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General Chairs’ Preface

On behalf of the Organizing Committee, we were delighted to welcome attendees to
the 27th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD
2023), held in Osaka, Japan, on May 25–28, 2023. Since its inception in 1997, PAKDD
has long established itself as one of the leading international conferences on data mining
and knowledge discovery. PAKDD provides an international forum for researchers and
industry practitioners to share their new ideas, original research results, and practical
development experiences across all areas of Knowledge Discovery and Data Mining
(KDD). PAKDD 2023 was held as a hybrid conference for both online and on-site
attendees.

We extend our sincere gratitude to the researchers who submitted their work to the
PAKDD 2023 main conference, high-quality tutorials, and workshops on cutting-edge
topics. We would like to deliver our sincere thanks for their efforts in research, as well
as in preparing high-quality presentations. We also express our appreciation to all the
collaborators and sponsors for their trust and cooperation.

We were honored to have three distinguished keynote speakers joining the confer-
ence: EdwardY. Chang (Ailly Corp), TakashiWashio (OsakaUniversity), andWeiWang
(University of California, Los Angeles, USA), eachwith high reputations in their respec-
tive areas. We enjoyed their participation and talks, which made the conference one of
the best academic platforms for knowledge discovery and data mining. We would like
to express our sincere gratitude for the contributions of the Steering Committee mem-
bers, Organizing Committee members, Program Committee members, and anonymous
reviewers, led by Program Committee Co-chairs: Hisashi Kashima (Kyoto University),
Wen-Chih Peng (National Chiao Tung University), and Tsuyoshi Ide (IBM Thomas J.
Watson Research Center, USA). We feel beholden to the PAKDD Steering Committees
for their constant guidance and sponsorship of manuscripts.

Finally, our sincere thanks go to all the participants and volunteers. We hope all of
you enjoyed PAKDD 2023 and your time in Osaka, Japan.

April 2023 Naonori Ueda
Yasushi Sakurai



PC Chairs’ Preface

It is our great pleasure to present the 27th Pacific-Asia Conference on Knowledge Dis-
covery and Data Mining (PAKDD 2023) as the Program Committee Chairs. PAKDD
is one of the longest-established and leading international conferences in the areas of
data mining and knowledge discovery. It provides an international forum for researchers
and industry practitioners to share their new ideas, original research results, and prac-
tical development experiences from all KDD-related areas, including data mining, data
warehousing, machine learning, artificial intelligence, databases, statistics, knowledge
engineering, big data technologies, and foundations.

This year, PAKDD received a record number of 869 submissions, among which 56
submissions were rejected at a preliminary stage due to policy violations. There were
318 ProgramCommitteemembers and 42 Senior ProgramCommitteemembers involved
in the reviewing process. More than 90% of the submissions were reviewed by at least
three different reviewers. As a result of the highly competitive selection process, 143
submissionswere accepted and recommended to be published, resulting in an acceptance
rate of 16.5%. Out of these, 85 papers were primarily about methods and algorithms and
58 were about applications. We would like to thank all PC members and reviewers,
whose diligence produced a high-quality program for PAKDD 2023. The conference
program featured keynote speeches from distinguished researchers in the community,
most influential paper talks, cutting-edge workshops, and comprehensive tutorials.

We wish to sincerely thank all PCmembers and reviewers for their invaluable efforts
in ensuring a timely, fair, and highly effective PAKDD 2023 program.

April 2023 Hisashi Kashima
Wen-Chih Peng

Tsuyoshi Ide
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Graphs and Networks



Improving Knowledge Graph Entity
Alignment with Graph Augmentation

Feng Xie, Xiang Zeng, Bin Zhou(B), and Yusong Tan

College of Computer, National University of Defense Technology, Changsha, China
{xiefeng,zengxiang,binzhou,ystan}@nudt.edu.cn

Abstract. Entity alignment (EA) which links equivalent entities across
different knowledge graphs (KGs) plays a crucial role in knowledge fusion.
In recent years, graph neural networks (GNNs) have been successfully
applied in many embedding-based EA methods. However, existing GNN-
based methods either suffer from the structural heterogeneity issue that
especially appears in the real KG distributions or ignore the hetero-
geneous representation learning for unseen (unlabeled) entities, which
would lead the model to overfit on few alignment seeds (i.e., training
data) and thus cause unsatisfactory alignment performance. To enhance
the EA ability, we propose GAEA, a novel EA approach based on graph
augmentation. In this model, we design a simple Entity-Relation (ER)
Encoder to generate latent representations for entities via jointly mod-
eling comprehensive structural information and rich relation semantics.
Moreover, we use graph augmentation to create two graph views for
margin-based alignment learning and contrastive entity representation
learning, thus mitigating the negative influence caused by structural het-
erogeneity and sparse seeds. Extensive experiments conducted on bench-
mark datasets demonstrate the effectiveness of our method. Our codes
are available at https://github.com/Xiefeng69/GAEA.

Keywords: Knowledge Graph · Entity Alignment · Graph Neural
Networks · Graph Augmentation · Knowledge Representation

1 Introduction

Knowledge graphs (KGs) can effectively organize and represent facts about the
world in a structured fashion. More and more KGs have been constructed based
on different data sources or for different purposes. Therefore, the knowledge
contained in different KGs is far from complete yet complementary [22]. Entity
alignment (EA) which aims to link semantically equivalent entities located on dif-
ferent KGs has attracted increasing attention since it could facilitate knowledge
integration and thus promote knowledge-driven applications, such as question
answering, recommender systems, and semantic search.

In recent years, embedding-based EA methods [2,3,11,14,20,22,26,30] have
achieved decent results. The general pipeline can be summarized into two steps:
(I) generating low-dimensional embeddings (latent representations) for entities

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. Kashima et al. (Eds.): PAKDD 2023, LNAI 13936, pp. 3–14, 2023.
https://doi.org/10.1007/978-3-031-33377-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33377-4_1&domain=pdf
https://github.com/Xiefeng69/GAEA
https://doi.org/10.1007/978-3-031-33377-4_1
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via KG encoder (e.g., TransE [1]), and then (II) pulling two KGs into a unified
embedding space through prior alignment seeds and pairing each entity by dis-
tance metrics (e.g., Euclidean distance). Moreover, some works further improve
the EA performance by introducing extra information, such as entity names [29],
attributes [5,12], and literal descriptions [24], while these discriminative features
are usually privacy sensitive, noise polluted, and hard to collect [8].

Due to the powerful structure learning capability, Graph Neural Networks
(GNNs) like GCN [4] and GAT [17] have been employed as the encoder with
Siamese architecture (i.e., shared-parameter) for many embedding-based models
[6,14,20,26]. KGs are heterogeneous, especially in real KG distributions, which
means entities that have the same referent in different KGs usually have dissimi-
lar relational neighborhood. To address this problem, existing GNN-based mod-
els modify and improve GNN variants to better capture structural information
in KGs, e.g., AliNet [14] adopts multi-hop aggregation with gating mechanism to
expand neighborhood ranges and RDGCN [21] incorporates relation features via
attention interactions for embedding learning. However, these models introduce
a large number of neural network operations and ignore representation learning
for unseen entities, which will tend to make the models overfit on few alignment
seeds and thus undermine their generalization and performance.

In this paper, we propose GAEA, a novel knowledge graph entity alignment
model based on graph augmentation. Firstly, we design an Entity-Relation (ER)
Encoder to generate entity representations via jointly leveraging neighborhood
structures and relation semantics in KGs. Then, we apply graph augmentation
to increase the structural diversity of input KG in the alignment learning pro-
cess, which encourages the model to capture the semantic importance of different
neighbors and enforces the model to obtain stable representations against struc-
ture perturbation, thus mitigating overfitting issue to some extent. Moreover,
since graph augmentation can inherently generate two distinct graph views with-
out extra parameters, we can let the model perceive structural differences and
further improve the feature learning for (unseen) entities by applying contrastive
entity representation learning to maximize the consistency between the original
KG and augmented KG [19,25]. Our experiments on benchmark datasets Ope-
nEA [15] show that GAEA outperforms the existing state-of-the-art embedding-
based EA methods. We also conduct thorough auxiliary analyses to demonstrate
the effectiveness of incorporating graph augmentation techniques.

2 Related Works

Entity alignment is a fundamental task to identify the same entities across differ-
ent KGs, which has attracted increasing attention in recent years. The existing
embedding-based methods can be roughly divided into two categories:

1. Structure-based models. These models solely rely on the original structure
information of KGs (i.e., triples) to align entities. Previous methods mainly
use knowledge representation learning to generate low-dimensional embed-
dings for entities [2,7,30]. For example, MTransE [2] applies TransE [1] to
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embed different KGs into independent vector spaces and constructs transi-
tions via proposed alignment modules. Inspired by the powerful structure
learning ability of Graph Neural Networks (GNNs), a large body of works
begin to focus on employing GNNs as the encoder. GCN-Align [20] incor-
porates GCN [4] to capture entities’ neighborhood structures for the first
time and achieves promising results. Subsequent works not only apply vari-
ous GNN variants, like GAT [17], but also improve the structure awareness by
overcoming heterogeneity of different KGs [3,14,21], capturing multi-context
structural features [22], and infusing relation semantics [6,11].

2. Enhancement-based models. These models aim to build a high-accuracy
alignment system using designed alignment strategies or extra information.
BootEA [13] applies iterative learning to find potential alignments and adds
them to the training set for data augmentation. CEA [28] formulates align-
ment inference as a stable matching problem to model collective signals,
successfully guaranteeing 1-to-1 alignment. Other effective models introduce
extra information to enhance the alignment performance, including entity
names [29], attributes [5,12], and literal descriptions [24].

In this work, we aim to improve the performance and efficiency of entity align-
ment only utilizing structural contexts which are abundant and always available
without privacy issues in the real-world KGs.

3 Preliminaries

Knowledge Graph. A knowledge graph (KG) is formalized as G = (E,R, T ),
where E and R refer to the set of entities and the set of relations, respectively.
T = E ×R ×E = {(h, r, t)|h, t ∈ E ∧ r ∈ R} is the set of triples, where h, r, and
t denote the head entity, connected relation, tail entity, respectively.

Entity Alignment. Given two KGs: Gs = (Es, Rs, Ts) as the source KG and
Gt = (Et, Rt, Tt) as the target KG, and few alignment seeds (aka pre-aligned
entity pairs) S = {(ei, ej)|ei ∈ Es∧ej ∈ Et∧ei ≡ ej}, where ≡ means equivalence
relationship, entity alignment (EA) aims to seek remaining equivalent entities
located on different KGs via entity representations.

Augmented Graph. Graph augmentation techniques will generate a perturbed
version of the original graph, i.e., augmented graph, by augmentation strategies
(e.g., node dropping, edge perturbation). In order not to introduce wrong facts,
we only choose edge dropping in this work. At each training iteration, we ran-
domly drop out some triples based on the deletion ratio r ∼ uniform(0, pr),
where pr is a preset upper bound of the deletion ratio. The augmented graphs
for Gs and Gt are denoted as Gaug

s and Gaug
t , respectively. Note that we do not

consider deleting the triples associated with entities whose degree is less than 2,
because these long-tail entities have sparse neighborhood structures inherently.
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Fig. 1. The framework of our proposed GAEA.

4 Methodology

This section details our proposed method, termed as GAEA, which is drawn in
Fig. 1: (a) Entity-Relation (ER) Encoder which generates latent representations
for entities by capturing neighborhood structures and relation semantics jointly;
(b) the training process of GAEA can be decomposed into multiple epochs, and
in each epoch, we incorporate graph augmentation to conduct margin-based
alignment learning and contrastive entity representation learning.

Initialization. At the beginning, we randomly initialize entity embeddings
Hent ∈ R(|Es|+|Et|)×dent and relation embeddings Hrel ∈ R|Rs∪Rt|×drel , where
dent and drel are the embedding dimension of entities and relations, respectively.

4.1 Entity-Relation Encoder

Here, we present the Entity-Relation Encoder (ER Encoder for short), which
aims to fully capture the contextual information of entities using two aspects
jointly: (I) neighborhood structures and (II) relation semantics.

Neighborhood Aggregator. First, we aggregate neighbor entities’ informa-
tion to the central entity. The rationality of neighborhood aggregator lies in
the structure assumption that, equivalent entities tend to have similar neigh-
bor structures [20]. Moreover, leveraging multi-range neighborhood structures
is capable of providing more alignment evidence and mitigating the structural
heterogeneity issue. In this work, we apply Graph Attention Network (GAT)
[17] to allow the central entity to learn the importance of different neighbors
and thus selectively aggregate surrounding information, and we then recursively
capture multi-range neighbor information by stacking multiple layers:

h(l)
ei =

∑

ej∈Nei

αijh(l−1)
ej , (1)

αij =
exp(LeakyReLU(a�[Wghei ⊕ Wghej ]))∑

ek∈Nei
exp(LeakyReLU(a�[Wghei ⊕ Wghek ]))

, (2)
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where � represents transposition, ⊕ is the concatenation operation, Wg and a
are the transformation parameter and attention transformation vector, respec-
tively. Nei means the neighbor set of entity ei in KG, and αij indicates the
learned importance of entity ej to entity ei. h(l)

ei denotes the embedding of ei

at l-th layer (total L layers) with H(0) = Hent. Note that here we remove the
feature transformation and nonlinear activation that act on input embeddings
in vanilla GAT since we mainly focus on information aggregation. We only use
Wg and a to make each entity aware of its neighborhood contexts.

After multi-layer GAT, we obtain the multi-range neighborhood structural
representation matrix for each entity, i.e., Hm

ei = [h(1)
ei , ...,h(L)

ei ] ∈ RL×dent for ei.
Since different neighborhood ranges have different contributions to characterize
the central entity, it is necessary to employ a mechanism to adaptively control the
flow of each range and thus reduce noise. Inspired by the skipping connections
in neural networks [10,14,23], we firstly utilize a Scaled Dot-Product Attention
mechanism [16] to learn the importance of each range, and then fuse small-range
and wide-range representations by weighted average:

[ĥ
(1)

ei , ..., ĥ
(L)

ei ] = softmax(
(Hm

eiWq)(Hm
eiWk)�

√
dent

)Hm
ei (3)

hn
ei =

1
L

L∑

l=1

ĥ
(l)

ei , (4)

where 1/
√

dent is the scaling factor, Wq and Wk are the learnable parameter
matrices, and hn

ei is the output of neighborhood aggregator.

Relation Aggregator. Relation-level information which carries rich semantics
is vital to align entities in KGs [24,29] because two equivalent entities may share
overlapping relations. MRAEA [6] pointed out that relation directions impose
extra but delicate constraints on the head and tail entity individually. Therefore,
in this work, we directly use two mean aggregators to gather outward relation
semantics and inward relation semantics separately to provide supplementary
alignment signals for heterogeneous KGs:

hr
ei =

1
|Nr+

ei |
∑

r∈Nr+
ei

hrel
r ⊕ 1

|Nr−
ei |

∑

r∈Nr−
ei

hrel
r , (5)

where Nr+
ei and Nr−

ei are the outward and inward relation set of ei, respectively.

Feature Fusion. Finally, we concatenate two aspects of information:

h̃ei = hn
ei ⊕ hr

ei , (6)

where h̃ei ∈ Rdent+2×drel is the final output representation of ER Encoder for
ei. In the following training process, the ER Encoder is shared for Gs, Gt, and
their augmented graphs, and given an entity ei, we denote by h̃ei its represen-
tation generated by ER Encoder with the original graph as input, and h̃

aug

ei its
representation generated with the augmented graph as input.



8 F. Xie et al.

4.2 Model Training with Graph Augmentation

Graph augmentation learning has been demonstrated to promote the perfor-
mance of graph learning, such as overcoming overfitting and oversmoothing
issues [9], and being used for graph contrastive learning [25]. We apply graph
augmentation for EA and highlight two main enhancements contributed by it:
(I) injecting perturbations into the original KG can increase the diversity of the
structural differences, thus preventing the model from overfitting to the training
data during alignment process to some extent as well as enforcing the model
to produce robust entity representations against structural changes; (II) graph
augmentation inherently generates two graph views without extra parameters,
which facilitates conducting contrastive learning to promote heterogeneous rep-
resentation learning for (unseen) entities by contrasting different views.

Margin-Based Alignment Loss. In order to make equivalent entities close
to each other and unmatched entities pull away from each other in a unified
embedding space. Following previous works [5,6,20], we apply the margin-based
alignment loss supervised by pre-aligned entity pairs S. Notably, here, we use
the output of ER Encoder based on augmented graphs to make the model avoid
overfitting and behave durable against edge changes:

La =
∑

(ei,ej)∈S

∑

(ēi,ēj)∈S̄(ei,ej)

[
||h̃aug

ei − h̃
aug

ej ||L2 + ρ − ||h̃aug

ēi − h̃
aug

ēj ||L2

]

+
, (7)

where ρ is a hyper-parameter of margin, [x]+ = max{0, x} is to ensure non-
negative output, and S̄(ei,ej) denotes the set of negative entity alignments con-
structed by corrupting the ground-truth alignment (ei, ej), i.e., replacing ei or
ej with another entity in Gs or Gt via negative sampling strategy.

Contrastive Loss. Contrastive learning is a good means to explore supervi-
sion signals from the vast unlabeled data. Many graph learning works [18,19,25]
apply it to learn representations by contrasting different views and then maximiz-
ing feature consistency between them. RAC [27] is an effective EA model which
incorporates contrastive learning to ameliorate the alignment performance. How-
ever, RAC needs to employ two separate graph encoders with the same archi-
tecture to model different views of the structural features of entities, which will
bring twice the parameters and damage the diversity of graph views. Graph aug-
mentation inherently provides two different views (i.e., original graph view and
augmented graph view) without extra parameters. Therefore, we define the con-
trastive loss to improve entity representation learning by maximizing the feature
consistency between the original structure and augmented structure:

Lc =
∑

z={s,t}

1
2|Ez|

∑

ei∈Ez

(L(Gz,G
aug
z )

c,ei + L(Gaug
z ,Gz)

c,ei ), (8)

L(Gz,G
aug
z )

c,ei = −log
exp(〈proj(h̃ei),proj(h̃

aug

ei )〉)
∑

ek∈Ez
exp(〈proj(h̃ei),proj(h̃

aug

ek
)〉)

, (9)
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where 〈·〉 means inner product, and proj(·) is a shared projection head consisting
of a linear layer and a ReLU activation function to map entity representations to
low-dimensional vector space [25]. The definition of the symmetric contrastive
loss term L(Gaug

z ,Gz)
c,ei is similar with Eq. (9).

Model training. We combine the margin-based alignment loss and the con-
trastive loss, arriving at the final objective of our model:

L = La + λLc, (10)

where λ ≥ 0 is a tunable parameter weighting the two objectives. The training
process of GAEA is outlined in Algorithm 1, where negative sample set and
augmented graphs will be updated every iteration (10 epochs as an iteration).

Algorithm 1: Training Procedure of GAEA
Input: Knowledge graph Gs and Gt, pre-aligned entity pairs S.

1 Initialize entity embeddings and relation embeddings;
2 while Not Converge do
3 for each Epoch do
4 if Epoch % 10 == 0 then // 10 epochs as an iteration

5 Generate augmented graphs Gaug
s and Gaug

t for Gs and Gt;
6 Generate negative sample set S̄ based on S;

7 Generate entity representations using ER Encoder;
8 Calculate La using S and S̄ via Eq.(7);
9 Calculate Lc using Eq.(8) and Eq.(9);

10 Θ ← BackProp(La + λLc); � Adam step

11 return Model parameters Θ;

4.3 Alignment Inference

After pulling embeddings from two KGs into a unified vector space and making
them comparable, alignment relationships can be inferred by measuring the dis-
tance between two entities. In this work, we use Euclidean Distance to be the
distance metric, i.e., for ei ∈ Es and ej ∈ Et, the distance between entity pair
(ei,ej) is calculated by ||h̃ei − h̃ej ||L2. In order to find ei’ alignment relationship,
we calculate its distance to all entities belonging to Gt and perform the nearest
neighbor (NN) search to identify ei’ counterpart entity in Gt:

ej = arg min
e

′
j∈Et

||h̃ei − h̃e
′
j
||L2. (11)

Notably, we use the original KG structures in the inference phase instead of
augmented versions to generate final entity representation h̃. We apply Faiss1

to accelerate the alignment inference process.
1 https://github.com/facebookresearch/faiss.

https://github.com/facebookresearch/faiss
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5 Experimental Setup

5.1 Experimental Setup

Datasets. We use the 15K benchmark dataset (V1) in OpenEA [15] for evalu-
ation since the entities thereof follow the degree distribution in real-world KGs.
It contains two cross-lingual settings, i.e., EN-FR-15K (English-to-French) and
EN-DE-15K (English-to-German), and two monolingual settings, i.e., D-W-15K
(DBPedia-to-Wikidata) and D-Y-15K (DBPedia-to-YAGO). Following the data
splits in OpenEA, we use the same split setting where 20%, 10%, and 70% align-
ments are harnessed for training, validation, and testing, respectively.

Metrics. We adopt Hits@k (k = 1,5) and Mean Reciprocal Rank (MRR) as the
evaluation metrics. Hits@k is to measure the alignment accuracy, while MRR
measures the average performance of ranking over all test samples. The higher
the Hits@k and MRR, the better the alignment performance.

Baselines.We choose some GNN variants and several existing state-of-the-art
embedding-based EA models as baselines: GCN [4] and GAT [17] are the clas-
sic variants of GNNs; MTransE [2] and SEA [7] are triple-based methods that
capture the local semantics information of relation triples via knowledge repre-
sentation learning; GCN-Align [20], AliNet [14], HyperKA [11], and KE-GCN
[26] are the neighborhood-based methods which apply GNNs to explore neigh-
borhood structure information; IPTransE [30] and RSNs [3] both are path-based
methods that extract the long-term dependencies across relation paths; IMEA
[22] is the recent strong baseline which uses Transformer-like architecture to
capture multiple structural contexts in an end-to-end manner.

We should note here that our model and the above baselines all mainly focus
on the structural information of KGs. Therefore, for a fair comparison, we do
not consider the models which utilize extra information (e.g., attributes, literals)
for enhancement, such as AttrGNN [5], HMAN [24], MultiKE [29].

Implementation Details. All programs are implemented using Python 3.6.13
and PyTorch 1.10.2 with CUDA 11.3 on an NVIDIA GeForce RTX 3090 GPU.
Following OpenEA [15], we report the average results of five-fold cross-validation.
We initialize trainable parameters with the Xavier initializer, and we train the
model using Adam optimizer with weight decay 1e−5 and perform early stop-
ping to terminate training based on the MRR score tested every 10 epochs on
the validation data. As for hyper-parameters, the learning rate is set to 0.001,
the dropout rate is 0.2, the layer number of GAT L is 2, the number of nega-
tive samples for each entity is 5, the negative sampling strategy is ε-Truncated
Uniform Negative Sampling [13] with ε = 0.9, the margin ρ is 1, the balance
parameter λ is 100, and the embedding dimension of entities dent and relations
drel are set to 256 and 128, respectively. The pr is searched in {0.05, 0.1, 0.15}.
Following the convention, the default alignment direction is from left to right.
Taking D-W-15K as an example, we regard DBpedia as the source KG and seek
to find the counterparts of source entities in the target KG Wikidata.
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Table 1. Entity alignment results in cross-lingual and monolingual settings. The results
with † are retrieved from [15], and ‡ from [22]. Results labeled by ∗ are reproduced
using the released source codes. The boldface indicates the best result of each column
and underlined the second-best.

Models EN-FR-15K EN-DE-15K D-W-15K D-Y-15K

Hit@1 Hit@5 MRR Hit@1 Hit@5 MRR Hit@1 Hit@5 MRR Hit@1 Hit@5 MRR

GCN∗ .210 .414 .304 .304 .497 .394 .208 .367 .284 .343 .503 .416

GAT∗ .297 .585 .426 .542 .737 .630 .383 .622 .489 .468 .707 .573

MTrasnE† .247 .467 .351 .307 .518 .407 .259 .461 .354 .463 .675 .559

SEA† .280 .530 .397 .530 .718 .617 .360 .572 .458 .500 .706 .591

IPTransE† .169 .320 .243 .350 .515 .430 .232 .380 .303 .313 .456 .378

RSNs† .393 .595 .487 .587 .752 .662 .441 .615 .521 .514 .655 .580

GCN-Align† .338 .589 .451 .481 .679 .571 .364 .580 .461 .465 .626 .536

AliNet‡ .364 .597 .467 .604 .759 .673 .440 .628 .522 .559 .690 .617

HyperKA‡ .353 .630 .477 .560 .780 .656 .440 .686 .548 .568 .777 .659

KE-GCN‡ .408 .670 .524 .658 .822 .730 .519 .727 .608 .560 .750 .644

IMEA‡ .458 .720 .574 .639 .827 .724 .527 .753 .626 .639 .804 .712

GAEA .486 .746 .602 .684 .854 .760 .562 .768 .654 .608 .791 .688

w/o rel. .324 .626 .458 .593 .785 .678 .409 .666 .521 .502 .743 .605

5.2 Experimental Results

Performance Comparison. Table 1 reports the comparison results on the Ope-
nEA 15K datasets. Experimental results show that our proposed GAEA outper-
forms other models in most tasks, especially in cross-lingual settings. There is
a phenomenon that the performance of models utilizing knowledge representa-
tion learning as the encoder, e.g., MTransE, SEA, and IPTransE, are inferior
compared with the models applying GNNs as the encoder like AliNet and KE-
GCN, and have on-par or even worse performance than vanilla GCN and GAT,
which demonstrates the GNNs’ powerful representation ability in EA. We also
notice that, compared with some methods applying GCN as the encoder (e.g.,
GCN-Align, AliNet), the vanilla GCN fails to surpass them, which shows the sig-
nificance of designing a more effective encoder for representing entities in KGs.
IMEA is a strong baseline that captures abundant structure contexts and it
obtains excellent results on D-Y-15K task. However, IMEA introduces carefully
designed data processing (e.g., entity paths encoding) and becomes a complicated
network due to the Transformer-like architecture, which will inevitably increase
the training difficulty and overfitting risk. Additionally, we compare the model
size (denoted as #Params) in Table 2. GAEA greatly reduces the number of
parameters compared to IMEA while acquiring decent alignment performance.
This is because GAEA designs a simple Entity-Relation Encoder to capture
multi-range neighborhood structures to mitigate heterogeneity and infuse rela-
tion semantics to provide more comprehensive signals for alignment. Moreover,
GAEA further facilitates producing expressive and robust entity representations
by integrating graph augmentation to achieve alignment learning supervised by
alignment seeds and contrastive representation learning for unseen entities. In
summary, our proposed GAEA is a light and powerful solution for EA.



12 F. Xie et al.

Table 2. #Params comparison.

Models #Params (M)

GCN ∼7.81M

AliNet ∼16.18M

IMEA ∼20.44M

GAEA (ours) ∼8.10M

Table 3. Ablation study results.

ModelsEN-DE-15K D-W-15K

Hit@1Hit@5MRRHit@1Hit@5MRR

GAEA .684 .854 .760 .562 .768 .654

−gaal. .674 .848 .751 .557 .764 .650

−Lc .665 .841 .744 .544 .755 .639

Ablation Study. In the above experiments, the overall effectiveness of GAEA is
proved. In this section, we conduct ablation analyses to demonstrate the validity
of each component of GAEA. First, Table 1 also gives the results of a variant
of GAEA (denoted as w/o rel.), which means the original GAEA eliminates
relation injection. The ablation results clearly show the effectiveness of relation
embedding learning, which identifies the relation semantics can help in enriching
the expressiveness of entity representations. Next, Table 3 gives the ablation
results about graph augmentation. −gaal. and −Lc represent the variants by
removing graph augmentation in alignment learning (i.e., Eq. (7)) or removing
contrastive objective (i.e., Eq. (8)), respectively (the results of removing graph
augmentation are illustrated in the next section). The results show that utilizing
graph augmentation can have positive impacts on EA and consistently get better
performance. By introducing graph augmentation into EA training process, the
model not only is encouraged to learn useful and robust entity representations
but also lets the scarce yet valuable alignment seeds and vast unlabeled entities
in KGs jointly provide abundant supervision for model learning.

Parameter Analysis. Considering that our model employs edge dropping to
generate augmented graphs for margin-based alignment learning and contrastive
entity representation learning. We investigate how the alignment performance
varies with the upper bound of the deletion ratio. We evaluate upper bound pr
in {0, 0.05, 0.1, 0.15}, and the results measured by Hit@1 and MRR are drawn
in Fig. 2. The performance is worst on all three tasks when pr = 0, i.e., without
any graph augmentation enhancement, indicating that graph augmentation can
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Fig. 2. Parameter analysis results of pr measured by Hit@1 (green bar with left axis)
and MRR (yellow bar with right axis). (Color figure online)
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do benefit for alignment learning. We can see that the alignment effect is best
when pr equals 0.05 or 0.1, increasing pr to 0.15 will not further improve the per-
formance, and even bring performance drops. One potential reason is that when
pr becomes large, edge dropping will lead to losing more semantic knowledge
and structural information, thus bringing an adverse impact on neighborhood
aggregation and model training. Therefore, we need to set pr as a suitably small
value to ensure information retention as well as performance improvement.

6 Discussion and Conclusion

In this paper, we propose GAEA, a novel entity alignment method based on
graph augmentation. Specifically, we design an Entity-Relation (ER) Encoder
to generate latent representations for entities via jointly capturing neighborhood
structures and relation semantics. Meanwhile, we apply graph augmentation to
create two graph views for margin-based alignment learning and contrastive
entity representation learning, thus improving the model’s alignment perfor-
mance. Finally, experimental results verified the effectiveness of our method.

Although GAEA achieves promising results, it still has limitations that need
further investigation. First, our experimental results show that graph augmen-
tation learning can bring some performance gains, but the supervision signals
provide key performance bases in the alignment learning process. Thus, it is
worth further studying how to amplify the improvement brought by graph aug-
mentation when there no alignment seeds are given. Besides, we currently apply
edge dropping as the only graph augmentation strategy, which exposes a new
problem, that is, how to conduct graph augmentation learning in a highly struc-
tured KG to improve performance without introducing logic errors.
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ported by the National Natural Science Foundation of China No. 62172428.
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17. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph

attention networks. arXiv preprint arXiv:1710.10903 (2017)
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Abstract. Knowledge graphs are often incomplete in practice, so link
prediction becomes an important problem in developing many down-
stream applications. Therefore, many knowledge graph embedding mod-
els have been proposed to predict the missing links based on known
facts. Convolutional neural networks (CNNs) play an essential role due
to their excellent performance and parameter efficiency. Previous CNN-
based models such as ConvE and KMAE use kernels to capture inter-
actions between embeddings, yet they are limited in quantity. In this
paper, we propose a novel neural network-based model named MixER to
exploit more additional interactions effectively. Our model incorporates
two types of multi-layer perceptions (i.e., channel-mixing and token-
mixing), which extract spatial information and channel features. Hence,
MixER can seize richer interactions and boost the link prediction per-
formance. Furthermore, we investigate the characteristics of two core
components that benefit in capturing additional interactions in diverse
regions. Experimental results reveal that MixER outperforms state-of-
the-art models in the branch of CNNs on three benchmark datasets.

Keywords: Knowledge graph · Link prediction · Convolutional neural
network · Multi-layer perception

1 Introduction

A knowledge graph (KG) is a special kind of graph structure that includes entities
and relations in the form of triples. Examples of KGs include WordNet [1],
YAGO [2], and Freebase [3]. Even though real-world KGs contain a large quantity
of data, they are still incomplete. As a result, it is crucial to predict missing
triples to complete the KGs automatically. Knowledge graph embedding (KGE)
techniques have been utilized as prevalent methods to address this problem by
embedding entities and relations as low-dimensional vectors, allowing efficient
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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computation and analysis of the graph. Subsequently, a scoring function is used
to give valid triples higher scores than invalid triples. Finding these missing links
is significant in many practical applications, including recommender systems,
question answering, and gene-protein interaction prediction [23,24].

KGs store data as a collection of triples (s, r, o), in which s, o ∈ E (where E
denotes the entity set) are subject, object entities in turn and r ∈ R (where R
denotes the relation set) is relation connecting s with o. Figure 1 illustrates an
example of a KG about the film industry. Intuitively, we can straightforwardly
predict that Marvel Studios is an organization based on two existing triples—
(Disney, Is a, Organization) and (Disney, Is parent of, Marvel Studios)—by
human knowledge. However, a model can not understand triples at the semantic
level as humans. Therefore, it relies on mathematical theories or neural net-
works to predict missing entities or relations, e.g., (Marvel Studios, Is a, ?) or
(Marvel Studios, ?, Organization).

Fig. 1. An example of a knowledge graph in real life.

In recent years, many proposals have attempted to enhance interactions
between embeddings but do not efficiently exploit them. To mitigate this draw-
back, we suggest a novel model that increases interaction efficiency based on the
recently proposed computer vision architecture named MLP-Mixer [4], described
in Sect. 3. To the best of our knowledge, we are the first to adapt MLP-Mixer to
graph-related tasks, especially link prediction (LP). We also examine its compat-
ibility with graphs in terms of grasping interactions and information integration
ability.

Contribution. Our main contributions are as follows:

– To deal with the LP task, we propose a new convolution-free model in the
branch of the neural network.

– We provide a detailed description of the vital properties of two primary com-
ponents in MixER, which extract spatial information and channel features to
boost interconnection between entities and relations.
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– Our model can be considered a potential synergy between computer vision
and graphs, a foundation that could accelerate the appearance of more well-
designed networks.

– MixER is evaluated on three benchmark datasets and experiments show that
our model outperforms state-of-the-art neural network-based baselines.

Organization. We discuss the relevant research of three taxonomy, includ-
ing translation-based models, matrix factorization-based models, and neural
network-based models in Sect. 2. Section 3 provides a detailed illustration of our
proposed model and explores its aspects. We evaluate and compare our model
against baselines and analyze the results in Sect. 4. Finally, Sect. 5 summarises
our work and potential future work directions.

2 Related Work

2.1 Translation-Based Approaches

In the translation group, KGE models project entities and relations into the
mathematical space and then consider relations as distance-related transforma-
tions used to determine the plausibility of facts. TransE [7] is the first model
of this kind that embeds entities and relations as vectors in Euclidean space.
The idea of TransE is simple, but it can not model multi-fold relations (i.e.,
1-to-N, N-to-1, N-to-N). Many extension models based on TransE have been
proposed to tackle this problem, namely TransH [8] and TransD [9]. RotatE [10]
is another model that overcomes the shortcoming of TransE further by treating
the relations as the rotation of entities in the complex vector space. To take the
strengths of both TransH and RotatE, RotatPRH [11] first projects embedded
entities onto the relational hyperplane and then performs rotation.

2.2 Matrix Factorization-Based Approaches

Matrix factorization is also a method that considers KG as a 3-way binary tensor
with the value 1 indicating an existing triple and otherwise 0. Then to handle the
LP task, the KG tensor could be decomposed into a composition of embeddings of
both entities and relations that are lower dimensional tensors/vectors. RESCAL
[22], an early work in this group, takes one matrix to represent all entities and
another to describe the hidden interactions between them. However, the prob-
lems with RESCAL model are parameter explosion and overfitting. DistMult [15]
overcomes this drawback by embedding relations in terms of a diagonal matrix
instead of a regular matrix. A further improvement is ComplEx [16] as it extends
DistMult to complex spaces and thus can model other types of relations (e.g.,
symmetric, inverse relations).

2.3 Neural Network-Based Approaches

The neural network has been applied in many models because of its superior
performance. Such models are able to extract features automatically and utilize
that information to predict entities. ConvE [6] uses convolutional kernels on the
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concatenation of embeddings to extract feature maps before feeding them into
a fully-connected layer. In contrast, ConvKB [12] and CapsE [13] capture inter-
actions in a very different manner. They convolve on the concatenation of the
subject entity, relation, and object entity embeddings. In recent years, KMAE
[20] extends the Gaussian kernel separately in entity and relation attributes
to achieve better representations fed into a multi-attention neural network. To
develop ConvKB, DMACM [14] is a proposed method to extract implicit fine-
grained characteristics in a triple and exploit directional information.

Due to the potential performance, the neural network is an excellent method
for almost all tasks, including LP. In this paper, our work extends the standard
framework named MLP-Mixer to further enrich interactions of embeddings for
LP in KGs. In particular, the proposal uses mixing operators to capture beneficial
interactions inherent in the subject entity and the corresponding relation.

Table 1. Different KGE models with the scoring function ψ(s, r, o). es, er, eo are the
embedding of the subject entity, relation, and object entity, and es, er, eo denote the
2D reshaped matrices of es, er, and eo in turn; � is a convolution operator; || denotes
left component or right component.

Model Scoring Function ψ(s, r, o) Relation parameter

TransE ||es + er − eo||p er ∈ R
dr

TransH ||(es − wr
T eswr) + er − (eo − wr

T eowr)|| wr, er ∈ R
dr

TransD esT Mre
o er ∈ R

dr

RESCAL esT Mre
o er ∈ R

d2e

DistMult esT diag(er)eo er ∈ R
de

ComplEx Re(esT diag(er)eo) er ∈ C
dr

ConvE f(vec(f([es, er] � w))W)eo er ∈ R
dr

KMAE g(Mul([φ(es); er]||[es;φ(er)]))eo er ∈ R
dr

MixER (ours) f(Mixer(φs[ϕ(es), ϕ(er)])W)eo er ∈ R
dr

3 Methodology

3.1 Problem Formulation and Notations

A KG contains multi-relational data formalizing as a set of triples G =
{(s, r, o)|(s, o) ∈ E , r ∈ R}. In that, E is the set of entities, and R is the set
of relations. ne and nr are the number of entities and relations while de and
dr are the dimensionalities of entity embedding and relation embedding respec-
tively. The LP problem, which aims to predict the missing entities or relations
based on the existing triples, can be regarded as the rank problem. A triple
(s, r, o) is evaluated by a scoring function ψ(s, r, o) to show the plausibility of
that triple. Due to the difference in model categories, the corresponding scoring
function can be designed to tailor the model’s properties. Table 1 summarizes
the scoring function of the aforementioned models in Sect. 2.
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3.2 Overall Architecture Design

In this section, we propose a model to capture interactions more effectively by
taking advantage of the ideas behind MLP-Mixer (Multi-Layer Perceptron -
Mixer) [4]. The main components contain the channel-mixing layer, the token-
mixing layers, and the latent attention mechanism. In the context of our scenario,
a token refers to a segment of an embedding, while a channel is simply defined
as an embedding. The channel-mixing layer is a simple MLP layer, which can
be considered as 1 × 1 convolutional kernels, leveraging the communications
between embeddings and thus improving interactions between them. In contrast,
the token-mixing layer allows the communication of different receptive fields on
2D embeddings by single-channel depth-wise convolutions. Besides, the latent
attention mechanism is that the information in the channel-mixing and token-
mixing layers are weighted by MLPs, showing the different importances within
embeddings or between entity-relation embeddings.

Fig. 2. MixER operation on the entity-relation matrix. The embeddings of relation
and entity are respectively represented by the blue and red parts, while the advanced
shapes of convolutional kernels are depicted by the green grid. (Color figure online)

The main merit of MixER over CNN-based models is the ability to model
more entity-relation interactions. Convolutional filters can only model interac-
tions between the boundary regions of entity embedding and relation embedding
in the case of concatenation. Otherwise, for given stacking, even though filters
can grab more interactions, the captured information is localized. However, the
size of the convolutional kernel also heavily impacts the result. MixER, on the
other hand, is able to automatically capture interactions in multiple regions
through token- and channel-mixing MLPs. These MLPs encourage within- and
between-patch communications. Therefore, the extracted features by MixER are
more generalized than those of CNN-based models. The overview of our model’s
operation is depicted in Fig. 2.

Moreover, our proposal also regards a simple superposition of MLP-layers as
a hidden attention mechanism, which prevents it from focusing on areas that are
not effective for predictions and are updated during the learning phase. Since
the linear transformation and the reshaping process rapidly grow the number of
parameters, certain superfluous elements do not make valuable contributions to
the final output. With this observation, it can be inferred that MixER implicitly
distills more meaningful interactions, enhancing its performance subsequently.
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3.3 Model Architecture

In this section, we describe our proposed model and its components in detail.
The overall framework is depicted in Fig. 3. First, MixER learns low-dimensional
continuous vectors (i.e., es ∈ R

de , er ∈ R
dr ) to represent entities and relations in

the KG through the embedding layer. With the expectation of more expressive
representations of original data, we utilize a linear transformation matrix W ∈
R

d×(H×W ) (d = {de, dr}) and a translational vector b ∈ R
(H×W ) to project

embeddings onto a new higher-dimensional continuous space. In that, H and
W are the height and width of a reshaped matrix. The new embeddings of
the subject entity and relation are subsequently reshaped and stacked before
being divided into patches. These patches are transposed twice in every Mixer
layer to capture spatial and channel information in embeddings. The final linear
transformation layer receives the feature output vector from the previous layer
to predict the object and then performs entity matrix multiplication on the
predicted object to give a score for the triple (s, r, o).

Fig. 3. An overview of the MixER framework. MixER consists of a transformation mod-
ule, a series of Mixer layers, a global average pooling, and a finally densely-connected
layer. The top-left part is the main architecture. Components in each Mixer layer are
represented on the bottom part. Each MLP block includes two fully-connected layers
and nonlinearity, as the top-right frame shows. Given an entity embedding es and a
relation embedding er, MixER performs a linear transformation, and a reshape opera-
tion ϕ(·) over these embeddings. MLP-Mixer is employed to divide patches and extract
information through N Mixer layers. Then the generated output is input into a fully-
connected layer which predicts the object embedding eo.

Embedding Layer. We represent both entities s, o, and relations r
as embedding vectors es, eo ∈ {

ee
1, e

e
2, ..., e

e
ne

|ee
i ∈ R

de
}

and er ∈{
er
1, e

r
2, ..., e

r
nr

|er
i ∈ R

dr
}

respectively. Then, the embeddings of the subject and
relation es, er are projected onto a higher dimensional embedding space in the
next layer.
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Linear Transformation. This layer aims to create higher dimensional vectors
for entities and relations, i.e., e′ ∈ R

(H×W ), (H ×W ) > de. A reshaping function
ϕ : R(H×W ) → R

H×W transforms these vectors into 2D square matrices (i.e.,
H = W ) before stacking. This process can be formalized as following equations:

φs [ϕ(es), ϕ(er)] (1)

ϕ(es) = esWs + bs (2)

ϕ(er) = erWr + br (3)

where φs[·] represents a stack operator, Ws,Wr ∈ R
d×(H×W ) and bs,br ∈

R
(H×W ) are the linear transformation parameters for the subject entity and rela-

tion, respectively. To overcome the CNN-based models’ limitation and encourage
more interactions between channels, we stack two 2D matrices instead of con-
catenating them. The impact of a linear transformation on a vector can increase
the importance of contributive elements. In the training process, the parameters
in linear matrices W∗ and translation vectors b∗ are learned so that they can
better encapsulate the original data points. As a result, the MixER can utilize
the data more effectively. The entity-relation matrices are then processed using
per- and cross-location operations in Mixer layers with the purpose of extracting
different features for predictions.

Patch Division. A patch is a small resolution region (P × P ) of an image or a
2D matrix in our case. The 2D stacked matrix is divided into S non-overlapping
patches, and S must be a positive integer. The i-th patch is then linearly pro-
jected to become a C-dimensional vector pi by the i-th per-patch transformation
layer. As a result, we obtain a two-dimensional table X ∈ R

S×C . The number of
patches is calculated as follows:

S =
H × W

P 2
(4)

All patch vectors {p1,p2, ...,pS} are fed into N Mixer layers including the
token-mixing and channel-mixing MLPs. The number of patches can be changed
with respect to the hyperparameter P .

Mixer Layer. The original MLP-Mixer model comprises two main layers:

– Token-mixing layer: receptive fields on the per-channel 2D matrix are
weighted by cross-location operations. This layer operates on columns of X
by an MLP, which shares parameters across all columns. It can be formulated
as a mapping function: RS → R

S .
– Channel-mixing layer: this layer purports to improve interactions between

two embeddings, which neural network-based approaches such as ConvE, and
ConvKB do. Contrary to the token-mixing MLP, the channel-mixing MLP
acts on rows of X, and it also shares parameters across all rows. It can be
formulated as a mapping function: RC → R

C .
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Each Mixer layer includes two MLP blocks. In each block, there are two fully-
connected layers and a non-linear activation layer between them. To summarize,
Mixer layers can be formalized as follows:

U∗,i = X∗,i + W2g(W1LayerNorm(X)∗,i), ∀i = 1, 2, ..., C (5)

Yj,∗ = Uj,∗ + W4g(W3LayerNorm(U)j,∗), ∀j = 1, 2, ..., S (6)

where g(·) is the GELU activation function, W1,W2 ∈ R
C×DS and W3,W4 ∈

R
S×DC are the parameters of token-mixing and channel-mixing layers respec-

tively. DS ,DC are the number of hidden perceptions. In order to avoid the
overfitting problem, the last fully-connected layer in the MLP is sandwiched
between two added dropout layers.

Scoring Function. The output of the n-th Mixer layer is mapped into the entity
space by the final fully-connected layer and then multiplied with the candidate
object matrix R

ne×de . In other words, for a given triple, we use the scoring
function to calculate candidate triples’ scores. Formally, our scoring function is
defined as follows:

ψ(s, r, o) = f(Mixer(φs[ϕ(es), ϕ(er)])W)eo (7)

where Mixer(·) denotes the modified MLP-Mixer network, φs[·] represents vec-
tor stacking operator, eo is the object entity embedding vector and W is a
linear transformation matrix used to project the result of Mixer(·) onto entity
embedding space R

de . The function f(·) is a non-linear activation function.

Loss Function. We use the standard binary cross entropy to train our model
in combination with the Adam optimizer and label smoothing, as suggested by
ConvE.

L = − 1
ne

∑

o∈E
(yo log (po) + (1 − yo) log (1 − po)) (8)

where yo denotes a binary label {0, 1} with 0 for an invalid triple and 1 for a valid
triple, and po denotes the predicted score by Eq. (7) after applying a sigmoid
function, meaning po = σ(ψ(s, r, o)).

4 Experiments

4.1 Datasets

To verify our model, we use three datasets namely WN18RR [6], FB15k-237 [5],
and YAGO3-10 [2]. The statistics of these datasets are represented in Table 2.
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Table 2. Statistics of three benchmarks.

Dataset |E| |R| Train Valid Test

WN18RR 40943 11 86835 3034 3134

FB15k-237 14541 237 272115 17535 20466

YAGO3-10 123182 37 1079040 5000 5000

4.2 Evaluation Protocol and Metric

We employ an uniform sampling method to generate negative triples in the
test set G′ = {(s′, r, o)|(s′ ∈ E \ s) ∧ (r ∈ R)} ∪ {(s, r, o′)|(o′ ∈ E \ o) ∧ (r ∈ R)}.
Next, the scores for these corrupted triples are arranged in descending order. Our
evaluation protocol follows the filter setting where the sampled triples already
existing in the original KG dataset are filtered out. Then, the ranks of the correct
triples are recorded to calculate the evaluation measures in our experiments. We
use Mean Ranking (MR), Mean Reciprocal Ranking (MRR), and Hits@K with
K ∈ {1, 3, 10} as the main evaluation metrics [7].

Table 3. Results on FB15k-237 and WN18RR. The best results are highlighted in
bold, while the second best results are underlined.

Model FB15k-237 WN18RR

MRR MR H@1 H@3 H@10 MRR MR H@1 H@3 H@10

TransE .334 323 .238 .371 .465 .226 2300 .042 .406 .501

DistMult .241 254 .155 .263 .419 .241 5100 .390 .440 .490

ComplEx .247 339 .151 .275 .428 .440 5261 .410 .460 .510

R-GCN .249 – .151 .264 .417 – – – – –

ConvE .317 244 .237 .356 .501 .430 4187 .400 .440 .520

KBGAN .277 – – – .458 .215 – – – .469

A2N .317 – .232 .348 .486 .450 – .400 .440 .520

KMAE .326 235 .240 .358 .502 .448 4441 .415 .465 .524

DMACM .270 244 – – .440 .230 552 - - .540

MixER .334 214 .244 .366 .510 .457 5842 .426 .473 .518

Table 4. Results on YAGO3-10. Due to the absence of reported scores in this dataset,
MixER is only evaluated against three baselines.

Model YAGO3-10

MRR MR H@1 H@3 H@10

DistMult .340 5926 .240 .380 .540

ComplEx .360 6351 .260 – .550

ConvE .440 1671 .350 .490 .620

MixER .527 3617 .442 .577 .676
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4.3 Hyperparameters and Baselines

Hyperparameters are set on the three training, validation, and test datasets
as follows: embedding space d ∈ {200, 400}, number of negative samples n ∈
{500, 1000, 4000}, batch size b ∈ {128, 256, 512}, number of epochs e = 500,
learning rate η ∈ {0.01, 0.001, 0.0001}, hidden dropout h ∈ {0.2, 0.5}, MLP
dropout m ∈ {0.2, 0.25, 0.4}, and label smoothing l ∈ {0, 0.1}. For better
optimization, we use the Adam optimizer with L2 norm for regularization. In
the case of MLP-Mixer, we set hidden space C ∈ {32, 64, 128}, token-mixing
MLP dimension Ds = 4C and channel-mixing MLP dimension DC = 0.5C,
the number of Mixer layers N ∈ {4, 6, 8, 12}, the 2D reshaped matrix size
H = W ∈ {32, 64, 128}, the patch resolution P ∈ {8, 16, 32, 64}.

In our experiment, we compare MixER against various baselines, including
TransE [7], DistMult [15], ComplEx [16], R-GCN [17], ConvE [6], KBGAN [18],
A2N [19], KMAE [20], and DMACM [14].

4.4 Results and Discussion

Performance Comparison. Tables 3 and 4 show the result of our method
on the LP task compared with the others. All results of baselines are from
original papers. In general, our model achieves the best scores across all three
datasets except Hits@3 on FB15k-237, MR and Hits@10 on WN18RR, and MR
on YAGO3-10. One noticeable disadvantage of the MR metric is that almost
NN-based models are significantly worse than the translational-based models,
showing the inefficiency of this metric. In contrast, MixER obtains the highest
MR score on FB15k-237.

Because MixER is an NN-based model, we initially emphasize the result with
the recent proposal KMAE [20] to verify the model’s effectiveness. It reveals that
MixER outperforms KMAE on the FB15k-237 dataset, three out of five metrics
for WN18RR. To summarize, MixER offers increases of 2%, 2% in MRR, 1.6%,
2.6% in Hits@1, and 2.2%, 1.7% in Hits@10 on FB15k-237, WN18RR respec-
tively. The results explain the hypothesis that the more interactions between
head and embeddings, the better the result returns. In addition, our model
embraces the capacity to enrich interactions by using token-mixing and channel-
mixing, which are MixER’s cores.

4.5 Analysis

Hyperparameter Analysis. To further understand the effect of the patch
sizes {16, 32, 64} on LP. Figure 4 shows that with the patch size of 16 on FB15k-
237, 32 on WN18RR, and 32 on YAGO3-10, MRR is slightly higher than other
sizes. It can also be deduced that the optimal patch size for capturing various
entity-relation interactions may differ based on the dataset used. Notably, in
the final stages of the iterative process, the points of convergence for the three
distinct patch sizes on the WN18RR dataset are almost equivalent.



MLP-Mixer Knowledge Graph Embedding 25

Fig. 4. MRR across epochs in FB15k-237, WN18RR, and YAGO3-10.

Interaction Analysis. In order to verify its performance, we examine our
model on each relation type on the WN18RR dataset. Table 5 reports the values
of MRR and Hits@10 metrics used to evaluate MixER, ConvE, and ComplEx
across each relation on WN18RR. MixER performs prominently with the best
MRR and Hits@10 scores on all relations of type S and type C. For instance,
hypernym and has part are transitive relations that MixER performs well on.
Compared to ConvE and ComplEx on relation type R, despite our model obtain-
ing three per four best MRR scores, Hits@10 is slightly lower. According to the
hierarchical order of the relation type R > S > C [21], it can infer that our model
outperforms both complex and simple relations.

Table 5. MRR and H@10 metrics were evaluated on each relation on WN18RR. The
complexity of relation types is ordered as R > S > C, where R, S, and C are short for
highly related, generalized specialization, and generalized context-shift respectively.

Relation Type #Triple ConvE ComplEx MixER

MRR H@10 MRR H@10 MRR H@10

verb group R 39 .956 .974 .647 .987 .974 .974

derivationally related form R 1074 .947 .965 .900 .969 .955 .967

also see R 56 .667 .705 .499 .741 .656 .679

similar to R 3 1 1 .496 1 1 1

instance hypernym S 122 .342 .512 .194 .328 .363 .516

hypernym S 1251 .085 .181 .113 .177 .119 .181

synset domain topic of C 114 .301 .443 .200 .316 .333 .452

member of domain usage C 24 .293 .417 .281 .396 .329 .521

member of domain region C 26 .340 .423 .247 .327 .371 .500

member meronym C 253 .170 .322 .099 .188 .204 .370

has part C 172 .134 .247 .105 .212 .167 .291

5 Conclusion and Future Work

In this work, we introduce a novel KGE model named MixER, which can extract
more meaningful interactions between embeddings. MixER is a scalable model
regarding information integration ability since it can combine with much addi-
tional information in the form of a 2D matrix without significantly altering the
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model’s framework. Experiments show that MixER achieves consistent improve-
ments compared to a range of baselines on benchmark datasets.

Nevertheless, despite better capturing interactions, the parameter efficiency is
not considered, which can demand substantial computational resources. There-
fore, in the future, we plan to research MLP-Mixer’s variants further, reduce
the number of parameters, investigate the reciprocal effect of head entities and
relations, and integrate more meaningful information, such as neighbor-related
information.

Acknowledgement. This research is supported by the research funding from the
Faculty of Information Technology, University of Science, Ho Chi Minh city, Vietnam.

References

1. Miller, G.A.: WordNet: a lexical database for English. Commun. ACM (1995)
2. Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: a core of semantic knowledge. In:

ACM (2007)
3. Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collabora-

tively created graph database for structuring human knowledge. In: ACM (2008)
4. Tolstikhin, I.O., Houlsby, N., et al.: MLP-Mixer: an all-MLP architecture for vision.

In: NeurIPS (2021)
5. Toutanova, K., Chen, D.: Observed versus latent features for knowledge base and

text inference. In: ACL (2015)
6. Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S.: Convolutional 2D knowledge

graph embeddings. In: AAAI (2018)
7. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating

embeddings for modeling multi-relational data. In: NIPS (2013)
8. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating

on hyperplanes. In: AAAI (2014)
9. Ji, G., He, S., Xu, L., Liu, K., Zhao, J.: Knowledge graph embedding via dynamic

mapping matrix. In: ACL (2015)
10. Sun, Z., Deng, Z.H., Nie, J.Y., Tang, J.: RotatE: knowledge graph embedding by

relational rotation in complex space. In: ICLR (2019)
11. Le, T., Huynh, N., Le, B.: Link prediction on knowledge graph by rotation embed-

ding on the hyperplane in the complex vector space. In: Farkaš, I., Masulli, P.,
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Abstract. In this paper, we propose the Graph Temporal Edge Aggre-
gation (GTEA) framework for inductive learning on Temporal Interac-
tion Graphs (TIGs). Different from previous works, GTEA models the
temporal dynamics of interaction sequences in the continuous-time space
and simultaneously takes advantage of both rich node and edge/ interac-
tion attributes in the graph. Concretely, we integrate a sequence model
with a time encoder to learn pairwise interactional dynamics between
two adjacent nodes. This helps capture complex temporal interactional
patterns of a node pair along the history, which generates edge embed-
dings that can be fed into a GNN backbone. By aggregating features
of neighboring nodes and the corresponding edge embeddings, GTEA
jointly learns both topological and temporal dependencies of a TIG. In
addition, a sparsity-inducing self-attention scheme is incorporated for
neighbor aggregation, which highlights more important neighbors and
suppresses trivial noises for GTEA. By jointly optimizing the sequence
model and the GNN backbone, GTEA learns more comprehensive node
representations capturing both temporal and graph structural charac-
teristics. Extensive experiments on five large-scale real-world datasets
demonstrate the superiority of GTEA over other inductive models.

Keywords: Edge Embedding · Graph Neural Networks ·
Self-attention · Temporal Dynamics Modeling · Temporal Interaction
Graphs

1 Introduction

Representation learning on temporal graphs is a hot topic in the community of
graph learning, where researchers have devoted to mining temporal correlations
from graphs and achieve great successes across different domains [6,10,15,31].
However, many methods [14,30] only work for a fixed topology (transductive
settings), while in product scenarios, a temporal graph usually evolves as new
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Fig. 1. Motivations of capturing pairwise relationships: there are different kind of inter-
action between nodes in TIG, e.g., node A behaves normally with node B and D, while
conducting (illicit) gambling activities (what we are interested in) with node C.

nodes/ edges added, which requires a model to work inductively. Therefore, in
this work, we focus on the inductive learning on Temporal Interaction Graphs
(TIGs), where each edge includes all interaction records between two nodes over
the history. Applications on TIGs are common in real-world environments, such
as recommendation systems [11], social network analytics [9,18], etc.

Although researchers have made substantial advances in processing temporal
graphs, it is still challenging to learn discriminative and fine-grained embeddings
for TIGs. Previous works commonly preprocess a temporal graph by compress-
ing time-related records within a regular time interval, which yields a spatial-
temporal graph with multiple snapshots. However, interactions/ events in TIGs
usually occur irregularly along time. Such snapshots are coarse approximations
of temporal interactions and resulting in great losses of fine-grained temporal
patterns, which prevents spatial-temporal methods [10,21,28] from being gen-
eralized to TIGs. Some works [14,27] circumvent such a drawback by grouping
all interactions associated with a node to form a consecutive time series for
temporal dynamics analyses. Although it preserves the time granularity of inter-
actions, it mixes the temporal behaviors of different neighbors of a node and
sometimes obfuscates some explicit temporal relationships between two nodes.
Instead, modeling the interaction dynamics between a pair of adjacent nodes can
be more helpful to capture temporal relation patterns from TIGs. As the exam-
ple in Fig. 1, a gambler involves in many interactions, but abnormal behaviors
can be readily captured by the pairwise interaction dynamics between node A
and C, which in turn, helps identify the roles or illicit activities of these nodes.

Another drawback of previous works is that the edge information is usually
underestimated or even ignored for graph learning. However, one should expect
that edges carry rich interactional information of TIGs, which can be instru-
mental in the learning process. Following this intuition, some works [2,20] take
edge information into account by concatenating both node and edge features for
neighborhood aggregations. Others try to distinguish important connections by
introducing dense attention mechanism [19,25,29]. However, naive feature con-
catenations can be inferior for learning. Dense attention inevitably introduces
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noises during aggregation, which may overwhelm critical information in some
tasks where only few neighbors are of interests (e.g., anomaly detection).

To handle the aforementioned challenges, we propose Graph Temporal Edge
Aggregation (GTEA) for inductive representation learning on TIGs based on
Graph Neural Networks (GNN). Different from previous works, we present a
new perspective to deal with TIGs. Instead of partitioning a temporal graph
into multiple snapshots or grouping all related interactions of a target node to
form a time series, we propose to mine pairwise interaction patterns from edges.
Specifically, we adapt a sequence model (e.g., LSTM [5] or Transformer [24]) to
mine the temporal interaction dynamics between two adjacent nodes. This helps
capture complex interactional patterns of a node pair over the history. In addi-
tion, we integrate a time-encoding scheme [13] with the sequence model, enabling
GTEA to learn continuous and irregular time patterns for interaction events. To
jointly learn topological dependencies and temporal dynamics, we utilize a GNN
to capture the relationships among nodes, where embeddings outputted by the
sequence model are taken as edge features and incorporated into the neighbor-
hood aggregation process. Furthermore, we adapt a sparsity-inducing attention
mechanism to augment the aggregation, which refines neighborhood information
by filtering out noises raised by unimportant neighbors. By training GTEA in
an end-to-end manner, all modules can be jointly optimized, which yields dis-
criminative node representations for downstream tasks. Extensive experiments
are conducted on five real-world datasets across different tasks, where results
demonstrate the superiority of GTEA over other inductive models. The contri-
butions of our work are summarized as follows:

– We present a novel perspective for modeling TIGs, which helps capture fine-
grained interaction patterns from node pairs.

– We propose a general framework, GTEA, for inductive learning on TIGs,
which yields discriminative node representations for downstream tasks.

– We conduct extensive experiments on five large-scale datasets. Experimental
results demonstrate the great effectiveness of GTEA.

2 Related Works

2.1 Temporal Dynamics Modeling on Graph-Structured Data

Temporal graphs are ubiquitous in real-world scenarios, which motivates
researchers to extend the target from learning from static graphs to the tem-
poral domain [14–16]. A common way is to form multiple static graph snap-
shots to approximate the time-continuous temporal graph [10,21,28]. However,
critical details, e.g., the time granularity of interactions in TIGs, may lose in
the simplification process. Instead of learning from snapshots, [22,23,31] learn
node representations using temporal point process. [9,11,18,30] progressively
update node embeddings as a new event/interaction occurs. TGAT [27] adopts
a time-encoder with self-attention to aggregate interactions of neighbors. How-
ever, many of above models only work for transductive tasks, which restricts
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their generalization ability. Node embeddings updated event-by-event may be
biased by noises and lose focus on the information of interest, e.g., the rare
gambling activities as shown in Fig. 1. Although TGAT adopts attention on dif-
ferent interactions, it lumps all and may fail to distinguish the interactions of
the same instance, e.g., in Fig. 1, there are two different gambling interactions
but both are with node C. Different from previous methods, GTEA attempts
to inductively model the temporal dynamics by looking at the complete inter-
action history between each pair of adjacent nodes, which enables it to capture
specific and fine-grained mutual interaction patterns. We make more discussions
and comparisons in Appendix 1 1

2.2 Representation Learning on Graphs with Edge Features

Edges are natural reflections of relationships among instances but the informa-
tion they carried is usually underestimated. Therefore, some pioneers propose
to mine from edges to enhance a model, e.g., ECConv [20] attempts to gen-
erate a set of edge-specific weights for Graph Convolutional Networks (GCN),
while EGNN [2] constructs a weighted graph for each edge features’ dimension.
EdgeConv [26] and AttE2Vec [1] learns edge features to describe relationships
between adjacent nodes. Instead of learning from an edge directly, CensNet [7]
converts a original graph into a line graph, where edges are mapped as nodes in
the new graph. Motivated by previous works, GTEA is extended to learn from
edges in the temporal domain by modeling the mutual interaction dynamics,
which improves the model performance and node representation power.

3 Proposed Methods

3.1 Problem Formulation

A Temporal Interaction Graph (TIG) is an attributed graph G = (V, E)
where V is a set with N nodes and E a set with M edges. A node u is associ-
ated with features xu ∈ R

DN , while an edge between u and v corresponds to
a sequence of interaction events, denoted as {ekuv = (tkuv, f

k
uv); k = 1, 2, ..., Suv},

where tkuv is the time stamp of the k-th event, fkuv ∈ R
DE the interaction fea-

tures and Suv the length of the sequence. Given the interaction history, the goal
of GTEA is to learn discriminative node representations, which can be used in
downstream tasks such as node classifications or future link predictions.

3.2 Overview of GTEA

The architecture of GTEA is shown in Fig. 2. In TIGs, interaction events occur
between two nodes from time to time, which motivates us to mine fine-grained
interaction patterns from pairwise events. Targeting on this goal, GTEA utilizes
a sequence model to learn the dynamics of pairwise interactions to represent
1 Appendix can be found in: https://github.com/xslangley/GTEA.

https://github.com/xslangley/GTEA
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Fig. 2. The framework of GTEA, where a sequence model enhanced by a time-encoder
is proposed to learn embeddings for edges. The learned edge embeddings will be aggre-
gated together with node attributes by the GNN backbone with a sparse attention
mechanism, which helps yields discriminative node embeddings.

edges. An additional time-encoder is further introduced to capture irregular
temporal patterns. Learned edge embeddings are fed into a GNN, along with
a sparse-inducing attention mechanism for neighbor aggregations, which jointly
captures both topological and time-related dependencies among nodes. With
these designs, GTEA is able to yield discriminative representations for TIGs.

3.3 Learning Edge Embeddings for Interaction Sequences

Interaction Dynamics Modeling with Sequence Models. In TIGs, the
types of interactions of a node involved can vary greatly with different neighbors.
However, interaction patterns of two specific nodes are usually consistent even as
time goes. Therefore, it is more reasonable to model the interaction behaviours
edge-by-edge instead of mixing all interactions from different neighbors. Given
the interaction history [e1uv, ..., e

Suv
uv ] of edge (u, v), we adopt a sequence model

Enci(·) to learn the interaction dynamics as follows:

ẽuv = Enci([e1uv, ..., e
Suv
uv ]), (1)

where Enci(·) indicates the interaction encoder and ẽuv is the edge embedding
to represent the interaction sequence. In our experiments, we implement Enci(·)
by LSTM [5] and Transformer [24]. In LSTM, we represent ẽuv by the hidden
output of the last time unit. As for Transformer, an interaction is correlated
with all other interactions following self-attention. Therefore, it is sufficient for
us to represent ẽuv by the embedding with respect to the last interaction. In
this way, interactions of the same node pair can be completely reviewed by the
sequence model, which helps capture specific interactional patterns for any two
connected nodes. More technical details refer to Appendix 2.1.

Edge Feature Enhancement with Time Encoding. Sequence models
implicitly assume the time gap between consecutive inputs is regular along the
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timeline, while interactions happened in TIGs do not follow. Therefore, to cap-
ture more complex time-related interaction patterns, we enhance GTEA by inte-
grating Enci(·) with a time-encoder, which is adapted from Time2Vec (T2V)
[13]. Specifically, for any given time t, a time embedding τ(t) ∈ R

l+1 can be
generated through:

τ(t)[i] =

{
ωit + ϕi, if i = 0.
cos (ωit + ϕi), if 1 ≤ i ≤ l,

(2)

where ωi and ϕi are trainable parameters. We append the time embedding to the
raw features of each interaction, denoted by êkuv = (τ(tkuv), f

k
uv). The enhanced

edge embedding can therefore be formulated as:

ẽuv = Enci([ê1uv, ..., ê
Suv
uv ]). (3)

The time embedding inherits some good properties of Random Fourier Fear-
tures (RFF) [17], which enables GTEA to capture more fine-grained temporal
behaviours, e.g., time periodicity. Detailed analyses refer to Appendix 2.2.

3.4 Representation Learning with Temporal Edge Aggregation

Sparsity-InducingAttention for Neighbors Filtering. Common GNN mod-
els learn mutual relationships by iteratively aggregating neighborhood informa-
tion of a target node. To distinguish important nodes in aggregations, dense atten-
tion [25] is usually applied to calculate an attentive weight for each neighbor. How-
ever, in real-world tasks for TIGs, e.g., anomaly detection in mobile payment net-
works, the target node can interact with a large number of neighbors but only few
of them are of interest. In this case, considerable noisy neighbors, who are assigned
small but non-zero attentive weights, can overwhelm the few important, which
degrades the representative power of the learned node embeddings.

With this concern, we propose a sparse attention strategy, motived by [12],
for GTEA to enhance neighbor aggregations. The operations are formulated as:

α̃uv = aᵀhuv, huv = Enca([ê1uv, ..., ê
Suv
uv ]), (4)

αu: = Sparse(α̃u:), (5)

where Enca(·) maps the interaction sequence of (u, v) to the hidden space, a
is a trainable weight vector, αu: is the attentive weight vector for all neighbors
of node u. In experiments, we align Enca(·) with Enci(·) but keep indepen-
dent parameters. Sparse(·) is a sparsification operator (details refer to Appendix
2.3). The key idea of Sparse(·) is to truncate the input by a dynamic thresh-
old. It induces GTEA to learn sparse but normalized attentive weights αu: for
neighbors. This forces the model to distinguish the few important neighbors and
discard the trivial mass, which refines the information for neighbor aggregations.

Neighbors Aggregation with Temporal Edge Embeddings. With the
sparse attention mechanism, neighbors can be selectively aggregated. In addition,
we incorporate learned edge embeddings into aggregation. But instead of simply



34 S. Xie et al.

concatenating node and edge embeddings as the input to the aggregator [27,30],
we propose a new method to correlate node and edge information:

z(l)N (u) =
∑

v∈N (u)

αuvMLP1([z(l−1)
v ||ẽuv]), (6)

z(l)u = MLP2([z(l−1)
u ||z(l)N (u)]), (7)

where z(l−1)
u is the node embedding of u in the (l − 1)-th layer, N (u) is the

neighbors set of u and MLP1(·) and MLP2(·) are multi-layer perceptrons (MLP),
which enables GTEA to fuse features from different latent spaces. The introduc-
tion of edge embeddings forces GTEA to correlate both temporal and topological
dependencies in a TIG and therefore learn more comprehensive and discrimina-
tive node representations. We prove that Eq. 6 has more powerful representation
ability than the naive concatenation operator. Details refer to Appendix 2.4.

3.5 Model Training for Different Graph-Related Tasks

By iteratively stacking L GNN layers, GTEA can generate node embeddings
with high-level semantics for downstream tasks. In this work, we focus on two
tasks: node classifications and future link predictions. For node classifications,
the category probability vector is computed based on:

yu = Softmax(MLP3(z(L)
u )). (8)

For future link predictions, we predict the probability of a future link between
u and v by:

yuv = Sigmoid(z(L)
u

ᵀ
z(L)
v ). (9)

GTEA can then be trained in an end-to-end manner by cross-entropy loss. The
steps to train GTEA are summarized in Algorithm 2 in the appendix. Different
from some previous works [3,30], GTEA does not need to maintain a memory
to update embeddings, which enables it to work for real-world inductive tasks.

4 Experiments

4.1 Experimental Setup

Datasets In our experiments, we formulate node classification as a task to iden-
tify illicit users/ nodes. We evaluate GTEA on a payment dataset, denoted as
Mobile-Pay, which is provided by a major mobile payment provider. We addi-
tionally assess GTEA on two Ethereum phishing datasets 2 with different scales,
denoted as Phish-L(arge) and Phish-S(mall). For future link predictions, we
use Wikipedia and Reddit datasets [9] evaluation. Note that we align all other
2 Raw data: https://www.kaggle.com/xblock/ethereum-phishing-transaction-network.

https://www.kaggle.com/xblock/ethereum-phishing-transaction-network
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Table 1. Experimental Results of Node Classifications and Future Link Predictions

Tasks Node Classifications Future Link Predictions

Datasets Mobile-Pay Phish-S Phish-L Wikipedia Reddit
Model Acc F1 Acc F1 Acc F1 Acc F1 Acc F1
GCN 0.7481 0.7480 0.9077 0.9077 0.9298 0.8683 0.6472 0.6259 0.5369 0.4285
GraphSAGE 0.7474 0.7472 0.9405 0.9405 0.9753 0.9569 0.5986 0.5953 0.6424 0.6334
GAT 0.7265 0.7264 0.9405 0.9405 0.9631 0.9375 0.6167 0.5975 0.6396 0.6252
ECConv 0.7399 0.7399 0.9554 0.9559 0.9700 0.9480 0.6426 0.6424 0.6232 0.6219
EGNN 0.7549 0.7538 0.9479 0.9477 0.9659 0.9393 0.6401 0.6259 0.5484 0.4406
GTEAHE 0.7519 0.7516 0.9673 0.9673 0.9777 0.9615 0.6169 0.6123 0.6515 0.6495
TGAT 0.7212 0.7212 0.9673 0.9673 0.9740 0.9559 0.7253 0.7256 0.8418 0.8414
GTEAL 0.7848 0.7847 0.9836 0.9836 0.9805 0.9668 0.7988 0.7981 0.8809 0.8807
GTEAL+T 0.7990 0.7990 0.9777 0.9777 0.9789 0.9640 0.8149 0.8145 0.885 0.8849
GTEATX 0.7676 0.7670 0.9851 0.9851 0.9801 0.9658 0.7841 0.7832 0.8865 0.8864
GTEATX+T 0.7758 0.7758 0.9792 0.9792 0.9769 0.9603 0.7869 0.7864 0.8747 0.8746

four datasets’ setting with Mobile-Pay to follow the product scenarios. Thus, our
results may not be directly compared with the numbers reported in other works.
More details and statistics of dataset splits refer to Appendix 3.1.

Compared Methods. We compare GTEA with different methods, including
GNN baselines (GCN [8], GraphSAGE [4] and GAT [25]), edge-feature-involved
methods (ECConv [20] and EGNN [2]) and a state-of-the-art temporal graph
learning model (TGAT [27]). We also implement a GTEA variant, denoted as
GTEAHE, by replacing the learned edge embedding with handcrafted edge fea-
tures. Note that we mainly focus on the methods applicable to Mobile-Pay, i.e.,
can learn the overall status of all past interactions. Therefore, models cannot fit
the product environments, e.g., transductive [14,30] or event-by-event learning
methods [9,18], are not included. More details refer to Appendix 3.2.

Implementations. We implement two variants of GTEA (regarding the
sequence model) by LSTM and Transformer, which are denoted as GTEAL and
GTEATX, respectively. We use ‘+T’ to mark variants enhanced by the time
encoder. All hyperparameters are tuned through grid-search on the validation
set and we report the best accuracy and Macro-F1 on the test set. More
implementation details can be found in Appendix 3.3.

4.2 Experimental Results of Overall Performance

Node Classifications. Table 1 shows the results for node classifications. We
can clearly observe that variants of GTEA consistently outperform all other
models. We owe such superiority to the edge embedding module and the joint
integration of both topological and temporal information. With these designs,
GTEA can model the interaction dynamics for node pairs, and therefore be more
effective to capture discriminative behavior patterns of a node. An evidence is
that GTEA performs much better in the Mobile-Pay than that of others. This



36 S. Xie et al.

with Sparse Attentionwithout Sparse Attention

(a) Phish-S Acc (b) Phish-S F1 (c) Mobile-Pay Acc (d) Mobile-Pay F1

Fig. 3. Effects of the sparse attention mechanism on Phish-S and Mobile-Pay datasets.

Fig. 4. Distributions of attention weights (with/without Sparse(·)) on Phish-S (left)
and Mobile-Pay (right). The variant with dense attention is denote by “soft”.

may due to that actions of phishing is mostly naive and instantaneous, while
illicit payment interactions are associated with more complex temporal patterns,
which can be captured more effectively by temporal modeling. Even though,
GTEA still dominates other competitors over all datasets, which demonstrates
its effectiveness.

Future Link Predictions Results are shown in the right of Table 1. It can be
observed that GTEA achieves the best performance in this task. Note that TGAT
and GTEA perform much better than other competitors that do not incorporate
temporal information, which shows the importance of temporal modeling. Even
though, GTEA still outperforms TGAT by a large margin. This is because TGAT
mixes all interactions from different neighbors of a target node in temporal mod-
eling, which is hard to distinguish the interactions from the same instance. In
contrast, we adopt a pairwise interaction modeling scheme, which elaborately
exploits the relationship patterns for each neighbor. This endows GTEA the
power to learn connection features for node embeddings and therefore is more
effective for the future link prediction task.

4.3 Experiments Analyses

Effects of Edge Features/Embeddings From Table 1, we observe that mod-
els incorporating edge features mostly perform better than those who learn only
from node attributes. It is not surprised as edge features carry rich seman-
tics about connections and interactions. Information such as user behaviors and
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potential relations can be mined from edges. We also notice that GTEA performs
much better than other edge-feature-involved models. This is because high-level
semantics is encoded into the embedding, which extracts critical information
for other modules. The additional MLP module introduced in the aggregation
process (Eq. 6) also helps GTEA to align inputs from different feature domains,
which enables it to learn discriminative embeddings more efficiently.

Effects of the Temporal Dynamics Modeling An advantage of GTEA is
to model the temporal dynamics for TIGs, where Table 1 shows the benefit.
Compared with GTEAHE, which substitutes the learned temporal edge embed-
ding by handcrafted edge features, all GTEA variants perform much better. It
implies that modeling the temporal dynamics of an interaction sequence is crit-
ical for analyzing TIGs. The great performance improvement (over GTEAHE)
also demonstrates the effectiveness of the temporal dynamics modeling scheme of
GTEA. In addition, we observe that the time encoder works better in GTEA’s
LSTM variants than transformer variants. We speculate that this is because
the function of the time encoder partially overlaps with the position encoder in
transformer. Instead, vanilla LSTM doesn’t encode the position information and
therefore benefit much by introducing the time encoder. However, when it comes
to an environment with more complex and diverse temporal behaviors, e.g., the
Mobile-Pay dataset, the time-encoder can be more powerful to capture irregular
but discriminative patterns, such as different periodicities, for each interaction
sequence, which enhances the representation ability of all GTEA variants.

Effects of the Sparse Attention Aggregation. We conduct additional exper-
iments on Phish-S and Mobile-Pay datasets to validate the effectiveness of the
sparse attention mechanism. Specifically, we replace the Sparse(·) operator in
Eq. 5 by the Softmax function, which generates dense attentive weights. Quan-
titative results are shown in Fig. 3. In most cases, models with Sparse(·) achieve
a better performance. This is reasonable as redundant and noisy signals of irrel-
evant neighbors are discarded in aggregation, which encourages the model to
yield discriminative node embeddings. We additionally visualize the attention
weights’ distributions of the sparse and dense attention mechanisms, as shown
in Fig. 4. With dense attention, neighbors with small attentive weights, e.g., 0.1
in our cases, account for over 80% of all. In contrast, for Sparse(·), around 70% of
neighbors are truncated (attentive weights are zeroed) in Phish-S, while 40% in
Mobile-Pay. Such quantitative and qualitative results demonstrates that noises
are substantially suppressed, which explains the effectiveness of GTEA.

5 Conclusions

In this paper, we propose GTEA for inductive representation learning on Tempo-
ral Interaction Graphs (TIGs). Different from previous works, GTEA learns an
edge embedding for temporal interactions between each pair of adjacent nodes
by adopting an enhanced sequence model. By incorporating the learned edge
embeddings into the aggregation of a GNN, which is driven by a sparse atten-
tion mechanism, GTEA is encouraged to exploit both temporal and topological
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dependencies in TIGs. As a general framework, GTEA is evaluated on different
graph-related tasks and extensive experimental results show its effectiveness.
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Abstract. Graph Neural Networks (GNNs) have shown great ability in
modeling graph-structured data. However, most current models aggre-
gate information from the local neighborhoods of a node. They may fail
to explicitly encode global structure distribution patterns or efficiently
model long-range dependencies in the graphs; while global information
is very helpful for learning better representations. In particular, local
information propagation would become less useful when low-degree nodes
have limited neighborhoods, or unlabeled nodes are far away from labeled
nodes, which cannot propagate label information to them. Therefore, we
propose a new framework GSM-GNN to adaptively combine local and
global information to enhance the performance of GNNs. Concretely, it
automatically learns representative global topology structures from the
graph and stores them in the memory cells, which can be plugged into all
existing GNN models to help propagate global information and augment
representation learning of GNNs. In addition, these topology structures
are expected to contain both feature and graph structure information,
and they can represent important and different characteristics of graphs.
We conduct experiments on 7 real-world datasets, and the results demon-
strate the effectiveness of the proposed framework for node classification.

Keywords: Graph Neural Network · Global · Node Classification

1 Introduction

Over the past few years, Graph Neural Networks (GNNs) [9,11,19] have shown
great success in modeling graph data for a wide range of applications such as
social networks [17]. GNNs typically follow the message passing mechanism,
which aggregates the neighborhood representation of a node to enrich the node’s
representation. Hence, the learned representations capture both local topology
information and node attributes, which benefits various tasks [11].
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Despite the success of GNNs in modeling graphs, most of them can only
help nodes aggregate local neighbors’ information. First, long-range or global
information can be used to learn better representations. For example, two struc-
turally similar nodes can offer strong predictive power to each other but might
be very distant from each other [6]. Second, in node classification tasks, we only
have partially labeled nodes on graphs. Nodes are often sparsely labeled as it is
time-consuming, expensive and sometimes requires domain knowledge to label.
In this case, labeled nodes may only propagate their label information to their
local neighbors based on local aggregation, which may result in the misclassi-
fication of nodes distant from labeled nodes [5]. Therefore, it is important to
design GNNs to capture global information and long-range dependencies. Sev-
eral works [1,12] about aggregating node information from a wider range has
been proposed to improve the expressive power of GNNs. However, methods of
aggregating information from a wider range cannot explicitly distinguish relevant
nodes from lots of distant neighborhoods, which will also result in over-smoothing
issues. Thus, how to capture global information needs further investigation.

In real-world graphs, for each class, there are usually some representative
ego-graphs. For each ego-graph, it contains one central node and its neighbors
from the original graph together with their edge relations, which would be helpful
to provide global information about each class in the graph. For example, for
malicious account detection, one representative pattern for malicious accounts is
that they tend to connect to each other and also try to connect to benign accounts
to pretend that they are benign accounts; similarly, benign accounts also have
several representative graph patterns. Therefore, it’s important to extract and
use global representative ego-graphs to improve the performance of GNN models.
Though promising, the work on extracting global patterns to facilitate GNN
representation learning is rather limited [20]. However, MemGCN [20] only learns
global feature information but loses graph structure information.

Therefore, in this paper, we study a novel problem of learning global represen-
tative patterns to improve the performance of GNNs. There are several critical
challenges: (i) how can we efficiently extract both different structures and fea-
tures as global information automatically? (ii) how can we make all nodes or even
nodes with low-degree to find and utilize highly relevant global information? (iii)
how can we use these extracted ego-graphs to improve current GNN models? To
fill this gap, we propose a novel framework Graph Structure Memory Enhanced
Graph Neural Network, GSM-GNN. It utilizes a clustering algorithm to select
representative ego-graphs from the original graph and they are stored in memo-
ries. Then, query vectors are generated by preserving topology and node feature
information, and they can be used to find relevant global information. Finally,
based on query vectors, relevant global information from stored ego-graphs is
obtained, and neighborhood patterns about the representative graph structure
are also used to augment current GNNs. The main contributions are as follows:

– We study a problem with using global patterns in the graph to improve the
performance of GNNs based on local aggregation.

– We develop a novel framework that extends current GNNs with global infor-
mation. The adoption of memories learns and propagates both global feature
and structure information to enrich the representation of nodes.
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– Experimental results on seven real-world datasets demonstrate the effective-
ness of the proposed approach.

2 Related Works

Graph Neural Networks. Graph Neural Networks have shown great success
for various applications such as social networks [11,17]. Generally, existing GNNs
can be categorized into two categories, i.e., spectral-based [3,11] and spatial-
based [1,9,19]. Spectral-based approaches are defined according to graph signal
processing [3]. A first-order approximation is utilized to simplify the graph con-
volution via GCN [11]. Spatial-based GNN models aggregate information of the
neighbor nodes [9]. Despite differences between spectral-based and spatial-based
approaches, most GNN variants can be summarized with the message-passing
framework [7]. The high-level idea of the message passing mechanism is to prop-
agate the information of nodes through the graph based on pattern extraction
and interaction modeling within each layer. However, most of these works only
utilize local neighbors’ information. Thus, many works about utilizing global
information or high-order neighbors for GNNs [1,12] were proposed. There is
still little work on using global ego-graph patterns for node classification tasks.

Memory Augmented Neural Networks. Memory Augmented Neural Net-
works use the memory mechanism with differentiable reading operations to store
past experiences and show advantages in many applications [20]. Their imple-
mentations of memory on different tasks are inspired by key-value memory [16]
and array-structured memory [8]. Also, there have been several works on GNNs
that utilized memory-based design for different tasks recently [4,20]. For node
classification, memory nodes are introduced in [20] to store global characteristics
of nodes, which can learn high-order neighbors’ information in the message pass-
ing process. In summary, their memory mechanisms try to store important node
feature information to improve models’ performance. However, there are also
important global graph structure patterns like ego-graphs with node feature and
their edge relationships. Unlike the aforementioned approaches, our proposed
GSM-GNN can learn global ego-graph patterns.

3 Problem Formulation

We use G = (V, E ,X) to denote an attributed graph, where V = {v1, . . . , vN}
is the set of N nodes, E is the set of edges and X is the attribute matrix for
nodes in G. The i-th row of X, i.e., xi ∈ R

1×d0 , is the d0 dimensional features of
node vi. A ∈ R

N×N is the adjacency matrix. Aij = 1 if node vi and node vj are
connected; otherwise Aij = 0. We denote a k-hop ego-graph centered at node vi

as gi(Vgi
,Agi

), where Vgi
include vi and the set of nodes within k-hop distance

with vi, Agi
is the corresponding adjacency matrix of the ego-graph.

In real-world graphs, for each class, there are usually some representative
ego-graphs, which would represent global information of the graph. Thus, in
this paper, we utilize memory mechanisms to learn and store representative ego-
graphs and then propagate this information through the whole graph. Memory
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Fig. 1. An illustration of the proposed GSM-GNN.

can be seen as an array of objects, where each object in our paper represents a
ego-graph. Each ego-graph gi(Vmi

,Ami
) is centered at node v′

mi
with its k-hop

neighbors drawn from the original graph G, where Vmi
=

{
v1

mi
, . . . , v

B′
i

mi

}
and

each node in this set is from V with their edges in the adjacency matrix Ami
.

B′
i is the number of nodes in memory i and Ami

∈ [0, 1]B
′
i×B′

i to represent the
adjacency matrix for ego-graph gi. Note that memories are updated during the
training process. Our memory module in the last epoch is defined as MT =
{g1T (Vm1 ,Am1), . . . , g

B
T (VmB

,AmB
)}, where B is the number of memories, T

is the number of training epochs. In semi-supervised node classification, only
a subset of nodes are labeled. We denote the labeled set as VL ∈ V with YL

being the corresponding label set of the labeled nodes. The remaining nodes
VU = V\VL are the unlabeled set. The problem is formally defined as:

Given an attributed graph G = (V,A,X) and the partial labels YL, we aim
to learn a node classifier Qθ via plugging our proposed memories into current
GNNs. Qθ should model edges together with node features accordingly via learning
global ego-graphs during the label prediction process Qθ(V,A,X) → Y.

4 Methodology

In this section, we introduce the details of the proposed GSM-GNN, which stores
representative ego-graph structures and propagates their information to enhance
the representation learning of GNNs. An overview is shown in Fig. 1. Our model
can be split into two parts: Global Topology Structure Extraction, and Graph
Structure Memory Augmented Representation Learning. Firstly, we store global
topology structure information in memories by nodes with their neighborhoods
as ego-graphs from the center of clusters, which are obtained via the clustering
algorithm on both original and learnt nodes features. Then, we use the query
vectors based on feature and structure information to obtain relevant global
information from memories, which can enhance the expressive power of GNNs
based on local aggregation. The details of them will be introduced below.

4.1 Global Topology Structure Extraction

To mitigate limits of GNNs based on local aggregation, we propose to extract
global information from the original graph to enhance GNN models. For graph
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data, it doesn’t only contain node features but also edge relations between nodes.
Thus, our model is to extract representative ego-graphs, which preserve both
global topology structure together with node feature information, and store them
into memories. Then, these ego-graphs are used to enhance the representation
learning of GNNs which is introduced in the next section. To extract these ego-
graphs, we do k-Medoids clustering on nodes based on their original features X.
We then select B central nodes of clusters. Firstly, nodes in different clusters
have different information about the graph so a set of clusters are related to
different global patterns, and central nodes represent important characteristics
of clusters. Furthermore, information in one single node is limited, and neighbors
of central nodes and their relationship patterns are also important. Thus, these
central nodes with their k-hop neighbors, which form ego-graphs, are treated as
global topology graph structure information and stored in a memory set M0.

However, knowledge of extracting representative ego-graphs only on the orig-
inal feature is limited so it is necessary to update stored ego-graph based on
more informative representation vectors during the training process. Therefore,
we use k-Medoids clustering algorithms on the hidden representation Z which
is the output representation of GNN models. Also, central nodes may represent
the characteristics of some global patterns in the whole graph. Central nodes
and their one-hop or two-hop neighbors as ego-graphs are stored in Mt at the
training epoch t. In our experiment, memories are updated every 100 epochs. An
update of memories is utilized to automatically extract representative ego-graph
patterns on the whole graph. Then, ego-graphs stored in the memory are used
to enhance the representation learning of GNNs.

4.2 Graph Structure Memory Augmented Representation Learning

By extracting and storing representative ego-graphs, we propose to propagate
their global information to enhance representation learning of GNNs. The high
level idea is to use stored ego-graphs in the memory to improve the expressive
power of GNNs. To achieve this purpose, we need to query and aggregate relevant
global information from memories and use it to augment representation learning
of GNNs. And it can be split into three parts: (1) Query Vector Learning,
which learns the query vector of each node, and it will be used to obtain relevant
global information; (2) Global Ego-graphs Aggregation, which encodes ego-
graphs and aggregate their information by the similarity between query vectors
and encoded feature vectors of ego-graphs in memories; and (3) Neighbor-
hoods Augmentation, which utilizes the neighborhood patterns to augment
the representation, and can add long-range interactions for distant nodes through
this way. Specifically, we firstly obtain representation vectors zvi

for node vi via
one-layer GNN with local aggregation by:

zvi
= GNNθ1(X,A)vi

, (1)

where GNN can be flexible to different GNNs like GCN, GraphSage and GAT.
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Query Vector Learning. The purpose of our model is to use ego-graphs stored
in memories to enhance the representation learning of GNNs. But for a node
vi, not all memory elements are relevant to vi. Thus, we first need to learn
query vectors of nodes to get relevant information in memories. To guarantee
that nodes can query relevant memories, query vector learning should preserve
nodes’ features and structural information. Firstly, local neighborhood patterns
are represented as a vector zvi

with the message passing process of GNNs and
can be immediately treated as the query vector for node vi. However, nodes in
the graph only have a small number of neighbors and their local neighborhood
patterns may contain bias. Thus, we further augment the query vector with
feature information, which can help low-degree nodes be more representative
[10]. Concretely, a KNN graph is constructed based on the cosine similarity. For a
given node pair (vi, vj), their cosine similarity is calculated as Oij = x�

i xj

‖xi·‖2‖xj‖2
.

We choose k ∈ {20, 30} nearest neighbors via cosine similarity for each node and
get a KNN graph. The adjacency matrix of the KNN graph is denoted as Â.
Then, node similarity information is aggregated via GNN on KNN graph as:

ẑvi
= GNNθKNN

1
(X, Â)vi

, (2)

where θKNN
1 is the learnable parameter for learning KNN graph information,

which is denoted as ẑvi
. To learn query vectors from feature similarity and

structural information from zvi
and ẑvi

, these two vectors are concatenated
together and used as an input for an MLP layer to obtain the query vector as:

qi = [zvi
‖ẑvi

]Wq + bq (3)

where Wq ∈ R2d×d and bq ∈ Rd are learnable parameters, d is the dimension
of vectors zvi

, ẑvi
. Then, qi will be used to query relevant global information.

Global Ego-Graphs Aggregation. Furthermore, to query relevant ego-
graphs in memories via qi, we also need to encode the ego-graph information into
vectors. To achieve this goal, we utilize one-layer GCN to obtain representation
vectors for all ego-graphs in memories:

mi = Fφ(Xmi
,Ami

), (4)

where Fφ(∗) represents one-layer GCN with graph pooling to get the represen-
tation vectors of ego-graphs in memories, mi ∈ R

1×d. Xmi
is the representation

matrix for nodes in memory i, where Xmi
[j, :] ∈ R

1×d0 is the representation
vectors of node vj

mi
which is obtained from the original feature matrix X. Note

that the pooling method here is the mean pooling method. Then we calculate
the similarity between qi and Mt in the layer l of the training epoch t as:

si = Softmax(qi(M)T ), (5)

where M ∈ R
B′

i×d is the representation matrix for B′
i memories. The similarity

scores measure the importance of each global pattern in the memory. Any pattern
with a higher attention score is more similar to the local structural patterns
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of nodes. The representation vector of global information for node vi is then
constructed from the weighted sum of all global patterns in the memory Mt as

avi
=

∑B

j=1
si,jmj , (6)

where avi
represents global ego-graph information of node vi. si,j is the similarity

score between node i and memory j.

Neighborhoods Augmentation. Each memory module contains one repre-
sentative central node with its one or two-hop neighbors and their edge relations.
Even though the central node of each memory node has aggregated information
from its neighbors, we will also lose some information about their neighbors.
Thus, it’s important to explore neighborhood distributions from relevant ego-
graphs, which can further capture ego-graphs’ information. However, it will be
time-consuming and introduce more noisy neighbors’ information if we add all
neighbors’ of nodes in memories to one node’s augmented neighbors. Thus, we
select the most relevant memory modules as ri = arg maxj si,j , where ri is the
index of the most relevant memory module. Then, we obtain the most relevant
ego-graph gri

t (Vmri
,Amri

) of the training epoch t based on the similarity of
structural information between local ego-graph patterns and global ego-graph
patterns. Central nodes have aggregated their neighbors’ information and are
treated as representation vectors in memories which are added as global infor-
mation in Eq. (6). Instead of aggregating central nodes’ information again, neigh-
borhood nodes of them in Vmri

are treated as the augmented neighbors for the
node i and their information is aggregated for node vi. Enhanced neighbors
may contain noisy information so an attention mechanism is utilized to assign
different weights to augmented neighbors:

γij =
exp

(
LeakyReLU

(
uT

[
xvi

Wm‖xvj
Wm

]))
∑

k∈Vmri

exp (LeakyReLU (uT [xvi
Wm‖xvk

Wm]))
, (7)

where Wm ∈ R
d0×d is the learnable parameters, u ∈ R

1×2d is the learnable
weight vector, γij represents the weight for nodes j in Vmri

when node i aggre-
gates information from node j. To mitigate noise from augmented neighbors,
we aggregate these neighbors via the weight γij . The aggregation process of
augmented neighbors is:

z̃vi =
∑

j∈Vmri
\v′

mri

γijxvjWm, (8)

where v′
mri

is the central node of the ego-graph in the memory ri.
Finally, we get the local representation zvi

, global representation avi
and

augmented neighbors representation z̃vi
. Different nodes might rely on different

information. For example, low degree nodes may need more global information;
while high degree nodes with enough similar neighborhoods information may
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only need more local information. Thus, we propose to assign different weights
to get the final node representation. Specifically, the weight is calculated as:

βi = Softmax(Wo[z̃vi
||avi

||zvi
] + bo), (9)

where Wo and bo are learnable parameters, βi ∈ R
3 is the weight for different

representation vectors. Then, different representation vectors are added together
based on their weights to get hvi

as:

hvi
= βi,0zvi

+ βi,1avi
+ βi,2z̃vi

. (10)

With the above operation, GNN models can help nodes aggregate both local
neighborhood information and global information adaptively from memories.
Therefore, our memory modules can store representative global information and
help propagate this information on the whole graph. Note that our memory
module can be also added in more layers, to reduce the computational cost, we
only use it to augment the representation of one layer.

4.3 Objective Function of GSM-GNN

With the representation H capturing both local and global information, we add
another GNN layer together with Softmax function to predict the class proba-
bility vector of each node vi as:

ŷvi
= Softmax(GNNθp

(H,A)vi
) (11)

where ŷvi
is the predicted label’s probability by passing the output from the final

GNN layer to a softmax function. θp represents the parameters of our model’s
final prediction layer. The cross-entropy loss function for node classification is:

min
θ

Lc(θ) = −
∑

vi∈VL

C∑
c=1

yc
vi

log ŷc
vi

, (12)

where C is the number of classes, yvi
is the one hot encoding of vi’s label and

yc
vi

is the c-th element of yvi
. θ denotes the set of parameters.

5 Experiments

In this section, we conduct experiments on real-world datasets to demonstrate
the effectiveness of GSM-GNN. In particular, we aim to answer the following
research questions: (RQ1) Can the proposed memory mechanism improve node
classification performance? (RQ2) Is the designed approach flexible to be applied
in various GNN variants? (RQ3) What are the contributions of the proposed
module in this paper for GSM-GNN?
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Table 1. Node classification performance (Accuracy (%) ± Std.) on all graphs.

Method Cora Citeseer Computer Photo Physics Chameleon Squirrel

MLP 45.44 ±1.55 52.61 ±0.80 67.35 ±0.71 79.10 ±0.74 92.11 ±0.11 48.00 ±1.5 34.02 ±2.13

GCN 74.65 ±1.91 65.20 ±0.74 80.80 ±0.29 87.90 ±0.58 94.24 ±0.10 63.50 ±1.93 47.48 ±2.00

GraphSage 75.43 ±2.08 65.63 ±0.35 73.47 ±0.34 86.31 ±0.15 94.56 ±0.08 48.36 ±2.08 35.88 ±1.20

GAT 71.30 ±0.92 64.55 ±2.32 76.47 ±1.49 85.74 ±1.32 94.21 ±0.07 64.12 ±1.82 48.18 ±4.14

Mixhop 70.40 ±2.83 62.44 ±1.14 75.88 ±1.00 87.92 ±0.53 94.41 ±0.23 60.71 ±1.55 44.11 ±1.10

ADA-UGNN 74.29 ±1.95 65.30 ±1.28 79.88 ±0.92 88.08 ±0.78 94.70 ±0.11 52.19 ±1.85 34.84 ±1.36

H2GCN 72.45 ±0.46 66.10 ±0.48 78.22 ±0.75 86.94 ±0.47 94.59 ±0.09 59.13 ±2.00 36.91 ±1.10

FAGCN 69.53 ±0.12 61.07 ±0.32 81.09 ±0.14 85.33 ±0.12 94.67 ±0.07 65.57 ±4.80 48.73 ±2.50

Simp-GCN 74.24 ±1.32 66.24 ±1.05 74.23 ±0.12 82.41 ±1.36 94.43 ±0.07 64.71 ±2.30 42.81 ±1.20

GCN-MMP 72.23 ±2.19 64.95 ±1.69 79.55 ±1.48 87.56 ±1.03 94.42 ±0.12 66.17 ±1.68 50.93 ±1.45

GSM-GCN 75.93 ± 0.65 66.33 ± 0.49 81.32 ± 0.34 88.87 ± 0.35 94.72 ± 0.07 67.20 ± 1.85 54.14 ± 1.60

5.1 Datasets

We conduct experiments on seven publicly available benchmark datasets. Cora
and Citeseer [11] are two datasets for citation networks Computers and
Photo [18] are two datasets for the Amazon co-purchase graph [14]. Physics [18]
is a larger co-authorship graph. Chameleon and Squirrel [15] are two datasets
for the web pages in Wikipedia. They are used for heterophilous graphs. For
Chameleon and Squirrel, we follow the 10 standard splits from [21]. For other
datasets, we randomly split the dataset into train/val/test as 2.5%/2.5%/95%.
The random split is conducted 5 times and average performance will be reported.

5.2 Experimental Setup

Baselines. We compare GSM-GNN with representative methods for node clas-
sification, which includes MLP, GCN [11], GraphSage [9], GAT [19], Mixhop [1],
ADA-UGNN [13]. We also compare GSM-GNN with the following representa-
tive and state-of-the-arts GNN models on heterophilous graphs, which includes
H2GCN [21], FAGCN [2], Simp-GCN [10] and GCN-MMP [4].

Configurations. All experiments are conducted on a 64-bit machine with
Nvidia GPU (Tesla V100, 1246 MHz, 16 GB memory). For a fair comparison,
we utilize a two-layer neural network for all methods, and the hidden dimen-
sion is set as 64. The learning rate is initialized to 0.001. Besides, all models
are trained until converging, with the maximum training epoch being 1000. The
implementations of all baselines are based on Pytorch Geometric or their original
code. For our method, the update epoch of memories is fixed at 100 and B is set
by grid search from 5 to 30 for all datasets. The hyperparameters of all methods
are tuned on the validation set. We adopt accuracy (ACC) as the metric.

5.3 Performance on Node Classification

In this subsection, we compare the performance of the proposed method with
baselines for node classification on the heterophilous and homophilous graphs
introduced in Sect. 5.1, which aims to answer RQ1. For Cora, Citeseer, Comput-
ers, Photo and Physics, each experiment is conducted 5 times and for Chameleon
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Table 2. Node classification accuracy with different GNNs.

Cora Citeseer Chameleon Squirrel

GCN 74.65± 1.91 65.20± 0.74 64.80± 1.93 47.48± 0.20

GSM-GCN 75.93± 0.65 66.33± 0.49 67.20± 1.85 54.14± 1.60

GraphSage 75.43± 2.08 65.63± 0.35 48.36± 2.08 35.88± 1.20

GSM-Sage 76.77± 0.62 67.01± 0.29 50.59± 2.81 37.86± 1.47

GAT 71.30± 0.92 64.55± 2.32 64.12± 1.82 48.18± 4.14

GSM-GAT 73.38± 1.82 65.55± 1.20 64.67± 1.62 53.51± 2.78

and Squirrel, each experiment is conducted 10 times. The average results with
standard deviation are reported in Table 1. Note that GSM-GCN uses the GCN
as the backbone of our proposed memory modules. From the table, we make the
following observations: (1) Compared with GCN and other GNN models, GSM-
GCN can consistently improve the performance of GCN on all datasets, which
demonstrates the effectiveness of the proposed memory module. Furthermore,
GSM-GCN outperforms all baselines on all datasets, especially for the Squirrel
dataset. This is because the proposed memory module can capture represen-
tative ego-graphs to facilitate GNNs to capture global information. (2) Both
Simp-GNN and GSM-GCN utilize the information of node features’ similarity.
GSM-GCN significantly outperforms Simp-GNN on all datasets. This is because
GSM-GCN adopts similarity information as a query vector to query global infor-
mation, which shows the effectiveness of our query mechanism based on feature
similarity. (3) GCN-MMP also designs a memory mechanism on nodes to improve
GNNs’ performance. The proposed GSM-GCN consistently outperforms GCN-
MMP on all datasets. This is because GCN-MMP only stores feature vectors in
memories while our method utilizes both feature and structure information.

5.4 Flexibility of GSM-GNN for Various GNNs

To answer RQ2, we conduct experiments with different architectures of GSM-
GNN by inserting our memory module into different GNN variants. Specifically,
we test our memory modules on GCN, GraphSage, and GAT layers. For GCN,
GraphSage, and GAT, we utilize a two-layer graph network with 64 hidden
dimensions. For a fair comparison, all models use the same settings. For all
the methods, hyperparameters are tuned via the performance of the validation
set. Each experiment is conducted 5 times on Cora and Citeseer datasets, and
10 times on Chameleon and Squirrel. The average performance with standard
deviation is reported in Table 2. From the table, we have the following obser-
vations: (i) GSM-GNN can consistently improve the performance on these four
datasets with all backbones which indicates that our proposed memory mecha-
nism is effective when incorporated into other GNN variants and demonstrates
the flexibility and advantage of the proposed method; and (ii) in particular, the
proposed memory module can significantly improve the GCN, GraphSage and
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Table 3. Compared with different information from memory modules.

Method Cora Citeseer Computer Photo Physics Chameleon Squirrel

GCN 74.65 ± 1.91 65.20 ± 0.74 80.80 ± 0.29 87.90 ± 0.58 94.24 ± 0.10 63.50 ± 1.93 47.48 ± 2.00

Without avi 75.27 ± 1.26 65.82 ± 0.70 80.93 ± 0.21 86.67 ± 0.29 94.63 ± 0.07 67.09 ± 1.63 54.04 ± 1.20

Without z̃vi 73.63 ± 1.59 66.01 ± 0.49 80.87 ± 0.17 88.04 ± 0.34 94.47± 0.40 64.56 ± 2.16 53.87 ± 0.87

GSM-GCN 75.93 ± 0.65 66.33 ± 0.49 81.32 ± 0.34 88.87± 0.35 94.72 ± 0.07 67.20 ± 1.85 54.14 ± 1.60

GAT on the heterophilous graphs. This shows that our memory module can use
global information to improve current GNNs.

5.5 Ablation Study

To answer RQ3, in this section, we conduct an ablation study to evaluate the
influence of each queried information from memories including avi

and ẑvi
in

GSM-GNN. First, to investigate how the global ego-graph information (avi
)

influences the performance of node classification, we only encode ego-graph infor-
mation and add it with local information via the attention mechanism. Then, we
also query augmented neighbors and aggregate this information as global infor-
mation ẑvi

. We use GCN as the backbone for ablation studies. The experiments
are conducted on all graphs. The average performance in terms of Accuracy is
shown in Table 3. From the table, we observe that: (i) Comparing GCN with
“Without avi

”, augmented neighbors from ego-graphs in memories can lead to
a little improvement on almost all graphs. It means that augmented neighbors
from memories can provide more similar nodes information during the aggrega-
tion process; (ii) “Without z̃vi

” only utilizes ego-graph information in memories
and it also performs better than the original GCN. It is because global pat-
terns based on ego-graph may contain important label information which can
be used to improve the performance of the original GCN; (iii) Finally, our pro-
posed GSM-GCN has the best performance on all datasets because GSM-GCN
can aggregate local information, global information from ego-graphs, and aug-
mented neighbors adaptively. This ablation study further proves the effectiveness
of our proposed method to capture global information from the whole graph.

6 Conclusion

In this paper, we study a novel problem of learning global patterns and propagat-
ing global information to improve the performance of GNNs. We propose a novel
framework Graph Structure Memory Enhanced Graph Neural Network (GSM-
GNN) which stores representative global patterns with nodes and graph struc-
ture, and can be used to augment the representation learning of GNNs. Through
extensive experiments, we validate the advantage of the proposed GSM-GNN,
which can utilize a memory network to store and propagate global information.
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19. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph
attention networks. arXiv preprint arXiv:1710.10903 (2017)

20. Xiong, T., Zhu, L., Wu, R., Qi, Y.: Memory augmented design of graph neural
networks (2020)

21. Zhu, J., Yan, Y., Zhao, L., Heimann, M., Akoglu, L., Koutra, D.: Beyond homophily
in graph neural networks: Current limitations and effective designs. Adv. Neural.
Inf. Process. Syst. 33, 7793–7804 (2020)

http://arxiv.org/abs/1811.05868
http://arxiv.org/abs/1710.10903


UPGAT: Uncertainty-Aware
Pseudo-neighbor Augmented Knowledge

Graph Attention Network

Yen-Ching Tseng1,2(B), Zu-Mu Chen1, Mi-Yen Yeh1, and Shou-De Lin2

1 Institute of Information Science, Academia Sinica, Taipei, Taiwan
franklyn.chen@gmail.com, miyen@iis.sinica.edu.tw

2 Department of Computer Science and Information Engineering, National Taiwan
University, Taipei, Taiwan

{r0822a10,sdlin}@csie.ntu.edu.tw

Abstract. The uncertain knowledge graph (UKG) generalizes the repre-
sentation of entity-relation facts with a certain confidence score. Existing
methods for UKG embedding view it as a regression problem and model
different relation facts independently. We aim to generalize the graph
attention network and use it to capture the local structural information.
Yet, the uncertainty brings in excessive irrelevant neighbor relations and
complicates the modeling of multi-hop relations. In response, we propose
UPGAT, an uncertainty-aware graph attention mechanism to capture
the probabilistic subgraph features while alleviating the irrelevant neigh-
bor problem; introduce the pseudo-neighbor augmentation to extend the
attention range to multi-hop. Experiments show that UPGAT outper-
forms the existing methods. Specifically, it has more than 50% Weighted
Mean Rank improvement over the existing approaches on the NL27K
dataset.

Keywords: uncertain knowledge graph · embedding · graph attention

1 Introduction

Knowledge Graph (KG) embedding has been widely studied in recent years,
allowing machine learning models to leverage structural knowledge. As a gen-
eralized form, Uncertain Knowledge Graphs (UKG) no longer simply consider
the existence of relational facts. Instead, they also express the corresponding
plausibility. For example, the occurrence of protein interactions is probabilistic;
if two words are synonymous is also probabilistic due to lexical ambiguity.

All existing uncertain knowledge graph embedding methods, including [2–
4,9,13], model each relation fact independently. To be more concrete, the model
samples one single relation fact, termed triplet, at a time, and predicts its con-
fidence score. The simplicity of these methods helps avoid the caveat of over-
fitting. However, the probabilistic nature of UKG complicates the structural
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information and also makes the graph denser since there can be many extra
uncertain relations between each entity pair. Therefore, we claim modeling sub-
graph information is indispensable for advancing UKG embedding quality.

Among all methods that incorporate subgraph information on embedding
deterministic KG, graph attention network (GAT) [12] can aggregate neighbor-
ing triplets and use the attention mechanism to weigh each triplet based on their
importance. This feature is highly desirable for uncertain and dense graphs, as
it can filter out implausible or irrelevant neighbors on an as-needed basis.

Nonetheless, present GAT methods such as [14] are designed for the deter-
ministic KG only. They cannot be directly applied to UKG due to the following
challenges we aim to tackle in this study. First, it is challenging to retain the
uncertainty information of the subgraph while filtering out unrelated ones. We
presume that many neighboring triplets surrounding a given triplet can be unin-
formative for embedding such a triplet due to the uncertainty and high density of
the uncertain KG. We show in the experiment section that, in reality, the plau-
sibility does not imply relevance - it is groundless to focus on the more plausible
neighbors trivially. Second, unlike deterministic KGs where the existence of a
path is a binary question, it is difficult to determine the confidence score of a
multi-hop relation without predefined inference rules.

To address these challenges, the conventional practice will devise a dedicated
model structure that embeds confidence scores. In contrast, we take an innovative
perspective to encode the uncertainty information implicitly and reach an even
better performance proven in experiments. Our contributions are: (i) our pro-
posed model, UPGAT, is the first to incorporate subgraph features and generalize
GAT for the uncertain KG, (ii) rather than formulating the confidence score for
neighbor triplets, the proposed graph attention with the attention baseline mech-
anism can catch the uncertainty while distinguishing unrelated information, and
(iii) without using rule-based inferences, the pseudo-neighbor augmented graph
attention overcomes the difficulty of identifying and leveraging multi-hop rela-
tions, where we add predicted n-hop neighbors, termed pseudo-neighbors, into
the neighbor aggregation mechanism.

Experiments on three public datasets depict that our proposed method is
superior to the existing technology on both the link prediction and confidence
score prediction tasks. Specifically, UPGAT shows more than 50% Weighted
Mean Rank (WMR) improvement on the NL27K dataset.

2 Preliminaries

2.1 Problem Statement

Definition 1 (Uncertain knowledge graph). Let G be an uncertain knowl-
edge graph, such that G = {(l, sl)|h, t ∈ E , r ∈ R, sl ∈ [0, 1]}, where l = (h, r, t) is
a triplet containing head and tail entities h and t with relation r; E is the entity
set, R is the relation set, and sl is the confidence score of triplet l.
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Definition 2 (Negative and positive samples). An uncertain relation fact
sample, (l, sl), is a negative sample if sl = 0 and is a positive sample otherwise.

Note that as existing datasets only include positive samples, most studies
randomly draw out-of-dataset triplets as negative samples. If the true confidence
score of such a sample is non-zero, it is termed as a false-negative triplet [4].

Given an uncertain knowledge graph G, the Uncertain Knowledge Graph
Embedding problem aims to encode each entity and relation in a low-dimensional
space while preserving the probabilistic graph structure. Note that the determin-
istic KG is a special case of UKG, where the confidence scores are either one
or zero. Hence, applying deterministic KG embedding methods to UKG can be
incompatible and/or have degraded performance. Moreover, the inherent higher
density of uncertain KG could lead to more false-negative triplets.

Most existing embedding methods for uncertain knowledge graphs [3,4,13]
follow the paradigm of traditional KG embedding methods to estimate the con-
fidence score of a single triplet, l = (h, r, t), using a parameterized score function
S(ĥ, r̂, t̂), where ĥ, r̂, and t̂ are the respective embedding vectors. As an exam-
ple, UKGE [3] applies the DistMult [15] scoring function for S and uses Mean
Square Error (MSE) loss to learn the confidence score sl as a regression model:
J + = ||S(h̄, r̄, t̄) − sl||2.
Definition 3 (Subgraph Features). Given an uncertain relation fact, (l, sl),
where l = (h, r, t), let the subgraph feature be any connected subgraph G′ ⊂ G,
where (l, sl) ∈ G′ and |G′| > |{(l, sl)}|.

The above mentioned methods for embedding uncertain KGs model different
relation facts independently. Nonetheless, studies on deterministic KGs, such as
[6,7,11,12,14], have shown the benefit for node classification and link prediction
to aggregate the neighboring triplets around an entity. We believe the complex
and continuous graph structure of uncertain KGs makes it even more essential
to model subgraph features explicitly.

2.2 Motivations and Challenges

To exploit subgraph features, we found graph attention network (GAT)-based
method is well-suitable yet has not been studied for UKGs. Concerning the
probabilistic nature of UKGs, where a triplet can be surrounded by implausible
neighboring relation facts, GAT can learn the importance of each neighboring
relation fact and assigns different attention scores accordingly. Other ways to
model multi-hop relationships are subject to various limitations, which we have
more discussions about in Sect. 2.3.

KBGAT [14] is a variant of graph attention network (GAT). Different from
GAT that only considers the node features in the graph, KBGAT can encode the
edge (relation) features in the knowledge graph. Given an entity hi and one of its
neighbor entities hj connected with relation rk, let their embeddings be h̄i, h̄j ,



56 Y.-C. Tseng et al.

and ḡk respectively. The corresponding neighbor feature, c̄ijk, attention value,
bijk, and the attention score, αijk, are as follows: c̄ijk = W1[h̄i||h̄j ||ḡk]; bijk =
LeakyReLU(W2c̄ijk); αijk = softmaxjk(bijk). Finally, the new presentation of
entity hj is h̄′

i = σ(
∑

j∈Ni

∑
k∈Rij

αijk c̄ijk), where Ni denotes the neighbor
entity set of entity hi, Rij denotes the set of relations connecting entities hi and
hj , and σ represents any non-linear function.

However, components of KBGAT are not well-generalizable to UKG, result-
ing in worse performance, for which we have identified two major issues.

First, KBGAT does not take confidence score information into account in
its aggregation mechanism. It is presumable that due to the uncertainty and
high density, irrelevant triplets are prevailing in the uncertain KG. The intu-
itive assumption is that there exist positive correlations between the confidence
score and attention score. Therefore, a naive solution is to explicitly formulate
a confidence score in the attention mechanism. For instance, let sijk be the con-
fidence score of triplet (hi, rk, hj), we have explored the following three setups:
(1) concatenate the confidence score into the feature vector: redefine c̄ijk as
c̄ijk = W1[h̄i||h̄j ||ḡk||sijk], (2) linearly weight confidence score with the learned
attention value: Redefine h̄′

i as h̄′
i = σ(

∑
j∈Ni

∑
k∈Rij

sijkαijk c̄ijk), and (3) let
the attention value be the confidence score: h̄′

i = σ(
∑

j∈Ni

∑
k∈Rij

sijk c̄ijk).
Analyses in Sect. 4.3 show none of them is perceivably better over KBGAT [14].

In fact, these naive assumptions are questionable. First, the embeddings of
neighbor triplets should have contained their confidence score information and
obviated the need to model it explicitly. We only formulated confidence scores
in the loss function. Second, there is no clear evidence that weighting neighbors
according to their plausibility helps the attention process. Low-confidence triplets
are not necessarily irrelevant. Hence, we avoid adding constraints between the
attention and the confidence scores. Rather, we aim to propose an uncertainty-
aware attention mechanism to properly handles irrelevant neighbors.

Second, finding multi-hop relations is infeasible using path-searching algo-
rithms due to uncertainty. To broaden the scope of attention beyond 1-hop neigh-
bors, Xie et al. [14] propose the n-hops auxiliary neighbor mechanism. However,
given uncertain relations, such n-hops operation is difficult to be realized with-
out extra domain knowledge. For instance, Chen et al. [3] apply human-defined
first-order logic to imply the plausibility of multi-hop relations. Please note this
problem is not unique to attention-based models but to most existing methods.

With regard to the above issues, therefore, we propose a robust attention-
based model to reduce the impact of irrelevant neighbors and extend its attention
range beyond one hop, even if relation links are uncertain.

2.3 Related Work

Traditional embedding methods for deterministic KGs, such as [1,15], focus pri-
marily on modeling single triplets. Subsequent studies explore more about sub-
graph modeling. For example, [7] exploits paths as subgraph features. There
are also logic rule-based methods, e.g. [10,16], which can model more subgraph
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Fig. 1. The overview of UPGAT. α is the attention score. Dashed circles and arrows
represent pseudo-neighbors.

Fig. 2. The attention value on the left is lower than that on the right (0.1 vs 1.0), but,
after softmax, the attention score on the left becomes significantly higher (0.48 vs 0.26)

patterns other than paths with well-designed rule templates. Yet, such tem-
plates rely on prior domain knowledge. Recently, neural-network-based meth-
ods with deeper and more complex artificial neural networks are proposed, e.g.,
[8,11,12,14]. Some of them can model larger subgraphs without extra human
knowledge.

Existing works for uncertain knowledge graph embedding, to our knowledge,
only focuses on modeling single triplets; none of them explore how to utilize sub-
graph features. UKGE [3], the first method for embedding uncertain knowledge
graphs, applies probabilistic logic rules (PSL) to infer unseen triplets. PASSLEAF
[4] aims to alleviate the false-negative problem. SUKE [13] proposes an evaluator-
generator architecture. BEUrRE [2] models each entity as a box and relations as
affine transforms to capture the uncertainty. FocusE [9] adds an extra layer after
the scoring layer, balancing the high-confidence and uncertain graph structure.

3 Approach

3.1 Overview

The uncertainty-aware pseudo-neighbor augmented knowledge graph attention
network (UPGAT) is a generalization of the graph attention network featur-
ing the ability to incorporate uncertain subgraph features and exploit multi-hop
relations. Particularly, for the issues discussed in Sect. 2.2, the attention base-
line mechanism alleviates the negative impact of irrelevant neighbors; pseudo-
neighbor augmentation overcomes the difficulty of identifying multi-hop paths.

UPGAT consists of two pipelined training stages depicted in Fig. 1. First,
train a 1-hop graph attention model, θ, to generate the pseudo-neighbor triplets,
indexed n + 1 to n + m. Second, train a multi-hop model, Θ, based on the
augmented knowledge graph to explore both one- and multi-hop relations.
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3.2 1-Hop Attention Module with Attention Baseline Mechanism

This subsection explains the proposed attention model with the attention base-
line mechanism, tailored to handle irrelevant neighbors and to increase robust-
ness. We start with the case where only one-hop neighbor features are used.

For the following discussions, let h̄i and ḡk denote the embeddings of an
entity hi and a relation rk, respectively. Let Rij be the set of relations connecting
entities hi and hj . Let Ni be the set of the 1-hop neighbor entities of entity hi.

Given an entity hi, let the neighbor entity-relation representation c̄ijk be
W1[h̄j ◦ ḡk], for a neighbor entity hj and the connecting relation gk, where
W1 ∈ R

d×d and d is the embedding size. The corresponding attention value, i.e.,
the importance of the neighbor feature, is defined in Eq. (1), where Wa ∈ R

1×d.

aijk = LeakyReLU(Wa[h̄i ◦ tanh(c̄ijk)]). (1)

We aggregate neighbor features with an element-wise product to preserve
both the semantic interaction and confidence score information between the
entity and the relation in the embedding vectors. We pass this information to the
attention mechanism and let it decides what is important instead of explicitly
modeling the confidence score. Compared to concatenating embedding vectors as
in GAT [12] and KBGAT [14], it also reduces the feature dimension, enhancing
the robustness against noises from uncertainty.

To mitigate the impact of many irrelevant uncertain neighbors, we introduce
the attention baseline mechanism, before normalizing the attention values by
softmax to get the attention score. The normalized attention score is essentially
a convex combination among all neighboring features. Consequently, when all
neighbors are irrelevant, the attention mechanism still has to “choose” from one
of them, as shown in Fig. 2. Thus, the attention baseline mechanism serves as
the “none of them” option. Each neighbor can get a high normalized attention
score only when its attention value is higher than the baseline value.

Formally, for each entity hi, add a baseline value abaseline
i as follows where g0

is the embedding for the special self-loop relation of the attention baseline:

c̄baselinei = W1[h̄i ◦ ḡ0],

abaseline
i = LeakyReLU(Wa[h̄i ◦ tanh(c̄baselinei )]).

(2)

For the attention score, normalize the baseline value and the attention value
of other neighbors together as below in Eq. 3. Then, get the new embedding,
h̄i

′, of entity hi as shown in Eq. (4), composed of the weighted neighbor and self
representation.

αijk =
exp (aijk)

exp (abaseline
i ) +

∑
m∈Ni

∑
n∈Rim

exp (aimn)
,

αbaseline
i =

exp (abaseline
i )

exp (abaseline
i ) +

∑
m∈Ni

∑
n∈Rim

exp (aimn)
.

(3)

h̄i
′ = σ(αbaseline

i c̄baselinei +
∑

j∈Ni

∑

k∈Rij

αijk c̄ijk). (4)
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The non-linear function σ we choose is ELU. [5].
αbaseline
i in Eq. (4) can be regarded as a gate that controls the amount of

neighbor information. As the neighbor’s attention values are lower, the new
embedding h̄i

′ contains less neighbor information, and vice versa. A similar con-
cept is the self-attention mechanism proposed by [12]. However, it cannot be
applied to multi-relational graphs, so this mechanism is removed in KBGAT
and replaced by residual connections. Nevertheless, the residual connection can-
not be used to control the intensity of neighbor information. Our method can
be viewed as a generalization of self-attention for multi-relational graphs.

Finally, let the output entity embedding be h̄i
o = WEh̄i + h̄′

i where WE ∈
R

d×d; h̄i and h̄i
′ are the initial and new entity embedding respectively. Similarly,

let the output relation embedding be ḡk
o = WRḡk where WR ∈ R

d×d.
This is the proposed attention module for 1-hop neighbors. The attention

module beyond 1-hop will be described in Sect. 3.4.

3.3 Confidence Score Prediction and Training Objective

Confidence Score Prediction. To estimate the confidence score of a given triplet
l = (hi, rk, hj), firstly, use DistMult [15] as the scoring function to get the score
p(l) = h̄i

o · (ḡok ◦ h̄o
j). Then, map p(l) to the [0,1] range to get the confidence

score prediction: S(l) = S(p(l)) = Sigmoid
(

w · p(l) + b

)

, where w and b are the

weight and bias for the linear transformation.

Training Objective . Given a triplet l = (h, r, t) and its confidence score sl, where
h, t ∈ E , r ∈ N , sl ∈ [0, 1], use the mean-square-error loss function to make S(l)
approximate sl.

For a triplet l from the training triplet set L+ and its confidence score sl,
J + = 1

|L+|
∑

l∈L+ ||S(l)−sl||2. For a triplet l from the randomly drawn negative
triplet set L−, assume sl = 0 such that J − = 1

|L−|
∑

l∈L− ||S(l)||2. Finally, sum
the two terms up to get the total loss for the 1-hop model: J = J + + λ1J −,
where λ1 is a hyper-parameter set to 1 by default.

3.4 Pseudo-neighbor Augmented Graph Attention Network

This subsection covers how to extend the base 1-hop attention module to n-hop
and concludes the proposed UPGAT model. In deterministic graphs, multi-hop
features can be represented as auxiliary relations, which are the summation of the
relation embeddings in the path between any n-hop entity pair. However, in an
uncertain graph, the confidence score of these relations is unknown without data-
dependent inference rules. We use pseudo-neighbors to overcome the limitation.

After training the 1-hop model, build the pseudo-neighbor augmented uncer-
tain knowledge graph, consisting of the original KG and the predicted false-
negative triplets. Precisely, use the 1-hop model as the teacher model to predict
false-negative tail entities for all (head, relation) pairs in the training data. Then,
select those with top-k predicted confidence scores to form the new augmented
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dataset. These pseudo-labeled triplets are the missing neighbors that may span
across one or multiple hops in the original graph. The rationale for using the
top-k filtering is that it causes more damage to the model to mispredict triplets
with higher confidence scores as negative.

Finally, train a student model from scratch on the pseudo-neighbor aug-
mented uncertain knowledge graph as the final model of the UPGAT. Pseudo-
neighbors enable the graph attention to extend its attention range beyond 1-hop,
no longer limited by the uncertainty of the paths. Note that the pseudo-labeling
process follows a two-staged teacher-student schema to improve training stabil-
ity. However, other semi-supervised learning strategies can be applied as well.

Formally, for the attention module beyond 1-hop, modify Eqs. (3, 4) by
replacing Ni and Rim in the summation with N ′

i = Ni ∪ N pseudo
i and R′

im =
Rim∪Rpseudo

im where N pseudo
i is the predicted false-negative neighbor set of entity

hi; Rpseudo
ij is the set of predicted relations bridging hi and hj , which can be

both 1-hop and multi-hop in the original graph.
J pseudo and J semi shown below are the loss function of the predicted samples

Lpseudo and the total loss for the semi-supervised learning of the student model
respectively, where λ2 is the hyper-parameter.

J pseudo =
1

|Lpseudo|
∑

l∈Lpseudo

||f(l) − spseudol ||2.

J semi = J + + λ1J − + λ2J pseudo.

(5)

4 Experiment

We evaluate our model with two tasks: confidence score prediction (CSP) and tail
entity prediction (TEP). Sect. 4.2 compares UPGAT with existing works. The
ablation studies in Sect. 4.3 intend to answer the following questions: (i) How
well native solutions perform; (ii) If the attention baseline mechanism boosts the
performance; (iii) If the pseudo-neighbor augmented graph attention successfully
models multi-hop relations. Lastly, in Sect. 4.4, we verify if the proposed method
works well on the deterministic KG.

4.1 Settings

We used the same training and testing datasets, CN15K/NL27K/PPI5K, and
the same evaluation metrics as used by [4]. The CSP task is a regression problem
to predict the confidence score given a triplet, so we take MSE as the metric.
The TEP task is a ranking problem to predict the tail entity given a head entity
and a relation so we choose weighted mean rank, weighted Hit@k, and NDCG
as the metrics. Chen et al. [4] proposed new evaluation metrics such as WMR
(Weighted Mean Rank) and WH@K, which are MR (mean rank) and Hit@K
linearly weighted by confidence scores. The new metrics are claimed to be more
suitable for the uncertain knowledge graph. We keep this setting for compatibility
as these metrics show identical trends as the original ones, e.g., MR and H@K.
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Table 1. Tail Entity Prediction & Confidence Score Prediction. (MSE in 0.01). Bold-
face indicates the best value for a metric.

TEP CSP
datasets models WMR WH@20 WH@40 NDCG MSE+ MSE-

CN15K UKGElogi [3] 1676.0 32.2% 38.5% 29.7% 28.2 0.17
PASSLEAF [4] 1326.3 34.2% 41.3% 30.4% 23.8 0.36
SUKE [13] 1849.5 32.3% 38.3% 29.8% 30.4 0.05
UPGAT (ours) 1098.7 36.0% 44.4% 28.7% 18.3 0.27

NL27K UKGElogi [3] 288.6 70.4% 76.8% 71.7% 7.9 0.32
PASSLEAF [4] 242.3 71.8% 77.9% 74.5% 5.5 0.38
SUKE [13] 268.7 71.5% 78.2% 73.8% 4.1 0.03
UPGAT (ours) 109.2 72.0% 78.4% 73.3% 2.6 0.10

PPI5K UKGElogi [3] 38.6 42.6% 68.8% 43.9% 0.76 0.28
PASSLEAF [4] 34.9 45.1% 70.6% 44.5% 0.51 0.30
SUKE [13] 37.0 45.9% 71.3% 45.3% 0.52 0.17
UPGAT (ours) 32.4 46.1% 72.2% 44.6% 0.34 0.22

Our deterministic KGs settings follow those in [3] to binarize the uncertain
KGs of CN15K/NL27K/PPI5K with the thresholds of 0.8/0.8/0.85. For evalua-
tion metrics, we use the MR (Mean Rank) and Hit@K. The comparison of UKG
embedding methods with DKG methods is unfair and beyond the scope of this
paper, as they are optimized for the unique characteristics of DKG.

The UKGElogi model is UKGE [3] trained without PSL-enhanced data to get
the initial entity and relation embeddings. For other hyper-parameters, we choose
Adam optimizer with learning rate = (5e−4), batch size = 512, embeddings
size = 512, k = 20 pseudo-labeled triplets, and negative sampling ratio= 10.

4.2 Results and Analysis

The experimental results of the TEP and CSP task are presented in Table 1.
MSE+ and MSE− are the MSE on in-dataset positive samples and randomly
drawn negative samples, respectively. We choose models with similar score func-
tion as the baselines, which, therefore, shares similar mathematical structures
in the embedding space. Values for UKGElogi and PASSLEAF (with Distmult)
are from [4]; values of SUKE are our reproduced results without PSL augmented
data. FocusE [9] is not listed as it can be an add-on layer to most models.

Experimental results show that our method outperforms the existing methods
in most of the evaluation metrics on the TEP task; there is over 50% WMR
improvement on the NL27K dataset. Note that the NDCG score is dominated
by a very small number of candidates with top confidence scores. The discounted
factor of NDCG is a logarithmic function. Therefore, as the ranking goes up, the
penalties for the candidates with lower confidence scores become significantly
less. For example, the ratio of the discounted factor of the 3rd to 1st candidate
is the same as the 99th to 9th candidate.
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Table 2. Ablation Study - TEP & CSP (MSE in 0.01). Boldface indicate better value
than existing methods on a metric.

TEP CSP
dataset models WMR WH@20 WH@40 NDCG MSE+ MSE-

CN15K 1-hop w/o AB 1215.6 32.8% 42.0% 27.4% 19.7 0.29
1-hop w/o AB + Naive 1210.3 32.9% 42.1% 27.7% 19.7 0.28
1-hop 1160.8 35.5% 43.3% 28.3% 19.1 0.27
1-hop+TS 1111.9 35.8% 44.3% 28.6% 19.0 0.26
UPGAT (pseudo-neighbor+TS) 1098.7 36.0% 44.4% 28.7% 18.3 0.27

NL27K 1-hop w/o AB 160.6 70.9% 78.0% 71.1% 2.9 0.10
1-hop w/o AB + Naive 160.7 70.8% 78.0% 71.1% 2.9 0.10
1-hop 151.5 71.3% 78.2% 73.2% 2.9 0.10
1-hop+TS 119.3 71.8% 78.4% 73.2% 2.7 0.10
UPGAT (pseudo-neighbor+TS) 109.2 72.1% 78.4% 73.3% 2.6 0.10

PPI5K 1-hop w/o AB 35.1 44.2% 70.4% 43.1% 0.42 0.30
1-hop w/o AB + Naive 34.8 45.2% 71.4% 43.0% 0.41 0.31
1-hop 33.2 45.9% 70.9% 43.1% 0.35 0.24
1-hop+TS 32.9 46.0% 71.7% 44.1% 0.36 0.27
UPGAT (pseudo-neighbor+TS) 32.4 46.1% 72.2% 44.6% 0.34 0.22

For the CSP task, experimental results show that our method outstrips the
existing methods in MSE+, reducing by up to 36% relative to the best model
on NL27K. Contrarily, we incline not to emphasize the MSE of negative samples
(MSE-) since there are no ground-truth negative labels in these three datasets.
SUKE performs better on the negative MSE of the three datasets because it uses
the evaluator to assign all low confidence scores to zero values, which we consider
to be a post-processing method and does not imply better CSP accuracy.

4.3 Ablation Study

Table 2 is the result of the ablation study for the questions at the start of Sect. 4.
For the model name abbreviations, [1-hop] indicates the 1-hop attention

model, depicted in Sect. 3.2; [1-hop w/o AB] refers to the 1-hop model without
the attention baseline mechanism. Note that even the [1-hop w/o AB] model
outperforms existing methods on most metrics, verifying our claimed advantage
of incorporating subgraph features for UKG.

The naive solutions to model uncertainty: [1-hop w/o AB] vs [1-hop
w/o AB +Naive]. [1-hop w/o AB + Naive] represents the three naive solutions
discussed in Sect. 2.2 that explicitly model confidence score in the attention
mechanism. As they have similar performance, only the one with the best WMR
is shown. These three solutions achieve limited or no improvement, supporting
the founding assumption that the plausibility of a neighbor cannot imply how
relevant it is to the centered triplet.

The attention baseline: [1-hop] vs [1-hop w/o AB]. From the two models,
it is evident that adding the attention baseline mechanism greatly improves
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Table 3. TEP with the deterministic settings depicted in Sect. 4.1. (H@20 in %)

CN15K NL27K PPI5K

models MR H@20 MR H@20 MR H@20

UKGElogi 3586.4 27.6 335.5 70.6 57.9 52.9
SUKE 3033.1 27.3 330.1 70.7 57.9 53.0
PASSLEAF 2402.0 27.7 312.6 71.5 55.2 54.8

UPGAT (ours) 2368.5 28.0 288.1 72.1 53.3 55.6

Table 4. Ablation Study for the Attention Baseline Mechanism in TPE. The (.) indi-
cate the relative change w.r.t. (1-hop w/o AB).

Deterministic Uncertain

models MR H@20 WMR WH@20

CN15K 1-hop w/o AB 2389.0 27.6% 1215.6 32.8%
1-hop 2386.6 (−0.1%) 27.7% (+0.4%) 1160.8 (−4.5%) 35.5% (+8.2%)

NL27K 1-hop w/o AB 312.7 71.4% 160.6 70.9%
1-hop 307.9 (−1.5%) 71.6% (+0.2%) 151.5 (−5.6%) 71. 3%(+0.6%)

PPI5K 1-hop w/o AB 55.3 54.7% 35.1 44.2%
1-hop 55.3 (−0.1%) 54.8% (+0.2%) 33.2 (−5.2%) 45.9% (+3.8%)

its performance in most metrics. We attribute this to the mitigation of the
irrelevant neighbor problem. The attention baseline mechanism strengthens the
ability to extract the relevant information, outperforming the baseline methods
that explicitly model the confidence score.

Pseudo-neighbor augmented graph attention: [UPGAT] vs [1-hop +
TS] vs [1-hop]. We break down the contributions of the teacher-student semi-
supervised learning (TS) and pseudo-neighbors. [1-hop + TS] generates pseudo-
neighbors as UPGAT does, but the data are not used in the neighbor aggregation.
Results show that applying graph attention over pseudo-neighbor augmented
graph can further advance in all metrics, given that TS has already brought
notable improvement over the [1-hop] model. Such results suggest that it is
viable and effective to model multi-hop relations with the pseudo-neighbors in a
data-driven manner.

4.4 Deterministic Settings

To verify if our proposed method is compatible with the deterministic KG
(DKG), we compare UPGAT with existing UKG methods on DKGs in the TEP
task. The result is presented in Table 3. UPGAT outperforms other methods on
all metrics. As the number of ground truth labels is only 20% of the original
uncertain settings, only H@20 is shown.

The ablation study shown in Table 4 further compares the attention base-
line mechanism on the deterministic and uncertain KG. The attention baseline
improves UKGs but has limited benefits for DKGs. For example, this mechanism
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brings 3.8% WH@20 improvement for the uncertain setting and only 0.2% H@20
improvement for the deterministic setting in the PPI5k dataset. This agrees with
our argument that the attention baseline is effective for extending the graph
attention to UKGs where uncertainty complicates the neighboring features.

