for DBLP and when using kNN-Embed.
We see similar significant improvements over baselines in R@20 and R@50. For
Twitter-Follow, the improvements in recall are dramatic – 534% in relative terms
going from unimodal embeddings to a mixture of embeddings in R@10. We sus-
pect this significant improvement is because Twitter-Follow simultaneously has a
much higher average degree than HEP-TH and DBLP and the number of unique
nodes is much larger. It is a more difficult task to embed so many items, from
many different interest clusters, in close proximity to a user. As such, we see a
massive improvement by explicitly querying from each user’s interest clusters.
Applying smoothing provides an additional 74% in relative terms, and similar
behaviours are observed in R@20 and R@50.

Diversity: We apply Eq. 8 to retrieved candidates and measure the spread of
retrieved candidates’ embedding vectors. As seen in Table 2, the candidates from
unimodal retrieval are less diverse than candidates retrieved via multiple queries
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from mixture representations. This verifies our first research hypothesis that uni-
modal embeddings may retrieve many items that are clustered closely together
as a by-product of ANN retrieval (i.e., diversity and recall is low). However,
multiple queries from mixtures of embeddings broadens the search spatially;
retrieved items are from different clusters, which are more spread out from each
other. kNN-Embed (i.e., smooth mixture retrieval) results in slightly less diverse
candidates than unsmoothed mixture retrieval. We posit that this is due to the
high-variance of the maximum likelihood estimator of the pmle(c|uj) multino-
mial (Eq. 3). While this high-variance may yield more diverse candidates, this
yields less relevant candidates as seen in Table 1 where kNN-Embed consistently
yields better recall than unsmoothed mixture retrieval. While high diversity is
necessary for high recall, it is insufficient on its own.

Table 2. Diversity of Retrieved Candidates

HEP-TH DBLP Twitter-Follow

Approach D@10 D@20 D@50 D@10 D@20 D@50 D@10 D@20 D@50

Unimodal 0.49 0.54 0.61 0.43 0.46 0.51 0.38 0.40 0.43

Mixture 0.58 0.63 0.68 0.51 0.56 0.60 0.56 0.54 0.58

kNN-Embed 0.54 0.60 0.66 0.46 0.52 0.57 0.47 0.52 0.55

Goodness of Fit: We evaluate how well unimodal, mixture, and smoothed
mixture embeddings model a user’s interests. The main idea is that the better
fit a user representation is, the closer it will be to the distribution of held out
relevant items for that user. As seen in Table 3, the results validate the idea that
unimodal user embeddings do not model user interests as well as mixtures over
multiple embeddings. Multiple embeddings yield a significant EMD improvement
over a single embedding vector when evaluated on held-out items. Smoothing
further decreases the EMD which we posit is due to the smoothed embedding
mixtures being lower-variance estimates as they leverage engagement data from
similar users in constructing the representations. These results suggest that the
higher recall of smoothed mixtures is due to better user preferences modeling.

Table 3. Goodness of fit between user and held-out items as measured by earth mover’s
distance over a Euclidean embedding space. Lower EMD is better.

Approach HEP-TH DBLP Twitter-Follow

Unimodal 0.897 0.889 1.018

Mixture 0.838 0.830 0.952

kNN-Embed 0.811 0.808 0.940
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Hyper-parameter Sensitivity Analysis: We focus on recall as the sine qua
non of candidate retrieval problems and analyze hyper-parameters on HEP-TH.
In Fig. 3a, we vary the smoothing parameter λ (same parameter for both the mix-
ture probabilities and the cluster centroids) and see heavy smoothing improves
performance significantly. This likely stems from the sparsity of HEP-TH where
most papers have only a few citations. In Fig. 3b, we vary the number of embed-
dings (i.e., the mixture size) and notice improved performance saturating at
six mixture components. Out of all the hyperparameters, this seems to be the
critical one in achieving high recall. In practice, latency constraints can be con-
sidered when selecting the number of embeddings per user, explicitly making the
trade-off between diversity and latency. Finally, in Fig. 3c, we vary the number
of k-means clusters; recall peaks at k = 2500 and then decreases. HEP-TH is
a small dataset with only 34,546 items; it is likely that generating a very large
number of clusters leads to excessively fine-grained and noisy sub-divisions of
the items.

Fig. 3. We analyze the effect of three important hyper-parameters: (1) the λ smoothing
(2) the number of embeddings in the mixture (3) the number of clusters for candidate
retrieval in the HEP-TH dataset.

6 Conclusions

We present kNN-Embed, a method of transforming single user dense embed-
dings, into mixtures of embeddings, with the goal of better modeling user inter-
ests, increasing retrieval recall and diversity. This multi-embedding scheme repre-
sents a source entity with multiple distinct topical affinities by globally clustering
items and aggregating the source entity’s engagements with clusters. Recognizing
that user-item engagements may often be sparse, we propose a nearest-neighbor
smoothing to enrich these mixture representation. Our smoothed mixture rep-
resentation better models user preferences retrieving a diverse set of candidate
items reflective of a user’s multiple interests. This significantly improves recall on
candidate retrieval tasks on three datasets including Twitter-Follow, a dataset
we curate and release to the community.
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Abstract. Reinforcement learning has been widely used in recom-
mender systems in order to optimize users’ long-term utilities. An accu-
rate and explainable user simulator is crucial for reinforcement learning
based recommendation, as an online interactive environment is often
unavailable. On short video platforms, it is very important to keep users
on the platform as long as possible in each session. Thus, session-based
user utilities depend on two factors: how much users like every single
video (video preference) and the number of videos watched (video views)
in each session. To this end, the simulator should simultaneously model
the user’s degree of liking for each video and video views. However, most
previous studies on the short video recommendation only paid attention
to the former. In this work, we propose KESWA, a Knowledge-Enhanced
Session-Wide Attention method for short video user simulation. KESWA
fuses information foraging theory with a deep learning model for both
video preference and video views modeling, providing an explainable
prediction for users’ staying and leaving behavior. Comparative experi-
ments demonstrate that KESWA provides a better simulation of video
views compared with existing models. Meanwhile, reinforcement learning
agents can achieve higher session-based user utilities trained by KESWA
than by other user simulators.

Keywords: Session-based recommendation · Reinforcement learning ·
Information foraging theory

1 Introduction

Reinforcement learning (RL) has been widely used in recommendation systems.
RL algorithms aim to optimize the cumulative rewards, and thus can easily be
used for maximizing users’ long-term utilities. In RL, agents need to interact with
the environment for learning. However, the online interaction environment is
often unavailable for recommendation systems, because the immature RL agents
may hurt user experience and thus reduce platform earnings.
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There are two ways to address the lack of interaction environment. The
first solution is offline reinforcement learning. Offline RL agents learn from
logged data, which was collected by some unknown policies previously. The
learning period of offline RL is extremely unstable because it highly depends
on the quality of logged data. Data generated by sub-optimal policies will signif-
icantly affect the performance of offline RL [4]. The second solution is to design
a simulator that can generate user behaviors in advance. Simulators serve as
pseudo online users here, and RL agents are then trained by interacting with
them. This approach has higher data efficiency and circumvents the influence of
the data generation process. As a result, many recent works [3,12,15] adopted
this solution. In this paper, we also adopt the second solution and focus on the
design of user simulators.

