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Abstract. Unsupervised text representations significantly narrow the gap with
supervised pretraining, and relation clustering has gradually become an impor-
tant method of open relational extraction (OpenRE). However, different relational
categories generally overlap in the high-dimensional representation space, and
distance-based clustering is difficult to separate different categories. In this work,
we propose a relational instance-based clustering method with contrastive learn-
ing (RICL) - a framework to leverage similarity distribution information and
contrastive method to promote better aggregation and relational representation.
Specifically, to enable the model to better represent relation instances with word-
level features, we construct an augmented dataset using only standard dropout as
noise and iteratively optimize the vector representation of relation instances by
fully using self-supervised signals. Experiments on real-world datasets show that
RICL can achieve excellent performance compared with previous state-of-the-art
methods.

Keywords: Relation Extraction · Unsupervised Clustering · Contrastive learning

1 Introduction

Relation extraction is an important basic work for building large-scale knowledge bases
such as semantic networks and knowledge graphs [1–3]. However, conventional relation
extraction methods such as semi-supervision and distant supervision are generally used
to deal with pre-defined relations and cannot well identify emerging relations in the real
world.

Against this background, OpenRE has been widely studied for its ability to mine
novel relation from massive text data. At present, OpenRE is mainly based on unsu-
pervised methods, which can be divided into two categories. The first group is pattern
extraction models [4–6], which usually uses sentence analysis tools, combined with
linguistics and professional domain knowledge, to construct artificial rules based on
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lexical, syntactic and semantic features. When performing relation extraction tasks, dif-
ferent relation types are obtained bymatching rules with the preprocessed text. However,
with the expansion of the relational model set, the complexity of the system is greatly
increased, and it is difficult to bewidely used in the open field. The second group is to dis-
cover various relation types through unsupervised methods [7–9]. This work optimizes
the representation of relations to improve the accuracy of unsupervised clustering while
overcoming the instability of unsupervised training. Recently, some RE methods work
begin to study better utilization of hand-crafted features, which only use named enti-
ties to induce relation types [10]. The hierarchy information in relation types is further
exploited for better novel relation extraction [11].

However, much research has shown that complex linguistic information requires
high-dimensional embeddings so that the meaning of the text becomes clear [12]. This
complex information may contain local syntactic [13] and semantic structures [14].
Therefore, the position and relative distance in the high-dimensional vector space is not
completely consistent with the relational semantic similarity. Especially before model
training starts, even with deep neural networks, different classes may still overlap in
high-dimensional space [15].

Wepropose a relational instance-based clusteringmethodwith contrastive learning in
this work. In order to make the model better mine the information of the relation instance
itself to produce better clustering results, the nonlinear mapping is optimized by using
the difference information of the constructed relation instance’s comparative dataset
and the distribution information of the original instance dataset. High-dimensional rela-
tional instance features of complex information are transformed into relation-oriented
low-dimensional feature representations. Specifically, we pull together instances repre-
senting the same relationship while pushing apart those from different ones by jointly
optimizing distribution loss and contrastive loss so that the learned representation is
cluster-friendly. In addition, the proposed method obtains supervision from the data
itself and its corresponding augmented dataset and iteratively learns better feature rep-
resentations for relation classification tasks to improve the quality of supervision, which
in turn improves cluster purity and separates distances between different clusters.

Overall, our work has the following contributions: (1) we propose a self-supervised
framework which can fine-tune pretrained MLMs into capable universal relational
encoders and extensively learn to cluster relational data; (2) we show how to use
contrastive learning to learn and improve representations of relation instances in a
self-supervised manner.

2 Related Work

Self-supervised learning has recently achieved excellent results on multiple tasks in the
image and text domains, and many studies have been further developed thanks to its
effectiveness in feature representation work. The quality of learned representations is
assured by a theoretical framework based on contrast learning [16], which learns self-
features from unlabeled data and formalize the concept of semantic similarity through
latent classes to improve the performance of classification tasks. Hu et al. [9] propose
adaptive clustering algorithms and uses pseudo-labels of relations as self-supervised
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signals to optimize their semantic representations. Recently, there has been an increasing
interest in contrast learning using individual raw sentences based on PLMs [15, 17, 18].