5 Conclusion and Future Work

The proposed Uncertainty-Aware Pseudo-neighbor Augmented Knowledge
Graph Attention Network (UPGAT) is the first work to model the subgraph
feature on uncertain KGs. The attention baseline mechanism generalizes the
self-attention model for multi-relational graphs with uncertainty; The pseudo-
neighbors successfully model multi-hop relations. Our model gets promising
improvements over existing works on both uncertain and deterministic KGs.
While this paper focuses on a mechanism of fixed attention weight for each
entity, we believe the weightings of different relation queries are also important.
Namely, the attention mechanism must be “relation query-aware”, which we leave
for future studies.
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Abstract. Mining patterns in a dynamic attributed graph has received
more and more attention recently. However, it is a complex task because
both graph topology and attributes values of each vertex can change
over time. In this work, we focus on the discovery of frequent sequen-
tial subgraph evolutions (FSSE) in such a graph. These FSSE patterns
occur both spatially and temporally, representing frequent evolutions of
attribute values for general sets of connected vertices. A novel algorithm,
named FSSEMiner, is proposed to mine FSSE patterns. This algorithm is
based on a new strategy (graph addition) to guarantee mining efficiency.
Experiments performed on benchmark and real-world datasets show the
interest of our approach and its scalability.

Keywords: dynamic attributed graph · frequent sequential pattern ·
graph mining

1 Introduction

Dynamic attributed graphs have recently received a lot of attention [6]. The rea-
son is that this graph type provides a rich representation of real-world phenomena.
It has been widely used to describe many complex datasets (e.g. spatio-temporal
data, health data, biological data or social data) [2,3,8]. A dynamic attributed
graph depicts a time-ordered sequence of graphs to capture the evolution of a real-
world phenomena. Specifically, vertices and edges between vertices of each graph
of the sequence represent respectively objects and spatial relations or other types
of interactions between objects that are valid at the graph timestamp. Attributes
are used to complete the semantics of vertices. Objects and their relations may
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. Kashima et al. (Eds.): PAKDD 2023, LNAI 13936, pp. 66–78, 2023.
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evolve over time. Indeed, changes may happen in two levels: at the topological
level, there may be addition and removal of objects and relations; at the object
level, changes may also happen in attribute values. Mining patterns in a dynamic
attributed graph allows analysing how objects, relations and attribute values of
objects evolve over time.

Existing pattern mining approaches in dynamic attributed graphs allow fol-
lowing sequential evolutions within an individual vertex [8] or a set of vertices
[1,5,7] that occur frequently over time. None of these approaches allows finding
frequent sequential evolutions for general sets of connected vertices (i.e., frequent
subgraphs). For instance, in the case of monitoring the spread of a virus, exist-
ing patterns may reveal sequential changes of individuals’ health status within
a specific group. However, if this specific group is special (for example, they
have innate resistance to this virus, or they were vaccinated), existing patterns
lose general representativeness and cannot provide meaningful analysis for virus
transmission. Indeed, the objective of doctors is to understand how virus spread
among general groups instead of specific ones. Therefore, our objective is to find
frequent sequential evolutions for general sets of connected vertices. To do so, we
propose a novel pattern type denoted as frequent sequential subgraph evolutions
(FSSE). After describing a formal representation of FSSE (Sect. 3), we present
the FSSEMiner algorithm to find FSSE patterns in a dynamic attributed graph
(Sect. 4). The scalability of the algorithm is studied through some experimental
assessments based on both real-world and benchmark datasets (Sect. 5).

2 Related Work

Several research works are proposed to analyse dynamic attributed graphs.
Desmier et al. [2] defined a cohesive co-evolution pattern. This pattern repre-
sents a set of vertices with the same attribute variations and a similar neigh-
bourhood during a time interval. The authors extended their work in [3] by
integrating constraints on topology and on attribute values to extract maximal
dynamic attributed subgraphs. Yet, these patterns do not represent sequential
evolutions.

Kaytoue et al. [8] defined the triggering pattern problem, which allows finding
temporal relationships between attribute values and topological properties of
vertices. The TRIGAT algorithm allows mining triggering patterns by using a
projection strategy. However, triggering patterns do not consider neighbouring
vertices, neither their evolutions since they focus on a single vertex.

Fournier-Viger et al. [5] proposed significant trend sequences patterns. Such
patterns allow discovering the influence of attribute variations of a single ver-
tex on its neighbours. The authors extended these patterns in [7] by defining
attribute evolution rules (AER) to discover the influence of multiple vertices on
other vertices. The AER-Miner algorithm allows mining AER patterns by using
breadth first search (BFS) strategy. Yet, AER patterns represent sequential evo-
lutions of attributes, but not sequential evolutions of connected vertices.

Cheng et al. [1] proposed a recurrent pattern, which is a frequent sequence
of attribute variations for a set of connected vertices. The RPMiner algorithm,
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based on successive graph intersections strategy, allows mining recurrent pat-
terns. However, recurrent patterns focus only on the evolutions of a specific set
of vertices, as they depend on their vertices’ temporal occurrences instead of
considering the spatio-temporal occurrences.

In response to the previous limitations, we propose a novel pattern denoted as
frequent sequential subgraph evolutions (FSSE). Compared to existing work, the
main advantage of this pattern is to consider evolutions independently of sub-
graphs in which they occur. In a spatio-temporal context, it means that such pat-
tern would highlight phenomena independently of their locations. However, none
of the previous algorithms mines FSSE patterns. Indeed, mining such patterns
in a dynamic attributed graph is so complex that all existing strategies cannot
guarantee both the mining efficiency and the completeness of patterns. For this
purpose, we propose a novel algorithm called FSSEMiner to mine FSSE. The
algorithm is based on a new strategy called graph addition to guarantee mining
efficiency. It requires traversing only once each graph, instead of an exponential
graph traversing operation.

3 Notations

3.1 Dynamic Attributed Graph

A dynamic attributed graph, denoted as G = 〈Gt1 , Gt2 , ..., Gtmax
〉, represents

the evolution of a graph over a set of ordered and consecutive timestamps T =
{t1, t2, ..., tmax}. It is composed of the set of vertices denoted as V. The set
of attributes A is used to describe all the vertices. Each attribute a ∈ A is
associated with a domain value. A domain value Da (numerical or categorical)
is associated to each vertex and attribute a ∈ A. For each time t ∈ T , Gt =
(Vt, Et, λt) is an attributed undirected graph where: Vt ⊆ V is the set of vertices,
Et ⊆ Vt × Vt is the set of edges, and λt : Vt −→ 2AD is a function that associates
each vertex of Vt with a set of attribute values AD = ∪a∈A(a × Da).

When attribute values are numerical, a dynamic attributed graph is usually
preprocessed to derive trend values from these attributes, since we are not inter-
ested in their absolute variations [6]. A trend is an increase (+), decrease (−) or
stability (=) which means the value of a vertex’s attribute increase, decrease or
does not change between two consecutive timestamps.

3.2 A New Pattern Domain

Definition 1 (frequent subgraph). Let (λ,Occurrence(λ) in T ′) be an
attributed subgraph of G, where λ is a set of attribute values (trends or cat-
egorical values) representing a pattern and Occurrence(λ) in T ′ represents the
occurrences of λ in the set of times T ′ ⊆ T . More precisely, Occurrence(λ) in T ′

is a set of subgraphs such that Occurrence(λ) ⊆ Vt where t ∈ T ′, Vt ⊆ V. As
shown in Fig. 1, 〈{(a1 −a2+, a1 −a2+, a1+a2 =)}, {t1 : (1, 2, 3)|t1 : (7, 8, 10)|t1 :
(13, 14, 15)|t2 : (1, 2, 3)|t2 : (7, 8, 10)}〉 is an attributed subgraph in t1 and t2.
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Fig. 1. Dynamic attributed graph.

The set of attribute values λ = (a1 − a2+, a1 − a2+, a1 + a2 =) represents
a size-1 pattern, i.e., a pattern composed of only one set of attribute values.
Occurrence(λ) in t1 = {t1 : (1, 2, 3)|t1 : (7, 8, 10)|t1 : (13, 14, 15)} represents the
set of occurrences of λ in t1 (in red and orange). Occurrence(λ) in t2 = {t2 :
(1, 2, 3)|t2 : (7, 8, 10)} represents the set of occurrences of λ in t2 (in red). So the
frequency of the subgraph is 5 because it occurs 5 times in time and space.

Definition 2 (frequent sequential subgraph evolution). A frequent
sequential subgraph evolution (FSSE) of G appearing in the time intervals
{T1, . . . , Tk}, Ti ⊆ T , is a sequence P = 〈{λ1; ...;λn}, {T1 : Occurrence1(λ1); . . . ;
Occurrence1(λn), | . . . |Tk : Occurrencek(λ1); . . . ;Occurrencek(λn)}〉. The first
set represents the frequent sequential subgraphs where each subgraph is sep-
arated by semicolons. The second set is composed of all patterns’ occur-
rences, where each occurrence is separated by vertical bars. For each Ti =
{ti, ..., tj}, 1 ≤ i ≤ j ≤ |T |, ti represents the starting time of this occur-
rence and tj represents the end time of this occurrence. As shown in Fig. 1,
〈{(a1 − a2+, a1 − a2+, a1 + a2 =); (a1 − a2+, a1 + a2+, a1 + a2−, a1−
a2−)}, {t1, t2 : (1, 2, 3); (1, 4, 5, 6)|t1, t2 : (7, 8, 10); (8, 11, 12, 17)|t1, t2 : (13,
14, 15);(13, 14, 15, 16)|t2, t3 : (1, 2, 3); (1, 4, 5, 6)|t2, t3 : (7, 8, 10); (8, 11, 12, 17)}〉
is a FSSE starting at t1 and t2. It is a sequence of size 2 composed of a frequent
subgraph with the pattern (a1 − a2+, a1 − a2+, a1 + a2 =) in {t1, t2} (in red
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and orange) and a frequent subgraph with the pattern (a1−a2+, a1+a2+, a1+
a2−, a1 − a2−) in {t2, t3} (in green and orange).

The example shown in Fig. 1 can also illustrate the difference between the clos-
est pattern type (i.e., recurrent pattern [1]) and the FSSE. With a frequency of
2, two recurrent patterns are extracted. The first pattern represents a subgraph
in red (1 : a1 − a2+, 2 : a1 − a2+, 3 : a1 + a2 =) which is followed by another
subgraph in green (1 : a1 − a2+, 4 : a1 + a2+, 5 : a1 + a2−, 6 : a1 − a2−). The
frequency of this pattern is 2, as it appears twice over time: the first time from t1 to
t2 and the second from t2 to t3. Similarly, another recurrent pattern is a subgraph
in red (7 : a1 − a2+, 8 : a1 − a2+, 10 : a1 + a2 =) which is followed by another
subgraph in green (8 : a1 − a2+, 11 : a1 + a2+, 12 : a1 + a2−, 17 : a1 − a2−)
with a frequency of 2. Moreover, it can be observed that another sequence of sub-
graphs in orange, (13 : a1−a2+, 14 : a1−a2+, 15 : a1+a2 =)(13 : a1−a2+, 14 :
a1+a2+, 15 : a1+a2−, 16 : a1−a2−), represents exactly the same evolution as the
two patterns extracted above. However, it is not considered as a recurrent pattern
as its temporal frequency is 1. In comparison, one extracted frequent sequential
subgraph evolution is a subgraph (a1 − a2+, a1 − a2+, a1 + a2 =) which is fol-
lowed by another subgraph (a1− a2+, a1+ a2+, a1+ a2−, a1− a2−) where each
subgraph is composed of a general set of vertices. It groups all the frequent and
especially all the infrequent recurrent patterns to generate a much more general
pattern. Indeed, the frequency of this pattern is considered in one more dimension,
the spatial one. So, the spatio-temporal frequency of this pattern is 5.

3.3 Interesting Measures and Constraints

Let P = 〈{λ1; ...;λn}, {T1 : Occurrence1(λ1); . . . ;Occurrence1(λn) | . . . |Tk :
Occurrencek(λ1); . . . ;Occurrencek(λn)}〉 be a pattern. Several measures and
constraints are defined for two purposes: (i) to let the user express his prefer-
ences to select patterns via a set of constraints, and (ii) to reduce the search
space and improve the efficiency of the algorithm.

Spatio-temporal Frequency. The frequency constraint, denoted as minsup,
is a user-defined threshold to filter patterns which occur more than a minimum
number in time and in space. The frequency of P is the number of occurrences
of pattern P , sup(P ) = k. Consequently, P is a frequent evolution iff sup(P ) ≥
minsup. For example, in Fig. 1, the frequency of the sequence (a1 − a2+, a1 −
a2+, a1 + a2 =); (a1 − a2+, a1 + a2+, a1 + a2−, a1 − a2−) is 5, as the pattern
appears 5 times.

Connectivity. During pattern extraction, vertices should be connected by edges
to extract potentially correlated evolutions among a set of objects. In Fig. 1, the
pattern (a1 − a2+, a1 − a2+, a1 + a2 =); (a1 − a2+, a1 + a2+, a1 + a2−, a1 −
a2−) occurs in {t1, t2} on a sequence of sets of connected vertices such as
(1, 2, 3); (1, 4, 5, 6).

Volume. The volume measure defines the number of vertices of a subgraph. Let
vol(P ) = min∀i∈[1,n] |λi| be the volume of a pattern P . A pattern P is sufficiently
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voluminous iff vol(P ) ≥ minvol, where minvol is a minimum number of vertices
of a subgraph defined by the user. The user can also define the maximum number
of vertices of a subgraph, denoted as maxvol , such as vol(P ) ≤ maxvol. For
example, the pattern (a1− a2+, a1− a2+, a1+ a2 =); (a1− a2+, a1+ a2+, a1+
a2−, a1 − a2−) has a volume of 3.

Temporal Continuity. An evolution may include different vertices at each
timestamp. However, it is difficult for end users to interpret the evolution of ver-
tices without a direct relation between them at each step. Hence, it is desirable
to study evolution around a common core of vertices. To do so, a constraint,
denoted as mincom and set by the user, is defined to follow a minimum num-
ber of common vertices over time. Let denote Occurrencej(P ) is a jth instance
of pattern P and com(Occurrencej(P )) = | ∩∀i∈1,...,n Occurrencej(λi)| be the
common number of vertices occurring in the instance sequence j. P is a continu-
ous pattern iff ∀j ∈ {1, .., k} com(Occurrencej(P )) ≥ mincom. Consider P the
pattern (a1−a2+, a1−a2+, a1+a2 =); (a1−a2+, a1+a2+, a1+a2−, a1−a2−)
in Fig 1. All instances of the pattern P have at least one common vertex. For
instance, the subgraphs of the occurrence (7, 8, 10); (8, 11, 12, 17), at t1 and t2,
have one common vertex, which is 8.

4 Mining Frequent Sequential Subgraph Evolutions

In this section, we propose an algorithm, called FSSEMiner, to mine FSSE pat-
terns in a dynamic attributed graph. This algorithm allows dealing with the fol-
lowing mining problem: Given a dynamic attributed graph G, the problem is to
extract the complete set of frequent sequential subgraph evolutions in G, denoted
as Sol, such that ∀P ∈ Sol, (i) P is frequent (i.e., sup(P ) ≥ minsup); (ii) the
occurrences of P are connected at each time; (iii) P is sufficiently voluminous
(i.e., minvol ≤ vol(P ) ≤ maxvol); (iv) P is centered around a core of vertices
sufficiently large (i.e., com(P ) ≥ mincom), where minvol,maxvol,minsup and
mincom are user-defined thresholds.

This algorithm solves the above-mentioned problem in three steps: (i) iden-
tify subgraphs (Sect. 4.1); (ii) count the spatio-temporal frequency of subgraphs
(Sect. 4.2); (iii) construct sequences of subgraphs using frequent subgraphs
(Sect. 4.3). The sequence of the three steps is illustrated via the FSSEMiner
algorithm (Algorithm 1).

4.1 Extraction of Subgraph Candidates

The first step of the algorithm is to construct all possible candidate subgraphs
(frequent and infrequent) based on a dynamic attributed graph G (Lines 1-2).
More precisely, the algorithm constructs all possible sets of patterns λi whose
volume is between minvol and maxvol. For each generated pattern λi, a depth-
first search (DFS) strategy is used to compute its occurrences Occurrence(λi) in
each Gt ∈ G. The anti-monotonicity property is respected to find anti-monotonic
subgraphs [4]. The result is the set of subgraphs satisfying the volume and
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Algorithm 1: FSSEMiner : Mining frequent sequential subgraph evolu-
tions

Input: G : a dynamic attributed graph, minsup, minvol, maxvol, mincom
Output: Sol: set of frequent sequential subgraph evolutions satisfying the constraints
/* Step 1: Extraction of subgraph candidates */

1 S = {Si set of subgraphs of Gt, t ∈ T | ∀si ∈ Si, si = (λi, Occurrence(λi) in t), minvol ≤
|Occurrence(λi)| ≤ maxvol}

2 Candi = ∅, ∀i ∈ {1, 2, ..., |T |}
/* Step 2: Generation size-1 patterns by graph addition */

3 for k = 1 to |T | do
4 for each Tk

1 ⊆ T such as t1 ∈ Tk
1 do

5 Punion = {Sunion set of frequent subgraphs in Tk
1 , | ∀sunion ∈ Sunion, sunion =

(λ, Occurrenceunion), Occurrenceunion = Union(Occurrencet) where (t ∈
Tk
1 ) and |Occurrenceunion| ≥ minsup}

6 Cand1 = Cand1 ∪ Punion

7 end
8 end

/* Step 3: Extension of patterns */
9 Soli = ∅, ∀i ∈ {1, 2, ..., |T |}

10 for i = 2 to |T | do
11 for each Tk

i ⊆ T such as ti ∈ Tk
i do

12 for each Pi ∈ Punion = {Sunion set of frequent subgraphs in Tk
i | ∀sunion ∈

Sunion, sunion = (λ, Occurrenceunion), Occurrenceunion =

Union(Occurrencet), where (t ∈ Tk
i ) and |Occurrenceunion| ≥ minsup} do

13 for each P such as P ∈ Candi−1 do
14 P ′ = ExtendWith(P, Pi)

15 if com(P ′) ≥ mincom and |P ′| ≥ minsup then
16 Candi = Candi ∪ {P ′}
17 end
18 else
19 Soli−1 = Soli−1 ∪ {P}
20 Candi = Candi ∪ {Pi}
21 end
22 end
23 end
24 end
25 end
26 Sol = MergeUpdate(

⋃
∀i∈T Soli)

connectivity constraints and denoted as S = {Si set of subgraphs of Gt, t ∈ T |
∀si ∈ Si, si = (λi, Occurrence(λi) in t),minvol ≤ |Occurrence(λi) ≤ maxvol}.
For example, occurrences of (a1 − a2+, a1 − a2+, a1 + a2 =) are extracted at
each time. They are represented by the two red connected subgraphs in t1 and
t2 in Fig. 1.

4.2 Generation of Size-1 Patterns by Graph Addition

The second step of the algorithm is to combine the candidate subgraphs gen-
erated in the previous step (Sect. 4.1) to create size-1 patterns (i.e., sequences
composed of one subgraph) (Line 3-8). The construction of size-1 patterns is
the fundamental building block for constructing the final patterns. To do so,
a new strategy, called graph addition, is proposed. It consists in adding the
occurrences (of different times) of candidate subgraphs having the same pattern.
Then, the algorithm verifies if the spatio-temporal frequency of this subgraph
union respects the minsup constraint.
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Let be n times ti, ..., tj ∈ T , where 1 ≤ n ≤ |T | and 1 ≤ i < j ≤
|T |. The addition of n subgraphs si = (λi, Occurrence(λi) in ti),..., sj =
(λj , Occurrence(λj) in tj) is denoted as sunion = (λ,Occurrenceunion(λ)) where
λ = λi = ... = λj and Occurrenceunion(λ) = Occurrence(λi) in ti ∪ ... ∪
Occurrence(λj) in tj . sunion is a subgraph composed of the union of occurrences
of the n initial subgraphs having the same pattern (i.e., same attribute values).
If |Occurrenceunion(λ)| ≥ minsup, the algorithm keeps sunion in the mining
process. For the special case where n = 1 and i = j the result of the addition
of a subgraph is itself. However, this case is necessary because a size-1 pattern
(one subgraph) could also be spatially frequent in one timestamp.

Graph addition is applied to all sets of time combinations, denoted as T k,
1 ≤ k ≤ |T |. The number of linear additions is |T k| = 2|T | − 1 and depends only
on the number of timestamps in G. The advantage of the graph addition strategy
is to avoid performing a huge amount of subgraph traversals for the generation
of patterns of size 1.

Let us suppose that minsup = 4. In Fig. 1, there is the subgraph s1 =
〈{(a1− a2+, a1− a2+, a1+ a2 =)}, {t1 : (1, 2, 3)|t1 : (7, 8, 10)|t1 : (13, 14, 15)} in
t1 and s2 = 〈{(a1 − a2+, a1 − a2+, a1 + a2 =)}, {t2 : (1, 2, 3)|t2 : (7, 8, 10)}
in t2 having the same attribute values. By adding s1 and s2, the pattern
sunion = 〈{(a1 − a2+, a1 − a2+, a1 + a2 =)}, {t1 : (1, 2, 3)|t1 : (7, 8, 10)|t1 :
(13, 14, 15)|t2 : (1, 2, 3)|t2 : (7, 8, 10)} is obtained. It can be observed that s1 and
s2 are infrequent. However, sunion is frequent after the addition of the subgraphs.

4.3 Extension of Patterns

The final step of the algorithm is to construct the complete sequential pat-
terns by extending each size-1 pattern of each successive set of times gener-
ated in the previous step (Sect. 4.2) (Line 9-26). To do this, size-1 patterns
are iteratively extended by checking the mincom and minsup constraints to
connect other consecutive patterns to build sequences of frequent subgraphs.
This extension can be achieved by processing the times incrementally. Figure 2
shows an incremental construction of a pattern beginning from {t1, t2}. This
figure displays the parallel extensions of a pattern which occurs at t1 and t2.
Let s, s′ and s∗ be frequent subgraphs extracted in graph additions. Addi-
tions between S1 and S2 result in a set of frequent subgraphs, such that
s = (λ,Occurrence(λ) in t1, t2) ∈ S1 ∪ S2. Candidate extensions for these sub-
graphs can only be at t2 and t3 respectively (since gaps are not allowed). Now
consider times t2, t3 and suppose that s′ = (λ′, Occurrence(λ)′ in t2, t3) is a
frequent subgraph of S2 ∪ S3. If s and s′ have at least minsup occurrences veri-
fying the temporal continuity constraint, then we can extend s with s′ to obtain
P = 〈{λ;λ′}, {t1, t2 : Occurrence(λ) in t1, t2; t2, t3 : Occurrence(λ′) in t2, t3}〉.
The process continues until no more extensions can be performed. At each itera-
tion, subgraphs can be used to extend patterns from the previous iteration, but
they can also be “starting points” for new patterns. For a sequence of 3 sub-
graphs, the pattern will be constructed and extended seven times (from {t1},
from {t2}, from {t3}, from {t1, t2}, from {t2, t3}, from {t1, t3}, from {t1, t2, t3}).
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Fig. 2. Additions and extensions of patterns from {t1, t2}

Although the study of the combination {t1, t2} does not bring more information
compared to {t1, t2, t3}, it allows discovering other patterns to be extended. All
these time combinations are therefore necessary. This highlights the importance
of the proposed graph addition strategy described above, which requires only |T |
times instead of 2|T | − 1 graph traversals in a dynamic attributed graph.

5 Experiments

In this section, the performance of the FSSEMiner algorithm has been evaluated.
The algorithm was implemented in C ++. Experiments were conducted on a PC
(CPU: Intel(R) Core(T:) 3.5GHz) with 16 GB of main memory.

Datasets. Benchmark data were generated by varying different parameters of
a dynamic attributed graph: the number of vertices/attributes/edges and the
number of graphs of the sequence (or the number of timestamps) by setting
the other parameters (minsup,minvol,maxvol,mincom). Edges (pairs of ver-
tices) and attribute values follow a uniform distribution. The first real-world
dataset is the Domestic US Flights traffic dataset during the Katrina hurri-
cane period (from 01/08/2005 to 25/09/2005) [3]. It is composed of 280 vertices
(airports) and 1206 edges in average (flight connections) per timestamp, 8 times-
tamps (data are aggregated by weeks) and 8 attributes (e.g. number of depar-
tures/arrivals/cancelled flights). The second real-world dataset is composed by a
travel flows in China dataset1 and a COVID-19 daily cases dataset2 during two
periods (from 25/01/2020 to 20/03/2020 and from 15/04/2022 to 15/05/2022). It
is composed of 232 vertices (cities) and 13260 edges (travel flows between cities)
in average, 6 timestamps (data are aggregated every 3 days) and 4 attributes:
the size of the city (small, medium-sized, big and megacity according to the pop-
ulation), the total number of new COVID cases, of deaths, of recoveries since
25/01/2020, with 4 values (=:no new cases, +:]0,5],++:]5,15] and +++:]15,]).

Quantitative Results. We have conducted a quantitative analysis of patterns
extracted from benchmark datasets to evaluate the scalability of the proposed
1 https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/

FAEZIO.
2 https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/

MR5IJN.

https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/FAEZIO
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/FAEZIO
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/MR5IJN
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/MR5IJN
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Fig. 3. Impacts of parameters on execution times of FSSEMiner

Fig. 4. A pattern in US Flights dataset

algorithm. Figure 3 (a) shows the impact of the number of timestamps on the
algorithm’s runtimes for 2000 vertices and 8000 edges per graph, 2 attributes
and minvol = maxvol = 2,mincom = 1,minsup = 60% of the average number
of vertices. This impact is high, but performance of the algorithm is comparable
with the one in [1] since it generates more general and more complex patterns.
Figure 3 (b) shows the impact of the number of attributes on the algorithm’s
runtimes for 8 timestamps and the other parameters are fixed as before. Execu-
tion times remain low for less than 8 attributes, so for most of the real-world
datasets. Figure 3 (c) shows the impact of the number of vertices and edges at
each timestamp on the algorithm’s runtimes (the other parameters are fixed as
before). It can be noticed that the algorithm remains efficient for large dense
graphs (10,000 vertices and 160,000 edges at each timestamp).

Qualitative Results. We have conducted a qualitative analysis of patterns
extracted on the real-world datasets. Figure 4 shows an example of a pat-
tern extracted from the US Flights traffic dataset (minvol = 2,maxvol =
4,minsup = 25,mincom = 1). This pattern appears 28 times in the dataset.
It shows the impact of hurricanes on US airport traffic for 6 weeks. First, it is
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Fig. 5. Two patterns extracted from COVID dataset

observed that delays and cancellations increased at destination and arrival air-
ports, while diverted flights always remained the same when the hurricane came.
It shows that hurricanes have strong impact on cancellations but have hardly any
impact on flight diversion. Second, it is noticed that cancellations and diverted
flights became stable while delays decreased when the hurricane became weaker
at the end. Third, this pattern shows the evolution in terms of network (the set
of three airports became four). It is observed that new flight routes via a new
airport were added by airlines from 11/09/2005. Moreover, referring to map,
we notice that the new added airport (for example, Chicago) in the airline net-
work is usually located at the centre position of the previous airport network
(for example, Kalamazoo, Detroit and Minneapolis), which ensures that airline
connections are more convenient as it is close to all other airports.

In Fig. 5, we compare two extracted patterns to analyse the transmission
of COVID and its variant Omicron (minvol = 5,maxvol = 8,minsup =
15,mincom = 5). This pattern appears 21 times in the dataset. First, the two
chosen patterns highlight the transmission of COVID in a mixed city network
which is composed of mega, medium and small cities. We note that the city
size and new case numbers are strongly correlated. In 2020 and 2022, COVID
spreads very quickly in medium and mega cities, while new cases in small cities
shown almost zero growth. It is probably because in small cities, the transport
connections are much easier to control. For example, a small city has in general
only two train stations and one airport while in medium-sized and big cities,
it could have up to 109 train stations and 12 airports. Moreover, the flow is
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in general 30 times higher than small cities, which makes it much more diffi-
cult to miss any positive case. Second, it is observed that the COVID caused
many severe consequences in 2020, as the death began to increase in three days
after the emergence of new COVID cases, and it took in average more than 10
days for recovery. While in 2022, the virulence of variant Omicron became much
weaker, as there are almost no deaths, and the recoveries began to emerge only
three days after new detected cases. This analysis is very useful for anti-epidemic
measures. Indeed, many countries began to cancel isolation policies in 2022. To
conclude, these patterns allow studying virus transmission in different scale of
cities (among big cities, small cities, medium-sized or mixed city network).

6 Conclusion

This paper has proposed a novel type of patterns called frequent sequential sub-
graph evolutions (FSSE) in a dynamic attributed graph. Its main advantage is
to represent evolutions of general groups of objects. To mine FSSE, we have pro-
posed the FSSEMiner algorithm. The latter is based on a novel mining strategy,
called graph addition, to save computation time. Experiments on both bench-
mark and real-world datasets have shown the scalability of the algorithm and the
interest of these patterns. In the short-term, we plan to make new applications
by using new datasets and study the explainability of the found patterns. In the
long-term, a distributed version of the algorithm could be developed to further
improve the performance.
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Abstract. While the ever-increasing amount of available data has
enabled complex machine learning algorithms in various application areas,
maintaining data privacy has become more and more critical. This is espe-
cially true for mobility data. In nearly all cases, mobility data is personal
and therefore the drivers’ privacy needs to be protected. However, mobil-
ity data is particularly hard to anonymize, hindering its use in machine
learning algorithms to its full potential. In this paper, we address these
challenges by generating synthetic vehicle trajectories that are not sub-
ject to personal data protection but have the same statistical characteris-
tics as the originals. We present CondTraj-GAN–ConditionalTrajectory
Generative Adversarial Network. – a novel end-to-end framework to gen-
erate entirely synthetic vehicle trajectories. We introduce a specialized
training and inference procedure that enables the application of GANs to
discrete trajectory data conditioned on their sequence length. We demon-
strate the data utility of the synthetic trajectories by comparing their spa-
tial characteristics with the original dataset. Finally, our evaluation shows
that CondTraj-GAN reliably outperforms state-of-the-art trajectory gen-
eration baselines.

Keywords: Generative models · road networks · vehicle trajectories

1 Introduction

Over the past years, the unprecedented amount of available data has enabled
numerous breakthroughs for machine learning models in many domains. Promi-
nent examples include image generation models such as DALL-E 2 [15]. In the
mobility domain, numerous applications rely on large mobility datasets to effi-
ciently train deep learning models. Trajectories, i.e., sequences of locations coor-
dinates, are widely adopted to capture mobility behavior. Examples of trajectory-
based models include transportation demand prediction [6], traffic flow predic-
tion [10], and next location prediction [11]. However, trajectory data is hard to
obtain for two reasons. First, collecting vehicle trajectory data usually requires
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large vehicle fleets. Access to such fleets is often limited to a few companies such
as car manufacturers or mobility service providers. Secondly, trajectories often
reveal personal data, e.g., the driver’s home or work address. Trajectory data,
hence, is protected by regulations like the EU GDPR which requires consent from
the drivers for all data processing activities. Strong data protection currently hin-
ders the development of trajectory-based models in practice. Current approaches
anonymize existing trajectories or generate synthetic trajectories to lift the data
protection from trajectory data. Anonymization approaches include Differential
Privacy [21] or k-anonymity [17] techniques. Considering synthetic generation,
established approaches build on Markov models to infer trajectories [9,14]. More
recently, generative models like Generative Adversarial Networks (GAN) [7] have
shown impressive results. We observe high interest in adopting GANs to trajec-
tory data [2,3,16,19]. Unlike model-based approaches, GANs do not suffer from
simplified assumptions often used to model our mobility patterns. However, these
approaches are not able to learn trajectory patterns in an end-to-end manner,
require tedious preprocessing steps, e.g., mapping trajectories to artificial images,
or need real trajectories during generation.

This paper addresses the need for anonymization and publication of trajec-
tory data by introducing the novel CondTraj-GAN end-to-end framework for
synthetic vehicle trajectory generation. We train CondTraj-GAN on real-world
trajectory data and generate realistic synthetic trajectories. Our generated tra-
jectories are fully synthetic and not subject to personal data protection regula-
tions. We propose a novel 2-step pre-training procedure to capture the spatial-
sequential patterns provided by trajectories in the training dataset. CondTraj-
GAN introduces a topology learning step to encapsulate the spatial characteris-
tics of the road network and, further, we capture sequential patterns by leverag-
ing sequential GAN architecture using a policy gradient loss [20]. Finally, during
trajectory generation, we introduce the transition mask procedure to adapt the
GAN inference step to a road network setting. In summary, the contributions of
this work are as follows:

– We propose a novel end-to-end trajectory generation framework for the gen-
eration of realistic synthetic trajectories. To the best of our knowledge, this is
the first end-to-end approach for road network vehicle trajectory generation
that does not require real trajectories during inference.

– We introduce a novel GAN training procedure explicitly accounting for the
road network and trajectory patterns and propose the transition mask pro-
cedure.

– We conduct a thorough evaluation comparing synthetic to real-world vehi-
cle trajectory data and propose a set of evaluation metrics quantifying the
synthetic data quality. Our CondTraj-GAN framework reliably outperforms
state-of-the-art baselines for vehicle trajectory generation.

2 Problem Definition

In this section, we formally define the task of trajectory generation. Given a
source real-world dataset, trajectory generation aims at creating a synthetic
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dataset that follows the same spatial distributions as the source dataset, e.g.,
concerning the trajectories’ length, origins, and destinations. A road network is
an undirected graph G = (E ,V) with a set of edges E which can be interpreted
as street segments and a set of nodes ν ∈ V ∪ {νb} which can be interpreted as
junctions between street segments. νb serves as a start node with an id but no
location and has a connection to all other nodes, i.e. (νb, νj) ∈ E ,∀νj ∈ V. All
other nodes can be identified using a unique id and provide location information
via geo-coordinates with shape (latitude, longitude). Furthermore, we define the
binary adjacency matrix A that encodes the connection of two nodes with 1 if
(νi, νj) ∈ E and 0 otherwise. Next, we define a trajectory τ0:T = (ν0, ν1, . . . , νT )
as a sequence of nodes where νt is the node in V passed at time step t, with
t = 0 ≤ t ≤ T and T is the total number of discrete steps. In this paper, we
focus on trajectories that are locatable on road networks only.

Finally, we define trajectory generation as follows: Given a source real-world
trajectory dataset T r = {τ0, τ1, .., τn} with an underlying spatial distribution p,
learn a function p̂ that approximates p such that a synthetic trajectory τs drawn
from p̂ meets the following conditions: (1) τs contains only sequences of adjacent
nodes, ∀(νt, νt+1) ∈ τs : (νt, νt+1) ∈ E . (2) τs represents spatial characteristics
provided by the source dataset, e.g., patterns of commuting from home to work.
We denote the set of synthetic trajectories as T s. Although the trajectories do
not provide time information, there is still value for spatial applications.

3 The CondTraj-GAN Framework

This section introduces our proposed CondTraj-GAN framework which is pre-
sented in Fig. 1. We propose a specialized training procedure to capture the
spatial-sequential patterns of vehicle trajectories within road networks. Then,
we describe the inference process to generate synthetic trajectories. CondTraj-
GAN builds on the established GAN setup consisting of a stochastic generator
function Gθ and a discriminator function Dφ with θ and φ denoting the respec-
tive model parameters. To adjust the generated trajectory length and thus match
the source data characteristics better, we apply the Conditional GAN [12] archi-
tecture. Therefore, we condition the generation process on the sequence length
l and the current node index t. Formally, we define the generator function as
Gθ(νt|τ0:t−1, l, t) where νt is the next node of the sequence conditioned on the his-
toric trajectory τ0:t−1. Considering the discriminator Dφ, we aim to distinguish
synthetic from real trajectories. Formally, we define the discriminator function
as D : T r ∪ T s �→ {True, False}. After training, we utilize the generator Gθ to
iteratively generate a synthetic dataset T s.

3.1 Training

This section describes the training process of CondTraj-GAN consisting of topol-
ogy learning, trajectory learning and adversarial training.
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Fig. 1. The training and inference diagram. During topology learning the model is
trained on 3-hop random walks. Afterwards, real trajectories are used for trajectory
learning and adversarial training. The transition mask is applied only during inference.

Topology Learning. Topology learning is a self-supervised generator pre-
training step with two goals. First, the topology learning step constitutes a
simple but effective way to capture adjacency information in the generator
function. Secondly, we particularly counteract data sparseness and mitigate
the exclusion of nodes that are not covered in the source trajectory set T r.
The model is trained on 3-hop random walks generated by the road network
adjacency matrix without repetitions. The goal is to help the generator find
the transition probabilities only for adjacent nodes as a multi-label classifica-
tion task. Therefore, we calculate the transition probability vector from νt−1

to all possible others: p̄νt
= Gθ(νt|τ0:t−1, l = 3, t), where p̄νt

is the probabil-
ity of going from node νt−1 to any other node in the node set V. We then
take the probability vector as input to calculate the negative log-likelihood loss
Ltop = − 1

N ·T
∑N

n=0

∑T
t=0 Aνt−1 · log(p̄νt

), where Aνt−1 is the row in the adja-
cency matrix corresponding to the neighborhood of the source node νt−1. We
aim to obtain high probabilities for nodes adjacent to node νt−1.

Trajectory Learning. The second pre-training phase aims to learn the sequen-
tial patterns of real trajectories. In particular, we aim to capture realistic travel
patterns like the way from home to work. To learn the semantic long-term rela-
tionships between non-adjacent nodes, we shift the original trajectory by one
time step τ1:T+1 and ask the model to predict the next node of the original
trajectory. We roll out a complete trajectory to obtain all transition proba-
bilities p̄g

τ1:T+1
: p̄g

νt
= Gθ(νt|τ0:t−1, l, t), where p̄g

νt
is the probability vector for

the next node given the historic trajectory containing information of the his-
toric travel pattern. Since we want to draw trajectories at the end from a
probability distribution p̂, the problem can also be solved with the maximum
likelihood estimation. We obtain the transition probabilities p̄o

τ of the origin
trajectory τ r by assigning a fixed position to each node ν in the node-set V
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and then one-hot encoding it. Finally, we apply the negative log-likelihood loss:
Ltraj = − 1

N ·T
∑N

n=0

∑T
t=0 p̄o

νt
· log(p̄g

νt
)

Adversarial Training. Adversarial training aims at generating novel trajecto-
ries that are not part of the source dataset T r. We follow the established GAN
training procedure of jointly training the generator Gθ and the discriminator
Dφ. Standard GAN loss functions that rely on real-valued data do not apply to
discrete trajectories. Instead, we adapt the policy gradient loss proposed in [20]
for sequential categorical data with our before-mentioned conditions l and t:

E[RT |νb, θ] =
∑

ν1∈V
Gθ(ν1|νb, l, t) · QGθ

Dφ
(νb, ν1, l, t), (1)

Since an intermediate reward is not helpful because short-term goals can be
abandoned to achieve long-term ones, we also adopt the idea of Monte Carlo
search. Starting from a starting state νb we wish to maximize the expected end
reward. M -time Monte-Carlo search MC is used to find the next action value a
coming from state s, with the generator Gβ determining the roll-out policy:

QGθ

Dφ
(s = τ0:t−1, a = νt, l, t) =

{
1
M

∑M
m=1 Dφ(τm

0:T |l), τm
0:T ∈ MCGβ (τ0:t,M), for t < T,

Dφ(τ0:T |l), for t = T

(2)

For the discriminator, we rely on the well-known GAN training objective. After
each generator training update, the discriminator can be updated as follows:

min
φ

−Eτ∼p[log(Dφ(τ |l))] + Eτ∼Gθ
[log(1 − Dφ(τ |l)), (3)

Analogous to the generator, we feed the conditional sequence length l into the
discriminator.

3.2 Trajectory Inference

This section presents the inference phase for synthetic trajectory generation.

Generation Inputs. After training, we decouple the generator from the dis-
criminator to create trajectories auto-regressively. First, we sample trajectory
lengths from the original sequence length distribution. Based on the start node,
length condition, and generation step information a new trajectory is generated.

Transition Mask. During inference, we apply a probability mask after each
node generation step to guarantee that constructed trajectories have solely tran-
sitions to adjacent nodes: p̄νt

= Aνt−1 ·Gθ(νt|τ0:t−1, l, t), where p̄νt
is the masked

probability vector for sampling the next node νt in the sequence. We obtain p̄νt

by calculating the Hadamard product of the adjacency matrix Aνt−1 and the
output probability distribution of the generator.

Node Sampling. Since we condition the generation process on node ids and
no prior distribution, we obtain stochastic properties in our model by sampling
subsequent nodes from a multinomial distribution MN : νt ∼ MN (p̄νt

).
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4 Evaluation Setup

This section presents the datasets, the model setup for CondTraj-GAN training,
and the metrics used to assess the synthetic dataset generation performance.

4.1 Dataset

The CondTraj-GAN framework aims to train the topology of the road network
and the spatial-sequential patterns of real trajectories. Therefore, we use two
different datasets: a road network dataset based on Open Street Map (OSM)
and a trajectory dataset. The road network training data is obtained from OSM
and used for topology learning. We calculate an adjacency matrix and construct
50k 3-hop random walks with no repetitions allowed. We employ a proprietary
real-world trajectory dataset provided by a ride-hailing service in Hamburg, Ger-
many, which is used for trajectory learning, adversarial training, and evaluation.
The drivers and passengers consented to the data collection and the data is
anonymized. The dataset consists of more than 17.5k GPS traces (sample 1Hz)
from several vehicles with multiple drivers. The trajectory lengths are between
8 and 50 nodes. In the service area, about 65% of all nodes in the road network
are covered by the trajectories. The data covers the time between October 2019
and July 2021. All traces are map-matched to road network nodes. The dataset
is split into 90% training and 10% test data.

4.2 Model Setups

Here, we describe the architectures and parameters of CondTraj-GAN’s genera-
tor and discriminator functions.

Architectures. The generator is an LSTM network. We sample the length
condition input from the original trajectory data length distribution obtained
from the training set. The length condition and the current generation step
information are separately embedded and added. The result is concatenated
with the node embedding and fed into the LSTM layer followed by a linear layer
with softmax activation. At each generation step, the model outputs a vector of
probabilities for all node transitions from which the next node is sampled. The
transition mask is only applied during the inference phase, not while training.
The discriminator model is a CNN. Input to the discriminator is the trajectory
and the sequence length, both separately embedded, then added and fed into a
convolutional layer with pooling and a linear classification output.

Model Parameters. The generator and discriminator embedding and hidden
dimensions, and batch size are all set to 64. We run both pre-training phases
with 200 epochs each. The discriminator is pre-trained with the real trajectory
dataset and synthetic samples for 3 steps with 2 epochs each. Adversarial training
runs for 200 epochs with 9,600 synthetic samples. We use the Adam optimizer
with a learning rate (LR) of 1e-4 for generator training and an LR of 1e-5 for
discriminator training, as a higher discriminator LR leads to convergence failure.
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4.3 Evaluation Metrics

This section presents the evaluation metrics to assess the synthetic data utility.

Average Trip Length. The trip length dtl is the sum of all distances d
between consecutive nodes in a trajectory (νt, νt+1) ∈ τ . The average trip
length (av. TL) of a dataset is the mean of all trip lengths. We calculate the
delta Δdtl,set = 1

|T s|
∑

j ds
tl,j − 1

|T r|
∑

i dr
tl,i, between the original and synthetic

dataset. |T r| is the number of real trips, |T s| is the number of synthetic trips, dr
tl,i

is the trip length of a real trip i and ds
tl,j is the trip length of a synthetic trip j.

Average Start-to-End Node Distance. The average start-to-end node dis-
tance (av. SE) is calculated as the mean of all distances dse between the start
and end node of a trip in a dataset. We compare with the test data by calculat-
ing the delta Δdse,set = 1

|T s|
∑

j ds
se,j − 1

|T r|
∑

i dr
se,i, where |T r| is the number

of real trips, |T s| is the number of synthetic trips, dr
se,i is the start-end distance

of a real trip i and ds
se,j is the start-end distance of a synthetic trip j. The

start-to-end node distance indicates how targeted a trip is.

Trip Length Distribution. We calculate the Jensen-Shannon distance J of
trip lengths (JSD TL) to analyze the variety of trajectory lengths in the dataset:

J =
√

D(pr
tl‖m)+D(ps

tl‖m)

2 , where pr
tl and ps

tl are the trip length distributions of
the real and synthetic trajectory datasets, m is their point-wise mean and D is
the Kullback-Leibler divergence.

Start Node Distribution. We calculate the Wasserstein distance W between
the start point probability distributions (WD SP)to evaluate the similarity of
the real and synthetic origins, pr

sp and ps
sp: W (pr

sp, p
s
sp) = minγ

∑
γi,jMi,j , which

can be interpreted as transport costs from one distribution to the other [18]. γ
are the transportation costs and M is the distance matrix between samples i
and j in pr

sp and ps
sp, respectively.

Normalized Harmonic Mean. We calculate the normalized harmonic
mean (NHM) to assess the overall model performance along all metrics:
nhm = n

∑
i

xi,min
xi

. Since the metrics operate in a different range, we normalize

each value xi regarding the minimum value xi,min scored in a metric i. n is the
number of metrics.

4.4 Baselines

In this section, we want to describe the baselines compared with CondTraj-GAN.
For all models, we generate a dataset of 2,500 synthetic trajectories.

Markov Chain. The Markov Chain baseline randomly samples a node from
OSM as a beginner state. Like in [22], the transition matrix is based on the road
network and the real trajectories inferring the next node from a current state.
The sequence length is sampled from the original sequence length distribution.
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Shortest Path. The Shortest Path baseline randomly samples a start and
end node from OSM and calculates the shortest length path between them.

TrajGen. The TrajGen [2] model consists of a GAN that generates images of
trajectories and a Sequence-to-Sequence model that sorts the node ids extracted
from the images into the correct order. We implemented TrajGen with the public
code and the paper’s description.

LSTM-TrajGAN. The generator of the LSTM-TrajGAN model [16] takes
embedded real trajectories and noise to generate a synthetic trajectory via LSTM
modeling. Since the model was originally proposed for point-of-interest trajec-
tories, we adapt it to only spatial features and map-match the synthetic lat/lon
pairs to obtain a sequence of node ids. During inference, the baseline requires
real trajectories as input which we randomly sample from the training set.

5 Evaluation

The evaluation aims to assess CondTraj-GAN’s capability of generating realistic
trajectories. First, we discuss the performance regarding the evaluation metrics
compared with the baselines. Then, we conduct an ablation study to investigate
the contribution of CondTraj-GAN’s components. We run each experiment 5
times with random initialization and report the average and standard deviation.

5.1 Trajectory Generation Performance

Table 1 presents the overall trajectory generation performance of CondTraj-
GAN and all baselines. In the av. TL metric, CondTraj-GAN performs
best, indicating the usefulness of the length condition and step information
in constructing realistic trajectory lengths. Since the Shortest Path baseline
randomly samples start and end nodes, it creates the longest trips. LSTM-
TrajGAN performs worse than CondTraj-GAN although it generates the
same number of nodes as the input trajectory. Since the model is not bound
to the road network it may create distance errors that propagate through each
trajectory. Regarding av. SE LSTM-TrajGAN performs exceptionally well.
Here, the absence of the road network doesn’t affect the result significantly.
The Markov Chain only achieves a poor av. SE score. Since node transitions
are only based on the current node, its trips are unfocused and result in very
short start-end distances. In JSD TL, all models with close av. TL show good
performance, except for the TrajGen model, which fails to offer much vari-
ety in the generated trajectories. Regarding the WD SP, Markov Chain and
Shortest Path perform poorly since they randomly sample start nodes from an
equal distribution over the whole road network. Figure 2 compares the start node
probability distributions of the original trajectory dataset and all GAN-based
models, visualizing the scores in WD SP from Table 1. The CondTraj-GAN
distribution can capture the original start point distribution best. This indicates
the effectiveness of the trajectory learning step in the training phase for estimat-
ing the first node transition. The distribution of LSTM-TrajGAN looks like a
blurred version of the original due to mixing real origin locations with noise as



CondTraj-GAN: Generating Synthetic Vehicle Trajectories 87

Table 1. Overall trajectory generation performance with respect to average trip length,
average start-end distance, Jensen-Shannon distance of trip lengths, Wasserstein dis-
tance of start points, and NHM of all metrics (values close to 0 are best).

Model av. TL [km] av. SE [km] JSD TL WD SP NHM

Markov Chain 0.55 (±0.03) –0.95 (±0.01) 0.16 (±5.6e–3) 3.56e–4 (±2.4e–5) 2.74
Shortest Path 4.49 (±0.08) 4.08 (±0.06) 0.49 (±3.1e–3) 4.62e–4 (±1.5e–5) 6.49
TrajGen –0.59 (±0.85) –0.71 (±0.41) 0.63 (±5.8e–2) 266.10e–4 (±1.1e–2) 8.85
LSTM-TrajGAN 0.38 (±0.19) 0.001 (±0.1) 0.14 (±2.8e–2) 2.87e–4 (±6.6e–5) 1.43
CondTraj-GAN 0.15 (±0.04) –0.16 (±0.03) 0.12 (±3.8e–3) 1.56e–4 (±9.4e–6) 1.33
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Fig. 2. Start point probability distribution of real trajectory data and the synthetic
datasets generated by CondTraj-GAN, LSTM-TrajGAN and TrajGen.

model input. TrajGen achieves only a poor WD SP score. We find that Tra-
jGen generates many duplicate trajectories, i.e. there are less than 1% unique
trajectories in the 2,500 trajectory test set, which indicates mode collapse.

In summary, CondTraj-GAN offers the best overall performance at NHM
and achieves the best scores in three out of four metrics and the second-best per-
formance in one metric. It shows high similarity with the real dataset indicating
potential usage of CondTraj-GAN’s trajectories for downstream applications.
In contrast to LSTM-TrajGAN, CondTraj-GAN does not require any tra-
jectory information during the inference phase and can capture complex spatial
relationships along non-linear road networks.

5.2 Ablation Study

In this section we investigate the importance of transition mask (tm), step infor-
mation (si), length condition (lc) and topology learning (tl) by training differ-
ent model setups. Table 2 shows the results of the ablation study. To mitigate
discriminator inferiority and thus assuring an effective GAN-training generator
pre-training is necessary. Therefore, our minimum model consists of a vanilla
GAN + trajectory learning. We aim to particularly investigate the impact of
length condition and step information on the node sequence length. Similar to
JSD TL, we introduce the Jensen-Shannon distance of node sequence lengths
(JSD NL). Overall, the full CondTraj-GAN model shows the best perfor-
mance, leading in 3 out of 5 metrics and the overall performance at NHM of
all metrics. The Vanilla + tr + to + tm model generally builds longer trips
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Table 2. Ablation study of different model components. Each row adds different com-
ponents to the vanilla GAN model: trajectory learning (tr), topology learning (to),
length condition (lc), step information (si), and transition mask (tm). The CondTraj-
GAN model consists of all components. Values close to 0 are best.

Model av. TL [km] av. SE [km] JSD TL JSD NL WD SP NHM

Vanilla + tr 11.49 (±0.23) 1.60 (±0.06) 0.40 (±1.4e–2) 0.29 (±2.6e–2) 1.60e–4 (±2.0e–5) 3.07
+ to 5.54 (±0.23) 1.23 (±0.12) 0.34 (±8.8e–3) 0.24 (±3.9e–3) 1.84e–4 (±2.8e–5) 2.95
+ lc 20.65 (±4.07) 1.80 (±0.14) 0.40 (±6.1e–2) 0.19 (±6.4e–2) 1.52e–4 (±2.3e–5) 2.67
+ si 13.13 (±0.77) 1.63 (±0.09) 0.40 (±5.6e–3) 0.21 (±9.3e–3) 1.56e–4 (±1.2e–5) 2.77
+ tm –2.84 (±0.07) –2.24 (±0.03) 0.69 (±1.9e–2) 0.73 (±2.3e–3) 2.38e–4 (±1.8e–5) 5.00
+ to + lc 1.63 (±1.50) 0.39 (±0.69) 0.24 (±4.7e–2) 0.21 (±2.7e–2) 11.7e–4 (±6.2e–4) 3.21
+ to + si 2.81 (±0.32) 0.96 (±0.20) 0.29 (±8.1e–3) 0.16 (±9.7e–3) 5.04e–4 (±3.2e–4) 3.13
+ to + tm 0.39 (±0.03) 0.11 (±0.01) 0.21 (±1.2e–3) 0.21 (±4.3e–3) 1.85e–4 (±1.2e–5) 1.57
+ lc + si 19.01 (±1.62) 1.72 (±0.10) 0.37 (±7.8e–3) 0.15 (±9.7e–3) 1.46e–4 (±2.6e–5) 2.37
+ lc + tm –0.24 (±0.26) –0.57 (±0.12) 0.14 (±1.8e–2) 0.17 (±3.7e–2) 1.46e–4 (±2.1e–5) 1.52
+ si + tm 0.34 (±0.06) –0.15 (±0.02) 0.19 (±1.4e–2) 0.19 (±1.4e–2) 1.42e–4 (±2.2e–5) 1.48
+ to + lc + si 2.38 (±0.38) 0.76 (±0.15) 0.24 (±1.6e–2) 0.13 (±6.9e–3) 2.67e–4 (±1.3e–4) 2.35
+ to + lc + tm –0.28 (±0.57) –0.46 (±0.31) 0.18 (±4.8e–2) 0.19 (±5.1e–2) 7.79e–4 (±5.2e–4) 2.23
+ to + si + tm 0.72 (±0.19) 0.20 (±0.08) 0.20 (±2.6e–2) 0.17 (±1.7e–2) 2.74e–4 (±8.8e–5) 1.96
+ lc + si + tm 0.23 (±0.17) –0.37 (±0.08) 0.14 (±8.8e–3) 0.15 (±1.8e–2) 1.33e–4 (±1.6e–5) 1.39
CondTraj-GAN 0.15 (±0.04) –0.16 (±0.03) 0.12 (±3.8e–3) 0.12 (±1.5e–3) 1.56e–4 (±9.4e–6) 1.10

since it has no length condition or step information applied, leading to higher
values in av. TL, JSD TL, and JSD NL, but resulting in a better av. SE score.
Model setups that are missing topology learning are showing better results in
WD SP (e.g. the Vanilla + tr + lc + si + tm model), indicating that learning
an equal distribution of start points degrades this score. With our model, two
factors are mainly contributing to the trip length: the node sequence length and
the distance of two consecutive nodes. Realistic trajectories contain only node
transitions to adjacent nodes and also have a similar node sequence length dis-
tribution to the original dataset, leading to similar trip lengths and trip length
distributions. Adding topology learning improves the trip length substantially
because it enables the handling of unseen nodes which are not contained in the
training data and, thus, can lead to gaps in the generated trajectories. Without
transition mask the distance of subsequent nodes is larger which results in a
higher av. TL, av. SE and worse JSD TL. Models containing length condition
or step information show increasing quality in the JSD NL, therefore leading
to realistic trip lengths as long as topology learning or transition mask are also
applied. In summary, the length condition and step information help construct
the right node sequence length, while the topology learning and transition mask
handle the transition to adjacent nodes. All components of CondTraj-GAN
contribute to generating realistic synthetic vehicle trajectories.

6 Related Work

This section discusses the related work in the areas of synthetic trajectory gen-
eration and data anonymization.
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Synthetic Trajectory Generation. With TimeGeo [9] and DITRAS [14] two
mechanistic models show promising results in trajectory generation. The existing
literature also addresses synthetic trajectory generation using GAN and Varia-
tional Autoencoder-based models. [2] use a GAN and a seq2seq model to gen-
erate trajectories with spatio-temporal information. A DCGAN creates images
of travel patterns which are sequenced into trajectories using map information
and a seq2seq network. In [16] a combination of an LSTM and GAN is used
to generate sequences of visited POIs from original trajectories with an end-
to-end model that uses original trajectories during generation. [19] developed
a two-stage GAN model to generate vehicle trajectories that match the street
network. Multiple papers propose Variational Autoencoders (VAEs) to generate
trajectories from real starting points [3] or in combination with seq2seq models
[8]. [13] leverages a location-major representation to encode trajectories onto a
2D map. These trajectories are fed into a GAN model to generate a synthetic
dataset. In contrast, we propose an end-to-end GAN framework for trajectory
generation that does not rely on multiple stages or intermediate images, and no
original trajectories are used during generation.

Data Anonymization. The existing literature investigated methods for
anonymizing mobility or trajectory data. This data is typically critical for pri-
vacy attacks as it can contain personal information like home or work address
which can be inferred by frequently visited places. Differential privacy (DP)
[5] offers the opportunity to protect users’ locations while still preserving the
characteristics of the dataset. [1] protects the privacy of the user’s location by
achieving geo-indistinguishability by adding random noise to the user’s location.
[21] investigate trajectory data publishing, especially with multiple repetitive
trajectories of the same users in a dataset, and propose of the use DP. How-
ever, privacy preservation usually comes with the cost of diminished data utility.
Therefore, we do not focus on anonymizing existing trajectories but propose a
framework to generate synthetic trajectories to maintain both privacy and data
utility.

7 Conclusion and Future Work

In this paper, we have presented CondTraj-GAN- a novel end-to-end frame-
work for synthetic trajectory generation. At the core of CondTraj-GAN, we pro-
posed a novel training process including topology learning and trajectory learn-
ing to capture the complex spatial and sequential patterns of vehicle trajecto-
ries. CondTraj-GAN introduces a trajectory length condition supported by step
information to guide the trajectory generation process into realistic trajectory
lengths. Our evaluation shows that CondTraj-GAN reliably outperforms state-
of-the-art models for trajectory generation. This work is focused on the spatial
dimension of trajectories only which is relevant for, e.g., popular route discovery
[4]. In future work, we plan to expand CondTraj-GAN to complement the gen-
erated trajectories with time information. Further, we would like to investigate
the benefit of using synthetic trajectories in downstream applications.
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Abstract. Recently, graph contrastive learning has emerged as a suc-
cessful method for graph representation learning, but it still faces three
challenging problems. First, existing contrastive methods cannot preserve
the semantics of the graph well after view augmentation. Second, most
models use the same encoding method to encode homophilic and het-
erophilic graphs, failing to obtain better-quality representations. Finally,
most models require that the two augmented views have the same set of
nodes, which limits flexible augmentation methods. To address the above
problems, we propose a novel graph contrastive learning framework with
adaptive augmentation and encoding for unaligned views, called GCAUV
in this paper. First, we propose multiple node centrality metrics to com-
pute edge centrality for view augmentation, adaptively removing edges
with low centrality to preserve the semantics of the graph well. Second,
we use a multi-headed graph attention network to encode homophilic
graphs, and use MLP to encode heterophilic graphs. Finally, we pro-
pose g-EMD distance instead of cosine similarity to measure the dis-
tance between positive and negative samples. We also perform adversarial
training by adding perturbation to node features to improve the accuracy
of GCAUV. Experimental results show that our method outperforms the
state-of-the-art graph contrastive methods on node classification tasks.

Keywords: Contrastive Learning · Graph Representation Learning ·
Homophilic Graph · Heterophilic Graph

1 Introduction

In recent years, graph representation learning has emerged as an effective method
for analyzing graph-structured data. Graph representation learning aims to con-
vert high-dimensional node features into low-dimensional embeddings while pre-
serving the graphs’ topological structures for downstream tasks. Due to scarce
labeled data in graphs, many graph contrastive learning methods [4,13,14,18–20]
have been proposed to extract semantic information-rich knowledge from graphs.

Although graph contrastive learning have achieved remarkble performance in
downstream tasks, they still have three important problems to be resolved. First,
due to the non-Euclidean structure of the graph, the augmentation methods in
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the CV and NLP domains cannot be directly applied to graph data. We have to
design the augmentation methods for graph data. GraphCL [17] designed four
general augmentation methods (node deletion, edge perturbation, feature mask-
ing, and subgraph sampling) for graph contrastive learning. However, we found
that the above augmentation methods only has good results for some datasets.
This indicates that these random augmentation methods cannot preserve the
semantics of the graph well; in contrast, they may erase important intra-graph
information during the augmentation process, which will affect the ability of
the model to learn knowledge from the graph. Second, most contrastive learning
framework use the same encoding method(GCN) for both homophilic and het-
erophilic graphs. However, we find that encoding method has a great impact on
the performance in downstream tasks and different types of graphs should use
different coding methods. Finally, in the contrastive learning model where the
contrast level is node-to-node, the same nodes in two views are generally treated
as a pair of positive samples, and the other nodes in two views are treated as
negative samples, which requires that the augmented views have the same set
of nodes. This rigid requirement will hinder the flexibility and diversity of view
sampling and augmentation and limit the expressive power of graph contrastive
learning.

To address the above three problems, we propose a novel graph contrastive
learning frameworkwith adaptive augmentation and encoding for unaligned views,
called GCAUV. First, we generate subgraphs by performing a random walk with
restart for each node in the graph, where subgraphs sampled by the same central
node are considered as a pair of positive samples, and subgraphs sampled by differ-
ent central nodes are negative samples. We then augment the subgraph with edge
dropping and feature masking. For edge dropping, we calculate the edge centrality
of each edge in the subgraph based on node centrality measures, so that the edges
can be dropped adaptively in terms of their centrality. To improve the accuracy of
the node classification task, we train the model adversarially by adding perturba-
tion to the node features. Then we use a multi-head graph attention network to
encode the nodes in the homophilic graph and use MLP to encode the nodes in the
heterophilic graph. After obtaining node representations, we propose g-EMD dis-
tance as a contrastivemetric tomeasure the distance between positive andnegative
samples, where the g-EMD distance can be modeled as the minimum generation
cost required to convert the node attribute distribution of one view to the node
attribute distribution of another view. We make all the code publicly available at
https://github.com/GCAUV-PyTorch/GCAUV. Our main contributions are as
follows.

– We propose a novel graph contrastive learning framework based on adaptive
augmentation called GCAUV.

– We design different encoding methods for homophilic and heterophilic graphs
respectively and illustrate their effectiveness. We propose g-EMD distance to
measure the distance between views, allowing to have different set of nodes
between views.

– Extensive experimental results on homophilic and heterophilic datasets
demonstrate the superior performance of our method.

https://github.com/GCAUV-PyTorch/GCAUV
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2 Related Work

2.1 Graph Contrastive Learning

With the great success of contrastive learning in CV and NLP domains, experts
have worked on applying contrastive learning to graph structures to obtain
better-quality representations. Initially, DGI [14] obtained node or graph repre-
sentations by maximizing the Mutual Information between graph-level and node-
level representations. BGRL [13] measures the Mutual Information by param-
eterizing the Mutual Information estimator to obtain representations. Subse-
quently, MVGRL [4] proposed learning node-level and graph-level representa-
tions by performing node diffusion and comparing node representations with
augmented graph representations. MNCI [9] and ConMNCI [10] proposed a new
kind of inductive network representation learning method by mining neighbor-
hood and community influences in temporal networks. GRACE [18] applied node
dropping and feature masking to propose a node-to-node contrastive learning
framework. The above methods do not consider how to preserve the semantic
and important information of the graph in the view augmentation part, resulting
in poor performance. GCA [19] first used node centrality for adaptive augmen-
tation of views, but GCA [19] requires both views to have the same set of nodes
that loses the flexibility of view sampling and augmentation. RoSA [20] first pro-
posed to use g-EMD distance instead of cosine similarity to ensure the flexibility
and diversity of view sampling. However, it does not consider how to preserve
the semantics of the graph better when augmenting the views, which may affect
the ability of the model to learn important knowledge in the graph.

This paper performs adaptive augmentation based on the node centrality
measure. In the contrastive process, we use g-EMD distance instead of cosine
similarity to measure the distance between positive and negative samples, which
ensures the flexibility and diversity of view augmentation and also improves the
ability of the model to learn important knowledge in the graph.

2.2 Adversarial Training

Adversarial training is generally used to improve the model’s resistance to inter-
ference. The main idea of adversarial training is to add noise to the original sam-
ples to generate adversarial samples during model training, so that the training
samples include the original samples and the adversarial samples. In the begin-
ning, our neural network may misclassify these adversarial samples, and the
purpose of adversarial training is to adapt the neural network to these changes
and classify the adversarial samples correctly, and as the training proceeds, the
model’s resistance to interference is improved. [8] Kong et al. have used a super-
vised approach to apply adversarial training to graph structures. SimGrace [16]
proposed adding perturbation to the graph encoder parameters to improve the
robustness of the model. In this paper, we propose to add perturbation to the
node features for adversarial training to improve the accuracy of the model on
node classification tasks.
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3 Method

In this section, we introduce GCAUV in detail. The framework of our model is
shown in Fig. 1.

Fig. 1. Overview of GCAUV model: we first generate subgraphs by performing random
walk with restart sampling for each node, where the subgraphs obtained by sampling
the same central node are considered as a pair of positive samples, and the subgraphs
obtained by sampling different central nodes are negative samples. Subsequently, we
perform adaptive augmentation of the subgraph based on node centrality. Then we
put the homophilic and heterophilic graphs into different graph encoders and the same
projection head to obtain the node representations, respectively. We update the graph
encoder parameters by contrastive loss based on g-EMD distance. We also introduce
adversarial training for the model to improve the accuracy of node classification.

3.1 Preliminaries

Notation. Let G = (V, E) denote a graph, where V = {v1, v2, · · · , vN}
denotes the set of nodes and E ⊆ V × V denotes the set of edges. We use
X = {x1,x2, . . . ,xN} ∈ RN×d denotes the node feature matrix of the graph,
and the feature size of each node is d, A ∈ R

N×N denotes the adjacency matrix
of the graph, where Ai,j = 1 if an edge exists between node i and node j, else
Ai,j = 0. Each node in the graph will be treated as a central node for sampling,
and we denote the sampled subgraph as G(i)

k , where i denotes the central node
and k denotes the k-th subgraph obtained by sampling. Our objective is to train
a GNN graph encoder fθ(X,A) ∈ R

N×F ′
(F ′ � d). The node feature matrix

and adjacency matrix are input to obtain a low-dimensional node representation,
and the obtained node representations are applied to downstream tasks.

Homophilic and Heterophilic Graph. We define homophilic and het-
erophilic graphs by edge homophily [15]. Edge homophily is the proportion of
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edges connecting two nodes of the same class in a graph. Edge homophily is in
the range [0, 1], with values close to 1 indicating strong homophily, and values
close to 0 indicating strong heterophily. We refer the graph with high homophily
as homophilic graph and the graph with low homophily as heterophilic graph.

3.2 Adaptive Augmentation

Since we need to obtain unaligned views to prove the validity of our method, we
propose to utilize random walk with restart sampling to obtain subgraphs. Sub-
sequently, we augment the subgraph with edge dropping and feature masking.
For edge dropping, we calculate edge centrality by node centrality and adap-
tively remove lower centrality edges. For feature masking, we randomly masking
a fraction of dimensions with zeros in node features for augmentation in order
not to affect the adversarial training. We believe that the above approach can
better preserve the graph’s topological features and semantic structure. In the
following, we describe our augmentation scheme in detail.

Regarding topology-level augmentation, we wish to sample a subset ε̃ from
the original edge set ε through a Bernoulli distribution : P{(u, v) ∈ Ẽ} = 1−pe

uv,
where pe

uv represents the removal probability of each edge in the original edge
set. For the more important edges, we assign a lower removal probability, and the
less important edges are assigned a higher removal probability so that pe

uv can
reflect the importance of each edge. With this augmentation, the more important
topologies in the graph can be preserved.

In networks, node centrality is a common way to measure the importance
of nodes. We define ϕc(·) : V → R

+ as the node centrality metric function and
calculate edge centrality by the centrality of two connected nodes. In directed
graphs, we use the centrality of the trailing node as the edge centrality because
the importance of edges is usually expressed by nodes they are pointing to, i.e.
we

uv = ϕc(v). In undirected graphs, we use the average of two adjacent nodes’
centrality scores, i.e. we

uv = (ϕc(u) + ϕc(v)) /2.
After obtaining the edge centrality, we can calculate the dropping probability

of each edge. Before that, we normalize the calculated edge centrality to prevent
the effect of different centrality metrics with different orders of magnitude, i.e.
se

uv = logwe
uv. Finally, we calculate the dropping probability of edges in the

following way.

pe
uv = min

(
se
max − se

uv

se
max − μe

s

· pe, pτ

)
, (1)

where semax and ue
s are the maximum and average values of se

uv, pe is the hyper-
parameter that controls the overall probability of removing edges, and pτ < 1
is used to control the cutoff probability of edge removal because if too many
edges are removed from the graph, the semantic structure of the graph may be
severely damaged.

For the node centrality measure, we use the three measures of GCA [19],
which are degree centrality, PageRank centrality, and eigenvector centrality. In
addition, we design two novel node centrality measures, closeness centrality and
betweenness centrality. We will introduce them in the following.
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Closeness Centrality. The closeness centrality reflects the proximity between
a node and other nodes in the network. Suppose the shortest path distance from
node u to all other nodes in the graph is small. In that case, node u dosen’t
need to rely excessively on other nodes when transmitting information to other
nodes, indicating that node u is important and has a high degree of closeness
centrality. We calculate the closeness centrality of a node by Eq. (2).

C(u) =
n − 1∑n−1

v=1 d(u, v)
, (2)

we express the closeness centrality of node u as the reciprocal of the average
shortest path distance between node u and n − 1 reachable nodes in the graph,
where d(u, v) denotes the shortest distance from node u to node v, and n is the
number of nodes that node u can reach in the graph.

Betweenness Centrality. The interactions between two non-adjacent nodes of
the network depend on other nodes, especially those on the path between nodes.
They have a controlling and constraining effect on the interactions between two
non-adjacent nodes. Therefore, the idea of betweenness centrality is that if node
v is located on multiple shortest paths between other nodes, then node v is a core
node, indicating that node v has a large betweenness centrality. We calculate the
betweenness centrality of a node by Eq. (3).

g(v) =
∑n−1

s=1

∑n−1

t=1

σst(v)
σst

, (3)

where σst(v) denotes the number of shortest paths from node s to node t through
node v, σst is the number of shortest path from node s to node t.

3.3 Encoding Methods for Homophilic and Heterophilic Graphs

After adaptive augmentation of the subgraphs, we design different encoding
methods for the nodes in homophilic and heterophilic graphs. For homophilic
graphs, we use a multi-headed graph attention network [12] to encode them, and
for heterophilic graphs, we use MLP to encode them.

Previous studies found that when GCN [7] aggregates the information of
neighbor nodes, the weights of neighbor nodes are calculated only related to the
topology structure but not to the node features. Since the topology structure
of each graph is not the same, the generalization of GCN on the graph struc-
ture is poor. In contrast, GAT [12] uses more feature information of the nodes
in calculating attention coefficients rather than all graph structure information.
Therefore, GAT is an aggregation method that partially depends on the graph
structure. The introduction of multi-headed attention enhances its expressive-
ness, solving the problem that GCN completely depends on the degree matrix
and adjacency matrix, and the coefficients are not learnable. The encoding pro-
cess of the homophilic graph is as follows.

First, we calculate the attention coefficients of all neighbor nodes of the
target node by Eq. (4), where LeakyReLU is a nonlinear activation function, ã
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is a weight vector of size 2F ′, W is a weight matrix, hi denotes the node features
of the target node, hj denotes the node features of the neighbor node j connected
to the target node, and Ni denotes all the nodes connected to the target node.

αij =
exp

(
LeakyReLU

(
ãT

[
W�hi ‖ W�hj

]))
∑

k∈Ni
exp

(
LeakyReLU

(
ãT

[
W�hi ‖ W�hk

])) (4)

We introduce multi-headed attention [12] to improve the expression of GAT
[12]. After calculating the multiple attention coefficients, we obtain the node
representations by weighted average, and calculate them by Eq. (5), where σ is
the Sigmoid nonlinear activation function, W k is the weight matrix, and αij is
the attention coefficient.

�h′
i = σ

⎛
⎝ 1

K

K∑
k=1

∑
j∈Ni

αk
ijW

k�hj

⎞
⎠ (5)

Unlike the homophilic graph, the heterophilic graph emphasizes that the
nodes are less similar to their neighbors, and the node representations and labels
are more different. If we use GCN to encode the nodes in the heterophilic graph,
GCN will aggregate the information of all neighbor nodes during the encoding
process. The difference between target and neighbor nodes in the heterophilic
graph is large. If the multi-hop neighbor nodes of the target node have the same
type or similar features as the target node, then once we use multiple layers of
GCN to encode the nodes in the heterophilic graph, the homophilic and het-
erophilic information in the heterophilic graph will be mixed. This mixed infor-
mation cannot help our model extract the important information in the graph.
In contrast, it generates interference signals that affect the ability of GNN to
learn knowledge in the graph and degrade the performance of downstream tasks.
Therefore, the node information aggregation method of GCN is unsuitable for
heterophilic graphs. Since the features of the nodes themselves in the heterophilic
graph are sufficient for the neural network to classify the nodes in the graph, we
use two-layer MLP to encode the heterophilic graph, as shown in Eq. (6).

H = (σ(BatchNorm(XW)))W′, (6)

where X is the initial node feature, W and W ′ are the weight matrix of the first
and second layers, respectively, σ is the Relu nonlinear activation function.

3.4 G-EMD-based Contrastive Loss

After obtaining the representations of the two unaligned views, we use the g-
EMD distance in RoSA [20] as the contrastive metric to measure the distance
between positive and negative samples. Most previous contrastive learning stud-
ies have used cosine similarity as the contrastive metric. However, cosine simi-
larity is limited to the contrast between aligned views, which inevitably limits
the diversity and flexibility of view sampling and augmentation. Therefore, we
use g-EMD distance to solve this problem.
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EMD is the measure of the distance between two discrete distributions, it can
be interpreted as the minimum cost to move one pile of dirt to the other. Since
g-EMD distance can directly calculate the distance between representations of
views, it can solve the problem that nodes between views must be aligned. The
calculation of g-EMD can be formulated as a linear optimization problem. In
the contrastive of positive and negative samples, the two augmented views have
feature mappings X ∈ R

M×d and Y ∈ R
N×d, respectively, and the goal is

to measure the distance from converting X to Y . Assume that for each node
xi ∈ R

d, it has ti units to transport and that node yj ∈ R
d has rj units to

receive. For a given pair of nodes xi and yj , the unit transport cost is Dij and
the transport volume is Γ ij . We define the problem as follows:

min
Γ

M∑
i=1

N∑
j=1

DijΓij . (7)

We design the cost matrix Dij incorporating the topological distance and
find the optimal Γ̃ by the Sinkhorn Algorithm [20] with entropy regularizer.
After obtaining the cost matrix Dij and the optimal Γ̃ , we can compute the
g-EMD distance that converts X to Y . Due to space limitation, the method of
calculating the g-EMD distance is described in Supplementary Material1.

In order to map the node representations of different views into the same
contrastive space, we send the obtained node representations into a projection
head (i.e. a two-layer MLP) to obtain Z(n)

1 , Z(n)
2 . The contrastive loss of node vi

is shown in Eq. (8), where s(x,y)=g-EMD(x,y) is used to calculate the similarity
between x and y, I is an indicator function that returns 1 if i = k; otherwise
returns 0, τ is the temperature parameter. The overall contrastive loss is shown
in Eq. (9).

	
(
Z(i)

1 ,Z(i)
2

)
= − log

⎛
⎝ e

s(Z(i)
1 ,Z

(i)
2 ))/τ

N∑

k=1
e
s(Z(i)

1 ,Z
(k)
2 ))/τ

+
N∑

k=1
I[k �=i]e

s(Z(i)
1 ,Z

(k)
1 ))/τ

⎞
⎠ (8)

J =
1

2N

N∑
i=1

[
	
(
Z(i)

1 ,Z(i)
2

)
+ 	

(
Z(i)

2 ,Z(i)
1

)]
(9)

3.5 Adversarial Training on GCAUV

We introduce adversarial training to the model by adding perturbation to the
node features. When adding perturbation, we need to find the perturbation that
makes the maximum loss. The purpose is to make the added perturbation have
as much interference effect on the neural network as possible so that it can have
the effect of adversarial training. Initially, the neural network under perturbation
may misclassify the adversarial samples. Still, as the training proceeds, our model

1 https://github.com/GCAUV-PyTorch/GCAUV/blob/main/Supplementary%20Ma
terial%20.pdf.

https://github.com/GCAUV-PyTorch/GCAUV/blob/main/Supplementary%20Material%20.pdf
https://github.com/GCAUV-PyTorch/GCAUV/blob/main/Supplementary%20Material%20.pdf
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adapts to this perturbation, and the model’s performance is improved in the
process. We can formulate it as the following optimization problem.

min
θ,ω

L
(
Z

(i)
1 , Z

(i)
2

)
=

1
M

M∑
i=1

max
Δt

	i

(
f

(
Ã

(i)
1 , X̃

(i)
1 + Δt

)
, f

(
Ã

(i)
2 , X̃

(i)
2

))
, (10)

where 	i is the contrastive loss, f is the graph encoder and Δt is the added
perturbation. We update the perturbation by iterating internally through the
gradient ascent algorithm M times to find the perturbation that maximizes the
contrastive loss. As the perturbation is determined, the outer updates the weights
of the graph encoder and MLP by gradient descent.

4 Experiments

4.1 Experimental Setup

Datasets. We conduct experiments on seven public benchmark datasets, includ-
ing four homophilic datasets, Cora, Citseer, Amazon-Photo, and Amazon-
Computers, and three heterophilic datasets, Cornell, Texas, Wisconsin. All the
datasets we used are from the Pytorch Geometry Library (PyG) [2]. For more
information about the above datasets in Table 1.

Table 1. Statistics of datasets used in experiments.

Dataset #Nodes #Edges #Features #Classes

Cora 2,708 5,429 1,433 7
Citeseer 3,327 4,732 3703 6
Amazon-Photo 7,650 119,081 745 8
Amazon-Computers 13,752 245,861 767 10

Cornell 183 280 1,703 5
Texas 183 295 1,703 5
Wisconsin 251 466 1,703 5

Evaluation Protocol. We measure the the models’ performance by node classi-
fication accuracy. To evaluate the trained graph encoders, we use the linear eval-
uation protocol [14], first train the model in an unsupervised manner and then
train a separate classifier on the learned node representation. The homophilic
graph dataset is trained using an l2-regularization LogisticRegression classifier,
and the heterophilic graph dataset is trained using a layer of MLP through 100
Epochs. We randomly split the nodes in the homophilic dataset (10%/10%/80%)
for training/validation/testing, and for the heterophilic dataset, we use the stan-
dard data splits processed by Geom-GCN [11]. We experiment with hyperparam-
eters for optimal performance, and the detailed hyperparameter settings are pub-
lished in github. We perform 10 experiments on the model for different dataset
splits, report each dataset’s average performance for evaluation, and report the
average accuracy with standard deviation.
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Baselines. On the homophilic dataset, we compare the GCAUV model with
traditional baseline methods, including node2vec [3] and DeepWalk [1] and Deep-
Walk with embeddings concatenated with input node features. Comparisons also
were made with existing deep learning methods such as GAE [6], DGI [14],
GRACE [18], GCA [19], BGRL [13], MVGRL [4], and RoSA [20]. To reflect
the effectiveness of the GCAUV model, we also compare it with two supervised
representative models, GCN [7] and GAT [12]. For the heterophilic dataset, we
compare DGI [14], SUBG-CON [5], and ROSA [20] as baselines for our model.
The hyperparameters of each baseline are set according to the original paper.

4.2 Performance on Node Classification

Results for Homophilic Datasets. Table 2 summarizes the node classifica-
tion performance of the GCAUV model on the four homophilic datasets. The
experimental results show that the GCAUV model outperforms baseline meth-
ods in node classification accuracy. This result is mainly attributed to the four
components of our framework: (1) Adaptive augmentation of subgraphs by node
centrality metrics can better preserve the semantics within the graph and keep
the important knowledge in the graph. (2) The information aggregation app-
roach of GAT in encoding nodes in the homophilic graph is beneficial. (3) Using
g-EMD distance instead of cosine similarity can ensure the flexibility and diver-
sity of view sampling. (4) Adversarial training can effectively improve the model’s
performance on the node classification task. We also observe that variants using

Table 2. Performance summary on homophilic graphs, where A, X, and Y cor-
respond to the node features, adjacency matrix, and labels, respectively. GCAUV-
DE/PR/EV/CL/BT denote the five variants of GCAUV with different node centrality
of degree/PageRank/eigenvector/closeness/betweenness for adaptive augmentation.

Method Training Data Cora Citeseer Amazon-photo Amazon-Computers

node2vec A 74.8 52.3 89.67±0.12 84.39±0.08
DeepWalk A 75.7 50.5 89.44±0.11 85.68±0.06
DW+fea X,A 73.1 47.6 90.05±0.08 86.28±0.07
GCN X,A,Y 82.8 72.0 92.42±0.22 86.51±0.54
GAT X,A,Y 83.00±0.70 72.50±0.70 92.56±0.35 86.93±0.29
GAE X,A 71.50±0.40 65.80±0.40 91.62±0.13 85.27±0.19
DGI X,A 82.60±0.40 71.80±0.70 91.61±0.22 83.95±0.47
Grace X,A 83.30±0.40 72.10±0.50 92.15±0.24 87.46±0.22
GCA X,A 83.80±0.80 72.20±0.70 92.53±0.16 87.85±0.31
MVGRL X,A 83.50±0.40 72.60±0.70 91.74±0.07 87.52±0.11
BGRL X,A 83.83±1.61 72.32±0.89 92.95±0.07 87.89±0.10
RoSA X,A 83.34±0.81 72.80±0.63 92.92±0.13 88.90±0.19
GCAUV-DE X,A 84.61±0.77 73.34±0.35 93.01±0.11 89.08±0.05
GCAUV-PR X,A 84.59±0.68 72.88±0.45 93.27±0.09 89.23±0.03
GCAUV-EV X,A 85.03±0.35 73.37±0.40 93.16±0.01 89.45±0.05
GCAUV-CL X,A 84.56±0.49 73.29±0.51 93.13±0.15 89.27±0.11
GCAUV-BT X,A 84.28±0.74 72.84±0.70 93.05±0.06 89.22±0.22
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Table 3. Performance of the node classification task using GCN (left) and MLP (right)
on heterophilic graphs.In this case, we show the highest performance in bold.

Method Cornell
(GCN)

Texas
(GCN)

Wisconsin
(GCN)

Cornell
(MLP)

Texas
(MLP)

Wisconsin
(MLP)

DGI 56.3±4.7 56.9±6.3 50.9±5.5 58.1±4.1 57.8±5.2 52.1±6.3
SUBG-CON 54.1±6.7 56.9±6.9 48.3±4.8 58.7±6.8 61.1±7.3 59.0±7.8
RoSA 58.92±4.56 59.19±4.90 52.35±3.40 70.0±3.91 69.19±5.16 71.18±5.41
GCAUV-DE 59.46±3.63 60.27±4.69 55.29±4.37 71.08±8.11 70.54±5.73 70.78±4.51
GCAUV-PR 59.46±4.19 59.73±3.51 52.35±4.39 70.54±7.88 70.81±5.64 70.20±4.09
GCAUV-EV 59.46±2.96 60.27±4.02 52.55±5.10 71.08±8.11 70.54±5.73 70.98±4.28
GCAUV-CL 60.54±3.86 59.73±4.75 55.49±4.12 70.81±4.65 70.54±5.73 70.98±4.62
GCAUV-BT 60.54±3.24 59.46±4.83 52.94±4.72 70.81±8.09 71.08±5.68 70.98±4.37

different node centrality measures outperform baseline methods on all datasets,
indicating that our model is not limited to a specific choice of node centrality
measures, illustrating the generalizability of our model.

Results for Heterophilic Datasets. Table 3 summarizes the node classifi-
cation performance of the GCAUV model on the three heterophilic datasets.
Among them, to illustrate that MLP is a more suitable encoding method for
heterophilic graphs, we use GCN and MLP as encoders for the GCAUV model
and other baselines, respectively. The experimental results show that the perfor-
mance of the model encoded by MLP is always higher than that of the model
encoded by GCN on the heterophilic graph, both for the the GCAUV model and
for baseline methods. It fully illustrates the effectiveness of MLP. The GCAUV
model outperforms the other baselines in the case of GCN coding, and when
coded by MLP, it outperforms other baselines on the Cornell and Texas datasets.
In comparison, the performance on the Wisconsin dataset is slightly lower than
RoSA but equally competitive.

4.3 Ablation Studies

To illustrate the effectiveness of each component in the model, we perform abla-
tion experiments at the same hyperparameter settings, remove or replace key

Fig. 2. Ablation Study on GCAUV.
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components for each of these variants. First, we replace the adaptive augmen-
tation with random edge dropping and feature masking in the graph, named it
(w/o adp). Second, we replace the GAT with GCN to encode the nodes and
named it (w/o GAT). Subsequently, we replace the g-EMD distance with cosine
similarity to measure the distance between positive and negative samples and
named it (w/o EMD). Finally, we remove the adversarial training to observe the
model’s performance and named it (w/o AT). The results are shown in Fig. 2.
The experimental results show that the node classification accuracy decreases
when we remove a key component. This fully illustrates the effectiveness of each
component in the GCAUV model. We also perform sensitivity analysis for the
hyperparameters, which we show in Supplementary Material.

5 Conclusion

In this paper, we propose a novel graph contrastive learning framework based
on adaptive augmentation and node self-alignment. We design multiple node
centrality measures to calculate edge centrality, and obtain adaptive augmenta-
tion views by assigning different dropping probability to edges in terms of their
centrality. We propose different encoding methods for homophilic (GAT) and
heterophilic (MLP) graph respectively to obtain high-quality representations.
We also use g-EMD distance instead of cosine similarity to measure the dis-
tance between positive and negative samples, thus allowing to have the different
set of nodes between different views. Extensive experiments on homophilic and
heterophilic graph datasets demonstrate the excellent performance of our model.
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Abstract. Recently, Graph Neural Networks (GNNs) have emerged as a
powerful technique for various graph-related tasks. Current GNN mod-
els apply different graph pooling methods that reduce the number of
nodes and edges to learn the higher-order structure of the graph in a
hierarchical way. However, these methods primarily rely on the one-
hop neighborhood and do not consider the higher-order structure of the
graph. To address this issue, in this work, we propose a multi-channel
Motif-based Graph Pooling method named (MPool) that captures the
higher-order graph structure with motif and also considers the local and
global graph structure through a combination of selection and clustering-
based pooling operations. In the first channel, we develop node selection-
based graph pooling by designing a node ranking model considering the
motif adjacency of nodes. In the second channel, we develop cluster-based
graph pooling by designing a spectral clustering model using motif adja-
cency. Finally, the result of each channel is aggregated into the final graph
representation. We perform extensive experiments and demonstrate that
our proposed method outperforms the baseline methods for graph clas-
sification tasks on eight benchmark datasets.

Keywords: Graph Neural Network · Graph Classification · Pooling ·
Motif

1 Introduction

Recently, Graph Neural Networks (GNNs) have emerged as a powerful technique
for various graph-related tasks. With message propagation along the edges, while
some GNN [11] models learn the node-level representation for node classification
[9,11,25], some others learn graph-level representation for graph classification
[4,7,14]. Graph classification is the task of predicting graph labels by consid-
ering node features and graph structure. Motivated from the pooling layer in
Convolutional Neural Networks [12], graph pooling methods have been used to
reduce the number of nodes and edges to capture the local and global structural
information of the graph in the graph representation in a hierarchical way.

There are mainly two types of hierarchical pooling methods for the graph in the
literature: clustering-based and selection-based methods. While clustering-based
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methods merge similar nodes into super nodes using a cluster assignment matrix,
selection-based methods calculate a score for each node, which represents their
importance, and select the top k nodes based on the score by discarding other nodes
from the graph. All these methods primarily rely on Graph Convolution Networks
(GCNs) with layer-wise propagation based on the one-hop neighbors to calculate
the assignment matrix in the clustering-based method and score in the selection-
based method.

Despite the success of these models, there are some limitations. The selection-
based model mainly focuses on preserving the local structure of the node while
the clustering-based method basically focuses on the global structure of the
graph. Moreover, while selection-based models may lose information by select-
ing only some portion of the nodes, clustering-based models may include some
redundant information including noise and over-smoothing. Further, the current
methods fail to incorporate the higher-order structure of the graph in pool-
ing. There are different ways to model higher-order graph structures [3] such
as hypergraphs, simplicial complexes [1], and motifs [16]. Among them, motifs
(graphlets) are small, frequent, and connected subgraphs that are mainly used
to measure the connectivity patterns of nodes [6] (see Fig. 1 for a preview). They
capture the local topology around the vertices, and their frequency can be used
as the global fingerprints of graphs. Although motifs have been used for different
graph mining tasks, including classification [13], and community detection [15],
to the best of our knowledge, they have not been used in graph pooling opera-
tions. On the other hand, utilizing these structures for pooling provides crucial
information about the structure and the function of many complex systems that
are represented as graphs [20,22].

In this paper, to address these problems, we propose a multi-channel Motif-
based Graph Pooling method named (MPool) that captures the higher-order graph
structure with motif and also local and global graph structure with a combina-
tion of selection and clustering-based pooling operation. We utilize motifs to model
the relation between nodes and use this model for message passing and pooling in
GNN. We develop three motif-based graph pooling models (MPoolS MPoolC , and
MPoolcmb): selection and clustering based and combined model (MPoolcmb). For
the selection-based graph pooling model, we design a node ranking model consid-
ering motif-based relations of nodes. Based on the ranks, we select the top k nodes
to create the pooled graph for the next layer. For clustering-based graph pooling,
we design a motif-based clustering model that learns a differentiable soft assign-
ment based on learned embedding from the convolution layer.

After learning the assignment matrix, we group the nodes in the same cluster
to create a coarsened graph. By combining these selecting and clustering-based
methods into one model, we learn both local and global graph structures. All
models incorporate higher-order graph structure in graph representation with
taking motifs into consideration while pooling. We further demonstrate detailed
experiments on eight benchmark datasets. Our results show that the proposed
pooling methods show better accuracy than the current baseline pooling methods
for graph classification tasks.
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2 Related Work

Graph Pooling: Recent GNN with pooling methods learn graph representa-
tion hierarchically and capture the local substructures of graphs. There are two
different hierarchical pooling methods in the literature: clustering-based and
selection-based pooling. Clustering-based pooling methods [2,4,23,27] do the
pooling operation by calculating the cluster assignment matrix using node fea-
tures and graph topology. After calculating the cluster assignment matrix, they
build the coarse graph by grouping the nodes on the same cluster. For exam-
ple, while DiffPool [27] calculates the cluster assignment matrix using a graph
neural network, MinCutPool [4] calculates the cluster assignment matrix using
a multi-label perception.

Selection-based pooling methods [7,8,14,24,28] compute the importance
scores of nodes and select top k nodes based on their scores and drop other
nodes from the graph to create the pooled graph. For example, while gPool [7]
calculates the score using node feature and a learnable vector, SAGPool [14] uses
an attention mechanism to calculate the scores. SUGAR [24] uses a subgraph
neural network to calculate the score and select top-K subgraphs for pooling
operation. All these methods use the classical graph adjacency matrix to prop-
agate information and calculate the score.

Motifs in Graph Neural Network. Motifs are the most common higher-order
graph structure used in various graph mining problems. A few works have used
motif structure in GNNs as well [13,17,21,26]. In these works, they use motifs
to learn the representation of nodes or subgraphs and use this representation
for node classification. But in our method, we use motif structure while defining
pooling operation on graph for graph classification problem.

3 Methodology

In this section, first, we discuss the problem formulation of graph classification
and preliminaries. Then we present our motif-based pooling models.

3.1 Preliminaries and Problem Formulation

We denote a graph as G(V,A,X) where V is the node-set, A ∈ R
N×N is the

adjacency matrix, and X ∈ R
N×d is the feature matrix with d dimensional node

feature and N is the number of nodes in the graph. We denote a graph collection
as (G, Y ) where G = {G0, G1, ..., Gn} with Gi’s are graphs and Y is the set of the
graph labels. In this paper, we work on the graph classification problem, whose
goal is to learn a function f : G → Y to predict the graph labels with a graph
neural network in an end-to-end way.

GraphNeural Network forGraphClassification: GNN for graph classifica-
tion has two modules: message-passing and pooling. For message-passing opera-
tions, Graph convolution network (GCN) [11] is the most widely used model where
it combines the features of each node from its neighbors as follows:

H(l+1) = σ(D̃− 1
2 ÃD̃− 1

2 H(l)θ(l)) (1)
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where H(l+1) is the node representation matrix for layer (l+1), σ is an activation
function, Ã = A + I is the adjacency matrix with self-loop, D̃ ∈ R

N×N is the
normalized degree matrix of Ã, θ(l) is trainable weight for l(th) layer and H(l)

is the input node representation matrix for l + 1th layer obtained from previous
layer. H0 = X is the initial input node feature matrix of the input graph. We
utilize GCN for message-passing operations in our model.

The second module of GNNs for graph classification is the pooling operation
that helps to learn the graph features. The main idea behind graph pooling is
to coarsen the graph by reducing the number of nodes and edges to encode the
information of the whole graph. In the literature, there are two types of hier-
archical graph pooling methods: selection-based and clustering-based methods.
Selection-based methods calculate a score (attention) using a scoring function
for every node that represents their importance. Based on the calculated scores,
the top k nodes are selected to construct a pooled graph. They use a classical
graph adjacency matrix to propagate information and calculate the score.

Clustering-based pooling methods learn a cluster assignment matrix S ∈
RN×K using graph structure and/or node features. Then, they reduce the num-
ber of nodes by grouping them into super nodes by S ∈ RN×K to construct the
pooled graph at (l + 1)th layer as follows

A(l+1) = S(l)T A(l)S(l), H(l+1) = S(l)T H(l). (2)

Motifs and Motif-based Adjacency Matrix: Motifs (graphlets) are small,
frequent, and connected subgraphs that are mainly used to measure the connec-
tivity patterns of nodes [6]. Motifs of sizes 2-4 are shown in Fig. 1. To include
higher-order structural information between nodes, we create the motif adja-
cency matrix Mt for a motif t where (Mt)i,j represents the # of the motif
containing nodes i and j.

Edge 2-star Triangle 3-star 4-path 4-cycle 4-cliqueTailored
triangle

Chordal
triangle

Fig. 1. Motif Networks with size 2-4.

3.2 Motif Based Graph Pooling Models

We propose a hierarchical pooling method based on motif structure. As the first
layer, graph convolution (GCN) takes the adjacency matrix A and feature matrix
X of the graph as input and then updates the feature matrix by propagating the
features through the neighbors and aggregating features coming from adjacent
nodes. After getting the updated feature matrix from the convolution layer,
our proposed graph pooling layer, MPool, operates coarsen on the graph. These
steps are repeated l steps, and outputs of each pooling layer are aggregated
with readout function [5] to obtain a fixed-sized graph representation. After
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Fig. 2. An illustration of our motif-based pooling methods.

concatenating the results of readouts, it is fed to the multi-layer perceptron
(MLP) layer for the graph classification task. We develop three types of motif-
based graph pooling methods: (1) MPoolS is the selection-based method, (2)
MPoolC is the clustering-based method, and (3) MPoolcmb is the combined model.
These are illustrated in Fig. 2. In this paper, we adopt the model architectures
from SAGPool [14] as the selection-based and MinCutPool [4] as the clustering-
based model. On the other hand, our method is compatible with any graph
neural network that we show later in our experiment section.

A. Selection-based Pooling via Motifs (MPoolS): Previous selection-based
methods [7,14] do the pooling operation using a classical adjacency matrix. How-
ever, higher-order structures like motifs show great performance on graph con-
volution network [13] and are also important structures for graph classification.
Therefore, in our selection method, we first calculate the motif adjacency matrix
for a particular motif type, e.g., triangle, from the original graph as we discuss
in Sect. 3.1. Then, we calculate the motif attention score for each node by con-
sidering the motif adjacent. Based on these scores, we select the top k nodes for
pooling and construct the coarsened graph using the pooling function. Figure 2
presents the overview of our selection-based graph pooling method. We use a
graph convolution network to calculate the motif attention score for each node
where we use node attributes and also motif-based graph topological information
instead of pair-wise edge information. Motif attention score is defined as follows

Z = σ(D− 1
2 M̃D′− 1

2 Xθatt) (3)

where σ is an activation function, M̃ ∈ R
N×N is the motif adjacency matrix

with self loop where M̃ = M + IN , D′ ∈ R
N×N is the degree matrix of M , and

θatt ∈ Rd×1 is the learnable parameter matrix.
Based on the motif attention score, we select the top k nodes from the graph

following the node selection method in [7]. The top k = α×N nodes are selected
based on the Z value where α is the pooling ratio between 0 and 1. Thus, we
obtain the pooling graph as follows
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idx = topK(Z, [α × N ])Xout = Xidx,: � Zidx, Aout = Aidx,idx (4)

where idx is the indices of the top k nodes from the input graph which is returned
by topK function, Xidx is the features of the selected k nodes, Zidx is the motif
attention value for those nodes. � is the element-wise broadcasted product,:
is the indexed of each node feature. Aidx,idx is row and column wised indexed
matrix, Aout is the adjacency matrix and Xout is the new feature matrix of the
pooled graph.

Since we use graph features and motif adjacency matrix with convolution, the
motif attention score is based on higher-order graph structures and features. So
pooling operation gets the important nodes with respect to higher-order structure.

B. Clustering-based Pooling via Motifs (MPoolC): In this paper, as the
base for our clustering-based pooling methods, we use MinCutPool [4] that is
defined based on Spectral clustering (SC) by minimizing the overall intra-cluster
edge weights. MinCUTpool proposes to use GNN with a custom loss function
to compute cluster assignment with relaxing the normalized minCut problem.
However, they consider only the regular edge-based adjacency matrix to find
clusters. On the other hand, considering edge-type relations between nodes may
result in ignoring the higher-order relations. Including higher-order relations like
motifs for clustering may produce better groups for pooling.

In our clustering-based method, we calculate the cluster assignment matrix
S utilizing motif adjacency information. We adopt spectral clustering method [4]
where we use multi-layer perceptron (MLP) by inputting node feature matrix
X. We use the softmax function on the output layer of MLP. This function maps
each node feature Xi into the ith row of a soft cluster assignment matrix S

S = MLP (X; θMLP ) = softmax(ReLU(XW1)W2) (5)

However, as it is seen in Eq. 5, we do not use adjacency but use attributes of
nodes obtained from the convolution part. Therefore, to include motif informa-
tion in the pooling layer, we use the motif adjacency matrix in the convolution
layer while passing the message to neighbors as X = GNN(X, M̃ ; θGNN ) where
M̃ is the normalized motif adjacency matrix, and θGNN and θMLP are learnable
parameter.

We also incorporate motif information in the optimization. Parameters of the
convolution layer and pooling layer are optimized by minimizing a loss function
L including the usual supervised loss function Ls and also an unsupervised loss
function [4] Lu as Lu = Lc + Lo where

Lc = −Tr(STMS)
Tr(STDS)

and Lo =
∥
∥
∥
∥

STS

||STS||F − IK√
K

∥
∥
∥
∥
F

(6)

Lc is the cut loss that encourages strongly connected nodes in motif adjacency to
be clustered together. Here, Tr(STMS) = 1

k

∑K
k=1 ST

k MSk and Tr(STDS) =
1
k

∑K
k=1 ST

k DSk where K is the number of clusters and D is the degree matrix
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and M is the motif adjacency matrix. Lo is the orthogonality loss, which helps
the clusters to become similar in size. IK is a (rescaled) clustering matrix IK =
ŜT Ŝ, where Ŝ assigns exactly N/K points to each cluster. After calculating the
cluster assignment matrix, we compute the coarsened graph adjacency matrix
and attribute matrix using Eq. 2.

C. Combined model (MPoolcmb): Selection-based models mainly focus on pre-
serving the local structure of the node by selecting top-K representative nodes
while cluster-based methods basically focus on the global structure of the graph
by assigning nodes into K-clusters. To utilize the benefits of the selection-based
and cluster-based models at the same time, we combine our selection-based and
cluster-based motif pooling model into one model. As a result graph represen-
tation from the combined model encoded local structure information from the
selection-based model and the global structure model from the cluster-based
model. In this model we concatenate the graph-level representation from the
selection-based motif pooling method and cluster-based motif pooling method
into one final representation as follows:

Xcmb = XS ⊕ XC (7)

where XS is the graph-level representation from MPoolS model and XC from
MPoolC method and, ⊕ is the concatenation operation.

3.3 Readout Function and Output Layer

To get a fixed-sized representation from different layers’ pooled graph, we apply
a readout function [14] that aggregates the node features as follows: Z = 1

N
∑N

i=1 xi|| N
max
i=1

xi where N is the number of nodes, xi is the ith node feature and

|| denotes concatenation. After concatenating the results of all readout functions
as a representation of the graph, it is given as an input to a multilayer percep-
tron with the softmax function to get the predicted label of the graph as Ŷ =
softmax(MLP (Z)) where Z is the graph representation. For graph classifica-
tion, parameters of GNNs and pooling layers are optimized by a supervised loss
as Ls = −∑L

i=1

∑C
j=1 Yi,j logŶi,j where Y is the actual label of the graph.

4 Experiment

We evaluate the performance of our models in graph classification problems and
compare our results with the baseline methods for selection-based and clustering-
based on different datasets. We also give the results for the variation of our model
by utilizing different message-passing models. Further, we analyze the effect of
the motif types on the results of the pooling. More experiments can be found on
supplements.

Datasets: We use eight benchmark graph datasets in our experiments com-
monly used for graph classification [18]. Among these, three datasets are social
networks (SN); IMDB-BINARY, REDDIT-BINARY, and COLLAB, and five
other datasets are biological and chemical networks (BN) ;D&D, PROTEINS
(PROT), NCI1, NCI109, and Mutagenicity (MUTAG) .
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Baseline: We use five graph pooling methods as baseline methods. Among
them, gPool [7] and SAGPool [14] are selection-based method and MinCutPool
(MCPool) [4], DiffPool [27] and ASAP [23] are clustering-based method. We also
combined SAGPool and MCPool models in a single model and use as a baseline
model.

Experimental Setup: To evaluate our models for the graph classification task,
we randomly split the data for each dataset into three parts. We use 80% data for
the training set, 10% data for the validation set, and 10% data for the test set. We
do the splitting process 10 times using 10 random seed values. We implement our
model using PyTorch and PyTorch Geometric library. For optimizing the model,
we use Adam optimizer [10]. In our experiments, we take node representation
size as 128 for all datasets. Our hyperparameters are as follows: learning rate in
{1e–2, 5e–2, 1e–3, 5e–3, 1e–4, 5e–4}, weight decay in {1e–2, 1e–3, 1e–4, 1e–5},
and pooling ratio in {1/2, 1/4}. We find the optimal hyperparameters using grid
search. We run the model for a maximum of 100K epochs, and there is an early
stopping condition if the validation loss does not improve for 50 epochs. Our
model architecture consists of three blocks, and each block contains one graph
convolution layer and one graph pooling layer like [14]. We use the same model
architecture and hyperparameters with MinCuT and SAGPool models.

4.1 Overall Evaluation

Performance on Graph Classification: In this part, we evaluate our pro-
posed graph pooling methods for the graph classification task on the given eight
datasets. Each dataset contains a certain number of input graphs and their cor-
responding label. In the graph classification task, we classify the input graph
by predicting the label of the graph. We use node features of the graph as the
initial features of the model. If a dataset does not contain any node feature, we
use node degrees as initial features using one-hot encoding. Table 1 and Table 2
show the average graph classification accuracy, standard deviation, and ranking
of our models and other baseline models for all datasets. We can observe from
the tables that our motif-based pooling methods consistently outperform other
state-of-art models, and our models get the first rank for almost all datasets.

Table 1 shows the results for our motif-based models and other graph pool-
ing models on biochemical datasets. We obtain the reported results for gPool
and DiffPool from the SAGPool paper since our model architecture and hyper-
parameters are the same as SAGPool. Also, for the ASAP method, we obtain
the results from the initial publication (“-”) means that results are not avail-
able for that dataset. As we see from the table, MPoolcmb gives the highest
result for all biochemical networks. In particular, MPoolcmb achieves an average
accuracy of 81.2% on D&D and 77.4% on NCI1 datasets which are around 4%
improvements over the MPoolC method as the second-best model. We can also
see MPoolcmb gives very good accuracy compared to baseline models for all bio-
chemical datasets. Especially for D&D, NCI1, and NCI109 datasets MPoolcmb

gives 5.8%, 5.8%, and 3.9% improvements over the best model of baseline mod-
els for these datasets. From this result, we can say that incorporating global
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Table 1. Comparison of our models with baseline pooling methods for biochemical
datasets.

Model D&D NCI1 NCI109 PROT MUTAG Rank

gPool 75.0±0.9/7 67.0±2.3/8 66.1 ±1.6/8 71.1 ±0.9/8 71.9 ±3.7/8 7.8

SAGPool 75.7±3.7/6 68.7±3.0/7 71.0±3.4/5 72.5 ±4.0/7 74.9±3.9/7 6.4

MCPool 76.7±3.0/5 73.1 ±1.4/4 71.5 ±2.7/4 76.3 ±3.6/3 75.9 ±2.7/6 4.4

DiffPool 66.9 ±2.4/9 62.2 ±1.9/9 62.0±2.0/9 68.2 ±2.0/9 77.6 ±2.6/3 7.8

ASAP 76.9 ±0.7/4 71.5±0.4/5 70.1 ±0.6/7 74.2 ±0.8/5 - 4.2

Combined 74.5±9.8/8 74.1 ±1.2/3 72.0 ±2.1/3 75.6±2.1/4 76.5±3.2/4 4.4

MPoolcmb 81.2 ±2.1/1 77.4± 1.9/1 73.5±2.5/1 79.3 ±3.3/1 79.6 ±3.7/1 1

MPoolS 77.2 ±4.6/3 71.0±3.4/6 70.8±2.1/6 72.7 ±4.2/6 76.4 ±3.1/5 5.2

MPoolC 78.5 ±3.3/2 74.4±1.8/2 73.1±2.5/2 78.1 ±3.3/2 78.8 ±2.1/2 2

Table 2. Comparison of our models with baseline pooling methods for social network
datasets.

Model IMDB-B REDDIT-B COLLAB Avg. Rank

gPool 73.40±3.7 (3) 74.70±4.5 (7) 77.58 ±1.6 (3) 4.3

SAGPool 73.00±4.06 (4) 84.66±5.4 (2) 70.10±2.5 (7) 4.3

MinCutPool 70.78±4.7 (8) 75.67 ±2.7 (6) 69.91 ±2.3 (8) 7.3

DiffPool 68.40 ±6.1 (9) 66.65 ±7.7(8) 74.83 ±2.0 (4) 7

ASAP 72.74 ±0.9 (5) - 78.95 ±0.7 (2) 3.5

Combined 71.20±4.50(7) 88.40±0.22(1) 71.85±3.73(6) 4.7

MPoolcmb 74.20 ±2.8 (1) 84.10± 5.0 (3) 74.13±2.3 (5) 2.6

MPoolS 73.44 ±3.9 (2) 83.89±4.3 (4) 68.95±2.7 (9) 5

MPoolC 71.44 ±4.0 (6) 78.77±5.0 (5) 83.62±5.2 (1) 4

and local structures of the graph in the combined model gives better results for
graph classification on biochemical data. We further calculate the average rank
for all models, where our model MPoolcmb average rank is the lowest at 1 and
our model MPoolC is the second lowest.

Table 2 shows the performance comparison with our models and other base-
line models on social network datasets. As we see from the table, our proposed
methods outperform all the baseline methods for all datasets except ReDDIT-
BINARY, where our model is the third best with giving very close to the second
one, SAGPool. For IMDB-BINARYandREDDIT-BINARY MPoolcmb model gives
better accuracy than the MPoolS and MPoolC model while for COLLAB dataset
MPoolC give much higher accuracy than our other two models. For both types
of datasets, our selection-based method MPoolS gives better accuracy than the
selection-based baseline methods SAGPool and gPool for most of the datasets. In
particular, MPoolS achieves an average accuracy of 77.21% on D&D and 76.42%
on MUTAG datasets which is around 2% improvement over the SAGPool method
which is our base model. Similarly, our cluster-based model outperforms the base-
line methods of cluster-based methods for most of the datasets. Especially, MPoolC
achieves an average accuracy of 83.62% on COLLAB datasets, which is around 5%
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Table 3. MPoolS MPoolC and MPoolcmb performance with different GNN models.

MPoolS MPoolC MPoolcmb

GNN Model NCI1 IMDB-B NCI1 IMDB-B NCI1 IMDB-B

MPoolGCN 70.98 73.44 74.44 71.44 76.09 73.90

MPoolGraphConv 74.20 73.50 75.93 71.90 74.7 73.00

MPoolSAGE 74.69 73.00 74.13 72.22 78.80 74.00

MPoolGAT 67.15 74.00 – – – –

Table 4. MPoolS MPoolC and MPoolcmb performance with different motifs.

Model Motif DD NCI1 Mutag IMDB-B

MPoolS 2-star 77.21 69.48 70.11 73.00

Triangle 75.63 70.98 76.42 73.44

2-star+triangle 75.63 69.82 72.39 69.64

MPoolC 2-star 78.48 73.56 73.56 71.20

Triangle 75.80 74.44 78.77 71.44

2-star+triangle 74.21 74.20 76.00 70.96

MPoolcmb 2-star 81.20 77.36 79.60 74.20

Triangle 80.50 76.09 77.90 73.90

2-star+triangle 79.95 76.75 78.42 73.40

improvement over the ASAP method as the second-best model and around 14%
improvement over the MinCutPool, which is our base model.

Furthermore, when we compare our selection-based model MPoolS and
clustering-based model MPoolC results from Tables, we can see that MPoolC out-
performs MPoolS for all biochemical datasets. While MPoolS gives better accu-
racy for two social networks, IMDB-BINARY and REDDIT-BINARY, MPoolC
have 15% better accuracy than MPoolS on the COLLAB dataset.

Ablation Study: While we use GCN as the base model for message passing,
our pooling model can integrate other GNN architectures. In order to see the
effects of different GNN models in our methods, we utilize the other four most
widely used convolutional graph models: Graph convolution network (GCN) [11],
Graph-SAGE [9], GAT [25], and GraphConv [19]. Table 3 shows average accu-
racy results for these GNN models using MPoolS MPoolC and MPoolcmb on NCI1
and IMDB-BINARY datasets. As there is no dense version of Graph attention
network(GAT), we use it only for selection-based model MPoolS . For this exper-
iment, we use triangle motifs for the motif adjacency matrix calculation. As we
see in the table, the effects of GNN models and which model gives the best
result depend on the dataset. For the NCI1 dataset, Graph-SAGE gives the
highest accuracy on MPoolS and MPoolcmb model while GraphConv gives the
highest accuracy on MPoolCmodel. For IMDB-BINARY, all the graph convolu-
tional models give very close results for all of our pooling models. For MPoolC
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and MPoolcmb Graph-SAGE gives better accuracy than the other GNN models
while GAT gives the highest accuracy for MPoolS model.

We further study the effect of the motif type for pooling. In this experiment,
we use 2-star, triangle, and a combination of 2-star and triangle motifs, as these
motifs are observed the most in real-world networks. We present the graph clas-
sification accuracy for different motifs using MPoolS MPoolC and MPoolcmb in
Table 4. As we see in the table, we get the highest accuracy for MPoolS and
MPoolC with the triangle motif for three datasets NCI1, MUTAG, and IMDB-
BINARY. For D&D, we get the highest accuracy with 2-star motif adjacency
on MPoolS and MPoolC . We also observe that for D&D, the accuracy of the
selection-based model does not vary much compared to the clustering-based
model. For MUTAG, different motifs have a large effect on the accuracy, where
triangle motif adjacency gives around 4% and 3% higher accuracy than the 2-
star motif adjacency for the selection-based method and for the clustering-based
model, respectively. For IMDB-BINARY, 2-star and triangle motifs give similar
accuracy for both methods, and 2-star+triangle motif adjacency gives less accu-
racy for the clustering-based method. For our combined model MPoolcmb the
2-star motif gives the highest accuracy for all datasets whereas other motifs give
very close results to the 2-star motif.

5 Conclusion

In this work, we introduce a novel motif-based graph pooling method, MPool,
that captures the higher-order graph structures for graph-level representation.
Our proposed method includes hierarchical graph pooling models for both
selection-based and clustering-based methods. Additionally, we combine these
methods to develop a hybrid model. The selection-based pooling method employs
a motif attention mechanism, while the clustering-based method uses motif-
based spectral clustering with the mincut loss function. Our experiments demon-
strate that our proposed methods outperform the baseline models on a majority
of the datasets.
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attention networks. In: International Conference on Learning Representations
(2018)

26. Yang, C., Liu, M., Zheng, V.W., Han, J.: Node, motif and subgraph: leverag-
ing network functional blocks through structural convolution. In: IEEE/ACM
International Conference on Advances in Social Networks Analysis and Mining
(ASONAM) (2018)

27. Ying, Z., You, J., Morris, C., Ren, X., Hamilton, W., Leskovec, J.: Hierarchical
graph representation learning with differentiable pooling. NeurIPS 31 (2018)

28. Zhang, Z., et al.: Hierarchical graph pooling with structure learning. arXiv preprint
arXiv:1911.05954 (2019)

http://arxiv.org/abs/1911.05954


Anti-Money Laundering
in Cryptocurrency via Multi-Relational

Graph Neural Network

Woochang Hyun(B), Jaehong Lee, and Bongwon Suh

Seoul National University, Seoul, Republic of Korea
{woochang,jhlee0105,bongwon}@snu.ac.kr

Abstract. The cryptocurrency market has been growing exponentially.
However, due to their anonymity, cryptocurrencies are frequently abused
for laundering money obtained from illegal activities. Although recent
approaches based on Graph Neural Networks (GNNs) have shown remark-
able achievements in fraud detection, investigating cryptocurrency trans-
action networks is subject to the following challenges: 1) There is a lack of
useful node features as cryptocurrencies block access to user information in
principle. 2) The classification tasks are extremely disproportionate since
fraudsters are very few compared to benign addresses. 3) Lastly, the com-
putational cost must be considered for large-scale analysis in real-world
scenarios. This study presents a novel approach for examining financial
transactions to detect anomalies in cryptocurrency networks. We design
a multi-relational GNN that incorporates the orientation and character-
istics of edges, such as the amount or frequency of transactions. In addi-
tion, an adaptive neighbor sampler is designed to improve spotting perfor-
mance while effectively containing computational costs. Experiments on
real-world datasets demonstrate that our proposed method outperforms
state-of-the-art GNN-based fraud detectors.

Keywords: Graph Neural Network · Cryptocurrency · Fraud
Detection

1 Introduction

Since the introduction of Bitcoin in 2008 [9], the cryptocurrency ecosystem has
been proliferating. The recent adoption of cryptocurrencies has been growing
much faster than ever before. Global transaction volume through cryptocurren-
cies in 2021 is estimated to be $15.8 trillion [1], an increase of more than 550%
compared to the previous year.

A key feature of cryptocurrency is supporting monetary transactions via
decentralized peer-to-peer networks. However, due to their anonymity, cryp-
tocurrencies have been widely abused for various crimes, such as scams, phishing,
or ransomware. Cybercriminals laundered $8.6 billion worth of cryptocurrency
in 2021, which is a 30% increase in money laundering over 2020 [1]. Unreported
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Fig. 1. Example of Bitcoin mixing process. Solid arrows indicate actual transactions.
In this study, we draw cooperative edges (marked by orange lines) between nodes with
a common sender or receiver. With the cooperative edges, we better understand mixing
behaviors and construct a GNN mixing detector. (Color figure online)

issues could be larger. According to [3], by 2019, 25% of all Bitcoin users and
44% of existing Bitcoins may have been associated with illicit activities.

The most representative way to laundry cryptocurrency is to use a mixing ser-
vice. As shown in Fig. 1, mixing services split and blend transaction flows to avoid
traceability. Mixing services are initially intended for the privacy of ordinary users,
but they have been easily involved in cryptocurrency crimes. Therefore, detecting
abnormally used accounts is very important to prevent innocent damage.

One promising solution is the application of Graph Neural Networks (GNNs).
Along with remarkable achievements of the recent GNN techniques in various
fields, GNN-based fraud detectors have also been proposed to detect fraudsters in
online reviews [2,7,12], fake news [10], and defaulters in credit payment platforms
[8,14,15,17]. However, their solutions are limited to be employed in this study
because investigating cryptocurrency transactions is more challenging for the
following reasons: 1) There is a lack of node features as cryptocurrency systems
inherently do not provide users’ information. Sometimes addresses are disposable
only for one-time use. On the other hand, most existing solutions mainly select
neighbors with the highest similarity utilizing rich node information. 2) The
classification tasks are extremely disproportionate. Since there is very little data
about known fraudsters, it is subject to severe class imbalance problems in which
positive rates are lower than 0.5%. Finally, scalability and computational cost
must be considered for large-scale analysis in real-world scenarios. Methods that
are too complex cannot be employed in practice.

This study presents a multi-relational GNN framework (BitcoNN) for exam-
ining financial transactions to detect anomalies in cryptocurrency networks.
Figure 2 illustrates the pipeline of the proposed BitcoNN. 1) In the graph con-
struction stage, we propose cooperative edges that can better reflect the proxim-
ity of nodes, and separate existing transactive edges according to the direction.
2) In the representation embedding stage, BitcoNN learns neighbors’ represen-
tation and the dissimilarity between center nodes and incorporates edge features
such as the amount or frequency of transactions. 3) In the inter-relation aggre-
gation stage, BitcoNN evaluates the contribution score of each relation and then
feeds it back to the neighbor sampling for the next epoch. The adaptive neighbor
sampler contributes to improving model performance while suppressing the com-
putation costs efficiently. Experiments on the dominant cryptocurrency system,
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Fig. 2. Framework of the proposed BitcoNN. We first construct a multi-relational graph
as input of GNN. Sampled neighbors under each relation send messages which are the
combination of their representation, the difference from the center node, and the edge
feature. In the inter-relation aggregation, the contribution of each relation is evaluated,
and the scores are fed-back to the adaptive neighbor sampler for the next epoch.

i.e., Bitcoin, demonstrate that our proposed method outperforms state-of-the-art
GNN-based fraud detection baselines.

2 Methodology

2.1 Graph Construction

Financial data generally consists of a list of transaction records. Many graph-
based studies turn this into a graph topology by converting senders and receivers
to nodes and transactions to non-directional edges. In this study, we leverage a
multi-relational structure by suggesting transactive and cooperative relations.

Transactive Relations. At first, we make edges between the nodes of the for-
ward transactions. Edge e1ij ∈ E1 means that node vj has an incoming transaction
from vi. In directed GNNs, however, the edge conveys a message unilaterally only
from vi to vj . Thus to enable information transfer in the opposite direction, we
also need to specify outgoing edge set E2 as follows:

E2 = {(vi, vj) | e1ji ∈ E1} (1)

Cooperative Relations. To take advantage of richer structural information,
we propose cooperative relations by connecting nodes that have common transac-
tion partners in a short time. We consider a time window between the transactive
edges to prevent an explosion of additional edges and to capture more closely
related two-hop neighbors. That is, if nodes vi and vj commonly trade with
another node vk and their time interval does not exceed a time window δ, we
define that the pair (vi, vj) is in a cooperative relation. The cooperative relations
are divided into two categories, namely, co-input edges E3 and co-output edges E4
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Fig. 3. Types of two-edge temporal
motifs for a centered (orange) node
in a financial transaction network
(Color figure online).

Fig. 4. T-SNE visualization of the crafted node
features (left) and node2vec embeddings (right)
from randomly sampled 20k data (containing 137
mixing nodes) of the Bitcoin 2014.

as defined in (2) and (3), respectively. tij is the timestamp of the corresponding
edge e1ij . Note that the cooperative relation is non-directional.

E3 = {(vi, vj) | ∃(e1ik, e
1
jk), |tik − tjk| ≤ δ} (2)

E4 = {(vi, vj) | ∃(e1ki, e
1
kj), |tki − tkj | ≤ δ} (3)

We introduce cooperative relations for two reasons: First, we assume that
nodes that have joint transaction partners would have more similarities. The sec-
ond reason is that by including the cooperative edges, we present novel and mean-
ingful temporal motifs. Temporal motifs are the smallest subgraphs extracted
considering the sequence and time interval to capture minute information in
dynamic networks [11]. The previous work [16] derived the proportion of the
simplest two-edge temporal motifs centered on each node (see motif α · α′, β · β′

and γ ·γ′ in Fig. 3). Each motif can represent the role of the corresponding node.
We unveil important but unexposed roles of nodes through the temporal motifs
created by incorporating cooperative relations. In Fig. 3, ν and ν′ are newly
proposed two-edge temporal motifs centering a node formulated by one trans-
active edge and one cooperative edge. They articulate that the node engages
as a branch in transactions of money diffusion or collection, which are closely
associated with money laundering. As such, nodes in these types of relations
are not directly connected but work together. That’s why we refer to them as
cooperative relations.

2.2 Representation Embedding

After the graph construction, BitcoNN trains the representation of the nodes
through the GNN methodology. To deal with large and complex networks, we
only use information from a fixed number of neighbors in our calculation. S is the
total number of samples that BitcoNN takes from all relations. R is the number
of relations defined in the graph. Nr(v) is a neighbor set of node v in relation r.
S(k)
r (v) ⊂ Nr(v) is a set of sub-sampled neighbors from relation r according to
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a specified sample size s
(k)
r at k-th epoch. Initially, the sample sizes are assigned

equally across all relations for the first epoch (i.e., s
(1)
r |Rr=1 = S/R).

Next, BitcoNN collects information from the sampled neighbors and embeds
a relational representation of center nodes. In this case, we introduce dissimi-
larity learning, which exploits the difference between two nodes. Camouflaged
fraudsters’ variables are within the bounds of those of benign nodes but have
much smaller spectra because they behave according to specific rules (we ana-
lyze this in Sect. 3.2). Furthermore, fraudsters are more connected to benign
nodes. Therefore, by leveraging the difference in representation with neighbor-
ing nodes, fraudsters can be detected more effectively. In addition, since edge
features in this graph contain transaction information between two nodes, they
need to be embedded in the representation. In summary, the message trans-
mitted from a neighbor node consists of three elements: its representation, the
difference between itself and the center node, and edge features, as (4) shows.

mr(l)
uv = concat

(
h(l−1)
u , |h(l−1)

u − h(l−1)
v |, yr

uv

)
(4)

where m
r(l)
u v is the message from node u to a center node v under relation r at

l-th layer. h
(l−1)
u and h

(l−1)
v are the node representations at the previous layer.

yr
uv is the edge feature of the corresponding edge eruv.

We aggregate the messages from sampled neighbors to obtain a relational
representation. We use the max-pooling aggregator as (5). WP

r is a learnable
pooling weight for each relation.

h(l)
v,r = max

(
ReLU(WP

r mr(l)
uv ), ∀u ∈ Sr(v)

)
(5)

2.3 Inter-relation Aggregation

Considering the diverse contribution of relations, we define the inter-relation
aggregation as follows:

h(l)
v = concat

(
WSh(l−1)

v , WA
r h(l)

v,r|Rr=1

)
(6)

where h
(l)
v is the updated node representation at l-th layer, WS and WA

r are
learnable weights in the aggregation for self-node and each relation r, respec-
tively. Since WA

r can be regarded as the contribution of relation r we devise
an adaptive neighbor sampler that automatically adjusts the sampling size from
each relation by assessing relation scores.

2.4 Adaptive Neighbor Sampler

How do we determine the sampling size for each relation when using a sub-
sampling approach in multi-relational graphs? It is an important but rarely
addressed question. Should we gather more samples depending on the number
of relations? It will inevitably increase the computational costs in proportion
to the increased sample neighbors. We need an adaptive sampling module that
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properly distributes a fixed number of total samples according to the contribution
of each relation in multi-relational conditions.

With a simple assumption, we evaluate the contribution of each relation
through the size of relation weight obtained at the end of inter-relation aggre-
gation at k-th epoch, W

A(k)
r . First, the L2-distance of each weight is calculated

to turn it into a scalar. The softmax function then normalizes the distances to
the range [0, 1] and gives them attentive differences.

D(k)
r =

∥
∥WA(k)

r

∥
∥
2

(7)

a(k)
r = softmax(D(k)

r ) =
exp(D(k)

r )
∑R

r=1 exp(D(k)
r )

(8)

a
(k)
r is the relation score that reflects the contribution of each relation proportion-

ately. The scores are applied to determine the sample size for the next epoch per
relation. A minimum sample size p is assigned to prevent completely excluding
relations with low importance, as shown in (9).

s(k+1)
r = max

(
p, round(a(k)

r S)
)

(9)

The intuition underlying the adaptive neighbor sampler is to increase the
chance of capturing relevant neighbors by exploring the broadened area in sig-
nificant relations. At the same time, by reducing the number of samples from
less important relations, the computational costs are restrained efficiently. We
discuss the effectiveness of the adaptive neighbor sampler in Sect. 3.5.

After the sampling and aggregation, an MLP classifier yields predicted labels,
and GNN is optimized to minimize loss. Here, most GNNs apply the standard
cross-entropy loss as a loss function. We adopt a weighted cross-entropy loss to
deal with severe class imbalance.

3 Experiment

3.1 Experimental Setup

Dataset. The objective of this study is to spot financial anomalies, such as
money laundering accounts from monetary transaction networks. We select the
Bitcoin transaction dataset published in [16] to validate the proposed framework.
The dataset is publicly available at http://xblock.pro/bitcoin/. It consists of a
considerable number of addresses that were part of mixing services (e.g., Bitcoin-
Fog, BitLaunder, HelixMixer, and BitMixer) and snapshots of extensive Bitcoin
transaction records crawled at the time those mixing addresses were active (e.g.,
2014, 2015, and 2016). Descriptive statistics of the dataset are in Table 1.

For node features, we extract 32 variables, including basic graph statistics and
the temporal motifs in Fig. 3. For edge features, we assign 10 variables regarding
the amount, frequency, and weight of transactions between nodes. Although
the feature extraction process is rather hand-crafted, but highly effective. We
find that it better characterizes mixing behavior than other techniques that
automatically embed graph structure information (e.g., node2vec and eigenvalue
decomposition), as shown in Fig. 4. In addition, current implementations for
graph embedding are barely applicable to such giant data.

http://xblock.pro/bitcoin/
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Baselines. We compare BitcoNN with various state-of-the-art GNNs to demon-
strate the ability for financial fraud detection. We choose GCN [6], GAT [13], and
GraphSAGE [4] as primary GNN baselines, and CARE-GNN [2] and PC-GNN
[7] as the latest applications for fraud detection.

Table 1. Descriptive statistics
#Nodes
(Mix%) Relation #Edges Feat.

Sim.
Label
Sim.

Bitcoin
2014

2,513k
(0.24%)

Trans. 14,167k .340 .115

incoming 16,192k .348 .096

outgoing 16,192k .328 .142

Coop. 85,599k .673 .696

co-input 52,220k .732 .905

co-output 35,146k .491 .037

Bitcoin
2015

2,528k
(0.15%)

Trans. 14,653k .433 .112

incoming 14,631k .438 .084

outgoing 14,631k .423 .165

Coop. 93,884k .593 .418

co-input 32,116k .710 .969

co-output 62,478k .513 .034

Bitcoin
2016

2,506k
(0.16%)

Trans. 10,182k .416 .378

incoming 10,218k .383 .463

outgoing 10,218k .438 .319

Coop. 70,962k .811 .756

co-input 50,813k .821 .994

co-output 20,304k .546 .059

Experiment Settings. We conduct
experiments in two conditions: the trans-
ductive and the inductive setting. The
transductive setting is a laboratory condi-
tion where train, valid, and test sets are
randomly split from the given dataset with
a ratio of 40:20:40, respectively. The train-
test split is based on stratified sampling to
maintain the positive rate constantly. The
inductive setting is closer to a real-world
usage scenario. We split the dataset into 10
equal-sized buckets over time so that each
bucket contains the same number of nodes.
The first four buckets are used to train the
model, and then the following two and four
buckets are used for validation and test.

Hyperparameters are as follows: embed-
ding size = 64, number of layers = 2, learn-
ing rate = 0.001, max epoch = 50, Adam
optimizer, and batch size = 4,096. Since
positive labels are too sparse, a smaller batch size can hardly be adopted to
distribute positive labels in all batches. The minimum sample size p = 2 and
time window δ = 3 h since it is reported that mixing processes are usually com-
pleted within 3 h [16]. For BitcoNN and GraphSAGE, the total sample size is
set to 20. For CARE-GNN and PC-GNN, learning rate is set to 0.01. For all the
experiments, we present the average value of 10 runs.

BitcoNN is implemented in Pytorch 1.6.0 with Python 3.7 and DGL library.
All the experiments are run with a single GeForce Titan RTX GPU with CUDA
11.3 and 128 GB RAM. GCN, GAT, and GraphSAGE are implemented based
on DGL. CARE-GNN and PC-GNN are implemented using the source code
provided by the authors.

3.2 Demystifying Mixing Behavior

For graph construction, we suggest a multi-relational approach to supplement the
structural information of transaction graphs. In Table 1, we compute the feature
similarity of mixing nodes and their neighbors under each relation based on the
feature vectors’ Euclidean distance. Although cooperative nodes are not directly
connected, their overall feature similarity is higher than transactive neighbors.
This supports our assumption that cooperative relations lead to nodes with more
similar states.



AML in Cryptocurrency via Multi-Relational GNN 125

Looking at the label similarity column, mixing nodes rarely connect with each
other through actual transactions. However, under the co-input relation, they
have outstanding connectivity. Almost all of the mixing nodes are connected
indirectly through a common counterpart. On the other hand, the co-output
relation shows the lowest label similarity. Taken together, we summarize that
mixing nodes act according to the following rules: 1) In remittance transactions,
they collect money together with other mixing nodes in a short time. 2) In
receiving transactions, they hide among benign nodes.

Figure 4 shows the distribution of node features of mixing nodes. The features
extracted from their behavior fall into the utterly normal range. Note that there
are significantly fewer mixing nodes than benign nodes. As a result, conventional
anomaly detection methods are rarely effective for this task since mixing nodes
do not deviate from the normal feature distribution. A clue is that the spectrum
of mixing nodes is very small since they act according to the specific rules men-
tioned above. Therefore, by aggregating the differences in the representation of a
central node and its neighbors, we could distinguish the characteristics of mixing
nodes and benign nodes more efficiently, especially through the highly connected
relations of mixing nodes. Taking advantage of this in the GNN architecture, we
successfully detect mixing nodes.

3.3 Performance Comparison

Table 2 shows the performance of the proposed BitcoNN and various GNN base-
lines in the financial anomaly detection task on three datasets of Bitcoin transac-
tions. Best results are in bold, and results within the 95% confidence intervals of
the best results are underlined. We observe that BitcoNN outperforms the base-
lines under most metrics and different settings. Further analysis of the results
follows:

Primary GNN Models. We present the results from GCN, GAT, and Graph-
SAGE (GS) in the first block of each experimental setting in Table 2. Being basic
models, they use only the single topology of transactive edges. The subscript WL
indicates that the weighted loss function is applied to the models, as with the
proposed BitcoNN. Due to the severe class imbalance of the tasks, vanilla GNNs
with standard cross-entropy loss cannot find a mixing node at all. However, just
applying the weighted cross entropy loss significantly improves the performance
of these models. The weighted loss function brings competitive results even in
inductive settings where the positive rate in the test set is unknown. It supports
the effectiveness of our design choice for the class imbalance problem.

Latest GNN-based Fraud Detectors. We test the latest GNN-based fraud
detectors, CARE-GNN and PC-GNN. Since they are multi-relational models,
all relations in the graph are equally applied, as in BitcoNN. They achieve high
AUC and recall. However, they show limited performance in terms of precision.
One possible explanation is again the severe class imbalance. Since both models
have their own modified loss function, the weighted loss is not applied. Those
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Table 2. Performance (%) comparison for Bitcoin mixing detection

Dataset Bitcoin 2014 Bitcoin 2015 Bitcoin 2016

Metric AUC Recall Prec. AUC Recall Prec. AUC Recall Prec.

T
ra

n
sd

u
c
ti
v
e GCNWL 95.78 96.24 5.04 96.63 96.35 4.65 91.20 91.91 1.81

GATWL 91.40 88.57 3.73 87.92 84.69 1.54 81.49 93.17 0.53

GSWL 97.84 97.02 15.74 97.84 96.62 13.59 93.19 91.97 3.04

CARE 99.02 95.75 28.85 99.16 97.29 26.07 97.25 92.28 13.14

PC 99.56 97.96 7.41 99.52 97.65 9.30 98.21 95.22 4.32

BitcoNN 99.83 99.71 83.19 99.84 99.73 76.63 99.32 98.85 57.61

In
d
u
c
ti
v
e

GCNWL 95.77 97.26 4.35 96.48 95.67 5.13 88.99 85.77 2.26

GATWL 89.32 84.07 3.89 90.18 88.98 1.55 81.22 91.24 0.65

GSWL 97.61 96.54 15.28 97.55 96.16 11.98 89.70 81.84 6.80

CARE 98.95 95.11 30.78 99.27 95.38 27.31 97.45 89.95 15.41

PC 99.43 97.32 9.04 99.47 97.45 10.93 95.84 90.22 5.36

BitcoNN 99.80 99.64 82.87 99.60 98.98 75.58 97.83 94.79 62.69

algorithms were originally designed for fake review detection, and positive rates
in those tasks are around 10%. However, the positive rates for our work are less
than 0.5%. Under these conditions, even if the model can filter out 99% of the
true negatives, the precision will not be able to reach 50%. Therefore, achieving
high precision in severe class imbalance problems is very challenging.

Another explanation is that those algorithms rely on the rich context of node
functions, such as user profiles or text NLP. Both are designed to select neighbors
with higher node similarity preferentially. However, Fig. 4 shows that there are a
lot of benign nodes with similar characteristics to mixing nodes. Therefore, the
existing models cannot perform at their best in our tasks.

In Table 2, we present the mixing detection capability of BitcoNN. In par-
ticular, the precision is outstanding. BitcoNN shows much greater than 70% in
precision with the 2014 and 2015 data. The result of the second-best model is
no more than 30%. We analyze how each component of BitcoNN benefits the
performance in the next section.

3.4 Ablation Study

Next, we compare the variants of BitcoNN to demonstrate the effectiveness of
each component. Table 3 shows the results of the inductive experiments because
the differences in performance under the condition are more evident. We note
that the experiments under the transductive condition show the same tendency.
Since the variants in the first block evaluate the relational effects, all embed-
ding methods are applied. Homo utilizes only the non-directional topology, and
Coop adds the cooperative edges to it. Direct identifies the direction of Bitcoin
transactions but does not utilize the cooperative edges. Adding the cooperative
edges in Homo and separating the direction of all edges becomes BitcoNN. We
observe that the inclusion of each relation component significantly improves the
performance in terms of precision. In the 2014 and 2015 data, the direction of
transactions plays an important role (Direct), whereas in the 2016 data, the
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Table 3. Performance (%) comparison of variants of BitcoNN

Dataset Bitcoin 2014 Bitcoin 2015 Bitcoin 2016

Metric AUC Recall Prec. AUC Recall Prec. AUC Recall Prec.

R
e
la
-

ti
o
n
a
l Homo 99.04 98.48 37.89 99.42 98.01 17.31 96.08 92.13 9.06

Coop 99.15 98.99 52.68 99.53 98.63 25.60 97.52 94.41 27.97

Direct 99.78 99.68 75.42 99.58 98.85 57.44 96.04 92.55 11.48

R
e
p
r-

e
se
n
t. Base 98.85 97.98 48.05 99.10 98.45 43.85 94.03 66.56 33.21

Diff 99.72 99.54 80.56 99.58 98.25 76.63 97.31 94.92 40.65

Edge 99.34 98.73 83.37 99.57 98.28 61.01 97.29 94.70 56.13

BitcoNN 99.80 99.64 82.87 99.60 98.98 75.58 97.83 94.79 62.69

cooperative edge shows more contributions (Coop). This is because the mixing
service providers for the 2016 data differ from those for the 2014 and 2015 data.
Most of the mixing nodes in the 2014 and 2015 data belonged to BitcoinFog
(99.83% and 99.64%, respectively), while the majority of the 2016 data came
from HelixMixer (95%). Thus, they have different mixing styles, and our results
are a good reflection of that.