The recent five years have witnessed a boom in short video platforms, such
as TikTok and Kuaishou. Short video is a new way of life sharing. Video makers
upload their works to the platform and video viewers watch them in an immersed
mode: viewers rely largely on the recommendation system of the platform to push
short videos to them. Viewers can decide at any time whether they want to skip
the current video and directly watch the next video pushed by the platform.
Meanwhile, viewers can give a like to short videos that attract them most. In
this mode, users’ preferences cannot be implied by common feedback like clicking
and viewing. As a result, in this paper, we use one implicit factor, watching
completion, and one explicit factor, “like”, to fully reflect user preferences.

In a continuous period of time, the short videos watched by a user form
a session. On short video platforms, it is very important to keep users on the
platform as long as possible in each session. Thus, session-based user utilities
(SUU) depend on two factors: how much users like every single video (video
preference) and the number of videos watched (video views, VV) in each ses-
sion. When designing RL-based recommendation systems, short video platforms
are especially concerned about video views. This is because larger video views
mean larger advertising audiences, which can attract more advertisers and help
achieve higher profits. Therefore, before training RL agents for short video rec-
ommendations, it is of great importance to design user simulators to accurately
model each user’s video views. However, previous works paid little attention to
this aspect. Most of them only focused on the prediction of users’ preference on
each video, overlooking the prediction of users’ leaving behavior, and thus could
not achieve a comprehensive understanding of session-based user utilities.

In this paper, we propose a novel Knowledge-Enhanced Session-Wide Atten-
tion (KESWA) framework for user simulation. By predicting the user’s proba-
bility of leaving after watching each video, we find a way to model video views
in each session. Due to the fact that users’ leaving behaviors are rare in logged
data, traditional deep learning methods tend to overfit them. As a result, we
introduce information foraging theory (IFT) [9], a well-known theory about
how people obtain information on the Internet, to help us overcome the over-
fitting problem and provide interpretability as well. Comparative experiments
validate that KESWA provides a better simulation of video views compared with
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existing models. Meanwhile, RL agents trained by KESWA can achieve higher
SUU than agents trained by other kinds of user simulators. To summarize, the
main contributions of our work are as follows:

– We propose to measure session-based user utilities from both video preference
and video views for session-based sequential short video recommendation.

– By fusing information foraging theory with a session-wide self-attention deep
learning model, we propose a novel framework of user simulator for RL-based
short video recommendation to improve utility estimation and enhance under-
standing of user behaviors on the platform.

– We conduct comparative experiments on a real-world data set and evaluate
the performance of the proposed simulator through two different angles: the
prediction performance of the simulator itself, and the RL recommendation
performance based on the simulator. Experimental results demonstrate our
proposed method’s effectiveness.

2 Related Works

2.1 Short Video Recommendation

Many short video recommendation algorithms focused on static models [7,8].
This kind of modeling method does not consider the change in user preference
over time, thus impossible to understand the user’s real viewing intention. For
RL-based sequential short video recommendation, Li et al. [5] proposed a multi-
task prediction framework based on a multi-gate mixture of experts. However,
this task can be fulfilled through a supervised learning paradigm, and treating it
as a time-series decision-making problem lacks practical necessity. Cai et al. [2]
aimed at achieving Pareto optimality for multiple optimization objectives on
short video platforms by using a constrained RL method. However, RL agents
were trained offline, causing instability in the training process. Meanwhile, the
definition of cumulative reward in offline learning settings is unclear.

2.2 User Simulation for RL-Based Recommendation

There are multiple ways to simulate users’ video preferences and video views for
RL-based recommendations. Among them, behavioral cloning (BC) is the easiest
and most effective way. What proposed by G. Zheng et al. [14] and L. Zou et
al. [15] are typical BC methods. G. Zheng et al. analyzed user selection behav-
ior during news browsing using a top-k ranking model. They assumed that news
viewed first has the highest video preference. Meanwhile, they leveraged survival
analysis to model user activeness and provided a probability for user leaving.
This kind of analysis is equivalent to the constant leaving probability assump-
tion, thus giving a video views prediction following geometric distribution. L.
Zou et al. predicted users’ video preferences through the attention mechanism
and leveraged a multilayer perceptron (MLP) to predict video views. However,
they did not conduct any experiments to validate the performance of MLP for
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video views simulation. Another way of user simulation is generative adversarial
learning. J. Shi et al. [3] designed a simulator based on generative adversarial
imitation learning. A similarity score between the simulated data and the logged
data was used as the reward for video preference prediction. However, the adver-
sarial learning process is extremely difficult for parameter adjustment. Besides,
they also adopted an overly simplistic assumption that the number of video
views is a constant value for all users. In conclusion, though video preference
prediction has been widely discussed, no previous work could give a practical
and user-specific video views prediction for different users.

3 Problem Statement

A user’s watching behaviors on a short video platform can be divided into mul-
tiple sessions: τ0, τ1, ..., τN . Each session includes a set of watching behaviors in
a continuous period of time: τn = {(ai, fi, li, ei), i ∈ In}, where ai denotes the
i-th short video recommended by the platform in session τn. The user response
to video ai contains three different parts: fi ∈ {0, 1} indicates whether user u
finishes watching the entire video, li ∈ {0, 1} indicates whether user u gives a
like to ai, and ei ∈ {0, 1} denotes the user leaving behavior, i.e.:

ei =

{
0, if user u continue watching other videos after watching ai,

1, if user u leaves the platform after watching ai.
(1)

Based on the above notations, we give some important definitions used in this
paper as follows.

Definition 1. User’s preference of short video ai is the probability that user u
finishes watching the entire video or gives a like to ai:

ri = r(ai) = P((fi|li) = 1). (2)

Definition 2. Video views (VV) of a given session τn is the number of
(ai, fi, li, ei) tuples in session τn:

V Vn = |τn| = |In|. (3)

Definition 3. Session-based user utility (SUU) of a given session τn is the sum
of user preferences regarding all videos in session τn:

SUUn =
∑
i∈In

ri. (4)

Definition 4. Leaving probability (LP) after watching the i-th video is the prob-
ability that ei = 1:

LPi = P(ei = 1). (5)
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As shown in Fig. 1, the purpose of the proposed framework KESWA is to provide
a virtual online interactable environment for RL-based recommender systems.
As a result, for each user u, the input of KESWA is a sequence of sessions
τ0, τ1, ..., τN , where τN is the current on-going session, and a candidate short
video aI for recommendation. Based on the input, KESWA is able to simulate
user u’s preference of the video and leaving probability LPI at present, thus
giving a better estimation of SUU and helping RL-based recommendation algo-
rithms achieve higher SUU in applications.