Meanwhile, inspired by research related to contrast learning in computer vision [19,
20], we utilize “multi-view” contrastive learning for relation extraction. Previous work
mainly uses sentences as the smallest unit of text input, builds enhanced datasets by
randomly masking characters or replacing words, and uses semantic similarity as the
goal of the measurement model. In contrast, our work takes entity word pairs as the
minimum granularity of semantic representation, abstracts various types of relations,
and obtains their vector representations with the help of the idea of clustering. It not
only maintains the advantages of unsupervised learning, which can deal with deal with
undefined relation types, but also exerts the advantages of supervised learning, which
has a strong guiding ability for relational feature learning.

Fig. 1. Overall architecture of RICL

3 Methodology

In this work, we propose a simple and effective approach to relation clustering, which
exploits relation instance distribution information in unlabeled data and semantic infor-
mation from pretrained models, enabling the model to optimize the representation of
relations.

In order to alleviate the overlap of different relation clusters in the representation
space, we improve the clustering of unlabeled data by contrastive learning to promote
better separation. The proposed method is shown in Fig. 1.

We build a “multi-view” of the training corpus, gradually optimize the representation
of relation instances in a joint learning manner and aggregate to generate pseudo-labels,
and fine-tune the pre-trained language model through the classification. As shown in
Figure 1., we mainly iteratively perform the following steps:

(1) First, we use the pretrained BERT as the encoder of relational instances
{hi}i=1,...,N ; each relational instance hi is composed of an entity pair vector as the output
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vector. However, high-dimensional representations of h contain too much information
(structural features, semantic information, etc.), and the direct use of high-dimensional
vectors for clustering cannot alignwell with the relationships corresponding to instances.

(2) In order to better reflect the semantic similarity between each other through the
distance between the relation representation spaces, we transform the high-dimensional
representations of relation instances hi into low-dimensional representations h

′
i through

non-linear mapping g. However, the quality of pseudo-labels produced by direct
clustering is not high, which is not conducive to downstream classification tasks.

(3) In order to reduce the negative impact of pseudo-label errors, we apply different
dropouts under the same pre-training model to construct a positive set and other data
under the same batch as a negative set. During the training process, aiming at the aggre-
gation of clusters of similar relational instances and the separation of different instances,
the representation of relation instances is optimized to improve the quality of pseudo-
labels produced by clustering. Pseudo-labels serve as prior knowledge of the dataset
and are finally used for supervised relation classification. The above steps are executed
iteratively until the clustering result tends to be stable.

3.1 Relational Instance Encoder

The relational instance encoder is to extract the semantic relation representations between
two arbitrary given entities in a sentence. We utilize a large pretrained language model
to efficiently encode entity pairs and their contextual information.

For sentence S = [s1, . . . , sn], we introduce two pairs of special iden-
tifiers [E1\], [\E1], [E2], [\E2] to mark entities and inject them to S =
[s1, . . . , [E1\], si, . . . , sk , [\E1], . . . , [E2\], sm, . . . sj, [\E2], . . . , sn]. We adopt BERT
[21] as our encoder l(•) due to its strong performance and wide application in extracting
semantic information. Formally:

v1, ..., vn = l(s1, ..., sn) (1)

h = [
v[E1\], v[E2\]

]
(2)

where vi is a word vector generated by BERT, we use the outputs concatenated by v[E1/]
and v[E2/] as the representation of the relational instance. This method of relational
representation has been widely used in previous RE methods [9, 22, 23].

3.2 Instance-Relational Contrastive Learning

We use the distribution information of relation instances and their own feature infor-
mation to build a joint model to achieve deep clustering. As shown in Fig. 1, our joint
learning model is composed of two components, f (•) and g(•), using clustering loss and
contrastive loss, respectively. We describe the specific structure of the model in Sect. 4.

Dropout Noise as Data Augmentation. We use different dropouts to obtain different
vector representations of the same text. Specifically, for each batch B = {hi}Mi=1, we
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generate a new vector representation for each relation instance in B and then get an aug-

mented batch Ba = {hi, h̃i}Mi=1. The positive pair hi, h̃i takes exactly the same relational
instance, and their embeddings only differ in dropout masks, while treating the other
2M − 2 instances as negative instances N of this positive pair. Here the dropout rate p
is 0.1.