The second block examines the effectiveness of each representation embed-
ding component. Base aggregates only information from neighbors. Diff adds
the difference between center nodes and their neighbors to the message. In Edge,
node representation and edge information are passed together. Combining the
three embedding components yields BitcoNN. Comparing the Diff and Edge,
the dissimilarity learning contributes more to financial anomaly detection than
edge features. Also, Diff and Edge can improve the model performance indepen-
dently, but the synergy between the two factors seems not as great as expected.
BitcoNN does not consistently achieve the best performance for all metrics in
Table 3. We assume this is because the edge information is already reflected in
the node features. The synergy between the two components would be more sig-
nificant if the node and edge features existed separately in graph data. In terms
of AUC, nevertheless, BitcoNN shows the best results for all three data.

3.5 Adaptive Sampler Analysis

We devise the adaptive neighbor sampler that controls the sampling size for each
relation by assessing relation scores. The upper row of Fig. 5 shows the change
of relation scores according to the training epoch. We observe that outgoing
scores are highest in the 2014 and 2015 data. In the 2016 data, the score of
co-input rises rapidly. It is consistent with the previous experimental results,
which distinguishing the direction of transactions further improves the mixing
detection performance in the 2014 and 2015 data. It is also the same results in
Table 3 that the cooperative edge appeared to be more critical. In addition, the
co-output relation has a low score in all datasets, which is the relation with the
lowest label similarity in Table 1. Therefore, as intended, we can consider that
more important relations are awarded higher relation scores.
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Fig. 5. (Upper row) Relation scores according to the training epoch. The gray dotted
lines mark the point at which the model’s performance has matured. (Bottom row)
The adaptive neighbor sampler contributes to achieving competitive performance as
high as referencing more neighbors while being as light as collecting fewer neighbors.
(Color figure online)

The bottom row of Fig. 5 demonstrates the effectiveness of the adaptive neigh-
bor sampler on large data sets. We compare the results of the experiments where
the number of samples per relation is fixed at 5 and 20 and the adaptive sampler
with the total sample size specified at 20. Comparing s = 5 and s = 20 set-
tings, we observe that referencing more neighbors improves the precision. How-
ever, computational costs also increase along with the widened exploring area.
Figure 5 shows that higher performance can be achieved by employing the adap-
tive neighbor sampler while keeping the total number of neighbors constant. The
sampling sizes are determined according to the relation scores naturally obtained
through the aggregation step, so no particular module is required. Therefore, it
does not cause an increase in epoch time.

We highlight the significance of the adaptive sampler proposed in this study.
So far, studies for dynamically determining the number of neighbors have been
focused on the similarity between nodes [2,12]. Their interest has been to select
more similar neighbors for the higher model performance rather than resource
management. Therefore, their methods are expensive. By actively adjusting the
number of neighbors from each relation, our framework achieves high fraud detec-
tion performance, such as referencing a larger number of neighbors, while con-
taining the total sample size for lower computational cost simultaneously.

4 Conclusion

We present BitcoNN, a multi-relational GNN framework for financial anomaly
detection. BitcoNN shows outstanding detection performance despite the chal-



AML in Cryptocurrency via Multi-Relational GNN 129

lenges of lack of node features, extreme class imbalance, and large-scale cryp-
tocurrency data. It utilizes a new type of temporal motifs, message aggregation
methods, and edge features. In addition, the adaptive neighbor sampler provides
the effect of referencing more neighbors efficiently while keeping the computa-
tional cost under control. This study is expected to be applied to actual investi-
gation sites to contribute to anti-money laundering and a sound cryptocurrency
ecosystem.

Limitations and Future Work. Our framework scores the relations in an
attentive manner, but recently there has been a debate about whether attention
truly reflects importance [5]. For more generalizability and explainability, we
would further develop this approach and apply it to a broader range of problems.
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Abstract. Counterfactual explanation is a form of interpretable
machine learning that generates perturbations on a sample to achieve
the desired outcome. The generated samples can act as instructions
to guide end users on how to observe the desired results by altering
samples. Although state-of-the-art counterfactual explanation methods
are proposed to use variational autoencoder (VAE) to achieve promis-
ing improvements, they suffer from two major limitations: 1) the coun-
terfactuals generation is prohibitively slow, which prevents algorithms
from being deployed in interactive environments; 2) the counterfactual
explanation algorithms produce unstable results due to the randomness
in the sampling procedure of variational autoencoder. In this work, to
address the above limitations, we design a robust and efficient counterfac-
tual explanation framework, namely CeFlow, which utilizes normalizing
flows for the mixed-type of continuous and categorical features. Numer-
ical experiments demonstrate that our technique compares favorably to
state-of-the-art methods. We release our source code (https://github.
com/tridungduong16/fairCE.git) for reproducing the results.

Keywords: Counterfactual explanation · Normalizing flow ·
Interpretable machine learning

1 Introduction

Machine learning (ML) has resulted in advancements in a variety of scientific
and technical fields, including computer vision, natural language processing, and
conversational assistants. Interpretable machine learning is a machine learning
sub-field that aims to provide a collection of tools, methodologies, and algorithms
capable of producing high-quality explanations for machine learning model judg-
ments. A great deal of methods in interpretable ML methods has been proposed
in recent years. Among these approaches, counterfactual explanation (CE) is the
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prominent example-based method involved in how to alter features to change the
model predictions and thus generates counterfactual samples for explaining and
interpreting models [1,8,20,28,31]. An example is that for a customer A rejected
by a loan application, counterfactual explanation algorithms aim to generate
counterfactual samples such as “your loan would have been approved if your
income was $51,000 more” which can act as a recommendation for a person
to achieve the desired outcome. Providing counterfactual samples for black-box
models has the capability to facilitate human-machine interaction, thus promot-
ing the application of ML models in several fields.

The recent studies in counterfactual explanation utilize variational autoen-
coder (VAE) as a generative model to generate counterfactual sample [20,23].
Specifically, the authors first build an encoder and decoder model from the train-
ing data. Thereafter, the original input would go through the encoder model to
obtain the latent representation. They make the perturbation into this repre-
sentation and pass the perturbed vector to the encoder until getting the desired
output. However, these approaches present some limitations. First, the latent
representation which is sampled from the encoder model would be changed
corresponding to different sampling times, leading to unstable counterfactual
samples. Thus, the counterfactual explanation algorithm is not robust when
deployed in real applications. Second, the process of making perturbation into
latent representation is so prohibitively slow [20] since they need to add random
vectors to the latent vector repeatedly; accordingly, the running time of algo-
rithms grows significantly. Finally, the generated counterfactual samples are not
closely connected to the density region, making generated explanations infeasible
and non-actionable. To address all of these limitations, we propose a Flow-based
counterfactual explanation framework (CeFlow) that integrates normalizing flow
which is an invertible neural network as the generative model to generate coun-
terfactual samples. Our contributions can be summarized as follows:

– We introduce CeFlow, an efficient and robust counterfactual explanation
framework that leverages the power of normalizing flows in modeling data
distributions to generate counterfactual samples. The usage of flow-based
models enables to produce more robust counterfactual samples and reduce
the algorithm running time.

– We construct a conditional normalizing flow model that can deal with tabular
data consisting of continuous and categorical features by utilizing variational
dequantization and Gaussian mixture models.

– The generated samples from CeFlow are close to and related to high-density
regions of other data points with the desired class. This makes counterfactual
samples likely reachable and therefore naturally follow the distribution of the
dataset.

2 Related Works

An increasing number of methods have been proposed for the counterfac-
tual explanation. The existing methods can be categorized into gradient-based
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methods [21,28], auto-encoder model [20], heuristic search methods [24,25] and
integer linear optimization [15]. Regarding gradient-based methods, The authors
in the study construct the cross-entropy loss between the desired class and coun-
terfactual samples’ prediction with the purpose of changing the model output.
The created loss would then be minimized using gradient-descent optimization
methods. In terms of auto-encoder model, generative models such as variational
auto-encoder (VAE) is used to generate new samples in another line of research.
The authors [23] first construct an encoder-decoder architecture. They then uti-
lize the encoder to generate the latent representation, make some changes to it,
and run it through the decoder until the prediction models achieve the goal class.
However, VAE models which maximize the lower bound of the log-likelihood
instead of measuring exact log-likelihood can produce unstable and unreliable
results. On the other hand, there is an increasing number of counterfactual expla-
nation methods based on heuristic search to select the best counterfactual sam-
ples such as Nelder-Mead [9], growing spheres [19], FISTA [4,27], or genetic
algorithms [3,17]. Finally, the studies [26] propose to formulate the problem of
finding counterfactual samples as a mixed-integer linear optimization problem
and utilize some existing solvers [1,2] to obtain the optimal solution.

3 Preliminaries

Throughout the paper, lower-cased letters x and x denote the deterministic
scalars and vectors, respectively. We consider a classifier H : X → Y that has
the input of feature space X and the output as Y = {1...C} with C classes.
Meanwhile, we denote a dataset D = {xn, yn}N

n=1 consisting of N instances
where xn ∈ X is a sample, yn ∈ Y is the predicted label of individuals xn

from the classifier H. Moreover, fθ is denoted for a normalizing flow model
parameterized by θ. Finally, we split the feature space into two disjoint feature
subspaces of categorical features and continuous features represented by X cat

and X con respectively such that X = Xcat ×Xcon and x = (xcat,xcon), and xcatj

and xconj is the corresponding j-th feature of xcat and xcon.

3.1 Counterfactual Explanation

With the original sample xorg ∈ X and its predicted output yorg ∈ Y, the
counterfactual explanation aims to find the nearest counterfactual sample xcf

such that the outcome of classifier for xcf is changed to desired output class
ycf. We aim to identify the perturbation δ such that counterfactual instance
xcf = xorg + δ is the solution of the following optimization problem:

xcf = arg min
xcf∈X

d(xcf,xorg) subject to H(xcf) = ycf (1)

where d(xcf,xorg) is the function measuring the distance between xorg and xcf.
Equation (1) demonstrates the optimization objective that minimizes the sim-
ilarity of the counterfactual and original samples, as well as ensures to change
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the classifier to the desirable outputs. To make the counterfactual explanations
plausible, they should only suggest minimal changes in features of the original
sample [21].

3.2 Normalizing Flow

Normalizing flows (NF) [5] is the active research direction in generative models
that aims at modeling the probability distribution of a given dataset. The study
[6] first proposes a normalizing flow, which is an unsupervised density estimation
model described as an invertible mapping fθ : X → Z from the data space X to
the latent space Z. Function fθ can be designed as a neural network parametrized
by θ with architecture that has to ensure invertibility and efficient computation
of log-determinants. The data distribution is modeled as a transformation f−1

θ :
Z → X applied to a random variable from the latent distribution z ∼ pZ , for
which Gaussian distribution is chosen. The change of variables formula gives the
density of the converted random variable x = f−1

θ (z) as follows:

pX (x) = pZ(fθ(x)) ·
∣
∣
∣
∣
det

(
∂fθ

∂x

)∣
∣
∣
∣

∝ log (pZ(fθ(x))) + log
(∣

∣
∣
∣
det

(
∂fθ

∂x

)∣
∣
∣
∣

) (2)

With N training data points D = {xn}N
n=1, the model with respects to param-

eters θ can be trained by maximizing the likelihood in Eq. (3):

θ = arg max
θ

(
N∏

n=1

(

log(pZ(fθ(xn))) + log
(∣

∣
∣
∣
det

(
∂fθ(xn)

∂xn

)∣
∣
∣
∣

)))

(3)

4 Methodology

In this section, we illustrate our approach (CeFlow) which leverages the power
of normalizing flow in generating counterfactuals. First, we define the general
architecture of our framework in Sect. 4.1. Thereafter, Sect. 4.2 and 4.3 illustrate
how to train and build the architecture of the invertible function f for tabular
data, while Sect. 4.4 describes how to produce the counterfactual samples by
adding the perturbed vector into the latent representation.

4.1 General Architecture of CeFlow

Figure 1 generally illustrates our framework. Let xorg be an original instance,
and fθ denote a pre-trained, invertible and differentiable normalizing flow model
on the training data. In general, we first construct an invertible and differentiable
function fθ that converts the original instance xorg to the latent representation
zorg = f(xorg). After that, we would find the scaled vector δz as the perturbation
and add to the latent representation zorg to get the perturbed representation
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Fig. 1. Counterfactual explanation with normalizing flows (CeFlow).

zcf which goes through the inverse function f−1
θ to produce the counterfactual

instance xcf. With the counterfactual instance xcf = f−1
θ (zorg + δz), we can

re-write the objective function Eq. (1) into the following form:
{

δz = arg minδz∈Z d(xorg, δz)
H(xcf) = ycf

(4)

One of the biggest problems of deploying normalizing flow is how to han-
dle mixed-type data which contains both continuous and categorical features.
Categorical features are in discrete forms, which is challenging to model by the
continuous distribution only [10]. Another challenge is to construct the objective
function to learn the conditional distribution on the predicted labels [14,30]. In
the next section, we will discuss how to construct the conditional normalizing
flow fθ for tabular data.

4.2 Normalizing Flows for Categorical Features

This section would discuss how to handle the categorical features. Let {zcatm}M
m=1

be the continuous representation of M categorical features {xcatm}M
m=1 for each

xcatm ∈ {0, 1, ...,K−1} with K > 1. Follow by several studies in the literature [10,
12], we utilize variational dequantization tomodel the categorical features. The key
idea of variational dequantization is to add noise u to the discrete values xcat to
convert the discrete distribution pX cat into a continuous distribution pφcat . With
zcat = xcat+uk, φcat and θcat be models’ parameters, we have following objective
functions:

log pX cat(xcat) ≥
∫

u

log
pφcat(z

cat)
qθcat(u|xcat)

du

≈ 1
K

K∑

k=1

log
M∏

m=1

pφcat(x
catm + uk)

qθcat(uk|xcat)

(5)

Followed the study [12], we choose Gaussian dequantization which is more pow-
erful than the uniform dequantization as qθcat(uk|xcat) = sig

(N (

μθcat
,Σθcat

))

with mean μθcat
, covariance Σθcat and sigmoid function sig(·).
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4.3 Conditional Flow Gaussian Mixture Model for Tabular Data

The categorical features xcat going through the variational dequantization would
convert into continuous representation zcat. We then perform merge operation
on continuous representation zcat and continuous feature xcon to obtain values
(zcat,xcon) �→ xfull. Thereafter, we apply flow Gaussian mixture model [14]
which is a probabilistic generative model for training the invertible function
fθ. For each predicted class label y ∈ {1...C}, the latent space distribution pZ
conditioned on a label k is the Gaussian distribution N (

zfull | μk,Σk

)

with
mean μk and covariance Σk:

pZ(zfull | y = k) = N (

zfull | μk,Σk

)

(6)

As a result, we can have the marginal distribution of zfull:

pZ(zfull) =
1
C

C∑

k=1

N (

zfull | μk,Σk

)

(7)

The density of the transformed random variable xfull = f−1
θ (zfull) is given by:

pX (xfull) = log
(

pZ(fθ(xfull))
)

+ log
(∣

∣
∣
∣
det

(
∂fθ

∂xfull

)∣
∣
∣
∣

)

(8)

Eq. (7) and Eq. (8) together lead to the likelihood for data as follows:

pX (xfull | y = k) = log
(N (

fθ(xfull) | μk,Σk

))

+ log
(∣

∣
∣
∣
det

(
∂fθ

∂xfull

)∣
∣
∣
∣

)

(9)

We can train the model by maximizing the joint likelihood of the categorical
and continuous features on N training data points D = {(xcon

n ,xcat
n )}N

n=1 by
combining Eq. (5) and Eq. (9):

θ∗, φ∗
cat, θ

∗
cat = argmax

θ,φcat,θcat

N∏

n=1

⎛

⎝
∏

xcon
n ∈Xcon

pX (xcon
n )

∏

xcat
n ∈Xcat

pX
(
xcat

n

)
⎞

⎠

= argmax
θ,φcat,θcat

N∏

n=1

(
log

(
N

(
fθ(x

full
n ) | μk, Σk

))
+ log

(∣∣∣∣det
(

∂fθ

∂xfull
n

)∣∣∣∣

))

(10)

4.4 Counterfactual Generation Step

In order to find counterfactual samples, the recent approaches [21,28] normally
define the loss function and deploy some optimization algorithm such as gradient
descent or heuristic search to find the perturbation. These approaches however
demonstrates the prohibitively slow running time, which prevents from deploy-
ing in interactive environment [11]. Therefore, inspired by the study [13], we add
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the scaled vector as the perturbation from the original instance xorg to counter-
factual one xcf. By Bayes rule, we notice that under a uniform prior distribution
over labels p(y = k) = 1

C for C classes, the log posterior probability becomes:

log pX (y = k|x) = log
pX (x|y = k)

∑C
k=1 pX (x|y = k)

∝ ||fθ(x) − μk||2 (11)

We observed from Eq. (11) that latent vector z = fθ(x) will be predicted from
the class y with the closest model mean μk. For each predicted class k ∈ {1...C},
we denote Gk = {xm, ym}M

m=1 as a set of M instances with the same predicted
class as ym = k. We define the mean latent vector μk corresponding to each
class k such that:

μk =
1
M

∑

xm∈Gk

fθ(xm) (12)

Therefore, the scaled vector that moves the latent vector zorg to the decision
boundary from the original class yorg to counterfactual class ycf is defined as:

Δyorg→ycf =
∣
∣
∣μyorg

− μycf

∣
∣
∣ (13)

The scaled vector Δyorg→ycf is added to the original latent representation
zcf = fθ(xorg) to obtained the perturbed vector. The perturbed vector then
goes through inverted function f−1

θ to re-produce the counterfactual sample:

xcf = f−1
θ (fθ(xorg) + αΔyorg→ycf) (14)

We note that the hyperparameter α needs to be optimized by searching in a
range of values. The full algorithm is illustrated in Algorithm 1.

Algorithm 1. Counterfactual explanation flow (CeFlow)
Input: An original sample xorg with its prediction yorg, desired class ycf, a provided

machine learning classifier H and encoder model Qφ.
1: Train the invertible function fθ by maximizing the log-likelihood:

θ∗, φ∗
cat, θ

∗
cat = arg max

θ,φcat,θcat

N∏

n=1

⎛

⎝
∏

xcon
n ∈Xcon

pX (xcon
n )

∏

xcat
n ∈Xcat

pX
(
xcat

n

)
⎞

⎠

= arg max
θ,φcat,θcat

N∏

n=1

(
log

(
N

(
fθ(x

full
n ) | μk, Σk

))
+ log

(∣∣∣∣det

(
∂fθ

∂xfull
n

)∣∣∣∣

))

2: Compute mean latent vector μk for each class k by μk = 1
M

∑
xm∈Gk

f(xm).

3: Compute the scaled vector Δyorg→ycf =
∣∣∣μyorg

− μycf

∣∣∣.
4: Find the optimal hyperparameter α by searching a range of values.
5: Compute xcf = f−1

θ (fθ(xorg) + αΔyorg→ycf).
Output: xcf.
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5 Experiments

We run experiments on three datasets to show that our method outperforms
state-of-the-art approaches. The specification of hardware for the experiment
is Python 3.8.5 with 64-bit Red Hat, Intel(R) Xeon(R) Gold 6238R CPU @
2.20GHz. We implement our algorithm by using Pytorch library and adopt the
RealNVP architecture [6]. During training progress, Gaussian mixture param-
eters are fixed: the means are initialized randomly from the standard normal
distribution and the covariances are set to I. More details of implementation
settings can be found in our code repository1.

We evaluate our approach via three datasets: Law [29], Compas [16] and Adult
[7]. Law2 [29] dataset provides information of students with their features: their
entrance exam scores (LSAT), grade-point average (GPA) and first-year average
grade (FYA). Compas3 [16] dataset contains information about 6,167 prisoners
who have features including gender, race and other attributes related to prior
conviction and age. Adult4 [7] dataset is a real-world dataset consisting of both
continuous and categorical features of a group of consumers who apply for a loan
at a financial institution.

We compare our proposed method (CeFlow) with several state-to-the-art
methods including Actionable Recourse (AR) [26], Growing Sphere (GS) [18],
FACE [24], CERTIFAI [25], DiCE [21] and C-CHVAE [23]. Particularly, we
implement the CERTIFAI with library PyGAD5 and utilize the available
source code6 for implementation of DiCE, while other approaches are imple-
mented with Carla library [22]. Finally, we report the results of our proposed
model on a variety of metrics including success rate (success), l1-norm (l1),
categorical proximity [21], continuous proximity [21] and mean log-density [1].
Note that for l1-norm, we report mean and variance of l1-norm corresponding
to l1-mean and l1-variance. Lower l1-variance aims to illustrate the algorithm’s
robustness.

Fig. 2. Baseline results in terms of Categorical proximity and Continuous prox-
imity. Higher continuous and categorical proximity are better.

1 https://anonymous.4open.science/r/fairCE-538B.
2 http://www.seaphe.org/databases.php.
3 https://www.propublica.org.
4 https://archive.ics.uci.edu/ml/datasets/adult.
5 https://github.com/ahmedfgad/GeneticAlgorithmPython.
6 https://github.com/divyat09/cf-feasibility.

https://anonymous.4open.science/r/fairCE-538B
http://www.seaphe.org/databases.php
https://www.propublica.org
https://archive.ics.uci.edu/ml/datasets/adult
https://github.com/ahmedfgad/GeneticAlgorithmPython
https://github.com/divyat09/cf-feasibility
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Table 1. Performance of all methods on the classifier. We compute p-value by conduct-
ing a paired t-test between our approach (CeFlow) and baselines with 100 repeated
experiments for each metric.

Dataset Method Performance p-value

success l1-mean l1-var log-density success l1 log-density

Law AR 98.00 3.518 2.0e-03 -0.730 0.041 0.020 0.022

GS 100.00 3.600 2.6e-03 -0.716 0.025 0.048 0.016

FACE 100.00 3.435 2.0e-03 -0.701 0.029 0.010 0.017

CERTIFAI 100.00 3.541 2.0e-03 -0.689 0.029 0.017 0.036

DiCE 94.00 3.111 2.0e-03 -0.721 0.018 0.035 0.048

C-CHVAE 100.00 3.461 1.0e-03 -0.730 0.040 0.037 0.016

CeFlow 100.00 3.228 1.0e-05 -0.679 - - -

Compas AR 97.50 1.799 2.4e-03 -14.92 0.038 0.034 0.046

GS 100.00 1.914 3.2e-03 -14.87 0.019 0.043 0.040

FACE 98.50 1.800 4.8e-03 -15.59 0.036 0.024 0.035

CERTIFAI 100.00 1.811 2.4e-03 -15.65 0.040 0.048 0.038

DiCE 95.50 1.853 2.9e-03 -14.68 0.030 0.029 0.018

C-CHVAE 100.00 1.878 1.1e-03 -13.97 0.026 0.015 0.027

CeFlow 100.00 1.787 1.8e-05 -13.62 - - -

Adult AR 100.00 3.101 7.8e-03 -25.68 0.044 0.037 0.018

GS 100.00 3.021 2.4e-03 -26.55 0.026 0.049 0.028

FACE 100.00 2.991 6.6e-03 -23.57 0.027 0.015 0.028

CERTIFAI 93.00 3.001 4.1e-03 -25.55 0.028 0.022 0.016

DiCE 96.00 2.999 9.1e-03 -24.33 0.046 0.045 0.045

C-CHVAE 100.00 3.001 8.7e-03 -24.45 0.026 0.043 0.019

CeFlow 100.00 2.964 1.5e-05 -23.46 - - -

Table 2. We report running time of different methods on three datasets.

Dataset AR GS FACE CERTIFAI DiCE C-CHVAE CeFlow

Law 3.030 ± 0.105 7.126 ± 0.153 6.213 ± 0.007 6.522 ± 0.088 8.022 ± 0.014 9.022 ± 0.066 0.850 ± 0.055

Compas 5.125 ± 0.097 8.048 ± 0.176 7.688 ± 0.131 13.426 ± 0.158 7.810 ± 0.076 6.879 ± 0.044 0.809 ± 0.162

Adult 7.046 ± 0.151 6.472 ± 0.021 13.851 ± 0.001 7.943 ± 0.046 11.821 ± 0.162 12.132 ± 0.024 0.837 ± 0.026

The performance of different approaches regarding three metrics: l1, success
metrics and log-density are illustrated in Table 1. Regarding success rate, all three
methods achieve competitive results, except the AR, DiCE and CERTIFAI per-
formance in all datasets with around 90% of samples belonging to the target class.
These results indicate that by integrating normalizing flows into counterfactuals
generation, our proposed method can achieve the target of counterfactual explana-
tion task for changing themodels’ decision.Apart from that, for l1-mean,CeFlow is
ranked second with 3.228 for Law, and is ranked first for Compas and Adult (1.787
and 2.964). Moreover, our proposed method generally achieves the best perfor-
mance regarding l1-variance on three datasets. CeFlow also demonstrates the low-
est log-density metric in comparison with other approaches achieving at −0.679,
−13.62 and −23.46 corresponding to Law, Compas and Adult dataset. This illus-
trates that the generated samples are more closely followed the distribution of data
than other approaches. We furthermore perform a statistical significance test to
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gainmore insights into the effectiveness of our proposedmethod in producing coun-
terfactual samples compared with other approaches. Particularly, we conduct the
paired t-test between our approach (CeFlow) and other methods on each dataset
and each metric with the obtained results on 100 randomly repeated experiments
and report the result of p-value in Table 1. We discover that our model is statis-
tically significant with p < 0.05, proving CeFlow’s effectiveness in counterfactual
samples generation tasks. Meanwhile, Table 2 shows the running time of differ-
ent approaches. Our approach achieves outstanding performance with the run-
ning time demonstrating around 90% reduction compared with other approaches.
Finally, as expected, by using normalizing flows, CeFlow produces more robust
counterfactual samples with the lowest l1-variance and demonstrates an effective
running time in comparison with other approaches.

Figure 2 illustrates the categorical and continuous proximity. In terms of
categorical proximity, our approach achieves the second-best performance with
lowest variation in comparison with other approaches. The heuristic search based
algorithm such as FACE and GS demonstrate the best performance in terms of
this metric. Meanwhile, DiCE produces the best performance for continuous
proximity, whereas CeFlow is ranked second. In general, our approach (CeFlow)
achieves competitive performance in terms of proximity metric and demonstrates
the least variation in comparison with others. On the other hand, Fig. 3 shows
the variation of our method’s performance with the different values of α. We
observed that the optimal values are achieved at 0.8, 0.9 and 0.3 for Law, Compas
and Adult dataset, respectively.

Fig. 3. Our performance under different values of hyperparameter α. Note that there
are no categorical features in Law dataset.

6 Conclusion

In this paper, we introduced a robust and efficient counterfactual explanation
framework called CeFlow that utilizes the capacity of normalizing flows in gen-
erating counterfactual samples. We observed that our approach produces more
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stable counterfactual samples and reduces counterfactual generation time sig-
nificantly. The better performance witnessed is likely because that normalizing
flows can get the exact representation of the input instance and also produce
the counterfactual samples by using the inverse function. Numerous extensions
to the current work can be investigated upon successful expansion of normaliz-
ing flow models in interpretable machine learning in general and counterfactual
explanation in specific. One potential direction is to design a normalizing flow
architecture to achieve counterfactual fairness in machine learning models.
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Abstract. With the growing popularity of intelligent assistants (IAs),
evaluating IA quality becomes an increasingly active field of research.
This paper identifies and quantifies the feedback effect, a novel component
in IA-user interactions – how the capabilities and limitations of the IA
influence user behavior over time. First, we demonstrate that unhelpful
responses from the IA cause users to delay or reduce subsequent inter-
actions in the short term via an observational study. Next, we expand
the time horizon to examine behavior changes and show that as users
discover the limitations of the IA’s understanding and functional capa-
bilities, they learn to adjust the scope and wording of their requests to
increase the likelihood of receiving a helpful response from the IA. Our
findings highlight the impact of the feedback effect at both the micro
and meso levels. We further discuss its macro-level consequences: unsat-
isfactory interactions continuously reduce the likelihood and diversity of
future user engagements in a feedback loop.

Keywords: Data Mining · Intelligent Assistant Evaluation

1 Introduction

Originated from spoken dialog systems (SDS), intelligent assistants (IAs) had
rapid growth since the 1990s s [9], with both research prototypes and industry
applications. As their capabilities grow with recent advancements in machine
learning and increased adoption of smart devices, IAs are becoming increasingly
popular in daily life [3,14]. Such IAs often offer a voice user interface, allowing
users to fulfill everyday tasks, get answers to knowledge queries, or start casual
social conversations, by simply speaking to their device [17,26]; that is, they
take human voice as input, which they process in order to provide an appro-
priate response [29]. The evolution of these hands-free human-device interaction
systems brings new challenges and opportunities to the data mining community.

IA systems often consist of several interconnected modules: Automated
Speech Recognition (ASR), Natural Language Understanding (NLU), Response
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Generation & Text-to-Speech (TTS), Task Execution (e.g., sending emails, set-
ting alarms and playing songs), and Question Answering [9,12,22]. Many of the
active developments in the field are formulated as supervised learning problems
where the model predicts a target from an input, e.g., a piece of text from a
speech audio input (ASR), a predefined language representation from a piece
of text (NLU), or a clip of audio from a string of text (TTS). Naturally, the
evaluation of these models often involves comparing model predictions to some
ground-truth datasets.

When building such an evaluation dataset from real-world usage, we
inevitably introduce user behavior into the measurement. User interactions with
IA are likely to be influenced by the their pre-existing perception of IA’s capabil-
ities and limitations, therefore introducing a bias in the distribution of “chances
of success” in logged user interactions – users are more likely to ask what they
know the IA can handle. This hypothesis makes intuitive sense and has been
partly suggested by an earlier study on vocabulary convergence in users learning
to speak to an SDS [19].

In this context, we define feedback effect as the behavior pattern changes in
users of an interactive intelligent system (e.g., IA) that are attributable to their
cumulative experiences with said system. Our contributions can be summarized
as follows. First, we establish a causal link between IA performance and imme-
diate subsequent user activities, and quantify its impact on users of a real-world
IA. Second, we identify distinct dynamics of behavior change for a cohort of new
users over a set period of time, demonstrating how users first explore the IA’s
capabilities before eventually adapting or quitting. Third, having examined the
feedback effect and its impact in detail, we provide generalizable recommenda-
tions to mitigate its bias in IA evaluation.

2 Related Work

IA Evaluation Methods and Metrics. Many studies have been devoted
to addressing the challenges in IA evaluation. Objective metrics like accuracy
cannot present a comprehensive view of the system [8]. Human annotation is a
crucial part of the process, but it incurs a high expense and is hard to scale [15].
Apart from human evaluation, i.e., user self-reported scores or annotated scores,
subjective metrics have been introduced. Jiang [12] designed a user satisfaction
score prediction model based on user behavior patterns, ungrammatical sentence
structures, and device features. Other implicit feedback from users (e.g., acoustic
features) are helpful to approximate success rates [16].

User Adaptation and Lexical Convergence. Adaptation (or entrainment)
describes the phenomenon whereby the vocabulary and syntax used by speakers
converge as they engage in a conversation over time [27]. Convergence can be
measured by observing repetitive use of tokens in users’ requests [6] and high
frequency words [24]. Adaptation happens subconsciously and leads to more
successful conversations [7]. In SDS, the speakers in a dialogue are the IA and
the user. When the IA actively adapts to the user in the conversation, the quality
of the generated IA responses increases substantially [30,31]. The phenomenon of
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lexical adaptation of users to the IA system has been investigated as well [19,25].
Currently, most IAs are built upon a limited domain with restricted vocabulary
size [5]. Users’ vocabulary variability tends to decrease as they engage with
the IA over time. This naturally limits the linguistic diversity of user queries,
although out-of-domain queries can happen from time to time [9].

3 Data Collection

We analyzed logged interactions (both user queries and the associated IA
responses) from a real-world IA system. All data originate from users who have
given consent to data collection, storage, and review. The data is associated with
a random, device-generated identifier. Therefore, when we use the term ‘user’ in
the context of the interaction data analysis, we are actually referring to this
random identifier. While the identifier is a reasonable proxy of a user, we must
recognize its limitations – in our analysis, we are unable to differentiate multiple
users who share a single device to interact with the IA, nor to associate requests
from a single user that were initiated on multiple devices.

The population of interest is US English-speaking smartphone users who
interacted with the IA in 2021 and 2022. We randomly sampled interaction data
from two distinct time periods before and after a special event in late 2021.
This event entailed new software and hardware releases, potentially introduc-
ing nontrivial changes to user behavior and demographics, while simultaneously
presenting unique opportunities for our particular investigation.

3.1 Study 1: Pre-event Control Period

To investigate the feedback effect on user engagement, we randomly sampled
interaction data from a two-week period in August 2021. The choice of a rela-
tively short time period before the special event helps us (i) directly control for
seasonality and (ii) avoid the impact of the special event, where product releases
and feature announcements usually stimulate user engagement and attract new
users. (We return to a discussion of new users below.)

We further control for software and hardware versions, before taking a ran-
dom sample of approximately 14,000 users who had at least one interaction with
the IA during the study period. We then randomly sampled one interaction per
user and used human-label review to determine whether the IA response was
helpful. We additionally analyzed the frequency of interactions for the user in
the 2 weeks prior to and 2 weeks following our causal analysis. In our sample,
approximately 80% of the interactions were labeled as helpful to the user.1 The
results of this study are presented in Sect. 4.

3.2 Study 2: Post-event New User Period

To investigate language convergence among a new user cohort, we randomly
sampled data from a six-month period immediately after the special event. With
our interest in analyzing long-term behavior changes of a new user cohort, this
1 This value is not necessarily a reflection of the aggregated or expected satisfaction

metric, due to the sampling method and potential bias in the subpopulation of choice.
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choice of sampling period has two interesting implications. First, special events
often lead to a surge in new users of the IA. Second, feature announcements
at the special event may cause some existing users to perceive the updated IA
as “new” and explore it with a mindset akin to that of a new user. Given the
challenges inherent to determining new user cohorts (to be further discussed in
Sect. 5), these two factors are valuable as they collectively increase the share of
new users, thus boosting the observability of the cohort. From this six-month
period, we took a random sample of 5,000 users who used the new software
version of the IA. For each user, all interactions with the IA in the full study
period were used in our analysis. The study is described in Sect. 5.

4 Feedback Effect on Engagement

Fig. 1. Causal graph illustrating the
observational study of IA feedback
effect accounting for the existence of
confounding factors.

Intuitively, unhelpful responses from an
IA may discourage users from future
interactions with the IA. Our work aims
to empirically shed light on the rela-
tion between IA helpfulness2 (helpful or
unhelpful on a single interaction) and
users’ subsequent engagement patterns
with the IA, as illustrated in Fig. 1. To
establish such a causal relationship from
IA performance to user engagement, we
adopt an observational analysis frame-
work with IA related features.

Given a dataset with N users, we
denote unit i having (i) covariates Xi ∈

R
p, (ii) a treatment variable Zi ∈ {0, 1}, indicating users experienced an unhelp-

ful interaction with the IA or a helpful one respectively, and (iii) what would have
happened if the unit is assigned to treatment and control, denoted by Yi(1) and
Yi(0) respectively, according to the potential outcomes framework [10,28]. Con-
sequently, the causal effect for unit i is defined as τi = Yi(1)−Yi(0), namely the
difference between the outcomes if treated differently on the same user. However,
the fundamental problem of causal inference is that only the potential outcome
– the outcome in the group the subject was assigned to – can be observed, i.e.,
Yi = ZiY (Zi)+(1−Zi)Y (1−Zi). Individual level causal estimands, the contrast
of values between the two potential outcomes, cannot be expressed with func-
tions of observed data alone. Consequently, our primary focus is on population
level causal effects like the Average Treatment Effect (ATE), τ = E(τi).

With a randomized controlled experiment, treated assignment mechanism
is known and unconfounded, therefore we can directly and accurately estimate
and infer causal effects (e.g., ATE) from the observed data. However, in real-
world scenarios, delicately designed experiments can be difficult or impossible to
conduct. Instead, we must rely on observational techniques.
2 The IA helpfulness of a given user request is defined as the user’s satisfaction with

the IA’s response to the request, as determined by human annotators. .
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4.1 Covariates and Outcome Variables

Observational studies are susceptible to selection bias due to confounding factors,
which affect both the treatment Z and the outcome Y, as shown in Fig. 1. To
address any confoundness to the best of our ability, we have collected rich sets
of the following IA related features, and assuming that there are no unobserved
observed confounders. (i) Device features: The type of device used to interact
with the IA system, and the operating system version, (ii) Task features: The
input sentence transcribed by the ASR system, the number of tokens in the
input sentence, the word error rate (WER) of the transcription, and the domain
that the IA executed with a confidence score provided by the NLU model (e.g.,
weather, phone, etc.), (iii) User related features: Prior activity levels measured as
the number of active days before the interaction, and temporal features including
local day of the week and time of the day when the interaction happened.

To quantify user engagement after the annotated IA interaction, Sect. 4.3
focuses on time to next session (“immediate shock”), and Sect. 4.4 focuses on
active day counts (“aftermath”).

4.2 Observational Causal Methods

Matching Methods. Matching is a non-parametric method to alleviate the
effects of confounding factors in observational studies. The goal is to obtain
well-matched samples from different treatment groups, hoping to replicate ran-
domized trial settings. The popular Coarsened Exact Matching (CEM) model
is based on a monotonic imbalance reducing matching method at a pre-defined
granularity with no assumption on assignment mechanisms [11].

Weighting Methods. Apart from matching covariates, weighting based meth-
ods use all of the high-dimensional data via summarizing scores, like the propen-
sity score (PS). PS reflects the probability of assigned to treatment based on
user’s background attributes [20,28], e(x) = P (Zi = 1|Xi = x) = E(Z|X) Since
the true PS is unknown, we adopt generalized linear regression models (GLMs)
to estimate it, which are widely adopted by the scientific community.

With PS estimates available, the next question is how to leverage them. Li
[20] proposed a family of balancing weights which enjoys balanced weighted dis-
tributions of covariates among treatment groups. Inverse-Probability Weights
(IPW) are a special case of this family, shown in Eq. (1). As the name sug-
gests, the weight is the inverse of the probability that a unit is assigned to the
observed group, and the corresponding estimand is the ATE. However, IPW is
very sensitive to outliers, i.e., when PS scores approach 0 or 1. To mitigate this
challenge, Overlap Weights (OW) which emphasize a target population with the
most covariate overlap [20], shown in Eq. (2). More discussions are provided in
the Supplemental Materials (SM)3

3 Supplemental Materials: https://machinelearning.apple.com/research/feedback-
effect.

https://machinelearning.apple.com/research/feedback-effect
https://machinelearning.apple.com/research/feedback-effect
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where w1 corresponds to the weight assigned to the treatment group, and w0 to
the control group, respectively. Then the population level causal estimands of
interest, the Weighted Average Treatment Effect (WATE), are derived from the
balanced weights. The target population varies with different weighting strategy.
The causal estimand shown in Eq. (3) then becomes the average treatment effect
for the overlap population.

τ̂w =
∑N

i=1 w1(xi)ZiYi∑N
i=1 w1(xi)Zi

−
∑N

i=1 w0(xi)(1 − Zi)Yi∑N
i=1 w0(xi)(1 − Zi)

(3)

Fig. 2. Illustration of the users’ engagement (blue dots) after the request was annotated
at time t0i for user i. We observed the time-to-next-engagement for user 1 and 2, but
user 3 was censored (the next engagement was not observed). (Color figure online)

4.3 Time to Next Engagement

In this section, we establish causal links between interaction quality with the IA
(as implied by the annotated helpfulness) and the user’s time to next engage-
ment. Specifically, our main hypothesis is that if a user has a helpful interaction
with the IA, they are more likely to further engage with the IA in the future.

Unlike standard observational studies with well-defined and observable out-
comes, time-to-event measures fall into the range of survival analyses, which
focus on the length of time until the occurrence of a well-defined outcome [23,32].
A characteristic feature in the study of time-to-event distributions is the pres-
ence of censored instances: events that do not occur during the follow-up period
of a subject. This can happen when the unit drops out during the study (right
censoring), presenting challenges to standard statistical analysis tools.

As illustrated in Fig. 2, assume for user i: the time-to-next engagement is
Ti with censoring time Ci, the observed outcome T̃i = Ti ∧ Ci, and the cen-
soring indicator Δi = 1{Ti ≤ Ci}. Under time-to-event settings, we observe a
quadruplet {Zi,Xi, T̃i,Δi} for each sample. Each user also has a set of poten-
tial outcomes, {Ti(1), Ti(0)}. Users may use the IA system at some point in our
research and be assigned a helpfulness score, but not show up again before the
data collection period ends (e.g., User 3 illustrated in Fig. 2). This yields a cen-
sored time C3 instead of a definite time-to-next-engagement outcome T3 which
is not observed within the study period.
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Following Zeng [33], the causal estimand of interest is defined based on a
function of the potential survival times, ν(Ti(z); t) = 1{Ti(z) ≥ t}. It can be
interpreted as an at-risk function with the potential outcome Ti(z). The expecta-
tion of the risk function corresponding to the potential survival function of user
i, i.e., the probability of no interaction with the IA until time t. Accordingly,
the re-engagement probability for users in treatment group z within time t is
therefore defined as Eq. (4).

E[ν(Ti(z); t)] = P[Ti(z) ≥ t] = Si(t; z) (4)
P(t; z) = 1 − S(t; z) (5)

Fig. 3. The re-engagement probability causal estimands (RPCE) as a function of time
after the annotated interaction, with associated 95% confidence interval (shaded gray).
(Color figure online)

To properly apply balancing weights (2) with survival outcomes, right cen-
soring needs to be accounted for. Pseudo-observation is therefore constructed
based on re-sampling (a jack-knife statistic) and is interpreted as the individual
contribution to the target estimate from a complete sample without censoring
[2]. Given a time t, denote the expectation of the risk function at that time point
, i.e., E[ν(Ti(z); t)] in Eq. (4), as θ(t), which is a population parameter. With-
out loss of generosity, we discuss the pseudo observation omitting the potential
outcome notations. The pseudo-observation for each unit i can be specified as,
θ̂i(t) = Nθ̂(t) − (N − 1)θ̂−i(t), where θ̂(t) is the Kaplan-Meier estimator of the
population risk at time t, which is based on Δi and Ti. θ̂−i(t) is calculated with-
out unit i. In this way, classic propensity score methods become applicable. Then
the conditional causal effect averaged over a target population at time t is:

τ̂w(t) =
∑N

i=1 w1(xi)Ziθ̂i(t)∑N
i=1 w1(xi)Zi

−
∑N

i=1 w0(xi)(1 − Zi)θ̂i(t)∑N
i=1 w0(xi)(1 − Zi)

= (1 − Ŝ
w0(t; 0)) − (1 − Ŝ

w1(t; 1)) = P̂
w0(t; 0) − P̂

w1(t; 1) (6)

The estimator in Eq. (6) represents the survival probability causal effect, i.e.,
the difference of the weighted re-engagement probability in the Unhelpful group
and the Helpful group, or the Re-engagement Probability Causal Effect (RPCE).
The results are shown in Fig. 3. The confidence interval is calculated based on
the estimated standard error of SPCE [33].
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The difference in estimated re-engagement probability is negative within the
336 h (two weeks) following the initial interaction, with a maximum causal differ-
ence of 3.2% at around 24 h (p-value is 0.007). The time window where the differ-
ence between the Helpful and Unhelpful groups is consistently statistically signif-
icant is between hours 8-65. The IPW result (provided in the SM) yields similar
conclusions.Ourmain takeaway is that the inhibition effect of an unhelpful interac-
tion reaches peak around 24 h after the interaction and then gradually weakening.

Specifically, we conclude the following, (i) An unhelpful interaction tends
to have a stronger effect on whether the user wants to use the assistant again
around the same hour on the next few days, perhaps affecting daily tasks like
starting navigation to work, (ii) About one week later, the re-engagement prob-
ability difference becomes insignificant, as users’ recollections of the unhelpful
interaction fade away.

4.4 Number of Active Days

Section 4.3 established the immediate effect of IA helpfulness on time-to-next
engagement. In this section, we widen the analysis window and focus on the
number of active days after the annotated interaction. Let A(k) denote the num-
ber of active days within k-day window, k ∈ {3, 14}. The average treatment
effect (ATE) is defined as E[A(k)

i (1) − A
(k)
i (0)].

Table 1. Examples of low and high perplexity requests about weather.

Low Perplexity High Perplexity:
syntactically complex
sentences

High Perplexity: lexically
diverse and rare topics

What is the weather, 3.3 Show me hourly weather
forecast, 17.1

What is the UV index, 11.8

Could I have the weather
for rest of the week in
<Location> please, 20.8

Is there tornado nearby,
13.6

What is the temperature, 3.5 When is the rain supposed
to start again, 19.5

How fast is the wind going,
15.6

Will it rain today, 5.9 When the rain going to stop,
21.8

When is the full moon, 15.7

Is it going to snow today, 7.6 How many inches of snow
are we supposed to get, 20.4

What is the barometric
pressure at <Location>,
27.1

How tall will the snow get
tonight, 27.6

To estimate the causal effects with consistency, we applied four different sta-
tistical analysis tools at the two time windows respectively, belonging to two
major branches of causal analysis. The first branch is weighting (IPW, entropy
weights, overlap weights).4 The corresponding WATE function is defined simi-
4 Propensity weighting methods: https://cran.r-project.org/web/packages/PSweight.

https://cran.r-project.org/web/packages/PSweight
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larly as Eq. (3). The second branch is matching. Considering the dimensionality,
we used the CEM method [11].

Fig. 4. Causal effect of an unhelpful IA interaction on
activity levels. Bar length indicates 95% CI

In line with our
previous findings, we
observe statistically sig-
nificant causal impacts
on the activity level 3
days after the annotated
IA interaction, shown
in Fig. 4 (left). All four
analysis tools yield p-
values < 0.001. This
also supports the find-

ing that the inhibition effect of an unhelpful engagement fades in time. When
we zoom out to a 14-day window, we observe that though the causal effects are
not always significant, the directional consistency suggests a lessened effect of
the unhelpful engagement compared to the 3-day window.

5 Language Convergence in New User Cohort

Having established the inhibition effect of an unhelpful interaction on a user’s
activity levels immediately following the interaction, we now expand both the
scope and the time horizon of our analysis, to explore how prior engagements in
turn shape users’ linguistic choices over time.

5.1 New and Existing User Cohort Definition

Canonically, a new user to an IA is an individual who started using the IA
for the first time in the observation window. As our data does not allow us to
identify new users in this way, we rely instead on the following conservative,
necessary but insufficient, condition for cohort determination: a user is assigned
to the ‘new user cohort’ if they (i) had at least one interaction with the IA in the
study period, and (ii) had no interaction with the IA in the first 60 days of the
study period. By erring on the side of including existing users in the new user
group, we can ensure that any patterns that remain are robust. Therefore, we
argue that this determination method offers a reasonable (and likely inflated)
approximation of the true new user cohort. In our dataset containing 6 months
of interaction data, approximately 17% of all unique users were assigned to the
new user cohort.
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5.2 New User’s Self-Selection: Drop-out or Adaption

Fig. 5. New user cohort has a higher average perplexity in the beginning and converges
toward existing user cohort in language perplexity over time.

We use a domain-specific language model-based perplexity (PP) score [18], which
provides a comprehensive summary of the request’s complexity characteristics
[1]. PP score is defined as the inverse joint probability that a sentence belongs to
the trained language model normalized by the number of tokens in the sentence
[13], PP (W ) = N

√
1

P(w1w2...wN ) , where W is the target sentence, wk is individual
token and N is the token count of the sentence. In our analysis, we adopted a
tri-gram language model [4]. Table 1 presents examples of requests with perplex-
ity scores. Here we use paraphrased variants rather than actual user data for
illustration purposes. Higher perplexity correlates with more complex sentence
structures, more diverse language representations and broader topics.

Intuitively, new users tend to explore the limits of the IA system, with broader
vocabulary and diverse paraphrases of their requests. In this study, we track the
average PP scores of new and existing user cohorts over a six month period.
First, we empirically show that the existing user cohort has a lower and more
stable perplexity score over time compared to the new user cohort (Figure 5).
This result suggests that requests from existing users are more likely to conform
to the typical wording of requests within a certain domain.

Second, we discover that the perplexity score in the new user cohort is 30%
higher than in the existing user group in the first month, but it gradually con-
verges to that of the existing user cohort. This trend suggests that new users are
less familiar with the IA’s capabilities and are more exploratory when they are
first introduced to the system. Over time, they gradually familiarize themselves
with it. Eventually, they adopt similar sentence structures and other linguistic
characteristics to those used by existing users when expressing similar intents.

Next, within the new user cohort, we dive deeper into two subgroups: The
retained group consists of users who were active for more than three out of the
four-month follow-up period. The dropout group includes users who were active
for no more than 30 days within the study period. Based on these criteria,
the retained group has an average perplexity score of 7.5, while the dropout
group has an average perplexity score of 10.6 and the difference has p-value
< 0.001. That is, users who stop using the IA within the first month tend to have
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substantially higher perplexity scores than users who are retained. Further, we’ve
shown in the SM that higher PP scores are closely related to higher unhelpful
rates in the IA interactions. Following our findings from the previous sections,
we expect unhelpful experiences to discourage users from continuing to engage
with the IA.

In summary, we conclude that there are two plausible mechanisms that may
explain the convergence of the perplexity score over time in the new user cohort:

1. Dropout: some new users who are either unfamiliar with the supported
functionality or the language of the IA system suffer negative experiences.
These high-perplexity language users stop using the system after a few tries.

2. Adaptation: despite some potential negative experiences in the beginning,
some new users familiarize themselves with the system and adapt to its lim-
itations. They continue to use the system after the first few months.

This represents a self-selection process among the users who choose to inter-
act with the IA system: users adapt to the IA system in a way that lowers their
language perplexity and consequently improves their experience, or they stop
using it altogether. Crucially, as users adapt their behavior to the system over
time, we expect to observe fewer and fewer requests that may lead to unhelpful
interactions with the IA—as a result of the feedback effect. Consequently, we
observe a bias that introduces a significant challenge to the meaningful offline
evaluation of the IA system based on naive samples of the usage traffic.

6 Discussions

Evaluation of IA systems is an important yet challenging problem. On the one
hand, the capabilities and limitations of IAs shape user behaviors (e.g., delayed
engagement, dropout, and adaption). On the other hand, these very user behav-
ior shifts in turn influence data collection and consequently the assessment of the
IAs’ capabilities and limitations. To our knowledge, this two-sided problem has
not been formally discussed in the literature, at least in the context of real-world
IAs. To fill this gap, this paper empirically studied the “feedback effect” nature
of IA evaluation. On the one hand, we demonstrated that unhelpful interactions
with the IA led to delayed and reduced user engagements, both short-term and
mid-term. On the other hand, we examined long-term user behaviors, which
suggested that as users gradually learned the limitations of the IA, they either
dropped out or adapted (i.e., “gave in”), and consequently increased the likeli-
hood of helpful interactions with the IA.

Beside raising awareness within the data mining community, this paper aims
to equip researchers and practitioners with tools for trustworthy IA evaluations.
First, in cases where randomized controlled experiments are infeasible, we offered
best practices on properly employing observational causal inference methods,
and constructing offline metrics that take the censoring of user engagements
into account. Second, to reduce the feedback loop problem in data collection
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and sampling, it is important to gauge users’ experience with the IA and con-
trol for confounding factors if possible. When not possible, researchers should
consider stratified sampling or boosting the signals from more complex intents,
or creating synthetic test data that varies in complexity, especially targeting
more complex sentence structures and intent linguistic features which may be
under-represented. Third, we have demonstrated that a key factor contributing
to unsatisfactory IA experiences for new users is that the language they use
is too complex in some way. We have also shown that users who fail to adapt
by using simpler language often do not continue to use the IA. These insights
immediately suggest growth opportunities to capitalize on. For example, mul-
tiple existing IAs offer a set of example conversations in different domains, in
order to “train” new users to use the IA successfully right from the get go.

Our work implies multiple future directions, from both product and research
perspectives. First, other than new user training (that might very well be
skipped), what more can we do to convey the IA’s capabilities and limitations,
and help users engage more productively? Alternatively, how can we intervene
early on and retain those “drop-outs,” who provide invaluable feedback to help
improve our system? Second, although we collected a rich set of covariates to
ensure unconfoundedness, we can further assess the robustness of the established
causal links, by leveraging classic sensitivity analysis techniques [21]. Third, while
this paper focuses on off-line evaluation for IAs, it is possible to apply the pro-
posed methodologies and recommendations in other settings (e.g., on-line exper-
imentation) and software products (e.g., search engines).
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Abstract. As AI has been applied in many decision-making processes,
ranging from loan application approval to predictive policing, the inter-
pretability of machine learning models is increasingly important. Inter-
pretable models and post-hoc explainability are two approaches in
eXplainable AI (XAI). We follow the argument that transparent mod-
els should be used instead of black-box ones in real-world applications,
especially regarding high-stakes decisions. In this paper, we propose Poly-
FIT to address two major issues in XAI: (1) bridging the gap between
black-box and interpretable models and (2) experimentally validating
the trade-off relationship between model performance and explainabil-
ity. PolyFIT is a novel polynomial model construction method assisted
by the knowledge of feature interactions in black-box models. PolyFIT
uses extracted feature interaction knowledge to build interaction trees,
which are then transformed into polynomial models. We evaluate the
predictive performance of PolyFIT with baselines using four publicly
available data sets, Titanic survival, Adult income, Boston house price,
and California house price. Our method outperforms linear models by 5%
and 56% in classification and regression tasks on average, respectively.
We also conducted usability studies to derive the trade-off relationship
between model performance and explainability. The studies validate our
hypotheses about the actual relationship between model performance
and explainability.

Keywords: eXplainable AI · transparent models · polynomial model ·
explainability evaluation

1 Introduction

AI is utilized in various decision-making processes, from loan application
approval to predictive policing, making machine learning model interpretability
increasingly important. Especially many of these models are considered black-
boxes since it is difficult to review or explain their internal logic in a way humans
can understand. Black-box models have made numerous serious mistakes in prac-
tice. The Pennsylvania Child Welfare Screening Tool [8] assists social workers in
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determining which families should be investigated for child abuse and neglect.
However, the predictive algorithm flagged a disproportionate number of black
children for “mandatory” neglect investigations. Another example is the termi-
nation of Amazon’s AI Recruitment System [14] due to discrimination against
women candidates. Therefore, the difficulties of explaining “black-box” can hin-
der the adoption of machine learning in many real-world applications, especially
regarding high-stakes decisions.

Much progress has been made in resolving the “black-box” issues in XAI. A
post-hoc explainability is a popular approach that explains a model’s predictions
after training is done. It is based on the concept of explanation by simplification,
also called surrogate models. LIME [18] is a popular tool for this approach. It
simplifies the original model into a transparent model with input data perturba-
tions. The feature relevance explanation describes the data instance by analyz-
ing the contribution of each input feature to the target. In [19], Rudin argued
that post-hoc explainability is often unreliable and misleading. For instance, the
attention map from a CNN classifier is a computation result, not an explanation.
Therefore, interpretable models must be used in high-stakes decisions since they
provide explanations consistent with internal model computations and are more
intelligible for humans. However, they usually suffer from poor performance with
complex data [20].

In this paper, we propose PolyFIT, a Polynomial model construction method
based on Feature Interaction Trees to address these two major issues in XAI:

1. Bridging the gap between black-box and interpretable models.
2. Experimentally validating the trade-off relationship between model perfor-

mance and explainability.

To bridge the gap between black-box and interpretable models, since black-
box models can capture complex patterns within input data, we can leverage
their knowledge for constructing interpretable surrogate models. Surrogate mod-
els can achieve the performance level of black-box counterparts and, more impor-
tantly, are intelligible for humans. Specifically, we extract global feature inter-
actions based on feature attribution methods like SHAP [13], as depicted in
Fig. 1a. Based on these interactions, we construct polynomial models by itera-
tively adding the most relevant interaction terms. Finally, when the stopping
criteria are met, we can get the polynomial model with the smallest perfor-
mance gap with the black-box model and the Feature Interaction Tree as shown
in Fig. 1b. The quantitative experimental results of our method showed that our
proposed method is comparable to the existing approaches.

DARPA XAI Broad Agency Announcement [5] depicts a trade-off relation-
ship between performance and interpretability that high-performance algorithms
usually have lower explainability. This curve combines the performance and
explainability of algorithms onto a single graph, allowing us to observe each
algorithm’s strengths and weaknesses with clarity. However, no quantification
was in the trade-off curve, so we could not know how precise the graph was.
To validate the “trade-off” relationship, we conducted a forward simulation test
with actual users based on the concept proposed in [2] on four familiar data sets.
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Fig. 1. (a) SHAP pair-wise interaction values from a sample in Titanic Survival data
sets (ID=78). (b) Feature Interaction Tree generated from tree building process in
Titanic Survival data sets

The results experimentally showed that the trade-off curves were similar for all
four data sets but varied slightly depending on the data sets and the methods
used to quantify explainability. For example, the explainability of linear models
is not always superior to other models in our usability study.

The rest of the paper is organized as follows: Sect. 2 will introduce the back-
ground of knowledge used in our method and the evaluation of explainability.
Also, it covers the previous works in building transparent models. Section 3 will
introduce how PolyFIT creates a surrogate transparent model. Section 4 shows
the results of the PolyFIT performance, the user subjective scores, and the
explainability scores compared with the transparent models. Finally, in Sect. 5,
we will summarize the findings and discuss the limitations and future of our
methods and usability studies.

2 Related Work

2.1 SHAP and Pair-Wise Interaction Values

SHAP [13] explores each input feature’s additive contribution to a machine learn-
ing model’s output prediction. Given a model, SHAP uses a game-theoretical
approach to generate Shapley values for each feature. The authors explain SHAP
pair-wise interaction values in [12], which is an extension that can be obtained
from the Shapley interaction index [4].

The result of SHAP pair-wise interaction values is shown in a symmetric
matrix of size equal to the number of features for a single data instance, such as
Fig. 1a. Other entries represent the interaction effect between the two features,
while the diagonal values represent the main effects of the features.
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Fig. 2. The overall process of constructing polynomial models based on feature inter-
action trees. Details will be described in Sect. 3.

2.2 Polynomial Model and EBM

Polynomial models are useful when there exists a connection between two or
more variables. It adds non-linearity to a simple linear model with interactions,
which multiplies features to reflect relationships. Previous research compared a
model’s performance with and without a feature [16].

From this premise, we try to estimate the importance of feature interactions
by altering the polynomial model to include only interaction terms in (1), where
p �= q and g is the link function that adapts to either regression or classification:

g
(
hpoly(x)

)
= β0 +

∑

i

βixi +
∑

p,q

βp,q(xp · xq) (1)

Explainable boosting machine (EBM) [15] is a tree-based cyclic gradient
boosting Generalized Additive Model (GAM). EBM is completely interpretable
and as accurate as state-of-the-art black-box models. However, it is slower to
train than other contemporary algorithms [11]. EBM is a GAM of the form as
follows, where g is the link function that adapts GAM to either regression or
classification:

g(E[y]) = β0 +
∑

i

fi(xi) +
∑

i,j

fi,j(xi, xj) (2)

3 Methodology

We intend to generate a transparent model h from a high-precision black-box
model f . With Eq. (1), we can easily fit a polynomial model, but this method
does not extract any valuable information from the black-box model. In addition,
all conceivable combinations of features must also be included. This necessitates
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determining which interaction terms must be included in a linear model. To
determine the importance of interaction terms, we constructed a hierarchical
structure of feature interaction sets S, using the SHAP pair-wise interaction
values. If the performance of h decreases when a certain interaction term is
included, the term is deemed irrelevant. Based on this concept, we construct a
transparent interaction model h as follows:

h(x;S) = β0 +
∑

i

βixi +
∑

s∈S

βs

s∏

k

xk (3)

3.1 Black-box Model Creation

We split the data into train and test data sets, then train an XGBoost [1] model
to get a black-box model f . Then we obtain the “original performance” by evalu-
ating model f with the test data sets. This process is similar to most procedures
in machine learning model training.

3.2 Global SHAP Interaction Value Score Calculation

Using the black-box model f and the training data, we calculate the SHAP
pair-wise interaction values (SIV, Φ) using TreeSHAP technique [12]. SIV is a
3-dimensional matrix with a size of N × |M | × |M |, where N is the number
of samples in the training data, and M is the entire feature set. We defined a
global SIV as an average of absolute interaction values of the sample size. So,
we process: Φi,j = 1

N

∑N
n |Φn

i,j | ∀i, j ∈ (1, . . . , |M |). Next, we calculate the
global SIV score matrix (Ψ) using one of the three g functions. We hypothesize g
functions give different points of view when constructing hierarchical structures.
(a) The absolute value (abs): only considers the size of interaction effects and
the main effect, where d(φi) = |φi|, d(φi,j) = |φi,j |. (b) The absolute interaction
value (abs_inter): ignores main effects and only considers the size of pair-wise
interaction values, where d(φi) = 0, d(φi,j) = |φi,j |. and (c) The interaction
ratio (ratio): calculates the ratio of interaction values to the sum of main effects,
where d(φi) = 0, d(φi,j) = |φi,j |/(|φi| + |φj |).

Ψi,j =

{
d(φi) for i = j

d(φi,j) for i �= j
(4)

Let a node s be a container of a single feature or a hierarchical structure
combination of features. Then “SIV score” for node s (refer as Ψs) is calculated
given a global SIV score matrix Ψ , and will be used in tree-building process(3.3):

Ψs =
∑

i∈flatten(s)

Ψi,i +
∑

(p,q)∈flatten(s)

2 × Ψp,q (5)

The SIV score matrix Ψ will always be symmetric since the SIV Φ is sym-
metric. “flatten(s)” is a flatten function that turns a hierarchical combination
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of feature sets into a single vector where p �= q. The first term in Eq. (5) repre-
sents the summation of main effect scores. The second term is the summation
of interaction scores.

3.3 Tree-building Process

The goal of the tree-building process is to find a node that leads to the mini-
mal performance(refer as P ) gap between the original model f and a surrogate
polynomial model h at each step t:

argmin
s

Pgap = Pf − Ph = L
(
y, f(x)

) − L
(
y, h(x;St)

)
(6)

where St = {St−1, s}, (x, y) ∈ Dtrain, L is a performance metric for a task, St

represents the set of nodes with the lowest performance gap at step t, and Dtrain

is a training data sets. At the beginning of the algorithm, we initialize nodes set
S0 with the summation of the SIV score matrix Ψ , which means the total effect
of each feature in the feature sets M : S0 = {i :

∑|M |
j (Ψi,j)|i ∈ M}

Construction of the Pair-Wise Interaction Node Candidates Set. The
process starts with selecting a subset of nodes S′

t to reduce the searching space:
S′
t = select(St−1, Ns,method)

There are two methods to select a subset. The first is the random select
number of nodes regardless of the scores in St−1. The other is the sort selection
by top Ns nodes with scores in St−1 in descending order. In our experiment,
we examine which of two selection methods and what number of selected nodes
Ns gains the best results with an increase of 10% on the number of selected
nodes Ns. The minimum number of selected nodes is 2 due to the next step:
constructing pair-wise node candidates set.

After selecting a subset of nodes, we construct a pair-wise interaction node
candidates set Ct by calculating Ψs for each s in the combination of nodes in S′

t:
Ct = {s : Ψs|s ∈ (

S′
t
2

)}. Since there might be a lot of possible combinations in
the early steps, to reduce the computational costs, we filter candidates to use as
interaction terms for surrogate model h in Eq. (3): C ′

t = filter(Ct, Nf ,method).
Same as selecting the subset of nodes process, there are two methods. We also
examine which of the two methods and what number of filtered nodes Nf gains
the best results.

Calculation of Performance Gap and Selection of Node. For each com-
bination candidate in C ′

t, we construct a surrogate model h and calculate the
performance gap P s

gap with the performance of the original model f :
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Pt =

{

s : P s
gap =

{
Pf − P s

h if task = classification
P s
h − Pf if task = regression

}

∀s ∈ C ′
t

where P s
h = L

(
y, h(x; {St−1, s})

)

(7)

We select the node s with the lowest performance gap in Pt and form a
new set of nodes St = {St−1, s}. In our experiment, we use the beam search
algorithm to keep tracking K number of selected St to get better results for
each step Ht = {Sk

t |k = (1, . . . ,K)}. Finally, Repeat the tree-building steps
until meets the given finishing criteria.

4 Experiments

4.1 Model Performance

Configurations. We used four data sets for our study; two for binary classifica-
tion problems: Titanic survival [10], and Adult income [3], and two for regression
problems: Boston house price [6], and California house price [17]. We trained our
XGBoost model using a learning rate of 0.1, a max tree depth of 6, and a seed
of 7. We discovered the ideal number of boost rounds using three-fold cross-
validation with 500 rounds. Table. 1 displays the final test data performance. In
our experiment, PolyFIT performs better than LINEAR and POLY; the origi-
nal model’s interaction values helped boost the performance of constructing a
polynomial model. The California and Titanic data sets performed better than
the original model.

Table 1. Test performance of models by each task and data. Classification tasks use
accuracy, and regression tasks use MSE. LINEAR is the baseline without interac-
tions. POLY is the polynomial model with all feature interactions, and EBM refers to
Explainable Boosting Machine.

Task Dataset XGBoost PolyFIT EBM LINEAR POLY

Classification↑ Adult 0.8732 0.8446 0.8723 0.8397 0.8403
Titanic 0.8611 0.8889 0.8472 0.8056 0.8056

Regression↓ Boston 0.0164 0.0203 0.0195 0.0319 0.0266
California 0.0838 0.0339 0.0787 0.1402 0.3571
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Results About Parameters to Build PolyFIT. As explained in Sect. 3, we
examine several parameters to build PolyFIT. Figure 3 shows the box plot of the
performance gap about the number of the beam search, and Fig. 4 is the results
of the number of selecting nodes and filtering candidates for reducing the search
space. We calculated the algorithm’s efficiency by dividing the exponential of the
negative performance gap by the execution time(seconds). Other parameters did
not show significant differences in the experiments.

Fig. 3. The experiment about the number of hypotheses in the beam search(X-axis);
if it equals one, refers to a greedy search. The Y-axis is the performance gap of the
PolyFIT. Higher beam searches lead to a lower performance gap because the algorithm
has a better chance of finding the best interaction combination.

Fig. 4. The experiment about efficiency on the number of selecting nodes(first row)
and filtering candidates(second row). The X-axis is the ratio of the number of selected
nodes and filtered candidates. The higher ratio, the lower the efficiency, because more
selection and filtering of nodes cause a higher execution time. From the results, 0.1∼0.2
ratio is the best efficiency for each data set.
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4.2 Evaluating Interpretability

Similar to the studies in [7], we designed a forward simulation test that asks users
to predict models’ outcomes given inputs samples with and without explanations
to evaluate the explainability in qualitative metrics. We also include a Likert-
scaled subjective rating as an alternative measurement for explainability with
the “helpfulness” and “easiness” of the explanation methods. Similar to [9], we
administered subjective tests after respondents had completed all four tasks.

4.3 Usability Study

Our other goal is to quantify transparent models’ explainability and user sub-
jective ratings on easiness and helpfulness. We build a survey system to evaluate
three transparent models and the global SHAP interaction matrix. The sur-
vey has two phases with four different data sets; the Pre-stage(pre-explanation
phase) and the Post-stage(post-explanation phase). Explainability scores(δ) are
differences in performance between the two stages that would be purely caused
by the explanation method since it was the only difference made.

Survey Design. In the Pre-stage, a validation data set of 16 data points will be
provided, including the feature values, labels, and model prediction results. The
respondents are asked to estimate the model’s prediction for 8 test data without
explanation methods. They will fill them out one by one to be less affected by
other questions.

The same validation data sets is kept visible in the Post-stage. The respon-
dents do the same jobs for the same 8 test data in the Pre-stage with one of the
explanation methods: linear model (LINEAR), global SHAP Interaction Value
matrix (SIV), Explainable Boosting Machine (EBM), and our method (Poly-
FIT). Our system will randomly match four methods one-to-one to four data
sets for each surveyor to ensure everyone can experience four explanation meth-
ods. Respondents can always see how the explanation tool works and how to
interpret the results during the survey.

User Pool. We gathered 29 respondents that have basic knowledge of linear
and polynomial models. They are either students in the graduate school of data
science or workers in the field of data science. Respondents had difficulty with
the regression tasks; we observed this phenomenon not only by their comments
but also because they filled some of the problems with zeros. To control the
survey’s quality, we excluded eight regression task responses, therefore, received
928 classification and 736 regression responses.

Survey Results. Table. 2 shows the explainability scores(δ) in classification
and regression tasks. From the results, at the significant level of 5%, SIV and
LINEAR methods improved the performance in the California data set. Table. 3
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Table 2. The average explainability scores(δ). CI gives the 95% confidence interval
of Post-stage performance, calculated by bootstrap n responses. The p is the one-side
Wilcoxon signed-rank test p-value to check if the Post-stage performance improves.
The alternative hypothesis is the performance of the Post-stage is greater than the
Pre-stage for classification tasks. For regression tasks, it will be the opposite.

adult titanic
Method N Pre δ Post CI p N Pre δ Post CI p

SIV 32 0.719 −0.125 0.594 0.004 0.858 64 0.688 +0.063 0.750 0.004 0.207
LINEAR 72 0.556 +0.063 0.611 0.003 0.125 56 0.643 −0.036 0.607 0.005 0.760
EBM 48 0.646 +0.056 0.708 0.002 0.198 48 0.625 +0.125 0.750 0.004 0.065
PolyFIT 80 0.663 −0.013 0.650 0.005 0.500 64 0.665 −0.063 0.594 0.005 0.637

Boston California
Method N Pre δ Post CI p N Pre δ Post CI p
SIV 40 0.118 −0.069 0.187 0.002 1.000 64 0.486 +0.191 0.295 0.002 0.039
LINEAR 40 0.174 −0.015 0.189 0.001 0.906 48 0.322 +0.063 0.258 0.003 0.047
EBM 64 0.170 −0.010 0.180 0.002 0.422 32 0.567 +0.069 0.498 0.007 0.313
PolyFIT 32 0.243 +0.141 0.102 0.002 0.063 48 0.333 −0.078 0.411 0.004 0.781

Table 3. The average helpfulness and easiness scores from the responses(29 respon-
dents). The higher ratings infer the higher usefulness of explanations. Our method and
LINEAR got high scores in the regression task.

Average Helpfulness Average Easiness
Task Dataset SIV LINEAR EBM PolyFIT SIV LINEAR EBM PolyFIT

Classification Adult 2.750 2.889 3.000 2.500 3.000 3.444 2.667 2.600
Titanic 4.000 3.000 2.833 3.250 3.875 3.857 2.500 3.250

Regression Boston 2.143 3.600 2.667 2.800 2.429 4.200 2.750 4.200
California 1.900 4.125 1.800 3.500 2.700 4.250 1.800 3.833

shows the helpfulness and easiness of four methods. Compared to the forward
simulation, LINEAR and our method get a higher score in the regression task.

Figure 5 reveals the performance-explainability relationship using scores and
user ratings. Our method outperforms linear models and is comparable to EBM.
Explainability is not superior in classification tasks but performs better in regres-
sion tasks. Linear models’ explainability isn’t consistently better for all tasks,
and users find them most useful except for the Titanic dataset(see subjective
scores). Results differ in forward simulation.
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Fig. 5. The performance and explainability scores(δ), average user subjective scores
plot. We plot the original model’s score with the explainability of the global SIV
matrix method to represent the black-box model. Classification tasks are measured
by accuracy, while regression tasks use negative mean squared error. The user subjec-
tive ratings are calculated by the average of helpfulness and easiness.

5 Conclusion

We developed a novel polynomial model construction method, PolyFIT, lever-
aging feature interactions knowledge from black-box models, creating surrogate
transparent models. Our method outperformed linear and naïve polynomial
models and was comparable to EBM, an advanced polynomial construct method.
We also address a crucial question in XAI regarding the trade-off relationship
between model performance and explainability. Through carefully-designed user
studies, we understood that the performance-explainability trade-off was not
always accurate. The explainability of linear models is not always superior to
other models for all tasks. The actual trade-off curve depends on the data sets
and the method used to quantify explainability.

Even though PolyFIT can construct acceptable polynomial models, choosing
the best one is still an open question. To address this limitation, we plan to
evaluate the proposed technique with more real-world scenarios. Further work
also includes measuring explainability in multiple aspects and domains.
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National University.
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Abstract. Representation learning is an important step in the machine
learning pipeline. Given the current biological sequencing data volume,
learning an explicit representation is prohibitive due to the dimension-
ality of the resulting feature vectors. Kernel-based methods, e.g., SVM,
are a proven efficient and useful alternative for several machine learn-
ing (ML) tasks such as sequence classification. Three challenges with
kernel methods are (i) the computation time, (ii) the memory usage
(storing an n × n matrix), and (iii) the usage of kernel matrices limited
to kernel-based ML methods (difficult to generalize on non-kernel classi-
fiers). While (i) can be solved using approximate methods, challenge (ii)
remains for typical kernel methods. Similarly, although non-kernel-based
ML methods can be applied to kernel matrices by extracting principal
components (kernel PCA), it may result in information loss, while being
computationally expensive. In this paper, we propose a general-purpose
representation learning approach that embodies kernel methods’ quali-
ties while avoiding computation, memory, and generalizability challenges.
This involves computing a low-dimensional embedding of each sequence,
using random projections of its k-mer frequency vectors, significantly
reducing the computation needed to compute the dot product and the
memory needed to store the resulting representation. Our proposed fast
and alignment-free embedding method can be used as input to any dis-
tance (e.g., k nearest neighbors) and non-distance (e.g., decision tree)
based ML method for classification and clustering tasks. Using different
forms of biological sequences as input, we perform a variety of real-world
classification tasks, such as SARS-CoV-2 lineage and gene family clas-
sification, outperforming several state-of-the-art embedding and kernel
methods in predictive performance.
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1 Introduction

The rate at which biological sequence data is being generated and stored cur-
rently outpaces Moore’s law growth, even under fairly conservative estimates [33].
In the past decade, the amount of biological sequence data has already reached
a level that automated — machine learning (ML) and deep learning (DL) —
algorithms are able to learn from and perform analysis. A notable example is
the AlphaFold framework [26] for structure prediction from a protein sequence.
Another example is the Pangolin tool [28] for predicting lineage, e.g., B.1.1.7 [29],
from an assembled SARS-CoV-2 genomic sequence. The number of SARS-CoV-2
genomic sequences which are publicly available on databases such as GISAID1 is
more than 15 million and counting.

While approaches such as AlphaFold and Pangolin have outperformed the
previous state-of-the-art by a significant margin, or can scale to orders of magni-
tude more in number of sequences, these learning approaches can be and will need
to be optimized, as the amount of data grows to strain even these approaches.
Since the majority of ML models deal with fixed-length numerical vectors, bio-
logical sequences cannot be used directly as input, making efficient embedding
design an important step in such ML-based pipelines [15,24].

Sequence alignment is another important factor to be considered while per-
forming sequence analysis. Although embeddings that require the sequences to be
aligned, such as one-hot encoding (OHE) [27], are proven to be efficient in terms
of predictive performance, researchers are interested in exploring alignment-free
methods to avoid the expensive multiple sequence alignment operations as a
preprocessing step [1,3,16,17,34]. Most alignment-free methods compute some
form of a sketch of a sequence from short substrings, such as k-mers to gen-
erate a spectrum [7]. Although the existing alignment-free embedding methods
yield promising predictive results; they produce vectors of high dimensionality,
especially for very long sequences. An alternative to the traditional feature engi-
neering methods is using deep learning (DL) models [4]. However, DL methods
have not seen much success in the classification of tabular datasets [8,12].

Using a kernel (Gram) matrix for sequence classification and kernel-based
ML classifiers, such as SVM, shows promising results [6,19]. Kernel-based meth-
ods outperform feature engineering-based methods [7]. These methods work by
computing kernel (similarity) values between pairs of sequences based on the
number of matches and mismatches between their k-mers [6]. The resultant ker-
nel matrix can then be used to classify the sequences using SVM. However,
there are serious challenges to the scalability of kernel-based methods to large
datasets:

– Evaluating the kernel value between a pair of sequences takes time propor-
tional to |Σ|k, where Σ is the alphabet of sequences;

– Storing the n×n kernel matrix is memory intensive when n is very large; and
– Kernel matrices are limited to kernel-based machine learning models (such as

SVM) downstream.
1 https://www.gisaid.org/.

https://www.gisaid.org/
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The first challenge of kernel evaluation can be overcome with the so-called kernel
trick and approximating kernel values with quality guarantees [19]. To use more
general classifiers like decision trees, one can compute principal components
of the kernel matrix using kernel PCA [23], which can act as the embedding
representation to tackle the third challenge. However, this process results in a loss
of information and is computationally expensive. In general, the second challenge
of the need to store an n × n kernel matrix in memory remains unaddressed.

In this paper, we propose a random projection-based sequence representa-
tion called BioSequence2Vec, which has the qualities of kernel methods in terms
of efficiently computing pairwise similarity between sequences (overcoming the
first challenge) while also addressing the memory overhead. Given a (biological)
sequence as input, the BioSequence2Vec embedding projects frequency vectors
of all k-mers in a sequence in “random directions” and uses these projections to
represent the sequence. BioSequence2Vec computes the projections in one linear
scan of the sequence (rather than explicitly computing the frequency of each of
the |Σ|k k-mers in the sequence). Since our method computes the representation
of a sequence in linear time (linear in the length of the sequence), it easily scales
to a large number of sequences. The generated embeddings are low-dimensional
(user-controlled), hence BioSequence2Vec overcomes the memory usage problem.
The Euclidean (and cosine) similarity between a pair of embeddings is closely
related to the kernel similarity of the pair, hence our method incorporates the
benefits of kernel-based methods. BioSequence2Vec is efficient, does not require
sequences to be aligned, and the embeddings can be used as input to any dis-
tance (e.g., k nearest neighbors) and non-distance (e.g., decision tree) based ML
methods for the supervised tasks, solving the third problem.

In summary, our contributions are the following:

1. We propose a fast, alignment-free, and efficient embedding method, BioSe-
quence2Vec, which quickly computes a low dimensional numerical embedding
for biological sequences. It has the quality of kernel-based methods in terms of
computing pair-wise similarity values between sequences while also address-
ing the memory usage issue of kernel methods — allowing it to scale to many
more sequences.

2. We show that the proposed method can be generalized on different types
of real-world biological sequences. It outperforms both alignment-based
and alignment-free SOTA methods for predictive performance on different
datasets.

3. Our method eliminates the expensive multiple sequence alignment step from
the classification pipeline, hence making it a fast and scalable approach.

The rest of the paper is organized as follows: The literature for biological
sequence analysis is given in Sect. 2. Section 3 outlines the details of the proposed
model. The description of the dataset and experimental setup are given in Sect. 4.
The empirical results are provided in Sect. 5. Section 6 concludes the paper and
discusses future prospects.
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2 Related Work

Designing numerical embeddings is an important step in the ML pipeline for
supervised analysis [9,35]. The feature engineering-based methods, such as
Spike2Vec [5] and PWM2Vec [2], which are based on the idea of using k-mers
achieve reasonable predictive performance. However, they still face the problem
of curse of dimensionality. As we increase the value of k, the spectrum (fre-
quency count vector) becomes sparse (contains small k-mers counts). Hence the
likelihood of observing a specific k-mer again decreases. To solve this sparse
vector problem, authors in [20] propose the idea of using gapped/spaced k-
mer. The use of k-mers counts for phylogenetic applications was first explored
in [11], which constructed accurate phylogenetic trees from coding and non-
coding nDNA sequences. Although phylogenetic-based methods are useful for
sequence analysis, they are computationally expensive, hence cannot be scaled
on bigger datasets.

Computing the pair-wise similarity between sequences by computing ker-
nel/gram matrix is a well-studied problem in ML domain [7]. Since computing
the pair-wise similarities could be expensive to compute, authors in [19] proposed
an approximate method to improve the kernel computation time by computing
the dot product between the spectrum of two sequences. The resultant kernel
matrix can be used as input for kernel classifiers such as SVM or non-kernel
classifiers [7] using kernel PCA [23] for classification purposes.

Authors in [30] propose a neural network-based model to extract the features
using the Wasserstein distance. A ResNet model for the purpose of classification
is proposed in [36]. However, DL methods, in general, do not show promis-
ing results when applied to tabular data [31]. Using pre-trained models is also
explored in the literature for biological sequence analysis [13,22]. However, since
those models are usually trained on a specific type of biological sequence, they
cannot easily be generalized on different types of data.

3 Proposed Approach

In this section, we describe the details of our sequence representation, BioSe-
quence2Vec. We also analyze the space and time complexity of computing the
representations. As outlined above, sequences generally have varying lengths,
and even when the lengths are the same, the sequences may not be aligned.
Thus, they cannot be treated as vectors. Though in aligned sequences of equal
length, a one-to-one correspondence between elements is established, treating
them as vectors ignores the order of elements and their contiguity. In one of
the most successful approaches that cater to all of the above issues, sequences
are represented by fixed-dimensional feature vectors. The feature vectors are the
spectra, or counts, of all k-mers appearing in the sequences [5].

Suppose we are given a set S of sequences (of, e.g., nucleotides A, C, G, T).
For a fixed integer k, let Σk be the set of all strings of length k made from
characters in Σ (all possible k-mers) and let s = |Σ|k. The spectrum Φk(X) of
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a sequence X ∈ S is a s-dimensional vector of the counts of each possible k-mer
occurring in X. More formally,

Φk(X) = (Φk(X)[γ])γ∈Σk =

(∑
α∈X

I(α, γ)

)
γ∈Σk

, (1)

where

Ik(α, γ) =

{
1, if α = γ

0, otherwise
(2)

Note that Φk(X) is a s = |Σ|k-dimensional vector where the coordinate γ ∈
Σk has a value equal to the frequency of γ in X. Since this dimensionality
grows quickly for modest-sized alphabets — it is exponential in k — the space
complexity of representing sequences can quickly become prohibitive.

In kernel-based machine learning, a kernel function computes a real-valued
similarity score for a pair of feature vectors. The kernel function is typically the
inner product of the respective spectra.

K(i, j) = K(Xi,Xj) = 〈Φk(Xi), Φk(Xj)〉
= Φ(Xi) · Φ(Xj) =

∑
γ∈Σk

Φk(Xi)[γ] × Φk(Xj)[γ] (3)

The kernel matrix (of pairwise similarity scores) is input to a standard sup-
port vector machine (SVM) [18] classifier resulting in excellent classification
performance in many applications [19]. Although, in the so-called kernel trick,
the explicit computation of feature vectors are avoided, with quadratic space
required to store the kernel matrix, even this approach does not scale to real-
world sequences datasets. There are three challenges to overcome: (i) Explicit
representation is prohibitive due to the dimensions of the feature vectors, (ii)
Although explicit computation is avoided using the kernel trick [19], the storage
complexity of the kernel matrix is too large, and (iii) Kernel methods do not
allow non-kernel-based machine learning methods. In the following, we propose
a representation learning approach, namely BioSequence2Vec, that encompasses
the benefits of the kernels and allows employing both kernel-based and general
purpose machine learning methods.

3.1 BioSequence2Vec Representation

The BioSequence2Vec representation, x̂ for a sequence X represents X by the
random projections of Φk(X) on the “discrete approximations” of random direc-
tions. It allows the application of vector space-based machine learning meth-
ods. We show that the Euclidean distance between a pair of vectors in BioSe-
quence2Vec representation is closely related to the kernel-based proximity mea-
sure between the corresponding sequences. We use 4-wise independent hash func-
tions to compute Φ′(·). Note that the definition of our representation of (6) is
inspired by the work of AMS [10] to estimate the frequency moments of a stream.
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Definition 1 (4-wise Independent hash function). A family H of functions
of the form h : Σk �→ {−1, 1} is called 4-wise independent, or 4-universal, if a
randomly chosen h ∈ H has the following properties:

1. for any α ∈ Σk, h(α) is equally likely to be −1 or 1.
2. for any distinct αi ∈ Σk, and mi ∈ {−1, 1} (1 ≤ i ≤ 4),

Pr[h(α1) = m1 ∧ . . . ∧ h(α4) = m4] = 1/24

Next, we give a construction of a 4-wise independent family of hash functions
due to Carter and Wegman [14]

Definition 2. Let p be a large prime number. For integers a0, a1, a2, a3, such
that 0 ≤ ai ≤ p − 1 , and α ∈ Σk (represented as integer base |Σ|), the hash
function ha0,a1,a2,a3 : Σk �→ {−1, 1} is defined as

ha0,a1,a2,a3(α) =

{
−1 if g(α) = 0
1 if g(α) = 1

(4)

where
g(α) =

(
a0 + a1α + a2α

2 + a3α
3 mod p

)
mod 2 (5)

It is well-known that the family H = {ha0,a1,a2,a3 : 0 ≤ ai < p} is 4-universal.
Choosing a random function from this family amounts to choosing four random
coefficients of polynomial, and the hash value for a k-mer α is the value of the
polynomial (with random coefficients) at α modulo the prime p and modulo 2.

We use the following property of any randomly chosen function h from H
that directly follows from the definition.

Fact 1 For any distinct α1, α2 ∈ Σk, E[h(α2)h(α2)] = 0

The property of 4-wise independence is used to derive a bound on the variance
of the inner product. Let t be a fixed positive integer (a user-specified quality
parameter). For 1 ≤ i ≤ t, let h(i) = h

(i)
a0,a1,a2,a3 be t randomly and independently

chosen functions from H (corresponds to choosing t sets of 4 integers modulo p).
The ith coordinate of our representation, x̂ of a sequence X is given by

x̂i =
1√
t

∑
α∈X

h(i)(α). (6)

In other words, The ith coordinate is the projection on the random vector
in R

|Σ|k , a corner of the |Σ|k-dimensional hypercube. More precisely, x̂ is a t-
dimensional vector, where the value at the ith coordinate is the (normalized)
dot-product of Φk(X) with the vector in {−1, 1}|Σ|k given by h(i).

Next, we show that the dot-product between the BioSequence2Vec represen-
tations x̂ and ŷ of a pair of sequences X and Y closely approximates the kernel
similarity value given in (3). We are going to show that for any pair of sequences
X and Y , x̂ · ŷ 
 Φk(X) · Φk(Y ). For notational convenience let x = Φk(X) and
y = Φk(Y ), we show that x̂ · ŷ 
 x · y.

Theorem 1. For any 0 < ε, δ < 1, if t ≥ 2/ε2 log(1/δ), then
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1. E
[
x̂ · ŷ]

= x · y
2. Pr

[|x̂ · ŷ − x · y| ≤ ε‖x‖‖y‖] ≥ 1 − δ

The proof of 1. will be provided in the full version of the paper.
The proof of 2. follows from a standard application of Hoeffding’s inequality.

First note that by construction for 1 ≤ i ≤ t, we have

−‖x‖/√
t ≤ x̂i ≤ ‖x‖/√

t

Similar bounds hold on each coordinate of ŷ. Also note that ‖x‖ = ‖Φk(X)‖ is
the number of k-mers in X. These bounds implies that

−‖x‖‖y‖/t ≤ x̂i × ŷi ≤ ‖x‖‖y‖/t

Using these bounds in Hoeffding’s inequality, we get that

Pr
[|x̂ · ŷ − x · y| ≥ ε‖x‖‖y‖] ≤ e

−tε2/2.

Substituting the value of t we get the desired probabilistic guarantee on the
quality of our estimate. �

Note that the upper bound on the error is very loose, in practice we get far
better estimates of the inner product.

Remark 1. The runtime of computing x̂ is tnx, where nx is the number of char-
acters in X. The space complexity of saving x̂ is 2/ε2 log(1/δ), where both ε and
δ are user-controlled parameters. In the error term, ‖x‖ = nx − k + 1, when
x = Φk(X).

Next, we show that the �2-distance between any two vectors, which is usually
employed in vector-space machine learning methods (e.g. k-NN classification) is
closely related to their inner product. The inner product of the BioSequence2Vec
representations of two sequences closely approximate the kernel similarity score
between two sequences, see Eq. (3). Thus, BioSequence2Vec achieves the benefits
of kernel-based learning while avoiding the time complexity of kernel computa-
tion and the space complexity of storing the kernel matrix.

Suppose we scale the BioSequence2Vec representation x̂ of the sequence X
by ‖x̂‖2 (�2 norm of x̂, to make them unit vectors). Then, by definition, we get
the following relation between �2-distance and inner product between x̂ and ŷ.

d2(x̂, ŷ) =
t∑

i=1

(x̂i − ŷi) =
t∑

i=1

x̂2
i +

t∑
i=1

ŷ2
i − 2

t∑
i=1

x̂iŷi

= 1 + 1 − 2(x̂ · ŷ) = 2 − 2 Cos θx̂ŷ

where θuv is the angle between the u and v in R
t. Thus, both the “Euclidean

and cosine similarities” between two BioSequence2Vec vectors are proportional
to the “kernel similarity” between the corresponding sequences.

The pseudocode of BioSequence2Vec is given in Algorithm 1. Our algorithm
takes as input a set S of biological sequences, integers k, p, alphabet Σ, and the
number of hash functions t. It outputs the embedding R, which is the t dimen-
sional fixed-length numerical representation corresponding to set S of sequences.
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Algorithm 1. BioSequence2Vec Computation
1: Input: Set S of sequences, integers k, p, Σ,t
2: Output: Embedding R
3: function ComputeEmbedding(S, k, p, Σ,t)
4: R = []
5: for X ∈ S do � for each sequence
6: x̂ = []
7: for i = 1 to t do � # of hash functions
8: a0, a1, a2, a3 ← random(0, p-1)
9: � Four random integers for coefficients of polynomial

10: for j ∈ |X| − k + 1 do � scan sequence
11: α ← X[j : j + k] � k-mer
12: h ← a0 + a1αΣ + a2α

2
Σ + a3α

3
Σ

13: � αΣ is numerical version of α base |Σ|
14: h ← (h mod p) mod 2
15: if h = 0 then
16: x̂[i] ← x̂[i] - 1 � Eq. (4)
17: else
18: x̂[i] ← x̂[i] + 1 � Eq. (4)

19: x̂[i] = 1√
t

× x̂[i] � Eq. (6)

20: R.append(x̂)

21: return R

4 Experimental Evaluation

This section discusses datasets and state-of-the-art (SOTA) methods for com-
paring results. All experiments are performed on a core i5 system (with a 2.40
GHz processor) having windows 10 OS and 32 GB memory. For experiments, we
use 70-30% split for training and testing (held out) sets, respectively, and repeat
experiments 5 times to report average and standard deviation (SD) results. To
evaluate the proposed method, we use aligned and unaligned biological sequence
datasets (see Table 1). For classification, we use SVM, Naive Bayes (NB), Multi-
Layer Perceptron (MLP), KNN, Random Forest (RF), Logistic Regression (LR),
and Decision Tree (DT). We use eight SOTA methods (both alignment-free and
alignment-based) to compare results. The detail of SOTA methods and a brief
comparison with the proposed model are given in Table 2.

5 Results and Discussion

In this section, we report the classification results for BioSequence2Vec using
different datasets and compare the results with SOTA methods. A comparison
of BioSequence2Vec with SOTA algorithms on Spike7k and the Human DNA
dataset is shown in Table 3. We report the BioSequence2Vec results for t = 1000
and k = 3.
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Table 1. Dataset Statistics.

Dataset Detail Source Total
Sequences

Total
classes

Sequence Length

Min Max Average

Spike7k Aligned spike protein sequences to classify
lineages of coronavirus in humans

[21] 7000 22 1274 1274 1274.00

Human
DNA

Unaligned nucleotide sequences to classify
gene family to which humans belong

[25] 4380 7 5 18921 1263.59

Table 2. Different methods (ours and SOTA) description.

Method Category Detail Source Alignment
Free

Computationally
Efficient

Space
Efficient

Low Dim.
Embedding

Spike2Vec Feature
Engineering

Take biological sequence as input
and design fixed-length numerical
embeddings

[5] � � �
Spaced k-mers [32] � � �
PWM2Vec [2] � � �
WDGRL Neural

Network
(NN)

Take one-hot representation of
biological sequence as input and
design NN-based embedding
method by minimizing loss

[30] � �

AutoEncoder [37] � �
String Kernel Kernel

Matrix
Designs n × n kernel matrix that
can be used with kernel classifiers
or with kernel PCA to get feature
vector based on principal
components

[19] � �

SeqVec Pretrained
Language
Model

Takes biological sequences as
input and fine-tunes the weights
based on a pre-trained model to
get final embedding

[22] � � �

ProteinBERT Pretrained
Transformer

A pretrained protein sequence
model to classify the given
biological sequence using
Transformer/Bert

[13] � � �

BioSequence2Vec
(ours)

Hashing Takes biological sequence as input
and design embeddings based on
the kernel property of preserving
pairwise distance

- � � � �

For the aligned Spike7k protein sequence dataset, we can observe that the
proposed BioSequence2Vec with random forest classifier outperforms all the
SOTA methods for all but one evaluation metric. In the case of training runtime,
WDGRL performs the best because of having the smallest size embedding.

For the unaligned Human DNA (nucleotide) data, we can observe in Table 3
that the random forest classifier with BioSequence2Vec outperforms all SOTA
methods in all evaluation metrics except the classification training runtime. An
important point to note here is that all alignment-free methods (i.e., Spike2Vec,
Spaced k-mers, String kernel, and BioSequence2Vec) generally show better
predictive performance as compared to the alignment-based methods such as
PWM2Vec, WDGRL, AE. Among alignment-free methods, the proposed method
performs the best (hence showing the generalizability property), showing that
we can completely eliminate the multiple sequence alignment from the pipeline
(an NP-hard step). Moreover, using pre-trained language models such as SeqVec
and ProteinBert also did not improve the predictive performance.
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Table 3. Classification results (averaged over 5 runs) on Spike7k and Human DNA
datasets for different evaluation metrics. Best values are shown in bold.

Embeddings Algo. Spike7k Human DNA

Acc. ↑ Prec. ↑ Recall ↑ F1
(Weig.) ↑

F1
(Macro) ↑

ROC
AUC ↑

Train Time
(sec.) ↓

Acc. ↑ Prec. ↑ Recall ↑ F1
(Weig.) ↑

F1
(Macro) ↑

ROC
AUC ↑

Train Time
(sec.) ↓

Spike2Vec SVM 0.855 0.853 0.855 0.843 0.689 0.843 61.112 0.597 0.602 0.597 0.589 0.563 0.733 4.612

NB 0.476 0.716 0.476 0.535 0.459 0.726 13.292 0.175 0.143 0.175 0.106 0.128 0.532 0.039

MLP 0.803 0.803 0.803 0.797 0.596 0.797 127.066 0.618 0.618 0.618 0.613 0.573 0.747 22.292

KNN 0.812 0.815 0.812 0.805 0.608 0.794 15.970 0.640 0.653 0.640 0.642 0.608 0.772 0.561

RF 0.856 0.854 0.856 0.844 0.683 0.839 21.141 0.752 0.773 0.752 0.749 0.736 0.824 2.558

LR 0.859 0.852 0.859 0.844 0.690 0.842 64.027 0.569 0.570 0.569 0.555 0.525 0.710 2.074

DT 0.849 0.849 0.849 0.839 0.677 0.837 4.286 0.621 0.624 0.621 0.621 0.594 0.765 0.275

PWM2Vec SVM 0.818 0.820 0.818 0.810 0.606 0.807 22.710 0.302 0.241 0.302 0.165 0.091 0.505 10011.3

NB 0.610 0.667 0.610 0.607 0.218 0.631 1.456 0.084 0.442 0.084 0.063 0.066 0.511 4.565

MLP 0.812 0.792 0.812 0.794 0.530 0.770 35.197 0.310 0.350 0.310 0.175 0.107 0.510 320.555

KNN 0.767 0.790 0.767 0.760 0.565 0.773 1.033 0.121 0.337 0.121 0.093 0.077 0.509 2.193

RF 0.824 0.843 0.824 0.813 0.616 0.803 8.290 0.309 0.332 0.309 0.181 0.110 0.510 65.250

LR 0.822 0.813 0.822 0.811 0.605 0.802 471.659 0.304 0.257 0.304 0.167 0.094 0.506 23.651

DT 0.803 0.800 0.803 0.795 0.581 0.791 4.100 0.306 0.284 0.306 0.181 0.111 0.509 1.861

String
Kernel

SVM 0.845 0.833 0.846 0.821 0.631 0.812 7.350 0.618 0.617 0.618 0.613 0.588 0.753 39.791

NB 0.753 0.821 0.755 0.774 0.602 0.825 0.178 0.338 0.452 0.338 0.347 0.333 0.617 0.276

MLP 0.831 0.829 0.838 0.823 0.624 0.818 12.652 0.597 0.595 0.597 0.593 0.549 0.737 331.068

KNN 0.829 0.822 0.827 0.827 0.623 0.791 0.326 0.645 0.657 0.645 0.646 0.612 0.774 1.274

RF 0.847 0.844 0.841 0.835 0.666 0.824 1.464 0.731 0.776 0.731 0.729 0.723 0.808 12.673

LR 0.845 0.843 0.843 0.826 0.628 0.812 1.869 0.571 0.570 0.571 0.558 0.532 0.716 2.995

DT 0.822 0.829 0.824 0.829 0.631 0.826 0.243 0.630 0.631 0.630 0.630 0.598 0.767 2.682

WDGRL SVM 0.792 0.769 0.792 0.772 0.455 0.736 0.335 0.318 0.101 0.318 0.154 0.069 0.500 0.751

NB 0.724 0.755 0.724 0.726 0.434 0.727 0.018 0.232 0.214 0.232 0.196 0.138 0.517 0.004

MLP 0.799 0.779 0.799 0.784 0.505 0.755 7.348 0.326 0.286 0.326 0.263 0.186 0.535 8.613

KNN 0.800 0.799 0.800 0.792 0.546 0.766 0.094 0.317 0.317 0.317 0.315 0.266 0.574 0.092

RF 0.796 0.793 0.796 0.789 0.560 0.776 0.393 0.453 0.501 0.453 0.430 0.389 0.625 1.124

LR 0.752 0.693 0.752 0.716 0.262 0.648 0.091 0.323 0.279 0.323 0.177 0.095 0.507 0.041

DT 0.790 0.799 0.790 0.788 0.557 0.768 0.009 0.368 0.372 0.368 0.369 0.328 0.610 0.047

Spaced
k-mers

SVM 0.852 0.841 0.852 0.836 0.678 0.840 2218.347 0.746 0.749 0.746 0.746 0.728 0.844 26.957

NB 0.655 0.742 0.655 0.658 0.481 0.749 267.243 0.177 0.233 0.177 0.122 0.142 0.533 0.467

MLP 0.809 0.810 0.809 0.802 0.608 0.812 2072.029 0.722 0.723 0.722 0.720 0.689 0.817 126.584

KNN 0.821 0.810 0.821 0.805 0.591 0.788 55.140 0.699 0.704 0.699 0.698 0.667 0.804 1.407

RF 0.851 0.842 0.851 0.834 0.665 0.833 646.557 0.784 0.814 0.784 0.782 0.773 0.843 13.397

LR 0.855 0.848 0.855 0.840 0.682 0.840 200.477 0.712 0.712 0.712 0.709 0.693 0.812 37.756

DT 0.853 0.850 0.853 0.841 0.685 0.842 98.089 0.656 0.658 0.656 0.656 0.626 0.784 2.985

Auto-
Encoder

SVM 0.699 0.720 0.699 0.678 0.243 0.627 4018.028 0.621 0.638 0.621 0.624 0.593 0.769 22.230

NB 0.490 0.533 0.490 0.481 0.123 0.620 24.6372 0.260 0.426 0.260 0.247 0.268 0.583 0.287

MLP 0.663 0.633 0.663 0.632 0.161 0.589 87.4913 0.621 0.624 0.621 0.620 0.578 0.756 111.809

KNN 0.782 0.791 0.782 0.776 0.535 0.761 24.5597 0.565 0.577 0.565 0.568 0.547 0.732 1.208

RF 0.814 0.803 0.814 0.802 0.593 0.793 46.583 0.689 0.738 0.689 0.683 0.668 0.774 20.131

LR 0.761 0.755 0.761 0.735 0.408 0.705 11769.02 0.692 0.700 0.692 0.693 0.672 0.799 58.369

DT 0.803 0.792 0.803 0.792 0.546 0.779 102.185 0.543 0.546 0.543 0.543 0.515 0.718 10.616

SeqVec SVM 0.796 0.768 0.796 0.770 0.479 0.747 1.0996 0.656 0.661 0.656 0.652 0.611 0.791 0.891

NB 0.686 0.703 0.686 0.686 0.351 0.694 0.0146 0.324 0.445 0.312 0.295 0.282 0.624 0.036

MLP 0.796 0.771 0.796 0.771 0.510 0.762 13.172 0.657 0.633 0.653 0.646 0.616 0.783 12.432

KNN 0.790 0.787 0.790 0.786 0.561 0.768 0.6463 0.592 0.606 0.592 0.591 0.552 0.717 0.571

RF 0.793 0.788 0.793 0.786 0.557 0.769 1.8241 0.713 0.724 0.701 0.702 0.693 0.752 2.164

LR 0.785 0.763 0.785 0.761 0.459 0.740 1.7535 0.725 0.715 0.726 0.725 0.685 0.784 1.209

DT 0.757 0.756 0.757 0.755 0.521 0.760 0.1308 0.586 0.553 0.585 0.577 0.557 0.736 0.24

Protein
Bert

0.836 0.828 0.836 0.814 0.570 0.792 14163.52 0.542 0.580 0.542 0.514 0.447 0.675 58681.57

BioSequence2Vec
(ours)

SVM 0.848 0.858 0.848 0.841 0.681 0.848 9.801 0.555 0.554 0.555 0.543 0.497 0.700 13.251

NB 0.732 0.776 0.732 0.741 0.555 0.771 1.440 0.263 0.518 0.263 0.244 0.239 0.572 0.095

MLP 0.835 0.825 0.835 0.825 0.622 0.819 13.893 0.583 0.598 0.583 0.571 0.541 0.717 70.463

KNN 0.821 0.818 0.821 0.811 0.616 0.803 1.472 0.613 0.625 0.613 0.615 0.565 0.748 0.313

RF 0.863 0.867 0.863 0.854 0.703 0.851 2.627 0.786 0.816 0.786 0.787 0.779 0.846 1.544

LR 0.500 0.264 0.500 0.333 0.031 0.500 11.907 0.527 0.522 0.527 0.501 0.457 0.674 29.029

DT 0.845 0.856 0.845 0.841 0.683 0.839 0.956 0.663 0.666 0.663 0.664 0.639 0.795 4.064

For ProteinBert, the main reason for its comparable performance to BioSe-
quence2Vec on Spike7k data while bad performance on Human DNA data is
because it is pretrained on protein sequences in the original study, hence per-
forming badly on Human DNA Nucleotide data (poor generalizability). Although
SeqVec is also pretrained on protein sequences (in the original study), its com-
paratively better performance on nucleotide data is because we use it to design
the embeddings and then use ML classifiers for the prediction, which performs
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better for tabular data compared to DL models [31]. To check if the computed
results are statistically significant, we used the student t-test and observed the
p-values using average and standard deviations (SD) of 5 runs. We noted that
p-values were < 0.05 in the majority of the cases (because SD values are very
low), confirming the statistical significance of the results.

6 Conclusion

In this paper, we propose an efficient and alignment-free method, called BioSe-
quence2Vec, to generate embeddings for biological sequences using the idea of
hashing. We show that BioSequence2Vec has the qualities of kernel methods
while being memory efficient. We performed extensive experiments on real-world
biological sequence data to validate the proposed model using different evalua-
tion metrics. BioSequence2Vec outperforms the SOTA models in terms of pre-
dictive accuracy. Future work involves evaluating BioSequence2Vec on millions
of sequences and other virus data. Applying this method to other domains (e.g.,
music or video) would also be an interesting future extension.
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Abstract. This paper develops the exact linear relationship between the
leading eigenvector of the unnormalized modularity matrix and the eigen-
vectors of the adjacency matrix. We propose a method for approximat-
ing the leading eigenvector of the modularity matrix, and we derive the
error of the approximation. There is also a complete proof of the equiva-
lence between normalized adjacency clustering and normalized modular-
ity clustering. Numerical experiments show that normalized adjacency
clustering can be as twice efficient as normalized modulairty clustering.

Keywords: Spectral clustering · Graph partitioning · Adjacency
matrix · Modularity matrix

1 Introduction

Graph partitioning is the process of breaking a graph into smaller components
so the components can be characterized by specific properties. The problem, also
known as clustering or community detection, is of high interest in both academia
and industry. For example, Pothen [14] applies graph partitioning in scientific
computing. Olson et al. [13] uses the concept of robotics. Tolliver and Miller
[17] discusses the possibility of using graph partitioning for image segmentation.
Recently, the scientific interest in graph partitioning has centered on dividing
large graphs into smaller components by matching their size. This is done by
minimizing the number of edges that are cut during the process [18].

A number of algorithms have been developed to solve problems related to
graph partitioning. Among the many clustering methods, two spectral tech-
niques that rely on adjacency matrices of graphs are widely used and extensively
researched. Fiedler [5] develops the spectral clustering method, while Newman
and Girvan [11] develop the modularity clustering method. As discussed in [5],
the eigenvalue corresponding to the second smallest eigenvector of a graph adja-
cency matrix is closely related to the graph’s structure. It is suggested in [6]
to partition a graph based on the signs of eigenvector entries of its adjacency
matrix. Newman [10] describes modularity clustering in detail. As with Fiedler’s
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spectral clustering method, the modularity clustering method uses entries in the
eigenvector that correspond to a modularity matrix’s eigenvalue.

There are some modified versions of the spectral clustering and modularity
clustering methods. Chung [4] analyzes the properties of scaled Laplacian matri-
ces. By utilizing normalized spectral clustering, Shi and Malik [16] provides a
method to develop normalized Laplacian matrices and use them to segment
images. In [12], another version of normalized spectral clustering is discussed.
The Laplacian matrix is scaled on one side by the researchers in their method.
In [1], a normalized version of modularity clustering is examined.

Since modularity matrices are derived from adjacency matrices, it would
be interesting to see if similar clustering results can be obtained from the two
kinds of matrices. One main contribution of this paper is to describe the relation
between clustering results using modularity matrices and adjacency matrices,
and to show that using normalized modularity matrices and normalized adja-
cency matrices will produce the same clustering results. As a practical motiva-
tion, this paper demonstrates that clustering can be sped up by using normalized
adjacency matrices rather than normalized modularity matrices.

As follows is the organization of the paper. Section 2 contains some prelimi-
nary mathematical notations. Section 3 describes how to approximate the leading
eigenvector of the modularity matrix with eigenvectors of the adjacency matrix.
The equivalence between normalized adjacency clustering and normalized mod-
ularity clustering is presented in Sect. 4. Section 5 provides experimental results
and discussions. Section 6 contains the conclusions.

2 Preliminaries

Throughout the paper, we assume G(V,E) to be a connected simple graph with
m = |E| edges and n = |V | vertices. Unless otherwise stated, A is assumed to
represent an adjacency matrix, i.e.

Aij =
{

1 if nodes i and j are adjacent
0 if otherwise.

A vertex’s degree is defined as

di =
n∑

i=1

aji,

and
D = diag(d1, d2, · · · , dn)

is a degree matrix containing the degrees of the vertices in a graph. In this paper,
the number of clusters is always fixed at two. Clustering methods can be applied
recursively if more clusters are needed, in which case a hierarchy is built to get
the desired number of clusters. It is worth noting that this approach will result
in a greedy algorithm which may lead to unsatisfactory results because of poor
partitioning in the first stages.
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Partitioning the graph is based on the signs of the entries in the eigenvectors.
In real cases, the cases where zero entries emerge are rare, so it is assumed that
there are no zero entries in the eigenvectors. Although the results are presented
in this paper using adjacency matrices, it is also possible to extend the results
to use similarity matrices. A graph Laplacian is defined as

L = D − A, (2.1)

and a modularity matrix defined as

M = A − ddT

2m
, (2.2)

where
d =

(
d1 d2 · · · dn

)T (2.3)

is the vector containing the degrees of the nodes. The normalized versions of the
graph Laplacian and the modularity matrix are

Lsym = D− 1
2 LD− 1

2 (2.4)

and
Msym = D− 1

2 MD− 1
2 , (2.5)

respectively. With e a vector that contains all 1’s with proper dimension, it can
be seen that (0, e) is an eigenpair of L and M, and (0,D

1
2 e) is an eigenpair of

Lsym and Msym.

3 Dominant Eigenvectors of Modularity and Adjacency
Matrices

As a linear combination of the eigenvectors of the corresponding adjacency
matrix, the eigenvector corresponding to the largest eigenvalue of a modular-
ity matrix is written in this section. To begin with, we state a theorem from [2]
regarding the interlacing property of a diagonal matrix and its rank-one modifi-
cation, and how to calculate the eigenvectors of a diagonal plus rank one (DPR1)
matrix [9]. The theorem is also discussed in [19]. We will use these results in our
analysis.

Theorem 1. Let P = S + αuuT , where S is diagonal, ‖u‖2 = 1. Let s1 ≤ s2 ≤
· · · ≤ sn be the eigenvalues of S, and let s̃1 ≤ s̃2 ≤ · · · ≤ s̃n be the eigenvalues
of P. Then s̃1 ≤ s1 ≤ s̃2 ≤ s2 ≤ · · · ≤ s̃n ≤ sn if α < 0. If the si are distinct
and all the elements of u are nonzero, then the eigenvalues of P strictly separate
those of S.

Corollary 1. By using the notations in Theorem 1, the eigenvector of P asso-
ciated with eigenvalue s̃i can be calculated by

(S − s̃iI)−1u. (3.1)
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By Theorem 1, we know that the eigenvalues of a DPR1 matrix interlace
with the eigenvalues of the original diagonal matrix. A linear combination of the
eigenvectors of the corresponding adjacency matrix is then used to compute the
eigenvector representing the largest eigenvalue of a modularity matrix.

According to the notation in Sect. 1, because A is an adjacency matrix, it is
symmetric and is therefore orthogonally similar to a diagonal matrix. It follows
that there exists an orthogonal matrix U and a diagonal matrix ΣA such that

A = UΣAUT .

Suppose the rows and columns of A are ordered such that

ΣA = diag(σ1, σ2, · · · , σn),

where σ1 ≥ σ2 ≥ · · · ≥ σn. Let U =
(
u1 u2 · · · un

)
. Similarly, since a modularity

matrix M is symmetric, it is orthogonally similar to a diagonal matrix. Suppose
the eigenvalues of M are β1 ≥ β2 ≥ · · · ≥ βn.

Theorem 2. Suppose β1 �= σ1, β1 �= σ2, and |β1 − σ2| = Δ. The eigenvector
corresponding to the largest eigenvalue of M is given by

1
‖UTd‖2

n∑
i=1

uT
i d

σi − (σ2 + Δ)
ui, (3.2)

where d is defined in Eq. 2.3.

Proof. Since M = A − ddT /(2m), we have

M = A − ddT

2m

= UΣAUT − ddT

2m

= U(ΣA + ρyyT )UT ,

(3.3)

where

y =
UTd

‖UTd‖2
and

ρ = −‖UTd‖22
2m

.

Since ΣA + ρyyT is also symmetric, it is orthogonally similar to a diagonal
matrix. So we have

M = UVΣMVTUT ,

where V is orthogonal and ΣM is diagonal. Since ΣA +ρyyT is a DPR1 matrix,
ρ < 0 and ‖y‖2 = 1, the interlacing theorem applies to the eigenvalues of A and
M. More specifically, we have

βn ≤ σn ≤ βn−1 ≤ σn−1 ≤ · · · ≤ β2 ≤ σ2 < β1 < σ1. (3.4)
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The strict inequalities hold because β1 �= σ1 and β1 �= σ2. Thus |β1 − σ2| = Δ
implies β1 − σ2 = Δ. Next, let

M1 = ΣA + ρyyT .

Since M = UM1UT , we have MU = UM1. Suppose (λ,v) is an eigenpair of
M1, then

MUv = UM1v = λUv

implies that (λ,v) is an eigenpair of M1 if and only if (λ,Uv) is an eigenpair of
M. By Corollary 1, the eigenvector of M1 corresponding to β1 is given by

v1 = (ΣA − β1I)−1y

= (ΣA − (σ2 + Δ)I)−1 UTd
‖UTd‖2 ,

(3.5)

and hence the eigenvector of M corresponding to β1 is given by

m1 = Uv1

= U(ΣA − (σ2 + Δ)I)−1 UTd
‖UTd‖2

=
1

‖UTd‖2
n∑

i=1

uT
i d

σi − (σ2 + Δ)
ui.

(3.6)

The aim of Theorem 2 is to demonstrate that the vector b1 is a linear com-
bination of the ui. Let

γi =
uT
i d

(σi − β1)‖UTd‖2 , (3.7)

the next theorem is intended to approximate m1, the eigenvector corresponding
to the largest eigenvalue of M, by a linear combination of ui that has the largest
|γi|, and to measure how good the approximation is by calculating the norm
between m1 and its approximation.

Theorem 3. With the notations and assumptions in Theorem 2 , and let γi has
the expression in Eq. 3.7. Suppose ik ∈ {1, 2, · · · , n}, and γi are reordered such
that

|γin | ≤ |γin−1 | ≤ · · · ≤ |γi1 |.
Then given p ∈ {1, 2, · · · , n}, m1 can be approximated by

m̂1 =
p∑

j=1

γijuij ,

with relative error
1
q

( n∑
j=p+1

γ2
ij

) 1
2
,

where q is the 2-norm of the vector m1.
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Proof. Since

γi =
uT
i d

(σi − β1)‖UTd‖2 ,

the vector m1 can be written as

m1 =
n∑

i=1

γiui =
n∑

j=1

γijuij .

So if

m̂1 =
p∑

j=1

γijuij , p ≤ n

is an approximation of m1, then the difference between m1 and its approximation
is

m1 − m̂1 =
n∑

j=p+1

γijuij ,

and the 2-norm of m1 − m̂1 is

‖m1 − m̂1‖2 =

∥∥∥∥∥∥
n∑

j=p+1

γijuij

∥∥∥∥∥∥
2

=
( n∑

j=p+1

γ2
ij

) 1
2
,

because the ui are orthonormal. So if q is the 2-norm of the vector m1, then the
relative error of the approximation is

‖m1 − m̂1‖2
‖m1‖ =

1
q

( n∑
j=p+1

γ2
ij

) 1
2
.

We can use the error provided in Theorem 3 to gauge the number of terms we
will need to approximate the dominant eigenvector of the modularity matrix
with eigenvectors of the adjacency matrix to achieve a given level of accuracy.

4 Normalized Adjacency and Modularity Clustering

In parallel to the previous analysis, we will show that the eigenvectors corre-
sponding to the largest eigenvalues of a normalized adjacency matrix and a
normalized modularity matrix will produce the same clustering results. Bolla [1]
mentions a similar statement without a complete proof, but Yu and Ding [20]
consider it from a different angle.

Suppose A is an adjacency matrix, and

Asym = D− 1
2 AD− 1

2

is the corresponding normalized adjacency matrix. Let

L = D − A
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be the unnormalized Laplacian matrix and

Lsym = D− 1
2 LD− 1

2 = I − Asym

be the normalized Laplacian matrix. Finally let M be the unnormalized modu-
larity matrix defined in Sect. 1,

P =
ddT

2m
,

and
Msym = D− 1

2 MD− 1
2

be the normalized modularity matrix. A theorem is first stated, followed by its
proof.

Theorem 4. Suppose that zero is a simple eigenvalue of Msym, and one is a
simple eigenvalue of Asym. If λ �= 0 and λ �= 1, then (λ,u) is an eigenpair of
Asym if and only if (λ,u) is an eigenpair of Msym.

This theorem may be proven by combining the following two observations.
As the second observation requires more lines of explanation, we write it as a
lemma.

Observation 5 (λ,u) is an eigenpair of Lsym if and only if (1 − λ,u) is an
eigenpair of Asym because

Lsymu = λu

⇐⇒ (I − Asym)u = λu

⇐⇒ Asymu = (1 − λ)u.

Lemma 1. Suppose that 0 is a simple eigenvalue of both Lsym and Msym. It
follows that if λ �= 0 and (λ,u) is an eigenpair of Lsym, then (1 − λ,u) is an
eigenpair of Msym. If α �= 0 and (α,v) is an eigenpair of Msym, then (1−α,v)
is an eigenpair of Lsym.

Proof. For P = ddT /(2m), it is easy to observe that

Msym + Lsym = D− 1
2 (A − P + D − A)D− 1

2

= I − D− 1
2 PD− 1

2 .
(4.1)

Let E = D− 1
2 PD− 1

2 . If (λ,u) is an eigenpair of Lsym, we have

λu = Lsymu

=⇒ λu = (I − Msym − E)u

=⇒ (1 − λ)u = Msymu + Eu.
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Note that P is an outer product and P �= 0, so rank(P)=1. Since E is
congruent to P, E and P have the same number of positive, negative and zero
eigenvalues by Sylvester’s law [9]. Therefore

rank(E) = rank(P) = 1.

To prove Eu = 0, it is sufficient to prove u is in the nullspace of E. Let e be the
vector such that all its entries are one. Observe that

E · D 1
2 e = D− 1

2 PD− 1
2 D

1
2 e

= D− 1
2
ddT

2m
e

=
dTe
2m

(D− 1
2 d)

= D− 1
2 d,

(4.2)

because

dTe =
n∑

i=1

di = 2m

is the sum of the degrees of all the nodes in the graph. Moreover, because

D− 1
2 d = D

1
2 e,

(1,D
1
2 e) is an eigenpair of E. Also observe that

Lsym · D 1
2 e = D− 1

2 (D − A)D− 1
2 D

1
2 e

= D− 1
2 Le = 0.

(4.3)

Therefore, (0,D
1
2 e) is an eigenpair of Lsym. Since u is an eigenvector of Lsym

corresponding to a nonzero eigenvalue λ, we have u ⊥ D
1
2 e, so u is in the

nullspace of E. This gives Eu = 0 and thus (1 − λ)u = Msymu. Therefore
λu = Lsymu ⇒ (1 − λ)u = Msymu.

On the other hand, if (α,v) is an eigenpair of Msym, then we have

αv = Msymv

=⇒ αv = (I − Lsym − E)v

=⇒ Lsymv + Ev = (1 − α)v.

Observe that
Msym · D 1

2 e = D− 1
2 MD− 1

2 D
1
2 e

= D− 1
2 Me = 0

(4.4)

because the row sums of M are all zeros. Therefore, (0,D
1
2 e) is an eigenpair of

Msym. Since v is an eigenvector of Msym corresponding to a nonzero eigenvalue
α, we have v ⊥ D

1
2 e, so v is in the nullspace of E. This gives Ev = 0 and thus

(1 − α)v = Lsymv. Therefore αv = Msymv ⇒ (1 − α)v = Lsymv.
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As a result of Theorem 4, a bijection from the nonzero eigenvalues of Msym

to the nonzero eigenvalues of Asym can be established, and the order of these
eigenvalues is maintained. As zero is always an eigenvalue of Msym, the largest
eigenvalue of Bsym is always nonnegative. Newman [10] discusses when B can
have a zero largest eigenvalue. The congruence of Msym and M logically implies
that if zero is the largest Eigenvalue for M, then it is also the largest Eigenvalue
for Bsym. Since (0,D

1
2 e) is an eigenpair of Msym and all entries in the vector

D
1
2 e are greater than zero, all nodes in the graph will be put into one cluster. We

prove below that, for nontrivial cases (i.e. when the largest eigenvalue of M is not
zero), the eigenvectors for the largest eigenvalues of both a normalized adjacency
matrix and a normalized modularity matrix are the same, so in nontrivial cases
they will give the same clustering results.

Theorem 6. With the assumptions in Theorem 4, and given that zero is not the
largest eigenvalue of Msym, the eigenvector corresponding to the largest eigen-
value of Msym and the eigenvector corresponding to the second largest eigenvalue
of Asym are identical.

Proof. Due to the fact that Lsym is positive semi-definite [18], zero is the smallest
eigenvalue of Lsym. Then by Observation 5, one is the largest eigenvalue of Asym.
Since all eigenvalues of Asym that are not equal to one are also the eigenvalues
of Msym, it follows that if the simple zero eigenvalue is not the largest eigenvalue
of Msym, then the largest eigenvalue of Asym is the second largest eigenvalue of
Msym and they have the same eigenvectors by Theorem 4.

Both adjacency clustering and modularity clustering involve calculation of
all entries in the adjacency matrices, so they have the same time complexity of
O(n2). However, as shown in the next section, normalized adjacency clustering
can be twice as effective as normalized modularity clustering.

5 Experiments

In this section, synthetic and practical data sets are used to corroborate the the-
oretical findings presented in the previous sections. Since normalized adjacency
clustering and normalized modularity clustering provides the same eigenvalues
and eigenvectors, only efficiency is compared in the experiments.

5.1 Synthetic Data Sets

Synthetic data sets with observations from 100 to 10, 000 are created, and for
each of the data sets, the number of features is 10. The experimental results are
shown in Fig. 1.

From Fig. 1, it can be seen that normalized adjacency clustering (the blue
line) is about twice efficient as normalized modularity clustering (the orange
line).
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Fig. 1. The plot of run-time recordings of normalized adjacency clustering and normal-
ized modularity clustering. X-axis is the number of observations, and y-axis is run-time
in seconds.

5.2 PenDigit Data Sets from MNIST Database

The PenDigit database is a subset of the MNIST data set [3,7,8,15,21]. A train-
ing set of 60,000 handwritten digits from 44 writers is contained in the original
data. Each data point is a row vector derived from a grayscale image. The images
each have 28 pixels in height and 28 pixels in width, which makes 784 pixels in
total. The row vectors contain the label of each digit as well as the lightness of
each pixel. A pixel’s lightness is represented by a number between 0 and 255
inclusively, with smaller numbers representing lighter pixels. The experiments
were conducted using three subsets consisting of 1&7, 2&3, and 5&6. The exper-
imental results are listed in Table 1.

Table 1. The plot of run-time recordings (in seconds) of normalized adjacency clus-
tering and normalized modularity clustering on subsets of MNIST data set

Data #data points Asym Msym

Digit1&7 9085 4.0920 9.1306

Digit2&3 8528 3.5197 7.0120

Digit5&6 7932 3.0505 6.5147

From Table 1, it can be seen that the experimental results from real data sets
are similar to the ones from synthetic data sets in that normalized adjacency
clustering as around twice efficient as normalized modularity clustering.
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6 Conclusion

In this article, the exact linear relationship between the leading eigenvector of the
unnormalized modularity matrix and the eigenvectors of the adjacency matrix
is established. This paper demonstrates that the leading eigenvector of a mod-
ularity matrix can be written as a linear combination of the eigenvectors of an
adjacency matrix, and the coefficients in the linear combination are deduced. An
approximation method for the leading eigenvector of the modularity matrix is
then given, along with a calculated relative error. Additionally, when the largest
eigenvalue of the modularity matrix is nonzero, the normalized modularity clus-
tering method will give the same results as using the eigenvector corresponding
to the smallest eigenvalue of the normalized adjacency matrix. Experimental
results indicate that using normalized adjacency clustering can be as twice effi-
cient as normalized modularity clustering.
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Abstract. Traditional Bayesian Optimization (BO) algorithms assume
that the objective function is defined over numeric input space. To gener-
alize BO for mixed numeric and categorical inputs, existing approaches
mainly model or optimize them separately and thus cannot fully cap-
ture the relationship among different types of inputs. The complexity
incurred by additional operations for the categorical inputs in these
approaches can also reduce the efficiency of BO, especially when facing
high-cardinality inputs. In this paper, we revisit the encoding approaches,
which transfer categorical inputs to numerical ones to form a concise
and easy-to-use BO framework. Specifically, we propose the target mean
encoding BO (TmBO) and aggregate encoding BO (AggBO), where
TmBO transfers each value of a categorical input based on the out-
puts corresponding to this value, and AggBO encodes multiple choices
of a categorical input through several distinct ranks. Different from the
prominent one-hot encoding, both approaches transfer each categorical
input into exactly one numerical input and thus avoid severely increas-
ing the dimension of the input space. We demonstrate that TmBO and
AggBO are more efficient than existing approaches on several synthetic
and real-world optimization tasks.

1 Introduction

Black-box function optimization refers to problems with no closed-form objec-
tive functions and some favorable conditions, such as convexity guarantee and
gradient information. Instead, the function value can be evaluated at every query
input point. These problems exist in many fields, such as material design [6] and
autonomous planning [1].

BO is a popular sequential optimization approach to efficiently optimize black
box function, especially when the function evaluation is costly and the compu-
tation budget is limited. Most of the current research work for BO focuses on
optimizing objective functions over continuous input space. However, in many
real-world applications, the decision variables involve mixed numerical and cat-
egorical inputs, where the inadequacy of BO for categorical variables can hin-
der its broader usage. For example, in tuning the hyper-parameters of machine
learning models, e.g., in XGBoost, some hyper-parameters are categorical, such
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. Kashima et al. (Eds.): PAKDD 2023, LNAI 13936, pp. 203–215, 2023.
https://doi.org/10.1007/978-3-031-33377-4_16
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as the booster type and growth policies. In contrast, the remaining ones are con-
tinuous variables, including the learning rate and the regularisation weights. In
material design, categorical parameters are often considered when selecting the
best design choices, such as the catalysts and solvents in functional molecules
and advanced materials [6]. In these applications, categorical variables represent
non-numeric data, like a performance assessment (‘low’, ‘medium’, ‘high’) or the
choice of material (‘steel’, ‘titanium’, ‘aluminum’). In the former case, the three
choices have an intrinsic order relationship, and the variable is called an ordered
variable. In contrast, no explicit order relationship exists in the second case, and
the variable is called a nominal variable.

Typically, BO iteratively fits a Gaussian process (GP) model. The GP model
is designed for continuous input variables, making the traditional BO difficult to
involve categorical inputs. The most straightforward way to solve this is to con-
vert the categorical input using one-hot encoding and feed it to a GP model. How-
ever, the high cardinality of the categorical variable may cause the search space
to explode exponentially. Another line of research tries to fix this issue by replac-
ing the GP model with other surrogate models, such as the tree-based model in
SMAC [7] and kernel density model in TPE [2]. These models are more friendly to
mixed inputs, but their predictions are not consistently reliable and may lead to
an inferior selection of new points. Recently, some hierarchical approaches handled
categorical variables with multi-armed bandits (MAB) and the remaining contin-
uous variables with GP, respectively. The separate operations between categori-
cal and continuous variables may keep BO from fully considering their relation-
ships when selecting new query points. Additionally, the extra computation time
of these ad-hoc methods needs to be better considered.

We propose two simple and efficient approaches, TmBO and AggBO, based
on encoding methods to address these challenging yet essential problems. TmBO
employs target encoding that encodes a specific value ˆci,j of a categorical input hi

based on the outputs at the evaluated points whose input hi takes the value ci,j .
This method has shown competitive performance in several machine learning
tasks involving mixed inputs [11,15]. In contrast, AggBO encodes the multiple
values of a categorical input, trying to recover their intrinsic order. Specifically,
we use different possible ranks to encode the multiple values of a categorical
variable, and each rank is used in an individual GP model. AggBO then uses the
weighted sum of the several GPs to select query points. If the categorical input is
ordered, we could naturally use their intrinsic order. If, however, no natural order
exists like in nominal variables, AggBO aggregates several possible distinct ranks
to make it more robust to handle such variables. These approaches maintain the
efficient and elegant GP-based BO framework without increasing the dimension
of the search space. They typically achieve competitive performances with less
computational time than current approaches.

Our contributions are as follows:

– We propose a target mean encoding TmBO method by adapting the original
target mean encoding method (Sect. 4.1).
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– We propose a novel AggBO method which utilizes the order information of
categorical variables to improve optimization efficiency (Sect. 4.2).

– We demonstrate that our approaches are more effective and computationally
efficient over several synthetic functions and real-world problems (Sect. 5).

2 Related Work

2.1 BO for Categorical and Continuous Inputs

The typical way to deal with categorical variables is to convert them to a one-
hot encoding representation. However, the search space dimension will increase
severely, especially when the cardinality is very high. This further exacerbates
the curse of the dimension and challenges the acquisition function optimization
when selecting the new query point. The tree-based model SMAC [7] uses the
random forests (RF) [3] model as the underlying probabilistic surrogate model
that can naturally handle categorical inputs. The mean and uncertainty of pre-
dictive distribution are obtained by the empirical mean and variance over all
the decision trees’ predictions for that test data. Nevertheless, SMAC may suf-
fer from the unreliable estimation of randomness and easily become overfitting
when the number of trees is not chosen properly [8]. Another related work is Tree
Parzen Estimator (TPE) [2], which separates the training set into good and bad
samples to fit two kernel density estimator (KDE) [18] and the acquisition func-
tion is correlated with the ratio of the two estimators. The drawback of TPE
is that it requires more initial points in the early stage of modeling the KDE.
HybridBO [4] utilizes the Gaussian kernel as the solution of a diffusion equation
with the Laplacian operator to define a diffusion kernel directly used in mixed
space. Nevertheless, it can only be valid for the Gaussian kernel. Another line
of research connects the multi-armed bandits (MAB) with BO for mixed inputs
[14,17]. The intuition is to use MAB to select the categorical components and
BO to select the continuous components. For example, CoCaBO [17] uses one
of MAB algorithms EXP3 to decide multiple categorical variables in BO and
proposes a sum kernel (summing a Hamming kernel over categorical subspace
and a Matern 5/2 kernel over continuous subspace) to capture the relationship
of categorical variables and continuous variables. In CoCaBO, each agent maps
to a categorical variable and decides the choice of this variable. However, each
agent makes decisions independently, and only when these categorical values are
fixed can CoCaBO select continuous values. Therefore, even though the sum-
ming kernel can partially model the relations between different types of inputs,
the values of these inputs are chosen separately when selecting the query points.

2.2 Encoding Methods

Transferring categorical variables into numerical ones through encoding meth-
ods is a common practice for machine learning modeling, as some models only
accept numerical values similar to the GP model. It has been shown that the
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one-hot encoding-based BO algorithm could provide satisfactory performance in
certain circumstances [5] with a small number of categorical variables and low
cardinality. We here provide an overview of different encoding methods. Typi-
cally, the encoding techniques are quite computationally efficient; thus, we may
explore their applications in BO without too much overhead.

Generally, the encoding techniques can be categorized into two categories
[16]: target encoding and target-agnostic encoding, see Table 1.

Table 1. Encoders

Target-based Target-agnostic

Quantile Encoder Binary Encode

Summary Encoder Ordinal Encoder

Target mean Encoder Hashing Encoder

M-estimate Encoder One Hot Encoder

Weight of Evidence Encoder Regular Simplex Encoder

Target-Based Encoding. The target encoding (TE) encodes each choice of a
categorical variable to a numerical representation by incorporating information
from target values. These target values generally correspond to the data points
whose inputs contain this specific choice. We can then select the mean [11],
quantile [13], or other statistics of these target values as the encoder of this
choice. In addition, some regularization methods, such as k-fold and weighting,
are usually used in TE to avoid overfitting. See [16] for a more detailed discussion.

Target-Agnostic Encoding. In contrast to TE, target-agnostic encoding is
constructed without the knowledge of target values. The target-agnostic encod-
ing methods include ordinal encoding (label encoding), which uses a single col-
umn of integers to represent different choices; Regular Simplex encoding [10],
which encodes each choice of a k-value categorical input with a distinct ver-
tex of a regular simplex in k − 1 dimensional space, one-hot encoding, which
transforms each categorical variable with Nj choices into Nj binary variables,
etc.

TmBO uses target-based encoding in this work, while AggBO uses target-
agnostic encoding.

3 Background

3.1 Problem Statement

We consider the problem of optimizing an expensive black-box function f defined
over a mixed input type space, X � H×Z, where H is the categorical space and
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Z is the continuous space. Each element x ∈ X has hybrid structure [h, z], and
h ∈ H, where h = [h1, ..., hc] are the categorical variables and each hj has Nj

choices, i.e., its cardinality is Nj . Moreover, z ∈ Z stands for a d-dimensional
continuous input. Formally, we aim to solve

x∗ = [h∗, z∗] = arg max
x∈X

f(x). (1)

3.2 Bayesian Optimization

Bayesian optimization (BO) is an efficient framework for solving expensive global
optimization problems. It iteratively fits a surrogate model with all previous
query points evaluated and then selects a new query point based on the model.
In each iteration, BO consists of the following two main stages:

Surrogate Modeling. Typically, f is assumed to be a smooth function modeled
by a Gaussian Process (GP) model. The GP model f(x) ∼ GP (m(x), k(x, x

′
))

is characterized by a mean function m(x) and a kernel function k(x, x
′
). The

kernel function depicts how large the two values f(x) and f(x′) are correlated.
One commonly used kernel is the Matern 5/2 kernel:

k (x, x′) = σ2
f exp(−

√
5r)

(
1 +

√
5r +

5
3
r2

)
,

where r2 = (x − x′)T
Λ (x − x′), Λ denotes a diagonal matrix contains a vec-

tor � = [�1, ..., �d] of lengthscale �i which control the correlation along the i-th
dimension. From now on, the vector of the model parameters will be jointly
denoted by θ = (�, σf ).

Denote D = {(xi, yi)}N
i=1, yi = f (xi) + εi, εi ∼ N (

0, σ2
ε

)
as the evaluated

points set. By fitting the observed data into the GP model, we obtain the pre-
dictive Gaussian distribution of f(x) at any point x in the search space. The
mean and variance are given by

μ(x) = kT
(
K + σ2

ε I
)−1

y, σ2(x) = k(x, x) − kT
(
K + σ2

ε I
)−1

k, (2)

where y = (y1, . . . , yN ), k = [k (xi, x)]∀xi∈D is the covariance between the new
point x and all other observed points xi, K = [k (xi, xj)]∀xi,xj∈D is the covari-
ance matrix among all the training data points, and I is an identity matrix.
The posterior mean and variance, calculated from Eq. 2, are used to define an
acquisition function α(x) to guide the search of BO.

Acquisition Function. An acquisition function α(x) decides the next point
evaluation. It is constructed with the GP model to balance the exploitation
of the current optimal region and to explore potential promising regions that
are less explored so far. Some commonly used acquisition functions include EI
(expected improvement) [12] and UCB (upper confidence bound) [19].
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4 The Proposed Framework

Rather than devising an ad-hoc method to separately select the optimal cat-
egorical variables or replace GP with another surrogate model, the proposed
approaches adopt encoding methods to transfer categorical variables and select
the different types of inputs simultaneously within the framework of GP-based
BO. The two new approaches, TmBO and AggBO, are discussed in the following
two subsections.

Fig. 1. Target Mean Encoding and Ordinal Encoding

4.1 Target Mean Encoding BO

Target Mean Encoding. As mentioned, the target-based encoding method
encodes the categorical variable into a numerical variable by incorporating the
output information. Here, we adopt the target mean method as it has shown
to perform well in many machine learning tasks [9,11,16]. Given a dataset
D = {(xi, yi)}n

i=1, for the i-th sample xi, denote hi,j as its j-th categorical
variable. We further denote the Nj choices of the j-th categorical variable hj as
cj,1, ..., cj,Nj

. We then encode cj,k as:

ˆcj,k =
1

sj,k

n∑
i=1

yi · I {hi,j = cj,k} , (3)

where I{·} is the indicator function and sj,k =
∑n

i=1 I {hi,j = cj,k} is the fre-
quency of the choice cj,k appearing in D. See the example in Fig. 1; each choice
of the two categorical variables, color, and size, is encoded in the two tables
mapping size and mapping color, respectively.
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It has been observed that the query points selected by BO often cluster,
typically around several local optimal points or points that perform reasonably
well. Thus, the target values corresponding to different categorical choices can
be quite close, leading to similar or extremely close encoding values for these
choices. If this happens, we will get some query points that can have very close
values in several dimensions, which may result in an ill-conditioned covariance
matrix K in deriving the GP model. To ensure that the target mean encoding
BO algorithm is more robust, we add a small noise to the encoding value to
avoid singular matrix error, see in Eq. 4, where σe is the magnitude of the noise.