4 Approach

4.1 Parameter Estimation for Information Foraging Theory

Information foraging theory (IFT) was proposed by Peter Pirolli and Stuart Card
in the 1990s s to better understand how human users search for information [9].
IFT draws an analogy between the process by which humans acquire information
and the process by which animals forage for food. To model and better simulate
users’ leaving or staying behavior on short video platforms, we adopt a variation
of IFT [1]. The process of watching videos can be regarded as a process of
information acquisition. IFT explains the information foraging process from two
angles. The first angle is target-oriented (TO). People keeps viewing different
videos until the utility cumulated during the watching process reaches the target
set by themselves. The second angle is speed-sensitive (SS). When the speed of
utility cumulation falls below the limit of viewers’ tolerance, they stop watching
anymore.

Fig. 1. A flow chart of how KESWA interacts with recommendation systems

As a result, we can use two equations to describe the leaving behavior of users
when watching short videos. From the target-oriented angle, users set utility
targets before they start to watch videos. The user’s preference for each video
reflects the utility gained by watching the video. Thus, we use the cumulation
of user’s preference on watched videos in the current session to represent user
utility. With the cumulated utility acquired by users gradually approaching the
target, the probability of staying on the platform decreases:
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C1 = 1 − (1 + β1 · e(Γ−γ)α1)−1, (6)

where C1 represents the probability of staying, Γ ∈ [0,+∞) represents the utility
target, γ represents the utility cumulated till now, β1 ∈ [0,+∞) is a normaliza-
tion parameter, and α1 ∈ [0,+∞) is a temperature coefficient, representing the
sensitivity of the user response to the change of cumulated utilities. Higher α1

represents higher sensitivity, and α1 = 0 implies that the cumulated utility has
nothing to do with the user’s probability of staying. β1, Γ , and α1 are trainable
parameters for each user.

To model the speed-sensitive property, a utility-acquiring rate threshold is
set before users start to watch videos. The probability of staying on the platform
gradually decreases as the utility-acquiring rate falls behind the threshold:

C2 = (1 + β2 · e(Ξ− γ
κ )α2)−1, (7)

where C2 represents the probability of staying, Ξ ∈ [0,+∞) represents the
threshold, κ represents the number of videos viewed till now, γ

κ represents the
rate of utility cumulation, β2 ∈ [0,+∞) is a normalization parameter, and
α2 ∈ [0,+∞) is a temperature coefficient. Similarly, higher α2 represents higher
sensitivity, and α2 = 0 implies that the utility-acquiring rate has nothing to do
with the user’s probability of staying. β2, Ξ, and α2 are trainable parameters
for each user.

Assuming that C1 and C2 are independent, the probability of the user leaving
can be expressed as:

LPi = 1 − C1C2. (8)

Suppose there are U users on the short video platform, then each of them can
be represented by a U -dimensional one-hot embedding vector u. In order to
convert different user embedding vectors into user-specific IFT parameters θu =
(Γ, β1, α1, Ξ, β2, α2)T ∈ [0,+∞)6, we introduce a trainable embedding matrix
Wp ∈ R

6×U and a trainable bias vector bp ∈ R
6. IFT parameters of user u are

then decided by:
θu = Relu(Wpu + bp). (9)

4.2 Session-Wide Self-attention

Video views prediction via IFT requires cumulative utility γ of all videos in the
on-going session. User u’s utility of a given video is related to his or her responses
fi|li to all short videos that have already been watched. In order to calculate all
video utilities in the current session, we adopt the self-attention framework [13].
We modify it to focus on the current session and the candidate video, leveraging
history information to make predictions for them. Thus, we restrict the query
items to be current session videos and the candidate video, regarding videos
watched before each query video in the history to be the values and the keys.
We call the modified self-attention method session-wide self-attention.

The input of this module contains two parts: candidate video aI and user
viewing history τ0:N = {τ0, τ1, ..., τN}, where current session τN starts at short
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video ai0 . The output is user’s preference ri for each video ai, i ∈ [i0, I] and
current leaving probability LPI .

Suppose there are V short videos on the platform, then the candidate video
and each video in the viewing history can all be represented by V -dimensional
one-hot embedding vectors ai , i ∈ [i0, I] initially. They are then projected to
a continuous space of size dv by multiplying a trainable transformation matrix
Wv ∈ R

dv×V :
φi = Wvai . (10)

To model user’s response fi|li to each video ai in the history (excluding the
candidate video), we introduce two learnable dv × dv dimension user response
matrices Fi, i.e., F0 if fi|li = 0; F1 if fi|li = 1.

Combining with user’s response information, modified embedding ϕi of video
ai in the history is then obtained by:

ϕi = Fiφi. (11)

Matching scores ωji between any two different videos for j, i ∈ [i0, I] in the
current session can be calculated:

ωji = ϕj
Tφi, if j < i. (12)

Then we can calculate our session-wide self-attention factors for all short videos
in the current session:

Ωji = Softmax(ωji). (13)

Finally, viewing history feature ηi ∈ R
dv i ∈ [i0, I] is:

ηi =
∑
j<i

Ωjiϕj . (14)

Now, we could simulate user’s preference for each video in the current session
(including the candidate video) through an MLP with Softmax on the last layer
:

ri = Softmax(MLP(ηi)), i ∈ [i0, I]. (15)

To do the prediction of video views, we calculate the sum of video preferences
cumulated in the session:

γ =
I∑

i=i0

ri. (16)

The number of videos viewed in the current session is κ = I − i0 + 1. Finally,
by leveraging Eq. 6, 7, and 9, we output the prediction of LPI based on Eq. 8,
summarized below:

LPI = fθu
(γ, κ). (17)

The overall framework of KESWA is shown in Fig. 2.
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Fig. 2. KESWA: A Knowledge-Enhanced Session-Wide Attention user simulator

4.3 User Simulator Learning

The loss function of our model contains two parts: video preference loss Lv and
user leaving loss Lu:

L = Lv + ρLu, (18)

where ρ is a hyperparameter.
We take the binary cross entropy between model output ri and real user

response fi|li as Lv. There are two ways to compute Lv. One is focusing on
candidate video aI :

Lv,I = −(fI |lI) log(rI) − (1 − fI |lI) log(1 − rI). (19)

The other takes into account all videos in current session τN :

Lv =
∑
i∈IN

Lv,i. (20)

Though Eq. 19 only considers the prediction loss about the candidate video,
predictions of videos in the current session are used to predict the leaving prob-
ability, related to loss Lu.