Given a batch of dataBa, τ denotes a temperature parameter.We leverage the standard
InfoNCE loss [24] to aggregate the positive pairs together and separate the negative pairs
in the embedding space:

La = −
∑M

i=1
log

exp(cos(g(hi), g(h̃i)))
/

τ
∑

hj∈N exp(cos(g(hi), g(hi)))
(3)

3.3 Clustering

Different from contrastive learning, clustering focuses on the similarity between dif-
ferent instances, encodes abstract semantic information into representations of relation
instances, and finally aggregates instances of the same relation.

The known dataset consists ofK relation classes. The centroid representation of each
class denoted as uk , k ∈ {1, ...,K}. We compute the probability of assigning hi to the
kth cluster by student’s t-distribution [25]:

qik = (1 + ||hi − uk ||22
/

α)
−α+1

2

∑K
k ′=1 (1 + ||hi − uk ′ ||22

/
α)

−α+1
2

(4)

Here α denotes the degree of freedom of the student’s t-distribution and qik can be
regarded as the probability of the cluster assignment. In general, we follow Maaten and
Hinton [25] by setting α = 1.

A linear layer f (•) is used tofit the centroid of each relation cluster and then iteratively
improve it by the auxiliary distribution proposed by Xie et al. [26] Concretely, defining
pik as the auxiliary probability:

pik = q2ik
/
fk

∑
k ′ q2ik

/
fk ′

(5)

where fk = ∑M
i=1qik , k = 1, . . . ,K is the cluster frequencywithin a batch, the purpose of

this is to encourage learning from high-confidence cluster assignments while improving
low-confidence tasks against biases caused by imbalanced clusters, resulting in better
clustering performance.

We optimize the KL divergence loss between the cluster assignment probability and
the target distribution:

Lb = KL(P||Q) =
∑

i

∑

k
pik log

pik
qik

(6)
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In conclusion, our overall objective is,

L = (1 − ε)La + εLb (7)

ε balances between the clustering loss and the contrastive loss of RICL is set to 0.65.
Note that Lb is only optimized on the initial data, and the parameters for f (•) and g(•)

will be updated-parameters in the l(•) are not improved when minimizing L.

Finally, we obtain {h′
i}
M
i=1 using the optimized g(•) and f (•), and then generate

pseudo-labels y
′
by k-means algorithm:

y′ = Kmeans(h′) (8)

3.4 Relation Classification

Based on the pseudo-labels y
′
generated by clustering, we can use supervised learning

to train the classifier and refine relational instance h to encode more relational semantic
information:

ln = μτ (lθ (S)) (9)

LC = min
θ,τ

1

M

∑M

n=1
loss(ln, one_hot(y

′
n)) (10)

where μτ denotes the relation classification module parameterized by τ and In is a
probability distribution over K pseudo-labels for the original data. In order to find
the best-performing parameters θ for Relational Instance Encoder and τ for Relation
Classification, we optimize the above classification loss.

4 Experimental Setup

We first introduce publicly available datasets for training and evaluation. Then we
briefly introduce the baseline models used for comparison. Finally, we elaborate on
the hyperparameter configuration and implementation details of RICL.

4.1 Datasets

We conduct experiments and comparisons on three open-domain datasets.

FewRel. Few-Shot Relation Classification Dataset is derived fromWikipedia and anno-
tated by humans [27]. FewRel contains 80 types of relations, each with 700 instances.
Following the paper [7], we use all instances of 64 relations as training set, and the test
set of FewRel, which randomly selects 16 relations with 1600 instances.