ˆcj,k =
1

sj,k

n∑
i=1

yi · I {hi,j = cj,k} + ε, ε ∼ N (0, σ2
e). (4)

Algorithm 1. Target Mean Encoding BO
Input: budget T
Output: the best sample (x∗, y∗)
1: Initialize data D0 = {X0, Y0} and design domain Q0

2: for t ← 0, T do
3: Fit the target mean encoder E
4: Get the encoding input X̂t, Q̂t with E
5: Fit the GP model with {X̂t, Yt}
6: Find xt+1 = arg maxx∈X UCB(Q̂t) and its observation yt+1

7: Update the data Dt+1 = Dt ∪ {(xt+1, yt+1)}
8: end for

We next develop a target mean encoding BO based on this robust target
mean encoding method, see in Algorithm 1. The TmBO algorithm uses the inputs
whose categorical variables are encoded by the target mean encoder Et (see in
Eq. (4)) to fit the GP model. Once the acquisition function selects the next query
point in the form of numerical values, we decode the component corresponding
to the categorical inputs back to their original space to do the evaluation.

4.2 Aggregate Ordinal Encoding BO

The ordinal encoding method is one of the target-agnostic encoding methods,
directly encoding choices as integers, 0, 1, 2, ..., in the order in which they appear
(see the example in Fig. 1). Note that this order may not necessarily reveal their
intrinsic relationships. Here, we propose AggBO (see in Algorithm2), a more
robust way to construct the order among choices. Specifically, we use m distinct
ranks. Each rank can be considered an ordinal encoding of the choices and is
used to derive a separate GP model. Therefore, in each iteration of AggBO, we
get m different GPs, and we then use a weighted sum of them to build a final GP
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(notice that a linear combination of the GP models is also a GP model). This
aggregate GP model will then be adopted to define the acquisition function. we
decide the weights of the i-th GP model, wi as follows. For each rank, we fit a
predictive model on encoded train data, a subset of all existing observations, and
then test it on the remaining test data. The MSE of the m predictive models on
the test set, denoted as M1, ...,Mm, will be used to compute wi as in Eq. 5. A
smaller MSE value leads to a larger weight of the model.

wi =
e−Mi∑m

j=1 e−Mj
. (5)

Algorithm 2. Aggregate Ordinal Encoding BO
Input: budget T , the number of GP model m
Output: the best sample (x∗, y∗)
1: Initialize data D0 = {X0, Y0} and design domain Q0

2: for t ← 0, T do
3: Select m orders of the categorical variables as encoders E1, E2, ..., Em

4: Split the data, {Dtrain, Dtest} ← Dt

5: for j ← 0,m do
6: Get the encoding input X̂t, Q̂t, { ˆDtrain, ˆDtest} with Ej

7: Fit the GP model Gj with D̂t = {X̂t, Yt}
8: Obtain the test error Mj of ˆDtest

9: end for
10: Get the weighted GP model WGP =

∑m
j wjGj

11: Find xt+1 = arg maxx∈X UCB(Q̂t) of WGP and get its observation yt+1

12: Update the data Dt+1 = Dt ∪ {(xt+1, yt+1)}
13: end for

We give higher weights to the ranks resulting in more accurate predictions. If
the real choices are intrinsically ordered, our approach can be treated as finding
the proper rank to fit the model better. If, however, the choices are not inherently
ordered like nominal variables, our approach provides a more robust solution
than traditional ordinal encoding, as we maintain several different ranks, each
of which provides a different perspective to view the relation between x and y.
If any rank beats the other with a higher weight, this may indicate that such
a rank is more beneficial to surrogate modeling fitting, even though the choices
are not ordered or the order is inexplicit.

5 Experiments

In this section, we evaluate the performance of the two proposed algorithms
(code available at https://github.com/ZhihaoLiu-git/Encoding BO) and several
benchmark approaches on synthetic functions and hyper-parameter tuning of
machine learning algorithms.

https://github.com/ZhihaoLiu-git/Encoding_BO
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5.1 Baseline Method and Evaluation Measures

The benchmark approaches are TPE1, SMAC2, CoCaBO3, one-hot encoding
BO4 and RandomOrderBO. Here, RandomOrderBO randomly uses one ordinal
encoding for categorical variables in each optimization iteration. For GP-based
BO, we use Matern 5/2 kernel and UCB acquisition function. In CoCaBO, we
set the mixed kernel parameter λ = 0.5, as suggested by the authors [17]. And
we set m = 6 in AggBO. We start all optimization trials with 24 initial points.

A summary of the benchmark problems is shown in Table 2; for the syn-
thetic functions, we convert some continuous dimensions of the Ackley-5C,
HartmannSix-6C, and Michalewicz-4C into categorical variables with 17 choices
each, as CoCaBO does [17]. For the hyper-parameter tuning task, SVM-Diabetes
and MLP-Diabetes output the negative MSE of the SVM5 regression model
and Multi-layer Perceptron6 on Diabetes dataset7, respectively and XGBoost-
MNIST returns the accuracy of the XGBoost model8 on MNIST9.

5.2 Performance and Computation Time

We ran each algorithm 20 trials for the synthetic functions and 10 trials for the
hyper-parameter tuning problems. The mean and standard error of the current
best function value with respect to the iteration number is illustrated in Fig. 2
where TmBO and AggBO perform quite well in all problems. We see that in all
three synthetic functions, TmBO is much better than all the other approaches; in
the three real-world problems, TmBO also achieves the best performance. This
illustrates the benefit of transferring categorical variables through their perfor-
mances in the function values. For AggBO, it reaches the second best results,
just inferior to TmBO, almost in every problem except the MLP problem, where
CoCaBO performs better. Note that it is better than the other two target-
agnostic encoding approaches, one-hot and RandomOrderBO, which shows its
robustness by synthesizing different encoding approaches. We can also observe
that RandomOrderBO, although worse than AggBO, performs reasonably well
in SVM and XGBoost. This demonstrates its potential in solving complex mixed
input problems. We may develop more smart ways to choose the ordinal encoding
in each iteration, instead of just random selection as here so that the algorithm
can reach the performance of AggBO while maintaining the computational effi-
ciency of RandomOrderBO.
1 https://github.com/hyperopt/hyperopt.
2 https://github.com/SheffieldML/GPyOpt.
3 https://github.com/rubinxin/CoCaBO code.
4 https://github.com/scikit-learn-contrib/category encoders.
5 https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html?

highlight=svr#sklearn.svm.SVR.
6 https://scikit-learn.org/stable/modules/generated/sklearn.neural network.

MLPRegressor.html?highlight=mlp#sklearn.neural network.MLPRegressor.
7 https://www4.stat.ncsu.edu/∼boos/var.select/diabetes.html.
8 https://github.com/dmlc/xgboost.
9 http://yann.lecun.com/exdb/mnist/.

https://github.com/hyperopt/hyperopt
https://github.com/SheffieldML/GPyOpt
https://github.com/rubinxin/CoCaBO_code
https://github.com/scikit-learn-contrib/category_encoders
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html?highlight=svr#sklearn.svm.SVR
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html?highlight=svr#sklearn.svm.SVR
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPRegressor.html?highlight=mlp#sklearn.neural_network.MLPRegressor
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPRegressor.html?highlight=mlp#sklearn.neural_network.MLPRegressor
https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html
https://github.com/dmlc/xgboost
http://yann.lecun.com/exdb/mnist/
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Fig. 2. Experiments

Table 2. Optimization Problems

Problem Input x = [h, z] Input values

Ackley-5C c = 5, d = 1 h = [17, ..., 17]5 −1 + 1/8 × hi

z = [z1] [−1, 1]

HartmannSix-6C c = 4, d = 2 h = [17, ..., 17]4 1/16 × hi

z = [z1, z2] [0, 1]2

Michalewicz-4C c = 4, d = 1 h = [17, ..., 17]4 1/16 × π × hi

z = [z1] [0, π]

SVM-Diabetes c = 1, d = 2 h1 kernel {poly, rbf, sigmoid}
z1 C [1,50]

z2 epsilon [0,1]

XGBoost-MNIST c = 3, d = 5 h1 booster {gbtree, dart}
h2 grow policy {depthwise, lossguide}
h3 objective {softmax, softprob}
z1 learning rate [0,1]

z2 max depth [1,2,...,10]

z3 gamma [0,10]

z4 subsample [0.001,1]

z5 reg lambda [0,5]

MLP-Diabetes c = 4, d = 3 h1 activation {logistic, tanh, relu}
h2 learning rate {constant, invscaling, adaptive}
h3 solver {sgd, adam}
h4 early stopping {True, False}
z1 hidden layer sizes [1,200]

z2 alpha [0.0001,1]

z3 tol [0.00001,1]
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Table 3. Computation Time

Method & Time(s) Ackley5C HartmannSix Michalewicz XGBoost SVM MLP

AggBO 142 152 143 2592 181 257

TmBO 63 48 60 2197 28 97

One-hot BO 101 65 93 2431 31 106

RandomOrderBO 33 30 26 2158 32 96

CoCaBO 307 279 267 2245 207 497

SMAC 217 188 171 2383 162 319

TPE 2 2 2 2101 5 69

We record the runtime of these approaches on an AMD Ryzen 7 5800 8-
Core Processor machine and NVIDIA GeForce RTX 3060 (12 GB) for XGBoost
acceleration. Table 3 shows the average one-trial total time for each experiment
(in seconds). Note that the computation time of TPE is independent of the
dimension of the problem, and it is the fastest one. However, it always gets poor
performance. Except for TPE, TmBO and RandomOrderBO have the shortest
running time as they adopt the efficient BO framework with one GP model.
For AggBO, The increase in computation time compared with TmBO is mainly
caused by the model fitting of the m GP model. However, it is still faster than
CoCaBO, which generally takes longer due to the more complex operations to
deal with the categorical variables, especially when the cardinality is high. We
thus can find that TmBO is both effective and efficient, while AggBO provides
reasonably good performances with longer running time (but the running time
is still comparable with other well-adopted approaches). In these experiments,
we only use 6 ranks in AggBO. It is expected that while more possible ranks
may perform better. We leave it as a future direction to select better choices of
ranks in AggBO.

6 Conclusion

We revisit encoding methods with BO to harness mixed categorical and numeri-
cal inputs and develop an easy-to-use encoding BO framework with target-based
and target-agnostic encoding methods. Specifically, We propose a TmBO, which
combines the target encoding method, and a novel AggBO which combines the
ordinal encoding method with multiple ranks to achieve a more robust app-
roach. Experiments demonstrate that TmBO and AggBO are more effective and
efficient than some existing approaches, and TmBO generally takes less compu-
tational time than other approaches.

Acknowledgement. This work is supported by the National Natural Science Founda-
tion (NNSF) of China under Grant 72101106 and the Shenzhen Science and Technology
Program under Grant No. RCBS20210609103119020.
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Abstract. In continual learning, a primary factor of catastrophic for-
getting is task-recency bias, which arises when a model is trained on an
imbalanced set of new and old task instances. Recent studies have shown
the effectiveness of rehearsal-based continual learning methods; however,
a major drawback of these methods is the loss of accuracy on older tasks
when training is biased towards newer tasks. To bridge this gap, we pro-
pose a λ Stability Wrapper (λSW), where the learner uses a task-based
policy to adjust the probability of when instances are replaced in mem-
ory to account for task-recency bias to alleviate catastrophic forgetting.
The policy results in an increased number of instances seen from older
tasks. By construction, λSW can be applied with other rehearsal-based
continual learning algorithms. We validate the effectiveness of λSW with
three well known baseline methods: Gradient-based Sample Selection,
Experience Replay, and Maximally Interfered Retrieval. Our experimen-
tal results show significant gains in accuracy on eleven out of twelve of
our experiments across four datasets.

Keywords: Continual learning · Catastrophic forgetting ·
Task-recency bias

1 Introduction

Current continual learning (CL) research aims to incrementally learn a sequence
of tasks [8]. Each task t consists of yt (yt ≥ 1) classes to be learned. Once a task
is learned, its training data is often no longer accessible. However, when a model
learns a new task, it may be prone to catastrophically forget previous tasks. In a
catastrophic forgetting event, the model suffers a significant drop in accuracy as
the parameters learned for the previous tasks are modified while learning a new
task [19]. An effective CL system must optimize for two conflicting goals. First,
when the model encounters previous knowledge, it should be able to remember
it accurately. Second, the maintenance of old knowledge in the model should
not inhibit learning new knowledge. Maintaining these two simultaneous condi-
tions represents the challenge known as the stability-plasticity dilemma [11]. A
primary source of catastrophic forgetting is task-recency bias [17]. An example
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of task-recency bias is when a model with a softmax classifier has a strong bias
towards the most recent task due to the imbalance of new and old tasks.

This paper focuses on a particular setting of CL, class incremental learning
(Class-IL). In Class-IL, the model incrementally learns classes from a sequence
of tasks. At the test time, the learned model classifies a test case without access
to the task-id. In Task incremental learning (Task-IL), a model is constructed
for each task in training. In testing, the task id is supplied for each test case.

This paper identifies an issue with rehearsal-based methods, which deal with
catastrophic forgetting by adapting the model to previous tasks by storing a small
number of task instances in a replay buffer [2,16,23] and replay them as required
during training on new task instances [1]. To address the issue of which instances
are replaced in the replay buffer, some approaches use a reservoir sampling method
or a diversity measure like cosine similarity. However, these methods do not explic-
itly balance the number of new and older instances in the replay buffer, leading to
a bias towards the new task and reduced accuracy on older tasks.

Fig. 1. Illustration of the gap between existing rehearsal-based methods and λSW.

To alleviate this problem, we developed a rehearsal-based CL framework
called λ Stability Wrapper (λSW), which explicitly adjusts the replacement
rate in the replay buffer over time. Our λSW does this by using a Stability
Γ Policy, which we will discuss further in Sect. 4. Our framework is used in con-
junction with other current state-of-the-art rehearsal-based methods, Gradient-
based Sample Selection (GSS) [2], Experience Replay (ER) [24], and Maximally
Interfered Retrieval (MIR) [1]. Figure 1(a) shows a classic rehearsal-based app-
roach [23,24], which can result in an imbalanced training batch where the major-
ity of the instances come from the new task, leading to suboptimal performance.
In contrast, our method balances the old and new task instances in the replay
buffer, rebalancing the training batch as shown in yellow in Fig. 1(b). The pro-
posed λSW method determines whether to store a new task instance by com-
paring the diversity of the instances in the stream batch with the instances in
the replay buffer. We evaluated the performance of λSW in a set of experiments
on four benchmark datasets using three common rehearsal-based methods. The
results showed that combining λSW with the existing rehearsal-based method
improved accuracy in 11 out of 12 cases. We further investigate the conditions
under which λSW can be applied in Sect. 5.
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Our main contributions are two-fold. Firstly, we propose a novel method
λSW, a framework to adjust the replacement rate over time to reduce the effects
of task-recency bias that results in the method being more effective at allevi-
ating catastrophic forgetting, which we empirically show through experiments.
Secondly, we demonstrate the applicability of our λSW approach on two differ-
ent types of rehearsal-based methods, specifically using reservoir sampling (i.e.,
ER, MIR) [1,24] and cosine similarity (i.e., GSS) [2].

2 Related Work

Recently, there has been significant progress in CL to mitigate the phenomenon
of catastrophic forgetting [19] where the model “forgets” knowledge from past
tasks when exposed to new ones. These methods can be divided into different cat-
egories, including regularization-based, knowledge distillation-based, rehearsal-
based, and parameter isolation-based methods. To reduce this effect, several
approaches have been investigated, such as regularization [9,29] that modify the
model parameters with additional regularization constraints, separating parame-
ters for old and new tasks [18,28], replaying instances from memory [7,21,23]. In
this work, we build on rehearsal-based approaches, which have achieved higher
accuracy in the CL setting.

Implicit Task-Recency Bias Mitigation. Implicit task-recency bias mitiga-
tion methods include adjusting the learning rate and adapting the L2 regulariza-
tion. Jastrzebski et al. [13] proposed using an adaptive learning rate by apply-
ing large updates to the network weights, which enables the network to be plastic
but at the cost of the stability of previous tasks. Rannen et al. [22] introduced L2

regularization to prevent network weights from deviating from the optimal per-
formance of the previous task which enables the stability for specific tasks com-
pared to others. Another approach is to use rehearsal-based methods, such as
iCaRL [23], which equally divides the replay buffer between all tasks and randomly
replay instances selected through a herding-based strategy. Gradient-based Mem-
ory Editing (GMED) [14] is a framework that edits stored instances in continuous
input space via gradient updates to create more hard-to-learn instances for replay.
All of these methods attempt to address task-recency bias implicitly. However, a
major drawback is that the number of instances stored in the replay buffer is irre-
spective of when the task occurs. Thus, the distribution of replay instances may
be biased towards the new task. In contrast, our λSW approach is used in conjunc-
tion with rehearsal-based approaches and explicitly adjusts the distribution of the
replay buffer, which increases the probability of replay for earlier tasks.

Explicit Task-Recency Bias Mitigation. Explicit task-recency bias mitiga-
tion methods include replaying instances from the replay buffer multiple times
and adding a correction layer in the network. Hou et al. [12] observed that the
classifier norm is larger for new tasks than for older tasks, and the classifier bias
favours the newest task. One effective approach proposed by [6] proposes an
additional step, called balanced training at the end of each training session. In
this step, an equal number of instances from all tasks are replayed for a limited
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number of iterations. However, this comes at the cost of overfitting the stored
instances when these do not represent the distribution. Another approach pro-
posed by Belouadah et al. [4] adds a layer that uses saved certainty statistics of
classes from old tasks to adjust the network prediction if the outcome is predicted
to be the new task. However, a major gap is that these methods require addi-
tional computational steps and may overfit the instances in the replay buffer.
In contrast, our λSW approach adjusts the replay buffer distribution without
modification to the amount of replay or the underlying network structure.

3 The Continual Learning Problem

We consider learning a model over a sequence of tasks T = {T1, . . . , TT }, where
each task is composed of independently and identically distributed data points
and their labels, such that task Tt includes Dt = {xt,n, yt,n}Nt

n=1 ∼ Xt × Yt,
where Nt is the total number of instances for the t-th task, and Xt × Yt is an
unknown data generating distribution. We assume that an arbitrary set of labels
for task Tt, yt = {yt,n}Nt

n=1 has unique classes. In a standard CL scenario, the
model learns a corresponding task at each step, and the t-th task is accessible
at step t only, but a small number of instances can be stored in a replay buffer.
Let the neural network fΘ : X1:T −→ Y1:T be parameterized by a set of weights
Θ = {θl}L

l=1, where L is the number of layers in the neural network, We define
the training objective at step t as follows:

min
Θ

Nt∑

n=1

�(fΘ(xt,n), yt,n) (1)

where �(.) is any standard loss function. The goal is to avoid forgetting past
tasks while utilizing the limited stored instances when trained on new tasks.

λSW Objective. The most crucial step in the λSW approach is identifying
“when” earlier task instances in the replay buffer should be replaced with later
task instances. Consider (xt,n, yt,n) is a labelled instance received by the model
for the t-th task, the goal is to design a suitable replacement function φ to
determine if the instance (xt,n, yt,n) should replace an existing instance (xi, yi)
in the replay buffer M, where φ(xt,n) determines the replacement outcome. This
is similar to replacement functions in prior work, i.e., GSS [2], that uses cosine
similarity to calculate a diversity score ct,n for instance (xt,n, yt,n) with memory
instance (xm, ym), a replacement is made if ct,n > 0.

4 The λ Stability Wrapper (λSW) for Replay Buffer
Replacements

Rehearsal-based methods store and continually maintain a set of diverse
instances in a fixed-size replay buffer. These instances are then replayed as a
replay buffer batch during training to prevent forgetting of previous tasks. For
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example, Experience Replay (ER) [24] uses Reservoir Sampling [27] to select
instances, while Gradient-based Sample Selection (GSS) [2] tries to diversify the
gradient directions of the instances in the replay buffer. Figure 2 illustrates a
brief architecture of λSW, which we describe in detail below.

Fig. 2. The overall λ Stability Wrapper architecture in conjunction with existing
rehearsal-based methods.

Our λSW approach adjusts the number of instances stored per task over
time. The adjustment rate can be guided by a task-based replacement objective
consisting of a dual-optimization function for balancing the instances of new
and old tasks shown in Eq. 2, to ensure the model’s accuracy for the tasks is
maintained.

λ ∼ f(xt,n, yt,n,M) (2)

where f(.) is a selection function defined in Eq. 4 for cosine similarity and Eq. 5
for weighted reservoir sampling, M is the replay buffer, (xt,n, yt,n) is an instance
from a stream of the t-th task. Intuitively this involves adjusting the replay buffer
of new task instances to favour old task instances, thus increasing the replay
of instances for older tasks. Our λSW approach consists of two components a
λ parameter that controls the balance between the new and old tasks and a
Stability Γ Policy that controls the replacement rate in the replay buffer.

Stability Γ Policy. The Stability Γ Policy controls the replacement rate in the
replay buffer, and its effect on the replacement function depends on the rehearsal-
based method. For example, with reservoir sampling, instances are replaced at
random, but with a policy, the replacement rate can vary as more tasks are
encountered. On the other hand, cosine similarity aims to maintain a diverse set
of instances in the replay buffer, and when used in conjunction with a policy, it
can further vary the diversity threshold over time. These different variations of
the Stability Γ Policy allow for greater flexibility and adaptability. We propose
three different Γ policies, Linear (Lin) Γ (t) = t/|T | − 1, Exponential (Exp)
Γ (t) = et/e(|T |−1), Default Γ (t) = 1 where |T | is the total number of tasks and
t is the index of the task. The goal of these policies is to allow different balancing
to occur depending on the replay buffer replacement method. By adjusting the
Γ policy, we can adapt the λSW approach for different settings.

Applying λSW with GSS. Figure 3 provides a schematic of the steps involved
in GSS+λSW. When we receive the first task, the replay buffer M =
{(x0, y0), . . . , (xm, ym)} is initialized with incoming stream instances. When a
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Fig. 3. The overall GSS+λSW architecture for the replay buffer.

new t-th task arrives, the model computes the gradient directions on the received
instance (xt,n, yt,n) and a random instance (xi, yi) from M, using the following
equations:

g ←− ∇�θ(xt,n, yt,n);Gi ←− ∇�θ(xi, yi) (3)

where g and Gi are the gradient changes for the stream and memory instances,
respectively. Multiple gradients of the network are calculated from the replay
buffer, and Gi represents a single instance from the replay buffer. We then cal-
culate a “diversity” score (i.e., cosine similarity of the gradient), as shown in
Eq. 2 by substituting Eqs. 3 into it, the diversity score is calculated by:

f(.) = max
i

(
〈g,Gi〉

||g|| ||Gi||
, i ∈ N

)
(4)

where λ = f(.) results in the “diversity” score. To determine if a buffer replace-
ment occurs, we evaluate φ(xt,n) = (ε > λ + Γ (t)) where φ is a replacement
function to determine if an instance in the replay buffer should be replaced,
Γ (t) is the stability policy rate given the t-th task, ε is the threshold assigned
to control the stability of the policy, and Γ (t) is bounded between [0, 1] and λ
controls the replacement level in the replay buffer at task Tt. Given the nature
of cosine similarity, λ is bounded between [−1, 1]. In general, Γ policies increase
at varying rates over time to account for various task-recency bias effects.

Applying λSW with ER and MIR. Since λSW can be applied to replacement
functions, we integrate it with a range of existing rehearsal-based CL algorithms,
specifically, ER [24] and MIR [1]. For integration with ER, we replace reservoir
sampling with weighted reservoir sampling [10] as the replacement function. To
enable λSW to adapt the λ parameter based on the changing needs of the model,
we introduce the concept of a validation buffer. This buffer stores a subset of
previously seen instances that were not used in the training of the current task,
allowing us to calculate the model’s performance on these instances and use this
information to adjust the amount of older instances in the replay buffer. This
allows us to calculate the validation accuracy, which is used as a proxy for the λ
parameter to balance the amount of old and new instances in the replay buffer.

Figure 4 summarizes the process when a new task is seen. At the t-th task,
the model receives an instance (xt,n, yt,n) from the training stream Dt. We first
initialise a replay buffer M = {(x0, y0), . . . , (xm, ym)}, a validation buffer V =
{(x0, y0), . . . , (xv, yv)}, and a weights buffer P = {w0, . . . , wm} where m is the
size of the replay buffer and v is the size of the validation buffer. Each instance
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Fig. 4. The overall ER+λSW and MIR+λSW architecture for the replay buffer.

in the replay buffer (xi, yi) has an associated weight wi. The initial weight is
initialized with wi = 1, the weight wi controls the probability of replacement.
To determine what is replaced in the replay buffer, we use weighted reservoir
sampling to calculate an instance’s replacement probability to be selected by
using the following calculation pi = wi/

∑m
j=0 wj where pi is the probability of

replacement, for instance, i.
When a new task is seen, we calculate a penalty score, using Eq. 2 by substi-

tuting Eq. 5 into it. The penalty score is calculated as:

f(.) =
1
i

i∑

j=1

vi,j (5)

where λ = f(.) is calculated by the validation accuracy of the validation set.
We define vi,j as the validation accuracy evaluated on the validation set V of
task j after training the network from task i through to t. To reduce the bias of
calculating the validation accuracy, the validation buffer instances are selected
randomly and cannot be selected for replay during training of the task. The
weight buffer scores P are then adjusted by λ × Γ (t) to reduce the probability
of older buffer instance replacement.

5 Experimental Results

Our experiments address the following research questions: (i) what are the accu-
racy gains achieved from integrating λSW with existing rehearsal-based CL algo-
rithms? (ii) how does the λ hyper-parameter and stability Γ policy affect the
performance of reservoir sampling-based methods? (iii) how does the λ hyper-
parameter perform under various task instance lengths and replay buffer batch
sizes?

Datasets. We use four public CL datasets in our experiments. COIL 100 [20],
which contains 100 classes, is split into 20 tasks, each of which has 5 classes;
CIFAR10 [15], which contains 10 classes, is split into 5 tasks, each of which has
2 classes; CIFAR100 [15], which contains 100 classes, is split into 20 tasks, each
of which has 5 classes; mini-ImageNet [26], which contains 100 classes, is split
into 20 tasks, each of which has 5 classes.
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Base Methods. We compared three rehearsal-based CL methods namely,
ER [24], GSS [2], and MIR [1]. Our framework can also be applied to other
methods such as ER-ACE [5], RM [3], InfoRS [25]. Here we focus on comparing
our method to well-known baselines to demonstrate its effectiveness. We use our
proposed λSW method in conjunction with three baseline methods, noted as
ER+λSW, MIR+λSW, and GSS+λSW. The * next to λSW methods indicate
significant accuracy improvement over the counterparts without λSW, with a
p-values less than 0.05 in single-tailed paired t-tests.

Table 1. Current Task: Classification results showing the mean and standard deviation
of accuracy (%) for λSW against baseline methods (Base).

GSS ER MIR

Base λSW(Lin) λSW(Exp) Base λSW Base λSW

COIL-100

M=100 36.7 ± 3.9 37.2 ± 4.8 40.8 ± 4.3* 47.8 ± 7.4 53.7 ± 5.0* 56.0 ± 5.0 60.5 ± 4.8*

M=200 48.5 ± 6.7 46.2 ± 6.7 53.1 ± 4.9* 58.9 ± 7.6 62.5 ± 6.5* 68.9 ± 5.0 70.9 ± 5.9*

M=500 47.2 ± 10.5 48.7 ± 7.0 53.4 ± 6.9* 65.5 ± 8.2 67.9 ± 7.7* 78.0 ± 6.4 79.5 ± 5.7*

CIFAR-10

M=100 18.8 ± 0.3 18.8 ± 0.9 19.1 ± 0.5* 19.7 ± 0.9 20.4 ± 0.9* 19.6 ± 0.5 20.4 ± 0.8*

M=200 19.4 ± 0.9 20.7 ± 1.4* 20.3 ± 0.5* 21.0 ± 0.8 22.3 ± 1.3* 20.9 ± 1.0 23.2 ± 1.7*

M=500 23.4 ± 1.4 26.0 ± 2.3 25.6 ± 1.9* 25.5 ± 2.1 29.5 ± 2.7* 26.9 ± 1.7 30.2 ± 1.9*

CIFAR-100

M=1K 8.3 ± 0.7 6.7 ± 0.4 8.0 ± 0.6 8.3 ± 0.8 9.8 ± 0.9* 8.0 ± 0.7 8.8 ± 0.7*

M=5K 15.3 ± 1.3 12.3 ± 1.0 15.2 ± 1.1 17.6 ± 1.5 18.4 ± 1.5* 18.6 ± 1.1 19.6 ± 1.5*

M=10K 15.1 ± 0.9 12.1 ± 1.1 14.9 ± 1.1 18.4 ± 1.8 19.1 ± 2.0* 18.6 ± 1.8 19.2 ± 2.1*

mini-ImageNet

M=1K 7.3 ± 1.2 6.1 ± 1.0 7.9 ± 1.0* 8.5 ± 1.1 10.1 ± 0.9* 8.4 ± 1.1 8.9 ± 0.8*

M=5K 13.4 ± 2.0 13.7 ± 2.1 14.4 ± 1.9* 14.2 ± 1.8 14.9 ± 1.7* 14.8 ± 2.1 15.6 ± 1.6*

M=10K 13.7 ± 1.2 12.4 ± 2.3 14.3 ± 1.4* 14.2 ± 1.8 14.7 ± 2.0* 14.0 ± 1.7 14.8 ± 2.0*

Parameter Settings. We set the size of replay buffer as {1000, 5000, 10000} for
CIFAR-100 and mini-ImageNet, and {100, 200, 500} for COIL-100 and CIFAR-
10. We selected the policy based on the rehearsal-based method, for cosine
similarity-based methods, i.e., for GSS we selected {Lin, Exp} and for weighted
reservoir sampling, i.e., for ER and MIR we selected the Default policy. We adopt
the hyperparameter settings used by Mai et al. [17] for the baselines and eval-
uate them using the original code with modifications for λSW. For λSW+GSS,
we conduct a grid search to select the optimal ε hyper-parameter (ε = 0.125)
and report the best results. For λSW+ER and λSW+MIR we set the validation
set size equal to 20% of the buffer size. All experiment results were produced
after 20 runs for GSS and GSS+λSW, and 30 runs for ER, ER+λSW, MIR, and
MIR+λSW.

Performance When Varying Datasets. We summarize the results obtained
by integrating λSW with different CL algorithms. We compare the final accu-
racy at the end of all tasks, shown in Table 1. From the results, it is observed
the reservoir sampling approaches ER+λSW and MIR+λSW achieves signifi-
cant accuracy gains against the compared baselines with varying replay buffer
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sizes. For GSS that uses a diversity approach while GSS+λSW(Exp) have sig-
nificant accuracy gains over three of the four datasets apart from CIFAR-100
while GSS+λSW(Lin) did not perform well as a constant penalty rate may have
balanced too strongly towards the older tasks. We further investigated the accu-
racy performance of GSS+λSW(Exp) on CIFAR-100 and found that GSS already
weighted the replay buffer towards older tasks, resulting in minimal effects when
using our method. This suggests that the λSW approach may not be as effec-
tive when applied to methods that already incorporate weighting towards older
tasks in their replay buffer. However, it can still improve the performance of
other rehearsal-based methods that do not have this weighting towards older
tasks, as shown by the results on the other datasets.

Fig. 5. Batch retrieval size of ER and ER+λSW with varying replay buffer sizes for
CIFAR-100 and mini-ImageNet (mini-INet).

Performance When Varying Replay Buffer Batch Size. In this experi-
ment, we investigate the relationship between the size of the replay buffer and
the balance between old and new task instances. We vary the replay buffer batch
size and observe the trade-off between the model’s ability to memorize instances
in the replay buffer and reducing the imbalance by increasing the replay of old
instances, as shown in Fig. 5. Our results show that in both CIFAR-100 and
mini-ImageNet, using a replay buffer size of 5000 with a batch size of 20 leads
to better accuracy than the original setting of a batch size of 10. However, when
the batch size is increased, accuracy decreases as the model may memorize the
instances in the replay buffer. Additionally, the 10000 replay buffer for both
datasets achieves the highest accuracy with a batch size of 30, which may be
due to the larger size of the replay buffer allowing for less memorization.

Performance When Varying Training Instances Per Task. In this exper-
iment, we vary the number of training instances per task to investigate the
relationship between the final task accuracy and the effects of λ on the replay
buffer by setting λ manually. This allows us to understand how the λ parameter
affects the balance of old and new task instances in the replay buffer, and how
this balance impacts the final task accuracy. The final task is the last task to be
trained on in the dataset. Figure 6 shows the accuracy for the final task using
ER and ER+λSW on CIFAR-10, which has 10000 training instances per task,
while CIFAR-100 has 2500 training instances per task. On CIFAR-10, the final
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Fig. 6. Mean and standard error of final task accuracy (%) for ER versus ER+λSW.

task accuracy is significantly lower when λ is 0. However, for CIFAR-100 the
final task accuracy does not show a significant change. Thus, forgetting within a
task may occur if the replay buffer of a large training instance task is removed.

Visual Inspection for the Effects of λSW. Figure 7 shows the impact of the
λSW on new tasks when the number of training instances per task is high. In
this experiment, we used CIFAR-10 with 10000 training instances per task with
a buffer size of 5000 on ER and ER+λSW for a single run and show the top five
instances from three classes in the test dataset ranked by the difference between
the first and second logit prediction scores. To understand the effects of the
knowledge that is captured by λSW, we analyze the accuracy of the predictions
based on the test data after training on all tasks. The test data is used as a proxy
as it is the same dataset used across both methods. We used correctly classified
instances from ER as a test case for ER+λSW, such that ER+λSW only sees
the correct instances from the ER. We count the correctly classified instances on
ER but misclassified by ER+λSW and call them ER memorable. Similarly, we
count the instances that are correctly classified on ER+λSW but misclassified by
ER and call them ER+λSW memorable. We count the instances that are both
correctly classified on ER and ER+λSW and we call them Both memorable. We
determine the loss that is incurred when using λSW on ER. For example, the
test instances per task were set to 2000. We highlight that Task 0 contained
classes of birds and boats where Both memorable is 628, ER memorable is 72
instances out of 700 that ER correctly classified, and ER+λSW memorable is
420 instances out of 1048 that ER+λSW correctly classified. From this, we can
see that ER+λSW is correctly classifying more instances on this task.

Fig. 7. Visual inspection on training instances in a single run for ER versus ER+λSW.
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6 Conclusion

We proposed a λ Stability Wrapper (λSW) approach, where the learner uses
a task-based policy to adjust the probability of when instances are replaced in
memory to account for task-recency bias. Our method addresses the current gap
in the field where current rehearsal-based methods implicitly deal with the imbal-
anced set of old and new task instances in the replay buffer while we explicitly
control this balance over time. In our experiments, we showed that the proposed
λSW method has significant gains in accuracy over the benchmark methods in
eleven out of twelve cases. We observed that there are two factors affecting over-
all accuracy. First, the replay buffer batch size has a trade-off between memory
memorization and the reduction of imbalance to gain higher accuracy by replay-
ing more older task instances. Second, a new task with a high amount of training
instances may be affected by forgetting within the task if the replay buffer is fully
balanced towards the older task. In comparison, the model may still remember
tasks with a small number of training instances.
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Abstract. Allocation of scarce healthcare resources under limited logis-
tic and infrastructural facilities is a major issue in the modern society.
We consider the problem of allocation of healthcare resources like vac-
cines to people or hospital beds to patients in an online manner. Our
model takes into account the arrival of resources on a day-to-day basis,
different categories of agents, the possible unavailability of agents on cer-
tain days, and the utility associated with each allotment as well as its
variation over time.

We propose a model where priorities for various categories are mod-
elled in terms of utilities of agents. We give online and offline algorithms
to compute an allocation that respects eligibility of agents into differ-
ent categories, and incentivizes agents not to hide their eligibility for
some category. The offline algorithm gives an optimal allocation while
the online algorithm gives an approximation to the optimal allocation
in terms of total utility. Our algorithms are efficient, and maintain fair-
ness among different categories of agents. Our models have applications
in other areas like refugee settlement and visa allocation. We evaluate
the performance of our algorithms on real-life and synthetic datasets.
The experimental results show that the online algorithm is fast and per-
forms better than the given theoretical bound in terms of total utility.
Moreover, the experimental results confirm that our utility-based model
correctly captures the priorities of categories.

1 Introduction

Healthcare rationing has become an important issue in the world amidst the
COVID-19 pandemic. At certain times, the scarcity of medical resources like
vaccines, hospital beds, ventilators, medicines especially in developing countries
raised the question of fair and efficient distribution of these resources. A New
York Times article has mentioned this as one of the hardest decisions for health
organizations [12]. A natural approach is to define priority groups [23,29]. How-
ever, allocating resources within the groups in a transparent manner is still
challenging [11,30], including the concern for racial equity [5].
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The healthcare rationing problem has been recently addressed by market
designers. In [22], the problem was framed as a two-sided matching problem
(see e.g. [26]), with reserve categories having their own priority ordering of peo-
ple. This ordering is based on the policy decisions made according to various
ethical guidelines. It is shown in [22] that running the Deferred Acceptance algo-
rithm of Gale and Shapley [13] has desired properties like eligibility compliance,
non-wastefulness and respect to priorities. This approach of [22] has been rec-
ommended or adopted by organizations like the NASEM (National Academies
of Sciences, Engineering, and Medicine) [15]. It has also been recognized in med-
ical literature [23,28], and is mentioned by the Washington Post [8]. The Smart
Reserves algorithm of [22] gives a maximum matching satisfying the desired
properties mentioned earlier. However, it assumes a global priority ordering on
people. In a follow-up work, [2] generalize this to the case where categories are
allowed to have heterogeneous priorities. Their Reverse Rejecting (REV) rule,
and its extension to Smart Reverse Rejecting (S-REV) rule are shown to sat-
isfy the goals like eligibility compliance, respect to priorities, maximum size,
non-wastefulness, and strategyproofness.

However, the allocation of healthcare resources is an ongoing process. On a
day-to-day basis, new units arrive in the market and they need to be allocated to
people, depending on their availability, avoiding wastage. The previous models
do not encompass this dynamic nature of resources. While priority groups or
categories aim to model the urgency to allocate a resource to individuals by
defining a priority order on people, defining a strict ordering is not practically
possible nor desirable. Even if categories are allowed to have ties in their ordering,
the ordering still provides only an ordinal ranking.

Our model provides the flexibility to have cardinal rankings in terms of pri-
oritizing people by associating a utility value for each individual. The goal is to
find an allocation with maximum total utility while respecting category quotas.
However, utilities can change over time. We model this through dynamic utili-
ties, that diminish over time by a multiplicative discounting factor 0 < δ < 1.
Such exponential discounting is commonly used in economics literature [25,27].
Our utility maximization objective can thus be seen as maximization of social
welfare. Our algorithms to find a maximum utility allocation are based on net-
work flows. They adhere to the following important ethical principles which were
introduced by Aziz et al. in [2]:

1. complies with the eligibility requirements
2. is strategyproof (does not incentivize agents to under-report the categories

they qualify for or days what they are available on),
3. is non-wasteful (no unit is unused but could be used by some eligible agent)

Using category quotas and utility values, we provide a framework in which
more vulnerable populations can be prioritized while maintaining a balance among
the people vaccinated through each category on a day-to-day basis. Our mod-
els and algorithms are also applicable in other settings like school admissions
[1], refugee settlement [3,10,10], visa allocation [4,7,9,20], hospital residents
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problem [2,18,19,21] etc. A detailed discussion about the related work can be
found in the full version [14].

1.1 Our Models

We define our model below and then define its extension. Throughout this paper,
we consider vaccines as the medical resource to be allocated. People are referred
to as agents.

Model 1: Our model consists of a set of agents A, a set of categories C, and a set
of days D. Vaccine shots available on day dj ∈ D, called daily supply, is denoted
by sj . For each category ci ∈ C, and each day dj ∈ D, we define a daily quota
qij which is the upper bound on the number of vaccines that can be allocated to
ci on day dj . Each agent ak has a priority factor αk. Let αmax, and αmin be the
maximum and minimum priority factors. Utilities have a multiplicative discount
factor δ ∈ (0, 1). If agent ak is vaccinated on day dj , the utility obtained is αk ·δj .
Each agent ak has an availability vector vk ∈ {0, 1}|D|. The jth entry of vk is 1
if and only if ak is available for vaccination on day dj .

Model 2: Model 2 is an extension of Model 1 in the following way. The sets
A,C,D and the daily supply and daily quotas are the same as those in model
1. Apart from the daily quota, each category ci also has an overall quota qi

that denotes the maximum total number of vaccines that can be allocated for
category ci over all the days. Note that overall quota is also an essential quantity
in applications like visa allocation and refugee settlement.

In both the models, a matching M : A → (C×D)∪{∅} is a function denoting
the day on which a person is vaccinated and the category through which it is
done, such that the category quota(s) and daily supply values do not exceed on
any day. Thus if we define variables xijk such that xijk = 1 if M(ak) = (ci, dj)
and xijk = 0 if M(ak) = ∅, then we have

∑
i,j xijk ≤ 1 for each k,

∑
k,j xijk ≤ qi

for each i,
∑

k xijk ≤ qij for each i, j, and
∑

i,k xijk ≤ sj for each j. Here
1 ≤ i ≤ |C|, 1 ≤ j ≤ |D|, 1 ≤ k ≤ |A|. If M(ak) = ∅ for some ak ∈ A, it means
the person could not be vaccinated through our algorithm within |D| days.

In both the models, the utility associated with ak is αk ·δj−1 where M(ak) =
(ci, dj). The goal is to find a matching that maximizes the total utility.

1.2 Our Contributions

The utilities αk and discounting factor δ have some desirable properties. If agent
ak is to be given a higher priority over agent a�, then we set αk > α�. On any
day dj , αk ·δj > α� ·δj . Moreover, the difference in the utilities of the two agents
diminishes over time i.e. if j < j′ then (αk − α�)δj > (αk − α�)δj′

. Thus the
utility maximization objective across all days vaccinates ak earlier than a�.

We consider both online and offline settings. The offline setting relies on the
knowledge about availability of agents on all days. This works well in a system
where agents are required to fill up their availability in advance e.g. in case of
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planned surgeries, and visa allocations. The online setting involves knowing the
availability of all the agents only on the current day as in a walk-in setting. Thus
the availability of an agent on a day in future is not known.

Following are our results:

Theorem 1. There is a polynomial-time algorithm that computes an optimal
solution for any instance of Model 1 in the offline setting.

We give theoretical guarantees on the performance of online algorithms in
terms of their competitive ratio in comparison with the utility of an offline optimal
solution.

Theorem 2. There is an online algorithm (Algorithm 1) that gives a competi-
tive ratio of (i) 1 + δ for Model 1 and (ii) of 1 + δ + (αmax/αmin)δ for Model 2
when δ is the common discounting factor for all agents. The algorithm runs in
polynomial time.

The details omitted due to space constraints are available in the full version [14].

Strategy-proofness: It is a natural question whether agents benefit by hiding their
availability on some days. We show that the online algorithm is strategy-proof

by exhibiting that the offline setting has a pure Nash equilibrium that corre-
sponds to the solution output by the online algorithm.

Theorem 3. Let an offline optimal solution that breaks ties according to a ran-
dom permutation π match agent ai on day di. Then for each agent ai, reporting
availability exactly on day di (unmatched agents mark all days as unavailable)
is a pure Nash equilibrium. Moreover, the Nash equilibrium corresponds to a
solution output by the online algorithm.

Experimental Results: We also give experimental results in Sect. 5 using real-
world datasets. Apart from maximization of utilities, we also consider the number
of days taken by the online algorithm for vaccinating high priority people. Our
experiments show that the online algorithm almost matches the offline algorithm
in terms of both of these criteria.

Selection of utility values: An important aspect of our model is that the choice
of utility values does not affect the outcome as long as the utility values have the
same numerical order as the order of priorities among agents. Thus the output of
online as well as offline algorithm remains the same as long as αk > α� whenever
agent ak has a higher priority over agent a�.

2 Algorithms for Model 1

We present two algorithms for this model - an optimal offline algorithm and an
online algorithm. The offline algorithm is based on flow and runs in polynomial-
time [14]. The online algorithm we present achieves a tight competitive ratio of
1 + δ, where δ is the discounting factor of the agents.
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2.1 Online Algorithm for Model 1

We present an online algorithm which greedily maximizes utility on each day.
We show that this algorithm indeed achieves a competitive ratio of 1 + δ.

Outline of the Algorithm: On each day di, starting from day d1, we construct
a bipartite graph Hi = (Ai ∪ C,Ei, wi) where Ai is the set of agents who are
available on day di and are not vaccinated earlier than day di. Let the weight
of the edge (aj , ck) ∈ Ei be wi(aj , ck) = αj .δ

i−1. We define capacity of the
category ck ∈ C as b′

i,k. In this graph, our algorithm finds a maximum weighted
b-matching of size not more than the daily supply value si.

Algorithm 1. Online Algorithm for Vaccine Allocation
Input: An instance I of Model 1
Output: A matching M : A → (C × D) ∪ {∅}

1: Let D, A, C be the set of Days, Agents and Categories respectively.
2: M(aj) ← ∅ for each aj ∈ A
3: for day di in D do
4: Ai ← {aj ∈ A | aj is available on di and aj is not vaccinated}
5: Ei ← {(aj , ck) ∈ Ai × C | aj is eligible to be vaccinated under category ck }
6: for (aj , ck) in Ei do
7: Let wi(aj , ck) ← αjδ

i−1

8: end for
9: Construct weighted bipartite graph Hi = (Ai ∪ C, Ei, wi).

10: for ck in C do
11: b′

i,k ← qik {Where qik is the daily quota}
12: end for
13: Find maximum weight b-matching Mi in Hi of size at most si. {Where si is the

daily supply}
14: for each edge (aj , ck) in Mi do
15: M(aj) ← (ck, di) {Mark aj as vaccinated on day di under category ck}
16: end for
17: end for
18: return M

The following lemma shows that the maximum weight b-matching computed
in Algorithm1 is also a maximum size b-matching of size at most si.

Lemma 1. The maximum weight b-matching in Hi of size at most si is also a
maximum size b-matching of size at most si.

Proof. We prove that applying an augmenting path in Hi increases the weight
of the matching. Consider a matching Mi in Hi such that Mi is not of maximum
size and |Mi| < si. Let ρ = (a1, c1, a2, c2, · · · , ak, ck) be an Mi-augmenting path
in Hi. We know that every edge incident to an agent has the same weight in Hi.
If we apply the augmenting path ρ, the weight of the matching increases by the
weight of the edge (a1, c1). This proves that a maximum weight matching in Hi

of size at most si is also a maximum size b-matching of size at most si.
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2.2 Charging Scheme

We compare the solution obtained by Algorithm1 with the optimal offline solu-
tion to get the worst-case competitive ratio for Algorithm1. Let M be the output
of Algorithm1 and N be an optimal offline solution. To compare M and N , we
devise a charging scheme by which, each agent ap matched in N charges a unique
agent aq matched in M . The amount charged, referred to as the charging fac-
tor here is the ratio of utilities obtained by matching ap and aq in M and N
respectively.

Properties of the charging scheme:

1. Each agent matched in N charges exactly one agent matched in M ,
2. Each agent aq matched in M is charged by at most two agents matched in

N , with charging factors at most 1 and δ. This implies that the utility of N
is at most (1 + δ) times the utility of M .

We divide the agents matched in N into two types. Type 1 agents are those
which are matched in M on an earlier day compared to that in N . Thus ap ∈ A
is a Type 1 agent if ap is matched on day di in M and on day dj in N , such that
i < j. The remaining agents are called Type 2 agents. Our charging scheme is
as follows:

1. Each Type 1 agent ap charges themselves with a charging factor δ, since the
utility associated with them in N is at most δ times that in M .

2. Here onwards, we consider only Type 2 agents and discuss the charging scheme
associated with them.
Let Xi be the set of Type 2 agents matched on day di in N , and let Yi be
the set of agents matched on day di in M . Since Algorithm1 greedily finds
a maximum size b-matching of size at most si, and as each edge in the b-
matching corresponds to a unique agent, we show the following lemma holds:

Lemma 2. For each di ∈ D, the set |Xi| ≤ |Yi|.
Proof. Since Xi contains only Type 2 agents matched in Ni, the agents in Xi

are not matched by M until day i − 1. Therefore Xi ⊆ Ai, where Ai is defined
in Algorithm1. The daily quota and the daily supply available for computation
of Ni and Mi is the same i.e. qi,k, and si respectively.

By construction, Mi is a matching that matches maximum number of agents
in Ai, up to an upper limit of si, |Xi| ≤ |Yi|.
To obtain the desired competitive ratio we design an injective mapping according
to which, each agent ap in Xi can uniquely charge an agent aq in Yi such that
αp ≤ αq. The following lemma shows that such an injective mapping always
exists.
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Lemma 3. There exists an injective mapping f : Xi → Yi such that if f(ap) =
aq, then αp ≤ αq.

Order of Charging Among Type 2 Agents: First, every agent who has both Mi and
Ni edges indecent on it, charges herself. Next every agent who is an end-point
of an even-length path charges the agent represented by the other end-point.
The rest of the agents are end-points of an odd-length path matched in Ni. We
proved that the edges incident on these agents have a weight smaller than every
edge in Mi. They can charge any agent of Mi who has not been charged yet by
any agent of Ni, as stated above.

Proof (of Theorem 2 (i)). Let aq be an agent who is vaccinated by the online
matching M on day i. Then aq can be charged by at most two agents matched
in N . Suppose aq is vaccinated by the optimal matching N on some day i′ > i.
Assume that the agent ap of type 2 who also charges aq. If the priority factor of
aq and ap are αq and αp respectively, then

αp.δ
i + αq.δ

i′

αq.δi
=

(
αp

αq

)i

+ δi′−i ≤ 1 + δ.

The last inequality follows as 0 < αp ≤ αq < 1, and i′ > i. Therefore the utility
obtained by ap and aq in Mi is atmost 1 + δ times the the utility of aq in Mi.
Therefore the competitive ratio of Algorithm1 is at most 1 + δ.

2.3 Tight Example for the Online Algorithm

The example in Fig. 1 shows that the competitive ratio of Algorithm1 is tight.
Let A = {a1, a2} be the set of agents and C = {c1, c2} be the set of categories.
Agent a1 is eligible under {c1, c2} and agent a2 is eligible only under {c2}. The
daily supply: s1 = 1 and s2 = 1. The daily quota of each category on each
day is set to 1. Both agents have equal priority. An optimal allocation scheme
vaccinates all agents (highlighted in green), whereas the online allocation does
not vaccinate agent a2 if agent a1 is vaccinated on day 1 under the category c1
(highlighted in pink). Therefore the competitive ratio is 1 + δ, which is tight.

a1 α1 α1δ

α1a2

d1
d2

Fig. 1. A tight example with competitive ratio 1 + δ. Online allocation indicated in
red, Optimal allocation indicated in green and arrows indicate charging (Color figure
online)
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3 Online Algorithm for Model 2

We present an online algorithm which greedily maximizes utility on each day.
We assume that the discounting factor of the agents is δ. Moreover each agent ak

has a priority factor αk. Let αmax = maxi{αi | αi is the priority factor of agent
ai} and αmin = mini{αi | αi is the priority factor of agent ai}. We show that
this algorithm indeed achieves a competitive ratio of 1 + δ + αmax

αmin
δ.

3.1 Outline of the Charging Scheme

We compare the solution obtained by the online algorithm for Model 2 with the
optimal offline solution to get the worst-case competitive ratio for the online
algorithm. Let M be the output of the Algorithm and N be an optimal offline
solution. To compare M and N , we devise a charging scheme similar to that in
Sect. 2.2, by which each agent a matched in N charges a unique agent a′ matched
in M . The amount charged, referred to as the charging factor here is the ratio
of utilities obtained by matching a and a′ in M and N respectively.

Properties of the charging scheme:

1. Each agent matched in N charges exactly one agent matched in M ,
2. Each agent matched in M is charged by at most three agents matched in N ,

with charging factors at most 1, δ and αmax
αmin

δ. This implies that the utility of
N is at most (1 + δ + αmax

αmin
δ) times the utility of M .

Using analogous reasoning to that presented in Sect. 2.3, we demonstrate
that the competitive ratio of Model 2 is also tight. For a more comprehensive
description of this algorithm, please refer to [14].

4 Strategy-Proofness of the Online Algorithm

In the previous sections, we considered the case when agents truthfully report
their availability and categories. In this section, we look into the scenario when
agents are strategic, and might misreport their availability and/or eligible cat-
egories. Agents have an incentive in doing so because they prefer obtaining the
healthcare resource over not getting it. Further, an agent would prefer to obtain
the resource as early as possible. Offline optimal algorithm is prone to such
strategic manipulations.

The online algorithm is strategy-proof because, on any day di, it does not
consider availability on future days. Hence if an agent hides his availability on
day di, the agent does not benefit. We show that there is a pure Nash equilibrium
in the offline setting such that the utility of the Nash equilibrium has the same
value as that of the solution obtained by the online algorithm. Thus, in the
presence of strategic agents, the online algorithm has the advantage over the
offline algorithm that it avoids Nash equilibria with very low utility value.
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5 Experimental Evaluation

In Sect. 2 we prove worst-case guarantees for the online algorithm. We also give
a tight example instance achieving a competitive ratio of 1+2δ. Here, we exper-
imentally evaluate the performance of the online algorithm and compare it with
the worst-case guarantees on a real-life dataset. For finding the optimal alloca-
tion that maximizes utility, we solve the network flow linear program with the
additional constraint for overall quota

∑
i∈A,k∈D xijk ≤ qj ∀cj ∈ C. This LP is

described in [14]. The code and datasets for the experiments can be found at [16]

5.1 Methodology

All experiments run on a 64-bit Ubuntu 20.04 desktop of 2.10GHz * 4 Intel Core
i3 CPU with 8GB memory.

The proposed online approximation algorithm runs in polynomial time. In
contrast, the optimal offline algorithm solves an integer linear program which
might take exponential time depending on the integrality of the polytope. We
relax the integrality constraints to achieve an upper bound on the optimal allo-
cation. For comparing the performance of the online Algorithm1 and the offline
Algorithm, we use vaccination data of 24 hospitals in Chennai, India for the
month of May 2022. We use small datasets with varying instance sizes for eval-
uating the running times of the algorithms. We use large datasets of smaller
instance sizes for evaluating competitive ratios.

All the programs used for the simulation are written in Python language.
For solving LP, ILP, and LPR, we use the general mathematical programming
solver COIN-OR Branch and Cut solver MILP (Version: 2.10.3) [6] on PuLP
(Version 2.6) framework [24]. When measuring the running time, we consider
the time taken to solve the LP.

5.2 Datasets

Our dataset can be divided into two parts.
Supply: We consider vaccination data of twenty-four hospitals in Chennai,

India for the month of May 2022. This data is obtained from the official COVID
portal of India using the API’s provided. The dataset consists of details such as
daily vaccination availability, type of vaccines, age limit, hospital ID, hospital
zip code, etc. for each hospital.

Demand: Using the Google Maps API [17], we consider the road network for
these 24 hospitals in our dataset. From this data, we construct a complete graph
with hospitals as vertices and edge weights as the shortest distance between any
two hospitals. For each hospital h ∈ H, we consider the cluster C(h) as the set of
hospitals which are at most five kilometres away from h. We consider these clus-
ters as our categories. Now, we consider 10000 agents who are to be vaccinated.
For each agent a, we pick a hospital h uniformly at random. The agent a belongs
to every hospital in the cluster C(h). Each agent’s availability over 30 days is
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independently sampled from the uniform distribution. Now, we consider the age-
wise population distribution of the city. For each agent, we assign an age sampled
from this distribution. Now, we partition the set of agents as agents of age 18–45
years, 45–60 years and 60+. We assign α-values 0.96, 0.97 and 0.99 respectively.
We also consider the same dataset with α-values 0.1, 0.5 and 0.9 respectively.
We set the discounting factor δ to 0.95.

For analyzing the running time of our algorithms, we use synthetically gen-
erated datasets with a varying number of instance sizes ranging from 100 agents
to 20000 agents. Each agent’s availability and categories are chosen randomly
from a uniform distribution.

5.3 Results and Discussions

We show that the online algorithm runs significantly faster than the offline algo-
rithm while achieving almost similar results. We give a detailed empirical eval-
uation of the running times in [14].

To compare the performance of the online Algorithm 1 against the offline
algorithm we define a notion of remaining fraction of un-vaccinated agents. That
is, on a given day di, we take the set of agents Pdi

who satisfy both of the
following conditions:

1. Agent a is available on some day dj on or before day di.
2. Agent a belongs to some hospital h and h has non-zero capacity on day dj

Pdi
is the set of agents who could have been vaccinated without violating

any constraints. Let γi = |Pdi
|.

Fig. 2. The 1 − ηi/γi value achieved by the online algorithm is very similar to that of
the offline algorithm across age groups. Both algorithms vaccinate achieves vaccinate
90% of the most vulnerable group within 8 days.
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Let Vdi
be the set of agents who are vaccinated by the algorithm on or before

day di. Let ηi = |Vdi
|. Now, 1 − ηi/γi represents the fraction of unvaccinated

agents. In Fig. 2 we compare the age-wise 1−ηi/γi of both of our online and offline
algorithms. We note that the vaccination priorities given to vulnerable groups by
the online approximation algorithm are very close to that of the offline optimal
algorithm. In both the algorithms, By the end of day 2, 50% of 1 − ηi/γi was
achieved for agents of the 60+ age group. By the end of day 8, only 10% of the
most vulnerable group remained unvaccinated.

6 Conclusion

We investigate the problem of dynamically allocating perishable healthcare
goods to agents arriving over a period of time. We capture various constraints
while allocating a scarce resource to a large population, like production con-
straint on the resource, infrastructure and constraints. While we give an offline
optimal algorithm for Model 1, getting one for Model 2 or showing NP-hardness
remains open.

We also propose an online algorithm approximating welfare that elicits infor-
mation every day and makes an immediate decision. The online algorithm does
not require a foresight and hence has a practical appeal. Our experiments show
that the online algorithm generates a utility roughly equal to the utility of the
offline algorithm while achieving very little to no wastage.
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Abstract. Motivated by distributed selection problems, we formulate a
new variant of multi-player multi-armed bandit (MAB) model, which cap-
tures stochastic arrival of requests to each arm and the policy of allocat-
ing requests to players. The challenge is how to design a distributed learn-
ing algorithm such that players select arms according to the optimal arm
pulling profile without communicating to each other. We first design a
greedy algorithm, which locates one of the optimal arm pulling profiles
with a polynomial computational complexity. We also design an iterative
distributed algorithm for players to commit to an optimal arm pulling pro-
file with a constant number of rounds in expectation. We apply the explore
then commit (ETC) framework to address the online setting when model
parameters are unknown. We design an exploration strategy for players
to estimate the optimal arm pulling profile. Since such estimates can be
different across different players, it is challenging for players to commit.
We then design an iterative distributed algorithm, which guarantees that
players can arrive at a consensus on the optimal arm pulling profile in only
M rounds. We conduct experiments to validate our algorithm.

1 Introduction

Multi-player MAB has attracted extensive attentions [1,3,4,6,12,17,19]. The
canonical multi-player MAB model [1,4] was motivated from the channel access
problem in cognitive radio applications. In this channel access problem, multiple
secondary users (modeled as players) compete for multiple channels (modeled
as arms). In each decision round, each player can select one arm. When collision
happens (i.e., multiple players selecting the same arm), all players in the collision
receive no reward. Players can not communicate with each other and they are
aware of whether they encounter a collision or not. The objective is to maximize
the total reward of all players. A number of algorithms were proposed [1,4,6,12,
17,19]. Various extensions of the canonical model were studied [6–9,15] and one
can refer to Sect. 2 for more details.
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Existing multi-player MAB models are mainly built on the reward model that
in each round either only one reward is generated from an arm [1,4,17], or multi-
ple rewards are generated but the number of rewards equals the number of play-
ers [8,10,14]. And they are based on the collision assumption that when collision
happens either all players in the collision receive no reward (one reward is gener-
ated), or each player receives an independent reward. The reward model and colli-
sion model make existing multi-player models not a satisfactory model for solving
distributed selection problems arise from ridesharing applications like Uber food
delivery applications like DoorDash, etc. For those applications, an arm can model
a riding pickup location or food pickup port. A player can model a driver or a deliv-
ery driver. The ridesharing request or food delivery request arrives at an arm in a
stochastic manner, which is independent of the number of players who will select
this arm. In case of collision each player can serve at most one request in the man-
ner that if the number of requests exceeds the number of players in the collision,
each player serves one request and the remaining requests are unserved, and on the
contrary the remaining players are idle serving no requests.

To model and design efficient algorithms for allocating requests to players,
we formulate a new variant of the multi-player MAB model to address the above
distributed selection problem. Our model consists of M ∈ N+ arms and K ∈ N+

players. For each arm, the number of requests across different decision rounds
are independent and identically distributed (IID) samples from a probability
distribution (called request distribution) and the reward of different requests are
IID samples from another probability distribution (called reward distribution).
The request distribution and reward distribution across different arms can be
different. Each player is allowed to serve at most one request. In the request
assigning process, there is no differentiation between players or between requests.
Players can not communicate with each other. When a decision round ends, the
platform makes the number of requests and the number of players on each arm
public to all players. The objective is to maximize the total reward of all players
without knowing the request distribution and reward distribution.

Example 1. Consider M = 3 arms and K = 2 players. For simplicity, in each
time slot, two/two/one ride-sharing requests arrive at arm 1/2/3. Each request
in arm 1/2/3 is associated with a reward of 0.2/0.2/0.3. Let nt,1, nt,2, nt,3 denote
the number of players who pull arm (or go to pickup location) 1, 2 and 3 respec-
tive. All possible arm pulling profiles, i.e., (nt,1, nt,2, nt,3), can be expressed as
{(2, 0, 0), (0, 2, 0), (0, 0, 2), (1, 1, 0), (0, 1, 1), (1, 0, 1)}. The total number of arm
pulling profiles can be calculated as

(
M+K−1
M−1

)
=

(
4
2

)
= 6. Among them, the

arm pulling profiles (0,1,1) and (1,0,1) achieve the highest total reward, i.e.,
0.3 + 0.2 = 0.5. Players can not communicate with each other in pulling arms.
In the first time slot, the arm pulling profile can be (0, 0, 2), i.e., both players
pull arm 3. Then, one player serves a request and receive a reward of 0.3, and
the other one gets no requests (the allocation of requests to players is specified
by the application itself). In the second time slot, the arm pulling profile can be
(1, 1, 0), then each player gets a reward of 0.2.

Example 1 illustrates that under the simplified setting where reward and arrival
are deterministic and given, the number of all possible arm pulling profiles is
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(
M+K−1
M−1

)
. Exhaustive search is computationally infeasible when the number of

arms and players are large. In practice, both reward and arrival are stochas-
tic capturing uncertainty in real-world applications, which further complicates
the problem. How to design computationally efficient searching algorithms to
locate the optimal arm pulling profile under the offline setting? Once the search-
ing algorithm is developed, players can use it locally to locate an optimal arm
pulling profile. As illustrated in Example 1, there can be multiple optimal arm
pulling profiles. Players cannot communicate with each other on which one they
should commit to. How to design a distributed algorithm such that players will
commit to an optimal arm pulling profile? After we address the aforementioned
two challenges, we turn our attention to address the online setting via the ETC
framework, which was also used in previous works [5,17]. In the exploration
phase, players estimate the request distribution and reward distribution. Using
these estimates of distributions in the searching algorithm developed in the offline
setting, each player can obtain an estimate of the optimal arm pulling profile.
When there are multiple optimal arm pulling profiles, these estimates may clas-
sify some optimal arm pulling profiles as suboptimal ones. Different players can
have different estimates of distributions and therefore have different estimates
of arm pulling profiles. What makes it challenging is that the estimate of the
optimal arm pulling profile at one player may be classified as a suboptimal one
at some other players. Increasing the length of exploration phase can reduce this
uncertainty but it may induce a larger regret. How to determine the exploration
length? How to make players commit to an optimal arm pulling profile?

We address them and our contributions are: (1) In the offline setting with
model given, we design a greedy algorithm which can locate one of the optimal
arm pulling profiles with a computational complexity of O(KM). We also design
an iterative distributed algorithm for players to commit to a unique optimal arm
pulling profile with a constant number of rounds in expectation. When there are
multiple optimal arm pulling profiles, by using the same deterministic tie break-
ing rule in the greedy algorithm, all players can locate the same optimal arm
pulling profile and then our committing algorithm can be applied. (2) In the
online setting with unknown model, we design an exploration strategy with a
length such that each player can estimate one of the optimal arm pulling profiles
with high probability. These estimates of the optimal arm pulling profile can be
different across different players. We design an iterative distributed algorithm,
which guarantees that players reach a consensus on the optimal arm pulling
profile with only M rounds. Players can then run the commit algorithm devel-
oped in the offline setting to commit to this consensus. Putting them together,
we obtain an algorithm with a logarithmic regret. We conduct experiments to
validate the efficiency of our algorithms.

2 Related Work

Stochastic Multi-player MAB with Collision. The literature on multi-
player MAB starts from a static (i.e., the number of players is fixed) and informed
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collision (in each round, players know whether they encounter a collision or not)
setting. In this setting, Liu et al. [11] proposed a time-division fair sharing algo-
rithm, which attains a logarithmic total regret in the asymptotic sense. Anand-
kumar et al. [1] proposed an algorithm with a logarithmic total regret in the
finite number of rounds sense. Rosenski et al. [17] proposed a communication-
free algorithm with constant regret in the high probability sense. Besson et al.
[4] improved the regret lower bound, and proposed RandTopM and MCTopM
which outperform existing algorithms empirically. The regret of these algorithms
depends on the gaps of reward means. Lugosi et al. [12] suggested the idea of
using collision information as a way to communicate and they gave the first
square-root regret bounds that do not depend on the gaps of reward means.
Boursier et al. [6] further explored the idea of using collision information as a
way to communicate and they proposed the SIC-MMAB algorithm, which attains
the same performance as a centralized one. Inspired SIC-MMAB algorithm, Shi
et al. [18] proposed the error correction synchronization involving communica-
tion algorithm, which attains the regret of a centralized one. Hanawal et al.
[9] proposed the leader-follower framework and they developed a trekking app-
roach, which attains a constant regret. Inspired by the leader-follower framework,
Wang et al. [19] proposed the DPE1 algorithm which attains the same asymp-
totic regret as that obtained by an optimal centralized algorithm. A number of
algorithms were proposed for the static but unknown collision setting. In par-
ticular, Besson et al. [4] proposed a heuristic with nice empirical performance.
Lugosi et al. [12] developed the first algorithm with theoretical guarantees, i.e.,
logarithmic regret, and an algorithm with a square-root regret type that does
not depend on the gaps of the reward means. Shi et al. [18] identified a connec-
tion between communication phase without collision information and Z-channel
model in information theory. Bubeck et al. [7] proposed an algorithm with near-
optimal regret O(

√
T log(T )). They argued that the logarithmic term

√
log(T )

is necessary. A number of algorithms were proposed for the dynamic (i.e., players
can join or leave) and informed collision setting. In particular, Avner et al. [2]
proposed an algorithm with a regret of O(T 2/3). Rosenski et al. [17] proposed
the first communication-free algorithms which attains a regret of O(

√
T ). Bour-

sier [6] proposed a SYN-MMAB algorithm with the logarithmic growth of the
regret. Hanawal et al. [9] proposed an algorithm based on a trekking approach.
All the above works considered a homogeneous setting, i.e., all players have the
same reward mean over the same arm. A number of works studied the hetero-
geneous setting, i.e., different players may have different reward mean over the
same arm. Bistritz et al. [5] proposed the first algorithm which attains a total
regret of order O(ln2 T ). Magesh et al. [13] proposed an algorithm which attains
a total regret of O(log T ). Mehrabian et al. [15] proposed an algorithm which
attains a total regret of O(ln(T )) and it solved an open question in [5].

Stochastic Multi-player MAB Without Collision. The typical setting
is that when collision happens, each player in the collision obtain an indepen-
dent reward. Players can share their reward information using a communication
graph. In this setting, Landgren et al. [10] proposed a decentralized algorithm
which utilizes a running consensus algorithm for agents to share reward informa-
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tion. Martínez-Rubio et al. [14] proposed a DD-UCB algorithm which utilizes a
consensus procedure to estimate reward mean. Wang et al. [19] proposed DPE2
algorithm which is optimal in the symptotic sense and it outperforms DD- UCB
[14]. Dubey et al. [8] proposed MP-UCB to handle heavy tail reward.

Summary of Difference. Different from the above works, we formulate a new
variant of multi-player multi-armed bandit (MAB) model to address the dis-
tributed selection problems. From a modeling perspective, our model captures
stochastic arrival of request and request allocation policy of these applications.
From an algorithmic perspective, our proposed algorithms presents new ideas
in searching the optimal pulling profile, committing to optimal pulling profile,
achieving consensus when different players have different estimates on the opti-
mal arm pulling profile, etc.

3 Platform Model and Problem Formulation

The Platform Model. We consider a platform composed of requests, play-
ers and a platform operator. We use a discrete time system indexed by t ∈
{1, . . . , T}, where T ∈ N+, to model this platform. The arrival of requests is
modeled by a finite set of arms denoted by M � {1, . . . , M}, where M ∈ N+.
Each arm can be mapped as a pickup location of ride sharing applications or
a pickup port of food delivery applications. Each arm m ∈ M is characterized
by a pair of random vectors (Dm,Rm), where Dm � [Dt,m : t = 1, . . . , T ] and
Rm � [Rt,m : t = 1, . . . , T ] model the stochastic request and reward of arm m
across time slots 1, . . . , T . More concretely, the random variable Dt,m models
the number of requests arrived at arm m in time slot t, and the support of Dt,m

is D � {1, . . . , dmax}, where dmax ∈ N+. Each request can be mapped as a ride
sharing request or a food delivering request. We consider a stationary arrival of
requests, i.e., D1,m, . . . , Dt,m are independent and identically distributed (IID)
random variables. Note that in each time slot unserved requests will be dropped.
This captures the property of ride sharing like applications that a customer may
not wait until he is served, but instead he will cancel the ride sharing request
and try other alternatives such as buses if he is not severed in a time slot. Let
pm � [pm,d : ∀d ∈ D] denote the probability mass function (pmf) of these IID
random variables D1,m, . . . , Dt,m, formally pm,d = P[Dt,m = d],∀d ∈ D,m ∈ M.
In time slot t, the rewards of Dt,m requests are IID samples of the random vari-
able Rt,m. Without loss of generality we assume the support of Rt,m is [0, 1]. The
rewards R1,m, . . . , Rt,m are IID random variables. We denote the mean of these
IID random variables R1,m, . . . , Rt,m as μm = E[Rt,m],∀m ∈ M. For simplicity,
we denote the reward mean vector as µ � [μm : ∀m ∈ M] and probability mass
matrix as P � [p1, . . . ,pM ]T. Both P and µ are unknown to players.

We consider a finite set of players denoted by K � {1, . . . , K}, where K ∈ N+.
Each player can be mapped as a driver in ride sharing applications, or a deliverer
in food deliverer applications. In each time slot t, each player is allowed to pull
only one arm. Let at,k ∈ M denote the action (i.e., the arm pulled by player
k) of player k in time slot t. We consider a distributed setting that players
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can not communicated with each other. Let nt,m �
∑

k∈K 1{at,k=m} denote the
number of players who pull arm m. The nt,m satisfies that

∑
m∈M nt,m = K.

Namely, all players are assigned to arms. Recall that in round t, the number of
requests arrived at arm m is Dt,m. These Dt,m requests will be allocated to nt,m

players randomly (our algorithm can be applied to other assignment policies
also). Regardless of the details of the allocation policy, two desired properties
of the allocation is: (1) if the number of requests is larger than the number of
players, i.e., Dt,m ≥ nt,m, then each player serves one request and (Dt,m −nt,m)
request remains unserved, (2) if the number of requests is smaller than the
number of players, i.e., Dt,m ≤ nt,m, then only Dt,m players can serve requests
(one player per request) and (nt,m − Dt,m) remains idle.

Let nt � [nt,m : ∀m ∈ M] denote the action profile in time slot t. Let
D̃t � [Dt,m : ∀m ∈ M] denote the request arrival profile in time slot t. At the
end the each time slot, the platform operator makes nt and D̃t public to all
players. The platform operator ensures that each player is allowed to serve at
most one request. When the number of requests exceeds the number of players
who pull the arm, each player serves one request and the remaining requests are
unserved, and on the contrary, the remaining players will be idle.

Online Learning Problem. Let Um(nt,m,pm, μm) denote the total reward
earned by nt,m players pull arm m. Then, it can be expressed as:
Um(nt,m,pm, μm) = μmE [min {nt,m,Dt,m}]. Denote the total reward for earned
by all players in time slot t as U (nt,P ,µ) �

∑
m∈M Um(nt,m,pm, μm). The

objective of players is to maximize the total reward across T time slots,
i.e.,

∑T
t=1 U (nt,P ,µ). The optimal arm pulling profile of players is n∗ ∈

argmaxn∈A U (n,P ,µ) , where A � {(n1, . . . , nM )
∣
∣nm ∈ K ∪ {0},

∑
m∈M nm =

K} is defined as a set of all arm pulling profiles. There are |A| = (
M+K−1
M−1

)
possi-

ble arm pulling profiles, which poses a computational challenge in searching the
optimal arm pulling profile. Furthermore, both the probability mass matrix P
and the reward mean vector µ are unknown to players and players can not com-
municate to each other. Denote Ht,k � (a1,k,X1,k,n1, D̃1, . . . , at,k,Xt,k,nt, D̃t)
as the historical data available to player k up to time slot t. Each player has
access to his own action history and reward history as well as the arm pulling
profile history and request arrival profile which are made public by the platform
operator. Denote the regret as RT �

∑T
t=1(U (n∗,P ,µ) − E [U(nt,P ,µ )]).

4 The Offline Optimization Problem

Searching the Optimal Arm Pulling Profile. We define the marginal reward
gain function as: Δm(n) � Um(n + 1,pm, μm) − Um(n,pm, μm).

Lemma 1. The Δm(n) = μmPm,n+1, where Pm,n+1 �
∑dmax

d=n+1 pm,d. Further-
more, Δm(n + 1) ≤ Δm(n).

Based on Lemma 1, Algorithm 1 searches the optimal arm pulling profile
by sequentially adding K players one by one to pull arms. More specifically,
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players are added to arms sequentially according to their index in ascending
order. Player with index k, is added to the arm with the largest marginal reward
gain given the assignment of players indexed by 1, . . . , k − 1. When all players
are added to arms, the resulting arm pulling profile is returned as an output.
For simplicity, denote P̃ = [P̃1, . . . , P̃M ]T , where P̃m = [Pm,k : ∀k ∈ K].

Algorithm 1. OptArmPulProfile (µ, P̃ )
1: Δm ← μm, ∀m ∈ M, ngreedy,m ← 0, ∀m ∈ M
2: for k = 1, . . . , K do
3: i = argmaxm∈M Δm (if there is a tie, breaking it arbitrarily)
4: ngreedy,i ← ngreedy,i + 1, Δi ← μiPi,ngreedy,i

5: end for
6: return ngreedy = [ngreedy,m : ∀m ∈ M]

Theorem 1. The output of Algorithm1 satisfies ngreedy ∈ argmaxn∈A U
(n,P ,µ) . The computational complexity of ngreedy of Algorithm 1 is O(KM).

Committing to Optimal Arm Pulling Profile. We focus on the case with
a unique optimal arm pulling profile. Due to page limit, the case with multiple
optimal pulling profiles is handled in our technical report [16]. Each player first
applies Algorithm 1 to locate the unique optimal pulling profile n∗. In each
round t, player k selects arm based on n∗ and n1, . . . ,nt−1. Our objective is
that n∗

m players commit to arm m. Let ct,k ∈ {0} ∪ M denote the index of the
arm that player k commits to. The ct,k is calculated from n1, . . . ,nt and n∗ as
follows. Initially, player k sets c0,k = 0 representing that he has not committed
to any arm yet. In each time slot t, after nt is published, each player k calculates
ct,k based on nt, n∗ and ct−1,k as follows:

ct,k=1{ct−1,k �=0}ct−1,k+1{ct−1,k=0}1{nt,at,k
≤n∗

at,k
}at,k. (1)

Equation (1) states that if player k has committed to an arm, i.e., ct−1,k �= 0, this
player will stay committed to this arm. In other words, once a player commits
to an arm, he will keep pulling it in all remaining time slots. If player k has
not committed to any arm yet, i.e., ct−1,k = 0, player k commits to the arm he
pulls at,k, only if the number of players pull the same arm does not exceed the
number of players required by this arm, i.e., nt,at,k

≤ n∗
at,k

. In each round only
the players who have not committed to any arm need to selecting different arms.

To assist players who have not committed to any arm selecting arms, for each
arm, each player keeps a track of the number of players who have committed to
it. Let n+

t,m denote the number of players committing to arm m up to time slot
t. Initially, no players commit to each arm, i.e., n+

0,m = 0,∀m ∈ M. After round
t, each player uses the following rule to update n+

t,m:

n+
t,m = 1{nt,m≤n∗

m}nt,m + 1{nt,m>n∗
m}n

+
t−1,m. (2)
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Equation (2) states an update rule that is consistent with Eq. (1). More con-
cretely, if the number of players nt,m pull arm m does not exceed the optimal
number of players n∗

m for arm m, then all these nt,m players commit to arm m.
Otherwise, as nt,m > n∗

m, it is difficult for players to decide who needs to commit
to arm m without communication. According to Eq. (1), the commitment status
of players pulling arm m does not update, resulting that the number of player
commit to arm m remains unchanged. Equation (2) implies that n+

t,m ≤ n∗
m.

In time slot t, each player k selects arm based on ct−1,k and n+
t−1 � [n+

t−1,m :
∀m ∈ M] as follows. If player k has committed to an arm, i.e., ct−1,k �= 0,
this player sticks to the arm that he commits to. Otherwise, player k has not
committed to any arm yet, and he needs to select an arm. To achieve this,
player k first calculates the number of players that each arm m lacks, which
is denoted by n−

t−1,m � n∗
m − n+

t−1,m. Note that n∗
m − n+

t−1,m ≥ 0 because
Eq. (2) implies that n+

t−1,m ≤ n∗
m. Then, player k selects an arm with a proba-

bility proportional to the number of players that the arm lacks, i.e., selects arm
m with probability n−

t−1,m/N−
t−1, where N−

t−1�
∑

m∈M n−
t−1,m. We summarize

the arm selection strategy as follows: P[at,k = m] = 1{ct−1,k �=0}1{ct−1,k=m} +
1{ct−1,k=0}n

−
t−1,m/N−

t−1. Players use the same committing strategy, Algorithm
2 uses player k as an example to outline the above committing strategy, where
Tstart denotes the index of the time slot that players start committing. We prove
that Algorithm 2 terminates in a constant number of rounds in expectation. Due
to page limit, we present them in our technical report [16].

Algorithm 2. CommitOptArmPulProfile (k,n∗, Tstart)

1: ck←0, n−
t,m←n∗

m, ∀m∈M, n+
t,m←0, ∀m∈M

2: for t = Tstart, . . . , T do
3: if ck �= 0 then
4: at+1,k ← ck
5: else if n∗

at,k
≥ nt,at,k then

6: ck ← at,k, at+1,k ← at,k

7: else
8: for m = 1, . . . , M do
9: if n∗

m ≥ nt,m then
10: n+

t,m ← nt,m, n−
t,m ← n∗

m − n+
t,m

11: end if
12: end for
13: N−

t =
∑

m∈M n−
t,m. at+1,k←m, w.p. n−

t,m/N−
t

14: end if
15: player k pulls arm at+1,k, player k receives nt+1

16: end for

5 Online Learning Algorithm

We address the online setting with unknown µ and P via the ETC framework.
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Exploration Phase. In the exploration, each player aims to estimate the prob-
ability P̃ and the mean vector µ. We consider a random exploring strategy that
in each decision round, each player randomly selects an arm. Let T0 be the length
of the exploration phase and Xt,k be the reward the player k gets at round t.
Each player uses the same exploration strategy, and Algorithm 3 uses player
k ∈ K as an example to illustrate our exploration strategy. We quantify the
impact of the length of exploration phase on the accuracy of estimating µ and
P̃ . We present them in our technical report [16].

Algorithm 3. Explore(k, T0)

1: Sm ← 0, P̂
(k)
m,d ← 0, c̃m ← 0, ∀m ∈ M

2: for t = 1, . . . , T0 do
3: at,k ∼ U(1, . . . , M). Player k receives D̃t and Xt,k

4: if Xt,k �= null then
5: Sat,k ← Sat,k + Xt,k, c̃at,k ← c̃at,k + 1
6: end if
7: P̂

(k)
m,d ← P̂

(k)
m,d + 1{ ˜Dt,m≥d}, ∀d ∈ D, m ∈ M

8: end for
9: μ̂

(k)
m ← Sm/c̃m, ∀m ∈ M, P̂

(k)
m,d ← P̂

(k)
m,d/T0, ∀d, m

10: return µ̂(k) = [μ̂
(k)
m : ∀m], P̂ (k) = [P̂

(k)
m,d : ∀m, d]

Committing Phase. When the optimal arm pulling profile is not unique, it is
highly likely that players have different estimates on the optimal arm pulling pro-
file, i.e., ∃k, k̃ such that n̂∗(k) �= n̂∗(k̃). This creates a challenge in committing to
the optimal arm pulling profile. To address this challenge, we make the following
observations. An element Δm(n) is a borderline element if Δm(n) = Δ(K).

Lemma 2. Suppose pm,d > 0 holds for all m ∈ M and d ∈ D. Suppose n∗ and
ñ∗ denote to optimal arm pulling profiles. Then, |n∗

m − ñ∗
m| ≤ 1,∀m ∈ M and

if n∗
m �= ñ∗

m, Δm(max{n∗
m, ñ∗

m}) is a borderline element.

Based on Lemma 2, Algorithm4 uses player k as an example to illustrate
our consensus algorithm, which enables players to reach a consensus on the
optimal arm pulling profile. Note that Algorithm4 focuses on the case that
each player has an accurate estimate of the optimal arm pulling profile, i.e.,
n̂∗(k) ∈ argmaxn∈A U (n,P ,µ), but their estimates can be different. First, all
players run M rounds to identify disagreements in their estimates of optimal
arm pulling profiles (step 2 to 11). In each round, they check disagreements on
one arm, if they identify one disagreement, each player records the correspond-
ing borderline elements. After this phase, each player eliminates the identified
borderline elements from its estimate on the optimal arm pulling profile (step
12 to 16). After this elimination, players agree on their remaining arm pulling
profile, but this arm pulling profile only involves a number of players less than
K. Thus, finally, each player adding the same number of borderline elements as
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the number of eliminated ones back, using the same rule, i.e., guaranteeing that
all players add the same borderline elements back (step 17 and 18).

Algorithm 4. Consensus(k, n̂∗(k))
1: vboard,k ← 0, Vboard,k ← ∅, Num←0
2: for t = T0 + 1, . . . , T0 + M do
3: player k pulls arm (n̂∗

t−T0(k) mod M + 1)
4: if max{m|nt,m > 0} − min{m|nt,m > 0} == 1 then
5: Update borderline elem. vboard,k←(vboard,k, t − T0)
6: Vboard,k←Vboard,k∪{(t−T0, n̂

∗
t−T0(k)+1{n̂∗

t−T0
(k) mod M+1=min{m|nt,m>0}})})}

7: else if max{m|nt,m > 0} − min{m|nt,m > 0} > 1 then
8: vboard,k ← (vboard,k, t − T0)
9: Vboard,k←Vboard,k ∪ {(t − T0, n̂

∗(k)+1{n̂∗
t−T0

(k) mod M+1=max{m|nt,m>0}})}
10: end if
11: end for
12: for m = 1, . . . , M do
13: if {(m, n̂∗

m(k))} ∈ Vboard,n then
14: n̂∗

m(k) ← n̂∗
m(k) − 1, Num←Num +1

15: end if
16: end for
17: vboard,n ← vboard,n sorted in descending order
18: n̂∗

vboard,k(i)
(k) ← n̂∗

vboard,k(i)
(k) + 1, ∀i = 1, . . . , Num

19: return n̂∗(k) = [n̂∗
m(k) : ∀m ∈ M]

Theorem 2. Suppose n̂∗(k)∈ argmaxn∈A U (n,P ,µ) ,∀k ∈ K, and M ≥ 3.
Algorithm4 reaches a consensus.

Putting Them Together and Regret Analysis. Puting all previous algo-
rithms together, Algorithm5 outlines our algorithm for the online setting. Due
to page limit, we present the regret analysis of Algorithm 5 in our technical
report [16].

Algorithm 5. Distributed learning algorithm for multi-player MAB with
stochastic requests
1: Exploration: (µ̂(k), P̂ (k)) ← Explore(k, T0)
2: Estimate optimal arm pulling profile:

ngreedy(k) ← OptArmPulProfile(µ̂(k), P̂ (k))
3: Consensus: ñ∗ ← Consensus(k,ngreedy(k))
4: Committing to consensus:

CommitOptArmPulProfile(k, ñ∗, T0 + M)
5: Sticking to the committed consensus
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6 Experiment

Experiment Setup. Unless we vary them explicitly, we consider the following
default parameters: T = 104, K = 150, M = 50, each arm’s reward have same
standard deviation σ = 0.1 and dmax = 50. The mean reward of each arm is
drawn from [0, 1] uniformly at random. We generate the reward of each request
via a normal distribution. For each arm, we first generate dmax numbers from
[0, 1] uniformly at random. Then we normalize these number such that their
sum equals one. We use these normalized numbers as the probability mass of
one arm. Repeating this process for all arms we obtain the probability mass
matrix. We consider the following two baselines. (1) MaxAvgReard, where each
player pulls arm with the largest average reward estimated from the collected
historical rewards. (2) SofMaxReward, where each player selects arm m with
probability proportional to the exponential of the average reward estimated from
the collected historical rewards, i.e., softmax of average reward. We consider two
metrics, i.e., regret and total reward.

Experimental Results. Figure 1(a) shows the regret of Algorithm 5 as we
vary the length of exploration from T0=0.01T to T0=0.2T . One can observe
that the regret curve first increases sharply in the exploration phase, and then
becomes flat in the committing phase. This verifies that Algorithm 5 has a nice
convergence property. Figure 1(b) shows that when T0=0.1T the reward curve
of Algorithm5 lies in the top. Namely, Algorithm5 has a larger reward than two
comparison baselines. This statement also holds when the length of exploration
increases as shown in Fig. 1(c) and 1(d). More experiment results are in our
technical report [16].

(a) Regret of Algo. 5 (b) T0 = 0.01T (c) T0 = 0.1T (d) T0 = 0.2T

Fig. 1. Impact of length of exploration.

7 Conclusion

This paper formulates a new variant of multi-player MAB model for distributed
selection problems. We designed a computational efficient greedy algorithm, to
located one of the optimal arm pulling profiles. We also designed an iterative
distributed algorithm for players to commit to an optimal arm pulling profile
with a constant number of rounds in expectation. We designed an exploration
strategy with a length such that each player can have an accurate estimate on the
optimal arm pulling profile with high probability. Such estimates can be different
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across different players. We designed an iterative distributed algorithm, which
guarantees that players arrive at a consensus on the optimal arm pulling profile.
We conduct experiments to validate our algorithms.
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Abstract. Offline logged data is quite common in many web applica-
tions such as recommendation, Internet advertising, etc., which offers great
potentials to improve online decision making. It is a non-trivial task to
utilize offline logged data for online decision making, because the offline
logged data is observational and it may mislead online decision making.
The VirUCB is one of the latest notable algorithmic frameworks in this
research line. This paper studies how to extend VirUCB from upper confi-
dence bound (UCB) based online decision making to Thompson sampling
based online decision making, for the purpose of improving the online deci-
sion accuracy. We first show that naively applying Thompson sampling to
the VirUCB framework is not effective and we reveal fundamental insights
on why it is not effective. Based on these insights, we design a filtering
algorithm to filter out the logged data corresponding to the optimal arm.
To address the challenge that the optimal arm is unknown, we estimate
it through the posterior of the reward mean. Putting them together, we
obtain our VirTS-DF algorithm. Extensive experiments on two real-world
datasets validate the superior performance of VirTS-DF.

1 Introduction

Offline logged data is quite common in many web applications such as recom-
mendation, Internet advertising, etc., which offers great potential to improve
online decision making [1]. It is a non-trivial task to utilize offline logged data
for online decision making, because the offline logged data is observational and
it may mislead online decision making [1,2]. A number of works investigated the
problem of applying offline logged data to improve the accuracy of online decision
making [1,3–6]. Interested readers can refer to Sect. 6 for more details of these
works. The VirUCB [1] is one of the latest notable framework to utilize offline
logged data to improve sequential decision making. Essentially, it unifies offline
causal inference and online bandit learning through virtual play. The virtual play
refers to that the feedback or reward of the online bandit learning is synthesized
from the offline logged data via causal inference techniques. The bandit learning
algorithm does not distinguish virtual play or true play. This property makes
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. Kashima et al. (Eds.): PAKDD 2023, LNAI 13936, pp. 255–266, 2023.
https://doi.org/10.1007/978-3-031-33377-4_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33377-4_20&domain=pdf
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the VirUCB framework has nice theoretical guarantee on the regret upper and
lower bound.

The VirUCB framework uses UCB based algorithm for bandit learning or
online decision making. Thompson sampling is a notable alternative for the UCB
based algorithms in bandit learning problems, and it is shown to have superior
performance over UCB based algorithms in many scenarios. This paper stud-
ies how to extend VirUCB from upper confidence bound (UCB) based online
decision making to Thompson sampling based online decision making, for the
purpose of improving the online decision accuracy. Through this, we aim to
deliver fundamental insights on applying Thompson sampling to unify offline
causal inference and online bandit learning.

It is non-trivial to extend VirUCB from upper confidence bound (UCB) based
online decision making to Thompson sampling based online decision making. Our
fist contribution is showing that naively applying Thompson sampling to the
VirUCB framework is not effective. We also use numerical simulations to show
when and why naively applying Thompson sampling to the VirUCB framework
has a poor online decision accuracy. Our results show that the logged data on
the optimal arm may make the bandit learning algorithm miss the optimal. Our
second contribution is designing a data filtering algorithm to address this limi-
tation. In particular, we design a filtering algorithm to filter out the logged data
corresponds to the optimal arm. To address the challenge that the optimal arm
is unknown, we estimate it through the posterior of the reward mean. Putting
them together, we obtain our VirTS-DF algorithm. Our last contribution is that
we conduct extensive experiments on two real-world datasets to validate the
superior performance of VirTS-DF. We believe that our work reveals important
insights on unifying offline causal inference and online bandit learning.

2 Model

2.1 The Bandit Learning Model

For the simplicity of presentation, we consider the contextual multi-armed bandit
learning model. We consider one decision maker and a finite number of T ∈ N+

decision rounds indexed by t ∈ [T ] � {1, . . . , T}. Let A ⊂ N+ denote the arm
set, where |A|=K<∞. Let xt ∈ R

d denote the context vector in round t. We
consider the case the context vector xt is arbitrarily generated. Let Ra,t denote
the reward of pulling a∈A in round t, formally

Ra,t � μa,t + εa,t, (1)

where μa,t ∈ R represents the mean and εa,t ∈ R is a random variable represent-
ing the stochastic noise satisfying E[εa,t] = 0. The reward mean μa,t is uniquely
determined by the context vector, i.e.,

xt = xt′ ⇒ μa,t = μa,t′ . (2)
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We do not assume any further parametric form of dependency, e.g., linear, non-
linear, etc., between the context and the reward mean. For simplicity, denote the
reward mean vector as µt � [μa,t : a ∈ A]. Let at ∈ A denote the arm selected
by the decision maker. Only the reward Rat,t is revealed to the decision maker
in round t. Note that the reward means μa,t,∀a, t, is unknown to the decision
maker. The objective is to design an arm selection algorithm to maximize the
cumulative reward

∑T
t=1 Rat,t.

2.2 The Data Model

The Offline Logged Data. We consider a finite set of I ∈ N+ offline logged
data tuples. For presentation convenience, we index these logged data tuples
using the set [−I] � {−I, . . . ,−1} to highlight that they are collected before the
first online decision making round. Let (i, ai,xi, yi) denote the i-th logged data
tuple, where i ∈ [−I], ai ∈ A denotes an arm, yi ∈ Y ⊆ R denotes the outcome
(or reward) and xi represents the context (or feature) associated with data item
i ∈ [−I]. More precisely, xi � [xi,1, . . . , xi,d] ∈ X where d ∈ N+ and X ∈ R

d.
The reward yi satisfies that yi = μai,i + εai,i, where μai,i and εai,i have the same
meaning as Eq. (1). Furthermore, μai,i satisfies Eq. (2) for all i ∈ [−I] ∪ [T ]. Let

L � {(i, ai,xi, yi)|i ∈ [−I]}
denote a set of all the offline logged data.

The offline logged data set L is observational and the arm ai can be correlated
with the outcome yi [2], where i ∈ [−I]. Similar with previous works [1,6], we
apply the potential outcome framework to characterize such correlations [2].
The feature xi is referred to as “observed confounder” in the causal inference
literature [2]. We do not assume any probability law that generates the feature
vector, i.e., we consider the general case that {xi},∀i ∈ [−I] can be non-random.
Let random variable Yi(a) denote the potential outcome of arm a ∈ A instead
of ai being selected for data item i ∈ [−I]. Similar with previous works [1,6], we
induce the following two conventional assumptions on the logged data.

Assumption 1. The potential outcome Yi(a) satisfies:

P[Yi(a)=y|Ai, Aj ] = P[Yi(a)=y|Ai], ∀y∈Y, j 	=i, a∈A.

where Ai denotes a random variable whose realization is ai.

Assumption 1 states the independence property of the offline logged dataset
that the potential outcome associated with data item is independent of the arms
associated with other data items.

Assumption 2. Given a context vector xi, the outcome Yi(a),∀a ∈ A satisfies:

[Yi(a) : a∈A] ⊥ Ai|xi, ∀i∈[−I],

where Ai is defined in Assumption 1.
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Assumption 2 states the incorrigibility property of the logged data set that the
observed arm of each data item is independent of the outcome. In other words,
there is no unobserved or latent confounders in the logged dataset. Extending
our work to the setting with unobserved confounders is an interesting future
work.

2.3 Problem Formulation

We aim to learn a context dependent optimal arm, i.e.,

a∗
t = arg max

a∈A
μa,t. (3)

For simplicity, let
Ht � {(i, ai,xi, Rai,i)|i ∈ [t]},

denote the online feedback history up to time slot t, where [t] � {1, ..., t}. Let
St ⊆ L denote a set of selected offline logged data up to time slot t. Let A denote
an arm selection algorithm, i.e., at = A(Ht−1,St,xt). Following the convention
of bandit learning, we quantify the performance of A via pseudo-regret:

Reg(T,A)�E

[
T∑

t=1

(μa∗
t ,t−μat,t)

∣
∣
∣at=A(Ht−1,St,xt)

]

We aim to utilize offline data to assist arm selection so as to minimize the regret.

3 Limitations of Naively Applying Thompson Sampling

3.1 VirTS: Naively Applying Thompson Sampling

We first consider a naive extension of the virtual play UCB framework, i.e.,
VirUCB [1]. This naive extension is obtained by replacing the UCB based online
decision oracle of VirUCB by the Thompson sampling based online decision ora-
cle, which is outlined in Algorithm 1. For simplicity of presentation, Algorithm
1 combines EM, i.e., exact matching in causal inference, with TS, i.e., Thompson
sampling based online decision making algorithm. In the Thompson sampling
algorithm TS (A,H, S̃,xt, {P0(·; a,xt),∀a}), the decision maker needs to specify
a prior on the reward distribution denoted by {P0(·; a,xt),∀a}, and then calcu-
late the posterior of the reward distribution based on the feedback associated
with this arm, denoted by Pa(·|Ha,xt

). For each arm a, one sample is generated
from its posterior Pa(·|Ha,xt

), and then use the generated sample to estimate
the reward mean of the arm. Finally, the arm with the largest estimated reward
mean is selected. Note that VirTS is a generic framework and can be applied
to combine a broad class of causal inference algorithms with a broad class of
sequential decision making algorithms [1].
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Algorithm 1: VirTS
1 Init: S0 ← ∅, H0 ← ∅
2 for t = 1 to T do
3 Observe context xt, Set S ← ∅
4 while true do
5 a ← TS(A, Ht−1, St−1 ∪ S,xt)
6 SelectedData ← EM (L, St−1 ∪ S,xt, a)
7 if SelectedData �= Null then
8 S ← S ∪ {SelectedData}
9 else

10 break

11 St ← St−1 ∪ S, at ← TS (A, Ht−1, St,xt)
12 Observe yt, Ht ← Ht−1 ∪ (t, at,xt, yt)

13

14 Function TS (A, H, S̃,xt, {P0(·; a,xt), ∀a}) :

15 W←S̃ ∪ H
16 foreach a ∈ A do
17 Ha,xt ← {(i, ai,xi, yi)|(i, ai,xi, yi) ∈ W, ai=a,xi = xt}
18 Calculate the posterior Pa(·|Ha,xt) based on P0(·; a,xt) and Ha,xt

19 pa ∼ Pa(·|Ha,xt), ra ← ∫
rdpa(r)

20 return arg maxa∈A ra

21 Function EM (L, S̃,xt, a):

22 C ← {i|xi=xt, ai=a, (i, ai,xi, yi) ∈ L \ S̃}
23 if C �= ∅ then
24 i ← a random sample from C
25 return (i, ai,xi, yi)

26 else
27 return Null

3.2 Limitations of VirTS

To illustrate the limitation of naively applying the Thompson sampling and
reveal fundamental insights on the limitation, we consider a simplified set-
ting with only one context and two arms indexed by {1, 2}. The reward of
arm 1 and 1 follows a multi-nominal distribution p1 = (p1,1, . . . , p1,5) and
p2 = (p2,1, . . . , p2,5) respectively. Without loss of generality, we assume that the
reward mean of arm 1 is large than that of arm 2, i.e.,

∑5
i=1 ip1,i >

∑5
i=1 ip2,i.

We set T = 1000 and consider the same offline logged datasets as follows:

– Balanced: it consists of 50 offline logged data tuples. Half (The other half)
of them are IID samples from p1 (p2).

– Imbalanced toward optimal arm: it consists of 50 offline logged data
items. If

∑5
i=1 ip1,i >

∑5
i=1 ip2,i, all of them are IID samples from p1, other-

wise all of them are IID samples from p2.
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– Imbalanced toward suboptimal arm: it consistes of 50 offline logged
data items. If

∑5
i=1 ip1,i >

∑5
i=1 ip2,i, all of them are IID samples from a p2,

otherwise all of them are IID samples from p1.

To make our numerical results convincing, we repeat our algorithm for 100
times and compute the average regret. In each repeat, we generate p1 and p2

independently from the Dirichlet distribution Dir(1, 1, 1, 1, 1). Consider VirTS-
Bal, VirTS-Opt, VirTS-Sub and VirTS-No, which denotes VirTS with balanced,
imbalanced toward optimal arm, imbalanced toward suboptimal arm and with-
out offline logged data respectively.

Figure 1(a) shows that VirTS-Bal and VirTS-Sub have a smaller regret than
VirTS-No, while VirTS-Opt has a larger regret than VirTS-No. Namely, when
the offline logged data is imbalanced, VirTS owns a learning speed slower than
the baseline algorithm without offline logged data. Figure 1(b) shows that the
slow learning speed is caused by consuming 50 offline logged data items. This
implies that the VirTS algorithm is not robust and it is not efficient in utilizing
offline logged data. Improving the utilization efficiency is important as in many
applications collecting the offline logged data is associated with certain cost.
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Fig. 1. Impact of offline logged data on VirTS

Figure 1(c) shows the probability of selecting the optimal arm under the
VirTS-No, VirTS-Opt and VirTS-Sub algorithm respectively. When the logged
data is imbalanced, VirTS-Sub performs better than TS and VirTS-Opt for its
high possibility of choosing the optimal arm. This shows that the logged data
may cause the decision maker to miss the optimal arm.

4 VirTS-DF: Improving VirTS via Offline Data Filtering

In this section, we present the design of VirTS-DF, which addresses the limi-
tation of VirTS via filtering out some logged data that may lead the decision
maker to miss the optimal arm. In particular, instead of greedily utilize the
logged data as VirTS, we aim to filter out the logged data corresponding to
the optimal arm. Though this, only logged data corresponding to sub-optimal
arms will be utilized. One challenge is that the optimal arm is unknown. To
address this challenge, we estimate the optimal arm via the posterior means of



A Thompson Sampling Approach to Unifying Causal Inference 261

the reward means of arms. More specifically, we estimate the reward mean of
each arm via its posterior mean, and the arm with the largest posterior mean is
estimated as the optimal arm. Algorithm 2 summarizes the above ideas, where
ψ̂t(i, ai,xi, yi, S̃, {P0(·; a,xt),∀a}) is the data filtering algorithm. It calculates
the posterior of the reward means via first generating a sample of the reward
distribution from its posterior and then using the reward distribution sample to
calculate a reward mean.

Algorithm 2: VirTS-DF
1 S0 ← ∅, H0 ← ∅
2 for t = 1 to T do
3 Observe context xt, set S ← ∅
4 while true do
5 Obtain SelectedData by step 5-6 of Algorithm 1

6 if SelectedData �= ∅ and ψ̂t(SelectedData, St−1 ∪ S) == 1 then
7 S ← S ∪ {SelectedData}
8 else
9 break

10 Execute step 11-12 in Algorithm 1

11 Function ψ̂t(i, ai,xi, yi, S̃, {P0(·; a,xt), ∀a}) :

12 W ← S̃ ∪ Ht−1

13 foreach a ∈ A do
14 Ha,xt ← {(i, ai,xi, yi)|(i, ai,xi, yi) ∈ W, ai=a,xi = xt}
15 Calculate the posterior Pa(·|Ha,xt) based on P0(·; a,xt) and Ha,xt

16 pa ∼ Pa(·|Ha,xt), ra ← ∫
rdpa(r)

17 â∗
t ← arg maxa∈A ra

18 if xi = xt and ai �= â∗
t then

19 return 1
20 else
21 return 0

5 Experiments on Real-world Data

5.1 Experimental Settings

We conduct experiments on two datasets from Amazon1 and MovieLens2. These
two datasets consists of ratings of movies. The rating is cardinal of five levels
ranging from 1 to 5. For fair comparison with the baseline in [6], we process
the data following the same procedures as that of [6]. In the end, we process
1 https://snap.stanford.edu/data/web-Movies.html.
2 https://grouplens.org/datasets/movielens/.

https://snap.stanford.edu/data/web-Movies.html
https://grouplens.org/datasets/movielens/
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the data to a setting with 20 arms and two contexts. Every decision round, we
choose one of the two contexts uniformly at random. We compare our VirTS-DF
algorithm with three baselines: (1) TS which is the Thompson sampling without
logged data; (2) VirTS; (3) EffVirUCB which is one of the latest algorithm
that unifies causal inference and online bandit learning [6]. Similar with [6], we
use the vector [0.1, 1, ...,K −1]−α to characterize the distribution of the number
of offline logged data across arms, where α ∈ R. In particular, the arm whose
ground truth mean ranked k-th has a number of offline logged data proportional
to the k-the element of the vector [0.1, 1, ...,K − 1]−α.

5.2 Experiment Results

Extremely Imbalanced Offline Data. Figure 2 shows the regret and logged
data usage of four algorithms under extremely imbalanced offline data, i.e., α =
3. From Fig. 2(a) and (c) , one can observe that the regret curve of VirTS-DF
lies below that of VirTS on both the Amazon and Movielens dataset. In other
words, VirTS-DF has a smaller regret than VirTS, which implies that it has a
faster learn speed than VirTS. It shows the merit and necessity of data filtering.
Furthermore, VirTS-DF has a significant smaller regret than the EffVirUCB
algorithm. This shows the merit of Thompson sampling based approach over the
UCB based approach. On the Amazon dataset, the regret curve of TS lies in the
bottom. This shows that the logged data on the optimal arm disturbs the learning
speed. Furthermore, there is a room for improving our data filtering algorithm on
the Amazon dataset. However, our data filtering algorithm performs quite well
on the Movielens dataset. From Fig. 2(b) and (d), one can observe that logged
data usage curve of VirTS-DF also lies in the bottom, while the logged data usage
curve of VirTS lies in the top. This shows that VirTS-DF is highly efficiently in
utilizing the logged data. The data usage curve of VirTS-DF overlaps with that
of the EffVirUCB. This implies that VirTS-DF utilizes nearly the same amount
of logged data as EffVirUCB.

Imbalanced Offline Logged Data. Figure 3 shows the regret and logged data
usage of four algorithms under imbalanced offline logged data. From Fig. 3(a) and
(c), one can observe that the regret curve of VirTS lies above the regret curve of
TS under Amazon and MovieLens dataset respectively. This implies that VirTS
has a larger regret than that of TS algorithm under the real-world datasets. In
other words, under real-world datasets, imbalanced offline logged data makes the
learning speed of VirTS algorithm slower than that of TS which does not have
offline logged data. Furthermore, VirTS-DF has a significant smaller regret than
the EffVirUCB algorithm. This shows the merit of Thompson sampling based
approach over the UCB based approach. On the Movielens dataset, the regret
curve of TS lies in the bottom. This shows that the logged data on the optimal
arm disturbs the learning speed. Furthermore, there is a room for improving our
data filtering algorithm on the MovieLens dataset. However, our data filtering
algorithm performs quite well on the Amazon dataset. From Fig. 3(b) and (d),
one can observe that logged data usage curve of VirTS-DF also lies in the bottom,
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Fig. 2. Extremely imbalanced offline logged data (α = 3).

while the logged data usage curve of VirTS lies in the top. This shows that
VirTS-DF is highly efficiently in utilizing the logged data. The data usage curve
of VirTS-DF overlaps with that of the EffVirUCB. This implies that VirTS-DF
utilizes nearly the same amount of logged data as EffVirUCB.

Relatively Balanced Offline Data. Figure 4 shows the regret and logged data
usage of four algorithms under relatively balanced offline data. From Fig. 4(a)
and (c), one can observe that the regret curves of VirTS-DF lies nearly in the
bottom. This implies a fast learning speed of VirTS-DF. one can observe that
the regret curve of VirTS-DF lies below that of VirTS on both the Amazon and
Movielens dataset. In other words, VirTS-DF has a smaller regret than VirTS,
which implies that it has a faster learn speed than VirTS. It shows the merit
and necessity of data filtering. From Fig. 4(b) and (d), one can observe that
logged data usage curve of VirTS-DF also lies in the bottom, while the logged
data usage curve of VirTS lies in the top. This shows that VirTS-DF is highly
efficient in utilizing the logged data.

6 Related Work

Multi armed bandit [7] is a fundamental tool to study the exploration vs.
exploitation tradeoff in online decision making. Two typical algorithmic frame-
works of MAB learning include: (1) upper confidence bound (UCB) based algo-
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Fig. 3. Imbalanced offline logged data (α = 1.5).

rithmic frameworks [8], and (2) Thompson sampling based algorithmic frame-
works [9]. Each algorithmic framework has its own merits and limitations. Our
work applies Thompson sampling to unify offline causal inference and bandit
learning. Many variants of MAB has been proposed from a modeling perspective
such as combinatorial MAB [10], multi-player MAB [11], and MAB with addi-
tional information [3], etc. Our work essentially falls into the research line MAB
with additional information. In particular, the additional information refers to
logged data. Notable works in this research include the following. Wang et al.
[12] modeled the additional information as a random variable and the random
variable reveals side information on the rewards of arms, which can be used to
improve the estimation of arm rewards. Sharma et al. [13] modeled the addi-
tional information as confidence bounds on the mean of each arm and proposed
algorithm to utilize them. Yun et al. [14] modeled side information as additional
feedbacks on arms that are not pulled. These feedbacks are assumed to be IID.
Zuo et al. [4] studied a similar additional feedback model, but they study the
problem under the multi-player MAB setting. Shivaswamy et al. [3] modeled side
information as IID rewards on arms. They identified sufficient conditions such
that offline logged data can reduce the regret MAB to a constant. Li et al. [1]
treated the additional information as the observational logged data. The obser-
vational data rise a new challenge to debias the data. They proposed a virtual
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Fig. 4. Relatively balanced logged data (α = 0.5).

play framework to utilize the logged data. Tang et al. [6] improved the work of [1]
to be more robust and efficient in utilizing logged data. Different from the above
works, our work explores Thompson sampling for unifying causal inference and
bandit learning. We show that naively applying the Thompson sampling is not
efficient and we design a data filtering algorithm to improve the efficiency.

7 Conclusion

This paper presents a Thompson sampling approach to unify offline causal infer-
ence and online bandit learning. In particular, we extend VirUCB from UCB
based online decision making to Thompson sampling based online decision mak-
ing, which leads to improved accuracy. We first show that naively applying
Thompson sampling to the VirUCB framework is not effective and we reveal
fundamental insights on why it is not effective. Based on these insights, we
design a filtering algorithm to filter out the logged data corresponding to the
optimal arm. To address the challenge that the optimal arm is unknown, we
estimate it through the posterior of the reward mean. Putting them together,
we obtain our VirTS-DF algorithm. Extensive experiments on two real-world
datasets validate the superior performance of VirTS-DF.
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Abstract. Federated learning (FL) enables collaborative learning between par-
ties, called clients, without sharing the original and potentially sensitive data.
To ensure fast convergence in the presence of such heterogeneous clients, it is
imperative to timely select clients who can effectively contribute to learning. A
realistic but overlooked case of heterogeneous clients areMavericks, who monop-
olize the possession of certain data types, e.g., children hospitals possess most of
the data on pediatric cardiology. In this paper, we address the importance and
tackle the challenges of Mavericks by exploring two types of client selection
strategies. First, we show theoretically and through simulations that the common
contribution-based approach, Shapley Value, underestimates the contribution of
Mavericks and is hence not effective as a measure to select clients. Then, we
propose FEDEMD, an adaptive strategy with competitive overhead based on the
Wasserstein distance, supported by a proven convergence bound. As FEDEMD
adapts the selection probability such that Mavericks are preferably selected when
the model benefits from improvement on rare classes, it consistently ensures the
fast convergence in the presence of different types of Mavericks. Compared to
existing strategies, including Shapley Value-based ones, FEDEMD improves the
convergence speed of neural network classifiers with FedAvg aggregation by
26.9% and its performance is consistent across various levels of heterogeneity.

Keywords: Federated learning · data heterogeneity · client selection · shapley
value · wasserstein distance

1 Introduction

Federated Learning (FL) enables clients (either individuals or institutes who own data)
to collaboratively train a global machine learning models by exchanging locally trained
models instead of data [16,18]. Thus, Federated Learning allows the training of mod-
els when data cannot be transferred to a central server and is hence often a suitable
alternative for medical research and other domains, such as finance, with high privacy
requirements. The effectiveness of FL, in terms of accuracy and convergence, highly
depends on how the local models are selected and aggregated.
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In FL, clients tend to own heterogeneous datasets [14] rather than identically and
independent distributed (i.i.d.) ones. The prior art has recently addressed the challenge
of heterogeneity from either the perspective of skewed distribution [28] or skewed quan-
tity [23] among all clients. However, a common real-world scenario, where one or a
small group of clients monopolize the possession of a certain class, is universally over-
looked. For example, in the widely used image classification benchmark, Cifar-10 [12],
most people can contribute images of cats and dogs. However, deer images are bound to
be owned by comparably few clients. We call these types of clientsMavericks. Another
relevant example, shown in Fig. 1, arises from learning predictive medicine from clinics
who specialize in different conditions, e.g., AIDS and Amyotrophic Lateral Sclerosis,
and own data of exclusive disease types. Without involving Mavericks into the training,
it is impossible to achieve high accuracy on the classes for which they own the majority
of all training data, e.g., rare diseases.

Fig. 1. Illustration of Mavericks.

Given its importance, it is not well
understood when to best involve Maver-
icks in FL training, because the effective-
ness of FL, in terms of accuracy and con-
vergence, highly depends on how those
local models are selected and aggre-
gated. The existing client selection1 con-
siders either the contribution of local
models [3] or difference of data dis-
tributions [19]. The contribution-based
approaches select clients based on contribution scores preferring clients with higher
scores [7], whereas the distance-based methods choose clients based on the pairwise
feature distance. Both types of selection methodologies have their suitable application
scenarios and it is hard to weigh the benefits of one over the other in general.

In this paper, we aim to effectively select Mavericks in FL so that users are able
to collaboratively train an accurate model in a low number of communication rounds.
We first explore Shapley Value as a contribution metric for client selection. Although
Shapley Value is shown to be effective in measuring contribution for the i.i.d. case,
it is unknown if it can assess the contribution of Mavericks and effectively involve
them via the selection strategy. Moreover, we propose FEDEMD, which selects clients
based on Wasserstein distance [2] of the global distribution and current distribution. As
FEDEMD adapts the selection probability such that Mavericks are preferably selected
when the model benefits from improvement on rare classes, it consistently ensures the
fast convergence in the presence of different types of Mavericks.

Our main contributions for this work can be summarized as follows. i)We explore
the effectiveness of both contribution-based and distance-based selection strategies for
Mavericks. ii) Both our theoretical and empirical results show that the contribution
of clients with skewed data or very large data quantity is measured below average by
Shapley Value. iii) We propose FEDEMD, a novel adaptive client selection based on
the Wasserstein distance, derive a convergence bound, and show that it significantly
outperforms SOTA selection methods in terms of convergence speed across different
scenarios of Mavericks.

1 Note that here we only discuss selection on statistical challenges, the selections considering
system resources, e.g., unreliable networks are left for other works.
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2 Related Studies

Contribution Measurement. Although the self-reported contribution evaluation [7] is
easy to implement, it is fragile too dishonest parties. Besides, existing work on con-
tribution measurement can be categorized into two classes: i) local approach: clients
exchange the local updates, i.e., model weights or gradients, and measure the contribu-
tion of each other, e.g., by creating a reputation system [11], and ii) global approach:
all clients send all their model updates to the federator who in turn aggregates and
computes the contribution via the marginal loss [1,25]. Prevailing examples of glob-
ally measuring contribution are Influence [1] and Shapley Value [22,25]. The prior art
demonstrates that Shapley Value can effectively measure the client’s contribution for
the case when client data is i.i.d. or of biased quantity [22]. A work [24] has proposed
federated Shapley Value to capture the effect of participation order on data value. The
experimental results indicate that Shapley Value is less accurate in estimating the con-
tribution of heterogeneous clients than for i.i.d. cases. However, there is no rigorous
analysis on whether Shapley Value can effectively evaluate the contribution from het-
erogeneous users with skewed data distributions.

Client Selection. Selecting clients within a heterogeneous group of potential clients
is key to enabling fast and accurate learning based on high data quality. The state-of-
the-art client selection strategies focus on the resource heterogeneity [10,21] or data
heterogeneity [3,4,14]. In case of data heterogeneity, which is the focus of our work,
selection strategies [3,4,8] gain insights on the distribution of clients’ data and then
select them in specific manners. Goetz et. al [8] apply active sampling and Cho et. al
[4] use Power-of-Choice to favor clients with higher local loss. TiFL [3] considers both
resource and data heterogeneity to mitigate the impact of stragglers and skewed distri-
butions. TiFL applies a contribution-based client selection by evaluating the accuracy
of selected participants each round and chooses clients of higher accuracy. FedFast [19]
chooses classes based on clustering and achieves fast convergence for recommendation
systems. One recently work [17] focuses on reduce wall-clock time for convergence
under high degrees of system and statistical heterogeneity. However, there is no selec-
tion strategy that addresses the Maverick scenario.

3 Federated Learning with Mavericks

In this section, we first formalize a Federated Learning framework withMavericks. Then
we rigorously analyze the contribution of clients based on Shapley Value and argue that
the contribution of Mavericks is underestimated by the Shapley Value, which leads to a
severe selection bias and a suboptimal integration ofMavericks into the learning process.

Suppose there are a total of N clients in a federated learning system. We denote
the set of possible inputs as X and the set of L class labels as Y = {1, 2, ..., L}.
Let f : X −→ P be a prediction function and ω be the learnable weights of the
machine learning tasks, the objective is then defined as:minL(ω) = min

∑L
l=1 p(y =

l)Ex|y=l [log fl(x,ω)].
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The training process of a FL system has the following steps2: i) INITIALIZATION.
Initialize global model ω0 and distribute it to the available clients, i.e., a set C of N
clients. ii) CLIENT SELECTION. Enumerate the K clients C(π,ωr), selected in round
r with selection strategy π, by C1, . . . , CK . iii) UPDATE AND UPLOAD. Each client
Ck selected in round r computes local updates ωk

r and the federator aggregates the
results. Concretely, with η being the learning rate, Ck updates their weights in the r-
th global round by: ωk

r = ωr−1 − η
∑L

l=1 pk(y = l)∇ωEx|y=l [log fl(x,ωr−1)] . iv)
AGGREGATION. Client updates are aggregated to one global update. The most common
aggregation method is quantity-aware FedAvg, defined as follows with nk indicating
the data quantity of Ck: ωr =

∑K
k=1

nk
∑K

k=1 nk ωk
r . To facilitate our discussions, we also

define the following:

Local Distribution: The array of all L class quantitiesDi(y = l), l ∈ {1, .., L} owned
by client Ci.

Global Distribution: The quantity of all clients’ data by class asDg =
∑N

i=1 D
i(y =

l), l ∈ {1, .., L}.
Current Distribution at R: By summing up the class quantity of all clients’ data
reported, which have been chosen up to round R as: Dc

R =
∑R

t=1

∑
Ck∈Kt DCk .

Definition 1 (Maverick). Let YMav be the set of class labels that are primarily owned
by Mavericks. An exclusive Maverick is one client that owns one or more classes exclu-
sively. A shared Maverick is a small group of clients who jointly own one class exclu-
sively. That is:

Di =

{
{{xl, yl}i

l∈YMav
, {xl, yl}i

l/∈YMav
}, if Ci is a Maverick

{xl, yl}i
l/∈YMav

, if Ci is not a Maverick,
(1)

where Di denotes the dataset for Ci, {xl, yl}i denotes the dataset in Ci with label l.

In the rest of the paper, we assume the global distribution organized by the server’s
preprocessing has high similarity with the real-world (test dataset) distribution, which is
balanced, so that data {xl, yl}l/∈YMav

are evenly distributed across all parties, whereas
{xl, yl}l∈YMav

either belong to one exclusive Maverick or are evenly distributed across
all shared Maverick parties. We focus our analysis on exclusive Mavericks since shared
Maverick are a straightforward extension. Based on the assumptions above, we obtain
the following properties for Mavericks.

Property 1. Because the data distribution is balanced, Mavericks have a larger data
quantity than non-Mavericks. Concretely, let nn be the data quantity of a non-Maverick.
Let nm be the quantity for Mavericks, then nm = ((N/m − 1) × YMav + L) × nn,
where m is the number of Mavericks.

Property 2. Assume N > 2, the KL divergence of a Maverick’s data to the normal-
ized global distribution is expected to be larger than for a non-Maverick due to their

2 Here we assume all the clients are honest. Since we focus on the statistical challenge, the
impact of unreliable networking and insufficient computation resources is ignored.
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specific distribution, i.e., DKL(Pg||Pm) ¿ DKL(Pg||Pn), where Pm, Pn are the data
distribution with class labels for Maverick and non-Maverick, where Pg denotes for
global distribution.

3.1 Shapley Value for Mavericks

Definition 2 (Shapley Value). Let K = C(π,ωr) denote the set of clients selected in
a round including Ck,K \ {Ck} denote the setK without Ck. Shapley Value of Ck is:

SV (Ck) =
∑

S⊆K\{Ck}

|S|!(|K| − |S| − 1)!
|K|! δCk(S). (2)

Here we let δCk(S) be the Influence [1]. Influence can be defined on loss, accuracy,
etc., here we apply the most commonly used loss-based Influence written as InfS(Ck)
for set Ck.

Lemma 1. Based on Shapley Value in Eq. 2, the difference of Maverick Cm’s and non-
Maverick Cn’s Shapley Value is:

SV (Cm) − SV (Cn) =
1

|K|!
(

(|K| − 1)!(L(Cm) − L(Cn))

+
∑

S⊆S−

|S|!(|K| − |S| − 1)!(InfS(Cm) − InfS(Cn))

+
∑

S⊆S+

|S|!(|K| − |S| − 1)!(InfS(Cm) − InfS(Cn))
)

,

(3)

with S− = K \ {Cn, Cm}, S+ = K \ {Cn, Cm} ∪ CM , CM ∈ {Cn, Cm}. Note that
we simplify InfS∪Ci

(Ci) as InfS(Ci) for readability.

Comparison of Shapley Value and Influence: Rather than considering Influence for
the complete set of K clients, Eq. 3 only considers Influence on a subset S. However,
our derivations for Influence are independent from the number of selected clients and
remain applicable for subsets S, meaning that indeed the second and the third term of
Eq. 3 are negative. Similarly, the first term is negative as the loss for clients only owning
one class is higher. However, Shapley Value obtains higher values for i.i.d. clients with
large data sets than Influence sinceL(Cm) − L(Cn) increases if the distance between
Cm’s distribution and the global distribution is small, in line with a previous work [9].

Property 3. Shapley Value and Influence share the same trend in contribution measure-
ment for Mavericks.

Theorem 1. Let Cm and Cn be a Maverick and a non-Maverick client, respectively,
and denote by SVt(Ck) the Shapley value ofCk in round r. Then SV1(Cm) < SV1(Cn)
and SVt(Cm) converges towards SVt(Cn).
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(a) FMNIST-Maverick (b) Cifar-10-Maverick

Fig. 2. Relative Shapley Value during training under multiple exclusive and shared Mavericks.

We present the empirical evidences of how one or multiple Mavericks are measured
by Shapley Value. We here focus on single exclusive Mavericks and leave multiple
Mavericks, shared and exclusive, for our in-depth experimental evaluation in the supple-
mentary material. We use Fashion-MNIST (Fig. 2a) and Cifar-10 (Fig. 2b) as learning
scenarios and use random client selection with FedAvg.

Figure 2 shows the global accuracy and the relative Shapley Value during training,
with the average relative Shapley Value of the 5 selected clients out of 50 indicated by
the dotted line. The contribution is only evaluated when a Maverick is selected. Look-
ing at Fig.(2a, b), The Shapley Value of the Maverick indeed increases over time but
remains below average until round 160, providing concrete evidence of Theorem 1.
Furthermore, the accuracy increases when a Maverick is selected, indicating that Mav-
ericks contribute highly to improving the model. Thus, assigning Mavericks a lower
contribution measure is unreasonable, especially in the early stage of the learning pro-
cess. All of the empirical results are consistent with our theoretical analysis.

4 FedEMD

In this section, we propose a novel adaptive client selection algorithm FEDEMD, which
enables FL systems with Mavericks to achieve faster convergence compared with SOTA
methods, including Shapley Value-based ones. The key idea is to assign a higher proba-
bility for selecting Maverick clients initially to accelerate convergence; later we reduce
the selection probability to avoid skewing the distribution towards Maverick classes. To
measure the differences in data distributions, we adopt Wasserstein distance (EMD) [2],
which is used to characterize weight divergence in FL [27]. The Wasserstein distance
(EMD) is defined as:

EMD(Pr, Pθ) = inf
γ∈Π

∑

x,y

‖x − y‖γ(x, y) = inf
γ∈Π

E(x,y)∼γ‖x − y‖, (4)

where Π(Pr, Pθ) represents the set of all possible joint probability distributions of
Pr, Pθ. γ(x, y) represents the probability that x appears in Pr and y appears in Pθ.
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Algorithm 1: FEDEMD Clients
Selection
Data: Di for i ∈ 1, 2, ..., N .
Result: K: selected participants.

1 Set: distance coefficient β > 0;
2 initialize probability Proba1;
3 initialize current distribution D1

c ;

4 Dg ← ∑N
i=1 D

i;

5 calculate ẽmdg by Eq. 6;
6 for round r = 1, 2, ..., R do
7 Kr = rand(K,C, P robar)
8 Dr+1

c ← Dr
c +

∑r
Ck∈K DCk ;

9 calculate ẽmd
r

c by Eq. 7;
10 for client i = 1, ..., N do
11 update Probar+1 by Eq. 5

Overview. The complete algorithm is
shown in Algorithm 1, we here summa-
rize the different components that make
up the algorithm. i) Data Reporting
and Initialization (Line 1–3): Clients
report their data quantity so that the
federator is able to compute the global
data size arrayDg and initialize the cur-
rent size array D1

c .
ii) Dynamic Weights Calculation (Line
4–11): In this key step, we utilize a
light-weight measure based on EMD
to calculate dynamic selection proba-
bilities over time, which achieve faster
convergence, yet avoid overfitting, con-
cretely we compute

Probar = softmax(ẽmdg−tβẽmd
r

c)
(5)

where Probar
i is the probability for selecting Ci in round r. β is a coefficient to weigh

the global and current distance and shall be adapted for different initial distributions,
i.e., different dataset and distribution rules. ẽmdg and ẽmd

r

c are the normalized EMDs
between the global/current and local distributions (Line 5, 9), namely

ẽmdg = Norm([EMD(Dg,D
i)

∣
∣
i∈{1,...,N}]), (6)

which is constant through the learning process as long as the local distribution of clients
stays the same. The larger ẽmdg is, the higher the probability Probar

i that a client Ci is
selected to increase model accuracy (Line 11), since Ci brings more distribution infor-
mation to train ωr. However, for convergence, a smaller ẽmdc is preferred in selection,
so that ẽmdc depends on the round r:

ẽmd
r

c = Norm([EMD(Dr
c ,Di)

∣
∣
i∈{1,...,N}]), (7)

where Dr
c is the accumulated Di of selected clients over rounds (Line 8). Let l denote

one class randomly chosen by the federator except for the Maverick class fromD, here
we apply normalization: Norm(emd,D) = emd∑N

i=1 Di(y=l)/N
.

iii) Weighted Random Client Selection (Line 7): At each round r, we select clients
based on a probability distribution characterized by the dynamic weights [6] Probar:

Kr = rand(K,C, P robar). (8)

Sampling K out of N clients based on Probar has a complexity of O(K log(N/K)),
so comparably low. Thus, Mavericks with larger global distance and smaller current
distance initially are preferred to be selected. The decrease of probability for selecting
Mavericks elaborates based on the global and current distances changes over the learn-
ing procedure. As r increases, so does the impact of the current distance based on Eq. 5,
reducing the probability to select a Maverick, as intended.
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Convergence Analysis: To derive the convergence bound, we follow the set-
ting of [15]. We let Fk be the local objective of client Ck and define F (ω) �
∑N

k=1 pkFk(ω), where pk is the weight of client Ck when doing the aggregation. We
have the FL optimization framework minω F (x) = minω

∑N
k=1 pkFk(ω). We make

the L-smooth and μ-strongly convex assumptions on the functions F1, ..., FN [15,20].
Let T be the total number of SGDs in a client, E be the number of local iterations of
each client in each round. t is used to index the SGDs in each client. Thus, the relation-
ship between E, t and global round r is r = �t/E	. F ∗ and F ∗

k are the minimum values
of F and Fk. Γ = F ∗ − ∑N

k=1 pkF ∗
k is used to represent the degree of heterogeneity.

We obtain:

Theorem 2. Let ξk
t be a sample chosen from the local data of each client. For k ∈ [N ],

assume that:
E

∥
∥
Fk(ωk

t , ξk
t ) − Fk(ωk

t )
∥
∥2

2
≤ σ2

k, (9)

and
E

∥
∥Fk(ωk

t , ξk
t )

∥
∥2

2
≤ G2. (10)

Then let ε = L
μ , γ = max{8ε, E} and the learning rate ηt = 2

μ(γ+t) . We have the
following convergence guarantee for Algorithm 1.

E[F (ωT )] − F ∗ ≤ ε

γ + T − 1

(
2(Ψ + Φ)

μ
+

μγ

2
E ‖ω1 − ω∗‖22

)

,

where Ψ =
∑N

k=1 (Proba
�T/E	
k )2σk

2 + 6LΓ + 8(E − 1)2G2 and Φ = 4
K E2G2.

Since all the notations except T in Expression (2) are constants, we have O( 1
T )

convergence rate for the algorithm where limT→∞ E[F (ωT )] − F ∗ = 0.

5 Experimental Evaluation

In this section, we comprehensively evaluate the effectiveness and convergence of
FEDEMD in comparison to Shapley Value-based selection and SOTA baselines. The
evaluation considers both exclusive and shared Mavericks.

Datasets and Classifier Networks. We use public image datasets: i) Fashion-
MNIST [26] for bi-level image classification; ii) MNIST [13] for simple and fast tasks
that require a low amount of data; iii) Cifar-10 [12] for more complex task such as
colored image classification; iv) STL-10 [5] for applications with small amounts of
local data for all clients. We note that light-weight neural networks are more applicable
for FL scenarios, where clients typically have limited computation and communication
resources [19]. Thus, here we apply light-weight CNNs for all datasets.

Federated Learning System. The system considered has 50 participants with homo-
geneous computation and communication resources and 1 federator. At each round, the
federator selects 10% of clients using different client selection algorithms. The federa-
tor uses average or quantity-aware aggregation to aggregate local models from selected



Maverick Matters: Client Contribution and Selection in Federated Learning 277

clients. We set one local epoch for both aggregations to enable a fair comparison of
the two aggregation approaches. Two types of Mavericks are considered: exclusive and
shared Mavericks with up to 3 Mavericks. We demonstrate the case of single Maverick
owning an entire class of data in most of our experiments.

Evaluation Metrics. i) Global test accuracy for all classes; ii) Source recall for classes
owned by Mavericks exclusively; iii) R@99: the number of communication rounds
required to reach 99% of test accuracy of random selection results; iv) Normalized
Shapley Value ranging between [0, 1] to measure the contribution of Mavericks.

Baselines. We consider four selection strategies: Random [18], Shapley Value-based,
FedFast [19], and TiFL [3]3 under both average and quantity-aware aggregation meth-
ods. Further, in order to compare with state-of-the-art solutions for heterogeneous FL
that focus on the optimizer, we evaluate FedProx [14] as one of the baselines.

5.1 FedEMD Is Effective for Client Selection

(a) FMNIST-quantity (b) FMNIST-average

Fig. 3. Comparison on FEDEMD with baselines.

Figure (3a, b) show global accuracy over
rounds. First we focus on the comparison
between the contribution-based SVB and
our proposed distance-based FEDEMD.
FEDEMD achieves an accuracy close to
the maximum almost immediately for
FedAvg while SVB requires about 100
rounds (72 and 104 rounds for R@99 for
SVB and FEDEMD). For average aggre-
gation, both client selection methods have a slower convergence but FEDEMD still only
requires about half the number of rounds to achieve the same high accuracy as SVB.
Indeed, SVB fails in reaching R@99 within 200 rounds. The reason is that SVB rarely
selects the Maverick in the early phase, as the Maverick has a below-average Shapley
Value. We can also see the superiority of FEDEMD among results presented for the
baselines in the figures. The detailed analysis will be discussed together with Table 1
below.

(a) FMNIST-quantity (b) FMNIST-average

Fig. 4. Comparison on FEDEMD over different
β.

We evaluate the effects of the hyper-
parameter β in Fig. (4a, b). The server
can apply a preliminary client selection
simulation before training based on the
self-reported data size array. FEDEMD
works best when the average probability
of selecting Maverick is within [1/N −
ε, 1/N + ε] based on our observation
experiments, where ε > 0 is a task-aware

3 We focus on their client selection and leave out other features, e.g., communication accelera-
tion in TiFL. We apply distribution mean clustering for FedFast following the setting in their
paper.
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small value. In our example with Fashion-MNIST, we choose β equal to 0.008, 0.009
and 0.01, with the results displayed in Fig. 4. These three values all satisfy the average
probability above with ε ≥ 0.002. The results shows that all of the 3 numbers work
for Fashion-MNIST, verifying the effectiveness of FEDEMD for various values of the
hyper-parameter. However, there are also values of β that are not suitable, e.g., β = 0.1
for which the Maverick is selected too rarely.

Comparison with Baselines. We summarize the comparison with the state-of-the-
art methodologies in Table 1. The reported R@99 is averaged over three replications.
Note that we run each simulation for 200 rounds, which is mostly enough to see the
convergence statistics for these lightweight networks. The rare exceptions when 99%
maximal accuracy is not achieved for random selection are indicated by > 200.

Due to its distance-based weights, FEDEMD almost consistently achieves faster
convergence than all other algorithms. The reason for this result is that FEDEMD
enhances the participation of the Maverick during the early training period, speeding
up learning of the global distribution. For most settings, the difference in convergence
rounds is considerable and clearly visible.

Table 1. Convergence rounds of selection strategies in R@99 Accuracy, under average and
quantity-aware aggregation (Every result is averaged over three runs and is marked with stan-
dard deviation among all of the replication results).

Average Aggregation
Dataset

Random FedProx TiFL FedFast SVB FEDEMD

MNIST 133 ± 44.47 118 ± 8.50 111 ± 21.66 >200 ± NA 147 ± 52.50 99 ± 24.70

Fashion-MNIST 144 ± 51.47 135 ± 20.59 140 ± 8.62 >200 ± NA 103 ± 56.00 131 ± 37.29

Cifar-10 141 ± 6.11 164 ± 15.00 147 ± 10.97 >200 ± NA 184 ± 9.24 140 ± 15.13

STL-10 122 ± 49.94 186 ± 4.36 125 ± 57.50 171 ± 16.74 190 ± 3.06 96 ± 4.93

Quantity-aware Aggregation
Dataset

Random FedProx TiFL FedFast SVB FEDEMD

MNIST 72 ± 29.26 51 ± 8.19 84 ± 37.99 >200 ± NA 49 ± 2.52 40 ± 5.57

Fashion-MNIST 111 ± 37.75 92 ± 12.12 146 ± 38.18 >200 ± NA 80 ± 40.13 80 ± 10.79

Cifar-10 143 ± 26.29 144 ± 39.46 120 ± 9.45 174 ± 9.50 132 ± 26.50 107 ± 10.58

STL-10 180 ± 0.58 179 ± 6.24 >200 ± NA 153 ± 34.88 181 ± 10.97 95 ± 2.65

The only exception are easy tasks with simple averaging rather than weighted,
e.g., Fashion-MNIST with average aggregation, which indicates our distribution-based
selection method is especially useful for data size-aware aggregation and more complex
tasks. Quantity-aware aggregation nearly always outperforms plain average aggregation
as its weighted averaging assigns more impact to the Maverick. While such an increased
weight caused by larger data size can lead to a decrease in accuracy in the latter phase
of training, Mavericks are rarely selected in the latter phase by FEDEMD, which suc-
cessfully mitigates the effect and achieves a faster convergence.