Lu is the binary cross entropy between model output LPI = fθu
(γ, κ) and

real user leaving behavior eI :

Lu = −eI log(fθu
(γ, κ)) − (1 − eI) log(1 − fθu

(γ, κ)). (21)

We use gradient descent to update all of our trainable parameters ζ. When
computing ∂Lu/∂ζ, we may partially cut the error back propagation process in
order to improve computing efficiency, i.e., we may regard γ and κ with zero
derivative to ζ.
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5 Experiment

5.1 Data Set Pre-processing

The real-world data set comes from the biggest Chinese short video platform,
Douyin, with more than 100 million watching behaviors. We first rule out the
videos and the users whose appearance frequencies lie in the bottom 25%. Then
each user’s watching behaviors are divided into multiple sessions by setting the
maximum interval between two videos within a session to be 10min. There are
38320729 behaviors, 55597 users, and 76023 videos in our final data set. All
sessions have a mean length of 43. We use the first 60% of each user’s watching
behaviors sorted by time as the training set, and the last 40% as the test set.

5.2 Experimental Settings

The maximum length of user watching history inputted into the algorithm is
300. Dimension dv of video embedding vectors φi and viewing history features
ηi is 100. We set the batch size to be 64 and the learning rate to be 0.001.

In order to evaluate whether KESWA could help design better RL-based
recommendation algorithms, we trained a PPO (Proximal Policy Optimization)-
based [11] recommender agent by interacting with our user simulator. The input
of the agent is the watching history of a given user. The output of the agent
is the candidate short video. We train the PPO agent for 1000 epochs. In each
epoch, we collect 256 viewing trajectories with 400 watching behaviors each by
interacting with KESWA. Then we update our agent with a mini-batch sized
256. The learning rate of the PPO agent is 0.0001.

5.3 Experimental Results

Prediction Performance of KESWA. We adopt three metrics to evaluate
the performance of KESWA against other baselines. The first is the area under
the receiver operating characteristic curve (AUC) of preference prediction, the
second is the AUC of leaving prediction, and the third is the estimation likelihood
of video views, i.e., the estimation likelihood of our model to fit the real data.

We conduct comparative experiments between multiple baselines and differ-
ent learning settings of KESWA. For video preference prediction, we compare
our session-wide attention (SWA) with BPR-MF [10], a well-known Bayesian-
based static recommendation algorithm, and NARM [6], a self-attention-based
sequential recommendation algorithm similar to our model. For video views pre-
diction, we choose all the existing methods to the best of our knowledge: survival
analysis (SA) [14], and MLP [15] as our baselines.

Ablation studies are conducted according to the two angles of IFT: target-
oriented (TO) and speed-sensitive (SS). We also try different learning settings
of KESWA and consider the time (per mini-batch) and space consumption
of them. Experiments are conducted on different settings of whether we only
consider the candidate video (CV) in video preference loss Lv, and whether
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we conduct partial gradient cutting (PGC) in user leaving loss Lu. The results
on the test set are shown in Table 1.

From the results we can see that, IFT with both TO and SS reaches the
highest estimation likelihood of video views among all models, which proves the
validity of IFT in this setting. Via IFT, our model can improve the AUC of
leaving prediction by 5.61% compared with the strongest baseline. With CV
and PGC, our model can achieve the highest AUC of preference prediction,
meanwhile, save training time and space to a great extent. The advantage of CV
may be that it allows the model to concentrate on the candidate video prediction.

RL Recommendation Performance Based on KESWA. We trained the
same PPO-based recommender agent by interacting with KESWA and other
kinds of user simulators in parallel. More specifically, we changed the method of
video views prediction of simulators and see whether it affects the recommen-
dation performance. When training RL-based agents, we compared two kinds
of reward settings: one is to optimize the session-based user utility (SUU), and
the other is to optimize the number of video views (VV). We also introduce an
agent recommending videos randomly and an agent greedily recommending the
video with the highest preference at each step as baselines.

Table 1. Prediction performance of KESWA.

Preference
Prediction

Leaving
Prediction

Preference
AUC

Leaving
AUC

Video Views
Likelihood

Time Space

BPR-MF / 0.5549 / / / /

NARM / 0.6431 / / / /

SWA+CV SA 0.6434 0.5000 0.8776 / /

SWA+CV MLP 0.6427 0.5277 0.8779 / /

SWA+CV TO+PGC 0.6400 0.5475 0.8788 / /

SWA+CV SS+PGC 0.6435 0.5330 0.8787 / /

SWA IFT 0.6098 0.5471 0.8809 6′26′′ 11417MB

SWA+CV IFT 0.6353 0.5573 0.8822 5′02′′ 11417MB

SWA+CV IFT+PGC 0.6451 0.5519 0.8799 1′52′′ 8011MB

To avoid data breaches and ensure fair comparisons, following the instruction
in [3,12], we first train different kinds of user simulators on the training set and
then train RL-based agents with these simulators in parallel. For testing, we
train another user simulator on the test set, and then all RL-based agents are
tested with it. The metrics are average video preference (AVP), VV, and SUU.
As shown in Table 2, KESWA can help the RL-based agent with rewards max-
imizing SUU achieve the highest AVP and SUU during the test period. The
AVP and SUU of KESWA are significantly better than the strongest baseline
(SWA+MPL) at a 99.9% confidence level.
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Table 2. RL recommendation performance based on KESWA.

User Simulator Reward Setting AVP VV SUU

Random / 0.261 ± 0.0014 30.893 ± 0.108 8.075 ± 0.007

Greedy / 0.252 ± 0.0004 30.897 ± 0.083 7.778 ± 0.006

SWA+SA max SUU 0.269 ± 0.0053 31.033 ± 0.872 8.348 ± 0.071

SWA+MLP max SUU 0.269 ± 0.0057 31.072± 0.833 8.355 ± 0.048

KESWA max VV 0.270 ± 0.0053 31.032 ± 0.851 8.388 ± 0.065

KESWA max SUU 0.273± 0.0059 31.034 ± 0.871 8.467± 0.056

5.4 Case Study

KESWA can improve leaving probability prediction. As shown in Fig. 3, the left
shows the leaving probability of a given user provided by model SWA+MLP,
where vertical dotted lines distinguish different sessions. The results look like a
random guess. The right is the results of the same user provided by our model.
The leaving probability increases as the user keeps watching within a single
session, with fluctuation caused by the change of preference-acquiring rate, which
demonstrates the advantage of fusing IFT theory with the deep learning model.

Fig. 3. Leaving Probability Prediction of KESWA.

KESWA can also identify user-specific IFT parameters, which demonstrates the
interpretability of our model. As shown in Fig. 4, each node represents a user
on the short video platform. On the left side, the horizontal axis represents
user’s utility target Γ , and the vertical axis represents temperature coefficient
α1. As a result, users in the upper part of the diagram are more sensitive to the
cumulation of video preferences. Similarly, on the right side, the horizontal axis
represents user’s preference-acquiring speed threshold Ξ, and the vertical axis
represents temperature coefficient α2. Users in the upper part of the diagram
are more sensitive to the change in preference-acquiring rate. Thus, with IFT,
we can better understand user’s behavior on the short video platform.
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Fig. 4. User-specific IFT parameters.