T-REx SPO andT-RExDS.They come from the T-Rex dataset [28], which is generated
by aligning Wikipedia corpus with Wiki-data. At first, we need to preprocess each
sentence in the dataset. If there are multiple entity pairs in a sentence, the sentence
will be retained for the same number of times according to the number of occurrences
of different entity pairs. And then, we built two datasets, T-REx SPO and T-REx DS,
according to Hu et al. [9]. In both datasets, 80% of sentences will be used for model
training, and the remaining 20% were set aside for validation, the rest for testing.
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4.2 Baseline and Evaluation Metrics

We use standard unsupervised evaluation metrics for comparisons with the other six
baseline algorithms. For all models, we assume the number of target relation classes
is known in advance, but no human annotations are available to extract relations from
the open-domain data. We set the number of clusters to the number of ground-truth
classes and evaluate performance with B3, V-measure, and ARI [8, 9, 29]. To evaluate
the effectiveness of our method, we select the following SOTA OpenRE models for
comparison.

VAE [30] consists of a classifier that predicts relations and a factorization model
which reconstructs arguments. The model is jointly optimized by reconstructing entities
from pairing entities and predicted relations.

UIE [8] trains a discriminative relation extraction model by introducing a skewness
loss and a distribution distance loss to make the model confidently predict each relation
and encourage the average prediction of all relations.

SelfORE [9] uses an adaptive clustering algorithm to obtain relation sets based
on a large pretrained language model and then uses the pseudo-labels of relations as
self-supervised signals to optimize their semantic representations.

EI_ORE [29] conduct Element Intervention, which intervenes on the context and
entities respectively to obtain the underlying causal effects of them, to address the
spurious correlations from entities and context to the relation type.

RW-HAC [31] reconstructs word embeddings and uses single feature reduction to
alleviate the feature sparsity problem for relation extraction through clustering.

Etype + [10] consists of two regularization methods and a link predictor and uses
only named entity types to induce relation types.

4.3 Implementation Details

Follow the settings used in previous work [8, 9, 29, 30], at T-REx SPO and T-REx
DS datasets, RICL are trained with 10 relation classes. Although it is lower than the
number of real relationships in the dataset, it still reveals important insights due to the
very imbalanced distribution of relationships on the 10 relation classes of data used for
training and testing.

For Relational Instance Encoder, we use the default tokenizer in BERT to preprocess
all datasets and set the max length of a sentence as 128. We use the BERT-base-uncased
model to initialize parameters for l(•) and use BertAdam to optimize the loss.

For Instance-relational Contrastive Learning, we use an MLP g(•) with fully con-
nected layers with the following dimensions Rd -512–512-256. We randomly initialize
weights following Xie et al. [26]. For Clustering, we use a linear layer f (•) of size
256 × K with K indicating the number of clusters, and initialize the cluster centers by
the Kmean algorithm.

For Relation Classification, we use a fully connected layer as μτ and set the dropout
rate to 10%, the learning rate to 5e − 5, and the warm-up rate to 0.1. In the process of
fine-tuning BERT, we freeze its first 8 layers. All experiments are conducted using an
NVIDIA GeForce RTX 3090 with 24GB memory.
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5 Results and Analysis

In this section, we present the experimental results of RICL on three open-domain
datasets, and verify the rationality of the framework through ablation experiments.
Finally, we prove its effectiveness by combining data characteristics and visual analysis.

Table 1. Main results on three relation extraction datasets.

Dataset Model B3 V-measure ARI

F1 Prec. Rec. F1 Hom. Comp.