In order to demonstrate the comparison of FEDEMD and SVB across multiple
datasets, here we also provide the experimental results withMNIST and Cifar-10, which
is inline with our conclusion of Fashion-MNIST in Fig. 4 for better convergence perfor-
mance of FEDEMD.
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(a) MNIST-average (b) MNIST-quantity (c) Cifar-10-average (d) Cifar-10-quantity

Fig. 5. Comparison on FEDEMD with SVB.

5.2 FedEMD Works for Multiple Mavericks

We explore the effectiveness of FEDEMD on both types of Mavericks: exclusive and
shared Mavericks.

(a) Exclusive Mavericks

(b) Shared Mavericks

Fig. 6. Convergence rounds R@99 for
multiple Mavericks.

We vary the number of Mavericks between
one and three and use the Fashion-MNIST
dataset. The Maverick classes are ‘T-shirt’,
‘Trouser’, and ‘Pullover’. Results are shown with
respect to R@99.

Figure (6a) illustrates the case of multiple
exclusive Mavericks. For exclusive Mavericks,
the data distribution becomes more skewed as
more classes are exclusively owned by Maver-
icks. FEDEMD always achieves the fastest con-
vergence, though its convergence rounds increase
slightly as the number of Mavericks increases,
reflecting the increased difficulty of learning in
the presence of skewed data distribution. Fed-
Fast’s K-mean clustering typically results in a
cluster of Mavericks and then always includes at
least one Maverick. In some initial experiments,
we found that constantly including a Maverick
hinders convergence, which is also reflected in
FedFast’s results. TiFL outperforms FedAvg with random selection for multiple Mav-
ericks. However, TiFL’s results differ drastically over runs due to the random factor in
its local computations. Thus, TiFL is not a reliable choice for Mavericks. Comparably,
FedProx tends to achieve the best performance among the SOTA algorithms but still
exhibits slower convergence than FEDEMD as higher weight divergence entails higher
penalty on the loss function.

For shared Mavericks, a higher number of Mavericks indicates a more balanced
distribution. Similar to the exclusive case, FEDEMD has the fastest convergence and
FedFast again trails the others. The improvement of FEDEMD over the other methods
is less visible due to the limited advantage of FEDEMD on balanced data. A higher
number of Mavericks resembles the case of i.i.d.. Random performs the most similar to
FEDEMD for shared Mavericks, as random selection is best for i.i.d. scenarios. Note
that the standard deviation of FEDEMD is smaller, implying a better stability.
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6 Conclusion

Client selection is key to successful FL as it enables maximizing the usefulness of
different diverse datasets. In this paper, we highlighted that existing schemes fail when
clients have heterogeneous data, in particular if one class is exclusively owned by one or
multiple Mavericks. We first explore Shapley Value-based selection, theoretically show-
ing its limitations in addressing Mavericks. We then propose FEDEMD that encourages
the selection of diverse clients at the opportune moment of the training process, with
guaranteed convergence. Evaluation results on multiple datasets across different sce-
narios of Mavericks show that FEDEMD reduces the communication rounds needed
for convergence by 26.9% compared to the state-of-the-art client selection methods.
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Abstract. Statistical heterogeneity, especially feature distribution
skewness, among the distributed data is a common phenomenon in prac-
tice, which is a challenging problem in federated learning that can lead
to a degradation in the performance of the aggregated global model. In
this paper, we introduce pFedV, a novel approach that leverages a vari-
ational inference perspective by incorporating a variational distribution
into neural networks. During training, we add the KL-divergence term to
the loss function to constrain the output distribution of layers for feature
extraction and personalize the final layer of models. The experimental
results demonstrate the effectiveness of our approaches in mitigating the
distribution shift in feature space in federated learning.
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1 Introduction

Despite the impressive results that deep learning-based approaches have achieved
in recent decades, training deep learning models is data-driven and intensively
depends on the availability and accessibility of high-quality data. Conventionally,
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data is brought to the computation by following a data centralization approach,
leading to privacy breaches and the loss of data sovereignty. As the related issues
are increasingly aware, data protection legislation has emerged worldwide in the
last few years, e.g., the General Data Protection Regulation (GDPR) in the
European Union explicitly prohibits organizations from exchanging data with-
out clear consent from users. Besides, commercial competition and complicated
administrative procedures also hinder data integration and data sharing, which
makes data exist in the form of isolated islands [22]. As a promising paradigm to
provide privacy protection in machine learning, federated learning [16] has been
widely adopted in academia and industry. Federated learning enables the par-
ticipating clients collaboratively train a global machine learning model without
revealing local private data. Due to its privacy-preserving characteristics, feder-
ated learning is increasingly drawing attention from a wide range of applications
and domains such as healthcare [18], finance [22,23], and IoT [8].

Despite federated learning’s benefits, its continued popularity is usually
accompanied by new emerging problems [6,11], such as the lack of trust among
participants, the vulnerability exposed to privacy inferences, the limited or unre-
liable connectivity, etc. Among these, statistical heterogeneity is considered to
be the most challenging problem. It is also called the non-IID problem, where
data are not independent and identically distributed across clients. For example,
medical radiology images in different hospitals are acquired by different devices
using disparate standards [14]. Studies have shown that non-IID data can lead
to poor accuracy and slow convergence, sometimes even divergence, if with-
out appropriate optimization algorithms [13]. In practice, the non-IID scenarios
are complicated to be categorized, but statistical heterogeneities with regard to
label distribution, feature distribution and quantity are mainly being studied.
To tackle the aforementioned challenges, it is necessary to adopt appropriate
optimization algorithms for federated learning.

In this work, we mainly focus on the feature distribution skewness problem.
The main contributions of our paper could be summarized as follows: (1) we
propose a novel FL training strategy, called pFedV to mitigate the covariance
shift, i.e., one of the major problems of statistical heterogeneity. The last layer
for feature extraction is modified before the classification layers in the neural
networks, instead of compressing the input into the hidden feature space, that
layer generates the variational distribution of the feature maps. A regularization
term is added in the loss function for the local training in federated learning,
i.e., the KL-divergence term makes the variational distribution of the local model
close to the output distribution of the global model or a certain pre-defined dis-
tribution. We design two variational distribution models, a strong restricted one
using zero-mean, unit-variance Gaussian for all clients and another one using
the distribution in the global model. (2) Furthermore, we adopt the idea of
FedBN [14] to train the last classification layer individually at each client, as a
personalized technique for federated learning. (3) Finally, we evaluate our pro-
posed approaches on five related but heterogeneous data sets and our empirical
studies validate pFedV’s superior performance on non-IID data.
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2 Related Work and Background

2.1 Federated Learning

Unlike conventional machine learning where training is centralized and the
data is collected from different sites and stored in central storage [1], feder-
ated learning is a distributed machine learning paradigm and trains a global
model across data generated from distributed clients participating in each com-
munication round. A typical federated learning system consists of a server and
clients, where the server orchestrates the training process by repeating the
steps including client selection, model distribution, client training and model
aggregation [6], and the clients train the global model with local data. The
server aggregates the collected client models according to a specified strategy
and the aggregated global model is expected to surpass the performance of
independently trained client models. Considering multi-class classification prob-
lem, given K clients with client i holding a dataset Di := {(x(n)

i , y
(n)
i )}Ni

n=1,
where x(n)

i ∈ X ⊆ R
D and y

(n)
i ∈ {1, 2, · · · , C}, Ni is the number of data on

client i, D is the number of input dimension and C is the number of classes,
federated learning can basically be formalized as an optimization problem to
minimize the objective function min F(θ) =

∑K
i=1 πiFi(θ), where θ, πi and

Fi are the global model, the relative impact and the local objective function
Fi(θ) = 1

Ni

∑n=Ni

n=1 L(θ,x(n)
i , y

(n)
i ) for client i, respectively. The relative impact

πi can be user-defined with
∑K

i=1 πi = 1 normally as Ni/N , where N =
∑K

i=1 Ni

is the total number of samples. FedSGD [16] used stochastic gradient decent as
the optimizer and updated the model on the server for each local training step.
However, this approach has a main obstacle i.e., high communication cost. and
potential risk of data leakage from gradients [5]. To reduce the communication
cost and prevent privacy leakage, FedAvg [16], instead of the one-step gradient
descent scheme, is an aggregation strategy that updates models with multiple
steps.

2.2 Statistical Heterogeneity

The local objective function Fi is often defined as the empirical risk over local
data and is the same across all clients, while the local data distribution Pi(X,Y )
often varies among different clients capturing data heterogeneity. The joint dis-
tribution Pi(X,Y ) can be rewritten as Pi(X|Y )Pi(Y ) and Pi(Y |X)Pi(X) and
Kairous et al. simplified the non-identical distributions into five categories,
namely (1) covariate shift as feature distribution skew, (2) prior probability
shift as label distribution skew, (3) concept shifts including same label- but dif-
ferent feature distributions and same feature- but different label distributions,
and (4) quantity skew [6]. In practice, the non-identical distribution can be com-
bined and even more complicated. Studies [13] show that the performance on the
convergence rate and the accuracy of FedAvg on heterogeneous data are signifi-
cantly reduced, compared to the results on homogeneous data. Empirical works
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address non-IID issues by modifying operations in different steps. For example,
FedProx [12] used a proximal term in the local training stage as a regularization
term to suppress the divergence of model updates. FedNova [21] improved the
aggregation stage by considering different parties may conduct different numbers
of local steps. Li et al. [10] proposed comprehensive data partitioning strategies to
cover the typical non-IID data cases. To mitigate such performance degradation,
FedBN [14] is designed to alleviate the feature shift before averaging models via
local batch normalization. Anit et al. [20] chose to add a proximal item to reduce
the difference between the global model and the local model parameters, avoid-
ing the failure of convergence during training. Mou et al. [17] demonstrated that
additional small balanced datasets can be used to overcome model differences
caused by class imbalance. Sai et al. [7] proposed SCAFFOLD that uses a control
variable (variance reduction) to correct for client drift in local updates, which
is claimed to reduce the number of communication rounds required for training
and the impact due to data heterogeneity or client sampling. Recently, a lot of
work apply the Bayesian framework to federated learning. Instead of maximiz-
ing the log-likelihood log p(D|θ), the Bayesian framework is to find the posterior
of model parameters as p(θ|D) = p(D|θ)p(θ)

p(D) , where p(θ) is the prior of model
parameters, p(D|θ) is the likelihood. FedBE [4] adopted Bayesian inference to
achieve robust aggregation of local models through Bayesian model ensemble. It
uses Gaussian or Dirichlet distributions and Monte to efficiently model data dis-
tributions. FOLA [15] proposed to approximate the client and server posteriors
using online Laplacian approximation, and employed a multivariate Gaussian on
the server side to construct and maximize the global posterior, thereby reducing
aggregation errors and local forgetting due to large model differences. pFed-
Bayes [24] introduced the uncertainty of weights, i.e., Bayesian neural networks
(BNNs) [3], into the federated learning system. Each client achieves personal-
ization by balancing between the construction error of its own private data and
the KL divergence with the global model.

2.3 Variational Inference

Variational autoencoder (VAE) [9] is a generative model that consists of an
encoder yielding approximate posterior distribution qθ(z|x) and a decoder yield-
ing approximate likelihood distribution pφ(x|z). The objective of VAE is to min-
imize the KL-divergence between approximate posterior and real posterior as
shown in Eq. 1.

DKL(qθ(z|x)||p(z|x)) = −
∫

qθ(z|x) log(
p(z|x)
qθ(z|x)

)dz (1)

The evidence lower bound (ELBO) is defined as the boxed part on the right-
hand side in Eq. 2. We note that the log probability of the data on the left-hand
side in Eq. 2 is a constant, therefore maximizing the ELBO is equal to minimizing
the KL-divergence.
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log p(x) = DKL(qθ(z|x)||p(z|x)) +
∫

qθ(z|x) log(
pφ(x|z)p(z)

qθ(z|x)
)dz (2)

The ELBO can be derived into two terms, namely, the KL-divergence term
and the reconstruction term as shown in Eq. 3. The KL-divergence term is a
constraint on the form of the approximate posterior as a regularizer while the
reconstruction term is a measure of the likelihood of reconstructed data output
at the decoder. The detailed derivation is available in [19].

ELBO =
∫

qθ(z|x) log(
p(z)

qθ(z|x)
)dz +

∫

qθ(z|x) log(pφ(x|z))dz (3)

= DKL(qθ(z|x)||p(z)) + Ez∼qθ(z|x)[log pφ(x|z)] (4)

3 Methodology

3.1 Problem Formulation

As mentioned above, we consider the horizontal federated learning scenario (i.e.,
each client shares the same feature space but differs in sample ID space) with a
supervised learning task (e.g., multi-class classification). We use neural networks
for the task and formalize as a function f(x) = h(g(x)) consisting of two parts,
i.e., g(·) is the encoder function parameterized by θg that extracts input features
and the h(·) is the classifier function parameterized by θh that classifies the
extracted features. We write z = g(x) and y = h(z), where z ∈ R

M and M is
the dimension of the latent representations. Usually, deep neural networks are
formed by stacking layer upon layer. Therefore, the parameters of the encoder
and classifier can be further formulated as θg = (θ(1)g , θ

(2)
g , · · · , θ

(G)
g ) and θh =

(θ(1)h , θ
(2)
h , · · · , θ

(H)
h ), where G and H are the number of layers in the encoder

and classifier, and θ
(i)
g and θ

(j)
h denote the parameters of i-th and j-th layer in

the encoder and classifier, respectively. For the statistical heterogeneity, we focus
on feature distribution skewness, i.e., for two clients, their corresponding joint
distributions vary due to the covariate shift, i.e., Pi(X,Y ) �= Pj(X,Y ),∀i �= j
since Pi(X) �= Pj(X),∀i �= j, assuming the conditional distribution P (Y |X) is
shared across clients.

3.2 Derivation of Variational Distribution Constraints

In our model, we denote the input and output of the neural networks as x and y
and the latent representation as z. We aim to learn the true posterior distribution
p(z|y) for a given label y, which ensures that the learned latent representation
is informative about the label and can be used to make accurate predictions on
new data. In general, it is difficult to infer the posterior of latent variable z for a
given label y when the likelihood is non-conjugated to the prior. To circumvent



288 Y. Mou et al.

this issue, we resort to the variational inference [2] which uses a variational dis-
tribution to approximate the true posterior. Following the standard variational
inference, the objective is to minimize the KL divergence between the variational
distribution qθ(z)1 and the true posterior (as shown in Eq. 5) to learn a vari-
ational distribution that is as close as possible to the true posterior, which is
equivalent to maximizing the evidence lower bound (ELBO).

DKL(qθ(z)||p(z|y)) = −
∫

qθ(z) log(
p(z|y)
qθ(z)

)dz (5)

Similar to the derivation of the ELBO of VAE, we derive the ELBO2 as in Eq. 6.
Basically, ELBO consists of two parts: on the one hand, it enforces the model to
fit the data better with the log-likelihood term; and on the other hand, it makes
the variational distribution qθ(z) as close as possible to the prior p(z) by using
Kull-back-Leibler (KL) divergence.

ELBO = Ez∼qθ(z) log p(y|z) − DKL(qθ(z)‖p(z)), (6)

Our goal is to find the optimal variational distribution of the latent repre-
sentation z. Specifically, we assume the variational distribution of z is a Gaus-
sian distribution qθ(z) = N (z|μθg

(x),diag(σ2
θg

(x))) where diag(·) denotes the
diagonalization of a vector. The mean and variance are modeled by an encoder
whose parameters are denoted as θg. After drawing a z from the corresponding
approximate variational distribution from qθ(z), known as the reparameteriza-
tion trick [9], we can classify the current sample with the help of a classifier
constructed by another neural network ŷ = h(z) where ŷ is the predicted class
label and h(·) denotes the classifier parameterized by θh. We replace the log-
likelihood term in 6 by the cross entropy loss in our case and finally obtain the
following objective for our model, where CE is the cross entropy loss:

θ∗
g , θ∗

h = argmin
θg,θh

Eqθg (z)
CE(ŷθh

(z), y) + αDKL(qθg
(z)‖p(z)), (7)

Comparing to conventional classification model training, a KL divergence
term is added to the objective function as shown above. We add a weight factor
α to the KL term, which is a hyperparameter, to adjust the strength of the
penalty. In our case, we set it to 0.5 in all experiments related to variational
distribution.

3.3 Personalized Federated Learning with Variational Distribution
Constraints

In this section, we present our proposed approach, personalized federated learn-
ing with variational distribution constraints (pFedV). Figure 1 gives the overview
of pFedV.
1 The variational distribution is the output of the encoder parameterized by θ, which

is equivalent to θg in the previous section.
2 We omitted x in the formula since all distributions are given the condition of x, e.g.,

qθ(z) = qθ(z|x).
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Fig. 1. Overview of pFedV: At each communication round, the server sends the global
model to the clients participating in the local training; During the local training, models
are trained with the above-mentioned loss function; After training for a given number of
epochs, model updates are sent back to the server for the model aggregation, in which
the last layer for classification is reserved at each client if the personalized setting is
chosen

Like conventional federated learning systems, a server is employed for orches-
trating the federated learning process repeating the steps of model update and
aggregation. The blue bidirectional arrows between the server and clients indi-
cate the communication for the model update. The server sends the global model
to the clients at the beginning of each communication round and the clients send
local models to the server after the local training.

The variational distribution constraints and loss functions described above
are applied during the local training. We make an assumption for the variational
distribution, i.e., the Gaussian distribution. The encoder of the neural network
is modified to output the mean and standard deviation (for the non-negativity
guarantee of standard deviation, we use log variance instead).

For the construction of the prior, we utilize two different strategies: (1) a
fixed prior distribution like the classical variational inference and (2) contin-
uous update. For the fixed prior solution, we use strong prior constraints, i.e.,
zero-mean, unit-variance Gaussian distribution for all clients. For the continuous
update solution, we abstract the aggregated knowledge into the prior distribu-
tion and use the output of the variational distribution of the global model,
i.e., the prior is constantly updated as the server communicates with clients
in our federated learning framework. Specifically, we assume the prior of z is
also a Gaussian distribution p(z) = N (z|μθs

(x),diag(σ2
θs

(x))). The mean and
variance are modelled by another encoder whose parameter is denoted as θs.
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With the construction of prior and variational posterior by two encoders, the
KL divergence term in the loss function makes the posterior of extracted fea-
tures from clients close to the global one.

Furthermore, the personalized variant of federated learning is proposed for
personalizing the global model for each client in the federation to overcome data
heterogeneity issues. In our approaches, we propose to reserve the parameters of
the last layer of the classifier θ

(H)
h to achieve personalization.

4 Experiments

4.1 Experimental Settings

To evaluate the performance of our proposed approaches in the above method-
ologies in the non-IID scenario of federated learning. we conducted extensive
experiments in comparison with baselines, i.e., single-site training and FedAvg,
FedProx, FedBN and FOLA. Additionally, we report the results of the conducted
experiments and analyze the effect of variational distribution constraints.

Datasets. To demonstrate the feature distribution skewness problem, we con-
duct all experiments on Digits-Five dataset, namely MNIST, SVHN, USPS, Syn-
thetic Digits and MNIST-M. They all contain digit images and are for the multi-
class classification task. Figure 2 shows some sample images of the Digits-Five
dataset, from which we can observe the non-IID phenomenon in feature space,
i.e., the digits from different datasets vary considerably.

Model. For all experiments presented in this section, we implement a simple
convolutional neural network model for classification with three convolutional
layers with 5 × 5 kernel (the first and the second with 64 channels and the last
with 128 channels, each followed by batch normalization, 2 × 2-max pooling
and ReLU activation) and three fully connected layers with batch normalization
followed by ReLU activation (the first with 2048 units, the second with 512 units
and the last with 10 units a.k.a. logits). In between, the extracted feature maps
by convolutional neural networks are flattened into a 6272-dimensional vector.
For variational distribution, we doubled the channels of the third convolutional
layer, that the first half represents the mean and the second half represents the
variance of the encoder output, and by using the reparameterization technique
draw the feature maps following corresponding distributions.

Setups. MNIST, SVHN, USPS, Synthetic digits, and MNIST-M consist of the
training sets of 60000, 73257, 7291, 479400, and 60000 examples and test sets
of 10000, 26032, 2007, 9553, 10000, respectively. In our experiments, we set the
quality of data at each client to 7291 and models evaluate models on the original
test sets. The image size and the number of channels of images are different
from each dataset. We resize all data into the size of 28 × 28 and the number of
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channels of input data is set to 3. For single-site training, models are trained for
50 epochs, while in federated settings the number of communication rounds is set
to 50 and at each communication round, models are trained for one epoch at each
client. All experiments adopt the stochastic gradient descent (SGD) optimizer
with a learning rate of 0.01 and batch size of 32. For FOLA, the weight factor
of prior task loss is set to 0.5 (a.k.a., CSD importance) and same for the weight
factor of KL divergence term our proposed pFedV. Since the classes are relatively
balanced, accuracy (in percentage) is the only metric we used to measure and
compare the performance of models trained in different ways.

Fig. 2. Example images of datasets used for feature shift (Non-IID) experiments.

4.2 Results

We conduct experiments of single-site training, i.e., models are trained on each
client individually and tested on the test sets of MNIST, SVHN, USPS, Syn-
thetic Digits and MNIST-M. The results of the accuracy of single-site trained
models are illustrated in Table 1. Each row represents a model trained on the
corresponding dataset individually. We can observe that the high-performance
values always occur on the diagonal, i.e., models fit well on the test set of the
dataset that is the same as that used for training. Of course, there is the possibil-
ity of overfitting due to small data sets. We also found that feature complexity is
also one of the factors to influence model performance. For example, MNIST and
USPS are two datasets with relatively simple features, while SVHN is much more
complex as it often occurs more than one digit in one single picture obtained from
street view. The interesting result in this table is that the MNIST accuracy of the
model trained on MNIST-M is even higher than MNIST-M itself since MNIST-
M extended MNIST dataset with randomly extracted patch background. The
model trained on MNIST-M has learned the basic features of MNIST with addi-
tional generalized feature abstraction and thus works even better on MNIST.
However, single-site trained models are overall poor in generalization to other
datasets. For example, the second column shows that models trained on other
datasets can hardly perform well on SVHN test set, e.g., only 7.95% by the
model trained on USPS.

To evaluate the contribution of our approaches to overcoming the non-IID
problem in federated learning setting, we compare the results with baselines such
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Table 1. Results of models via single site training on test sets of MNIST, SVHN,
USPS, Synthetic Digits and MNIST-M

Model (trained on) MNIST SVHN USPS Synthetic Digits MNIST-M

MNIST 98.72 19.73 28.50 14.92 37.28

SVHN 51.48 85.18 64.52 81.43 37.11

USPS 24.41 7.95 97.11 23.76 18.60

Synth 82.63 77.97 84.26 95.04 54.19

MNIST-M 96.63 30.17 56.05 41.94 93.62

as FedAvg, FedProx and FedBN, as well as one of the other Bayesian methods
FOLA, as illustrated in Table 2. In general, we can see the effectiveness of vari-
ational distribution constraints as the results of FedV that without the person-
alized layer is also improved on all test sets, which also shows the generalization
property of the variational distribution constraints. However, compared with
continuously updated prior, the fixed prior does not provide a stable generaliza-
tion guarantee, for example, it is even worst than FedAvg on SVHN. Overall, our
pFedV outperforms others as it achieved 2.36%, 1.05%, 1.74% 1.79% improve-
ment on SVHN, USPS, Synthetic Digits and MNIST-M and slight improvement
on MNIST in comparison with FedAvg.

Table 2. Results of methods on test sets of MNIST, SVHN, USPS, Synthetic Digits
and MNIST-M in the federated setting

Methods MNIST SVHN USPS Synthetic Digits MNIST-M

FedAvg 98.86 83.23 96.16 93.43 90.56

FedProx 98.61 83.36 96.01 93.66 90.59

FedBN 98.67 86.58 97.21 94.06 91.79

FOLA (CSD 0.5) 98.83 86.46 96.86 94.67 90.50

FedV 98.74 84.80 96.71 94.14 90.93

FedV (Gaussian prior) 98.60 83.04 96.51 93.54 90.46

pFedV 98.91 85.99 97.21 95.17 92.35

pFedV (Gaussian prior) 98.86 83.65 97.21 94.69 91.74

5 Conclusion

In this paper, we propose a novel federated learning training strategy pFedV to
tackle the non-IID problem in federated learning, in particular the covariate shift,
a.k.a. feature distribution skewness. Through empirical results, we demonstrate
that the proposed approaches vastly improved the federated learning accuracy
performance under the scenario of non-IID problem where feature distributions
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vary across the clients and the results are comparable to state-of-the-art methods
like FedBN and FOLA. We have shown the generalization capability of varia-
tional distribution in federated learning and the advance of it combined with
personalization. For future work, it deserves further investigation of the impact
of the combination of multiple variational distribution constraint layers, since
the framework is scalable. Besides, it will be interesting to explore more non-IID
scenarios and extend to more general settings in addition to feature distribution
skewness.
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Abstract. Due to the difficulty of collecting comprehensive data sets
(factors include limited GPS coverage and the existence of competitors),
most transition data collected from, for example, people and automobiles,
have been censored, and so record only the visits of known observable
states (locations). In this paper, we tackle the problem of estimating
Markov chain parameters from censored transition data. Our parameter
estimation method utilizes the theory of the censored Markov chain, the
Markov chain that has unobservable states. Our problem formulation
can be seen as the inverse of existing studies that construct censored
Markov chains from (original) Markov chains and unobservable states.
We confirm the effectiveness of the proposal by experiments on synthetic
and real data sets.

Keywords: probabilistic models · markov chain · censored transition
data · inverse problem

1 Introduction

Markov chain (MC) is a versatile tool for modeling dynamic systems. Markov
chain variants have been used to analyze city systems such as land cover use,
traffic, and people flow [1–3] in addition to application to queuing systems [4],
marketing [5] and biology [6].

Since the MC parameters, initial state probability and transition probability,
are unknown in practice, the parameters need to be estimated from observed
transition data. In the ideal scenario, where the visits of all states (locations)
are observable, shown in Fig. 1a, the parameters can be estimated directly from
the number of transitions between the states [7]. Unfortunately, comprehensive
data collection is rare because of factors such as limited GPS coverage and the
existence of competitors. Thus the data to be analyzed is, in practice, degraded
from the ideal data; the actual data takes the form of censored transition data
where only the visits of known observable states are recorded.

An example of censored transition data are the GPS-based trajectories pro-
vided by a taxi company. Figure 1b shows example trajectories between streets
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. Kashima et al. (Eds.): PAKDD 2023, LNAI 13936, pp. 297–308, 2023.
https://doi.org/10.1007/978-3-031-33377-4_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33377-4_23&domain=pdf
https://doi.org/10.1007/978-3-031-33377-4_23
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Fig. 1. Example of trajectory in (a) ideal setting and (b) real world setting and trips
recorded in (c) ideal setting and (d) real world setting. Green and blue arrows indicate
observed transition data in each setting. Since the visits of the unobservable states (red
circle) are censored (not observed) in (b)(d), we call the transition data in (b)(d)
censored transition data. (Color figure online)

or areas in a city made by applying map-matching to raw GPS data [8]. The
data contains only trajectories from data-provided areas, which may correspond
to prefectures or countries. Note that it does not contain trajectories from GPS-
blind areas such as tunnels and building shadows. Therefore, the visits to unob-
servable states, states that lie outside the observable area, are not recorded;
this yields censored transition data that consists of only the transitions between
observable states. Similarly, passenger trip data provided from a train company,
e.g., entrance-exit history recorded in a smart card, are also a form of censored
transition data (Fig. 1cd). Because the trips made on the other transportation
modes (competitors) such as buses, taxis, etc. are not recorded in smart card,
the card history cannot cover entire movements. Trajectories made from person
re-identification [9] are also censored transition data since only visits to areas
hosting cameras are observed. Thus many examples of censored transition data
exist, and the importance of analyzing this data is increasing.

Existing methods for estimating MC parameters from randomly missing tran-
sition data cannot work well for censored transition data since the nature of
the censored transition data is completely different; unobservable states never
appear and the number of steps censored between transitions is unknown (in
fact, infinitely many number of steps may be censored) in the censored transi-
tion data. These difficulties make it impossible to estimate transition probability
from and to unobservable states and to adopt the EM algorithm for estimating
missing values [10] since we can never know how many latent variables need to
be placed between the observed transitions.

In this paper, we tackle the problem of estimating Markov chain parameters
from censored transition data. The key to our approach is its use of the theory
of the censored Markov chain (CMC) [11–13], which can handle Markov chains
with unobservable states; this allows us to model the generative process that
yields censored transition data. We can design the loss function of the proposed
method by using the relation between the parameters of the original MC and
those of CMC. By estimating the parameters of the original MC, we can know,
for example, the preference of people for a certain path which may contain
unobservable states. Our problem can be seen as the inverse problem of existing
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works, which construct CMC from an original MC. Experiments are conducted
on synthetic and real car probe data captured in the greater Tokyo area to
confirm the effectiveness of the proposed method.

As far as we aware, this is the first study in the data mining and machine
learning community to use CMC for modeling data. Moreover, our method can be
seen as versatile since it can adopt (almost) any probabilistic model including log-
linear model and deep neural networks which can represent transition probability
and initial state probability of MC. We believe this study has great potential to
become the foundation of censored transition data analysis.

2 Related Works

Our study follows recent work that investigated new problem formulations for
the Markov chain. For example, Morimura et al. and Kumar et al. tackle the
problem of estimating the MC parameters from a steady state distribution [14,
15]. The problem of parameter estimation from node-level aggregated traffic [16]
and from snapshots of population [17,18] have also been investigated. However,
existing studies do not consider the use of censored transition data; we succeeds
in identifying a new problem and introducing a new formulation.

The theory of CMC is the main key to our study. CMC is constructed from
the original MC and a set of observable states. References [19,20] state that this
construction was first shown by Paul Lévy [11–13]. The various properties of
CMC have already been clarified [19,21] and used, among other applications, to
obtain the steady state probability of an infinite state MC [22]. We also use one
of the results; the relation between the transition probability of the original MC
and that of CMC. However, our problem can be seen as the inverse problem of
existing works; we estimate the original MC from (transition data on) the CMC.

3 Markov Chain and Censored Markov Chain

Let X = {1, 2, · · · , |X |} be a finite state space. A homogeneous and discrete time
Markov chain (MC) on X is a stochastic process {Xt; t = 0, 1, 2, · · · } that satis-
fies the Markov property: Pr(Xt+1 = xt+1|Xk = xk; k = 0, · · · , t) = Pr(Xt+1 =
xt+1|Xt = xt). MC is thus defined by triplet {X ,P, q}, where P : X ×X → [0, 1]
is the transition probability and q : X → [0, 1] is the initial state probability, i.e.,
P(xnext|x) = Pr(Xt+1 = xnext|Xt = x) and q(x0) = Pr(X0 = x0). Through-
out this paper, we consider only the irreducible Markov chain, i.e., any state is
reachable from any state. We also denote adjacency information by Γ = {Γi}i∈X
where Γi denotes the set of reachable states from state i by one-step transitions.

We also define the censored Markov chain (CMC), which is also called the
watched Markov chain or induced chain [20,21,23], as it will be used in the next
section. Let O be a subset of state space X , O ⊆ X . O indicates the set of
observable states. We also denote the set of unobservable states as U . CMC is
constructed from the original MC {Xt; t = 0, 1, 2, · · · } and observable states O.
CMC is a stochastic process {Xc

t ; t = 0, 1, 2, · · · }; the state at time t is the state
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of the MC at time σt which is the time of the t-th visit to the observable states
O, i.e., Xc

t := Xσt
. Intuitively, CMC is the MC watched only when it stays in

states in O. The formal definition is given as follows:

Definition 1. (censored Markov chain) Let {σt; t = 0, 1, 2, · · · } be a sequence
such that σ0 = 0 if X0 ∈ O, otherwise σ0 = inf{m ≥ 1 : Xm ∈ O}, and
σt = inf{m > σt−1 : Xm ∈ O}. Censored Markov chain {Xc

t ; t = 0, 1, 2, · · · } is
defined as a stochastic process such that Xc

t := Xσt
.

Without loss of generality, we consider that the states are re-ordered so that
the matrix representation of the transition probability, P , (P )xx′ = P(x′|x), and
the vector representation of the initial probability, q, (q)x = q(x), can be written
as follows:

P =
( O U

O Poo Pou

U Puo Puu

)
, q =

( O U
qo qu

)
, (1)

where the sizes of Poo,Pou,Puo,Puu are given by |O| × |O|, |O| × |U|, |U| × |O|,
|U| × |U|, respectively.

The following property of CMC has been clarified.

Theorem 1. (e.g., Lemma 6-6 [21]) A censored Markov chain is a Markov
chain with transition probability R = Poo + Pou(I − Puu)−1Puo.

Note that (I − Puu)−1 comes from the infinite sum of the power of Puu,∑∞
�=0(Puu)�; the inverse matrix exists for the irreducible Markov chain. R is

constructed from the transition probability between observable states Poo plus
the probability of moving from observable states to unobservable states (Pou)
and of entering observable states (Puo) after (arbitrary length) occupancy in
unobservable states (

∑∞
�=0(Puu)�). We can derive the following result for the

initial probability in an analogous manner.

Theorem 2. The initial state probability of CMC is s = qo+qu(I−Puu)−1Puo.

Theorems 1 and 2 state that the censored Markov chain induced from the Markov
chain {X ,P, q} and set of observable states O is the Markov chain {O,R, s}.

4 Estimating Markov Chain Parameters from Censored
Transition Data

This section describes our problem, estimating MC parameters from censored
transition data. Figure 2 shows our problem formulation. Since our purpose is to
recover the original MC from (transition data of) the CMC, this problem can
be seen as the inverse of the existing study shown in the previous section, which
constructs a CMC from the original MC.
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Fig. 2. Our problem formulation. The proposed method estimates the original Markov
chain parameters from observed censored transition data. This can be seen as the
inverse problem of the existing study shown in Theorem 1 which constructs a censored
Markov chain from the original Markov chain and observable states.

4.1 Problem Formulation

Input data of our problem consists of (i) a set of states of original Markov
chain, X , (ii) adjacency information, Γ = {Γi}i∈X , (iii) set of observable states,
O, (iv) censored transition data. We consider that the censored transition data
are summarized as D, which is defined as D = {Nij}ij∈O ∪ {N ini

k }k∈O, where
Nij is the number of transitions from observable state i ∈ O to state j ∈ O and
N ini

k is the number of counts of state k ∈ O in the initial state.
In the example shown in Fig. 1bd, a set of states X and adjacency informa-

tion Γ can be obtained from the street/traffic networks that are publicly available.
The set of observable states O can be extracted from censored transition data. In
addition, for the example of citywide level analysis, we do not require person-level
transition data, only the crowd-level censored transition data made by aggregating
the person-level data. To ensure privacy protection, the scenario considered here
assumes that actual time information (representing when a user visits a state) is
not provided/available and that only the order of states visited can be used.

Input model is a model of the transition probability and the initial state
probability of the (original) Markov chain with parameters θ = (ν, λ). To empha-
size parameter dependency, we denote the model of the transition probability
and the initial probability as P ν , qλ. Given a model and parameters, a state
transition and initial state probability on the original Markov chain are modeled
as Pr(Xt+1=j|Xt=i, θ) = (P ν)ij , P r(X0=k|θ) = (qλ)k. Popular examples of
the model used for MC are the tabular model and the log-linear model.

Model 1 (Tabular Model). Let us define model parameters ν and λ as ν =
{{aij}j∈Γi

}i∈X and λ = {bi}i∈X where
∑

j aij = 1 for all i and
∑

i bi = 1. The
tabular model can be defined as (P ν)ij = aij if j ∈ Γi, and (P ν)ij = 0 otherwise,
and (qλ)k = bk.



302 M. Kohjima et al.

Model 2 (Log-Linear Model). The transition probability and initial state
probability using the log-linear model can be defined as (P ν)ij =

exp{vloc
ij +φ(i,j)T vglo}

∑
k∈Γi

exp{vloc
ik +φ(i,k)T vglo} if j ∈ Γi and (P ν)ij = 0 otherwise, and (qλ)i =

exp{wloc
i +ψ (i)T w glo}

∑
k exp{wloc

k +ψ (k)T w glo} , where φ(i, j) and ψ(k) are feature vectors and ν =

{vloc,vglo} and λ = {wloc,wglo} are parameters. 1

These models are also used in related works [14,15,17]. Note that the tabu-
lar model is a special case of the log-linear model since the log-linear model
without global parameters corresponds to the tabular model by defining aij =
exp{vloc

ij }/
∑

k∈Γi
exp{vloc

ik }. We use the log-linear model in a later experiment.
We denote a Markov chain constructed using the model with parameter θ as

M(θ) = {X , P ν , qλ}. Throughout this paper, similar to [24], we assume that
Markov chain M(θ) is irreducible for any parameter θ, and a model of transition
probability P ν and that of initial state probability qλ are differentiable everywhere
w.r.t. parameter θ = (ν, λ). We emphasize that our method can handle any prob-
abilistic model that satisfies the above assumptions and that can represent the
transition probability and initial state probability of MC; for example, if the fea-
ture vector in the log-linear model is a high-dimensional vector, the deep neural
network architecture can be used. Similar to Eq. (1), without loss of generality,
we assume that the states are re-ordered so that the matrix representation of the
model can be written as P ν = (P ν

oo,P
ν
ou;P

ν
uo,P

ν
uu) and qλ = (qλ

o , qλ
u).

Output of the proposed method consists of Markov chain parameters θ =
(ν, λ). Namely, the entire transition probability represented by |X |×|X | matrix P ν

and |X |-dimension vector qλ are estimated. Note that if all states are observable,
X=O, we get the standard setting of parameter estimation for MC [7].

4.2 Difficulty of Our Problem

The nature of the censored transition data creates two key problem difficul-
ties: (i) unobservable states never appear and (ii) the number of steps censored
between observations is unknown. See Fig. 3a. In this example, state-3 never
appears and we are unable to know the number of steps that have been censored
(two steps are censored between Xc

2 and Xc
3). From characteristic (i), when we

adopt standard parameter estimation for MC (e.g., [7]), the learned transition
probability to unobservable states is zero, i.e. biased, and we cannot estimate
the probability of moving from unobservable states. Even if the true parameter
is known, due to characteristic (ii), the time-steps of original data and those of
censored data do not correspond; consequently, we cannot adopt the EM using
latent variables for missing information [10] since we can never know how many
latent variables need to be placed between the observed states. Accordingly, we
construct a new method using CMC.
1 φ(i, j) may be the (inverse) distance between states i and j and ψ(k) may be the

attribute information about state k. If no such information is available, the term
related to the feature and global parameters vglo,wglo can be excluded from the
model.
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Fig. 3. Example trajectories of (a) CMC (state-3 is unobservable) and (b) MC with
randomly-missing data (MC-RM) in 3 state MC.

Remark: The above difficulties do not exist in handling MC with randomly
omitted data (MC-RM) shown in Fig. 3b since it is usually assumed that all
states are observed at least once and that the time-steps of the original data and
missing data correspond one to one. Thus, it can be solved by the EM algorithm
using latent variables (Z in Fig. 3b) for the missing states and applying the
Viterbi algorithm to estimate the latent variables similar to the hidden Markov
model. However, this cannot not be applied to our problem.

4.3 Parameter Estimation via Divergence Minimization

Our proposed method estimates output parameters by optimizing a loss function.
Although various type of loss functions such as L2 divergence and Kullback
Leibler (KL) divergence can be adopted, here we focus on KL divergence, which
is defined as KL(q||p) =

∑
j qj log qj −qj log pj , where q = {qj} and p = {pj} are

(discrete) probability distributions. The use of KL yields an objective function
that corresponds to the negative log likelihood function.

The theory of CMC has an important role in designing the loss function. As
shown in Fig. 2, the censored transition data D can be regarded as the empir-
ical transition data on CMC {O,R∗, s∗} where R∗ and s∗ are unknown true
parameters. From Theorem 1 and 2, given Markov chain {X , P ν , qλ} and a set
of observable states O, we can construct censored Markov chain {O,Rν , sν,λ}
where Rν and sν,λ can be defined as

Rν = P ν
oo + P ν

ou(I − P ν
uu)

−1P ν
uo, sν,λ = qλ

o + qλ
u(I − P ν

uu)
−1P ν

uo. (2)

Note that (I − P ν
uu)

−1 exists for irreducible MC and the elements of Rν and
those of sν,λ correspond to the following probability:

Pr(Xc
t+1=j|Xc

t =i, θ) = (Rν)ij , P r(Xc
0=k|θ) = (sν,λ)k.

Therefore, KL divergence between Rν and R∗, sν,λ and s∗, is given by
LKL

R (R∗||Rν) =
∑

i,j∈O(R∗)ij log(R∗)ij−(R∗)ij log(Rν)ij , LKL
s (s∗||sν,λ) =∑

i∈O(s∗)i log(s∗)i −(s∗)i log(sν,λ)i. The objective function is defined as the
sum of the above two KL divergence and regularization terms. Taking sample
average and removing constant terms, the objective is given by

L(θ) = − Z−1
∑

i,j∈O Nij log(Rν)ij − Z−1
ini

∑
k∈O N ini

k log(sν,λ)k + Ω(θ),
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where Z and Zini are normalizing factors, and Ω(θ) is the (differentiable) regu-
larization term or negative logarithm of prior distribution. We use Z =

∑
i,j Nij ,

Zini =
∑

k N ini
k and L2 norm regularization Ω(θ) = α‖θ‖2 in a later experi-

ment. α is a hyperparameter. Use of the regularization term contributes to not
only avoiding overfitting but also handling redundant parameters as explained in
next subsection. Estimated parameter θ̂ is obtained by optimizing this objective,
θ̂ = arg minθ L(θ). We could derive the objective function in an analogous man-
ner when the other divergence is adopted. For minimizing the objective function,
we could arbitrarily use any optimization method such as gradient descent and
L-BFGS [25]. ∇θ is the partial derivative operator w.r.t. θ. The property of this
algorithm depends on the model chosen; it may reach a local optimum or a sta-
tionary point for “large complex" models such as the deep neural network. In a
later experiment, we use the BFGS method.

5 Experiment

This section confirms that the proposed method well estimates the parameters of
the original MC from censored transition data. We prepared training data and
true-test data in two experiment settings: synthetic chain and greater Tokyo.
True-test data are the non-censored transition data such as that shown in Fig. 1a
and training data are the censored transition data such as Fig. 1b. The perfor-
mance of the proposed method is evaluated using the true-test data. In order
to further check whether the proposed method can well estimate CMC (if the
parameter of original MC is well estimated, it will also well recover CMC), we
also prepared censored-test data that has the form of censored transition data.

5.1 Setting

Synthetic Data: In the synthetic-chain experiment, we set the number of states
to 100 and randomly generated chain edges following [26]. The true transition
probability was set using the log-linear model (Model 2), where parameters ν∗, λ∗

and feature φ were generated using a standard normal distribution (feature ψ
was not used). We also added symmetric Dirichlet noise with parameter 0.3 to
the transition probability by taking the weight sum with β = 0.1 for the noise
term and 1 − β = 0.9 for the transition probability. We generated training and
two type of test data by generating episodes (sequences of states from initial
state) with 20 steps in common. The number of training and test episodes were
100 and 1000, respectively. We randomly selected observable states while varying
the ratio of observable states |O|/|X |; training and censored-test data were made
by censoring the episodes by excluding unobservable states. We prepared 5 sets
of training, true-test and censored-test data.

Real Data: In the greater Tokyo experiment, we used car probe data provided
by NAVITIME JAPAN Co, Ltd. The dataset is a collection of GPS trajectories
of car navigation users in the greater Tokyo area, Japan. We divided the region
using an approximately 5km × 5km grid mesh; the total number of mesh cells
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was approximately 150. We used the data recorded during the period between
2015.4.13 to 2015.4.17 (5 working days in total) in the morning (6:00 am to 10:59
am). The number of unique users per day was, on average, approximately 8000.
The data were made by converting the GPS trajectories into sequences of visited
mesh cells (states). We excluded the states that appeared less than 20 times per
day on average and only used the episodes containing more than 2 steps. Here
we did not use feature φ or ψ. Training and test data were made from the logs of
one day and that of the next day, respectively. Training data and censored-test
data were censored in a manner analogous to the synthetic data. We prepared 4
sets of training, true-test and censored-test data.

Evaluation Measure: As the performance metric, we used the true negative
test log likelihood, which was computed using the true-test data explained at
the beginning of this section. The true negative test log likelihood is defined as
(1/Ttt)

∑
i,j∈X −ntt

ij log p̂ij , where Ttt is the number of total transitions and ntt
ij

indicates the number of transitions from state i to state j in the true-test data. p̂ij

is the estimated transition probability in the original MC. A lower true negative
test log likelihood indicates the method estimates the original MC more precisely.
To also investigate whether the proposed method can well estimate CMC, we also
computed the censored negative test log likelihood, using censored-test data,which
is defined as (1/Tct)

∑
i,j∈O −nct

ij log p̂ij , where Tct is the number of total transi-
tions and nct

ij indicates the number of transitions from state i to state j in censored-
test data. p̂ij is the estimated transition probability in CMC. A lower censored neg-
ative test log likelihood indicates the method estimates the CMC more precisely.

Baseline Methods: Since our proposal is the first method that can estimate
parameters from censored transition data, there are no “strong" baselines2. Thus,
we compared the performance of the proposed method with two simple and
reasonable baseline methods based on the standard Markov model. The base-
line methods are constructed by mixing uniform distributions since the result
of applying the standard Markov model to censored transition data seems to
be, from Theorems 1 and 2, an acceptable approximation of the original MC
when the number of unobservable states is small. The result of the uniform
distribution is also a compromise solution when the number of unobservable
states is large; we expect that mixing these two yields useful benchmarks. Base-
line1 (Base1) and Baseline2 (Base2) are constructed as p̂Base1

ij =(1−η)PM1
ij +ηPU1

ij

and p̂Base2
ij =(1−ξ)PM2

ij +ξPU2
ij , where PM1

ij = Nij/Zi if j ∈ Γi and PM1
ij = 0 oth-

erwise, PU1
ij = 1/|Γi| if j ∈ Γi and PU1

ij = 0 otherwise, PM2
ij = Nij/Z

′
i and

PU2
ij = 1/|X |. Zi and Z ′

i are the normalizing constants and η and ξ are the
hyperparameters. Baseline1 and 2 are used for computing true negative test log
likelihood and censored negative test log likelihood, respectively. We selected the
baselines’ hyperparameters, η and ξ, from {10−3, 10−2, 10−1, 0.3, 0.5, 0.7}; top-3
results are shown in next subsection. The proposed method uses P ν for true
negative test log likelihood, p̂ij = (P ν)ij , and Rν for censored negative test log
2 No existing model, including the hidden Markov model, suits this problem as

explained in Subect. 4.2.
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(a) (b)

Fig. 4. True negative test log-likelihood
in (a) synthetic chain and (b) greater
Tokyo experiments. Average and standard
deviation are shown. Lower values are
better. These results indicate the pro-
posed method (P ν and qλ) well estimates
the original MC.

(a) (b)

Fig. 5. Censored negative test log-
likelihood in (a) synthetic chain and
(b) greater Tokyo. Average and standard
deviation are shown. Lower values are
better. These results indicate the pro-
posed method (Rν and sν,λ) has perfor-
mance comparable with the baseline for
estimating CMC.

likelihood, p̂ij = (Rν)ij . We set the hyperparameter α = 10−3 in all experiments
since this yielded stable performance in a preliminary experiment3.

5.2 Results

Quantitative Evaluation (Original MC Estimation): Figure 4a and b shows
the true negative test log-likelihood results. We can confirm that the proposed
method outperforms baseline methods regardless of the ratio of the observable
states. These results validate the effectiveness of our method for estimating the
parameters of the original MC.

Quantitative Evaluation (CMC Estimation): Figure 5 shows the results of
censored negative test log-likelihood. We can confirm that the proposed method
matches the CMC estimation performance of the baseline method regardless of
the ratio of the observable states. Although the proposed method is designed to
recover not CMC but original MC, this result means that the proposed method
can well estimate CMC. Therefore, from Figs. 4 and 5, we can say that the pro-
posed method well estimates the parameters without sacrificing either original
MC estimation or CMC estimation performance.

Qualitative Evaluation (Original MC Estimation): Figure 6 illustrates the
true and estimated transition probability in the synthetic experiment. It shows
the estimated probability output by the proposed method is close to the true
probability. This also implies that our method well estimates the original MC.

3 The use of cross-validation is not appropriate given our problem since it selects the
best one in terms of censored test log-likelihood (in asymptotic limit), not true test
log-likelihood; the result also shows the baselines with small hyperparameter values
provide better censored log-likelihood and worse true log-likelihood, and vice versa.
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(a) True (b) Proposed (c) Baseline 1

Fig. 6. (a) True and estimated transition probability yielded by (b) Proposed method,
(c) Baseline1 in synthetic chain experiment where the ratio of observed states is 0.5.
The probability between ten extracted states are shown. First 5 states (0, 4, 5, 7, 8)
are observable; remaining states are unobservable.

6 Conclusion

This paper tackled the problem of estimating Markov chain parameters from
censored transition data. By formulating it as the inverse problem of CMC, we
developed a new estimation method on the theory of CMC. We confirmed the
effectiveness of the proposed method by experiments on both synthetic and real
car probe data.

Remaining future work is to construct a method for hyperparameter opti-
mization and to provide a theoretical analysis of the proposed method, especially
the dependency of the performance on the ratio of observable states. Investiga-
tion of the performance using other types of divergence for the loss function such
as L2 divergence and using more complex models, e.g., deep neural networks and
Markov mixtures [27,28], is also a promising future direction.
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Abstract. Uplift modeling aims to estimate the incremental impact of
a treatment, such as a marketing campaign or a drug, on an individual’s
behavior. These approaches are very useful in several applications such as
personalized medicine and advertising, as it allows targeting the specific
proportion of a population on which the treatment will have the greatest
impact. Uplift modeling is a challenging task because data are partially
known (for an individual, responses to alternative treatments cannot be
observed). In this paper, we present a new tree algorithm named UB-DT
designed for uplift modeling. We propose a Bayesian evaluation criterion
for uplift decision trees T by defining the posterior probability of T given
uplift data. We transform the learning problem into an optimization one
to search for the uplift tree model leading to the best evaluation of the
criterion. A search algorithm is then presented as well as an extension for
random forests. Large scale experiments on real and synthetic datasets
show the efficiency of our methods over other state-of-art uplift modeling
approaches.

Keywords: Uplift Modeling · Decision trees · Random Forests ·
Bayesian methods · Machine Learning · Treatment Effect Estimation

1 Introduction

Uplift modeling aims to estimate the incremental impact of a treatment, such as
a marketing campaign or a drug, on an individual’s behavior. These approaches
are very useful in several applications such as personalized medicine and adver-
tising, as it allows targeting the specific proportion of a population on which the
treatment will have the greatest impact. Uplift estimation is based on groups of
people who have received different treatments. A major difficulty is that data
are only partially known: it is impossible to know for an individual whether the
chosen treatment is optimal because their responses to alternative treatments
cannot be observed. Several works address challenges related to the uplift mod-
eling, among which uplift decision tree algorithms became widely used [15,17].
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Despite their usefulness, current uplift decision tree methods have limitations
such as local splitting criteria. A split criterion decides whether to divide a
terminal node. However these splits are independent to each other and a pruning
step is then used to ensure generalization and avoid overfitting. Moreover, these
methods require parameters to set. In this paper, we present UB-DT (Uplift
Bayesian Decision Tree) a parameter-free method for uplift decision tree based on
the Bayesian paradigm. Contrary to state-of-art uplift decision tree methods, we
define a global criterion designed for an uplift decision tree. A major advantage
of a global tree criterion is it allows to get rid of the pruning step, since it acts
as a regularization to avoid overfitting. We transform the uplift tree learning
problem to an optimization problem according to the criterion. Then a search
algorithm is used to find the decision tree that optimizes the global criterion.
Moreover our approach is easily extended to random forests and we propose UB-
RF (Uplift Bayesian Random Forest). We evaluate both UB-DT and UB-RF
to state-of-art uplift modeling approaches through a benchmarking study.

This paper is organized as follows. Section 2 introduces an overview of uplift
modeling and related work. Section 3 presents UB-DT. We conduct experiments
in Sect. 4 and conclude in Sect. 5.

2 Context and Literature Overview

2.1 Uplift Problem Formulation

Uplift is a notion introduced by Radcliffe and Surry [11] and defined in Rubin’s
causal inference models [14] as the Individual Treatment effect (ITE).

We now outline the notion of uplift and its modeling. Let X be a group of
N individuals indexed by i : 1 . . . N where each individual is described by a set
of variables K. Xi denotes the set of values of K for the individual i. Let Z be a
variable indicating whether or not an individual has received a treatment. Uplift
modeling is based on two groups: the individuals having received a treatment
(denoted Z = 1) and those without treatment (denoted Z = 0). Let Y be
the outcome variable (for instance, the purchase or not of a product). We note
Yi(Z = 1) the outcome of an individual i when he received a treatment and
Yi(Z = 0) his outcome without treatment. The uplift of an individual i, denoted
by τi, is defined as: τi = Yi(Z = 1)− Yi(Z = 0).

In practice, we will never observe both Yi(Z = 1) and Yi(Z = 0) for a same
individual and thus τi cannot be directly calculated. However, uplift can be
empirically estimated by considering two groups: a treatment group (individ-
ual with a treatment) and a control group (without treatment). The estimated
uplift of an individual i denoted by τ̂i is then computed by using the CATE
(Conditional Average Treatment Effect) [14]:

CATE : τ̂i = E[Yi(Z = 1)|Xi]− E[Yi(Z = 0)|Xi] (1)

As the real value of τi cannot be observed, it is impossible to directly use machine
learning algorithms such as regression to infer a model to predict τi. The next
section describes how uplift is modeled in the literature.
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2.2 Related Work

Uplift modeling approaches Uplift modeling approaches are divided into two
categories. The first one (called metalearners) is made up of methods that take
advantage of usual machine learning algorithms to estimate the CATE. One of
the most intuitive approaches is the two-model approach. It consists of fitting two
independent classification models, one for the treated group and another for the
control group. The estimated uplift is then the difference between the estimations
of the two classification models. While this approach is simple, intuitive and
allows the usage of any machine learning algorithm, it has also known weaknesses
with particular patterns [12]. The causal inference community has also proposed
other metalearners such as X-learner [8], R-Learner and DR-learner [7].

The second category is closer to our work. This category gathers tailored meth-
ods for uplift modeling such as tree-based algorithms. Trees are built using recur-
sive partitioning to split the root node to child nodes according to a splitting crite-
rion. [15] defines a splitting criterion that compares the probability distributions
of the outcome variable in each of the treatment groups using weighted divergence
measures like the Kullback-Leibler (KL), the squared euclidean distance (ED) and
the chi-squared divergence. [17] proposes theContextualTreatment Selection algo-
rithm (CTS) where a splitting criterion directly maximizes a performance measure
called the expected performance. Causal machine learning algorithms were also
developed such as the Causal Trees algorithm [1] and the Causal Forests [2].

Uplift tree splitting criterion and Bayesian approaches. Building an
uplift tree requires to discretize variables to detect areas with homogeneous
treatment effects. The global criterion of UB-DT to select a variable on a node
takes advantage of on a univariate parameter-free Bayesian approach for density
estimation through discretization called UMODL [13]. More precisely, UMODL
applies a Bayesian approach to select the most probable uplift discretization
model M given the data. This implies finding the model M that maximizes
the posterior probability P (M |Data), hence maximizing P (M) × P (Data|M).
Finally, a global criterion within the Bayesian framework for decision trees is
given in [16] but it does not deal with uplift.

3 UB-DT: Uplift Decision Tree Approach

UB-DT is made up of two ingredients: a global criterion C(T ) for a binary
uplift decision tree T and a tree search algorithm to find the most probable
optimal tree. We start by presenting the structure of an uplift tree model. Then
we describe the new global criterion for an uplift decision tree and the algorithm
to give the best tree. Finally we show how the approach is straightforwardly
extended to random forests.

3.1 Parameters of an Uplift Tree Model T

We define a binary uplift decision tree model T by its structure and the distri-
bution of instances and class values in this structure. The structure of T consists
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Fig. 1. Example of an uplift tree model. Internal nodes are described by the segmen-
tation variable Xs and the distribution of instances in each of the two children {Nsi}.
Leaf nodes containing a treatment effect (i.e. Wl = 1) are described by the class distri-
bution for each treatment. This applies to leaves 4, 5 and 7. Leaf nodes containing no
treatment effect (i.e. Wl = 0) are only described by the class distribution (this is the
case of leaf 6).

of the set of internal nodes ST and the set of leaf nodes LT . The distribution of
the instances in this structure is described by the partition of the segmentation
variable Xs for each internal node s, the class frequency in each leaf node where
there is no treatment effect, and the class frequency on each treatment in the
leaf nodes with a treatment effect. More precisely, T is defined by:

• the subset of variables KT used by model T . This includes the number of the
selected variables KT and their choice among a set of K variables provided
in a dataset, we note K = |K|.

• a binary variable In indicating the choice of whether each node n is an internal
node (In = 1) or a leaf node (In = 0).

• the distribution of instances in each internal node s, which is described by
the segmentation variable Xs of the node s and how the instances of s are
distributed on its two child nodes.

• a binary variable Wl indicating for each leaf node l if there is a treatment
effect (Wl = 1) or not (Wl = 0). If Wl = 0, l is described by the distribution
of the output values {Nl.j.}1≤j≤J , where Nl.j. is the number of instances of
output value j in leaf l. If Wl = 1, l is described by the distribution of the
class values per treatment {Nl.jt}1≤j≤J,1≤t≤2, where Nl.jt is the number of
instances of output value j and treatment t in leaf l.

These parameters are automatically optimized by the search algorithm (pre-
sented in Sect. 3.4) and not fixed by the user. In the rest of the paper, the
following notations Ns., Nsi., Nl. and Nl..t will additionally be used to respec-
tively designate the number of instances in node s, in the ith child of node s, in
the leaf l and treatment t in leaf l.
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3.2 Uplift Tree Evaluation Criterion

We now present the new global criterion C(T ) which is an uplift tree model eval-
uation criterion. UB-DT applies a Bayesian approach to select the most prob-
able uplift tree model T that maximizes the posterior probability P (T |Data).
This is equivalent to maximizing the product of the prior and the likelihood i.e.
P (T ) × P (Data|T ). Taking the negative log turns the maximization problem
into a minimization one: C(T ) = − log (P (T )× P (Data|T )), C(T ) is the cost
of the uplift tree model T . T is optimal if C(T ) is minimal. By exploiting the
hierarchy of the presented uplift tree parameters and assuming a uniform prior,
we express C(T ) as follows (cf. Eq. 2):

C(T ) = log(K + 1) + log

(
K +KT − 1

KT

)
︸ ︷︷ ︸

Variable selection

+
∑

s∈STn

log 2 + logKT + log(Ns. + 1)

︸ ︷︷ ︸
Prior of internal nodes

+
∑
l∈LT

log 2

︸ ︷︷ ︸
Treatment effect W

+
∑
l∈LT

log 2 +
∑
l∈LT

(1 − Wl) log

(
Nl. + J − 1

J − 1

)
+

∑
l∈LT

Wl

∑
t

log

(
Nl..t + J − 1

J − 1

)

︸ ︷︷ ︸
Prior of leaf nodes

+
∑
l∈LT

(1 − Wl) log
Nl.!

Nl.1.!Nl.2.! . . . Nl.J.!
+

∑
l∈LT

Wl

∑
t

log
Nl..t!

Nl.1t!..Nl.Jt!︸ ︷︷ ︸
Tree Likelihood

(2)

The next section demonstrates Eq. 2.

3.3 C(T ): Proof of Equation 2

We express the prior and the likelihood of a tree model, resp. P (T ) and
P (Data|T ) according to the hierarchy of the uplift tree parameters. Assum-
ing the independence between all the nodes, the prior probability of an uplift
decision tree is thus defined as:

P (T ) = P (KT )×
∏

s∈ST

P (Is)P (Xs | KT )P (Nsi. | KT , Xs, Ns., Is)×

P ({Wl})×
∏

l∈LT

P (Il)

[
(1−Wl)× p

({Nl.j} | KT , Nl.

)
+Wl ×

∏

t

P
({Nl.jt} | KT , Nl..t

)
]

(3)

The first line is the prior probability of the variable selection, the second line
the prior of internal nodes and the third line the prior of the leaf nodes.
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Variable Selection Probability. A hierarichal prior is chosen: first the choice
of the number of selected variables KT , then the choice of the subset KT among
K variables. By using a uniform prior the number KT can have any value between
0 and K in an equiprobable manner. For the choice of the subset KT , we assume
that every subset has the same probability. Then the prior of the variable selec-
tion can be defined as:

P (KT ) =
1

K + 1
1(

K + KT − 1
KT

)

Prior of Internal Nodes. Each node can either be an internal node or a leaf
node with equal probability. This implies that: P (Is) = 1

2
The choice of the segmentation variable is equiprobable between 1 and KT .

We obtain:
P (Xs|KT ) =

1
KT

All splits of an internal node s to two intervals are equiprobable. We then obtain:

P (Nsi. | KT ,Xs, Ns., Is) =
1

Ns + 1

Prior of Leaf Nodes. Similar to the prior of internal nodes, each node can
either be internal or a leaf node with equal probability leading to P (Il) = 1

2 .
For each leaf node, we assume that a treatment can have an effect or not, with
equal probability, we get:

P ({Wl}) =
∏
l

1
2

In the case of a leaf node l where there is not effect of the treatment (Wl = 0),
UB-DT describes one unique distribution of the class variable. Assuming that
each of the class distributions is equiprobable, we end up also with a combina-
torial problem:

P ({Nl.j} | KT , Nl.) =
1(

Nl. + J − 1
J − 1

)

In a leaf node with an effect of the treatment (Wi = 1), UB-DT describes two
distributions of the outcome variable, with and without the treatment. Given a
leaf l and a treatment t, we know the number of instances Nl..t Assuming that
each of the distributions of class values is equiprobable, we get:

P ({Nl.jt} | KT , Nl..t) =
1(

Nl..t + J − 1
J − 1

)
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Tree Likelihood. After defining the tree’s prior probability, we establish the
likelihood probability of the data given the tree model. The class distributions
depend only of the leaf nodes. For each multinomial distribution of the outcome
variable (a single or two distinct distributions per leaf depending on whether
the treatement has an effect or not), we assume that all possible observed data
Dl consistent with the multinomial model are equiprobable. Using multinomial
terms, we end up with:

P (Data | T ) =
∏
l∈L

P (Dl|M)

∏
l∈L

[
(1− Wl)× 1

Nl.!/Nl.1.!Nl.2.! . . . Nl.J.!
+ Wl ×

∏
t

1
(Nl..t!/Ni.1t!..Ni.Jt!)

]

(4)

By combining the prior and the likelihood (resp. Eq. 3 and 4) and by taking
their negative log, we obtain C(T ) and thus Eq. 2 is proved.

3.4 Search Algorithm

The induction of an optimal uplift decision tree from a data set is NP-hard [10].
Thus, learning the optimal decision tree requires exhaustive search and is limited
to very small data sets. As a result, heuristic methods are required to build
uplift decision trees. Algorithm 1 (see below) selects the best tree according to
the global criterion. Algorithm 1 chooses a split among all possible splits in all
terminal nodes only if it minimizes the global criterion of the tree. The algorithm
continues as long as the global criterion is improved. Since a decision tree is a
partitioning of the feature space, a prediction for a future instance is then the
average uplift in its corresponding leaf. This algorithm is deterministic and thus
it always leads to the same local optimum. Experiments show the quality of the
building trees.

3.5 UB-RF

UB-DT is easily extended to random forests. For that purpose, a split is ran-
domly chosen among all possible splits that improve the global criterion. The
number of trees is set by the analyst and the prediction of a forest is the average
predictions of all the trees.

4 Experiments

We experimentally evaluate the quality of UB-DT as an uplift estimator and
compare UB-DT and UB-RF versus state-of-art uplift modeling approaches1.
1 Code, datasets and complementary results are at https://github.com/MinaWagdi/

UB-DT.

https://github.com/MinaWagdi/UB-DT
https://github.com/MinaWagdi/UB-DT
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We use the following state-of-art methods: (1) metalearners: two-model app-
roach (2M), X-Learner and R-Learner, each with Xgboost; (2) uplift trees: CTS-
DT,KL-DT, Chi-DT, ED-DT; (3) uplift random forests: CTS-RF,KL-RF, Chi-
RF, ED-RF [15]; (4) and causal forests (all forest methods were used with 10
trees).

4.1 Is UB-DT a Good Uplift Estimator?

To be able to measure the estimated uplift we need to know the real uplift and
therefore we use synthetic data. Figure 2 depicts two synthetic uplift patterns
where P (Y = 1|X,T = 1) and P (Y = 1|X,T = 0) are identified for each
instance. The grid pattern can be considered as a tree-friendly pattern whereas
the continuous pattern is much more difficult. We generated several datasets
according to these patterns with several different numbers of instances (also
called data size) ranging from 100 to 100,000 instances. Uplift models were built
using 10-fold stratified cross validation and the RMSE (Root Mean Squared
Error) was used to evaluate the performance of the models.

Results: Figure 3 gives the RMSE for the two synthetic patterns according to
the data size for different uplift methods. We see that UB-DT is a good estima-
tor for uplift. With UB-DT, RMSE decreases and converges to zero when data
sizes increase both for the grid and continuous patterns. This is the expected
behavior of a good uplift estimator. This also means that UB-DT, thanks to its
global criterion, avoids overfitting of uplift trees. The two-model approach with
decision trees also shows competitive performance. UB-DT clearly outperforms
the other tree-based methods, these latter having similar performances. With
the continuous pattern, KL-DT, Chi-DT, ED-DT and CTS-DT approaches have

Algorithm 1: UB-DT algorithm
input : T the root tree
output: the tree T ∗ which minimizes the proposed criterion
T ∗ ← T
while C(T ∗) decreases:

T ′ ← T ∗

for leaf l in LT :
for X in K:

Get the best Split SX(l) according to UMODL
TX ← T ∗ + SX(l)
if C(TX)<C(T ′):

T ′ ← TX

if C(T ′)<C(T ∗):
T ∗ ← T ′

Prediction: The output of a tree is a partition of the feature space. The
predicted uplift for each instance is the average uplift of its leaf node.
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(a) Grid pattern (b) Continuous pattern

Fig. 2. Uplift for 2 synthetic patterns. Figure 2a (grid pattern): uplift values for each
cell. Figure 2b (continuous pattern): uplift values are P (Y |T = 0, x1, x2) = 1 − (x1 +
x2)/20 while P (Y |T = 1, x1, x2) = (x1 + x2)/20.

(a) Grid Pattern (b) Continuous Pattern

Fig. 3. The RMSE of tree-based approaches according to data size

lower performances (their RMSE are around 0.5). To avoid a cluttered visuali-
sation, their performances are not included in Fig. 3b.

4.2 UB-DT and UB-RF Versus State of the Art Methods

Datasets. We conducted experiments on 8 real and synthetic datasets widely
used in the uplift modeling community: (1) Hillstrom2 (a classical dataset for
uplift modeling with data of customers who either received emails featuring
men’s/ women’s products, or received no emails); (2) Criteo [5] (a marketing
2 http://blog.minethatdata.com/2008/03/minethatdata-e-mail-analytics-and-data.

html.

http://blog.minethatdata.com/2008/03/minethatdata-e-mail-analytics-and-data.html
http://blog.minethatdata.com/2008/03/minethatdata-e-mail-analytics-and-data.html
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Table 1. Summary of datasets specifications

Dataset No. Rows No. Columns Treatment ratio Outcome Ratio Average Uplift Treatment variable Outcome variable

Hillstrom-m 42,613 10 0.5 0.145 0.076 ’mens’ ’visit’
Hillstrom-w 42,693 10 0.5 0.128 0.045 ’womens’ ’visit’
Hillstrom-mw 64,000 10 0.67 0.146 0.06 ’mens’ & ’womens’ ’visit’
Gerber-N 229,444 16 0.166 0.31 0.081 ’neighbour’ ’voted’
Geber-S 229,461 16 0.166 0.304 0.04 ’self ’ ’voted’
Starbucks 84,534 9 0.5 0.012 0.009 ’promotion’ ’purchase’
Information 20,000 69 0.5 0.2 0.0018 ’treatment’ ’purchase’
Bank-tel 15,926 17 0.18 0.05 0.09 ’telephone’ ’Y’
Bank-cell 42,305 17 0.6 0.115 0.11 ’cellular’ ’Y’
Bank-tel-cel 45,211 17 0.71 0.116 0.107 ’telephone’&’cellular’ ’Y’
Megafon 600,000 52 0.5 0.2 -0.18 ’treatment’ ’conversion’
Criteo-v 13,979,592 12 0.85 0.047 0.68 ’treatment’ ’visit’
Criteo-c 13,979,592 12 0.85 0.0029 0.37 ’treatment’ ’conversion’
RHC 5735 62 0.38 0.35 -0.05 ’RHC’ ’swang1’

dataset for uplift modeling) (3) Bank [9] (a marketing campaign conducted by a
bank) (4) Information3 (a marketing dataset in the insurance domain, a part of
the Information R package); (5) Megafon4 (a synthetic dataset generated by a
telecom company); (6) Starbucks5 (an advertising promotion tested to improve
customers purchases); (7) Gerber [6] (a policy-relevant dataset used to study
the effect of social pressure on voter turnout); (8) Right Heart Catheterization
(RHC) [3] (a real dataset from the medical domain, the treatment indicates
whether a patient received a RHC and the outcome is whether the patient died
at any time up to 180 d after admission to the study).

Each dataset was used with different settings of treatment and outcome vari-
ables. For all datasets, each treatment and outcome variables are binary. Table 1
provides the most relevant specifications about the data sets.

Results. We evaluate the uplift models by using the qini metric [4]. Qini is a
variant of the Gini coefficient. Its values are in [−1, 1], the higher the value, the
larger the impact of the predicted optimal treatment. Figure 4a (resp. Figure 4b)
shows the overall average ranking of tree based methods (resp. meta-learners and
forest-based methods) according to its qini performance against each dataset.
Compared to other tree-based methods and to the two-model approach with
decision trees, Fig. 4a shows that UB-DT achieves the best performance. Table 2
reports the results of the experiment for the qini metric. This table shows that
UB-DT is also a good estimator of the uplift on real data. Figure 4b shows that
both UB-RF and 2M have the best rank. Table 3 indicates that the random
forest strategy improves the performance of the uplift models (qini values are
higher with UB-RF than UB-DT). UB-RF has the best performance on 4 out
the 14 experiments.

3 https://cran.r-project.org/web/packages/Information/index.html.
4 https://ods.ai/tracks/df21-megafon/competitions/megafon-df21-comp/data.
5 https://github.com/joshxinjie/Data_Scientist_Nanodegree/tree/master/

starbucks_portfolio_exercisejoshxinjie.

https://cran.r-project.org/web/packages/Information/index.html
https://ods.ai/tracks/df21-megafon/competitions/megafon-df21-comp/data
https://github.com/joshxinjie/Data_Scientist_Nanodegree/tree/master/starbucks_portfolio_exercisejoshxinjie
https://github.com/joshxinjie/Data_Scientist_Nanodegree/tree/master/starbucks_portfolio_exercisejoshxinjie
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Table 2. Average qini values and standard deviation (multiplied by 100). The best
qini value for each dataset is marked in bold.

Dataset 2M_DT KL_DT Chi_DT ED_DT CTS_DT UB-DT

Hillstrom-m 0.3(1.0) 1.1(1.9) 1.0(1.9) 0.0(1.4) 0.2(1.0) 1.6(1.6)

Hillstrom-w 0.8(1.6) 5.2(2.5) 5.2(2.6) 6.4(1.2) –0.4(2.0) 4.8(2.3)

Hillstrom-mw –0.6(0.8) –0.1(1.2) –0.8(1.1) 4.4(2.7) –0.0(1.0) –0.4(1.4)

Gerber-n 5.6(0.8) 1.3(0.8) 1.2(0.8) 1.1(0.6) 1.3(0.8) 1.9(0.6)

Gerber-s 5.5(1.1) 0.4(0.5) 0.4(0.6) 0.5(0.3) 0.4(0.4) 0.8(0.6)

Criteo-c 8.0(1.5) 4.1(1.4) 4.8(1.5) 15.2(0.3) 1.7(0.3) 13.7(3.2)

Criteo-v 0.4(0.3) –1.2(0.2) –1.1(0.3) –1.3(0.3) 0.4(1.1) 3.6(1.2)

Megafon 5.1(0.6) 4.5(0.9) 4.7(0.9) 4.7(0.9) 4.9(0.8) 7.8(0.8)

Bank-tel 5.4(7.6) –12.5(2.8) –10.8(7.0) –10.2(7.8) –12.8(2.9) 12.8(8.0)

Bank-cell 11.1(3.0) –2.0(1.5) –1.4(2.5) –2.2(1.5) –3.7(1.5) 38.4(3.4)

Bank-tel-cell 10.3(1.6) –1.9(1.2) –1.2(2.1) –1.8(1.2) –3.4(1.4) 37.1(2.6)

Information 4.6(3.4) –6.3(2.8) –6.3(2.8) –2.8(1.5) –5.4(1.5) 11.8(2.4)

Starbucks 1.4(1.4) 20.1(3.0) 18.3(3.4) 19.9(3.2) 13.9(3.9) 20.2(3.5)

RHC 12.8(1.9) 18.4(3.8) 19.9(4.2) 18.4(3.8) 16.7(2.5) 20.7(5.0)

Table 3. Average qini values and standard deviation (multiplied by 100) across datasets
and uplift approaches. In bold, the best value for each dataset

Dataset XLearner RLearner DR 2M KL_RF Chi_RF ED_RF CTS_RF UB-RF CausalForest

Hillstrom-m 0.3(2.3) 0.3(1.8) 1.2(1.6) 0.7(2.3) –0.0(2.1) –0.9(1.5) 0.7(1.5) 1.1(1.9) 1.8(1.6) –0.2(1.6)
Hillstrom-w 6.2(1.7) 6.2(1.4) 6.0(1.4) 4.9(1.1) 6.2(1.1) 7.0(1.0) 6.2(1.1) 5.7(1.3) 6.7(1.1) 2.1(1.9)
Hillstrom-mw 3.7(2.3) 3.9(2.7) 3.8(2.8) 3.0(2.0) 3.0(1.3) 2.8(1.5) 3.6(2.5) 2.3(2.4) 3.1(1.7) 0.1(1.7)
Gerber-n 3.7(0.6) 1.9(0.7) 0.5(0.9) 3.1(0.6) 1.8(1.0) 2.1(1.1) 1.9(0.5) 1.4(1.0) 2.7(0.7) 2.9(1.0)
Gerber-s 2.4(0.9) 1.7(0.7) 0.6(0.9) 2.2(0.8) 1.3(1.0) 1.4(0.6) 1.6(0.8) 1.4(0.7) 1.8(0.8) 3.1(0.5)
Criteo-c 22.3(1.8) 19.4(1.0) 20.0(0.6) 19.5(1.6) 14.6(3.5) 12.4(4.3) 21.1(2.3) 7.3(3.9) 18.7(1.5) 10.9(2.4)
Criteo-v 0.3(0.8) 5.3(0.5) 4.8(1.5) 3.9(0.5) 5.4(1.2) 4.8(1.7) 6.1(1.0) 2.4(0.8) 5.7(0.7) 0.4(0.4)
Megafon 18.2(0.6) 2.6(0.5) 2.2(0.9) 16.6(0.9) 11.2(0.7) 11.0(1.2) 10.8(0.8) 9.2(1.1) 12.8(1.0) 9.7(0.7)
Bank-tel 14.5(7.6) 2.8(8.8) 16.0(9.0) 21.1(11.6) –15.5(6.3) –6.1(12.6) –15.8(5.6) –18.7(2.9) 26.7(7.2) 25.4(5.3)
Bank-cell 18.8(4.7) 23.3(3.6) 17.4(6.5) 31.0(3.9) 0.4(2.3) 1.5(2.5) -2.5(2.6) -1.0(1.9) 45.5(2.7) 20.8(2.6)
Bank-tel-cell 16.2(5.6) 23.8(2.5) 17.0(3.4) 30.5(2.7) 1.4(3.4) –0.4(5.7) –1.7(3.1) –0.5(2.3) 46.1(2.1) 23.5(2.9)
Information 14.9(3.3) 10.0(3.1) 4.1(2.3) 13.7(4.1) 9.6(2.0) 9.7(3.1) 11.2(2.9) 10.6(2.9) 12.0(3.1) 10.5(3.2)
Starbucks 22.3(4.5) 22.4(3.9) 22.4(3.7) 22.7(4.1) 22.4(2.1) 21.4(3.4) 23.4(3.2) 20.8(3.1) 20.2(3.3) 8.1(3.7)
RHC 32.4(3.5) 31.3(4.3) 30.3(5.0) 34.6(4.3) 29.6(4.2) 29.7(5.0) 30.0(4.1) 29.1(3.7) 27.2(5.0) 27.6(4.5)

(a) tree-based methods (b) meta-learners and forest-based methods

Fig. 4. Overall average ranking of the uplift approaches
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5 Conclusion and Perspectives

In this paper, we presented a new parameter-free method called UB-DT for
uplift decision trees. We have designed a Bayesian approach to select the
most probable uplift tree model T that maximizes the posterior probability
P (T |Data). Contrary to state-of-art uplift decision tree approaches, UB-DT
is characterized by a global criterion to build a tree, so the splits in one node
depend on the splits in the other nodes. This approach avoids overfitting and
the need for a pruning step. A search algorithm finds the tree that optimizes
this criterion. We showed that our approach is easily extended to random forests
and we defined UB-RF. Evaluations on real and synthetic data sets show that
UB-DT is a good uplift estimator and our tree and forests methods perform
competitively with state-of-art uplift modeling approaches including non tree
methods.

This work opens several perspectives. Studies on general trees (with more
than two child nodes) is promising. In addition, studies with multiple treatments
are still open work in uplift modeling. Moreover, the search algorithm leads to a
local optimum and may create under-fitted uplift trees. To go above this horizon
effect, it would be interesting to use a post-pruning algorithm [16].
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Abstract. Globalization has posed challenges to financial risk manage-
ment, connecting markets with each other, and making it more difficult
to diversify the portfolio to uncorrelated markets than ever in history. In
light of this growing complexity of causal relationships between global
stock markets, nonlinear Granger causality has superseded its linear
counterpart in providing quantitative evidence for these relationships.
In this paper, we propose a hybrid system that extends existing non-
linear Granger causality frameworks using machine learning-based time
series prediction models. We improve the accuracy of identifying nonlin-
ear Granger causality by combining p-values of causality statistics from
individual machine learning models. By adjusting a model independence
coefficient, our model is generalized to datasets where the strength of
causality varies. Meanwhile, the causality statistic is still interpretable,
because the distribution and critical value are known. Our findings chal-
lenge the current understanding that the United States market has the
dominating influence and show that Asian markets play a significant role
in spreading financial risk worldwide.

Keywords: Granger causality · machine learning · significance test ·
financial risk

1 Introduction

Alongside its contributions to economic growth, globalization is a conduit for
risk transmission among international stock markets [2,7,20]. Besides financial
connectedness inside the market, global events outside stock markets, such as
COVID-19, cryptocurrency, and regional wars, also have an impact on stock
markets worldwide. To address the complex financial risk transmission network
worldwide and reduce the risk on stock markets, diversifying the portfolio to
uncorrelated markets is a widely accepted approach [15].
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Conditional Granger causality [9] is based on the idea that the past values of
a time series can help predict the future value of another time series. To calculate
the causality statistic, they train a pair of linear autoregression models with and
without the causing series and find their residuals. The limitation is that it
only identifies linear causality, while causality between stock indices in the real
world is nonlinear [22]. To fill the gap between the linear causality model and
nonlinear causal relationships in the real world, researchers often use machine
learning models to make the prediction and identify nonlinear Granger causality,
such as importance causal analysis (ICA) [17], group lasso [8], and cLSTM neural
network [24]. These methods expand the scope of Granger causality.

However, these individual models investigate one particular type of causality
and are specialized to one scenario. The causality statistics and hypothesis tests
are different among these models, making it difficult to combine these models.
To tackle this issue, we propose a unified general framework integrating sev-
eral machine learning methods. Our framework is powerful enough to identify
Granger causality from different perspectives, thus increasing the robustness and
reliability of the results.

In this paper, we use a hybrid framework to identify nonlinear Granger
causality between stock indices. This framework combines p-values of causality
statistics from different machine learning methods, searches a model indepen-
dence coefficient to find critical values, and combines the significance test results.
Our main contributions are:

– We enhance the generalizability of nonlinear Granger causality identifiers by
using a hybrid strategy to combine individual models.

– We integrate p-values from individual models on the supervised dataset,
where the hybrid causality statistic is interpretable in hypothesis testing.

– Any time series prediction model, even if it is not specially designed for iden-
tifying Granger causality, is compatible with our framework. This allows us to
combine all learnings from individual methods based on the stacking method,
which increases robustness.

The remainder of this paper is organized as follows. Section 2 introduces the
background of our work, Sect. 3 reviews related literature, Sect. 4 proposes our
hybrid machine learning system, Sect. 5 presents experimental results, and Sect. 6
concludes our findings and suggestions on future work.

2 Linear Granger Causality

Conditional Granger causality is a method to identify causal relationships in a
group of time series. Let y = {y1, ..., yN} be a group of time series that are
sampled from the same time period and frequency. Each sequence yj of length T
has observations {yj,1, ..., yj,T }. Each time series is stationary and is significant
on lags of length m. For each pair of causal relationship from yi to yj , there is
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an unrestricted (UR) model and a restricted (R) model as follows:

UR : yj,t = β0 +
∑

k∈{1:N}
βkyk,t−m:t−1 + εj,t, t = m + 1, ..., T

R : yj,t = β0 +
∑

k∈{1:N}\i

βkyk,t−m:t−1 + ηj,t, t = m + 1, ..., T,
(1)

where {1 : N} \ i is the sequence from 1 to N excluding i, random variables
εt,ηt are the residuals, and β are coefficients of the linear autoregression model.

Both equations are fitted using the linear autoregression model. The Granger
causality statistic is defined as

Fi,j =
(T − 2m − 1)

(∑T
t=m+1 η̂2

j,t −
∑T

t=m+1 ε̂2j,t

)

m
∑T

t=m+1 ε̂2j,t
. (2)

The null hypothesis of the causality statistic is “time series yi has no causal
effect on time series yj”. The alternative hypothesis is “time series yi has a
causal effect on time series yj”. The null distribution fits F (m,T − 2m − 1). For
a confidence level α = 0.01, there is causality from yi to yj if pi,j < α.

We traverse each pair of (i, j) in all N time series {y1, ..., yN} except (i, i).
Then, the p-values of causality statistics form a matrix p of size N × N with
an empty diagonal. Therefore, the adjacency matrix of the Granger causality
network P is I[p < α], where I[·] is the Iverson bracket.

3 Related Work

The Granger causality matrix p introduced above can be learned using machine
learning models. In this section, we review existing attempts, as summarized
in Table 1. Subsequently, we discuss the applications and results of Granger
causality in global stock markets, including linear and nonlinear models.

3.1 Machine Learning Methods

Marinazzo et al. [18] use a Support Vector Machine (SVM), which prevents over-
fitting by using a filtered Granger causality index to test the probability of false
positive predictions. However, the statistic is still linear and based on Pearson’s
correlation coefficients. Zheng and Song [26] use a Generalized Radial Basis Func-
tion (GRBF) neural network. Their method has an advantage when there is a large
number of time series, and each has few observations as time points, but they can-
not account for multiplicative relationships between time series. Gao and Yang [8]
solve two problems: firstly, they apply group Lasso regression to overcome the spar-
sity in high-dimensional regression when the lag items were long; secondly, they
transform the regression coefficients from a constant to a function related to time.
Thus, the model can discover causality changing over time. Tank et al. [24] propose



Interpretability Meets Generalizability 325

Table 1. Overview of ML-based Granger causality detection method. Framework
means whether their modeling objective is the same as Eq. 3.

Article Model Tackled issues Limitation Significance
test

Framework

Marinazzo
et al. [18]

SVM overfitting Significance on
linear basis

Transformed
Pearson
correlation
coefficient

No

Zheng
and Song
[26]

GRBF high-dimension
sparsity

Ignore
multiplicative
relationships

F-test Yes

Gao and
Yang [8]

Group
Lasso

high-dimension
sparsity, causality
changes over time

Not mentioned Regularization
(nonzero
implies
significance)

Yes

Tank et
al. [24]

cLSTM,
cMLP

automatically lag
selection, long-range
dependencies

No critical value
of significance
test

Regularization
(nonzero
implies
significance)

No

Leng et
al. [17]

Random
forest

dynamic causality,
indirect causality

Not mentioned T-test No

Rosol et
al. [21]

GRU,
LSTM,
MLP

dynamic causality,
program
implementation

Not mentioned Wilcoxon
signed-rank
test

Yes

constraint neural networks, which automatically select the length of lag between
time series. Their method makes a prediction for each time series independently,
then results in the causality statistic based on the weights in previous prediction
models. Tank et al.’s and Gao and Yang’s works use the regularization method,
while not carrying out the significance test. Leng et al. [17] are inspired by decision
trees and propose the Importance Causal Analysis (ICA) method. Their method
helps distinguish direct and indirect causality, and is applicable to real-time prob-
lems where causality is dynamic. Rosol et al. [21] integrate neural network-based
nonlinear Granger causality models into a Python package. Their method allows
for identifying causality that changes over time.

In summary, machine learning models in these works usually do not use UR
and R models, and their causality statistics are not based on residuals as in linear
cases. They have two problems in common: generalizability and interpretability.
For generalizability, each of their causality statistics is only based on one spe-
cific machine learning model and is not compatible with others. When the model
fails on other datasets, we can neither reuse their framework by choosing another
machine learning method, nor integrate these methods into a hybrid framework.
For interpretability, each causality statistic they proposed has different mean-
ings and leads to different distributions, some even do not use a statistic. If we
integrate or compare these methods, it is hard to explain the results.

In contrast, our approach not only bridges the causality statistic and machine
learning methods, but also represents linear and nonlinear cases in the same
framework. We also propose a method to combine the results of different models.
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3.2 Granger Causality in Finance

Linear Granger causality is widely used in identifying Granger causality in global
stock markets. Tang et al. [23] and Zheng & Song [26] showed that United States
indices were in a pivotal position of the causal network, while Asian and Pacific
indices were less important. With these models proposed in recent years for
identifying nonlinear Granger causality, some research investigated nonlinear
Granger causality in global stock markets. Al-Yahyaee et al. [1] attempted sev-
eral statistical methods to detect nonlinear Granger causality and found asym-
metric volatility transmission and asymmetric causalities. Their results showed
a dominating influence of the US over Europe.

Input: Group
of time series

Organizing as R
and UR models

Stationary test
lag selection

Training set
(Top 80%)

Testing set
(Bottom 20%)

Cross-validation
datasets

Fitting with
machine learn-
ing methods

Calculating
residuals on
testing set

Granger causality
statistic of

individual models

p-values of
individual models

Granger causality
statistic of the
hybrid model

Result: Causal
relationships

ADF and PACF testADF and PACF test HyperparametersHyperparameters

Trained modelsTrained models

Wilcoxon signed rankWilcoxon signed rank

Fisher’s methodFisher’s method

Module 1: Nonlinear Granger causality
Module 2: Time series prediction
Module 3: Significance and negotiation

Fig. 1. Our proposed framework

The different opening and closing hours of the stock market worldwide cause
a non-synchronous trading effect. Without adjustment, the conclusions tend to
underestimate the causality from the United States to Asian and Pacific markets.
Baumohl and Vyrost [3] accounted for this effect by adjusting the time scale of
the causing series based on the effect series. Before adjusting, their results agreed
with Tang et al. [23] and Zheng & Song [26]. But after adjusting, they found
that Asian indices linearly caused others, and the European market caused the
United States market. To the best of our knowledge, it was the only paper that
found Asian indices causing others but not United States ones. Their limitation
was that they only included five indices in the experiment.

4 Methodology

In this section, we identify the shortcomings in existing approaches, such as the
lack of significance test and the incompatibility with the framework presented in
Eq. 3. To address these limitations, we propose a three-module framework. See
Fig. 1 for an overview.
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The first module transforms the dataset into the form of nonlinear Granger
causality in Eq. 3. Then, it tests if each time series is stationary and selects a
suitable length of lag. We then do a train-test split with the processed dataset.
This module bridges the causality statistic and the residuals of time series pre-
diction models. It works with machine learning models, and also degenerates to
linear Granger causality if we still use linear autoregression.

The second module trains different machine learning methods on the trans-
formed data. We calculate the residuals for both UR and R models and for each
machine learning method. This module does not require additional statistics
from models, so it is compatible with any machine learning methods.

The third module calculates the Wilcoxon signed-rank statistic based on the
residuals. With this causality statistic, we establish the p-value matrix for each
individual model. We use Fisher’s method to combine these p-value matrices as
a new causality statistic. By using a model independence coefficient, this module
is generalized to different strengths of causality and still uses hypothesis testing
to justify the final results. We discuss all modules in depth below1.

4.1 Module 1: Nonlinear Granger Causality

As mentioned in Sect. 2, the conditional Granger causality statistic is calculated
via the residuals of the unrestricted (UR) and the restricted (R) model. In the
nonlinear case, these two models are

UR : yj,t = f(y1:N,t−m:t−1) + εj,t, t = m + 1, ..., T

R : yj,t = f(
[
y{1:N}\i,t−m:t−1 ỹi,t−m:t−1

]
) + ηj,t, t = m + 1, ..., T,

(3)

where f(·) is any machine learning method with the same hyperparameter and
training process in both equations.

In the linear case, the loss function is convex, and a redundant variable will
not increase the sum squared residual. However, the loss function of the machine
learning model is not guaranteed to be convex. The contribution of causality may
be weaker than the interference of the redundant dimension, making it hard
to identify the existence of causality. We introduce the bootstrap method to
tackle this issue: we shuffle the series yi,t−m:t−1 and include the shuffled series
ỹi,t−k, t = m + 1, ..., T in the R model, instead of removing yi. This method
eliminates the effect of dimension differences between the UR and R models.

We split the dataset for each of the UR and R models into a training set
with 80% time points and a test set with 20%, such that the time of the test
set is after that of the training set. In the training set, we firstly carry out
Augmented Dickey-Fuller (ADF) test to check if the time series is stationary,
which is a requirement of time series prediction models. The length of lag m
is automatically chosen by the Akaike Information Criterion (AIC). Also, we
use the Partial Auto-Correlation Function (PACF) test to determine the most

1 Our code as well as supplementary materials are provided at https://github.com
/cloudy-sfu/GC-significance-test.

https://github.com/cloudy-sfu/GC-significance-test
https://github.com/cloudy-sfu/GC-significance-test
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suitable length of lag items. The restricted and unrestricted models are built and
fitted on the processed dataset, using the same hyperparameters, structures, and
training methods.

4.2 Module 2: Time Series Prediction

In this module, we use machine learning-based time series prediction models to fit
UR and R models on the training set, and calculate the residuals on the test set.
The models we use are SVM, an L2-regularized Multi-Layer Perceptron (MLP),
and an L2-regularized Long-Short Term Memory (LSTM) neural network. We
tune the hyperparameters for each model using 5-fold cross-validation and grid
search. Please see our supplementary materials for details on the tuning and the
model architectures.

When there are N time series, the total number of predictions is N(N −
1). We evaluate the accuracy of these predictions by counting the number of
correct predictions when comparing the matrix I[p < α] with the ground truth,
normalized by the total number of predictions.

4.3 Module 3: Significance and Negotiation

With machine learning models, the causality statistic in Eq. 2 is not guaranteed
to fit the F distribution. To find its null distribution, some research [12,19] simu-
lates the unrestricted model many times and estimates the empirical distribution
of

∑T
t=m+1 ε̂2j,t. The limitation of the simulation method is computational cost as

many machine learning models need to be trained, in proportion to the number
of time series.

As an alternative, our causality statistic is the Wilcoxon signed-rank statistic

Ti,j =
T∑

p=m+1

(
sgn(rp)

T∑

q=m+1

I[rp ≤ rq]

)
, (4)

where sgn(rp) is the sign of rp = ε̂2j,t − η̂2
j,t. It measures whether the distribution

of r is symmetric around 0. See Kolassa [13] for the distribution of Ti,j .
Each machine learning model provides a p-value of the Wilcoxon signed-rank

test. If there are k methods to identify the causality from yi to yj , we obtain
p-values p1, ..., pk. We have to negotiate and find a joint p-value. This value
should still be reliable when some methods fail and output inaccurate p-values,
such that a hybrid system involving many machine learning models remains
generalizable.

One approach to combine all p-values from yi to yj into one final output is
stacking [25]. This method combines the individual values using a regression that
can be trained via cross-validation. The disadvantage of stacking is that there is
a risk that if one of the individual p-values is insignificant, the combined p-value
will also be insignificant, which puts too much emphasis on a single result. The
UR and R models are treated independently, and the difference between these
two groups is not taken into account.
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Another approach to finding a combined p-value is calculating a joint p-value
by Fisher’s method [4]. If the machine learning methods are independent, then

χ0 = −2
k∑

i=1

ln(pi) ∼ χ2(2k). (5)

There is causality from yi to yj if χ0 > χ2
1−α(2k). However, we cannot guarantee

that the machine learning models are independent, so the null distribution of χ0

is no longer χ2(2k).
Brown [5] and Kost [14] have proposed an extension of Fisher’s method for

dependent p-values. If the distribution of the individual p-values is known, then
cχ0 ∼ χ2(2k), and c has a closed form. Unfortunately, we cannot make this
assumption for p-values from machine learning models in general.

(a) Ground truth (b) Prediction of hybrid model

Fig. 2. Causality in the Lorenz96 system

To overcome this, we should provide a numerical estimation of c, the model
independence coefficient. The causality network is entirely disjoint when c = 0
and is fully connected when c → +∞, but neither would provide meaningful
results. The most appropriate c should be insensitive to the change of topology
of the causality network. The node connectivity serves as a heuristic proxy to
find the right balance. We search for that value of c that maximizes the slope of
the corresponding node connectivity, as a jump in node connectivity indicates a
stable topology.
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Denote the node connectivity of a causality graph P as κ(P), which repre-
sents the minimum edges removed from P to make it disconnected. Note that
P depends on c and α, and could therefore be written as P(c, α). We formally
calculate c as

c∗ = max
c

∂κ(P(c, α))
∂c

. (6)

The derivative is estimated numerically to obtain a smoother result [6].
After picking the value of c, we obtain a causality statistic and corresponding

p-value per time series tuple (yi, yj). These p-values can be assembled into the
matrix p, which is the final output of our hybrid system.

5 Experiments and Results

In this section, we first validate our hybrid model on the Lorenz96 dataset (see
the supplementary material for details), comparing its accuracy with other meth-
ods. Additionally, we apply it to the stock indices and quantitatively investigate
its reported causal relationships.

5.1 Validating the Methods

We validate our method on the differential equation dataset Lorenz96 [11]. We
generate a dataset of 10 series, and each has 2000 time points. The ground truth
of causality is shown in Fig. 2a.

Table 2. Accuracy of models on Lorenz96 for p < 0.01

Name Accuracy Name Accuracy

Linear Regression 0.711 SVM 0.900
LSTM 0.744 LSTM-L2 0.800
MLP 0.833 MLP-L2 0.844
cLSTM 0.967 Hybrid (ours) 0.978

We apply the linear autoregression, SVM, Tank et al.’s method [24], as well
as MLP and LSTM with and without L2-regularization to the Lorenz96 dataset,
calculating the accuracy score for each of the methods. For each individual
machine learning model, the Wilcoxon signed-rank test results in a p-value for
each pair of time series. For the hybrid system, we search for the best c and
build the Fisher statistic cχ0, and its quantile in χ2(2k) is the p-value. For the
competitors, we follow the significance tests in the original papers and calculate
the p-value. We conclude there is a causality if p < 0.01, and there is no causality
otherwise. By comparing it with the ground truth, we obtain an accuracy score
for each method, as shown in Table 2.
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Fig. 3. Picking c by node connectivity of causality network

The results show that unregularized individual models (SVM, LSTM, MLP)
have an advantage in identifying Granger causality in nonlinear systems over the
linear Granger causality model. L2-regularization increases the accuracy and
reduces the number of false positive predictions. Moreover, the hybrid model
beats any of its base models and exceeds the performance of the state-of-the-art
cLSTM model, as shown in Fig. 2b. Though it does not outperform cLSTM a
lot, it can figure out p-values while cLSTM cannot. The corresponding model
independent coefficient is c∗ = 0.2, as shown in Fig. 3a.

EURO
STOXX 50
(Europe)

Euronext
100 Index
(Europe)

S&P 500
(United States)

Straits
Times Index
(Singapore)

MOEX Rus-
sia Index
(Russia)

Nikkei 225
(Japan)

S&P/ASX 200
(Australia)

S&P/NZX 50
INDEX GROSS
(New Zealand)

NASDAQ
Composite

(United States)

SSE Com-
posite Index

(China)

Shenzhen Index
(China)

KOSPI Com-
posite Index

(Korea)

HANG SENG
INDEX

(Hong Kong)

Fig. 4. Causal network of stock indices

5.2 Application of the Stock Indices

Our stock indices dataset2 that we used in the experiments contains the properly
adjusted closing price of stock indices from the start of 2016 to the end of 2019
2 Source: https://finance.yahoo.com/world-indices, extracted using the yfinance PyPI

package.

https://finance.yahoo.com/world-indices
https://pypi.org/project/yfinance/
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in 14 stock markets. The dataset skips worldwide holidays and fills other missing
values with their previous value. Following the common practice in the finance
industry, we use the logarithmic rate of return, standardizing the mean to 0 and
the standard deviation to 1.

We apply our hybrid model to the stock indices. The relationship between
the value of c and the derivative of κ(P), along with the effect of confidence
level, are shown in Fig. 3b. The optimal value is c∗ = 1.53, which results in 17
pairs with causal relationships at the confidence level of p ≤ 0.01, as shown in
Fig. 4.

Our results agree that Australia and Japan act as agencies that transmit risks
between markets [26]. Specifically, the United States and Singapore have causal
effects on Australia and Japan, which then transmit such effects to New Zealand
and Korea. However, we challenge the results from previous works [23,26] that
claim the United States has the dominating influence while Asian markets have
little to no influence.

Some of our results could be explained by the impact of the financial sector,
which is a major contributor to systemic risk [26]. Therefore, the reason for the
non-causality from NASDAQ to other markets could be that NASDAQ only has
5% of financial sector holdings while the S&P 500 has 18%. And our result of
Singapore showing dominance with causal effects on many other countries could
be because the Straits Times Index has over 40% holdings in the Banking sector.

The causal effect from China to Japan and through Japan to other markets
such as NASDAQ could be explained by the escalating trade war between the
United States and China which evolved into a tech war in late 2018, as both
Japan and NASDAQ are heavily tech-weighted [16]. Looking within the Chinese
markets, our result of casual effect from Shanghai to Shenzhen contradicts the
linear result from Tang et al. [23] in which Shanghai is independent of other
markets. However, we agree with the nonlinear result from Huang et al. [10] in
which Shanghai behaves as an information source for Chinese domestic markets.

6 Conclusion

We have proposed a hybrid machine learning system to identify nonlinear
Granger causality. Our system enables not specially designed time series pre-
diction models to identify nonlinear causality while guaranteeing a robust and
consistent result. By this means, different nonlinear Granger causality models
can be integrated together, thus being generalized to different scenarios. As an
example, we integrate SVM, LSTM-L2, and MLP-L2 models, and the signifi-
cance of the causality statistic can be tested by Wilcoxon signed-rank test and
negotiated by Fisher’s method. Experiments on the Lorenz96 datasets indicate
that our model performs better than existing ones.

Our hybrid model can be generalized to real-world stock indices, finding
plausible results the previous model missed. Meanwhile, the significance of the
causality statistic is still interpretable by probability-based hypothesis testing
methods. By investigating the global stock indices from 2016–2019, we find the
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United States stock market no longer dominates, and Singapore has a more
significant influence on the global stock markets than expected. Also, Japan
plays the role of connecting Asia, the Pacific Ocean, and the United States. It
is also impacted by the Shanghai market, which we believe is regulated and not
in free circulation.

Future work is expected to be conducted in three aspects. First, we plan
to investigate further individual models in our ensemble and select those that
integrate best into our framework. Second, we expect to extend the weights
in neural networks to a function dependent on time, tackling the time-varying
causality. Third, we aim to find a theoretically supported rather than heuristic
closed form for c.
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Abstract. Agents often need a long time to explore state-action space
in order to learn how to act expectedly in Partially Observable Markov
Decision Processes (POMDPs). With the reward shaping method, real-
time POMDP planning can be guided both in terms of reliability and
speed. In this paper, we propose Low Dimensional Policy Graph (LDPG),
a new reward shaping method for reducing the dimension of the value
function to extract the best state-action pairs. The reward function is
then shaped using these key pairs. For accelerating learning speed, we
analyze the Transition Function graph to discover significant paths to
the learning agent’s goal. Direct comparison on five standard testbeds
indicates LDPG brings about the deterministic finding of optimal actions
faster regardless of the task type. Our method is shown to reach the goals
more quickly (by 41.48 % improvement) and performed 61.57 % better
in receiving rewards in the 4 × 5 × 2 domain.

Keywords: Dynamic reward shaping · Markov decision making ·
Planning · Dimension reduction · Reinforcement Learning

1 Introduction

Reward shaping in reinforcement learning accelerates the discovery of optimal
solutions to complex problems by adding a supplementary reward signal to the
environment reward [25]. This is especially useful in complex and uncertain envi-
ronments like POMDPs. However, it can be challenging to apply reward shaping
in POMDPs due to the need for expert knowledge and the importance of defining
the appropriate reward function. An incorrect reward function can result in sub-
optimal behavior, particularly in online tasks with limited planning time. This
paper addresses the limitations of existing reward shaping approaches for dis-
crete POMDPs by using our Low Dimensional Policy Graph (LDPG) method. To
reduce POMDP complexity, we applied Isometric Feature Mapping (ISOMAP),
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. Kashima et al. (Eds.): PAKDD 2023, LNAI 13936, pp. 337–348, 2023.
https://doi.org/10.1007/978-3-031-33377-4_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33377-4_26&domain=pdf
https://doi.org/10.1007/978-3-031-33377-4_26


338 S. Nahali et al.

an advanced method of dimension reduction [24], on value function vectors while
iterating through the horizons (the number of time steps considered in solving the
problem). ISOMAP preserves the relation between state-action values by con-
sidering the point’s neighbors. It extends MDS to maintain distance proportions
between states in a low-dimensional space, and its output is the value function
vectors of state-actions for the optimal solution. During each iteration of the
value iteration process, the LDPG method dynamically identifies the sub-goals.
Next, LDPG rewards states located on the path of the sub-goal (sub-paths) to
induce the agent to follow sub-path. Through this strategy, the algorithm conver-
gence is sped up, and the final Expected Reward (ER) and Average Cumulative
Reward (ACR) are increased. To the best of our knowledge, there are no dynamic
reward shaping methods for POMDPs without human supervision.

Our contributions to this work are as follows. First, we propose and deploy
the first dynamic reward shaping approach for discrete POMDPs. Second, our
method can extend to the POMDP problems that are solvable by a point-based
value iteration algorithm. Third, we experimentally demonstrate the utility of
our approach, employing it for complex domains (larger state space). Fourth,
we conducted experimental results on five POMDP tasks to demonstrate the
effectiveness of LDPG in terms of speed of ACR, final ER, and convergence
speed.

2 Background and Notation

Markov decision process (MDP) is used for sequential decision-making
in observable environments with uncertain system dynamics [17]. Partially
Observable Markov decision process (POMDP) is similar to MDP, but it
deals with unfamiliar and partially observable environments [29]. In POMDP, a
set of observations is added to the model to indirectly provide information about
the states to the agent. Observations are represented with a probability function
indicating the likelihood of each observation for each state in the model.

A POMDP is formally defined by a tuple < S,A, T,R,Z,O, γ >. In this
tuple, S is a finite set of latent states s, A is the set of action a, T (s0|s, a) is
the transition probability function, R(s, a) ∈ [0, 1] is the reward function which
is a real-time reward that is received when the agent performs action a in state
s, Z is a set of observations, O(z|s0, a) is the observation probability function,
and γ ∈ [0, 1] is a discount factor that gives a lower weight to further rewards in
future.

By introducing additional rewards (F) to the main reward function (R),
reward shaping can accelerate the planning process for POMDPs. This approach
is particularly beneficial as it provides valuable and informative feedback to
agents based on previous knowledge, which can influence the optimal policy.
However, if the reward function is not appropriate, it can mislead the agent
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and cause divergence [21]. The concept of Potential-based reward shaping
(PBRS) function was introduced to address this problem. PBRS is a technique
designed to ensure that a policy remains optimal during the learning process.
This is accomplished through the use of a potential function φ, which maps states
to real numbers [19]. PBRS assumes shaping rewards are not defined for all goal
states since no actions are needed in those states. But if there are multiple goals
and the potential function of the goal states are not zero, it can impact the
optimal policy [9].

3 Related Work

A diverse range of tasks have been subject to experimentation and development
of reward shaping techniques. Some of these methods use deep learning [11] and
generative models for shaping state-action potential reward functions statically
[26] and some of them designed a probabilistic learning paradigm to learn reward
functions for RL problems [28]. These methods are designed for MDPs in discrete
domains and require human supervision [20]. However, Dong et al. proposed a
static reward shaping method for MDPs, performing well in continuous and dis-
crete spaces [6]. The existing reward shaping methods for POMDPs are very
limited. These limited number of reward shaping methods are either static [7] or
use human demonstration [1]. In some cases, the solutions hardly depend on a
specific task and cannot generalize to new situations [18]. Information Particle
Filter Tree (IPFT) is a dynamic method designed for continuous ρPOMDP that
utilizes Monte Carlo Tree Search [8]. Also, a reward shaping method is designed
for DQN, an RNN-based reinforcement learning (RL) method in POMDPs [27].
This reward shaping method is developed to deal with limited training data,
and the issue of the sparse reward of DQNs [12]. It is worth mentioning that
sparse rewards in long-horizon tasks can lead to low efficiency in the RL problem
[10]. On the other hand, existing deep learning approaches for reward shaping
rely on RNNs, which often cause sub-optimality in complex tasks (i.e., high
dimensional and continuous environments). Besides, RNNs are prone to van-
ishing gradients for long paths and have slow training procedures. Moreover,
utilizing deep learning models for shaping in POMDPs requires large training
patterns which makes RNN-based reward shaping a data-extensive and time-
consuming process [9]. The referenced works indicate the benefits of utilizing a
reward shaping approach for POMDPs to addresses the above limitations.

4 LDPG: Our Proposed Reward Shaping Method

The LDPG method is an online algorithm for POMDPs based on detecting the
paths leading to the sub-goals (sub-paths). To discover an appropriate path, the
agent uses the value function vectors as we iterate through the horizons to mark
specific states as high-priority states. Hence, the agent’s focus becomes more
concentrated on finding the optimal path, and it drew to this sub-path in the
future, resulting in the best route being found. To be specific, in LDPG, the
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agent looks for the sub-goals at each iteration of the value iteration process.
Then, if the sub-goals were experienced before, a subset of state-action pairs
to reach the sub-goals are extracted. This subset of state-action pairs includes
states that have appeared more frequently on the route to reach the sub-goals.
A reward equivalent to the value of the extracted states is then added to their
immediate reward. The augmented reward allows the agent to reach the goal
in a shorter time by avoiding unnecessary states while preserving the policy’s
optimality. When there are no sub-goals or the agent hasn’t experienced any sub-
goals, a standard RL algorithm will be used. In the initial steps of the algorithm,
the agent does not have experience, so it learns without reward shaping and uses
the original rewards received from the environment. In later steps, the reward
function shapes dynamically as the agent’s history expands. Furthermore, the
state space is not changed because we do not attempt to limit it for the agent. As
a result, the agent can still visit disregarded states and will not behave biased.

Fig. 1. An overview of our LDPG method

Figure 1 shows the procedure of the LDPG. Each color region in the value
function represents all the belief states where the action with the same color
is the best strategy to use. This belief state refers to a probability distribution
over the underlying states of the system, which the agent updates based on the
observations and actions it takes. It is important to note that each color in parts
b and c correspond to the same colored line in the value function and not all of
the transformed lines are useful for presenting the maximal value. The following
steps describe each step in detail.

Step 1: Compute Betweenness Centrality. We represent the Transition
Function Graph (Policy Graphs) of actions and the states with a directed graph.
The node of the policy graph determines which action to take. Next, the obser-
vation received is used to find the next node. The edges in the policy graph
indicate the previous vectors used to construct the current one. By using the
policy graph, which is actually a finite state controller, we can execute the opti-
mal policy instead of tracking the belief state [14]. To create a policy graph for
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infinite horizon POMDP domains, value iteration can be used by computing a
sequence of value functions incrementally. The relative importance of nodes can
be measured using vertex centrality [4]. Here, for finding the sub-goals of each
goal from a graph, we use the Betweenness Centrality of the node u, denoted by
BC(u), which is defined as the frequency that a node lies on the shortest path
connecting two distinct nodes. The BC is specified by the Eq. 1.

BC(u) =
∑

u�=s �=t∈V

σst(u)
σst

(1)

where σst is the total number of shortest paths from node s to node t and σst(u)
is the number of those paths that pass through u [2]. The node with the greatest
BC is the sub-goal of G.

Step 2: Search for Value Function Vectors of Sub-goals. Once sub-goals
are identified, the agent checks if it has encountered them before by inspecting
its history for their corresponding value function vectors. Value function vectors
represent the value function, considered piecewise linear and convex (PWLC).
For each action, there is a vector comprised of the coefficients of a hyperplane.
These hyperplanes represent one side of the value function and pass through the
origin. The length of the vectors is equal to the number of states in the POMDP
[22]. The value function for an environment with k actions and N states is a set
of N-dimensional alpha vectors, where each row corresponds to an action and
each column corresponds to a state. The best action for each belief state, given
the PWLC value function, is the one with the highest dot product between its
alpha vector coefficients and the belief state probabilities.

Step 3: Apply ISOMAP on Value Function Vectors of Sub-goals. The
value function vectors of experienced sub-goals are then fed to the ISOMAP
to find the “best” state-action pair for reaching the sub-goals. By reducing the
dimension of the value function vectors we make the value of actions zero for
some states. Hence, it is easier and faster to calculate the value of each action
over a belief state. In other words, these pairs have the most influential role in
achieving the sub-goals and discovering strongly connected regions in the policy
graph.

Step 4: Assign Rewards to Value Function Vectors’ States. To encourage
the agent to pass through the experienced successful states extracted in Step 3
and appear in the path of the sub-goal, the values of these states are used from
the output vectors of the value function. Then these values are added to the
original rewards of these states with a discount factor γ. Specifically, we set the
reward shaping function as specified by Eq. 2.

φ(Si) = V (Si) (2)

where V is the value of state Si, and φ(St) = 0, where St ∈ goal and sub-goal
states and all other states which have not appeared in the low dimensional value
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function vectors of the sub-goals. Therefore, the agent tends to pass through
experienced successful states to get the specified rewards. We use potential-based
reward shaping by learning a potential function φ that shapes the reward for
each state. The potential function is set to zero for terminal state sT to ensure
policy invariance in finite-horizon environments. However, a terminal state in
one path may be non-terminal in another path, in which case the potential of
that state will be used. Setting φ(sT ) = 0 balances positive and negative shaping
rewards to maintain optimality of the original policy by compensating for any
potentials accumulated before visiting sT .

Algorithm 1. Computing an optimal policy using LDPG
1: Transition function ψ(b, a, b′), Value function in iteration t Vt, policy φ, policy graph G, α-

vectors of state s Ψs, # Actions A, Belief state b, Terminal States Tr
2: Begin
3: S ← {S0, .., Sk} , t := 1 , V1(s) := 0∀s
4: while supb|vt(b) − vt−1(b)| < ε do
5: t := t + l
6: for a ∈ A do
7: G =: ConstructPolicyGraph(φ, ψ(b, a, b′))
8: BC =

∑
u�=s �=t∈A

ρs t(u)
ρs t

9: SubGoals ← {SUB0, .., SUBp}
10: for all sub ∈ SubGoals
11: if Ψsub

∈ Vt then

12: ΨD×K
sub

= ISOMAP(ΨA×K
sub

)

13: for Si | ΨSi ∈ ΨD×K
sub

& Si /∈ Tr do � For all possible actions in state

14: Reward(Si) := |Vt(Si)|
15: R := R(Si, a) + Reward(Si)
16: end for
17: end if
18: Qa

t := IncrementalPrunning(Vt−1, a, R) � value of starting in state s in t
19: end for
20: prune ∪aQa

t to get Vt

21: end while
22: End

The pseudo-code in Algorithm 1 outlines our reward shaping approach. At
iteration t, the algorithm has the optimal t-step value function. Separate Q-
functions for each action are represented by sets of policy graphs within the
value-iteration loop, and are obtained by calling the Incremental Pruning algo-
rithm using the previous iteration’s value function. The union of these sets forms
the optimal value function, which may contain extraneous policy trees that are
pruned to yield the useful set of r-step policy trees Vt. To demonstrate the
LDPG algorithm’s convergence towards global optimality, we must establish
that it satisfies the conditions of the Policy Iteration Theorem [23]. This the-
orem guarantees convergence to a globally optimal policy. In order to confirm
that the LDPG Algorithm satisfies these conditions, we must demonstrate that
it repeatedly applies the policy improvement and policy evaluation operators
[13]. The LDPG Algorithm applies the policy improvement operator in the for-
loop beginning at line 6, where it constructs a policy graph using the transition
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function for each action, and then prunes the policy graph using incremental
pruning to obtain optimal Q value for each action. The LDPG Algorithm then
applies the policy evaluation operator in the for-loop beginning at line 9, where
it computes the reward for each state using the current value function and the
updated value function obtained from incremental pruning. The LDPG Algo-
rithm then prunes the value function using incremental pruning to obtain the
updated value function. This process of iteratively applying the policy improve-
ment and policy evaluation operators continues until the stopping criterion at
line 4 is met. Since the LDPG Algorithm satisfies the conditions of the Policy
Iteration Theorem, we can conclude that the sequence of policies generated by
the LDPG Algorithm will converge to a unique optimal policy, which achieves
global optimality.
To prove that LDPG uses a potential-based reward function, we need to show
that the reward shaping function used in the algorithm depends only on the
potential function. Looking at the algorithm, the reward shaping function is
defined as Eq. 2. Since the value function is a measure of the expected return
from that state on-wards, this reward shaping function is encouraging the agent
to move towards states with higher value functions. Now, if we consider the
Bellman equation for the value function V (s) as specified in Eq. 3.

V (s) = max
a∈A

∑

s′∈S

ψ(s, a, s′)[R(s, a, s′) + γV (s′)] (3)

We can see that the value function is a function of the potential function, since
the transition function ψ and the reward function R are both functions of the
potential function. Therefore, since the reward shaping function used in LDPG
is a function of the value function, we can conclude that LDPG uses a potential-
based reward function.

The algorithm for convergence involves constructing a policy graph, calculat-
ing betweenness centrality, ISOMAP dimension reduction, computing rewards,
and pruning the value function, with a time complexity of O(t∗S2∗A+K2 log K+
t ∗ S ∗ E + t ∗ S2). The formula involves t iterations, S states, A actions, and K
nearest neighbors in ISOMAP. The algorithm’s space complexity is O(|S|).

5 Experimental Results

To evaluate the LDPG, experiments were conducted on five goal-conditioned
testbeds: Hallway, Shuttle, ALOHA, BULKHEAD, and 4 × 5 × 2 [14]. In goal-
conditioned environments, the agent is responsible for achieving specific goals or
sets of goals [5]. Using a goal-conditioned approach provides an advantage, as it
allows the agent to learn a more general policy that can be applied to various
goal states, rather than being limited to a specific set of states [3,16].

In the routing problem of navigating the Hallway, a robot equipped with
sensors moves through an office. The sensors may produce inaccurate readings
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with probabilities, leading to errors. The robot can detect only four things: walls,
doors, open space, and undetermined areas. If the robot mistakenly identifies its
location as the goal, it receives a penalty of minus one. The Shuttle is a simu-
lated docking task with random actions and imprecise sensors. The objective is
to move supplies between two space stations, with a bonus of +10 given for each
successful action at the station with fewer visits. The agent incurs a penalty of −3
for colliding with the station and no bonus otherwise. The agent can disconnect,
slow down, throw, approach, or collide depending on the state. Backtracking
has a 0.3 probability of throwing the agent into space and an 0.8 probability of
approaching a station from space. Lastly, the agent fails to load 30% of the time.

ALOHA is a packet-switched network that shares a channel between pack-
ets to increase efficiency, but only one packet can be transmitted at a time. The
probability of a packet waiting to be sent is a = 1/Sb, where Sb is the number of
accumulated packets. The set of actions is defined as A = {Sb|Sb = 1, 2, . . . ,M},
where M is the maximum number of accumulated packets allowed. The reward
is zero at the highest number of packets and +1 for every number less than
the highest. In BULKHEAD, a titanium aircraft engine’s chipping and blade
inspection process is modeled. In each step, one of two processing or inspec-
tion techniques is selected. Agent observations are processing actions or inspec-
tions. Process actions observations include information on whether something
has caused a part to be stressed. These events are also divided into three states.
The transition states in this environment are defined according to a uniform
probability function by applying inspection. 4 × 5 × 2 is a maze world problem
that consists of two floors, each with a 4× 5 maze. The agent intends to move
towards the goal placed in one of the states. In this problem, observations include
nothing if the agent didn’t observe the target in the current state, landmark-
level-lower if in upper floor states, landmark-level-upper if the agent is on the
lower floor, and goal when in the goal position. Table 1 offers supplementary
details regarding these environments. Specifically, multiple sub-goals listed in
the table share the same rank and had the highest BC factor.

The simulations were conducted on a computer with an Intel Core i7 CPU
and 8GB of memory. POMDP-solve, which uses the Perseus algorithm and
dynamic programming with backward recursion, was used to develop the method
[22]. ISOMAP was used with two coordinates for the manifold and one neighbor
for each point. Finally, for the eigenvalue decomposition, the ‘auto’ or ‘dense’
modes were used depending on the Transition Function graph for each domain.

Table 1. The details of the POMDP domains used in Experiment 1.

Name States Actions obs Sub-goal states Goal states

4 × 5 × 2 39 4 4 ‘38’ ’0’

Hallway 60 5 21 ‘56’ to ‘59’ ‘52’ to ‘55’

ALOHA 30 9 3 ‘0’ to ‘26’ ‘29’

Shuttle 8 3 5 ‘0’ ‘3’

BULKHEAD 10 6 6 ‘6’ ‘7’
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5.1 Results

This section compares POMDP agent performance across environments using
three standard criteria: Average Cumulative Reward (ACR), Expected Reward
(ER), and speed of convergence. A higher ACR indicates accurate learning, a
higher expected reward indicates success in achieving goals [15], and faster con-
vergence indicates passing more states towards the goal in 1000 stages. Each
experiment was performed five times and results were averaged. The Q func-
tion was initialized with a value of zero. The discount factor γ is 0.95 ± 0.5.
The algorithm stops if the execution time is more than 1000 time units. Also, if
the absolute difference between the two values is less than 10−7, the algorithm
finishes. Experiment 1 compares the performance of the POMDP agent in envi-
ronments with standard rewards and environments with reward shaping (LDPG
method). Figure 2 depicts ACR results for standard RL and LDPG methods.
The bar chart indicates improvement percentage, based on the final value of
the ACR for each domain. Results are summarized in Table 2. The results from
experiment 1 establish the potential for using LDPG method.

Experiment 2 examines how complexity and size of the environment affect the
performance of LDPG. For this aim, the number of states of environments has
been increased to 10 times while maintaining the same goals. This expansion has
also led to the development of the transfer function. However, the observation
space is still kept as in the first experiment. Table 3 shows the results of this
experiment. Figure 3 shows the ACR in extended environments for the standard
RL and LDPG method for this experiment. In both experiments, BULKHEAD is
the most complex problem in terms of complexity as the agent requires more time
to achieve positive rewards. It is also confirmed by the steep slope of the ACR
in Fig. 2 and Fig. 3. As the number of states in all of the environments (except
4×5×2) is increased in Experiment 2, LDPG improves less than Experiment 1,
but is still superior to standard RL without reward shaping. Tables 2 and 3 show
that both experiments were satisfactory in all environments since values related
to both criteria were improved. As LDPG is based on the paths leading to the
sub-goals of each goal, the results for the domains with a more robust set of sub-
goals are expected to be more satisfactory. According to the results in Table 3,
LDPG still performs well when the size of the environments increases to 10
times wider. Moreover, with Wilcoxon signed-rank test, performance differences
in speed and expected reward are considered statistically significant over learning
without shaping when the p-value < 0.05.

Table 2. LDPG performance in speed and reward across different environments.

Speed (LDPG) Speed (no shaping) Improved (%) ER (LDPG) ER (no shaping) Improved (%)

4 × 5 × 2 135 79 41.48 16.11 6.19 61.57

HALLWAY 52 48 7.69 14.48 9.29 35.84

SHUTTLE 271 269 0.73 18.66 9.517 48.99

BULKHEAD 17194 15768 8.29 341933197.5 242344682 .2 29.12

ALOHA 1819 1599 12.09 828.87 786.446 5.11
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Fig. 2. LDPG performance in ACR across different environments.

Table 3. LDPG performance in speed and reward across different environments with
increased size.

Speed (LDPG) Speed (no shaping) Improved (%) ER (LDPG) ER (no shaping) Improved (%)

4 × 5 × 2 103 76 26.21 16.07 6.19 86.12

HALLWAY 37.39 35 6.83 3113.21 9.29 34.24

SHUTTLE 271 269 0.7 18.66 9.517 48.98

BULKHEAD 3543 2842 19.78 144183608.0 114283101.3 2.73

ALOHA 2497 2269 9.13 890.390 885.442 0.55

Fig. 3. LDPG performance in ACR across environments with increased size.

6 Conclusion and Future Work

Planning in POMDPs is challenging in problems where the immediate reward
is obtained after long action sequences. In this work, we are the first to propose
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a dynamic and task-independent reward shaping method for discrete POMDPs.
We use a non-linear dimension reduction method on the Transition Function
to help the agent decide between a set of pruned state-actions and choose the
most optimal in a complex task. LDPG dynamically shapes the reward function
during the value iteration algorithm by considering the distance between states.
Our evaluation reveals that breaking down the task into shorter overlapping
sub-paths of the main goal’s path is highly promising for POMDPs, and LDPG
improves performance measures. In our future research, we will examine the
impact of the LDPG on continuous domains. Additionally, using neural networks
is another direction for future research.
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8. Fischer, J., Ömer Sahin Tas: Information particle filter tree: an online algorithm
for pomdps with belief-based rewards on continuous domains. In: Proceedings of
the 37th International Conference on ML, ICML. vol. 119, pp. 3177–3187 (2020)

9. Grzeundefined, M.: Reward shaping in episodic reinforcement learning. In: Pro-
ceedings of the 16th Conference on Autonomous Agents and MultiAgent Systems,
AAMAS 2017, pp. 565–573. International Foundation for Autonomous Agents and
Multiagent Systems, Richland, SC (2017)

10. Guo, Y., Wu, Q., Honglak, L.: Learning action translator for meta reinforcement
learning on sparse-reward tasks. In: Proceedings of the AAAI Conference on Arti-
ficial Intelligence, vol. 36(6), pp. 6792–6800 (2022)



348 S. Nahali et al.

11. Hussein, A., Elyan, E., Gaber, M.M., Jayne, C.: Deep reward shaping from demon-
strations. In: International Joint Conference on Neural Networks (IJCNN), pp.
510–517 (2017)

12. Hausknecht, M., Stone, P.: Deep recurrent q-learning for partially observable mdps.
In: AAAI Fall Symposium on Sequential Decision Making for Intelligent Agents
(AAAI-SDMIA15) (2015)

13. Howard, R.A.: Dynamic programming and Markov processes. MIT Press (1960)
14. Kaelbling, L.P., Cassandra, A.R.: Exact and approximate algorithms for partially

observable Markov decision processes. In: Proceedings of the 13th Conference on
Uncertainty in Artificial Intelligence, pp. 374–381. Morgan Kaufmann Publishers
Inc. (1998)

15. Kalra, B., Munnangi, S.K., Majmundar, K., Manwani, N., Paruchuri, P.: Cooper-
ative monitoring of malicious activity in stock exchanges. In: Trends and Applica-
tions in Knowledge Discovery and Data Mining. PAKDD, pp. 121–132 (2021)

16. Kim, J., Seo, Y., Shin, J.: Landmark-guided subgoal generation in hierarchical
reinforcement learning. In: Advances in Neural Information Processing Systems,
vol. 34, pp. 28336–28349. Curran Associates, Inc. (2021)

17. Liu, S., Krishnan, R., Brunskill, E., Ni, L.M.: Modeling social information learn-
ing among taxi drivers. In: Advances in Knowledge Discovery and Data Mining,
PAKDD, pp. 73–84. Berlin (2013)

18. Mafi, N., Abtahi, F., Fasel, I.: Information theoretic reward shaping for curios-
ity driven learning in pomdps. In: Proceedings of the 2011 IEEE International
Conference on Development and Learning (ICDL), vol. 2, pp. 1–7 (2011)

19. Ng, A.Y., Harada, D., Russell, S.: Policy invariance under reward transformations:
theory and application to reward shaping. In: In Proceedings of the Sixteenth
International Conference on ML, pp. 278–287. Morgan Kaufmann (1999)

20. Nourozzadeh: Shaping Methods to Accelerate Reinforcement Learning: From Easy
to Challenging Tasks. Master’s thesis, Delft University of Technology (2010)

21. Snel, M., Whiteson, S.: Multi-task reinforcement learning: Shaping and feature
selection. In: Proceedings of the 9th European Conference on Recent Advances in
Reinforcement Learning, EWRL 2011, pp. 237–248. Springer, Berlin (2011)

22. Spaan, M.T.J., Vlassis, N.: Perseus: randomized point-based value iteration for
pomdps. J. Artif. Int. Res. 24(1), 195–220 (2005)

23. Sutton, R.S., Barto, A.G.: Reinforcement learning: An introduction. MIT press
(2018)

24. Tenenbaum, J.B., Silva, V.d., Langford, J.C.: A global geometric framework for
nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)

25. Wang, P., Fan, Y., Xia, L., Zhao, W.X., Niu, S., Huang, J.X.: KERL: a knowledge-
guided reinforcement learning model for sequential recommendation. In: Proceed-
ings of the 43rd International ACM SIGIR conference on research and development
in Information Retrieval SIGIR, China, pp. 209–218 (2020)

26. Yuchen Wu, M.M., Shkurti, F.: Shaping rewards for reinforcement learning with
imperfect demonstrations using generative models. In: 2021 IEEE International
Conference on Robotics and Automation (ICRA), pp. 6628–6634 (2020)

27. Zhanhong J., Michael J. Risbeck, V.R.S.M.J.A.C.Z.Y.M.L., Drees, K.H.: Building
hvac control with reinforcement learning for reduction of energy cost and demand
charge. Energy Buildings 239, 110833 (2021)

28. Zhou, W., Li, W.: Programmatic reward design by example. In: Proceedings of the
AAAI Conference on Artificial Intelligence 36(8), pp. 9233–9241 (2022)
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Abstract. Traffic signal control (TSC) plays an important role in alle-
viating heavy traffic congestion problem. It is helpful to provide an
effective transportation system by optimizing traffic signals intelligently.
Recently, many deep reinforcement learning methods are proposed to
solve TSC. However, most of these methods are trained and tested in a
fixed roadnet with the same traffic flow environment. They can not adapt
to new environments. Some meta-reinforcement learning methods are
proposed to solve this problem, but they can not properly decide when
to coordinate traffic signals. This paper proposes a multi-agent meta-
reinforcement learning method with coordination and reward shaping
to solve TSC. The proposed method combines independent learning and
neighbor-aware learning to adapt to different TSC environments. Besides,
the proposed method constructs a novel reward shaping. The reward
shaping can enhance traffic efficiency by encouraging adjacent intersec-
tions to generate more green waves. Based on green waves, vehicles can go
straight through multiple intersections without stopping. Experimental
results demonstrate that the proposed method achieves the state-of-the-
art generalization performance on synthetic and real-world datasets.

Keywords: Traffic signal control · Multi-agent meta-reinforcement
learning · Coordination · Reward shaping · Green wave

1 Introduction

Along with the increasing urbanization and the latest advance in transporta-
tion, the modern cities suffer from heavy traffic congestions. It results in several
negative problems such as air pollution, fuel consumption and economic losses.
To solve these problems, it is necessary to construct an intelligent transporta-
tion system to control traffic signals. The application of traffic signal control
(TSC) to Hefei city brain is a good example. The city brain totally monitors
2417 intersections, 1017 roads and 50 traffic grids. In 2020, It reduced average
vehicle queue length by 13% and average travel time by 20% at the intersec-
tions around Wuhu avenue in Hefei. Therefore, the city brain increased traffic
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. Kashima et al. (Eds.): PAKDD 2023, LNAI 13936, pp. 349–360, 2023.
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efficiency by controlling traffic signals intelligently. Moreover, some researchers
pay attention to design an adaptive TSC system [2,6,7]. The system can relieve
traffic congestions by adapting to different traffic flows.

Recently, more and more deep reinforcement learning (RL) methods [1,4,10,
16–18] are proposed to solve TSC. These RL methods use different strategies to
coordinate traffic signals. Some methods [4,10,16] learn the interactions among
agents by graph neural networks. Besides, some methods [17,18] design the reward
functions based on traffic pressure. Their reward functions consider the vehicle
queue lengths in multiple intersections rather than a single intersection. These
methods can well coordinate traffic signals from different perspectives, but their
coordination strategies can only adapt to a fixed traffic roadnet. Therefore, some
meta-reinforcement learning based methods [19,21,22] are proposed to solve this
problem. These methods use meta-reinforcement learning to train their models
in one traffic flow environment and test in other environments. They can handle
multiple patterns of traffic flows. However, these methods can not learn a general
coordination strategy to adapt to various complex traffic environments. In these
environments, some intersections have the low traffic pressures. It is not necessary
to cost much time to coordinate these intersections with low traffic pressures, but
the meta-reinforcement learning based methods can not properly decide when to
coordinate. Besides, the reward functions of these methods do not consider the cor-
relations of traffic signal phases between two adjacent intersections. More related
works for TSC are shown in supplementary material1.

To address the problems mentioned above, this paper designs a new coordi-
nation strategy. This coordination strategy combines independent learning and
neighbor-aware learning to adapt to light and heavy traffic conditions, respec-
tively. The independent learning aims to learn a TSC policy for a single inter-
section. The neighbor-aware learning can learn a general coordination strategy
between two adjacent intersections. Besides, this paper designs a reward shap-
ing to encourage adjacent intersections to generate more green waves. Based
on green waves, vehicles can go straight through multiple intersections without
stopping. Based on the coordination strategy and the reward shaping, this paper
proposes a multi-agent Meta-reinforcement learning method with Coordination
and reward Shaping (Meta-CSLight) to solve TSC. Meta-CSLight is composed
of two stages: the meta-training stage and the meta-testing stage. In the meta-
training stage, Meta-CSLight constructs the independent learning model and the
neighbor-aware learning model. The independent learning model is trained by
using the data from light traffic intersections, while the neighbor-aware learning
model is from heavy traffic intersections. To distinguish light from heavy cases,
Meta-CSLight defines the concept of traffic pressure based on the theory of max
pressure [12,13,17]. In the meta-testing stage, Meta-CSLight uses the trained
models from the meta-training stage to adapt to new traffic environments. The
main contributions of this paper are threefold:

– A multi-agent meta-reinforcement learning method with coordination and
reward shaping, named Meta-CSLight, is proposed to adapt to multiple traffic

1 https://github.com/08doudou/Meta-CSLight-Appendix.

https://github.com/08doudou/Meta-CSLight-Appendix


Multi-Agent Meta-RL with Coordination and Reward Shaping for TSC 351

flow environments in different cities. Meta-CSLight combines independent
learning and neighbor-aware learning to coordinate traffic signals according
to traffic pressures. This coordination strategy can adapt to various complex
traffic environments.

– Meta-CSLight designs the reward shaping based on green wave. The reward
shaping correlates the traffic signals between downstream and upstream inter-
sections to allow vehicles to go through these intersections without stopping.
Therefore, it can reduce traffic delay by encouraging adjacent intersections to
generate more green waves.

– Meta-CSLight is trained on Hangzhou dataset and evaluated on four differ-
ent datasets. The experimental results show that Meta-CSLight achieves the
superior performance on generalizing to different traffic flows.

2 Problem Definition

Definition 1 (Traffic signal phase): A traffic signal phase can be denoted by
the combination of movement signals. There are eight valid paired-signal phases
[15,23] in TSC as shown in Fig. 1. These phases are generated by pairing all the
non-conflicting movement signals.

(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 1. Traffic signal phases. (a) Going straight from west and east. (b) Turning left
from west and east. (c) Going straight from north and south. (d) Turning left from
north and south. (e) Going straight and turning left from west. (f) Going straight
and turning left from east. (g) Going straight and turning left from south. (h) Going
straight and turning left from north.

Definition 2 (Traffic movement): A traffic movement can be defined as travel-
ing from an incoming lane to an outgoing lane. Therefore, the traffic movement
from lane l to lane n can be denoted as (l, n), where l and n are connected with
the same intersection.

Definition 3 (Traffic pressure): The traffic pressure of a traffic movement (l, n)
can be denoted as the difference of vehicle density between lane l and lane n
[12,13,17]. This paper simply defines the traffic pressure of (l, n) as the difference
of vehicle number between lane l and lane n, because the traffic pressure is
only used to distinguish whether the traffic conditions are light or heavy. The
definition of traffic pressure of (l, n) is as follows:

m(l, n) = x(l) − x(n), (1)
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where x(·) denotes the vehicle number. Therefore, the traffic pressure of inter-
section i can be defined as follows:

Pi =
∑

(l,n)∈i

m(l, n). (2)

Definition 4 (Green wave): Green wave denotes that vehicles travel along a
direction without stopping at any intersections [11,15]. To achieve green wave,
the offset of the green signals between two adjacent intersections in the same
direction can be calculated as follows:

Δt =
DISi,j

v
, (3)

where DISi,j is the distance between two adjacent intersections i and j; v is the
average vehicle travel speed. Based on the definition of Δt, this paper defines
the green wave between two adjacent intersections i and j as follows.

At time t, the agent i selects a traffic phase which can make vehicles go from
intersection i to j. After Δt, these vehicles can go straight through intersection j
without stopping. Consequently, there is a green wave occurring between inter-
section i and j from time t to t+Δt. Therefore, the number of the green waves
between arbitrary two neighbor intersections over a period of time can reflect
the degree of coordination.
Definition 5 (Traffic signal control problem): TSC is casted as a Markov deci-
sion problem. This problem is defined by the tuple (S,A,P,R, γ):

– State Space S: S denotes the joint state space observed by all agents. The
state of each agent is defined as st

i ∈ S〉 at time t, where i is the index of
agents. st

i includes the traffic signal phase and the vehicle number of the
incoming lanes connected with the intersection i.

– Action Space A: A denotes the joint action space of agents. Each agent can
select actions from predefined eight valid traffic signal phases every a fixed
time interval.

– Transition Function P: P denotes the transition function. This function
maps the state-action pair at time t to the state at time t + 1. Formally, the
transition function P can be defined as P: S × A → P (S).