6 Conclusion

In this paper, we propose KESWA, a knowledge-enhanced user simulator for RL-
based short video recommendation. By fusing information foraging theory and
session-wide self-attention, KESWA can provide better predictions for both video
preferences and video views, thus giving a more comprehensive understanding of
session-based user utilities. By taking advantage of this, RL-based recommender
agents can achieve higher session-based user utilities trained by KESWA than
by other user simulators.
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Abstract. There is a strong need for industrial recommender systems to
output an integrated ranking of items from different categories, such as
video and news, to maximize overall user satisfaction. Integrated ranking
faces two critical challenges. First, there is no universal metric to evaluate
the contribution of each item due to the huge discrepancies between
items. Second, user’s short-term preference may shift fast between diverse
items during her interaction with the recommender system. To address
the above challenges, we propose a reinforcement learning (RL) based
framework called RLMixer to approach the sequential integrated ranking
problem. Benefiting from the credit assignment mechanism, RLMixer can
decompose the overall user satisfaction to items of different categories, so
that they are comparable. To capture the user’s short-term preference,
RLMixer explicitly learns user interest vectors by a carefully designed
contrastive loss. In addition, RLMixer is trained in a fully offline manner
for the convenience in industrial applications. We show that RLMixer
significantly outperforms various baselines on both public PRM datasets
and industrial datasets collected from a widely used AppStore. We also
conduct online A/B tests on millions of users through the AppStore. The
results show that RLMixer brings over 4% significant revenue gain.
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1 Introduction

Traditional ranking systems focus on ranking homogeneous items, such as a
list of news, according to a specific metric like click-through rate. However,
in practice, the final recommendation result presented to a user is usually a
mixture of heterogeneous items. For example, in the news feeds scenarios, the
recommendation list might consist of news, videos, advertisements and various
form of cards. A straightforward way is to fix some slots for specific categories,
which is commonly adopted in industrial recommender systems. However, this
is clearly not the optimal strategy since the user’s preferences towards each
category evolve during interaction with the recommender system.

The optimal integrated ranking module is required to rank items of different
categories in order to maximize the overall utility of the recommender system.
The unique challenges of integrated ranking are two-fold. First, we lack a unified
metric to evaluate the qualities of items from different categories. Thus they
cannot be compared in one dimension directly. Second, users’ preferences towards
each category could be essentially different and shift during the interaction. For
example, a user might find an interesting video while reading news and keep
looking for similar videos. This personalized short-term preference shifting is
hard to capture since the user feedbacks are usually implicit.

To address the first challenge, existing works try to use reinforcement learning
to allocate categories to slots [11]. Unfortunately, their model focuses on inserting
advertisements to news feed and does not generalize to integrated ranking with
multiple categories of items. To address the second challenge, various methods
have been proposed to learn representations of users’ short-term interests [19,20].
However, they focus on implicitly mining knowledge from recent interacted items
without explicitly modeling user preferences.

In this paper, we propose RLMixer for general integrated ranking problems.
The novelties of RLMixer lie in the following three aspects. First, we propose a
general and flexible MDP formulation that covers a broad range of integrated
ranking problems. Second, we explicitly model the user’s short-term preferences
towards different categories and propose a carefully designed contrastive loss for
learning them. Third, RLMixer can be trained fully offline, significantly saving
online exploration costs and avoiding bias caused by simulation. Specifically, we
implement RLMixer by conservative-q learning along with divergence penalty.

As far as we know, RLMixer is the first offline reinforcement learning app-
roach to solve general integrated ranking problems. We successfully tackled the
aforementioned issues with appropriate MDP modeling and a novel offline train-
ing framework. We compare RLMixer with several baselines on the public PRM
datasets, as well as industrial datasets. We also deploy RLMixer on a widely
used AppStore, where apps from different sources and categories are ranked
together. Experimental results show that RLMixer significantly improves the
original ranking quality and brings over 4% revenue gain.
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2 Related Work

2.1 Integrated Ranking

Integrated ranking focuses on reranking items based on the roughly mixed hetero-
geneous items list while lacking a unified metric, while existing work mainly focuses
on allocating advertisements to a list of organic items, which can be regarded as
a particular case of integrated ranking. Koutsopoulos [7] defines ads allocation
as a shortest-path problem on a weighted directed acyclic graph and apply the
Bellman-Ford algorithm to solve it. Yan et al. [16] propose a uniform formula to
rank advertisements and organic items together, considering the impact of inter-
val between them. Zhao et al. [18] propose a novel deep Q-network to determine
when and how to interpolate advertisements. Liao et al. [11] propose Cross-DQN
to extract the crucial arrangement signal by crossing the embeddings of differ-
ent items and modeling the crossed sequence by multi-channel attention. Unfortu-
nately, existing works consider only advertisements and organic items, which lim-
its their application in general integrated ranking problems with more than two
categories of items. Moreover, their methods require online or off-policy training,
which might incur huge online exploration costs.

2.2 Offline RL for Recommendation

Reinforcement learning for recommendation systems has attracted increasing
interest in recent years. Zheng et al. [6] propose DRN for news recommendation,
an off-policy framework with an online exploring network to balance exploration
and exploitation. Chen et al. [2] propose a policy gradient method with various
techniques to reduce the variance of policy gradients. Zhao et al. [17] propose a
DDPG-based algorithm for learning optimal ranking weights to combat cheat-
ing sellers in e-commerce. However, existing work directly applies RL without
considering how the user’s preferences evolve during the interaction.

Inspired by the abundant historical interactions in recommendation scenar-
ios, offline reinforcement learning is an emerging topic that aims to learn agent
policy purely from dataset [4,8–10]. Offline RL strives for the issue of the overesti-
mation of out-of-distribution actions, which introduces significant extrapolation
error in policy learning. A popular method to address this is to use behavioral
regularizations in RL training that compel the learned policy to stay close to
the offline data. These regularizations consist of incorporating some divergence
regularization into the critic [9], policy divergence penalties [4,14], and appro-
priate network initializations [12]. Regarding its application in recommendation,
Xiao et al. [15] summarize several offline learning tricks and demonstrate their
effectiveness in recommendation.

3 Integrated Ranking via Reinforcement Learning

In this section, we formally define the problem formulation for integrated ranking
with the reinforcement learning settings.
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Fig. 1. Illustration of integrated ranking three categories of items with window size
3. The policy of RLMixer output a 3*3 matrix, where the rows represent the slots to
be filled and the columns represent categories. During execution, the category with
the highest score in each row is selected. Then the item that ranked highest in the
corresponding category is fetched and filled in the slot.