T-Rex SPO VAE [30] 24.8 20.6 31.3 23.6 19.1 30.6 12.6

UIE-BERT [8] 38.1 30.7 50.3 39.1 37.6 40.8 23.5

SelfORE [9] 41.0 39.4 42.8 41.1 40.3 42.5 33.7

EI_ORE [29] 45.0 46.7 43.4 45.3 45.4 45.2 36.6

Our 44.6 42.9 44.4 47.2 46.2 48.2 37.1

T-Rex DS VAE [30] 9.0 6.4 15.5 5.7 4.5 7.9 1.9

UIE-BERT [8] 22.4 17.6 30.8 31.2 26.3 38.3 12.3

SelfORE [9] 32.9 29.7 36.8 32.4 30.1 35.1 20.1

EI_ORE [29] 42.9 40.2 45.9 47.3 46.9 47.8 25.0

Our 43.3 41.3 46.6 47.1 47.3 48.6 28.2

FewRel VAE [30] 36.5 30.9 44.6 47.3 44.8 50.0 29.1

RW-HAC [31] 33.7 25.6 49.2 43.3 39.1 48.5 25.0

EType + [10] 31.9 23.8 48.5 40.8 36.4 46.3 24.9

SelfORE [9] 51.2 50.8 51.6 58.3 57.9 58.8 34.7

Our 53.9 50.9 57.4 65.3 63.2 67.6 47.3

5.1 Main Results

Table 1 reports model performances on T-Rex SPO, T-Rex DS, and FewRel dataset,
which shows that the proposed method achieves state-of-the-art results on the OpenRE
task. Benefiting from the rich information in the pre-trained model, RICL exploits the
relation distribution in unlabeled data and optimizes the relation representation through
the method of contrastive learning so as to achieve a better clustering effect, thus greatly
surpassing previous cluster-based baselines.

5.2 Ablation Study

In order to study the effect of each algorithm in the proposed framework,we conduct abla-
tion experiments on two datasets, respectively, and the results are presented in Table 2.
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Table 2. Ablation results on T-Rex SPO and FewRel

Method T-Rex SPO FewRel

B3-F1 V-F1 ARI B3-F1 V-F1 ARI

w/o contrastive learning 41.8 43.1 22.9 51.0 57.8 34.1

w/o clustering 39.9 39.8 19.6 47.5 52.0 34.9

w/o classification 42.9 46.6 32.0 51.9 59.2 45.5

RICL 44.6 47.2 37.1 53.9 65.3 47.3

The results show that the model performance is degraded if La is removed, indicating
that Instance-relational Contrastive Learning can produce superior relation embeddings
from either unlabeled data. It is worth noting that Clustering has an important role in
RICL. It prevents the excessive separation of the same relation instance in the space,
avoids the collapse of the relation semantic space. At the same time, it provides guid-
ance for downstream relation classification and optimizes the representation of relation
instances. In addition, joint optimizing on both the Clustering and the Contrastive Learn-
ing is also very important. While alleviating the overlap of different relation classes in
the representation space, different instances under the same class are aggregated.

Fig. 2. Visualization of feature embeddings on FewRel-5

5.3 Visualization and Analysis

To further explore the performance ofRICL and the rationality of its design,we randomly
select 5 types of data in the FewRel dataset and visualize the embedded features from
BERT-base-uncased (left) and RICL (right) with t-SNE in Fig. 2. It is convenient for us
to observe the changes in class distribution.

In the initial distribution, we observe that classes 2, 3, 4 have high purity, but these
classes are not highly clustered and have slight overlap at the boundaries. The relation
instances of class 1 and 5 are heavily overlapped in space. Through the analysis of
relationship classes and their instances, class 1describes the “located in” relationbetween
the airport and the place it belongs to, and class 5 describes the “located in” relation
between the regional locality and the city or country. These two classes are affected by
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factors such as relational semantics and entity types [10], and some relation instances
are spatially closely distributed.

From a global perspective, RICL achieves better separation of each class in space,
solves the problem of blurred boundaries, ensures the overall consistency, and explores
the possibility of further subdividing categories under the same class. While classes
2, 3, 4 are aggregated, they are separated from different class as much as possible in
space to ensure semantic consistency. When dealing with class 1 and class 5 overlapping
problems, RICL locally aggregates discretely distributed class 5 instances and separates
them from class 1 while guaranteeing relational consistency, thereby improving class
purity as much as possible.

6 Conclusions

In this paper, we propose a novel self-supervised learning framework for open-domain
relation extraction, namely RICL. It aims to enable the neural network to obtain better
relation-oriented representation encoding and how to better handle relational instances
in the open domain in a self-supervised manner. We utilize instance distribution infor-
mation and contrastive learning to promote better aggregation and relational represen-
tation, improving clustering accuracy and reducing error propagation, thus benefiting
downstream classification tasks. Moreover, we iteratively improve the robustness of
the neural encoder by using pseudo-labels as self-supervised signals for relation clas-
sification. Our experiments show that RICL can perform more efficient and accurate
relation extraction on open-domain corpora than previous methods, and can construct a
representation space more suitable for semantic tasks.
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