– Reward rt
i∈R: rt

i denotes the reward of agent i for taking the action at
i at

time t.
– Discount Factor γ: γ ∈ [0, 1] is the discount factor for future rewards.

3 Method

The framework of Meta-CSLight is presented in Fig. 2. Meta-CSLight is com-
posed of two stages: the meta-training stage and the meta-testing stage. In the
meta-training stage, the coordination strategy and the reward are designed to
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Hangzhou Roadnet

Meta Training
（Section 3.3.1）

Independent 
Learning

Neighbor-Aware Learning Model (Section 3.1)

Meta Testing
 (Section 3.3.2)

Pressure = -1

Pressure = 3

Pressure = 2

Jinan Roadnet

Atlanta Roadnet

Synthetic Roadnet

phase1

action12phasek

Independent Learning Model (Section 3.1)

phase1

action42phasek

agent12

agent41

agent42

action41

Pressure ≤ 0

Pressure > 0

Neighbor-Aware Learning

Fig. 2. The framework of Meta-CSLight. Meta-CSLight is composed of two stages:
the meta-training stage and the meta-testing stage. In the meta-training stage, Meta-
CSLight constructs the independent learning model and the neighbor-aware learning
model to adapt to light and heavy traffic intersections, respectively. To distinguish
light from heavy cases, Meta-CSLight uses the concept of traffic pressure. In the meta-
testing stage, Meta-CSLight uses the trained models from the meta-training stage to
adapt to new traffic environments.

enhance traffic efficiency. This section first introduces the coordination strategy
and the reward design in Meta-CSLight. Then, the procedure of Meta-CSLight
is described.

3.1 Coordination Strategy

The coordination strategy designed in Meta-CSLight uses two models to train
the traffic flow environment Ve: the independent learning model fθindep

e
and the

neighbor-aware learning model fθnei
e

, where e is the index of traffic flow environ-
ments. fθindep

e
is trained by using the data from light traffic intersections with

P � 0, while fθnei
e

is from heavy traffic intersections with P > 0. Both models use
deep Q-network (DQN) [8] as the function approximator to estimate Q-values of
state-action pairs, because compared with other RL algorithms, DQN is easier
to handle the discrete action space in TSC. The two models are designed as
follows:

qt
e,j = fθindep

e
(st

e,j) Pj � 0,

qt
e,k, qt

e,l = fθnei
e

([st
e,k, st

e,l]) Pk > 0, l = argmax
l

(Pl), l ∈ Nk,
(4)

where fθindep
e

and fθnei
e

are L-layer multilayer perceptrons with the activation
function ReLU; st

e,j is the state representation of agent j at time step t in traffic
flow Ve; [·, ·] is the concatenation symbol; qt

e,j is the predicted Q-value vector of
agent j; Pj is the traffic pressure of intersection j; Nk is the neighbor intersections
of intersection k.

To prepare the training data of the two models for the traffic flow Ve, at
each time step, the traffic pressures of intersections in Ve are first calculated.
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Then, the intersection k with the maximum traffic pressure in Ve is selected. The
intersection k will be coupled with a neighbor intersection with the maximum
traffic pressure in Nk to train fθnei

e
. The neighbor-aware learning model fθnei

e

can learn a better coordination strategy to alleviate the traffic pressures in the
couple of intersections. Next, the operation above is repeated in the remaining
intersections until there is no intersections with P > 0. At last, all the states of
the remaining intersections are used to train fθindep

e
.

3.2 Reward Design

The reward in Meta-CSLight includes the immediate reward riti and the reward
shaping rst

i. The immediate reward riti uses the vehicle queue length in intersec-
tion i at time t, because the vehicle queue length can reflect the degree of the
traffic congestion in intersection i. The reward shaping rst

i is designed based on
green wave. It uses the amount of the green waves between intersection i and
its neighbor intersections from time t − T to t, where T is the width of the time
window. Therefore, the immediate reward riti, the reward shaping rst

i and the
total reward rt

i of agent i are defined as follows:

riti = −
∑

l

Lt
i,l,

rst
i =

∑

j∈Ni

(N [t−T,t]
i,j − max(� T − Δt

Δtaction
+ 1�, 0)),

rt
i = riti + α·rst

i,

(5)

where Lt
i,l denotes the vehicle queue length at lane l; Ni denotes the neighbor

intersections of intersection i; N
[t−T,t]
i,j is the amount of the green waves between

intersection i and j from time t − T to t; Δtaction is the minimum time interval
of changing traffic phases; Δt is the offset; max(� T−Δt

Δtaction
+ 1�, 0) denotes the

maximum possible value of the green waves between two adjacent intersections
in T seconds; α∈ [0, 1] is the weight to balance the immediate reward and the
reward shaping.

The reward shaping is designed to encourage more green waves between adja-
cent intersections. Green waves can reduce traffic delay by allowing vehicles to
go through two adjacent intersections without stopping. Therefore, the reward
shaping can enhance the cooperation of traffic signals to improve traffic efficiency.

The reward shaping is controlled by the weight α. If α = 0, each agent only
considers the immediate reward. The agent will greedily reduce the vehicle queue
length in its own intersection without considering the neighbor intersections. If
α = 1, each agent may suffer from credit assignment problem [3,14]. It means
that the TSC policy of each agent is easily affected by its neighbor agents.
Therefore, this paper sets 0 < α < 1 to balance the immediate reward and the
reward shaping. This setting adapts to all the agnets.
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3.3 Procedure of Meta-CSLight

As mentioned above, Meta-CSLight is composed of the meta-training stage and
the meta-testing stage. In the meta-training stage, Meta-CSLight constructs the
independent learning model and the neighbor-aware learning model to adapt to
light and heavy traffic intersections, respectively. To distinguish light from heavy
cases, Meta-CSLight uses the concept of traffic pressure. In the meta-testing
stage, Meta-CSLight uses the trained models from the meta-training stage to
adapt to new traffic environments. The details of the procedure of Meta-CSLight
are given as follows.

3.3.1 Meta-Training Stage

The meta-training stage aims to learn a global parameter initialization to adapt
to new traffic environments. This stage follows the architecture of a first-order
meta-learning method, Reptile [9]. Reptile is motivated by the model-agnostic
meta-learning method (MAML) [5]. MAML is used as the meta-reinforcement
learning architecture in MetaLight and GeneraLight for TSC. These methods
will cost much time to train meta-learner in the outer loop. Compared with
MAML, Reptile is simple to implement without a training-test split for each
task. Therefore, Reptile is used as the meta-reinforcement learning architecture
in Meta-CSLight.

The meta-training stage consists of the inner loop and the outer loop. In
the inner loop, a global parameter initialization θ0 of the meta-learner fθ0 is
provided. fθ0 includes two models: the independent learning model fθindep

0
and the

neighbor-aware learning model fθnei
0

. Then, the parameter initializations θindepe

and θneie for each specific traffic flow environment Ve are set by θindep0 and θnei0 ,
respectively. Each Ve is used to train the corresponding parameter initializations
θindepe and θneie . In the outer loop, the global parameter initializations θindep0 and
θnei0 are updated by aggregating the adaptations of θindepe and θneie , respectively.
The details of the meta-training stage are given as follows.

Inner Loop: In the inner loop, M different traffic flow environments are sam-
pled to train the independent learning model fθindep

e
and the neighbor-aware

learning model fθnei
e

, where e ∈ {1, ...,M}. fθindep
e

and fθnei
e

are initialized by the
meta-learner fθ0 . The parameter updating process of the two models for each
time step is formulated as follows:

θe ← θe − βinner∇θe
L(fθe

,De), (6)

L(fθe
,De) = Est,at,rt,st+1

∼De
[rt + γmax

at+1
fθ′

e
(st+1, at+1) − fθe

(st, at)], (7)

where βinner is the inner-loop step size; L is the loss function; De is the memory
replay; γ is the discount factor; fθ′

e
is the target Q-network.

Outer Loop: The outer loop aims to update the global parameter initialization
θ0 by using θe. The parameter updating process in the outer loop for each time
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step is formulated as follows:

θ0 ← θ0 + βouter
1
M

M∑

e=1

(θe − θ0), (8)

where βouter is the outer-loop step size; M is the number of environments in the
inner loop. The global parameter initialization will be used to adapt to new traffic
flow environments in the meta-testing stage. The algorithm of the meta-training
stage is shown in supplementary material.

3.3.2 Meta-Testing Stage

This stage aims to use the trained meta-learner fθ0 to adapt to new traffic
flow environments We, where e ∈ {1, 2, ..., R}. In these environments, Radapt
(Radapt < R) environments are selected to do fine-tuning based on θ0. The fine-
tuning process is formulated as follows:

θe ← θe − βf∇θe
L(fθe

,De), (9)

where βf is the fine-tuning step size. After fine-tuning, θe will be used to test
the remaining R−Radapt environments. The algorithm of the meta-testing stage
is shown in supplementary material.

4 Experiments

4.1 Datasets

This paper uses 3 public real-world datasets Hangzhou4×4, Jinan3×4,
Atlanta1×5 and a synthetic dataset Syn3×3

2 [15,16,23]. These datasets are con-
ducted on an open-source traffic simulator CityFlow [20]. However, these datasets
are obviously insufficient to train a generalized model for any type of environ-
ments. Therefore, following the previous works [21], this paper uses Wasserstein
generative adversarial network (WGAN) to generate more traffic flows based
on the 4 datasets mentioned above. Trained on the generated datasets, Meta-
CSLight can enhance the generalization ability of the meta-learner fθ0 . Then,
fθ0 can adapt to different traffic flow environments. The details of the traffic
flow datasets are shown in supplementary material.

4.2 Baseline Methods

The baseline methods compared with Meta-CSLight are described as follows:

– GCN [10]: This method uses GCN to fuse the traffic features of neighbor
intersections with the same attention weights.

2 https://traffic-signal-control.github.io/.

https://traffic-signal-control.github.io/
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– MADRL-STFF [4]: MADRL-STFF proposes a spatio-temporal feature
fusion method to solve TSC. This method uses self-attention and temporal
convolutional network to capture temporal dependency. Besides, to capture
spatial dependency, this method uses GAT to make the neighbor agents and
the agents in the same subnetwork share their traffic features.

– PressLight [17]: PressLight proposes an RL method based on max pressure
control. This method uses the traffic pressure as the reward to essentially
evaluate the real-time traffic condition.

– CoLight [16]: CoLight uses GAT to extract and fuse traffic features of neigh-
bor intersections to achieve cooperative traffic signal control.

– CSLight: CSLight is designed by removing the Reptile architecture from
Meta-CSLight. It aims to show that Reptile can help Meta-CSLight to
enhance the generalization ability compared with CSLight.

– Reptile [9]: Reptile is combined with PressLight and CoLight, respectively,
to improve their generalization ability.

– MetaLight [19]: MetaLight designs a value-based meta-reinforcement learn-
ing framework by combining individual-level adaptation and global-level
adaptation. Based on this framework, MetaLight can pay attention to finding
a generalized model for any type of intersections and phase settings.

– GeneraLight [21]: GeneraLight is designed to learn a generalized model for
traffic flow environments. GeneraLight clusters similar traffic environments
based on average travel time. The traffic environments of the same cluster
can be utilized to train a global parameter initialization. Then, a set of global
parameter initializations will be tested in the meta-testing stage.

Following the existing methods [16,17,21], average travel time is selected as
the performance metric in TSC. This metric is calculated by the average travel
time of all the vehicles traveling in the roadnet (in seconds).

The parameter settings, the effect of independent learning and neighbor-
aware learning, the effect of reward shaping and case study are shown in sup-
plementary material. The experimental results demonstrate that the neighbor-
aware learning model is more effective than the independent learning model.
Besides, Meta-CSLight can converge to the best performance by setting α = 0.2.

4.3 Comparison with Baseline Methods

This section compares Meta-CSLight with baseline methods on synthetic
datasets and real-world datasets. To show the generalization ability of all the
methods, the experiments are conducted with and without fine-tuning. The
experimental results are shown in Table 1 and Table 2 with and without fine-
tuning, respectively. The source code of Meta-CSLight is available on request.
Several observations can be found as follows.

1) Meta-CSLight outperforms all the meta-reinforcement learning methods
on all the datasets in terms of average travel time. On four test datasets, when
the meta-testing stage includes the fine-tuning process, Meta-CSLight outper-
forms MetaLight and GeneraLight by 8.57% and 8.39% on average, respectively,
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Table 1. Performance comparison on synthetic and real-world datasets with fine-
tuning w.r.t average travel time (the lower the better).

Hangzhou4×4,dis=0.1 Jinan3×4,dis=0 Atlanta1×5,dis=0 Syn3×3,dis=0

GCN [10] 694.76 733.15 314.65 961.41
CoLight [16] 657.98 503.99 279.47 820.72
CoLight+Reptile 640.32 448.64 273.82 655.43
MADRL-STFF [4] 499.66 394.89 268.72 675.95
PressLight [17] 481.24 345.56 247.84 167.50
PressLight+Reptile 442.67 304.08 229.36 166.11
MetaLight [19] 381.90 284.00 203.14 156.63
GeneraLight [21] 372.34 292.31 206.85 152.58
CSLight 367.45 271.29 246.03 145.16
Meta-CSLight 355.30 262.25 178.46 144.96

Table 2. Performance comparison on synthetic and real-world datasets without fine-
tuning w.r.t average travel time (the lower the better).

Hangzhou4×4,dis=0.1 Jinan3×4,dis=0 Atlanta1×5,dis=0 Syn3×3,dis=0

GCN [10] 717.38 953.84 364.84 1171.88
CoLight [16] 682.61 743.12 295.28 974.02
CoLight+Reptile 664.80 631.40 307.79 861.97
MADRL-STFF [4] 617.45 647.88 297.48 954.03
PressLight [17] 623.96 786.57 290.91 806.83
PressLight+Reptile 559.76 779.90 288.32 651.76
MetaLight [19] 422.37 535.24 276.91 446.73
GeneraLight [21] 415.38 727.99 270.38 478.47
CSLight 390.73 296.07 272.30 173.76
Meta-CSLight 363.80 289.64 267.83 164.44

and Meta-CSLight outperforms PressLight and CoLight both combined with
Reptile by 17.11% and 49.69% on average, respectively. When the meta-testing
stage removes the fine-tuning process, Meta-CSLight outperforms MetaLight
and GeneraLight by 31.56% and 34.8% on average, respectively, and Meta-
CSLight outperforms PressLight and CoLight both combined with Reptile by
44.94% and 48.33% on average, respectively. These meta-reinforcement learning
baseline methods are designed for the traffic environments in fixed roadnets.
In contrast, Meta-CSLight combines independent learning and neighbor-aware
learning to coordinate traffic signals according to traffic pressures. This coordi-
nation strategy can adapt to various complex traffic environments. Besides, the
independent learning model adapts to light traffic flows and the neighbor-aware
learning model adapts to heavy traffic flows. The adaptation strategy ensures
the stable training results, because the training data of two models come from
the similar traffic conditions, respectively. Therefore, Meta-CSLight achieves the
best generalization performance compared with other meta-reinforcement learn-
ing methods.
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2) CSLight outperforms all the non-meta-learning methods on four datasets
in terms of average travel time. On four test datasets, when the fine-tuning
process is conducted, CSLight outperforms GCN, CoLight, MADRL-STFF and
PressLight by 54.21%, 46.15%, 36.18% and 14.79% on average, respectively.
When the fine-tuning process is removed, CSLight outperforms the four non-
meta-learning baseline methods by 56.26%, 48.22%, 45.32% and 46.15% on
average, respectively. For GCN, CoLight and MADRL-STFF, the coordination
strategies are closely related to the traffic flow distributions in the training road-
nets. Their coordination strategies are based on the interactions between the
target intersection and its four neighbor intersections. Unlike these methods,
CSLight learns a coordination strategy between arbitrary two adjacent intersec-
tions by neighbor-aware learning. This coordination strategy can easily adapt to
the variations of traffic flow environments. For PressLight, the reward function is
designed based on traffic pressure. It aims to reduce the traffic pressure in a sin-
gle intersection. Instead, motivated by green wave, CSLight designs the reward
shaping to coordinate traffic signals between two intersections. The reward shap-
ing can encourage more green waves to generate between two adjacent intersec-
tions. Therefore, the traffic efficiency can be enhanced by allowing vehicles to go
through these intersections without stopping.

5 Conclusion

This paper proposes Meta-CSLight to solve TSC. Meta-CSLight is composed
of two stages: the meta-training stage and the meta-testing stage. In the meta-
training stage, Meta-CSLight constructs the independent learning model and the
neighbor-aware learning model. The independent learning model is trained by
using the data from light traffic intersections, while the neighbor-aware learning
model is from heavy traffic intersections. To distinguish light from heavy cases,
Meta-CSLight defines the concept of traffic pressure. Besides, the reward shaping
based on green wave is designed to enhance traffic efficiency. In the meta-testing
stage, Meta-CSLight uses the trained models from the meta-training stage to
adapt to new traffic environments. Experimental results demonstrate that Meta-
CSLight achieves the best generalization performance in four test datasets.

In the future, the emergence mechanism of green wave can be investigated
further. This mechanism can improve the results of Meta-CSLight.
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Abstract. This work studies non-cooperative Multi-Agent Reinforce-
ment Learning (MARL) where multiple agents interact in the same envi-
ronment and whose goal is to maximize the individual returns. Chal-
lenges arise when scaling up the number of agents due to the resultant
non-stationarity that the many agents introduce. In order to address this
issue, Mean Field Games (MFG) rely on the symmetry and homogeneity
assumptions to approximate games with very large populations. Recently,
deep Reinforcement Learning has been used to scale MFG to games with
larger number of states. Current methods rely on smoothing techniques
such as averaging the q-values or the updates on the mean-field distribu-
tion. This work presents a different approach to stabilize the learning based
on proximal updates on the mean-field policy. We name our algorithm
Mean Field Proximal Policy Optimization (MF-PPO), and we empirically
show the effectiveness of our method in the OpenSpiel framework.

Keywords: Reinforcement learning · mean-field games · proximal
policy optimization

1 Introduction

Despite the recent success of Reinforcement Learning (RL) in learning strategies in
games (e.g., the game of Go [1], Chess [2] or Starcraft [3]), learning in games with a
large number of players is still challenging. Independent Learning leads to instabil-
ities due to the fact that the environment becomes non-stationary. Alternatively,
learning centralised policies can be applied to handle coordination problems and
avoid the non-stationarity. However, centralised learning is hard to scale, as the
joint action space grows exponentially with the number of agents. Many works
in Multi-Agent Reinforcement Learning (MARL) have succeeded in decompos-
ing the objective function into individual contributions [4], although this is also
intractable when the number of agents is large. In this sense, mean field theory
addresses large population games by approximating the distribution of the play-
ers. An infinite population of agents is represented by a continuous distribution of
identical players that share the same behaviour. This reduces the learning problem
to a representative player interacting with the representation of the whole popu-
lation.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. Kashima et al. (Eds.): PAKDD 2023, LNAI 13936, pp. 361–372, 2023.
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This work in particular focuses on learning in Mean Field Games (MFG),
non-cooperative games in which many agents act independently to maximise
their individual reward, and the goal is to reach the Mean Field Nash Equilib-
rium (MFNE). Learning in MFG is not an easy task as most of the problems do
not have an analytical solution. Traditionally numerical methods have been used
to address these problems [5]; nonetheless, these methods do not scale well. In
this sense, numerous game theory approaches have been brought into MFG. A
classical algorithm is the Banach-Picard (BP) [6] algorithm, which uses a fixed-
point iteration method to interactively update the population’s behaviour based
on the best response of a single representative agent against the mean-field dis-
tribution. However, acting in a best response to other agents might cause the
others to actuate in the same way, leading to instabilities in the learning (referred
to as the curse of many agents in game-theory [7]). In practice, smoothing tech-
niques derived from optimization theory are used to guarantee the convergence
of these algorithms under reasonable assumptions [8].

More recently, deep RL has been introduced to scale MFG to games with
larger state spaces [8]. Nevertheless, traditional approaches cannot be directly
applied when using non-linear function approximators as neural networks to rep-
resent the objectives in the game. Traditional algorithms average the policy, the
mean-field distribution, or both, in order to guarantee a theoretical convergence
to the MFNE. This can be done in the case of games with small state spaces
under linear or tabular policies, but it is not straightforward when using neural
networks. Recent works [9] have derived deep learning algorithms based on value
learning suitable for MFG. However, to the best of our knowledge, there is no
approach based on policy optimization that addresses this issue.

The main contribution of this paper is bringing policy-based optimization
into MFG. This is performed through developing an algorithm based on Proxi-
mal Policy Optimization (PPO) [10]. We refer to this algorithm as Mean Field
Proximal Policy Optimization (MF-PPO). Conducted experiments in the Open-
Spiel framework [11] show better convergence performance of MF-PPO compared
with current state-of-the-art methods for MFG. This validates our approach and
broadens the spectrum of algorithms on MFG to policy-based methods, tradi-
tionally dominant in the literature on environments with large or continuous
action spaces.

The remainder of this paper is organised as follows. In Sect. 2, we present the
state-of-the-art related to solving the mean-field games. In Sect. 3, we provide a
formal description of the problem formulation. Then, in Sect. 4 we present the
designed algorithm MF-PPO, that we validate experimentally in Sect. 5. Finally,
Sect. 6 concludes the paper. 1

2 Related Works

In the literature, numerous RL approaches have been designed to address MFG.
These can be classified based on the property used to represent the population
1 Code available at: https://github.com/Optimization-and-Machine-Learning-Lab/

open_spiel/tree/master/open_spiel/python/mfg.

https://github.com/Optimization-and-Machine-Learning-Lab/open_spiel/tree/master/open_spiel/python/mfg
https://github.com/Optimization-and-Machine-Learning-Lab/open_spiel/tree/master/open_spiel/python/mfg
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Table 1. Summary on the RL literature for MFG.

Setting Learning Requires Oracle Best Response

Heinrich et al. [19] General RL Value-based Yes Yes
Laurière et al. [9] General RL Value-based Yes No
Koppel et al. [23] General RL Value-based No No
Xie et al. [24] General RL Value-based No No
Fu et al. [25] LQR Policy-based No Yes
Our Approach General RL Policy-based Yes No

into (i) mean-field action and (ii) mean-field state distribution. Examples of
mean-field action can be found in [12], in these works the interaction within the
population is done based on the average behaviour of the neighbours. A more
common approach is using the mean-field state distribution [13]. This approach
approximates the infinitum of agents by the state distribution or distribution flow
of the population. In this case, each player is affected by other players through
an aggregate population state. Also, regarding the problem setup, MFG can be
classified as (i) stationary or (ii) non-stationary. In the stationary setup, the
mean field distribution does not evolve during the episode [14]. A more realistic
scenario, and the one discussed in this work, is the non-stationary [15]. In that
case the mean-field state is influenced by the agents decisions.

The methodology to address MFG in the literature is also diverse. The classical
method for learning the MFNE is the (BP) algorithm [6]. BP is a fixed point iter-
ation method that iteratively computes the Best Response (BR) for updating the
mean field distribution. The convergence of the BP algorithm is restrictive [16],
and in practice, it might appear with oscillations. To address this issue, the Ficti-
tious Play (FP) algorithm [17] averages the mean field distribution over the past
iterations. This stabilizes the learning and improves the convergence properties of
the algorithm [18]. Several attempts have been made in the literature to scale FP.
For example, [19] proposed Neural Fictitious Self-play algorithm based on fitted Q-
learning that learns from best response behaviours on previous experiences. Also,
Deep Average Fictitious Play [9] presents a similar idea in a model-free version of
FP in which the BR policy is learned though deep Q-learning. Although learning
the best response using deep RL allows scaling this method to games with larger
state spaces, in practice learning the BR policy is computationally inefficient. In
this sense, algorithms based on policy iteration have been also applied to MFG [20].
These methods have proved to be more efficient [8] as they do not require the com-
putation of the best response but they perform a policy update per evaluation step.
An example is Online Mirror Descent (OMD) [21], which averages the evaluation of
the Q-function from where it derives the mean-field policy. A deep learning variant
of it is the Deep-Munchausen OMD (D-MOMD) [9]. This algorithm uses the Mun-
chausen algorithm [22] to approximate the cumulative Q-function when parame-
terized using a neural network.

Last but not least, oracle-free methods [26] are complete model-free RL meth-
ods applied to MFG. Oracle-free algorithms do not require the model dynam-
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ics but they estimate the mean-field distribution induced by the population.
In [23], the authors propose a two timescale approach with a Q-learning algo-
rithm suitable for both cooperative and non-cooperative games that simultane-
ously updates the action-value function and the mean-field distribution in a two
timescale setting.

Regardless of the numerous works on value-based learning, the attention to
policy optimization methods in MFG has been limited. Related works cover the
linear quadratic regulator setting [27] but not general RL, a summary can be
observed in Table 1. Motivated by [28], work that emphasizes the effectiveness
of PPO in multi-agent games, this paper brings PPO into MFG by presenting a
solution to the stabilization issues based on proximal policy updates.

3 Problem Formulation

In Mean Field Games (MFG) the interaction between multiple agents is reduced
to a uniform and homogeneous population represented by the mean-field distri-
bution. This is the distribution over states that the continuum of agents define
when following the mean-field policy. The way in which MFG addresses the
problem is selecting a representative player that interacts with the mean-field
distribution. This simplifies the problem and facilitates the computation of the
equilibria.

More formally, we consider the non-stationary setting with a finite time hori-
zon in which we denote by n ∈ {0, 1, ..., NT } the time steps in an episode. The
state and actions of an agent at each time-step are denoted as sn ∈ S and
an ∈ A, both finite in our setting. The mean-field state is represented by the
distribution of the population states μn ∈ Δ|S|, where Δ|S| is the set of state
probability distributions on S. In the non-stationary setting, the mean field dis-
tribution μn evolves during the episode and it characterizes the model dynamics
P : S × A × Δ|S| → Δ|S| and the reward function R : S × A × Δ|S| → R.
The policy of the agents depends on a prior on the mean-field distribution.
Although, without loss of generality, we can define a time-dependent policy
πn ∈ Π : S → Δ|A| that independently reacts to the mean-field state at every
step. The model dynamics are therefore expressed as

sn+1 ∼ P (·|sn, an, μn) an ∼ πn(·|sn). (1)

We define the policy π := (πn)n≥0 as the aggregated policy for every time-
step, similarly the mean-field distribution μ := (μn)n≥0. The value function is
calculated as V π ,μ(s) := E[

∑NT

n=0 γnr(sn, an, μn)]. Given a population distribu-
tion μ the objective for the representative agent is to learn the policy π that
maximizes the expected total reward,

J(π,μ) = Ean∼πn(·|sn),sn+1∼P (·|sn,an,μn)

[
NT∑

n=0

γnR(sn, an, μn) | μ0 ∼ m0

]

(2)

where μ0 is the initial mean-field state drawn from the initial distribution of the
population m0 and 0 < γ < 1 denotes the discount factor.
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Nash Equilibrium in MFG. The desired solution in games is computing
the Nash Equilibrium. This is the set of policies that followed by all players
maximize their individual reward such that no agent can unilaterally increase
deviating from the Nash policy. Furthermore, in MFG the agents share the same
interest and an extension of the Nash equilibrium is needed.

Definition 1. A mean-field Nash equilibrium (MFNE) is defined as the pair
(π∗, μ∗) that satisfies the rationality principle V π∗,μ∗

(s) ≥ V π,μ∗
(s) ∀s, π; and

the consistency principle, μ∗ is the mean-field state distribution induced by all
agents following optimal policy π∗.

Mean-Field Dynamics. This work relies on an oracle to derive the mean-
field state. Given the initial mean-field distribution μ0 = m0, the oracle uses
the transition function P to compute the mean-field distribution induced by the
policy πn at each time step n ∈ {0, 1, ..., NT },

μn+1(s′) =
∑

s,a∈S×A
μn(s)πn(a|s)P (s′|s, a, μn) ∀s′ ∈ S. (3)

In a similar way, the policy is evaluated analytically by computing the
expected total costs of the policy π under the mean field μ as follows:

J(π,μ) =
Nt∑

n=0

∑

s,a∈S×A
μn(s)πn(a|s)R(s, a, μn). (4)

Exploitability. The metric of choice for estimating the MFNE convergence
is the exploitability. This metric is well known in game-theory [29,30] and it
characterizes the maximum increase in the expected reward a representative
player can obtain deviating from the policy the rest of the population adopted.
The exploitability is obtained as follows:

φ(π,μ) = max
π ′

J(π′,μ) − J(π,μ). (5)

An interpretation of the exploitability is to consider it as a measure of how close
the learned policy is to the MFNE. Small values of exploitability indicate less
incentive for any agent to change its policy.

4 Proposal: Proximal Policy Updates for MFG

Learning in MFG is commonly achieved in the literature via fixed-point iter-
ation [6], where the set {(πk, μk)}k≥0 is recursively updated. Particularly, at
iteration k the best response policy for the MDP induced by μk is computed
and the mean-field is updated μk+1 as a result of the many agent following
πBR

k . Under the assumptions discussed in [6], contraction mapping holds and
the algorithm is proof to converge to a unique fixed point {(π∗, μ∗)}. This
problem corresponds to finding the optimal policy for an MDP induced by μ,
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Algorithm 1. MF-PPO algorithm
Initial policy parameters θ, initial value function parameters φ, initialize mean-field
policy parameters θ0 ← θ, initial mean-field distribution μ0 = m0

for iteration k = 1, 2, ..., K do
Compute the mean-field distribution μk induced by the policy πθk−1

for epsiode e = 1, 2, ..., E do
Sample a minibatch of transitions: De = {sn, an, rn, sn+1} by running the policy
πn(θ) on the game governed by the mean-field μk

n.
Compute the advantage estimate: Ân = Gn − V̂φ(sn)
Update the policy network: θ� ← argmaxθ LMF-PPO(θ) (8)
Update the value network: φ ← argminφ Ên[ ||Gn − V̂φ(sn)||2 ]

end for
Update the mean-field policy parameters: θk ← θ

end for
return μK , πθK

MDPμ := (S,A, P (μ), R(μ), γ). This can be solved using modern RL techniques
that allow in practice to scale the method to large games.

However, solving the BR is demanding, and in practice, it leads to instabilities
in learning. In this paper, we aim to provide a solution to these instabilities by
regularizing the updates in the mean-field policy. To this end, we bring the
proximal policy updates developed in PPO [10] into MFG.

Let start defining how PPO can be used to estimate the best response π̂BR
μ

to the MDPμ. Based on the trajectories collected during the iteration k, one can
perform policy optimization on the following objective function

J PPO
μ (θ) = Ên

[
min(rnÂn, clip(rn ± ε)Ân)

]
rn(θ) =

π(·|sn; θ)
π(·|sn; θold)

(6)

where π(an|sn; θ) is a stochastic policy, π(an|sn; θold) is the policy before the
update and Ân is an estimator of the advantage function at timestep n. Ê is the
empirical expectation based in Monte-carlo rollouts. The theory behind PPO
suggests relaxing the update on the policy to prevent large destructive updates
by using a clip function applied on the ratio between the old policy and the
current one. PPO imposes this constraint, forcing the ratio on the policy update
rn(θ) to stay within a proximal interval. This is controlled with the clipping
hyperparameter ε.

In this work, we extend the regularization of the policy updates to successive
iterations on the MFG. We call the algorithm Mean-Field Proximal Policy Opti-
mization (MF-PPO) and it combines a double proximal policy regularization for
the intra- and inter-iteration policy updates. This prevents the mean-field policy
from having a large update between iterations, obtaining a smoothing effect that
has previously been reported beneficial in value-based algorithms for MFG [9].
We denote the probability ratios for the intra- and inter-iteration policy updates
as

ren(θ) =
πn(an|sn; θ)

πn(an|sn; θe
old)

rkn(θ) =
πn(an|sn; θ)

πn(an|sn; θk
old)

(7)
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where the superscript k ∈ [1,K] refers to the iteration and the superscript
e ∈ [1, E] to the episode.

In order to derive an appropriate objective function for MFG we extend the
objective function of the classical PPO by adding an additional term that limits
the policy updates w.r.t. the previous iteration. We can think in this term as
a proximal update that limits the divergence between iterations preventing the
policy from reaching the BR at iteration k. The MF-PPO objective is therefore
expressed as

LMF-PPO(θ) = Ê[α min(renÂn, clip(ren ± εe)Ân)

+ (1 − α)min(rk
nÂn, clip(rkn ± εk)Ân)] (8)

where 0 < α < 1 balances the proximity of the policy between the inter and
intra-iteration updates.

5 Experimentation

In this section, we describe the experiments conducted to validate the proposed
MF-PPO algorithm. We analyze the hyper-parameter selection and finally, we
present the numerical results obtained against the state-of-the-art algorithms
namely Deep-Munchausen Online mirror decent (D-MOMD) and Deep Average-
Network Fictitious Play (D-ANFP) [9].

5.1 Experimental Setup

We opted for the OpenSpiel suite [11] to benchmark the proposed algorithm in
selected crowd modeling with congestion scenarios. Particularly the scenarios
used for evaluation are:

Four-rooms. A simple setup on a four-room grid with 10×10 states and a time
horizon of 40 steps. The agents receive a reward for navigating close to the
goal located in the bottom right room while there also exists an adversion to
crowded areas.

Maze. The maze is a more complex scenario with 20 × 20 states and a time
horizon of 100 steps. In this setting, the agent must correctly steer through a
complex maze to reach the goal while, similar to the previous case, evading
congested areas.

In both environments the state-space is a two-dimension grid, where the state
is represented by the agent’s current position. Furthermore, the action space
consists of five discrete actions: up, down, left, right, or nothing. Those actions
are always valid if the agent is confined within the boundaries. Finally, the reward
signal is defined as:

r(s, a, μ) = rpos(s) + rmove(a, μ(s)) + rpop(μ(s)) (9)

where the first term measures the distance to the target, the second penalizes
movement, and the last term is a penalty which encourages the agents to avoid
crowded areas, and is given by the inverse of the concentration of the distribution
at a particular state.
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Fig. 1. On the left, the exploitability results obtained on the (a) four-room and (c)
maze environments. Results are averaged over five seeds and the confidence interval
corresponds to one standard deviation. On the right, the mean-field distribution of the
agents generated by the MF-PPO policy on the (b) four-room and (d) maze environ-
ments.

5.2 Numerical Results

In this section, we present the results MF-PPO achieves in the selected sce-
narios. We compare our results with Deep-Munchausen Online Mirror Descent
(D-MOMD) and Deep Average-Network Fictitious Play (D-ANFP) [9], both
state-of-the-art algorithms in the selected settings. We report the exploitabil-
ity metric, which is used in the literature as a proxy for quantifying convergence
to the MFNE. The results are depicted in Fig. 1 and summarized in Table 2.

Four-Rooms. Obtained results show that MF-PPO outperforms D-NAFP and
D-MOMD algorithms, not only by converging to a better ε-MFNE solution but,
as depicted in Fig. 1, converging in a significantly fewer number of steps. We
speculate that this can be credited to the fact our solution learns the optimal
policy directly which in this situation is superior to learning the value function
that the other methods use and then extract the optimal policy. Figure 1(b)
shows the learned mean-field distribution learned using MF-PPO. The agents
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Table 2. Comparison of the exploitability metric of the different algorithms. Results
are averaged over five different seeds and reported as mean ± std.

Environment Four Rooms Maze

D-MOMD 64.41 ± 24.84 153.80 ± 93.05
D-ANFP 127.37 ± 15.19 929.54 ± 46.36
MF-PPO 15.84 ± 1.95 93.63 ± 38.11

Table 3. Comparison of the CPU execution time of the different algorithms. Results
are averaged over five different seeds and reported as mean ± std.

Environment Four Rooms Maze

D-MOMD 3H48M ± 1.79 Min 7H35M ± 1.53 Min
D-ANFP 8H35M ± 56.36 Min 9H45M ± 2.24 Min
MF-PPO 33M32S ± 16.58 Sec 5H36M ± 3.37 Min

gather as expected around the goal state at the right-bottom room, reaching it
by equally distributing over the two symmetric paths.

Maze. Similarly, on the Maze environment Fig. 1(c) shows that MF-PPO and
D-MOMD converge to a favorable ε-MFNE solution, whereas D-ANFP does to
a sub-optimal solution. Still, the policy learned by MF-PPO is closer to the
MFNE, reported by a smaller exploitability. Finally, Fig. 1(d) corroborates that
the flow of agents over the maze distribute around the goal located in the lower
right part of the maze.

In Table 3 we present the CPU execution time of the tested algorithms. In
all experiments we used AMD EPYC 7742 64-Core server processor to produce
presented results. We note that the official implementation of D-ANFP and D-
MOMD was used to reproduce previously presented results. MF-PPO coverages
faster than both approaches, more notably, as evidenced by Fig. 1(a) in the four
rooms case, MF-PPO converges within roughly 34min compared to hours by
the other two methods. We see a similar, although not as remarkable, trend in
the maze as well, where MF-PPO converges in roughly five and half hours to a
better MFNE point in comparison with the other techniques.

5.3 Analysis on the Hyper-parameters

This section investigates the influence on the hyper-parameter selection in the
learning process. The experiments are conducted on the Maze environment. First,
we focus on the configuration where α = 0, i.e., we update the iteration policy only
and neglect the episode updates entirely. The results are depicted in Fig. 2(a), we
see no sign of convergence indicated by high exploitability throughout learning.
Furthermore, as the value of α assigned to episode updates increases, we observe a
significantly better convergence rate. Nevertheless, it introduces oscillations that
impede good convergence on the MFNE. This could be explained by the follow-
ing dilemma: at each iteration, the representative agent learns an policy far better
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Fig. 2. (a) Study on the impact of the hyper-parameter α on the learning. Moreover,
(b) and (c) show the iteration clipping factor εk contribution to the smoothness and
convergence of the MF-PPO algorithm.

than what is available to the current population. Hence, agents have the incentive
to deviate from the current policy resulting in an increment in the exploitability.
Moreover, at the next iteration, the distribution is updatedwith such policy, result-
ing in a sharp decline in the exploitability. This phenomenon can be smoothed by
reducing the rate at which the agent‘s policy updates with respect to the mean-
field policy. Consequently, this is controlled using the parameter α as shown by the
remaining curves in Fig. 2(a).

Table 4. Hyper-parameter selection.

Environment Four Rooms Maze

Input dimension 81 145
Critic/Actor network size [32, 32] [64, 64]
Critic output dimension 1
Actor output dimension 5
Activation function ReLU
Alpha α 0.5 0.6
Iteration εk 0.01 0.05
Episode εe 0.2
Learning rate 1E-03 6E-04
Optimizer Adam
Update iteration 100
Update episodes 20 200
Update epochs 5
Batch size 200 500
Number of mini-batches 5 4
Gamma γ 0.99 0.9

Then we analyze the impact on both iteration εk and episode εe clipping fac-
tors. We consider two extreme cases for εk and different values of εe. In Fig. 2(b),
we set εk = 0.2, and compare for different εe values, we observe high variance
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in exploitability mainly due to more significant policy updates. On the other
end, for εk = 0.001, the curves look much smoother since the policy update
is largely constrained; however, the drawback is a slower convergence rate as
shown in Fig. 2(c). Finally, all the hyper-parameters used in the experiments are
summarized in Table 4.

6 Conclusion

In this work, we propose the Mean Field Proximal Policy Optimization (MF-
PPO) algorithm for mean field games (MFG). Opposed to current strategies
for stabilizing MFG based on averaging the q-values or the mean-field distri-
bution, this work constitutes the first attempt for regularizing the mean-field
policy updates directly. Particularly, MF-PPO algorithm regularizes the updates
between successive iterations in the mean-field policy updates using a proximal
policy optimization strategy. Conducted experiments in the OpenSpiel frame-
work show a faster convergence to the MFNE when compared to current state-of-
the-art methods for MFG, namely the Deep Munchausen Online Mirror Descent
and Deep Average-Network Fictitious Play.

As future work, the first track would be the investigation of the mathematical
analysis of the MFNE reached by the MF-PPO algorithm. Second, investigating
the optimization of the computation time of the proposed approach is of interest.
Finally, the application of the approach on large-scale real cases would push the
boundaries of the approach.
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Abstract. Financial portfolio managers typically face multi-period
optimization tasks such as short-selling or investing at least a partic-
ular portion of the portfolio in a specific industry sector. A common
approach to tackle these problems is to use constrained Markov decision
process (CMDP) methods, which may suffer from sample inefficiency,
hyperparameter tuning, and lack of guarantees for constraint violations.
In this paper, we propose Action Space Decomposition Based Optimiza-
tion (ADBO) for optimizing a more straightforward surrogate task that
allows actions to be mapped back to the original task. We examine our
method on two real-world data portfolio construction tasks. The results
show that our new approach consistently outperforms state-of-the-art
benchmark approaches for general CMDPs.

Keywords: Reinforcement Learning · Constrained Action Space ·
Decomposition · CMDP · Portfolio Optimization

1 Introduction

Constrained portfolio optimization is an important problem in finance. A typical
example is a portfolio that must have at least 40% of the total portfolio value
invested in environmentally friendly companies at each time step of the invest-
ment horizon or a portfolio that is not permitted to invest more than 20% in
a particular industry sector. Another example of an action constraint task is a
130-30 strategy, in which the portfolio manager bets on group A of (potentially)
overperforming stocks against group B of (potentially) underperforming stocks.
This strategy is carried out by short-selling stocks worth 30% of the investment
budget from Group B and leveraging the investment into stocks worth 130% of
the investment budget from Group A.

The action space for these tasks can be considered as a continuous distribu-
tion of weights for a given set of assets. Therefore, reinforcement learning (RL)
with policy gradient [16] is well-suited for this task. Because the invested capital
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totals 100%, the codomain of the policy function is typically assumed to be a
standard simplex. Existing solutions model the policy using a softmax output
layer [1] or based on the Dirichlet distribution [20]. However, the constraints
mentioned above cause a change in the shape of the policy’s codomain, making
the standard solutions no longer directly applicable.

A way to optimize policies for tasks with constrained action spaces is by using
approaches for CMDPs with constraints on the action spaces. However, state-of-
the-art general approaches for CMDPs often have drawbacks such as expensive
training loops, sample inefficiency, or only guarantees for asymptotical constraint
compliance [2,4,10,19,21].

In this paper, we propose ADBO, a dedicated approach for dealing with the
two important types of investment tasks mentioned previously: (a) investment
tasks that invest at least or at most a certain percentage of a portfolio in a specific
group of assets, and (b) short-selling tasks. ADBO can overcome the aforemen-
tioned shortcomings of general policy optimization methods for CMDPs. This
is achieved by decomposing the non-standard-simplex action space into a sur-
rogate action space. Solutions found in the surrogate action space can then be
mapped back into the original constrained action space. In contrast to the non-
standard-simplex action space, the surrogate action space is designed to be easily
represented in the policy function approximator, allowing us to model the prob-
lem as a standard Markov decision process (MDP). Due to the lack of penalties
and reward shaping, finding an optimal policy for an MDP is less complex than
finding an optimal policy for a CMDP with constrained actions. Furthermore,
ADBO ensures that the actions adhere to the constraints both during and after
training.

In the experimental section, we demonstrate that the ADBO approach can
handle two types of investment tasks using real-world financial data. The first
task focuses on investing each time step at least a certain percentage of the port-
folio in companies considered to be environmentally sustainable. The second task
allows the agent to short-sell selected stocks, i.e., allowing for negative portfo-
lio weights. Our proposed approach outperforms the state-of-the-art benchmark
approaches for handling CMDPs on various criteria in both tasks.

2 Related Work

CMDPs were introduced by [3] to model constrained sequential decision tasks.
constrained Reinforcement Learning (CRL) approaches for finding optimal poli-
cies for CMDPs have a wide range of applications, including finance [7,20],
autonomous electric vehicle routing [14], network traffic [9], and robotics [2,8].
A Trust Region-based approach was introduced by [2] to find optimal poli-
cies for CMDPs that may still exhibit constraint violation due to approximation
errors. Another approach proposed by [6] is based on prior knowledge and
involves a one-time pretraining to predict simple one-step dynamics of the envi-
ronment. Lagrangian-based approaches are another option for dealing with
CMDPs. These approaches convert the original constraint optimization problem
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into an unconstrained optimization problem by applying a Lagrangian relaxation
to the constraints. Lagrangian-based approaches can be classified into two types:
The first type is Primal-Dual algorithms, in which the Lagrange multipliers
for a saddle point problem are chosen dynamically [5,19]. The second type of
Lagrangian-based approach employs manually selected Lagrange multipli-
ers, which remain static, as shown in [13,17]. Instead of a saddle point problem,
as in the first type, using a static Lagrange multiplier transforms the prob-
lem into a maximization problem, which is more stable and computationally
less expensive to solve. Some approaches carefully select Lagrange multipliers
to model preferences in a trade-off problem rather than as a means to enforce
constraints in an optimization problem. This is commonly seen in risk-return
trade-off settings, such as in [7,17,20].

The factorization of high-dimensional action spaces in RL, i.e., split-
ting action spaces into smaller sub-action spaces as a Cartesian product, is an
active area of research that has resulted in improved scalability and training
performance. In their work, [11] introduce the Sequential DQN approach, which
trains the agent for a sequence of n 1-dimensional actions rather than training
the agent for n-dimensional actions of the original action space, effectively fac-
torizing the original action space. The approach by [18] introduces an action
branching architecture, which models the policies for the sub-action spaces in
parallel. Our approach, like theirs, uses a Cartesian product of sub-action spaces.
However, the sub-action spaces in our new approach ADBO are the outcome of
a decomposition based on the Minkowski sum, resulting in a surrogate action
space rather than a factorization of the original action space.

3 Problem Setting

We consider an agent that needs to allocate wealth across N different assets
over T time steps. The allowed actions of the agent are defined by the investor’s
investment task and are contained in the constrained action space A. The
investment task type T1 requires the investor to invest at least cT1 of the port-
folio into assets from group VT1. In practice, these group definitions are often
linked to individual risk profiles, industry sectors, or features such as being
an environmentally friendly investment. The action space for investment task
type T1 is then defined as

AT1 =

{
a ∈ R

N :
N−1∑
i=0

ai = 1 ,
∑

i∈VT1

ai ≥ cT1 , ai ≥ 0, cT1 > 0

}

and represents an N -dimensional convex polytope. Task type T1 also includes
cases that require investing at most cT1 into assets in VT1 because this case
is equivalent to investing at least (1 − cT1) into the remaining assets ai for
i ∈ I \ VT1.

The investment task type T2 represents investors who believe that a group
of assets VT2 will underperform relatively compared to the rest of the invest-
ment universe I. The investor pays a borrowing fee to short-sell assets in group
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VT2 worth |cT2| of his total portfolio value and then uses the freed-up cash to
invest 1 + |cT2| into assets of the other investment universe. The action space
for investment task type T2 is defined as

AT2 =

⎧
⎨

⎩
a ∈ R

N :

N−1∑

i=0

ai = 1,
∑

j∈VT2

aj = cT2, aj ≤ 0, ak ≥ 0 ∀k ∈ I \ VT2, cT2 < 0

⎫
⎬

⎭

and represents an N -dimensional convex polytope as well.
The observation space is defined as O = W ×V ×U where W ⊆ R

+ is the
current absolute wealth level, V ⊆ R

N is the current relative portfolio weight
of each of the N assets, and U ⊆ R

N represents all the observed single asset
returns from the previous time step.

The economic return of each asset is individually modeled for each time step
by the random vector Θ = [Θ0, . . . , ΘN−1] ∈ U . The portfolio return is then a
random variable with an expected value denoted as IE [ΘPF ] = aᵀIE [Θ] with the
portfolio weights a ∈ A. There are two potential sources of cost to consider for
the agent: First, the transaction costs caused by changes in the portfolio weights
at in time step t by the agent defined as tct = (|at − vt|)ᵀ

c, where vt ∈ V
and vector c = [c0, .., cN−1] represents the asset-specific transaction costs caused
by trading a specific asset. Second, borrowing fees in case the agent is allowed
to short-sell assets. These costs occur every period as long as assets are short-
sold, i.e., assigned to a negative portfolio weight. The borrowing fees are defined
as bft = (1ai<0 ◦ at)ᵀb where 1ai<0 is an indicator vector signaling for each
individual asset ai if the current portfolio weight is negative, ◦ is an operator for
element-wise vector multiplication, and the vector b = [b0, .., bN−1] represents
asset-specific borrowing fees per time step.

The reward for the agent is a combination of transaction costs tc, borrowing
fees bf , and a realization ϑPF of the random variable of the portfolio’s economic
return ΘPF , i.e., r = ϑPF −tc−bf . The agent’s goal is to maximize the expected
cumulative reward, which we will refer to as total economic payoff.

4 Solution as CMDP

A CMDP is an extension of an MDP and is defined as a tuple (S,A, R, P, γ, C)
where S is the set of states, A is the set of actions, R is the immediate reward
function, which maps transition tuples to their respective expected reward, i.e.,
R : S × A × S → R. P denotes the transition probability function, whereas
P (st+1|st, at) gives the probability of transitioning to state st+1 ∈ S given state
st ∈ S and action at ∈ A. The parameter γ ∈ [0, 1) represents a discount factor.
C = {C0, . . . , Cm} is a set of immediate constraint functions Ci : S ×A×S → R

for i ∈ {0, . . . , m} that map transition tuples to the respective cost. We let
rt+1 := R(st, at, st+1) and define the return for a trajectory τ as the observed
discounted cumulative rewards. The objective function J is then defined as the
expected return for a given policy π, i.e., J(π) := IEτ∼P (τ |π)

[∑T−1
t=0 γtrt+1

]
.
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The expected cumulative discounted immediate cost for constraint i under
policy π is defined as JCi

(π) := IEτ∼P (τ |π)
[∑T−1

t=0 γtCi(st, at, st+1)
]
. We also

define constant trajectory constraint limits d0, . . . , dm. The optimization prob-
lem for the CMDP is then defined as:

maximize
π

J(π) = IE
τ∼P (τ |π)

(G) = IE
τ∼P (τ |π)

[
T−1∑
t=0

γtrt+1

]

s.t. JCi
(π) ≤ di ∀i

In the following, we will show how to formulate the tasks defined in Sect. 3
as a CMDP. In Sect. 3, we defined the observation space O, the constrained
action space Ai, and the reward R. The transition function P and the state
space S are unknown. However, we assume that we can sample transitions from
an environment. Therefore, we can employ reinforcement learning based on a
learned state representation function to learn effective policies. To address the
action constraints of tasks T1 and T2, we define the following cost function for
each respective task i ∈ {1, 2}: CTi

(st, at, st+1) = 1at �∈ATi
· ζ where constant ζ >

0 indicates the non-zero cost of a constraint violation. The respective constraint
for each task is then defined as JCTi

(π) ≤ 0.

5 Action Space Decomposition Based Optimization

We define a surrogate MDP (S, Ã, R, P, γ) and ensure that there exists a surjec-
tive function f : Ã → A that allows reaching any a ∈ A from at least one ã ∈ Ã.
For a formal description of our method, we first introduce the Minkowski sum:

Definition 1. Given two sets A and B of vectors in n-dimensional Euclidean
space, the Minkowski sum of A and B is generated by adding each vector in
A to each vector in B, i.e., the set A + B = {a + b|a ∈ A, b ∈ B} in which we
refer to A and B as Minkowski summands.

In our setting, the Minkowski sum describes how multiple decomposed action sets
can be combined to reconstruct the original constraint action set. The masked
scaled standard simplex (MSSS) describes a part of the original constrained
action which can be described as a simplex:

Definition 2. Let mask M ⊆ {0, . . . , N − 1}. MSSS is defined as:

MSSSM,c =

⎧⎨
⎩y ∈ R

N :
∑
j∈M

yj = c, yi = 0 ∀i ∈ I \ M

⎫⎬
⎭

with either (c ≥ 0 ∧ yi ≥ 0 ∀i ∈ M) or (c < 0 ∧ yi ≤ 0 ∀i ∈ M).

The surrogate action space is modeled as the Cartesian product of indepen-
dent sub-action spaces Ã = Ã1×Ã2. The sub-action spaces Ãi with i ∈ {1, 2} are
required to have the two properties: (a) being a decomposition of A in such a way
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that the Minkowski sum (see Definition 1) of all the sub-action spaces Ãi is A,
i.e., A = Ã1+Ã2, and (b) being an MSSS as defined in Definition 2. Property (a)
guarantees the existence of function f that can be defined as f(ã) = ã1 + ã2 = a
with ã = [ã1, ã2] ∈ Ã ⊂ R

2N and ãi ∈ MSSSi ⊂ R
N for i ∈ {1, 2}, i.e., a

summation of vectors in a subspace of R
N . Property (b) allows utilizing well-

established RL methods for handling standard simplex action spaces with only
minor modifications by adding a scaling and masking logic in order to model
single MSSS action spaces.

The following two theorems show that constrained action spaces as defined in
Sect. 3 can be decomposed into two MSSS that satisfy both of the requirements
mentioned above. Theorem 1 describes the decomposition for task T1:

Theorem 1. Any convex polytope P �= ∅ defined as∑
i∈I

xi = 1, xi ≥ 0 ∀i ∈ I,
∑
i∈V1

xi ≥ c1

with c1 > 0, I = {0, . . . , N − 1} and V1 ⊆ I can be decomposed into two MSSSs:

MSSSS1,z1 , i.e. ∀y1 ∈ MSSSS1,z1 :
∑
S1

yi,1 = z1 with S1 = V1 and z1 = c1

MSSSS2,z2 , i.e. ∀y2 ∈ MSSSS2,z2 :
∑
S2

yi,2 = z2 with S2 = I and z2 = 1 − c1

so that the Minkowski sum of the MSSSs equals the original polytope P .

Correspondingly, the following theorem formulates the decomposition of the
action space in task T2:

Theorem 2. Any convex polytope P �= ∅ defined as∑
i∈I

xi = 1,
∑
i∈V1

xi = c1, xi ≥ c1 ∀i ∈ V1, xi ≤ 0 ∀i ∈ V1, xi ≥ 0 ∀i ∈ I\V1

with c1 < 0, I = {0, . . . , N − 1} and V1 ⊆ I can be decomposed into two MSSSs:

MSSSS1,z1 , i.e. ∀y1 ∈ MSSSS1,z1 :
∑

S1

yi,1 = z1 with S1 = V1 and z1 = c1

MSSSS2,z2 , i.e. ∀y2 ∈ MSSSS2,z2 :
∑

S2

yi,2 = z2 with S2 = I\V1 and z2 = 1 − c1

so that the Minkowski sum of the MSSSs equals the original polytope P .

Theorem 1 and 2 can be proven by showing that the two sets of closed half-
spaces, one describing the polytope P and the other describing the Minkowski
sum of the two MSSSs, are equal resulting in the equality of the two polytopes.

ADBO is based on the PPO algorithm [15]. The agent’s policy network is
designed in such a way that the action representation is distributed across multi-
ple independent segments, i.e., one head for each MSSS. A shared state encoder,
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on the other hand, provides a learned state representation to both heads. For
the state encoder we use a neural network of four fully connected layers of size
1024, 512, 256, and 64 with ReLU activation functions followed by GTrXL ele-
ment allowing to handle tasks requiring memory. The GTrXL element is based
on [12]. The element is composed of a single transformer unit with a single
encoder layer as well as a single decoder layer with four attention heads and an
embedding size of 64. While the sub-actions in ADBO are stochastically inde-
pendent, the parameters of the two distributions from which the sub-actions
are drawn are partially coordinated, i.e., parts of the actions rely on the same
shared latent state representation. To further ensure coordination between the
sub-actions, the different sub-actions are all evaluated using a joint reward. This
means that if a joint action performs poorly, all independent segments receive a
poor reward signal, regardless of individual sub-action performance.

We use a Dirichlet distribution to model each MSSS in the architecture
of the policy function approximator. The expected value of a random vector
X = [X0, . . . , XN−1] following a Dirichlet distribution with a parameter vec-

tor of α = [α0, . . . , αN−1] is defined as IE[Xi] = αi ·
(

N−1∑
n=0

αn

)−1

with αi >

0 for i ∈ {0, . . . , N − 1}. By adjusting the parameter vector of a Dirichlet dis-
tribution and applying a linear scaling transformation, we can create a random
variable with the set of all possible realizations equaling MSSSM,c. The set
M contains index values which we map to an N -dimensional indicator vector
1M , with the vector’s elements set to one if their respective index occurs in M
and zero otherwise. The parameter vector passed to the Dirichlet distribution
is calculated as α1M

= max(α ◦ 1M , ε), where α is the initial parameter vec-
tor before applying the masking and ε > 0 is an arbitrary small number. The
operator ◦ represents element-wise multiplication for vectors. In the final step,
a linear scaling transformation is applied, i.e., Y = c · X with X ∼ Dir(α1M

).
ADBO requires the uses of two MSSSs, i.e., MSSSM1,c1 and MSSSM2,c2 .

It should be noted that the gradient of the policy during training is based on
a policy interacting with the surrogate action space π̃(·|s) rather than a policy
interacting with the original constrained action space π(·|s). We only use f
to convert ã into a representation a that can interact with the environment.
Various inputs ã for f may sum to the same output value a, resulting in f being
a many-to-one function. For some ã ∈ Ã, this results in P(ã|s) �= P(a|s) with
a = f(ã). However, we argue that finding one possible representation for an
action a belonging to an optimal policy for the original problem is sufficient
from an optimization standpoint.

6 Experiments

The environment is based on [20], and uses the same real-world financial data
from the Nasdaq-100 index that was fetched and processed using the qlib pack-
age.1 The investment universe of the environment consists of 13 assets, one of
1 https://github.com/microsoft/qlib/tree/main.

https://github.com/microsoft/qlib/tree/main
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which is cash. The remaining 12 assets are chosen at random from a list of 35
stocks that remain after filtering the Nasdaq-100 data set for companies that
have been part of the index since January 1, 2010 and have no missing data.
The original Nasdaq-100 data set is supplemented with the Environmental Score
Metric (ESM) assigned by financial data provider LSEG.2 The score rates a com-
pany’s environmental sustainability based on various evaluation categories, such
as carbon emissions, willingness to innovate in this field, and transparency in
reporting relevant information. The score ranges from 0 to 100, representing the
percentiles of a ranking system.

We compare ADBO to three other state-of-the-art approaches for optimiz-
ing policies in CMDPs. RCPO is proposed by [19] and belongs to the class of
Lagrangian-based approaches. The interior-point policy optimization approach
IPO is introduced by [10]. P3O is proposed by [21] and uses a first-order opti-
mization over an unconstrained objective with a penalty term equal to the origi-
nal constraint objective. All benchmark approaches are implemented in the RLlib
framework3 based on their papers and publically available.4

Two experimental settings are examined: the SUSTA setting is based on
task type T1. The investor must invest at least 40% of his capital in the top 20%
of environmentally sustainable companies, i.e., companies with an ESM score
of 80 or higher. A score of 80 or higher “indicates excellent relative [...] perfor-
mance and a high degree of transparency in reporting material” by a company.5

The SHORT setting is based on task type T2. It employs a 130-30 strat-
egy, a popular long/short equity strategy among investors to invest 130% of
the available capital in stocks they believe will outperform and short-sell stocks
worth 30% of the available capital they believe will underperform. In the exper-
iments, we choose the companies Automatic Data Processing Inc., Paccar Inc.,
and Amgen Inc. to be sold short based on being the worst performers in 2020,
the final year before the start of the backtesting period.

Ashort is not a subset of the standard simplex because negative weights are
permitted. As a result, the RCPO, IPO, and P3O approaches must be modified
to be applicable to SHORT setting. The agent performed very poorly in initial
tests using R

N as a base action space and applying constraints accordingly and
was unable to learn meaningful policies. Instead, using a standard simplex as
the base action space and applying action scaling produced better results. For
action scaling, the agent uses the output of a Dirichlet distribution as an encoded
action ã = [ã0, . . . , ãN−1] that is then transformed, i.e., scaled into the final
action a = [a0, . . . , aN−1]: the cumulative weights of the stocks sold short and
the cumulative weights of the stocks bought long are added up in their absolute
values, resulting in a scaling factor αtotal = |αlong| + |αshort|. Then, for all
elements i of the encoded action ai = ãi ·αtotal that are bought, a positive scaling
factor is applied, and for all elements j of the encoded action aj = ãj · (−αtotal)

2 https://www.lseg.com/.
3 https://docs.ray.io/en/master/rllib/index.html.
4 https://github.com/DavWinkel/RL ADBO.
5 https://www.refinitiv.com/en/sustainable-finance/esg-scores.

https://www.lseg.com/
https://docs.ray.io/en/master/rllib/index.html
https://github.com/DavWinkel/RL_ADBO
https://www.refinitiv.com/en/sustainable-finance/esg-scores
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Fig. 1. Performance during training for all four approaches in the SUSTA setting and
the SHORT setting regarding Total economic payoff and % of steps in violation.

that are sold short, a negative scaling factor is applied. It should be noted that
actions generated as described above are no longer guaranteed to sum up to
1.0. Because IPO is a logarithmic barrier function-based approach that does not
apply to equality constraints, we must additionally soften equality constraints of
the form x = c to inequality constraints that allow values in a α-neighborhood
of x, i.e., x ≤ c + α and x ≥ c + α.

To evaluate the four approaches, we will report performance during and after
training for both the SUSTA setting and the SHORT setting. The total economic
payoff defined in Sect. 3 is used to measure economic performance. The results of
the SUSTA setting will be discussed first. The training in the SUSTA setting lasts
500 iterations and consists of approximately 2.1 million training steps. Figure 1a
shows that ADBO and P3O perform best during training by steadily improv-
ing their total economic payoff. RCPO also shows improvements, although at
a much slower rate. Table 1 shows the evaluation of economic performance fol-
lowing training completion in two setups: in the (A) environment setup 1000
trajectories are sampled from the same environment used for the training. ADBO
generates the highest total economic payoff in the SUSTA setting, followed by
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P3O, RCPO, and IPO. In the (B) backtesting setup a single trajectory,
namely the real-world Nasdaq-100 trajectory in 2021, is used for evaluation.
In the backtesting year 2021, the overall yearly performance of the Nasdaq-
100 index was above average, returning 27.5%, indicating that the individual
stocks that comprise the index were also performing well. As a result, the four
approaches generated high returns in the (B) backtesting setup, with ADBO
performing best, followed by P3O. In the SHORT setting, the training time had
to be increased significantly. This increase was required because IPO, RCPO,
and P3O failed to generate constraint-compliant actions satisfactorily. However,
due to insufficient training progress, which will be discussed in detail later in
this section, the training was eventually stopped after 3500 iterations, consisting
of approximately 14.7 million training steps. Figure 1b depicts the evolution of
the total economic payoff during training. After roughly 1 million training steps,
the performance of ADBO converges to a level that it then maintains for the
remainder of the training. P3O improves its performance over 3 million training
steps until it reaches a stable level. IPO improves its performance during the first
million training steps and then stabilizes, whereas RCPO does not show signif-
icant improvements in total economic payoff during training. Table 1 shows the
performance evaluation in the SHORT setting after the training is completed.
In the (A) environment setup, ADBO performs best, with an average total eco-
nomic payoff of 42.72%, followed by P3O with 35.12%. ADBO outperforms its
benchmark approaches by a wide margin in the (B) backtesting setup, achieving
a total economic payoff of 102.05%.

The experiments show that violations of the action constraints occurred dur-
ing the training of IPO, RCPO, and P3O in the SUSTA setting. Figure 1c shows
that this is especially true at the beginning of the training phase, while the num-
ber of time steps with actions in violation decreases almost to zero later on. After
completion of the training in the (A) environment setup, RCPO is the only app-
roach generating actions in violations, as shown in Table 1. However, violations
occur only on a small number of time steps, i.e., nine out of 12’000 time steps.
All approaches are free of constraint violations in the (B) backtesting setup. For
the SHORT setting, the majority of actions generated by the approaches IPO,
RCPO, and P3O violated the constraints during training. However, as train-
ing time progresses, the number of actions in constraint violation decreases for
RCPO and P3O. As a result, the training time was increased sevenfold when
compared to SUSTA setting. Nevertheless, the training was eventually halted
due to insufficient speed in reducing constraint violations. Figure 1d shows the
best-performing variants of the agents after extensive tuning of their hyperpa-
rameters. Table 1 displays the evaluation results after the training in the SHORT
setting was completed. In the SHORT setting, IPO, RCPO, and P3O fail to gen-
erate results free of constraint violations for both the (A) environment and (B)
backtesting setups. ADBO, on the other hand, guarantees by design actions free
of violations during and after training.
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Table 1. Evaluation after training is completed. (A) environment setup has a total
of 12’000 time steps (1000 trajectories), (B) backtesting setup has a single trajectory
with 12 time steps.

SUSTA setting SHORT setting

Total econ.
payoff (12
months)

Total violations Total econ.
payoff (12
months)

Total violations

(A) environment

RCPO 0.2238 0 0.2418 8656

IPO 0.2013 0 0.2721 11943

P3O 0.2561 9 0.3512 10865

ADBO (Ours) 0.2603 0 0.4272 0

(B) backtesting

RCPO 0.4640 0 0.5285 9

IPO 0.3499 0 0.6262 12

P3O 0.5475 0 0.7654 11

ADBO (Ours) 0.5758 0 1.0205 0

7 Conclusion

In this paper, we train agents to manage investment portfolios over multiple
periods, given two types of tasks that are commonly encountered in practice.
Task type T1 constrains the allocation of a particular group of assets, e.g.,
assets belonging to a specific industry sector. Task type T2 requires the investor
to short-sell one group of assets while increasing the investment in another. We
propose ADBO, which finds a performant policy for a surrogate MDP rather than
for the more complex CMDP. The surrogate MDP is based on an action space
decomposition of the original action space. We show that ADBO outperforms
general CMDP approaches for both task types in experimental settings. For
future work, we will examine extensions of action space decomposition based on
the Minkowski sums to a broader group of convex polytopes.
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Abstract. While achieving tremendous success, there is still a major
issue standing out in the domain of automated negotiation: it is inef-
ficient for a negotiating agent to learn a strategy from scratch when
being faced with an unknown opponent. Transfer learning can alleviate
this problem by utilizing the knowledge of previously learned policies to
accelerate the current task learning. This work presents a novel Transfer
Learning based Negotiating Agent (TLNAgent) framework that allows a
negotiating agent to transfer previous knowledge from source strategies
optimized by deep reinforcement learning, to boost its performance in
new tasks. TLNAgent comprises three key components: the negotiation
module, the adaptation module and the transfer module. To be specific,
the negotiation module is responsible for interacting with the other agent
during negotiation. The adaptation module measures the helpfulness of
each source policy based on a fusion of two selection mechanisms. The
transfer module is based on lateral connections between source and target
networks and accelerates the agent’s training by transferring knowledge
from the selected source strategy. Our comprehensive experiments clearly
demonstrate that TL is effective in the context of automated negotia-
tion, and TLNAgent outperforms state-of-the-art Automated Negotiat-
ing Agents Competition (ANAC) negotiating agents in various domains.

Keywords: Automated negotiation · Transfer learning ·
Reinforcement learning · Deep learning

1 Introduction

In the domain of automated negotiation, autonomous agents attempt to reach
a joint agreement on behalf of human negotiators in a buyer-seller or consumer-
provider setup. The biggest driving force behind research into automated nego-
tiation is arguably augmentation of human negotiators’ abilities as well as
the broad spectrum of potential applications in industrial and commercial
domains [2,6]. The interaction framework enforced in automated negotiation
lends itself to the use of machine learning techniques for exploring effective
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strategies. Inspired by advances in deep learning (DL) [8,11] and reinforcement
learning (RL) [14,15], the application of DRL on negotiation has made signifi-
cant success [1,3,4,7,9]. However, all these methods need to learn from scratch
when faced with new opponents, which is inefficient and impractical.

The existing works mainly focus on how to use the gained experience to
train an agent to deal with the encountered opponents [13]. In practice, the
agent however may be faced with unfamiliar or unknown opponent strategies,
in which its policy may be ineffective, and the agent thus needs to learn a new
policy from scratch. Besides, in most negotiation settings, agents are required
to negotiate with multiple types of opponents in turn which may be unknown.
The problem behind it is that learning in such manner is time-costly and may
also restrict its potential performance (e.g., ignoring all previous experience and
learned policies that are relevant with the current task). So, a core question
arises: how to accelerate the learning process of new opponent strategy, while
improving the performance of the learned policy.

This paper describes an attempt to answer the question with transfer learn-
ing (TL), which has emerged as a promising technique to accelerate the learning
process of the target task by leveraging prior knowledge. We propose a novel
TL-based negotiating agent called TLNAgent, which is the first RL-based frame-
work to apply TL in automated negotiation. It comprises three key components:
the negotiation module, the adaptation module, and the transfer module. The
negotiation module is responsible for interacting with other agents according to
the current strategy represented by a deep RL policy and providing informa-
tion for other modules. The adaptation module measures the helpfulness of the
source task concurrently based on the two metrics: similarity between the source
opponents and the current opponent, as well as the specific performance of the
source policies on the target task. The transfer module is the core of our agent
framework, which accelerates the agent’s training utilizing the source policies
that the adaptation module selects. The comprehensive experiments conducted
in the work clearly demonstrate the effectiveness of TLNAgent. Precisely, the
performance of TLNAgent is carefully studied from the following aspects:

– The performance of TLNAgent and baselines are compared under standard
transfer settings.

– The tournament consisting of recent ANAC winning agents is run to investi-
gate how well TLNAgent performs against state-of-the-art negotiating agents
in a broad range of negotiation scenarios.

2 Preliminaries

2.1 Negotiation Settings

The negotiation settings consist of a negotiation protocol and a negotia-
tion environment [5]. First, the negotiation protocol defines the rules and
procedures in the negotiation process. This paper considers the stacked alter-
nating offers protocol, which defines the negotiation as alternating between two
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agents who can choose to accept each other’s offers or propose new offers in their
rounds. The negotiation terminates when both parties agree with an agreement
ω, or the allowed negotiation rounds run out. Second, the negotiation environ-
ment contains the opponents and domains that the agent interacts with in the
negotiation process. The strategy of an opponent makes decision at each round.
The negotiation domain is composed of multiple issues and preference profiles
of both parties. The preference profiles define the relative importance that an
agent assigns to each issue under negotiation, and each agent only knows its
own preference profile. The outcome space Ω of the negotiation domain can be
denoted by Ω = {ω1, · · · , ωn}, where ωi represents different offers available in
the i-th domain. The offer ωi includes an arrangement between two negotiation
agents for multiple issues of the domain.

2.2 Reinforcement Learning

Markov Decision Process We model the bilateral negotiation as a MDP rep-
resented by a 〈T ,S,A,P,R〉 tuple. In the negotiation setting of this paper,
TLNAgent will be penalized if the negotiation is not finished before the allowed
negotiation rounds run out. Therefore, time T which indicates negotiation rounds
is an important factor affecting the negotiation. In addition, historical offer is
also a key information that affects whether agents accept the last offer or make
a new offer. In conclusion, we define the state at time t as

St ={tr, Uo(ωt−2
o ), Us(ωt−2

s ), Uo(ωt−1
o )

, Us(ωt−1
s ), Uo(ωt

o), Us(ωt
s)}

(1)

where tr = t
T is the relative time denoting the progress of negotiation, and the ωo

and ωs represent the offers made by the opponent and us at time t, respectively.
Since the structures of offers are completely different in diverse environments
and the number of offers is spacious, it’s difficult to apply the offers directly to
MDP modeling. Therefore, we introduce a utility function U to map the specific
offer to a value between [0, 1]. This not only contributes to the modeling of the
state space but also helps us to define the action space:

at = ut
s, ut

s < 1

U−1(ut
s) = arg max

ω
(U(ω) − ut

s), ∀ω ∈ Ω
(2)

where U−1 is an inverse utility function that maps the utility value to a real
offer. The inverse utility function U−1 maps the action value given by our agent
to an offer ω with the closest utility value in the offer space Ω. The agent receives
only one reward during the whole negotiation process based on the negotiation
result. If the negotiation results in an agreement ω, the agent receives the final
reward corresponding to the utility value U(ω). Otherwise, if the negotiation
fails, both parties receive the same reward -1. The reward function R is defined
as follows:
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R(st, at, st+1) =

⎧
⎪⎨

⎪⎩

Us(ωa), if there is an agreement ωa

−1, if no agreement in the end
0, otherwise

3 Transfer Learning Based Agent

3.1 Framework Overview

Fig. 1. An overview of our framework

To enable the agent to reuse the learned knowledge and learn how to deal
with new opponents, we firstly propose the Transfer Learning Based Agent
For Automated Negotiation framework (See Fig. 1). The framework is com-
posed of three modules: negotiation module, adaptation module, and transfer
module. Through the cooperation of three modules, the framework can accel-
erate the learning process when encountered a new opponent and improve the
learned policy performance. Our framework performs much better than tradi-
tional methods based on RL, which will be validated in our experiments.

3.2 Negotiation Module

In this section, we introduce how the negotiation module helps the agent reaches
an agreement in a negotiation process. As shown in Fig. 2, the module initializes
the session information including the negotiation domain and agent preference in
the beginning. Then, the negotiation module generates offers using information
sent by transfer module, which implements the bidding policy. Specifically, the
negotiation module passes the current state st according to Eq. (1) into the
transfer module. Subsequently, the negotiation module utilizes Eq. (2) to convert
the action at given by transfer module to an real offer.

When the agent receives an offer from the opponent, the negotiation module
considers two actions: accept or make a counter offer. It first makes a new offer
based on the present state. By comparing the utilities which are calculated by
utility function U(·) between this offer and the received offer from opponent,
the negotiation module decides whether to accept (i.e., accept when the counter
offer is better than the new offer), which implements the acceptance policy.
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Fig. 2. An illustration of our Negotiation Module which implements the bidding policy
and acceptance policy. U(·) and U−1 represent the utility function and inverse utility
function respectively.

3.3 Adaptation Module

Now we dive into the of details how the adaptation module measures the help-
fulness of multiple source policies. In the case of multiple source policies, the
primary matter is how to transfer the most relevant knowledge to the target
task under different negotiation environments. To solve this problem, we pro-
pose two evaluation metrics: performance metric and similarity metric.

As for the performance metric, it is a standard and intuitive approach to
directly evaluate the average performance of each source policy when faced
with the current opponent. In this work, we use the average utilities U =
{U1, · · · , Un} of each source policy negotiating with the current opponent in
random domains to evaluate them, where Un = 1

I

∑

i=1

un
i and un

i denotes the

reward value obtained by teacher n for the episode i of evaluation. To ensure
the fairness of the negotiation, the evaluation process is only based on the
mean results of different domains and is not dependent on the current environ-
ment. Subsequently, we pass U through the softmax function to get the weight:
Pteachers = {p1, · · · , pn}, where pi = eUi

∑n
i=1 eUi

. The updating of the perfor-
mance metric is performed continuously throughout the training process and
soft changed to ensure the accuracy of the evaluation process and the overall
training speed.

The performance metric can obtain the overall performance of source pol-
icy when faced with the current opponent. However, it is not rigorous enough
to assess the source policy relying on this metric alone because only a part of
information in source policies is useful and the performance metric is not fine-
grained enough. Therefore, we introduce the Wasserstein distance [10] as our
similarity metric to help evaluate the source policy, which compares the similar-
ity between the opponent and the teacher library O = {o1, · · · , on}. Specifically,
the teacher library contains the opponents used to train source policies. To com-
pare the similarity of the library and the current opponent, we collected our
agent’s negotiation trajectories τ with different opponents under fixed episodes
to calculate the Wasserstein distance. loτ = {Hτ (ωo

1), · · · ,Hτ (ωo
n)} denotes the
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probability distribution of offers given by the opponent o in a negotiation trajec-
tory τ , where H(·) is used to calculate the probability of the appearance of the
corresponding offer. Then, lo = { 1

k

∑k
i=1 Hτi

(ωo
1), · · · , 1

k

∑k
i=1 Hτi

(ωo
n)} denotes

the average probability distribution of opponent’s offers over the k trajectories.
Similarly, we can obtain the distribution L = {l1. · · · , ln} for different opponents
in the teacher library. By comparing the value of W in Eq. (3), we can get the
similarity between the opponent which is used to train source policy and the
current opponent.

W(li, lo) = inf
γ∈Γ (li,lo)

E(x,y)∼γ [‖x − y‖] (3)

where Γ(li, lo) denotes the set of all joint distributions γ(x, y) whose marginals
are respectively li and lo. A higher value of W(li, lo) means that more knowledge
in the corresponding source policy will be helpful to the current opponent. Then,
the adaptation module takes the inverse of W(li, lo) and passes it through the
softmax function to get the weight Dteachers = {d1, · · · , dn}, where

di =
exp(W(li, lo)−1)

∑n
i=1 exp(W(li, lo)−1)

As our agent’s policy is constantly changing in the training process, the sim-
ilarity metric Dteachers will be soft updated every certain number of episodes
throughout the negotiation process.

The weighted combination of Pteachers and Dteachers is used to comprehen-
sively evaluate each source policy. To find the best performance combination,
we conducted several experiments to determine the weighting factors μ and λ of
the two evaluation metrics described above. The weighted factors are eventually
determined as 0.5 and 0.5 for the two approaches based on multiple experiments.

Wteachers = μPteachers + λDteachers

In conclusion, the adaptation module measures the helpfulness of each source
policy by the two metrics. Then it selects the two most helpful source policies
based on Wteachers and utilizes their knowledge in the following transfer module.

3.4 Transfer Module

With the guidance of the weighting factors obtained from the adaptation mod-
ule, the transfer module makes decisions by extracting suitable knowledge from
multiple source policies. In the following, we will refer to these source policies as
teachers and our agent as student for convenience. Inspired by prior work [12,16],
we draw out knowledge directly from teachers’ policies and state-value networks
using the transfer method of lateral connections. We assume teachers and student
have the same number of hidden layers in both the policy and value networks,
where Nπ and NV denote the number of hidden layers in the policy networks and
state-value networks of teachers and the student respectively. Teacher j’s policy
networks and state-value networks are represented by πφ′

j
and Vψ′

j
, where the



392 S. Chen et al.

parameters (φ′
j , ψ

′
j) are fixed in the training process. In the same, the networks’

trainable parameters of the student are represented by (φ, ψ).
In the negotiation, the student gets the current state st and pass it through

teachers’ networks to extract the pre-activation outputs of the i-th hidden layers
of the j-th teachers’ networks:

{hi
φ′

j
, 1 ≤ i ≤ Nπ, 1 ≤ j ≤ N}

{hi
ψ′

j
, 1 ≤ i ≤ NV , 1 ≤ j ≤ N}

To obtain the i-th hidden layer outputs {hi
πφ

, hi
Vψ

} of student networks, we
performed two weighted linear combinations for the pre-activations of student’s
networks with the pre-activations of teachers’ networks [12,16]:

hi
πφ

= phi
φ + (1 − p)

N∑

j=1

wjh
i
φ′

j

hi
Vψ

= phi
ψ + (1 − p)

N∑

j=1

wjh
i
ψ′

j

where p ∈[0, 1] is a weighted factor controlling the impact of source policies in the
current environment which is increasing with training time. As p increases, source
policies have a decreasing influence on our agent in the current environment to
avoid the negative transfer. Besides, wj represents the weight of source policy
πj obtained from the adaptation module. The higher the wj , the greater the
influence of the corresponding πj on our agent in the current environment, which
means the more valuable knowledge and the more helpful for forming our policy.
In this way, our agent can leverage the knowledge of multiple source policies to
learn a policy to deal with the current opponent.

4 Experiments

In this section, we conduct systematic studies to verify the capability of the
TLNAgent compared with RL-based methods and other baselines.

Environments: We implemented 11 ANAC winning agents in our negotia-
tion environment to evaluate the negotiation ability of our agent in different
scenarios: Atlas3, ParsAgent, Caduceus, YXAgent, Ponpoko, CaduceusDC16,
AgreeableAgent2018, Agent36, AlphaBIU, MatrixAlienAgent and TripleAgent.
And we used all the 18 domains of ANAC2013 in the experiments.

Baselines: To demonstrate the advantages of using previous knowledge and the
superiority of the transfer method when faced with new opponents, we consider
the following two baselines in the experiment of Sect. 4.1: 1) Learn from scratch,
which uses the standard DRL algorithm SAC and learns without prior knowledge
in the new negotiation environment; 2) Learn from teachers, which is directly
trained by the opponents that are used to train the source policies.
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4.1 New Opponent Learning Task

Fig. 3. The difference in starting rewards between TLNAgent and other baselines. The
dots represent the jumpstarts of different agents. The rectangle represents the difference
between TLNAgent and the learning from scratch baseline.

In this section, to verify the efficient learning ability of TLNAgent for previ-
ously unknown opponents, we evaluate the agent with multiple tasks consisting
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of different opponents and domains. Assume that TLNAgent is only equipped
with 4 response policies that are trained by 4 agents in the teacher library as
source polices. The teacher library is comprised of Atlas3, Caduceus, Ponpoko
and AgreeableAgent2018, which are the champion agents of ANAC from 2015 to
2018. In addition, we consider two baselines (as mentioned above) in the same
task for comparison. The opponents of this experiment are Parsagent, YXAgent,
CaduceusDC16, and Agent36, which are the second place of ANAC from 2015
to 2018. During the experiment, we train 300,000 rounds for each opponent to
ensure our agent and baselines converge, where the allowed number of round
per negotiation is 30. The domain used in every training episode is randomly
selected among the 18 domains.

The following two transfer metrics are used in experiments, 1) Jumpstart
benchmark: the average rewards of TLNAgent and other baselines in the begin-
ning of the task; 2) Transfer ratio: the ratio of mean utility obtained by the agent
negotiating with a certain opponent over all 18 domains between TLNAgent and
the learn from scratch baseline.

Due to space limitation, we divide all 18 domains into three groups according
to their outcome space and select three representative results from each group,
as shown in Fig. 3. It can be observed from the results that the jumpstart of
TLNAgent is higher than two baselines and has a 50% improvement compared to
the baseline learning from scratch. This result indicates that the transfer module
can help our agent gain an advantage in the early stage of the negotiation, even if
the improvement is not obvious in some scenarios (e.g., the SmartPhone domain).

Fig. 4. The average utility of TLNAgent and other baselines when faced with new
opponents. The transfer ratio is shown by green bar. (Color figure online)

As shown in Fig. 4, TLNAgent performs better for all opponents, achieving
a 26% improvement in average utility compared to the two baselines. This is
because TLNAgent transfers helpful knowledge from multiple source policies
to the target task learning process through the transfer module. In addition,
the adaptation module effectively selects the most appropriate combination of
source policies in the current environment so that TLNAgent can decide when
and which source policy is more valuable to conduct the adaptive transfer.
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4.2 Performance Against ANAC Winning Agents

This section presents the experimental results of a tournament of our agent and
11 ANAC winning agents. To be specific, the experiment consider the top two
agents from 2015 to 2018 competitions plus the top three in the 2021 competi-
tion1. In the tournament, every agent pair will perform a bilateral negotiation
of 1000 episodes. The results are shown in Table 1, and the experiments use the
following metrics, 1) Average utility benchmark: the mean utility obtained by
the agent p ∈ A when negotiating with every other agent q ∈ A on all domains
D, where A and D denote all the agents and all the domains used in the tourna-
ment, respectively; 2) Agreement rate benchmark: the agreement achievement
rate between the agent and all others throughout the tournament.

Table 1. Comparison of our proposed TLAgent with 11 ANAC winning agents using
average utility benchmark and average agreement achievement rate.

Agent Average utility 95% confidence interval Average agreement rate
Lower Bound Upper Bound

Atlas3 0.513 0.487 0.539 0.53
ParsAgent 0.408 0.391 0.425 0.51
Caduceus 0.428 0.415 0.441 0.55
YXAgent 0.474 0.453 0.495 0.37
Ponpoko 0.393 0.382 0.404 0.44
CaduceusDC16 0.452 0.432 0.472 0.53
AgreeableAgent2018 0.533 0.512 0.554 0.79
Agent36 0.315 0.289 0.341 0.47
AlphaBIU 0.572 0.552 0.592 0.64
MatrixAlienAgent 0.558 0.534 0.582 0.59
TripleAgent 0.549 0.532 0.546 0.57
TLAgent 0.6260.6260.626 0.6190.6190.619 0.6330.6330.633 0.820.820.82

Table 1 shows the performance of our TLNAgent on the average utility bench-
mark with standard deviation, concurrently with average agreement achievement
rate. Our TLNAgent outperforms all ANAC winning agents in the tournament,
as exemplified by the higher average utility and higher agreement achievement
rate. Without considering the advanced ANAC winning agents of 2021 who have
access to past negotiation data, the average utility obtained by our agent is 40%
higher than the average benchmark over all other ANAC winning agents. Even
when 2021 ANAC winning agents are considered in the comparison, TLNAgent
still manages to achieve around 30% advantage in the average utility benchmark.
This means that when encountering a new opponent, the agent can utilize the

1 Note that the themes of ANAC 2019 & 2020 are to elicit preference information from
a user during the negotiation, which are different from our negotiation setting.
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knowledge of source policies through the adaptation module and transfer module
to enhance its negotiation performance rapidly facing the opponent. In addition,
TLNAgent achieves the highest agreement rate in the tournament among all
agents. The results together show the effectiveness of our framework.

5 Conclusion and Future Work

In this paper we introduced a novel transfer reinforcement learning based negoti-
ating agent framework called TLNAgent for automated negotiation. The frame-
work contains three components: the negotiation module, the adaptation module
and the transfer module. Furthermore, the framework adopts the performance
metric and the similarity metric to measure the transferbility of the source poli-
cies. The experimental results show a clear performance advantage of TLNAgent
over state-of-the-art baselines in various aspects. In addition, an analysis was also
performed from the transfer perspective.

TLNAgent opens several new research avenues, among which we consider
the following as most promising. First, as opponent modeling is another helpful
way to improve the efficiency of a negotiation, it’s worthwhile investigating how
to combine opponent modeling techniques with our framework. Also, it is very
interesting to see how well TLNAgent performs against human negotiators. The
third important avenue we see is to enlarge the scope of the proposed framework
to other negotiation forms.
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dation of China (Grant No. 61602391).

References

1. Bagga, P., Paoletti, N., Alrayes, B., Stathis, K.: A deep reinforcement learning
approach to concurrent bilateral negotiation. In: Proceddings of IJCAI-20 (2020)

2. Chen, S., Ammar, H.B., Tuyls, K., Weiss, G.: Using conditional restricted Boltz-
mann machine for highly competitive negotiation tasks. In: Proceedings of the
23th International Joint Conference on Artificial Intelligence, pp. 69–75. AAAI
Press (2013)

3. Chen, S., Su, R.: An autonomous agent for negotiation with multiple communi-
cation channels using parametrized deep Q-network. Math. Biosci. Eng. 19(8),
7933–7951 (2022). https://doi.org/10.3934/mbe.2022371

4. Chen, S., Sun, Q., Su, R.: An intelligent chatbot for negotiation dialogues. In:
Proceedings of IEEE 20th International Conference on Ubiquitous Intelligence and
Computing (UIC), pp. 68–73. IEEE (2022)

5. Chen, S., Weiss, G.: An intelligent agent for bilateral negotiation with unknown
opponents in continuous-time domains. ACM Trans. Auton. Adapt. Syst. 9(3),
1–24 (2014). https://doi.org/10.1145/2629577

6. Chen, S., Weiss, G.: An approach to complex agent-based negotiations via effec-
tively modeling unknown opponents. Expert Syst. Appl. 42(5), 2287–2304 (2015).
https://doi.org/10.1016/j.eswa.2014.10.048

https://doi.org/10.3934/mbe.2022371
https://doi.org/10.1145/2629577
https://doi.org/10.1016/j.eswa.2014.10.048


Transfer Reinforcement Learning Based Negotiating Agent Framework 397

7. Chen, S., Yang, Y., Su, R.: Deep reinforcement learning with emergent commu-
nication for coalitional negotiation games. Math. Biosci. Eng. 19(5), 4592–4609
(2022). https://doi.org/10.3934/mbe.2022212

8. Chen, S., Yang, Y., Zhou, H., Sun, Q., Su, R.: DNN-PNN: a parallel deep neural
network model to improve anticancer drug sensitivity. Methods 209, 1–9 (2023).
https://doi.org/10.1016/j.ymeth.2022.11.002

9. Lillicrap, T.P., et al.: Continuous control with deep reinforcement learning. In:
4th International Conference on Learning Representations, ICLR 2016, Conference
Track Proceedings (2016)

10. Ramdas, A., Trillos, N.G., Cuturi, M.: On Wasserstein two-sample testing and
related families of nonparametric tests (2017)

11. Su, R., Yang, H., Wei, L., Chen, S., Zou, Q.: A multi-label learning model for
predicting drug-induced pathology in multi-organ based on toxicogenomics data.
PLoS Comput. Biol. 18(9), e1010402 (2022). https://doi.org/10.1371/journal.pcbi.
1010402

12. Wan, M., Gangwani, T., Peng, J.: Mutual information based knowledge transfer
under state-action dimension mismatch. In: Proceedings of the Thirty-Sixth Con-
ference on Uncertainty in Artificial Intelligence (2020)

13. Wu, L., Chen, S., Gao, X., Zheng, Y., Hao, J.: Detecting and learning against
unknown opponents for automated negotiations. In: Pham, D.N., Theeramunkong,
T., Governatori, G., Liu, F. (eds.) PRICAI 2021: Trends in Artificial Intelligence
(2021)

14. Yang, T., Hao, J., Meng, Z., Zhang, C., Zheng, Y., Zheng, Z.: Towards efficient
detection and optimal response against sophisticated opponents. In: Proceedings
of the Twenty-Eighth International Joint Conference on Artificial Intelligence, pp.
623–629. ijcai.org (2019)

15. Ye, D., et al.: Towards playing full MOBA games with deep reinforcement learn-
ing. In: Proceedings of the 34th International Conference on Neural Information
Processing Systems (2020)

16. You, H., Yang, T., Zheng, Y., Hao, J., Taylor, M.E.: Cross-domain adaptive transfer
reinforcement learning based on state-action correspondence. In: Uncertainty in
Artificial Intelligence, Proceedings of the Thirty-Eighth Conference on Uncertainty
in Artificial Intelligence (2022)

https://doi.org/10.3934/mbe.2022212
https://doi.org/10.1016/j.ymeth.2022.11.002
https://doi.org/10.1371/journal.pcbi.1010402
https://doi.org/10.1371/journal.pcbi.1010402


Relational Learning



A Relational Instance-Based Clustering Method
with Contrastive Learning for Open Relation

Extraction

Xiaoge Li1(B) , Dayuan Guo2 , and Tiantian Wang1

1 School of Computer Science and Technology, Xi ’an University of Posts
and Telecommunications, Xi ’an 710121, China

lixg@xupt.edu.cn
2 Shaanxi Key Laboratory of Network Data Analysis and Intelligent Processing, Institute,

Xi’ an 710121, China

Abstract. Unsupervised text representations significantly narrow the gap with
supervised pretraining, and relation clustering has gradually become an impor-
tant method of open relational extraction (OpenRE). However, different relational
categories generally overlap in the high-dimensional representation space, and
distance-based clustering is difficult to separate different categories. In this work,
we propose a relational instance-based clustering method with contrastive learn-
ing (RICL) - a framework to leverage similarity distribution information and
contrastive method to promote better aggregation and relational representation.
Specifically, to enable the model to better represent relation instances with word-
level features, we construct an augmented dataset using only standard dropout as
noise and iteratively optimize the vector representation of relation instances by
fully using self-supervised signals. Experiments on real-world datasets show that
RICL can achieve excellent performance compared with previous state-of-the-art
methods.

Keywords: Relation Extraction · Unsupervised Clustering · Contrastive learning

1 Introduction

Relation extraction is an important basic work for building large-scale knowledge bases
such as semantic networks and knowledge graphs [1–3]. However, conventional relation
extraction methods such as semi-supervision and distant supervision are generally used
to deal with pre-defined relations and cannot well identify emerging relations in the real
world.

Against this background, OpenRE has been widely studied for its ability to mine
novel relation from massive text data. At present, OpenRE is mainly based on unsu-
pervised methods, which can be divided into two categories. The first group is pattern
extraction models [4–6], which usually uses sentence analysis tools, combined with
linguistics and professional domain knowledge, to construct artificial rules based on
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lexical, syntactic and semantic features. When performing relation extraction tasks, dif-
ferent relation types are obtained bymatching rules with the preprocessed text. However,
with the expansion of the relational model set, the complexity of the system is greatly
increased, and it is difficult to bewidely used in the open field. The second group is to dis-
cover various relation types through unsupervised methods [7–9]. This work optimizes
the representation of relations to improve the accuracy of unsupervised clustering while
overcoming the instability of unsupervised training. Recently, some RE methods work
begin to study better utilization of hand-crafted features, which only use named enti-
ties to induce relation types [10]. The hierarchy information in relation types is further
exploited for better novel relation extraction [11].

However, much research has shown that complex linguistic information requires
high-dimensional embeddings so that the meaning of the text becomes clear [12]. This
complex information may contain local syntactic [13] and semantic structures [14].
Therefore, the position and relative distance in the high-dimensional vector space is not
completely consistent with the relational semantic similarity. Especially before model
training starts, even with deep neural networks, different classes may still overlap in
high-dimensional space [15].

Wepropose a relational instance-based clusteringmethodwith contrastive learning in
this work. In order to make the model better mine the information of the relation instance
itself to produce better clustering results, the nonlinear mapping is optimized by using
the difference information of the constructed relation instance’s comparative dataset
and the distribution information of the original instance dataset. High-dimensional rela-
tional instance features of complex information are transformed into relation-oriented
low-dimensional feature representations. Specifically, we pull together instances repre-
senting the same relationship while pushing apart those from different ones by jointly
optimizing distribution loss and contrastive loss so that the learned representation is
cluster-friendly. In addition, the proposed method obtains supervision from the data
itself and its corresponding augmented dataset and iteratively learns better feature rep-
resentations for relation classification tasks to improve the quality of supervision, which
in turn improves cluster purity and separates distances between different clusters.

Overall, our work has the following contributions: (1) we propose a self-supervised
framework which can fine-tune pretrained MLMs into capable universal relational
encoders and extensively learn to cluster relational data; (2) we show how to use
contrastive learning to learn and improve representations of relation instances in a
self-supervised manner.

2 Related Work

Self-supervised learning has recently achieved excellent results on multiple tasks in the
image and text domains, and many studies have been further developed thanks to its
effectiveness in feature representation work. The quality of learned representations is
assured by a theoretical framework based on contrast learning [16], which learns self-
features from unlabeled data and formalize the concept of semantic similarity through
latent classes to improve the performance of classification tasks. Hu et al. [9] propose
adaptive clustering algorithms and uses pseudo-labels of relations as self-supervised



A Relational Instance-Based Clustering Method 403

signals to optimize their semantic representations. Recently, there has been an increasing
interest in contrast learning using individual raw sentences based on PLMs [15, 17, 18].

Meanwhile, inspired by research related to contrast learning in computer vision [19,
20], we utilize “multi-view” contrastive learning for relation extraction. Previous work
mainly uses sentences as the smallest unit of text input, builds enhanced datasets by
randomly masking characters or replacing words, and uses semantic similarity as the
goal of the measurement model. In contrast, our work takes entity word pairs as the
minimum granularity of semantic representation, abstracts various types of relations,
and obtains their vector representations with the help of the idea of clustering. It not
only maintains the advantages of unsupervised learning, which can deal with deal with
undefined relation types, but also exerts the advantages of supervised learning, which
has a strong guiding ability for relational feature learning.

Fig. 1. Overall architecture of RICL

3 Methodology

In this work, we propose a simple and effective approach to relation clustering, which
exploits relation instance distribution information in unlabeled data and semantic infor-
mation from pretrained models, enabling the model to optimize the representation of
relations.

In order to alleviate the overlap of different relation clusters in the representation
space, we improve the clustering of unlabeled data by contrastive learning to promote
better separation. The proposed method is shown in Fig. 1.

We build a “multi-view” of the training corpus, gradually optimize the representation
of relation instances in a joint learning manner and aggregate to generate pseudo-labels,
and fine-tune the pre-trained language model through the classification. As shown in
Figure 1., we mainly iteratively perform the following steps:

(1) First, we use the pretrained BERT as the encoder of relational instances
{hi}i=1,...,N ; each relational instance hi is composed of an entity pair vector as the output
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vector. However, high-dimensional representations of h contain too much information
(structural features, semantic information, etc.), and the direct use of high-dimensional
vectors for clustering cannot alignwell with the relationships corresponding to instances.

(2) In order to better reflect the semantic similarity between each other through the
distance between the relation representation spaces, we transform the high-dimensional
representations of relation instances hi into low-dimensional representations h

′
i through

non-linear mapping g. However, the quality of pseudo-labels produced by direct
clustering is not high, which is not conducive to downstream classification tasks.

(3) In order to reduce the negative impact of pseudo-label errors, we apply different
dropouts under the same pre-training model to construct a positive set and other data
under the same batch as a negative set. During the training process, aiming at the aggre-
gation of clusters of similar relational instances and the separation of different instances,
the representation of relation instances is optimized to improve the quality of pseudo-
labels produced by clustering. Pseudo-labels serve as prior knowledge of the dataset
and are finally used for supervised relation classification. The above steps are executed
iteratively until the clustering result tends to be stable.

3.1 Relational Instance Encoder

The relational instance encoder is to extract the semantic relation representations between
two arbitrary given entities in a sentence. We utilize a large pretrained language model
to efficiently encode entity pairs and their contextual information.

For sentence S = [s1, . . . , sn], we introduce two pairs of special iden-
tifiers [E1\], [\E1], [E2], [\E2] to mark entities and inject them to S =
[s1, . . . , [E1\], si, . . . , sk , [\E1], . . . , [E2\], sm, . . . sj, [\E2], . . . , sn]. We adopt BERT
[21] as our encoder l(•) due to its strong performance and wide application in extracting
semantic information. Formally:

v1, ..., vn = l(s1, ..., sn) (1)

h = [
v[E1\], v[E2\]

]
(2)

where vi is a word vector generated by BERT, we use the outputs concatenated by v[E1/]
and v[E2/] as the representation of the relational instance. This method of relational
representation has been widely used in previous RE methods [9, 22, 23].

3.2 Instance-Relational Contrastive Learning

We use the distribution information of relation instances and their own feature infor-
mation to build a joint model to achieve deep clustering. As shown in Fig. 1, our joint
learning model is composed of two components, f (•) and g(•), using clustering loss and
contrastive loss, respectively. We describe the specific structure of the model in Sect. 4.

Dropout Noise as Data Augmentation. We use different dropouts to obtain different
vector representations of the same text. Specifically, for each batch B = {hi}Mi=1, we
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generate a new vector representation for each relation instance in B and then get an aug-

mented batch Ba = {hi, h̃i}Mi=1. The positive pair hi, h̃i takes exactly the same relational
instance, and their embeddings only differ in dropout masks, while treating the other
2M − 2 instances as negative instances N of this positive pair. Here the dropout rate p
is 0.1.

Given a batch of dataBa, τ denotes a temperature parameter.We leverage the standard
InfoNCE loss [24] to aggregate the positive pairs together and separate the negative pairs
in the embedding space:

La = −
∑M

i=1
log

exp(cos(g(hi), g(h̃i)))
/

τ
∑

hj∈N exp(cos(g(hi), g(hi)))
(3)

3.3 Clustering

Different from contrastive learning, clustering focuses on the similarity between dif-
ferent instances, encodes abstract semantic information into representations of relation
instances, and finally aggregates instances of the same relation.

The known dataset consists ofK relation classes. The centroid representation of each
class denoted as uk , k ∈ {1, ...,K}. We compute the probability of assigning hi to the
kth cluster by student’s t-distribution [25]:

qik = (1 + ||hi − uk ||22
/

α)
−α+1

2

∑K
k ′=1 (1 + ||hi − uk ′ ||22

/
α)

−α+1
2

(4)

Here α denotes the degree of freedom of the student’s t-distribution and qik can be
regarded as the probability of the cluster assignment. In general, we follow Maaten and
Hinton [25] by setting α = 1.

A linear layer f (•) is used tofit the centroid of each relation cluster and then iteratively
improve it by the auxiliary distribution proposed by Xie et al. [26] Concretely, defining
pik as the auxiliary probability:

pik = q2ik
/
fk

∑
k ′ q2ik

/
fk ′

(5)

where fk = ∑M
i=1qik , k = 1, . . . ,K is the cluster frequencywithin a batch, the purpose of

this is to encourage learning from high-confidence cluster assignments while improving
low-confidence tasks against biases caused by imbalanced clusters, resulting in better
clustering performance.

We optimize the KL divergence loss between the cluster assignment probability and
the target distribution:

Lb = KL(P||Q) =
∑

i

∑

k
pik log

pik
qik

(6)
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In conclusion, our overall objective is,

L = (1 − ε)La + εLb (7)

ε balances between the clustering loss and the contrastive loss of RICL is set to 0.65.
Note that Lb is only optimized on the initial data, and the parameters for f (•) and g(•)

will be updated-parameters in the l(•) are not improved when minimizing L.

Finally, we obtain {h′
i}
M
i=1 using the optimized g(•) and f (•), and then generate

pseudo-labels y
′
by k-means algorithm:

y′ = Kmeans(h′) (8)

3.4 Relation Classification

Based on the pseudo-labels y
′
generated by clustering, we can use supervised learning

to train the classifier and refine relational instance h to encode more relational semantic
information:

ln = μτ (lθ (S)) (9)

LC = min
θ,τ

1

M

∑M

n=1
loss(ln, one_hot(y

′
n)) (10)

where μτ denotes the relation classification module parameterized by τ and In is a
probability distribution over K pseudo-labels for the original data. In order to find
the best-performing parameters θ for Relational Instance Encoder and τ for Relation
Classification, we optimize the above classification loss.

4 Experimental Setup

We first introduce publicly available datasets for training and evaluation. Then we
briefly introduce the baseline models used for comparison. Finally, we elaborate on
the hyperparameter configuration and implementation details of RICL.

4.1 Datasets

We conduct experiments and comparisons on three open-domain datasets.

FewRel. Few-Shot Relation Classification Dataset is derived fromWikipedia and anno-
tated by humans [27]. FewRel contains 80 types of relations, each with 700 instances.
Following the paper [7], we use all instances of 64 relations as training set, and the test
set of FewRel, which randomly selects 16 relations with 1600 instances.

T-REx SPO andT-RExDS.They come from the T-Rex dataset [28], which is generated
by aligning Wikipedia corpus with Wiki-data. At first, we need to preprocess each
sentence in the dataset. If there are multiple entity pairs in a sentence, the sentence
will be retained for the same number of times according to the number of occurrences
of different entity pairs. And then, we built two datasets, T-REx SPO and T-REx DS,
according to Hu et al. [9]. In both datasets, 80% of sentences will be used for model
training, and the remaining 20% were set aside for validation, the rest for testing.
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4.2 Baseline and Evaluation Metrics

We use standard unsupervised evaluation metrics for comparisons with the other six
baseline algorithms. For all models, we assume the number of target relation classes
is known in advance, but no human annotations are available to extract relations from
the open-domain data. We set the number of clusters to the number of ground-truth
classes and evaluate performance with B3, V-measure, and ARI [8, 9, 29]. To evaluate
the effectiveness of our method, we select the following SOTA OpenRE models for
comparison.

VAE [30] consists of a classifier that predicts relations and a factorization model
which reconstructs arguments. The model is jointly optimized by reconstructing entities
from pairing entities and predicted relations.

UIE [8] trains a discriminative relation extraction model by introducing a skewness
loss and a distribution distance loss to make the model confidently predict each relation
and encourage the average prediction of all relations.

SelfORE [9] uses an adaptive clustering algorithm to obtain relation sets based
on a large pretrained language model and then uses the pseudo-labels of relations as
self-supervised signals to optimize their semantic representations.

EI_ORE [29] conduct Element Intervention, which intervenes on the context and
entities respectively to obtain the underlying causal effects of them, to address the
spurious correlations from entities and context to the relation type.

RW-HAC [31] reconstructs word embeddings and uses single feature reduction to
alleviate the feature sparsity problem for relation extraction through clustering.

Etype + [10] consists of two regularization methods and a link predictor and uses
only named entity types to induce relation types.

4.3 Implementation Details

Follow the settings used in previous work [8, 9, 29, 30], at T-REx SPO and T-REx
DS datasets, RICL are trained with 10 relation classes. Although it is lower than the
number of real relationships in the dataset, it still reveals important insights due to the
very imbalanced distribution of relationships on the 10 relation classes of data used for
training and testing.

For Relational Instance Encoder, we use the default tokenizer in BERT to preprocess
all datasets and set the max length of a sentence as 128. We use the BERT-base-uncased
model to initialize parameters for l(•) and use BertAdam to optimize the loss.

For Instance-relational Contrastive Learning, we use an MLP g(•) with fully con-
nected layers with the following dimensions Rd -512–512-256. We randomly initialize
weights following Xie et al. [26]. For Clustering, we use a linear layer f (•) of size
256 × K with K indicating the number of clusters, and initialize the cluster centers by
the Kmean algorithm.

For Relation Classification, we use a fully connected layer as μτ and set the dropout
rate to 10%, the learning rate to 5e − 5, and the warm-up rate to 0.1. In the process of
fine-tuning BERT, we freeze its first 8 layers. All experiments are conducted using an
NVIDIA GeForce RTX 3090 with 24GB memory.



408 X. Li et al.

5 Results and Analysis

In this section, we present the experimental results of RICL on three open-domain
datasets, and verify the rationality of the framework through ablation experiments.
Finally, we prove its effectiveness by combining data characteristics and visual analysis.

Table 1. Main results on three relation extraction datasets.

Dataset Model B3 V-measure ARI

F1 Prec. Rec. F1 Hom. Comp.

T-Rex SPO VAE [30] 24.8 20.6 31.3 23.6 19.1 30.6 12.6

UIE-BERT [8] 38.1 30.7 50.3 39.1 37.6 40.8 23.5

SelfORE [9] 41.0 39.4 42.8 41.1 40.3 42.5 33.7

EI_ORE [29] 45.0 46.7 43.4 45.3 45.4 45.2 36.6

Our 44.6 42.9 44.4 47.2 46.2 48.2 37.1

T-Rex DS VAE [30] 9.0 6.4 15.5 5.7 4.5 7.9 1.9

UIE-BERT [8] 22.4 17.6 30.8 31.2 26.3 38.3 12.3

SelfORE [9] 32.9 29.7 36.8 32.4 30.1 35.1 20.1

EI_ORE [29] 42.9 40.2 45.9 47.3 46.9 47.8 25.0

Our 43.3 41.3 46.6 47.1 47.3 48.6 28.2

FewRel VAE [30] 36.5 30.9 44.6 47.3 44.8 50.0 29.1

RW-HAC [31] 33.7 25.6 49.2 43.3 39.1 48.5 25.0

EType + [10] 31.9 23.8 48.5 40.8 36.4 46.3 24.9

SelfORE [9] 51.2 50.8 51.6 58.3 57.9 58.8 34.7

Our 53.9 50.9 57.4 65.3 63.2 67.6 47.3

5.1 Main Results

Table 1 reports model performances on T-Rex SPO, T-Rex DS, and FewRel dataset,
which shows that the proposed method achieves state-of-the-art results on the OpenRE
task. Benefiting from the rich information in the pre-trained model, RICL exploits the
relation distribution in unlabeled data and optimizes the relation representation through
the method of contrastive learning so as to achieve a better clustering effect, thus greatly
surpassing previous cluster-based baselines.

5.2 Ablation Study

In order to study the effect of each algorithm in the proposed framework,we conduct abla-
tion experiments on two datasets, respectively, and the results are presented in Table 2.
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Table 2. Ablation results on T-Rex SPO and FewRel

Method T-Rex SPO FewRel

B3-F1 V-F1 ARI B3-F1 V-F1 ARI

w/o contrastive learning 41.8 43.1 22.9 51.0 57.8 34.1

w/o clustering 39.9 39.8 19.6 47.5 52.0 34.9

w/o classification 42.9 46.6 32.0 51.9 59.2 45.5

RICL 44.6 47.2 37.1 53.9 65.3 47.3

The results show that the model performance is degraded if La is removed, indicating
that Instance-relational Contrastive Learning can produce superior relation embeddings
from either unlabeled data. It is worth noting that Clustering has an important role in
RICL. It prevents the excessive separation of the same relation instance in the space,
avoids the collapse of the relation semantic space. At the same time, it provides guid-
ance for downstream relation classification and optimizes the representation of relation
instances. In addition, joint optimizing on both the Clustering and the Contrastive Learn-
ing is also very important. While alleviating the overlap of different relation classes in
the representation space, different instances under the same class are aggregated.

Fig. 2. Visualization of feature embeddings on FewRel-5

5.3 Visualization and Analysis

To further explore the performance ofRICL and the rationality of its design,we randomly
select 5 types of data in the FewRel dataset and visualize the embedded features from
BERT-base-uncased (left) and RICL (right) with t-SNE in Fig. 2. It is convenient for us
to observe the changes in class distribution.

In the initial distribution, we observe that classes 2, 3, 4 have high purity, but these
classes are not highly clustered and have slight overlap at the boundaries. The relation
instances of class 1 and 5 are heavily overlapped in space. Through the analysis of
relationship classes and their instances, class 1describes the “located in” relationbetween
the airport and the place it belongs to, and class 5 describes the “located in” relation
between the regional locality and the city or country. These two classes are affected by
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factors such as relational semantics and entity types [10], and some relation instances
are spatially closely distributed.

From a global perspective, RICL achieves better separation of each class in space,
solves the problem of blurred boundaries, ensures the overall consistency, and explores
the possibility of further subdividing categories under the same class. While classes
2, 3, 4 are aggregated, they are separated from different class as much as possible in
space to ensure semantic consistency. When dealing with class 1 and class 5 overlapping
problems, RICL locally aggregates discretely distributed class 5 instances and separates
them from class 1 while guaranteeing relational consistency, thereby improving class
purity as much as possible.

6 Conclusions

In this paper, we propose a novel self-supervised learning framework for open-domain
relation extraction, namely RICL. It aims to enable the neural network to obtain better
relation-oriented representation encoding and how to better handle relational instances
in the open domain in a self-supervised manner. We utilize instance distribution infor-
mation and contrastive learning to promote better aggregation and relational represen-
tation, improving clustering accuracy and reducing error propagation, thus benefiting
downstream classification tasks. Moreover, we iteratively improve the robustness of
the neural encoder by using pseudo-labels as self-supervised signals for relation clas-
sification. Our experiments show that RICL can perform more efficient and accurate
relation extraction on open-domain corpora than previous methods, and can construct a
representation space more suitable for semantic tasks.
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Abstract. Federated learning (FL) is a suite of technology that
allows multiple distributed participants to collaboratively build a global
machine learning model without disclosing private datasets to each other.
We consider an FL setting in which there may exist both a) semi-
honest participants who aim to eavesdrop on other participants’ private
datasets; and b) Byzantine participants who aim to degrade the perfor-
mances of the global model by submitting detrimental model updates.
The proposed framework leverages the Expectation-Maximization algo-
rithm first in E-step to estimate unknown participant membership,
respectively, of Byzantine and benign participants, and in M-step to
optimize the global model performance by excluding malicious model
updates uploaded by Byzantine participants. One novel feature of the
proposed method, which facilitates reliable detection of Byzantine par-
ticipants even with HE or MPC protections, is to estimate participant
membership based on the performances of a set of randomly generated
candidate models evaluated by all participants. The extensive experi-
ments and theoretical analysis demonstrate that our framework guar-
antees Byzantine Fault-tolerance in various federated learning settings
with private-preserving mechanisms.

Keywords: Federated Learning · Byzantine Fault-tolerance ·
Semi-honest party

1 Introduction

With the increasing popularity of federated learning (FL) in a variety of applica-
tion scenarios [29], it is of paramount importance to be vigilant against various
Byzantine attacks, which aim to degrade FL model performances by submitting
malicious model updates [4,11,27]. Effective Byzantine Fault-tolerant methods
to thwart such Byzantine attacks have been proposed in literature [5,30,31].

Although numerous Byzantine Fault-tolerant methods have demonstrated
effectiveness in defeating attacks under various federated learning settings, how-
ever, the majority of existing work is not readily applicable to a critical FL setting
in which certain privacy-preserving mechanisms e.g., Differential Privacy (DP),
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Table 1. Classification of Byzantine Fault-tolerant methods. -: No Reference.

Protection Mechanism Byzantine Fault-tolerant Methods
Updates-based Performance-based
Robust Statistics Clustering Historical Server-Based Server Eval. Client Eval.

No Protection [5,30] [23,24] [2,31] [8,22] [26,28] [16] FedPBF
DP [19,32] - - - - FedPBF
MPC [14,25] - - - -
HE [20] - - - -

Homomorphic Encryption (HE) or Secure Multiparty Computation (MPC)1 are
adopted to protect model updates from disclosing private training data or models.
We regard this deficiency as a detrimental shortcoming that renders many Byzan-
tine Fault-tolerant methods useless in practice since federated learning without
privacy-preserving mechanisms poses serious privacy leakage risks that defeat the
purpose of federated learning in the first place. For instance, it was shown that
attackers could exploit unprotected deep neural network model updates to recon-
struct training images with pixel-level accuracy [33].

To achieve privacy-preserving and Byzantine Fault-tolerance simultaneously
in FL, we propose a Provable Byzantine Fault-tolerant framework in a semi-
honest Federated learning setting, called FedPBF, which leverages EM Algo-
rithm [9,10] in E-step to estimate unknown participant membership, respec-
tively, of Byzantine and benign participants, and in M-step to optimize the
global model performance by excluding malicious model updates uploaded by
Byzantine participants. As compared with model updates based methods, the
proposed FedPBF is based on model performances of a set of randomly gener-
ated candidate models evaluated by all participants via their local dataset, which
can be applied to various privacy-preserving mechanisms, e.g., DP, HE and MPC
(shown in Table 2). Moreover, the FedPBF uses robust estimation (median) to
defence misreporting by Byzantine participants (Sect. 2.). Our extensive exper-
iments (Sect. 4) and theoretical analysis (Appendix2 A) demonstrate that the
FedPBF method shows superior model performances in the presence of a large
variety of Byzantine attacks and privacy-preserving mechanisms. Table 1 illus-
trated that the FedPBF can be applied to all FL scenarios with different privacy-
preserving mechanisms (e.g., DP, MPC and HE) adopted.

2 Related Work

We classify existing federated learning Byzantine Fault-tolerant methods into two
main categories in Table 1: update-based and performance-based methods.
1 DP adds random noise to data to protect individual privacy while allowing useful data

insights [1]. HE is a cryptographic technique that allows computation on encrypted
data without the need for decryption, preserving privacy and security [3,18]. MPC
is a protocol or technique that enables multiple parties to jointly perform a specific
computation task without revealing their private data [6].

2 Online appendix: https://github.com/TangXing/PAKDD2023-FedPBF.

https://github.com/TangXing/PAKDD2023-FedPBF
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Updates-based Byzantine Fault-tolerant methods are based on model
updates uploaded by the client to detect Byzantine participants. Some methods
[5,30] regarded malicious updates as outliers and leveraged Robust statistics
to filter out malicious updates. Another line of work adopted clustering methods
[23,24] to distinguish benign and Byzantine participants. Moreover, some server-
based Byzantine Fault-tolerant methods assume that the server has an additional
dataset to evaluate updates uploaded by clients [8,22]. In addition, some methods
made use of historical information to help correct the statistical bias brought
by Byzantine participants during the training, and thus lead to the convergence of
optimization of federated learning [2,31]. However, all of the updated-based meth-
ods don’t consider privacy-preserving mechanisms, such as DP and HE.

Performance-based Byzantine Fault-tolerant methods detect Byzan-
tine participants based on model performance evaluation. Some methods [26,28]
assumed the availability of reliable public datasets that can be used by the server
to evaluate model performances. However, the availability of such server-side
public datasets is hardly fulfilled in practice since those server-side datasets are
either limited in terms of their data size or their distributions are different from pri-
vate datasets owned by clients. Moreover, other methods [16] used private datasets
on the client to evaluate the performance of local updates; however, they didn’t
consider the existence of the misreporting by Byzantine participants.

Byzantine Fault-tolerant & privacy-preserving methods considered
Byzantine Fault-tolerant and privacy-preserving at the same time. They com-
bined privacy-preserving mechanisms such as DP [19,32], MPC [14,25] and HE
[20] and Byzantine Fault-tolerant methods to address privacy issues and Byzan-
tine attacks simultaneously. However, the methods proposed in [19,32] can only
be used to protect the sign of updates sent to the server using DP. Moreover,
Ma et al. applied HE to Byzantine problems [20]. Nevertheless, it only allowed
for the encryption of the set {−1, 0, 1} using HE, which may not be sufficient
for the general case of encrypting model updates. Additionally, the approaches
presented in [14,25] are designed to be used with MPC protocols for update-
based arithmetic operations, which might restrict their applicability to other
privacy-preserving mechanisms.

3 The Proposed Method

This section first formally defines the setting and threat model in which a semi-
honest federated learning setting and an unknown number of Byzantine partici-
pants (aka, Byzantine clients: this description is used in the following sections.)
are assumed. Section 3.2 then delineates the proposed framework, which demon-
strates provable Byzantine Fault-tolerance in the presence of various privacy-
preserving mechanisms (e.g., DP, HE and MPC) adopted by clients to prevent
the semi-honest server to eavesdrop private data from clients.
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Fig. 1. Overview of threat models and the proposed FedPBF: E-step and M-step.
The details of E-step and M-step are described in Sect. 3.2.

3.1 The Setting and Threat Model

We consider a horizontal federated learning setting (as defined in [29]), in which
K clients collaboratively train a global model with weights w using private
datasets residing on each client i.e. Dk = {xk,n, yk,n}Nk

n=1, k = 1 · · · K and Nk

the total number of data points on respective clients:

min
w

K∑

k=1

Nk∑

n=1

Fk(w,xk,n, yk,n) = min
w

K∑

k=1

Fk(w,Dk), (1)

where Fk is the loss function w.r.t. weights w of kth client.
The minimization of Eq. (1) essentially uplifts the global model performance,

such that clients are motivated to join the federated learning mission for the
benefits of improved model performances. However, one must deal with the fol-
lowing two types of threats that may defeat the purpose of federated learning in
the first place (see Fig. 1).

Threat type I – Semi-honest Parties: We assume a semi-honest threat
model in which either clients or the server may eavesdrop on private data owned
by other clients. Therefore, due to the privacy-preserving concern, private data
Dk are never communicated with peer clients or the server. Instead, it is the
protected model updates P

(∇Fk

)
in Eq. (2) that are sent from each client to

the server. P (·) denotes certain privacy-preserving mechanisms, e.g., Differential
Privacy or Homomorphic Encryption adopted by clients, to prevent a semi-
honest party from inferring information about private data Dk based on the
unprotected local model update ∇Fk

3.
However, as demonstrated throughout this paper, the adoption of such

privacy-preserving mechanisms poses severe challenges to the defence of another
type of threat, i.e., Byzantine clients whose behaviour may significantly degrade
global model performances.

3 Such privacy leakage risks have been demonstrated for particular cases (e.g., see
[33]) where attackers can exploit unprotected deep neural network model updates to
reconstruct training images with pixel-level accuracy.
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Threat type II – Byzantine Clients: We assume that out of K clients, there
exist up to f Byzantine clients, whose local model updates gk may deviate from
those of benign clients in an arbitrary manner:

gk =

{
P (∇Fk(w)) Benign clients

P (gb) Byzantine clients.
(2)

Note that misbehaves of Byzantine clients may be ascribed to different rea-
sons, e.g., network malfunctioning or malicious clients who intentionally aim to
degrade the global model performances [4,11,27]. Due to various root causes of
Byzantine clients, their identities are often unknown. Moreover, in the case of
malicious clients, they may collude and upload detrimental yet disguised model
updates that evade many existing Byzantine Fault-tolerant methods (see, e.g.,
[11,12]). To make things worse, the adoption of certain privacy-preserving mech-
anisms, e.g., HE or MPC, renders many Byzantine Fault-tolerant methods com-
pletely useless, as illustrated in Sect. 4.2.

Our mandate, therefore, is to study a general Byzantine Fault-tolerant fed-
erated aggregation scheme that admits exact Fault-tolerance as defined below in
the presence of privacy-preserving mechanisms4.

Definition 1 (Exact Fault-tolerance). Given a set of K model updates
gk, k = 1 · · · K with a subset G consisting of m benign clients, a federated aggre-
gation scheme is said to have exact Fault-tolerance if it allows all the benign
clients to compute

w∗
G ∈ argmin

w

∑

k∈G
Fk(w,Dk). (3)

Since the subset G is a prior unknown, one must estimate its unknown partic-
ipant membership during the optimization of Eq. (1). Therefore, we regard the
detection accuracy of the estimation, as defined below, as a crucial measure of
Byzantine Fault-tolerance. We provide the theoretical guarantee in Appendix A
that the detection accuracy of our proposed FedPBF converges to 100%.

Definition 2 (Detection Accuracy). At tth iteration, the Detection Accuracy
ηt is defined as the fraction of benign clients over selected clients to aggregate by
the server.

ηt =
#(It ∩ G)

K
, (4)

where It is the set of clients chosen by the server to aggregate at tth iteration,
and K is the number of clients. Moreover, we define the averaged detection

4 Notions of exact Fault-tolerance is previously introduced in [13], in which a com-
parative elimination (CE) filtered-based scheme was proposed to achieve Byzantine
Fault-tolerance under different conditions. We adopt these definitions to prove that
the framework proposed in this article does admit these Fault-tolerances in the pres-
ence of privacy-preserving mechanisms.
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accuracy η among T iterations as:

η =
1
T

T∑

t=1

ηt (5)

3.2 FedPBF

In this section, we illustrate a generic Byzantine Fault-tolerant framework in
which an EM algorithm [9,10] (see Fig. 1) is adopted to solve the following
problem, where the unknown participant membership r ∈ {0, 1}K is updated in
the E-step ( 1©- 5©), and the global model parameter w is optimized in the M-step
( 6©- 7©) as (see Algorithm1):

argmin
w,r

K∑

k=1

Fk(w, r,Dk) (6)

– 1©: Each client optimizes their local model via minFk(w,Dk) and sends the
protected model updates gk to the server.

– 2©: The server first randomly selects M groups Q clients indexed by Ij =
{c1j , . . . , cQj}, j ∈ {1, . . . , M}, cqj ∈ {1, . . . , K}, q ∈ {1, . . . , Q}, according to
sample probability pt, which is proportional to the cumulative participant
membership summed up from iteration 0 to t − 1 as follows:

pt =
t−1∑

i=0

ri/‖
t−1∑

i=0

ri‖1. (7)

It is noted that we use cumulative participant membership in order to take
advantage of the historical evaluation for all clients, i.e., {ri}t−1

i=0.
Then the server generates M protected candidate models as

P (wt
(j)) = P (wt−1) − 1

Q

∑

k∈Ij

gk, j ∈ {1, · · · ,M}. (8)

– 3©: The server distributes M protected candidate models {P (wt
(j))}M

j=1 to
all clients.

– 4©: Each client executes the following two sub-steps: 4.1© each client decrypts
M candidate models to obtain wt

(j)
5. They calculate the empirical accuracy

{Sk ∈ R
M}K

k=1 of M candidate models via their own dataset as:

Sk(j) = Acc(wt
(j),Dk), j ∈ {1, · · · ,M} (9)

where Acc() represents the accuracy of the candidate model wt
(j) measured

w.r.t. Dk and Sk(j) represents the jth candidate model measured by the kth

client. 4.2© then each clients upload Sk, k ∈ {1, . . . , K} to the server.
5 For some protection mechanisms such as DP, this process may cause the loss of

model precision.
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Note that Byzantine clients may misreport the model accuracy. Our client-
side performance-based evaluation method involves each client evaluating all
candidate models. The server can use robust filters [5,30] to mitigate the
impact of misreporting as long as the ratio of Byzantine clients is below 0.5.

– 5©: Upon receiving {Sk}K
k=1, the server picks up the best candidate model:

j∗ = arg max
j∈{1,...,M}

Mediank∈{1,...,K}Sk(j) (10)

Note that we use the robust filter, i.e. Median, to filter out the Byzantine
clients. Other robust filters such as [5,30] could also be applied to our meth-
ods. Then the server updates participant membership rt as:

rt(k) =

{
1, if k ∈ Ij∗ , where j∗ is the best candidate model by Eq. 10 ;
0, otherwise.

(11)
– 6©: The server optimizes the protected global model P (wt) at tth iteration

according to participant membership rt as:

P (wt) = P (wt−1) − 1
Q

K∑

k=1

rt(k)P (gt
k) (12)

– 7©: The server broadcasts the protected global model P (wt) to all clients,
which will optimize respective local models in the next iteration.

Algorithm 1. FedPBF
Input: K: the number of clients; Dk: local training datasets of kth client; T : number of global

iterations; M : the number of candidate models; Q: the number of aggregated updates for each
candidate model; η: the local learning rate; b: the batch size;

Output: Global model w.
1: Initialization: w0 ← random value, participant membership r0 ← [1, · · · , 1].
2: for t = 1, 2, · · · , T do
3: E Step:
4: for each client k, k ∈ [K] do in parallel
5: Compute the local updates as gt−1

k = ModelUpdate(wt
k, Dk, b, η).

6: Each client sends gt
k to the server.

7: end for
8: pt =

∑t−1
i=0 ri/‖ ∑t−1

i=0 ri‖1

9: The server generates the M candidate models {P (wt
(j))}M

j=1 according to pt by Eq. (8);
10: The server distributes M candidate models {P (wt

(j))}M
j=1 to all clients.

11: Each clients decrypts and evaluates M candidate models to obtain the accuracies {Sk}K
k=1

according to Eq. (9) and send them to the server;
12: The server chooses the candidate model with the largest accuracy as Eq. (10). Then the

server updates participant membership rt by Eq. (11).
13: M step:
14: The server updates the global model via Eq. (12);
15: The server broadcast the protected global model P (wt) to all clients.
16: end for
17: return w.
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There are three fundamental reasons for the proposed FedPBF to satisfy
privacy-preserving and Byzantine Fault-tolerant requirements.

1. FedPBF allows reliable detection of Byzantine clients in the presence of
privacy-preserving mechanisms (e.g., DP, HE and MPC). This feature is
achieved by leveraging client-side datasets to evaluate candidate model per-
formances. Algorithm1 is thus applicable to all protected model updates,
regardless of whatever privacy-preserving mechanisms are adopted.

2. FedPBF allows efficient estimation of participant membership r, by sampling
multiple candidates group models. This sampling approach is scalable in case
the number of clients is large.

3. FedPBF is robust to misreported performances reported by Byzantine attack-
ers. This merit is ensured by the robust estimation of the Median filter
adopted in Eq. (10) when the ratio of Byzantine clients is less than the break-
down point, i.e. 0.5.

4 Experiments

In this section, we conduct extensive experiments to answer the following three
questions: Question 1: To what extent does the proposed FedPBF outper-
form other Byzantine Fault-tolerant methods in federated learning with differ-
ent privacy-preserving mechanisms (e.g., DP, HE, MPC)? Question 2: To what
extent the model performance (accuracy) of the proposed FedPBF is affected by
the varying Byzantine client proportions, the extent of Non-IID or misreporting
conditions by Byzantine clients? Question 3: How do hyperparameters, i.e.,
the number of candidate models M and aggregated updates for each candidate
model Q and Byzantine clients ratio, affect the convergence and effectiveness of
the proposed FedPBF algorithm in practice (due to the page limit, these results
are shown in Appendix B.2)?

4.1 Setup and Evaluation Metrics

Datasets: MNIST Fashion-MNIST (FMNIST) and CIFAR10 are used for
image classification tasks. The extent of Non-IID of the dataset is obtained by
changing the parameter β from 0.5 to 1 of the Dirichlet distribution Dir(β) [17].

Models: Logistic regression, LeNet and AlexNet models are used to train
MNIST, FMNIST and CIFAR10 respectively.

Federated Learning Settings: We simulate a horizontal federated learning
system with K = 100 clients (MNIST and FMNIST) or K=20 clients (CIFAR10)
in a stand-alone machine. The detail of hyper-parameters for training are illus-
trated in Appendix B.

Federated Learning Privacy-preserving Mechanisms: Privacy-preserving
mechanisms: Differential Privacy [1](DP) with the variance of Gaussian noise
range between σ2 = 10−4 and σ2 = 10−1 as in [33], Secure Multiparty Compu-
tation (MPC) [7], Homomorphic Encryption (HE) [3] used to protect the privacy
of local data.
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Byzantine Fault-tolerant Methods: Five existing methods: Krum [5],
Median [30], Trimmed Mean [30], Kmeans [24], FLtrust [8], and the proposed
method FedPBF are compared in terms of following metrics.

Evaluation Metric: Model Performance (MP), Averaged Model Performance
(AMP) and Averaged Detection Accuracy (Def. 2) of the federated model is used
to evaluate model accuracy defending capabilities of different methods.

Byzantine Attacks: We set 10%, 20%, and 35% clients are Byzantine attack-
ers. The following attacking methods are used in experiments: 1) the same value
attack, where model updates of attackers are replaced by the all ones vector.
2) the label flipping attack, where attackers use the wrong label to generate the
gradients to upload. 3) the sign flipping attack, where local gradients of attackers
are shifted by a scaled value -4. 4) the gaussian attack, where local gradients at
clients are replaced by independent Gaussian random vectors N (0, 200). 5) the
Lie attack, which was designed in [4]. 6) the Fang-v1 attack [11]. 7) the Fang-v2
attack [11]. 8) the Mimic attack [15].

4.2 Comparison with Existing Byzantine Fault-tolerant Methods

To answer Question 1, we evaluate the Averaged Model Performance (AMP) of
five existing Byzantine Fault-tolerant methods and our proposed method under
eight attacks. There are three notable observations according to Table 2:

1. When no privacy-preserving mechanisms (No Protection) are applied, the
AMP of the FedPBF outperforms other methods from 5% to 12% on the
MNIST dataset and from 11% and 49% on the FMNIST dataset.

2. When different magnitudes of Gaussian noise are added (DP: the variance
of Gaussian noise range between σ2 = 10−4 and σ2 = 10−1), the FedPBF

Table 2. Averaged model performance (accuracy percentage: %) of different Byzantine
Fault-tolerant methods under different privacy-preserving mechanisms (with Non-IID
setting β = 0.5, Q = 10, M = 40 and 20% Byzantine clients for classification of MNIST
and FMNIST). FedAvg W.O. Attack: FedAvg [21] without attack. DP: Differential
privacy with Gaussian noise and σ2 is the variance of Gaussian noise. -: as far as we
know, there is no solution existing.

Krum [5] Median [30] Trimmed [30] Kmeans [24] FLtrust [8] FedPBF (Ours) FedAvg [21] W.O. Attack

MNIST No Protection 78.8±15.4 81.2±15.4 80.3±18.0 82.4±17.5 85.9±5.6 91.7±0.5 92.5±0.1
DP σ2 = 10−4 76.8±25.7 82.5±21.0 83.4±18.4 75.4±29.9 88.1±7.9 91.5±0.5 92.4±0.1

σ2 = 10−3 72.1±24.0 79.5±23.7 76.6±26.4 74.5±31.0 86.9±6.9 90.2±0.1 92.2±0.1
σ2 = 10−2 63.1±6.5 69.0±33.0 69.1±34.0 73.0±29.1 82.0±9.2 87.8±0.6 90.8±0.2
σ2 = 10−1 39.4±9.1 64.3±31.4 64.6±31.5 63.6±28.1 70.9±19.7 85.8±0.8 87.2±0.3

HE - - - - - 91.6±0.4 92.5±0.1
MPC - - - - - 91.7±0.3 92.5±0.1

FMNIST No Protection 69.9±24.2 39.3±23.5 55.7±31.5 63.3±34.7 76.6±27.2 88.5±0.6 90.3±0.6
DP σ2 = 10−4 65.6±22.9 29.2±26.5 36.1±33.9 67.9±34.3 71.0±24.6 87.5±1.3 90.0±0.1

σ2 = 10−3 60.2±20.6 15.8±11.2 33.1±33.8 66.4±34.3 58.2±35.2 86.3±2.3 88.2±0.4
σ2 = 10−2 19.7±7.8 10.1±0.6 32.1±31.8 58.4±30.2 43.0±29.5 81.2±5.8 83.2±0.3
σ2 = 10−1 10.5±1.1 9.5±1.2 22.5±21.8 31.7±19.9 22.3±16.8 69.8±2.0 73.4±0.5

HE - - - - - 88.8±0.5 90.2±0.1
MPC - - - - - 89.1±0.4 89.8±0.1
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significantly outperforms other methods. Especially when the noise increases,
the AMP of other methods is broken (e.g., AMP of FLtrust degrades from
76.6% to 22.3% on FMNIST). However, the AMP of our FedPBF doesn’t
drop seriously under various degrees of noise (e.g., the AMP only drops from
91.7% to 85.8% on MNIST).

3. When the HE and MPC are applied, the FedPBF still performs well, i.e.,
there is a minor loss of the AMP compared with the baseline (FedAvg without
attack).

4.3 Robustness

In this subsection, we test the robustness of the FedPBF under different Non-IID
extents of the local dataset, different Byzantine client percentages and Byzantine
clients misreporting types (due to the page limit, these results are shown in
Appendix B.1) on CIFAR10 with AlexNet to answer Question 2.

1. Robustness under Different Byzantine Client Percentages: Figure 2
(left) illustrates the model performance of FedPBF under various attacks
for different percentages of Byzantine clients, i.e., 10%, 20%, 35% with IID
dataset. It shows that the degradation of model performance of the FedPBF
is less than 2% compared with the baseline (FedAvg without attack: blue
dotted lines) even the Byzantine client percentage increases to 35%.

2. Robustness under Heterogeneous Dataset: In Fig. 2 (right), it is shown
that the degradation of model performance of the FedPBF, under various
attacks with different clients’ datasets Non-IID extents, is less than 1.5%
all the time, which indicates the proposed FedPBF is robust under various
Non-IID extents.

Fig. 2. The model performance of the FedPBF with different Byzantine client per-
centages (10%, 20% and 35%) and Non-IID extents (IID, Non-IID1 with β = 1, and
Non-IID2 with β = 1) on CIFAR10 under different attacks. Blue dotted lines represent
the baseline meaning FedAvg without attack. (Color figure online)
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5 Conclusion

This paper proposed a novel Byzantine Fault-tolerant framework called FedPBF
to guarantee Byzantine Fault-tolerance in the presence of protection mecha-
nisms. To our best knowledge, this paper is the first research endeavour that
thoroughly investigates the performances of various Byzantine tolerant methods
with different protection mechanisms such as DP, HE and MPC being applied.
Methodology-wise, we use the Expectation-Maximization algorithm to update
the participant membership and optimize the global model performance alter-
nately. The key for the FedPBF applying federated learning with various privacy-
preserving mechanisms is that we use model performance in E-step to evaluate
candidate models at the client side. This novel client-side performance-based
evaluation, in tandem with the EM algorithm, constitutes our main contribu-
tion to the effective defence of Byzantine attacks in the presence semi-honest FL
setting.
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Abstract. Training deep neural networks (DNNs) usually requires mas-
sive training data and computational resources. Users who cannot afford
this may prefer to outsource training to a third party or resort to publicly
available pre-trained models. Unfortunately, doing so facilitates a new
training-time attack (i.e., backdoor attack) against DNNs. This attack
aims to induce misclassification of input samples containing adversary-
specified trigger patterns. In this paper, we first conduct a layer-wise
feature analysis of poisoned and benign samples from the target class.
We find out that the feature difference between benign and poisoned
samples tends to be maximum at a critical layer, which is not always
the one typically used in existing defenses, namely the layer before fully-
connected layers. We also demonstrate how to locate this critical layer
based on the behaviors of benign samples. We then propose a simple
yet effective method to filter poisoned samples by analyzing the feature
differences between suspicious and benign samples at the critical layer.
We conduct extensive experiments on two benchmark datasets, which
confirm the effectiveness of our defense.