Integrated ranking serves as a re-ranking module in the whole chain of the
recommendation system, and aims to output a re-ranked list that maximizes
the overall utility of the system. Figure 1 illustrates our decision making process
with three categories of items. Due to the huge combinatorial action space of
processing the whole list at the same time, we re-rank items within a sliding
window among the original list step by step.

Integrated ranking is naturally a sequential decision making problem, we
model the integrated ranking as a Markov Decision Process < S,A, r,P, γ >:

State Space S: S is the set of states describing the state space of the
integrated ranking module. A state s ∈ S consists of the user information (e.g.,
age, gender, purchasing power), the originally ranked list, candidate items(i.e.,
items needed to be re-ranked at current step) and other contextual information.

Action Space A: An action a ∈ A is a sequence of categories whose length
is the size of sliding window. Assume there are C related categories in total. An
action can be represented as a vector a = (C1, C2, ..., CW ), where W is the size
of the sliding window and Ci ∈ {1, 2, ..., C} indicates its category.

Rewards: The reward is calculated based on the system’s overall utility,
which is the accumulated revenue(e.g., price) of cliked items in our case.

Transitions: P (st+1|st, at) is the state transition function that indicates
the state transferring from current state st to next state st+1 after taking action
at. Note that such updates on the raw states do not actually reflect the change of
user preference. This motivates us to learn a mapping from raw states to explicit
user preference representation. Please refer to Sect. 4.3 for details.
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The optimal policy of the integrated ranking agent maximizes the system’s
total expected reward:

J = Eτ∼π

[
τ∑

t=0

γtrt(st, at)

]
, (1)

where γ ∈ [0, 1] is a discount factor and t ∈ τ is the discrete time step in the
trajectory τ .

In the integrated ranking scenarios, the dataset D may include various
kinds of user’s feedbacks of different types of items. The goal of offline rein-
forcement learning is to learn a policy directly from D, in order to max-
imize the expected cumulative discounted reward Equation (1). Actor-critic
scheme is a classical framework for solving MDPs dynamically. It maintains
a parametric Q-function, Qθ, and a parametric policy, πω(a|s). It alternates
between policy evaluation, computing the Qπ that iterating the Bellman oper-
ator BπQ = r + γEs′∼P (s′|s,a),a′∼π(a′|s′) [Q (s′,a′)], and policy improvement,
improving the policy π(a|s) by updating it towards actions that maximize the
expected Q-value. In this paper, we incorporate behavior regularization into the
actor-critic framework via a critic penalty and policy regularization to address
the overestimation and distribution shift. Details of training are illustrated in
Sect. 4.5.

4 The Framework of RLMixer

4.1 Overview

The architecture of the policy network in RLMixer is presented in the Fig. 2. In
order to capture local information for decision-making at every single step, we
propose to maintain a sliding window that contains the current items to be re-
ranked, which can also be interpreted as the user’s current attention. And then,
the global context extraction (GCE) module is expected to extract the context
information from the original ranking list, the real-time preference capturing
(RPC) module is utilized to learn the real-time user preferences on candidate
items respectively. Finally, the user’s preference on candidate items is concate-
nated together and fed into the RL module for policy execution.

In the following sections, we will take a sliding window size of 3 as an example
to elaborate on implementing the aforementioned modules and networks.
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Fig. 2. Overall architecture of the policy network in RLMixer.

4.2 Global Context Extraction Module

In the training stage, we take the original ranking list L0 = [I1, I2, ..., In] as part
of the state information, where n is the total number of items in source lists. Let
Wt = [I3t+1, I3t+2, I3t+3] denote the candidate items inside the sliding window
Wt at time step t. As introduced in the Sect. 3, the full state input consists
of the user information(e.g., age, gender, purchasing power, etc.), the original
ranking list L0, and candidate items Wt. Initially, we employ the input layer
to map the user information features to the user embedding vector euser, and
obtain the item embedding ei for each item Ii. Then we adopt the traditional
GRU cells to extract the contextual information from the original ranking list
through context feature extraction network μ, hi = GRU(ei), where GRU(·)
denotes the traditional GRU cell, hi denote the hidden state about item Ii.
After feature extraction, we construct the overall embedded state information
ŝ = [euser, e3t+1, e3t+2, e3t+3, h1,h2, ...,hn] , and then feed it into the RPC
module to model the user’s real-time preferences toward different categories.

4.3 Real-time Preference Capturing Module

Preference Encoder φ. The preference encoder employs the embedded state
information ŝ to model the user preference embedding matrices. Assume there
are C (i.e., 3 categories in our scenario) categorical lists that need to be reranked,
we have the user real-time preference overall matrix U = [U1,U2, ...,Uc] learned
by the network φ, where Uc ∈ R

dpref×demb is the User Preference Matrix related
to Category c respectively. The number of rows dpref is the preference depth
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expected to be learned of the category, and the number of columns demb is the
embedding dimension of each preference aspect.

Item Encoder ψ. At the same time, we employ an embedding network ψ to uti-
lize sliding window item embedding EWt

= [e3t+1, e3t+2, e3t+3] to dig further fea-
tures of the items within the sliding window. We expect to extract profound item
features that are related to the its own categorical characteristics tightly through
the deep item embedding network. Then we have E′

Wt
= [e′

3t+1, e
′
3t+2, e

′
3t+3]

denote the item profound embedding, where e′
i ∈ R

demb .

Item-wise Preference Calculation. Let Ci = Category(Ii) denote the cat-
egory type for each item Ii. We design the matrix multiplication Ei = UCi

e′
i

between the user real-time preference UCi
towards the corresponding category

of item Ii and the item profound embedding e′
i, to capture the user preference

Ei ∈ R
dpref×1 towards the exactly candidate item. Then we feed the exact learned

state information

s = [E3t+1,E3t+1,E3t+3] (2)

to the reinforcement learning network to get the final prediction.
In conclusion, the real-time preference capturing module help to unify a com-

parable embedding scheme for different category items to benefit further devel-
opment in the reinforcement learning module.

4.4 Contrastive User Preference Modeling

To provide a supervision signal for strengthening the learning of user preferences,
we propose an auxiliary contrastive user preference loss. Inspired by the fact that
user has common interests among different items implicitly, we believe that items
clicked by the same user has common interests factor. Hence, we divide items in
the sliding window to two sets Sclicked and Sunclicked. We expect the similarity
between the user-item interests embedding of user clicked items and unclicked
items to be far away as much as possible, and of the same set items to be closed.
Then we optimize the contrastive loss:

LC(μ, φ, ψ) = −
∑

i∈Sclicked

∑
j∈Sunclicked

ed(Ei,Ej)∑
i,j∈Sclicked

ed(Ei,Ej) +
∑

i,j∈Sunclicked
ed(Ei,Ej)

, (3)

∀Ei,Ej ∈ {E3t+1,E3t+2,E3t+3}, where d is the similarity calculation function
such as the Euclidean distance or cosine similarity distance. We adopt the square
of Euclidean distance in our work.

With the help of the auxiliary contrastive user-item preference, we suppose
to learn representations of the user-item interests regardless of the category.

4.5 Conservative Offline Reinforcement Learning

We adopt the actor-critic framework in our RL module, which includes a policy
network π(ω) and a Q-function network Q(θ). Both networks inherit the output
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of the RPC module as input, the learned state information s from Eq.(2). In order
to address the overestimation of the OOD actions, we extend the conservative
Q-learning [9] to our scenario with further policy divergence regularization.

Conservative Policy Evaluation: In consistent with the CQL, we penal-
ize the Q function at states in the dataset for actions not observed in the
dataset. Then the Q function associated with the current policy π is conser-
vatively updated by the following optimization function:

LQ(θ) = λ
(
Es∼D,a∼π(·|s)[Q(s,a)] − Es,a∼D[Q(s,a)]

)
+
1
2
Es,a,s′∼D

[(
Q(s,a) − B̂πQ(s,a)

)2
]

.
(4)

The B̂πQ(s,a) := r(s,a) + γQ′ (s′,a′) is the empirical bellman operator that
only backs up a single sample, where (s,a, s′) is a single transition from the
given dataset, a′ ∼ π(·|s′), Q′

θ is the target Q Network which has the same
structure of Qθ and is substituted by Qθ network periodically. The second term
in the Eq.(4) is the conventional loss that minimizes the squared error of the
target Q value and prediction Q value. Significantly, the first term in the Eq.(4)
enables a conservative estimation of the value function for learned policy to
mitigate the overestimation bias.

Conservative Policy Improvement with Divergence Penalty: The goal of
policy learning is to give prediction towards action that maximizes the expected
Q value. With the help of a conservative critic Q, the policy network ω is
improved by the optimization function:

Lπ(μ, φ, ψ, ω) = −Es∼D,a∼π(·|s) [Q(s,a)] . (5)

In order to address the distributional shift challenge in the offline setting, we
utilize the following KL-Divergence loss as regularization.

LKL = E(s,a,r,s′)DKL(π(·|s)||πβ(·|s)). (6)

This regularization aims to constrain the bound of the state distributional shift
between the learned policy π(·|s) and the behavior policy πβ(·|s). However, the
behavior policy πβ(·|s) is often a mixture of multiple policies due to the complex
online logic. Note that in our scenario, the policy actually outputs a distribu-
tion of categories at each time step. With this observation, we could recover an
approximate behavior policy by simply calculating the distribution of categories
in the logged trajectories. Specifically, we calculate the overall category distribu-
tion from the real dataset q = [q1, q2, ..., qC ]. We denote the category distribution
inferred from the training policy by p = [p1, p2, ..., pC ]. Then we can reformulate
the KL-regularizert as Eq. 7. This reformulated regularizer implicitly pushes our
learned policy π(·|s) to be close to the behavior policy πβ(·|s).

LKL = DKL(p||q) (7)
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Implementation Details. During the training stage, the Q-function and policy
network are updated separately. We train the policy network with the GCE and
RPC module networks together through the gradient passed by the learned state
information s while we stop the gradient of the input s for the Q-function network
training. In summary, we alternately train networks between the loss function
Eq.(4) and Eq.(8).

L = Lπ(μ, φ, ψ, ω) + αLC(μ, φ, ψ) + βLKL, (8)

where the α and β are the hyper-parameters to adjust the weight of each loss.

5 Experiments

We present both offline and online evaluation results of RLMixer. In the offline
evaluation, we compare RLMixer with existing baselines on the public PRM
datasets and industrial datasets collected from an industrial AppStore. In the
online experiments, we deploy RLMixer to provide re-ranking services to the
industrial AppStore and conduct online A/B testing.

5.1 Offline Experiment Setting

Datasets. We give a detailed description of the two datasets as follows.

PRM Dataset. We adopt the public PRM dataset released by [13], which is a
large-scale dataset (E-commerce Re-ranking dataset) built from a real-world E-
commerce recommender system. The dataset includes a huge number of sessions
that record interactions between the recommender system and users. For each
session, features (e.g., category, identity, price, etc.) of a recommendation list
items recommended to a user and the corresponding user click-through response
are stored. To avoid significant variance, we keep the interactions between the
user and three main (i.e., most frequently presented) category items recom-
mended by the system with primal orders presented in the recommendation list,
which also matches the integrated ranking application scenario.

Industrial Dataset. We collected a real-world dataset from an industrial App-
Store platform for 15 consecutive days. It contains similar user and item features
as the PRM dataset, with two additional high-level categories.

The statistics of two offline datasets are presented in the Table 1. We split
each dataset into training and test sets with a ratio of 4:1.

Table 1. Statistics of two offline datasets

Sessions Users Category A Category B Category C

PRM dataset 7,919,659 605,668 1,411,185 291,629 311,364
Industrial dataset 194,233 184,443 9,018 4,771 -
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Baselines. We compare RLMixer with the following representative methods.

Original. The primal recommendation list is presented in the original dataset.

MMR. [1]. Maximal Marginal Relevance(MMR) is a ranking algorithm that
allows controlling the diversity and the relevance of provided information.

LinkedIn-Det. [5]. LinkedIn-Det proposes several deterministic algorithms for
fair re-ranking of top-K results based on desired proportions over one or more
protected attributes.

DHCRS. [3]. Deep Hierarchical Category-based Recommender System utilizes
a high-level DQN to select a category and then a low-level DQN to choose an
item in this category. Due to the order preservation constraints in our integrated
ranking scenario, we implement the category-level structure of DHCRS, and add
the KL-Divergence loss to make it more suitable to the offline setting.

Evaluation Metrics. The aim of an optimal integrated ranking system is
to maximize the revenue for the platform. Accordingly, we adopt utility and
α−utility metrics to evaluate the performance of our method instead of NDCG.
Furthermore, as mentioned in Sect. 5.1, the diversity or we call the ratio of each
category information, is also important to the integrated problem. We introduce
the ratio metric to make all algorithms fit into similar comparable levels.

NDCG@K (Normalized Discounted Cumulative Gain) is a measure of rank-
ing quality in information retrieval area. It evaluates the quality of the recom-
mendation list by calculating the fraction of Discounted Cumulative Gain (e.g.,
the click signal in our scenario) over the Ideal Discounted Cumulative Gain.

utility@K is the average utility of a session with regard to the top-K rec-
ommended items. The utility of a single item is related to the Sect. 3, we then
formulate the calculation of utility@K as the Eq.(9).

utility@K =
1

|S|
∑
s∈S

K∑
i=1

price(Is,i) ∗ Click(Is,i), (9)

where S is the set of sessions, Is,i is the i-th recommended item in the session
s, Click(Is,i) is the click signal indicating whether the item Is,i is clicked.