Keywords: Backdoor Detection · Backdoor Defense · Backdoor
Learning · AI Security · Deep Learning

1 Introduction

In recent years, deep neural networks (DNNs) have successfully been applied in
many tasks, such as computer vision, natural language processing, and speech
recognition. However, training DNNs requires massive training data and compu-
tational resources, and users who cannot afford it may opt to outsource training
to a third-party (e.g., a cloud service) or leverage pre-trained DNNs. Unfortu-
nately, losing control over training facilitates backdoor attacks [2,4,9] against
DNNs. In these attacks, the adversary poisons a few training samples to cause
the DNN to misclassify samples containing pre-defined trigger patterns into an
adversary-specified target class. Nevertheless, the attacked models behave nor-
mally on benign samples, which makes the attack stealthy. Since DNNs are used
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CIFAR10-ResNet18 GTSRB-MobileNetV2

BadNets Blended BadNets Blended

Fig. 1. PCA-based visualization of features of benign (green) and poisoned samples
(red) generated by the layer before the fully connected layers of models attacked by
BadNets [4] and Blended [2]. As shown in this figure, features of poisoned and benign
samples are not well separable on the GTSRB benchmark. (Color figure online)

in many mission-critical tasks (e.g., autonomous driving, or facial recognition),
it is urgent to design effective defenses against these attacks.

Among all backdoor defenses in the literature, backdoor detection is one
of the most important defense paradigms, where defenders attempt to detect
whether a suspicious object (e.g., model or sample) is malicious. Currently, most
existing backdoor detectors assume poisoned samples have different feature rep-
resentations from benign samples, and they tend to focus on the layer before the
fully connected layers [1,5,20]. Two intriguing questions arise: (1) Is this layer
always the most critical place for backdoor detection? (2) If not, how to find the
critical layer for designing more effective backdoor detection?

In this paper, we give a negative answer to the first question (see Fig. 1). To
answer the second one, we conduct a layer-wise feature analysis of poisoned and
benign samples from the target class. We find out that the feature difference
between benign and poisoned samples tends to reach the maximum at a critical
layer, which can be easily located based on the behaviors of benign samples.
Specifically, the critical layer is the one or near the one that contributes most to
assigning benign samples to their true class. Based on this finding, we propose a
simple yet effective method to filter poisoned samples by analyzing the feature
differences (measured by cosine similarity) between incoming suspicious samples
and a few benign samples at the critical layer. Our method can serve as a ‘fire-
wall’ for deployed DNNs to identify, block, and trace malicious inputs. In short,
our main contributions are four-fold. (1) We demonstrate that the features of
poisoned and benign samples are not always clearly separable at the layer before
fully connected layers, which is the one typically used in existing defenses. (2)
We conduct a layer-wise feature analysis aimed at locating the critical layer
where the separation between poisoned and benign samples is neatest. (3) We
propose a backdoor detection method to filter poisoned samples by analyzing the
feature differences between suspicious and benign samples at the critical layer.
(4) We conduct extensive experiments on two benchmark datasets to assess the
effectiveness of our proposed defense.
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2 Related Work: Backdoor Attacks and Defenses

In this paper, we focus on backdoor attacks and defenses in image classification.
Other deep learning tasks are out of our current scope.

BadNets [4] was the first backdoor attack, which randomly selected a few
benign samples and generated their poisoned versions by stamping a trigger
patch onto their images and reassigning their label as the target label. Later
[2] noted that the poisoned image should be similar to its benign version for
stealthiness; these authors proposed a blended attack by introducing trigger
transparency. However, these attacks are with poisoned labels and therefore users
can still detect them by examining the image-label relation. To circumvent this,
[21] proposed the clean-label attack paradigm, where the target label is consistent
with the ground-truth label of poisoned samples. Specifically, in this paradigm,
adversarial attacks were exploited to perturb the selected benign samples before
conducting the standard trigger injection process. [16] adopted image warping as
the backdoor trigger, which modifies the whole image while preserving its main
content. Besides, [15] proposed the first sample-specific attack, where the trigger
varies across samples. However, such triggers are visible and the adversaries
need to control the whole training process. More recently, [12] introduced the
first poison-only invisible sample-specific attack to address these problems.

Existing backdoor defenses fall into three main categories: input filtering,
input pre-processing, and model repairing. Input filtering intends to differ-
entiate benign and poisoned samples based on their distinctive behaviors, like
the separability of the feature representations of benign and poisoned samples.
For example, [5] introduced a robust covariance estimation of feature represen-
tations to amplify the spectral signature of poisoned samples. [23] proposed to
filter inputs inspired by the understanding that poisoned images tend to have
some high-frequency artifacts. [3] proposed to blend various images on the sus-
picious one, since the trigger pattern can still mislead the prediction no mat-
ter what the background contents are. Input pre-processing modifies each
input sample before feeding it into the deployed DNN. Its rationale is to perturb
potential trigger patterns and thereby prevent backdoor activation. [14] pro-
posed the first defense in this category where they used an encoder-decoder to
modify input samples. [17] employed randomized smoothing to generate a set of
input neighbors and averaged their predictions. Further, [11] demonstrated that
if the location or appearance of the trigger is slightly different from that used
for training, the attack effectiveness may degrade sharply. Based on this, they
proposed to pre-process images with spatial transformations. Model repair-
ing aims at erasing backdoors contained in the attacked DNNs. For example,
[8,14,24] showed that users can effectively remove backdoors by fine-tuning the
attacked DNNs with a few benign samples. [13] revealed that model pruning
can also remove backdoors effectively, because backdoors are mainly encoded in
specific neurons. Very recently, [22] proposed to repair compromised models with
adversarial model unlearning. In this paper, we focus on input filtering, which is
very convenient to protect deployed DNNs.
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3 Layer-wise Feature Analysis

A deep neural network (DNN) f(x) is composed by L layers f l, l ∈ [1, L]. Each
f l has a weight matrix wl , a bias vector bl , and an activation function σl. The
output of f l is al = f l(al−1) = σl(wl · al−1 + bl), where f1 takes input x
and fL outputs a vector aL with C classes. The vector aL is softmaxed to get
probabilities p. A DNN has a feature extractor that maps x to latent features,
which are input to fully connected layers for classification.

In this paper, we use DNNs as C-class classifiers, where yi is the ground truth
label of xi and ŷi is the index of the highest probability in pi . Also, activations
of intermediate layers are analyzed for detecting poisoned samples.

We notice that the predictions of attacked DNNs for both benign samples
from the target class and poisoned samples are all the target label. The attacked
DNNs mainly exploit class-relevant features to predict these benign samples
while they use trigger-related features for poisoned samples. We suggest that
defenders could exploit this difference to design effective backdoor detection. To
explore their main differences, we conduct a layer-wise analysis, as follows.

Definition 1 (Layer-wise centroids of target class features). Let f ′ be an
attacked DNN with a target class t. Let Xt = {xi}|Xt|

i=1 be benign samples with
true class t, and let {a1

i , . . . ,a
L
i }|Xt|

i=1 be their intermediate features generated by
f ′. The centroid of t’s benign features at layer l is defined as âl

t = 1
|Xt|

∑|Xt|
i=1 al

i ,
and {â1

t , . . . , â
L
t } is the set of layer-wise centroids of t’s benign features.

Definition 2 (Layer-wise cosine similarity). Let al
j be the features gener-

ated by layer l for an input xj , and let cslj be the cosine similarity between al
j

and the corresponding t’s centroid âl
t . The set {cs1j , . . . , cs

L
j } is said to be the

layer-wise cosine similarities between xj and t’s centroids.

Settings. We conducted six representative attacks on four classical bench-
marks: CIFAR10-ResNet18, CIFAR10-MobileNetV2, GTSRB-ResNet18, and
GTSRB-MobileNetV2. The six attacks were BadNets [4], the backdoor attack
with blended strategy (Blended) [2], the label-consistent attack (LC) of [21],
WaNet [16], ISSBA [12], and IAD [15]. More details on the datasets, DNNs, and
attack settings are presented in Sect. 5. Specifically, for each attacked DNN f ′

with a target class t, we estimated {â1
t , . . . , â

L
t } using 10% of the benign test

samples labeled as t. Then, for the benign and poisoned test samples classified by
f ′ into t, we calculated the layer-wise cosine similarities between their generated
features and the corresponding estimated centroids. Finally, we visualized the
layer-wise means of the computed cosine similarities of the benign and poisoned
samples to analyze their behaviors.

Results. Figure 2 shows the layer-wise means of cosine similarity for benign and
poisoned samples with the CIFAR10-ResNet18 benchmark under the BadNets
and ISSBA attacks. As we go deeper into the attacked DNN layers, the gap
between the direction of benign and poisoned features gets larger until we reach
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(a) BadNets (b) ISSBA

Fig. 2. Layer-wise behaviors of benign samples from the target class and poisoned
samples (generated by BadNets and ISSBA) on CIFAR-10 with ResNet-18

(a) BadNets (b) ISSBA

Fig. 3. Layer-wise behaviors of benign samples from the target class and poisoned
samples (generated by BadNets and ISSBA) on GTSRB with MobileNetV2

a specific layer where the backdoor trigger is activated, causing poisoned samples
to get closer to the target class. Figure 3 shows the same phenomenon for the
GTSRB-MobileNetV2 benchmark. Further, we can see that for BadNets the
latent features of benign and poisoned samples are similar in the last layer of
the features extractor (i.e., layer 17).

Regardless of the attack or benchmark, when we enter the second half of
DNN layers (which usually are class-specific), benign samples start to get closer
to the target class before the poisoned ones, that are still farther from the target
class because the backdoor trigger is not yet activated. This makes the difference
in similarity maximum in one of those latter layers, which we call the critical
layer. In particular, this layer is not always the one typically used in existing
defenses (i.e., the layer before fully-connected layers). Besides, we show that it
is very likely to be either the layer that contributes most to assigning the benign
samples to their true target class (which we name the layer of interest or LOI,
circled in blue) or one of the two layers before the LOI (circled in brown).

Results under other attacks for these benchmarks are presented in the sup-
plementary materials1. In those materials, we also provide confirmation that the
above distinctive behaviors hold regardless of the datasets or models being used.
From the analysis above, we can conclude that focusing on those circled layers
can help develop a simple and robust defense against backdoor attacks.

1 https://www.dropbox.com/s/joyhr978irw344c/supplementary materilas.pdf?dl=0

https://www.dropbox.com/s/joyhr978irw344c/supplementary_materilas.pdf?dl=0
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Algorithm 1. Identify layer of interest (LOI).

Input: Cosine similarities {ĉs
�L/2�
t , . . . , ĉsLt } for potential target class t

1: maxdiff ← ĉs
�L/2�+1
t − ĉs

�L/2�
t ; LOIt ← �L/2� + 1;

2: for l ∈ {�L/2� + 2, . . . , L} do
3: ldiff ← ĉslt − ĉsl−1

t ;
4: if ldiff > maxdiff then
5: maxdiff ← ldiff ; LOIt ← l;

6: return LOIt.

Benign sample

BadNets Blended LC WaNet ISSBA IAD

Poisoned sample

Fig. 4. The example of benign samples and their poisoned versions generated by six
representative backdoor attacks.

4 The Proposed Defense

Threat Model. Consider a user that obtains a suspicious trained fs that might
contain hidden backdoors. We assume that the user has limited computational
resources or benign samples, and therefore cannot repair fs. The user wants to
defend by detecting at inference time whether a suspicious incoming input xs is
poisoned, given fs. Similar to existing defenses, we assume that a small set of
benign samples Xval is available to the user/defender. We denote the available
samples that belong to a potential class t as Xtval

. Let m = |Xtval
| denote the

number of available samples labeled as t.
Method Design. Based on the lessons learned in Sect. 3, our method to detect
poisoned samples at inference time consists of four steps. 1) Estimate the
layer-wise features’ centroids of class t for each of layers �L/2� to L using the
class’s available benign samples. 2) Compute the cosine similarities between the
extracted features and the estimated centroids, and then compute the layer-wise
means of the computed cosine similarities. 3) Identify the layer of interest (LOI)
as per Algorithm 1, sum up the cosine similarities in LOI and the two layers
before LOI (sample-wise), and compute the mean and standard deviation of
the summed cosine similarities. 4) For any suspicious incoming input xs clas-
sified as t by fs, 4.1) compute its cosine similarities to the estimated centroids
in the above-mentioned three layers, and 4.2) consider it as a potentially poi-
soned input if its summed similarities fall below the obtained mean by a specific
number τ of standard deviations (called threshold in what follows). A detailed
pseudocode can be found in the supplementary materials.

https://www.dropbox.com/s/joyhr978irw344c/supplementary_materilas.pdf?dl=0
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5 Experiments

5.1 Main Settings

Datasets and DNNs. In this paper, we use two classic benchmark datasets,
namely CIFAR10 [7] and GTSRB [19]. We use the ResNet18 [6] on CIFAR10
and the MobileNetV2 [18] on GTSRB. More details are presented in the
supplementary materials. The source code, pre-trained models, and poisoned test
sets of our defense are available at https://github.com/NajeebJebreel/DBALFA.

Attack Baselines. We evaluated each defense under the six attacks mentioned
in Sect. 3: BadNets, Blended, LC, WaNet, ISSBA, and IAD. They are repre-
sentative of visible attacks, patch-based invisible attacks, clean-label attacks,
non-patch-based invisible attacks, invisible sample-specific attacks, and visible
sample-specific attacks, respectively.

Defense Baselines. We compared our defense with six representative defenses,
namely randomized smoothing (RS) [17], ShrinkPad (ShPd) [11], activation clus-
tering (AC) [1], STRIP [3], SCAn [20], and fine-pruning (FP) [13]. RS and ShPd
are two defenses with input pre-processing; AC, STRIP, and SCAn are three
advanced input-filtering-based defenses; FP is based on model repairing.

Attack Setup. For both CIFAR10 and GTSRB, we took the following settings.
We used a 2 × 2 square as the trigger pattern for BadNets (as suggested in [4]).
We adopted the random noise pattern, with a 10% blend ratio, for Blended (as
suggested in [2]). The trigger pattern adopted for the LC attack was the same
used in BadNets. For WaNet, ISSBA, and IAD, we took their default settings.
Besides, we set the poisoning rate to 5% for BadNets, Blended, LC, and ISSBA.
For WaNet and IAD, we set the poisoning rate to 10%. We implement baseline
attacks based on the codes in BackdoorBox [10]. More details on settings are
given in the supplementary materials. Figure 4 shows an example of poisoned
samples generated by different attacks.

Defense Setup. For RS, ShPd and STRIP, we took the settings suggested in [3,
11,17]. For FP, we pruned 95% of the dormant neurons in the last convolution
layer and fine-tuned the pruned model using 5% of the training set. We adjusted
RS, ShPd, and FP to be used as detectors for poisoned samples by comparing
the prediction change before and after applying them to an incoming input.
For AC, STRIP, SCAn, and our defense, we randomly selected 10% from each
benign test set as the available benign samples. For SCAn, we identified classes
with scores larger than e as potential target classes, as suggested in [20]. For our
defense, we used a threshold τ = 2.5, which gives a reasonable trade-off between
TPR and FPR for both benchmarks.

Evaluation Metrics. We used the main accuracy (MA) and the attack success
rate (ASR) to measure attack performance. Specifically, MA is the number of
correctly classified benign samples divided by the total number of benign sam-
ples, and ASR is the number of poisoned samples classified as the target class

https://www.dropbox.com/s/joyhr978irw344c/supplementary_materilas.pdf?dl=0
https://github.com/NajeebJebreel/DBALFA
https://www.dropbox.com/s/joyhr978irw344c/supplementary_materilas.pdf?dl=0
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Table 1. Main results (%) on the CIFAR-10 dataset. Boldfaced values are the best
results among all defenses. Underlined values are the second-best results.

Attack→ BadNets Blended LC WaNet ISSBA IAD Avg

Metric→ Defense↓ TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR

RS 9.84 8.00 7.35 5.76 9.21 7.52 98.48 10.00 8.83 8.72 13.28 6.36 24.50 7.73

ShPd 94.28 13.31 49.72 12.89 69.87 13.18 36.25 17.69 95.22 5.50 42.74 7.56 64.68 11.69

FP 96.10 17.13 96.23 16.16 94.76 17.31 96.01 18.64 98.98 19.53 97.08 22.52 96.53 18.55

AC 99.52 31.14 100.00 30.69 100.00 31.16 99.18 32.44 99.94 34.22 82.99 31.32 96.94 31.83

STRIP 68.70 11.70 65.20 11.70 66.00 12.80 7.90 12.30 56.20 11.40 2.10 14.00 44.35 12.32

SCAn 96.60 0.77 100.00 0.00 0.02 5.05 98.55 1.06 99.89 2.61 84.19 0.13 79.88 1.60

Ours 99.38 1.35 100.00 1.59 100.00 1.20 91.04 1.48 98.97 1.17 99.12 1.26 98.09 1.34

Table 2. Main results (%) on the GTSRB dataset. Boldfaced values are the best results
among all defenses. Underlined values are the second-best results.

Attack→ BadNets Blended LC WaNet ISSBA IAD Avg

Metric→ Defense↓ TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR

RS 13.20 22.10 10.12 20.40 9.23 19.15 10.10 17.20 8.61 16.98 17.70 17.60 11.49 18.91

ShPd 94.97 12.16 11.58 10.68 96.16 10.60 66.11 14.81 95.92 8.26 31.07 16.10 65.97 12.10

FP 89.05 18.80 30.56 3.70 94.71 50.02 67.12 3.24 94.22 7.05 94.37 5.75 78.34 14.76

AC 0.30 8.84 0.00 5.67 4.83 5.42 0.42 25.87 99.06 17.48 43.85 10.73 24.74 12.34

STRIP 32.00 9.00 80.40 10.80 7.40 11.00 34.20 11.40 13.00 13.60 6.60 10.60 28.93 11.07

SCAn 46.05 2.57 46.02 4.03 30.45 11.39 54.07 1.88 96.85 0.17 0.09 19.41 45.59 6.58

Ours 99.99 6.23 100.00 6.72 100.00 5.95 100.00 6.49 100.00 5.43 100.00 4.67 100.00 5.92

divided by the total number of poisoned samples. We adopted TPR and FPR to
evaluate the performance of all defenses, where TPR is computed as the num-
ber of detected poisoned inputs divided by the total number of poisoned inputs,
whereas FPR is the number of benign inputs falsely detected as poisoned divided
by the total number of benign inputs.

5.2 Main Results

For each attack, we ran each defense five times for a fair comparison. Due to
space limitations, we present the average TPR and FPR in this section. Please
refer to our supplementary materials for more detailed results.

As shown in Tables 1 and 2, existing defenses failed to detect attacks with low
TPR or high FPR in many cases, especially on the GTSRB dataset. For example,
AC failed in most cases on GTSRB, although it had promising performance
on CIFAR-10. In contrast, our method had good performance in detecting all
attacks on both datasets. There were only a few cases (4 over 28) where our
approach was neither optimal nor close to optimal. In these cases, our detection
was still on par with state-of-the-art methods, and another indicator (i.e., TPR
or FPR) was significantly better than them. For example, when defending against
the blended attack on the GTSRB dataset, the TPR of our method was 69.44%
larger than that of FP, which had the smallest FPR in this case. These results
confirm the effectiveness of our detection.

https://www.dropbox.com/s/joyhr978irw344c/supplementary_materilas.pdf?dl=0


436 N. M. Jebreel et al.

Table 3. MA% and ASR% under the selected backdoor attacks on the CIFAR10-
ResNet18 and the GTSRB-MobileNetV2 benchmarks. Best scores are in bold.

Benchmark↓ Metric↓,Attack→ BadNets Blended LC WaNet ISSBA IAD

CIFAR10-ResNet18 MA% 91.45 92.19 91.98 91.13 94.74 94.42

ASR% 97.20 100.0 99.96 99.04 100.0 99.66

GTSRB-MobileNetV2 MA% 97.00 97.27 97.45 96.09 98.43 98.81

ASR% 95.49 100.0 100.0 91.82 100.0 99.63

(a) CIFAR10-ResNet18 (b) GTSRB-MobileNetV2

Fig. 5. Impact of detection thresholds on TPR (%) and FPR (%)

Table 4. Impact of poisoning rates

Poisoning Rate↓, Metric→ MA (%) ASR (%) TPR (%) FPR (%)

1% 91.52 94.15 99.64 1.25

3% 92.28 96.31 99.32 1.32

5% 91.45 97.20 99.36 1.35

10% 91.45 97.56 99.83 1.62

5.3 Discussions

Performance of Attacks. Table 3 shows the performance of the selected
attacks on the CIFAR10-ResNet18 and the GTSRB-MobileNetV2 benchmarks.
It can be seen that sample-specific attacks (e.g., ISSBA and IAD) performed
better than other attacks in terms of MA and ASR.

Effects of the Detection Threshold. Figure 5 shows the TPRs and FPRs
of our defense with threshold τ ∈ {0.5, 1, 1.5, 2, 2.5, 3} for BadNets and WaNet.
It can be seen that a threshold 2.5 is reasonable, as it offers a high TPR while
keeping a low FPR. Note that the larger the threshold, the smaller the TPR and
FPR. Users should choose the threshold based on their specific needs.

Effects of the Poisoning Rate. We launched BadNets on CIFAR10-ResNet18
using different poisoning rates ∈ {1%, 3%, 5%, 10%} to study the impact of poi-
soning rates on our defense. Table 4 shows the attack success rate (ASR) increases
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Table 5. Effectiveness of defenses with different features. Latent features denote those
generated by the feature extractor that is typically used in existing defenses. Critical
features are extracted by our method from the identified layers.

Metric→ TPR (%) FPR (%)

Defense↓, Features→ Latent Features Critical Features Latent Features Critical Features

AC 0.3 96.32 8.84 7.67

SCAn 46.05 86.19 2.57 1.96

Ours 1.31 99.99 4.93 6.23

Table 6. Performance of features from individual layers compared to identified layers
by our defense. The LOI of WaNet and IAD are 9 and 8, respectively.

Layer 1 2 3 4 5 6 7 8 9 10 Ours

WaNet TPR (%) 0.00 0.10 0.05 0.00 0.01 0.00 68.82 98.08 59.82 0.00 91.04

FPR (%) 0.09 0.82 0.24 0.20 0.21 0.04 2.06 1.52 2.06 0.65 1.48

IAD TPR (%) 19.32 34.03 6.44 30.49 61.09 78.65 88.81 99.65 99.10 2.36 99.12

FPR (%) 1.65 1.38 1.44 1.60 2.27 1.70 1.29 1.13 1.09 1.24 1.26

with the poisoning rate. However, the poisoning rate has minor effects on our
TPR and FPR. These results confirm again the effectiveness of our method.

Effectiveness of Our Layer Selection. We compared the performance of
AC, SCAn, and our method at detecting BadNets on the GTSRB-MobileNetV2
benchmark using latent features and critical features. We generated latent fea-
tures based on the feature extractor (i.e., the layer before fully-connected lay-
ers) that is typically adopted in existing defenses. The critical features were
extracted by the layer of interest (LOI) used in our method. Table 5 shows that
using our features led to significantly better performance in almost all cases. In
other words, existing detection methods can also benefit from our LOI selec-
tion. Also, we compared the performance of our method on CIFAR10-ResNet18
under WaNet and IAD when using the features of every individual layer, and
when using LOI and the two layers before LOI. Table 6 shows that as we app-
roach the critical layer, which was just before LOI with WaNet and at LOI with
IAD, the detection performance gets better. Since our method included the criti-
cal layer, it also was effective. These results confirm the effectiveness of our layer
selection and partly explain our method’s good performance.

Effectiveness of Cosine Similarity. We compared the cosine similarity with
the Euclidean distance as a metric to differentiate between benign and poisoned
samples. In the supplementary materials, we show the cosine similarity gives a
better differentiation than the Euclidean distance. This is mostly because the
direction of features is more important for detection than their magnitude.

https://www.dropbox.com/s/joyhr978irw344c/supplementary_materilas.pdf?dl=0
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Table 7. Adaptive attack. Top, impact of penalty factor β on MA and ASR. Bottom,
impact of penalty factor β on TPR and FPR.

β 0 0.5 0.6 0.7 0.8 0.9 0.91 0.92 0.95

MA (%) 91.45 92.96 92.06 92.65 92.63 90.33 79.97 69.13 10

ASR (%) 97.20 96.72 96.93 96.63 96.29 96.88 96.41 97.36 100

β →
0 0.5 0.6 0.7 0.8 0.9 0.91 0.92 0.95

Defense↓ Metric (%)↓

AC
TPR 99.52 99.20 99.16 45.69 26.26 26.22 23.81 13.38 0.00

FPR 31.14 29.46 28.85 8.21 7.72 6.21 0.25 7.80 0.00

SCAn
TPR 96.60 96.55 96.60 72.80 56.19 0.00 0.00 0.00 0.00

FPR 0.77 1.38 4.60 1.14 0.10 0.00 0.00 0.00 0.00

Ours
TPR 99.38 99.41 98.18 97.43 97.52 94.20 24.20 0.00 0.00

FPR 1.35 1.96 1.44 1.15 0.53 1.40 4.17 0.00 0.00

Resistance to Adaptive Attacks. The adversary may adapt his attack to
bypass our defense by optimizing the model’s original loss Lorg and minimizing
the layer-wise angular deviation between the features of the poisoned samples
and the features’ centroids of the target class’s benign samples. We studied the
impact of this strategy by introducing the cosine distance between the features of
poisoned samples and the target class centroids as a secondary loss function Lcd

in the training objective function. Also, we introduced a penalty parameter β,
which yielded a modified objective function (1−β)Lorg+βLcd. The role of β is to
control the trade-off between the angular deviation and the main accuracy loss.
We then launched BadNets on CIFAR10-ResNet18 under the modified objec-
tive function. Table 7 (top subtable) shows MA and ASR with different penalty
factors. We can see that values of β < 0.9 slightly increased the main accuracy
because the second loss acted as a regularizer to the model’s parameters, which
reduced over-fitting. Also, ASR stayed similar to the non-adaptive ASR (when
β = 0). However, the main accuracy degraded with greater β values, because
the original loss function was dominated by the angular deviation loss.

Table 7 (bottom subtable) shows the TPRs and FPRs of AC, SCAn, and our
defense with different penalty factors. As β increased (up to β = 0.9), the TPR of
our defense decreased from 99.38% to 94.20% while FPR was almost unaffected.
This shows that the adversary gained a small advantage with β = 0.9. On the
other hand, the other defenses achieved limited or poor robustness compared to
ours with the same β values. With β ≥ 0.91, AC, SCAn, and our method defense
failed to counter the attack. However, looking at Table 7 (top subtable) we can
see the main accuracy degraded with these high β values, which made it easy to
reject the model due its low performance.
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6 Conclusion

In this paper, we conducted a layer-wise feature analysis of the behavior of benign
and poisoned samples generated by attacked DNNs. We found that the feature
difference between benign and poisoned samples tends to reach the maximum at
a critical layer, which can be easily located based on the behaviors of benign sam-
ples. Based on this finding, we proposed a simple yet effective backdoor detection
to determine whether a given suspicious testing sample is poisoned by analyzing
the differences between its features and those of a few local benign samples. Our
extensive experiments on benchmark datasets confirmed the effectiveness of our
detection. We hope our work can provide a deeper understanding of attack mech-
anisms, to facilitate the design of more effective and efficient backdoor defenses
and more secure DNNs.
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Abstract. Federated learning enables multiple data owners with a com-
mon objective to participate in a machine learning task without sharing
their raw data. At each round, clients train local models with their own
data and then upload the model parameters to update the global model.
This multi-agent form of machine learning has been shown prone to adver-
sarial manipulation by recent studies. Byzantine attackers impersonated
as benign clients can stealthily interrupt or destroy the learning process.
In this paper, we propose FLAP, a post-aggregation model pruning tech-
nique to enhance the Byzantine robustness of federated learning by effec-
tively disabling the malicious and dormant components in the learned
neural network models. Our technique is data-agnostic, without requir-
ing clients to submit their dataset or training output, well aligned with
the data locality of federated learning. FLAP is performed by the server
right after the aggregation, which renders it compatible with an arbitrary
aggregation algorithm and existing defensive techniques. Our empirical
study demonstrates the effectiveness of FLAP under various settings. It
reduces the error rate by up to 10.2% against the state-of-the-art adversar-
ial models. Moreover, FLAP also manages to increase the average accu-
racy by up to 22.1% against different adversarial settings, mitigating the
adversarial impacts while preserving learning fidelity.

1 Introduction

Federated learning (FL) is a machine learning (ML) technique that collabora-
tively trains a model from decentralized datasets [14]. Unlike the traditional ML
that trains a model using a centralized dataset, FL adopts a distributed paradigm
where multiple clients contribute to training a model from their local data. Due
to the heterogeneity of the data owned by different parties, FL exhibits the great
capacity of mitigating the fairness issue from data bias. On the other hand, FL
reverses the stereotype that ML can only be carried out in a computationally
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. Kashima et al. (Eds.): PAKDD 2023, LNAI 13936, pp. 441–453, 2023.
https://doi.org/10.1007/978-3-031-33377-4_34
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intensive setting. Through the cluster effect [6], FL enables mobile and edge
devices to participate in solving complex real-world problems, such as financial
services [13], cybersecurity [25], healthcare [19,28], and knowledge discovery [21].

FL is designed to preserve participants’ privacy and locality of their data [10,
14,29]. This process, however, is prone to be manipulated by malicious clients
since their data and training processes are not transparent to the server and
other participants. In addition, the Byzantine failure is a major threat to FL due
to its distributed nature. There is no guarantee that every client has faithfully
uploaded the trained model to the server. Many attacks exploiting these issues
have been discovered by a recent study [5]. For example, poisoning is one of
the most studied attack methods [1]. Malicious clients can collude with each
other and commit a Byzantine attack by intentionally training on adversarial
data [4] or directly uploading erroneous model parameters to the server [2,27].
Unfortunately, such distributed poisoning attack is hard to be detected. Notably,
an existing study [2] shows that a poisoning attack can be achieved by merely
one malicious client launching a one-shot attack in FL.

To tackle the potential attacks, the research community has proposed mul-
tiple defense techniques. Most endeavors pursue Byzantine-robust FL through
Byzantine-resilient aggregations. It is usually achieved by diverse aggregation
algorithms, such as multi-Krum [2] and trimmed mean [27], to detect and elim-
inate the malicious impact on the global model. Unfortunately, as shown by a
recent study [5], these Byzantine-resilient aggregations are only effective when
the attacker has no extra knowledge about the FL than benign clients. The FL
can still be compromised in case the attacker knows information such as the
defensive aggregation technique adopted by the server. As a result, some aux-
iliary defense approaches that cooperate with aggregation algorithms are pro-
posed to address their fragility. They are essentially not a part of the conventional
FL process but demonstrate promising efforts towards Byzantine robustness.

Recent advances in auxiliary defenses tend to enhance the robustness of the
global model prior to the aggregation. Representative studies include taking
advantage of a dedicated dataset to exclude certain clients’ updates incurring
abnormal test accuracy and/or loss values [3,5] and performing a supervised
model pruning based on clients’ voting [26]. They either require a dataset from
a similar distribution of clients’ training data, demand the population of attack-
ers among participating clients, or assume participating clients are honest all the
time. However, these prerequisites may not be realistic, especially in an adver-
sarial environment. An effective defense technique is needed to strengthen the
Byzantine robustness of FL.

In this paper, we propose a post-aggregation defense technique for FL by
data-agnostic model pruning named FLAP (FL by data-Agnostic Pruning)1.
FLAP can be performed by the server independently with no reliance on training
data and extra contributions from clients. It is not limited by the estimated
population of malicious clients. More importantly, FLAP is designed with a
generic FL framework that is compatible with diverse aggregation settings. It can

1 Our source code is hosted at https://github.com/mark-h-meng/flap.

https://github.com/mark-h-meng/flap
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be deployed either alone or together with existing Byzantine-robust techniques
to boost their defenses.

Our design is motivated by an insight that model pruning could disable the
insignificant and dormant parameters, which are often introduced by poison-
ing attacks. FLAP aims to enhance the robustness of the global model in an
adversarial environment. Meanwhile, it should preserve learning fidelity to the
maximum extent. Therefore, we adopt a conservative pruning strategy rather
than the cut-and-re-train approach that has been conventionally applied by cen-
tralized learning paradigms. More specifically, our pruning aims to remove the
parameters with the most negligible impact on the model’s output. To this end,
FLAP dynamically measures the effect of deleting a unit to identify pruning
candidates. It adopts a scale-based sampling strategy for convolutional (Conv)
layers and a cross-layer saliency-based sampling strategy for fully-connected (FC)
layers. Our evaluation shows that FLAP is effective in preserving robustness and
fidelity against diverse adversarial settings. Meanwhile, it is capable of boost-
ing the state-of-the-art (SOTA) defenses towards a higher degree of Byzantine
robustness. Our key contributions are summarized below.

– We propose FLAP, a novel FL pruning technique that does not rely on
an estimation of malicious clients’ population and makes no request for the
cooperation of participating clients. It is implemented as an auxiliary defense
for generic FL that can be added to any form of existing FL applications.

– We conduct an empirical study to explore the effectiveness of FLAP in an
adversarial environment. We find FLAP can enhance the robustness of FL
with different aggregation algorithms while preserving the model fidelity.

– We test FLAP against different advanced adversarial models and compare
it with the SOTA defenses. Our empirical study shows that FLAP outper-
forms the existing defense techniques in all adversarial models and boosts the
existing defenses for a higher degree of Byzantine robustness.

2 Related Work

Attacking FL. Poisoning attacks for ML can be categorized into untargeted
attacks [5] and targeted attacks [4,16]. The former is performed to reduce the
overall learning accuracy on arbitrary inputs, and the latter aims to precisely
misclassify a limited set of classes. An untargeted attack is shown not practical
to the extent of FL, as it can be defended at a low cost [20]. Targeted attacks
can be further classified into label-flipping attacks [9] and backdoor attacks [4]. In
this paper, we select the targeted label-flipping attacks as the default approach.

Byzantine-Robust FL. Defending FL systems is a widely-studied topic. The
dominant baseline defenses include median [27], trimmed mean [27], multi-Krum
[2], and Bulyan [8]. Among them, median and trimmed mean are statistical-
based aggregations that assess each client’s update independently. multi-Krum
and Bulyan are representative distance-based aggregations. Those baseline algo-
rithms are later found to be fragile to fine-crafted adversarial models [5].
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Recent improvements that address the flaws of baseline defenses mainly focus
on proactively detecting malicious clients prior to the aggregation [3,26] and
strengthening the existing FL framework to minimize the impact of malicious
upload [11,17]. Besides that, there are also auxiliary defenses that co-exist with
these baselines and address their shortcomings. The SOTA defenses include the
Error Rate based Rejection (ERR), the Loss Function based Rejection (LFR) and
the Union Rejection (ERR+LFR) [5]. They are shown effective against various
adversarial models but demand a proper estimation of malicious clients’ popu-
lation. Cao et al. [3] proposed another Byzantine-robust FL framework by trust
bootstrapping. However, it may require the cooperation of the clients because
the server needs to collect a small clean dataset from their training data.

Neural Network Pruning in FL. Pruning is a commonly applied model
optimization technique [7]. It is considered useful in FL based on an insight that
the defense against targeted attack can be achieved by removing not only the
poisoned data but also the activation of adversarial inputs in the model [12,24].
Wu et al. [26] proposed a post-training FL defense by pruning and fine-tuning the
global model. However, it relies on a voting process among participating clients,
which entails sharing their local models’ activation results. That may not be
practical because participants may be reluctant to share any knowledge about
the models’ output based on their own training data, given that disclosing them
is prone to a membership attack [18]. In this paper, we study the adoption of
pruning that does not rely on the training data, i.e., data-agnostic pruning [15,
22], and therefore can be solely performed by the server without explicitly asking
for clients’ cooperation.

3 Problem Statement

3.1 Federated Learning

We assume a standard context of FL, in which data is not identically and inde-
pendently distributed across multiple clients. A client i can only access his/her
own data Di, i = 1, 2, ..., n. The server does not have access to clients’ data. The
learning process is performed in multiple rounds in a synchronous manner.

During an arbitrary round t, clients receive a global model wt−1
Global from the

server and perform continuous learning with his/her own data Di, followed by
sending the update of the local model’s parameters, i.e., gt

i = wt
i − wt−1

Global, to
the server. All the clients’ updates would then undergo an aggregation procedure
by the server prior to moving to the next round. Let α be the learning rate, the
global model can be defined as follows:

wt
Global = wt−1

Global + α · gt
Global (1)

The ultimate goal of FL is to find an aggregated update gt
Global from the

clients at a certain round t to result in a minimal loss function L (D,wt
Global) on

the joint training dataset D = ∪n
i=1Di.
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We assume a standard aggregation named FedAvg [14] as the default option
to compute the global update unless otherwise specified. FedAvg calculates the
average of the clients’ updates as the global update, which can be formally
defined as gt

Global =
∑n

i=1
|Di|
|D| gt

i , where |D| and |Di| represent the size of the
joint training dataset and the size of the client i’s local training set. In addition
to FedAvg, we also consider the server to take some defensive measures to thrive
for a resilient and safe global model, which we will detail in Sect. 5.

3.2 Threat Model

This paper assumes that the attack of FL adopts a targeted label-flipping attack
by model poisoning, which is to maximize the possibility of misclassification of
the targeted data samples. The malicious clients are granted no extra privileges
than the benign ones, such that they can only access their own training sets and
model parameters. However, they can still be manipulated by a single attacker to
deploy a Byzantine attack. In other words, malicious clients will collude with each
other toward the same attack goal. During an attack round, the malicious clients
intentionally learn certain (victim) data 〈xv

i , yv
i 〉 ∈ Di with a wrong (target) label

yτ
i , e.g., learning all digit 1 as digit 7, and learn the remaining data correctly.

Apart from the conventional attack, we also consider that malicious clients
can take advantage of the strengthened adversarial models to craft local mod-
els [5]. Thus, we anticipate the malicious clients to apply two additional strength-
ened adversarial models. We brief them below and later assess them in Sect. 5.

Partial knowledge attack. A malicious client can access all other colluding
malicious clients’ local models and has knowledge about the aggregation rule on
the server side. Through analyzing the parameters of other malicious clients, it
can craft the local update to influence the direction of the global model update,
which subsequently undermines the robustness of the global model.

Full knowledge attack. On the basis of a partial knowledge attack, a mali-
cious client has full access to the training sets and local models of all participating
clients, i.e., the entire FL is completely transparent to the attacker. This sce-
nario is helpful for us to assess the upper bound of an attacker’s capability and
estimate the impact of adversarial manipulation.

4 Proposed FLAP

4.1 Approach Overview

Figure 1 shows how FLAP is used in FL. Overall, it is a typical FL process except
for the addition of the post-aggregation model pruning at the server side (Phase
4). FL with FLAP executes an iterative process that begins with broadcasting
the global model (Phase 1). For each client, it performs training over the received
global model with its own data set (Phase 2). This training process is supposed
to be private so that other clients and the server have no access to it. Upon
the completion of training, the client sends the learned local model parameters’
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Aggregation

 Clients learn from
their own datasets

 The server aggregates
clients' updates

 The server prunes
the global model

FLAP Pruning

 The server broadcasts
the global model for the

next round of FL

Fig. 1. The workflow of federated learning with FLAP

updates to the server. Once the server has received all participating clients’
updates, it aggregates the parameters and produces the global model (Phase 3).
Next, FLAP performs model pruning over the newly generated global model
(Phase 4) and marks the end of the current round of learning. If the learning is
not concluded, the server will broadcast the newly pruned global model to all
participating clients and start the next round of learning.

4.2 Model Pruning

Our data-agnostic pruning supports two types of hidden layers of neural network
models: the FC layers and the Conv layers. For each time the pruning is launched,
FLAP samples the units on the supported hidden layer and nominates a fixed
proportion (e.g., 1%) of units to cut. Unlike the conventional data-hungry prun-
ing that adopts an aggressive cut-and-re-train strategy, we design our pruning as
a conservative approach that always prefers to remove the units that incur the
most insignificant impact to the model output, based on an insight that many
attack models stealthily plant their adversarial patterns in those units [12,24].
Although we are given a chance of continuing training in FL, applying a proper
conservative pruning technique is helpful in preserving model fidelity. To this
end, we propose different sampling strategies for the two layer types to nomi-
nate pruning candidates.

Conv Layers Sampling. When handing a Conv layer, FLAP calculates the
l1-norm of all the filters, sorts them, and nominates a few filters with the least
norm values as pruning candidates. The norm function is selected as the pruning
criteria based on the assumption that the malicious clients tend to exploit the
neural network through minor and imperceptible filters, and then manipulate
their activation to misclassify. As a result, FLAP removes those filters that
have been trained with the least significant values.

FC Layers Sampling. Finding pruning candidates at FC layers is comparably
more complicated because the parameters within a FC layer tend to be very
similar to each other if we do not take the cross-layer computation into account.
The least value-based pruning without local retraining usually causes severe
performance degradation to the model. FLAP takes advantage of the data-
agnostic cross-layer saliency-based pruning that has been studied in [15], where
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the pruning is conducted in a pair-wise manner. Given a candidate pair of hidden
units, we remove one of its units and double the weight of the other unit, which
is expected to supersede the role of the pruned unit.

To find the proper units to be pruned, we first iterate all units in a FC layer
and form pairs for them. We then assess the propagated impact of pruning a
pair of hidden units in the middle layer, which is calculated as a range/interval
depending on the legitimate value ranges of the model input. The potential
impact of pruning is jointly measured by the l1-norm and entropy of the prop-
agated impact. When FLAP prunes a FC layer, it sorts all unit pairs by their
impact values and removes the pairs with the lowest impact values.

Global Model Pruning. Considering the pruning process is proposed to rein-
force the reliability of the FL model, FLAP does not alter the model structure
during the pruning. Instead, it zeros out the parameter values of all the pruned
units. The pruned model becomes the global model of the next round of FL and
will be broadcast to all clients for their local training. Overall, we let p denote
the pruning process, and thus, the global model can be defined by a modified
form of Eq. 1 as follows:

wt
Global = p

(
wt−1

Global + α · gt
Global

)
(2)

5 Evaluation

5.1 Experiment Setup

We implement FL based on a public repository2. The FLAP and the tested
adversarial models are implemented based on TensorFlow. All the presented
results are the median value observed from at least five repeated executions.

Federated Learning. The simulated FL is composed of 80 participating
clients. The distributed training is uniformly configured for each client. Each
round of the client’s local training consists of two epochs, with the learning rate
set to 0.001 and the Adam optimizer applied. FedAvg is selected as the default
aggregation algorithm. Our experiments begin with 20 rounds of benign train-
ing, which can help the global model maintain stable prediction accuracy. We
consider malicious clients to start attacking from the 21st round. By default,
16 out of 80 participating clients (20%) are malicious that collude with each
other in conducting model poisoning attacks. We uniformly set the attack goal
as misleading the global model to predict the first class as the seventh class.

Pruning. We note that the pruning may not be necessarily carried out for every
round of FL. Instead, we stipulate that the server performs pruning from the
first round and repeats every five rounds. For each pruning operation, the server
zeros out 1% of filters from every Conv layer and 1% of hidden units from every
FC layer, by zeroing out their corresponding parameters3.
2 https://github.com/pps-lab/fl-analysis.
3 One unit will be pruned if the layer has less than 100 units.

https://github.com/pps-lab/fl-analysis
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Models and Datasets. We select FEMNIST and use three different model
architectures in our evaluation, including a five-layer MLP, a LeNet-5 ConvNet,
and a ResNet-18 model.

Fig. 2. Test accuracy and loss of FL up to round 20, with and without FLAP

5.2 Benign FL with FLAP

Our first set of experiments aims to investigate if FLAP suits the FL as a post-
aggregation optimization. More specifically, we wish to figure out the question
“how does FLAP preserve the fidelity of FL in a non-adversarial circumstance? ”.
To this end, we apply FLAP on all three models under the benign settings and
compare the learning process with the FL without it. We evaluate the global
model after each round’s aggregation and record the test accuracy and loss.

Figure 2 presents the test accuracy and loss value of the first 20 rounds, with
and without the equipment of FLAP. We find that the growth of test accuracy
of models with FLAP is almost identical with the models without it. We also
observe that the adoption of FLAP accelerates the loss descent on LeNet-5 and
MLP models. In summary, FLAP shows promising fidelity preservation on all
three models. The adoption of FLAP does not impair the learning process.

5.3 FLAP in Adversarial Settings

Next, we explore whether FLAP can boost existing defensive techniques towards
Byzantine-robust FL. We focus on using the ResNet-18 model to compare FLAP
with the existing techniques against various adversarial models.

Starting from round 21, we deploy a model poisoning attack for ten rounds
to the default setting of FL. We test our approach with two representative
Byzantine-resilient aggregation algorithms. We also learn that the malicious
clients in FL may strengthen their attack capacity by gaining extra knowledge
from the server and benign clients, and therefore we assess our approach with
two advanced adversarial models proposed by Fang et al. [5], namely partial
knowledge attack and full knowledge attack.

In our experiments, we evaluate the robustness of the global model by cal-
culating the average error rate of consecutive ten rounds of adversarial learning.
We also record the average test accuracy of the global model to reflect the overall
learning process. The experimental results can be found in Table 1.
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Byzantine-Resilient Aggregations. We replace FedAvg with Byzantine
resilient aggregations, namely trimmed mean and multi-Krum, and repeat our
previous experiments with the default adversarial settings. Both algorithms are
configurable with a parameter, which defines the estimated upper bound of
Byzantine attackers among all participating clients [2]. For each algorithm, we
define three modes, named conservative (C mode), perfect (P mode) and radical
(R mode). The C mode simulates the server underestimating the existence of
malicious clients, the R mode stipulates that the server overestimates the popu-
lation of malicious clients, and the P mode defines that the server estimates the
exact population of malicious clients. These three modes estimate the percentage
of malicious clients to be 10%, 30%, and 20%, respectively.

Table 1. Average error rates and test accuracy of FL (ResNet-18) in various adversarial
settings, with (shown in bold text) and without FLAP (shown in plain text).

Aggregation Rules Auxiliary Defense Adversarial Modes
Targeted Label Flipping Partial Knowledge Full Knowledge

Error Rate (Lower is Better)∗

FedAvg Nil 30.8%, 20.0% (�) 62.8%, 20.0% (�) 40.0%, 20.0% (�)

Trimmed Mean† Nil (C) 87.0%, 74.7% (�) (C) 72.5%, 62.9% (�) (C) 67.2%, 35.4% (�)

(P) 30.0%, 17.5% (�) (P) 22.9%, 17.5% (�) (P) 38.1%, 33.0% (�)

(R) 11.4%, 9.8% (�) (R) 11.5%, 9.8% (�) (R) 12.7%, 10.6% (�)

ERR+LFR (C) 59.2%, 20.0% (�) (C) 80.0%, 71.3% (�) (C) 84.6%, 68.3% (�)

(P) 16.8%, 15.6% (�) (P) 16.9%, 15.6% (�) (P) 22.7%, 16.3% (�)

(R) 5.8%, 5.8% (=) (R) 5.8%, 4.2% (�) (R) 9.6%, 9.3% (�)

Multi- Krum† Nil (C) 84.3%, 83.7% (�) (C) 93.3%, 74.8% (�) (C) 83.5%, 73.9% (�)

(P) 22.7%, 20.0% (�) (P) 22.7%, 15.6% (�) (P) 20.6%, 14.2% (�)

(R) 28.8%, 27.3% (�) (R) 28.9%, 19.5% (�) (R) 22.3%, 20.0% (�)

ERR+ LFR (C) 84.6%, 83.8% (�) (C) 79.2%, 68.3% (�) (C) 83.5%, 75.4% (�)

(P) 22.7%, 20.0% (�) (P) 22.7%, 16.3% (�) (P) 20.6%, 14.2% (�)

(R) 28.7%, 22.3% (�) (R) 27.9%, 21.0% (�) (R) 28.1%, 17.9% (�)

Test Accuracy (Higher is Better)∗

FedAvg Nil 10.3%, 10.9% (�) 10.1%, 10.1% (=) 9.0%, 9.2% (�)

Trimmed Mean† Nil (C) 11.5%, 14.6% (�) (C) 13.5%, 17.3% (�) (C) 15.8%, 18.4% (�)

(P) 92.1%, 97.8% (�) (P) 92.3%, 93.2% (�) (P) 15.8%, 18.4% (�)

(R) 94.6%, 95.1% (�) (R) 93.9%, 94.8% (�) (R) 92.5%, 92.1% (�)

ERR+ LFR (C) 11.2%, 11.0% (�) (C) 11.3%, 16.5% (�) (C) 12.8%, 14.1% (�)

(P) 93.4%, 93.0% (�) (P) 93.4%, 93.9% (�) (P) 93.4%, 93.2% (�)

(R) 95.8%, 96.0% (�) (R) 94.6%, 94.9% (�) (R) 95.6%, 95.6% (=)

Multi- Krum† Nil (C) 34.5%, 56.0% (�) (C) 35.4%, 56.2% (�) (C) 37.6%, 52.2% (�)

(P) 35.6%, 43.5% (�) (P) 36.0%, 44.7% (�) (P) 35.5%, 44.2% (�)

(R) 35.3%, 44.2% (�) (R) 36.0%, 45.9% (�) (R) 35.6%, 46.9% (�)

ERR+ LFR (C) 34.5%, 56.1% (�) (C) 34.5%, 56.2% (�) (C) 38.8%, 60.9% (�)

(P) 35.5%, 43.4% (�) (P) 36.0%, 44.7% (�) (P) 35.5%, 45.9% (�)

(R) 35.3%, 44.2% (�) (R) 35.3%, 47.7% (�) (R) 35.4%, 46.9% (�)
∗ We use “(�)”, “(=)” and “(�)” to represent a decrease, no change, and growth,
respectively.
† Three parametric settings are adopted in both trimmed mean and multi-Krum aggre-
gation algorithms: (C ), (P), and (R) stand for Conservative, Perfect, and Radical
modes, respectively.
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Our results show that the adoption of Byzantine-resilient aggregations helps
reduce the error rate and improve the test accuracy, however, only when the
server sufficiently estimates the presence of malicious clients (i.e., the P mode).
We learn that any mis-estimiation of the population of malicious clients causes
a negative impact on the FL in terms of test accuracy and error rate. This high-
lights the necessity of defensive techniques that are independent of the server’s
knowledge regarding the attackers’ population.

Our evaluation demonstrates that FLAP can improve the FL in all three
modes of the two aggregation algorithms. The adoption of FLAP reduces the
error rate by up to 12.5% for the trimmed mean model (P mode) and 2.7% for
the multi-Krum model (P mode). On this basis, FLAP also helps FL to better
converge as we record a growth of test accuracy at up to 5.7% from the trimmed
mean model (P mode) and 21.5% from the multi-Krum model (C mode).

Advanced Adversarial Models. Our next set of experiments aims to investi-
gate whether FLAP makes FL more Byzantine-robust against the SOTA adver-
sarial models. We simulate the two adversarial models specially designed for
FL [5] and evaluate our approach against them. Moreover, we also compare our
approach with the prediction-based defenses proposed in the same paper. We
take the most radical defense named ERR+LFR as the baseline4.

From Table 1, we observe that the two adversarial models overall stimulate
the adversarial effectiveness when a defensive aggregation algorithm is deployed.
They incur a higher error rate without significantly impairing the test accuracy
and therefore can more stealthily poison the global model. Besides that, the
ERR+LFR defense is shown to be effective in most cases, especially when the
aggregation algorithms are deployed in P mode and R mode.

We also find that our approach can boost the ERR+LFR as a post-
aggregation defense. We record an error rate reduction at up to 10.2% (multi-
Krum R mode) and a test accuracy increment at up to 22.1% (multi-Krum C
mode) by applying FLAP to the ERR+LFR defense against the full-knowledge
attack. Even if we compare the models that are either equipped with ERR+LFR
only (i.e., without FLAP) or FLAP only (i.e., absence of ERR+LFR), we find
our approach still achieves a lower error rate than the ERR+LFR defense in all
scenarios of the multi-Krum setting and two out of six scenarios of the trimmed
mean setting. FLAP also manages to outperform the ERR+LFR defense in 14
out of 18 scenarios of two settings with regard to the test accuracy, indicating
FLAP better assists the FL towards the learning target.

Summary. FLAP is shown effective towards Byzantine-robust FL in both
benign and adversarial environments. It can co-exist with existing defenses
including Byzantine-resilient aggregations and auxiliary prediction-based tech-
niques and even outperforms them in most cases. More importantly, FLAP can
boost those defenses to achieve a higher degree of Byzantine robustness, espe-
cially when the server underestimates the presence of malicious clients.
4 We assume the perfect estimation that 20% of clients are excluded due to high loss

function value and another 20% of clients are excluded due to low accuracy.
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6 Discussion

Limitations and Future Work. First, FLAP supports pruning for both FC
and Conv layers. For that reason, we may achieve a higher degree of Byzantine
robustness if we broaden the FLAP’s support for pruning residual blocks. In
addition, the server has no access to the training set but owns some data in a
similar distribution for testing purposes. That gives us a chance to prune the
model in a supervised manner with the testing data. We aim to explore the test
set guided pruning in the future.

Broader Impacts. To the best of our knowledge, this is the first work that
explores the pruning by the FL server without the reliance on clients’ contribu-
tion. FLAP does not request any training data or training outputs from clients,
therefore it is difficult to be manipulated by malicious participants. It takes place
after the aggregation so that it can co-exist with the existing defenses and boost
their effectiveness. This paper will help the research community’s exploration
of more defense techniques to be adopted in FL, and contribute to achieving
efficient privacy-preserving machine learning [23,29].

7 Conclusion

In this paper, we propose FLAP, a post-aggregation pruning technique to boost
the Byzantine robustness of FL, based on our insight that pruning can effec-
tively mitigate the unfavorable and malicious parameters learned in adversar-
ial training. We evaluate the proposed FLAP with different models, assess its
effectiveness against different adversarial models, and compare it with existing
defensive techniques. Our empirical study demonstrates that FLAP can reduce
the error rate and preserve the fidelity of FL equipped with different aggrega-
tion algorithms under various adversarial settings. FLAP also shows a promising
capacity to reinforce the existing defensive techniques against the SOTA adver-
sarial models to achieve a higher degree of Byzantine robustness.
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Abstract. Natural language processing models based on neural net-
works are vulnerable to adversarial examples. These adversarial exam-
ples are imperceptible to human readers but can mislead models to make
the wrong predictions. In a black-box setting, attacker can fool the model
without knowing model’s parameters and architecture. Previous works
on word-level attacks widely use single semantic space and greedy search
as a search strategy. However, these methods fail to balance the attack
success rate, quality of adversarial examples and time consumption. In
this paper, we propose BeamAttack, a textual attack algorithm that
makes use of mixed semantic spaces and improved beam search to craft
high-quality adversarial examples. Extensive experiments demonstrate
that BeamAttack can improve attack success rate while saving numer-
ous queries and time, e.g., improving at most 7% attack success rate than
greedy search when attacking the examples from MR dataset. Compared
with heuristic search, BeamAttack can save at most 85% model queries
and achieve a competitive attack success rate. The adversarial exam-
ples crafted by BeamAttack are highly transferable and can effectively
improve model’s robustness during adversarial training. Code is available
at https://github.com/zhuhai-ustc/beamattack/tree/master

Keywords: Adversarial Examples · Robustness · Natural Language
Processing

1 Introduction

In recent years, neural networks have achieved great success in the natural lan-
guage processing field while being vulnerable to adversarial examples. These
adversarial examples are original inputs altered by some tiny perturbations
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[9,20]. It is worth noting that perturbations are imperceptible to humans but
can mislead the model decision. Therefore, it is essential to explore adversarial
examples since our goal is to improve the reliability and robustness of the model,
especially on some security-critical applications, such as toxic text detection and
public opinion analysis [25]. Compared to image and speech attacks [2,22], it is
more challenging in crafting textual adversarial examples due to the discrete of
natural language. In addition, there are some grammar constraints in the textual
adversarial examples:(1)the crafted examples should keep the same meaning as
the original texts,(2)generated examples should look natural and grammatical.
However, previous works barely conform to all constraints, or satisfy the above
constraints at the cost of reducing the attack success rate.

Conventional word-level attack algorithms can be roughly divided into three
steps: (1) calculating word importance score according to the changes of class
label probabilities after replacing this word, (2) searching synonyms for each ori-
gin word, (3) selecting the substitution that reduces the class label probabilities
most and replacing origin word with it until model predicts wrong. The prob-
lem is that previous works only use a single semantic space to search synonyms,
which limits the diversity of substitutions and cut down the search space. In
addition, most prior works introduce greedy search to select the best substitu-
tion with the maximum change of class label probabilities [9,11]. Greedy search
limits the search space and sometimes leads to local optimal solution and word
over-substitution. Therefore, some works [20,26] introduce heuristic search to
improve attack success rate, at the cost of time-consuming and numerous model
queries. In generally, previous works fail to balance the attack success rate, qual-
ity of adversarial examples and time consumption.

In this paper, we propose BeamAttack, a textual attack algorithm based
on mixed semantic spaces and beam search. Specially, we search substitutions
from word embedding space and BERT respectively, and filter out the bad syn-
onyms to improve semantic similarity of adversarial examples, then improve
beam search to craft adversarial examples, which greatly expands the search
space by controlling beam size. Therefore, it is capable of escaping from local
optima within acceptable number of model queries. Furthermore, we evaluate
BeamAttack by attacking various neural networks on five datasets. Experiments
show that it outperforms other baselines in attack success rate and semantic
similarity while saving numerous model queries. Our main contributions are
summarized as follows:

– We propose the mixed semantic spaces, making full use of word embedding
space and BERT simultaneously to expand the diversity of substitutions and
generating high-qualify adversarial examples.

– We propose BeamAttack, a black-box attack algorithm which improves beam
search to expand search space and reduce the redundancy word substitution.

– Experiments show that BeamAttack achieves the trade-off results compared
with previous works. In addition, adversarial examples crafted by BeamAttack
with high semantic similarity, low perturbation, and good transferability.
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2 Related Work

We divide the existing textual attack algorithms into char-level, word-level and
sentence-level attacks based on granularity. Char-level attacks generate adver-
sarial examples by inserting, swapping or removing characters(such as ’attack’ →
’atttack’) [6,12], which can be easily rectified by word spelling machine. Sentence-
level attacks insert some perturbed sentences into the origin paragraph to confuse
models [3]. Nevertheless, these adversarial examples contain many lexical errors.

In order to generate high-quality adversarial examples, word-level attacks
have gradually become a prevalent approach. Word-level attacks substitute the
origin words with synonyms(such as ’like’ → ’love’). Traditional strategies search
synonyms from word embedding space. For example, some works [9,14,23] cal-
culate the word saliency and greedily substitute words with synonyms derived
from WordNet [16], or utilizing word importance score and replace words with
synonyms from counter-fitting word vectors [18]. Recently, researcher [7,11,13]
search synonyms from pre-trained language models (e.g. BERT, RoBERTa). The
pre-trained language models are trained on massive text data, and predict the
masked words. Therefore, it has the ability to predict contextual-aware words.

Above attack algorithms adopt the greedy search, which limits the search
space and leads to local optimal solution. Minor work have explored the heuristic
search, such as genetic algorithm [20], particle swarm optimization [26]. However,
heuristic search is very time-consuming and requires a lot of model queries.
Therefore, we propose BeamAttack, searching synonyms from word embedding
space and BERT simultaneously, and fine-tuning beam search to expand search
space and reduce word-over substitution.

3 Beam Search Adversarial Attack

BeamAttack is divided into three steps. There are word importance calculation,
mixed semantic spaces and improved beam search. The overview of BeamAttack
is shown in the Fig. 1. Before delving into details, we present the attack settings
and problem formulation.

3.1 Black-box Untargeted Attack

The BeamAttack belongs to black-box attacks, it has nothing about model’s
architecture, parameters and gradients, only class label probabilities are acces-
sible. Given a sentence of n words X = [x1, x2, · · · , xn] and label set Y, a well-
trained model can classify sentence correctly:

argmax
yi∈Y

P (yi|X ) = ytrue (1)

The adversarial example X ′ = [x
′
1, x

′
2, · · · , x

′
n] is crafted to make model pre-

dict wrong. In addition, there are some constraints on the word substitution
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like this wonderful movieI

love

enjoy

beautiful

fabulous

marvelous

film

cinema

BERT

Word
embedding
space

Origin input

Candidate sets

Beam search

Adversarial 
example

love this fabulous filmI

Fig. 1. The overview of BeamAttack. Candidate sets are substitutions generated from
BERT and word embedding space. Black lines are beam search paths, wherein red lines
are the optimal search path. (Color figure online)

rate(WSR) and semantic similarity(SIM) of the adversarial example. X ′ should
be close to X and a human reader hardly differentiate the modifications. The
mathematical expression is as follows:

argmax
yi∈Y

P (yi|X ′) �= ytrue

s.t. SIM(X ′,X ) > L;WSR(X ′,X ) < σ
(2)

3.2 Word Importance Calculation

Given a sentence of n words X = [x1, x2, · · · , xn], only some important words
will affect the prediction results of the model F . In order to measure the impor-
tance of xi, we follow the calculation proposed in TextFooler [9]. We replace
xi with ’[oov]’1 to form X/{xi} = [x1, · · · , xi−1, [oov], xi+1, · · · , xn], then word
importance of xi is calculated as follows:

– The predicted label remains the same after replace, i.e., F(X ) =
F(X/{xi}) = ytrue,

I(xi) = Fytrue
(X ) − Fytrue

(X/{xi}) (3)

– The predicted label is changed after replace, i.e., F(X ) = ytrue �= yother =
F(X/{xi}),

I(xi) =Fytrue
(X ) − Fytrue

(X/{xi}) +
Fyother

(X/{xi}) − Fyother
(X )

(4)

where Fy(X ) represents the predicted class label probability of X by F on label
y. In order to improve the readability and fluency of the adversarial examples,
we will filter out stopwords by NLTK2 after calculating the word importance.
1 the word out-of-vocabulary.
2 https://www.nltk.org/.

https://www.nltk.org/
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3.3 Mixed Semantic Spaces

After ranking the words by their importance score, we need to search synonyms,
which is a candidate words set C(xi) for each word xi. A proper replacement word
should (i) have similar semantic meaning with original input, (ii) avoid some
obvious grammar errors, (iii) and confuse model F to predict the wrong label.
There are two different semantic spaces to search synonyms, word embedding
spaces and pre-trained language models.

– The former searches for synonyms from word embedding spaces, such as
WordNet space [16], HowNet space [5] and Counter-fitting word vectors [18].
Word embedding spaces can quickly generate synonyms with the same mean-
ing as origin word.

– The later searches for synonyms through pre-trained language models(such
as BERT). Given a sentence of n words X = [x1, x2, · · · , xn], we replace
each word xi with ’[MASK]’, and get candidate words set C(xi) predicted
by BERT. Pre-trained language models produce fluent and contextual-aware
adversarial examples.

We combine word embedding space and BERT to make full use of the advantage
of different semantic spaces. In detail, for each word xi, we respectively select
top N synonyms from word embedding space and BERT to form a candidate
words set C(xi). To generate high-qualify adversarial examples, we filter out the
candidate words set that has different part-of-speech(POS)3 synonyms with xi.
In addition, for each c ∈ C(xi), we substitute it for xi to generate adversarial
example X ′ = [x1, · · · , xi−1, c, xi+1, · · · , xn], then we measure semantic similar-
ity between X and adversarial example X ′ by universal sentence encoder(USE)4,
which encodes original input X and adversarial example X ′ as dense vectors and
use cosine similarity as a approximation of semantic similarity. Only synonyms
whose similarity is higher than threshold L will be retained in the candidate
words set C(xi).

3.4 Improved Beam Search

After filtering out the candidate words set C(xi), the construction of adversarial
examples is a combinatorial optimization problem as expected in Eq. 2. Previous
works use the greedy search since it solely selects the token that maximizes the
probability difference, which leads to local optima and word-over substitution.

To tackle this, we improve beam search to give consideration to both attack
success rate and algorithm efficiency. Beam search has a hyper-parameter called
beam size K. Naive beam search only selects top K adversarial examples from the
current iteration results. In the improved beam search, we merge the output of
the last iteration to the current iteration and select top K adversarial examples
as the input of the next iteration jointly. In detail, for each word xi in the original

3 https://spacy.io/api/tagger.
4 https://tfhub.dev/google/universal-sentence-encoder.

https://spacy.io/api/tagger
https://tfhub.dev/google/universal-sentence-encoder
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text, we replace xi with the substitution from candidate words set C(xi) to gen-
erate adversarial examples X ′ and calculate the probability differences. The top
K adversarial examples X ′ with the maximum probability difference(including
the last iteration of top K adversarial examples) are selected as the input of
the next iteration until the attack succeeds or all origin words are iterated. It
is worth noting that greedy search is a special case of K = 1. The details of
BeamAttack are shown in Algorithm 1.

Algorithm 1. BeamAttack Adversarial Algorithm
Input:Original text X , target model F , semantic similarity threshold L = 0.5 and
beam size K = 10, number of words in original text n
Output:Adversarial example Xadv.

1: Xadv ← X
2: set(Xadv) ← Xadv

3: for each word xi in X do
4: Compute the importance score I(xi) via Eq.3 and 4.
5: end for
6: Sort the words with importance score I(xi)
7: for i = 1 to n do
8: Replace the xi with [MASK]
9: Generate the candidate set C(xi) from BERT and Word Embedding Space

10: C(xi) ← POSFilter(C(xi)) ∩ USEFilter(C(xi))
11: end for
12: for Xadv in set(Xadv) do
13: for ck in C(xi) do
14: X ′

adv ← Replace xi with ck in Xadv

15: Add X ′
adv to the set(Xadv)

16: end for
17: for X ′

adv in set(Xadv) do
18: if F(X ′

adv) �= ytrue then
19: return X ′

adv with highest semantic similarity
20: end if
21: end for
22: set(Xadv) ← Select top K adversarial examples in set(Xadv)
23: i ← i + 1
24: if i > n then
25: break
26: end if
27: end for
28: return adversarial examples Xadv

4 Experiments

Tasks, Datasets and Models. To evaluate the effectiveness of BeamAttack,
we conduct experiments on two NLP tasks, including text classification and
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text inference. In particular, the experiments cover various datasets, such as
MR [19],IMDB [15],SST-2 [21], SNLI [1] and MultiNLI [24]. We train three
neural networks as target models including CNN [10], LSTM [8] and BERT [4].
Model parameters are consistent with TextFooler’s [9] setting.

Baselines. To quantitatively evaluate BeamAttack, we compare it with other
black-box attack algorithms, including TextFooler(TF) [9], PWWS [20], BAE [7],
Bert-Attack(BEAT) [13] and PSO [26], wherein TF,PWWS and PSO search
synonyms from word embedding spaces, BAE and BEAT search synonyms from
BERT. In addition, PSO belongs to heuristics search and other belong to greedy
search. These baselines are implemented on the TextAttack framework [17].

Automatic Evaluation Metrics. We evaluate the attack performance by
following metrics. Attack Success Rate(ASR) is defined as the proportion of
successful adversarial examples to the total number of examples. Word Substi-
tution Rate(WSR) is defined as the proportion of number of replacement words
to number of origin words. Semantic Similarity(SIM) is measured by Universal
Sentence Encoder(USE). Query Num(Query) is the number of model queries
during adversarial attack. The ASR evaluates how successful the attack is. The
WSR and semantic similarity together evaluate how semantically similar the
original texts and adversarial examples are. Query num can reveal the efficiency
of the attack algorithm.

Implementation Details. In our experiments, we carry out all experiments
on NVIDIA Tesla P100 16G GPU. We set the beam size K = 10, number of
each candidate set N = 50, semantic similarity threshold L = 0.5, we take the
average value of 1000 examples as the final experimental result.

4.1 Experimental Results

The experiment results are listed in Table 1. It is worth noting that BeamAttack
achieves higher ASR than baselines on almost all scenarios. BeamAttack also
reduces the WSR on some datasets(MR,IMDB and SST-2). We attribute this
superiority to the fine-tuned beam search, as this is the major improvement of
our algorithm compared with greedy search. BeamAttack has chance to jump
out of the local optimal solution and find out the adversarial examples with
lower perturbation by expanding the search space. In terms of model robustness,
BERT has better robustness than traditional classifiers(CNN and LSTM), since
the attack success rate of attacking BERT is lower than other models.

Semantic Similarity. Except ASR and WSR, fluent and contextual-aware
adversarial examples are also essential. Figure 2 plots the semantic similarity of
adversarial examples generated by different attack algorithms. Clearly, BeamAt-
tack achieves the highest semantic similarity than other attack algorithms.
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Qualitative Examples. To more intuitively contrast the fluency of adversarial
examples, we list some adversarial examples generated by different attack algo-
rithms in Table 2. Compared with other methods, Beamattack not only ensures
the semantic similarity between replacement words and original words but also
successfully misleads the model with the minimum perturbation.

Table 1. The attack success rate and word substitution rate of different attack algo-
rithms on five datasets. The “Origin ACC(%)” denotes the target model’s test accuracy
on the original inputs.

Datasets Target Models Origin ACC Attack Success Rate(ASR(%)) Word Substitution Rate(WSR(%))

TF PWWS BAE BEAT PSO BeamAttack TF PWWS BAE BEAT PSO BeamAttack

MR CNN 80.4 98.81 98.61 98.00 83.31 96.23 99.87 17.05 13.22 12.98 15.06 11.53 8.29

LSTM 80.7 98.92 97.92 98.21 84.12 95.32 99.90 15.61 13.07 11.71 13.59 10.91 8.60

BERT 90.4 90.54 81.53 90.61 88.36 92.47 97.88 20.91 14.67 14.44 15.32 11.93 9.70

IMDB CNN 89.2 100 100 100 99.82 100 100 2.51 2.23 2.01 3.32 2.43 2.11

LSTM 89.8 99.76 99.47 100 99.83 100 100 3.12 3.11 2.25 3.45 2.46 2.43

BERT 90.9 88.83 86.55 83.96 88.68 89.93 91.6 3.81 5.02 7.69 5.66 4.32 1.65

SST-2 CNN 82.5 92.37 98.23 95.45 86.44 96.69 99.88 17.09 13.10 12.53 15.40 11.47 8.46

LSTM 84.6 93.21 98.48 96.23 86.43 96.42 100 17.55 13.53 12.83 15.31 11.45 8.76

SNLI BERT 89.1 96.00 98.42 98.84 98.64 92.51 99.80 17.26 13.72 6.91 7.80 8.19 13.81

MNLI BERT 85.1 90.44 94.33 99.23 92.00 83.43 99.50 13.93 10.12 5.45 5.64 6.65 10.81

Fig. 2. The semantic similarity between origin inputs and adversarial examples.

Model Query. The number of model queries measures the effectiveness of
attack algorithm. Table 3 lists the model queries of various attack algorithms.
Results show that although our BeamAttack needs more model queries than
greedy search(such as TF), compared with the PSO attack algorithm, which
adopts heuristic search, our algorithm obtains competitive results with extremely
few model queries.

4.2 Ablation Study

The Effect of Beam Size K. To validate the effectiveness of beam size K, we
use BERT as the target model and test on MR dataset with different beam size
K. When K = 1, beam search is equal to greedy search. As shown in Table 4,
the attack success rate increases gradually with the grow of beam size K.

The Effect of Mixed Semantic Spaces. Another major improvement of
our BeamAttack is that substitutions are selected from mixed semantic spaces.
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Table 2. The adversarial example crafted by different attack algorithms on MR(BERT)
dataset. Replacement words are represented in red.

Origin Text
(Positive)

The experience of the roles in the play makes us generates
an enormous feeling of empathy for its characters.

BAE
(Negative)

The experience of the roles in the play makes us generates
an excessive need of empathy for its characters.

PWWS
(Negative)

The experience of the roles in the play makes us render
an enormous smell of empathy for its eccentric.

TextFooler
(Negative)

The experience of the roles in the play makes us leeds an
enormous foreboding of empathy for its specs.

BeamAttack
(Negative)

The experience of the roles in the play makes us generates
an enormous feeling of pity for its characters.

Table 3. The average model queries of different attack algorithms on five datasets.
Beam size K = 10

MR IMDB SST-2 SNLI MNLI

TF 113.8 536.7 146.2 54.1 68.9

PWWS 285.4 3286.5 5054.3 137.7 157.4

BAE 104.2 567.1 171.0 75.5 75.1

BEAT 207.9 585.0 245.6 93.6 119.2

PSO 5124.5 15564.3 3522.8 416.6 1124.8

BeamAttack 650.3 2135.8 584.3 126.0 174.0

As shown in the Table 5, we study the impact of different semantic spaces on
different metrics. Compared with single word embedding space or BERT, using
both word embedding space and BERT to generate adversarial examples can
obtain higher attack success rate, semantic similarity and lower word substitu-
tion rate.

4.3 Transferability

The transferability of adversarial examples reflects property that adversarial
examples crafted by classifier F can also fool other unknown classifier F ′. We
evaluate the transferability on MR dataset across CNN, LSTM and BERT. In
detail, we use the adversarial examples crafted for attacking BERT on MR
dataset to evaluate the transferability for CNN and LSTM models. As shown in
the Fig. 3, the adversarial examples generated by BeamAttack achieve the higher
transferability than baselines.

4.4 Adversarial Training

Adversarial training is a prevalent technique to improve the model’s robust-
ness by adding some adversarial examples into train data. To validate this, we
train the CNN model on the MR dataset and obtains 80.4% test accuracy. Then
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Table 4. The effect of beam size K on MR(BERT) dataset.

Beam Size ASR(%) WSR(%) Similarity(%) Query

K = 1 89.0 15.5 81.3 101.3

K = 2 90.6 15.3 82.0 150.4

K = 5 91.6 15.1 82.8 312.6

K = 7 92.3 15.1 83.0 411.1

K = 10 92.6 15.1 83.1 516.2

Table 5. The effect of different semantic spaces on MR(BERT) dataset.

semantic space ASR(%) WSR(%) Similarity(%) Query

Embedding 89.0 15.3 81.2 101.3

BERT 93.6 13.1 82.6 101.1

Embedding+BERT 95.3 11.7 84.9 140.3

we randomly generate 1000 MR adversarial examples to its training data and
retrain the CNN model. The result is shown in the Table 6, CNN model obtains
83.3% test accuracy, higher than origin test accuracy. Although there is no sig-
nificant change in ASR, BeamAttack needs to replace more words and more
model queries to attack successfully with WSR and model queries increasing.
It indicates that adversarial training effectively improves the generalization and
robustness of the model.

Table 6. The performance of CNN with(out) adversarial training on the MR dataset.

Origin ACC(%) ASR(%) WSR(%) SIM(%) Query

Original 80.4 99.87 8.20 91.08 563.1

Adv.Training 83.3 99.75 8.67 90.82 606.4

Fig. 3. Transfer attack on MR dataset. Lower accuracy indicates higher transferability
(the lower the better).
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5 Conclusion

In this paper, we propose an efficient adversarial textual attack algorithm Bea-
mAttack. The BeamAttack makes full use of word embedding space and BERT
to generate substitutions and fine-tune beam search to expand search spaces.
Extensive experiments demonstrate BeamAttack balances the attack success
rate, qualify of adversarial examples and time consumption. In addition, the
adversarial examples crafted by BeamAttack are contextual-aware and improve
models’ robustness during adversarial training.
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Abstract. Complementary-Label Learning (CLL) is a weakly-
supervised learning problem that aims to learn a multi-class classifier from
only complementary labels, which indicate a class to which an instance
does not belong. Existing approaches mainly adopt the paradigm of reduc-
tion to ordinary classification, which applies specific transformations and
surrogate losses to connect CLL back to ordinary classification. Those
approaches, however, face several limitations, such as the tendency to over-
fit. In this paper, we sidestep those limitations with a novel perspective–
reduction to probability estimates of complementary classes. We prove
that accurate probability estimates of complementary labels lead to good
classifiers through a simple decoding step. The proof establishes a reduc-
tion framework from CLL to probability estimates. The framework offers
explanations of several key CLL approaches as its special cases and allows
us to design an improved algorithm that is more robust in noisy environ-
ments. The framework also suggests a validation procedure based on the
quality of probability estimates, offering a way to validate models with only
CLs. The flexible framework opens a wide range of unexplored opportuni-
ties in using deep and non-deep models for probability estimates to solve
CLL. Empirical experiments further verified the framework’s efficacy and
robustness in various settings. The full paper can be accessed at https://
arxiv.org/abs/2209.09500.

Keywords: complementary-label learning · weakly-supervised learning

1 Introduction

In real-world machine learning applications, high-quality labels may be hard
or costly to collect. To conquer the problem, researchers turn to the weakly-
supervised learning (WSL) framework, which seeks to learn a good classifier
with incomplete, inexact, or inaccurate data [14]. This paper focuses on a very
weak type of WSL, called complementary-label learning (CLL) [3]. For the multi-
class classification task, a complementary label (CL) designates a class to which
a specific instance does not belong. The CLL problem assumes that the learner
receives complementary labels rather than ordinary ones during training, while
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wanting the learner to correctly predict the ordinary labels of the test instances.
Complementary labels can be cheaper to obtain. For example, when labeling
with many classes, selecting the correct label is time-consuming for data anno-
tators, while selecting a complementary label would be less costly [3]. In this
case, fundamental studies on CLL models can potentially upgrade multi-class
classification models and make machine learning more realistic. CLL’s useful-
ness also attracts researchers to study its interaction with other tasks, such as
generative-discriminative learning [7,10] and domain-adaptation [13].

[3,4] proposed a pioneering model for CLL based on replacing the ordi-
nary classification error with its unbiased risk estimator (URE) computed from
only complementary labels assuming that the CLs are generated uniformly. [1]
unveiled the overfitting tendency of URE and proposed the surrogate comple-
mentary loss (SCL) as an alternative design. [11] studied the situation where the
CLs are not generated uniformly, and proposed a loss function that includes a
transition matrix for representing the non-uniform generation. [2] argued that
the non-uniform generation shall be tackled by being agnostic to the transition
matrix instead of including the matrix in the loss function.

The methods mentioned above mainly focused on applying transformation
and specific loss functions to the ordinary classifiers. Such a “reduction to ordi-
nary classification” paradigm, however, faces some limitations and is not com-
pletely analyzed. For instance, so far most of the methods in the paradigm require
differentiable models such as neural networks in their design. It is not clear
whether non-deep models could be competitive or even superior to deep ones. It
remains critical to correct the overfitting tendency caused by the stochastic rela-
tionship between complementary and ordinary labels, as repeatedly observed on
URE-related methods [1]. More studies are also needed to understand the poten-
tial of and the sensitivity to the transition matrix in the non-uniform setting,
rather than only fixing the matrix in the loss function [11] or dropping it [2].

The potential limitations from reduction to ordinary classification motivate
us to sidestep them by taking a different perspective—reduction to complemen-
tary probability estimates. Our contribution can be summarized as follows.

1. We propose a framework that only relies on the probability estimates of CLs,
and prove that a simple decoding method can map those estimates back to
correct ordinary labels with theoretical guarantees.

2. The proposed framework offers explanations of several key CLL approaches
as its special cases and allows us to design an improved algorithm that is
more robust in noisy environments.

3. We propose a validation procedure based on the quality of probability esti-
mates, providing a novel approach to validate models with only CLs along
with theoretical justifications.

4. We empirically verify the effectiveness of the proposed framework under
broader scenarios than previous works that cover various assumptions on the
CL generation (uniform/non-uniform; clean/noisy) and models (deep /non-
deep). The proposed framework improves the SOTA methods in those scenar-
ios, demonstrating the effectiveness and robustness of the framework.
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2 Problem Setup

In this section, we first introduce the problem of ordinary multi-class classifica-
tion, then formulate the CLL problem, and introduce some common assumption.

2.1 Ordinary-label Learning

We start by reviewing the problem formulation of ordinary multi-class classifica-
tion. In this problem, we let K with K > 2 denote the number of classes to be
classified, and use Y = [K] = {1, 2, . . . ,K} to denote the label set. Let X ⊂ R

d

denote the feature space. Let D be an unknown joint distribution over X × Y
with density function pD(x, y). Given N i.i.d. training samples {(xi, yi)}N

i=1 and
a hypothesis set H, the goal of the learner is to select a classifier f : X → R

K

from the hypothesis set H that predicts the correct labels on unseen instances.
The prediction ŷ of an unseen instance x is determined by taking the argmax
function on f , i.e. ŷ = argmaxi fi(x), where fi(x) denote the i-th output of f(x).
The goal of the learner is to learn an f from H that minimizes the following
classification risk: E(x,y)∼D

[
�(f(x), ey)

]
, where � : RK × R

K → R
+ denotes the

loss function, and ey denote the one-hot vector of label y.

2.2 Complementary-label Learning

In complementary-label learning, the goal for the learner remains to find an f
that minimizes the ordinary classification risk. The difference lies in the dataset
to learn from. The complementary learner does not have access to the ground-
truth labels yi. Instead, for each instance xi, the learner is given a complementary
label ȳi. A complementary label is a class that xi does not belong to; that is,
ȳi ∈ [K]\{yi}. In CLL, it is assumed that the complementary dataset is gener-
ated according to an unknown distribution D̄ over X × Y with density function
p̄D̄(x, y). Given access to i.i.d. samples {xi, ȳi}N

i=1 from D̄, the complementary-
label learner aims to find a hypothesis that classifies the correct ordinary labels
on unseen instances.

Next, we introduce the class-conditional complementary transition assump-
tion, which is used by many existing work [2–4,11]. It assumes that the gen-
eration of complementary labels only depends on the ordinary labels; that is,
P (ȳ | y, x) = P (ȳ | y). The transition probability P (ȳ | y) is often represented by
a K × K matrix, called transition matrix, with Tij = P (ȳ = j | y = i). It is
commonly assumed to be all-zeros on the diagonals, i.e., Tii = 0 for all i ∈ [K]
in CLL because complementary labels are not ordinary. The transition matrix
is further classified into two categories: (a) Uniform: In uniform complemen-
tary generation, each complementary label is sampled uniformly from all labels
except the ordinary one. The transition matrix in this setting is accordingly
T = 1

K−1 (1k − Ik). This is the most widely researched and benchmarked set-
ting in CLL. (b) Biased: A biased complementary generation is one that is not
uniform. Biased transition matrices could be further classified as invertible ones
and noninvertible ones based on its invertibility. The invertibility of a transition
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Table 1. Comparison of recent approaches to CLL. f(x) is the probability estimates
of x, and � is an arbitrary multi-class loss.

Method Transformation Loss Function

URE [3,4] φ = I −(K − 1)�(f(x), ȳ) +
∑K

k=1 �(f(x), k)

SCL-NL [1] φ = I − log(1 − fȳ(x))

Fwd [11] φ(f)(x) = T �f(x) �(φ(f)(x), ȳ)

DM [2] φ(f)(x) = sm(1 − f(x)) �(φ(f)(x), ȳ)

matrix comes with less physical meaning in the context of CLL; however, it plays
an important role in some theoretical analysis in previous work [1,11].

Following earlier approaches, we assume that the generation of complemen-
tary labels follows class-conditional transition in the rest of the paper and that
the transition matrix is given to the learning algorithms. What is different is
that we do not assume the transition matrix to be uniform nor invertible. This
allows us to make comparison in broader scenarios. In real-world scenario, the
true transition matrix may be impossible to access. To loosen the assumption
that the true transition matrix is given, we will analyze the case that the given
matrix is inaccurate later. This analysis can potentially help us understand the
CLL in a more realistic environment.

3 Proposed Framework

In this section, we propose a framework for CLL based on complementary proba-
bility estimates (CPE) and decoding. We first motivate the proposed CPE frame-
work in Sect. 3.1. Then, we describe the framework and derive its theoretical
properties in Sect. 3.2. In Sect. 3.3, we explain how earlier approaches can be
viewed as special cases in CPE. We further draw insights for earlier approaches
through CPE and propose improved algorithms based on those insights.

3.1 Motivation

To conquer CLL, recent approaches [1–4,11] mainly focus on applying different
transformation and surrogate loss functions to the ordinary classifier, as summa-
rized in Table 1. This paradigm of reduction to ordinary, however, faces some lim-
itations. For instance, as [1] points out, the URE approach suffers from the large
variance in the gradients. Besides, it remains unclear how some of them behave
when the transition matrix is biased. Also, those methods only studied using neu-
ral networks and linear models as base models. It is unclear how to easily cast other
traditional models for CLL. These limitations motivate us to sidestep them with
a different perspective—reduction to complementary probability estimates.

3.2 Methodology

Overview. The proposed method consists of two steps: In training phase, we
aim to find a hypothesis f̄ that predicts the distribution of complementary labels
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well, i.e., an f̄ that approximates P (ȳ |x). This step is motivated by [2,11],
which involve modeling the conditional distribution of the complementary labels
P (ȳ |x), and [12], which uses similar idea on noisy-label learning. What is differ-
ent in our framework is the decoding step during prediction. In inference phase,
we propose to predict the label with the closest transition vector to the pre-
dicted complementary probability estimates. Specifically, we propose to predict
ŷ = argmink∈[K] d

(
f̄(x), Tk

)
for an unseen instance x, where d denotes a loss

function. It is a natural choice to decode with respect to T because the transition
vector Tk = (P (ȳ = 1 | y = k), . . . , P (ȳ = K | y = k))� is the ground-truth dis-
tribution of the complementary labels if the ordinary label is k. In the following
paragraph, we provide further details of our framework.

Training Phase: Probability Estimates. In this phase, we aim to find a
hypothesis f̄ that predicts P (ȳ |x) well. To do so, given a hypothesis f̄ from
hypothesis set H̄, we set the following complementary estimation loss to opti-
mize:

R(f̄ ; �) = E(x,y)∼D
(
�(f̄(x), P (ȳ |x, y))

)
(1)

where � can be any loss function defined between discrete probability distribu-
tions. By the assumption that complementary labels are generated with respect
to the transition matrix T , the ground-truth distribution for P (ȳ |x, y) is Ty, so
we can rewrite Eq. (1) as follows:

R(f̄ ; �) = E(x,y)∼D
(
�(f̄(x), Ty)

)
(2)

The loss function above is still hard to optimize for two reasons: First, the
presence of ordinary label y suggests that it cannot be accessed from the comple-
mentary dataset. Second, as we only have one complementary label per instance,
it becomes questionable to directly use the empirical density, i.e., the one-hot
vector of the complementary label eȳ to approximate Ty as it may change the
objective.

Here we propose to use the Kullback-Leibler divergence for the loss function
to solve the two issues mentioned above with the following property:

Proposition 1. There is a constant C such that

E
(x,ȳ)∼D̄

�(f̄(x), eȳ) + C = E
(x,y)∼D

�(f̄(x), Ty) (3)

holds for all hypothesis f̄ ∈ H̄ if � is the KL divergence, i.e., �(ŷ, y) =∑K
k=1 −yk(log ŷk − log yk).

The result is well-known in the research of proper scoring rules [5,9]. It allows
us to replace the Ty by eȳ in Eq. (2) because the objective function only differs
by a constant after the replacement. This suggests that minimizing the two
objectives is equivalent. Moreover, the replacement makes the objective function
accessible through the complementary dataset because it only depends on the
complementary label ȳ rather than the ordinary one.
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Formally speaking, minimizing Eq. (2) becomes equivalent to minimizing the
following surrogate complementary estimation loss (SCEL):

R̄(f̄ ; �) = E(x,ȳ)∼D̄
(
�(f̄(x), eȳ)

)
(4)

By using KL divergence as the loss function, we have that

R̄(f̄ ; �) = E(x,ȳ)∼D̄
(− log f̄ȳ(x)

)
(5)

with f̄ȳ(x) being the ȳ-th output of f̄(x). Next, we can use the following empir-
ical version as the training objective: 1

N

∑N
i=1 − log f̄ȳi

(xi). According to the
empirical risk minimization (ERM) principle, we can estimate the distribution
of complementary labels P (ȳ |x) by minimizing the log loss on the complemen-
tary dataset. That is, by choosing f̄∗ with f̄∗ = argminf̄∈H̄

1
N

∑N
i=1 − log f̄ȳi

(xi),
we can get an estimate of P (ȳ |x) with f̄∗.

In essence, we reduce the task of learning from complementary labels into
learning probability estimates for multi-class classification (on the complemen-
tary label space). As the multi-class probability estimates is a well-researched
problem, our framework becomes flexible on the choice of the hypothesis set.
For instance, one can use K-Nearest Neighbor or Gradient Boosting with log
loss to estimate the distribution of complementary labels. The flexibility becomes
superior to the previous methods, who mainly focus on using neural networks
to minimize specific surrogate losses. It makes them hard to optimize for non-
differentiable models. In contrast, the proposed methods directly enable existing
ordinary models to learn from complementary labels.

Inference Phase: Decoding. After finding a complementary probability esti-
mator f̄∗ during the training phase, we propose to predict the ordinary label by
decoding: Given an unseen example x, we predict the label ŷ whose transition
vector Tŷ is closest to the predicted complementary probability estimates. That
is, the label is predicted by

ŷ = argmin
k∈[K]

d
(
f̄∗(x), Tk

)
(6)

where d could be an arbitrary loss function on the probability simplex and Tk is
the k-th row vector of T . We use dec(f̄ ; d) to denote the function that decodes
the output from f̄ according to the loss function d. The next problem is whether
the prediction of the decoder can guarantee a small out-sample classification
error R01(f) = E(x,y)∼D If(x) �=y.

We propose to use a simple decoding step by setting L1 distance as the loss
function for decoding:

dec(f̄ ;L1) (x) = argmin
y∈[K]

‖Ty − f̄(x)‖1 (7)

This choice of L1 distance makes the decoding step easy to perform and provides
the following bound that quantifies the relationship between the error rate and
the quality of probability estimator:
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Proposition 2. For any f̄ ∈ H̄, and distance function d defined on the proba-
bility simplex ΔK , it holds that

R01

(
dec(f̄ ; d)

) ≤ 2
γd

R(f̄ ; d) (8)

where γd = mini�=j d(Ti, Tj) is the minimal distance between any pair of transi-
tion vector. Moreover, if d is the L1 distance and � is the KL divergence, then
with γ = mini�=j‖Ti − Tj‖1, it holds that

R01

(
dec(f̄ ;L1)

) ≤ 4
√
2

γ

√
R(f̄ ; �) (9)

The proof is in Appendix A.2. In the realizable case, where there is a tar-
get function g that satisfies g(x) = y for all instances, the term R(f̄ ; �KL)
can be minimized to zero with f̄� : x �→ Tg(x). This indicates that for a suf-
ficiently rich complementary hypothesis set, if the complementary probability
estimator is consistent (f̄ → f̄�) then the L1 decoded prediction is consistent
(R01

(
dec(f̄ ;L1)

) → 0). The result suggests that the performance of the L1

decoder can be bounded by the accuracy of the probability estimates of com-
plementary labels measured by the KL divergence. In other words, to obtain an
accurate ordinary classifier, it suffices to find an accurate complementary prob-
ability estimator followed by the L1 decoding. Admittedly, in the non-realizable
case, R(f̄ ; �KL) contains irreducible error. We leave the analysis of the error
bound in this case for the future research.

Another implication of the Proposition 2 is related to the inaccurate tran-
sition matrix. Suppose the complementary labels are generated with respect to
the transition matrix T ′, which may be different from T , the one provided to the
learning algorithm. In the proposed framework, the only affected component is
the decoding step. This allows us to quantify the effect of inaccuracy as follows:

Corollary 1. For any f̄ ∈ H̄, if d is the L1 distance and � is the KL divergence,
then

R01

(
dec(f ;L1)

) ≤ 4
√
2

γ

√
R(f̄ ; �) +

2ε
γ

. (10)

where γ = mini�=j‖Ti−Tj‖1 is the minimal L1 distance between pairs of transition
vectors, and ε = maxk∈[K]‖T ′

k − Tk‖1 denotes the difference between T ′ and T .

Validation Phase: Quality of Probability Estimates. The third implica-
tion of Proposition 2 is an alternative validation procedure to the unbiased risk
estimation (URE) [3]. According to Proposition 2, selecting the best-performing
parameter minimizes the right hand side of Eq. (9) among all hyper-parameter
choices minimizes the ordinary classification error. This suggests an alternative
metric for parameter selection: using the surrogate complementary estimation
loss (SCEL) on the validation dataset.
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Table 2. A unifying view of earlier approaches and proposed algorithms through the
lens of reduction to probability estimates, where U denote the uniform transition
matrix. Two versions of Forward Correction are considered: General T denotes the
original version in [11], and the Uniform denotes the case when the transition layer is
fixed to be uniform. Proof of the equivalence is in Appendix B.

Method Hypothesis set Decoder

Fwd (general T ) [11] {x �→ T �f(x; θ) : θ ∈ Θ} argmaxk((T
�)−1f̄(x))k

Fwd (uniform) [11] {x �→ U�f(x; θ) : θ ∈ Θ} argmink‖f̄(x) − Uk‖1

SCL [1] {x �→ U�f(x; θ) : θ ∈ Θ} argmink‖f̄(x) − Uk‖1

DM [2] {x �→ sm(1 − f(x; θ)) : θ ∈ Θ} argmink‖f̄(x) − Uk‖1

CPE-I (no transition) {x �→ f(x; θ) : θ ∈ Θ} argmink‖f̄(x) − Tk‖1

CPE-F (fixed transition) {x �→ T �f(x; θ) : θ ∈ Θ} argmink‖f̄(x) − Tk‖1

CPE-T (trainable transition) {x �→ T (W )�f(x; θ) : θ ∈ Θ, W ∈ R
K×K} argmink‖f̄(x) − Tk‖1

Although the proposed validation procedure does not directly estimate the
ordinary classification error, it provides benefits in the scenarios where URE
does not work well. For instance, when the transition matrix is non-invertible,
the behavior of URE is ill-defined due to the presence of T−1 in the formula
of URE: Ex,ȳ eȳT−1�(f(x)). Indeed, replacing T−1 with T ’s pseudo-inverse can
avoid the issue; however, it remains unclear whether the unbiasedness of URE
still holds after using pseudo-inverse. In contrast, the quality of complementary
probability estimates sidesteps the issue because it does not need to invert the
transition matrix. This prevents the proposed procedure from the issue of an
ill-conditioned transition matrix.

3.3 Connection to Previous Methods

The proposed framework also explains several earlier approaches as its special
cases, including (1) Forward Correction (Fwd) [11], (2) Surrogate Complemen-
tary Loss (SCL) with log loss [1], and (3) Discriminative Model (DM) [2], which
are explained in Table 2 and Appendix B. By viewing those earlier approaches
in the proposed framework, we provide additional benefits for them. First, the
novel validation process can be applied for parameter selection. This provides an
alternative to validate those approaches. Also, we fill the gap on the theoretical
explanation to help understand those approaches in the realizable case.

On the other hand, the success of Fwd inspires us to reconsider the role
of transition layers in the framework. As the base model’s output f(x; θ) is
in the probability simplex ΔK , the model’s output T�f(x; θ) lies in the con-
vex hull formed by the row vectors of T . If the transition matrix T provided
to the learning algorithm is accurate, then such transformation helps control
the model’s complexity by restricting its output. The restriction may be wrong,
however, when the given transition matrix T is inaccurate. To address this issue,
we propose to allow the transition layer to be trainable. This technique is also
used in label-noise learning, such as [6]. Specifically, we propose three methods
in our Complementary Probability Estimates framework: (a) CPE-I denotes
a model without a transition layer (b) CPE-F denotes a model with a fixed
additional layer to T (c) CPE-T denotes a model with a trainable transition



Reduction from Complementary-Label Learning to Probability Estimates 477

layer. To make the transition layer trainable, we considered a K × K matrix W .
A softmax function was applied to each row of W to transform it into a valid
transition matrix T (W ) =

(
sm(W1), sm(W2), . . . , sm(WK)

)�. For a base model
f , the complementary probability estimates of CPE-T for a given instance x
would be T (W )�f(x; θ). Note that we use the L1 decoder for CPE-I, CPE-F,
and CPE-T.

4 Experiments

In this section, we benchmark the proposed framework to the state-of-the-art
baselines and discuss the following questions: (a) Can the transition layers
improve the model’s performance? (b) Is the proposed L1 decoding competi-
tive to Max? (c) Does the transition matrix provide information to the learning
algorithms even if it is inaccurate? We further demonstrate the flexibility of
incorporating traditional models in CPE in Sect. 4.3 and verify the effectiveness
of the proposed validation procedure in the Appendix.

4.1 Experiment Setup

Baseline and Setup. We first evaluate CPE with the following state-of-the-
art methods: (a) URE-GA: Gradient Ascent applied on the unbiased risk esti-
mator [3,4], (b) Fwd: Forward Correction [11], (c) SCL: Surrogate Comple-
mentary Loss with negative log loss [1], and (d) DM: Discriminative Models
with Weighted Loss [2]. Following the previous work, we test those methods on
MNIST, Fashion-MNIST, and Kuzushiji-MNIST, and use one-layer mlp model
(d-500-c) as base models. All models are optimized using Adam with learning
rate selected from {1e-3, 5e-4, 1e-4, 5e-5, 1e-5} and a fixed weight decay 1e-4
for 300 epochs. The learning rate for CPE is selected with the Surrogate Com-
plementary Estimation Loss (SCEL) on the validation dataset. For the baseline
method, it is selected with unbiased risk estimator (URE) of the zero-one loss.
It is worth noting that the validation datasets consist of only complementary
labels, which is different from some previous works.

Transition Matrices. In the experiment of clean transition matrices, three
types of transition matrices are benchmarked in the experiment. Besides the
uniform transition matrix, following [2,11], we generated two biased ones as
follows: For each class y, the complementary classes Y\{y} are first randomly
split into three subsets. Within each subset, the probabilities are set to p1,
p2 and p3, respectively. We consider two cases for (p1, p2, p3): (a) Strong :
( 0.75

3 , 0.24
3 , 0.01

3 ) to model stronger deviation from uniform transition matrices.
(b) Weak : ( 0.45

3 , 0.30
3 , 0.25

3 ) to model milder deviation from uniform transition
matrices. In the experiment of noisy transition matrices, we consider the Strong
deviation transition matrix Tstrong to be the ground-truth transition matrix,
and a uniform noise transition matrix 1

K1K to model the noisy complementary
label generation. We generated complementary labels with the transition matrix



478 W.-I. Lin and H.-T. Lin

Table 3. Comparison of the testing classification accuracies with different transition
matrices (upper part) and different noise levels (lower part).

MNIST Fashion-MNIST Kuzushiji-MNIST

Unif. Weak Strong Unif. Weak Strong Unif. Weak Strong

URE-GA 90.3 ± 0.2 87.8 ± 0.9 33.8 ± 8.1 79.4 ± 0.7 75.7 ± 2.0 32.3 ± 4.5 65.6 ± 0.8 62.5 ± 1.1 23.3 ± 5.4
SCL 94.3 ± 0.4 93.8± 0.4 27.5 ± 19.8 82.6 ± 0.4 81.2 ± 0.1 28.5 ± 10.8 73.7± 1.4 71.2± 2.9 20.7 ± 4.8
DM 91.9 ± 0.6 90.2 ± 0.3 26.7 ± 4.6 82.5 ± 0.3 80.3 ± 1.1 24.8 ± 5.0 65.6 ± 2.9 64.5 ± 2.7 20.1 ± 3.2
Fwd 94.4± 0.2 91.9 ± 0.3 95.3 ± 0.4 82.6 ± 0.6 83.0± 1.0 85.5 ± 0.3 73.5 ± 1.6 63.1 ± 2.6 74.1 ± 4.8
CPE-I 90.2 ± 0.2 88.4 ± 0.3 92.7 ± 0.8 81.1 ± 0.3 79.2 ± 0.5 81.9 ± 1.4 66.2 ± 1.0 62.5 ± 0.9 73.7 ± 1.0
CPE-F 94.4± 0.2 92.0 ± 0.2 95.5±0.3 83.0± 0.1 83.0± 0.3 85.8± 0.3 73.5 ± 1.6 64.6 ± 0.5 75.3± 2.6
CPE-T 92.8 ± 0.6 92.1 ± 0.2 95.2 ± 0.5 83.0± 0.1 83.0± 0.3 85.8± 0.3 63.6 ± 0.4 64.6 ± 0.4 74.2 ± 2.8

λ = 0.1 λ = 0.2 λ = 0.5 λ = 0.1 λ = 0.2 λ = 0.5 λ = 0.1 λ = 0.2 λ = 0.5

URE-GA 31.8 ± 6.4 27.8 ± 8.2 28.1 ± 4.1 27.3 ± 5.5 28.6 ± 4.1 26.3 ± 2.0 24.5 ± 4.6 21.1 ± 2.2 19.8 ± 2.1
SCL 25.1 ± 11.7 24.7 ± 8.9 23.8 ± 2.7 26.6 ± 9.2 20.6 ± 6.7 23.2 ± 5.7 20.4 ± 4.6 17.3 ± 2.9 16.8 ± 1.6
DM 26.5 ± 9.1 24.6 ± 6.5 22.6 ± 1.3 24.1 ± 5.1 23.6 ± 6.7 22.6 ± 2.9 20.0 ± 3.0 19.2 ± 3.1 18.2 ± 1.6
Fwd 88.3 ± 8.7 83.9 ± 10.7 71.6 ± 18.4 84.8± 0.6 80.2 ± 6.2 62.9 ± 20.1 72.8 ± 5.6 67.6 ± 7.5 54.7 ± 12.4
CPE-I 92.4 ± 0.7 92.0 ± 0.8 87.6 ± 1.4 81.7 ± 1.4 81.3 ± 1.4 78.2 ± 1.5 73.0 ± 0.7 71.6 ± 0.9 62.7 ± 1.6
CPE-F 94.3 ± 0.5 93.6 ± 0.5 89.0 ± 1.4 84.1 ± 0.8 83.0 ± 1.1 78.4 ± 2.5 76.1± 1.3 73.7 ± 1.5 63.7 ± 1.5
CPE-T 94.4± 0.5 93.7± 0.5 89.6± 0.9 84.1 ± 0.8 83.2± 1.1 78.9± 2.0 76.1± 1.3 73.9± 1.6 64.2± 1.2

Table 4. Comparison of testing accuracies of decoders when the baseline models use
fixed transition layers. The parameters are selected from the one with smallest SCEL
on the validation dataset.

MNIST Fashion-MNIST Kuzushiji-MNIST

Unif. Weak Strong Unif. Weak Strong Unif. Weak Strong

Max 94.4 ± 0.2 92.0 ± 0.2 95.5 ± 0.2 83.0 ± 0.1 83.3± 0.2 86.1± 0.5 73.5 ± 1.6 64.8± 0.5 75.3 ± 2.6
L1 94.4 ± 0.2 92.0 ± 0.2 95.5 ± 0.3 83.0 ± 0.1 83.0 ± 0.3 85.8 ± 0.3 73.5 ± 1.6 64.6 ± 0.5 75.3 ± 2.6

λ = 0.1 λ = 0.2 λ = 0.5 λ = 0.1 λ = 0.2 λ = 0.5 λ = 0.1 λ = 0.2 λ = 0.5

Max 94.4± 0.3 93.5 ± 0.3 84.5 ± 4.1 85.0± 0.3 84.0± 0.5 76.5 ± 2.5 76.4± 1.1 73.8± 1.2 59.9 ± 3.4
L1 94.3 ± 0.5 93.6± 0.5 89.0± 1.4 84.1 ± 0.8 83.0 ± 1.1 78.4± 2.5 76.1 ± 1.3 73.7 ± 1.5 63.7± 1.5

(1 − λ)Tstrong + λ 1
K1K , but provided Tstrong and the generated complementary

dataset to the learners. The parameter λ controls the proportion of the uniform
noise in the complementary labels. The results are reported in Table 3.

4.2 Discussion

Can Transition Layers Improve Performance? The answer is positive in
both clean and noisy experiments. We observe that CPE-F and CPE-T out-
perform CPE-I in both settings, demonstrating that the transition layer help
achieve higher performances, no matter the provided transition matrix is clean
or not. Also, we observe that CPE-T outperforms CPE-F in the noisy set-
ting, especially when the noise factor λ is large. It demonstrates that by making
transition layers trainable, the model can potentially fit the distribution of com-
plementary labels better by altering the transition layer. In contrast, CPE-F
is restricted to a wrong output space, making it underperform CPE-T. The
difference makes CPE-T a better choice for noisy environment.

Is L1 competitive with Max? As analyzed in Sect. 3.3, Fwd and CPE-F only
differ in the decoding step, with the former using Max and the latter using L1.
We provide the testing accuracies of these decoders when the base models are
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Table 5. Comparison of testing accuracies of CPE with traditional models. Boldfaced
ones outperform the baseline methods based on single-layer deep models.

MNIST Fashion-MNIST Kuzushiji-MNIST

Model Unif. Weak Strong Unif. Weak Strong Unif. Weak Strong

CPE-KNN 93.1 ± 0.1 92.6 ± 0.1 94.5 ± 0.4 79.1 ± 0.4 77.8 ± 0.6 79.0 ± 1.7 74.9± 0.8 73.7± 0.8 80.4± 1.3
CPE-GBDT 86.9 ± 0.4 86.0 ± 0.3 90.3 ± 0.9 79.8 ± 0.4 78.0 ± 0.4 81.4 ± 1.1 60.6 ± 0.4 56.6 ± 1.8 68.4 ± 2.1

λ = 0.1 λ = 0.2 λ = 0.5 λ = 0.1 λ = 0.2 λ = 0.5 λ = 0.1 λ = 0.2 λ = 0.5

CPE-KNN 93.7 ± 0.4 93.4 ± 0.4 91.9± 1.1 78.7 ± 1.9 78.5 ± 1.9 76.6 ± 1.9 77.2± 1.1 75.9± 1.6 73.2± 1.7
CPE-GBDT 89.7 ± 1.0 88.6 ± 1.2 84.0 ± 1.7 80.6 ± 1.7 80.0 ± 1.6 76.0 ± 2.2 66.7 ± 2.4 64.7 ± 2.4 55.8 ± 3.1

CPE-F in Table 4. It is displayed that the Max decoder outperform L1 in most
noiseless settings; however, when the transition matrix is highly inaccurate (λ =
0.5), we observe that the L1 decoder outperform the Max decoder. This suggests
that L1 could be more tolerant to an inaccurate transition matrix. These results
reveal that a deeper sensitivity analysis of different decoders, both empirically
and theoretically, would be desired. We leave this as future studies.

Discussion of T -agnostic models Among the baseline methods, URE-GA,
SCL and DM are ones that does not take T as inputs or assumes T is uniform,
which we called T -agnostic models. Those models perform well when the transi-
tion matrix is just slightly deviated from the uniform one, but their performances
all dropped when the deviation from uniform becomes larger. As we discussed in
Sect. 3.3, the result can be interpreted to be caused by their implicit assumption
on uniform transition matrices, which brings great performance on uniform tran-
sition matrices but worse performance on biased ones. In contrast, we observed
that all variations of CPE have similar testing accuracies across different tran-
sition matrices, demonstrating that CPE does exploit the information from the
transition matrix that helps the models deliver better performance.

4.3 Learn from CL with Traditional Methods

As discussed in Sect. 3, the proposed framework is not constrained by deep mod-
els. We explored the possibility of applying traditional methods to learn from CL,
including (a) k-Nearest Neighbor (k-NN) and (b) Gradient Boosting Decision
Tree (GBDT). We benchmarked those models in the same settings and reported
the restuls in Table 5. It displays that traditional models, specifically, k-NN, out-
perform all the methods using deep models in Kuzushiji-MNIST, indicating the
benefit of the proposed CPE’s flexibility in using non-deep models.

5 Conclusion

In this paper, we view the CLL problem from a novel perspective, reduction
to complementary probability estimates. Through this perspective, we propose
a framework that only requires complementary probability estimates and prove
that a simple decoding step can map the estimates to ordinary labels. The frame-
work comes with a theoretically justified validation procedure, provable tolerance
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in noisy environment, and flexibility of incorporating non-deep models. Empiri-
cal experiments further verify the effectiveness and robustness of the proposed
framework under broader scenarios, including non-uniform and noisy comple-
mentary label generation. We expect the realistic elements of the framework to
keep inspiring future research towards making CLL practical.
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Abstract. Semi-Supervised Text Classification (SSTC) aims to explore
discriminative information from unlabeled texts in a self-training man-
ner. These methods pre-train the deep classifier on labeled texts. Recent
works further fine-tune the model on the combination of labeled texts and
pseudo-labeled texts generated by the pre-trained deep classifier. How-
ever, the model’s performance largely depends on the quality of pseudo-
labels. To tackle such an issue, we propose a novel approach, namely
Self-paced Semantic-level Contrastive Learning (S2CL) for SSTC. S2CL
imposes a self-paced pseudo-label generator to improve the quality of
pseudo-labels. We innovatively propose robust supervised learning and
semantic-level contrastive learning modules to alleviate the model’s over-
sensitivity to pseudo-labels’ quality. Empirically, S2CL significantly out-
performs the state-of-the-art methods on benchmark datasets with 0.3%
- 4.6% improvements on Micro-F1 and 0.3% - 11.1% improvements on
Macro-F1. Furthermore, we establish a practical dataset, i.e., Events39, to
provide a benchmark for evaluating the robustness against domain-shift of
SSTC methods. The experimental results demonstrate the effectiveness of
S2CL on Events39.

Keywords: Semi-supervised learning · Contrastive learning · Text
classification

1 Introduction

SSTC draws much attention from the community. Conventional approaches
solely perform supervised learning on labeled texts, but such approaches do not
explore useful information from unlabeled data. With the development of pre-
training and fine-tuning frameworks, researchers explore learning the deep rep-
resentation using labeled and unlabeled texts by following a self-training scheme.
Specifically, such an approach first pre-trains the model on labeled texts only,
and then the unlabeled texts are assigned corresponding pseudo-labels by the
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Fig. 1. Performance comparison conducted on the Events39 dataset with a specific
train-val-test split, where S2CL is our method, S2TC-BDD [13] denotes a baseline
trained on labeled and pseudo-labeled data without meticulous filtering, and SL denotes
a baseline only trained on labeled data using the BDD loss [13]. (a) Evaluating the
compared methods on the unseen test set. (b) Evaluating the methods on the seen
labeled training set. (c) Evaluating the methods on the seen unlabeled training set. S2CL
consistently achieves the best performance. S2TC-BDD beats SL in (c) but falls short
in (b), which supports that the discriminative information from the labeled training set
captured by S2TC-BDD degenerates when training the model on the pseudo-labeled
training set without further techniques to improve the quality of pseudo-labels.

pre-trained model. In the regular training phase, the deep classifier trains on
the mixture of labeled and pseudo-labeled texts. However, the quality of the
pseudo-label is susceptible to the performance of the pre-trained model. Such a
learning paradigm may degenerate the discriminability of learned representations
for labeled texts. Therefore, the discriminative information from the unlabeled
texts is insufficiently explored. We demonstrate a performance comparison in
Fig. 1 to support our viewpoint.

Contrastive learning [10,17,20] achieves state-of-the-art in self-supervised
representation learning. The fundamental intuition behind the behavior of bench-
mark contrastive approaches is that pulling an anchor and a positive examples,
i.e., positive pair, together in the hidden space while pushing negative samples
away from the anchor, i.e., negative pair. Self-supervised contrastive methods
explore discriminative information from unlabeled data without human annota-
tion. A loss for supervised learning to leverage such a representation capability
in supervised learning is proposed [12], which builds on the contrastive self-
supervised literature. Unlike self-supervised contrastive learning methods, such
an approach explores multiple positive pairs by considering the category infor-
mation of labeled data. In the field of SSTC, we reckon that appropriately per-
forming the supervised contrastive approach to explore filtered pseudo-labeled
data may promote state-of-the-art performance.

To this end, we propose a novel method, namely Self-paced Semantic-level
Contrastive Learning (S2CL), which sufficiently explores discriminative infor-
mation from unlabeled texts by leveraging a self-paced pseudo-label generator
(PLG) to achieve pseudo-labels with high-confidence and jointly performing the
robust supervised learning (RSL) and semantic-level contrastive learning (SLCL)
modules. Specifically, we propose two variants for PLG: the learnable confi-
dence thresholding filtering and the top-κ confidence filtering, which empower
our method to sift out trusted pseudo-labeled texts logically. The issue of the
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pseudo-label’s over-sensitivity to the quality of the pre-trained model can be par-
tially alleviated. For RSL, we apply the BDD loss, proposed by [13], to achieve
balanced label angle variances, which can decrease the empirical risk caused
by the imbalanced distribution of labeled (or pseudo-labeled) texts. To further
explore useful information for SSTC, we innovatively perform SLCL to jointly
contrast the labeled texts, the filtered pseudo-labeled texts, and the unlabeled
texts, which is achieved by treating multiple data augmentations of the examples
from the same class, i.e., data with the same label or pseudo-label, as positives
while others as negatives.

To provide a benchmark for evaluating the robustness against domain-shift
of SSTC methods, we establish a new dataset, i.e., Events39. Unlike the pub-
lic datasets that mostly contain texts from a single domain, our established
dataset includes four significant domains, i.e., Artificial Intelligence, Security,
Military Conflicts, and News. Another crucial merit of Events39 is that the self-
established dataset has multiple data sources, including news sites, Twitter, etc.,
which supports that compared with benchmark datasets, Events39 is more vari-
ous and practical. To compare S2CL with the state-of-the-art SSTC methods, we
conduct extensive experiments on benchmark datasets and Events39. The exper-
imental results demonstrate the superiority of S2CL under different amounts of
unlabeled data. The contributions of our approach are three-fold:

– We propose a self-paced pseudo-label generator with two variants to improve
the quality of pseudo-label generation and further alleviate the over-
sensitivity of pseudo-labels on the quality of the pre-trained model.

– We innovatively perform robust supervised learning and semantic-level con-
trastive learning to sufficiently explore the discriminative information in a
semi-supervised manner.

– We establish a practical dataset, i.e., Events39, to provide a benchmark for
evaluating the robustness against domain-shift of SSTC methods, which con-
tains tweets and news of 39 types representing different types of event collec-
tions from four major domains.

2 Related Work

2.1 Semi-Supervised Text Classification

With the development of the pre-trained language model, recent SSTC methods
[9,13,18,22] are built on the pre-training and fine-tuning framework, which per-
forms deep representation learning on generic data, followed by supervised learn-
ing for downstream tasks. For example, the Variational Auto Encoder (VAE)
method [9] first pre-trains a VAE on unlabeled texts and then trains a classifier
on the representations of labeled texts computed by the pre-trained VAE. The
Virtual Adversarial Training (VAT) method [18] mainly focuses on deep self-
training, which can jointly learn deep representation and classifier using both
labeled and unlabeled texts in a unified framework. Later, Unsupervised Data
Augmentation (UDA) [22] first utilizes data augmentation techniques and applies
consistency loss between the predictions of unlabeled texts and corresponding
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augmented texts. S2TC-BDD [13] proposes an SSTC method with a balanced
depth representation, which applies the angular margin loss, and performs Gaus-
sian linear transformation to achieve balanced label angle variances.

Unlike traditional SSTC methods, we propose a self-paced pseudo-label gen-
erator to further improve the quality of pseudo-labels. In addition to using
pseudo-labeled data in iterative training for supervised learning, we introduce
semantic-level contrastive learning and fully use label information.

2.2 Contrastive Learning

Semi- or self-supervised learning achieves impressive improvement in the fields
of image representation learning [3,15,16], graph representation learning [5–7],
multi-model learning [14], natural language processing [11], etc. Many recent
successes [1,4] are primarily driven by instance-wise contrastive learning, aiming
at embedding augmented representations of the same sample close to each other
while trying to push away embeddings from different samples. However, the
implicit grouping effect of Instance-CL is less stable and more data-dependent
since no labels are available. Consequently, the supervised contrastive learn-
ing method [12] extends the self-supervised batch contrastive approach to the
fully-supervised setting and proposes a loss for supervised contrastive learning.
However, rare works conduct in-depth research on SSTC with semi-supervised
contrastive learning. Moreover, the utilization of pseudo-labels in current works
could be more meticulous.

It should be noted that label information is not required in instance-wise
CL, which ignores semantic information in labels and leads to a decrease in the
quality of representation learning. To better learn semantic information in labels
and pseudo labels, we innovatively propose semantic-level CL in this paper.

3 Methodology

3.1 Overview of S2CL

As demonstrated in Fig. 2. Given a training dataset D, limited labeled text
set Dl =

{(
xl

i,y
l
i

)}Nl

i=1
and a large unlabeled text set Du =

{
xu

j

}Nu

j=1
are fed

into the encoder F to obtain the corresponding deep representations f l and
fu. Specifically, xl

i and xu
j denote the word sequences of labeled and unlabeled

texts. yl
i ∈ {0, 1}K denote the corresponding one-hot label vector of xl

i, where
yl

ik = 1 if the text is associated with the k − th label, or vice versa. Nl, Nu, and
K denote the numbers of labeled texts, unlabeled texts, and category labels,
respectively. We use a one-linear-layer classifier head C for prediction. Meanwhile,
the label features {wi}K

i=1 obtained from C are sent to PLG with fu to generate
pseudo-labels yp

i . Specifically, the unlabeled texts with pseudo-labels are further
filtered to get trusted pseudo-labeled texts. We then adopt robust supervised
learning on representations of pseudo-labeled and labeled data, denoted by fp

and f l, respectively. Meanwhile, operator R replaces the unlabeled texts with the
trusted pseudo-labeled data. We feed all data representations, which now can be
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Fig. 2. A visualized pipeline of the proposed S2CL.

represented as S = {f l, fu, fp}, into SLCL. In addition, the details of the BERT-
based encoder F and classification head C are available in the supplementary.

3.2 Self-Paced Pseudo-Label Generator

We introduce the self-paced pseudo-label generator, i.e., PLG, to improve the
quality of pseudo-labels. In detail, We propose two variants for PLG:

1) Learnable confidence thresholding filtering. We sift out the trusted
pseudo-labels by

Ỹp = Cat(+)

[

Sum(1)

[
ReLU

[
Yu− Extend

(
τ,Shape (Yu)

)]
]]

, (1)

where Shape (·) is a matrix shape getter function, Extend (·, ·) is a matrix extend-
ing function, ReLU [·] is an activation function to eliminate the negative elements
of the matrix, Sum(1) [·] is a dimension-wise summation function, Cat(+) [·] is a
concatenation function only performing on the positive vectors, Yu denotes the
original matrix containing {yp

i }Nu

i=1, Ỹp denotes the index of filtered pseudo-
labels, and τ is a learnable value. We train τ by back-propagating LRSL. Then,
we further derive the filtered pseudo-label matrix by

Yp = Filter
[
Yu, Index

(
Ỹp

)]
, (2)

where Yp denotes the filtered matrix containing {yp
i }Np

i=1, and Filter [·, ·] is the
filtering function that is based on the target index.

2) Top-κ confidence filtering. We propose a simple yet effective filtering
approach to derive trusted pseudo-labeled texts by

Ỹp = Cat(κ)
[
Sort

[
Max(1) (Yu)

]]
, (3)

where Max(1) (·) is a dimension-wise maximum function, Sort [·] is a sort function
in a descending order, and Cat(κ) [·] is a concatenation function only performing
on the top-κ vectors. The filtered pseudo-label matrix is derived by Eq. 2.
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Fig. 3. The structure of top-κ confidence filtering PLG.

Then, to avoid the over-uniformity of the derived pseudo-label distributions
Yp, we perform a sharpen function:

yp
i = Sharpen (yp

i , T ) =
(yp

i )1/T

∥
∥
∥(yp

i )1/T
∥
∥
∥
1

,∀i ∈ [Np] (4)

where ‖·‖1 is the �1-norm of vectors, and Np denotes the total number of filtered
pseudo-labels. When T → 0, the pseudo-label distribution tends to be the one-
hot vector. After sharpening, we get the pseudo-labels of partial unlabeled data.

As shown in Fig. 3, we first calculate the cosine similarity between fu and
wi, after normalization by the softmax function, we get Yu = {yp

i }Nu

i=1, showing
probabilities of unlabeled data in different categories. Considering that the qual-
ity of the pseudo-label is an important factor affecting the performance of the
model performance [13], we further impose the self-paced pseudo-label filtering
approach to guarantee the high credibility of pseudo-labels. After filtering, we
derive Yp = {yp

i }Np

i=1 and then apply a sharpen function with a temperature T
to avoid the over-uniformity of the derived pseudo-label distributions of Yp.

In all the experiments, we adopt top-κ confidence filtering PLG, which out-
performs the other variant. Further, we discuss variants of PLG in Sect. 4.4.

3.3 Robust Supervised Learning

In supervised learning, we adopt the BDD loss [13], which alleviates the prob-
lem of margin bias problem caused by the large difference between representa-
tion distributions of labels in SSTC. BDD loss suppose that the label angles
are drawn from each label-specific Gaussian distribution

{N (
μk, σ2

k

)}K

k=1
, and

transfer them into the ones with balanced
{N (

μk, σ̂2
)}K

k=1
, σ̂2 =

∑K
k=1 σ2

k

K by
performing the following linear transformations to the angles:

ψk (θik) = akθik + bk, ∀k ∈ [K], (5)

where
ak =

σ̂

σk
, bk = (1 − ak) μk. (6)

With these linear transformations {ψk(·)}K
k=1, all angles become the samples

from balanced angular distributions with the same variances, e.g., ψk (θik) ∼
N (

μk, σ̂2
)
. Accordingly, the BDD loss can be rewritten as:
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Fig. 4. An example of semantic-level contrastive learning (SLCL).

LBDD{xi, yi;φ} =
K∑

k=1

yik log
es(cos(ψk(θik))−yikm)

∑K
j=1 es(cos(ψj(θij))−yijm)

, (7)

where φ denotes the model parameters; θik is the angle between fi and wk; s
and m control the rescaled norm and magnitude of cosine margin, respectively,
following the value in S2TC-BDD, and

cos (θik) =
f�

i wk

‖fi‖2 ‖wk‖2
, (8)

where ‖ · ‖2 denotes the �2− norm of vectors; fi and wk denote the deep repre-
sentation of text xi and the weight vector of label k, respectively.

3.4 Semantic-Level Contrastive Learning

We apply Semantic-Level Contrastive Learning to the combination of labeled,
unlabeled, and trusted pseudo-labeled texts. For data augmentation, two slightly
different vector representations are generated after an input text passes the same
BERT model twice [8]. We treat these two different representations as data aug-
mentations of the same sample. The given augmentations will first pass a Pro-
jection head g(·), which is a two-layer perception (MLP) mapping augmented
representations to another latent space where the contrastive loss is calculated.
Unlike instance-level contrastive learning, which only treats data augmentations
of the same sample as positives, we innovatively propose a semantic-level con-
trastive learning method. Taking class label information into account results in
an embedding space where elements of the same class are more closely aligned
than in the self-supervised case [12]. Data with the same label may have similar
semantics. Accordingly, we treat many positives per class in addition to many
negatives. Positives are drawn from all data augmentations of the same class
(data with the same label or pseudo-label), while others are negatives.

As demonstrated in Fig. 4, suppose that all augmented data in certain batch is
S = {f l : {al

1,a
l
2,b

l
1,b

l
2}, fp : {ap

1,a
p
2}, fu : {xu

1 ,xu
2}}. Here, al

1,a
l
2 are features

of samples with label a. ap are features of those initially unlabeled data but
pseudo-labeled as label a by PLG, which have similar semantic characters with
al. xu denotes the data still unlabeled after PLG. Accordingly, {al

1,a
l
2,a

p
1,a

p
2}

are treated as positive samples while those unlabeled and different labeled data
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that possess different semantic characters, i.e., {bl
1,b

l
2,x

u
1 ,xu

2}, are considered
as negative samples.

Then Semantic-level Contrastive Learning Loss is defined to enforce max-
imizing the consistency between all positive samples compared with negative
samples, which can be rewritten as:

LSLCL = −
N∑

i=1

1
Nyi

− 1

N∑

j=1

li�=j lyi=yj
ln

exp (si,j/t)

exp (si,j/t) +
∑N

k=1 lyi �=yk
exp (si,k/t)

,

(9)
where N represents a mini-batch size, yi and yj represent the label of the anchor
sample i and the sample j, respectively. Nyi

represents the number of samples
whose label is yi in a mini-batch. li�=j ∈ {0, 1}, lyi

= yj and lyi �=yk
are similar

indicator functions. For instance, li�=j = 1 if i �= j; otherwise, li�=j = 0. si,j is the
cosine similarity between the high-level feature vectors of the sample i and the
sample j; t is the temperature hyper-parameter.

3.5 Connecting RSL and SLCL

We combine the losses of RSL and SLCL to derive the final loss of S2CL:

LS2CL = LRSL + λ · LSLCL, (10)

where λ is a hyper-parameter to control the balance between LRSL and LSLCL.

4 Experiments

4.1 Datasets and Baselines

We conduct experiments on three public datasets: AG News [23], Yelp [23],
Yahoo [2], and a self-established dataset, Events391.

Table 1. A brief introduction of the pro-
posed Events39.

Dataset #Domain #Class #Train #Test

AG News [23] 1 4 120,000 7,600

Yelp [23] 1 5 650,000 50,000

Yahoo [2] 1 10 1,400,000 50,000

Events39 4 39 81,900 35,100

Self-established Datasets. There
are 39 types of data, representing
different types of event collections,
including Artificial Intelligence, Secu-
rity, Military Conflicts, and News
obtained from Twitter and news sites.
The comparison between datasets is
shown in Table 1.

Baselines. We compare our method with the following methods: NB+BE [19];
BERT+AM [21]; VAMPIRE [9]; VAT [18]; UDA [22]; S2TC-BDD [13].

Furthermore, the detailed implementation is available in the supplementary.
1 https://github.com/XiaYWilson/Events39-Dataset.

https://github.com/XiaYWilson/Events39-Dataset
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Table 2. Experimental results varying the number of labeled texts Nl. The best results
are highlighted in boldface.

Dataset AG News Yelp Yahoo

Nu 20,000

Nl 100 1,000 100 1,000 100 1,000

Metric-F1 Micro Macro Micro Macro Micro Macro Micro Macro Micro Macro Micro Macro

NB+BE 0.834 0.833 0.855 0.855 0.300 0.250 0.355 0.329 0.529 0.489 0.624 0.616

BERT 0.839 0.840 0.878 0.878 0.344 0.324 0.538 0.532 0.564 0.550 0.676 0.671

BERT+AM 0.856 0.856 0.879 0.879 0.399 0.371 0.544 0.535 0.589 0.573 0.679 0.672

VAMPIRE 0.705 0.698 0.833 0.833 0.227 0.144 0.476 0.476 0.389 0.356 0.547 0.545

VAT 0.868 0.867 0.886 0.886 0.224 0.197 0.551 0.548 0.534 0.542 0.685 0.675

UDA 0.855 0.855 0.883 0.883 0.387 0.357 0.554 0.550 0.576 0.567 0.672 0.666

S2TC-BDD 0.872 0.872 0.889 0.889 0.417 0.403 0.552 0.550 0.618 0.595 0.687 0.680

S2CL 0.866 0.866 0.892 0.892 0.438 0.423 0.554 0.546 0.631 0.625 0.690 0.687

Table 3. Experimental results varying the number of unlabeled texts Nu.

Dataset AG News Yelp

Nl 100

Nu 200 2,000 20,000 200 2,000 20,000

Metric-F1 Micro Macro Micro Macro Micro Macro Micro Macro Micro Macro Micro Macro

NB+BE 0.696 0.695 0.752 0.751 0.834 0.833 0.307 0.279 0.302 0.286 0.300 0.250

BERT+AM 0.855 0.855 0.856 0.855 0.856 0.856 0.385 0.370 0.393 0.379 0.399 0.371

VAMPIRE 0.329 0.219 0.421 0.341 0.705 0.698 0.238 0.161 0.211 0.124 0.227 0.144

VAT 0.850 0.850 0.870 0.870 0.868 0.867 0.299 0.278 0.294 0.287 0.244 0.197

UDA 0.844 0.843 0.853 0.852 0.855 0.855 0.397 0.344 0.379 0.362 0.387 0.357

S2TC-BDD 0.857 0.857 0.863 0.864 0.872 0.872 0.403 0.372 0.417 0.380 0.417 0.403

S2CL 0.857 0.857 0.871 0.871 0.866 0.866 0.407 0.394 0.433 0.422 0.437 0.423

4.2 Benchmarking S2CL on Public Datasets

Abundant Unlabeled Data. To evaluate the performance of S2CL under
different amounts of data, we conducted experiments in multiple scenarios on
benchmark datasets. For all methods, we conduct the experiments with the num-
ber of unlabeled texts Nu = 20, 000 on all datasets and set the number of labeled
texts Nl with either 100 or 1,000 to simulate the semi-supervised scenarios of
manually annotating a small number of samples. The test set directly uses the
original test set. The classification results of both Micro-F1 and Macro-F1 over
benchmark datasets are shown in Table 2. Generally speaking, our proposed
S2CL outperforms the baselines in most cases.

Rare Labeled Data. As shown in Table 3, S2CL outperforms the existing
deep learning methods. The Micro-F1 and Macro-F1 values can be improved by
0.3% to 11.1% compared with the previous best S2TC-BDD method. Compared
with self-training methods, VAMPIRE, as a pre-trained method, performs poorly
when the unlabeled data is insufficient. In addition, we conduct multiple ablation
studies on the Yahoo dataset. The results are shown in Table 5.
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4.3 Benchmarking S2CL on Events39

As shown in Table 4, we conduct massive experiments on Events39. Since the
number of categories of Events39 is excessively larger than benchmark datasets,
we adjust Nl to 1,000. Considering that S2TC-BDD and S2CL outperform
other methods on benchmark datasets, we majorly compare them on Events39.
S2CLλ=0.1, S2CLλ=0.2, and S2CLλ=0.5 represent the methods that set 0.1, 0.2, and
0.5 as the contrastive learning coefficients, respectively. S2CL can consistently beat
S2TC-BDD by wide margins, and S2CLλ=0.1 outperforms other methods under
various settings. A reasonable explanation is that an appropriate coefficient bal-
ancing the impacts of RSL and SLCL can improve the performance while noting
that S2CL can beat the benchmark method with all settings of λ. Comparative
experiments show that the S2CL has an excellent performance in various scale clas-
sification problems in news, Q&A websites, social media, and other fields, which
supports that S2CL is robust against domain-shift of the SSTC tasks. The results
in Fig. 1 and Table 4 further demonstrate the robustness of S2CL.

Table 4. Results on Events39.

Nl 1,000

Nu 1,000 2,000 10,000 20,000

Metric Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

S2TC-BDD 0.897 0.897 0.896 0.895 0.873 0.872 0.855 0.854

S2CLλ=0.5 0.903 0.901 0.898 0.896 0.854 0.853 0.912 0.911

S2CLλ=0.2 0.910 0.909 0.898 0.897 0.865 0.864 0.897 0.897

S2CLλ=0.1 0.920 0.918 0.915 0.914 0.883 0.882 0.917 0.916
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Fig. 5. Results on PLG’s variants.

Discussion on the Variants of
PLG. As defined in Sect. 3.2, we pro-
pose two variants for PLG. To eval-
uate the proposed variants’ improve-
ments, we compare them on the
Yahoo dataset with Nl = 100 and
Nu = 4, 000. As shown in Fig. 5, the
two columns in the leftmost indicate
learnable confidence thresholding fil-
tering while others indicate top-κ con-
fidence filtering. The learnable confidence thresholding filtering outperforms ran-
domly assigned top-κ confidence filtering when κ = 0.25, while an elaborately
selected κ empowers the top-κ confidence filtering to achieve better performance,
e.g., κ = 0.66. Concretely, we conclude that both variants can improve our
method. The learnable confidence thresholding filtering reduces the time con-
sumption of parameter tuning efficiently, but appropriate top-κ confidence fil-
tering further improves S2CL.
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Ablation Study. We conduct ablation research by replacing each module of
S2CL. We replace the SLCL with the traditional instance-level contrastive learn-
ing, i.e., SICL. Specifically, SICL only treats data augmentations of the same sam-
ple randomly chosen from the minibatch as the positive pairs. We then remove
contrastive learning with retaining PLG to prove the effectiveness of our label fil-
tering strategy, and the corresponding ablation model is S-P. As shown in Table 5,
all variants of S2CL outperform S2TC-BDD, which proves the effectiveness of each
part of the proposed method. Especially our method with Nu = 2, 000 can even
beat S2TC-BDD with Nu = 40, 000, which supports that our method can effi-
ciently model discriminative information from unlabeled data.

Table 5. Ablation study on Yahoo.

Metric Nu S2TC-BDD S-P SICL S2CL
M

ic
ro

-F
1

200 0.6 0.605 0.606 0.617

400 0.593 0.617 0.622 0.617

2,000 0.624 0.629 0.628 0.618

4,000 0.598 0.611 0.612 0.628

2,0000 0.619 0.637 0.636 0.631

Avg 0.609 0.620 0.621 0.621

M
a
c
ro

-F
1

200 0.583 0.603 0.606 0.616

400 0.586 0.603 0.611 0.615

2,000 0.603 0.621 0.621 0.614

4,000 0.59 0.601 0.601 0.624

20,000 0.604 0.63 0.628 0.625

Avg 0.594 0.612 0.613 0.620

Comparing the results of S-P and
S2CL, we observe that the complete
method keeps consistent improvement
over the ablation model, which sup-
ports the superiority of SLCL. From
the results derived by SICL and S2CL,
we observe that the Micro-F1 derived
by S2CL increases from 0.617 to 0.631
as Nu changes from 200 to 20,000. At
the same time, the improvement trend
of SICL is inconsistent, which proves
the steady benefit of SLCL trained on
increasing unlabeled data.

5 Conclusion

This paper proposes a novel learning paradigm to support SSTC, namely S2CL.
Our method improves the quality of the pseudo-labels by utilizing an elaborate
label filtering strategy. We adopt robust supervised learning to reduce the over-
sensitivity of the model to the quality of pseudo-labels. We innovatively leverage
semantic-level contrastive learning to explore discriminative information from
unlabeled data sufficiently. S2CL empirically outperforms the SSTC baseline
methods under different settings, and the ablation study separately proves the
effectiveness of each module of S2CL. To provide a benchmark for evaluating the
robustness against domain-shift of SSTC methods, we establish Events39 and
conduct the comparisons to support the robustness of S2CL.
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Abstract. Recently self-supervised learning is gaining popularity for
Graph Neural Networks (GNN) by leveraging unlabeled data. Augmen-
tation plays a key role in self-supervision. While there is a common set
of image augmentation methods that preserve image labels in general,
graph augmentation methods do not guarantee consistent graph seman-
tics and are usually domain dependent. Existing self-supervised GNN
models often handpick a small set of augmentation techniques that limit
the performance of the model.

In this paper, we propose a common set of graph augmentation meth-
ods to a wide range of GNN tasks, and rely on the Pareto optimality
to select and balance among these possibly conflicting augmented ver-
sions, called Pareto Graph Contrastive Learning (PGCL) framework.
We show that while random selection of the same set of augmentation
leads to slow convergence or even divergence, PGCL converges much
faster with lower error rate. Extensive experiments on multiple datasets
of different domains and scales demonstrate superior or comparable per-
formance of PGCL.

Keywords: graph neural networks · multi-objective Learning ·
self-supervised learning

1 Introduction

Graph Neural Networks (GNNs) is a powerful model for graph-related data and
problems, such as social networks and protein interactions [19,21,22]. It generally
includes a message passing component and a combination component to learn
graph representations in a supervised way.