α−utility@K is a metric that considers category information and evaluates
whether the utility is balanced among different categories,

α − utility@K =
1

|S|
∑
s∈S

K∑
i=1

α
Ncategory(Is,i) price(Is,i) ∗ Click(Is,i), (10)

where α is the discounted factor, and N(category(Is,i)) is the total counts of cate-
gory category(Is,i) appears in the session s.

ratio@K is used to evaluate the distribution of each category among all
items. The ratio among two categories Ci and Cj only is defined as follows:

ratio
i,j

@K =
∑

s∈S

∑K
k=1 I(category(Is,k) = Ci)∑

s∈S

∑K
k=1 I(category(Is,k) = Cj)

, (11)
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where I is the indicator function.
To compute the evaluate the distribution of category when the number of

categories larger than two, we elaborate the rotate ratio to roughly represent
the average distribution in the following:

ratio@K =
∑|C|−1

i=1 ratioi,i+1 @K + ratio|C|,1 @K

|C| , (12)

where C = C1, C2, ..., Cn is the set of n categories supposed to be constrained.

5.2 Offline Results and Analysis

Table 2. Evaluation on PRM dataset.

Top-10 ratio 2.3 ± 10%
NDCG utility α−utility ratio

original 0.5114 0.0339 0.0106 2.3124
MMR 0.4088 0.0386 0.0144 2.1436
LInkedINn-Det 0.4213 0.0354 0.0130 2.2883
DHCRS 0.4158 0.0385 0.0096 2.1522
RLMixer 0.4003 0.0471 0.0203 2.4239

Results on PRM Dataset.
We conduct experiments with
our model and other baseline
models on the PRM dataset
and focus on the top-10 per-
formance of the recommenda-
tion list since the average ses-
sion length is 30. We first com-
pute the basic statistics of the
testing set, which is presented
in the Table 2 as original baseline. To evaluate variant methods fairly, we set the
target desired ratio 2.3 during model training, which is the approximation of
the ratio metric in original recommendation among dataset. And then we select
the best model according to the utility performance of top-10 when the ratio of
model predictions within the range of 2.3 ± %10. The performance results are
presented in the Table 2.
– Compared our RLMixer with other baselines, RLMixer outperforms them in

both utility and α−utility metrics, which is at least 22% and 44% higher than
others respectively.

– Considering both MMR and Linkedin-Det are ranking algorithm related to
balancing the diversity and utility, our RLMixer outperforms these two algo-
rithms even though we were bound into the same level ratio. It shows that
our algorithm can be applied to the scenario to earn profit much higher while
fulfilling the desired distribution requirements.

– We achieve better performance than DHCRS even though DHCRS is a RL-
based method and giving the category prediction first as well. This indicates
that our real-time user preference capturing module and corresponding auxil-
iary contrastive loss design might contribute a lot to the final prediction. We
will discuss this later in the ablation study.

– The NDCG value of the original list is the highest, but it brings the lowest
utility. The reason is that the computation of NDCG uses only click signals,
ignoring the real values of each click. Therefore, compared with NDCG, the
utility-related metrics better align with the online performance. This gives us
an intuition that pursuing the most clicks may not be the best strategy.
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Table 3. Evaluation on Industrial dataset.

Top-20 ratio 0.5 ± 10%
NDCG utility α−utility ratio

Original 0.3659 3.056 1.152 0.5284
RLMixer 0.3455 3.108 1.341 0.5405

Results on Industrial Dataset.
Since users are presented with at
least 7 items at a time, we compare
top-20 results of RLMixer with
the original rank on the industrial
dataset. Table 3 shows their perfor-
mance comparisons. Similar to the
PRM dataset, our RLMixer leads to a lower NDCG value but is compensated
by a 1.7% utility gain.

Table 4. Ablation study of contrastive user prefer-
ence modeling in RLMixers on PRM dataset.

Method Top-K NDCG utility α−utility ratio

RLMixer
3 0.2575 0.0246 0.0216 2.4061
5 0.3140 0.0302 0.0211 2.0444
10 0.4003 0.0471 0.0203 2.4239

RLMixer w/o
RPC

3 0.2585 0.0192 0.0159 2.3125
5 0.3144 0.0288 0.0166 2.5253
10 0.4010 0.0446 0.0151 2.4495

RLMixer w/o
Contrastive Loss

3 0.2564 0.0214 0.0171 2.1858
5 0.3123 0.0296 0.0165 1.9008
10 0.3997 0.0437 0.0150 2.1805

Ablation Study. To verify
the impact of Real-time Pref-
erence Capturing(RPC) mod-
ule and the auxiliary con-
trastive loss, we conduct two
sets of experiments on the
public dataset PRM. The
two sets of experiments train
RLMixer without the entire
RPC module or auxiliary con-
trastive loss, respectively. We
still constraint the desired ratio within the range of 2.3±%10 during the model
training, and we select the best model based on top-10 performance. Then we
evaluate top-3, top-5, and top-10 performance of the best model of each RLMixer
variant. As shown in the Table 4, the full RLMixer comprehensively presents
higher performance in utility and α−utility metrics of all top-k levels, while
compared with the variants without RPC module or auxiliary contrastive loss.
Especially, it can be observed that the cooperation of RPC module and auxil-
iary loss brings key improvements to the primal algorithm over other baseline
algorithms.

5.3 Online A/B Test

Table 5. The results of A/B exper-
iments.
Policy Baseline RLMixer Impr
utility 0.0074 0.0077 4.05%

The online setting is follow that of offline
experiments, and the quantified criteria of
the A/B experiment is to compare the rev-
enue(i.e., utility) with the baseline in three
days. We deploy RLMixer online and compare its performance with the fine-
tuned rule-based model that is currently deployed online. Noted that the goal
of our method is to adjust the ratio to a certain target value while maximizing
the utility. Table 5 shows the regularized average utility obtained during three
consecutive days. We find that RLMixer achieves 4.05% utility gain compared
with the current model, which demonstrated the effectiveness of our method.
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6 Conclusion

We propose a general offline RL framework with contrastive user preference mod-
eling called RLMixer for integrated ranking problems. With the aid of the Global
Context Extraction (GCE) module and Real-time Preference Capturing (RPC)
Module, RLMixer is able to synthesize values of items from different categories
and capture the user’s short-term preference shifting. Furthermore, it incorpo-
rates behavior regularization into the actor-critic framework to address the dis-
tribution shift problem that exists in the offline setting. We compare RLMixer
with existing baselines on the public PRM datasets and datasets collected from
an industrial AppStore. We also deploy RLMixer to provide re-ranking services
to an industrial AppStore and conduct an online A/B test, which shows that
RLMixer brings 4.05% utility gain.
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