Human-annotated graph labels are scarce because annotating complex graphs
is tedious, error-prone, and sometimes requires expert knowledge. Recently, self-
supervised learning methods show promising results in computer vision [1,7] and
natural language processing [4] tasks, achieving comparable or superior results
to supervised methods. Inspired by these results, many research studies extend
the contrastive learning idea to GNN [16,17,22]. More specifically, the goal is to
learn low-dimension representations for graphs by solving predefined contrastive
tasks, which typically pull the embeddings of graphs augmented from the same
c© The Author(s) 2023
H. Kashima et al. (Eds.): PAKDD 2023, LNAI 13936, pp. 495–507, 2023.
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Fig. 1. Overview framework of PGCL. We first generate |T | different views from an
original graph G, and then put them all together into the GNN encoder to obtain their
embeddings. The anchor augmentation is chosen by the anchor selector. Finally, we
optimize the overall contrastive loss from a multi-objective optimization perspective.

instance (positive pair) closer and push augmented versions of other graphs
further away (negative pairs).

Recently, various graph data augmentation methods have been proposed,
such as dropping nodes and edges, masking attributes, and adversarial
approaches to generate fake graphs [16,26]. However, while most image aug-
mentation techniques preserve semantics in general, e.g., flipping or cropping
an image of cat is still a cat, graph augmentation techniques do not necessar-
ily guarantee the same label after transformation [20]. Existing self-supervision
GNN methods make various label-consistency assumptions regarding the aug-
mentation techniques they use [22,26].

In addition, unlike image self-supervision where more diverse augmentations
tend to help in general, care must be taken if we use multiple graph augmenta-
tion methods together. Simply combining multiple augmentation methods may
distort the embedding space and lead to conflict [10,25]. We also observe that
randomly selecting two augmentations at every epoch can cause oscillation in
learning curves or even non-convergence; see Sect. 4.1.

In this paper, we develop a novel Pareto Graph Contrastive Learning (PGCL)
framework to incorporate a wide range of graph augmentation techniques for
better GNN performance. PGCL consists of two components, a common repre-
sentation learning backbone to encode various augmented views simultaneously
and an anchor selection module to choose one augmented view among the set for
loss calculation. Our loss function relaxes the NT-Xent loss [1] commonly used in
contrastive learning to take multiple augmented views into account. More specif-
ically, we view different augmentations as separate and possibly conflicting con-
trastive learning tasks and formulate each learning iteration as a multi-objective
optimization problem. Using the Pareto optimality criteria, we try to balance
among these learning tasks to achieve good overall performance. Finally, we use
the multiple gradient descent algorithm [3] to optimize the model.

We summarize our contribution as follows:

– To our best knowledge, PGCL is the first to study the inconsistency among
different augmentations in graph contrastive learning, and use a combina-
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tion of augmentation methods instead of handpicked ones to achieve better
performance.

– We propose a multi-objective optimization algorithm to incorporate multiple
augmentations effectively.

– We propose an augmentation-dependent embedding technique to allow differ-
ent augmentations to maintain their own feature spaces to relax contrastive
loss constraints.

– Extensive experiments show that PGCL outperforms other self-supervision
GNN methods on various real-world datasets.

2 Related Work

2.1 Graph Contrastive Learning

Contrastive learning is one of the most popular representation learning algo-
rithms for graphs. The main idea is to enforce embeddings of views augmented
from the same graph agree with each other and differ from different instances
using a contrastive loss. There are two types of contrastive learning methods
based on data augmentation currently: One is studying how to generate positive
pairs. For example, ADGCL [16] and LP-Info [27] use a learnable prior to catch
crucial graph augmentation information. GraphCL [26] proposes five commonly
used simple data augmentation methods to obtain positive samples. Other meth-
ods investigate negative sampling strategies. For example, curriculum learning
is one way to select negative samples [2,5].

However, none of them consider how to use more data augmentation methods
to improve the model. Previous work [6] finds that unlike visual representation
learning, contrasting more views without any technique does not improve per-
formance, but it ignores whether there are inconsistencies among various aug-
mentations.

2.2 Multi-objective Optimization

Multi-objective optimization (MOO) addresses the problem of finding a set of
Pareto solutions to a composite loss function and finding a gradient descent
direction that optimizes all the objectives. It has been successfully applied to a
wide range of scenarios, such as reinforcement learning [18], Bayesian optimiza-
tion [8] and kernel learning [11]. One of the most relevant methods to our work is
the multi-gradient descent algorithm, which uses Karush-Kuhn-Tucker (KKT)
conditions and provably converges to a point on Pareto set [14].

In our work, we view different graph contrastive losses as multi-objective and
apply a gradient-based multi-objective algorithm.

3 Methodology

3.1 Model Overview

The goal of this paper is to explore the problem of inconsistent objectives
among different data augmentations. As illustrated in Fig. 1, two key designs
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distinguish PGCL from the conventional framework. First, PGCL optimizes all
augmentation views in one iteration from a multi-objective optimization per-
spective instead of randomly picking one from an augmentation pool. Second, an
augmentation-dependent embedding technique is proposed to relax constraints
in the latent space. This helps to reduce the inconsistency among different aug-
mentations in the contrastive loss. Overall, the framework consists of two main
components:

Anchor Augmentation Selector. Data augmentation aims at generating
more training data via applying certain transformations without semantic
changes. It is artificially pre-defined and represented as prior knowledge for
semantic invariance. Recent research on visual representation learning shows dif-
ferent views of images help encoders to learn rich representations. Unlike images
standard augmentations, e.g., rotating, cropping, etc., applying more augmenta-
tions on graphs is not a trivial task. Here, we consider two types: (1) node-space
augmentations and change a certain ratio of nodes; (2) structure-space features
and operation on initial connectivity by deleting edges and adding edges.

Given a graph G ∈ G in the dataset, its augmentation is denoted as t(G),
regarded as a distribution defined over G, conditioned on G, and we select the
same augmentation pool T as [25], includeing NodeDrop (D), Subgraph (S),
EdgePert (P), Identical (I) and AttrMask (M). It is worth noting that our
framework can handle more data augmentations and has better results with
more augmentation without hyperparameter tuning.

For a real-world graph G, it undergoes all graph data augmentations in T
to obtain the augmented views {ti(G)}|T |

i=1. Then, we design an anchor selec-
tor to choose the anchor augmentation contrasted with other augmented views.
Since varying the anchor augmentation may cause significant variance during
the training procedure, we fix the anchor once it is selected to ensure stability.
To this end, we propose an exploration scheme that aims at choosing the anchor
augmentation nearest to everyone and containing the most relevant information
with remains. In particular, anchor augmentation is the solution to the following
minimizing problem:

tanchor = arg min
ti

−
∑

i�=j

I(zti ; ztj ), (1)

where zti and ztj denotes the graph representations respectively. Recall that
minimizing the contrastive loss equivalently maximizes the mutual information
between latent representations, and we just need to iterate through all the aug-
mentation to determine the anchor. We also notice that too aggressive augmen-
tation, such as NodeDrop in the RDT-B dataset shown in Table 2, being the
anchor augmentation leads to the model performance decrease. The tanchor(G)
and ti(G) are regarded as a positive pair, and we use other graphs ti(Ĝj) in
the same batch as negative samples, denoting them as {(tanchor(G), ti(Ĝj))}B

j=1,
where B means the batch size.
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After obtaining the positive pairs (G, ti(G)), an L-layer GIN [23] encoder f(·)
extracts graph-level representations (h, hti) by using a readout layer. Then, a
non-linear transformation module called projection head appends, as advocated
in [1]. The head projects the representations to a latent space, where contrastive
loss is applied. In this paper, we adopt a two-layer perceptron to derive the latent
representation.

3.2 Specific Augmentation Contrastive Loss

After the graph-level representation extraction, a minibatch of randomly sam-
pled N graphs generates N ∗ (|T | − 1) pairs (ztanchor

, zti)(|T | refers to the cardi-
nality of the augmentation set). For each particular augmentation. To maximize
the mutual information between positive pairs (ztanchor

, zti), we adopt the nor-
malized temperature-scaled cross-entropy loss (NT-Xent). NT-Xent for the n-th
graph with augmentation ti is defined as:

Lti = − log
exp(sim(zn, zn,ti)/τ)

∑N
n′=1,n′ �=n exp(sim(zn, zn′,ti)/τ)

, (2)

where ztanchor
, zti are re-annotated as zn, zn,ti for the n-th graph in the mini-

batch, τ denotes the temperature parameter. Negative samples are generated
from the other N-1 graph within the same minibatch. sim(zn, zn,ti) denotes
the similarity between two views, and we employ the cosine similarity metric
as sim(zn, zn,ti) = zT

n zn,ti/‖zT
n ‖‖zn,ti‖. Minimizing Lti enforces specific aug-

mented view ti(G) closer with anchor augmented view tanchor(G) than other
negative pairs in the same minibatch. The overall loss is computed across every
augmentation method. Here, we assign a contrastive loss for each augmentation
with anchor and have |T | − 1 objectives.

3.3 Instantiation of PGCL as Multi-Objective Optimization

Inspired by Pareto optimality [14], we follow the same philosophy to optimize
every contrastive loss function without another one being worse off. Specifically,
we want all augmented views of the same graph to be similar to the anchor.
Hence, we regard each contrastive loss as an objective and optimize together.
PGCL framework is instantiated as a multi-objective optimization form:

min
θenc,θproj

L(θenc, θproj) = min Lt1(θ
enc, θproj), . . . ,

min Lt|T |−1(θ
enc, θproj),

(3)

where θ
enc

is the GNN backbone encoder parameter shared by all the augmenta-
tions, and θproj is the parameter of the projection head. Note that if |T | equals
2, PGCL degenerates into typical graph contrastive learning, and we refer to
this as VanillaGCL. The goal of Eq. 3 is to minimize all the contrastive as much
as possible without competition to achieve a Pareto optimal.
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Search the Descent Direction. We consider the reduction of |T | − 1 con-
trastive losses simultaneously, which means we need to identify a direction ω to
update vector θ from a given initial point θ0. Therefore, the directional deriva-
tives of the contrastive loss should all be strictly-positive:

∀i = 1 . . . |T | − 1 : (∇Lti(θ
0), ω) > 0. (4)

Then, ω is one of the descent directions and can be numerically minimized
in the convex hall. The parameter θ follows the conventional descent procedure
as:

θn+1 = θn − ρω, (5)

where ρ determines the step size of descent in each iteration. When ω is small
enough or limited iterations run out, the optimization terminates. If ω equals
0, the current point is desired, also called Pareto-stationary. Pareto-stationary
is a necessary condition for Pareto optimality and pursues such a point in the
convex hull.

In this work, the multiple gradient descent algorithm [3] which leverages the
Karush-Kuhn-Tucker (KKT) conditions is used to find a optimization direction.
ω is defined as the minimum-norm element in the convex hull Ū of the contrastive
loss gradients, and Ū is defined as:

Ū =

⎧
⎨

⎩u ∈ R
N |u =

|T |−1∑

i=1

αi∇Li(θ0);αi ≥ 0(∀i);

|T |−1∑

i=1

αi = 1

⎫
⎬

⎭ .

(6)

[3] showed that either ω is equal to 0, which means contrastive loss is Pareto-
stationary, or ω is the search direction that can optimize every loss. Identifying
a solution in Eq. 6 can be equivalently solving the following quadratic-form con-
strained minimization problem in R

|T |−1:

min
α

αT Mα, s.t.

{
‖α‖1 = 1
α � 0

, (7)

where Mi,j = (∇θencLti(θ))
T (∇θencLtj (θ)) and α is initialized to

( 1
|T |−1 , . . . , 1

|T |−1 )
To avoid ω being influenced by the gradients of the small norms in the aug-

mentation family, we normalize the gradients without changing the direction
and the problem remains unchanged since the scaling of ω does not affect Eq. 6.
Specially, we consider Newton’s method-based normalization:

ui =
Lti(θ)

‖∇Lti(θ)‖22
∇Lti(θ). (8)



Multi-Augmentation Contrastive Learning as MOO for GNN 501

Model Optimization. We adopt the Frank-Wolfe algorithm, viewing Eq. 7 as
a first-order optimization algorithm, moving towards minimizer of the target
function. To be concrete, at k -th iteration, we consider the linear approximation
of Eq. 7 and find optimal sk to minimize sT αM under constraints ‖s‖1 = 1
and s � 0. Then step size β is determined by solving the problem arg minβ(αk +
β(sk−αk))T M(αk+β(sk−αk)). Finally, α is updated by αk+1 = αk+β(sk−αk),
and we apply Eq. 5 to optimize PGCL model. After repeating the above steps,
we were able to obtain a descending direction that can optimize all losses at the
same time, and avoid competition to a certain degree.

3.4 Augmentation-Dependent Embedding Subspace

Mixing diverse augmentations yields more robust and high-quality embeddings
in the latent space. However, this hybridity in latent space may bring up a new
problem: aggressive augmentations distort the training distribution more [10,25].
To cope with this problem, we don’t enforce the semantic meaning invariant to
all kinds of augmentations. Instead, we expect each embedding to maintain its
own feature to relax the constraints by contrastive loss.

Due to the complexity of the graph data, it is difficult to measure whether
the original graph is semantically consistent with the new graph after transfor-
mation. Thus, after an aggressive transformation, the semantic meaning of the
new graph may be altered. Instead of projecting them to the invariant space,
we allow the embedding to be variant to various augmentations. To this end, we
add an augmentation-dependent embedding loss Lvar to the objective:

Lvar =
∑

i�=j

λ

‖zi − zj‖22
[i 	= anchor][j 	= anchor], (9)

where λ is a hyper-parameter and controls to what extent we expect embeddings
are different. Hence, the representation will contain both invariant (Eq. 2) and
variant (Eq. 9) features which will transfer to downstream tasks regardless of
whether the new graph is distinct. We integrate the augmentation-dependent
embedding subspace into the PGCL framework, referred to as PGCL+.

4 Experiments

4.1 Conflict Among Augmentations

We employ two different field datasets to study the inconsistency among differ-
ent contrastive losses without any techniques, and the training loss is shown in
Figure 2. The same GNN architecture is used as GraphCL [26] in all the set-
tings. In Fig. 2a and Figure 2b, we adopt the IA augmentation pair and observe
the loss of unoptimized pairs. Results show that when we force the embeddings
of AttrMask view to be similar to the original graph’s, it makes other aug-
mented views’ far away, such as NodeDrop in PROTEINS dataset and EdgePert
on the NCI1 dataset. It implies that different domain attributes vary largely.
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Fig. 2. Training loss versus epoch. (a) Training loss when optimizing IM augmentation
pair on PROTEINS dataset., (b) Training loss when optimizing IM augmentation pair
on NCI1 dataset, (c) VanillaGCL training loss on NCI1 dataset, (d) PGCL training loss
on NCI1 dataset. I: Identity, P: EdgePert, S: Subgraph, M: AttrMask, D: NodeDrop.

In molecules filed, AttrMask and EdgePert are in conflict, but in bioinformatics,
they are not. We also find that AttrMask and Subgraph have a high consistency,
which means optimizing one could benefit the other.

To further illustrate PGCL’s superiority, we also compare it with a model
which uses multiple augmentations without any technique on the NCI1 dataset.
We iteratively select two augmentations from T in every epoch, referred to as
VanillaGCL. Figure 2c presents the loss trend versus epoch. The loss floats up
and down, and when it rises, it means the optimization objectives may be a
consistent augmentation. We can see that both IS and IM fall around the sixth
epoch, but IP and ID are rising, which is also consistent with Fig. 2a and Fig. 2b.
Compared to the VanillaGCL, PGCL has a more stable descent process and a
smaller training loss, as shown in Fig. 2d. We also investigate their performance,
and we can see from table 1 that PGCL has a significant performance enhance-
ment against VanillaGCL, especially 4% on MUTAG. This also suggests that
when applying graph contrastive learning, we need to consider the inconsistency
between different objectives and avoid it to get a better model.

4.2 Unsupervised Representation Learning

Experiments Setting. We evaluate our model on seven datasets on TUDataset
[12], covering a wide range of tasks. We adopt the same GNN architectures with
default hyper-parameters as in GraphCL and λ is set to 0.001. Specifically, our
model consists of 3-layer Graph Isomorphism Network (GIN) [23] with 32 hidden
dimensions and a sum pooling readout function.
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Evaluation Protocol. The unsupervised learning evaluation protocol [26]
which we follow consists of two stages: (1) pretraining (using the whole dataset
without any labels): only GNN is trained in this stage in a self-supervised way
and does not need labels; (2) classification task: the weights of GNN is fixed and
we only train a simple SVM using the output of GNN from the stage (1). Here,
we use the 10-fold cross validation method to evaluate the performance of SVM.

Compared methods. For comparison, Apart from graph kernel methods
WL [15] and DGK [24], we also compare with other state-of-the-art unsuper-
vised methods, containing graph2vec [13], contrastive methods GraphCL [26],
JOAO [25], and GraphMAE [9].

Performance Analysis. The results are reported in Table 1. None of the pre-
vious work could be the best across all datasets. We find that our model achieves
state-of-the-art performance across 5 of 6 datasets and still has a competitive
performance on the other datasets.

Compared to JOAO, which uses the same augmentation pool and automat-
ically selects data augmentation pairs, PGCL outperforms JOAO on all seven
datasets. Note that JOAO also assigns a weight to each objective function, but it
makes these weights tend to be equal. Such prior knowledge may degrade the per-
formance of the model. Experiments show that on MUTAG and RDT-B datasets,
PGCL even has a 3.4% and 4.5% improvement, which further illustrates the
importance of considering conflict. Besides, PGCL is more computation-efficient
since the objective number of PGCL is |T | − 1 while |T |2 in JOAO.

GraphCL has a pre-fixed augmentation sampling rule, and only two augmen-
tations are used during the training procedure. This exhaustive manual tuning
prevents the further application of the model. As can be seen in Table 1, PGCL
beats GraphCL in all datasets greatly with a 1.75% improvement, which also
illustrates the need to combine more augmentations.

To address the challenge in Sect. 4.1, we then investigate the effect of
augmentation-dependent embedding subspace, namely PGCL+. We can find
that variant loss improves PGCL’s performance, which further echoes our conjec-
ture that excessively enforcing different views to be similar may lead to conflict,
and allowing them to be somewhat different can alleviate this problem.

Effect of Anchor Choice. To better understand the effect of anchor augmen-
tation, we conduct experiments on five datasets with four kinds of augmenta-
tions, and the results are shown in Table 2. Specifically, we investigate MISP
augmentations on MUTAG, DD, and PROTEINS. Since nodes in IMDB-B and
RDT-B datasets do not have attributes, we replace AttrMask as NodeDrop, and
the bold letter denotes the anchor. We find that different datasets have differ-
ent preferences for the anchor, none of which could achieve the best through
all datasets. EdgePert outperforms in bioinformatics and molecules fields, while
Identity prevails in social networks. Besides, results show that if we use an unrea-
sonable augmentation as the anchor, such as NodeDrop on the RDT-B dataset,
the performance of the model will be decreased.
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Table 1. The performance of different unsupervised representation learning on the
TUDataset. Results in bold indicate the best-reported accuracy, and - means the results
are not available in the published paper.

Dataset NCI1 PROTEINS DD MUTAG RDT-B RDT-M5K

WL 80.01± 0.50 72.92± 0.56 - 80.72± 3.00 68.82± 0.41 46.06± 0.21

DGK 80.31± 0.46 73.30± 0.82 - 87.44± 2.72 78.04± 0.39 41.27± 0.18

graph2vec 73.22± 1.81 73.30± 2.05 - 83.15± 9.25 75.78± 1.03 47.86± 0.26

GraphCL 77.87± 0.41 74.39± 0.45 78.62± 0.40 86.80± 1.34 89.53± 0.84 55.99± 0.28

JOAO 78.36± 0.53 74.07± 1.10 77.40± 1.15 87.67± 0.79 86.42± 1.45 56.03± 0.27

GrpahMAE 80.40± 0.30 75.30± 0.39 - 88.19± 0.36 88.01± 0.19 -

VanillaGCL 78.13± 0.81 75.17± 0.78 78.56± 0.95 87.73± 1.50 89.45± 0.57 55.77± 0.27

PGCL 79.44± 0.43 75.82± 0.41 79.28± 0.60 90.26± 0.71 90.56± 0.94 56.44± 0.25

PGCL+ 79.64± 0.54 76.04± 0.81 80.09± 1.02 91.10± 0.69 90.96± 0.53 56.46± 0.23

Table 2. Employing different augmentations as the anchor. Bold indicates the anchor
augmentation. I: Identity, P: EdgePert, S: Subgraph, M: AttrMask, D: NodeDrop.

MISP PISM SIPM ISPM

MUTAG 91.25 91.31 90.38 89.98

DD 79.79 80.38 79.11 79.79

PROTEINS 76.02 76.45 75.29 76.19

DISP PISD SIPD ISPD

IMDB-B 72.50 72.30 72.40 72.70

RDT-B 89.30 90.65 90.71 91.37

The Number of Objectives. To investigate the effect of the number of objec-
tives, we change the size of T . For the case where the number is 2, PGCL degen-
erates, and we report the GraphCL accuracy since it elaborately handpicks the
best augmentation pair for every dataset. For more augmentations cases, we ran-
domly select augmentations from IPDSM as T and report the accuracy. Table 3
shows the advantages of combining more objectives. As the number of objectives
increases within a certain range, PGCL’s performance improves. It is rational
that combining more augmentation makes the model more robust, thus gener-
ating a better representation.

We notice that on MUTAG and PROTEINS datasets, the best performance
is achieved when using four augmentations. This classification accuracy reduc-
tion may be caused by the bad augmentations, because sometimes graph aug-
mentation techniques do not guarantee the same label after transformation [20].
Therefore, how to find better augmentations for contrastive learning needs to be
studied in future work.
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Table 3. Effect of the number of augmentation.

2 (GraphCL) 3 4 5

MUTAG 86.80 90.41 91.26 90.76

NCI1 77.84 78.97 79.47 79.50

PROTEINS 74.39 75.65 76.02 75.61

5 Conclusion

In this paper, we study the inconsistency when forcing different graph views
to be similar when randomly selecting augmentation methods and propose an
effective framework for self-supervised learning called PGCL. Extend experi-
ments show that optimizing one augmentation pair may hurt other augmenta-
tion pairs, thus distorting the training procedure. We believe this work sheds
light on how to use more graph augmentations together in contrastive learning
to improve model performance. We conduct comprehensive experiments, which
show PGCL improves downstream convergence speed and achieves superior per-
formance than state-of-the-art methods on various datasets.

Acknowledgement. We would like to express our gratitude to the anonymous review-
ers for their valuable comments and suggestions that helped improve the quality of this
work.
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Abstract. Recent advances in BERT-based models has significantly
improved the performance of many applications on text data, such as
text classification, question answering, e-commerce search and recom-
mendation system, etc. However, the labelling of text data is often com-
plex and time-consuming. While active learning can interactively query
and label the data, the effectiveness of existing active learning meth-
ods is mostly limited by static text embedding approaches and by the
insufficiency of training data. To address this critical problem, in this
research we propose a BERT-based adversarial semi-supervised active
learning (B-ASAL) model. In our approach, we use generative adversar-
ial modelling and semi-supervised learning to guide the fine-tuning of
the BERT and to optimize its corresponding text embeddings and fea-
ture encodings. The adversarial generator paired with a semi-supervised
classifier guided the BERT model to adjust its feature encoding to best
fit the distribution of not only class labels but also the discrimination of
labeled and unlabeled data. Moreover, our B-ASAL model selects data
points with high uncertainty and high diversity to be labeled using mini-
max entropy regularization. To our best knowledge, this is the first work
that uses adversarial semi-supervised learning joined with active learn-
ing to guide and optimize feature encoding. We evaluate our method on
various real-world text classification datasets and show that our model
outperforms state-of-the-art approaches.

1 Introduction

Advances in deep learning has transformed the field of natural language pro-
cessing (NLP). BERT-based [4] models are widely used in various NLP tasks:
from text classification to question answering to e-commerce search and recom-
mendation etc. Meanwhile, data labelling, a fundamental bottleneck in machine
learning, becomes a critical problem due to annotation cost and the need of
large amount of labeled data for deep learning NLP tasks. For instance, to build
a question answering (QA) model, a human annotator must first read a piece of
text and then reason about the answer to the question from context. It is even
harder for domain specific labeling task due to the cost of using domain expert.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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In e-commerce, there are very few fine labeled data and professionals are needed
to annotate fine labels to map items to fine-grained categories. Therefore, it is
necessary to consider how to select more informative samples, so that a better
model can be trained with limited labelling capabilities.

Active learning (AL) is one method to collect labeled data cost-efficiently.
The goal is to choose the most relevant data points and then query labels from
an oracle. Using AL, we can query labels for a small subset of the most rele-
vant documents and immediately train a robust model. For instance, leveraging
pre-trained BERT-based language models , task-specific models can be fined-
tuned continuously by incorporating newly annotated samples in each iteration
to boost the model performance. However, the effectiveness of AL learning meth-
ods on NLP tasks is mostly limited by static text embedding, the insufficiency
of training data, and the similarity between labeled and unlabeled data distri-
butions.

This research addresses the exact problems above. To address the static text
embedding problem, we propose an active learning framework while BERT is
fine-tuned in the training progress where the text embedding and feature encod-
ing are both optimized for the training data. To address the problem of the insuf-
ficiency of labeled training data, we use adversarial semi-supervised learning to
utilize unlabeled data for learning effective representations and for generating
new synthetic samples [1] [18]. To discriminate labeled data from unlabeled ones,
we incorporate minimax entropy to measure and differentiate the distributions
of labeled and unlabeled data. We name our method BERT-based adversarial
semi-supervised active learning (B-ASAL). In summary, our contributions in this
research are as follows:

– We propose B-ASAL for learning from partially labeled text data. Our B-
ASAL model integrates active learning with the fine-tuning of BERT, which
guides the BERT to optimize text embedding and feature encoding according
to the distribution of the training data.

– We also introduce in the B-ASAL model a generative adversarial network joint
with semi-supervised learning, a strategy that can utilize unlabeled data and
generalize latent features to select samples for labelling.

– We employ minimax entropy optimization for the unlabeled data to reduce
the distribution gap with labeled data while extracting discriminative features
for selecting highly representative data samples. Moreover, we also employ
conditional entropy maximization in the adversarial network to enhance the
robustness and generate uniform-distributed samples.

– We conduct extensive experiments on public datasets and show that our
model outperforms state-of-the-art approaches.

2 Related Work

Deep Active Learning (DAL). DAL integrates data labeling and deep model
training to improve model performance with minimal amount of labeled data.1

1 In this work, we will only consider the most common pool-based deep active learning.
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The scoring function for labeling can be entropy or confidence-score based. Core-
set active learning [13] selects a small set of points that approximates the shape
of a larger point set using concept of computational geometry. [19] combines
clustering with a pre-trained language model (BERT) to select samples. Vari-
ational adversarial active learning (VAAL) [14] is proposed as a task-agnostic
diversity-based algorithm that samples data points using a discriminator trained
adversarially to discern labeled and unlabeled points.

GAN Semi-supervised Learning. Semi-supervised models are able to
improve the generalization capability by learning from fewer labeled data points
with the help of a large number of unlabeled data points. Semi-Supervised GAN
(SS-GAN) [12] extends standard GAN [7] where the labeled data is used to train
the discriminator, while the unlabeled data (as well as the ones automatically
generated) improve its inner representations. CatGAN [15] proposes categorical
GAN for unsupervised and semi-supervised framework by utilizing unlabeled
data to learn multi-class classifier. Besides, GAN-BERT [2], a semi-supervised
learning model for natural language processing task, enriches the BERT fine-
tuning process with a SS-GAN perspective.

Pre-trained BERT. BERT [4] has been used in combination with AL to select
representative samples to reduce labelling effort for text classification [5,8]. In [5],
it presents a large-scale an empirical study on AL techniques for BERT-based
classification, covering a diverse set of AL strategies and datasets on binary
text classification. [8] also conducts an empirical study by comparing different
uncertainty-based acquisition strategies on two classical NLP multi-class classi-
fication datasets.

Entropy regularization. Entropy regularization has been widely used in var-
ious deep learning models. In the field of domain adaptation, [11] uses entropy
optimization for matching source data to target data distribution. The MAL
framework [6] uses the similar idea and proposes a semi-supervised minimax
entropy-based active learning algorithm in an adversarial manner for image
related tasks. CatGAN [15] and the study of SS-GAN use entropy regularization
[3] to improve generation of images conditioned on class assignment.

3 Learning Framework

In this section, we describe our proposed method, the B-ASAL (the BERT-based
adversarial semi-supervised active learning) model.

3.1 Problem Formulation

We consider exploiting unlabeled data points and formulate semi-supervised gen-
erative adversarial active learning problem as: given an initial labeled data set
Sl : (X l,Y l) = {(xl, yl)}, where l ∈ {1, ...,m} with size M , and a large unla-
beled data pool Su : X u = {(xu)}, where u ∈ {1, ..., n} with size N (M � N)
and yl ∈ {0, 1} is the class label of xl for binary classification, or yl ∈ {1, ...,K}
for multi-class classification. We also have a set of generated adversarial data
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Fig. 1. Workflow of our B-ASAL model. There are Four components in our model: Gen-
erator (G), BERT Encoder (E), Classifier (C) and Discriminator (D). Each component
and loss function has detailed explanations in Sect. 3.2 and 3.3.

points Sg: X g = {(xg)}, pairing with true data points to enhance model learning,
where xg is transformed by noise input {z1, ..., zm+n} ∼ U{0, 1} (i.e. pz) and g
∈ {1, ...,m+n}. For all of feature inputs: X l, X l and X g, we assume they denotes
encoded input through encoder. The AL model M parameterized by θ ∈ Θ is
trained on labeled data with their labels, unlabeled data and adversarial data (i.e.
Sl ∪ Su ∪ Sg). This training can be formalized by the optimization problem:

argmin
θ

L(θ; yi|x ∈ X u ∪ X l ∪ X g, y ∈ Y l), (1)

where L is the loss function composed of supervised loss trained for labeled data,
unsupervised loss trained for unlabeled data and generated fake data. In each
AL cycle, trained model M selects top k% samples (denoted as Sq and Sq ∈ Su)
constrained by query budget limit and a designed acquisition function f(x,M):
argmaxx∈Xu f(x,M|x ∈ X u) to obtain their labels from the oracle. Sl and Su

are then updated in next cycle, and M is retrained on Sl ∪ Su ∪ Sg.

3.2 Proposed Framework: B-ASAL

In this work, we propose a BERT-based adversarial semi-supervised active learn-
ing (B-ASAL) framework. We design each possible component to come up with
a model learning objective and acquisition strategy. The components are: Gen-
erator (G), Classifier (C), Discriminator (D) and BERT Encoder (E) as shown
in Fig. 1.

To utilize unlabeled data, we introduce a semi-supervised GAN framework
built with BERT fine-tuning across the entire training process. In an adversarial
manner, the generator is used to fool the classifier by generating highly realistic
data samples. It takes noise input2 and transforms to map true data distribution.
The transformed noise input is treated as k + 1th addition class for the semi-
supervised learner. To enhance the robustness and reduce mode collapse, the
generator is trained to apply feature matching between generated samples and

2 Here we generate noise following a uniform distribution (which can be easily replaced
by other distributions when needed). We denote noise as: {z1, ..., zn} ∼ U{0, 1}.
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real data. Moreover, conditional entropy maximization over samples from the
generator is employed as well.

The classifier is designed to pair with the generator and can be treated as
a multi-class discriminator for K+1 classes. For labeled data, it is trained to
differentiate k classes and k +1th fake class. For unlabeled data, a minimax loss
is optimized by performing entropy maximization with respect to the predicted
class and entropy minimization with respect to fine-tuned feature encoder. It
reduces the distribution gap while extracting discriminative features. We select
samples having high entropy to be labeled, which indicates these samples are
predicted by the model with high uncertainty.

The discriminator is a binary classifier, we use it to predict whether a sample
is labeled or not based on a latent representation from our encoder. We select
unlabeled data points with low discriminator scores, which indicates that these
samples are sufficiently different from previously labeled ones.

BERT encoder is used as the feature encoder. It is fine-tuned, and the fine-
tuning encoded features are through the logit activation layer of the classifier
and the discriminator. For labeled data, It is trained to maximize the probability
of class assignment from the classifier. It is also trained to differentiate label
and unlabeled data from the discriminator. For unlabeled data, it is trained to
minimize the entropy to have better discriminative features.

In each AL cycle, samples that have high uncertainty and diversity are
selected from unlabeled data for labelling. Detailed steps of our method are
shown in Algorithm 1.

3.3 Learning Objective

Now we discuss the overall cost function by incorporating each decomposed
component, including generator loss (LG), discriminator loss (LD), and classifier
loss (LC). Each type of these losses has supervised loss for labeled data (LL)
and unsupervised loss for unlabeled data (LU ).

Labeled Data Learning BERT Encoder(E) and Classifier (C) are trained to
classify labeled data points correctly into {1, ...,K} class by both standard cross
entropy loss and conditional entropy loss over samples uniformly distributed to
K classes from the generator (G) to achieve optimal classification results. The
generator (G) generates fake data points belonging to K + 1th class. It tries
to minimize the loss between generated fake data points with real data points,
including the loss of feature matching and misclassification loss to K classes,
while the classifier (C) tries to maximize it. This min-max loss is trained through
an adversarial setting and can be denoted as:

LL = −min
G

max
C

LCl + LGl (2)

The loss function of Classifier (C) ( LCl):

LCl = −E(x,y)∈Sl log[p(y ≤ k|x)] − Ez∼pz
Hg[p(y ≤ k|G(z), C)], (3)
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where conditional entropy Hg = −∑m
1 p(y = k|G(z), C)log[p(y = k|G(zm), C)]

and k ∈ {1, ...,K} classes and m ∈ M .
The loss function related to G (LG) includes feature matching loss to make

generated data are very close to the real ones and also considers the error induced
by fake data correctly identified by classifier.

LGl = ‖Ex∈Slf(x) − Ex∈Sgf(x)‖22 − Ex∈Sg log[1 − p(y ≤ k|x)], (4)

where f is the layer with logits through the classifier and fine-tuning encoder.

Unlabeled Data Learning. When training on the unlabeled data, the
unsuprevised loss is LU = Lu

H + LGu , where Lu
H denotes minimax entropy

employed on classifier and feature encoder; Lu
G denotes feature matching loss for

generated samples paired with unlabeled data, same as first term in Ll
G. They

are computed as:
Lu
H = −min

E
max

C
Hs[p(y ≤ k|x)], (5)

where the minimax entropy Hs = −∑K
1 p(y = k|x)log(p(y = k|x) and k ∈

{1, ...,K} classes; we first minimize the entropy in feature encoder to have more
discriminative representation and then maximize entropy in classifier to have a
more uniform feature representation.

Lu
G = ‖Ex∈Suf(x) − Ex∈Sgf(x)‖22, (6)

where this part can be combined with first term of Eq. 4 as learning feature
matching loss for all of generated samples coming from generator.

Discrimitive Learning for Labeled and Unlabeled Data. The diversity of
the data is predicted by a binary classifier (i.e. discriminator denoted as D) that
is trained to distinguish between the labeled and unlabeled encoded features.
The loss function of D is:

LD = −E(x,y)∈Sl log[p(yl|xl)] − E(x,y)∈Su log[p(yu|xu)]. (7)

Acquisition Strategy. In our acquisition strategy, we select data points with
high diversity and high uncertainty to be labeled . The selection criteria are:
(a) high diversity : we use the probability associated with the discriminator’s
(D) predictions as a score to rank samples. The lower the probability, the more
confident D is that it comes from the unlabeled pool. (b) high uncertainty : the
entropy obtained by the classifier on the unlabeled data is used to choose the
data points. A higher entropy value is associated with a lower confidence score.
The top-k% samples that meet both criteria are selected for labeling.
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Algorithm 1. BERT-based Adversarial Semi-Supervised Active Learning (B-
ASAL)
Input: labeled data Sl, unlabeled data Su. Initialize parameters of generator φG,

discriminator γD , classifier σC and BERT encoder βE .
Output: Optimized φG, γD , σC and βE

1: for i = 1 to epochs do
2: Sample batch of size n from Sl labeled and Su unlabeled data |Sl| = |Su| = n
3: Sample {z1, . . . , zm+n} ∈ Sg from the prior Pz

4: Generate encode E(Sl), E(Su) and E(Sg)
5: For labeled data (x, y ∈ Sl):
6: Compute Ll

C from Eq. 3
7: Update C by descending:
8: σC ← σC − λ1�Ll

C

9: For unlabeled data (x ∈ Su):
10: Compute Lu

H from Eq. 5
11: Update E and C by descending/ascending:
12: βE ← βE + λ2�Lu

H

13: σC ← σC − λ3�Lu
H

14: For labeled data (x, y ∈ Sl) and unlabeled data (x ∈ Su ∪ Sg):
15: Compute LG from Eq. 4 and Eq. 6
16: Update G by descending:
17: φG ← φG − λ4�LG

18: Compute LD from Eq. 7
19: Update D by descending:
20: γD ← γD − λ5�LD

21: end for

4 Experiments

To study the effectiveness of our approach, we evaluate model performance on
multiple open public data sets by comparing them with the different sampling
strategy.

Datasets: Total of five data sets are used for evaluation: Fine and Coarse Ques-
tion Classification (QC) [9], Match and Mismatched pair MNLI dataset [16] and
Multi-label emotion data [10].

Experiments Settings: We fetch all of the above data from HuggingFace
datasets library.We run 3 different seeds and 3 epochs for each experiment. We
take the mean of the results. [17]

Performance Evaluation: The model performance is measured by the classi-
fication accuracy on balanced datasets and measuring micro-F1, macro-F1 and
hamming score on imbalanced datasets/multi-label datasets by varying per-
centage of labeled data, ranging from {1%, 2%, ..., 10%} or {0.1%, 2%, ..., 5%}
depending on data size.

Acquisition Strategies: To compare with our acquisition function (i.e. B-
ASAL), we use three baselines: random sampling (Rdm), diversity sampling
(Div) and entropy uncertainty sampling (En).
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Table 1. Comparisons of Sampling Methods on Accuracy. The percentages shown in
the table (and the same for all tables hereafter) refer to the percentages of training
data labeled by active learning.

Method QC-Coarse QC-Fine

1% 2% 5% 10% 20% 30% 1% 2% 5% 10% 20% 30%

Rdm 21.2 36.3 58.3 84.4 92.8 94.4 8.1 11.6 33.9 56.3 72.0 77.8

En 22.1 36.5 81.1 89.1 93.6 94.5 7.2 13.5 38.7 54.9 67.9 75.9

Div 18.7 35.0 58.7 86.5 92.8 94.6 10.5 11.0 45.0 60.8 71.5 75.2

B-ASAL 26.2 42.6 90.4 94.5 95.5 96.3 17.3 19.2 57.4 62.4 76.9 80.8

Table 2. Comparisons of Sampling Methods on F1

Method MNLI-mismatch MNLI-match

0.1% 0.2% 0.5% 1% 2% 5% 10% 0.1% 0.2% 0.5% 1% 2% 5% 10%

Rdm 22.3 40.0 46.4 78.3 76.7 85.2 88.3 21.2 21.4 42.6 58.2 80.0 84.6 85.0

cre En 25.0 31.0 40.7 73.7 79.7 86.3 88.1 24.0 29.3 54.0 69.0 82.0 87.3 91.3

Div 25.0 27.0 42.3 73.7 81.3 86.7 87.0 22.7 37.3 43.0 65.7 71.0 88.0 87.7

B-ASAL 29.0 42.3 55.7 77.0 86.7 89.7 91.7 29.3 39.7 74.3 77.7 83.3 91.0 94.2

Implementation: ForClassifier(C),Discriminator(D),Generator(G),weusethe
Multi-Layer Perceptron (MLP) neural network with one hidden layer activated by
a leaky-relu function followed by a softmax layer for the multi-class prediction and
sigmoid layer for multi-label prediction. The dropout is 0.1 after the hidden layer.
The input noise vector of G is uniformly distributed. BERT Encoder (E) is loaded
from the pre-trained BERT model and fine-tuned through C, D and G.

4.1 Question Answering Classification

Question Classification (QC) dataset [9] has both a six-class (QC-Coarse) and a
fifty-class (QC-Fine) version. Both have 5,452 training data and 500 test data.
Table 1 shows the experiment output. The accuracy performance of QC-Coarse
data can achieve 90%+ when using only 5% labeled data and QC-Fine set
achieves around 80% by using 20% labeled data. Our sampling strategy (i.e.
B-ASAL) achieves much better performance.

4.2 Multi-Genre Natural Language Inference

The Multi-Genre Natural Language Inference (MultiNLI) corpus is a collection
of 433k sentence pairs annotated with textual entailment information [16]. The
task is to infer the relationship between the premise and hypothesis in binary
classification. We evaluated matched and mismatched data sets. The results
are shown in Table 2. The F1-score of mismatch data can achieve 90%+ when
using only 10% labeled data, and match set achieves around 80% by using only
2% labeled data. Our sampling strategy (i.e. B-ASAL) consistently shows much
better performance over the rest three baselines.

4.3 Multi-Label Emotion Classification

SemEval-2010 Task is for multi-label emotion classification (11 emotions)
[10]. Hamming, F1-micro and F1-macro scores are used to evaluate model
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Table 3. Comparisons of Sampling Methods on Multi-label Emotion Dataset

Method Micro-F1 Macro-F1 Hamming

1% 2% 5% 10% 20% 1% 2% 5% 10% 20% 1% 2% 5% 10% 20%

Rdm 19.6 25.0 50.7 57.7 60.6 7.51 11.4 27.1 32.4 38.2 11.5 14.8 34.0 40.5 43.5

En 20.6 23.7 41.1 54.8 56.3 7.6 7.96 18.4 26.8 28.2 12.2 13.4 26.5 37.7 38.9

Div 19.6 23.8 41.0 54.3 55.9 7.9 7.98 25.9 26.5 27.2 11.5 13.6 26.4 37.3 38.1

B-ASAL 23.9 33.9 54.6 58.2 60.9 8.51 13.1 27.3 32.7 38.5 13.7 20.6 37.6 40.8 43.8

Table 4. Ablation Studies on Accuracy

Method QC-Coarse QC-Fine

1% 2% 5% 10% 20% 30% 1% 2% 5% 10% 20% 30%

L-only 20.4 36.0 79.5 91.1 94.2 95.1 8.4 13.4 39.1 59.8 72.9 76.7

No-GAN 25.1 37.3 72.8 79.6 93.2 95.0 13.2 14.1 24.6 43.6 61.7 67.8

BERT 20.1 21.4 50.0 81.6 93.4 95.1 0.8 3.5 17.0 30.5 54.7 64.9

B-ASAL 26.2 42.6 90.4 94.5 95.5 96.3 17.3 19.2 57.4 62.4 76.9 80.8

performance defined by the Task. Our method’s performance outperforms the
other sampling strategies and with only 20% labeled samples, our method can
almost achieve the benchmark performance (as shown in Table 3).

4.4 Further Analysis

To investigate the contribution of each component and understand the benefit
of utilizing the unlabeled data points, we designed several types of experiments
to show the overall effectiveness of B-ASAL.

Labeled-only vs. (Labeled ∪Unlabeled). We study the effectiveness of semi-
supervised learning compared to supervised learning by having GAN component.
The comparison outputs are shown on the row of L-only vs. the row of B-ASAL
in Tables 4 and 5, where L-only denotes only labeled data is used for training with
GAN and B-ASAL is our model utilizing semi-supervised learning with GAN.
The results show that semi-supervised B-ASAL performs better than supervised
GAN where there are only annotated data in training.

With GAN vs. Without GAN. We study the performance of the model
with Generator (G) compared to the model without G. The model without G
is when B-ASAL only has components E, D and C. The output shows on the
row of No-GAN vs. the row of B-ASAL in Table 4 and 5. The results show GAN
generates better performance by utilizing unlabeled data and pairing with the
classifier.

B-ASAL vs. BERT-only. We compare our model performance with the fully
supervised BERT classifier. Results are shown on the row of BERT vs. the
row of B-ASAL in Table 4 and 5. Apparently, B-ASAL outperforms supervised
classification without utilizing GAN and unlabeled data.
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Table 5. Ablation Studies on F1 Score

Method MNLI-mismatch MNLI-match

0.1% 0.2% 0.5% 1% 2% 5% 10% 0.1% 0.2% 0.5% 1% 2% 5% 10%

L-only 23.3 26.6 44.6 47.6 77.3 85.3 87.6 23.2 26.1 44.3 61.6 78.3 86.0 91.2

No-GAN 22.7 29.3 43.2 65.2 71.5 88.3 89.2 23.4 34.3 39.5 60.4 74.7 88.1 88.5

BERT 22.2 26.4 48.3 58.3 65.5 72.7 73.9 26.3 32.1 48.3 58.2 65.4 70.4 71.9

B-ASAL 29.0 42.3 55.7 77.0 86.7 89.7 91.7 29.3 39.7 74.3 77.7 83.3 91.0 94.2

(a) No fine-tuning vs. Fine-tuning BERT (b) MEn vs. MMEn

Fig. 2. Two of our Ablation Studies

Table 6. Comparisons When Labels are Partially Available at Training

Method 20 out of 50 classes 40 out of 50 classes

2% 5% 10% 20% 30% 2% 5% 10% 20% 30%

Random 13.0 29.2 49.4 64.8 75.2 22.7 39.2 57.8 64.8 67.1

En 15.4 27.9 41.5 64.3 64.8 31.1 41.6 59.0 64.4 70.3

Div 15.5 35.0 46.3 65.7 65.9 31.2 48.0 59.6 64.7 71.5

B-ASAL 16.5 38.1 50.5 66.9 75.6 36.1 40.1 60.0 66.6 75.9

BERT Encoder Fine-tuning vs. No Fine-tuning. To demonstrate fine-
tuning BERT plays an important role throughout the entire B-ASAL training,
we study the performance of fine-tuning vs. no fine-tuning (Fig. 2a). It shows the
encoder plays an important role not only as a representation encoder but also
as a collaborator with component of D and C to achieve the optimal results.

Entropy Optimization. For unlabeled data, we perform entropy minimax
optimization. Figure 2(b) plots out the study when minimax optimization
(MMEn) is used for our approach vs. when only entropy minimization (MEn) is
used for extracting discriminative features. It shows entropy value decreases with
the increase of epochs, and the entropy of MMEn is higher than that of MEn,
which demonstrates a more effective optimization of the objective function.
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(a) Pre-Train:
Initialization

(b) Model 1st
epoch: acc=0.32

(c) Sup. classifier:
acc=0.89

(d) B-ASAL:
acc=0.94

Fig. 3. MNL-Match Feature Visualizaton

(a) No En. Regularization
(b) Conditional En. Regularization

Fig. 4. MNL-mismatch: samples generation from G

Robustness. In our method, Classifier (C) chooses data with high uncertainty
for labelling, while Discriminator (D) differentiates labeled data from unlabeled
ones. To evaluate the effectiveness, we studied QC-Fine dataset and randomly
use 20 classes and 40 classes (out of 50) in the initial training set as a labeled pool.
The results are shown in Table 6, which demonstrates our model is less affected
when initially labeled data don’t well represent the entire data distribution.

Discriminative Feature Visualization. We demonstrate the discriminative
features learned from the model. Figure 3 shows the results using 10% labeled
MNL-match data for training: (a) feature encoded from Pre-trained Bert before
tuning, (b) feature learned at first epoch, (c) feature learned by BERT classifier,
and (d) feature learned by B-ASAL. It can be seen that B-ASAL generates more
discriminative features.

Sample Generation. We study the Generator capability and distribution cov-
erage of generated samples. We take MNL-mismatch data (5 classes total) as an
example and use 5% annotated data to train our model. The sample generation
is compared by having conditional entropy regularization on the generator with
not having an entropy regularizer. Figure 4(a) shows the histogram of generated
classes without conditional entropy regularize, and Fig. 4(b) shows the histogram
of generated classes by imposing conditional entropy regularizer. These outputs
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illustrate that the conditional entropy regularizer helped the generator to gen-
erate effective samples to represent true data distribution.

5 Conclusions and Future Work

In this paper, we proposed a BERT encoder-based semi-supervised active learn-
ing algorithm, B-ASAL, which guides the fine-tuning of BERT to better fit
the training data, creates synthetic data to address data insufficiency problems,
and incorporates minimax entropy to differentiate the distribution of labeled
data from that of unlabeled data. We introduced a hybrid sampling strategy
that selects samples that are most diverse and have high uncertainty from class
assignments learned by the multi-class classifier. Our experiments demonstrated
significant improvements over the existing state-of-the-art methods. In future,
we plan to extend this research to more NLP applications such as question-
answering and recommendation systems.

References

1. Chivukula, A.S., Liu, W.: Adversarial deep learning models with multiple adver-
saries. IEEE Trans. Knowl. Data Eng. 31(6), 1066–1079 (2018)

2. Croce, D., Castellucci, G., Basili, R.: GAN-BERT: generative adversarial learning
for robust text classification with a bunch of labeled examples. In: Proceedings of
the 58th Annual Mmeeting of the Association for Computational Linguistics, pp.
2114–2119 (2020)

3. Dai, Z., Yang, Z., Yang, F., Cohen, W.W., Salakhutdinov, R.R.: Good semi-
supervised learning that requires a bad GAN. In: Advances in Neural Information
Processing Systems, vol. 30 (2017)

4. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep
bidirectional transformers for language understanding. arXiv:1810.04805 (2018)

5. Dor, L.E., et al.: Active learning for BERT: an empirical study. In: EMNLP, pp.
7949–7962 (2020)

6. Ebrahimi, S., et al.: Minimax active learning. arXiv preprint arXiv:2012.10467
(2020)

7. Goodfellow, I., et al.: Generative adversarial networks. Commun. ACM 63(11),
139–144 (2020)

8. Jacobs, P.F., Maillette de Buy Wenniger, G., Wiering, M., Schomaker, L.: Active
learning for reducing labeling effort in text classification tasks. In: Benelux Confer-
ence on Artificial Intelligence, pp. 3–29. Springer, Cham (2021). https://doi.org/
10.1007/978-3-030-93842-0 1

9. Li, X., Roth, D.: Learning question classifiers: the role of semantic information.
Nat. Lang. Eng. 12(3), 229–249 (2006)

10. Mohammad, S.M., Bravo-Marquez, F., Salameh, M., Kiritchenko, S.: Semeval-2018
Task 1: Affect in tweets. In: SemEval-2018. New Orleans, LA, USA (2018)

11. Saito, K., Kim, D., Sclaroff, S., Darrell, T., Saenko, K.: Semi-supervised domain
adaptation via minimax entropy. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 8050–8058 (2019)

http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/2012.10467
https://doi.org/10.1007/978-3-030-93842-0_1
https://doi.org/10.1007/978-3-030-93842-0_1


520 X. Pang et al.

12. Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.:
Improved techniques for training GANs. In: Advances in Neural Information Pro-
cessing Systems, vol. 29 (2016)

13. Sener, O., Savarese, S.: Active learning for convolutional neural networks: a core-set
approach. arXiv preprint arXiv:1708.00489 (2017)

14. Sinha, S., Ebrahimi, S., Darrell, T.: Variational adversarial active learning. In:
Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
5972–5981 (2019)

15. Springenberg, J.T.: Unsupervised and semi-supervised learning with categorical
generative adversarial networks. arXiv preprint arXiv:1511.06390 (2015)

16. Williams, A., Nangia, N., Bowman, S.R.: A broad-coverage challenge corpus for
sentence understanding through inference. arXiv preprint arXiv:1704.05426 (2017)

17. Wolf, T., Debut, L., et al.: Huggingface’s transformers: state-of-the-art natural
language processing. arXiv:1910.03771 (2019)

18. Yang, P., Liu, W., Yang, J.: Positive unlabeled learning via wrapper-based adaptive
sampling. In: Proceedings of the 26th International Joint Conference on Artificial
Intelligence, pp. 3273–3279 (2017)

19. Yuan, M., Lin, H.T., Boyd-Graber, J.: Cold-start active learning through self-
supervised language modeling. arXiv:2010.09535 (2020)

http://arxiv.org/abs/1708.00489
http://arxiv.org/abs/1511.06390
http://arxiv.org/abs/1704.05426
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/2010.09535


Theoretical Foundations



Accelerating Stochastic Newton Method
via Chebyshev Polynomial Approximation

Fan Sha1 and Jianyu Pan2(B)

1 School of Mathematical Sciences, East China Normal University,
Shanghai 200241, China

2 School of Mathematical Sciences, Shanghai Key Laboratory of PMMP, East China
Normal University, Shanghai 200241, China

jypan@math.ecnu.edu.cn

Abstract. To solve large scale optimization problems arising from
machine learning, stochastic Newton methods have been proposed for
reducing the cost of computing Hessian and Hessian inverse, while still
maintaining fast convergence. Recently, a second-order method named
LiSSA [12] was proposed to approximate the Hessian inverse with Tay-
lor expansion and achieves (almost) linear running time in optimization.
The approach is very simple yet effective, but still could be further accel-
erated. In this paper, we resort to Chebyshev polynomial and its vari-
ants to approximate the Hessian inverse. Note that Chebyshev polyno-
mial approximation is broadly acknowledged as the optimal polynomial
approximation in the deterministic setting, in this paper we introduce it
into the stochastic setting of Newton optimization. We provide a com-
plete convergence analysis and the experiments on multiple benchmarks
show that our proposed algorithms outperform LiSSA, which validates
our theoretical insights.

Keywords: Stochastic Newton Method · Chebyshev Polynomial ·
Hessian inverse · Condition Number

1 Introduction

In machine learning, we often model many large scale optimal problems as min-
imizing an average of m convex functions fk : Rd → R,

min
x∈Rd

f(x) � 1
m

m∑

k=1

fk(x) (1)
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where m is the number of samples, d is the dimension of parameter x, and fk(x) is
the loss function with respect to the k-th sample. Such optimization problems are
common in machine learning algorithms, such as logistic regressions, smoothed
support vector machines, neural networks.

To solve problem (1), many stochastic optimization algorithms have been
designed, such as stochastic first-order method and stochastic second-order
method, which have the following updating formula:

xt+1 = xt − ηtH
−1(xt)g(xt), t = 0, 1, 2, . . . , (2)

where g(xt) is the gradient of the objective function f(x) at the point xt, ηt is the
step size at the t-th iteration, and H−1(xt) is set differently in different methods.
In the stochastic first-order method, we set H−1(xt) as an identity matrix. One
of the most popular stochastic first-order method is the Stochastic Gradient
Descent (SGD) method [15], which has been widely employed to reduce the
computational cost per iteration. However, SGD has poor convergence property.
In order to accelerate its convergence, many variants have been proposed, such
as SVRG [7], SAGA [2], SDCA [16].

Recently, as a typical stochastic second-order method, Stochastic Newton
Method (SNM) has received great attention due to its fast convergence rate.
For second-order methods, the matrix H−1(xt) is usually the Hessian inverse or
certain constructed Hessian inverse. However, constructing such Hessian matrix
and its inverse require a lot of calculations. To conquer this weakness, some sub-
sampling techniques which only randomly select a subset of samples to construct
a sub-sampled Hessian are proposed to alleviate the computational cost. In [14],
the authors proposed to use the Sample Average Approximation (SAA) approach
to estimate Hessian-vector multiplications. In [3], a sub-sampled Newton method
was proposed where the Hessian approximation is obtained by sub-sampling the
true Hessian and then computing a truncated eigenvalue decomposition. It is
suggested in [13] to sketch the Hessian using random sub-Gaussian matrices or
randomized orthonormal systems. This method requires access to the square
root of the true Hessian.

Rather than estimating the Hessian matrix, some stochastic second-order
methods are proposed to approximate the Hessian inverse, such as S-BFGS [11]
and SB-BFGS [6], which adopt the randomization to the classical L-BFGS algo-
rithm. It is worth mentioning that a second-order method named LiSSA was
proposed in [12] to approximate the Hessian inverse in linear running time by
polynomial approximation. LiSSA is simple yet effective, which directly approx-
imates the Hessian inverse by combining sub-sampling with Taylor expansion.
Moreover, the obtained Hessian inverse is unbiased.

However, we note that the polynomial approximation approach in LiSSA
can be further improved. In deterministic case, Chebyshev polynomial has been
well known for its superior performance on accelerating the convergence of sta-
tionary iterative methods [5]. We expect that introducing Chebyshev polynomial
approximation into stochastic Newton method has big potential to accelerate the
optimization process. Nevertheless, it is non-trivial to apply Chebyshev polyno-
mial approximation in second-order optimization because it is rarely used in
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stochastic settings and it is not easy to analyze it theoretically because of the
complexity of its iterative formula.

In this paper, we propose to utilize Chebyshev polynomial approximation to
accelerate the stochastic Newton method and obtain the Chebyshev Polynomial
accelerated Stochastic Newton Method (CP-SNM). Besides, we also give its two
variants which are easier for implementation. Additionally, we give a complete
theoretical analysis for the convergence of CP-SNM. We conduct experiments
on multiple real datasets and the results show that our new algorithms improve
upon the overall running time of LiSSA, which complements our theoretical
results.

2 Background

In this section, we describe the background of our proposed methods. We first
introduce the polynomial approximation approach proposed in LiSSA, and then
give the recursive formula of Chebyshev polynomial approximation which is the
essential idea of constructing the Hessian inverse in our proposed algorithms.

2.1 Estimator for the Hessian Inverse in LiSSA

The key idea underlying LiSSA is the following fact: If A ∈ R
n×n is non-singular

symmetric and ‖A‖ < 1 (in this paper, ‖ · ‖ denotes the 2-norm), then the
identical equation A−1 = (I − A)A−1 + I leads to a fixed point iteration scheme

Xj+1 = (I − A)Xj + I, j = 0, 1, 2, · · · . (3)

Based on the above recursive formulation, LiSSA construct an unbiased estima-
tor of Hessian inverse ∇−2f .

Definition 1. Given j independent and unbiased samples {Y1, · · · , Yj} of ∇2f ,
define the estimators {∇̃−2f0, · · · , ∇̃−2fj} recursively as follows:

∇̃−2f0 = I and ∇̃−2ft = I + (I − Yt)∇̃−2ft−1 for t = 1, · · · , j.

Note that E[∇̃−2fj ] = ∇−2fj =
j∑

i=0

(I − ∇2f)i, we have E[∇̃−2fj ] → ∇−2f

as j → ∞, which gives an estimator that is unbiased in the limit.

2.2 Chebyshev Polynomial Approximation

To further improve the approximation of the estimator to A−1, we propose to
use the Chebyshev polynomial approach. Let σ(I − A) be the collection of all
the eigenvalues of I − A, and let [a, b] be a interval contains σ(I − A), that is,
σ(I − A) ⊆ [a, b]. For a given X̂0, our new estimators {X̂k, k = 1, 2, . . .} are
defined recursively by

X̂k+1 =
k+1∑

j=0

ak+1,jX̂j with
k+1∑

j=0

ak+1,j = 1, k = 1, 2, . . . .
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Then it holds that

‖X̂k+1 − A−1‖ ≤ max
λ∈σ(I−A)

∣
∣
∣
∣
∣
∣

k+1∑

j=0

ak+1,jλj

∣
∣
∣
∣
∣
∣

‖X0 − A−1‖ ≤ max
a≤t≤b

|pk+1(t)|‖X0 − A−1‖, (4)

where pk+1(t) =
∑k+1

j=0 ak+1,jt
j is a (k + 1)-th degree polynomial satisfying

pk+1(1) = 1. Our purpose is to find a (k + 1)-th degree polynomial qk+1(t)
satisfying qk+1(1) = 1 such that

max
a≤t≤b

|qk+1(t)| = min
p(1)=1, deg(p)≤k+1

max
a≤t≤b

|p(t)|, (5)

where deg(p) denotes the degree of the polynomial p. It is well known that the
unique solution of (5) is given by [4]

qk+1(t) = Tk+1

(
2t − b − a

b − a

) /
Tk+1

(
2 − b − a

b − a

)
, (6)

where Tk+1(t) is the Chebyshev polynomial defined recursively by

T0(t) ≡ 1, T1(t) = t, Tk+1(t) = 2tTk(t) − Tk−1(t), k = 1, 2, · · · . (7)

Taking pk+1(t) = qk+1(t), then we obtain the Chebyshev estimators {X̂k, k =
1, 2, . . .}. By utilizing the three-term recurrence (7), we can compute X̂k recur-
sively as stated in the following proposition.

Proposition 1. Let A be a symmetric positive definite matrix, and let α, β be
the minimum and maximum eigenvalues of A, respectively. For a given X̂0, we
can compute X̂k recursively by

⎧
⎨

⎩
X̂1 = (I − νA)X̂0 + νI,

X̂k+1 = ρk

(
(I − νA)X̂k + νI

)
+ (1 − ρk)X̂k−1, k = 1, 2, ...,

(8)

where ν = 2
α+β , ρ1 = 2 and ρk =

((
1 − 1

4ξ2

)
ρk−1

)−1

with ξ = β+α
β−α .

Proof. See proof in Appendix B.2. 	

If we set A to be the Hessian matrix, then X̂k can be used to approximate

the Hessian inverse. This is the basic idea of our new algorithm.

3 Our Proposed CP-SNM

Consider the objective function f(x) in problem (1), we can apply the recursion
(8) to approximate its Hessian inverse. However, computing its Hessian ∇2f(x)
at each Newton iteration step is very expensive for large m. Therefore, at the
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k-th Newton iteration step, we sample uniformly ik+1 ∈ [1, 2, . . . ,m] and replace
∇2f(x) with ∇2fik+1(x), which is an unbiased sample of ∇2f(x).

Denote the minimum and maximum eigenvalues of ∇2f(x) by α(x) and β(x),
respectively. Then we obtain the stochastic Chebyshev approximation of the
Hessian inverse as follows

⎧
⎨

⎩
X̃1 = (I − ν∇2fi1(x))X̃0 + νI,

X̃k+1 = ρk

((
I − ν∇2fik+1(x)

)
X̃k + νI

)
+ (1 − ρk)X̃k−1, k = 1, 2, . . . ,

(9)

where ν = 2
α(x)+β(x) , ρ1 = 2 and ρk = ((1 − 1

4ξ2 )ρk−1)
−1 with ξ = β(x)+α(x)

β(x)−α(x) .
We call X̃k the k-th stochastic Chebyshev estimator of ∇−2f(x), which is an
unbiased estimator, i.e., lim

k→∞
E[X̃k] = ∇−2f(x).

In the following, we introduce two variants of CP-SNM. Let

βmax(x) � max
k

λmax

(∇2fk(x)
)

and αmin(x) � min
k

λmin

(∇2fk(x)
)
,

where λmax(·) and λmin(·) denote the maximum and minimum eigenvalues of a
given matrix, and define

κ̃ = max
x

βmax(x)
αmin(x)

.

If we set ρk ≡ ρ = 2

1+
√

1−( κ̃−1
κ̃+1 )

2 , then (9) becomes

X̃k+1 = ρ
((

I − ν∇2fik+1(x)
)
X̃k + νI

)
+ (1 − ρ)X̃k−1,

which is the two-step Richardson iteration, and CP-SNM reduces to the Two-
step Richardson accelerated Stochastic Newton Method (TR-SNM).

If we set ρk ≡ 1, then (9) becomes

X̃k+1 =
(
I − ν∇2fik+1(x)

)
X̃k + νI,

which is the one-step Richardson iteration, and CP-SNM reduces to the One-step
Richardson accelerated Stochastic Newton Method (TR-SNM).

The algorithms of CP-SNM, TR-SNM and OR-SNM are described in Algo-
rithm 1. Following LiSSA, we first use some efficient stochastic first-order method
(SGD in our algorithms) to produce a guess x1 so that the function value is
shrank to the regime where we can show the linear convergence. Then we carry
out the stochastic Newton method where the Hessian inverse is replaced by the
stochastic Chebyshev estimator. We control the approximation of the Hessian
inverse by two integers: S1 and S2, where S1 controls the number of unbiased
estimators (we take the average to get a better estimator) and S2 controls the
number of iteration steps of (9).
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Algorithm 1. CP-SNM, TR-SNM and OR-SNM
Input: T (total iteration number of the stochastic Newton method),

T1 (total iteration number for SGD method to produce x1),
f(x) = 1

m

∑m
k=1 fk(x), S1, S2, ν, ξ, κ̃

Output: xT+1

1: Compute x1 with SGD method
2: for t = 1 to T do
3: for i = 1 to S1 do
4: X[i, 0] = ∇f(xt)

5: ρ1 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2, for CP-SNM
2

1+

√
1−( κ̃−1

κ̃+1 )
2
, for TR-SNM

1, for OR-SNM
6: Sample ∇̃2f[i,1](xt) uniformly from

{∇2fk(xt) | 1 ≤ k ≤ m
}

7: X[i, 1] = ν∇f(xt) + [I − ν∇̃2f[i,1](xt)]X[i, 0]
8: for j = 2 to S2 do
9: Sample ∇̃2f[i,j](xt) uniformly from

{∇2fk(xt) | 1 ≤ k ≤ m
}

10: ρj =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
1 − 1

4ξ2
ρj−1

)−1

, for CP-SNM
2

1+

√
1−( κ̃−1

κ̃+1 )
2
, for TR-SNM

1, for OR-SNM

11: X[i, j] = ρj

(
ν∇f(xt) +

(
I − ν∇̃2f[i,j](xt)

)
X[i, j − 1]

)
+(1−ρk)X[i, j−2]

12: end for
13: end for

14: Xt =
1

S1

S1∑

i=1

X[i, S2], xt+1 = xt − Xt

15: end for
16: return xT+1

4 Theoretical Results

We first introduce some concepts which will be used in the theoretical analy-
sis, and then we present some important lemmas. The most challenging is the
derivation of the error bound between our approximated Hessian inverse and
its expectation (see Lemma 2), since stochastic form of matrix polynomial lost
the overall nature of the deterministic form. Finally we give our main theorem
which shows that our algorithm can achieve linear quadratic convergence, and
if the condition number is controlled in a certain range, the convergence of our
algorithm can be confirmed to outperform LiSSA.

We make the following assumptions for the objective function f(x).

Assumption 1 (Gradient Lipschitz Continuity and Strong Convexity). The
finite sum function f(x) is α-strongly convex and β-smooth, i.e., for all x, y,

∇f(x)�(y − x) +
β

2
‖y − x‖2 ≥ f(y) − f(x) ≥ ∇f(x)�(y − x) +

α

2
‖y − x‖2.
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Assumption 2 (Lipschitz continuity). For any i ∈ {1, 2, . . . ,m}, there exists a
constant M , such that

∥∥∇2fi(x) − ∇2fi(y)
∥∥ ≤ M‖x − y‖ holds for all x, y.

Assumption 3 (Boundness of Hessian) The regularization term has been
divided equally and included in fk(x), and ∇2fk(x)  I for k = 1, 2, . . . ,m.

By Assumption 1, we can define global condition number for α-strongly con-
vex and β-smooth function f(x) as

κ � maxx λmax(∇2f(x))
minx λmin(∇2f(x))

.

Besides κ̃ and κ, we also use the following condition numbers to characterize the
running time of our algorithms

κ̂l = max
x

βmax(x)
λmin(∇2f(x))

.

The following theorem is a standard concentration of measure result for sums
of independent matrices.

Theorem 1 (Matrix Bernstein, [17]). Consider a finite sequence {Zk} of
independent random matrices with dimension d1 ×d2. Assume that each random
matrix satifies

E[Zk] = 0 and ‖Zk‖ ≤ R, almost surely.

Define

σ2 � max

{∥∥∥∥∥
∑

k

E[ZkZ∗
k ]

∥∥∥∥∥ ,

∥∥∥∥∥
∑

k

E[Z∗
kZk]

∥∥∥∥∥

}
.

Then, for all t ≥ 0, we have

Pr

(∥∥∥∥∥
∑

k

Zk

∥∥∥∥∥ ≥ t

)
≤ (d1 + d2) exp

( −t2/2
σ2 + Rt/3

)
.

As an immediate corollary, we obtain the following result.

Corollary 1. Consider a finite sequence {Zk} of independent random matrices
with dimension d × d. Assume that each random matrix satifies

E[Zk] = 0 and ‖Zk‖ ≤ R, almost surely.

Then, for all t ≥ 0, we have

Pr

(∥∥∥∥∥

s∑

k=1

Zk

∥∥∥∥∥ ≥ t

)
≤ 2d exp

( −t2/2
sR2 + Rt/3

)
.
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Proof. See proof in Appendix B.1. 	

The following lemmas are foundations of our main theorem.

Lemma 1. Let ρ1 = 2 and ρj+1 =
(
1 − 1

4ξ2 ρj

)−1

. If βmax(x) > αmin(x) > 0,

then we have 1 < ρj+1 < 2 and ρj monotonously decrease to ρ = 2

1+
√

1−( κ̃−1
κ̃+1 )

2 .

Proof. See proof in Appendix C.1. 	

Lemma 2. Let ∇̃−2f(xt) be the average of S1 independent samples{

∇̃−2
[i,S2]

f(xt), i = 1, 2, · · · , S1

}
, which is used for the approximation of ∇−2f(xt)

in Algorithm 1. Then we have that

∥∥∥∇̃−2f(xt) − E[∇̃−2f(xt)]
∥∥∥ ≤

⎧
⎪⎨

⎪⎩

R1, for CP-SNM,

R2, for TR-SNM,

R3, for OR-SNM,

(10)

where

R1 �

⎧

⎪⎨

⎪⎩

52(1 + κ̂l
a−1

)aS2 , for a > 1,

52(1 + κ̂lS2), for a = 1,
52κ̂l(1 − a)−1, for a < 1,

with a �

⎛

⎜
⎝

κ̃−1
κ̃+1

√

3 − ( κ̃−1
κ̃+1

)2 − 1

⎞

⎟
⎠ ,

R2 �

⎧

⎨

⎩

20ãS2 + 8κ̂lã
S2(ã − 1)−1, for ã > 1,

20 + 8κ̂lS2, for ã = 1,
20ãS2 + 8κ̂l(1 − ã)−1, for ã < 1,

with ã �
(√

2 + 1
)

√
κ̃ − 1√
κ̃ + 1

,

R3 � 2S2
κ̃

κ̃ + 1

(
κ̃ − 1

κ̃ + 1

)S2−1

+ 2κ̃κ̂l.

(11)

Proof. See proof in Appendix C.2. 	

Lemma 3. Let ∇̃−2f(xt) be the average of S1 independent samples{

∇̃−2
[i,S2]

f(xt), i = 1, 2, · · · , S1

}
, which is used for the approximation of ∇−2f(xt)

in Algorithm 1. For η1 > 0, if we set

S2 ≥

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

R̃1 �
√

κ̃+1
2 ln 2(κ̂l−1)

η1
, for CP-SNM,

R̃2 �
(
1 +

√
κ̃
)
ln

(κ̂l − 1)
(
1 + 4

e ln
√

κ̃+1√
κ̃−1

)

η1
, for TR-SNM,

R̃3 � 1 + κ̃

2
ln

κ̂l − 1
η1

, for OR-SNM.

then we have that

Pr

(∥∥∥∇̃−2f(xt) − ∇−2f(xt)
∥∥∥ > 3R

√
S−1
1 ln

2d
δ

+ η1

)
≤ δ,

where R = R1, R2 and R3 for CP-SNM, TR-SNM and OR-SNM, respectively,
and 3

√
S−1
1 ln 2d

δ < 1.
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Proof. See proof in Appendix C.3. 	

Lemma 4. Let xt be generated by Algorithm 1. Suppose the conditions of
Lemma 3 is fulfilled, then the following inequality holds with probability 1 − δ:

‖xt+1 − x∗‖ ≤ γ‖xt − x∗‖ + M
∥∥∇−2f(xt)

∥∥ ‖xt − x∗‖2, (12)

where γ = 3κ̂lR
√

S1
−1ln 2d

δ + κ̂lη1 with R = R1, R2 and R3 for CP-SNM,
TR-SNM and OR-SNM , respectively.

Proof. See proof in Appendix C.4. 	

Theorem 2. For Algorithm 1, let FO(M, κ̂lR) be the total time required by a
first-order algorithm to achieve the least accuracy 1

4Mκ̂l
such that ‖x1 − x∗‖ ≤

1
4Mκ̂l

, and set the parameters as follows:

κ̂lη1 =
1
16

, T1 = FO (M, κ̂lR) , S1 = O

(
κ̂2

l R
2 ln

2d
δ

)
, S2 = O

(
R̃

)
.

Then it holds for t ≥ T1 with probability 1 − δ that

‖xt+1 − x∗‖ ≤ 1
2
‖xt − x∗‖,

and each step of Algorithm 1 runs in time Õ(md + κ̂2
l R

2R̃d2).
Moreover, if f(x) is a generalized linear model (GLM) function [12], then

each step of Algorithm 1 runs in time Õ(md+ κ̂2
l R

2R̃d), where R = R1, R2, R3

and R̃ = R̃1, R̃2, R̃3 for CP-SNM, TR-SNM and OR-SNM, respectively.

Proof. See proof in Appendix A. 	

Under the Assumptions 1–3, we can obtain the following results.

Corollary 2. For a GLM function f(x), Algorithm 1 returns a point xt with
probability at least 1 − δ that f(xt) ≤ min

x
f(x) + ε in total time Õ(md +

κ̂2
l R

2R̃d) ln(1ε ), where R = R1, R2, R3 and R̃ = R̃1, R̃2, R̃3 for CP-SNM,
TR-SNM and OR-SNM, respectively.

For comparison, we list the runtime of CP-SNM, TR-SNM, OR-SNM and
LiSSA in Table 1.

Table 1. Running time comparison

Algorithm Runtime

CP-SNM Õ(md + κ̂2
l R2

1R̃1d2)ln( 1
ε
)

TR-SNM Õ(md + κ̂2
l R2

2R̃2d2)ln( 1
ε
)

OR-SNM Õ(md + κ̂2
l R2

3R̃3d2)ln( 1
ε
)

LiSSA Õ(md + κ̃2κ̂ld
2)ln( 1

ε
)

Table 2. Datasets for experiments

Classfication Data Set m d

Logistics MNIST 4-9 11791 784

Softmax MUSHROOM 8124 112
COVERTYPE 100000 54
RealSIM 72309 20958
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Remark 1. Here Õ hides log factors of κ, d, 1
δ . In theory, the bounds on the

variances of CP-SNM and TR-SNM are possibly pessimistic, which need to be
improved. We leave this for future work. On the other hand, at every Newton
step, we can choose a matrix H̃ as a preconditioner for the Hessian H, so that
the inner iteration of the Newton method is transformed to solve a system of
linear equations HH̃−1y = −b, where the condition number of HH̃−1 can be
greatly reduced to a satisfied level as described in Algorithm 3 in [12]. Espe-
cially, for GLM functions, the Newton step is in fact to solve a least squares
problem. We can take advantage of a low complexity λ-spectral approximation
as a preconditioner given in Sect. 5.2 in [12]. These will be our future work.

5 Experiments

In this section, we validate our proposed approach empirically. We use the four
datasets tested in [12], namely MNIST 4-9 [8], CoverType [9], Mushroom [1] and
RealSIM [10], which are listed in Table 2.

We remark that MNIST 4-9 is a binary classification task, and others are
multi-classification tasks, which are optimized with the logistic regression and
softmax classification objectives, respectively. All the models are trained with the
l2 regularization, and we plot log(CurrentValue-OptimalValue) for comparison,
where OptimalValue is the xt which first attains the given accuracy baseline. In
order to make sure that the norm of the Hessian is bounded, we scale the above
data set points to unit norm.

As the testing results in [12] show that LiSSA improves upon the overall time
over popular first-order methods, we only compare our proposed methods with
LiSSA in this section.

In Fig. 1, we compare the four methods CP-SNM, TR-SNM, OR-SNM and
LiSSA in terms of the accuracy achieved versus the number of passes over the
data which is named epoch. It shows that, with enough initial SGD steps, all
methods are linear convergent. We can find that, all the three new methods
outperform LiSSA. Among our proposed three methods, CP-SNM and TR-SNM
give similar results, and both of them are better than OR-SNM.

In Fig. 2, we evaluate all the methods for different regularization parameter
λ, which shows that our proposed methods consistently outperform LiSSA on

Fig. 1. Performances of CP-SNM, TR-SNM, OR-SNM and LiSSA for different data
sets and regularization parameter λ = 10−4, S1 = 1, S2 = 25



Accelerating Stochastic Newton Method 533

Fig. 2. Performances for different regularization parameter λ and S1 = 1, S2 = 25.

Fig. 3. Convergence rates for different choices of the S2.

different condition numbers. The results in Fig. 3 show that our proposed meth-
ods converge faster with larger S2. In Figs. 2 and 3, we plot the results for the
data set MNIST 4-9 and the results for other data sets are similar.

6 Conclusion

In this paper, we focus on the acceleration of stochastic Newton method by
approximating the Hessian inverse with Chebyshev estimators. We propose three
methods, CP-SNM, TR-SNM and OR-SNM. A complete convergence analysis
is given and experimental results show that our proposed methods consistently
outperform LiSSA on the four standard benchmarks.

Acknowledgements. We would like to thank the anonymous reviewers for their con-
structive comments.
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Abstract. In this paper, we study stochastic submodular maximiza-
tion problems with general matroid constraints, which naturally arise
in online learning, team formation, facility location, influence maximiza-
tion, active learning and sensing objective functions. In other words, we
focus on maximizing submodular functions that are defined as expecta-
tions over a class of submodular functions with an unknown distribution.
We show that for monotone functions of this form, the stochastic contin-
uous greedy algorithm [19] attains an approximation ratio (in expecta-
tion) arbitrarily close to (1− 1/e) ≈ 63% using a polynomial estimation
of the gradient. We argue that using this polynomial estimator instead
of the prior art that uses sampling eliminates a source of randomness
and experimentally reduces execution time.

Keywords: submodular maximization · stochastic optimization ·
greedy algorithm

1 Introduction

Submodular maximization is a true workhorse of data mining, arising in set-
tings as diverse as hyper-parameter optimization [23], feature compression [3],
text classification [14], and influence maximization [9,13]. Many of these inter-
esting problems as well as variants can be cast as maximizing a submodular
set function f(S), defined over sets S ⊆ V for some ground set V , subject
to a matroid constraint. Despite the NP-hardness of these problems, the so-
called continuous-greedy (CG) algorithm [5], can be used to construct a 1− 1/e-
approximate solution in polynomial time. Interestingly, the solution is generated
by first transferring the problem to the continuous domain, and solving a contin-
uous optimization problem via gradient techniques. The solution to this continu-
ous optimization problem is subsequently rounded (via techniques such as pipage
rounding [1] and swap rounding [5]), to produce an integral solution within a
1 − 1/e factor from the optimal. The continuous optimization problem solved
by the CG algorithm amounts to maximizing so-called multilinear relaxation
of the original, combinatorial submodular objective. In short, the multilinear
relaxation of a submodular function f(S) is its expectation assuming its input
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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S is generated via independent Bernoulli trials, and is typically computed via
sampling [5,24].

Recently, a series of papers have studied an interesting variant called the
stochastic submodular optimization setting [2,7,10,11,19,25]. In this setting, the
submodular objective function to be optimized is assumed to be of the form of
an expectation, i.e., f(S) = Ez∼P [fz(S)], where z is a random variable. More-
over, the optimization algorithm does not have access to the a function oracle
(i.e., cannot compute the function itself). Instead it can only sample a random
instantiation of fz(·), different each time. This setting is of course of interest
when the system or process that f models is inherently stochastic (e.g., involves
a system dependent on, e.g., user behavior or random arrivals) and the distribu-
tion governing this distribution is not a priori known. It is also of interest when
the support of distribution P is very large, so that the expectation cannot be
computed efficiently. A classic example of the latter case is influence maximiza-
tion (c.f. Sect. 3.1), where the expectation f(S) cannot be computed efficiently
or even in a closed form, even though samples z ∼ P can be drawn.

Interestingly, the fact that the classic continuous greedy algorithm operates
in the continuous domain gives rise to a stochastic continuous greedy (SCG)
method for tackling the stochastic optimization problem [19]. In a manner very
similar to stochastic gradient descent, the continuous greedy algorithm can be
modified to use stochastic gradients, i.e., random variables whose expectations
equal the gradient of the multilinear relaxation. In practice, these are computed
by sampling two random variables in tandem: z ∼ P , which is needed to gen-
erate a random instance fz, and S, the random input needed to compute the
multilinear relaxation. As a result, the complexity of the SCG algorithm depends
on the variance due to both of these two variables.

We make the following contributions:

– We use polynomial approximators, originally proposed by Özcan et al. [22],
to reduce the variance of the stochastic continuous greedy algorithm. In par-
ticular, we eliminate one of the two sources of randomness of SCG, namely,
sampling S. We do this by replacing the sampling estimator by a determin-
istic estimator constructed by approximating each fz(·) with a polynomial
function.

– We show that doing so reduces the variance of the gradient estimation pro-
cedure used by SCG, but introduces a bias. We then characterize the perfor-
mance of SCG in terms of both the (reduced) variance and new bias term.

– We show that for several interesting stochastic submodular maximization
problems, including influence maximization, the bias can be well-controlled,
decaying exponentially with the degree of our polynomial approximators.

– Finally, we illustrate the advantage of our approach experimentally, over both
synthetic and real-life datasets.

2 Related Work

While submodular optimization problems are generally NP-hard, the celebrated
greedy algorithm [20] attains a (1 − 1/e) approximation ratio for submodular
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maximization subject to uniform matroids and a 1/2 approximation ratio for
general matroid constraints. As discussed in the introduction, the continuous
greedy algorithm [5] restores the (1 − 1/e) approximation ratio by lifting the
discrete problem to the continuous domain via the multilinear relaxation.

Stochastic submodular maximization, in which the objective is expressed as
an expectation, has gained a lot of interest in the recent years [2,7,25]. Karimi et
al. [11] use a concave relaxation method that achieves the (1−1/e) approximation
guarantee, but only for the class of submodular coverage functions. Hassani et
al. [10] provide projected gradients methods for the general case of stochastic sub-
modular problems that achieve 1/2 approximation guarantee. Mokhtari et al. [19]
propose stochastic conditional gradient methods for solving both minimization
and maximization stochastic submodular optimization problems. Their method
for maximization, Stochastic Continous Greedy (SCG) can be interpreted as a
stochastic variant of the continuous greedy algorithm [5,24] and achieves a tight
(1 − 1/e) approximation guarantee for monotone and submodular functions.

Our work builds upon and relies on the approach by Özcan et al. [22], who
studied ways of accelerating the computation of gradients via a polynomial esti-
mator. Extending on the work of Mahdian et al. [16], Özcan et al. show that
submodular functions that can be written as compositions of (a) an analytic
function and (b) a multilinear function can be arbitrarily well approximated
via Taylor polynomials; in turn, this gives rise to a method for approximating
their multilinear relaxation in a closed form, without sampling. We leverage this
method in the context of stochastic submodular optimization, showing that it
can also be applied in combination with SCG of Mokhtari et al. [19]: this elim-
inates one of the two sources of randomness, thereby reducing variance at the
expense of added bias. From a technical standpoint, this requires controlling the
error introduced by the bias of the polynomial estimator, while simultaneously
accounting for the variance inherent in SCG, due to sampling instances.

3 Technical Preliminary

Submodularity and Matroids. Given a ground set V = {1, . . . , n} of n
elements, a set function f : 2V → R+ is submodular if and only if f(B ∪ {e}) −
f(B) ≤ f(A∪{e})−f(A), for all A ⊆ B ⊆ V and e ∈ V . Function f is monotone
if f(A) ≤ f(B), for every A ⊆ B.

Matroids. Given a ground set V , a matroid is a pair M = (V, I), where I ⊆ 2V

is a collection of independent sets, for which the following hold: (a) if B ∈ I and
A ⊂ B, then A ∈ I, and (b) if A,B ∈ I and |A| < |B|, there exists x ∈ B \ A
s.t. A ∪ {x} ∈ I. The rank of a matroid rM(V ) is the largest cardinality of
its elements, i.e.: rM(V ) = max{|A| : A ∈ I}. We introduce two examples of
matroids:

1. Uniform Matroids. The uniform matroid with cardinality k is I = {S ⊆
V, |S| ≤ k}.

2. Partition Matroids. Let B1, . . . ,Bm ⊆ V be a partitioning of V , i.e.,∧m
�=1B� = ∅ and

⋃m
�=1 B� = V . Let also k� ∈ N, � = 1, . . . ,m, be a set of
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cardinalities. A partition matroid is defined as I = {S ⊆ 2V | |S ∩ B�| ≤
k�, for all � = 1, . . . , m}.

3.1 Problem Definition

In this work, we focus on discrete stochastic submodular maximization problems.
More specifically, we consider set function f : 2V → R+ of the form: f(S) =
Ez∼P [fz(S)], S ⊆ V, where z is the realization of the random variable Z drawn
from a distribution P over a probability space (Vz, P ). For each realization of
z ∼ P , the set function fz : 2V → R+ is monotone and submodular. Hence, f
itself is monotone and submodular. The objective is to maximize f subject to
some constraints (e.g., cardinality or matroid constraints) by only accessing to
i.i.d. samples of fz∼P . In other words, we wish to solve:

max
S∈I

f(S) = max
S∈I

Ez∼P [fz(S)], (1)

where I is a general matroid constraint.
Stochastic submodular maximization problems are of interest in the absence

of the oracle that provides the exact value of f(S): one can only access fz(S),
for random instantiations z ∼ P . A well-known motivational example is conta-
gion propagation in a network (a.k.a., the influence maximization problem [13]).
Given a graph with node set V , the reachability of nodes from seeds is deter-
mined by sampling sub-graph G = (V,E), via, e.g., the Independent Cascade
or the Linear Threshold model [13]. The random edge set, in this case, plays
the role of z, and the distribution over graphs the role of P . The function fz(S)
represents the ratio of nodes reachable from the seeds S under the connectivity
induced by edges E in this particular realization of z. The goal is to select seeds
S that maximize f(S) = Ez∼P [fz(S)]; both f and fz are monotone submodular
functions; however computing f in a closed form is hard, and f(·) can only be
accessed through random instantiations of fz(·).

3.2 Change of Variables and Multiliear Relaxation

There is a 1-to-1 correspondence between a binary vector x ∈ {0, 1}n and
its support S = supp(x). Hence, a set function f : 2V → R+ can be inter-
preted as f : {0, 1}n → R+ via: f(x) � f(supp(x)) for x ∈ {0, 1}n. We
adopt this convention for the remainder of the paper. We also treat matroids
as subsets of {0, 1}n, defined consistently with this change of variables via
M = {x ∈ {0, 1}n : supp(x) ∈ I}. For example, a partition matroid is:
M =

{
x ∈ {0, 1}n | ⋂m

�=1

(∑
i∈B�

xi ≤ k�

)}
. The matroid polytope C ⊆ [0, 1]n is

the convex hull of matroid M, i.e., C = conv(M).
We define the multilinear relaxation of f as:

G(y) = ES∼y[f(S)] =
∑

S⊆V

f(S)
∏

i∈S

yi

∏

j /∈S

(1 − yj)

= Ex∼y[f(x)] =
∑

x∈{0,1}n

f(x)
∏

i∈V

yxi
i (1 − yi)(1−xi), for y ∈ [0, 1]n.

(2)
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In other words, G : [0, 1]n → R+ is the expectation of f , assuming that S
is random and generated from independent Bernoulli trials: for every i ∈ V ,
P (i ∈ S) = yi. The multilinear relaxation of f satisfies several properties. First,
it is indeed a relaxation/extension of f over the (larger) domain [0, 1]n: for
x ∈ {0, 1}n, G(x) = f(x), i.e., G agrees with f on integral inputs. Second, it
is multilinear (c.f. Sect. 3.4), i.e., affine w.r.t. any single coordinate yi, i ∈ V ,
when keeping all other coordinates y−i = [yj ]j �=i fixed. Finally, in the context
of stochastic submodular optimization, it is an expectation that involves two
sources of randomness: (a) z ∼ P , i.e., the random instantiation of the objective,
as well as (b) x ∼ y, i.e., the independent sampling of the Bernoulli variables
(i.e., the set S). In particular, we can write:

G(y) = Ez∼P [Gz(y)], where Gz(y) = Ex∼y[fz(x)] is the multilinear relaxation of fz(·).
(3)

3.3 Stochastic Continuous Greedy Algorithm

The stochastic nature of the set function f(S) requires the use the Stochastic
Continuous Greedy (SCG) algorithm [19]. This is a stochastic variant of the
continuous greedy algorithm (method) [24], to solve (1). The SCG algorithm
uses a common averaging technique in stochastic optimization and computes
the estimated gradient dt by the recursion

dt = (1 − ρt)dt−1 + ρt∇Gzt
(yt), (4)

where ρt is a positive step size and the algorithm initially starts with d0 = y0 =
0. Then, it proceeds in iterations, where in the t-th iteration it finds a feasible
solution as follows

vt ∈ argmax
v∈C

{dT
t v}, (5)

where C is the matroid polytope (i.e., convex hull) of matroid M. After finding
the ascent direction vt, the current solution yt is updated as

yt+1 = yt +
1
T
vt, (6)

where 1/T is the step size. The steps of the stochastic continuous greedy algo-
rithm are outlined in Algorithm 1. The (fractional) output of Algorithm 1 is
within a 1 − 1/e factor from the optimal solution to Problem (1) (see Theo-
rem 2 below). This fractional solution can subsequently be rounded in polyno-
mial time to produce a solution with the same approximation guarantee w.r.t. to
Problem (1) using, e.g., either the pipage rounding [1] or the swap rounding [6]
methods.

Sample Estimator. The gradient ∇Gzt
is needed to perform step (4); com-

puting it directly via Eq. (2). requires exponentially many calculations. Instead,
both Calinescu et al. [5] and Mokhtari et al. [19] estimate it via sampling.
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Algorithm 1. Stochastic Continuous Greedy (SCG)
Require: Step sizes ρt > 0. Initialize d0 = y0 = 0.

1: for t = 1, 2, . . . , T do
2: Compute dt = (1 − ρt)dt−1 + ρt∇Gzt(yt);
3: Compute vt ∈ argmaxv∈C{dT

t v};
4: Update the variable yt+1 = yt +

1
T
vt;

5: end for

In particular, due to multilinearity (i.e., the fact that Gz is affine w.r.t. a coor-
dinate xi, we have:

∂Gz(y)
∂xi

= Gz([y]+i) − Gz([y]−i), for all i ∈ V, (7)

where [y]+i and [y]−i are equal to the vector y with the i-th coordinate set to
1 and 0, respectively. The gradient of G can thus be estimated by (a) producing
N random samples x(l), for l ∈ {1, . . . , N} of the random vector x, and (b)
computing the empirical mean of the r.h.s. of (7), yielding

∂Ĝz(y)
∂xi

=
1
N

N∑

l=1

(
fz([x(l)]+i) − fz([x(l)]−i)

)
, for all i ∈ V. (8)

Mokhtari et al. [19] make the following assumptions:

Assumption 1. Function f : {0, 1}n → R+ is monotone and submodular.

Assumption 2. The Euclidean norm of the elements in the constraint set C are
uniformly bounded, i.e., for all y ∈ C, there exists a D s.t. ‖y‖ ≤ D.

Under these assumptions, SCG combined with the sampling estimator in
Eq. (7), yields the following guarantee:

Theorem 1. [Mokhtari et al. [19]] Consider Stochastic Continuous Greedy
(SCG) outlined in Algorithm 1, with ∇Gzt

(yt) replaced by ∇Ĝzt
(yt) given by

(8). Recall the definition of the multilinear extension function G in (2) and set
the averaging parameter as ρt = 4/(t+8)2/3. If Assumptions 1 & 2 are satisfied,
then the iterate yT generated by SCG satisfies the inequality

E [G(yT )] ≥ (1 − 1/e)OPT − 15DK

T 1/3
− fmaxrD

2

2T
, (9)

where OPT = maxy∈C G(y) and K = max{3‖∇G(y0) − d0‖, 4σ +
√
3rfmaxD},

where D is the diameter of the convex hull C, fmax is the maximum marginal
value of the function f , i.e., fmax = maxi∈{1,...,n} f({i}), r is the rank of the

matroid I, and σ2 = supy∈C E

[
‖∇̂Gz(y) − G(y)‖

]
, where ∇̂Gz is the sample

estimator given by Eq. (8).
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Thus, by appropriately setting the number of iterations T , we can produce a
solution that is arbitrarily close to 1−1/e from the optimal (fractional) solution.
Again, this can be subsequently rounded (see, e.g., [1,5]) to produce an integer
solution with the same approximation guarantee. It is important to note that
the number of steps required depends on σ2, which is a (uniform over C) bound
on the variance of the estimator given by Eq. (8). This variance contains two
sources of randomness, namely z ∼ P , the random instantiation, and x ∼ y, as
multiple such integer vectors/sets are sampled in Eq (8). In general, the variance
will depend on the number of samples N in the estimator, and will be bounded
(as G is bounded).1

3.4 Multilinear Functions and the Multilinear Relaxation
of a Polynomial

Recall that a polynomial function p : R
n → R can be written as a linear combi-

nation of several monomials, i.e.,

p(y) = c0 +
∑

�∈I
c�

∏

i∈J�

y
k�

i
i , (10)

where c� ∈ R for � in some index set I, subsets J� ⊆ V determine the terms
of each monomial, and , and {k�

i}i∈J�
⊂ N are natural exponents. W.l.o.g. we

assume that k�
i ≥ 1 (as variables with zero exponents can be ommited). The

degree of the monomial indexed by � ∈ I is k� =
∑

i∈J�
k�

i , and the degree of
polynomial p is max�∈I k�, i.e., the largest degree across monomials.

A function f : R
N → R is multilinear if it is affine w.r.t. each of its coordi-

nates [4]. Alternatively, multilinear functions are polynomial functions in which
the degree of each variable in a monomial is at most 1; that is, multilinear
functions can be written as:

f(y) = c′
0 +

∑

�∈I
c′
�

∏

i∈J�

yi, (11)

where c� ∈ R for � in some index set I, and subsets J� ⊆ V , again determining
monomials of degree exactly equal to |J�|. Given a polynomial p defined by the
parameters in Eq. (10), let

ṗ(y) = c0 +
∑

�∈I
c�

∏

i∈J�

yi, (12)

be the multilinear function resulting from p, by replacing all its exponents k�
i ≥ 1

with 1. We call this function the multilinearization of p. The multilinearization
of p is inherently linked to its multilinear relaxation:

1 For example, even for N = 1, the submodularity of fz and Eq. (7) imply that
σ2 ≤ 2nmaxj∈[n] E[fz({j})2] [19], though this bound is loose/a worst-case bound.



542 G. Özcan and S. Ioannidis

Lemma 1 (Özcan et al. [22]). Let p : [0, 1]n → R be an arbitrary polynomial
and let ṗ : R

n → R+ be its multilinearization, given by Eq. (12). Let x ∈
{0, 1}n be a random vector of independent Bernoulli coordinates parameterized
by y ∈ [0, 1]n. Then, Ex∼y[p(x)] = Ex∼y[ṗ(x)] = ṗ(y).

Proof. Observe that ṗ(x) = p(x), for all x ∈ {0, 1}n. This is precisely because
xk = x for x ∈ {0, 1} and all k ≥ 1. The first equality therefore follows.
On the other hand, ṗ(x) is the multilinear function given by Eq. (12). Hence
Ex∼y[ṗ(x)] = Ex∼y

[
c0 +

∑
�∈I c�

∏
i∈J�

xi

]
= c0 +

∑
�∈I Ex∼y

[∏
i∈J�

xi

]
=

c0 +
∑

�∈I
∏

i∈J�
Ex∼y [xi] = ṗ(y), where the second to last equality holds by

the independence across xi, i ∈ V . �

An immediate consequence of this lemma is that the multilinear relaxation of
any polynomial function can be computed without sampling, by simply comput-
ing its multilinearization. This is of particular interest of course for submodular
functions that are themselves polynomials (e.g., coverage functions [11]). Özcan
et al. extend this to submodular functions that can be written as compositions of
a scalar and a polynomial function, by approximating the former via its Taylor
expansion. We extend and generalize this to the case of stochastic submodular
functions, so long as the latter can be approximated arbitrarily well by polyno-
mials.

4 Main Results

4.1 Polynomial Estimator

To leverage Lemma 1 to the case of stochastic submodular functions, we make
the following assumption:

Assumption 3. For all z ∈ Vz, there exists a sequence of polynomials {f̂L
z }∞

L=1,
f̂L

z : R
n → R such that limL→∞ |fz(x)− f̂L

z (x)| = 0, uniformly over x ∈ {0, 1}n,

i.e. there exists εz(L) ≥ 0 such that limL→∞ εz(L) = 0 and |fz(x) − f̂L
z (x)| ≤

εz(L), for all x ∈ {0, 1}n.

In other words, we assume that we can asymptotically approximate every
function fz with a polynomial arbitrarily well. Note that there already exists a
polynomial function that approximates each fz perfectly (i.e., εz = 0), namely,
its multilinear relaxation Gz. However, the number of terms in this polynomial is
exponential in n. In contrast, Assumption 3 requires exact recovery only asymp-
totically. In many cases, this allows us to construct polynomials with only a
handful (i.e., polynomial in n) terms, that can approximate fz. We will indeed
present such polynomials for several applications of interest in Sect. 5. Armed
with this assumption, we define an estimator ∇̂GL

z of the gradient of the multi-
linear relaxation G as follows:

̂∂GL
z

∂yi

∣
∣
y

≡ Ex∼y[f̂
L
z ([x]+i)] − Ex∼y[f̂

L
z ([x]−i)]

Lemma 1
=

˙̂
f

L
z ([y]+i) − ˙̂

f
L
z ([y]−i), for all i ∈ V.

(13)
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In other words, our estimator is constructed by replacing the multilinear relax-
ation Gz in Eq. (7) with the multilinear relaxation of the approximating poly-
nomial f̂z. In turn, by Lemma 1, the latter can be computed deterministically
(without any sampling of the Bernoulli variables x ∼ y), in closed form: the
latter is given by the multilinearization ˙̂

fL
z of polynomial f̂L

z .
Nevertheless, our deterministic estimator given by Eq. (13) has a bias, pre-

cisely because of our approximation of fz via the polynomial f̂L
z . We characterize

this bias via the following lemma:

Lemma 2. Assume that function fz satisfies Assumption 3. Let ∇Gz be the
unbiased stochastic gradient for a given fz and let ∇̂GL

z be the estimator of the
multilinear relaxation given by (13). Then,

∥
∥∇Gz(y)− ∇̂GL

z (y)
∥
∥
2

≤ 2
√

nεz(L),
for all y ∈ C.

The proof can be found in App. A of [21]. Hence, we can approximate ∇G
arbitrarily well, uniformly over all x ∈ [0, 1]n. We can thus use our estimator in
the SCG algorithm instead of of the sample estimator of the gradient (Eq. (8)).
We prove that this yields the following guarantee:

Theorem 2. Consider Stochastic Continuous Greedy (SCG) outlined in Algo-
rithm 1. Recall the definition of the multilinear extension function G in (2). If
Assumption 1 is satisfied and ρt = 4/(t+8)2/3 , then the objective function value
for the iterates generated by SCG satisfies the inequality

E[G(yT )] ≥ (1 − 1/e)OPT − 15DK

T 1/3
− fmaxrD

2

2T
,

where K = max{3‖∇G(y0 −d0)‖2,
√

16σ2
0 + 224

√
nε(L)+2

√
rfmaxD}, OPT =

maxy∈C G(y), r is the rank of the matroid I, ε(L) = Ez∼P [εz(L)], fmax is the
maximum marginal value of the function f , i.e., fmax = maxi∈{1,...,n} f({i}),
and σ2

0 = supy∈C Ez∼P

[
‖∇G(y) − ∇Gz(y)‖2

]
.

The proof can be found in App. B Our proof follows the main steps of [19] ,
using however the bias guarantee from Lemma 2; to do so, we need to deal with
the fact that our estimator is not unbiased, but also that stochasticity is still
present (as variables z are still sampled randomly). This is also reflected in our
bound, that contains both a bias term (via ε(L)) and a variance term (via σ0).

Comparing our guarantee to Theorem 1, we observe two main differences.
On one hand, we have replaced the uniform bound of the variance σ2 with the
smaller quantity σ2

0 : the latter is quantifying the gradient variance w.r.t. z, and
is thus smaller than σ, that depends on the variance of both z and x ∼ y.
Crucially, σ2

0 is an “inherent” variance, independent of the gradient estimation
process: it is the variance due to the randomness z, which is inherent in how we
access our stochastic submodular objective and thus cannot be avoided. On the
other hand, this variance reduction comes at the expense of introducing a bias
term. This, however, can be suppressed via Assumption 3; as we discuss in the
next section, for several problems of interest, this can be made arbitrarily small
using only a polynomial number of terms in f̂L

z .
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5 Problem Examples

In this section, we list several problems that can be tackled through our approach,
also summarized in Table 1; these are similar to the problems considered by Özcan
et al. [22], but cast into the stochastic submodular optimization setting. All prob-
lems correspond to trivially bounded variances σ2

0 (again, because functions fz

are bounded); we thus focus on determining their bias ε(L). For space reasons, we
report Cache Networks (CN) in Table 1, but provide details for it in the [21].

5.1 Data Summarization (SM) [12,15,17]

In data summarization, ground set V is a set of tokens, representing, e.g., words
or sentences in a document. A corpus of documents Vz is presented to us sequen-
tially, and the goal is to select a “summary” S ⊆ V that is representative of Vz.
The summary should be simultaneously (a) representative of the corpus, and (b)
diverse.

To be representative, the summary S ⊂ V should contain tokens of high
value, where the value of a token is document-dependent: for document z ∈ Vz,
token i ∈ V has a value ri,z ∈ [0, 1], where

∑
i ri,z = 1. An example of such a

value is the term frequency, i.e., the number of times the token appears in the
document, divided by the document’s length (in tokens). To be diverse, the sum-
mary should contain tokens that cover different subjects. To that end, if tokens
are partitioned in to subjects, represented by a partition {Pj}J

j=1 of V , the objec-

tive is given by f(x) = Ez(fz(x)) where fz(x) =
∑J

j=1 h
(∑

i∈V ∩Pj
ri,zxi

)
, and

h(s) = log(1 + s) is a non-decreasing concave function. Intuitively, the concav-
ity of h suppresses the selection of similar tokens (corresponding to the same
subject), even if they have high value, thereby promoting diversity. Functions
fz (and, thereby, also f) are monotone and submodular, and we can construct
polynomial approximators f̂L

z for them as indicated in Table 1 by replacing h
with its Lth-order Taylor approximation around 1/2, given by:

ĥL(s) =
∑L

�=0
h(�)(1/2)

�! (s − 1/2)�. (14)

Table 1. Summary of problems satisfying Assumption 1& 3.

Input gz : {0, 1}|V | → [0, 1]
x → gz(x)

fz : {0, 1}|V | →
R+

x → fz(x)

f̂L
z : {0, 1}|V | → R+

x → f̂L
z (x)

Bias
ε(L)

SM Weighted bipartite graph
G = (V ∪ P ) weights rz ∈ R

n
+, and∑n

i=1 ri,z = 1

∑
i∈V ∩Pj

ri,zxi

∑J
j=1 h (gz(x)),

where
h(s) = log(1 + s)

ĥL(gz(x)), where ĥL

is Eq. (14)

1
(L+1)2L+1

IM Instances G = (V, E) of a directed
graph, partitions P z

v ⊂ V

∑

i∈V

1
N

(
1 − ∏

u∈P z
i

(1 − xu)
)

h (gz(x)) where
h(s) = log(1 + s)

ĥL(gz(x)), where ĥL

is Eq. (14)

1
(L+1)2L+1

FL Complete weighted bipartite graph
G = (V ∪ V ′) weights
wi�,z ∈ [0, 1]N×|z|

N∑

�=1

(wi�,z −

wi�+1,z)

(

1 −
�∏

k=1

(1 − xik )

)
h (gz(x)) where
h(s) = log(1 + s)

ĥL(gz(x)), where ĥL

is Eq. (14)

1
(L+1)2L+1

CN Graph G = (V, E), service rates
μ ∈ R

|z|
+ , requests r ∈ R, Pz path of

r, arrival rates λ ∈ R
|R|
+

1
μz

∑
r∈R:z∈pr λr ∏kpr (v)

k′=1 (1 − xpr
k

,ir ) h(gz(0)) −
h(gz(x)) where
h(s) = s/(1 − s)

ĥL(gz(x)), where ĥL

is Eq. (47) in [21]

s̄L+1

1−s̄



Stochastic Submodular Maximization via Polynomial Estimators 545

This is because the composition of polynomial f̂L
z with polynomial gz in Table 1

is again a polynomial. We show in [21] that this estimator ensures that f indeed
satisfies Assumption 3. Moreover, the estimator bias decays exponentially with
degree L (see Table 1 and [21]), meaning that polynomial number of terms suffice
to reduce the bias to a desired level. A partition matroid can be used with this
objective to enforce that no more than k� sentences come from �-th user, etc.

5.2 Influence Maximization (IM) [8,13]

Given a directed graph G = (V,E), we wish to maximize the expected fraction
of nodes reached if we infect a set of nodes S ⊆ V and the infection spreads via,
e.g., the Independent Cascade (IC) model [13]. Adding a concave utility to the
fraction can enhance the value of nodes reached in early stages. Formally, let z
can be a random simulation trace of the IC model, and P z

v ⊆ V is the set of nodes
reachable from v in a random simulation of the IC model. Then, the objective can
be written as f(x) = Ez∼P [fz(x)] where fz(x) = h (gz(x)) , h(s) = log(1+s), and
gz(x) =

∑
v∈V

1
N

(
1−∏

i∈P z
v
(1−xi)

)
is the number of infected nodes under seed

set x. Since functions gz : [0, 1]N → [0, 1] are multilinear, monotone submodular
and h : [0, 1] → R is non-decreasing and concave, f satisfies Assumption 1
[22]. Again, we can construct f̂L by replacing h by ĥL, given by Eq. (14). This
again ensures that f indeed satisfies Assumption 3, and the estimator bias again
decays exponentially (see Table 1 and [21]). Partition matroid constraints could
be used in this setting to bound the number of seeds from some group (e.g.,
males/females, people in a zip code, etc.).

5.3 Facility Location (FL) [18]

Given a weighted bipartite graph G = (V ∪ Vz) and weights wi,z ∈ [0, 1], i ∈ V ,
z ∈ Vz, we wish to maximize:

f(S) = Ez∼P [h(maxi∈S wi,z)] , (15)

where h(s) = log(1 + s). Intuitively, V and V ′ represent facilities and customers
respectively and wv,v′ is the utility of facility v for customer v′. The goal is to
select a subset of facility locations S ⊂ V to maximize the total utility, assuming
every customer chooses the facility with the highest utility in the selection S; again,
adding the concave function h adds diversity, favoring the satisfaction of customers
that are not already covered. This too becomes a coverage problem by observing

that [11]: maxi∈S wi,z =
n∑

�=1

(wi�,z − wi�+1,z)
(
1−

�∏

k=1

(1− xik
)
)
, where, for a given

z ∈ Vz, weights have been pre-sorted in a descending order as wi1,z ≥ . . . ≥ win,z.
and win+1,j � 0. In a manner similar to Sec 5.2, we can show that this function
again satisfies Assumption 1 and 3, using again the Lth-order Taylor approxima-
tion of h, given by Eq. (14); this will again lead to a bias that decays exponen-
tially (see Table 1 and [21]). We can again optimize such an objective over arbi-
trary matroids, which can enforce, e.g., that no more than k facilities are selected
from a geographic area or some other partition of V .
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6 Experiments

We evaluate Alg. 1, with sampling and polynomial estimators over two well-
known problem instances (influence maximization and facility location) with
real and synthetic datasets. We summarize these setups in Table 2. For a more
detailed overview of the datasets and experiment parameters, please refer to [21].
Our code is publicly accessible.2

Table 2. Datasets and Experiment
Parameters.

instance dataset |z| |S| |E| m k
IM SBPL 20 400 914 4 1
IM ZKC 20 34 78 2 3
FL MovieLens 4000 6041 256 10 2

Algorithms. We compare the perfor-
mance of different estimators. These
estimators are: (a) sampling estima-
tor (SAMP) with N = 1, 10, 20, 100
and (b) polynomial estimator (POLY)
with L = 1, 2.

Metrics. We evaluate the perfor-
mance of the estimators with their clock running time and via the maximum
result (max f(y)) obtained using the best available estimator for a given setting.

Results. The trajectory of the utility obtained at each iteration of the stochas-
tic continuous greey algorithm f(y) is plotted as a function of time in Fig. 1. In
Fig. 1(a), we observe that polynomial estimators outperforms sampling estima-
tors in terms of utility. Moreover, POLY1 runs 10 times faster than SAMP20
and runs in comparable time to SAMP1. In Fig. 1(b), POLY2 outperforms all
estimators whereas POLY1 underperforms. Finally, in Fig. 1(c) we observe that
POLY1 consistently outperforms sampling estimators.

The final outcomes of the objective functions of the estimators are reported
as a function of time in Fig. 2. In Fig. 2(a) and 2(b), POLY2 outperforms other
estimators in terms of utility. Again in Fig. 2(a), POLY1 outperforms sampling
estimators in terms of utility and runs in comparable time to SAMP1 while in
Fig. 2(c), POLY1 outperforms sampling estimators both in terms of time and
utility. Ideally, we would expect the performance of the estimators to improve as
the degree of the polynomial or the number of samples increase. The examples

Fig. 1. Trajectory of the FW algorithm. Utility of the function at the current y as a
function of time is marked for every iteration.

2 https://github.com/neu-spiral/StochSubMax.

https://github.com/neu-spiral/StochSubMax
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Fig. 2. Comparison of different estimators on different problems. Blue lines represent
the performance of the POLY estimators and the marked points correspond to POLY1
and POLY2 respectively. Orange lines represent the performance of the SAMP esti-
mators and the marked points correspond to SAMP1, SAMP10, SAMP20, SAMP100
respectively. (Color figure online)

where this is not always the case can be explained by the stochastic nature of
the problem.

7 Conclusions

We show that polynomial estimators can improve existing stochastic submodu-
lar maximization methods by eliminating one of the two sources of randomness,
particularly the one that stems from sampling. Investigating methodical ways to
construct such polynomials can expand the applications of the proposed estima-
tor appearing in this paper. Online versions of stochastic submodular optimiza-
tion, where performance is characterized in terms of (approximate) regret, are
also a possible future research direction.
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Abstract. Human motion prediction is a complex task as it involves
forecasting variables over time on a graph of connected sensors. This is
especially true in the case of few-shot learning, where we strive to fore-
cast motion sequences for previously unseen actions based on only a few
examples. Despite this, almost all related approaches for few-shot motion
prediction do not incorporate the underlying graph, while it is a common
component in classical motion prediction. Furthermore, state-of-the-art
methods for few-shot motion prediction are restricted to motion tasks
with a fixed output space meaning these tasks are all limited to the same
sensor graph. In this work, we propose to extend recent works on few-shot
time-series forecasting with heterogeneous attributes with graph neural
networks to introduce the first few-shot motion approach that explicitly
incorporates the spatial graph while also generalizing across motion tasks
with heterogeneous sensors. In our experiments on motion tasks with
heterogeneous sensors, we demonstrate significant performance improve-
ments with lifts from 10.4% up to 39.3% compared to best state-of-the-
art models. Moreover, we show that our model can perform on par with
the best approach so far when evaluating on tasks with a fixed output
space while maintaining two magnitudes fewer parameters.

Keywords: Time-series forecasting · Human motion prediction ·
Few-shot learning

1 Introduction

Time-series forecasting has become a central problem in machine learning
research as most collected industrial data is being recorded over time. A specific
application for time-series forecasting approaches is human motion prediction (or
human pose forecasting), in which a multivariate time-series is given in the form
of a human joint skeleton, and the objective is to forecast motion sequences based
on previous observations. This area has recently seen various applications rang-
ing from healthcare [21] and smart homes [11] to robotics [14,22]. Deep learning
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Fig. 1. Examples of three motion prediction tasks with observations (red) and forecasts
(teal). (a) being a standard motion prediction on the full graph, while (b) and (c) are
forecasts based on only a subgraph of the sensor skeleton learned by the same model.
(Color figure online)

methods have shown state-of-the-art performances in the task of human motion
prediction in recent years with a focus on popular time-series forecasting models
including LSTM’s and GRU’s [17], temporal autoencoders [3], and more recently
transformer-based approaches [15,16]. Moreover, employing graph-based models
has shown to be advantageous in cases where the human joint skeleton can be
utilized [13].

In few-shot motion prediction, we strive to forecast the motion for previously
unseen actions using only a few labeled examples, in contrast to standard human
motion prediction, where the training dataset already contains sufficient sam-
ples for each action that will be encountered during testing. This can be highly
beneficial in practice, as it eliminates the need for such a dataset and allows for
a more flexible application. For example, end users can then add new motions
by demonstrating an action a few times before the model can accurately classify
and forecast future frames. Current approaches for motion prediction are limited
to a fixed attribute space such that every observation needs to be recorded across
the same set of input sensors. However, an ideal model should be able to cope
with only a subset of motion sensors, as not every user should be required to
have motion sensors for the full human skeleton. Also, not every action requires
information from every possible sensor, e.g., recordings of only the arm for the
motion "waving." An example of this is shown in Fig. 1, where a motion pre-
diction for the complete human skeleton, but also partial subgraphs of it, is
demonstrated. In few-shot learning, this setup is referred to as learning across
tasks with heterogeneous attributes [1,10] and is typically tackled by employing
a model which operates on attribute sets (in contrast to vectors) which inherently
do not possess any order.

In human motion prediction, the attributes represent sensors distributed on
a human skeleton [4,9], meaning they possess order in the form of a graph struc-
ture. This information is often used in approaches for classical human motion
prediction but not in the current literature for few-shot motion prediction. In a
few-shot setting for tasks with heterogeneous sensors, the model would encounter
varying graphs in training, similar to classical graph classification approaches
[12]. In this chosen scenario, each motion prediction task has a different set of
sensors (attributes) that are shared across their subjects, each frame (or pose)
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corresponds to one time-step, and, finally, the placement of the existing sensors
on the subject’s body is represented by the task’s graph. In this work, we propose
the first model for few-shot motion prediction that incorporates the underlying
graph information while generalizing across tasks with heterogeneous sensors.
We evaluate our approach on different variations of the popular Human3.6M
dataset and demonstrate improvements over all related methods. The contribu-
tions of this work are the following:

1. We propose the first model for few-shot motion prediction that incorporates
the underlying graph structure, while also being the first model for few-shot
motion prediction which generalizes to motion tasks with heterogeneous sen-
sors.

2. We conduct the first few-shot human motion experiments on tasks with het-
erogeneous sensors where we can show significant performance improvements
over all related baselines with performance lifts ranging from 10.4% to 39.3%.

3. We demonstrate minor performance improvements over state-of-the-art
approaches in the standard experimental setup while maintaining two mag-
nitudes fewer parameters within our model.

4. We also provide code for our method as well as for two of our baselines that
have not published a working implementation.

2 Related Work

This work lies in the intersection of few-shot learning (FSL) and human motion
prediction. Thus we will discuss the related work of both areas before summariz-
ing the work in the analyzed field. FSL [23] aims to achieve a good generalization
on a novel task that contains only a few labeled samples based on a large meta-
dataset of related tasks. There are different techniques, including metric-based
[20], gradient-based [7], and memory-based approaches [24], that have shown suc-
cessful results. They typically all involve meta-training across the meta-dataset
while performing some adaptation to the test task at hand.

Recently, different works have tried to extend few-shot learning to generalize
across tasks that vary in their input [2] or output space [5]. One is to apply
permutation-invariant and -equivariant models that operate on sets of elements
through the use of deep sets [25]. TimeHetNet [1] extended this approach to
perform few-shot time-series forecasting on tasks with a single target variable
and a varying amount of covariates. chameleon [2] allows vector data-based
tasks to have different shapes and semantics as long as the attributes can be
mapped to a common alignment. All these methods, however, did not consider
any structural relation between the attributes and operate purely on sets of
scalar attributes.

Motion Forecasting (or Pose Forecasting, or Pose Estimation) is the task
of predicting the subsequent frames of a sequence of human poses. This data
can be collected directly as images, or with accelerometers and gyroscopes [18].
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Most approaches naturally rely on standard deep learning methods for time-
series forecasting such as Variational Auto Encoders, LSTMs, and recurrent
convolution networks [6,11,14,21,22]. These methods are devised for different
motion applications that vary in the type of sensors or forecasting length. For
example, Peek [6] and the work of Jalal et al. [11] require only motion data from
the arms, while Gui et al. [8] use the rotation of the main joints of the complete
human body to predict future time-steps. None of these approaches, however,
are designed to handle tasks where the set of motion sensors varies.

There are two recent approaches published for few-shot human prediction
that we will focus on in this paper as baselines. paml [8] consists of the popular
meta-learning approach maml [7] operating on top of the classical motion pre-
diction model residual-sup [17]. It incorporates a simple look-ahead method
for the decoder weights based on pre-trained weights on a bigger dataset to
fine-tune the model for a new task. MoPredNet [26,27] is a memory-based
approach that uses attention and an external memory of pretrained decoder
weights to compute the weights for a new task. Although these two methods
work with different tasks separated by the human action performed in each pose
sequence, they require the same set of sensors for each task.

In this paper, we present GraphHetNet (GHN): a graph-based approach to
adapt the TimeHetNet [1] architecture to train across different human motion
detection tasks with heterogeneous sensors by integrating information of neigh-
boring sensors through the application of graph convolutional networks [12].
Thus, we can combine both graph and time-series information into our few-shot
predictions.

3 Methodology

3.1 Problem Definition

We formulate few-shot motion prediction as a multivariate temporal graph prob-
lem. In standard human motion prediction, we are given a graph G = (V, A) as
predictor data where the vertex set V consists of C motion sensors {1, ..., C}
and A ∈ R

C×C is a symmetric adjacency matrix representing the edges between
sensors with Aij = 1 iff sensors i and j are connected by an edge, e.g., an
elbow and the shoulder. We also refer to this graph as motion graph, as it
contains all the motion sensors. Additionally, we are given a set of node fea-
tures X = {xict} ∈ R

I×T×C which represent a multivariate time-series with
I instances over T time steps for the C motion sensors. We want to forecast
the next H time steps given the observed T such that our target is given by
Y ∈ R

I×H×C .
Extending this formulation to few-shot learning, we are given a set of M

tasks D := {(Ds
1,D

q
1), ..., (D

s
M ,Dq

M )} called meta-dataset where each task con-
sists of support data Ds and query data Dq with Ds

m := (Gm,Xs
m, Y s

m) and
Dq

m := (Gm,Xq
m, Y q

m). The graph is shared across instances of both support
and query for a given task. We want to find a model φ with minimal expected
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Fig. 2. The pipeline for our proposed approach GraphHetNet. DS Block stands for
Deep Set Block and GCN Block for Graph Convolution Network Block. The network
takes the full support data Ds = (G, Xs, Y s) and the predictors of the query data
(G, Xq) and outputs a set of outputs ŷ represent the next H frames after the T frames
of the instances in Dq. Batch dimensions are omitted for simplicity.

forecasting loss over the query data of all tasks when given the labeled support
data, and predictor of the query data:

min
φ

1
M

∑

(Ds
m,Dq

m)∈D

L(Y q
m, φ(Gm,Xq

m,Ds)) (1)

In the standard setting Gm = Gm′ ∀m,m′ ∈ M (m �= m′), which means that
the structure of the graph G does not vary across the meta-dataset. Thus, each
sample of each task contains the same set of motion sensors V with an identical
adjacency matrix A. We want to generalize this problem to tasks with hetero-
geneous sensors, meaning that the underlying graph structure and the set of
vertices vary across tasks (Gm �= Gm′ ∀m,m′ ∈ M (m �= m′)), while it is shared
between support and query data of the same task. Thus, the number of motion
sensors C is not fixed and depends on the task at hand.

3.2 GraphHetNet

Our model GraphHetNet denoted by φ is based on TimeHetNet [1], which
uses a set approach for few-shot time-series forecasting with heterogeneous
attributes similar to the approach of Iwata et al. [10]. The overall architecture
consists of two main components: First, the inference network, which processes
the predictor and target data of the support set Ds of a task to generate a latent
task representation which should contain useful information to forecast the query
instances. Second, the prediction network computes the actual motion forecast
for the query set Dq of the task at hand based on its predictors and the task
embedding of the support network. In prior approaches [1,10], both components
are composed of multiple stacked deep set blocks (DS Block), which process the
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input data as a set of attributes. To compute the embeddings for every single
vertex c ∈ C over the instances I of the support data Ds, a single layer in such
a block is then a deep set layer [25]:

wc = gds

(
1
I

I∑

i=1

fds(xic)

)
∀c ∈ C (2)

Here, wc ∈ R
T×K with K being the latent output dimension of gDS. By employing

an inner function fds : RT×1 → R
T×K on each element of the set of instances X,

and an outer function gds : RT×K → R
T×K on the aggregation of this set, we can

model a permutation-invariant layer that operates on the set of instances. The
theoretical foundation of this layer lies in the Kolmogorov-Arnold representation
theorem, which states that any multivariate continuous function can be written
as a finite composition of continuous functions of a single variable and the binary
operation of addition [19].

In contrast to previous approaches that operate on heterogeneous attributes,
we do not utilize DS blocks to aggregate the information across attributes, but
only across instances, as our problem’s attributes are motion sensors structured
in a graph and not in a set. Instead, we include blocks of graph convolutional
layers (GCN Block) [12] in both the inference and the prediction network. We
can then aggregate information across sensors by stacking graph convolutional
layers. A single layer in the block is then defined as:

uic = ggcn

⎛

⎝

⎡

⎣xic,
∑

j∈N(c)

fgcn(xij)

⎤

⎦

⎞

⎠ ∀c ∈ C ∀i ∈ I (3)

where uic ∈ R
T×K , N(c) is the set of all vertices that are in the neighborhood of c

meaning Acj = 1 for every j ∈ N(c) and [.] is the concatenation along the latent
feature axis. The inner function fgcn : RT×1 → R

T×K prepares the neighbor
embeddings, while the outer function ggcn : RT×2K → R

T×K updates the vertex
features of the respective sensor with its aggregated neighbor messages. Note that
this layer only captures the information across motion sensors, not instances.
The models ggcn, fgcn, gds, fds are Gated recurrent units (GRU) to deal with
the temporal information. As shown in Fig. 2, our full model GraphHetNet
φ consists of the two model components inference and prediction network. The
inference network ψinf processes the full support data Ds to compute the task
embeddings across instances and motion sensors. The prediction network ψpred

processes the query data to output the final forecast. Thus, the prediction Ŷ of
our model for a task m is given by:

Ŷm = φ(Xq
m, Gq

m,Ds) = ψpred(Xq
m, Gq

m, ψinf(Gs
m,Xs

m, Y s
m)) (4)

The inference model ψinf is composed of a GCN block in between two DS blocks
to capture both information across instances and motion sensors. The prediction
network ψpred consists of a GCN block, followed by a block of stacked GRU layers
(GRU Block) which compute the target motion forecast.
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4 Results

We conducted multiple experiments on the Human3.6M dataset [4,9], consisting
of 17 motion categories recorded for 11 subjects, resulting in 3.6 million frames
in total. We want to evaluate our approach for few-shot motion tasks with het-
erogeneous sensors such that each task contains a subset of the vertices of the
full motion graph, with the graph of each task being an induced subgraph of
the original one. We also conduct an ablation on the standard few-shot motion
prediction setting proposed in prior approaches [8,26,27] that considers homo-
geneous tasks only, meaning each task contains all sensors in identical order.

4.1 Experimental Setup

In both cases, we have 11 actions in meta-training (directions, greeting, phoning,
posing, purchases, sitting, sitting down, taking a photo,waiting,walking a dog, and
walking together) and 4 actions in meta-testing (walking, eating, smoking, and dis-
cussion). Furthermore, we also utilize the same split across subjects for meta-test
and meta-training as proposed by Gui et al. [8]. The task is to forecast the next 10
frames (400ms) given the previous 50 frames (2000ms) across the given set of sen-
sors. A single task consists of five support instances and two query instances which
means that the model needs to adapt to a previously unseen action based on five
labeled instances only. During meta-training, each meta-batch consists of one task
per action totaling 11 tasks. The tasks in the classical setting contain all nonzero
angles for each of the 32 joints totaling 54 angles as motion sensors. In our main
experiment on heterogeneous sensors, each task has only a subset of the set of all
sensors. In particular, we sample an induced subgraph of the original human skele-
ton graph by selecting a random sensor as the initial root node and then recursively
adding a subset of neighboring vertices to the graph, including all edges whose end-
points are both in the current subset. The statistics of the original motion graph of
Human3.6M and our sampled induced subgraphs are given in Table 2. The number
of unique tasks we sample during our experiments is enormous, as is the number of
possible induced subgraphs from a given source graph. We evaluated this empiri-
cally by sampling one million tasks from the full graph and found around 842,872
unique tasks, meaning only around 16% of the subgraphs were sampled more than
once. This guarantees that many tasks our model encounters during meta-testing
are previously unseen. More details on the task sampling procedure are stated in
the appendix.

We compare against three non-meta-learning baselines, which are variations
of the popular detection network residual-sup [17], which consists of stacked
GRU’s with residual skip connections: res-supsingle trains the model on the
support data of the test task at hand only while evaluating the query data.
res-supall trains the model on the data of all the meta-training actions in
standard supervised fashion. In the case of the heterogeneous tasks, the sen-
sor dimension is padded with zeros to 54 since the model is not equipped to deal
with heterogeneous sensor sets. The query data of the meta-test tasks is used
to evaluate the final performance. res-suptrans uses res-supall as a pretrained
model to then fine-tune it to the support data of the test task at hand before
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Table 1. Results few-shot motion prediction with heterogenous sensors given in Mean
Angle Error of different methods on Human3.6M. Best results are in bold, second best
are underlined. The percentage improvement is given for our model compared to the
respective second-best one.

walking smoking
80 160 320 400 Avg 80 160 320 400 Avg

res-supsingle [17] 0.65 1.15 2.06 2.40 1.57 0.76 1.17 1.99 2.02 1.48
res-supall [17] 0.88 1.11 1.17 1.20 1.09 1.47 1.69 1.14 1.4 1.43
res-suptrans [17] 0.85 1.18 1.19 1.17 1.09 1.10 1.47 1.73 1.94 1.56
paml [8] 0.26 0.39 0.56 0.64 0.46 0.58 0.64 0.69 0.83 0.69
TimeHet [1] 0.23 0.30 0.44 0.53 0.37 0.49 0.52 0.58 0.62 0.55
MoPred [26,27] 0.26 0.33 0.43 0.52 0.39 0.51 0.52 0.54 0.61 0.54
GHN (ours) 0.17 0.22 0.30 0.37 0.27 0.41 0.42 0.43 0.48 0.44
Lift in % 26.1 26.7 30.2 28.8 27.0 16.3 19.2 20.4 21.3 18.5

discussion eating
80 160 320 400 80 160 320 400

res-supsingle [17] 0.97 1.56 1.86 2.67 1.77 0.55 0.93 1.54 1.74 1.19
res-supall [17] 0.96 1.11 1.30 1.44 1.2 0.85 1.03 0.92 1.05 0.96
res-suptrans [17] 1.30 1.42 1.68 1.75 1.53 0.68 0.78 0.94 1.03 0.86
PAML [8] 0.35 0.52 0.78 0.91 0.64 0.23 0.28 0.42 0.56 0.37
TimeHet [1] 0.29 0.42 0.69 0.85 0.59 0.20 0.28 0.41 0.52 0.35
MoPred [26,27] 0.34 0.42 0.62 0.77 0.54 0.25 0.29 0.39 0.59 0.38
GHN (ours) 0.22 0.30 0.55 0.69 0.44 0.14 0.17 0.25 0.34 0.22
Lift in % 24.1 28.6 11.3 10.4 18.5 30.0 39.3 35.9 34.6 37.1

evaluating the query data of it. Furthermore, we compare against the few-shot
motion baselines paml [8], and MoPredNet [26,27], which both evaluate their
approach in the homogeneous setup, as well as TimeHetNet [1] as it is the first
model for time-series forecasting across heterogeneous attributes. Both paml
and MoPredNet do not have any publicized code (and we could not reach the
authors about it), which is why the results for the standard setting are taken
from their respective published results. At the same time, we re-implemented
both models to evaluate them on the heterogeneous setup. For TimeHetNet,
we utilize the officially published code. We had to adapt it as the original model
is built to forecast a single target variable given a set of covariates that span
the future time horizon. In contrast, we want to forecast multiple variables in a
set without any given future covariates. The adapted version of TimeHetNet,
as well as the reimplementations of paml and MoPredNet, and the appendix,
can also be found in our link: https://github.com/brinkL/graphhetnet. We opti-
mized the hyperparameters of all models via grid search. For our approach, the
best found configuration includes two graph convolutional layers per GCN block,
the DS blocks contain three stacked GRUs each, and the number of units per
GRU is 64. We optimize our model with Adam and a learning rate of 0.0001.

https://github.com/brinkL/graphhetnet
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Fig. 3. Examples of three motion predictions in exponential map for GHNand baseline
approaches. We sampled two examples where our approach (red) has the lowest error
and one where a baseline performs best. Full past horizon is shown in appendix. (Color
figure online)

Table 2. Statistics of the full
Human3.6M graph and for the sub-
graphs sampled during training on tasks
with heterogeneous attributes.

Full Sampled

vertices 54 26.8 ± 12.9

edges per vertex 6.6 ± 3.1 3.9 ± 1.7

Table 3. Number of parameters in
the models PAML, MoPred, TimeHet-

Net (as THN), and GraphHetNet (as
GHN, ours) in multiples of 1000.

PAML MoPred THN GHN

Param 3,373K 40,945K 661K 265K
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Fig. 4. Each line represents a model evaluated for tasks up to a certain number of
sensors in test, while the x-axis shows the maximum number of sensors in meta-training.
Results are given in MSE averaged across the normalized results for each action.

4.2 Results

The results for our experiment on few-shot tasks with heterogeneous sensors are
shown in Table 1. Our approach outperforms all baselines with significant mar-
gins over all actions and time horizons. The performance improvements com-
pared to the respective second best approach range from 10.4 percent for 400ms
on the action "discussion" to 39.3 percent for the motion prediction at 160ms
for the action "eating." The second-best results are shared between TimeHet-
Net and MoPredNet (abbreviated MoPred in the table). Three examples for
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Table 4. Ablation on homogeneous setting: Mean Angle Error of different methods on
Human3.6M dataset for standard few-shot motion prediction task with fixed attribute
space. The results with * are taken from the published results of Zang et al. [26].

walking smoking
80 160 320 400 Avg 80 160 320 400 Avg

res-supsingle [17]∗ 0.39 0.69 0.97 1.08 0.78 0.27 0.50 0.98 1.00 0.69
res-supall [17]* 0.36 0.61 0.84 0.95 0.69 0.26 0.49 0.98 0.97 0.68
res-suptrans [17]* 0.34 0.57 0.78 0.89 0.65 0.26 0.48 0.93 0.91 0.65
paml [8]* 0.4 0.69 0.97 1.08 0.79 0.34 0.63 1.13 1.12 0.80
TimeHet [1] 0.32 0.37 0.70 0.94 0.58 0.43 0.46 0.69 0.68 0.57
MoPred (reimp.) 0.42 0.52 0.77 0.98 0.67 0.48 0.54 0.71 0.94 0.67
MoPred [26,27]* 0.21 0.35 0.55 0.69 0.45 0.26 0.47 0.93 0.9 0.64
ghn (ours) 0.17 0.35 0.69 0.94 0.54 0.12 0.17 0.67 0.54 0.38
Lift in % 19.0 0.0 -25.5 -36.2 -20.0 53.8 63.8 28.0 40.0 40.6

discussion eating
Horizon in ms 80 160 320 400 80 160 320 400
res-supsingle [17]* 0.32 0.66 0.95 1.09 0.76 0.28 0.50 0.77 0.91 0.62
res-supall [17]∗ 0.31 0.66 0.94 1.03 0.74 0.26 0.46 0.70 0.82 0.56
res-suptrans [17]∗ 0.30 0.65 0.91 0.99 0.71 0.22 0.35 0.54 0.69 0.45
paml [8]* 0.36 0.72 1.03 1.15 0.82 0.29 0.51 0.8 0.95 0.64
TimeHet [1] 0.33 0.49 1.00 1.31 0.78 0.28 0.35 0.61 0.91 0.54
MoPred (reimp.) 0.51 0.67 0.99 1.12 0.82 0.35 0.47 0.62 0.83 0.56
MoPred [26,27]* 0.29 0.63 0.89 0.98 0.70 0.21 0.34 0.53 0.69 0.44
ghn (ours) 0.19 0.42 0.94 1.25 0.70 0.17 0.29 0.52 0.75 0.43
Lift in % 34.5 33.3 -5.6 -27.6 0.0 19.0 14.7 1.9 -8.7 2.3

motion forecasts of this experiment are given in the Fig. 3 for two tasks where our
approach has the highest performance and one task where a baseline approach
performs better. As expected, the motion prediction of GraphHetNet is most
similar to TimeHetNet with our method being more accurate. When compar-
ing the model capacity of our approach and the analyzed baselines based on the
model parameters illustrated in Table 3, one can see that our model contains
significantly fewer parameters, with two magnitudes difference to MoPredNet
[26]. TimeHetNet is the closest with double the number of parameters. Fur-
ther experimental results for all actions of the Human3.6M can be found in our
appendix.

4.3 Ablations

We also evaluated our model in the standard homogeneous setting where all
tasks share a fixed motion graph. This serves the purpose of evaluating whether
our model, which is designed for heterogeneous tasks, shows any performance
degradation or can perform on par with state-of-the-art approaches in the clas-
sical setup. The results are stated in Table 4. We implemented our own version
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of paml and MoPredNet, as there is no public implementation in either app-
roach. We received no further information when contacting the original authors.
Both the published results and the results for our implementation of MoPred-
Net are given in the table, as we were not able to replicate the results reported
in the publication. For paml, we only show the reported results as our reim-
plementation achieves results that match the reported results. Our approach
is shown to be on par with our baselines, MoPredNet while showing slight
improvements for short-term frames after 80 and 160 ms. At the same time, the
model capacity of our model is two magnitudes lower than of MoPredNet and
one lower than paml. Comparing our results to TimeHetNet, we see that con-
volutional graph layers give significant performance lifts. In a further ablation,
we analyzed the influence of the size of sampled subgraphs during meta-training
on meta-testing. For this, we repeated our experimental setup but limited the
maximum number of nodes in the subgraph from 5 to 35 for meta-training and
-testing, respectively. The results in Fig. 4 indicate that our approach is robust
to subgraph size in meta-training, with a slight peak when training on tasks up
to 20 vertices, demonstrating the model’s ability to generalize to larger graphs
during testing. This shows how larger tasks correlate to a more difficult motion
prediction as the chance to extract useful data from neighbor sensors increases.

5 Conclusion

In this work, we proposed a new approach for few-shot human motion predic-
tion, which generalizes over tasks with heterogeneous motion sensors arranged
in a graph, outperforming all related baselines which are not equipped for vary-
ing sensor graphs. This is the first approach that allows for the prediction of
novel human motion tasks independent of their number of sensors. Moreover,
using this model, we can rival state-of-the-art approaches for the standard few-
shot motion benchmark on tasks with homogeneous sensors while maintaining a
significantly smaller model size which can be crucial for applications of human
motion detection as these are often found in mobile and handheld devices. By
publicizing all our code, including the baselines reimplementation as well as our
benchmark pipeline, we hope to motivate future research in this area.
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